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Summary of the Thesis

We studied the coherent state system for SU(n) in this thesis. Therefore we developed
the construction of the generalized coherent states based on the well known case of the
harmonic oscillator. Our motivation for this approach is to calculate the color factors
of Quantum Chromodynamics in this system as well as understanding the color-flow in
more depth. Thus we emphasized the construction of the coherent states for a better
comprehension. Further we numerically integrated the color factors as well as the cross
section for the example process of a quark and an antiquark into two gluons. These
results were compared to the analytic solution and we found simplifications for these
calculations. In addition the correlation of the coherent states between the distinct
particles of our process obtained insights into the color-flow.

Zusammenfassung der Arbeit

In dieser Arbeit wurde das kohärente Zustandssystem für SU(n) untersucht. Dafür
wurde die Konstruktion der kohärenten Zustände entwickelt, was auf der Grundlage
des bekannten Falles des harmonischen Oszillators durchgeführt wurde. Unsere Moti-
vation für die Verwendung der kohärenten Zustände ist die Berechnung der Farbfak-
toren der Quantenchromodynamik in diesem System, sowie ein besseres Verständnis
für den zugrunde liegenden Farbfluss. Insbesondere haben wir die Konstruktion der
kohärenten Zustände sehr detailliert besprochen, um diese besser zu verstehen. Des
Weiteren haben wir sowohl die Farbfaktoren als auch den Wirkungsquerschnitt für den
Beispielprozess von Quark und Antiquark in zwei Gluonen numerisch integriert. Diese
Ergebnisse haben wir mit der analytischen Lösung verglichen und haben Vereinfa-
chungen für die Berechnungen gefunden. Außerdem haben die Korrelationen zwischen
kohärenten Zuständen von den verschiedenen Teilchen dieses Prozesses einen Einblick
in den Farbfluss gewährt.
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1 Introduction

For most students and even graduate physicists, a coherent state (CS) is closely related
to the concept of the quantum mechanical, harmonic oscillator. The CS are introduced
in this context as the eigenstates of the annihilation operator. In most quantum me-
chanics courses one only learns that they are the states closest to the classical ones
as they minimize the uncertainty relation as well as they can be described via the
classical equations of motion. If you were lucky you could also catch a deeper insight
into their properties and their construction via the displacement operator. Thus one
does not and maybe cannot grasp the powerful tool they can offer. The CS shared
the same fate during their history as they already emerged with the birth of quantum
mechanics in the 1920s. As early as one of Schrödinger’s first works [Sch26] contained
their concept. But it was only in the 1960s when they were studied in more depth
[Kla60, Bar61] and Glauber [Gla63] eventually established the term ’coherent states’.
He used them in quantum optics to describe coherent laser beams which gave them
their name. But nonetheless they are used also in the field of solid-state physics when
describing spin waves in ferromagnetism or for the effect of superfluidity. The CS
are also applied to Quantum Field Theory (QFT), where the final states of scattering
processes can be written in the form of a displacement operator. But the reader may
be aware that this is not the track we are pursuing in this work as we are aiming at
another approach.
The property that enables the CS to be such a versatile and powerful tool is their over-
completeness, i.e. they contain more states as would be necessary to span the whole
Hilbert space. Thus they cannot be mutually orthogonal as well as linear independent.
This enables them to solve certain problems but on the other hand one is not used to
work with these properties. In most other cases one has the freedom of choice of basis
and could always take a complete, orthogonal and normalized set. This was the first
interesting part of this work as many concepts learned about a change of basis could
not be easily applied to the set of CS and one needed to find different approaches. As
the CS are linear depend, the expansion of an arbitrary state in their system is not
unique but it is this freedom which makes certain tasks easier.
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1 INTRODUCTION

Moving from the original idea of the CS to a generalization of any group, it was Perelo-
mov [Per86] and Gilmore [ZFG90] who worked in this direction and their name is still
closely related to this topic. To understand their concepts one needs to have some
knowledge in the field of group theory. This is such a universal theory as one can for
example already tell so much about a system by just knowing its symmetry groups.
Combining such a comprehensive tool as the theory of groups with the unfamiliar
properties of the CS was a great challenge over the course of this work. Finally we ap-
plied these methods in the scope of QFT, which is currently our most accurate theory
of nature. From this, we hoped to get a new insight into the mechanics of the color-
flow in Quantum Chromodynamics (QCD). The idea behind this approach is the Lund
string model [And+83] for hadronization. This model is one of the most common and
successful one to explain the confinement of quarks and is the basic idea implemented
in PYTHIA [SMS06]. Quarks in a colorless particle are connected via strings and if you
pull them apart you need to afford more and more energy as these strings act like rub-
ber bands. At a certain point you have put enough energy into the strings to create a
new pair of quark and antiquark which shortens the strings again. This model does not
involve quantum mechanical concepts in any way but however describes the quantum
mechanical particles very well. Thus we hope to gain insight into the color-flow when
we describe the quarks and gluons of QCD as quantum mechanical particles as close
as possible to the classical case. As we know from the harmonic oscillator the CS are
a good approach for this kind of problem as in this case they describe the quantum
mechanical harmonic oscillator and their trajectory is the classical one.
Our goal is to start at the point mentioned at the beginning where almost nothing
about the CS is familiar. Then the first two chapters are following the course of
[Per86] and will add certain steps where it is necessary or we will be more concise if
some concepts are not important for our work. Thus there are parts which are left
to Perelomov to be discussed in more detail especially as they will not be needed but
we will focus on concepts that are essential for our purpose and understanding. From
the basic theory of CS, we will construct them for SU(2) and then for SU(3) as this
is the relevant color group of QCD. But the step from SU(2) to SU(3) is such a huge
one that the reader is suggested to completely grasp the idea in the easier case before
moving on. This difference is due to the fact that the SU(2) has a very special place
among the SU(n): First the definition of higher and lower weights is straightforward
as it is only one dimensional. Secondly it does not have a different complex conjugate
representation. Thus one can construct all higher dimensional representations only
from the single fundamental one and in all other cases we need two or more due to the
rank being n−1 of SU(n). Then in Ch. 4 we are considering a concrete example in the
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scope of QCD which will be our guideline for the numerical implementation of the CS.
Our approach here is more of a heuristic one as we assume we can easily move from
the Feynman rules in the color basis to the system of CS. An analysis of the validity of
this assumption starting with the QCD Lagrangian can be found in the masterthesis
of Katharina Eisenhut [Eis16], also under the supervision of Prof. Dr. Thorsten Ohl.
Finally in the last chapter we are presenting the numerical results of our Monte Carlo
(MC) integrations.

Before moving on, I personally want to make a remark about the basic idea behind
the concepts presented in this work: During the course of this work, we will need
some theorems, terms and statements from the theory of Lie groups and algebras.
As this is not the main subject of this thesis, we won’t have the space to introduce
all these concepts in their full beauty as well as my knowledge in this subject is not
deep enough to establish them from the basic theory. Thus from a mathematical
point of view the arguments might seem a bit heuristic at some parts. But the goal
is to motivate them from a physics point of view with his knowledge based more on
representation theory and applications. Thus the statements made should be clear, at
least in the framework of SU(n) needed for this work. Furthermore we will refer to
the mathematical literature were the proofs of these statements can be found in their
complete scope and universality.
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2 Basic theory of generalized coherent
states

2.1 Lie groups and Lie algebras

In this section we want to introduce some basic terms and concepts from the theory of
Lie groups and algebras [Geo99, Ram10, Dui00, Her66] which will be needed over and
over again in the course of this work. Some deeper concepts which are only needed at
a specific point are introduced later on the fly.
A Lie algebra G is characterized via the structure constants from the commutation
relation

[Ta, Tb] = ifabcTc. (2.1)

Here and during the whole thesis we will use the Einstein sum convention where we sum
over repeated indices unless particular noted otherwise. Be aware that this notation
only applies to indices occurring twice and thus indices appearing thrice or more are
not meant to be summed over unless explicitly written in form of a sum symbol.
In general the square bracket is the Lie bracket which is defined via its bilinearity,
anticommutativity and the Jacobi identity. In our case it is simply the commutator
[A,B] = AB − BA of two operators A and B. The Ta ∈ G are the generators of the
Lie group G and this we get via the exponential map as

G 3 g = eiθaTa . (2.2)

The rank r of the group is the maximum number of generators which commute with
each other. We call these operators Hk, 1 ≤ k ≤ r, the Cartan operators and they
can be simultaneously diagonalized. The eigenvalues of the eigenstates of the Cartan
operators are the weights of these states. In the complex algebra G c we can define
raising and lowering operators E±α which represent the roots of the algebra and change
the weights. Instead of the generators {Ta}, this system {Hk, E±α} is equivalent as
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2.2 COHERENT STATES OF THE HARMONIC OSCILLATOR

the generators can be written as linear combinations of the second system. Further we
want to remind the reader of the four group axioms: Closure, associativity, existence
of a unique identity element as well as a unique inverse for each group element.

2.2 Coherent states of the harmonic oscillator

The CS are the ones most closely connected to the classical case as they minimize the
Heisenberg uncertainty relation

ΔqΔp = 1
2 . (2.3)

Here q and p are respectively the coordinate and momentum of a particle in the phase
space and we have chosen to work in the framework of natural units, aka ~ = 1. Via
the average 〈Â〉 of an operator Â, we can define its uncertainty

(ΔA)2 = 〈(Â− 〈Â〉)2〉 . (2.4)

Moving onwards, we will not make the distinction between an operator Â and the
variable A as it can be easily figured out from the context. The operators q and p

are considered to act on the standard Hilbert space H. Furthermore the vectors of
the Hilbert space are indicated by ψ〉 via Dirac’s bra-ket-notation. We represent the
scalar product with 〈ϕ|ψ〉 and the projection operator with ψ〉 〈ψ .

The remaining part of this section is dedicated to review the well known CS of the
harmonic oscillator, to focus on some of its properties and then develop a definition
to generalize this idea for arbitrary (Lie-)groups. We mainly follow the thread of
Perelomov’s book [Per86] and highlight deviations from it.

2.2.1 The Heisenberg-Weyl group

This group was first studied by Weyl [Wey28] and is a Lie group which is defined
through its algebra.

Definition 2.1. A real three-dimensional Lie algebra with the commutation relations

[e1, e2] = e3, [e1, e3] = 0 = [e2, e3] (2.5)

is called the Heisenberg-Weyl algebra (HWA).
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2 BASIC THEORY OF GENERALIZED COHERENT STATES

The Heisenberg-Weyl group (HWG) is then constructed as usual via exponentiation
of the elements of the algebra as in (2.2). We immediately see the relation to quantum
mechanics as the coordinate and momentum operators acting in the Hilbert space H

fulfill this algebra together with the identity operator 1:

[q, p] = i1, [q,1] = 0 = [p,1]. (2.6)

When we study the harmonic oscillator with its Hamiltonian

H = p2

2 + q2

2 (2.7)

it is convenient to use another set of operators, namely the annihilation and creation
operators a and a†, where the † means Hermitian conjugation. From their definition

a = q + ip√
2

and a† = q − ip√
2

(2.8)

we can deduce the commutation relations

[a, a†] = 1, [a,1] = 0 = [a†,1] (2.9)

and see that they also fulfill the HWA.
In the case of the harmonic oscillator the annihilation and creation operator enable us
to write the Hamiltonian (2.7) as a function of the number operator N = a†a. Thus
we get the energy eigenstates as the eigenstates of N . The CS are then motivated as
the eigenstates of the annihilation operator a. We are going to construct the CS of
the HWG, show that these are the eigenstates of the annihilation operator and derive
certain properties.

We can classify an element x of the HWA via three real parameters in the form of a
real and a complex number, i.e. s ∈ R and α ∈ C:

x = is1+ αa† − αa. (2.10)

The · represents complex conjugation and the signs and the factor i are pure convention
from the fact of interpreting the elements ei of the algebra (2.5) with q, p and 1 and
then transforming to a and a† via (2.8). As mentioned before we get the group elements
from exponentiation:

ex = eis1 eαa†−αa ≡ (s, α). (2.11)
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2.2 COHERENT STATES OF THE HARMONIC OSCILLATOR

We see from the commutation relation (2.9) of a and a† that they are annihilation and
creation operator. In this basis we can define the representation of a group element
with

D(α) = eαa†−αa (2.12)

which is called the displacement operator. It will be the subject and main point of
interest in the following discussion. As we can see already from its definition it is a
unitary operator and (2.12) gives us a unitary representation of the HWG.

Properties of the Heisenberg-Weyl group

For the properties of the HWG, it is important to look at the multiplication law of two
group elements. For the first term in (2.11) with the identity matrix this is trivial and
thus we are only left with the multiplication of two different displacement operators.
To calculate this, we use the formula

eX eY = e
1
2 [X,Y ] eX+Y (2.13)

which is a special case of the Baker-Campbell-Hausdorff formula1

eX eY = eY+[X,Y ]+ 1
2! [X,[X,Y ]]+ 1

3! [X,[X,[X,Y ]]]+... eX (2.14)

if [X, [X,Y ]] = 0 = [Y, [X,Y ]]. In our case, viz X = a and Y = a†, this is true per
definition of the HWA in (2.5). This gives us the result

D(α)D(β) = ei ImαβD(α+ β) (2.15)

Let us also take a closer look at the commutator between D(α) and the annihilation
operator a:

Theorem 2.1. The commutator [a,D(α)] is given by

[a,D(α)] = αD(α) (2.16)

1It was actually Schur [Sch91, Sch93] who did the first work on this formula. Then Campbell
[Cam96, Cam97], Baker [Bak05] and Hausdorff [Hau06] did further remarks on it and their name
stick with it. But it was Dynkin who eventually wrote it in this form [Dyn50].
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2 BASIC THEORY OF GENERALIZED COHERENT STATES

Proof. First we consider the simpler case:

[a, αa† − αa] = α[a, a†] = α1. (2.17)

Then we expand the exponential in D(α) in a Taylor series and thus we need to
consider [a, (αa† − αa)k]:

[a, (αa† − αa)k] = kα(αa† − αa)k−1. (2.18)

This we will prove via induction; the case k = 1 is true as we saw in (2.17) and we only
need to show that it is then also true for k + 1. Therefore we use the trivial property

[A,BC] = B[A,C] + [A,B]C (2.19)

of the commutator and we get:

[a, (αa† − αa)k] = (αa† − αa)[a, (αa† − αa)k−1] + [a, (αa† − αa)](αa† − αa)k−1

= ((k − 1)α+ α)(αa† − αa)k−1 = kα(αa† − αa)k−1.

In the second line we used the induction step and we have proved (2.18). Now we can
summarize all the results which yields us the proof when we once rename the summing
index:

[a,D(α)] =
∞∑
k=0

1
k! [a, (αa

† − αa)k] =
∞∑
k=1

1
k!kα(αa† − αa)k−1

=
∞∑
k=0

1
k!α(αa† − αa)k = αD(α)

This result will help us in Sec. 2.2.2 to construct the CS from the vacuum state but
first we take a look at the representations of our group.

Representations of the Heisenberg-Weyl group

(2.15) was Weyl’s suggestion instead of the commutator relations (2.5) for defining the
group. The questions that arises now is, if the unitary irreducible representation, i.e.
(2.12), of the HWG is unique. It was Stone [Sto30] and then notably von Neumann
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2.2 COHERENT STATES OF THE HARMONIC OSCILLATOR

[Neu31] who addressed this problem and was stated in the famous Stone-von-Neumann
Theorem:

Theorem 2.2. Let T1(g) and T2(g) be two unitary irreducible representations of the
HWG with elements g = (s, α). Then these representations are unitarily equivalent if
T1(s, 0) = T2(s, 0).

