
Master thesis

Numerical Calculations of

Multi-Jet Cross Sections

Bijan Chokoufe Nejad

January 13, 2014

University of Würzburg

Institute for Theoretical Physics

Supervisor: Prof. Dr. T. Ohl





Contents

1. Introduction 1

1.1. Conventions and Notation . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. O’Mega Virtual Machine 5

2.1. Quantum Chromo Dynamics . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. Recursive Relations of Off-Shell Currents . . . . . . . . . . . . . . . . 8

2.3. Bytecode Production in O’Mega . . . . . . . . . . . . . . . . . . . . . 9

2.4. Fortran Interpreter OVM . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5. Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6. Possible Gains in Using Auxiliary Fields . . . . . . . . . . . . . . . . . 16

2.7. Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3. Phase Space Integration 22

3.1. Beams and Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2. Notation and Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3. General Monte Carlo Techniques . . . . . . . . . . . . . . . . . . . . . 26

3.4. Unitary Algorithm Formalism . . . . . . . . . . . . . . . . . . . . . . . 27

3.5. RAMBO - RAndom Momenta Beautifully Organized . . . . . . . . . . 29

3.6. SARGE - Staggered Antenna Radiation GEnerator . . . . . . . . . . . 31

3.6.1. Basic Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6.2. Full Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6.3. Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7. Discussion and Performance . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8. SARGE Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8.1. Reducing Rejected Points . . . . . . . . . . . . . . . . . . . . . 44

3.8.2. Including Incoming Momenta . . . . . . . . . . . . . . . . . . . 47

4. Helicity Summation and Spin Correlations 58

4.1. Fixed Helicity Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1. Complete Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.2. Discrete Importance Sampling . . . . . . . . . . . . . . . . . . 59

4.2. Superpositions of Helicities . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1. Continuous Helicity Sampling . . . . . . . . . . . . . . . . . . . 61

4.2.2. General Helicity MC Formalism . . . . . . . . . . . . . . . . . . 62

4.3. Spin Density Matrices in the Rest Frame . . . . . . . . . . . . . . . . . 64

iii



CONTENTS

4.4. Discussion and Performance . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5. Lorentz Transformations of Density Matrices . . . . . . . . . . . . . . 69

5. Conclusion 73

A. Recursive mean and variance 79

B. Helicity speed up tables 80

iv



List of Acronyms

1POW one Particle Off-Shell Wave Function

APS Antenna Pole Structure

BSM beyond the SM

CMF Center of Mass Frame

CMC Color MC

HMC Helicity MC

LCA Leading Color Approximation

LHC Large Hadron Collider

LSZ Lehmann-Symanzik-Zimmermann

MC Monte Carlo

MHV Maximally Helicity Violating

MSSM Minimal Supersymmetric SM

OVM O’Mega Virtual Machine

PDG Particle Data Group

QCD Quantum Chromodynamics

QED Quantum Electrodynamics

SM Standard Model

SIMD Single Instruction Multiple Data

UAF Unitary Algorithm Formalism

VM Virtual Machine

v



List of Figures

2.1. Schematic of the O’Mega Virtual Machine (OVM) . . . . . . . . . . . 12

2.2. Classification of levels by the number of summands in the momenta . 14

2.3. Speedup of multiple cores compared to single core execution . . . . . . 15

2.4. Number of vertices in different theories . . . . . . . . . . . . . . . . . . 19

2.5. Execution time of the OVM compared to native Fortran code . . . . 20

3.1. Antenna pole structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2. Generated phase space density of Rambo and Sarge . . . . . . . . . 42

3.3. Relative error of Rambo and Sarge as function of the accepted momenta 43

3.4. The convex hull of the polytope defined by |xk| < 1 and |xk − xl| < 1

∀k, l ∈ {1, . . . ,m} for m = 2, 3. . . . . . . . . . . . . . . . . . . . . . . 45

4.1. Convergence of the cross section with helicity MC and sum . . . . . . 60

4.2. Mean execution times for various 2→ 2, 3, 4, 5 processes . . . . . . . . 67

vi



1. Introduction

Particle physics seeks to understand the fundamental structure of nature, especially at

high energies. The main tool to test these scales are scattering experiments whereby

the so called high energy frontier is presently represented by the Large Hadron Col-

lider (LHC) at CERN in Geneva [EB08]. In 2012, the LHC gained much attention

due to the detection of a Higgs particle, which was earlier often called the missing part

of the puzzle, at the two experiments ATLAS and CMS [ATL12; CMS12]. This most

likely spin zero, parity even particle [ATL13] fits indeed very well in the Standard

Model (SM) of particle physics. The SM describes reactions among all known forms

of matter and its triumph is going on for almost half a century. Inspired by the discov-

ery of broken parity by Wu [Wu57], Glashow, Weinberg and Salam formulated in the

60s a renormalizable Yang-Mills theory that unifies electromagnetism with the weak

force that is responsible for beta decay [Gla61; Sal68; Wei67]. Nobody could have

predicted that all of the ’many arbitrary features’ [Wei67] are indeed in agreement

with various measurements to the per cent level so far. The discovery of the Higgs

plays hereby indeed a crucial role as it is the excitation of the field, which breaks the

symmetry group SU(2)L × U(1)Y down to U(1)EM, where L is left, Y hypercharge

and EM electromagnetic, and gives mass to the charged and neutral currents W±

and Z0 as well as the fermions.

Alongside the framework to discover all predicted particles, quantum field theory also

allows to precisely compute observables. An example is the anomalous moment of

electrons and muons. Theoretically predicted and experimentally measured values

agree in nine and six digits, respectively [Aoy+07; Hag+11]. However, the anomalous

moment plays a dual role as even this paragon of precision deviates significantly from

the SM prediction by more than three standard deviations, in the case of the muon.

Possible new physics beyond the SM (BSM) would affect the muon stronger than the

electron due to its higher mass and could potentially explain this discrepancy. There

is further hard evidence that the SM is not the complete theory of all particles. The

observation of neutrino oscillations among all three generations [Abe+08; An+12] can

only be reasonably explained if neutrinos have a non-zero mass, though the origin of

this mass still has to be determined. Other important hints come from astronomy

and astrophysics in form of anisotropies in the cosmic microwave background [Pla13],

gravitational lensing [Clo+06] or rotation curves [BBS91] that could all be explained

with cold dark matter, i.e. massive matter that is not emitting radiation, which is
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1. INTRODUCTION

not yet included in the SM.

Additionally, there are aesthetic and theoretical reasons that motivate to search for

BSM physics. The number of parameters of the SM is rather large and does not

offer any insight into the physics of flavor, e.g. we do not know why the top mass

is so much larger than that of all other flavors. One might also prefer to fix all

masses at one fundamental scale and compute the SM values at the electro weak

scale with the renormalization group equations. A more pressing problem, however,

is the lack of a stabilizing mechanism for the scalar Higgs boson. While gauge boson

and fermion masses are protected from large radiative corrections through gauge and

chiral symmetry, respectively, for scalar particles, like the Higgs boson of the SM,

there is no such mechanism. Therefore, the mass may diverge quadratically with the

highest energy scale of the theory [Ohl99a]. By plugging in the scale which is definitely

not described by the SM, namely the Planck scale, we would have to absurdly fine-

tune this mass term to obtain the measured value at the electro weak scale. Possible

protection from radiative corrections could be e.g. offered by super symmetry or little

Higgs models like the Littlest Higgs [Ark+02].

In the search for BSM physics, completely general Monte Carlo (MC) event gener-

ators are indispensable tools. When a new model is developed, the implementation

should need no ingenuity on the side of the event generator but directly follow from

the Feynman rules and particle content. Even the derivation and implementation

of these rules from the Lagrangian, which can be tedious and error-prone for large

models like the Minimal Supersymmetric SM (MSSM), has been automated with

tools like FeynRules and Sarah [CD09; Sta13]. Tree-level computations are nowa-

days indeed fully automatized, cf. for instance CompHEP, MadGraph or Whizard

[Boo+04; AHM11; KOR11], and mainly the computational complexity sets limits on

the number of final states that can be computed. This work relies on and extends

O’Mega [MOR01], the matrix element generator for Whizard, which has been de-

signed with the physics of a linear collider in mind. While it can of course be used for

event simulation at the LHC, there are some deficiencies. Especially the compilation

of the matrix element, which is written as source code, fails due to lacking memory

if the number of external gluons becomes too high, usually for eight and more. The

phase space of Whizard is generated with Vamp [Ohl99b]. The sophisticated multi-

channel algorithm, which tries to find appropriate mappings that render the integrand

close to unity, works extremely well for some heavy particles in the final state while

for many light particles, like in Quantum Chromodynamics (QCD), thousands of

channels with roughly the same weight are created. To achieve sufficient statistics in

each channel, the number of matrix element evaluations quickly becomes unbearable
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for computations that should terminate in finite time. Therefore, we aim to develop

a complementary approach that is especially suited for many light particles in the

final state.

Many particle final states are indeed of pressing interest. At 14 TeV the LHC can pro-

duce large numbers of jets with sizeable cross sections, e.g. σ(pp→ tt̄+6jets)/σ(pp→
tt̄) ≈ 0.059 [GH08]. This trend will continue when the high energy frontier is further

increased to explore nature’s higher scales, either at the LHC or eventually at another

hadron collider. This necessitates not only general but also fast event generators even

for high multiplicities. Furthermore, recent progress on automated one-loop calcula-

tions using unitarity relies on tree-level amplitudes, not for the real emission of addi-

tional particles, but in order to compute the cut-constructable part of the one-loop

amplitude as product of several tree-level amplitudes evaluated with partly complex

momenta [EGK08]. Since e.g. for the computation of a six gluon one-loop amplitude

the results of three, four, five and six gluon tree-level amplitudes are needed, a re-

cursive computation, which reuses as much information as possible, should be most

suitable.

In order to unleash the potential of O’Mega to its full extend, we address in this

thesis the problems stated above. In Chapter 2, we show how to completely circum-

vent the tedious compilation of the matrix element by using a Virtual Machine (VM)

without sacrificing speed compared to the compiled code. In fact, the VM can be

even faster than the traditional approach due its improved memory layout. On the

side of the phase space generation, we review the Sarge [HK00b] algorithm in Chap-

ter 3, which allows to sample the phase space without further knowledge about the

integrand. The generated phase space is not flat, like Rambo creates it, but has a

density with the leading soft and collinear divergencies of QCD already implemented.

Furthermore, we explore how a MC sampling of the discrete variables allows to speed

up the calculation while maintaining the possibility to generate unweighted events

with certain quantum numbers. Chapter 4 deals with helicities and the various possi-

ble choices to sample over this discrete space, whereby the samplings can be discrete

or continuous. Furthermore, we gain some insight by using spin density matrices

and are able to continuously vary between positive and negative helicity. Finally

Chapter 5 concludes this work with some outlook to the possible extensions to the

algorithms presented here.
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1. INTRODUCTION

1.1. Conventions and Notation

We use natural units where ~ = c = 1. The metric corresponding to flat space time

with the one true signature is gµν = diag(+1,−1,−1,−1) such that pµ = (E(p),p),

p2 = m2 and E(p) =
√
m2 + p2. Three-vector valued objects are either notated

bold-faced, like a, or indexed by Latin indices, ai. The indices of four vectors in

Minkowskian space time are denoted by Greek indices or simply omitted, pµ → p. The

indices of a four vector go from 0 to 3 with the time as first component and the space

components ordered as (ax, ay, az). This especially implies that four vectors with

negative norm are called space-like, zero norm light-like and positive norm time-like.

Pure Lorentz boosts without rotations are only a part of the proper, orthochronous

Lorentz transformations and represented by L(p) with the convention that L(p) brings

the rest vector k to p

p = L(p)k ≡ L(p)(mp,0)⇔ L−1(p)p = (mp,0) . (1.1.1)

The subgroup is completed by including rotations, which will be denoted as R,

whereby Rp is the rotation that rotates the spatial part of p to the z axis

Rpp = (E(p), 0, 0, |p|) . (1.1.2)

The Feynman slash is defined by /p = pµγ
µ, whereby here and everywhere else a

sum over repeated indices is implied. This will, however, be made explicit where it

improves clarity.
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2. O’Mega Virtual Machine

A popular approach to compute cross sections is to derive the analytic expression

itself in a higher level, often functional, programming language like Mathematica,

OCaml or Python while the numerical evaluation is performed in high performance

languages like Fortran or C. Examples for this are FormCalc, MadGraph or O’Mega

[HP99; AHM11; MOR01]. Traditionally, the intermediate format is native source code

which is compiled to obtain a fast program for the computation of a certain process.

We show that the tedious compile step in between can be completely circumvented

by using a VM without sacrificing speed compared to the compiled code.

A software VM, not to be confused with the various hardware solutions, is usually

an interpreter that translates bytecode into instructions which act on its memory. In

the calculation of a cross section, the number of distinct operations, which have to

be performed, is related to the Feynman rules and therefore quite limited. Hence,

it is a natural option to translate this typical calculation of high energy physics

into an intermediate bytecode (HepBC) being later on executed by a VM. The

fact that such a bytecode is portable and platform independent is a positive surplus

when calculations are performed on clusters. The user is hereby freed from the time

consuming necessity to compile each process, which is handy to check a lot of small

processes. For a large number of external legs, n > 8, the attempt to compile may

even fail since the compiler is unable to cope with gigabytes of native source code.

We have implemented the interpreter O’Mega Virtual Machine (OVM) in Fortran

allowing to use the Omega95 library for the construction, fusion and propagation of

wave functions. Furthermore, Fortran has proven over decades to provide very fast

code for number crunching tasks like the one we are facing. The production of the

HepBC on the other hand is performed by O’Mega, which is written in the strongly

typed, functional and object-oriented language OCaml. O’Mega is designed in a

modular and abstract way which made it relatively straightforward to translate the

native code output into HepBC. Hereby, everything is encoded in integers, which

can be handled very efficiently by Fortran. In fact, the method of mapping distinct

objects to integers, i.e. indices, is an easier and more natural output in OCaml than

the cumbersome string handling that is necessary to obtain valid, compiling Fortran

code.

The introduction of the HepBC format is a new level of abstraction that opens
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2. O’MEGA VIRTUAL MACHINE

different possibilities. The interpretation and/or production of bytecode is of course

not limited to the implementations used in this context. The HepBC format could

be used and extended to other event generators since calculations in terms of a VM

are highly efficient, cf. Section 2.7, and offer very good parallelization potential, as

demonstrated in Section 2.5. Hereby, the necessary synchronization points between

threads in a calculation are represented in a clear and abstract way, independent

of the implementation. Before we go into more detail, we will recap very briefly

the Lagrangian that will be used to obtain scattering matrix elements in Section 2.1

and how the calculation with off-shell wave functions is performed in Section 2.2.

Section 2.3 outlines the definition of the bytecode and how it is produced in O’Mega

whereas Section 2.4 documents the implementation of the OVM in Fortran. Finally,

we discuss the parallelization in Section 2.5, the possible gains in using auxiliary

fields in Section 2.6 and the overall performance compared to the old Fortran code

in Section 2.7.

2.1. Quantum Chromo Dynamics

The theoretical sand box for this thesis will be QCD. This allows to realize a faster

proof of principle for the VM due to the small particle content and simple gauge

structure and yields at the same time the bottleneck, with respect to computing time,

background processes involved in jet production at the LHC. QCD is a SU(N) gauge

theory with N = 3. The Lagrangian is a sum of terms

LQCD = LDirac + Lkin + Lgaugefix . (2.1.1)

LDirac is nothing but the ordinary Dirac Lagrangian for spin 1/2 particles, which can

be written with four spinors ψ as [BDJ01]

LDirac = ψ̄
(
i /D −m

)
ψ , (2.1.2)

where we have omitted the color indices ψa that correspond to the representation of

the matter fields, which is the fundamental and antifundamental representation of

the Lie group SU(3) for quarks and antiquarks, respectively, as well as the sum over

flavors. The covariant derivative, which transforms as an adjoint and thereby renders

Eq. (2.1.2) gauge invariant under local transformations, is given by Dµ = ∂µ + igsAµ

and can be decomposed in a basis of generators of the group Aµ =
∑N2−1
C=1 ACµ T

C .

An irreducible representation is given by the Gell-Mann-matrices λA via TA = 1
2λ

A.
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2.1. QUANTUM CHROMO DYNAMICS

Furthermore, the kinetic part of the non-abelian gauge fields reads

Lkin = −1

2
Tr [FµνFµν ] with the stress tensor

Fµν = − i

gs
[Dµ, Dν ] = ∂µAν − ∂νAµ + igs [Aµ, Aν ] , (2.1.3)

whereby the commutator seperates Quantum Electrodynamics (QED) from QCD

as it vanishes in the former and gives iAaµA
b
νf

abcT c in the latter, where fabc are the

structure constants of SU(3), which leads to three and four vertices between gauge

fields and in the end to asymptotic freedom [ESW96]. The gauge fixing part

Lgaugefix = − 1

2ξ
(∂µAµ)2 + Lghost (2.1.4)

explicitly breaks gauge invariance and choses a certain gauge. This is necessary in

order to obtain a propagator in pertubative calculations, while physical results like

cross sections will not depend on ξ. ξ = 1 is usually called Feynman or ’t Hooft

gauge and results in a very simple propagator and polarization sum. For our tree-

level computations, we may usually use the unitary gauge with ξ →∞ and also savely

neglect the Faddev-Popov term Lghost.

For small diagrammatic calculations it is sufficient to know some color algebra factors,

like Tr
[
T aT b

]
, which factorize with the remaining matrix element. This is however

not so easily implemented if the calculation is performed recursively with one Par-

ticle Off-Shell Wave Functions (1POWs) as reviewed in Section 2.2. Furthermore,

common parton-showers expect information about the color flow of an event, in order

to properly model the hadronization. In O’Mega the color flow basis is therefore

implemented. The name stems from the fact that common interaction vertices reduce

to weighted sums of Kronecker-δs that connect the colors [Kil+12]. The key idea is to

use a U(N)× U(1)′ ∼= SU(N)× U(1)× U(1)′ instead of an SU(N) and subtracting

the additional degrees of freedom with the help of color ghosts. More specifically, the

algebraic constraints that have to be fulfilled are

A† = A and Tr [A] = 0 . (2.1.5)

The first can be fulfilled by using one real degree for each ordered index combination

(i, j) of the N × N matrix Aij instead of two. The trace condition can be satisfied

by using a modified QCD theory with an additional singlet gluon A0 as well as a

phantom gluon field Ã with the wrong sign in the propagator, which thereby allows

to cancel the unphysical degree of freedom. Ã does not couple to gluon fields but

7



2. O’MEGA VIRTUAL MACHINE

to matter as a usual gluon with the strong coupling constant. Overall in the tree-

level application, we have to compute for each different color flow the corresponding

amplitude and perform a weighted sum with all interference terms

|M|2 =
F∑
n=1

cinjnMinM∗jn , (2.1.6)

wherebyMi is the matrix element for the ith color flow, F the number of color factors

and cij the color factors or weights that result from the color flow basis. Explicitly

it consists of the number of closed color lines L and external phantom particles E:

NL
C (−1/NC)E , whereby the weight of internal phantom propagators (−1/NC)I has

been absorbed in the phantom propagator itself [Kil+12]. Since not all matrix elements

can interfere with each other, F 6= O2 in general, where O is the number of color

flows. For fully gluonic processes, however, the full color matrix is filled with non-zero

entries.

2.2. Recursive Relations of Off-Shell Currents

Tree-level scattering amplitudes can be calculated in a variety of ways. The method

known from text books is of course with the aid of Feynman diagrams. However,

this approach possesses the unfavorable property that the computational complexity

grows roughly factorially of the number of external particles n. This can be avoided

by recursively using 1POWs [MOR01] leading to a mere exponential scaling since

these are related to the number of distinct momenta that can be formed with n

external particles: P (n) = 2n−1 − 1.

Given the general n-point Green’s function, we can truncate n − 1 external legs by

applying the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula [LSZ55] to

obtain a 1POW: W (x; p1 . . . pn−1). These objects can be constructed recursively

by dividing the set {pi}i=1,...n−1 into all possible partitions and summing up the

respective 1POWs, e.g. for cubic couplings

W (x; p1 . . . pn−1) =
∑

k+l=n−1

W (x; p1 . . . pk)W (x; p1 . . . pl) . (2.2.1)

Each application of the recursive relation Eq. (2.2.1) lowers the rank, i.e. the number

of summands in the momentum of the 1POW, until it terminates at the external

wave functions. In order to replace the sum over Feynman diagrams T by a sum over

8



2.3. BYTECODE PRODUCTION IN O’MEGA

1POWs, one has to take care to avoid double counting, which is done in O’Mega

via keystones K [MOR01]

T =

P (n)∑
k,l,m=1

K3
fkflfm

(pk, pl, pm)Wfk(pk)Wfl(pl)Wfm(pm) . (2.2.2)

We should mention that the crossing symmetry allows to compute

〈
f̄1,−p1; f̄2,−p2; f3, p3; f4, p4

∣∣T ∣∣0〉 instead of

〈f3, p3; f4, p4 |T |f1, p1; f2, p2〉 , (2.2.3)

whereby the former is more symmetric and resembles a rooted tree as know from

graph theory and computer science. Note finally that in the following, a fusion of

two or more wave functions always implies momentum conservation and may denote

either a combination to a 1POW, φ(p + q) = φ(p)φ(q), or a braket resulting in a

complex number, φ(−p− q) · φ(p)φ(q).

