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Zusammenfassung

Es war das Ziel dieser Arbeit zu untersuchen inwiefern kosmologische Beobachtungen die
Existenz von zusaetzlichen schweren und langlebigen d-Quarks verbieten. Solche schw-
eren d-Quarks werden in einem GUT-erweiterten Modell fuer Neutrinomassen vorherge-
sagt. Waehrend der Synthese der leichten Elemente im fruehen Universum (BBN) kann
ein zusaetzliches Elementarteilchen einen grossen Einfluss auf die beobachteten Haeu-
figkeitsverhaeltnisse der Elemente ausueben, und somit zu einem Widerspruch mit den
Beobachtungen fuehren. Darum haben wir eine Berechnung von BBN durchgefuehrt,
wobei wir ein oeffentliches Programm das BBN im Standardfall berechnet so veraendert
haben, dass es die Effekte von zusaetzlichen d-quarks mit Massen 0.5 TeV ≤ m ≤ 103 TeV
und Lebensdauern 0.01 s ≤ τ ≤ 100 s beruecksichtigt. Fuer diese Parameter koennen die
schweren d-Quarks das Temperaturprofil T (t) aendern, indem sie durch ihren Zerfall die
Entropie des Plasmas erhoehen. Zusaetzlich koennen sie auch Kernreaktionen induzieren,
welche das Mengenverhaeltnis von Protonen zu Neutronen vor dem Deuteriumbrennen
beeinflussen. Jedoch haben unsere Ergebnisse gezeigt, dass aufgrund der Entstehung von
gebundenen Zustaenden fuer Temperaturen unter der QCD-Skala, welche die Dichte der
zusaetzlichen Teilchen mit Farbladung massgeblich reduzieren, die Existenz der schweren,
langlebigen d-Quarks zu keinen Widerspruechen mit den Beobachtungen fuehrt.
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Abstract

In this thesis we examined the constraints that arise from cosmological observations for
the scenario of an additional d-quark, which is heavy and long-lived. These heavy d-
quarks are predicted in the GUT-extension of a TeV-scale neutrino-mass model. The
strongest cosmological constraints on non-SM particles usually originate from the era of
Big Bang Nucleosynthesis (BBN). Thus we have performed a BBN calculation, using
a public BBN code in which we implemented the effects of such additional d-quarks
with masses 0.5 TeV ≤ m ≤ 103 TeV and lifetimes 0.01 s ≤ τ ≤ 100 s. For these
parameters the heavy d-quarks can alter the temperature curve T (t) during BBN, by
transferring entropy to the plasma in the course of their decay, and induce neutron-to-
proton interconversion via secondary hadrons from hadronic cascades. Both of these
effects can change the yield of BBN. Our results have shown that if one takes into
account the effects of bound states, which form after deconfinement and set off a second
annihilation phase of colored particles, the heavy d-quarks are not constrained from BBN
for the parameters we examined.
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Chapter 1.

Introduction

The goal of cosmology is to accurately describe the behaviour of our Universe on large
scales. In standard cosmology our Universe is assumed to be homogenous and isotropic
on large scales and to follow the laws of General Relativity, which is Einstein’s confirmed
theory for Gravity. However, these assumptions alone are not sufficient in order to
predict many of the processes that we know to have occured in the early Universe. In
the end of the 19th century physicists, like e.g. Boltzmann and Gibbs, have developped
a theory that has the means to explain the behaviour of a physical system, if the laws
that govern the micro-constituents of this system are understood. The constituents that
are assumed to make up our Universe in standard cosmology are the elementary particles
whose properties and interactions are described by the Standard Model of Particle Physics
(SM). Thus by combining statistical physics of an ensemble of Standard Model particles
with the laws of General Relativity the model of standard cosmology can be formulated.
The predictions this model makes are in good agreement with the observations. A

good example is the synthesis of the light elements in the Big Bang, which is generally
referred to as Big Bang Nucleosynthesis (BBN). This process is highly non-linear and
many factors, like e.g. thermodynamic quantities or the ratio of baryons to photons,
enter. Still the abundances that are predicted to be synthesized in this process match the
observed primordial abundances well, which is strong evidence for standard cosmology.
So far the Standard Model of Particles Physics has been able to make many correct

predictions for the properties of the known elementary particles and interactions govern-
ing their behaviour. However, there are still some observations that cannot be explained
by the Standard Model alone, like e.g. the hierarchy of the neutrino masses. Also there
doesn’t exist a particle that could act as dark matter -which is needed in order to explain
the large-scale structures of our Universe today- in the SM. For these reasons it assumed
that there is physics beyond the SM. There have been proposed many possible extensions
of the SM in order to explain such phenomena/problems. The most famous and well mo-
tivated class of such extensions are supersymmetric models. Supersymmetry (SUSY) is
an additional symmetry between bosons and fermions. A rather general feature of such
extensions of the Standard Model is the fact that many free parameters exist. The al-
lowed values of these free parameters sometimes stretch over many orders of magnitude.
With the LHC at CERN it is possible to test physics beyond the Standard Model via
proton collisions with a center-of-mass energy of 14 TeV. Thus it has been possible to
formulate constraints for some models or even rule out others with the data produced by
the LHC. Up until now the predictions of extensions of the SM for higher energies are
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Chapter 1. Introduction

not testible in this way. However, we can make use of the fact that elementary particles
determine the evolution and structure of our Universe in order to check whether the
predictions of such models don’t disagree with the astrophysical observations. By doing
so it is possible to formulate constraints for values of the model parameters that are not
accessible by colliders.
In this thesis we will examine the impact additional long-lived, heavy d-quarks would

have on astrophysical observables by applying our current understanding of cosmological
processes. The goal is to check for which parameters of these additional quarks there is
a conflict with the observations that would lead to constraints of the underlying model.
The existence of such heavy quarks is motivated by a model where neutrino masses are
generated by a higher dimensional operator. The era of the early Universe at which these
long-lived, heavy d-quark are expected to have the largest effect is during BBN. We will
discuss the mechanisms via which these additional quarks can alter the abundances of
elements produced during BBN and present the results of our BBN calculation including
these long-lived, heavy d-quarks.
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Chapter 2.

Heavy d-quarks in neutrino mass models
from a higher dimensional operator

In this chapter we will briefly discuss a model for neutrino mass generation by TeV scale
physics via a higher dimensional operator. In [KMPW13] this model was introduced and
its LHC phenomenology analyzed. If this model is extended according to the require-
ments of an SU(5) GUT model, it predicts the existence of heavy down-type quarks.
The impact these heavy and long-lived d-quarks would have on cosmological processes is
subject of this thesis.

2.1. TeV scale neutrino mass model from a higher
dimensional operator

Most models that explain the neutrino masses, like the seesaw mechanism, do so via
physics at the GUT scale. However, it is also possible to generate the neutrino mass by
new physics at the TeV scale. This offers the exciting possibility of generally being able
to access this new physics directly at the LHC.
One way the neutrino masses can result from TeV scale physics is via higher dimensional

operators. A higher dimensional operator has d > 4 and doesn’t violate the symmetries
of the Standard Model of particle physics. These operators are part of a so called effective
theory, that approximates fundamental interactions at a scale where the kinetic energy
of the propagating particle of such interactions is much smaller than its mass. At this
scale it is then justified to expand the propagator in terms of the heavy mass M . For a
fermionic propagator this would give

1

γµpµ −M
= − 1

M
− γµpµ

M2
+ ... . (2.1)

A good example for an effective description at low scales is Fermis theory of weak de-
cay processes, such as e.g. the decay of a charm quark c → sud̄. Here the propa-
gator of the heavy W -boson is replaced by an effective four-vertex with the coupling
GF =

√
2g2/(8m2

W ), which is obtained via the first order of the expansion from Eq.
(2.1). This is depicted in Fig. (2.1).

To be able to correctly explain neutrino masses via this higher dimensional operator,
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W

c s

u

d̄

−→ c

s

u

d̄

Figure 2.1.: Effective Vertex according to Fermis theory for the weak decay process c→
sud̄

it is necessary to introduce a symmetry that forbids the so called Weinberg operator.
This operator is of dimension d = 5 and therefore has the lowest dimension of all the
d > 4 operators that are conform with the Standard Model gauge symmetry. The higher
dimensional operators for which this holds are of the form

Od=2n+4 =
1

Λ2n+1
LLHH

(
H†H

)n
, (2.2)

for models with a scalar sector like the Standard Model. Here the L stand for lepton
doublets, the H for Higgs doublets and Λ is the scale of the new physics. From this
it is clear, that the Weinberg operator is given by LLHH. The neutrino mass that is
generated by these operators after electroweak symmetry breaking is

md=2n+4
ν ∝ v2(n+1)

Λ2n+1
, (2.3)

where v is the vacuum expectation value of the Higgs field. If the Weinberg operator
isn’t forbidden, the impact the higher-dimensional operators have on the neutrino mass is
negligible, since the contribution of the next operator in the series is already suppressed
by v2/Λ2. If the Weinberg operator is forbidden, then the major contribution to the
effective neutrino mass comes from the d = 7 operator, such that

meff
ν ∝ v4

Λ3
+O

(
v6

Λ5

)
. (2.4)

In this case the new physics scale Λ can be low, e.g. at the TeV scale, and the resulting
neutrino masses still are sufficiently small.
In the following we will discuss the model for the decomposition of the d = 7 operator,

that we mentioned at the beginning of this section. Because the model is set in a SUSY
framework one has to add an extra SU(2) Higgs-doublet. The d = 7 operator then is of
the form (LLHuHu)(HuHd), where Hu and Hd are SU(2) Higgs-doublets that have the
hypercharge Y = +1

2 and Y = −1
2 . The fermionic fields N̂ , N̂ ′, ξ̂ and ξ̂′ act as mediators

in this model. Here N̂ and N̂ ′ are singlet superfields and ξ̂, ξ̂′ are vector-like SU(2)
doublets with the hypercharges Y (ξ̂) = +1

2 and Y (ξ̂′) = −1
2 . The Feynman diagram

according to this decomposition of the d = 7 operator is depicted in Fig. (2.2).
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2.1. TeV scale neutrino mass model from a higher dimensional operator
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Figure 2.2.: Decomposition of the d = 7 operator (LLHuHu)(HuHd) in a SUSY frame-
work, with the fermionic mediators ξ̂, ξ̂′ and N̂ , N̂ ′.

This model has the superpotential

W =Wquarks + Yeê
cL̂Ĥd − YN N̂L̂Ĥu + κ1N̂

′ξ̂Ĥd − κ2N̂
′ξ̂′Ĥu +mN N̂N̂

′

+mξ ξ̂
′ξ̂ + µĤuĤd . (2.5)

The neutrinos this model generates the masses for are Majorana particles, and therefore
the model breaks the lepton number.

As the Higgs field obtains a vacuum expectation value(VEV) at electroweak symmetry
breaking, the Yukawa couplings in the superpotential from Eq. (2.5) become effective
mass terms. This mechanism generates the masses of the fermions that couple in this
way to the Higgs fields, and thus also the neutrino mass. The mass matrix of the charge-
neutral fermions can be written as

M0
e =


0 YNvu 0 0 0

Y T
N vu 0 mT

N 0 0
0 mN 0 κ1vd κ2vu
0 0 κT1 vd 0 −mξ

0 0 κT2 vu −mξ 0

 , (2.6)

where vu, vd are the VEVs of the Higgs fields Hu, Hd and the basis that was used is
e0 = (ν,N,N ′, ξ0, ξ′0)T . The mass eigenstates can be obtained be diagonalising this
matrix.

By integrating out the heavy fields N and ξ one obtains the effective neutrino mass

mν = v3
uvdY

2
N

κ1κ2

mξm
2
N

. (2.7)

Since the light neutrino masses are mν ∼ 1 eV and the masses of the new particles are
set to be of about 1 TeV, the couplings YN and κ1/2 have to be of the order of 10−3.
This value is in the range of the Yukawa couplings in the Standard Model.
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Chapter 2. Heavy d-quarks in neutrino mass models from a higher dimensional operator

2.2. GUT completion of the neutrino mass model and
resulting heavy d-quarks

It is the goal of a Grand Unified Theory (GUT) to unite the electroweak and the strong
force, such that they become the same phenomenon at very high energy scales (∼ 1016

GeV). Such an attempt is motivated by several observations. First of all the fact that
the electromagnetic and weak sector of the Standard Model of particle physics unify,
gives a hint that the fundamental forces of our Universe could be unified. Furthermore a
common framework could potentially explain some observations in particle physics that
aren’t understood, like e.g. that the proton carries the same absolute charge as the
electron. For the unification of the forces, one chooses a new gauge group that contains
the gauge group of the Standard Model, which is SU(3)× SU(2)×U(1), as a subgroup.
Such groups are e.g. SU(5) and SO(10). Via the mechanism of spontaneous symmetry
breaking these groups are then broken down to the Standard Model.

In this section we will discuss how the neutrino mass model from the beginning of this
section has to be extended, to meet the requirements of a SU(5) GUT model. We will
briefly discuss the properties of this GUT completion of the model and show that it leads
to stable down-type quarks. However it is not possible to present a thorough treatment
of GUT physics in this thesis, which is why we refer the interested reader to one of the
textbooks or reviews on this subject.

By introducing new particles that are charged under one of the symmetry groups of
the Standard Model, such as the SU(2) doublets ξ and ξ′ from the neutrino mass model,
the running of the gauge couplings is altered. Therefore it is possible that the coupling
constants no longer meet at high scales if one adds extra fields. A possibility to ensure
unification of the coupling constants in the case of the SU(2) doublets is embedding
them into a fundamental representation of the SU(5) gauge group. The fundamental
representation of SU(5) is a 5-plet. This 5-plet contains invariants of the Standard
Model groups SU(3) and SU(2). The only possibility is given by the direct sum

5 → (3, 1)−1/3 ⊕ (1, 2)1/2 . (2.8)

The notation we have used to classify the standard model fields is

(dim SU(3), dim SU(2))hypercharge , (2.9)

where dim means the dimension of the irreducible representation of the field with respect
to the corresponding gauge group. In the framework of such SU(5) GUTs usually a 5̄
and a 10 representation contain the Standard Model matter fields and determine their
interactions with the additional fields that appear at the GUT-scale. These 5-plets are

5̄M =
(
dc1, d

c
2, d

c
3, e
−,−νe

)T
, (2.10)
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2.2. GUT completion of the neutrino mass model and resulting heavy d-quarks

and the fields the 10 representation comprises of are given by

10 → (3, 2)1/6 ⊕ (3̄, 1)−2/3 ⊕ (1, 1)2 . (2.11)

The lower two components of the vector from Eq. (2.10) are the fields from the SU(2)
doublet. Therefore the additional fields from the neutrino mass model, ξ, ξ′, Hu and Hd,
lead to the following 5-plets in this GUT framework:

5̄ξ′ =

(
d′c

ξ′

)
, 5ξ =

(
d′′

ξ

)
, H5 =

(
Hcol
Hu

)
, H5̄ =

(
H ′col
Hd

)
. (2.12)

We see that by embedding the fermionic fields ξ and ξ′ into the 5-plets 5̄ξ′ and 5ξ addi-
tional d-quarks appear. The upper components of H5 and H5̄ are so called coloured Higgs
fields, that have masses at the GUT-scale and their effects can therefore be neglected at
lower scales. The Standard Model singlet fields N and N ′ of the neutrino mass model
stay singlets under SU(5).
The most general, SU(5)-invariant superpotential one can write down with these ad-

ditional 5-plets is

W = y1N5ξH5̄ + y2N 5̄ξ′H5 + y3N 5̄MH5+

y′1N
′5ξH5̄ + y′2N

′5̄ξ′H5 + y′3N
′5̄MH5+

mξ′ 5̄M5ξ +mξ5̄ξ′5ξ +mNN
′N+

mNNNN +mN ′N ′N
′N ′ + yd5̄M10H5̄+

y′d5̄ξ′10H5̄ + yu1010H5 − µH5̄H5 . (2.13)

However, the leading contribution to the neutrino mass from this superpotential is no
longer from a d = 7 operator. If the singlet fields N and N ′ are integrated out this leads
to a d = 5 Weinberg operator. In order to save the model one has to forbid one of the
couplings y3 or y′3. This can be achieved by introducing an additional discrete symmetry.
The way the fields are charged under this Z3 symmetry can be taken from Tab. 2.1.