We cannot prove this theorem but let us understand its meaning: The elements (s, 0)
(2.11) trivially commute with all elements of the group and thus are form the center.
If T (g) is a unitary irreducible representation of the whole group then T (s, 0) forms a
unitary representation of the subgroup {(s, 0)} which can be parametrized by a real
parameter λ. This λ is just the phase factor between T (s, 0) and the representation of
1 as the subgroup only contains elements proportional to the identity. The theorem
states that for a fixed value of λ, any representation can be brought into another one
by a unitary transformation. This actually means that there is a unique representation
which we will use to be (2.12).

2.2.2 The coherent states

As already said before, we now want to construct the CS of the harmonic oscillator.
Then we will mention shortly some properties of these but will not go into many details
as we will prove them anyways in the next section for the general case. The idea of
this part is to motivate what is coming next, on the example of a well known case.

Consider a fixed vector ψ0〉 of our Hilbert space and the corresponding state consists
of all vectors eiϕ ψ0〉 with |eiϕ| = 1. Thus all elements (s, 0) of the HWG - and only
those - leave the state ψ0〉 invariant; this is called the isotropy group H of the state.

We now consider our representation

T (g) = T (s, α) = eis1D(α) (2.20)

of the HWG from (2.12) and apply it on ψ0〉. This gives us the set of states { α〉}:

α〉 = D(α) ψ0〉 . (2.21)

The term eis1 in (2.20) gives us just a phase which does not alter the state α〉. This
freedom of choice from the isotropy group allows us to take the vector α〉 defined
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2 BASIC THEORY OF GENERALIZED COHERENT STATES

through s = 0 as the state to represent all states with the same α. From this we also
see that different α lead to different states. Hence the complex number α completely
determines the CS. Using Thm. 2.1 we see that these states are eigenstates of the
annihilation operator if ψ0〉 = 0〉, the vacuum state, and thus are the familiar CS:

a α〉0 ≡ aD(α) 0〉 = (D(α)a+ αD(α)) 0〉 = α α〉0 .

If we take an arbitrary vector ψ0〉 of our Hilbert space then the states α〉 are called
the generalized CS and in the special case ψ0〉 = 0〉 we use the term ordinary CS.
The later ones are well known from the harmonic oscillator. But we need not consider
a special ψ0〉 to derive most of their properties as we will see in the following. In the
following the term CS will refer to the generalized CS and we will mention the special
case ψ0〉 = 0〉 of the ordinary CS explicitly.

Two different CS are in general not orthogonal: Using (2.15) this is equivalent to α〉
being usually not orthogonal to ψ0〉 which can be seen easily in the case of ordinary
CS. From the same equation we also conclude that an operator T (g) takes one CS into
another one. Especially the CS α〉 gets transformed into the state α+ β〉 by D(β).
Thus the HWG acts on the complex plane as translation. This also implies that the
integration measure over the α plane is given by

dµα = Cdα dα (2.22)

where C is a constant to be chosen. Let us take a look at the following commutator:

[D(α),
∫

dµβ β〉 〈β ] =
∫

dµβ ( α+ β〉 〈β − β〉 〈β − α ).

In the second integral we can change the integration variable to β−α because the CS
are closed and we are left twice with the same integral and the commutator vanishes:

[D(α),
∫

dµβ β〉 〈β ] = 0. (2.23)

From Schur’s lemma [Geo99] we can conclude that A =
∫

dµα α〉 〈α must be pro-
portional to the unity operator as it commutes with all elements of the group. The
proportionality constant can be chosen in such a way that we have∫

dµα α〉 〈α = 1 (2.24)

which also fixes C in (2.22). This result lets us expand an arbitrary state of the Hilbert
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2.2 COHERENT STATES OF THE HARMONIC OSCILLATOR

space in terms of the CS - thus they are a complete set and they span our Hilbert space.
But our system of CS is even overcomplete, viz removing any states from it still leaves
us with a complete set. This can be easily seen from a dimensional argument: The
Hilbert space of the Harmonic oscillator is completely spanned from the eigenvectors
of the number operator N . Thus it must be countably infinite dimensional but we
have uncountably infinite many points α in the complex plane and thus as many CS.
As already mentioned all these results are obtained without considering the state ψ0〉
from (2.21). The last property, we want to look at, is the fact that the ordinary CS
are said to be the closest to the classical states in the sense that they minimize the
Heisenberg uncertainty (2.3). This will give the fixed state ψ0〉 more meaning as a
consequence. From (2.16) and the unitarity of our representation we get

D†(α)aD(α) = a+ α (2.25)

and the same for a† by hermitian conjugation. Then we reverse the definition of a
(2.8) and get a similar relation for q and p:

D†(α)qD(α) = q +
√

2 Reα, D†(α)pD(α) = p+
√

2 Imα (2.26)

and also for q2 and p2 if we just square both sides of these equations. This enables us
to calculate the uncertainties of coordinate and momentum operator for the CS with
(2.4):

(Δq)2
α = 〈α|q2|α〉 − 〈α|q|α〉2 = 〈ψ0|q2|ψ0〉 − 〈ψ0|q|ψ0〉2 = (Δq)2

0

(Δp)2
α = (Δp)2

0.
(2.27)

As a result we obtained that the uncertainties in the CS are independent of the state
α〉 and are given only by ψ0〉 which will be later subject of Thm. 2.6. Furthermore
looking at (2.25) we recognize that 〈α|a|α〉 can vanish if we choose α = −α0 with
α0 = 〈ψ0|a|ψ0〉. As q and p are just sums of a and a† this also holds for them and
we can assume without a loss of generality that 〈q〉 = 0 = 〈p〉. From Heisenberg’s
uncertainty (2.3) relation follows:

0 ≤ 2ΔqΔp− 1
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2 BASIC THEORY OF GENERALIZED COHERENT STATES

which we can multiply by a positive parameter λ > 0 and if we add something positive
on the left side the inequality will still be true:

0 ≤ 2λΔqΔp− λ+ (λΔq −Δp)2

0 ≤ λ2(Δq)2 − λ+ (Δp)2.

We keep in mind that 〈q〉 = 0 = 〈p〉 and can define the operator A = λq+ip√
2λ and get an

inequality equivalent to Heisenberg’s:

〈A†A〉 ≥ 0, ∀λ > 0. (2.28)

To minimize this one, we need to have for some λ that A ψ0〉 = 0. This is, among
others, true for the vacuum state 0〉, i.e. λ = 1. We have now come to the result that
the ordinary CS are really the ones closest to the classical one as they minimize the
Heisenberg uncertainty relation.

Before moving forward to the generalized CS, we want to summarize quickly the main
results of this section and the assumptions we put into. So first of all we managed
to arrive at the well known CS from the harmonic oscillator. This was done via a
construction with the displacement operator D(α) in such a way that we can easily
generalize the idea in the following section. The CS are described completely by a
complex number α due to the isotropy group. Notable properties of them are their
closure under the displacement operator and their completeness. Thus we are able to
construct a resolution of unity (RoU) and they span the entire Hilbert space. To get
these results, we only needed the multiplication law (2.15) and the group properties
of the HWG. When considering the ordinary CS then they are eigenstates of the
annihilation operator and are among others the states closest to the classical ones.
The CS having least uncertainty is only dependent on our choice of ψ0〉.
This section was more devoted to recollect the concept of CS of the harmonic oscillator
which should be already known and to highlight their properties, which we will meet
again in the generalized case. In the next section we will express the results in a more
mathematical way. For a deeper understanding it might be helpful to go back and
review the upcoming concepts on the case of this section.
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2.3 GENERALIZED COHERENT STATES

2.3 Generalized coherent states

We will now generalize the idea from the previous section. Therefore consider a Lie
group G and a unitary irreducible representation T (g), g ∈ G, acting in the Hilbert
space H. Then pick a fixed vector ψ0〉 and we can define the isotropy group [Dui00]:

Definition 2.2. All elements h ∈ G which leave the state ψ0〉 unchanged, i.e.

T (h) ψ0〉 = eiα(h) ψ0〉 , | eiα(h) | = 1 (2.29)

form the isotropy subgroup H of ψ0〉.

Remark 2.1. The isotropy subgroup trivially is a subgroup of the whole group.

This enables us to define the generalized CS of Perelomov [Per86]:

Definition 2.3. The system of states { ψg〉 | ψg〉 = T (g) ψ0〉} with elements g of a
group G and its representation T (g) in the Hilbert space H is called the coherent state
system (CSS) {T, ψ0〉}.
Let H be the isotropy subgroup of the state ψ0〉. Then a point x = x(g) in the coset
space X = G/H determines the CS ψg〉 completely with ψg〉 = eiα x〉.

Remark 2.2. Consider two CS ψg1〉 and ψg2〉 which describe the same state, i.e.

T (g1) ψ0〉 = eiα T (g2) ψ0〉 ⇔ T (g−1
2 g1) ψ0〉 = eiα ψ0〉 . (2.30)

Thus per definition g−1
2 g1 must be an element of the isotropy subgroup and this means

that g1 and g2 are from the same coset X . Consequently if g1 and g2 belong to different
cosets of X they also describe different CS. This enables us to pick a representer x ∈ X
to completely describe a CS.

Remark 2.3. We will use the notations ψg〉 and x〉 exchangeable as they both describe
the same state. But be aware that x〉 is a representative of the coset X . Due to the
nature of the isotropy subgroup it is sufficient to only work in the framework of this
coset, e.g. when later integrating over our space. In some particular situations we
do not want to discuss each time in detail how to switch from one representative to
another one by omitting phases and we will stick to ψg〉.

As already mentioned when we refer to the CS in the rest of this work, we mean the
generalized CS from this definition.

13



2 BASIC THEORY OF GENERALIZED COHERENT STATES

Properties of the generalized coherent states

We will formulate these properties as theorems to make it later easier to refer back to
them. But most of the times we do not give a complete, detailed proof rather we will
sketch the idea for one or it is evidently clear from the statements already made in
Sec. 2.2. Directly from the group axioms we get the first theorem:

Theorem 2.3. The CS are a closed set as applying an operator T (g′) on a CS gives
again a CS:

T (g′) ψg〉 = T (g′g) ψ0〉 = T (g′′) ψ0〉 . (2.31)

By assuming that our chosen state ψ0〉 is normalized, the unitarity of the represen-
tations grants us:

Theorem 2.4. The CS are normalized to 1:

〈x|x〉 = 1. (2.32)

Remark 2.4. The same of course also holds for ψg〉: 〈ψg|ψg〉 = 1.

Furthermore if there exists a measure dµg for the whole group G, we can construct
the measure dµx in X . This lets us define the operator

A =
∫

dµx x〉 〈x (2.33)

if we assume any convergence conditions. With a similar argument as before, i.e.
(2.23), this operator must be proportional to the unity operator. The proportionality
factor will be absorbed in the integration measure and we get with Thm. 2.4 in mind:

Theorem 2.5. The RoU of the CSS is given by∫
dµx x〉 〈x = 1 (2.34)

where the measure is defined to satisfy∫
dµx | 〈x|y〉 |2 = 〈y|y〉 = 1, ∀y ∈ X . (2.35)

This last integral might not be convergent, but if it is we can do this construction in
a meaningful way and the CSS is said to be square integrable. Hence we are again in
the position to expand an arbitrary state ψ〉 in terms of the CS.
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2.3 GENERALIZED COHERENT STATES

When considering CS, we are interested in states closest to the classical ones and thus
with minimal uncertainty. Moving from coordinate and momentum operator to two
arbitrary operators A and B, then holds the Schrödinger uncertainty relation [Sch30]:

(ΔA)2(ΔB)2 ≥
∣∣∣∣12 〈{A,B}〉 − 〈A〉 〈B〉

∣∣∣∣2 + 1
4 | 〈[A,B]〉 |2 (2.36)

with the definition of the variance in (2.4). The curly brackets in this equation are
the anticommutator {A,B} = AB + BA. The problem however with this inequality
(2.36) in contradistinction to (2.3) is that we have not a constant on the right-hand
side in general. This means the equality sign can be achieved either via minimizing
the left-hand side, maximizing the right-hand side or anything in between. Thus we
need to find a universal criteria for uncertainty that we minimize and which is not
dependent on our choice. But nevertheless we want to define this measure depending
only on expectation values of our generators Ta. Thus one has to evaluate terms of
the form 〈O〉 for O = ∏

i Tai and in the case of the CS we have

〈O〉 = 〈ψg|O|ψg〉 = 〈ψ0|T †(g)OT (g)|ψ0〉 . (2.37)

But this is just a group transformation and the form of O as well as the unitarity of
our representation allow us to use a different set of generators

T̃a = T †(g)TaT (g) (2.38)

and then also Õ and 〈Õ〉. Consequently we have proved with (2.37) the following
theorem

Theorem 2.6. The CS meet any measure of minimal uncertainty if and only if the
fixed vector ψ0〉 meets it.

Hence only our choice of this fixed state determines if the CS are closest to classical
states or not. The question that arises now is, which criteria of uncertainty is a good
measure. To move on, we restrict ourself to semisimple and compact Lie algebras like
the SU(n) and we can define the positive Cartan metric, viz the Killing form, from
the structure constants of the algebra [Her66]:

gab = 1
2facdfdbc. (2.39)
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2 BASIC THEORY OF GENERALIZED COHERENT STATES

This enables us to define the quadratic Casimir operator

T 2 = gabTaTb (2.40)

where we only consider the case gab = δab for SU(n) and which commutes with all
generators [Jac62]. The general case of gab can be treated similarly [Del77]. Then we
can formulate the following theorem:

Theorem 2.7. The invariant dispersion

〈(ΔT )2〉 = 〈δab(Ta − 〈Ta〉)(Tb − 〈Tb〉)〉 = 〈δab(TaTb − 〈Ta〉 〈Tb〉)〉 . (2.41)

is a relevant measure for the uncertainty.

Proof. This directly arises from the definition of the Casimir operator (2.40) and it is
an invariant measure for our states.

Remark 2.5. If the reader is not yet comfortable with (2.41) being a good measure,
we will motivate it from another point of view and additional examples in different
groups can be found in [Del77]. (2.41) can be written in the form of:

(ΔT )2 =
∑
a

(ΔTa)2. (2.42)

Then we can look at other terms of the form

(ΔjT )2 =
∑

perm
(
j∏
i=1
ΔTai)2 (2.43)

where our case (2.42) is j = 1. The sum is a sum over all permutations of all ai with
each other which lead to different products. Take for example the case when j is the
number of generators, viz the dimension of the group, then we already have a product
of the variances of all generators and there is no sum.
These terms in (2.43) are all possible terms that could be in general a measure for the
uncertainty. Now we will see that only our choice j = 1 is a good and relevant measure
in the following sense: For each other j there is always a group transformation which
will minimize (2.43). But our uncertainty measure should be invariant under group
transformations which we already implied in Thm. 2.6.
Consider the maximum case of j being the number of generators and we can always
perform a group transformation into an eigenstate of one Tai and then (ΔTai)2 is
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2.3 GENERALIZED COHERENT STATES

zero. As already mentioned, (2.43) is only a product in this case and thus the whole
expression also vanishes. This cannot be a relevant measure for the uncertainty. Going
to lower orders of j we are facing a similar problem [Del77]: The states minimizing
(2.43) again are those which minimize an arbitrary (ΔTai)2. Finally only the case
j = 1 from (2.41) is invariant under group transformation. Now it should be clear why
we want to minimize (2.41) in order to have states closest to the classical ones which
have minimal uncertainty.

Next we need to know which properties must the vector ψ0〉 have to meet our criteria
of minimal uncertainty. To understand Perelomov’s work [Per79a] on this subject we
need first:

Definition 2.4. A subalgebra B ⊂ G c is called maximal if B ⊕B = G c where B is
the subalgebra conjugate to B, i.e. all elements b† where b ∈ B.