2.3. Bytecode Production in O’Mega

The bytecode has been designed such that it is in principle human readable if the

meanings of the numbers are known. Tab. 2.1 summarizes the basic instructions that

are needed. For the external particles, we have to distinguish between incoming and

outgoing particle u and ū, antiparticle v and v̄ as well as polarization vectors ε and

ε∗, yielding the set

X ∈
{
U, UBAR, V, VBAR, VECTOR, CONJ VECTOR

}
. (2.3.1)

Analogously, we have different propagators which depend on the Lorentz type and

gauge as implemented in O’Mega [Ohl+12]

Y ∈
{
PSI, PSIBAR, UNITARITY, FEYNMAN, COL FEYNMAN

}
. (2.3.2)

The fusions should be read as lhs_rhs meaning that the lhs is constructed out

of rhs objects or lhs is combined with rhs to a complex number which gives the

possibilities

Z ∈
{
VEC PSIBAR PSI, PSI VEC PSI, PSIBAR PSIBAR VEC,

VEC VEC VEC, VEC 3VEC
}
.

9



2. O’MEGA VIRTUAL MACHINE

Table 2.1. HepBC cheat sheet. Each instruction line consists of eight variables having
a different meaning depending on the first control code. In general, the objects on the
left hand side (lhs) are constructed from the right hand side (rhs). The possible values
for X, Y and Z can be seen in Eqs. (2.3.1) to (2.3.3). The value for width indicates
which type of width is used while its value and the one of the mass is inferred from
the PDG code. outer ind denotes spin and momentum index of the wave function.
sym is computed from the number of identical particles involved.

code coupl coeff lhs rhs1 rhs2 rhs3 rhs4

ADD MOMENTA 0 0 p lhs p rhs1 p rhs2 p rhs3 0
LOAD X PDG 0 wf outer ind 0 0 amp
PROPAGATE Y PDG width wf p 0 0 amp
FUSE Z coupl coeff lhs rhs1 rhs2 rhs3 rhs4

CALC BRAKET sign 0 amp sym 0 0 0

The above sets together with Tab. 2.1 define the language of the VM for QCD. Note

that it only has to be extended to all Lorentz types in order to support arbitrary

models. This very limited set of instructions as well as the objects in a calculation

can each be identified unambiguously with an integer. The explicit values for the

control codes of Tab. 2.1 can be found in the source code of the OVM [Cho13]. The

construction of momenta with up to three summands is to some extent arbitrary

but seems to be a sweet spot between caching intermediate results and minimizing

lines of bytecode, thereby decode calls and memory. In any way it is not worth to

heavily optimize the number of summands since the addition of momenta takes only

a small amount of time compared to the whole amplitude. Due to the color flow

formalism, we have a number of amplitudes, numbered by amp, which contribute to

the full matrix element. The information about the corresponding amp in LOAD X

and PROPAGATE Y is only useful for color MC and was not available in the native

Fortran code.

The complete HepBC consists of a header, tables and a body with instructions. The

header consists of the version of the VM and model library to be used as well as the

numbers of objects that have to be allocated like momenta and wave functions. If

these numbers are zero, an exception mechanism is provided to directly return zero as

amplitude. This is motivated by the fact that if a user tries to compute a wide range

of processes out of which some e.g. violate charge conservation, he should receive the

appropriate, valid value zero as cross section and not be confronted with confusing

segmentation faults. The appropriate model library has to specify mass, width and

coupl arrays, which hold the numeric values for the different types of particles and

interactions. While for particles the Particle Data Group (PDG) [Ber+12] particle

codes can be used to identify the array entries, for the couplings an arbitrary but fixed
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2.3. BYTECODE PRODUCTION IN O’MEGA

ordering has to be used. The header is followed by various tables: helicity, flavor, color

flows, color ghosts, color factors and whether a flavor color combination is allowed.

Color ghosts could be identified in QCD by the fact that they don’t connect to a color

flow since everything is charged under SU(3). In more general models, containing

colorless objects, like the SM, it is however important to distinguish between colorless

objects and color ghosts.

The VM is now provided with all exterior information and the actual process in terms

of instruction lines can follow. As discussed in more detail in Section 2.5, we can

divide the computation into different levels, whereby in each level all computations

may be executed in parallel. Such levels are separated by lines of zeros, whereby the

first set of levels consists of summation of momenta and construction of external wave

functions. Since we reuse momenta, as each momentum has at most three summands,

the summation may consist of several levels if more than six external particles are

involved. The following levels are defined by the number of external particle momenta

in the propagator as shown in Fig. 2.2. Note, that for the calculation of a 1POW all

contributing wave functions of the preceding level have to be fused and added before

the wave function can propagate. To ensure this hierarchy also in a parallelized

execution of the bytecode, the fusions are marked as sub instructions via a negative

sign of the control code. This organisation also allows fusions to span over two or more

lines which might be necessary for effective, higher dimensional operators with more

than four wave functions on a vertex. Such parametrizations are useful to describe

BSM physics effects in a model-independent way, see e.g. Ref. [BW86; BO12]. At

the highest level of computation, the product of the remaining 1POWs is performed

yielding the color dressed amplitudes: Mi where i ∈ Ncflow. For the full amplitude,

a color sum over all color flows has to be carried out, taking into account the color

factors given in the tables.

To export from O’Mega to HepBC, we have added an additional module to targets.

Given amplitudes from the module fusion, sets of distinct wave functions and mo-

menta are constructed. With such a set, it is easy to create a mapping from the

abstract objects to integers from 1 to n, whereby n is the cardinality of the set, by

simply folding through all objects while adding the object to a map and raising the

key. These maps are then used throughout the remaining output as lookup dictio-

nary to print the correct integers in the bytecode. A minor idiosyncrasy of wave

functions is that they do not have one type in Omega95. Instead, there are spinor,

conjspinor and vector wave functions in QCD as well as the other possible fields

for other models. To assign the wave functions in their corresponding arrays, we sort

them via pattern matching by their Lorentz ordering to obtain an array index. On

11
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the side of the VM, the type can be deduced from the control code and only the

index is needed. Further details can be found in the documented full module having

around 1000 lines of code. Until it is part of O’Mega, it will also be accessible over

Ref. [Cho13].

2.4. Fortran Interpreter OVM

ovm

ovm

ovm_load

starts 

ovm_execute

sends phasespace & VMreturns VM

bytecode

is read

amp2

O'Mega.targets

produces

CLI

Figure 2.1. Schematic of the OVM from the command line interface to the out-
put of the amplitude squared. While ovm_load is only called once for each process,
ovm_execute is executed in each phase space point.

The layout of the interpreter is indicated in Fig. 2.1. The two main modules of the

interpreter are ovm_load and ovm_execute. ovm_load is an encapsulation of the

integer constants, the data type of a VM and run mode, public tables as well as one

public method start_VM. The integer constants encode the different operations that

can be performed, as documented in Tab. 2.1, number of integers per instruction line

and header as well as codes for different modes in helicity, color and flavor MC and

integrators. The data type vm consists of arrays for momenta, spin or θ phases1,

color, wave functions and amplitudes for different color flows. The ovm_mode allows

to steer the way the OVM behaves. It includes a boolean for verbosity, the number

of threads, used MC mode, bytecode filename, the kind of desired output as well as

the file handle for this output.

By calling start_VM(mode, ovm), the HepBC file is opened and with the aid of the

header, the arrays of the vm are allocated. Furthermore, the whole file is scanned and,

1See Chapter 4 for details.
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to avoid speed losses, all instructions are saved to memory as intblock. The number

of OpenMP threads are set once to the user defined value or estimated from the average

number of instructions per level whereby the usage of one thread deactivates OpenMP

completely. An adaptive change of the number of threads for each level has shown

to be unfavorable due to the additional library calls. Finally, some sanity checks

are performed to ensure that the bytecode has been loaded completely to memory.

This is however not fail-safe and especially the deletion of lines in the middle of the

calculation would produce no error but wrong results. A possible solution to this

would be the use of checksums, like MD5, which are written in the head of the file.

ovm_execute contains the subroutines that are executed in each phase space point.

calculate_amplitudes is public and expects the outer quantum numbers, i.e. mo-

menta, helicities, colors and flavors, which are mapped to the results in the amp array.

For this the external momenta of the vm are set, whereby the incoming obtain a minus

sign due to crossing symmetry. Then, all wave functions and amplitudes are assigned

to zero to allow a purely additive behaviour for the OVM. The intblock can now be

translated into instructions by calling decode for each line. This subroutine can be

seen as the main part of the OVM: Given a line of bytecode, it performs an opera-

tion: addition of momenta, loading external particles, propagation or scalar products

of wave functions, i.e. brakets. In the latter two cases all following sub instructions,

namely the associated fusions that are indicated by a negative control integer, are

calculated first. These sub instructions are skipped over by the main decode func-

tion. Furthermore, ovm_execute contains the public methods tr_col_hel_flv and

tr_col to trace out, i.e. sum over, the respective quantum numbers dependent on

the selected MC mode.

Further modules are:

� The model library ovm_parameters, which can be produced automatically by

O’Mega.

� The momentum phase space generator ovm_phasespace including massive and

massless versions of Rambo, the massless generator Sarge, cf. Chapter 3, the

cut-off on the invariant masses between all particles, setting of the incoming

beams, Mandelstam variables and boosts.

� The wrapper module ovm_spin with various functions to generate and boost

density matrices, as explained in Chapter 4, as well as generators for other

phases in context of helicity.

13
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With these extensions, the OVM source code has roughly 3000 lines of code and can

be accessed over Ref. [Cho13].

2.5. Parallelization

1 2 3 4 5 6 7 8 9 10

1 2 5 6 7 8 9 10

5 6 7 81 2 3 4

1 2 3

Figure 2.2. The classification of levels by the number of summands in the momenta
yields an unambiguous organization of the calculation whereby each level can be
calculated in parallel. Keep in mind, that this illustration is only one of thousands of
possible partitions, whereby each 1POW is heavily reused.

The parallelization potential of a non-redundant, recursive algorithm is of course

limited. One can only safely parallelize computations that do not depend on each

other if one does not want to worry about memory coherence. However, the recursive

structure of the algorithm naturally introduces levels of computation in which all

instructions commute and therefore may also be executed in parallel. The level is

given by the number of summands in the associated momentum of the wave function,

which is depicted in Fig. 2.2. Note, that the parallelization of the native Fortran

code has not been too successful. The OVM on the other hand has been designed

with parallelization in mind, which is why the implementation could be realized by

one single OpenMP directive:

!$omp parallel do

do i = levels(j) + 1, levels(j + 1)

call decode(intblock(:,i), i, mode , ovm , mts)

end do

!$omp end parallel do

Hereby, levels(j) are the indices in the vector of instructions, intblock, at which

the level changes, j∈ 1, . . . Nlevels and parallel do distributes the do loop to multiple

threads. Furthermore, a static schedule is chosen, meaning that every thread gets

the same number of instructions and no further communication is needed [Her02]. This
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type of distribution introduces only small idle times, at the implied synchronization

point after the parallel block, if each instruction takes roughly the same amount

of computation time, which is a reasonable assumption in our case. In Fig. 2.3, it is

shown that this approach indeed scales quite well with the number of processors. As a

comparison, Amdahl’s law [Amd67] is shown, which simply divides an algorithm into

parallelizable parts p and strictly serial parts 1− p. Therefore, the possible speedup

s for a computation with n processors is

s ≡ t(1)

t(n)
=

1

(1− p) + p
n

. (2.5.1)

This may also be called idealized Amdahl’s law since communication costs between

processors O (n) have been neglected in the denominator of Eq. (2.5.1). It is impor-

tant to keep in mind that even in the optimal case for n→∞, the maximal speedup

for an almost completely parallel program, e.g. p = 0.95, is only s = 20.0. To achieve

the rather high p values of Fig. 2.3, also the color sum has been parallelized.

1 2 3 4 5 6 7 8
Processors

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Sp
ee

du
p

p=75.0
p=85.0
p=95.0
qg → qq′q̄′ggg
gg → ggggg
qq̄ → q′q̄′gggg
qq̄ → q′q̄′q′q̄′ggg

Figure 2.3. The speedup of multiple cores compared to single core execution. For the
single core, the OpenMP calls have been deactivated. Additionally, the scaling according
to Amdahl’s law, Eq. (2.5.1), is shown for different fractions of parallelizable parts p
of an algorithm. Depending on the process, this fraction lies for the OVM between
80 % and 95 %.

Speaking of parallelization of the calculation of a process, we should clarify whether

shared or distributed memory is used. To get an idea if distributed memory is a

viable option, let us consider a typical operation that is performed by the OVM:
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2. O’MEGA VIRTUAL MACHINE

pure function f_fv (gv , psibar , v) result (psibarv)

which performs the fusion of a conjspinor and a vector to a conjspinor. This

operations needs (1 + 4 + 4) complex numbers, which corresponds in standard double

precision to 144 B, as input and produces 4 complex numbers (64 B) output. To

calculate this function, 90 floating point operations are necessary [Ohl+12], if complex

addition is counted twice and multiplication sixfold. Considering current commodity

hardware, like a Core-i7(3rd gen) with ∼ 100 GFLOPS, ∼ 231 GB
s average transfer

rates are needed to use the full CPU performance. Such high rates are not reachable

with current DDR3-RAM (up to ∼ 34 GB
s ) and probably not even with upcoming DDR4.

Distributed memory over networks are usually at least a magnitude slower than local

RAM which would result in bad performance.

The above Fermi like calculation makes two things clear. First, fast memory access

is crucial for these type of calculations and locality of reference can be the deciding

point for the overall performance of the algorithm. How the OVM improves on

this criterion will be discussed in Section 2.7. Second, trying to compute a single

phase point via distributed memory is not feasible. Distributed memory may however

still be used for the full phase space integration. We might finally note that GPU

programming is gaining more and more attention in the scientific community due to

TFLOPS of computation power and support of double precision. The formulation of

the calculation in terms of a VM can be seen as a first step in this direction. A possible

implementation would once transfer the intblock as well as the decoder to the GPU.

Then each phase point can be computed by sending the corresponding outer quantum

numbers and receiving the amplitude. This minimizes the massive communication

costs between GPU and main memory compared to attempts where only parts of

the amplitude are computed on the GPU and other parts are sent from memory.

Possible obstacles are the lacking support of Fortran libraries in OpenCL or CUDA

and cumbersome memory management. A promising candidate for a straightforward

implementation might be an open source compiler of OpenACC, which aims to simplify

GPU programming in a similar style as OpenMP succeeded for parallel programming

with CPUs.

2.6. Possible Gains in Using Auxiliary Fields

We digress in this section somewhat from the main topic of this chapter, to discuss a

topic that is also related to the speed of the computation. Four vertices like the one in
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QCD can be reduced to three vertices by introducing auxiliary fields [DKP02]. This

method had shown heuristically good results, i.e. a slower growth in computational

complexity with the number of external legs n, though a full understanding was lack-

ing. In Ref. [GH08] a combinatoric argument has been given which suggests that it is

possible to reduce the number of vertices if the computation is performed recursively.

The number of vertices or nodes is a reasonable measure for the computation time

since the rest of the computation, propagator structure, external wavefunction, etc.,

remains untouched by the reduction method. We want to formalize the argument of

Ref. [GH08] by making an important subtlety, which has been completely neglected,

explicit and prove an upper bound for the number of legs n0 of an n-point current, at

which the theory with three vertices and an additional auxiliary field has less nodes

than in the one with one particle type and four vertices. We emphasize that these re-

sults only apply to the recursive computation and give no information about possible

gains or losses when applying this reduction in a diagrammatic computation.

Let W (Π) be a 1POW or current with n external legs, i.e. the cardinality of the set

Π = {pi} is |Π| = n. For the sake of the argument, we pretend that we have a theory

with mere N + 1 vertices and one particle type. As mentioned earlier, the 1POW

is recursively constructed. On the lowest level, the number of possible 1POW which

can be formed with (N + 1)−vertices is

Nnum =

(
n

N

)
. (2.6.1)

On the top level, there is only one 1POW formed, Nnum = 1, but there are multiple

ways to partition the set Π. The second Stirling number S(n, k) gives the number of

possible ways to partition a set with n elements into k non-empty, mutually disjoint,

unordered subsets2. Also the number of distinct momenta, which can be formed, is

in fact a Stirling number: S(n, 2) = 2n−1 − 1. So, näıvely we have

S(n, k) ≡
{
n

k

}
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

W (Π)

k

. . . . . .︸ ︷︷ ︸
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.6.2)

2In analogy to from n chose k, one might say divide n in k.
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We notice however that S(n, k) also counts subsets which are incommensurable to

N + 1 vertices. This is due to the fact that all trees in W (Π) emerge from insertions

of N + 1 vertices. E.g. the subset {p1, p2} cannot form a current if there are only

four vertices. Let Nnot(n, k) be the number of partitions where a subset exists with

cardinality c 6= 1+i(k−1), i ∈ N0. This number vanishes obviously for three vertices,

Nnot(n, 2) = 0 since all combinations are possible, and also if n ≤ k. The total number

of nodes in W (Π) is therefore the sum over all possible currents

Ṽ (n,N) =
n∑

m=N

(
n

m

)({
m

N

}
−Nnot(m,N)

)
. (2.6.3)

The concrete expression of Nnot(m,N) as analytic formula is rather involved. Though

it is possible to obtain the number of partitions where subsets of size c are forbidden

via generating functions, hereby we would have to forbid all c /∈ 1 + i(N − 1) since

a simple sum over configurations in which each a certain c is forbidden introduces

a double counting problem. The derivation with multiple c’s forbidden on the other

hand becomes pretty cumbersome. Hence, we simply resort to the built-in counting

abilities of O’Mega to overcome this combinatorial obstacle. Furthermore, we can

use Eq. (2.6.3) for all theories where φ3 is included since Nnot(n, 2) = 0. So if we seek

the number of vertices of a n point current in a theory with couplings of degree up

to d+ 1, we obtain

V (n, d) =
d∑

N=2

n∑
m=N

(
n

m

){
m

N

}

=
d∑

N=2

{
n+ 1

N + 1

}
, (2.6.4)

where a simple relation of Stirling numbers has been used. The validity of Eq. (2.6.4)

as an exact result, has been cross checked with the counts from O’Mega. The

concrete relation is that the number of fusions in an n+1 amplitude, without counting

the sum over brakets, is equal to V (n, d).

Let us now focus on the case of interest, N = 3. We introduce an auxiliary field

without self interactions, couplings to the vanilla field and a propagator structure

such that the four vertices are reproduced, whereby the original theory emerges by
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integrating out the auxiliary field

= + + . (2.6.5)

The question is how Eq. (2.6.3) changes under this transformation. The counting
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Figure 2.4. Number of vertices in different theories. The full and dotted lines for full
φ3 +φ4 and φ3 have been obtained from Eq. (2.6.4) and cross checked with O’Mega.
Dash-dotted and dashed lines for φ3red with the structure of Eq. (2.6.5) and φ4 are
counts from O’Mega. Due to the slope, pure φ4 has more vertices than φ3 for
n ≥ n0 = 11. φ3red has a slightly earlier break-even point n0 = 10.

becomes now even more complicated due to the alternating structure of fields and

auxiliary fields and the enumeration of partitions which don’t fit the vertex structure

in Eq. (2.6.5). It is though however to give an upper bound for the number of vertices

by simply taking V (n, 2), i.e. by completely neglecting this structure. The intuitive

answer why there should be a gain at all in Eq. (2.6.5), is given by the possibility to

reuse auxiliary fields between diagrams

+ = + + . . . .(2.6.6)
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The results for a range of n-point currents are shown in Fig. 2.4. We can see

that the upper bound V (n, 2) is actually quite close to the exact number of counts

with auxiliary fields. It is herewith evident that the reduction of four vertices with

auxiliary fields leads to a slower growth in computational complexity. However, this

reduces, due to the intercept, only for n ≥ n0 = 10 the number of vertices. Since

the computation time for the three vertices are not the same as for the four vertices,

this does not necessarily mean that auxiliary fields are only useful when 11 or more

external particles are involved. It is furthermore clear that the impact of using aux-

iliary fields or not is greatly reduced for arbitrary models, since three vertices remain

untouched.