Multiplet 5̄M H5 H5̄ N N’ 5ξ 5̄ξ′ 10
Z3 charge 1 1 1 1 2 0 0 1

Table 2.1.: Z3 symmetry to forbid the contribution from the d = 5 Weinberg operator.
Taken from [KMPW13].

The most general SU(5)-invariant superpotential that is also invariant under this Z3

symmetry then is

W = y3N 5̄MH5 + y′1N
′5ξH5̄ + y′2N

′5̄ξ′H5+

mξ5̄ξ′5ξ +mNN
′N+

y′d5̄ξ′10H5̄ + yu1010H5 − µH5̄H5 . (2.14)
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Chapter 2. Heavy d-quarks in neutrino mass models from a higher dimensional operator

This superpotential from the GUT extended model is similar to the superpotential from
Eq. (2.5), but it has additional terms containing the heavy fields d′ and d′′.

2.3. Phenomenology of the additional d-quarks

As we can see from Eq. (2.14), the additional d-quarks only couple to other fields via the
interactions of the form y′1N

′5ξH5̄ and y′2N ′5ξ′H5. After expanding these in their SU(5)
components one gets that the heavy d-quarks only interact with the coloured components
of the Higgs multiplets H5 and H5̄. Since these coloured Higgs fields have masses at the
GUT scale these interactions are rendered negligible at lower scales. From this it is clear
that, due to the introduction of the additional Z3 symmetry, these heavy d-quarks cannot
decay into lighter particles. However in the superpotential from Eq. (2.13) couplings that
aren’t invariant under Z3, like e.g. the term mξ′ 5̄M5ξ, would allow the additional down-
type quarks to decay into Standard Model particles. So due to the symmetry that was
introduced in order to forbid the Weinberg operator the heavy d-quarks are stable in the
GUT extension of this model.
The corresponding mass eigenstates of these additional fields are D′, which is com-

posed of the right handed field d′ and the left handed d′′, and L′, which is composed
of the corresponding leptonic fields ξ′ and ξ. By solving the according Renormaliza-
tion Group Equations at one-loop order it was predicted by [KMPW13] that D′ can have
a mass of up to 4 TeV for the case that the leptons are potentially observable at the LHC.

The fact that the model predicts stable matter at the TeV scale that carries colour-
charge poses a problem. First of all the abundance of heavy elements in our Universe is
strongly constrained by heavy elements searches in water (see e.g. [Bea12]). Secondly, the
existence of such particles during certain epochs of the early Universe causes conflict with
observations. However, there is a way out. The term µH5H5̄ from the superpotential
of Eq. (2.14) explicitly breaks the discrete symmetry. This mechanism of symmetry
breaking offers a way to avoid the stability of the heavy d-quarks. The symmetry breaking
couplings in this scenario allow the D′ to decay via the processes

D′ → H− + u , and D′ → H0 + d . (2.15)

The lifetime τ of the D′ depends on the strength of the symmetry violation into which
the couplings enter. Therefore it is important to be able to predict for which lifetimes the
heavy d-quarks violate the cosmological constraints in order to know which parameter
space points of the GUT-extended neutrino mass model are ruled out.
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Chapter 3.

Thermodynamics of the Early Universe

It is the goal of this chapter to discuss the thermodynamics of the early Universe, that
follow from the assumptions made in the model of standard cosmology. We will also need
many of the laws that govern the Universe throughout the radiation dominated epoch
for the following chapters.
The standard model of cosmology is based on the assumption that our Universe is

homogenous and isotropic on large scales. With this assumption Einteins field equations

Rµν −
1

2
gµνg

λκRλκ = 8πGTµν , (3.1)

can be simplified. The so called Friedmann-Robertson-Walker metric has the wanted
features and is generally used in modern cosmological models. It is given by the relation

d τ2 := −gµν (x) dxµ dxν = d t2 −R (t)2

(
d x2 + k

(x · d x)2

1− kx2

)
. (3.2)

Here R is the Robertson-Walker scale factor which is a measure for the expansion of the
Universe, and k the space curvature which can be

k =


+1
−1
0

spherical
hyperspherical

Euclidian
. (3.3)

With this one can then derive the Friedmann equation,

Ṙ2

R2
+

k

R2
=

8πGρ

3
, (3.4)

that describes the expansion of the Universe in this cosmological model as a function of
the total energy density ρ and the space curvature k.
The cosmological constraints we will discuss in this thesis all originate from the epoch

when our Universe was a very hot and dense plasma. This was the case until the Universe
had cooled down to about 104 K, at which point matter decoupled from radiation. This
era is usually referred to as the early Universe. During this entire period the evolution
of the Universe was strongly dominated by radiation. Due to the high energy density
at that time the term from Eq. (3.4) that contains the space curvature k can safely be
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Chapter 3. Thermodynamics of the Early Universe

neglected, since we live in a flat universe with k ' 0. This leads to a simplified version
of the Friedmann Equation,

Ṙ =

√
8πGρ

3
R . (3.5)

In order to solve Eq. (3.5) we must first find out how the energy density ρ depends on
the scale factor R. However we can assume that during most of the radiation dominated
epoch the Universe itself and almost all constituents it contained were in thermal equilib-
rium, because collision occurred very often due to the high density of the plasma. From
statistical physics we know that the number density of bosons and fermions in thermal
equilibrium (with zero chemical potential) is given by

n (p, T ) =
4πgp2

(2π~)3

(
1

exp (
√
p2 +m2/T )± 1

)
, (3.6)

where − is for bosons and + for fermions and g is the number of spins states of the
particle. The contribution to the energy density of this species then simply is

ρ (T ) =

∫ ∞
0

n (p, T )
√
p2 +m2 d p . (3.7)

For particles with low masses, such that m� T holds, it follows from Eq. (3.7) that

ρ (T ) =

{
gaT 4/2

7gaT 4/16
bosons
fermions , (3.8)

where a := π2k4/15~3. Since the energy density of a non-relativistic particle species with
m � T is surpressed by a factor of exp (−m/T ) compared to the relativistic species,
the total energy density of the Early Universe is often well approximated by the energy
density of all relativistic particle species ρR. It is given by

ρR =
π2

30
g∗T

4 , (3.9)

where g∗ is number of effective relativistic degrees of freedom which can be determined
via

g∗ =
∑

i=bosons

gi

(
Ti
T

)4

+
7

8

∑
i=fermions

gi

(
Ti
T

)4

. (3.10)

At this point we now know the total energy density for particles in thermal equilibrium
as a function of the temperature T . In order to be able to use this to find a solution to
Eq. (3.5) we must apply the laws of thermodynamics to find a composition between the
scale factor R and the temperature, which means understanding the cooling process of
the Universe.
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The first law of thermodynamics states, that

dU = T dS − p dV . (3.11)

For the internal energy U = ρV it therefore holds, that

dS =
1

T
(d[(ρ+ p)V ]− V d p) . (3.12)

Using d[dS(V, T )] = 0 one gets T dp
dT = ρ + p. By substituting this into Eq. (3.12) one

obtains
dS =

1

T
d[(ρ+ p)V ]− (ρ+ p)V

T 2
dT = d[

(ρ+ p)V

T
+ const] . (3.13)

Hence the entropy per comoving volume is

S = R3 (ρ+ p) /T . (3.14)

The pressure p of a particle species in thermal equilibrium is given by

p (T ) =

∫ ∞
0

n (p, T )
p2

3
√
p2 +m2

d p , (3.15)

and for massless particles it is simply p(T ) = ρ(T )/3. For the time that our Universe,
which we consider to be an isolated system, is in thermal equilibrium the entropy per
comoving volume has to be conserved. Therefore it is possible to use Eq. (3.14) to find
a solution for the Friedmann Equation.

In the case when only radiation contributes to the energy density of the plasma it
follows from Eq. (3.14) that

SR =
4

3
ρRR

3/T =
4π2

90
g∗ (RT )3 . (3.16)

By substituting this into Eq. (3.5) one can easily obtain a relation between the temper-
ature T and the time t, when g∗ ' const. This gives

t = 0.3 g
−1/2
∗

mPl

T 2
, (3.17)

where it was used that mPl = (~c)/G.

Now we will use the results from above to determine the temperature trajectory T (t)
of the Universe during the epoch of interest for this thesis. The knowledge of the thermal
history of the Universe is essential if we want to calculate processes, like e.g. the synthesis
of the light elements, that occur in the early Universe. At the time when the Universe had
cooled down to about 1011 K, the only particles of the ones known to us that remained
in thermal equilibrium, and made a large contribution to the total energy density, were
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Chapter 3. Thermodynamics of the Early Universe

e+, e−, ν, ν and γ. During this period the energy density of the Universe was given by

ρ (T ) = 6 · 7

8
· aT

4
ν

2
+ aT 4 + 4

∫ ∞
0

4πp2

(2π~)3

√
p2 +m2

e

exp
(√

p2 +m2
e/T

)
+ 1

d p , (3.18)

where the first term is the contribution from the three flavours of neutrinos and an-
tineutrinos, the second from the photon with two spin states and the third accounts
for electrons and positrons, that each have two spin states. At temperatures of around
1010 K the neutrinos and antineutrinos left the thermal equilibrium (the departure from
thermal equilibrium of different particle species will be adressed in more detail later in
this thesis). Interestingly, the neutrinos still were distributed according to Fermi-Dirac
statistics as they expanded freely and decoupled from the rest of the Universe. This can
be shown in the following way: neutrinos with a frequency ν at a time t that decoupled
from thermal equilibrium at tL < t must have had a frequency νR(t)/R(tL) when they
left thermal equilibrium, due to the redshift caused by the expanding Universe. From
this we can then calculate the number density of the neutrinos at time t with frequency
in the interval between ν and ν + d ν in the following way:

n (ν, t) d ν = (R (tL) /R (t))3 nFermi (νR (t) /R (tL)) d (νR (t) /R (tL))

= nFermi (ν) d ν . (3.19)

The factor from the dilution due to the expansion cancels with the additional terms of
the redshift, except in the exponential function. However here we can use the conser-
vation of the entropy per comoving volume for a massless species, which tells us that
Tν(t) = Tν(tL)R(tL)/R(t). Since the distribution of the neutrinos doesn’t change after
the departure from equilibrium, their contribution to the energy density is still in accord
with Eq. (3.8). However, they no longer share the same temperature with the photons
after decoupling. We are able to determine the neutrino temperature as a function of the
plasma temperature by using conservation of entropy. It follows from Eq. (3.14) that
the entropy of the plasma, which then consists of photons, electrons and positrons, is

S =
4a

3
T 3R3ζ

(me

T

)
, (3.20)

where

ζ(x) := 1 +
45

2π4

∫ ∞
0

d y

√
x2 + y2 + y2

3
√
x2+y2

exp (
√
x2 + y2) + 1

y2 . (3.21)

Since the neutrinos can be described by a Fermi distribution after their departure from
equilibrium it then still holds that Tν ∝ 1/R. The fact that Eq. (3.20) is conserved
means Tν ∝ Tζ1/3(me/T ). We also know that for temperatures T � me the neutrinos
had the same temperature as the plasma. Since ζ(0) = 11/4, the neutrino temperature
has to be given by

Tν = T

(
4

11

)1/3

ζ1/3
(me

T

)
. (3.22)
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If we substitute this into Eq. (3.18), we get that the total energy density during this
epoch was

ρ (T ) = aT 4ξ (me/T ) , (3.23)

where

ξ (x) = 1 +
21

8

(
4

11

)4/3

ζ4/3 (x) +
30

π4

∫ ∞
0

y2
√
y2 + x2

exp
√
y2 + x2 + 1

d y . (3.24)

By substituting Eq.(3.24) and Eq.(3.20) into Eq.(3.5) we then obtain the ordinary
differential equation that governs the temperature profile T (t) of the early Universe in
this cosmological model for temperatures from 1011 K to 104 K. We find

dT

d t
=

√
24πGa ξ

(
me
T

)
T 3

me
T

ζ′(meT )
ζ(meT )

− 3
. (3.25)
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Chapter 4.

Relic Density

To study the effects of an additional particle on cosmological observables, it is necessary
to predict its abundancy during the different stages of the cosmic evolution.
In the Big Bang scenario one assumes that at some point in the very early Universe all

constituents were in thermal equilibrium. However to be able to explain observations one
cannot simply use equilibrium distribution functions for all particle species throughout
the history of the Early Universe. The moment at which a particle leaves this equilibrium
state depends solely on its quantities, and governs the abundancy of the particle during
later epochs.
It is the goal of this chapter to briefly discuss how one can determine the moment of

decoupling from thermal equilibrium - the so called freeze out- using statistical physics,
and applying this to the case of a long-lived, heavy d-quark. If one knows the temperature
at the departure from equilibrium one can easily obtain the so called relic density which
is just the abundancy of the particle at that moment. If one focuses on stable (or long-
lived), massive particles the relic density is the abundancy of such a particle after the
Big Bang, since the reactions responsible for changing the number of the particle hardly
occur. Therefore the calculation of the Relic Density is crucial for Dark Matter searches.
In the case of the long-lived, heavy d-quark the constraints we shall derive in the following
chapters strongly depend on the relic density at the epoch of Big Bang Nucleosynthesis.