Remark 2.6. Here G c is the set of all linear combinations of elements of G with complex
coefficients, viz the complex hull of G .

Definition 2.5. The set of elements h ∈ G c with T (h) ψ0〉 = α(h) ψ0〉 form the
isotropy subalgebra H = {h}.

Remark 2.7. The isotropy subalgebra is trivially a subalgebra of the whole algebra
and the set {g|g = eih} is the isotropy subgroup defined in Def. 2.2.

Then we can formulate the following theorem [Per79a]

Theorem 2.8. The states with maximal isotropy subalgebra are the states which min-
imize the uncertainty (2.41).

The proof given by Perelomov can not be understood from our current point of view
but we want to prove the following two theorems which will give us a prove of Thm. 2.8.

Theorem 2.8.1. The maximal weight states are the states which minimize the uncer-
tainty.

Theorem 2.8.2. If and only if a state ψ〉 is a maximal weight state then it has a
maximal isotropy subalgebra.

Remark 2.8. First we need to clarify the term ’maximal weight states’: We choose the
canonical basis of eigenstates h〉 of the Cartan operators Hk as mentioned in Sec. 2.1.
The weights of theses states are the eigenvalues hk: Hk h〉 = hk h〉. The states which
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2 BASIC THEORY OF GENERALIZED COHERENT STATES

maximize |h|2 = hkhk are the maximal weight states. In contradistinction the highest
weight state is the state which gets annihilated by all raising operators. Equivalently
we can define a lowest weight state [Ram10] and both are maximum weight states.
Take for example the SU(2) spin one representation. Then the spin-z 1〉 state is the
highest weight state, the spin-z −1〉 state is the lowest weight state and both are
states of maximum weight. The spin-z 0〉 state is neither and does not minimize the
uncertainty in contrast to the other two, according to Thm. 2.8.1. This can be done
in an easy exercise and we will do it explicitly on page 28. We will see later that
we have a freedom of choosing the highest weight state among the maximum weight
states which enables us to prove Thm. 2.8.2.

Proof of Thm. 2.8.1. Following the arguments of [DF77] we see that (ΔT )2 is a posi-
tive definite operator which has a lowest eigenvalue. In the corresponding state we get
the lowest expectation value. Therefore we first search for the eigenstates and then
choosing the ones with minimal uncertainty. From (2.41) we see that the eigenstates
of (ΔT )2 must fulfill:

(TaTa − 2Ta 〈Ta〉ψ + 〈Ta〉ψ 〈Ta〉ψ) ψ〉 = λ ψ〉 . (2.44)

As any vector of our Hilbert space is an eigenstate of the quadratic Casimir operator,
which must be proportional to 1, ψ〉 is an eigenstate of the first term. Further it is
trivially an eigenstate of the last term and we only need to find eigenstates of the second
term. Next we take the already mentioned eigenstates h〉 of the Cartan operators
Hk. We will show that they are a valid choice for ψ〉 and afterwards we find the
most general ψ〉. Besides the Cartan operators Hk, the other generators are linear
combinations of the raising and lowering operators E±α and thus their expectation
value of a state h〉 vanishes which results in:

Ta 〈Ta〉h h〉 = Hk 〈Hk〉h h〉 = hkhk h〉 . (2.45)

This way, we already showed the first statement that the h〉 are a valid choice for
ψ〉. Then the line of arguments in [DF77] lead us back to the basic idea of Thm. 2.6:
Note that it is always possible to find a group transformation which transforms Tava
into the Cartan subalgebra Hkak with v and a being unit vectors in the whole space
of the algebra and a r-dimensional space, respectively. Thus we can write

T−1(g)TavaT (g) = Hkak (2.46)
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2.3 GENERALIZED COHERENT STATES

and as this is possible for any v we can make the choice va = 〈Ta〉ψ√
〈Tb〉ψ〈Tb〉ψ

and apply
(2.46) on h〉. Then applying from left T (g) and with ψ〉 = T (g) h〉 we get:

Ta 〈Ta〉ψ√
〈Tb〉ψ 〈Tb〉ψ

ψ〉 = hkak ψ〉 . (2.47)

This is essentially the eigenstate equation we are trying to solve. Now as we already
saw ψ〉 = h〉 solves this equation with ak = hk

|h| leading to (2.45). As the inner
product of (2.47) with 〈ψ is invariant under group transformation, for ψ〉 = T (g) h〉
we have:

Ta 〈Ta〉ψ ψ〉 = hkhk ψ〉 . (2.48)

This is the most general solution because from our construction we found all eigen-
states ψ〉 with eigenvalue hkhk. Furthermore if there would be eigenstates with an-
other eigenvalue, then this is in contradiction to (2.45) as we can always do a group
transformation of the kind of (2.46). The nice conclusion of these arguments is that
this is a motivation for Perelomov’s definition of generalized CS in Def. 2.3 especially
as T (g) is an element of the coset space G/H when looking at (2.46). Thus as stated
already we only need to consider h〉, which are our ψ0〉 in this case, in order to get
states of least uncertainty and then the CS are the states with the same property.
Hence going back to find the states h〉 which minimize (2.41), we see that this is
equivalent to maximizing 〈Ta〉 〈Ta〉 because all terms are positive as they are quadratic.
Thus for h〉 we need to maximize hkhk which are the maximum weight states.

Proof of Thm. 2.8.2. The basic idea for this proof emerges from the fact that we are
completely free in defining positive weights and so also positive roots by choosing the
order of the Cartan operators [Geo99]. In addition inherently there is no difference
between positive and negative [Ram10], i.e. the pair E± of raising and lowering oper-
ators, and any maximum weight state can be defined as a highest weight state. This
is nothing else than the so called Weyl group [Geo99]. Further the systems {Hk, E±α}
spans G c as already noted in Sec. 2.1.
⇒: Assuming ψ〉 is a maximal weight state, then ψ〉 can be defined to be an eigen-
state with eigenvalue zero of all raising operators Eα, i.e. α being positive. Then the
isotropy subalgebra B = {Hk, Eα} is a maximal subalgebra.
⇐: For the algebra B being maximal it must contain at least one operator of each
pair of E±α. This member can always be taken to correspond to a positive root α and
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2 BASIC THEORY OF GENERALIZED COHERENT STATES

then ψ〉 must be a highest weight state [Dui00] which is unique [Her66]2. Thus it is
a maximal weight state.

This now proofs Thm. 2.8 and the states with maximal subalgebra, i.e. the maximal
weight states, chosen as ψ0〉 give us CS closest to the classical one.

Before moving on to the special case of SU(2) and SU(3) CS, we want to quickly review
this section. We constructed the CS of the harmonic oscillator and then it was possible
to generalize this for any group. There we found the same properties and relations.
These are notably the closure, the normalization and the construction of a RoU of the
CS. The proofs of the respective theorems are possible as they are only based upon
the group axioms, using an unitary irreducible representation of it and the existence
of a square integrable measure on the group. Finally we found a universal criteria for
the CS being closest to the classical case as they minimize our uncertainty measure
(2.41). In doing so we saw that the uncertainty inequality is not a good measure and
motivated our new criteria. There are certain cases when the Schrödinger uncertainty
relation (2.36) is equivalent to our criteria of uncertainty if we work in a certain basis.
This is used by Perelomov in his book [Per86] in the case of SU(2) but we will stick to
our universal measure as we can apply it independently. Now we move on to construct
the CS for the special case of SU(n).

2Or rather look at [Jac62] for a proof.
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With the work of the previous chapter the main focus of this part is mainly on how to
construct the CS of SU(n). We will see the statements from the general case on these
examples of SU(n) explicitly SU(2) and SU(3). We will focus on these two case as the
first one is still relatively simple and the second is relevant for the color of QCD.

3.1 SU(2)

First we are constructing the CS of SU(2) on the basis of [Per86] in a way that is easy
to understand. But this method is not generalizable to the case of SU(n) with n > 2
and thus we introduce another construction method for the CS of SU(2). This one
we apply on the SU(3) case and show how it can be applied for any SU(n). To get
started we know from Def. 2.3 that we need a representation of our group.

3.1.1 Representation of SU(2)

Sticking to our notation in Sec. 2.1, we will use the indices a, b, . . . for the adjoint
representation (AdR) which then run from 1 to (n2− 1), the number of Cartan gener-
ators. The indices i, j, . . . are used for the fundamental representation (FuR) and run
from 1 to n for a general SU(n). This might be a bit unfamiliar in the case of SU(2)
where the Lie-Algebra is given by [Geo99]

[Ja, Jb] = iεabcJc. (3.1)

Here we inserted the structure constant of SU(2) which is just the Levi-Civita symbol
and use the common notation of Ja for the generators. In the case of the FuR the
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generators are given via the Pauli-Spin-matrices:

[J j=
1
2

a ]ij = 1
2[σa]ij

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

(3.2)

With the generators we can construct the raising and lowering operators of our algebra,
i.e. J± = J1 ± iJ2, which fulfill with (3.1):

[J3, J±] = ±J±, [J+, J−] = 2J3. (3.3)

We take the canonical basis of the vectors j, µ〉 which are eigenvectors of J3 and J2

with the eigenvalues µ and j(j + 1), respectively. Where j is a half-integer defining
the dimension of our representation, viz

dimrep = 2j + 1, (3.4)

and µ ranges from −j to j in steps of 1. These definitions give us the following action
of the raising and lowering operators on the basis states [Geo99]:

J+ j, µ〉 = Nµ+1 j, µ+ 1〉
J− j, µ〉 = Nµ j, µ− 1〉

Nµ =
√

(j + µ)(j − µ+ 1).

(3.5)

3.1.2 Coherent states of SU(2)

Now let g be the elements of G = SU(2) and we take as fixed state ψ0〉 = j,−j〉
to construct the CSS. This way according to Thm. 2.8 we are constructing CS which
minimize our uncertainty criteria (2.41). Each element of SU(2) can be represented
by the Euler angles with [Per77]

T (g) = eiϕJ3 eiθJ2 eiψJ3 , ϕ, ψ ∈ [0, 2π] ∧ θ ∈ [0, π]. (3.6)

The Euler angles are known to be an equivalent description of a general rotation in a
three dimensional space which leads to this equation. This is a very heuristic point
of view based on well known facts. The equivalence can be either shown directly via
a concrete calculation in the case of j = 1

2 where the Ja are given as the Pauli-Spin-
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matrices (3.2). This grants the general validity of (3.6) as this is independent of j
and thus it is valid for all j if it is valid for one. To show this, one needs to show the
equivalence of this equation to eαaJa . This is also equivalent to ∏3

a=1 e
α′aJa which can

also be shown easily for the FuR. But a more mathematical proof and also motivation
of this Euler representation (3.6) will be discussed later in Sec. 3.3 when we have
introduced the necessary concepts for a different purpose.
We can use the Baker-Campbell-Hausdorff formula (2.14) to exchange the order of the
first two exponential functions in (3.6). The nested commutators give the following
results with X = iϕJ3, Y = iθJ2:

Y = iθJ2

[X,Y ] = iθ · (iϕ) · i · (−J1)

[X, [X,Y ]] = iθ · (iϕ)2 · i2 · (−J2)

. . . .

(3.7)

These three lines should be enough to recognize the pattern and we are at a point
proportional to Y and can use the first step again. Sorting the terms with J2 and J3,
this results in:

T (g) = exp
(

iθ
[
J2

∞∑
n=0

(−1)n ϕ
2n

(2n)! + J1

∞∑
n=1

(−1)n−1 ϕ2n−1

(2n− 1)!

])
ei(ϕ+ψ)J3

= eiθ(J2 cosϕ+J1 sinϕ) eiχJ3 .

(3.8)

As we are in a basis of eigenvectors of J3 the isotropy subgroup is just given by all
elements of the form h = eiχJ3 and thus the CS can be characterized by a unit vector

n =


sin θ cosϕ
sin θ sinϕ

cos θ

. (3.9)

This means setting the phase χ from the last term in (3.8) to zero and the vector n is
the representative describing the CS completely:

ψg〉 = n〉 = eiθm·J j,−j〉 ≡ D(n) j,−j〉 . (3.10)
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Where we have defined m = (sinϕ, cosϕ, 0)T. Furthermore we can replace J1 and J2

by a combination of J± from Sec. 3.1.1 to get the following representation:

D(ξ) = eξJ+−ξJ− , ξ = θ

2 eiϕ (3.11)

which resembles the displacement operator (2.12) for the harmonic oscillator CSS. The
so called normal form [Per86] of this operator (3.11) is given by

D(z) = ezJ+ eηJ0 e−zJ− , z = tan θ2 eiϕ and η = ln(1 + |z|2). (3.12)

The equivalence of (3.11) and (3.12) is independent of j and thus it is sufficient to show
that it is valid for j = 1

2 as already mentioned above. This calculation is straightfor-
ward and does not give any interesting insight. Recalling the domain of θ from (3.6),
we see that z is well defined as tan θ ∈ [0,∞[ and z is just a number in the complex
plane. Thus again a complex number is enough to completely describe our CS. The
vector n represents a point on a unit sphere in three dimensional space. The transition
from n to z is only a stereographic projection from the sphere to the plane.

Our task now is to act with the operator D on the fixed state ψ0〉 = j,−j〉 to get
a representation of the CSS in the SU(2) basis. This will be done with (3.12), as the
action of J− and J0 on j,−j〉 is known:

ψg〉 = z〉 = e−jη ezJ+ j,−j〉 = (1 + |z|2)−j ezJ+ j,−j〉 . (3.13)

Thus we only need to compute the action of the first exponential from (3.12) with J+

on the fixed sate. We expand this exponential in its Taylor series and from (3.5) we
get (for k ≤ 2j)

(J+)k j,−j〉 =
k∏
i=1

√
(j − j + i)(j + j − i+ 1) j,−j + n〉 (3.14)

and all higher powers vanish. We write the products as quotients of factorials, plug it
into the Taylor series ezJ+ = ∑∞

k=0
(zJ+)k
k! , do the transformation k → j + µ and get:

z〉 = (1 + |z|2)−j
j∑

µ=−j
zj+µ

√
(2j)!

(j + µ)!(j − µ)! j, µ〉 . (3.15)

This is in accordance with the results in the book of Perelomov [Per86] but we write
them now in a nicer way which will simplify some of the following steps. We plug in
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the definition of z from (3.12), write the tangent in the first term as a quotient of sine
and cosine and make the replacement ω = θ

2 :

z〉 = (cosω)2j
j∑

µ=−j
eiϕ(j+µ)(tanω)j+µ

√
(2j)!

(j + µ)!(j − µ)! j, µ〉 , ω ∈ [0, π2]. (3.16)

Closure

As we saw in the previous Ch. 2, applying an operator D, e.g. (3.12), onto a CS must
result in another CS. But we just saw that multiplying group elements of SU(2) is
not an easy task as the sum in the Baker-Campbell-Hausdorff formula (2.14) does not
terminate, viz (3.7). Thus here we only state the multiplication law of two operators
D from [Per86]:

D(n1)D(n2) = D(n3) eiΦ(n1,n2)J3 (3.17)

where Φ is given by the area of the spherical triangle given by n1, n2 and the north
pole of our sphere, aka (0, 0, 1)T. This can be shown through a direct calculation in
the j = 1

2 representation of SU(2) as the equality is independent of j.
Acting with (3.17) on our fixed state the exponential just gives a phase and thus
an equivalent CS to the one represented via n3. This is true if our vector ψ0〉 is
an eigenstate of J3, otherwise we can always perform a group transformation into a
system where ψ0〉 is eigenstate to the new J̃3 and the arguments hold in this new
system.