2.7. Performance
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Figure 2.5. The execution time per phase space point tpsp of the OVM with one and
four cores as well as the native Fortran code, normalized for each process to the
native Fortran code. The additional overhead associated with the creation of a VM,
i.e. reading the process from disc, allocation of memory and saving tables to memory,
induces slightly slower execution times for the 2 → 2 process. However, already for
three particles in the final state, the improved memory layout can compensate this
and for five particles the OVM is more than a factor of two faster. This benchmark
has been performed with mere calls to calculate the full amplitude while no color sum
is performed in each phase space point.
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To summarize this chapter, we will now report on the performance of the OVM.

We note that the HepBC is about one order of magnitude smaller than the Fortran

output. For convenience, some values together with their old compile times are shown

in Tab. 2.2. The bytecode size has been furthermore roughly halfed in a later version,

by using the symmetry of the color factor table, but this could have been also achieved

with the Fortran output and is not shown here. Furthermore, the required RAM

and time to produce the output with O’Mega has improved, quite considerably for

many color flows, e.g. for gg → 6g from 2.17 GB to 1.34 GB and from 11 min 52 s to

3 min 35 s, while staying roughly the same for small processes.

In the native Fortran code, wave functions are identified uniquely by a string that

is related to the color flow plus additional characters. The size of these is generally

larger than the mere indices that are used in the OVM, explaining partially the

reduced size of the HepBC compared with the native source code. The crucial part

is that these individual variables are not as aligned in memory as the arrays of wave

functions which are used in the OVM. This can significantly change the locality of

reference and explain the speed up seen in Fig. 2.5. This speed up is particularly

stunning since it shows that a high-performance VM can outperform a compiled

code which has been optimized for years. Another possibility apart from the memory

layout would be that the Fortran compiler leads to inefficient code compared with

the line by line decoding in terms of a VM. There is though no clear evidence for

this.

Table 2.2. The compilation times measured on a laptop with i7-2720QM,
6 GB PC3-10600 DDR3-RAM and a Samsung 840 SSD. The 2g → 6g process fails
to compile due to lacking memory.

process BC size Fortran size tcompile

gg → gggggg 428 MB 4.0 GB -
gg → ggggg 9.4 MB 85 MB 483(18) s
gg → qq̄q′q̄′q′′q̄′′g 3.2 MB 27 MB 166(15) s
e+e− → e+e−e+e−e+e−e+e−e+e− 0.7 MB 1.9 MB 32.46(13) s
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An efficient way to calculate matrix elements is a necessary but not sufficient condition

for the computation of physical cross sections. A proper control of the phase space is

of crucial importance for the calculation of multi-jet events. Apart from the growing

complexity and dimensionality of the phase space with the number of external legs

N = n + 2, there is also the complexity growth in the discrete variables that is at

most Nhel ·Nflv ·Ncflows

Nhel = 2N Nflv = 3N Ncflows = (N − 1)! . (3.0.1)

Hereby, Nhel will be modified in theories with massive vector bosons, Nflv are the

number of combinations of q, q̄ and g without respecting charge conservation and

vertex structure but assuming flavor symmetry, i.e. all flavors have the same mass,

and Ncflows only has all permutations for pure gluon amplitudes. These discrete

aspects will be partly handled in the following while the focus of this chapter is the

mere momentum phase space or just phase space.

We use noweb [Ram94] as literate programming tool to implement Sarge from scratch

and have a direct connection between source code and theory. Note that chunks of

source code in noweb are designated by 〈chunk〉, can be concatenated via + and used

within other chunks. Although implementations in FORTRAN77 and C exist [HP02;

Gle+09], a clear and concise minimal version of Sarge, which uses the benefits of

Fortran95, seems to be missing. Some chunks like declarations of variables are not

shown as they should be clear from the context. Section 3.1 and Section 3.2 set

the stage with the necessary basics and notation for this chapter. Since the phase

space integration will be performed as MC integration, we recall some general MC

techniques in Section 3.3 and introduce the notion of the Unitary Algorithm Formal-

ism (UAF), which is quite useful for the determination of the weight associated with

a sampling in Section 3.4. To point out the large similarities between Rambo and

Sarge, Rambo will be briefly reviewed in Section 3.5. Furthermore, this allows to

reuse some of the Rambo code in the formulation of Sarge in Section 3.6. In Sec-

tion 3.7, we discuss the performance of the basic version of Sarge and the generated

phase space density. Finally, we extend the basic version of Sarge by reducing the

number of rejected points and including incoming momenta in the generation of the

phase space density in Section 3.8.
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3.1. BEAMS AND CUTS

3.1. Beams and Cuts

We set up our coordinate system such that the initial beams lie on the z-axis, i.e.

pµ1,2 =
(
E1,2(p), 0, 0, ±p

)
with E1,2(p) =

√
m2

1,2 + p2 (3.1.1)

and hence

√
s ≡

√
(p1 + p2)2 = E1 + E2 . (3.1.2)

To obtain non-divergent results that describe the physics we are interested in, i.e. the

hard matrix-element of jet production, we have to introduce a cut-off in phase space.

The most simple way to achieve this is via

s0 ≤
∣∣∣(pi + pj)

2
∣∣∣ ∀ i 6= j , (3.1.3)

where i, j go over all external, incoming and outgoing, particles and s0 is some fixed

constant. Incomings should be crossed, pi = −pi for i = 1, 2, since only those are

relevant in combination with outgoing momenta due to momentum conservation. This

condition on the invariant masses is sufficient to obtain an integrable cross section as

it removes all parts of the phase space in which divergencies can occur in tree-level

computations. These soft and collinear divergencies appear due to the propagator

structure that emerges by combining external wave functions i and j, i.e. for gluons

and fermions

1

(pi + pj)2 + iε
and

1

/pi + /pj −m+ iε
=

/pi + /pj −m
(pi + pj)2 −m+ iε

. (3.1.4)

Note, that these infrared divergencies can occur both for low energies and for collinear

momenta and that by restricting all external scalar products every propagator in the

matrix element is regularized. One should not worry that the physics in the cut phase

space regions are completely neglected. First of all, one has to keep in mind that the

QCD coupling becomes strong, O (1), in the infrared where Q . ΛQCD, due to the β

function of QCD and the renormalization group equation, meaning that perturbation

theory fails in that regime. These strong interactions lead to a hadronization of

quarks and gluons and to the observed final states in experiments. A reasonable

description of the physics in the soft-collinear regions can be obtained with parton

showers like Herwig [Bäh+08], Pythia [SMS08] or Sherpa [Gle+09]. These codes

use tuned MC algorithms to generate the full complex final states of jets of hadrons.
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By applying cuts to our computation, we therefore only delay the physics in these

phase space regions for a later treatment. Notably, even detectors cannot resolve the

finest collinear and infrared event structure, thereby giving even a physical cut-off.

In a massless theory, the squared sum of outgoing momenta equals

s =

(
n∑
i=1

pi

)2

= 2p1p2 + ...+ 2pn−1pn︸ ︷︷ ︸
n(n−1)

2
terms

. (3.1.5)

Hence, a convenient parametrization of s0 is given by

s0(τ) = τ s
2

n(n− 1)
, τ ∈ [0, 1] . (3.1.6)

This means that for τ = 0 no cut is applied, while for τ = 1 the cut-off is larger

than kinematically allowed and every set of momenta will be rejected. This can be

related to the more physically motivated cuts like minimal transverse momentum pT

and angle between partons θ0 via

pT ≤
√
p2
x + p2

y (3.1.7)

cos θ0 ≤
pi · pj
‖pi‖

∥∥∥pj∥∥∥ (3.1.8)

s0 = 2p2
T ·min

1− cos θ0,

1 +

√
1− p2

T

s

−1
 (3.1.9)

Since we need all scalar products for the weight of Sarge later on, we save them to

pdotp. (pi + pj)
2 = 2pipj only holds in the massless case. The cut refers to the lhs

but the rhs is less expensive which is why we use it if possible.

〈Implementation of ovm phasespace procedures〉≡
subroutine update_pdotp(p,massless)

〈Variables of update pdotp〉
〈Initialization of pdotp(N,N)〉
〈Update pdotp(N,N)〉

end subroutine update_pdotp

Now we can check if the momenta fulfill Eq. (3.1.3)

〈Implementation of ovm phasespace procedures〉+≡
function mom_is_allowed (s0) result (yorn)
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〈phase space cuts declarations〉
〈Compare pdotp with s0〉

end function mom_is_allowed

Cutting the phase space reduces its volume of course. In a MC sampling this can be

reflected by assigning to each rejected point a zero integrand. Herewith, one does not

need to multiply the result with the ratio of accessible to total phase space volume

in the end.

3.2. Notation and Conventions

A possible parametrization of a three vector with unit length is given in cylindrical

coordinates n̂(z, ϕ) with

n̂1(z, ϕ) =
√

1− z2 sinϕ , n̂2(z, ϕ) =
√

1− z2 cosϕ and n̂3(z, ϕ) = z . (3.2.1)

〈standard vector n(z,phi)〉≡
s = sqrt(one-z**2)

n(1) = s * sin(phi)

n(2) = s * cos(phi)

n(3) = z

The standard boost L(p) takes the rest frame momentum k = mpe0 to p. The function

std boost returns q′µ = Ls(p)µνq
ν where the integer s ∈ {+1,−1} allows to switch

between the boost and the inverse

〈Implementation of ovm phasespace procedures〉+≡
function std_boost (s, p, q) result (q_pr)

〈standard boost implementation〉
end function std_boost

The restriction for physical momenta is denoted by

ϑm(p) = δ
(
p2 −m2

)
θ(p0) with ϑ(p) = ϑ0(p) . (3.2.2)

The hard cross section may be defined as

dσ =
(2π)4−3n

4
√

(p1p2)2 −m2
1m

2
2

dVn(
√
s) |M|2 , (3.2.3)

which is a product of a flux factor, the differential phase space volume and the

squared matrix element, summed and averaged over unobserved quantum numbers.
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3. PHASE SPACE INTEGRATION

The factors of 2π imply that our states are normalized according to [BDJ01]

〈
p
∣∣ p′〉 = (2π)32E(p)δ

(
p− p′

)
and ū(p, s3)u(p, s′3) = 2mδs3,s′3 (3.2.4)

and are sometimes also absorbed in the Lorentz invariant phase space volume dLIPS =

(2π)4−3ndVn(
√
s). The denominator of the flux factor significantly simplifies for mass-

less momenta to 2s. The phase space volume ensures overall momentum conservation

as well as physical momenta, i.e. on the mass shell and with positive energies,

dVn
(√

s
)

= δ

(
p1 + p2 −

n∑
i=1

pi

)
n∏
i=1

(
d3pi

2E(p)

)
︸ ︷︷ ︸

= d4pi ϑm(pi)

≡
n∏
i=1

Θn(
√
s)d4pi , (3.2.5)

where the underbraced identity follows by integrating over dp0
i and using the prop-

erties of the Dirac delta distribution.

3.3. General Monte Carlo Techniques

A MC integration can be used to compute an integral

If =
1

Vol Ω

∫
Ω

dx f(x) ≡ 〈f〉 , (3.3.1)

where Ω is the integration region, the volume is Vol Ω =
(∫

Ω dx
)

and x a d dimensional

vector. By dividing by the volume, we directly recognize the integration as an average

of the function f . This deterministic averaging can be made stochastic by using

random numbers xi. The law of large numbers states that the estimated mean of these

random samplings f̄N converges to the real mean 〈f〉 for N → ∞. The associated

error is

δI =

√
Var f

N
, Var f =

〈
f2
〉
− 〈f〉2 ≡ σ2

f . (3.3.2)

The important point is that this error is independent of the integration dimension

opposed to the one of multiple quadrature rules that will grow with the number of

dimensions. The explicit estimators of mean and variance in terms of the sampled

points, including the recursive versions, can be found in Appendix A. Usually some

method is employed to minimize the variance in Eq. (3.3.2), also known as variance

reduction, to ensure faster convergence. The two main approaches are importance

sampling and stratified sampling. Importance sampling introduces a non-uniform
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3.4. UNITARY ALGORITHM FORMALISM

sampling with a weight function g(x), similar to f(x), such that

If =
1

Vol Ω

∫
Ω
g(x)dx

f(x)

g(x)
≡
〈
f

g

〉
g

(3.3.3)

where 〈 ◦ 〉g denotes a non-uniform sampling according to g(x). If f/g ≈ 1 the

variance of the integrand and therefore the error according to Eq. (3.3.2) will be way

smaller. As we will see below, to obtain a sampling with g = f , one needs to solve

the integration problem itself, wherefore an approximation with a weight function

which one can sample must suffice. The classical example is Vegas [Lep78] which

uses a piecewise constant weight function, whereby the bins are adapted such that

many steps occur in regions where f is large. Stratified sampling on the other hand

usually bisects the integration region along a chosen dimension and distributes the

points according to the estimated variance in the subregions. This method is basically

limited by the estimate of the variance. Using insufficient points in a region before

subdividing can lead to a true underestimate of the variance and sampling of the

function therein.

A suitable method to obtain an arbitrary probability density, which will be used on

some occasions throughout this work, is called inversion. To generate z ∈M, where

M is a d−manifold, with a probability density F , one needs a bijective function

φ : K →M. Then one can generate y ∈ K1 uniformly to obtain y 7→ φ(y) = z. This

generates a density for z according to the Jacobian
∣∣∣Jφ−1(z)

∣∣∣ =
∫
K dy δ (z − φ(y)),

which is easily proven with a variable substitution from y → φ−1(y). The mapping

has to be chosen such that F =
∣∣∣Jφ−1

∣∣∣, which is an integration and inversion problem

that represents often a non-trivial task, even in one dimension. An easy example is

the generation of a density F (z) = 1/z. By integration follows φ−1(z) = log z and

thusly the required mapping is φ(y) = exp y. The implicit constants are fixed by the

support of F . If z ∈ [z−1
0 , z0], then y ∈ [− log z0, log z0]. Now, it should also be clear

why one cannot use a weight function that is exactly the integrand without solving

the problem itself.

3.4. Unitary Algorithm Formalism

A useful tool to translate algorithms into probability distributions while keeping track

of the normalizations is the UAF, see for instance [Kle00]. The name stems from the

1Typically K = (0, 1)d since random numbers are most easily created on the unit hypercube.
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fact that drawing a random number x ∈ (0, 1) results in

1 =

∫ 1

0
dx . (3.4.1)

The identification of an integral as a mean that can be replaced by a statistical mean,

i.e. a MC sampling, has of course already been used in the last section. But here

we are only integrating a 1 and are interested in the density that is created when

we make assignments with a variable. In this way, we can compute the weight of an

algorithm by translating it to resolved Dirac delta distributions. E.g. if we are not

only generating a random number x, but also set y = − log {ax}, we have

1 =

∫ 1

0
dx

∫ ∞
−∞

dy δ
(
y + log {ax}

)
=

∫ ∞
−∞

dy θ
(
y + log {a}

) 1

a
e−y︸ ︷︷ ︸

P(y)

. (3.4.2)

Since an integral over a delta distribution always yields one, we are sure that the

whole expression is still unitary. As mundane as this may seem, we have hereby

obtained the density P(y), which is generated for y, with the correct normalization

and boundaries by simple Dirac distribution calculus. A more interesting example

might be the proof of the correctness of the rejection method as it involves more than

a single assignment. Say we want to generate y with a distribution proportional to an

arbitrary, non-negative g(y), with g(y) ≤ C, ∀y ∈ (0, 1). This means that we know

the desired distribution function but cannot integrate or invert it. The goal can still

be achieved by sampling points x1 uniformly in (0, 1) and accepting the result with

probability p = g(x1)/C and otherwise drawing again. Note that we have hereby

two random numbers involved x1 and x2, when we translate the recursive procedure

literally with the UAF to an integral

P(y) =

∫
dx1dx2

[
θ

(
x2 ≤

g(x1)

C

)
δ (y − x1) + θ

(
x2 >

g(x1)

C

)
P(y)

]
=

∫ g(y)/C

0
dx2

(
1
)

+ P(y)−
∫

dx1
g(x1)

C
P(y)

=
g(y)∫

dx1 g(x1)
. (3.4.3)

Note that we have hereby omitted the integral over y which is why we have on the

left hand side the generated density P(y) and not 1. We are thus not only generating

a distribution proportional to g(y) but also with the correct normalization such that∫
dy P(y) = 1. The full power of the formalism will become more evident in the

high-dimensional application in the next sections.
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3.5. RAMBO - RAndom Momenta Beautifully Organized

The Rambo algorithm allows to generate n massless momenta p with a provable flat

phase space density, i.e. with constant weight for each sampled point, whereby the

sum of the momenta is equal to P = (
√
s,0) ≡

√
s e0 [KSE86]. This means that

the phase space density is merely Θn(
√
s) and has no dependency of the generated

set {p}n. Events, which are generated this way, have the weight of the phase space

volume W0 = Vn(
√
s). The algorithm consists of the following steps

1. Generate massless vectors qj , i.e. q2
j = 0, with positive energy, which is drawn

from a probability density f(q0
j ), but without mutual constraints between dif-

ferent momenta. For this, we need an azimuthal angle phi and the z component

between [-1,1]

〈Generate massless vectors〉≡
do j = 1, size (p, dim = 2)

call tao_random_number(ran)

〈q(0,j) drawn from density〉
z = 2 * ran(3) - 1

phi = twopi * ran(4)

〈standard vector n(z,phi)〉
q(1:3,j) = q(0,j) * n

end do

As shown below, we have to draw q0
j from a density xf(x) = x exp(−x) for a

unit weight in the whole phase space, which is generated by the mapping

〈q(0,j) drawn from density〉≡
q(0,j) = - log(ran(1)*ran(2))

2. Determine the Lorentz boost and scaling x to bring q(n) =
∑
qj to

√
s e0

〈Determine Lorentz boost〉≡
qsum = sum (q, dim = 2)

m_q = dot (qsum, qsum)

〈Numerical checks〉
m_q = sqrt(m_q)

x = roots / m_q

3. Boost all qj with this Lorentz transformation and return them as p

〈Boost all〉≡
do j = 1, size(p, dim = 2)

r = dot (q(0:,j), qsum) / m_q
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zz = (q(0,j) + r) / (qsum(0) + m_q)

q(1:3,j) = x * (q(1:3,j) - qsum(1:3) * zz)

q(0,j) = x * r

end do

Putting the pieces together, we obtain

〈Implementation of ovm phasespace procedures〉+≡
subroutine massless_isotropic_decay(roots, p)

〈RAMBO declarations〉
〈Generate massless vectors〉
〈Determine Lorentz boost〉
〈Boost all〉
p = q

end subroutine massless_isotropic_decay

A useful quantity to understand the Rambo algorithm is

Rn ≡
∫ n∏

i=1

d4qi f(q0
i )ϑ(qi) =

∫
dRn . (3.5.1)

By performing the trivial integration over the solid angle and over the radius, which

is fixed by the delta distribution, we obtain

Rn =

(
2π

∫
dq0f(q0)q0

)n
(3.5.2)

which results for f(x) = e−x in Rn = (2π)n. This means, that if we sample random

massless momenta with energies that are distributed according to x · exp {−x}, the

probability to pick a certain set {q}n in a volume element (
∏

d4qi) is 1/(2π)n. By

formulating the whole algorithm with the UAF, we generate a density

Φ({p}n) =

∫
dRn

(2π)n
d4b δ4

(
b−

q(n)

mq(n)

)
dx δ

(
x−

√
s

mq(n)

)
n∏
i=1

δ4
(
pi − xL−1(b)qi

)
. (3.5.3)

Note that δ4
(
b − q(n)/mq(n)

)
= δ4

(
p(n) −

√
se0
)
s2 by using Lorentz invariance of the

four volume element, q(n) = (1/x)L(b)p(n), and mb = 1. On the other hand, we have

δ
(
x−
√
s/mq(n)

)
= δ

(
1−b2

)
(2/x) which follows from the scaling property of the delta

distribution and mb =
√
s/(x2m2

q(n)
) as well as the fact that b can only have positive

mass. Furthermore, the energy has to be positive since all summands are positive, i.e.

θ(b0). It is worth to explicitly multiply the density with this Heaviside distribution in
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3.6. SARGE - STAGGERED ANTENNA RADIATION GENERATOR

order to keep track of it, without changing the value of the integrand. Furthermore,

we can combine the final assignments with dRn to

d4qjδ
(
q2
j

)
δ4
(
pj − xL−1(b)qj

)
= d4qjδ

(
q2
j

) 1

x4
δ4
(
qj −

1

x
L(b)pj

)
=

1

x2
δ
(
p2
j

)
. (3.5.4)

Finally, we will use that
∏
i exp

{
−q0

i

}
= exp

{
−
√
s/xb0

}
. Plugging all this into

Eq. (3.5.3) gives

Φ({p}n) =

∫
d4bΘn(

√
s)

1

(2π)n
1

x2n+1
e−

b0
√
s

x dx︸ ︷︷ ︸
=(b0

√
s)−2nΓ[2n]

2s2 δ(b2 − 1)θ
(
b0
)

= Θn(
√
s)

2Γ[2n]

(2π)nsn−2

∫
db0dbr 4π(br)2δ

(
(b0)2 − (br)2 − 1

)
(b0)−2nθ

(
b0
)
.