4.1. Boltzmann equation

In classical statistical mechanics the Liouville operator L̂ gives the time evolution of
the phase space distribution function f (qi, pi) of a system in a force field. For a non-
relativistic system the Liouville operator is given by

L̂NR =
∂

∂t
+ q̇i

∂

∂qi
+ ṗi

∂

∂pi
, (4.1)

which one obtains by calculating the total derivative of f (qi, pi). The covariant expression
for the Liouville operator, that can be used to describe a relativistic Hamiltonian system
obeying the Einstein equation, is

L̂ = pα
∂

∂qα
− Γαβγp

βpγ
∂

∂pα
. (4.2)
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Chapter 4. Relic Density

If we assume a homogenous and isotropic Universe, according to the Friedmann-Robertson-
Walker (FRW) model, the phase space distribution function must simplify to f (t, E). In
this model one then obtains the following expression for the time evolution of the phase
space distribution function from Eq. (4.2):

L̂ f (t, E) = E
∂f

∂t
− Ṙ

R
| ~p |2 ∂f

∂E
. (4.3)

To correctly describe the evolution of a system of elementary particles one also has to
consider that the particles interact with each other. Especially in a regime with a very
high particle density -such as the early Universe- these interactions occur very often and
have a large impact on the distribution.

To include the effect of the particle reactions on the phase space distribution function
one adds a collision operator C. Since it is our goal to describe a system with very high
temperature and energy density it is safe to assume that Bose condensation or Fermi
degeneracy are not relevant, and that we therefore can neglect the corresponding factors
in the distributon functions. In this case the effect of the collision a+ b↔ c+ d on the
distribution of the particle species a can be expressed by

C fa =−
∫
D pbD pcD pd (2π)4 δ4 (pa + pb − pc − pd)

×
[
|Ma+b→c+d|2fafb − |Mc+d→a+b|2fcfd

]
. (4.4)

In the equation above D p is the Lorentz invariant measure, which is defined as

D pa :=
g

(2π)3

d3 pa
2Ea

, (4.5)

where g counts the internal degrees of freedom of the particle and |Ma+b→c+d|2 is the
matrix element squared, that gives the probability for the transition a+ b→ c+ d . In
the following we will only consider 2 ↔ 2 reactions, since it is sufficient for calculating
the freeze out of a long-lived particle.

The Boltzmann equation governs the phase space evolution of a Hamiltonian system
taking into account the occurring collisions. It is often written as

L̂ f (qi, pi) = C f (qi, pi) . (4.6)

From this one can easily derive an equation that determines the number density n (t)
of the particle of interest by summing over all momentum states. This is equivalent to
integrating the phase space distribution function over momentum space and multiplying
a factor g

(2π)3
, where g includes the spin degeneracy and (2π)3 is the momentum space

volume of a state. By using Eq. (4.3) and integrating by parts one obtains the following
form of the Boltzmann equation.
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4.2. Freeze out

dn

d t
+ 3

Ṙ

R
n =

g

(2π)3

∫
d3 p

E
C f (E, t) (4.7)

This equation simplifies if one instead uses

Y :=
n

s
, (4.8)

where s is the entropy density. From the conservation of entropy in a comoving volume
(sR3 = const) it follows that

ṅ+ 3Hn = sẎ . (4.9)

Thus one can rid the equation of the term accounting for the expansion of the Universe.
Since the interactions in the Early Universe depend directly on the temperature it is
convenient to make use of the relation T ∝ t−

1
2 (see Eq. (3.17)) that holds for a radiation

dominated Universe. Often the parameter

x :=
m

T
(4.10)

is chosen to be the variable instead of time, where m is usually the mass of the parti-
cle species one wants to solve the Boltzmann equation for. To rewrite the Boltzmann
equation one can use the relation from Eq. (3.17), which states

t = 0.301g
− 1

2
∗

mPl

T 2
= 0.301g

− 1
2
∗

mPl

m2
x2 . (4.11)

Under the additional assumption of CP invariance1, from which it follows that |M|2
:= |Ma+b→c+d|2 = |Mc+d→a+b|2 , one can write the Boltzmann equation as

dYa
dx

=− mPlx

1.67m2g
1
2
∗ s

∫
D paD pbD pcD pd

× (2π)4 | M |2 δ4 (pa + pb − pc − pd) [fafb − fcfd] . (4.12)

For our task of calculating the relic rensity of a long-lived, exotic particle this form of
the Boltzmann equation is very well suited.

4.2. Freeze out

Now that we have derived a suitable formalism to calculate the abundancy evolution of a
particle species in the Early Universe, we can apply it to the case of massive, long-lived
particles.

1In the case of the heavy d-quarks it isn’t certain why CP invariance should hold. Since there exists
a baryon asymmetry in our Universe it is legitimate to also assume such an asymmetry for heavy
baryonic matter. However for most of the models for Baryogenesis the CP symmetry breaking occurs
at later epochs, where the reactions of such a heavy particle have already frozen out, such that one
can assume CP invariance for the purose of calculating the relic density.
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Chapter 4. Relic Density

If we assume our particle of interest X to have a long lifetime then we can conclude
that the decay processes of such a particle are strongly suppressed compared to the
annihilation processes. For the purpose of determining the relic density we will thus
treat the particle as stable. Therefore the only reactions that can change the abundancy
of X in a comoving volume are annihilation and inverse annihilation processes like

XX̄ ↔ ϕiϕ̄i . (4.13)

The ϕi in the equation above are Standard Model particles for which this reaction can
occur.

Now we will rewrite Eq. (4.12) by introducing the thermal average of the total cross
section times the relative velocity of the incoming particles

〈σv〉 =

∫ ∫
d3 p1 d3 p2 f (p1) f (p2) σv∫ ∫

d3 p1 d3 p2 f (p1) f (p2)
. (4.14)

The total cross section is defined (for a thorough motivation see e.g. [PS95]) by

σ =

∫
dσ =

∫ ∏
f

D pf

 |M (p1, p2 → {pf}) |2

× (2π)4 δ4(p1 + p2 −
∑
f

pf )
1

2E12E2|v1 − v2|
. (4.15)

To further simplify Eq. (4.12) one can also assume that the particles ϕi have an equilib-
rium distribution during the time of the freeze out of our particle of interest. Since we
can neglect the effects of quantum statistics for the peak of this regime, the distribution
functions then are distributed according to Maxwell-Boltzmann statistics. If one also
assumes zero chemical potential for simplicity the distribution functions are

fϕi = exp (−Eϕi/T ) . (4.16)

Because of the Dirac δ-distribution, which appears in Eq. (4.12), the total energy has to
be conserved in the collision term. Therefore the equation EX + EX̄ = Eϕi + Eϕ̄i holds
and from this it follows that

fϕifϕ̄i = exp (− (Eϕi + Eϕ̄i) /T ) = exp (− (EX + EX̄) /T ) = fEQX fEQ
X̄

. (4.17)

Due to Eq. (4.17) it is possible to write the Boltzmann equation in the form

dn

d t
+ 3Hn ' −

∑
i

〈σ|v|XX̄→ϕiϕ̄i〉
[
n2 − n2

EQ

]
, (4.18)

which was suggested by [Zel74]. The according equation for the abundance Y as a
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4.3. Freeze out abundance of the heavy d-quarks

function of the parameter x is then given by

dY

dx
= − mPlxs

1.67m2g
1
2
∗

∑
i

〈σ|v|XX̄→ϕiϕ̄i〉
[
Y 2 − Y 2

EQ

]
. (4.19)

It is possible to derive an approximated solution for Eq. (4.19) that gives us the relic
density Y∞ and moment of the freeze out xf for the massive, long-lived particle. Because
such a particle is non-relativistic at the freeze out it is considered to be a so called Cold
Relic. To obtain the approximate solution one assumes that for 1 < x� xf the difference
between the exact solution Y and the equilibrium abundance YEQ is very small and that
for x � xf the abundance is much larger than the equilibrium value Y � YEQ, such
that all terms containing YEQ can be neglected. From these asumptions and a criterion
for the time of the freeze out, that is roughly equivalent to ΓXX̄→ϕiϕ̄i ' H, one can
then calculate formulas for xf and Y∞. For a detailed discussion on how to obtain the
approximative solution we advise the reader to the chapter on the freeze out of [KT90].
With the partial wave expansion of the thermal average of the cross section, which is

equivalent to the parameterization 〈σA|v|〉 = σ0( Tm)n where n = 0 for s-wave scattering
and n = 1 for p-wave scattering etc., one gets

xf = ln

[
0.038 (n+ 1)

(
g/g

1
2
∗

)
mPlσ0

]
−
(
n+

1

2

)
ln

{
ln

[
0.038 (n+ 1)

(
g/g

1
2
∗

)
mPlσ0

]}
(4.20)

and

Y∞ =
3.79 (n+ 1) (g

− 1
2
∗ )xf

mPlm
∑

i〈σ|v|XX̄→ϕiϕ̄i〉
. (4.21)

4.3. Freeze out abundance of the heavy d-quarks

With the formalism we have discussed in this chapter so far it is now straightforward
how to calculate the abundance of the heavy d-quarks at the freeze out.
Because the heavy d-quarks have color the dominant reactions are the ones with strong

coupling. The annihilation processes of the heavy d-quarks are the same as for the
Standard Model quarks, which leaves

D + D̄ −→ q + q̄ and D + D̄ −→ g + g . (4.22)

For our purposes it is sufficient to calculate the processes in leading order of perturba-
tion theory. Therefore in order to obtain σ

(
DD̄ → qq̄

)
one needs to work out the matrix

element corresponding to the Feynman diagram from Fig.(4.1).
This diagram is of the same structure as for the elementary QED process e− + e+ →

µ− + µ+. So by replacing the coupling constants and multiplying by a factor arising
from the SU(3) gauge group of 2

9 one can get the QCD annihilation cross section of
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Chapter 4. Relic Density

D̄

D

q̄

q

Figure 4.1.: Feynman diagram for the leading order contribution to σ
(
DD̄ → qq̄

)
interest from this well-known process. The leading order differential cross section for the
annihilation of two heavy d-quarks into two quarks of a different type therefore is

dσ

d t̂

(
DD̄ → qq̄

)
=

4πα2
s

9ŝ2

(
t̂2 + û2

ŝ2

)
, (4.23)

where t̂, û and ŝ are the so called Mandelstam variables which are useful to describe the
kinematics of relativistic scattering processes. If the external momenta of the 2 ↔ 2
process are labelled as

p

p′

k

k′

the Mandelstam variables are defined as

ŝ =
(
p+ p′

)2
=
(
k + k′

)2
,

t̂ = (k − p)2 =
(
k′ − p′

)2
,

û =
(
k′ − p

)2
=
(
k − p′

)2
. (4.24)

For the annihilation process into two gluons three topologically different Feynman
diagrams contribute to the cross section in the order α2

s. The graphs are depicted in
Fig.(4.2). If one evaluates these diagrams one obtains

dσ

d t̂

(
DD̄ → gg

)
=

32πα2
s

27ŝ2

(
û

t̂
+
t̂

û
− 9

4

t̂2 + û2

ŝ2

)
(4.25)

for the differential cross section with two gluons in the final state.
By substituting these cross sections into Eq. (4.21) we obtain the abundance of the

heavy d-quarks at the freeze out as a function of their mass mD. If we choose this mass
to be mD = 1TeV and neglect the masses of the standard model quarks, then the freeze
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4.4. Late annihilation phase of colored particles

Figure 4.2.: The three Feynman diagrams for the leading order contribution to
σ
(
DD̄ → gg

)
out occurs at a temperature Tf = 38 GeV and we get

Y∞ (mD = 1TeV) ' 10−14 . (4.26)

This result would correspond to a number density of the heavy down-type quark during
BBN of

n (TBBN) = Y∞sBBN ' 1021m−3 , (4.27)

if the reactions that change the number of the particle of interest do not occur anymore
at later epochs. However as we will discuss in the next section this does not hold for
particles that carry color charge.
The number density from Eq. (4.27) is large enough to significantly effect BBN. There

are different ways how such an additional particle can effect BBN, which will be discussed
later in detail. However, they all strongly depend on its number density.

4.4. Late annihilation phase of colored particles

The abundance a particle has at the departure from thermal equilibrium is only conserved
if the reactions that can change the quantity of that particle species no longer occur at
later epochs of the Universe.
In the previous chapter we have applied the freeze out condition and silently assumed

that the general behaviour of the thermally averaged cross section 〈σ|v|〉 isn’t subject to
any drastic changes and monotone so to speak. In a case like this these reactions are
effectively frozen out for all epochs after the dropout from thermal equilibrium. However
such an assumption leaves no room for phase transitions that can occur in the cooldown
of the early Universe, since they can have a large impact on the thermally averaged cross
section. For the reaction rates of the heavy down-type quarks, which are of interest for
this thesis, such a phase transition is of significance.
For temperatures below the deconfinement temperature Tc ' 180 MeV, which is the

temperature equal to the QCD scale ΛQCD, particles that carry color charge can no longer
be considered as free particles but are confined into hadrons. Such a hadron containing
a heavy parton -as e.g. the heavy d-quark- can be viewed in the following simplified
picture: the heavy parton that determines the kinematics of the hadron is situated in
the center and surrounded by lighter colored particles, which are sometimes referred to
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Chapter 4. Relic Density

as “brown muck” (see Fig. (4.3)). The radius of the hadron Rhad in this picture can be
assumed to be of the order of the inverse QCD scale ΛQCD.

Figure 4.3.: Simplified picture of a hadron containing a heavy parton. Taken from
[KLN08].

Kang et al. have argued in [KLN08] that such hadrons that contain heavy partons
form excited bound states that survive interactions with the plasma of the early Universe
and by deexcitation finally lead to annihilation of the heavy partons. In this article it
was also discussed that this mechanism results in a drastic decrease of the relic density
of a massive colored particle. In the remainder of this section we will shortly recapitulate
the arguments that were made and will consider this effect for the calculation of the relic
density of the heavy d-quarks.

Since for the arguments the hadron is viewed in the simplified manner from Fig. (4.3),
one can consider the cross section for the formation of a bound state σform to be geomet-
rical, which means that

σform ∼ πR2
had . (4.28)

The formation of a bound state of two overlapping hadrons that contain heavy partons
is depicted in Fig. (4.4).

The bound state can be described by a potential of the form

V (r) ∼
CαQCD

r
− σr . (4.29)

Here the first term is the attractive Coulomb interaction, where C is a group theory
factor. The second term contains the confinement effects and σ ∼ Λ2

QCD is the string
tension. This potential can then be used to estimate the binding energy of two heavy
hadrons at the deconfinement temperature.

The initial magnitude of the momentum of a heavy hadron can be assumed to be

pi ∼ mvi ∼ (mT )
1
2 , (4.30)

since the kinematics are determined by a Maxwell distribution, from which it follows that
the average velocity vi ∼

(
T
m

)1/2, due to the interaction with gluons at deconfinement.
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4.4. Late annihilation phase of colored particles

Figure 4.4.: Illustration of the formation of a highly excited bound state of two hadrons
with heavy partons. Taken from [KLN08].