Scalar product of two coherent states

Per Definition, the CS are normalized as the operator D is unitary and the fixed state
is also normalized, but two different CS are not orthogonal to each other. We use
(3.15) and the orthonormality between two basis states of SU(2) to obtain:

〈z|y〉 =
((

1 + |z|2
)(

1 + |y|2
))−j j∑

µ=−j

(2j)!
(j + µ)!(j − µ)!z

j+µyj+µ. (3.18)

We change µ that we sum from 0 to 2j and get a representation of the binomial
(1 + zy)2j [GR94, 1.111]:

〈z|y〉 =
((

1 + |z|2
)(

1 + |y|2
))−j

(1 + zy)2j (3.19)
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Here we consider the scalar product of two CS in the representation of a point on the
plane. We can also take the inner product in the representation on the sphere. For
further applications we are just interested in the absolute value of this quantity which
is given by

| 〈n1|n2〉 |2 =
(1 + n1 · n2

2

)2j
(3.20)

The equivalence of (3.20) and the square of the absolute value of (3.19) can be shown
by putting in the stereographic projection from (3.12) and the relations [GR94, 1.313]

cos θ = cos2 θ

2 − sin2 θ

2
sin θ = 2 sin θ2 cos θ2 .

(3.21)

Resolution of unity

According to Thm. 2.5 the operator ∫
dµz z〉 〈z (3.22)

is proportional to 1. We will chose the integration measure [Per86]

dµz = dθ dϕ sin θ2j + 1
4π ≡ dn

2j + 1
4π (3.23)

and will show below that this results in the right normalization. Further this measure
is very easy to motivate: First we have the known measure on the surface of the unit
sphere and divide with the volume of our integration domain, i.e. 4π. The factor 2j+1
is just the dimension of our representation as stated in (3.4). We will see the same
structure of the integration measure later again in the SU(3) case in (3.69). Using our
convention from (3.16), we make the substitution θ = 2ω, use (3.21) and we get:

dµz = dω dϕ sinω cosω2j + 1
π

. (3.24)

For our purpose this will be the measure of choice as we need a compact manifold as
integration domain when performing numerical integration. Then we cannot integrate
over the whole plane. For completeness we will also state the measure for the rep-
resentation of the CS in (3.15). Recalling that z is just a complex number in polar
coordinates with radius tanω we can calculate the Jacobian and eventually get the
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result:
dµz = 2j + 1

π(1 + |z|2)2 dz dz . (3.25)

Now we go back to prove that (3.22) is indeed the RoU with the correct measure (3.24)
and plug in (3.16):

∫
dω dϕ sinω cosω2j + 1

π
(cosω)4j

j∑
µ=−j

j∑
µ′=−j

e−iϕ(µ−µ′)(tanω)2j+µ+µ′F (µ)F (µ′) j, µ〉 〈j, µ′ .

Where we defined F (µ) =
√

(2j)!
(j+µ)!(j−µ)! and we can easily perform the integration

over ϕ which results in a Kronecker Delta δµµ′2π. Thus we can evaluate one sum, plug
in sine and cosine into the tangent, use the well known identity [GR94, 1.312]

sin2 ω = 1− cos2 ω (3.26)

and finally we make the substitution u = cosω which results in:

j∑
µ=−j

2(2j + 1)F (µ)2 j, µ〉 〈j, µ
∫ 1

0
du (1− u2)j+µ

u2(µ−j)−1 .

To solve this integral we take a look into the tables of Gradshteyn [GR94, 8.380]: We
see that the integral is nothing else as the definition of the beta function:

B(x, y) = 2
∫ 1

0
duu2x−1(1− u2)y−1 (3.27)

and we can identify our values: x = j − µ+ 1 and y = j + µ+ 1. Then using [GR94,
8.384.1], we can express the beta function in terms of gamma functions [GR94, 8.310]
and thus factorials: ∫ 1

0
du (1− u2)j+µ

u2(µ−j)−1 = (j − µ)!(j + µ)!
2(2j + 1)! (3.28)

In our case of integer exponents, this result can also be obtained via integration by
parts of (3.27) as the boundary terms always vanish. Our result (3.28) is nothing else
then

(
2(2j + 1)F (µ)2)−1 and putting everything together, we have proved the RoU:

∫
dµz z〉 〈z =

j∑
µ=−j

j, µ〉 〈j, µ = 1. (3.29)
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Minimizing the uncertainty

As already mentioned above our choice of the fixed state ψ0〉 = j,−j〉 as a maximal
weight state guarantees us that the CS are states minimizing our uncertainty measure
(2.41). Our goal is to get new insights into the color-flow of QCD and therefore we
need to be as close to the classical case as possible. This is why we constructed the
CS this way.
We can verify this fact by evaluating (2.41) for the CS explicitly in the FuR and AdR:

1
2 ,

1
2〉 z〉FuR 1, 1〉 z〉AdR 1, 0〉

(ΔT )2 1
2

1
2 1 1 2

.

We see that the uncertainty for the highest weight state as well as the CS is always
the same. Furthermore the state 1, 0〉 of the AdR is not a maximal weight state and
thus the uncertainty is not minimal.

Simplified representation of the SU(2) coherent states

When reviewing the calculation of the RoU, we recognize that only the integration
over ϕ was important to obtain the RoU as this already gives us the Kronecker Delta.
The left over integration over ω is just responsible for the right normalization and we
can formulate the following theorem.

Theorem 3.1. The RoU of the SU(2) CS can be written as

2j + 1
2π

∫
dϕ ϕ〉 〈ϕ = 1, with ϕ〉 = 1√

2j + 1

j∑
µ=−j

eiϕ(j+µ) j, µ〉 . (3.30)

This just means that we can simplify the calculation of the integral in the RoU es-
pecially when we are doing numerics. This also applies to integrations of squared
absolute values ∫

dµz dµz′ | 〈z|O|z′〉 |2 =
∫

dϕdϕ′ | 〈ϕ|O|ϕ′〉 |2 (3.31)

with an arbitrary operator O. We have chosen the states ϕ〉 of Thm. 3.1 to be
normalized and for the FuR they are obtained via setting ω = π

4 of the CS in (3.16).
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But for the AdR upwards this is not possible as we cannot account for the factorial
terms in (3.16). This seems at first like a contradiction as we have two different RoU
but this is possible due to the fact of the overcompleteness of our CSS. One can imagine
that one shifts portions of certain CS to other CS as they are linear dependent. This
ambiguity of composing not only the 1 but also any state or other operator in terms
of CS will be again touched in Sec. 4.3.2. But as the states ϕ〉 are no subset of our
CS in general, they are also not supposed to minimize the uncertainty (2.41). This
gives the following values:

ϕ〉FuR ϕ〉AdR
(ΔT )2 1

2
10
9 .

and comparing with the previous section we see that for the FuR the states ϕ〉 are
minimizing the uncertainty as expected as they can be derived from our CS of before.
But in the case of the AdR this is different and the states ϕ〉 are no longer closest
to the classical ones. Recalling our motivation that we want to use states with min-
imal uncertainty due to the Lund string model [And+83], we see that the states ϕ〉
are not our desired states. But nevertheless the simplification from Thm. 3.1 are a
mathematical trick to save us some calculation as we need to perform less integrals.
This will be helpful when we are doing numerics. As we saw for the FuR the states
ϕ〉 are a subset of our actual CS of SU(2) but for the AdR and higher representation
this is not the case anymore. Thus when we are averaging over all initial and final
states anyways, we can use the states ϕ〉 to completely calculate the color factors of
a process. But if there are particles we do not want to average, then these states give
different results than the CS z〉 (3.16). This is for example the case if we look at
our process with particular initial states and do not want to average over all possible
initial states. On the other hand we almost always average over final states and thus
for processes with colorless initial states, we can use the states ϕ〉 anyways. However
if we want to study the color-flow, then be aware that the parameters of the states ϕ〉
for the AdR are slightly different from the ones of the CS z〉.

3.1.3 Another way to construct the SU(2) coherent states

When we were constructing the CS in the previous section we used the representation
of the Lie group, the isotropy group of ψ0〉 and the corresponding coset space. The
problem when doing this is that the commutator [J3, [J3, J2]] does not vanish as in
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the case of the HWG (2.9). This means we can not just simply use the formula (2.13)
as before but need the general case of the Baker-Campbell-Hausdorff formula (2.14)
when manipulating (3.6) to calculate (3.8). When we are constructing the SU(3) CS
these calculations will be even more difficult and thus we will present another way of
constructing the SU(2) CS via annihilation and creation operator, therefore similar to
the HWG. For this task we mainly follow the ideas from Mathur and Sen [MS01] but
we deviate their construction a bit to resemble more the SU(3) case later on.
This means we construct all representations from the FuR 2 and its conjugate 2̄. This
procedure is actually too much when only considering the SU(2) case as we have a
redundancy in it. This is due to the fact that the rank of SU(2) is only one and it
would suffice to use only one representation of the two, as the other one is equivalent
to it. But as SU(3) has rank two we will have to use the representations 3 and 3̄ in
this case. This idea can then be generalized to any SU(n) [MM02] by just taking a
number of basic representations equal to the rank of the group, viz n− 1, and repeat
this scheme.

Schwinger representation of SU(2)

First we need annihilation and creation operators satisfying the HWA (2.5) and which
allow us to implement the SU(2) algebra (3.1). To achieve this we use the Schwinger
representation of the SU(n) group [Sch52, Mat81]: As discussed above we want to
construct all representations of SU(2) from its FuR which is two dimensional and
thus we use a pair of operators (a1, a2)T ≡ a and its hermitian conjugate satisfying
[ai, a†j ] = δij1 and all other commutators vanish. Then consider the operators

Ja = 1
2a
†
i [σa]ijaj . (3.32)

and it is an easy task to check that these operators fulfill the SU(2) algebra (3.1) and
that the well known Casimir operator is

J2 = J · J = JaJa = 1
4a† · a(a† · a + 2). (3.33)

Knowing that the eigenvalues of J2 are j(j + 1), we can define the operator ĵ which
has the eigenvalues j:

ĵ = 1
2a† · a = 1

2(N̂1 + N̂2) (3.34)

30



3.1 SU(2)

Here we introduced the number operators N̂i = a†iai which have eigenvalue Ni. Then
we can use the eigenstates N1, N2〉 of these operators from the Fock space [Foc32].
Further we see from (3.32) and (3.33) that J2 and J3 can be expressed in terms of
N̂ = (N̂1, N̂2) and thus the states N1, N2〉 are also eigenstates of these. This enables
us to calculate j from the sum and µ from the difference of N1 and N2. Hence we have
a one-to-one correspondence between the states j, µ〉 of SU(2) and N1, N2〉 of the
Fock space and we can just continue in the number basis. This is also possible because
when constructing all representations of SU(2) from tensor products of the FuR, we
are always looking at the highest dimensional, irreducible representation contained in
the product space. This representation is always the totally symmetric one and the
Fock states are a complete system of totally symmetric states of our Hilbert space
[Sch08].
With the given definitions, the index i = 1 is referring to the number of states N1 with
µ = 1

2 and the other index to N2 with µ = −1
2 in the 2 representation. It is a nice

exercise left to the reader to show that a†i is really transforming as this FuR of SU(2)
and consequently also the state a†i 0, 0〉, i.e. to show

[Ja, a†i ] = 1
2a
†
j [σa]ji. (3.35)

To move on, we introduce an equivalent pair of operators b = (b1, b2) which commutes
with all ai and a†i and we define

J̃a = −1
2b
†
i [σa]ijbj . (3.36)

Thus b transforms as the 2̄ representation of SU(2):

[J̃a, b†i ] = −1
2b
†
j [σa]ji (3.37)

and consequently J̃a as well as

Qa = 1
2a
†
i [σa]ijaj −

1
2b
†
i [σa]ijbj (3.38)

fulfill the SU(2) algebra. In addition Qa fulfills the commutator relation (3.35) with
a†i and (3.37) with b†i instead of Ja or J̃a respectively and all the other commutators
vanish:

[Qa,a† · a] = [Qa, b† · b] = [Qa,a† · b†] = [Qa,a · b] = 0. (3.39)

But the Casimir QaQa cannot be written similar to (3.33) only depending on the
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number operators. Thus the eigenstates of our number operators are not eigenstates
of the Casimir and are consequently not in our representation as we will see below.
Via the Schwinger representation we accomplished a SU(2) algebra constructed by an-
nihilation and creation operators in the Fock space. These steps are easily generalized
for any SU(n). Before proceeding to the next step it is handy to introduce the Tensor
notation of representations.

Tensor notation and irreducible representation

After all these definitions the indices can get overwhelming quickly especially when it
comes to distinguish the two representations 2 and 2̄. For this task tensors are suited
very well and we will switch to the notation from Georgi [Geo99]. We label the states
’spin up’ and ’spin down’ of the 2 respectively as 1〉 and 2〉 with upper indices and
correspondingly the states of 2̄ as 1〉 and 2〉 with lower indices. With the definition

[Ja]ji = 1
2[σ]ij (3.40)

we can rewrite the transformation of these states as

Ja
i〉 = j〉 [Ja]ij and Ja i〉 = − j〉 [Ja]ji . (3.41)

Thus we are always summing over an upper and a lower index. We can extend this to
the tensor product space of arbitrary numbers of 2 and 2̄

i1...
j1...〉 = i1〉 · · · j1〉 · · · (3.42)

and introduce for each a corresponding index. Then the transformation of such a state
is just given by

Ja
i1...
j1...〉 =

∑
l=1

i1...il−1kil+1...
j1... 〉 [Ja]ilk −

∑
l=1

i1...
j1...jl−1kjl+1...

〉 [Ja]kjl . (3.43)

When we want to have an irreducible representation for this tensor product space, we
can just start with the highest weight state and then construct the whole representation
via lowering operators as known from spin and angular momentum addition. In the
SU(2) case the highest spin state is the one corresponding to all states of the 2-
representation being in the state with label 1 and of the 2̄-representation in the state
with label 2 as can be seen from (3.38) for a = 3: 11...

22...〉. This state has two properties
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which are preserved by a SU(n) transformation: It is symmetric in the upper and in
the lower indices and it satisfies the traceless condition:

n∑
il,jk=1

δiljk
i1...
j1...〉 = 0. (3.44)

The symmetry in the indices is preserved as the generators transform all upper indices
the same way and also all lower indices. The minus sign in (3.43) and the tracelessness
of the generators Ta guarantee the second property. Thus all states in the irreducible
representation have these two properties and also vice versa: Each state fulfilling these
is a state of the highest dimensional irreducible representation contained in our tensor
product space [Geo99].

Constructing a SU(2) matrix

The last piece we need to construct the CS, is a SU(2) invariant unit vector

z =
(

cosω eiα

sinω eiβ

)
=
(
z1

z2

)
, |z|2 = z · z = 1 (3.45)

which is described by three real parameters ω ∈ [0, π2 ], α ∈ [0, 2π] and β ∈ [0, 2π]. We
want this one to transform as the 2 representation. Furthermore we define another
SU(2) invariant unit vector w with the property

z ·w = 0 (3.46)

which then transforms as the 2̄. Then the most general form of w is given as

w =
(
− sinω eiβ

cosω eiα

)
(3.47)

and then the matrix

(
z w

)
=
(

cosω eiα − sinω e−iβ

sinω eiβ cosω e−iα

)
(3.48)

is a SU(2) matrix. The measure in this space is given via

dΩ = dω dα dβ 1
2π2 cosω sinω. (3.49)
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The coherent states

Now we can put all the parts together and construct the CS. First we fix the eigenvalues
of N = a† · a and M = b† · b and thus the dimension of our representation as we will
see. Such states are obtained via

a†i1a
†
i2 . . . a

†
iN
b†j1b

†
j2 . . . b

†
jM

0〉 (3.50)

where the indices ik and jl, as already mentioned, can have the values 1 and 2 in the
SU(2) case corresponding to the ’up’ and ’down’ states of the 2 and the 2̄ respectively.
We can characterize such a state via the eigenvalues of Ni = a†iai and Mj = b†jbj and
will label it as

N1N2
M1M2

〉 = (a†1)N1(a†2)N2(b†1)M1(b†2)M2
√
N1!N2!M1!M2!