(3.5.5)

A subtle but important point is that after integrating out br, the integration region

of b0 reduces from [0,∞) to [1,∞), which makes the integral convergent. With

∫ ∞
1

db0 (b0)−2n
√

(b0)2 − 1 =

√
π

4

Γ[n− 1]

Γ[n+ 1
2 ]

(3.5.6)

and some simplifications between the Gamma functions, we obtain the well known

result

Φ({p}n) = Θn(
√
s)

(
2

π

)n−1 Γ[n− 1]Γ[n]

sn−2
= Θn(

√
s)

1

Vn(
√
s)
. (3.5.7)

Hence, an integration over
∏

d4pi yields one, which verifies that Eq. (3.5.7) is indeed

a properly normalized probability density.

3.6. SARGE - Staggered Antenna Radiation GEnerator

The aim is to generate n momenta with the Antenna Pole Structure (APS)

1

(p1p2)(p2p3) · · · (pn−1pn)(pnp1)
(3.6.1)

and permutations thereof, which is known to be the dominant divergence structure

in QCD processes, like the one depicted in Fig. 3.1 due to the propagators of the

antennae. The explicit analytic formulae for n−gluon amplitudes, which are valid for
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certain helicity combinations and in leading color approximation, consist of a sum over

permutations of Eq. (3.6.1) times some scalar products of momenta in the numerator

[Kui91]. We will repeat and expand on some aspects of the explanation of Sarge

[HK00b] with an emphasis of the implementation in Fortran. While most notation

is in line with Ref. [HK00b], some has been aligned with this thesis or modified for

clarity.

Figure 3.1. APS of a QCD process. The possibly collinear propagators of the antennae
are denoted by thick lines and give the dominant divergencies of the matrix element.

3.6.1. Basic Antenna

At first, one has to know how to make a basic antenna which will be the building

block of the overall density. We start with two given, arbitrary massless momenta

p1 and p2 from which a third massless momentum k shall be radiated off. This is

motivated by the physical picture of two partons which like to radiate off a third

one with a similar momentum. To have the correct infrared and collinear behaviour

of the antenna structure, the distribution should be proportional to [(p1k)(kp2)]−1.

By demanding invariance under Lorentz transformations, the basic antenna structure

may be defined as

dA(p1, p2; k) = d4k ϑ(k)
1

π

(p1p2)

(p1k)(kp2)
g

(
(p1k)

(p1p2)

)
g

(
(kp2)

(p1p2)

)
(3.6.2)

where g(ξ) serves to regularize singularities as well as to ensure normalization over

the whole phase space of k. Therefore, it has to vanish sufficiently fast for both ξ → 0

as well as ξ → ∞. The simplest way to do so, is with a piecewise constant function

with one UV cut-off parameter ξm whose inverse is used for the infrared:

g(ξ) = N θ(ξm − ξ)θ(ξ − ξ−1
m ) . (3.6.3)
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The norm N as well as the necessity of p1p2 in the nominator of Eq. (3.6.2) will

quickly become obvious. To find out how to generate k, we evaluate
∫

dA by going in

the Center of Mass Frame (CMF) of p1 and p2 with L−1(p1 + p2). Then we have

p = L−1(p1 + p2)p1 , E =
√

(p1p2)/2 and q = L−1(p1 + p2)k . (3.6.4)

Evaluating the first part of Eq. (3.6.2) yields

d4kϑ(k) = dq0d3q δ
(
(q0)2 − q2

)
θ
(
q0
)

=
q0

2
dq0d cos θ dϕ (3.6.5)

Furthermore, we want to set our coordinate system such that cos θ = p·q/(|p| |q|) ≡ z
and n̂(z, ϕ) = Rp q|q| . Since

p1k = pq = Eq0(1− z) , kp2 = Eq0(1 + z) and p1p2 = 2E2 , (3.6.6)

we may write

ξ1,2 ≡
p1,2k

p1p2
=

q0

2E
(1∓ z)⇔

q
0 = E(ξ1 + ξ2)

z = ξ2−ξ1
ξ1+ξ2

. (3.6.7)

The change from the variables q0 and z to ξ1,2 leads to a Jacobian determinant of

p1p2/q
0, hence

(3.6.5) =
p1p2

2
dϕdξ1dξ2 and

dA(p1, p2; k) =
dϕ

2π

dξ1g(ξ1)

ξ1

dξ2g(ξ2)

ξ2
. (3.6.8)

This sets the normalization condition∫
dξ

1

ξ
g(ξ) = 1 , (3.6.9)

yielding N = (2 log ξm)−1 for Eq. (3.6.3). From Eq. (3.6.8) we can directly read off

how to generate the wanted density dA, i.e. draw φ uniformly in [0, 2π) and two ξ’s

from the density g(ξ)/ξ, which follows by integration and inversion, as explained in

Section 3.3, yielding:

θ(ξm − ξ)θ(ξ − ξ−1
m )

2 log ξm

1

ξ
=

∫ 1

0
dx δ

(
ξ − e− log ξm+2 log ξmx

)
. (3.6.10)
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The natural choice for ξm which covers the physical phase space, i.e. doesn’t cut more

than s0 and keeps the scalar product within the maximally kinematically allowed

value sm = s− s0

(
n(n−1)

2 − 1
)
, is

ξm ≡
sm
s0

=
s

s0
− (n+ 1)(n− 2)

2
. (3.6.11)

As mentioned earlier, Eq. (3.6.3) is just the simplest way to obtain reasonable ξ’s and

hence there is room for optimization to reduce the number of rejected points which

are generated by Sarge, which will be shown in Section 3.8. The basic antenna

algorithm can now be formulated as follows

� Given two legs {p1, p2} in a certain frame, set p = L−1(p1 + p2)p1 and E =√
p1p2/2 = p0. Note that this operation is in general not well defined. If p1

and p2 are collinear, mp1+p2 becomes zero and the boost returns unreasonable

energies. The resulting momentum from this should not bother us, however,

since this set will be rejected due to the cuts anyway.

〈Set p and E〉≡
pp = std_boost (-1, p(:,1) + p(:,2), p(:,1))

E = pp(0)

� Draw two scalar product quotients as random numbers ξ1 and ξ2 from g(ξ)/ξ

and the azimuthal angle ϕ of q uniformly in [0, 2π).

〈Draw xi and phi〉≡
call tao_random_number(ran)

xi = exp(-lxi + ran(1:2) * 2 * lxi)

phi = twopi * ran(3)

� Construct q in the CMF of p1 and p2 with z = (ξ2−ξ1)/(ξ1 +ξ2), absolute value

q0 = E(ξ1 + ξ2) and direction q = q0R−1
p n̂(z, φ). Boost back as k = L(p1 + p2)q

and return it.

〈Construct q and boost back as k〉≡
z = (xi(2) - xi(1)) / sum(xi)

〈standard vector n(z,phi)〉
pp(1:3) = pp(1:3) / sqrt(dot_product(pp(1:3),pp(1:3)))

call rotation(-1, pp(1:3), n, q(1:3))

q(0) = E * sum(xi)

q(1:3) = q(1:3) * q(0)

k = std_boost (+1, p(:,1) + p(:,2), q)
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rotation is the rotation which takes the rot vec to the 3-axis. This may be achieved

by the decomposition Rp = B[φ]A[θ], where A and B are rotations around the 2- and

1-axis. The angles are set by the conditions (Ap)1 = 0 and (BAp)2 = 0, yielding

〈Set angles〉≡
th = atan2(rot_vec(1), rot_vec(3))

s_th = sin(th)

c_th = cos(th)

ph = atan2(rot_vec(2), s_th * rot_vec(1) + c_th * rot_vec(3))

s_ph = sin(ph)

c_ph = cos(ph)

The integer s ∈ {+1,−1} allows to switch between the rotation and the inverse

R−1
p = A[−θ]B[−φ]. Overall we have

〈Implementation of ovm phasespace procedures〉+≡
subroutine rotation(s, rot_vec, in_vec, res_vec)

〈rotation declarations〉
〈Set angles〉
select case (s)

case (+1)

! Fortran makes columns not rows.

! Therefore this looks like a transposition

AB = reshape([ c_th, - s_th * s_ph, s_th * c_ph, &

zero, c_ph, s_ph, &

- s_th, - c_th * s_ph, c_th * c_ph], [3, 3])

res_vec = matmul(AB, in_vec)

case (-1)

AB = reshape([ c_th, zero, - s_th, &

- s_th * s_ph, c_ph, - s_ph * c_th, &

s_th * c_ph, s_ph, c_th * c_ph], [3, 3])

res_vec = matmul(AB, in_vec)

case default

stop ’rotation takes +1 and -1 for s’

end select

end subroutine rotation

The basic antenna is now simply

〈Implementation of ovm phasespace procedures〉+≡
subroutine basic_antenna(p, xi, phi, k)

〈basic antenna declarations〉
〈Set p and E〉
〈Construct q and boost back as k〉

end subroutine basic_antenna
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The attentive reader has noticed, that we have left out MC part of the algorithm

and are giving xi and phi as variables. This makes the basic antenna a deterministic

function which has been cross-checked against the FORTRAN77 implementation of A.

van Hameren et al.. Furthermore, changes in the generation of xi don’t affect the

basic antenna.

3.6.2. Full Antenna

It is straightforward to generate n momenta with the full APS by repeating the above

procedure (n − 2) times. Let dAij,k = dA(qj , qk; qi) be the shorthand for the basic

antenna in

dA2
1,ndA3

2,n · · · dAn−1
n−2,n =

(q1qn)

(q1q2)(q2q3) · · · (qn−1qn)

gn−2 ({q})
πn−2

n−1∏
i=2

d4qiϑ(qi)

with gn−2 ({q}) = g

(
q1q2

q1qn

)
g

(
q2qn
q1qn

)
· · · g

(
qn−2qn−1

qn−2qn

)
g

(
qn−1qn
qn−2qn

)
.

(3.6.12)

Almost all scalar products in the numerator have cancelled with adjacent basic an-

tenna densities, except q1qn. Since this density is by construction invariant under

simultaneous Lorentz transformations of all momenta, we can bring them to the lab

frame with the same transformations we used for the uniform distribution of Rambo

and maintain the desired density with APS. Before we perform this more formally,

we still need the two initial momenta, which we may generate back-to-back and with

isotropic three vector orientation. Sadly these cannot serve as initial momenta since

they will not be back-to-back after the boost. The corresponding weight can be

computed with help of the UAF:

w(P ) =

∫
d4q1ϑ(q1)d4qnϑ(qn) δ4(q1 + qn − P ) (3.6.13)

By integrating out e.g. q1 and omitting the other index, we obtain

w(P ) =

∫
d4q δ

(
(q0)2 − q2

)
θ(q0)δ

(
(q0 −

√
s)2 − q2

)
θ(
√
s− q0) . (3.6.14)

The spherical integration is once again trivial and leads to

w(P ) = 2π

∫
dqrdq0 qrδ

(
q0 − qr

)
δ
(
(q0 −

√
s)2 − (qr)2

)
θ(
√
s− q0)

= π

∫
dqr

qr√
s
δ

(
qr −

√
s

2

)
θ(
√
s− qr) =

π

2
, (3.6.15)
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which is just the same as V2(
√
s) from Eq. (3.5.7). Obviously one can also use the

Rambo algorithm to generate the first two momenta and obtain the same density.

But Eq. (3.6.13) is easier to handle for the subsequent computations and faster in

the implementation. Combining the above weight with the Rambo transformations

yields the following density

Φ({p}n) =

∫
d4q1ϑ(q1)d4qnϑ(qn) δ4(q1 + qn − P )

2

π
dA2

1,ndA3
2,n · · · dAn−1

n−2,n

d4b δ4
(
b− q(n)/mq(n)

)
dx δ

(
x−
√
s/mq(q)

) n∏
i=1

δ4
(
pi − xL−1(b)qi

)

=

∫  n∏
j=1

1

x2
ϑ(pj)

 δ4
(

1

x
L(b)(p1 + pn)−

√
se0

)
2gn−2({q})

πn−1

1

x2−2(n−1)

APS · (p1pn)2 d4b δ4
(
p(n) −

√
se0

)2s2

x
dx δ

(
1− b2

)
θ
(
b0
)
,

(3.6.16)

where we have only used the identities derived in Section 3.5. So far, Eq. (3.6.16)

doesn’t look quite like the wanted APS due to the additional (p1pn)2 in the numer-

ator. However, we can further evaluate to

Φ({p}n) =

∫
Θn(
√
s)

4gn−2({q})
πn−1x5

APS · (p1pn)2

δ4

(
b− L(b)2(p1 + pn)√

sx

)
δ
(
b2 − 1

)
d4b dx

= Θn(
√
s)

1

(p1p2)(p2p3) · · · (pn−1pn)(pnp1)

gn−2({q})s2

2πn−1
. (3.6.17)

Note that the factors of 2 and π are neither consistent with Ref. [HKD00] nor

Ref. [HK00b]. The above has been carefully computed and checked to give the same

phase space volume as Rambo. It is of course only valid for n > 2 since otherwise no

antennae are produced. We should emphasize that Eq. (3.6.16) is a pure combination

of properly normed densities and assignments which is why the integral of Φ({p}n)

over the whole phase space leads to unity and the inverse of Eq. (3.6.17) is the weight

associated with a event generated this way. Hereby, gn−2({q}) contributes to the

weight with (2 log ξ)2n−4.

The basic Sarge algorithm is now simply

� Generate two massless momenta q1, qn back-to-back

〈Generate momenta back-to-back〉≡
call tao_random_number(ran2)
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q(0,1) = roots / two

q(0,Nout) = q(0,1)

z = two * ran2(1) - one

phi = twopi * ran2(2)

〈standard vector n(z,phi)〉
q(1:3,1) = q(0,1) * n

q(1:3,Nout) = q(0,Nout) * (-n)

� Generate n− 2 momenta qj with basic antennae dA3
1,2dA4

1,3 · · · dAn1,n−1

〈Generate basic antennae〉≡
do j = 1, Nout - 2

call tao_random_number(ran)

phi = twopi * ran

call basic_antenna([q(:,j),q(:,Nout)], xi(:,j), phi, q(:,j+1))

end do

� Apply the RAMBO transformations, i.e. compute q(n) =
∑
qj and the boost and

scaling that brings it to
√
s e0 and apply it to all qj , resulting in pj .

Framing this as subroutine simply gives

〈Implementation of ovm phasespace procedures〉+≡
subroutine full_antenna(roots, xi, p)

〈Variables of full antenna〉
〈Generate momenta back-to-back〉
if (Nout > 2) then

〈Generate basic antennae〉
〈Determine Lorentz boost〉
〈Boost all〉

end if

p = q

end subroutine full_antenna

3.6.3. Permutations

As we have mentioned in the beginning, we do not only need the APS with successive

connections but also all permutations thereof. Since we do not include the incoming
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momenta in the antenna densities for now, we can achieve the permutations of the

momenta with a simple relabeling. This means our density becomes

gQCD({p}n) =
1

n!

∑
σ∈Sn

Φ({p}σ(n)) , (3.6.18)

where Sn is the symmetric group, i.e. the group of permutations of n objects, which

has n! elements. We can represent a permutation σ with an array of size n, where the

ith entry j indicates to replace i with j, or with a simple enumeration of the group

elements, i ∈ {1, ..n!}.

A random permutation of t objects, is a reordering or shuffling of the objects, whereby

each out of t! permutations has to occur with equal probability. The algorithm from

Ref. [Knu81] for this is very straightforward and reads

〈Implementation of shuffle〉≡
do l0 = size(arr), 2, - 1

call tao_random_number(ran)

k0 = int(ran * l0) + 1

〈swap arr(k0) and arr(l0)〉
end do

The above chunk is actually polymorphic, i.e. can be used for arbitrary types of arr

and tmp. On the other hand we might also need all permutations for the weight.

next permute gives the next permutation in lexicographical ordering [Knu11], mean-

ing that by starting with [1, 2, . . . , n] successive application of the function gives all

permutations, whereby the last is [n, . . . , 2, 1].

〈Implementation of ovm phasespace procedures〉+≡
pure function next_permute(iarr) result (arr)

〈Variables of next permute〉
arr = iarr

〈find last element arr(k0) smaller than its right neighbor〉
〈terminate if none found〉
〈find last element arr(l0) larger than arr(k0)〉
〈swap arr(k0) and arr(l0)〉
〈reverse arr after k0〉

end function next_permute

As termination condition, i.e. when no more permutations are possible, next permute

= 0 has been set. While this is quite efficient, it is worth to save the permutations to a

table table perms(n,nfac) as long it is feasible, which also allows to draw a random

permutation by drawing a random index i ∈ n! instead of using shuffle. Feasible of
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course depends on the environment. For a usual desktop user the upper limit for using

a table is probably n = 11, leading to 418 MB, while for n = 12 we reach 5481 MB,

where we have already used only 1 byte integers which can represent numbers up to

27 − 1 = 127. Note that for gluon amplitudes the information associated with the

color flows will blow up way before this and we will only have to resort to shuffle,

when the complete computation is performed without tables for color flows.

Now, we have everything together for the basic Sarge algorithm

〈Implementation of ovm phasespace procedures〉+≡
subroutine sarge0(roots, lxi, Nin, p, weight, perm)

〈Variables of sarge0〉
〈Initialization of perms and Nout〉
〈Draw a perm from table perms〉
〈Draw xis from the hypercube〉
call full_antenna(roots, xi, p)

weight = sarge0_weight(Nin, perm, roots, lxi)

end subroutine sarge0

To wrap everything up, we have the module

〈ovm phasespace.f90〉≡
#include "macros.h"

module ovm_phasespace

use kinds

use ovm_load

implicit none

private

〈Declaration of ovm phasespace procedures〉
〈Interfaces of ovm phasespace procedures〉
〈Variables of ovm phasespace〉

contains

〈Implementation of ovm phasespace procedures〉
end module ovm_phasespace

Note that we use macros only to chose between debugging modes as assertive pro-

gramming with #if DEBUG is more reusable than repetitive, brute-force printf state-

ments that have to be removed afterwards. If we set DEBUG to 0, we can herewith

regain full speed while 1 switches on tests of all implemented assertions.
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3.7. Discussion and Performance

At first, we will verify that the generated phase space density is indeed the one of

Eq. (3.6.17). For this we sample a fixed number of points and compare the generated

probability density for (p1p2) · · · (pnp1) of Rambo and Sarge. Furthermore, we

can check that we obtain an unbiased sampling of the phase space if we attach the

corresponding weight to the counts. The results for different cuts and three generated

momenta are shown in Fig. 3.2. It has also been checked that the bounds for the

smallest and largest value for APS−1 are (s0/2)n and (s/(n(n − 1)))n, respectively,

which follow from the imposed cuts and overall available energy. Similar pictures

arise for four, five and six momenta.

After the dry tests, we can apply Sarge now to the problem of interest and include

the matrix element. The goal is of course to reduce the variance of the integration

via importance sampling as in Eq. (3.3.3), which is why the weight function should

be kept as close to the integrand as possible. Since we know that, at least for gluon

amplitudes, all permutations of the APS occur in the matrix element, the weight

function should also consist of all permutations. There are, however, two ways to

achieve this. Either we compute the concrete weight of a certain random permutation

and multiply it with the integrand or we compute in every point the weight as sum

over all permutations. In the statistical mean both methods are equivalent while the

former introduces additional variance and the latter additional computations. We

observe that the effort for these computations are in fact negligible compared to the

gains. Note first, that the average time spend for the complete phase space generation,

including helicity, non-accepted events and computation of weights, depends strongly

on the cuts and is about the same for τ = 0.1 as and roughly an order of magnitude

smaller for τ = 0.01 than the time for the evaluation of the matrix elements, whereby

we have sampled helicities and summed over all colors. From this fraction the amount

needed for the sum of inverse scalar products is hard to measure at all, since the scalar

products have been already computed to check for the cuts. On the other hand, using

the full weight can reduce the number of needed accepted events to achieve a certain

error in the integration by factors of about ∼ 8 for fully connected final states like

qq̄ → 4g. As long as all color flows are computed, we can therefore highly recommend

the use of the full weight. In Fig. 3.3 we show the drastically improved convergence

behaviour of the basic Sarge algorithm compared to Rambo. We can see a clean

1/
√
Nacc convergence without the bumps that occur when a flat phase space generator

like Rambo comes close to the singularities.
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Figure 3.2. The generated phase space density of Rambo and Sarge for various
values of the cut-off parameter τ . As desired, we are preferably sampling points with
small scalar products. The histograms on the right side result from the same points
but here the counts of Sarge have been weighted according to Eq. (3.6.17). Note
that Sarge only appears to be stronger fluctuating, especially in the top right, after
reweighting due to the resulting lower counts in the tail of the distribution.
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Figure 3.3. The relative error of both momentum generators as function of the accepted
momenta, which is a good measure for the overall time as discussed in the text.
The convergence of Sarge compared to Rambo is obviously way smoother and has
a smaller variance due to the importance sampling leading to earlier termination.
Rambo shows peaks when it hits a singularity.