Therefore the typical value for the initial angular momentum is of the order

Li ∼ mviri ∼ (mT )
1
2 Rhad ∼ 10

( m

TeV

) 1
2

(
T

Tc

) 1
2

. (4.31)

To estimate the binding energy one has to compare the energy of the typical heavy hadron
in the bound state to a state of maximal energy. From the classical effective potential of
a central-force problem

Veff = V (r) +
L2

2mr2
, (4.32)

it is possible to approximate the minimal radius of a bound state with a given angular
momentum in the linear regime of Eq. (4.29) to be

rmin ∼
(
L2

σm

) 1
3

. (4.33)

From this one can estimate the largest possible angular momentum with rmax ∼ Rhad.
One obtains that

Lmax ∼
(

m

ΛQCD

) 1
2

∼ 30
( m

TeV

) 1
2

. (4.34)

Since it is justified to assume the linear regime of the potential to be dominant for the
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relevant values of the angular momentum the typical binding energy is then given by

B = Emax − Ebound ∼
(
σ2L2

max
m

) 1
3

−
(
σ2L2

i

m

) 1
3

∼ ΛQCD . (4.35)

Although this approximation is rather crude it tells us something important about
the behaviour of the heavy hadrons in the plasma of the early Universe. Since the
energy it takes to dissolve such a bound state is of the same order of magnitude as the
deconfinement temperature Tc the bound state will generally survive collisions with the
photons in the plasma. This is due to the fact that the relative number of photons that
can possibly destroy the bound state is strongly supressed by the factor exp

(
−B
T

)
, which

decreases very fast due to the rapid cooling of the early Universe.
This tells us that eventually most of these bound states will decay and lead to an

annihilation of the heavy partons. In [KLN08] it was also discussed that in the case of
electrically charged partons, which are of interest for this thesis, the deexcitation occurs
almost instantly. The largest lifetime of these bound states for the parameters we looked
into is given by τboundstate

(
m = 106GeV

)
∼ 10−9s.

Kang et al. have estimated with the Freeze-Out condition that this late annihilation
phase should reduce the relic density of heavy colored particles by a factor of the order
10−4. Such a large drop in the relic density obviously has a huge impact on the cosmo-
logical constraints one can formulate for the heavy parton and therfore needs to be taken
into account.

Since it is of interest for this thesis we also want to investigate whether this annihilation
still occurs during the BBN epoch. For this we can calculate the freeze out of this late
annihilation phase the same way we did for the departure from thermal equilibrium. In
accordance with the estimate we can assume the thermally averaged cross section to be

〈σ|v|〉 ' πR2
had

(
T

m

) 1
2

. (4.36)

By substitung this cross section into the form of the Boltzmann equation from Eq. (4.19),
we can determine the abundancy of the heavy parton for different temperatures of the
thermal bath. In order to obtain a solution for Eq. (4.19) we can consider the annihilation
of the bound states to be switched on at the deconfinement temperature Tc. We don’t
allow the inverse annihilation processes, which is equivalent to setting YEQ to zero. From
this we then get the differential equation

dY

dx
= −γ (m)x−

5
2Y 2 , (4.37)

where γ (m) is the positive constant

γ (m) =
1

75
2π3R2

hadg
1/2
∗ mPlm . (4.38)
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4.4. Late annihilation phase of colored particles

The solution of Eq. (4.37) can easily be determined analytically. Since we can assume
that the abundance of the heavy colored particle at deconfinement is equal to the abun-
dance after the departure from thermal equilibrium Y∞, we obtain the following formula
governing the abundance for temperatures T ≤ Tc.

Y (T ) =
Y∞

1 + 2
3γ (m)Y∞

((
Tc
m

)3/2 − ( Tm)3/2) (4.39)

This function drops very fast and the late annihilation phase therefore effectively “freezes
out” at temperatures just under 0.1 GeV (see Fig. (4.5)) for heavy d-quark masses of
interest.
For this reason it is safe to assume that these annihilations no longer occur during the

critical phases of BBN. So the Relic Density after taking into account the late annihilation
phase can be approximated by

Ỹ∞ (m) =
Y∞

1 + 2
3γ (m)Y∞

(
Tc
m

)3/2 . (4.40)

If we calculate the relic density of the heavy d-quark with m ' 1 TeV after the late
annihilation phase using the formula above, we get

Ỹ∞ (m ' 1 TeV) ' 10−17 . (4.41)

So we see that the relic density of massive colored particles, like the heavy down-type
quark, is decreased by orders of magnitude due to the formation of these excited bound
states below the QCD phase transition.
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Figure 4.5.: Abundance of heavy d-quark with m = 1 TeV before the BBN epoch. For
very small values of x the abundance follows an equilibrium distribution until
the annihilation reactions “freeze out”. Then the abundance is constant until
deconfinement at Tc = 180 MeV, where the heavy d-quarks are confined into
hadrons. These hadrons have a large geometric cross section to form bound
states, that lead to annihilation of the heavy d-quarks.
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Chapter 5.

Big Bang Nucleosynthesis

Some of the strongest evidence for the assumption that at some point our Universe was
a very hot and dense plasma is presented by the theory that describes the production
of the light elements under such circumstances. It is generally referred to as Big Bang
Nucleosynthesis(BBN) or Cosmological Nucleosynthesis.
Due to the improvements in computer technology and the progress in the field of

nuclear physics astrophysicists today have a good understanding of the production of
elements in e.g. the core of stars or supernova explosions. With so called nuclear reaction
networks it is possible to calculate the amount of elements produced in such nuclear
chain reactions numerically. Later in this section we will present an example for such a
reaction network, that is used in BBN calculations. With such calculations it is possible
to accurately estimate the amount of elements produced in e.g. a solar system by stellar
nucleosynthesis. If one matches this to the directly observed element abundances, it is
possible to estimate the amount of elements that were produced in the early Universe.
These results are in good agreement with the predictions from Big Bang Nucleosynthesis.

5.1. Cosmological synthesis of light elements

Above we have discussed that the thermodynamics of the Universe are governed by the
FRW model. During the radiation dominated epoch only light particle species that are
relativistic, such as electrons, neutrinos and photons, have a major contribution to the
overall energy density, that enters the Friedmann equation. In this section we want to
focus on the evolution of the baryonic matter in this epoch of the Univserse.
At the beginning of the synthesis free protons and neutrons made up for all the baryonic

matter in the plasma. For heavier nuclei to be produced in large quantities, first the
protons and neutrons have to produce deuterium via the two-body process n + p →
D + γ. Only then significant amounts of other nuclei can be formed via the chain of
nuclear reactions, where first D + D → H3 + p and D + D → He3 + n occur, and then
D + H3 → He4 + n and D + He3 → He4 + p. (Radiative processes like p+ D→ He3 + γ
can also occur, but in comparism have rather small cross sections.) However the binding
energy of deuterium, which is equivalent to a temperature TD ' 0.7 × 109 K, is quite
small such that for temperatures above TD the deuterium nuclei are likely to be destroyed
by collisions with the photons of the plasma. This blocking of the nucleosyntthesis due
to the slightly bound deuterium is often referred to as the deuterium bottleneck.
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Chapter 5. Big Bang Nucleosynthesis

Due to the fact that the baryon density is so small, ΩBh
2 ' 0.02, and the Universe

is expanding rapidly, the two-body reactions that interconvert the nuclei do not occur
often enough such that an equilibrium distribution could be assumed throughout the
entire BBN epoch. Therefore the amount of the nuclei that are produced is strongly
non-linear and thus requires a detailed treatment of the different phases of the synthesis.
First we will discuss the weak reactions that interconvert neutrons and protons during

that epoch of the early Universe. An understanding of these reactions is necessary in
order to predict the neutron-to-proton ratio at the time when the Universe has cooled
enough for deuterium to be produced in large amounts. This ratio has a large impact
on the yield of elements produced during BBN. In the second step we will look into the
processes that synthesize the nuclei and finally make predictions on the abundances of
the different elements after BBN. In the course of doing so we will dicuss under what
conditions the abundance of a type of nucleus is approximated well by its equilibrium
value, which is easy to obtain.

The number of deuterium nuclei that are synthesized after the bottleneck depends on
the ratio of neutrons to protons at that moment. If we neglect the impact of the nuclei
produced before the bottleneck and only consider the interconversion n 
 p we can
determine the ratio from the rate equation

dXn

d t
= −Γn→pXn + Γp→n (1−Xn) , (5.1)

where Xn is the ratio of neutrons to all nucleons and Γ is the reaction rate. The weak
processes that can convert neutron to proton and vice versa are:

n+ νe 
 p+ e−, n+ e+ 
 p+ ν̄e, n
 p+ e− + ν̄e . (5.2)

For all of these reactions a charged, massive current is exchanged and they have the same
structure as depicted in Fig. (5.1).

W

u

d

d

u

d

u

e

νe

Figure 5.1.: Neutron decay n
 p+ e− + ν̄e via the weak process of order g2.

For the range of temperatures we are interested in the mass of the nucleons is much
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5.1. Cosmological synthesis of light elements

larger than kBT , which is why we can consider the nucleons to be at rest. Therefore
the reaction rates depend only on the phase-space volume of the electrons and neutrinos.
Since leptons obey the laws of Fermi statistics, the distribution function of the unoccupied
positions in phase space, which is given by

f̄i (Ei) = 1− fi (Ei) =
1

exp (−Ei/Ti) + 1
, (5.3)

enters instead of fi (Ei) for the reaction products of the final state. For example the
reaction rate of the process p+ e→ n+ νe is given by

Γpe→nν =

∫
d3 pe
2Ee

d3 pν
2Eν

d3 pn
2En

(2π)−5 δ4 (p+ e− ν − n) |Mpe→nν |2

× fe (Ee) f̄ν (Eν) . (5.4)

By integrating out the the W -boson, the matrix element for transferred momenta p2 �
m2
W can be determined to be

|M|2 ∝ G2
F

(
1 + 3g2

A

)
, (5.5)

where GF is the Fermi constant and gA the axial-vector coupling of the nucleon. All
of these processes that interconvert neutrons and protons have this factor in common,
because of the same structure of the diagrams.

For the reaction p+ e− 
 n+ νe we know that Ee − Eν = Q, where

Q = mn −mp = 1.293 MeV , (5.6)

holds for nucleons at rest. By substituting this into Eq. (5.4) one gets that for the case
that Te = Tν

Γpe→nνe
Γnνe→pe

= exp (−Q/T ) . (5.7)

The same relation also holds for the other reactions from Eq. (5.2). This shows that
for these conditions the reactions that interconvert protons and neutrons are in thermal
equilibrium and it is not necessary to assume an initial proton to neutron abundance.

To be able to predict the neutron to proton ratio at the deuterium bottleneck, it is
important to get an idea of when the weak reactions freeze out. For this it is sufficient
to compare the reaction rate for the neutron production to the expansion rate of the
Universe. It is safe to assume that for low temperatures T � Q the reactions will long
have frozen out due to the large Boltzmann suppression of particles with energy of the
order of Q in the plasma. For the high temperature regime with T � Q it is possible to
obtain an analytic expression for Eq. (5.4). By setting T = Tν and Q = me = 0 one then
gets (for a more detailed discussion of the calculation of these rates see e.g. the chapter
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on BBN in [Wei72])

Γp→n =
1

4π3

(
1 + 3g2

A

)
G2
F

∫ ∞
−∞

k4 d k

(1 + exp (k/T )) (1 + exp (−k/T ))

=
7

60
π
(
1 + 3g2

A

)
G2
FT

5 . (5.8)

In the radiation dominated epoch the expansion rate of the Universe isH = 1.66g
1
2
∗ T

2/mPl =
5.5T 2/mPl. Therefore an estimate of the ratio of the weak reaction rate to the expansion
rate is given by

Γ

H
∼
(

T

0.8 MeV

)3

. (5.9)

From this we can assume that the freeze-out of these reactions occurs at approximately
TF ' 1MeV. Therefore the neutron to proton ratio is about

n

p

∣∣∣∣
freeze−out

' 1

6
(5.10)

when the conversion of protons to neutrons stops. After this the remaining neutrons
decay with Xn ∝ exp (−t/885s) until they are bound into nuclei.

Now that we have an idea of the evolution of the constituents of baryonic matter, we
can look into the processes forming the light nuclei during the Big Bang. For a nuclear
species that is in thermal and chemical equilibrium the number density is given by

ni = gi

(
miT

2π

)3/2

e−
mi−µi
T . (5.11)

For nuclei that can be formed swiftly from Zi protons and (Ai−Zi) neutrons the chemical
potential can be fragmented via µi = Ziµp + (Ai−Zi)µn. By using this and the binding
energy of a nucleus

Bi = Zimp + (Ai − Zi)mn −mi , (5.12)

it is possible to rid the expression of the unknown chemical potentials µn, µp under the
assumption that protons and neutrons also have equilibrium number densities given by
Eq. (5.11). This leads to

Xi =
gi
2
XZi
p X

Ai−Zi
n A

3/2
i

(
1

2
nN (2πmNT )−3/2

)Ai−1

eBi/T , (5.13)

where mN is the common nucleon mass of mp, mn and mi/Ai. By substituting the
baryon-to-photon ratio η = nN

nγ
one obtains the following equilibrium mass fractions of

36



5.1. Cosmological synthesis of light elements

the nuclei from Eq. (5.13).

XD = 16.3 (T/mN )3/2 η exp (BD/T )XnXp

XHe3 = 57.4 (T/mN )3 η2 exp (BHe3/T )XnX
2
p

XHe4 = 113 (T/mN )9/2 η3 exp (BHe4/T )X2
nX

2
p (5.14)

Although the binding energies of these nuclei are of the order of MeV, the equilibrium
mass fractions of the light elemts are small for temperatures of this order. This is due
to the fact that there are much more photons than baryons in our Universe so that
η ∼ 10−10. We can estimate the temperature Ti when the nuclei become abundant in
thermal equilibrium from Eq. (5.13), by assuming Xi ∼ Xn ∼ Xp ∼ 1.