0〉 ,
∑
i

Ni = N,
∑
i

Mi = M. (3.51)

We know from our tensor product of 2s and 2̄s, which irreducible representation of
SU(2) is the highest dimensional contained in the tensor product. We label this rep-
resentation as usual with j connected to the eigenvalue of the Casimir Q2 from our
notation of (3.38) and j is fixed from N and M :

j = 1
2(N +M) (3.52)

as we can see from the maximum eigenvalue of Q3. In our case of SU(2) there is a
redundancy in this equation as j does not fix N andM which is due to the equivalence
of 2 and 2̄. In the case of SU(3) the representation will completely fix N and M and
vice versa.
However as we noted before these states (3.51) are not necessary in the irreducible
representation. This is different than before in (3.34) as the Fock states N1, N2〉
are automatically a basis of our irreducible representation as they are the totally
symmetric states. But now when we consider the tensor product of 2 and 2̄ we also
need to account for the traceless condition (3.44) which is not intrinsic to the Fock
states N1N2

M1M2
〉. The symmetrization in upper an lower indices is already guaranteed as

before but we still need to subtract the traces to fulfill (3.44). Thus the states N1N2
M1M2

〉
span in general a larger space than the highest dimensional irreducible representation
contained in our tensor product. However if either N = 0 or M = 0 we are again in
the case where no traceless condition needs to be fulfilled or rather is satisfied trivially
and for example the states N1N2〉 span our irreducible representation.
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In the case where there is a tensor product of at least one FuR and its conjugate
we need a different basis for our highest dimensional irreducible representation which
we will label with Vi〉. The index i ranges from 1 to the dimension D(N,M) of the
representation which we obtain via the following thoughts: In the case M = 0 we
have no traceless condition and have N + 1 choices for N1 and then N2 is fixed from∑
iNi = N . Similarly for the case N = 0 and we have D(N, 0) = N + 1 as well as

D(0,M) = M+1. Then D(N, 0)D(0,M) is the number of states satisfying∑iNi = N

and∑iMi = M . Due to the traceless condition (3.44), we need to subtract from these
the number of states fulfilling ∑iNi = N − 1 and ∑iMi = M − 1 and get eventually
in the case of SU(2):

D(N,M) = N +M + 1. (3.53)

This agrees with the statements from (3.52) and (3.4). Furthermore we have the RoU

D(N,M)∑
i=1

Vi〉 〈Vi = 1. (3.54)

Now consider states constructed via the generating function

√
N !M ! ez·a†+w·b† 0〉 (3.55)

and we project onto the subspace with fixed N and M . Then the states

z,w〉 = (z · a†)N (w · b†)M√
N !M !

0〉 (3.56)

will be in the irreducible representation: As z and w transform as the 2 and the 2̄
respectively, these states will be be symmetric in upper and lower indices and fulfill
the traceless condition (3.44) per construction. We can rewrite the binomials [GR94,
1.111] in (3.56):

z,w〉 =
∑
N1,N2

N1+N2=N

∑
M1,M2

M1+M2=M

√
N !M !

N1!N2!M1!M2!z
N1
1 zN2

2 wM1
1 wM2

2
N1N2
M1M2

〉 (3.57)

and these are the CS of SU(2) because from the construction in (3.55) we can argue
according to the construction via the operator D in (2.21). Here we are considering
ordinary CS constructed from the vacuum state, i.e. ψ0〉 = 0〉, and thus the part
with the annihilation operator a in D (2.12) vanishes and we have the form of (3.55) as
z and w are unit vectors. Accordingly we can conclude that the CS z,w〉 are states
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closest to the classical states. In contradistinction to the case of the harmonic oscillator
in Sec. 2.2.2, we are not looking at the whole space but only at a D(N,M) = 2j + 1
dimensional subspace. In the case of the harmonic oscillator this is not very fruitful
as all these subspaces with fixed N are one dimensional. But in the case of SU(n) we
are always working in a certain representation instead of looking at the whole group.
Now we are only left with one conceptual difference between the CS of Perelomov
from Sec. 3.1.2 and this construction here: In Def. 2.3 we saw that a point in the coset
space X completely determines our CS which lead to two parameters in (3.16). But
looking at the definition of z in (3.45) and w in (3.47), we see that we still have three
parameters. But in (3.57) and already in (3.56) we see that we can pull a total phase
factor ei(N+M)α out. This phase does not change our state and thus can be omitted
and we are only left with two parameters ϕ = β − α and ω. This can only be done
in a certain representation as it is not possible in (3.55) and thus the value of this
phase determines our representation. This can also be seen when acting with (3.8) on
a maximum weight state which results in the same phase factor. This can be easily
seen via comparison of the parameters of (3.48) and (3.6).

Next we will show the RoU through the operator

A = D(N,M)
∫

dΩ z,w〉 〈z,w . (3.58)

This operator A commutes with all generators Qa of our SU(2) as a and b transform
as the 2 and the 2̄ respectively and it must be proportional to the 1. Here in the
case of the SU(2) the normalization can easily be proved by directly calculating the
integral in (3.58) as before. But it is also sufficient to consider one element 〈V1|A|V1〉
and show that it is equal to one as we already know that A is proportional to 1. The
mapping from the states N1N2

M1M2
〉 to basis states Vi〉 is not an easy task in general but

here it is sufficient that we know one, which we take to be V1〉. From Q3 in (3.38)
we see that N0

0M 〉 is a state in our representation as we can identify it with the highest
weight state j, j〉. Another way to see this is that this vector already fulfills (3.44).
Thus we take V1〉 = N0

0M 〉 and the resulting integral

〈N0
0M |A|N0

0M 〉 = D(N,M)
∫

dΩ |z1|2N1 |w2|2M2 = D(N,M)
∫

dΩ (cosω)2(N+M) = 1

can be solved easily and we have proved the RoU. Further from (3.58) and (3.49) we
get the same integration measure as in (3.24) when executing the integration over the
phase α of our isotropy group.
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Lastly we want to show that the CS (3.57) are equal to the ones from Perelomov
(3.16). As already mentioned the problem that occurs here is that it is not easy to
perform the transformation from our N1N2

M1M2
〉 vectors in (3.57) to the Vi〉, viz j, µ〉,

basis in general. Thus our approach is the following: We know that we can construct
all representations of SU(2) just from the 2 representation. The construction in this
section was just done together with the 2̄ representation to facilitate the step to SU(3)
later on. Thus we will show the correspondence of (3.57) to (3.16) in the case ofM = 0
when we only have tensor products of 2s. Then we will look explicitly into the AdR
and show how the mapping from N1N2

M1M2
〉 to Vi〉 can be done in a special case.

In the case M = 0 all the states N1
0

N2
0 〉 evidently fulfill the traceless condition (3.44)

and we have the same one-to-one correspondence to j, µ〉 as before in the context of
(3.32) and (3.34). We can reduce the double sum with the constraint N1 + N2 = N

to one sum over N2 from 0 to N . From (3.52) we know that 2j = N and we shift the
summation to run from −j to j:

z〉 = ei2jα
j∑

µ=−j

√
(2j)!

(j + µ)!(j − µ)! ei((j−µ)α+(j+µ)β−2jα)(cosω)j−µ(sinω)j+µ j, µ〉 .

(3.59)
Here we already put the phase factor eiNα before the sum as discussed above and
we get in the exponential in the sum (j + µ)(β − α). This leaves us with one phase
ϕ = β−α as in the Perelomov case and corresponds to taking complex numbers from
the coset space X in Def. 2.3. Finally we take a (cosω)2j out of the sum and get a
tangent and thus the same as in (3.16).
Now we want to look at the CS of the AdR obtained via a tensor product of a 2 and
a 2̄ and show the equivalence to the CS of Perelomov. Using (3.57) with N = 1 = M

we get
z,w〉AdR = z1w1

10
10〉+ z1w2

10
01〉+ z2w1

01
10〉+ z2w2

01
01〉 . (3.60)

We know that the dimension of the AdR, viz j = 1, is three but currently we still have
four vectors. But from (3.46) we see that the sum of the coefficients of the vectors 10

10〉
and 01

01〉 vanishes which means that we have only four linear independent vectors in
(3.60). These are 10

01〉, 01
10〉 and ( 10

10〉− 01
01〉) and we see that this procedure is not easily

generalizable to the arbitrary case N and M . These three states would be enough to
write down the CS in terms of our basis Vi〉 but as we want to compare it to (3.16) we
need to find the correspondence to the states 1, µ〉. This correspondence will later for
SU(3) no longer be performed as we are only interested in a RoU. This correspondence
is done via the raising and lowering operators Q± = Q1 ± iQ2. As already mentioned
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above, 10
01〉 must be the highest weight state 1, 1〉 = 1〉 and then we are just left with

calculating the Clebsch-Gordan coefficients1 resulting in:

1〉 = 10
01〉 , 0〉 = 1√

2
( 01

01〉 − 10
10〉), −1〉 = − 01

10〉 . (3.61)

Now all we need to do, is inserting z and w in (3.60), using (3.61), factorizing the
phase as in the general case and we get (3.16) for j = 1.

In this section we showed how to construct the CS in general for any SU(n) on the
example of the SU(2) with all the subtleties that are not part of SU(2) but for n > 2.
We kept this part such general to facilitate the step in the next section to SU(3) or
to any SU(n) if needed. In the end we saw that the tracelessness condition is not
necessary in the case of SU(2) but it will be for SU(3). But we included this subtlety
in the last paragraph on the example of the AdR and thus the step to SU(3) should
be straight forward.
Lastly we want to recall the main ideas and steps of this section: When we do the
tensor product of two FuR of SU(n) we get a n2 dimensional space. But in the Fock
space the states in the number basis are only the totally symmetric states and we are
only left with one irreducible representation. Thus in the last part, where we showed
the equivalence to the Perelomov CS, we got a one to one correspondence between the
N1N2〉 and the j, µ〉 states. If we consider e.g. 2 ⊗ 2 which is 3 ⊕ 1 the Fock states
are automatically in the AdR 3. In the general case where we have a tensor product of
2 and 2̄, it is not so trivial. But as mentioned before the CS in (3.57) are constructed
in a way that they fulfill the tracelessness. Consequently, the CS are automatically
from the AdR 3 if we consider 2⊗ 2̄. But now the one-to-one correspondence between
the N1N2

M1M2
〉 and the j, µ〉 states is not easily given as we also saw in the last example.

Furthermore the definition of Def. 2.3 from Perelomov is based on the isotropy sub-
group of the fixed vector ψ0〉. This leaves us with only two parameters ω and ϕ when
we first considered the CS. But with the construction in this section we always have
the three parameters of z, viz ω, α and β. But the representation of the CS in (3.57)
shows that we can get rid of one overall phase as we then did in (3.59) and are left with
only two parameters. When we do the construction via the Schwinger representation
of SU(n) we need to think about the isotropy subgroup later and not at the beginning.

1The Clebsch-Gordan coefficients of SU(2) and SU(3) for the representations needed in this thesis
can easily be derived by a quick calculation. Further they can be found in [Che+87] and there is
a nice on-line tool [Ale+] available for calculating them.
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3.2 SU(3)

3.2.1 Representation of SU(3)

In the SU(3) case there is no closed expression for the structure constants fabc from
(2.1). However the most common representation of the FuR is given via the Gell-Mann
matrices [Geo99]:

λ1 =


0 1 0
1 0 0
0 0 0

, λ2 =


0 −i 0
i 0 0
0 0 0

, λ3 =


1 0 0
0 −1 0
0 0 0

,

λ4 =


0 0 1
0 0 0
1 0 0

, λ5 =


0 0 −i
0 0 0
i 0 0

, λ6 =


0 0 0
0 0 1
0 1 0

,

λ7 =


0 0 0
0 0 −i
i 0 0

, λ8 = 1√
3


1 0 0
0 1 0
0 0 −2



(3.62)

and from these one can calculate fabc with the generators

Ta = 1
2λa. (3.63)

Looking at the Gell-Mann matrices we see that λ3 and λ8 are already diagonal and
they are chosen to be the two Cartan operators. Their eigenvalues give the weights
of the eigenstates of the FuR which can be visualized via a triangle in a plane, which
can be seen in Fig. 3.1b. The raising and lowering operators are just obtained like
in Sec. 3.1.1 from the three SU(2) subalgebras: 1-2, 4-5 and 6-7 together with the
respectively according Cartan operator which is a linear combination of λ3 and λ8.

3.2.2 Coherent states of SU(3)

After all the groundwork in the SU(2) section, we can construct the SU(3) CS straight-
forward. First we replace the Pauli-Spin-matrices in (3.38) with the Gell-Mann-
matrices λa and get the Schwinger representation:

Qa = 1
2
(
a†i [λa]ijaj − b†i [λa]ijbj

)
. (3.64)
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To move on, we need two complex vectors of unit norm, namely

z =


sin θ cosϕ eiα1

sin θ sinϕ eiα2

cos θ eiα3

 and w =


ei(β1−α1) cosχ cos θ cosϕ+ ei(β2−α1) sinχ sinϕ
ei(β1−α2) cosχ cos θ sinϕ− ei(β2−α2) sinχ cosϕ

− ei(β1−α3) cosχ sin θ


(3.65)

which satisfy z ·w = 0. Then the matrix(
z w z ×w

)
(3.66)

is a SU(3) matrix. This is a eight dimensional space with the following integration
measure as well as the integration borders [MS01]:

dΩ = 1
2π5 sin3 θ cos θ cosϕ sinϕ cosχ sinχdθ dϕ dχ dα1 dα2 dα3 dβ1 dβ2

θ, ϕ, χ ∈ [0, π2], αi, βi ∈ [0, 2π].
(3.67)

Now we consider z to transform as the 3 and w as the 3̄ and we can construct all
representations via tensor products and the CS as before. Another way is to construct
all representations out of 3 and 3 ∧ 3 where this means an antilinear combination of
two 3s. Then we need to use the vectors z and z×w when constructing the CS. This
is done in [MM02] where it is also generalized to SU(n) and gives the same results in
the end. We stick to the first way and use z and w and we get the CS with (3.56) as

z,w〉 =
∑

N1,N2,N3
N1+N2+N3=N

∑
M1,M2,M3

M1+M2+M3=M

√
N !M !

N1!N2!N3!M1!M2!M3!

zN1
1 zN2

2 zN3
3 wM1

1 wM2
2 wM3

3
N1
M1

N2
M2

N3
M3
〉 . (3.68)

As before this construction does not account for any global phases that can be ex-
tracted which are equivalent to the isotropy subgroup considered by Perelomov. This
can be easily done at this step just as in the SU(2) case and we can extract a factor
eiα1 from z and a factor ei(β1−α1) from w. Then the construction via (3.56) gives us an
overall factor ei(α1(N−M)+β1M) which can be represented by two phases. The remaining
six parameters are enough to describe the remaining vectors z̃ and w̃ instead of eight.
Thus the CS can also be described by only six parameters as the overall phases do not
change the states. In the following we will omit the tilde and the term CS of SU(3)
will refer to the ones with the tilde. Also α2 will mean α̃2, i.e. α2−α1 and accordingly
for α3 as well as β2. In addition we omit the phases with the index one, viz α1 and

40
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β1. As already mentioned these phases are the phases omitted by Perelomov from the
isotropy subgroup. In the considered representation of z and w we see that we cannot
extract another global phase. We will show later that we cannot get rid of more than
two parameters in the general case and discuss in which cases this is possible.