We notice that the phase space density Eq. (3.6.17) is invariant under cyclic permu-

tations. This means that the number of distinct channels is not n!. In fact if we say

that two permutations are equivalent when one can be written as cyclic permutation

of the other, the group structure of Sn reduces to the factor group Sn/Zn, whereby

Zn is the cyclic group with n elements. This implies that the true number of distinct

channels is the order of the factor group which is |Sn| / |Zn| = (n−1)!, analogously to

the number of distinct color flows in an n gluon amplitude. Furthermore, we see that

the different channels have substantial overlap, which is why even the use of merely

one channel can still significantly reduce the variance. Overall, Sarge represents an

excellent mapping of QCD and QCD associated processes that allows to integrate

even small cuts and high multiplicities in a reasonable amount of time. Hereby, the

extensions of the next section are quite essential to fully map all divergencies and

maintain high acceptance rates, which is why a more detailed analysis with different

processes will follow at the end of this chapter.

3.8. SARGE Extensions

The above has shown the beauty and simplicity of the Sarge algorithm, which solves

the problem of generating n massless momenta with the desired phase space density.
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Now, we will extend this idea and increase thereby the efficiency. Section 3.8.1 will im-

prove the performance by reducing the number of rejected points while not changing

the accepted. The second one in Section 3.8.2 will improve the convergence since the

accepted points will now also include the APS associated with incoming momenta.

3.8.1. Reducing Rejected Points

To reduce the number of rejected points, we should discuss if the implemented re-

alization of g(ξ) is really efficient enough. One quickly sees that we are restricting

only the ratios of scalar products which are involved in the generation of the QCD

antennae, i.e.

pi−1pi

pi−1pn
and

pipn

pi−1pn
. (3.8.1)

It makes, however, more sense to demand this for all ratios that can be formed in

the generation of the antennae

ξ−1
m <

pipj

pkpl
< ξm . (3.8.2)

By going to variables xijyz = log pipj

pypz , we can create all scalar products via differences

xijkl = xijyz − xklyz, whereby we have to demand that

∣∣∣xijyz∣∣∣ < 1 and
∣∣∣xijyz − xklyz∣∣∣ < 1 . (3.8.3)

By dropping the fix point yz and relabelling (ij) as they occur in the generation

of the antennae i ∈ {1, . . . , 2n − 4}, we can replace the assignment of Eq. (3.6.10),

ξ = ξ−1+2x
m , by

ξ = elog ξm(xi−xj) . (3.8.4)

This notation allows to realize that the restrictions of Eq. (3.8.3), define an m = 2n−4

dimensional polytope P in m dimensional space whereby the different x’s are now

different coordinates. In fact, if we use Eq. (3.8.4) with the mere restriction that x are

from the hypercube, x ∈ [−1, 1]m, we reobtain the original sampling. The efficiency

of the original sampling compared to one which respects the mutually constraints

of Eq. (3.8.3) is therefore given by the ratio of the volume of the defined polytope

and the hypercube Vm(P )/2m. For better imagination and illustration, we show the

polytope in two and three dimensions in Fig. 3.4. We can immediately conjecture
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that the ratio of volumes will decrease with increasing dimension, which will be shown

below. Furthermore, we see that the mutual condition is only relevant if xi and xj

have opposite signs.

Figure 3.4. The convex hull of the polytope defined by |xk| < 1 and |xk − xl| < 1
∀k, l ∈ {1, . . . ,m} for m = 2, 3.

In Ref. [HK00a], an efficient algorithm for generating x inside the polytope with unit

efficiency is given for arbitrary dimension. To obtain it, one simply integrates the

volume of the polytope analytically and replaces the integration with a sampling. We

want to compute

Vm(P ) =

∫ 1

−1
dx1 · · · dxm

m∏
i,j=1
i 6=j

θ
(
1− |xi − xj |

)
. (3.8.5)

At first, one should divide the integration variables in m− k positive and k negative

ones and set yk = −xk, allowing to write m(m−1)/2 constraints as one. The number

of possibilities to have k negative variables in m is given by the binomial such that

we have by relabeling

Vm(P ) =
m∑
k=0

(
m

k

)
Vk,m

Vk,m =

∫ 1

0
dy1 · · · dykdxk+1 · · · dxm θ

(
1−max

i
xi −max

j
yj

)
. (3.8.6)

We can furthermore say that one of the y’s and x’s is largest, which we call y1 and

xm, respectively. The number of possibilities for this is
(k

1

)
= k and m − k and the

integration over the other variables each simply yields the upper bound which is y1
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and xm. Overall, we have

Vm,k(P ) = k(m− k)

∫ 1

0
dy1 y

k−1
1

∫ 1−y1

0
dxm xm−k−1

m

= k

∫ 1

0
dy1y

k−1
1 (1− y1)m−k =

k!(m− k)!

m!
, (3.8.7)

which is just the inverse of the binomial, and hence

Vm(P ) = m+ 1 . (3.8.8)

Since we have now the volume of the polytope, we can compute how bad our efficiency

used to be, which is shown in Tab. 3.1. Furthermore, we can translate the calculation

to an algorithm via the UAF:

Table 3.1. The efficiency of drawing within the hypercube compared to the polytope,
Vm(P )/2m, for m = 2n− 4 and n generated momenta.

n 3 4 5 6 7 8 9 10

efficiency [%] 75.0 31.3 10.9 3.52 1.07 0.317 0.0916 0.0259

� Draw k in [0,m]. If k = 0, simply assign xi =x ∀i ∈ {1, . . . , n}, where x is

a random number in [0, 1), redrawn for every i. Analogously, if k = m, set

xi = −x.

� If 0 < k < m, generate y1 with density yk−1
1 (1 − y1)m−k between 0 and 1 and

xm with density xm−k−1
m between 0 and 1 − y1. The corresponding mappings

are [HK00a]

v1 = − log

{
k∏
i=1

x

}
, v2 = − log


m−k+1∏
j=1

x

 , y1 =
v1

v1 + v2

and xm = (1− y1)x1/(m−k) (3.8.9)

� Finally, draw the remaining x’s and y’s within their bounds and perform a

random permutation of the whole set to get rid of the ordering, which we have

introduced for the calculation,

x1 = −y1 , xi = −y1x , i = 2, . . . , k

xi = xmx , i = k + 1, . . . ,m− 1 . (3.8.10)

〈Implementation of ovm phasespace procedures〉+≡
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subroutine polytope(x)

〈Variables of polytope〉
〈Create permutation labels〉
〈Draw k and all x if k is 0 or m〉
〈Generate y1 with density yk−11 (1− y1)m−k〉
〈Draw remaining x within their bounds〉

end subroutine polytope

Of course, we have to account for the reduced volume also in the density, which

becomes

gPn−2({q}) =
22n−4

2n− 3
gn−2({q})

2n−4∏
i,j=1
i6=j

θ
(
1− |xi − xj |

)
. (3.8.11)

The only thing that changes in the Sarge algorithm apart from the weight is the

generation of the xi’s

〈Draw xis from the polytope〉≡
call polytope(x(1:))

x(0) = zero

do i = 2, Nout-1

xi(1,i-1) = exp((x(2*i-3)-x(2*i-4))*lxi)

xi(2,i-1) = exp((x(2*i-2)-x(2*i-4))*lxi)

end do

We have verified empirically that the increase in efficiency according to Tab. 3.1 is

indeed reflected by the same amount in the number of accepted momenta.

3.8.2. Including Incoming Momenta

For the incoming momenta p0 and p̃0, we cannot use the basic antennae since they

have to be back-to-back and should lie fixed on an axis. The latter problem can

be easily solved by rotating the whole system of generated momenta for each phase

space point. So we basically just need to generate two momenta back-to-back with

the desired density ∝ [(p0p1)(pnp̃0)]−1 which completes the full APS. It turns out

that in order to avoid singularities in the integration, it is useful to introduce a small

δ > 0 such that the scalar product of massless momenta reads [HK00b]

(pq)δ = p0q0(1 + δ − p̂q̂) . (3.8.12)
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Obviously, this breaks Lorentz invariance. However, we will generate the incoming

momenta after the remaining momenta have been brought to speed, i.e. boosted and

scaled such that their sum is equal to
√
se0. This means that no further Lorentz

boosts will be involved and the only invariance which is still important is rotation

invariance, which is given by Eq. (3.8.12). From the point of view of importance

sampling, the density

ϕ(p1, p2) = N (p1, p2)
ϑ(k)δ(k0 − 1)

(kp1)δ(p2k̃)δ
, with

∫
d4k ϕ(p1, p2) = 1 , (3.8.13)

will be a very good approximation of the desired density as long as δ is small enough.

The given p1 and p2 are arbitrary momenta of the full antenna and k0 is simply for

convenience set to one as scaling it leads to an overall factor that can be absorbed in

the norm N . To see how we can generate this, we start to evaluate

1

N (p1, p2)

∫
d4k ϕ(p1, p2) =

∫
d3k

δ(k2)

(kp1)δ(p2k̃)δ

=

∫
dΩ

1

2

[
p0

1(1− p̂1k̂ + δ)p0
2(1 + p̂2k̂ + δ)

]−1
. (3.8.14)

To avoid the dependence of the integrand on two angles, we can transform the product

into a sum with the Feynman trick, 1/(A ·B) =
∫ 1

0 dx [xA+ (1− x)B]−2, yielding

(3.8.14) =
1

2p0
1p

0
2

∫
dΩ

∫ 1

0
dx

[
1 + δ − pxk̂

]−2
where px = xp̂1 + (x− 1)p̂2

=
π

p0
1p

0
2

∫ 1

0
dx

∫ 1

−1
dz [1 + δ − z |px|]

−2 setting z = cos
(
∠(px, k̂)

)
.

(3.8.15)

This is a good place to pause and think how δ is related to the overall cut-off τ . In

fact, so far δ was not necessary at all and also this integral is finite if we take the cuts

into account. Obviously, the divergent region is around z = 1 and |px| = 1. z = 1

means that k̂ is close to the superposition of p̂1 and −p̂2 while |px| = 1 indicates

that px = p̂1 or px = −p̂2 or that (p̂1 ‖ −p̂2). This is, however, bounded since

(pi + k)2 > s0 ⇔ p0
i

√
s(1− p̂ik̂) > s0 (3.8.16)

⇒ pxk̂ < 1− s0√
s

(
x

p0
1

+
1− x
p0

2

)
≡ zm(x) . (3.8.17)

Also the energies are bounded by Eq. (3.8.16), p0
i,min = s0/(2

√
s), and by the available

energy, p0
i,max =

√
s, yielding 1/2 < zm < 1−s0/s. Note, that these are only estimates
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and zm is actually further constraint2. In principle, we can use zm(x) as bound for

the z integration, leading to∫ zm

−zm
dz

1

(1− z |px|)2
=

2zm
1− z2

mp
2
x

. (3.8.18)

But this doesn’t help any further since the ensuing integration over x gives no hand-

able expression, which is needed to quickly compute the weight. We therefore ac-

knowledge the gain in changing the lower boundary a bit such that

∫ 1−δ/|px|

−1−δ/|px|
dz

1

(1− z |px|)2
=

∫ 1

−1
dz

1

(1 + δ − z |px|)2
=

2

(1 + δ)2 − p2
x

, (3.8.19)

which only depends on x over px and will give a closed expression later on. While

we are not too concerned about the extension of the lower boundary, we might still

learn something about the relationship between δ and τ by examining the singularity.

More specifically, we can ask how to choose δ such that we are integrating exactly to

the boundary given by the cut, i.e. zm = 1− δ/ |px| or equivalently

s0√
s

(
x

p0
1

+
1− x
p0

2

)
=

δ√
1− 2(1 + p̂1p̂2)x(1− x)

⇔ δ

τ
=

2

n(n− 1)

(
x

p0
1/
√
s

+
1− x
p0

2/
√
s

)√
1− 2(1 + p̂1p̂2)x(1− x) . (3.8.20)

Obviously, δ depends non-trivially on τ and the combination of p1 and p2. At the

edge values, x = 1 and x = 0, we have, by defining a mean energy as 〈
√
s〉 =

√
s/n,

δ = τ
2

n− 1

〈
√
s〉

p0
1,2

≡ δ1,2 , (3.8.21)

whereas in the middle, for x = 1/2,

δ = δ1

(
1 + p0

1/p
0
2

2

)√
1− 1

2

(
1 + p̂1p̂2

)
. (3.8.22)

Examining Eqs. (3.8.20) to (3.8.22), we find that if p1 and p2 have roughly the mean

energy p0
1,2 = 〈

√
s〉 then δ = 2τ/(n − 1) integrates the singularity up to the cut,

as long as p̂1p̂2 is not too small as it can drive the square root from 1 to 0. Of

course, also this scalar product is cut meaning that δ can only become zero if τ is

zero. This fits our expectation that for large τ , δ can be large as well while still

representing the density in the corresponding phase space. Since we can compute the

exact dependence of the density on δ, not the final result but the variance will depend

2E.g. we assumed for p0i,min that p̂ik̂ = −1 which would conflict with the cut between pi and k̃.
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on it and we can use δ = 2τ/(n − 1) as a very good rule of thumb for a reasonable

density which is close to the integrand.

As we have explained the reasoning behind δ and how it is related to the bounded

phase space, we resume now with the combination of Eqs. (3.8.15) and (3.8.19)

1

N (p1, p2)

∫
d4k ϕ(p1, p2) = 2π

∫ 1

0
dx

[
p0

1p
0
2(2δ + δ2)− 2p1p̃2(x2 − x)

]−1

= − π

p1p̃2

∫
dx

1

(x− x+)(x− x−)
,

where x± are solutions of (1 + δ)2 = p2
x ⇔ x± = 1

2 ±
√

1
4 +

p01p
0
2(2δ+δ2)
2p1p̃2

,

=
2π

p1p̃2

log
∣∣∣x+x− ∣∣∣

(x+ − x−)
=

1

N (p1, p2)
.

(3.8.23)

Finally, we should rotate the system to have fixed incoming momenta. As noted

above, if we use k0 =
√
s/2, the norm scales as N → (

√
s/2)N . Using momenta i, j

of the full antenna Φ({p}n) for the generation, we obtain a density

D({p}n, i, j) =

∫
d4nq d4k Φ({q}n) ϕ(qi, qj)

n∏
i=1

δ4(pi −Rkqi) (3.8.24)

= Φ({p}n)

√
s

2
N (pi, pj)

∫
d4k ϑ(k)δ(k0 − 1)

1

(piRkk)δ(pjRkk̃)δ
,

where we have used that rotations are orthogonal transformation, which neither

change the volume element nor Φ({q}n). The last line can now be evaluated analo-

gously to the computation of the norm but with a trivial z integration since Rkk =

k0(e0 + e3) and thusly

D({p}n, i, j) = Φ({p}n)
1

(pip0)δ(pj p̃0)δ

pip̃j(x+ − x−)

log
∣∣∣x+x− ∣∣∣ ( 2√

s

)2 . (3.8.25)

The scaling factor of
√
s/2 has been neglected in Ref. [HK00b] but is important to

obtain the correct weight. The above calculation reads as an algorithm

� Given a pair {qi, qj}, compute x±

〈Compute x pm〉≡
qiqjt = dot(q(:,i),[q(0,j),-q(1:3,j)])

rt = sqrt(one/four + q(0,i)*q(0,j)*(two*delta+delta**2) / (two*qiqjt))
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x_p = one / two + rt

x_m = one / two - rt

� Generate x ∈ [0, 1] according to a density

− 1

(x− x+)(x− x−)
=

∫ z1

z0
dz δ

(
x− x+ex+z − x−ex−z

ex+z − ex−z

)
, (3.8.26)

where x(z1) = 1, x(z0) = 0 and z = (log {x− x+} − log {x− x−})/(x− − x+).

Note that since this is a unnormalized density, z1−z0 = 2 log
∣∣∣x+x− ∣∣∣/(x+−x−) 6= 1.

With x, set px = xp̂i + (x− 1)p̂j . To maintain the signs, we need complex z’s

but in the end all imaginary parts are zero.

〈Generate x and set p x〉≡
call tao_random_number(ran)

z0 = log(complex(x_p / x_m, zero))

z1 = log(complex((x_p-one) / (x_m-one), zero))

yy = real(exp(z0 + (z1 - z0) * ran))

x = (x_m * yy - x_p) / (yy - one)

p_x = x * q(1:3,i) / sqrt(dot_product(q(1:3,i), q(1:3,i)))

p_x = p_x + (x-one) * q(1:3,j) / sqrt(dot_product(q(1:3,j), q(1:3,j)))

� Generate ϕ ∈ [0, 2π) uniformly and z ∈ [−1, 1] with a density

1

(1 + δ − |px| z)2
=

∫ s1

s0
dy δ

(
z −

(
− 1

sp2
x

+
1 + δ

|px|

))
, (3.8.27)

with the boundary values s1,0 = 1/
(
|px| (1 + δ ∓ |px|)

)
.

〈Generate phi and z〉≡
call tao_random_number(ran)

phi = twopi * ran

abs_px = sqrt(dot_product(p_x,p_x))

call tao_random_number(ran)

s0 = one / (one+delta+abs_px)

s1 = one / (one+delta-abs_px)

s = s0 + (s1-s0) * ran

z = (one + delta - one / s) / abs_px

� Compute k = R−1
px n̂(z, ϕ), rotate all momenta with Rk and return them

〈Compute k and rotate all〉≡
〈standard vector n(z,phi)〉
p_x = p_x / abs_px
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call rotation(-1, p_x, n, k)

do l=1, size(q, dim=2)

call rotation(+1, k, q(1:3,l), pp(1:3,l))

pp(0,l) = q(0,l)

end do

〈Implementation of ovm phasespace procedures〉+≡
subroutine include_incoming(q, i, j, delta, pp, weight, wght_only)

〈Variables of include incoming〉
〈Compute x pm〉
〈Generate x and set p x〉
〈Generate phi and z〉
if (.not. present(wght_only)) then

〈Compute k and rotate all〉
end if

weight = real(-z1+z0) / (two*(x_p - x_m)*(qiqjt))

end subroutine include_incoming

The question remains where to insert this density. While earlier we could just permute

the whole set and relabel the momenta, now we have to take care of the permutations

involving incoming momenta ourselves. Note that D({p}n, i, j) = D({p}n, j, i) if

we substitute k → −k in the integration. Despite that, it turns out to be highly

advantageous to explicitely symmetrize the density with respect to i, j, i.e. using
1
2D(i, j) + 1

2D(j, i), which can be achieved by randomly chosing between swapping

i and j or leaving them. This results in errors which are more than a magnitude

smaller. We can understand this by comparing our density, e.g. with the formula of

Parke and Taylor for the tree-level Maximally Helicity Violating (MHV) amplitudes

in n-gluon scattering [PT86]

∣∣M(+, . . . ,+, i−,+, . . . ,+, j−,+, . . . ,+)
∣∣2 = c(pipj)

4∑
σ∈Sn

[
(pσ(1)pσ(2)) · · · (pσ(n−1)pσ(n))(pσ(n)pσ(1))

]−1
, (3.8.28)

where c is some constant and subleading terms in color are neglected. Due to the sum

over all permutations, the matrix element is symmetrized between any exchanges of

momenta and so should our density. The comparably poor performance, if this is not

applied, results thusly from missing divergencies in the weight function compared to

the matrix element that can be catched by using both combinations of i, j.

With this in mind, the remaining permutations of the set reduce to two cases. Either

p0 and p̃0 are next to each other, i.e. connected with an implied (p0p̃0) = s/2 that we
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don’t have to sample since it never becomes singular,

−1− 2− · · · − i− 0− 0̃− (i+ 1)− · · · − n− (3.8.29)

or they are not and we need two insertion points

−1− 2− · · · − i− 0− (i+ 1)− · · · − j − 0̃− (j + 1)− · · · − n− . (3.8.30)

The problem is that we have to break up the earlier connection between i − (i + 1)

and j − (j + 1), meaning we need pipi+1’s in the nominator, if we want an exact

APS with n + 2 scalar products in the denominator as the full gluon integrand

has it. This problem can be solved statistically, i.e. by choosing (i, j) proportional

to (pipi+1)(pjpj+1) with the downside that we can’t just choose a certain channel,

according to a certain color flow or diagram, out of (n + 1)! which corresponds to a

permutation of n + 2 neglecting cyclic permutations. Furthermore, in the split case

we are only creating connections of type i − 0 or 0 − (i + 1) though we actually

need both, another point which can be solved in the statistical mean. After stating

the problems, we now present the solutions, implying (i mod n) for each index i

[HK00b]:

One insertion: Draw i according to the density

pipi+1

Σ1({p}n)
with Σ1({p}n) =

n∑
i=1

(pipi+1) (3.8.31)

and set j = i + 1. This cancels as desired the connection between i and i + 1 and

replaces it with a much softer factor Σ1. The total density is then

B1({p}n) =
1

Σ1({p}n)

n∑
i=1

(pipi+1)D
(
{p}n, i, i+ 1

)
. (3.8.32)

Two insertions: Draw two points i and j according to

(pipi+1)(pjpj+1)

Σ2({p}n)
with Σ2({p}n) =

n∑
i 6=j

(pipi+1)(pjpj+1) . (3.8.33)

Choose for both spots wether to connect forwardly or backwardly, i.e.