Ti '
Bi

(ln (η−1) + 1.5 ln (mN/T )) (A− 1)
(5.15)

This temperature is 0.75× 109 K for deuterium, 1.3× 109 K for He3 and 3.1× 109 K for
He4. So in equilibrium helium would be abundant before deuterium due to the larger
binding energy.
However the reaction rate of the four-body process that is needed to built up He4 in

the described manner cannot compete with the expansion rate of the Universe at these
temperatures, due to the small baryon density. Therefore thermal equilibrium is not
established for He4. The reaction rate for the production of deuterium per free neutron
is given by

ΓD = 9.2× 1011

(
T

1010 K

)3

ηXp sec−1 . (5.16)

By comparing this to the expansion rate one gets

ΓD

H
' ΓDt ' 1.6× 1012

(
T

1010 K

)
ηXp , (5.17)

which is larger than unity for temperates above 108K. Therefore the mass fraction of
deuterium can be assumed to follow its equilibrium value from Eq.(5.14) during BBN.
As the deuterium fraction rises the rates of the follow-up processes D + D → H3 + p

and D+D→ He3 +n increase strongly and burn large amounts of deuterium. The total
rate of these reactions per deuteron is given by

ΓD+D→ = 6.9× 1014

(
T

1010 K

)3

ηXD sec−1 . (5.18)

For temperatures of about 109 K the rate of these deuterium-burning reactions is equal
to the expansion rate for XD ' 0.6 × 10−5. From Eq.(5.14) it follows that this fraction
of deuterium is given at a temperature T ' 109 K. Therefore we can assume that the
synthesis of the light elements started at temperature Tnuc ' 109 K and not at 0.75×109

K as one might assume from the equilibrium fraction of deuterium.
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Chapter 5. Big Bang Nucleosynthesis

The chain ends with the processes D + He3 → He4 + p and D + H3 → He4 + n, that
produce the most deeply bound light element, He4. Since most of the free neutrons at
the beginning of the nucleosynthesis are bound into He4 via this mechanism, it is rather
easy to determine the fraction of He4 after BBN. It is simply given by

XHe4 ' 2× Xn|T=Tnuc
' 2× 0.16× exp

(
−
tnuc − tfreeze−out

τn

)
' 0.27 . (5.19)

Heavier nuclei aren’t synthesized in larger amounts in the early Universe, because there
are no stable nuclear species with atomic weight of 5 or 8 and due to the fact that the low
baryon density strongly supresses the triple-alpha reaction that creates heavier nuclei in
stars.
A small fraction ∼ 10−10 of Li7 is produced in the early Universe, because the process

He4 +He3 → Be7 +γ synthesizes a bit of Be7 that then decays into Li7. During BBN also
not all the D and He3 is burnt by the chain of reaction, since the burning-rate becomes
small as the fractions of the “fuel” decrease and the reactions eventually freeze out. The
relative abundance of these nuclei compared to the hydrogen abundance is ∼ 10−5 to
10−4.

Predicted abundances of light elements

With this theory on how the light elements are synthesized during the Big Bang it is
possible to quite accurately predict the abundance of these elements. One of the most
recent Big Bang Nucleosynthesis calculations was published in [CUV13]. They used
the most up-to-date experimental results on the reaction rates and included radiation
corrections. Their results can be taken from Fig. (5.2).
The theoretical predictions match the observed abundances rather well for the η that

is suggested by the data that was measured by the missions WMAP and PLANCK. Since
the synthesis of the light elements in the Big Bang depends on many different parameters
in a highly non-linear way, this shows that our general understanding of processes in
the early Universe is correct. Therefore BBN allows us to test particle physics models
that predict additional particles during that epoch of the Universe. However, one must
mention at this point, that the predicted amount of Li7 produced during BBN is not in
agreement with data from observations. Only recently the lithium cross sections have
been measured by [KUd+13], and their results further confirm the discrepancy between
observation and prediction. This so called Lithium-problem either points towards physics
beyond the Standard Model of Particle Physics, that can alter the BBN results due to a
different particle content in the early Universe, or towards some mechanism of lithium-
destruction in e.g. stars.

5.2. BBN codes

To be able to accurately determine the abundancies of the light elements produced during
BBN one has to solve a so called thermonuclear reaction network numerically. The same
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Figure 5.2.: The predicted abundances of the light elements synthesized during BBN
depending on the baryon-to-photon ratio η. The observed abundancies (in
green) and two different measurements of the baryon-to-photon ratio (in
yellow and dotted black) are also plotted. Taken from [CUV13].

technique is applied to predict the ratio of the heavier elements synthesized in e.g. stars
or supernovae.
The heart of the reaction network is given by a system of first order differential equa-

tions that determine the abundancies of the nuclei Yi as a function of time. The reactions
that can change the abundace Yi are of the form1

Ni

(
AiZi

)
+Nj

(
AjZj

)
� Nk

(
AkZk

)
+Nl

(
AlZl

)
, (5.20)

1Reaction networks usually also take into account three-body processes. But in the BBN case the
contribution from these reactions is very small, due to the small baryon density.
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where Ni is the number of nuclei of type i participating in the reaction, and Ai, Zi are
the atomic weight and charge. The rate equations that take into account the abundancy
changes from all of these reactions are given by

dYi
d t

=
∑
j,k,l

NinB

(
−
Y Ni
i Y

Nj
j

Ni!Nj !
〈σv〉i,j +

Y Nk
k Y Nl

l

Nk!Nl!
〈σv〉k,l

)
, (5.21)

where nB is the number density of baryons and 〈σv〉i,j is the thermally averaged cross
section for the forward reaction and 〈σv〉l,k for the reverse reaction. From this it is clear
that, in order to be able to solve the thermonuclear reaction network, one needs to know
the cross sections σ that enter the rates in Eq. (5.21). Then it is possible to determine
the averaged cross sections, that in case of thermonuclear reactions where the reactants
have Maxwell-Boltzmann velocity distributions, are of the form

〈σv〉i,j =

(
8

µπ

)1/2

T−3/2

∫ ∞
0

dEσ(E)E exp (−E/T ) . (5.22)

In the expression above E is the center of mass energy and µ the reduced mass of
the target-projectile system. At this point the temperature enters the rates and thus
determines the abundancies. Therefore it is necessary to also know the thermodynamics
of the system to predict the temperature profile T (t). Only then one can obtain a solution
of the network.
There are several different codes that solve such a reaction network for the case of Big

Bang Nucleosynthesis. In the following we will briefly discuss the public BBN code that
was modified to obtain some of the results presented in this thesis.

The Kawano Code

The BBN code that was used for some of the work of this thesis was originally published
by Prof. Lawrence Kawano in 1992. In the article [Kaw88] the code is explained. An
updated version of it, which is called bbn_new123.f, was taken from the homepage of
Prof. Frank Timmes ( http://cococubed.asu.edu /code_pages/net_bigbang.shtml).
It was chosen, because it uses a method where the thermodynamics and the burning of
the nuclei are performed seperately.
In the Kawano code the physical quantities are calculated for each timestep ∆t using

a so called second-order Runge-Kutta scheme. This means that e.g. the abundancy at
the timestep with the number n + 1 is obtained from the abundancy at the timestep n
by calculating a mean derivative, composed of the derivative at the timestep n and at
the set of trial values {Ỹj,n+1} for the timestep n+ 1. These trial values are obtained by
performing

Ỹi,n+1 = Yi,n +

(
dYi
d t

(t, {Yj,n})
)

∆t (5.23)

in the first step of the time evolution. The abundancy of the element i at the timestep
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n+ 1 is then given by

Yi,n+1 = Yi,n +
1

2

(
dYi
d t

(t, {Yj,n}) +
dYi
d t

(
t+ ∆t, {Ỹj,n+1}

))
. (5.24)

In order for this method to produce rather accurate results and for the code to be
numerically stable it is important that the chosen timesteps ∆t are adjusted to the
evolution of the physical quantities of the system. In the Kawano code the length of ∆t
is selected in such a way that both abundancies and temperature don’t change too much
for a single timestep. This is ensured by demanding that

∆t

T (t)

dT

d t
(t) ≤ CT , (5.25)

and
∆t

Yi (t)

dYi
d t

(t) ≤ CY
(

1 +
log Yi

log Ymin

)
(5.26)

hold for all times. The accuracy is thus determined by the constants CT , CY and the
minimum abundance Ymin, that can easily be altered due to the user interface of the
program.

To time evolve the thermodynamic quantities, with the Runge-Kutta scheme from
Eq.(5.24), is rather straightforward, since in this case the derivatives are dictated by
the FRW-model of the early Universe. In the code the temperature T , the scale factor
R, the chemical potential of the electron φe and the baryon density ρB determine the
thermodynamics of the system. The code works with the quantity h, which has been
defined by Wagoner, see [Wag69], to be

h =
ρB
T 3

π2

15a
. (5.27)

Because of the fact that the number of baryons in a comoving volume is conserved at
this epoch of the Universe, from which it follows that ρBR3 = const, the evolution of h
is calculated via

dh

d t
= −3h

(
1

R

dR

d t
+

1

T

dT

d t

)
. (5.28)

The expansion rateH = Ṙ/R is given by the Friedmann equation, Eq. (3.5). To compute
the derivative of the temperature the code uses

dT

d t
=
−3R−1 dR/d t

ρ−1
B d ρB/ dT

. (5.29)

To determine the derivative of the chemical potential of the electron one can use the
conservation of charge, which implies that

ne− (φe, T )− ne+ (φe, T ) = np = ρBNAS . (5.30)
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Here the quantity S is defined as

S =
∑
i

ZiYi , (5.31)

and NA is Avogadro’s number. Formally the time derivative of φe is then given by

dφe
d t

=
∂φe
∂T

dT

d t
+
∂φe
∂h

dh

d t
+
∂φe
∂S

dS
d t

, (5.32)

and the partial derivatives are obtained from Eq. (5.30).
However, to calculate the derivative for the abundance of each nucleus from Eq. (5.21)

poses some technical difficulties. Because of the fact that at very high temperatures the
forward and reverse rate are almost equal, and the reaction rates are generally very high,
the right hand side of Eq. (5.21) is a small difference of large numbers. Therefore one can
use the method of implicit differencing (for a more detailed discussion on this subject
we refer the reader to [PTVF07]) to obtain a linearized expression of Eq. (5.21). This
method implies that the abundance at a timestep n+ 1 can be obtained by performing

Ȳi,n+1 = Yi,n +
dYi,n+1

d t
∆t . (5.33)

If one uses this identity to linearize Eq. (5.21) in ∆t this leads to the following equation.

dYi
d t

(t+ ∆t) =
∑
j,k,l

NinB

[
− 〈σv〉i,j (T (t))

Ni!Nj ! (Ni +Nj)

(
NiY

Ni−1
i (t)Y

Nj
j (t) Ȳi (t+ ∆t) +NjY

Nj−1
j (t)Y Ni

i (t) Ȳj (t+ ∆t)
)

+
〈σv〉k,l (T (t))

Nk!Nl! (Nk +Nl)

(
NkY

Nk−1
k (t)Y Nl

l (t) Ȳk (t+ ∆t) +NlY
Nl−1
l (t)Y Nk

k (t) Ȳl (t+ ∆t)
) ]

(5.34)

From Eq. (5.33) and Eq. (5.34) we can then construct a matrix equation for the unknown
Ȳi (t+ ∆t) of the form

(Aij) Ȳj (t+ ∆t) = Yi (t) , (5.35)

where Amn = Amn ({Yi (t)}, 〈σv〉ij (T (t)) , 〈σv〉kl (T (t))) . The code solves this matrix
equation by using Gaussian elimination. With Ȳi (t+ ∆t) the derivative, that is needed
for the Rung-Kutta scheme, is then determined by evaluating

dYi
d t

(t+ ∆t) =
Ȳi (t+ ∆t)− Yi (t)

∆t
. (5.36)

For the second Runge-Kutta derivative, dYi/ d t (t+ ∆t, {Yj (t+ ∆t)}), except for the
fact that the quantities Ỹi from Eq. (5.23) enter the procedure is the same. The matrix
is then given by Ãmn = Amn({Ỹi(t+ ∆t)}, 〈σv〉ij(T̃ (t+ ∆t)), 〈σv〉kl(T̃ (t+ ∆t))).
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The Kawano code is designed in a way to make it easy for the user to modify certain
quantities, as e.g. the present baryon-to-photon ratio η, the number of relativistic neu-
trino species and the reaction rates of the network. However, for the work presented in
this thesis the source code of the Kawano code had to be modified in order to implement
the changes in the thermodynamics of the system and to be able to calculate a full grid
of parameter-space points of the heavy down-type quark.
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Chapter 6.

Cosmological impact of
entropy-producing, cold relics

6.1. Altered thermal history

In this chapter we give the expressions we used to calculate the thermal history of the
Universe during the epoch of Big Bang Nucleosynthesis for the scenario of an additional
massive, long-lived particle species. Such a particle can potentially alter the thermal
history of the Early Universe by producing large amounts of entropy in the course of its
decay. For the derivation of the differential equations we adopted the ideas from section
5.3 of [KT90].
As we discussed in section chapter 3, in standard cosmology one assumes that the

thermodynamics of the early Universe during the era of interest for us was determined
mainly by relativistic particle species and that the Universe can be considered to be in
a state of thermal equilibrium. Due to this equilibrium state in the standard model the
entropy per comoving volume is constant. However in the following we shall examine the
case where a massive long-lived particle, which we will denote by X, is present during
this era of the Early Universe. Such a particle can alter the thermal history of the early
Universe by decaying into standard model particles and transferring huge amounts of
entropy to the plasma of SM particles. Since we assume that the mass of this additional
particle is large, it is sure to say that this additional particle has decoupled from thermal
equlibrium long before the BBN epoch (see chapter 4 for a discussion of the physics
governing this departure from equilibrium).
While this massive, long-lived particle contributes to the overall energy density of

Universe, its decay mechanism constantly increases the entropy of the plasma. Therefore
in this model the entropy per comoving volume can no longer be considered as constant.
However for the particles that remain in thermal equilibrium Eq. (3.20) still holds for
all temperatures, since the entropy transfer can be regarded as adiabatic. The second
law of thermodynamics tells us that an infinitesimal change of entropy evolves from an
infinitesimal exchange of heat via dS = δQ/T . For the assumption that the decay
products are thermalized very fast compared to the expansion rate one can apply this
law to a comoving volume element and get,

dS = −d(R3ρX)

T
=
R3

T
ρXτ

−1 d t . (6.1)
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For Eq. (6.1) it was used that the number of X-particles decreases exponentially with
the lifetime τ . From the Boltzmann equation for a non-interacting, heavy particle with
ρ ' m · n in the expanding Universe it then immediately follows that

d ρX
d t

+ 3
Ṙ

R
ρX = −τ−1ρX . (6.2)

The solution to Eq. (6.2), which can easily be obtained, is

ρX = ρX(Ri)

(
Ri
R(t)

)3

exp (− t
τ

) , (6.3)

where Ri is the scale factor at some initial time ti. By substituting Eq. (6.3) into Eq.
(6.1) one can eliminate the scale factor R from the expression for dS and gets

dS = ρX(Ri)R
3
i τ
−1 1

T
exp

(
− t
τ

)
d t . (6.4)

With this equation we can determine the entropy per comoving volume as a function of
the temperature and the time.