Resolution of unity

The operator
A = D(N,M)

∫
dΩ z,w〉 〈z,w (3.69)

must be proportional to the 1 as it commutes with all generators Qa. In the case of
SU(3), calculating the integral in this operator is not straightforward and we consider
again one element 〈V1|A|V1〉 and show that it is one and it follows A = 1. We take
again the highest weight state V1〉 = N00

00M 〉.
First we need to calculate the dimension of the representation of the CS. Therefore
we consider again the case M = 0: We rewrite the sum with constraint in (3.68) over
Ni as two sums over N1 and N2 as N3 is then already fixed. For each N1 we have
N1 + 1 choices for N2 which results in total in ∑N

N1=0(N1 + 1) choices. This is a sum
over the natural numbers from 1 to N + 1 and resolves to D(N, 0) = (N+1)(N+2)

2 .
Similarly D(M, 0) = (M+1)(M+2)

2 and D(N, 0)D(M, 0) states fulfill ∑iNi = N as
well as ∑iMi = M . From this we need to subtract the number of states satisfying∑
iNi = N − 1 and ∑iMi = M − 1 because of the traceless condition. This results in

D(N,M) = 1
2(N + 1)(M + 1)(N +M + 2). (3.70)

Now we are only left to calculate the following integral and show that it is equal to
one:

〈V1|A|V1〉 = D(N,M)
∫

dΩ | 〈V1|z,w〉 |2

= D(N,M)
∫

dΩ N !M !
N !M ! |z1|N |w3|M 〈N00

00M |N00
00M 〉 .

(3.71)

We consider only the integral and insert z1 (3.65), w3 (3.65) and the volume element
(3.67) where we have already executed the trivial integration over the parameters of
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the isotropy group:
∫

dθ dϕdχdα 2dα 3dβ 2
2
π3 sin3 θ cos θ cosϕ sinϕ cosχ sinχ

(sin θ cosϕ)2N (cosχ sin θ)2M .

After performing the trivial integration over the phases we are only left with integrals
consisting of a product of odd powers of a sine and a cosine of the same argument:

∫ π

2

0
dx (sin x)2i+1(cosx)2j+1 = i!j!

2(i+ j + 1)! .

This can be solved as in the SU(2) case via the substitution u = cosx and we are left
with the form of (3.28). Inserting our values for i and j, we get:

16 (N +M + 1)!
2(N +M + 2)!

N !
2(N + 1)!

M !
2(M + 1)! = 2

(N +M + 2)(N + 1)(M + 1) = 1
D(N,M) .

And thus the RoU is given by A in (3.69) as we showed that (3.71) is equal to one.

Now we have the CS of SU(3) and a RoU which allows us to write any state of our
Hilbert space in terms of the CS. The only missing part is a representation of the
CS in terms of the eigenstates of the Cartan operators which is our natural basis in
any representation of SU(3). We mentioned already above that it is sufficient for our
purpose to have a representation in terms of the Vi〉 as we only want a RoU. As we saw
on the case of the AdR of SU(2) this is best done for each representation individually.
For us it is enough to have the CS of the FuR and AdR as Quarks transform according
to the first one and gluons according to the second one regarding color. In contrast
to the SU(2) case there are different simplifications possible especially concerning the
isotropy group. Next we look at these two cases consecutively and we will also refer
to the generalization of both representations. In the subsequent section we will give a
general proof for the statements made on these two cases.

Coherent states of the fundamental representation

Considering the FuR of SU(3) and any representation that can be constructed via a
tensor product only of this one, viz 3⊗k, we see thatM = 0. Thus the parameters of w

are not relevant to describe the CS and can be omitted, i.e. only the four parameters
α2, α3, θ and ϕ are needed. Furthermore already the states N1

0
N2
0

N3
0 〉 are a basis as
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we have no traceless condition in this case and they span our desired representation.
We can write the RoU (3.69) of this space as

1 = D(N, 0)
∫

dΩ
∑

N1,N2,N3
N1+N2+N3=N

∑
N ′1,N

′
2,N
′
3

N ′1+N ′2+N ′3=N

√
N !M !N !M !

N1!N2!N3!N ′1!N ′2!N ′3!

(sin θ cosϕ)N1+N ′1(sin θ sinϕ)N2+N ′2(cos θ)N3+N ′3

eiα2(N2−N ′2) eiα3(N3−N ′3) N1N2N3〉 〈N ′1N ′2N ′3 (3.72)

and the integrations over the two phases α2 and α3 give us δN2N ′2
and δN3N ′3

. This
also fixes N ′1 with δN1N ′1

from the constraint that the sum of Ni and also of N ′i must
be equal to N . Similar to the case of SU(2) we see that the integration over the other
two parameters are only relevant for the normalization and we can conclude similar
to Thm. 3.1:

Theorem 3.2. The RoU of the FuR of SU(3) CS and representations only constructed
from it, can be written as

∫
dα2 dα3

D(N, 0)
4π2 α2, α3〉 〈α2, α3 = 1,

with α2, α3〉 = 1√
D(N, 0)

∑
N1,N2,N3

N1+N2+N3=N

ei(N2α2+N3α3) N1N2N3〉 . (3.73)

At this point we can take a quick look at the uncertainty (2.41) of our CS as at
page 28. Therefore we need to calculate first the uncertainty for the highest weight
state T3, T8〉 = 1

2 ,
1√
3〉 as a reference:

1
2 ,

1√
3〉 z〉FuR α2, α3〉

(ΔT )2 1 1 1
.

We see again that our CS are indeed states with minimal uncertainty as we expect
from our construction with the vacuum state 0〉 similar to the harmonic oscillator.
Further also the states α2, α3〉 for the simpler RoU of the FuR from Thm. 3.2 are
states of minimal uncertainty as they are a subset of the CS equivalent to the SU(2)
case.

In the SU(2) case there were two parameters enough to describe the CS completely
and now we only needed four parameters. From theses only respectively one for SU(2)
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and two phases for SU(3) are enough for the simpler RoU.
This is generalized to any SU(n) and tensor products of the FuR in [Nem00]. There
the symmetric decomposition


1 0 . . . 0
0
... SU(n− 1)
0




eiϕ cos θ − sin θ 0
sin θ e−iϕ cos θ 0

0 0 1n−2




1 0 . . . 0
0
... SU(n− 1)
0


(3.74)

of the FuR n× n from [RSG99] is used. Acting with this decomposition on the vector
(1, 0, . . . , 0)T, we see that the number of parameters of one SU(n − 1) are irrelevant
when describing the CS. Then the CS ψg〉n of SU(n) can be constructed from the CS
ψg〉n−1 of SU(n− 1):

ψg〉n =


eiϕ cos θ

0
...
0

+ sin θ
(

0
ψg〉n−1

)
. (3.75)

Per induction from the SU(2) case we see that 2(n − 1) parameters are enough to
describe the CS of the FuR completely. Half of these parameters are phases and are
enough for the RoU when considering Thm. 3.2.
When we then look at the tensor product of k FuR, we do not need more parameters
as the tensor product (1, 0, . . . , 0)T⊗k of our fixed vector will trivially be in our repre-
sentation from the Clebsch-Gordan coefficients. This is due to the fact that our Fock
states N1N2N3〉 are already a basis of the desired representation. The only thing we
cannot proof at this stage is, if we can possibly get rid of even more parameters which
will be discussed in Sec. 3.3.

Coherent states of the adjoint representation

The first problem that arises here is to move from the states N1
M1

N2
M2

N3
M3
〉 to the eight

basis states Vi〉 of the AdR. For this representation we have N = 1 = M and thus

z,w〉 =
3∑

i,j=1
ziwja

†
ib
†
j 0〉 . (3.76)
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The sum of the coefficients of the states 100
100〉, 010

010〉 and 001
001〉 vanishes. This is just

due to our constraint z ·w = 0 which guarantees us the traceless condition. Thus we
can move to the following eight linear independent states:

V1〉 = 1√
2

(
100
100〉 − 010

010〉
)
, V2〉 = 1√

6

(
100
100〉+ 010

010〉 − 2 001
001〉

)
,

V3〉 = 100
010〉 , V4〉 = 010

100〉 , V5〉 = 100
001〉 ,

V6〉 = 001
100〉 , V7〉 = 010

001〉 , V8〉 = 001
010〉 .

(3.77)

Be aware that these states Vi〉 are the eigenstates of the Cartan operators but might
not be directly related among each other via raising and lowering operators. Thus the
signs we explicitly calculated in (3.61) are not included here. Now we define the CS
as z,w〉 = ∑8

i=1 λi Vi〉 where the λi are derived from (3.77):

λ1 = 1√
2

(z1w1 − z2w2)

= 1√
2

sin θ(eiβ2 sin(2ϕ) sinχ+ cos2 ϕ cos θ cosχ− sin2 ϕ cos θ cosχ),

λ2 = 1√
6

(z1w1 + z2w2 − 2z3w3) =
√

3
2 sin θ cos θ cosχ,

λ3 = z1w2, λ4 = z2w1, λ5 = z1w3,

λ6 = z3w1, λ7 = z2w3, λ8 = z3w2.

(3.78)

Now we look at the RoU via (3.69) which takes the form

1 = D(1, 1)
∫

dΩ
8∑

i,j=1
λiλj Vi〉 〈Vj (3.79)

and we want to know which integrations are enough for the RoU. Taking the explicit
form of the λi in (3.78) and considering each product λiλj in (3.79), we see that the
integrations over α2, α3 and β2 leave only terms from λ1λ2 and its conjugate besides
the diagonal terms λiλi. These remaining off-diagonal terms are of the form

cos3 θ cos3 χ sin(4ϕ) sin5 θ sinχ

and will vanish when we integrate over ϕ. Thus for the RoU there are four parameters
enough and we can save two integrations when we are doing numerics. This gives us
the following theorem after Thm. 3.1 and Thm. 3.2
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Theorem 3.3. The RoU of the AdR of SU(3) CS can be written as

∫
dα2 dα3 dβ2 dϕ cosϕ sinϕD(1, 1)

4π3 α2, α3, β2, ϕ〉 〈α2, α3, β2, ϕ = 1,

with α2, α3, β2, ϕ〉 = 1√
D(1, 1)



cos2 ϕ− sin2 ϕ+ 2 eiβ2 sinϕ cosϕ
1√

2 cosϕ e−iα2(sinϕ− eiβ2 cosϕ)√
2 eiα2 sinϕ(cosϕ+ eiβ2 sinϕ)

−
√

2 e−iα3 cosϕ
eiα3(cosϕ+ eiβ2 sinϕ)
−
√

2 ei(α2−α3) sinϕ
ei(α3−α2)(sinϕ− eiβ2 cosϕ)


(3.80)

in the basis of the Vi〉 from (3.77).

Again we also want to calculate the uncertainty of the CS of the AdR as in the case
of the FuR above:

1
2 ,
√

3
2 〉 0, 0〉 z〉AdR α2, α3, β2, ϕ〉

(ΔT )2 2 3 2 2.04
.

The highest weight state T3, T8〉 = 1
2 ,
√

3
2 〉 is our reference for the minimum uncer-

tainty and we see that both states 0, 0〉 in the middle of our hexagon of Fig. 3.1c have
a higher uncertainty. From our construction with the vacuum state 0〉, also the CS
of the AdR are states of minimum uncertainty. But however the states α2, α3, β2, ϕ〉
of the simpler RoU from Thm. 3.3 do not have minimal uncertainty as in the case of
SU(2) at page 28.

In this section we saw that we cannot reduce the number of parameters necessary to
completely describe a CS. Recalling the case of the FuR we cannot achieve a construc-
tion similar to the one from Nemoto in (3.74), as the tensor product of the states
(1, 0, 0) from the 3 and (1, 0, 0) from 3̄ is not in the AdR. Looking at the Clebsch-
Gordan coefficients, we see that it is a linear combination of the basis states Vi〉. This
is the same as with some of the states N1

M1
N2
M2

N3
M3
〉 which are neither in the AdR as we

saw in (3.77). As we are not able to do a construction as in (3.75), we can not induce
the AdR of SU(3) from a representation of SU(2) and thus we cannot get rid of more
parameters. These bit heuristic arguments will be discussed in the next section with
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more mathematical background and we will see that the statements made here hold
true.
The only open question that remains is how to generalize the idea of Thm. 3.3 to any
D(N,M) dimensional representation. But as we are mostly interested in the FuR and
AdR for applications with quarks and gluons, we will not follow this track.

3.3 Finding the isotropy subgroup

The isotropy subgroup is defined in Def. 2.2 as the maximum set of group elements
which do not change our fixed state ψ0〉. The question that arises, is how large can
the isotropy group be or equivalently how many parameters are at least necessary to
completely describe the CS. Our goal is to find all elements h ∈ H which is equivalent
to finding all generators Ta of the Lie algebra for which ψ0〉 is an eigenstate. Then

H = {h = eiθaTa |Ta ∈H ≡ {Tb|Tb ψ0〉 = λb ψ0〉}} (3.81)

will be the isotropy subgroup and H is the isotropy subalgebra of Def. 2.5. Then it
is only left, if we can decompose any group element into the form

eiθaTa |Ta /∈H eiθbTb |Tb∈H = g ∈ G. (3.82)

Acting with this onto ψ0〉, the right term will just give us a phase that we can ignore
and we are left with only the parameters from the coset X = G/H, which are sufficient
to describe the CS.

For the decomposition in (3.82) we need some terms from group theory as well as
some assumptions. This detour is based on the book of Hermann [Her66] about Lie
groups. The Lie group G should be semisimple, connected and only has a finite center.
In our case of SU(n) this is fulfilled easily. We recall that G is the corresponding Lie
algebra. Let K be a compact subgroup of the Lie group G and G has the so called
Cartan decomposition G = K ⊕P, i.e.

[K ,K ] ⊂ K , [K ,P] ⊂P, [P,P] ⊂ K . (3.83)

The first property is just due to the fact that K is a subgroup. For our purpose it
is enough to find such a decomposition but there exists a theorem that this is always
possible, known as Cartan’s theorem. Then we can formulate the following theorem
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Theorem 3.4. Let G be a connected Lie group which only has a finite center and K
be a connected subgroup. Further G and K are the corresponding Lie algebras and G

admits a Cartan decomposition (3.83). Further P be the image of P in G under the
exponential map. Then the Lie group has the decomposition

G = PK. (3.84)

The proof of this theorem is obtained via Riemann geometry and is of no particular
interest for this work. This groundwork on Lie groups and algebras will enables us to
fix the isotropy subgroup of the fixed vector ψ0〉 based on the ideas from the beginning
of this section.