(k, l) ∈ {ij}+ =
{

(i, j), (i, j + 1), (i+ 1, j), (i+ 1, j + 1)
}
. (3.8.34)

This allows in the mean to get all connections if we allow a sum of scalar products
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in the nominator, since

1

pip0
+

1

pi+1p0
=

pi+1p0 + pipo
(pip0)(p0pi+1)

, (3.8.35)

and if we take out the bias out of the four possibilities. This means, we have to choose

k, l according toN
(
pk, pl

)−1
/
∑

(q,r)∈{ij}+ N
(
pq, pr

)−1
such that the generated density

is

B2({p}n) = Φ({p}n) ·
n∑
i 6=j

(pipi+1)(pjpj+1)

Σ2({p}n)
·
∑

(k,l)∈{ij}+(pkp0)δ(p̃0pl)δ∑
(q,r)∈{ij}+ N

(
pq, pr

)−1
/2π

· 1

(pip0)δ(p0pi+1)δ(pj p̃0)δ(p̃0pj+1)
, (3.8.36)

just as desired.

So far all densities for choosing i, j were fixed by the APS we want to build. But it

remains free to choose from the two possibilities of how to insert p0 and p̃0, analogously

to the different permutation channels and can possibly be tackled with the adaptive

multichannel method [KP94]. A reasonable choice for constant weights yields the

density

GQCD({p}n) =
1

n!

∑
σ∈Sn

Φ
(
{p}σ(n)

) (p0p̃0)Σ1 ·B1 + Σ2 ·B2

(p0p̃0)Σ1 + Σ2

(
{p}σ(n)

)
. (3.8.37)

Even with the power of literate programming the corresponding subroutine looks a

bit complicated, which is of course reflected in higher computational costs for the

phase space generation.

〈Implementation of ovm phasespace procedures〉+≡
subroutine sarge2(roots, lxi, Nin, p, weight, perm, mode)

〈Variables of sarge2〉
〈Initialization of perms, Nout and delta〉
〈Draw a perm from table perms〉
〈Draw xis from the polytope〉
〈Generate full antenna for final states and update pdotp〉
if (Nout > 2) then

〈Compute adjacent scalar products to choose an insertion place〉
〈Choose between B1 and B2 according to their weights〉
〈If channel B1, draw i and set j=i+1〉
if (〈Channel B2 or B12 〉) then

〈Compute weights in all four channels〉
if (ch12i .eq. 2) then

〈Randomly choose to connect forwardly or backwardly〉
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end if

end if

〈Randomly swap i and j or not〉
〈Include incoming with i and j and update pdotp〉
〈Compute weight and permute final states〉

else

weight = sarge0_weight(Nin, perm, roots, lxi)

end if

end subroutine sarge2

Finally, we discuss now the benefits of sarge2. In order to estimate the effects of

choosing an insertion place with a probability corresponding to its scalar product with

the next momentum, we also use constant weights (CW) as comparison. Furthermore,

we compare the channel B1 with B2 and the combination B12. The results for some

processes are shown in Tab. 3.2. We define the acceptance rate a = Nac/(Nac +Nrej),

whereby these numbers relate to the cuts and not a reweighting procedure. The

efficiency on the other hand is ε = 〈σ〉 /σmax, such that ε ·Nac would be the number

of unweighted events. Since the calculations have been run until a certain estimated

error has been achieved, one should look especially for low Nac as ε is numerically not

so stable and depends strongly on whether the true maximum has been found in the

respective run. Highly connective initial states like gluons or mirrors of final states as

qq′ → qq′g and qq̄ → qq̄g benefit greatly from the inclusion of the initial momenta

and converge more than a magnitude faster. B1 tends to perform better than B2 for

three and four particles in the final state. We can see that using all permutations in

terms of B12 is never worse than the slower channel and very comparable with the

faster one. As it depends on which types of permutations are present in the matrix

element, the relative weights of B1 and B2 should be computed in a warm up phase.

qq̄ → q′q̄′ng are the only types of processes, where the inclusion of the incoming

momenta is no major improvement. This is not surprising as for n = 1 only two, due

to initial state radiation, of the six possible scalar products between incoming and

outgoing momenta are present in the matrix element at all. Here it is worth to keep

the original phase space density by using constant weights without cancellations. One

should also note that for these processes the number of needed points to integrate

are already quite low for S0 compared to the other processes, so there is not so much

room for improvement. It has been checked that the qualitative features of Tab. 3.2

are also apparent in various other processes and for other cuts.
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Table 3.2. The number of needed accepted phase space points until the integration has
reached the respective estimated error alongside the acceptance rate, efficiency and
times for matrix element evaluation and phase space generation. The lower Nacc and
the higher ε is, the closer is our density to the integrand and the faster the integration
finishes. Compared is Sarge without incoming momenta S0, in the channels B1 and
B2 and the combination according to Eq. (3.8.37) each with the weights according to
Eqs. (3.8.31) and (3.8.33) and with constant weights (CW). The numbers are obtained
by avering over 10 seeds, sampling over helicity and summing over colors with the fixed
parameters τ = 0.01 and

√
s = 1000 GeV. As usual, the statistical error is denoted in

parantheses in units of the last digit. Empty parentheses correspond to errors below
the shown digits.

gg → ggg rel. err. 1%

S0 B1 B1 CW B2 B2 CW B12 B12 CW

Nac/103 1010(1) 34.6(5) 92.9(10) 70.7(9) 251(12) 38.9(9) 166(23)

a[%] 85.2() 50.8() 56.2(1) 52.5() 52.5() 51.1() 54.4()

ε/10−4 7.31(27) 103(12) 38.4(25) 60.1(16) 6.69(76) 70.5(97) 13.5(22)

tME[µs] 91.6(26) 89.6(43) 92.4(27) 99.4(12) 86.8(33) 97.7(38) 88.6(36)

tPS[µs] 4.93(14) 18.7(12) 17.5(6) 31.5(5) 26.2(11) 32.0(11) 26.4(11)

gg → gggg rel. err. 2%

S0 B1 B1 CW B2 B2 CW B12 B12 CW

Nac/103 476(18) 31.9(28) 86.1(141) 55.3(45) 81.7(53) 28.2(28) 63.8(64)

a[%] 44.4() 30.6() 32.6() 30.3() 28.4() 30.5(1) 30.5()

ε/10−4 1.81(18) 14.9(18) 6.54(109) 8.15(89) 6.09(98) 21.6(28) 8.30(104)

tME[µs] 476(1) 477(2) 479(2) 491(7) 484(7) 493(12) 481(3)

tPS[µs] 8.39(7) 20.7(6) 19.5(3) 28.4(6) 29.8(5) 28.8(8) 28.8(4)

qq′ → qq′g rel. err. 1%

S0 B1 B1 CW B2 B2 CW B12 B12 CW

Nac/103 6640(4) 239(5) 620(5) 513(6) 1750(10) 256(5) 1010(4)

a[%] 85.2() 50.8() 56.2() 52.5() 52.5() 51.1() 54.4()

ε/10−4 1.12(4) 14.0(23) 6.10(19) 6.98(88) 1.06(14) 12.1(12) 1.61(12)

tME[µs] 19.7(6) 19.7(10) 20.9(9) 20.2(9) 19.2(7) 20.2(10) 19.1(10)

tPS[µs] 4.58(16) 17.6(9) 16.6(8) 25.6(12) 24.6(9) 27.0(13) 24.1(12)
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Table 3.2 (cont.) Overall we see an immense reduction in most cases in the number
of points that are needed to integrate a process to the desired precision by including
the incoming momenta in the APS. As expected, constant weights worsen here the
importance sampling since they have an additional divergence that is not included in
the matrix element. B1 tends to perform better than B2 for three and four particles
in the final state. The combination of all permutations in terms of B12 is never worse
than the slower channel and comparable with the faster one.
qq̄ → q′q̄′ng are the only types of processes, where the inclusion of the incoming
momenta is no major improvement. Here, constant weights are preferable. The
time for the phase space generation per accepted phase space point roughly triples
compared to S0, because of the cuts that give lower acceptance rates and the increased
computational effort. They are, however, usually dominated by the times for the
evaluation of the matrix elements, which are of course constant for all modes.

qq̄ → qq̄g rel. err. 1%

S0 B1 B1 CW B2 B2 CW B12 B12 CW

Nac/103 6430(7) 239(5) 614(9) 523(23) 1760(9) 252(3) 1120(7)

a[%] 85.2() 50.7() 56.2() 52.5() 52.5() 51.1() 54.4()

ε/10−4 1.23(4) 11.9(16) 5.86(43) 6.84(92) 0.991(99) 13.7(13) 1.60(23)

tME[µs] 22.7(9) 22.1(11) 24.1(11) 21.8(11) 23.1(11) 22.9(11) 22.3(11)

tPS[µs] 4.60(19) 16.6(7) 16.4(8) 24.3(12) 25.7(12) 26.1(14) 24.4(12)

qq̄ → q′q̄′g rel. err. 1%

S0 B1 B1 CW B2 B2 CW B12 B12 CW

Nac/103 90.9(17) 211(9) 68.7(8) 58.6(6) 56.2(3) 182(16) 69.4(8)

a[%] 85.3() 50.8() 56.2() 52.5(1) 52.5() 51.1() 54.3()

ε/10−4 50.1(30) 9.63(122) 59.9(31) 68.5(44) 83.8(44) 13.0(21) 47.6(37)

tME[µs] 10.5(1) 10.9(3) 11.0(3) 11.0(4) 11.3(2) 11.0(2) 11.5(2)

tPS[µs] 2.90(6) 9.30(15) 8.67(14) 12.6(3) 12.5(4) 12.5(2) 12.0(3)

qq̄ → q′q̄′ggg rel. err. 2%

S0 B1 B1 CW B2 B2 CW B12 B12 CW

Nac/103 65.7(93) 129(15) 57.2(41) 53.1(110) 38.1(24) 86.8(195) 37.7(28)

a[%] 15.5() 11.8() 12.0() 11.1(1) 10.4() 11.7() 11.3()

ε/10−4 3.93(47) 1.09(17) 3.09(33) 4.16(88) 4.04(55) 2.66(50) 5.76(102)

tME[µs] 232(4) 224(1) 229(3) 224(1) 227(3) 227(2) 226(2)

tPS[µs] 43.2(9) 83.5(6) 81.2(9) 108(1) 118(2) 106() 109(1)
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4. Helicity Summation and Spin Correlations

The purpose of this chapter is twofold. At first, different possibilities to carry out

the helicity sum are discussed for the purpose of speeding up the calculation of cross

sections with many legs. Hereby, we distinguish between methods which use a fixed

set of helicities and more general parametrizations with superpositions of helicities.

This will furthermore pave the way for the generation of events with spins in a

certain direction in their rest frame. Such a feature is usually not implemented in

automated MC event generators and is especially important if one wants to study

spin correlations in the decays of massive particles like the τ lepton or t quark.

Note, that for the τ lepton, there exists a well established tool, namely Tauola,

which can decay τ ’s in HepMC event records. However, the spin correlations are

implemented for standard processes mediated by Z/γ by using spin density matrices

that are calculated by hand with some approximations [DN12]. Further limitations

are the requirement, that the τ is on-shell, and the algorithm, which is based on

interpreting a spin weighting factor as a probability whether an event should be

accepted or rotated. Another recent program aiming to overcome these problems,

based on MadGraph, is TauDecay [Hag+12]. Our approach differs from these as

we are able to explicitly construct the density matrix that corresponds to a spin in

a certain direction for each external particle, as will be shown below, and are not

depending on MadGraph. If the full phase space integration is too expensive, we

can still set the τ on-shell and use factorization to generate events while maintaining

full spin correlations.

4.1. Fixed Helicity Sampling

To improve the overall performance of the MC integration various helicity techniques

can be employed. The basic idea is to include the helicity sum in the MC evaluation

of the integration

Nhel∑
h=1

∫
Dp |Mh|2 =

Nhel

N

∑
i

|Mhi |
2 (pi) , (4.1.1)

whereby |Mh|2 should be understood as flavor- and color-summed, if necessary. For

illustration, think of a toy problem where |Mh|2 is roughly the same for all h. By
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4.1. FIXED HELICITY SAMPLING

computing all helicity combinations for each phase space point, Nhel times too many

points are used for the same information. If instead only a random helicity combi-

nation hi is calculated, Nhel times more independent phase space points can be used

while still having the same number of matrix element evaluations. In general, the

additional variance, which is zero in our toy problem, has to be reduced, in order to

maintain the benefits of improved sampling of the phase space.

4.1.1. Complete Sum

For comparison the sum over all helicities gets computed in every phase point. Note,

that this is the de facto standard approach to compute helicity sums, not only in

many tree- but also loop-level automated calculations [HP99]. We will show that the

sum is almost always inferior to the MC methods if it is implemented in a Single In-

struction Multiple Data (SIMD) approach, i.e. the same matrix element is evaluated

for different values of the polarization of the external wave functions. When different

chiralities are treated as different particles with appropriate Feynman rules as in the

Weyl-van-der-Waerden formalism [Dit98], helicity MC seems to become preferably

only for very large multiplicities like more than 11 external particles [GH08]. This is

due to the possible reuse of 1POWs between amplitudes where only some helicities

are flipped.

4.1.2. Discrete Importance Sampling

If the calculation is restricted to a fixed set of helicities, the most elaborate method

is discrete MC with importance sampling. Hereby, the necessary weights wh can be

generated in a warm up phase with NW sampling points from amplitudes
∣∣M̃h

∣∣2.

Results of this phase are discarded before the final phase in order to guaranty that

the result is unbiased. In other words

∑
h

|Mh|2 =
∑
h

wh
|Mh|2

wh
=

〈
|Mh|2

wh

〉
w

with wh =

∣∣∣M̃h

∣∣∣2∑
j

∣∣∣M̃j

∣∣∣2 , (4.1.2)

where the deterministic sum has been replaced in the last step by the stochastic

sampling 〈◦〉w according to the probabilities wh. This includes the case of equal

weights or uniform probability distribution where 1/wh = 1/w = Nhel. The scaling

of |Mh|2 with 1/wh leads to a smaller variance and hence over Eq. (3.3.2) to a

smaller error of the MC integration. Furthermore, it is a natural way to exclude
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4. HELICITY SUMMATION AND SPIN CORRELATIONS

helicity combinations that have a vanishing matrix element since the probability for

these vanishes as well. This means, that we do not need some heuristic approach

to exclude such combinations, which is currently seen in Whizard or MadGraph,

and that we can gradually lower the probability of sampling these instead of simply

turning them on and off.

Fixed number of matrix element evaluations

0.8

0.9

1.0

1.1

1.2

〈|
M
|2 〉

[a
.u

.]

ud → ud

Full sum
Discrete MC with equal weights
Discrete MC with NW = 0.01N

Figure 4.1. The convergence of the cross section with HMC and helicity sum for 2→ 2
scattering, integrated with Rambo. For a fixed number of matrix element evaluations,
helicity MC clearly profits from the additional independent momentum phase space
points. Moreover, one can see that a small investment in a warm up phase to generate
weights (NW ) can significantly reduce the variance opposed to uniform probabilities.

As illustrative example, the convergence rate for ud→ ud is shown in Fig. 4.1. It is

obvious that here for a fixed number of matrix element evaluations, helicity MC is

superior to the classical full sum. If this is also reflected in the overall time, which is

needed to compute a process to a requested error, will be analyzed later on. Although

the discrete MC with importance sampling clearly shows the smaller error bands, it

should be stressed that one cannot draw conclusions from the convergence rate of a

single run. Hence, we will employ statistics and take into account multiple processes

with several independent seeds in Section 4.4.

4.2. Superpositions of Helicities

While the above method can easily be implemented on the top level of the compu-

tation, we will now relax this restriction and allow for arbitrary superpositions of
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4.2. SUPERPOSITIONS OF HELICITIES

helicities. This has to be implemented on the lowest level, namely the construction

of the external wave functions. In the amplitude computation by the OVM, it is

no problem to use linear combinations of external wave functions. For the sake of

simplicity, we will stick to QCD which implies that Nhel = 2Nprt and only spin 1/2

spinors and massless spin 1 vector bosons are involved.

4.2.1. Continuous Helicity Sampling

Continuous helicity sampling replaces the sum over discrete spin configurations with

an integral over superpositions of helicities. E.g. for a massless vector-boson field

εµ, this can be achieved by using a superposition of the two physical polarization

vectors

εµθ (p) = eiθεµ+(p) + e−iθεµ−(p) . (4.2.1)

Note, that this is a real polarization since ε∗+ = ε−. Furthermore, we can see that

(εθ/
√

2)2 = −1 and kµε
µ
θ = 0. But, one should be careful not to use it blindly as

a set of polarization vectors, because ε∗θ µεθ′
µ/2 = − cos (θ − θ′) 6= 0 in general. To

establish the connection to spin-summed amplitudes, we remember the helpful role

of projectors, i.e. polarization sums, in analytical calculations of matrix elements

Π(p) =
∑
s

|p, s〉 〈p, s| (4.2.2)

or in our example

Πµν(p) =
∑
λ=±

εµλ(p)ενλ(p)∗ . (4.2.3)

Of course, we cannot use the explicit, analytical representation of Πµν(p) in terms of

gµν and pµ in a numerical setup like O’Mega. But, following the idea of Ref. [DKP98],

we may replace the sum by an integral over the states of Eq. (4.2.1)

1

π

∫ π

0
dθ εµθ (p)ενθ(p)∗ =

∑
λ=±

εµλ(p)ενλ(p)∗ , (4.2.4)

which can be verified trivially by inserting the definition of εµθ . Suppose now, that

we have calculated the matrix element Mλ for the transition of an initial state |A〉
to some |B, ελ〉, where |B〉 may be any free, n − 1 multi-particle state in a 2 → n
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4. HELICITY SUMMATION AND SPIN CORRELATIONS

scattering. For the spin sum of the vector boson follows

∑
λ

|Mλ|2 =
∑
λ

〈
A
∣∣∣ T ∣∣∣B, ελ〉〈B, ελ ∣∣∣ T † ∣∣∣A〉 (4.2.5)

=
1

π

∫ π

0
dθ
〈
A
∣∣∣ T ∣∣∣B, εθ〉〈B, εθ ∣∣∣ T † ∣∣∣A〉 , (4.2.6)

where T is the transition matrix, connected to the scattering matrix S via i(1−S) =

(2π)4δ (pout − pin) T .1 The generalization of this to all n + 2 helicities and spinors

u, v is obvious and leads to an n + 2 dimensional integration instead of a sum over

the 2n+2 possible spin configurations. So far no approximation is involved and it is

not really intuitive why an integral should be computationally less expensive than a

sum over two elements. But, using a MC sampling, only one random phase is used

per independent momentum phase points. Since the MC error does not depend on

the dimension, merely the price of additional variance and calculation of oscillating

terms with mean zero has to be paid. To verify the significant speed up by an order

of magnitude in convergence, which has been reported in Ref. [Oor12], we will test

this parametrization thoroughly in Section 4.4.

4.2.2. General Helicity MC Formalism

The above is merely one example of how one can parametrize a sampling of the

helicity sum. We will now formulate the necessary and sufficient conditions that have

to be fulfilled by a sampling, which can be either deterministic or stochastic. Given a

particle u with two helicities, we can decompose Π = uū into four linear independent

terms

Π = f(θ)u+ū+ + g(θ)u+ū−

+h(θ)u−ū+ + j(θ)u−ū− , (4.2.7)

where θ can be any real or complex n−dimensional vector. The only condition that

must be imposed to obtain asymptotically the result of the traditional helicity sum

is

〈f(θ)〉θ = 〈j(θ)〉θ = 1

〈g(θ)〉θ = 〈h(θ)〉θ = 0 . (4.2.8)

1In color flow basis, we are actually computing
∑
λ

∑Ncfactors
n=1 cfnMin

λ M
jn∗
λ . However, this does not

violate the validity of Eq. (4.2.6) when the same θ phases are used for all colors and especially
for Min and Min∗.
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4.2. SUPERPOSITIONS OF HELICITIES

To explore this formulation, we will begin with two possible and orthogonal parametriza-

tions for n = 1. In the following section, these will be shown to be special cases of

an n = 2 dimensional parametrization of the unit sphere of the spin density matrix,

if u is a massive spin 1/2 spinor.