Now that we have established how the evolution of the entropy depends on the tem-
perature and time, we can formulate the differential equation that governs the thermal
history T (t). In contrast to the result that is obtained in the standard model of cosmol-
ogy the entropy per comoving volume will directly enter this equation. We will derive
the equation in the same way as was discussed in chapter 3, which is by eliminating the
scale factor from the Friedmann equation. First we shall use Eq. (3.20) to calculate dR
,which gives

dR =
1
3S
− 2

3(
4
3aζ

(
me
T

)) 1
3 T

dS −

 S
1
3(

4
3aζ

(
me
T

)) 1
3

1

T 2
− 4

9
a
S

1
3 ζ ′
(
me
T

)(
4
3aζ

(
me
T

)) 4
3

me

T 3

 dT . (6.5)

By substituting Eq. (6.4) into Eq. (6.5) one gets

dR =
1
3S
− 2

3 ρX(Ri)R
3
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Now we can use Eq. (6.6) and Eq. (3.20) to eliminate the scale factor R from Eq.
(3.5). From this we obtain the differential equation that determines the cooling process of
the early Universe in the scenario including an additional entropy-producing relic, which
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is given by

dT

d t
=

√
G8πρ

3 T − 1
3ρX(Ri)R

3
i τ
−1 exp

(
− t
τ

)
1
S

me
3

ζ′(meT )
ζ(meT )

1
T − 1

. (6.7)

If we compare this differential equation to Eq. (3.25) it only differs by an additional term
in the numerator. However via this term Eq. (6.7) is coupled to Eq. (6.4), which makes
it necessary to solve a system of coupled differential equations to obtain the temperature
trajectory T (t). The total energy density ρ is also different in this scenario, due to
the fact that the additional particle can have a large contribution to the overall energy
density. This is the case if it either has a large enough mass and/or is very abundant
during that epoch. One also has to consider that the decay of X effectively increases the
energy density of the radiation, since the decay products thermalise rapidly. The energy
density of this radiation produced via the X-decay, ρr,new, is governed by

d ρr,new
d t

= −4
Ṙ

R
ρr,new + τ−1ρX . (6.8)

To obtain the correct total energy density for the examined scenario we therefore must
add ρX and ρr,new to the energy density of the plasma ρ̃, hence

ρ = ρ̃+ ρX + ρr,new . (6.9)

With the derived equations it is now possible to determine the thermal history of the
era of BBN for the scenario of an additional long-lived, massive particle that produces
entropy via its decay. Eq. (6.4), Eq. (6.7) and Eq. (6.8) form a system of coupled
ordinary differential equations with t as an independent variable. By using numerical
methods it is possible to solve this system of ODEs and hence determine the temperature
trajectory.

6.2. BBN-constraints on entropy-producing relics in the
early Universe

In this section we will discuss the way entropy-producing particles can affect the outcome
of the synthesis of light elements in the early Universe (BBN). The results we will present
were obtained by implementing the altered thermodynamics, that we formulated in the
previous section, into the public BBN-code from [Kaw88].

Numerical calculation of BBN in this scenario

Implementing the effect of the different thermal history into the BBN-code was done by
replacing the derivative of the temperature the code originally uses for the Runge-Kutta
scheme by the expression from Eq. (6.7), and by adding new variables for S and ρr,new
to the block of quantities to be time-evolved. Although the code is designed to give the
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Chapter 6. Cosmological impact of entropy-producing, cold relics

user the freedom to change certain observables that enter the BBN calculation, like e.g.
the number of neutrino generations, and thus test alternative scenarios, it was necessary
to perform a number of changes in order to simulate BBN in this case. Both the DRIVER
of the original source code including these changes and the extra subroutines, that are
called by the main program to calculate the derivatives Eq. (6.7), Eq. (6.4) and Eq.
(6.8), can be found in the Appendices A and B.
An additional difficulty that arises from the fact that the entropy is no longer conserved

throughout the BBN-era is that it is not clear how to determine the correct initial value Si
that is needed to numerically solve the system of coupled differential equations. However,
this is essential to calculating the nucleosynthesis correctly, since the entropy density s
enters the baryon-to-photon ratio, which is defined as

η =
nbaryon
nγ

. (6.10)

Before the results from experiments like WMAP and PLANCK, that scanned the cosmic
microwave background with very high precision and from this could determine todays
baryon-to-photon ratio to be η0 ' 6 × 10−10, were made public the BBN calculations
predicted η0 to be of that order. This is because of the fact that the outcome of the
Big Bang Nucleosynthesis strongly depends on the baryon-to-photon ratio, which can
also be seen in Fig. (5.2). In the standard scenario it is straightforward to determine
the initial value of η, since the entropy density of the photons is only increased as the
electrons and positrons decouple from the equilibrium. It thus follows from Eq. (3.22)
and Eq. (3.20) that then ηi = η0(11/4). However, in the case where a decaying particle
constantly transfers entropy to the plasma there is no way to predict the amount of
entropy that is produced except for solving the set of differential equations. In [KT90]
it was discussed how to approximately determine the ratio Safter/Sbefore in the case that
the energy density ρX of the decaying relic is much larger than that of the radiation of
the Universe at that epoch. Such an assumption, however, would only be justified for
certain particle lifetimes and energy densities.
To obtain the initial value for the entropy Si, we implemented the following method

into the code to make sure the calculation doesn’t contradict cosmological observations:
we introduced an acceptance parameter α that allows us to regulate how much the final
entropy can differ from Sf,0, which is the value that is observed. As long as the final
value of the entropy, Sf , isn’t in this interval the calculation is done again, where Si is
constantly decreased via the entropy correction factor ε. This method is depicted in Fig.
(6.1).

Results

In the previous section we discussed that the changes to the outcome of BBN due to
the different thermal history don’t explicitly depend on the particle model, as long as
it is non-relativistic, but only on its lifetime τ and its energy density ρX during the
epoch of interest. Since the energy density of a non-relativistic particle is given by
ρnon−rel ' mn = smY∞, where Y∞ is the relic density of the additional particle and s
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6.2. BBN-constraints on entropy-producing relics in the early Universe

Figure 6.1.: Scheme of the numerical method used to determine the initial entropy Si for
the BBN calculation.

the entropy density, it makes sense to plot our results for the model-independent quantity
mY∞.
To quantify how well BBN results match the observed element abundances we used a

chi-squared value, which we defined as

χ2 =
∑
k

(Yobs,k − Ycalc,k)2

σ2
obs,k

, (6.11)

where Yobs,k is the observed abundance of the element k, Ycalc,k is the abundance we
calculated and σobs,k is the standard deviation of the observed abundance. For the
observed relative abundances we chose the same values as Coc et al. in [CUV13]. These
values are listed in Table (6.1).

observed abundances
Yp 0.2534 ± 0.0083
D/H (×10−5) 3.02 ± 0.23
3He/H (×10−5) 1.1 ± 0.2
7Li/H (×10−10) 1.58 ± 0.31

Table 6.1.: Observed abundances of light elements synthesized in the Big Bang. We used
the same values as [CUV13], which are the ones measured by the mission
PLANCK [A+14].
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Figure 6.2.: BBN calculation including an additional particle that decays out-of-
equilibrium and produces entropy in the process. We calculated a χ2-value,
according to Eq. (6.11), for the lifetime-mY∞ parameter space that is shown
and plotted the difference ∆χ2 to the minimum of the set of χ2-values. The
observed abundances we used are can be found in Tab. (6.1).

In Fig. (6.2) we have plotted the results of our BBN calculation that covers the relevant
part of the τ -mY∞ parameter space of an entropy-producing relic. We determined the
minimal χ2-value of the set and then plotted the difference,

∆χ2 = χ2 − χ2
min , (6.12)

for each data point. Thus the areas with the smallest value of ∆χ2 have the best agree-
ment with the data from the observations. For lifetimes τ that are greater than 104 s
electromagnetic cascades from the decay of the additional particles can effectively pho-
todissociate nuclei that are produced during BBN, since the particles of the cascade aren’t
thermalized as effectively anymore due to the lower density of the plasma ( this effect is
discussed in the review [IMM+09]). Therefore it doesn’t make sense to only consider the
effect of the altered thermodynamics in this region of the parameter space. On the other
hand additional particles with lifetimes below 10−3 s decay too early to have an effect
on the outcome of BBN. It is important to consider that if the relic particle can decay
into hadrons or carries charge there are other effects it can have on BBN, which have to
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be taken into account. We will discuss some of these effects in the following chapter.
It is rather clear to see from Fig. (6.2) that the predictions from the BBN-calculation

match the observed values better when the relic particle hardly affects BBN. This is the
case when both mY∞ and the lifetime are small. However, one can also see that the effect
of the entropy, that is produced in the decay, has on the abundancies is rather small for
most of the interesting parameter space. For a significant effect it should at least be given
that ∆χ2 > 5. This is only the case for the top-right corner of the plot. The well ordered
structure, which the plot displays, shows that one channel clearly dominates the effect on
the χ2-value. As we discussed in chapter 5, the element deuterium plays a crucial role in
BBN, because only when it is sufficiently abundent in the plasma the chain of reactions
that synthesizes the other elements starts. Also the result that at lifetimes of about 100
s the structure of the plot clearly changes points towards the fact that changes of the
deuterium abundance dominate the outcome, because the time when deuterium becomes
abundant in the plasma - the so called deuterium bottleneck - is at about 200 s.
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Figure 6.3.: χ2-values for the abundances of 4He (on the left) and D (on the right) for
the τ -mY∞ parameter space of an entropy-producing relic.

We also determined the χ2-value for the elements seperately. As anticipated the χ2-
plot for deuterium alone is very similar to Fig. (6.2. However, in the case of the 4He-
abundance some parameter points where the effect of the entropy-producing decay is
large are favoured by the observations and the plot thus has a different structure. This
is a result of the fact that the predicted 4He-abundance is lower than the observed value
and rises due to the increasing entropy during BBN. These two plots can be found in
Fig. (6.3).
In order to correctly interpret these results it is important to know what element

abundancies the BBN-code we used predicts for the standard BBN. Therefore we listed
the abundancies predicted for the standard scenario with η0 = 6.1× 10−10, which is the
value for todays baryon-to-photon ratio released by PLANCK in [A+14], in Tab. (6.2).
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predicted abundances (standard BBN)
Yp 0.2477
D/H (×10−5) 2.579
3He/H (×10−5) 1.041
7Li/H (×10−10) 4.491

Table 6.2.: Abundances predicted by the BBN-code [Kaw88] for η0 = 6.1× 10−10.
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Figure 6.4.: Plot of (ε − 1), where ε is the entropy-correction factor (see Eq. (6.13)). It
shows how the initial entropy used in standard BBN has to be modified in
order to avoid violating cosmological observations.

In Fig. (6.4) we have plotted (ε− 1), where ε is the entropy-correction factor we have
introduced to numerically determine the initial entropy Si for an acceptance parameter
α = 0.05. It is defined by

Si = Si,0/ε , (6.13)

where Si,0 is the initial entropy in the case of standard BBN. Fig. (6.4) shows that the
effect to the overall entropy from the decaying relic is rather small for large parts of
the parameter space we looked at. However it is still necessary to consider the effect
for the few parameter points where the entropy increase is large, to make sure the BBN
calculations aren’t in contradiction with cosmological observations.
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Chapter 7.

Effects of hadronically decaying particles
on BBN

In the following chapter we will discuss how relic particles that decay into hadrons can
effect the outcome of BBN due to the nuclear reactions these hadrons can induce. We
will also explain how we included the additional effects of the hadrons produced via the
decay of the heavy d-quarks into our BBN calculation using PYTHIA 6.4 [SMS06].

7.1. Long-lived, colored particles and BBN

Heavy particles that carry color charge produce a cascade of many hadronic particles
when they decay. If such a heavy, colored particle decays during BBN the secondary
hadrons from this cascade are likely to interact with the nuclei in the plasma and thus
alter BBN. Since such a cascade usually consist of many different hadronic particles,
which potentially all interact in a different way with the baryons in the plasma, it is a
complicated task to take into account the cascades’ effect on BBN. In Fig. (7.1) it is
depicted in what ways a particle that can decay into hadrons can effect BBN.
After hadronization the cascade of secondary particles consists of mesons (mostly π±)

and nucleons. Since mesons have short lifetimes, in the 10−8 s range, they can only
have an impact on the early phases of BBN where the plasma is still dense enough for
them to thermalize quickly and have time to interact with other hadrons before they
decay. This is the case for times t ' 1 − 100 s. The mesons then change the outcome
of BBN by interconverting protons to neutrons before the baryons are synthesized and
thus enhance the 4He abundance. We will discuss this effect of n/p-interconversion in
more detail in the following section. At early times nucleons also thermalize via electro-
magnetic processes and affect the n/p-ratio. However, since the number of nucleons that
are produced in the decay is much smaller than the number of mesons, they do not have
a primary effect on this stage of BBN. At later times though, the high energy nucleons
are likely to scatter with other nucleons, since the plasma is no longer as dense at this
point. These nuclear processes can start a so called cascade nucleosynthesis. This is
when many additional nucleons are produced at the scattering reactions of very highly
energetic nucleons. In this way e.g. a single ∼ 100 GeV nucleon can produce dozens of
∼ 10 MeV nucleons. For protons these scattering processes become the dominant energy
loss mechanisms for times t ≥ 104 s, and for neutrons already for times t ≥ 200 s. Thus
the nucleons from the cascade can significantly reduce the amount of 4He in the plasma
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Chapter 7. Effects of hadronically decaying particles on BBN

Figure 7.1.: Scheme of the effects a hadronically decaying particle can have on BBN.
From [KKM05].

via spallation reactions. The spallation of the 4He nuclei will also produce D, 3H and
3He in large amounts. Since 4He is by far the most abundant nucleus produced during
BBN the spallation reactions that destroy 4He will be most likely, however other nuclei
such as 7Li are also destroyed. Cascade nucleosynthesis thus can very effectively alter
the abundances that are produced during BBN. A BBN calculation including the effects
that arise from cascade nucleosynthesis is presented in [KKM05].

While the effects from the hadronic decay products we discussed before also occur
for decaying neutral particles that have a large hadronic branching ratio Bh, long-lived
particles with electric or strong charge can vastly alter BBN even before they decay. Due
to their charge such particles are likely to form bound states with other baryonic matter
in the early Universe. These additional bound states change the nuclear reaction pattern
and hence the abundances of light elements that are produced during BBN. The scenario
of BBN with these heavy bound states is known as catalyzed BBN (CBBN).
Performing a CBBN-calculation thus implies that many reactions have to be added

to the nuclear reaction network. The rates of these additional reactions depend mainly
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on the physics of the bound state and are often difficult to obtain. For the case of a
relic particle that carries colour charge, which is of primary interest for this thesis, one
has to take into account the effect of heavy nuclei AX on BBN. This makes CBBN with
strongly interacting particles very complicated, since it is difficult to treat the nuclear
physics of such a bound state reliably. Kusakabe et al. have performed such a CBBN
calculation, see [KKYM09]. Fig. (7.2) shows all the additional reactions for the heavy
nuclei AX that had to be added to the nuclear reaction network in this case.

Figure 7.2.: Network of additional nuclear reactions for heavy nuclei AX , which have
to be taken into account for a CBBN calculation in the case of a strongly
interacting particle. Dashed lines indicate β±-decays and the direction of
the arrows indicate the postitive Q-value. Taken from [KKYM09].