Before we move on, we want to mention the application of Thm. 3.4 when decomposing
a group into subgroups. This procedure involves taking a maximal abelian subalgebra
A of P. In the trivial case A contains just one element but nevertheless P can be
written as P = KAK [Her66]. Be aware that we now moved to the group and left the
algebra. This fact enables us together with (3.84) to decompose G as

G = KAK. (3.85)

As K is itself a group we can start this decomposition all over again. If A always only
consists of one element, this results in an algorithm where we can break down G into a
finite number of one-parameter subgroups in a specific order. In the case of SU(n) this
is always possible as the generators do not commute and thus the maximal abelian
subalgebra A only consists of one element. This gives the well known Euler-angle
decomposition of SU(2) which we already used in (3.6) and that can be generalized
to SU(n) based on this idea [Byr97, TS02, BCC06]. We want to show the SU(2) and
SU(3) cases explicitly as they might also help to illustrate the following analysis.
Considering SU(2) we take K = J3 as the subalgebra and our conditions in (3.83) are
clearly met and we can write

G = ei(θ1J1+θ2J2) eiθ3J3 = PK (3.86)

which is essentially nothing else than (3.8). Then for the maximal abelian subalgebra
of {J1, J2} we take J2, decompose P as

P = eiαJ3 eiβJ2 eiγJ3 . (3.87)
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In the case of SU(2) it is fairly easy to show explicitly for the FuR that this is indeed
an decomposition of P but as stated above, this is always the case. Now we put (3.87)
into (3.86) and we are at first left with four parameters. But the last two terms are
both group elements with the generator J3 in the exponential and this redundancy can
easily be dealt with when we define γ′ = γ + θ3. Then we have G = eiαJ3 eiβJ2 eiγ′J3 ,
the Euler angle decomposition as in (3.6).
For SU(3) we can start all over again and search for K . Looking at the structure
constants we see that {λ1, λ2, λ3, λ8} is a good choice. As λ8 commutes with the other
three this is essentially a SU(2) for which we already found the Euler decomposition.
Then we choose one generator of the remaining ones, e.g. λ5 and can decompose
P = Kg(λ5)K equivalent to (3.87). Then we are left at a point where we have

G = Kg(λ5)KK (3.88)

and the redundancies of the two K terms on the right are easily dealt with. The
only difficulty is the remaining λ8 terms left to the λ5 term but we still have one
parameter too much in comparison to the rank of our group. Thus we finally arrive
at the decomposition already done by Byrd [Byr97]:

T (g) = eiαλ3 eiβλ2 eiγλ3 eiδλ5 eiελ3 eizλ2 eiηλ3 eiθλ8 . (3.89)

This is also one of the first works where the Euler decomposition was generalized to
another SU(n).
This idea then generalizes to any SU(n): We can always take a SU(n−1) subalgebra as
before. If we choose a common generalization scheme, e.g the generalized Gell-Mann
matrices [Geo99], this subalgebra will consist of the first generators and the single new
Cartan generator. That one will completely commute with this algebra by definition.
In the case of n = 4 this would be {λ1, . . . , λ8, λ15} and then we are at the already
known case and just reproduce the scheme from above. For n > 3 we still need to
put some thoughts in removing the already discussed redundancies as we have over-
parametrized our group elements. But this can be done in a canonical way [TS02]. In
this work it is also shown how to get the correct Haar measure for this parametrization
if we want to construct a RoU.

After this little detour which firstly deepened the understanding of some points from
above and secondly gave a nice outlook onto some applications of Thm. 3.4, we want to
move on to discuss the consequence on the CSS. Therefore we want to find the isotropy
subgroup, thus the maximal subgroup that leaves our fixed state ψ0〉 invariant. We
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3 COHERENT STATES FOR SU(N)

will exclusively work in the context of ψ0〉 being a canonical basis state vector of the
representation as we can always do a unitary transformation into this system.

SU(2)

From the structure of SU(2) (3.1) it is known that only one generator is diagonalizable
at a time. Thus ψ0〉 can only be eigenstate to one which we have taken to be J3 and
the arguments from above justified the construction in Sec. 3.1.2: We are left with two
parameters to completely describe the according CS and cannot reduce this further.

SU(3)

The rank of SU(3) is two and as a result we have two Cartan operators and any state
can be at least eigenstate to two generators, which are in general taken to be λ3 and
λ8. Then (3.89) already is of the form that the isotropy subgroup is acting first on
ψ0〉. Thus in general we cannot get rid of more parameters.
Taking a look at the FuR, viz the Gell-Mann matrices (3.62), we see that any basis
vector is also eigenvector of two more matrices, besides the Cartan operators, with
the eigenvalue zero. Thus we can get rid of another two parameters and as stated
before, four parameters are enough to describe the corresponding CS. This can also
be seen when going to the complex algebra G c which is the linear combination of
all generators with complex coefficients. Within this are the raising and lowering
operators, e.g. λ1 ± iλ2 which are equivalent to the roots. The six roots are shown in
Fig. 3.1a with blue solid arrows.
Now we take a look at the FuR of SU(3) which is shown in Fig. 3.1b where we placed the
roots at the highest weight state and scaled them with a factor of 1

2 for better visibility.
The highest weight state is an eigenstate to the four solid roots with the eigenvalue
zero. From these, only the two blue, thicker ones are a pair of raising and lowering
operators. Thus also the two hermitian generators, those roots are composed of, must
have the highest weight state as eigenstate, as they are only a linear combination
of them. As a consequence the corresponding group elements of these two hermitian
generators are also in the isotropy subgroup. The two red dotted roots do not have the
highest weight state as eigenstates and eventually the corresponding four hermitian
generators are needed to describe the CS. This can be done for each of the three
states of the FuR with each pair of raising and lowering operators. Then we do a
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λ3

λ8

(3.1a) The six roots of SU(3)

λ3

λ8

(3.1b) The roots at the highest
weight state of the FuR.
The roots are scaled
with a factor 1

2 .

λ3

λ8

(3.1c) The roots similar to
Fig. 3.1b for the AdR.

Fig. 3.1: The roots and weights for the FuR and AdR of SU(3) [Geo99]. The axes
are always labeled with the two canonical Casimir operators λ3 and λ8. For
description see the text.

decomposition similar to (3.89) where the generators for which ψ0〉 is an eigenstate
are in K. It is just about finding the corresponding SU(2) subalgebra and then the
scheme from above will lead us to the desired decomposition of (3.82). This leaves us
with the four parameters as already discussed before.
When constructing higher dimensional representations as 3⊗k from the FuR, we do not
change the shape of the triangle and the three maximum weight states have a four-
dimensional isotropy subgroup. As already discussed with Thm. 2.8 we are anyways
interested to take these states as they give us CS closest to the classical ones.

Now we turn our attention towards the AdR of SU(3) as shown in Fig. 3.1c where
we again put the roots onto the highest weight state with a factor 1

2 . The three solid
gray roots have this state as an eigenstate and the three red dotted not. Thus we
can not find a pair of raising and lowering operators which have both this state as
an eigenstate and therefore it is not an eigenstate to any generator besides the two
Cartan operators. This is true also for all the other states of the AdR and also for any
representation which has at least one 3 and one 3̄ involved in its construction. Thus
we need in total six parameters to describe our CSS as the isotropy subgroup is only
two dimensional.
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4 QCD cross sections

The goal of this chapter is to calculate QCD cross sections in the CSS and trying
to find simplifications for calculating higher order processes. To see that our method
indeed gives the correct results we will first calculate the cross sections in the color
basis for comparison. We have chosen the process from quark and antiquark to two
gluons as example. This chapter will give us the basis for the numeric calculation in
the next one.

4.1 Feynman rules

We want to review quickly the Feynman rules we are using in the following which can
be found in any textbook about QFT, e.g. [PS95]. First we look at the interactions,
particularly between fermions and gluons:

p2

p1

k

j, β

i, α

µ, a = igs[γµ]αβ[Ta]ij . (4.1)
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Here gs is the QCD coupling constant, γµ are the Dirac matrices and Ta the generators
of our color SU(n). Next we take a look at the three gluon vertex where it is important
to specify the direction of the momenta: We use the convention of all momenta ingoing
and we have:

k2

k1

k3

ν, b

µ, a

η, c = gsfabc(gµν(k1 − k2)η

+gνη(k2 − k3)µ + gηµ(k3 − k1)ν).
(4.2)

The structure constants fabc of our color SU(n) are already known and gµν is the
metric tensor of our Minkowski space. With the same convention of all momenta
being incoming, the four gluon vertex is:

k2

k1
k3

k4

ν, b

µ, a

η, c

%, d

=
−ig2

s (fabefcde(gµηg%ν − gµ%gνη)
+facefdbe(gµ%gνη − gµνgη%)
+fadefbce(gµνgη% − gµηg%ν)).

(4.3)

When we are not working with physical polarizations but instead with the simple
polarization sum, used later in (4.14), we need to consider ghosts and their interaction
term:

q

k

b

c

µ, a = gsfabcq
µ. (4.4)

Lastly we need the propagators of gluons and fermions which are given via:

k
µ, a ν, b = δab

−igµν
k2 (4.5)
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p2

p1

q
k2

k1

j

i

ν, b

µ, a

(4.1a) Graph 1

p2

q

k2

p1 k1

j

i

ν, b

µ, a

(4.1b) Graph 2

p2

q

p1

k2

j

i

ν, b

µ, a

k1k1

(4.1c) Graph 3

Fig. 4.1: Feynman graphs for the example process qq → gg.

and

q
i j = δij

−i(/q +m)
q2 −m2 . (4.6)

In all cases we are going to assume that we are at an energy scale where the quarks
can be taken to be massless and then we have instead of (4.6):

δij
−i/q
q2 ≡ δij

−i
/q2 . (4.7)

With these rules we can turn our attention to our example process next. For this one,
the rules presented in this section are enough and we omitted the ones which are not
needed in this thesis, e.g. the ghost propagator which we would need if we have four
gluons in our final states.

4.2 Process example: qq → gg

As already mentioned, we are going to show the calculation of the cross section from
a quark and an antiquark to two gluons. Therefore we need to consider the three
Feynman graphs shown in Fig. 4.1. We take the momenta of the final gluons to be
outgoing when calculating the Feynman amplitudes for these graphs:
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4.2 PROCESS EXAMPLE: QQ→ GG

M1 =g2
s
s
fabc[Tc]ijv(p1)γηu(p2)ε∗µ(k1)ε∗ν(k2)

× (gµν(k2 − k1)η + gνη(−k2 − q)µ + gηµ(q + k1)ν)

M2 =− ig2
s
t

[TaTb]ijv(p1)γµ(/p2 − /k2)γνu(p2)ε∗µ(k1)ε∗ν(k2)

M3 =− ig2
s
u

[TbTa]ijv(p1)γν(/p2 − /k1)γµu(p2)ε∗µ(k1)ε∗ν(k2)

(4.8)

where the subscript numbers i of Mi refer to the numbering of the graphs in Fig. 4.1.
Further u(p) and v(p) are the spinors for the incoming fermions and the tensors εµ(k)
are the polarization vectors of the outgoing gluons. Be aware that in this section we
need to switch to the asterisk ∗ to mark complex conjugation to prevent confusion
with the Dirac adjoint u = u†γ0. Moreover we use the Mandelstam variables

s = 2p1p2 = 2k1k2

t = −2p1k1 = − 2p2k2

u = −2p1k2 = − 2p2k1

(4.9)

from the center-of-mass frame in the massless limit of the quarks and we can derive
the following identity:

s+ t+ u = 0. (4.10)

The intermediate momentum q in our graphs is given via momentum conservation at
each vertex which results in:

Graph 1: q = p1 + p2 = k1 + k2

Graph 2: q = p2 − k2 = k1 − p1

Graph 3: q = p2 − k1 = k2 − p1.

(4.11)

In order to calculate the total cross section, we need to compute

|M |2 = |M1 +M2 +M3|2 = |M1|2 +|M2 +M3|2 +M1(M †2 +M †3)+(M2 +M3)M †1 (4.12)

which will be done in the way expressed in this equation. We will average over the
incoming spins and the outgoing polarizations. The mainly interesting part for this
work will be the calculation of the color terms from Ta and fabc which will be later
performed in the CSS. We leave still open any averaging over color indices, both
incoming and outgoing. We will use the completeness relations for the quarks and the
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4 QCD CROSS SECTIONS

simple polarization sum for the gluons:

∑
s

us(p)us(p) = /p =
∑
s

vs(p)vs(p) (4.13)∑
x

εµ,x(k)ε∗ν,x(k) = −gµν (4.14)

In the first equation s is the spin of the fermion and in the second one is x the
polarization of the gluon. As we use (4.14), we need to subtract the contributions from
the ghosts in the end [PS95]. When we are considering the ghost graphs explicitly at
page 58 we will discuss in detail how this is done. Further (4.13) induces that we
average over the initial spins which gives us a factor 1

22 and in the end we are further
averaging over the color indices. Thus in the first part of this section we are only
calculating (4.12) and there is no sum induced over the color indices a, b, . . . as well
as i, j, . . . if they occur twice. Though this would not change the calculation, we just
wanted to mention it for clarity. However there is still a sum over repeated Lorentz
indices µ, ν, . . . implied.

Graph 1 We can rewrite the squared magnitude of graph 1 with (4.13):

1
4
∑
Spin
|M1|2 = g4

s
4s2AηA

∗
λ tr[/p1γ

η
/p2γ

λ]fabcfabd[Tc]ij [Td]ji

= g4
s

4s2AηA
∗
λ4(pλ2p

η
1 − p2p1 g

λη + pη2p
λ
1)Γ 1

abij

(4.15)

where we used a trace identity of four Dirac matrices [PS95] and

Aη = ε∗(k1)ε∗(k2) (k2 − k1)η − ε∗η(k2) (k1 + 2k2)ε∗(k1) + ε∗η(k1) (2k1 + k2)ε∗(k2).

The last line of (4.15) defines us the color term:

Γ 1
abij ≡ fabcfabd[Tc]ij [Td]ji. (4.16)

Finally we plug in the polarization sum (4.14) and have to evaluate the following
terms:

p2A p1A
∗ = 2s2 − 7

4(t2 + u2)− tu = p1A p2A
∗
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4.2 PROCESS EXAMPLE: QQ→ GG

where the second equality can be derived from the first via an exchange of 1 and 2
which is equivalent to exchanging t and u. Finally

p2p1 A
∗A = 9

2s
2

and in the massless limit we can use the following relation which we obtain from (4.10):

2tu = s2 − t2 − u2.

Thus putting everything together in (4.15) we get:

1
4
∑
Spin
|M1|2 = −g4

s

(
3
2 + 5

2
t2 + u2

s2

)
Γ 1
abij = −g

4
s
4
(
11 + 5 cos2 θ

)
Γ 1
abij (4.17)

where we introduced the scattering angle θ between p1 and k1:

cos θ = 1 + 2t
s

= −1− 2u
s

or u = −s2(1 + cos θ), t = −s2(1− cos θ). (4.18)

Graph 2 + graph 3 We look at these two graphs together as the cross terms vanish
in the high energy limit where we can neglect the masses of the quarks. Furthermore
they are both related by an exchange of u and t and thus it is sufficient to calculate
only one:

1
4
∑
Spin
|M2|2 = g4

s
4t2 tr[/p1γµ(/p2 − /k2)γν/p2γη(/p2 − /k2)γλ]gµλgνη[TaTb]ij [TbTa]ji

= g4
s
t2

tr[/p1(/p2 − /k2)/p2(/p2 − /k2)][TaTb]ij [TbTa]ji = 2g4
s
u

t
Γ 2
abij .

In the last step we defined our second color term

Γ 2
abij = [TaTb]ij [TbTa]ji (4.19)

and then we get |M3|2 just via an exchange of the gluons, thus a and b as well as u
and t and in total we have:

1
4
∑

Spins
|M2 +M3|2 = 1

4
∑

Spins
(|M2|2 + |M3|2) = 2g4

s

(
u

t
Γ 2
abij + t

u
Γ 2
baij

)
. (4.20)

At this stage, we need to keep track of the different color terms in this expression as
they are not equal but will be in the end when we sum over the color indices.
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Cross terms between 1 and 2/3 Going back to (4.12), we see that these are four
terms in total but we will only calculate one term and the others are given by symme-
tries. Let’s look at the term from graph 1 with the hermitian conjugation of the term
from graph 2:

1
4
∑

Spins
M1M

†
2 = ig4

s
4st tr[/p1γη/p2γν(/p2 − /k2)γµ]Aηεµ(k1)εν(k2)fabc[Tc]ij [TbTa]ji. (4.21)

Considering the term with the polarization vectors, we can rewrite it as:

Aηεµ(k1)εν(k2) = gµν(k2 − k1)η − gνη(k1 + 2k2)µ + gηµ(2k1 + k2)ν .