At first, we will recover the exponential parametrization, which has been introduced

in Section 4.2.1. With the analogue of Eq. (4.2.1) for u, immediately follows

Π = 1 u+ū++ e2iθ u+ū−

+ e−2iθ u−ū++ 1 u−ū− , (4.2.9)

which fulfills Eq. (4.2.8) if we take a sampling in which the mean of the mixing terms

vanishes. Sampling the integral

〈 ◦ 〉θ =
1

π

∫ π

0
dθ ◦ →

∑
θi∈[0,π]

◦ , (4.2.10)

whereby the sum should indicate a MC sampling, is as valid as choosing randomly

between two phases

〈 ◦ 〉θ =
1

2

∑
θ=0,π

2

◦ →
∑

θi∈{0,π2 }
◦ . (4.2.11)

In each case, we compute uū = (u+ū+ + u−ū− + osz.) with a single matrix element

evaluation. However, the sampling does affect the convergence of the mixing terms.

A drawback of this parametrization is that it is by construction not suitable for the

generation of events with a certain helicity.

To obtain weights for the different helicities, a trigonometrical parametrization can

be used

u = cos θ u+ + sin θ u− (4.2.12)

leading to

Π =
(
cos θ

)2
u+ū++ sin θ cos θ u+ū−

+ sin θ cos θ u−ū++
(
sin θ

)2
u−ū− . (4.2.13)
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4. HELICITY SUMMATION AND SPIN CORRELATIONS

The corresponding samplings, which fulfill Eq. (4.2.8), are e.g.

〈 ◦ 〉θ =
1

π/2

∫ π

0
dθ ◦ → 2

∑
θi∈[0,π]

◦ (4.2.14)

or as discrete version

〈 ◦ 〉θ =
∑
θ=0,π

2

◦ → 2
∑

θi∈{0,π2 }
◦ . (4.2.15)

Eq. (4.2.15) corresponds to randomly selecting a helicity or in other words, the sam-

pling of Section 4.1.2 with equal weights. In helicity conserving processes, we can

expect a rather large variance of this discrete sampling since many helicity combi-

nations give a vanishing matrix element. The natural choice to avoid this, is to use

θ ∈ {π4 ,
3
4π} instead. This is equivalent to the discrete sampling of the exponential

parametrization but the computation time may differ since it is calculated in another

way.

4.3. Spin Density Matrices in the Rest Frame

It turns out that the ad hoc parametrizations that were found earlier are just lines

on the unit sphere of the spin density matrix of a spin 1/2 particle. As known from

basic quantum mechanics [Sch07b], the density matrix ρ for a spin in the α direction,

may be written with the Pauli matrices σi as

ρ(α) =
1

2
(1 +ασ) with σ = (σx, σy, σz) . (4.3.1)

This can be verified, by computing

〈σ〉 = Tr [ρσ] = Tr

[
1

2
(1 +ασ)σ

]
= α . (4.3.2)

Especially in terms of quantum information, α is also known as Bloch vector. If ρ

should describe a pure state, it has to be idempotent, i.e. ρ2 = ρ, which requires

|α| = 1 since σ2
i = 1. Geometrically, this is related to the fact that a pure state may

not be expressed as convex combination of other states. Obviously, these states lie on

the boundary of the domain of ρ(α) while fully mixed states are in the center α = 0.
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4.3. SPIN DENSITY MATRICES IN THE REST FRAME

Using the canonical spherical coordinates for radius one

α = (sin θ cosϕ, sin θ sinϕ, cos θ) , (4.3.3)

we obtain with help of Euler’s formula

ρ(θ, ϕ) =

 cos2
(
θ
2

)
1
2e
−iϕ sin(θ)

1
2e

iϕ sin(θ) sin2
(
θ
2

)  , (4.3.4)

which looks rather familiar if compared with Eq. (4.2.9) and Eq. (4.2.13). This

matrix is of course written in a basis in which Sz is diagonal 〈↑| = (1, 0). ρ(α) =

|α〉 〈α| should be understood as dyadic product and ρ(ez) = |↑〉 〈↑| can be checked

in Eq. (4.3.4) for θ = 0. So, by sampling θ and ϕ with spinors with momentum

p, we are actually setting up a density matrix ρ(α) with ρ(ez) = |u+〉 〈u+|. How

this object transforms under Lorentz transformations, will be shown in Section 4.5.

Reformulating Eq. (4.2.5) in these terms, the helicity sum becomes a trace over the

density matrix (ρz + ρ−z),∑
λ

|Mλ|2 = Tr
[〈
A
∣∣∣ T (|B〉 〈B| ⊗ (ρz + ρ−z

))
T †
∣∣∣A〉] (4.3.5)

or if |A〉 and |B〉 also consist of spin 1/2 particles, which are summed over,

1

2Nin

∑
λ1,...λn+2

∣∣Mλ1,...λn+2

∣∣2 = 2Nout Tr
[
ρin T ρout T †

]

with Nin = 2 and ρin =
1

4
1A =

(ρz + ρ−z)
⊗2

4
(4.3.6)

and ρout = 1
2Nout

1B′ , whereby A and B′ are the full incoming and outgoing states.

Note that the trace goes over two elements in Eq. (4.3.5) and over 2n+2 elements in

Eq. (4.3.6).

The original motivation of this chapter, or more generally in jet physics if one is

not interested in spin correlations, is to speed up the calculation of the 1. As noted

earlier, this is the fully mixed state consisting of ↑ and ↓. However, we cannot obtain

this 1 directly since our physical states in the Hilbert space are pure states that lie

on the unit sphere. The first parametrization, which was introduced in Section 4.2.1,

is 2ρ(π/2,−2ϕ) and the continuous integral over ϕ is just the line integral along the

equator while the discrete sampling of this at ϕ = 0, π/2 is ρx and ρ−x. The second

parametrization shown in Section 4.2.2 in terms of sin and cos is orthogonal to the

first, connecting north and south pole of the unit sphere and is equivalent to ρ(2θ, 0).
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4. HELICITY SUMMATION AND SPIN CORRELATIONS

Viewed in this light, there is no good argument why either parametrization should

be superior, which will be confirmed by numerical data later on.

In order to use this parametrization for calculations of the helicity sum, we should

now consider to fulfill Eq. (4.2.8) with Eq. (4.3.4). Possible normalizations are

〈 ◦ 〉θ,ϕ =
1

π2

∫ π

0
dθ

∫ 2π

0
dϕ ◦ → 2

∑
θi∈[0,π]
ϕi∈[0,2π]

◦ (4.3.7)

or

〈 ◦ 〉θ,ϕ =
1

2π

∫ 1

−1
d cos θ

∫ 2π

0
dϕ ◦ =

1

2π

∫
dΩ ◦ → 2

∑
cos θi∈[−1,1]

ϕi∈[0,2π]

◦ . (4.3.8)

Note that although the probability density for θ is either unity or sin θ, the normal-

ization and mean remain the same. As in the case of discrete samplings, different

samplings can still yield the same mean information. However, the uniform sampling

of cos θ can be regarded as more natural, since it yields a uniform sampling of the

sphere without any prior to the momentum direction. Despite the fact that we are

analyzing massive spin 1/2 particles in this section, it is of course possible to use

analogue parametrizations for massless particles. E.g. for gluons

εθ,ϕ(p) = e−iϕ/2 cos

(
θ

2

)
ε+(p) + e+iϕ/2 sin

(
θ

2

)
ε−(p) . (4.3.9)

The interpretation of a spin in a certain direction is in this case not meaningful, since

we cannot go in the rest frame of a massless particle. Nevertheless, we use it as

spherical parametrization in the context of speed testing.

Note, that the identification of the real direction of the spin in three dimensional

space with α is only possible for spin 1/2 particles due to the isomorphism between

SU(2) and SO(3)/Z2. For massive spin 1 particles, like W and Z, we could describe

ρ(β) with Gell-Mann matrices λa, a = 1, . . . 8 as basis for 3x3 matrices whereby

the polarization direction is not so easily identified with β. The generation of events

with massive vector bosons in terms of density matrices is of practical interest since it

allows to factorize production and decay while keeping full spin correlations. Further

elaboration for spin greater 1/2 is therefore required.
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2 3 4 5
Final states in 2 → n
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tDI/tsum

tED/tsum

tEC/tsum
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tTD2/tsum

tTC/tsum
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Figure 4.2. Mean execution times for various 2→ 2, 3, 4, 5 processes, listed in detail in
Tab. B.1, until the estimated error has reached 0.2 %, 1 %, 3 % and 3 %, each averaged
over 15 different seeds. The different modes are encoded as follows: DI = discrete
helicity MC with importance sampling, {ED, EC}= exponential parametrization with
discrete and continuous sampling, respectively, {TD, TD2, TC} = trigonometrical
parametrization with θ ∈ {0, π/2}, θ ∈ {1/4π, 3/4π}, θ ∈ [0, π] and sphr = spherical
parametrization as described in the text. For improved visibility, different methods are
shifted around integer n. The whole batch has been computed with NW = 1000, which
is obviously insufficient to generate good weights for n > 3. Continuous samplings
are denoted by a thicker symbol and tend to be faster than the discrete ones.

4.4. Discussion and Performance

All parametrizations mentioned in this chapter have been implemented in the OVM

and tested in detail. The mean computation times for various processes are listed in

Tab. B.1. Results obtained with different methods agree with the full sum within their

respective error. Furthermore, the standard deviation between different runs with

the same method is approximately the desired error for 2 → 2 and 2 → 3 processes,

thereby confirming the reliability of the error estimation which is done according to

Appendix A. For 2 → 4 and 2 → 5 the Rambo algorithm can lead to apparent

convergence because the variance gets smaller and smaller until the algorithm hits

another peak. If the termination criterion, i.e. δI/I < 3 %, is fulfilled before the next

peak is reached, this leads to a wrong result. By taking the mean over 15 runs, we

still obtain agreement for the different methods, but with larger errors, which is also
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reflected in the larger errors of the time measurement.

The full sum matrix elements for 2 → 2 processes have also been checked to agree

with the analytic expressions for
∑
|M|2 from the literature [ESW96] in 12 digits in

every phase space point, as expected when using double precision. This also confirms

the correct implementation of the virtual machine and the normalization of the color

flow basis. Hereby, one should keep in mind, that g in the color flow basis corresponds

to g′/
√

2 where g′ is the input parameter, taken from other measurements, for the

strong coupling constant [Kil+12].

In Fig. 4.2, we only show the mean execution times averaged over all processes.

Additionally, a line is shown that corresponds to the speed up that is possible, if the

variance is not changed by helicity MC at all. The computation time t is roughly

proportional to the number of evaluations. For unchanged variance, we have to

compute Nhel times more points in the full sum, hence tHMC/tsum ∝ 2−Nprt . We

can see that most methods in Fig. 4.2 roughly possess this behaviour. Scaling being

better or worse than this can be interpreted as reduction or increase, respectively, in

variance of the integrand due to the superpositions of helicities.

Furthermore, continuous methods seem to be superior to the discrete samplings when

no importance sampling is employed to reduce the variance. By using importance

sampling, which is very straightforward in the discrete case, it can be highly competi-

tive. However, the number of points for the weighting phase NW should be fine tuned

or adaptively computed. This has not been done here, resulting in bad performance

for n > 3. All three parametrizations tested here, namely exponential, trigonometri-

cal and spherical, perform equally well and it remains a matter of choice which is used.

Of course, if one is interested in generating events with spin or helicity information,

spherical and trigonometrical parametrizations are the natural options.

Overall, we can see that helicity MC keeps improving over the full sum as the number

of external legs grows. Hence, it is highly recommended for the calculation of multi-

particle processes. Of course, one has to keep in mind that the overall variance is

now the squared sum of the variance in the momentum phase space σ(fPS) and the

helicity σ(fH): σ(f)2 = σ(fPS)2 +σ(fH)2. This increase in variance can be minimized

by using discrete importance sampling or a convenient parametrization in which it is

already very small. To generate the weights for importance sampling, only a small

fraction of total computation time . 1 % of N has to be invested. Note, that this

investment can also be used to generate weights for the other discrete variables that

may be included in the MC integration, namely color and flavor. However, for a fully

automated MC integrator, it is not known beforehand what 1 % of N is. In order
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to still benefit from importance sampling, one could use an empiric formula that

determines NW depending on Nprt or keep accumulating weights until their variance

is under control. It remains to be tested if adaptive variance reduction techniques

for the θ phases like Vegas [Lep78] yield a further improvement in convergence or if

it is better to reserve these for the already difficult phase space integration to avoid

a proliferation of integration dimensions. To ensure robustness and convergence, an

adaptive change of the discrete weights during runtime has not been implemented.

4.5. Lorentz Transformations of Density Matrices

We conclude this chapter with some additional thoughts about density matrices.

Though we have firm knowledge how to interpret spin density matrices at rest, in a

relativistic setting this intuition may fail. We will therefore deduce the behaviour of

the density matrix under Lorentz transformations strictly from the transformation of

the wave functions. Note, that a consideration of the reduced spin density matrix, i.e.

where the momentum has been integrated out, has been shown to have no covariant

meaning [PST02], due to the correlations between spin and momentum. Despite

being an interesting topic by its own, these relations are of course crucial if one wants

to relate spin directions in different reference frames. As it will become evident

below, the specification of a spin direction without noting the reference frame is

useless. An interesting, future application of this transformation behavior might be

the reconstruction of the spin of intermediate particles in cascade decays due to the

spin correlations between the decay products.

Let us first concentrate on the proper, orthochronous Lorentz transformations U(Λ, 0) ≡
U(Λ),Λ ∈ L↑+ without translations. As the full density matrix of all particles is

merely the direct product of single particle density matrices, it is sufficient to regard

the transformation of single particle states. Each momentum pµ can be written as

L(p)k, where L(p) is a pure boost, i.e. without rotations, and kµ = (m,0), in the

case of positive definite mass, is the rest frame momentum. Note, that although in

the rest frame there is no distinguished direction, it inherits the orientation of the co-

ordinate system from which it is boosted back. State vectors |p; s,m〉 can be defined

via standard momentum states |k; s,m〉 as

|p; s,m〉 = U(L(p)) |k; s,m〉 . (4.5.1)
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Now, the transformation of this state vector is

U(Λ) |p; s,m〉 = U(Λ)U(L(p)) |k; s,m〉 (4.5.2)

using the group property and setting pΛ = Λp

= U(L(pΛ))U
(
L−1(pΛ)ΛL(p)

)
|k; s,m〉 . (4.5.3)

Hereby, we can define the Wigner rotation W (Λ, p) = L−1(pΛ)ΛL(p) that boosts

a particle from rest to p, applies Λ and brings it back to rest. Let us explain the

reasoning for this three step round trip on the mass hyperboloid, p2 = p2
Λ = k2 = m2.

It is clear, that since Wk = k, it has to be a pure rotation diag(1, R). Such a

transformation of the state in the rest frame under a rotation R ∈ SO(3) can be

written as [Sch07a]

U(R) |k; s,m〉 =
∑
m′

D
(s)
m′m(R)

∣∣k; s,m′
〉
, (4.5.4)

where D(s)(R) are the (2s+ 1) dimensional representations of the rotation group for

spin s. Plugging the pieces together, we obtain

U(Λ) |p; s,m〉 = U(L(pΛ))U
(
W (Λ, p)

)
|k; s,m〉

=
∑
m′

D
(s)
m′m

(
W (Λ, p)

) ∣∣pΛ; s,m′
〉
. (4.5.5)

So, by inserting a 1 in Eq. (4.5.3) and using the rest frame, we are able to translate

the action of a Lorentz transformation Λ on a state with p into a rotation of the

states with pΛ. Note, that the explicit use of the rest frame indicates obstacles for

massless particles. However, here the group that leaves kµ invariant, which is in

general called little group, are the rotations in 2D around the direction of motion of

the particle, kµ = (1, 0, 0, 1), SO(2) as well as translations T (3), i.e. ISO(2) ≡ E2

[AM02]. In fact, E2 is a semi-direct product of the two abelian subgroups T (3) and

SO(2). By computing the corresponding Lie algebra of E2, one finds that two of the

generators, which are combinations of rotations and translations, commute with each

other and can therefore simultaneously be diagonalized [Wei05]. The problem with

these states is that if one set with non-zero eigenvalues exists, a whole continuum of

states must exist since the generators can be continuously rotated onto each other.

Since we don’t see massless particles with a continuous degree of freedom for fixed

momenta in nature, physical states are defined with zero eigenvalues with respect

to the mentioned operators. What remains is the third generator J3, which is the
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4.5. LORENTZ TRANSFORMATIONS OF DENSITY MATRICES

angular momentum in the direction of motion for our chosen standard vector kµ, also

called helicity. The translations of E2 also play an important role in realizing that

no four-vector field can be constructed with creation and annihilation operators of a

particle of mass zero and helicity ±1 if not additionally gauge invariance is demanded

[Wei05].

After this small digression, we return now to massive spin 1/2 particles and make

the above a bit more explicit. Consider pµ along the z axis with rapidity η: pµ =

m(cosh η, 0, 0, sinh η). A further boost in the z axis would lead to an identity matrix

for W . Thus, without loss of generality, we make a boost in the x direction with

rapidity ω. By calculating the boost matrices, one can obtain W (Λ, p) for this case.

It acts on a spatial vector zµ = (0, 0, 0, 1) as [AM02]

(Wz)µ =


0

sinh η sinhω/(1 + cosh η coshω)

0

(coshω + cosh η)/(1 + cosh η coshω)

 (4.5.6)

defining the Wigner angle

tan Ωp =
sinh η sinhω

cosh η + coshω
(4.5.7)

with Ωp < θ for 0 ≤ η, ω < ∞, where θ = ](pλ,p) and tan θ = sinhω
tanh η . So, a boost

in the x direction does not only rotate p around the y axis but also the spin state in

the same sense but with lesser magnitude.

For spin 1/2 particles, the D matrices of Eq. (4.5.5) take the elegant form

D
(1/2)
m′m

(
W (Λ, p)

)
= exp

{
−i Ωp

σ

2

}
≡ cos

|Ωp|
2
− i

Ωp

|Ωp|
σ sin

|Ωp|
2

, (4.5.8)

which simplifies for the considered rotation around y to(
u(p,+1

2)′

u(p,−1
2)′

)
=

(
cos

Ωp
2 sin

Ωp
2

− sin
Ωp
2 cos

Ωp
2

)(
u(p,+1

2)

u(p,−1
2)

)
≡ R

(
u+(p)

u−(p)

)
(4.5.9)

Note, that due to Eq. (4.5.5), Eq. (4.5.8) has to be transposed to write it in matrix

notation. Furthermore, this is no violation of Wigner’s statement [Wig39] that the

Lorentz group has no true unitary representation in a finite number of dimensions.

We are merely using a momentum dependent, local unitary rotation of the spin

components.
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4. HELICITY SUMMATION AND SPIN CORRELATIONS

With Eq. (4.5.9), the transformation of ρ is

ρ′(pΛ,α) =
∑
ij

cij u
′
i(pΛ)ū′j(pΛ)

=
∑
ijkm

RT
kicijRjm ukūm

=
∑
ijkm

1

2

δij +αRT
kiσijRjm︸ ︷︷ ︸
σ′
km

 ukūm . (4.5.10)

This transformation of σ to σ′ can also be performed by rotating α. More generally,

it is an easy exercise of matrix multiplication to show that

σα′ ≡ σ
(
e−iθ·Jα

)
= α

(
e−iθ·σ

2 σ eiθ·σ
2

)
≡ ασ′ , (4.5.11)

whereby θ ∈ R3 are the rotation angles and J and σ/2 are the generators of SO(3)

and SU(2) rotations, respectively, and is commonly known as the SO(3)-SU(2)

correspondence. This means that the Wigner rotation of the spin states induced

by a Lorentz boost perpendicular to the momentum can be pulled back to a ro-

tation of the three vector of the density matrix. Furthermore, we can note that

ρ(p,α) = U
(
L(p)

)
ρ(k,α)U †

(
L(p)

)
= ρ(k,α) as the boost parallel to the momentum

direction that brings p to the rest frame vector k is independent of the spin state.

Finally, we should also note the transformation behaviour under rotations and trans-

lations. Rotations are just the simplification of the above whereby now we have a

truly global, unitary rotation of the spin components. Translations are given by the

unitary operator U(1, a) = exp {iaµPµ} leading to two phases with opposite signs for

ρ′. Therefore, ρ is invariant under translations.
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5. Conclusion

In this thesis, we have touched various aspects of the computation of multi-jet cross

sections. Hereby, we aimed to complement the excellent abilities of the event gen-

erator Whizard to compute cross sections involving some heavy particles by an

approach which is especially suited for many light particles, as it occurs in Quantum

Chromodynamics (QCD). We have shown that a high-performance Virtual Ma-

chine (VM) in Fortran95 is a very powerful alternative to the traditional approach

of compiling the matrix element of every process separately and yields many benefits.