Kusakabe et al. have found out that at times t ∼ 200 s, when deuterium becomes
very abundant in the plasma, the deuterons trigger the reactions of the X-nuclei. These
reactions have a large impact on the outcome of BBN. One of the main reasons for this in
the model from [KKYM09] is that the nuclides 5He and 5Li are stabilized by the binding
with an X-nuclei. From their results of the CBBN calculation Kusakabe et al. have ruled
particle models that predict coloured particles with lifetimes longer than ∼ 200 s. Thus
we only calculated BBN for lifetimes τ ≤ 100 s in order to avoid the effects from CBBN.
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7.2. Nucleon-interconversion induced by injection of
thermalized hadrons

In this section we will discuss how hadrons that are injected into BBN prior to the
breaking of the deuterium bottleneck via the decay of a long-lived, massive particle species
affect the abundances of light elements that are synthesized. We will also explain how
we included these effects into our BBN calculation using PYTHIA.
Before deuterium becomes abundant in the early Universe, which happens at a time

t ∼ 200 s and a temperature T ∼ 0.08 MeV, the baryonic matter in the Universe was
mainly in the form of protons and neutrons. The ratio of neutrons to protons at the
moment when the weak charge-exchange reactions freeze out has a huge impact on the
yield of light elements produced at BBN. Thus the way a particle that decays during
this era can affect BBN is by changing the neutron-to-proton ratio. As we mentioned in
the previous section, particles that have a large hadronic branching ratio can produce a
cascade containing many secondary hadrons in the course of their decay. These hadrons
are likely to interact with the nucleons in the plasma and alter the neutron-to-proton
ratio by inducing n ↔ p transitions. In such a scenario the rate for a nucleon N to
convert to a nucleon N ′ is

ΓN→N ′ = ΓWN→N ′ + ΓHN→N ′ , (7.1)

where ΓWN→N ′ is the rate of transitions due to weak interactions, like e.g. the electron-
capture process e− + p → νe + n, and ΓHN→N ′ is the rate due to scattering with the
hadrons that are injected into the plasma. Thus to include the effect of the hadronically
decaying particle in our BBN calculation we need to determine the rates ΓHN→N ′ and
add them to the reaction network. The rates for the hadronically induced transitions
are given by the rate ΓX of decays of the additional particle X per nucleon N times the
average number KN→N ′ of transitions N → N ′ that are induced per decaying X particle.
Thus the rates that determine the hadron-induced n/p-interconversion are given by

ΓHp→n = ΓX
YX
Yp
Kp→n, ΓHn→p = ΓX

YX
Yn

Kn→p . (7.2)

The average number of transitions per decay can be obtained by

KN→N ′ =
∑
i

N iP iN→N ′ , (7.3)

where N i is the number of hadrons of the species i in the final state from the decay of
X and P iN→N ′ is the probability for such a hadron to induce a transition N → N ′. The
probability P iN→N ′ for the transition can be expressed as the ratio of the rate ΓiN→N ′ for
the transition N → N ′ and the sum of its decay rate ΓiD and the total absorption rate
ΓiA:

P iN→N ′ =
ΓiN→N ′

ΓiD + ΓiA
. (7.4)
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For times t ∼ (10−2−100) s the hadrons that have the largest contribution to the changes
of the neutron-to-proton ratio are charged pions1. This is due to the fact that they are
most abundant in the final state of a hadronic cascade. Due to the high density of the
Universe at this stage of BBN the charged pions very rapidly inject their kinetic energy
into the plasma via electromagnetic interactions until they have thermal velocity distri-
butions. This process of thermalization has been simulated by [KKM05]. Fortunately
the nuclear reactions of π± have been studied thoroughly in past experiments. Hence the
transition rates can simply be determined from the measured thermally averaged cross
sections by

ΓiN→N ′ = nN 〈σv〉iN→N ′ . (7.5)

For our BBN calculation we adopted the values for the thermally averaged cross sections
from [RS88]. For the processes π+ + n→ π0 + p and π− + p→ π0 + n they are given by

〈σβ〉π+

n→p = 1.7 mb , (7.6)

and
〈σβ〉π−p→n = 1.5C2

π (T ) mb . (7.7)

The function C2
π(T ) is the coulomb correction factor, which is given by

C2
i (T ) =

2παem
√
µi/2T

1− exp
(
−2παem

√
µi/2T

) , (7.8)

where µi is the reduced mass of the hadron i and the target nucleon, and αem is the
fine structure constant. We used the value for the lifetime of the charged pions τπ±

from [Bea12] to determine the decay rate from

Γπ
±
D =

(
τπ
±
)−1

=
(
2.6033× 10−8 s

)−1
. (7.9)

However, to determine the average number of charged pions Nπ± (from Eq. (7.3) )
produced in the hadronic cascade is challenging. For this task we used the Monte Carlo
event generator PYTHIA 6.4, which is designed to simulate collider events. PYTHIA
has a tool to calculate the formation and evolution -including the hadronization of the
partons- of a hadronic cascade in vacuum. Although the cascades we are interested in take
place in the plasma of the early Universe it is safe to assume that for the temperatures
T ∼ 1 MeV, which the Universe had at that epoch, the thermal corrections do not
dominate these processes. To obtain the average number of charged pions per decay
D → H0 + d a subroutine was developped that writes H0 and d into the so called event
record of PYTHIA and triggers the showering of both particles. The momentum of H0

1As we discussed before antinucleons can also induce such nucleon transitions that change the n/p-ratio.
Their effects have been taken into account in the literature under the assumption that they form a
meson-like NN̄ bound state (see e.g. [RS88]). We have not repeated this approach, since there are
some uncertainties, like e.g. what lifetime such a bound state would have. Other ways to calculate
this are unfortunately too difficult to perform in this thesis.

57



Chapter 7. Effects of hadronically decaying particles on BBN

and d prior to showering is determined by relativistic kinematics of the two-body decay
to be

p =

√(
m2
D +m2

H0

2mD

)2

−m2
H0 , (7.10)

where we have neglected the squared mass of the d-quark. The subroutine then performs
1000 showering events of the particles d and H0 with opposite momenta given by Eq.
(7.10) and sums over the number of charged pions in the final states per event to de-
termine Nπ± . Fig. (7.3) shows how the average number of π± per decay depends on
the mass mD of the heavy down-type quarks. This PYTHIA subroutine can be found in
Appendix C.
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Figure 7.3.: Average number of charged pions per decay of a D-quark with mass mD,
calculated with PYTHIA 6.4. For every point 1000 showering events d +
H0 → ... were generated.
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Chapter 8.

Results: BBN constraints on long-lived,
heavy d-quarks

In this chapter we will present the results of our BBN calculation including long-lived,
heavy d-quarks. To obtain these results we modified the public BBN code [Kaw88] such
that the effects of entropy production (see chapter 6) and hadronic cascades (see chapter
7) are accounted for.
For our BBN calculation we included the effects of additional d-quarks with masses

at the TeV scale and lifetimes τ < 100 s. As we discussed in chapter 7 effects from
catalyzed Big Bang nucleosynthesis (CBBN) have a large impact on the outcome of
BBN for lifetimes τ ≥ 200 s and the results from [KKYM09] have shown that hadronic
particles with such lifetimes are therefore excluded. We calculated the abundances of
the light elements for the different parameter space points, where we used the PLANCK
result for todays baryon-to-photon ratio η0 = 6.1×10−10. From these abundances we then
calculated the χ2-value that is defined in Eq. (6.11), which is a factor that characterizes
how well the predicted abundances match the observed data. The observed element
abundances we compare our results to are the values the PLANCK collaboration released
and can be taken from Tab. (6.1). It has been argued by [KLN08] that for hadronic
relics a late annihilation phase must occur after deconfinement due to the formation
of stable bound states (see section 4.3). Unfortunately no calculations of this process
have been performed yet. Still we have adopted the order-of-magnitude approximations
from [KLN08] into our BBN calculation. In the following we will present our results for
both cases: with and without the second annihilation phase. Thus it also becomes clear
how much this second annihilation phase changes the BBN constraints on the additional
d-quarks.

Relic abundance without the second annihilation phase

For the following plots we used the relic density the heavy d-quarks have immediately
after the departure from thermal equilibrium, which was obtained from Eq. (4.21). The
effect of the late annihilation phase thus hasn’t been taken into account. In Fig. (8.1)
we have plotted ∆χ2 = χ2 − χ2

min for the parameter space region with 0.5 TeV ≤ mD ≤
1000 TeV and 0.01 s ≤ τ ≤ 100 s.
From the fact that the plot in Fig. (8.1) displays generally different behaviour than

the plot from Fig. (6.2) it becomes clear that the effect of the nucleon interconversion,
which is induced by the hadronic cascades from the decay of the heavy d-quarks, is larger
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Figure 8.1.: BBN calculation including the effects of the additional, heavy down-type
quarks without including the effect of the late annihilation phase on the relic
abundancy. We plotted the difference ∆χ2 to the minimum of the set of
χ2-values, which are defined in Eq. (6.11). The observed abundances we
used can be found in Tab. (6.1).

than the effect from the entropy production in the decay for most parts of the parameter
space we looked at. The data also shows that the impact of the heavy d-quarks on BBN
is largest for lifetimes τ ' 1 s. This is in accord with our understanding of the effect,
since this is the time when the neutron-to-proton ratio freezes out in standard BBN (see
chapter 4). Hence changes to this ratio -that are adjusted by the system as long as the
n/p-ratio is in thermal equilibrium- remain permanent after the freeze out.
We found out that for a large part of the parameter space the dominant contribution

to the χ2 value comes from the changes in the 7Li abundance. As we discussed in
chapter 4 the observed primordial abundance of 7Li isn’t in good agreement with the
predictions from BBN calculations. If this discrepancy arises from some mechanism of
lithium destruction in stars, as has been proposed recently, the plot from Fig. (8.1) thus
is rendered non-significant. Therefore we have also plotted the χ2-values for 7Li and the
other elements (D, 3He and 4He) seperately in Fig. (8.2). The χ2-values of the other
elements without 7Li differ considerably from the χ2-values including 7Li. In this case
some parts of the parameter space in which the heavy d-quarks have a large effect on
BBN are even favoured by the observations.
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Figure 8.2.: χ2-values for the predicted abundances of D, 3He and 4He (on the left) and
7Li (on the right) for the lifetime-mass parameter space of the additional
down-type quarks.

Relic abundance including the second annihilation phase

Now we will present the result of our BBN calculation including the heavy d-quarks,
where we have taken into account the effects of the late annihilation phase that occurs
due to the fact of bound states with geometric cross sections form after deconfinement.
The approxition for the relic abundance after this phase we used is given by Eq. (4.40).
The plot displayed in Fig. (8.3) clearly shows that, due to the reduction of the relic

density in the late annihilation phase, the heavy d-quarks no longer have a sizeable effect
on the yield of BBN in this case.
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Figure 8.3.: BBN calculation including the effects of the additional, heavy down-type
quarks. The relic abundance we used, which is given by Eq. (4.40), approxi-
mately takes into account the effect of the late annihilation phase due to the
formation of bound states after deconfinement. We plotted the difference
∆χ2 to the minimum of the set of χ2-values, which are defined in Eq. (6.11).
The observed abundances we used can be found in Tab. (6.1).
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Chapter 9.

Summary and Conclusion

We have performed a BBN calculation including the effects of heavy d-quarks (m ≥ 1
TeV) for lifetimes 0.01 s ≤ τ ≤ 100 s. For these lifetimes the additional quarks can effect
the yield of BBN via the entropy transferred to the plasma in the course of their decay
(see chapter 6), and also via secondary hadrons from the hadronic shower following the
decay, which can induce an interconversion of protons to neutrons (discussed in section
7.2).
The fact that at a temperature equivalent to the QCD scale the coloured particles are

confined into hadrons reduces the relic density due to the formation of bound states,
which eventually lead to annihilation of the relics (see [KLN08]). We have performed our
BBN calculation with the order-of-magnitude estimate for the relic density from [KLN08]
and also for the case of “standard freeze out”, where the relic density was calculated from
Eq. (4.21).
Our results have shown that if it were the case that the relic abundance of the heavy

d-quarks isn’t affected much by the second annihilation phase, for some parts of the pa-
rameter space we looked into the additional quarks could significantly worsen the agree-
ment between the observations and the predictions (see Fig. (8.1)). If the problematic
abundance of 7Li is left out of the calculation of the χ2-value, the additional d-quarks
could even improve conformance (see Fig. (8.2)). However, as can be taken from Fig.
(8.3), the impact of the heavy d-quarks on the yield of the synthesis of light elements
in the Big Bang is dramatically reduced when the magnitude of the second annihilation
phase is as predicted by [KLN08]. An effect as small as our calculations imply is way
beyond reach of any observational sensibility and thus insignificant.
Despite the fact that there are many approximations made in [KLN08] in order to

obtain the order of magnitude of the relic density after the annihilation of the bound
states, we believe their predictions to be correct. Hence we conclude that for lifetimes τ ≤
100 s there don’t exist any constraints from Big Bang Nucleosynthesis on the additional
down-type quarks at the TeV-scale.
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Appendix A.

Modified DRIVER of the Kawano-Code

Here we present the DRIVER of the Kawano Code, which is a public BBN code that
can be found on the homepage of Prof. Frank Timmes ( http:// cococubed.asu.edu
/code_pages/net_bigbang.shtml ) under the name bbn_new123.f, including the mod-
ifications we performed. The comments without dashes indicate that things were added
or changed at this point in the code. With the changes we performed the DRIVER now
calculates the abundances for the whole parameter space and uses the numerical method
we discussed in chapter 6 to determine the correct value for the initial entropy.

!read particle parameters and relic density and write into array ’fpar ’
OPEN (unit=97, file=’input_parameter.dat’, status=’unknown ’)

READ (97, fmt=*, end =98) fpar

98 CLOSE (97)

!files for the results of the BBN calculation
OPEN (unit=95, file=’abundances.dat’, status=’unknown ’)
OPEN (unit=96, file=’entropycorr.dat’, status=’unknown ’)

npion =0.0
accpar =0.05

!sum over the parameter space points , fills array ’freeze ’ for each point
that contains: freeze (1)=’mass ’, freeze (2)=’lifetime ’, freeze (3)=’

relic density times mass ’ and freeze (4)=’time of freeze out ’
DO sumvar=1,dimfpar ,4

ec=1e0
logicec =0

freeze (1)=fpar(sumvar)
freeze (2)=fpar(sumvar +1)
freeze (3)=fpar(sumvar +2)
freeze (4)=fpar(sumvar +3)

!subroutine that calculates the average number of charged pions per decay
’npion ’
CALL DDECSHOWER(freeze (3),npion)
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155 continue

!10--------INPUT INITIALIZATION INFORMATION , RELABEL ------------

ltime = 0
CALL start

!the number of variables differs from the original code since we added
two variables in order to calculate the altered thermodynamics (see
chapter 5)

mvar = isize + 5

!20--------LOOP ONE ---------------------------------------------

200 continue !Begin Runge -Kutta looping.
loop = 1 !Loop indicator.

!.......... COMPUTE DERIVATIVES OF VARIABLES TO BE EVOLVED.

CALL derivs(loop)
itime = 4 !Time = 1st R-K loop.
CALL check !Check interface subroutine.

!.......... ACCUMULATE.
IF ((t9.le.t9f).or. !Low temp.

| (dt.lt.abs(cl/dlt9dt)).or. !Small dt.
| (ip.eq.inc)) CALL accum !Enough iterations.

!.......... POSSIBLY TERMINATE COMPUTATION.
IF (ltime.eq.1) THEN !Return to run selection.

!calculate the difference to the observed entropy -value and if it is not
in the acceptance interval go back and redo the calculation with
increased entropy correction facot ’ec ’

deltaentr= abs(entr - 1.136e-38)
accintv= 1.136e-38* accpar
IF(deltaentr.lt.accintv) THEN
logicec =1
END IF
IF(logicec.eq.0) THEN
ec=ec+accpar
GO TO 155
END IF
IF(logicec.eq.1) THEN

!calculate final abundances and write into data file
lith7= xout(it ,8) + xout(it ,9) !Add Be to Lithium
hel4= xout(it ,6) - 0.0003
hel3 = xout(it ,5) + xout(it ,4) !Add tritium to He3
taus= freeze (4) *6.5822e-25
WRITE (95 ,*) freeze (3),taus ,xout(it ,3),hel3 ,hel4 ,

| xout(it ,7),lith7
WRITE (96 ,*) freeze (3),taus ,ec
END IF

!check whether all of the paramter space points have been and if not go
back and calculate next point

IF(sumvar.lt.dimfpar) THEN
GO TO 154
END IF
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CLOSE (95)
CLOSE (96)
RETURN

END IF
!.......... RESET COUNTERS.

IF (ip.eq.inc) THEN !Reset iteration counters.
ip = 0

END IF
ip = ip + 1
is = is + 1

!.......... ADJUST TIME STEP.
IF (is.gt.3) THEN

dtmin = abs (1./ dlt9dt)*ct
DO i = 1,isize

IF ((dydt(i).ne.0.).and.(y(i).gt.ytmin)) THEN
dtl = abs(y(i)/dydt(i))*cy

| *(1.+( alog10(y(i))/alog10(ytmin))**2)
IF (dtl.lt.dtmin) dtmin = dtl

END IF
END DO
IF (dtmin.gt .1.5*dt) dtmin = 1.5*dt
dt = dtmin

END IF
t = t + dt

!.......... STORE AND INCREMENT VALUES (Ref 3).

DO i = 1,mvar
v0(i) = v(i)
dvdt0(i) = dvdt(i)
v(i) = v0(i) + dvdt0(i)*dt
IF ((i.ge.4).and.(v(i).lt.ytmin).and.(i.le.29)) v(i) = ytmin

END DO

!--------LOOP TWO ------------------------------------------------

loop = 2 !Step up loop counter.
!.......... COMPUTE DERIVATIVES OF VARIABLES TO BE EVOLVED.

CALL derivs(loop)
itime = 7 !Time = 2nd R-K loop.
CALL check !Check interface subroutine.

!.......... INCREMENT VALUES.
DO i = 1,mvar

v(i) = v0(i) + .5*( dvdt(i)+dvdt0(i))*dt
IF ((i.ge.4).and.(v(i).lt.ytmin).and.(i.le.29)) v(i) = ytmin

END DO

GO TO 200

! Nuclide and corresponding number
! --------------------------------
! 1) N 7) Li6 13) B10 19) C13 25) O15
! 2) P 8) Li7 14) B11 20) N13 26) O16
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! 3) H2 9) Be7 15) C11 21) C14
! 4) H3 10) Li8 16) B12 22) N14
! 5) He3 11) B8 17) C12 23) O14
! 6) He4 12) Be9 18) N12 24) N15

154 continue

END DO

END
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Appendix B.

Functions for the derivatives of the
quantities governing the altered
thermodynamics

In this appendix we present the functions that are called by the BBN code in order to
calculate the thermodynamic quantities that are affected by the entropy-producing decay
of a heavy particle. We used the second order Runge-Kutta scheme of the Kawano code
to obtain solutions for the system of coupled differential equations we derived in chapter
6.1. For the calculation of T we simply replaced the derivative of the original code, and
S and ρr,new were added to the list of variables to be time evolved. These functions are:

• Temperature derivative:

double precision function dt9dt(tek ,tis ,s,rn,f,ec)

implicit none

include ’konstanten.dek’
include ’const.dek’

double precision :: tek !temperature in 10to9 -Kelvin
double precision :: tis !time in seconds
double precision :: te !temperature in GeV
double precision :: ti !time in GeV (ab timeini)
double precision :: s !entropy
double precision :: rn !energy density of radiation from the decay
double precision :: ec !entropycorrection factor
!values of the integrals over the distribution functions. these

functions are taken from the routine ’temp ’ from the Frank Timmes
homepage (http :// cococubed.asu.edu/code_pages/net_bigbang.shtml)

double precision :: wien1 ,wien2 ,dwien1dx ,dwien2dx
!array freeze that contains particle parameters and relic density
double precision , dimension (4)::f
double precision :: rhoxi ,rhox ,rscalei

!convert temperature and time to GeV
te=tek /(1.1605 d4)
ti=tis /(6.5822d-25)-timeini
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!calculates initial scale factor to the power of 3 as a function of
initial temperature ’tempini ’ and entropy ’entrip ’

rscalei=entrip /(1.333 d0*( tempini **3)*wien1(mel/tempini)*ec)
!initial energy density of X-particle
rhoxi= 2.7d-3*f(2)

!calculate energy density of X-particle
rhox = (4* aboltz*rhoxi*rscalei *(te**3)*wien1(mel/te) &
)/(3.* exp(ti/f(4))*s)

!temperature derivative as derived in chapter 5.1
dt9dt = (-(rhoxi*rscalei **3) /(3.* exp(ti/f(4))*f(4)*s)&
+ 2*Sqrt ((2*pi)/3.)*Sqrt(gravconst *(rn + &
aboltz*te**4* wien2(mel/te) + rhox))*te)/(-1 + (mel*dwien1dx(mel/te))

&
/(3.*te*wien1(mel/te)))*(1.1605 d4 /6.5822d-25)

end function dt9dt

• Entropy derivative:
double precision function dsdt(tek ,tis ,f,ec)

implicit none

include ’konstanten.dek’
include ’const.dek’

double precision :: tek !temperature in 10to9 -Kelvin
double precision :: tis !time in seconds
double precision :: ec !entropy correction factor
double precision :: te !temperature
double precision :: ti !time
double precision :: wien1
double precision , dimension (4)::f
double precision :: rhoxi , rhox , dumm ,rscalei

te=tek /(1.1605 d4)
ti=tis /(6.5822d-25)-timeini

rscalei=entrip /(1.333 d0*( tempini **3)*wien1(mel/tempini)*ec)

rhoxi= 2.7d-3*f(2)

!calculates the derivative of the entropy according to the formula
derived in chapter 5.1

dsdt= rhoxi*rscalei/f(4)/te/exp(ti/f(4))/(6.5822d-25)

end function dsdt

• Derivative of radiation energy density from the decay:
double precision function drndt(tek ,tis ,s,rn,f,ec)
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implicit none

include ’konstanten.dek’
include ’const.dek’

double precision :: tek !temperature in 10to9 -Kelvin
double precision :: tis !time in seconds
double precision :: te !temperature
double precision :: ti !time
double precision :: s !entropy
double precision :: rn
double precision :: ec
double precision :: wien1 ,wien2 ,dwien1dx ,dwien2dx
double precision :: dsdt , dt9dt
double precision , dimension (4)::f
double precision :: rhoxi ,rhox ,rscalei

te=tek /(1.1605 d4)
ti=tis /(6.5822d-25)-timeini

rscalei=entrip /(1.333 d0*( tempini **3)*wien1(mel/tempini)*ec)

rhoxi= 2.7d-3*f(2)

rhox = (4* aboltz*rhoxi*rscalei *(te**3)*wien1(mel/te) &
)/(3.* exp(ti/f(4))*s)

!derivative of the radiation energy density from the decay as
derived in chapter 5.1

drndt =(-4*rn *(1/(3*s)*dsdt(tek ,tis ,f,ec)*(6.5822d-25)+dt9dt(tek ,tis ,
s,rn,f,ec)/(1.1605 d4 /6.5822d-25)&

/te*(mel /(3*te)*dwien1dx(mel/te)/wien1(mel/te) -1))+rhox/f(4))&
/(6.5822d-25)

end function drndt
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PYTHIA subroutine and functions that
calculate the reaction rates

The PYTHIA 6.4 subroutine we used to determine the average number of charged pions
per decaying heavy d-quarks is given below.

SUBROUTINE DDECSHOWER(MASSD ,NUMPION)

IMPLICIT DOUBLE PRECISION(A-H, O-Z)

EXTERNAL PYDATA

!... PYTHIA Commonblocks.
!...The event record.

COMMON/PYJETS/N,NPAD ,K(4000 ,5),P(4000 ,5),V(4000 ,5)
! COMMON/PYDAT2/KCHG (500 ,4),PMAS (500 ,4),PARF (2000) ,VCKM (4,4)
! COMMON/PYDAT3/MDCY (500 ,3),MDME (8000 ,2),BRAT (8000) ,KFDP (8000 ,5)
! COMMON/PYDAT4/CHAF (500 ,2)
! SAVE /PYJETS/
!declaration is implicit in name

DOUBLE PRECISION MASSD !mass of heavy d-quark
DOUBLE PRECISION NUMPION !average number of charged pions per

decay
!local variables

INTEGER KF1 ,KF2
DOUBLE PRECISION PE !initial momentum of particles creating the

shower
INTEGER J1,J2
INTEGER NPION !number of charged pions of the event
INTEGER NEVNT !number of events
INTEGER N
DOUBLE PRECISION MNPION
DOUBLE PRECISION DNPION ,DNEVNT

NPION=0

NEVNT =1000 !set number of events events
KF1=1 !set particle species d and H0
KF2 =25
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Appendix C. PYTHIA subroutine and functions that calculate the reaction rates

!calculate momentum from relativistic kinematics of two -body decay
PE=SQRT ((( MASSD **2+125**2) /(2* MASSD))**2 -125**2)

!loop over events
DO J2=1,NEVNT

!enter particle data (code#:KF and momentum: PE) in Event Record
K(1,1)=1
K(2,1)=1
K(2,2)=KF1
K(1,2)=KF2

P(1,3)=PE
P(2,3)=-PE
P(2,5)= PYMASS(KF1)
P(1,5)= 125 !PYMASS(KF2)
P(2,4)= SQRT(PE**2+P(2,5) **2)
P(1,4)= SQRT(PE**2+P(1,5) **2)

N=2

!call subroutine that calculates showering
CALL PYEXEC

! DO loop to determine number of charged pions in the event
DO J1=1,N

IF((ABS(K(J1 ,2)).EQ .211).AND.(K(J1 ,1).LT.10))THEN
NPION=NPION+1

END IF
END DO

END DO

! transforming the integers to double precision in order to be able to
divide

DNPION=NPION*1d0
DNEVNT=NEVNT*1d0

!calculate average number of charged pions
MNPION=DNPION/DNEVNT

NUMPION=MNPION

END

To take into account the affects of the n/p-interconversion we added the rates from
Eq. (7.2) to the rates of the electron-capture reactions in the reaction network of the
Kawano code. The functions that calculate these rates are given below.
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• Rate for reaction n+ π+ → p+ π0:

double precision function freacric(tek ,tis ,s,f,xn ,hv ,npion ,ec)

implicit none

include ’konstanten.dek’
include ’const.dek’

double precision :: tek !temperature in 10to9 -Kelvin
double precision :: tis !time in seconds
double precision :: xn !mass fraction/abundancy of neutrons
double precision :: hv !parameter h=rhob*T^3
double precision :: npion !number of charged pions
double precision :: ec !entropy correction factor
double precision :: te !temperature in GeV
double precision :: ti !time in GeV (ab timeini)
double precision :: s !entropy
double precision :: wien1
double precision , dimension (4)::f
double precision :: rhoxi ,rhox ,rscalei

te=tek /(1.1605 d4)
ti=tis /(6.5822d-25)-timeini

rscalei=entrip /(1.333 d0*( tempini **3)*wien1(mel/tempini)*ec)
rhoxi= 2.7d-3*f(2)

rhox = (4* aboltz*rhoxi*rscalei *(te**3)*wien1(mel/te) &
)/(3.* exp(ti/f(4))*s)

!calculate reaction rate in 1/sec
freacric=rhox/f(3) *(1d14 /1.9733) **3/(f(4) *6.5822d-25)* &
npion /2*1d -27*2.99 d10 *(1.7/(1/2.6033d-8+1d -27*2.99 d10 *1.7* xn&
*hv*tek **3*6.022 d23))

!documentation for numbers used:
! (1d14 /1.9733) **3 : GeV^3 --> 1/cm^3
! 1d-27 : mb --> cm^2
! 2.99 d10 : speed of light
! 2.6033d-8 : lifetime of charged pion
! 1.7 : cross section for n pi+ -> p
! 1.5 : cross section for p pi- -> n
end function freacric

• Rate for reaction p+ π− → n+ π0:

double precision function rreacric(tek ,tis ,s,f,xp ,hv ,npion ,ec)

implicit none
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include ’konstanten.dek’
include ’const.dek’

double precision :: tek !temperature in 10to9 -Kelvin
double precision :: tis !time in seconds
double precision :: xp !mass fraction protons
double precision :: hv !parameter h=rhob*T^3
double precision :: npion !average number of charged pions
double precision :: ec !entropy correction factor
double precision :: te !temperature in GeV
double precision :: ti !time in GeV (ab timeini)
double precision :: s !entropy
double precision :: wien1
double precision , dimension (4)::f
double precision :: rhoxi ,rhox ,rscalei
double precision :: coulcorr ,redmass !coulomb -correction and reduced

mass

te=tek /(1.1605 d4)
ti=tis /(6.5822d-25)-timeini

rscalei=entrip /(1.333 d0*( tempini **3)*wien1(mel/tempini)*ec)

rhoxi= 2.7d-3*f(2)

rhox = (4* aboltz*rhoxi*rscalei *(te**3)*wien1(mel/te) &
)/(3.* exp(ti/f(4))*s)

!calculate coulomb -correction factor
redmass =0.938*0.14/(0.938+0.14)
coulcorr =2*pi/137* sqrt(redmass /(2*te))/(1-exp(-2*pi /137* sqrt(redmass

/(2*te))))

!reaction rate in 1/sec
rreacric=rhox/f(3) *(1d14 /1.9733) **3/(f(4) *6.5822d-25)* &
npion /2*1d -27*2.99 d10 *(1.5* coulcorr /(1/2.6033d-8+1d -27*2.99 d10&
*1.5* coulcorr*xp*hv*tek **3*6.022 d23))

!documentation for numbers used:
! (1d14 /1.9733) **3 : GeV^3 --> 1/cm^3
! 1d-27 : mb --> cm^2
! 2.99 d10 : speed of light
! 2.6033d-8 : lifetime of charged pion
! 1.7 : cross section for n pi+ -> p
! 1.5 : cross section for p pi- -> n
end function rreacric
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