Firstly, we eliminate the, eventually time consuming, necessity to compile completely.

This allows to compute amplitudes with eight external gluons with O’Mega, which

fails to compile due to lacking memory on a common desktop environment. The VM

is also handy to check a lot of processes quickly. Even the computation time of the

matrix element per phase space point has been reduced for complex amplitudes com-

pared to the compiled code with an improved memory layout. The VM also allows

to parallelize the computation easily and effectively. Exploiting the recursive nature

of the computation, we have identified hereby the necessary synchronization points.

These are represented in the bytecode, HepBC, in an abstract way independent of

the implementation of the interpreter. With the scaling with multiple cores, we have

demonstrated that 75 to 95 % of the whole computation is parallelizable, which paves

the way to a potential implementation on a GPU. Additionally, the HepBC is a plat-

form independent format, which can be reused on clusters or environments where a

full O’Mega installation would be tedious. The HepBC could also be extended to

other event generators, which involve the computation of a matrix element, as it is

a fairly simple and general concept. Furthermore, we have shown that the reduction

of four vertices with auxiliary fields reduces the number of vertices in a recursively

computed amplitude for 11 or more external particles while it is higher for less par-

ticles. Since the computation time for three and four vertices is not the same, this

does not necessarily reflect a break-even point at which it is worth to use auxiliary

fields. It rather has to be tested at which point O’Mega can profit from the slower

growth in the number of vertices.

Since a flat momentum phase space generator, i.e. Rambo, causes high variance in the

integration of matrix elements, we have implemented Sarge, which samples points

with a density close to the leading divergencies of QCD. For this, we have recalcu-

lated the explicit weights, the inverse of the density, of the basic Sarge algorithm as
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5. CONCLUSION

well as its extension including initial momenta analytically using the Unitary Algo-

rithm Formalism (UAF) and find that it differs in global factors of 2, π and center-

of-mass energy
√
s from the published results [HK00b; HKD00]. Though they are not

important for the event generation of fixed
√
s processes, only our formulae give the

correct result for the phase space volume and hence the absolute value of the cross

section. We should mention that the FORTRAN77 implementation of A. van Hameren

et al. uses the correct weight. Overall, we have verified that Sarge is indeed a very

good mapping of the soft and collinear divergencies occurring in QCD and a major

improvement over Rambo. The reduction of the volume for the random variables

representing quotients of scalar products from the hypercube to a smaller polytope

increases the acceptance rate to generate a valid phase space point by an order of

magnitude for five outgoing momenta and grows like ∼ 22n for n external particles.

Including initial momenta in the phase space density requires a modified algorithm,

whereby the variance of the integration depends greatly on the way how the permu-

tations are performed and the weight is computed. We have presented an algorithm,

strongly inspired by Ref. [HK00b], which performs very well and reduces the number

of points needed to integrate an amplitude to a given precision by more than an order

of magnitude for most processes compared to the basic version of Sarge.

In the last chapter, we have compared different types of possible ways to perform the

helicity sum. The inclusion of the helicity degrees of freedom as additional dimen-

sion in the Monte Carlo (MC) integration has shown to be very fruitful. Hereby, we

have obtained the lowest overall variance when the warm up phase for the discrete

importance sampling was long enough. With unit weight, however, superpositions of

helicities, i.e. continuous phases, seem to result in a lower variance compared to the

discrete samplings. We have generalized the known parametrization from the litera-

ture [DKP98] and given the conditions that must be fulfilled to obtain the result of

the usual, deterministic helicity sum. Furthermore, we can identify this parametriza-

tion for massive spin 1/2 particles as integration path along the equator of the Bloch

sphere of the external particle. Each point on the Bloch sphere corresponds hereby

to a spin in a certain direction, measured in the rest frame of each particle. Finally,

we considered the transformation of spin density matrices under Lorentz transfor-

mations. Though helicity MC is way more efficient than the full sum in our setup,

we note that the treatment of spinors in the Weyl-van-der-Werden formalism and re-

garding different chiralities as different wave functions removes redundancies between

amplitudes where only some helicities are flipped in a recursive computation. Appar-

ently, this seems to be preferable to simplest helicity sampling for up to 11 external

particles [GH08] and would be a possible extension to O’Mega. Overall, we can
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conjecture that the phase space integration will be further improved when adaptive

importance sampling methods like Vegas will be used for the random variables of

Sarge as well as the helicity phases. As it is advisable to generate the grids in a

warm up phase and then integrate with constant grids to ensure convergence, this

warm up phase can also be used to chose the dominant permutation channels for

Sarge. It is also open to explore whether discrete importance sampling of helicities

or Vegas grids for continuous helicity phases are superior.
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Zusammenfassung

In dieser Arbeit wurden verschiedene Aspekte der Berechnung von Multi-Jet Wirkungs-

querschnitten behandelt. Hierbei haben wir versucht die hervorragenden Fähigkeiten

des Eventgenerators Whizard Wirkungsquerschnitte, bei denen einige schwere Teil-

chen beteiligt sind, zu berechnen um einen Ansatz zu erweitern, der besonders gut

für viele leichte Teilchen geeignet ist, wie es in der Quantenchromodynamik (QCD)

auftritt. Wir haben gezeigt, dass eine leistungsfähige Virtual Machine (VM) in

Fortran95 eine sehr mächtige Alternative zur traditionellen Methode ist, bei der

das Matrixelement jedes Prozesses seperat kompiliert wird, und sich viele Vorteile

ergeben. Die eventuell zeitaufwändige Notwendigkeit zu Kompilieren wird hiermit

komplett entfernt. Dies erlaubt Amplitude mit acht externen Gluonen mit O’Mega

zu berechnen, was auf einer üblichen Desktopumgebung aufgrund von fehlendem Ar-

beitsspeicher nicht kompilierbar ist. Die VM ist auch praktisch um viele Prozesse

schnell zu überprüfen. Selbst die Zeit zur Berechnung des Matrixelementes pro

Phasenraumpunkt wurde mit einem verbesserten Memorylayout für komplexe Am-

plituden verbessert. Desweiteren erlaubt die VM die Berechnung einfach und effek-

tiv zu parallelisieren. Wir haben die hierbei notwendigen Synchronisierungspunkte

identifiziert indem wir die rekursive Natur der Rechnung ausgenutzt haben. Diese

Punkte sind im Bytecode, HepBC, auf abstrakte Weise unabhängig von der Imple-

mentierung des Interpreters repräsentiert. Anhand der Skalierung mit mehreren Ker-

nen haben wir demonstriert, dass 75 bis 95 % der gesamten Rechnung parallelisierbar

sind, was den Weg für eine mögliche GPU Implementierung ebnet. Ferner ist HepBC

ein plattformunabhängiges Format, welches auf Clustern oder in Umgebungen, in

denen eine volle O’Mega Installation mühsam ist, wiederverwendet werden kann.

Der HepBC könnte auch für andere Eventgeneratoren, bei denen ein Matrixelement

berechnet wird, erweitert werden, da es ein recht einfaches und allgemeines Konzept

ist. Desweiteren haben wir gezeigt, dass die Reduktion von Vierervertices mit Hilfs-

feldern die Anzahl der Vertices in einer rekursiv berechneten Amplitude für elf oder

mehr externe Teilchen reduziert, während sie für weniger Teilchen höher ist. Da die

Berechnungszeit für Dreier- und Vierervertices nicht identisch ist, stellt dies nicht

unbedingt einen Break-Even Punkt dar, ab welchem es sich lohnt Hilfsfelder zu ver-

wenden. Stattdessen muss getestet werden ab welchem Punkt O’Mega von dem

langsameren Wachstum der Anzahl an Vertices profitieren kann.

Da ein flacher Impulsphasenraumgenerator, d.h. Rambo, für eine hohe Varianz in
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der Integration der Matrixelemente sorgt, haben wir Sarge implementiert, welcher

Punkte mit einer Dichte erzeugt, die nahe an den führenden Divergenzen von QCD

liegt. Dafür haben wir die expliziten Gewichte, also das Inverse der Dichte, sowohl

für den grundlegenden als auch den erweiterten, welcher die einlaufenden Impulse

mitberücksichtigt, Sarge-Algorithmus analytisch mit Hilfe des Unitary Algorithm

Formalism (UAF) berechnet und erhalten ein Ergebnis, welches in globalen Faktoren

von 2, π und Schwerpunktsenergie
√
s von den veröffentlichten Resultaten abwe-

icht [HK00b; HKD00]. Obwohl dies für die Erzeugung von Events bei festem
√
s

irrelevant ist, ergeben nur unsere Formeln das korrekte Phasenraumvolumen und

somit absoluten Wirkungsquerschnitt. Wir sollten erwähnen, dass die FORTRAN77

Implementierung von A. van Hameren et al. das korrekte Gewicht verwendet. Insge-

samt haben wir verifiziert, dass Sarge in der Tat eine sehr gute Abbildung der we-

ichen und kollinearen Divergenzen, die in QCD auftreten, darstellt und eine enorme

Verbesserung gegenüber Rambo ist. Die Reduktion des Volumens für Zufallsvari-

ablen, welche Quotienten von Skalarprodukten darstellen, von einem Hyperkubus

zu einem kleineren Polytop erhöht die Akzeptanzrate zur Erzeugung eines gültigen

Phasenraumpunkts um eine Größenordnung für fünf ausgehende Impulse und wächst

wie 22n für n externe Teilchen. Die Berücksichtigung der einlaufenden Impulse in

der Phasenraumdichte erfordert einen modifizierten Algorithmus, wobei die Varianz

der Integration in hohem Maße davon abhängt auf welche Art die Permutationen

durchgeführt werden und wie das Gewicht berechnet wird. Wir haben einen Al-

gorithmus präsentiert, deutlich inspiriert von Ref. [HK00b], welcher sehr gut funk-

tioniert und die Anzahl an Punkte, die notwendig sind um eine Amplitude bis zu

einer gegebenen Präzision zu integrieren, für die meisten Prozesse um mehr als eine

Größenordnung reduziert im Vergleich zur grundlegenden Version von Sarge.

Im letzten Kapitel haben wir verschiedene Arten von möglichen Wegen die He-

lizitätssumme durchzuführen verglichen. Die Hinzunahme der Helizitätsfreiheitsgrade

in der Monte Carlo (MC) Integration als weitere Dimension hat sich als sehr erfolg-

reich herausgestellt. Hierbei haben wir insgesamt die niedrigste Varianz erhalten,

wenn die Aufwärmphase für das diskrete Importance Sampling lang genug war. Bei

konstanten Gewichten scheinen Superpositionen von Helizitäten, also kontinuierliche

Phasen, allerdings zu niedrigerer Varianz im Vergleich zu diskreten Phasen zu führen.

Wir haben die bekannte Parametrisierung der Literatur [DKP98] verallgemeinert und

die Bedingungen angegeben, die erfüllt werden müssen, um das Result der gewöhn-

lichen, deterministischen Helizitätssumme zu erhalten. Desweiteren können wir diese

Parametrisierung für massive Spin 1/2 Teilchen als Integrationspfad entlang des

Äquators der Blochsphäre des äußeren Teilchens identifizieren. Jeder Punkt auf der

77



5. CONCLUSION

Blochsphäre entspricht hierbei einem Spin in eine gewisse Richtung, gemessen im

Ruhesystem des jeweiligen Teilchens. Schließlich haben wir die Transformation von

Spindichtematrizen unter Lorentztransformationen betrachtet. Obwohl Helizitäts-

MC in unserem Fall viel effizienter als die volle Summe ist, merken wir an, dass die

Behandlung von Spinoren im Weyl-van-der-Werden Formalismus und von verschiede-

nen Chiralitäten als verschiedene Wellenfunktionen Redundanzen zwischen Amplitu-

den, in denen sich nur einige Helizitäten ändern, in einer rekursiven Berechnung

entfernt. Dies scheint dem einfachsten Helizitäts-MC für bis zu elf externe Teilchen

überlegen zu sein [GH08] und wäre eine mögliche Erweiterung für O’Mega. Insge-

samt können wir vermuten, dass die Phasenraumintegration sich weiter verbessern

wird, wenn adaptive Importance Sampling Methoden wie Vegas für die Zufallsvari-

ablen von Sarge und den Helizitätsphasen verwendet werden. Da es ratsam ist,

die Gitter in einer Aufwärmphase zu generieren und anschließend mit festen Gittern

zu integrieren, um Konvergenz zu garantieren, kann diese Aufwärmphase auch dazu

verwendet werden, um die dominanten Permutationskanäle für Sarge zu wählen. Es

bleibt ebenfalls offen, ob für die Helizitätsphasen diskretes Importance Sampling oder

Vegas Gitter überlegen sind.
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A. Recursive mean and variance

The definition of the sample mean x̄n and unbiased sample variance σ2
n from n points

{xi}i=1,...n is

x̄n =
1

n

n∑
i=1

xi

σ2
n =

1

n− 1

n∑
i=1

(xi − x̄n)2 . (A.0.1)

For the recursive mean follows straightforwardly

x̄n =
1

n

n−1∑
i=1

xi +
xn
n

=
n− 1

n
x̄n−1 +

xn
n

(A.0.2)

or as implemented

mean new = mean +
x− mean

n
. (A.0.3)

For the variance, inserting a zero allows to compare with the old mean

σ2
n =

1

n− 1

n∑
i=1

((xi − x̄n−1) + (x̄n−1 − x̄n))2

=
1

n− 1

n−1∑
i=1

(xi − x̄n−1)2 +
1

n− 1

{
(xn − x̄n−1)2 + 2(x̄n−1 − x̄n)

n∑
i=1

(xi − x̄n−1) + n(x̄n−1 − x̄n)2
}

=
n− 2

n− 1
σ2
n−1 +

1

n− 1

{(
n(x̄n − x̄n−1)

)2 − (2n− n)(x̄n − x̄n−1)2
}
,

(A.0.4)

where we have used Eq. (A.0.2) in the last step. Finally, we obtain

σ2
n =

(
1− 1

n− 1

)
σ2
n−1 + n(x̄n − x̄n−1)2 (A.0.5)

or in the language of Eq. (A.0.3)

varsq = varsq− varsq

n− 1
+ n (mean new− mean)2 . (A.0.6)
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B. Helicity speed up tables

Table B.1. Execution times for various 2 → 2, 3 processes until the estimated error
has reached 0.2 % and 1 % averaged over 15 seeds. Rambo was used as momentum
generator with

√
s = 100 GeV and relatively generous cuts, i.e. τ = 0.1, such that the

spiky convergence of the algorithm is reduced. The different modes are encoded as
follows: s = full sum, DI = discrete HMC with importance sampling, {ED, EC} = ex-
ponential parametrization with discrete and continuous sampling, respectively, {TD,
TD2, TC} = trigonometrical parametrization with θ ∈ {0, π/2}, θ ∈ {1/4π, 3/4π},
θ ∈ [0, π] and sphr = spherical parametrization as described in the text. The average
errors follow from Gaussian error propagation whilst taking into account the statisti-
cal spread over different processes.

process ts/ts tDI/ts tED/ts tEC/ts tTD/ts tTD2/ts tTC/ts tsphr/ts

qq → qq 1.00(11) 0.34(6) 1.09(9) 0.79(9) 1.34(12) 0.95(8) 0.60(8) 0.65(6)

qq′ → qq′ 1.00(7) 0.19(3) 0.97(8) 0.70(7) 1.16(7) 0.81(6) 0.55(5) 0.59(1)

qq̄ → q′q̄′ 1.00(4) 0.36(4) 0.90(5) 0.90(7) 0.73(4) 0.74(5) 0.75(4) 0.95(3)

qq̄ → qq̄ 1.00(9) 0.17(2) 0.86(7) 0.63(3) 1.01(7) 0.75(5) 0.51(6) 0.56(4)

qg → qg 1.00(6) 0.10() 0.70(7) 0.33(4) 0.47(2) 0.33(1) 0.22() 0.27()

qq̄ → gg 1.00(1) 0.24(1) 0.46(1) 0.47(1) 0.41(1) 0.42(1) 0.42(1) 0.57(6)

gg → gg 1.00(6) 0.21(2) 0.86(4) 0.34(2) 0.87(3) 0.42(3) 0.33(3) 0.41(2)

average 1.00(3) 0.23(9) 0.84(19) 0.59(21) 0.86(32) 0.63(22) 0.48(16) 0.57(20)

process ts/ts tDI/ts tED/ts tEC/ts tTD/ts tTD2/ts tTC/ts tsphr/ts

qq → qqg 1.00(13) 0.10(1) 0.23(3) 0.26(5) 0.28(4) 0.40(5) 0.20(3) 0.19(5)

qq′ → qq′g 1.00(15) 0.09(1) 0.33(4) 0.39(5) 0.43(4) 0.54(8) 0.28(4) 0.27(3)

qq̄ → qq̄g 1.00(18) 0.08(1) 0.22(3) 0.22(4) 0.28(3) 0.36(5) 0.21(4) 0.20(3)

qg → qgg 1.00(18) 0.12(2) 0.33(3) 0.22(3) 0.32(3) 0.37(5) 0.16(4) 0.15(2)

qq̄ → ggg 1.00(12) 0.26(2) 0.17(2) 0.12(1) 0.60(6) 0.16(2) 0.21(3) 0.26(4)

gg → ggg 1.00(18) 0.36(7) 0.28(2) 0.15(2) 0.27(3) 0.22(4) 0.15(2) 0.15(2)

average 1.00(7) 0.17(11) 0.26(6) 0.23(9) 0.36(12) 0.34(13) 0.20(5) 0.21(5)
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B.1. HELICITY SPEED UP TABLES

Table B.1 (cont.) Execution times for various 2 → 4, 5 processes until the estimated
error has reached 3 % averaged over 15 seeds. The discrete importance sampling fails
to produce good weights for the full gluonic amplitudes as it was only run with a fixed
number of warm-up runs. Over one magnitude in computing time can be saved by
using HMC for five external particles.

process ts/ts tDI/ts tED/ts tEC/ts tTD/ts tTD2/ts tTC/ts tsphr/ts

qq′ → qq′gg 1.00(59) 0.06(1) 0.07(3) 0.09(5) 0.14(5) 0.17(12) 0.09(6) 0.07(4)

qq̄ → q′q̄′gg 1.00(2) 0.31(1) 0.09() 0.08() 0.15(4) 0.07() 0.08() 0.09(1)

qq̄ → qq̄gg 1.00(43) 0.07(3) 0.08(6) 0.07(3) 0.14(5) 0.21(16) 0.08(6) 0.07(4)

qg → qggg 1.00(43) 0.15(7) 0.14(5) 0.09(4) 0.18(8) 0.12(6) 0.07(5) 0.09(6)

qq̄ → gggg 1.00(2) 0.34(2) 0.08() 0.07() 0.10(2) 0.07() 0.07(1) 0.08()

gg → gggg 1.00(32) 0.84(48) 0.11(2) 0.05(2) 0.14(5) 0.15(23) 0.05(2) 0.05(1)

average 1.00(15) 0.30(28) 0.09(3) 0.07(2) 0.14(3) 0.13(7) 0.07(2) 0.07(2)

process ts/ts tDI/ts tED/ts tEC/ts tTD/ts tTD2/ts tTC/ts tsphr/ts

qg → qq′q̄′gg 1.00(67) 0.17(5) 0.06(7) 0.05(7) 0.22(21) 0.04(3) 0.06(11) 0.05(8)

qq′ → qq′q′′q̄′′g 1.00(163) 0.04(2) 0.02(2) 0.03(2) 0.09(5) 0.05(5) 0.03(4) 0.02(2)

qq → qqggg 1.00(49) 0.15(7) 0.04(3) 0.04(5) 0.08(4) 0.11(15) 0.07(8) 0.05(3)

qq′ → qq′ggg 1.00(86) 0.15(7) 0.03(2) 0.06(10) 0.08(3) 0.11(10) 0.05(6) 0.03(2)

qq̄ → qq̄ggg 1.00(43) 0.14(8) 0.06(4) 0.03(2) 0.17(21) 0.14(12) 0.05(3) 0.06(7)

qq̄ → q′q̄′ggg 1.00(17) 0.53(10) 0.04() 0.03() 0.09(2) 0.03() 0.04(1) 0.04()

qq̄ → ggggg 1.00(2) 0.66(12) 0.04(1) 0.03() 0.05(1) 0.03() 0.03() 0.04(1)

gg → ggggg 1.00(99) 1.28(121) 0.07(4) 0.03(3) 0.09(4) 0.05(9) 0.02(1) 0.04(4)

average 1.00(29) 0.39(42) 0.04(2) 0.04(2) 0.11(7) 0.07(5) 0.04(2) 0.04(2)
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[GH08] T. Gleisberg and S. Höche. Comix, a new matrix element generator. In

Journal of High Energy Physics, 2008:12 (Dec. 2008), p. 039. arXiv:0808.

3674v2
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