And we are left with the trace

tr[/p1(/k2 − /k1)/p2γ
µ(/p2 − /k2)γµ − /p1γ

µ
/p2γµ(/p2 − /k2)(/k1 + 2/k2)

+ /p1γ
µ
/p2(2/k1 + /k2)(/p2 − /k2)γµ] = −8t2

which we put into (4.21):

1
4
∑

Spins
M1M

†
2 = −2ig4

s
s
tΓ 3
abij (4.22)

and we define our third color term

Γ 3
abij = fabc[Tc]ij [TbTa]ji. (4.23)

Then M1M
†
3 is just given by an exchange of the two gluons and the other terms are

obtained via complex conjugation and we finally get:

1
4
∑

Spins
(M1(M2 +M3)† +M †1(M2 +M3)) = −4g4

s

s

(
tRe(iΓ 3

abij) + uRe(iΓ 3
baij)

)
. (4.24)

Ghosts As we are only using the simple polarization sum (4.14) instead of the phys-
ical polarization, we need to subtract the ghost graphs to cancel the unphysical po-
larizations [PS95]. This means we need to look at the two graphs in Fig. 4.2 where
we substituted each outgoing gluon with the corresponding ghost. As the ghosts only
couple to the gluons we need to consider only the Feynman graph 1 from Fig. 4.1. It
would be equivalent to first consider the symmetry factor of our Feynman graph which
is 1

2 here as we have two gluons in the final state. Then we only need to consider one
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k1

q
k2

p2, j

p1, i

ν, b

µ, a

(4.2a) Ghost graph 1

k2
q

k1

p2, j

p1, i

ν, b

µ, a

(4.2b) Ghost graph 2

Fig. 4.2: Ghost graphs for the example process qq → gg.

ghost graph since both give the same contribution as we will also see in our calculation.
This equivalence can be understood from the following relation [PS95]:

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

= 1
2

Im


− Im

 +




= 1
2 Im


− Im


.

Here the shaded blob just is a short notation for all the interactions and other external
particles as only the gluons are relevant when we consider the ghosts. As we did not
take the symmetry factor in account yet, we will stick to the first line of this relation
and include it in the end.
Going back to the contribution of the ghost graphs from Fig. 4.2 we only need to
calculate the matrix element for the first one and get the other one via an exchange
of u and t:

Mghost,1 = g2
s
s
fabck2µv(p1)γµu(p2)[Tc]ij , (4.25)

1
4
∑

Spins
|Mghost,1|2 = g4

s
4s4 tr[/p1/k2/p2/k2]fabcfabd[Tc]ij [Td]ji

= g4
s
4

(
1− u2 + t2

s2

)
Γ 1
abij .

(4.26)
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We see that the occurring color term is the already known one from (4.16) and this
(4.26) is symmetric in an exchange of t and u. Thus the second ghost graph gives the
same contribution as already stated and in total we have:

1
4
∑

Spins
|Mghost|2 = g4

s
2

(
1− u2 + t2

s2

)
Γ 1
abij . (4.27)

The complete matrix element and the cross section Now we take (4.12) and col-
lect the individual terms from (4.17), (4.20) as well as (4.24) and subtract the ghost
contribution (4.27):

1
4
∑

Spins
|M |2 = 2g4

s

(
−
(

1 + t2 + u2

s2

)
Γ 1
abij +

(
u

t
Γ 2
abij + t

u
Γ 2
baij

)

−2
(
t

s
Re(iΓ 3

abij) + u

s
Re(iΓ 3

baij)
))

. (4.28)

Next we average over the external color indices which gives us a factor 1
n2 depending on

our color SU(n) as we have two quarks as initial particles which are in the FuR. This
enables us to manipulate the third color term (4.23) due to the trace being invariant
under cyclic permutations:

∑
a,b,i,j

fabc[Tc]ij [TbTa]ji = 1
i tr[[Ta, Tb]TbTa] = − 1

2i tr[[Ta, Tb][Ta, Tb]]

= 1
2i
∑
a,b,i,j

fabc[Tc]ijfabd[Td]ji.

This is the first color term and we can state that

∑
a,b,i,j

Γ 3
abij = 1

2i
∑
a,b,i,j

Γ 1
abij (4.29)

which holds for arbitrary n only with the sums but in the SU(2) case this equivalence
is already given at the level of the individual elements. Then going back to (4.28), we
replace t+ u in the last term with −s (4.10) and get:

1
4n2

∑
Spins
a,b,i,j

|M |2 = 2 g
4
s
n2

(
− t

2 + u2

s2 Γ 1 +
(
u

t
+ t

u

)
Γ 2
)

(4.30)
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where we use the notation Γα = ∑
a,b,i,j Γ

α
abij . This (4.30) will be the expression we

will use in most cases below when we are calculating the color factors. In some cases
we might also need (4.28). To compare our result to the literature we move on to n = 3
and calculate the differential cross section. For SU(3) the first color trace evaluates to
12 and the second to 16

3 and we have the familiar result:

1
4n2

∑
Spins
a,b,i,j

|M |2 = 32g4
s

27

(
u

t
+ t

u
− 9

4
t2 + u2

s2

)
. (4.31)

For the cross section [PS95] we need to take into account the already mentioned
symmetry factor because we have two final gluons which are indistinguishable. The
QCD coupling constant can be express in terms of the strong coupling constant [O+14]:

g4
s = 16π2α2

s (4.32)

and in total we have:

dσ
dt = 1

16πs2
1
2

1
4n2

∑
Spins
a,b,i,j

|M |2 = g4
s

27πs2

(
u

t
+ t

u
− 9

4
t2 + u2

s2

)

= 16πα2
s

27s2

(
u

t
+ t

u
− 9

4
t2 + u2

s2

)
.

(4.33)

With our definition of the scattering angle θ (4.18) we can evaluate the Jacobian
determinant and get:

dσ
dΩ = 4α2

s
27s

(
u

t
+ t

u
− 9

4
t2 + u2

s2

)
. (4.34)

Comparing this with the result of the Particle Data Group [O+14], we see a difference
of a factor of 2. This is due to the fact that they omit the symmetry factor and instead
only integrate over half the domain of θ. But unfortunately they do not mention this
very clearly but a comparison with [BP87] shows that our result (4.34) is indeed
correct.

4.3 Calculation of the color terms

First we want to introduce the concept of primitiveness of invariant tensors from
[Cvi08]. Cvitanovic uses a completely different approach to group theory as the tra-
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ditional way: He defines a symmetry group via a list of primitive invariant tensors.
These are tensors which are invariant under group transformations and cannot be
decomposed into further invariants. In our example of SU(2) these are the Kronecker-
Delta δ and the generators T of the FuR and f of the AdR. For SU(3) we also have the
symmetric tensor d as an primitive invariant which is defined from the anticommutator
instead of the commutator for f . Now the primitiveness says that each invariant tensor
with a certain number of free indices must be proportional to a sum of all primitive
tensors with the same number of free indices. As an example take the contraction
fabcfbcd which has only two free indices, viz a and d, and thus must be proportional
to our only primitive tensor with two indices, i.e. δad, which can be also shown via a
direct calculation.

When we perform the calculations in the previous section of calculating cross sections
of processes we need to evaluate the color factors in (4.28) or (4.30). Therefore we
need to contract the tensors of our SU(n) in the FuR and AdR. To generalize these
calculations, we introduce a different notation: Let F be ∈ {T, f}, i.e. a generator in
any representation. In addition N , O etc. is meant to be any combination of F via
addition or multiplication. In this framework we do not have anymore the necessity to
distinguish between indices from the FuR and AdR and we will use the roman letters
a, b, c, . . . from the beginning of the alphabet for both. In the CSS we will use letters
from the back of the alphabet, viz z, y, x, . . . to distinguish them from the color case.
Be aware that in the CSS there is no summation but rather an integration with the
correct measure, but we will still use the index notation. This is also known as the
De-Witt-notation and used by Weinberg in [Wei96]. Further we do not need to take
track of each individual index of a tensor and we will group them as {ai} or {zi}
respectively.
To clarify this notation further, we look at the calculation of QCD cross sections as in
Sec. 4.2 and we see that each Feynman graph has the following structure:

Mk = CkkineticN
k
{ai} ≡ C

k
kineticN

k
a1a2... ≡ Ckkinetic

∏
j

F jbj1bj2bj3
(no sum over k). (4.35)

Hence Nk
{ai} is the collection of all color generators of one Feynman graph. In the

following we will use the first expression of this equation. The index k just distinguishes
between the different graphs and consequently it is no index and to avoid confusion
we added the remark that there is no sum over it implied. And the product over j
after the last equivalence sign runs over all vertices of this graph. All the other terms
which are not composed of generators of the color SU(n), especially the kinetic ones,
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4.3 CALCULATION OF THE COLOR TERMS

are put into Ckkinetic. Note that the group {ai} of indices are the indices of all the
external particles.
A careful reader might have noticed that we cannot treat all Feynman rules in this
manner, e.g. take a look at the four gluon vertex from (4.3). This one can not
be factorized into a color and kinetic part as in (4.35). This is also the case if we
include scalar particles in our theory. But we can treat each summand of (4.3) as two
interaction of three gluons as each is composed of two f just with different factors than
(4.2). Thus for each four gluon vertex in a Feynman graph we draw three times as
many graphs which results in an equivalent description. Then we calculate the color
factor for each of the new graphs and (4.35) is a valid decomposition if Mk is one of
these new graphs.
The total matrix element is then the sum over all Feynman graphs, aka Mk. When
calculating the cross section, we need the absolute square value of this sum which can
be written as the sum over all combinations of the color tensors Nk:

|M |2{ai} =
∑
k,l

M †kMl =
∑
k,l

(Nk
{ai})

†N l
{ai}(C

k
kinetic)†C lkinetic

≡
∑
k,l

Nk{ai}N l
{ai}(C

k
kinetic)†C lkinetic (no sum over ai).

(4.36)

Be aware that the group of indices of Nk and N l are exactly the same as they corre-
spond to the external particles of our process. As in our example above we might want
to average over all external colors which leads to a complete contraction of all indices
of the tensors Nk and N l. Further in the sum in (4.36) each contraction of these two
tensors has a different kinetic coefficient which is also dependent on our particular
process we are looking at. Thus we will look at each summand individually as we can-
not make statements for the whole sum in the general case. This contraction of two
tensors in each summand can either involve twice the same or two different tensors. In
the first case we are actually calculating the absolute square of one Feynman graph:

∑
external

|Mk|2 ≡ |Ckinetic|2
∑

external
|N |2 = |Ckinetic|2N{ai}N{ai} (4.37)

and in the second case we have:

∑
external

MkMl ≡ C†kineticC
′
kineticN

{ai}N ′{ai}. (4.38)

This is equivalent to (4.28) where we have already executed the calculation of the
kinetic part and are only left with calculating the color factors Ti individually. Some-
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times we might be able to use relations between different color factors like (4.29) and
end up at a point equivalent to (4.30). Furthermore we might only have one Feynman
graph for our process and the cross section is already proportional to (4.37). This also
holds when we can neglect the other graphs, e.g. for collinear gluon radiation from a
single quark as the graphs with crossed gluon lines are kinematically suppressed.

4.3.1 Color basis

First we start with the case of calculating the color factor of one Feynman graph thus
starting at (4.37) without the kinetic terms. Now we decompose our graph at one
internal line that it can be written in the form

N{ai} = O{bi}dP
d
{ci}, {bi} ∪ {ci} = {ai}. (4.39)

Thus our graph is built of two subgraphs contracted over the one index d. This is only
possible if we can find a cut which does not split up a loop. Then the grouped indices
{bi} and {ci} only contain all the external particles.
Now calculating the color term, means to contract the free indices of the tensor N
with all the indices of its hermitian conjugate and results in:

∑
external

|N |2 = O{bi}dP
d
{ci}P

{ci}
e Oe{bi} = trOPP †O†. (4.40)

Rearranging these terms, we can look at the terms Oe{bi}O{bi}d and P d{ci}P
{ci}
e and see

that they are invariant under group transformation as they are a composition of group
invariant tensors, the generators F . We see that both these terms have only two free
indices as we averaged over the external particles. Using the primitiveness introduced
at the beginning of this Sec. 4.3 from [Cvi08] these terms must be proportional to δed

and we have proved the following theorem:

Theorem 4.1. The color factor of a Feynman graph is factorizable in the form

∑
external

|N |2 =
∑

external
|OP |2 =

∑
external

|Od|2|P d|2 ≡
∑
d

Od{bi}O{bi}dP
d
{ci}P

{ci}
d (4.41)

if it can be cut at a single internal index d.

Remark 4.1. If our graph does not contain any loop this step can be iterated over
all internal lines until we are only left with the generators F . This way we need to
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perform the sum, and later the integral, over internal particles only once and not twice
as in (4.40).

Remark 4.2. Moreover for the proof to work it is actually sufficient that only one of
the two terms of (4.40) is proportional to a Kronecker-Delta.

Next we take a look at the color factor of a mixing term of two Feynman graphs as
in (4.38). Now we need to split up N ′ similar to (4.39). But in general we cannot
guarantee that {bi} of N and {b′i} of N ′ are the same set of external indices. Just take
our example of Fig. 4.1 and the interference of the color terms of graph 1 and graph
2: They cannot be cut in such a way to fulfill equality of the two indices sets. Once
we split into quarks and gluons and the other time we twice split into a quark and a
gluon. This would also not work between graph 2 and 3 due to the exchange of the
external gluons. For the proof to work we need to have two equivalent sets {bi} and
{b′i} in order to be only left with two free indices which result in a Kronecker-Delta.
Hence in this case we cannot formulate a theorem equivalent to Thm. 4.1.

4.3.2 Coherent state system

Moreover we can make a transformation from color basis to the CSS. This is done
via an insertion of a RoU in the appropriate basis representation. Then Dz

a is the
coefficient of the representation of a CS in the color basis or vice versa, thus written
in bra-ket-notation:

Dz
a = 〈a|z〉 . (4.42)

We can also transform a group of indices to the CSS by transforming each index
individually. In our notation this is written in the following way:

D
{zi}
{ai} = 〈{ai}|{zi}〉 =

∏
i

〈ai|zi〉 . (4.43)

Invariants of the Coherent state system

When moving to the CSS we need to first think about the invariant tensors for the
primitiveness argument. In particular the tensor with two indices equivalent to the δij
of the color basis. This is not trivial and the problem can be seen from the following
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consideration: Take the identity matrix which is a rank two tensor. In general any
rank two tensor can be decomposed into the CSS hence also the identity:

1 =
∫

dµz dµy tyz y〉 〈z . (4.44)

Both δ(y − z) as well as 〈y|z〉 are valid for tyz to obtain the known RoU in (2.34).
Usually we are not working with an overcomplete system and we have in general the
possibility to choose an orthogonal basis and then both solution are the same. But
in our case of the CSS this is different as we saw in (3.19) that two different CS
have a non-vanishing scalar product. However both solutions for tyz are invariant
under group transformations: The δ function just by the fact that different complex
numbers z correspond to different CS and a group transformation does not alter this.
The scalar product is invariant under group transformation due to it definition.

Already Glauber recognized this problem when he was working with the CS. The choice
can be made unique by demanding analyticity [Gla63]. To understand Glauber’s proof
consider an arbitrary state f〉 = f(a†) 0〉 in the Hilbert space and the CS of the HWG.
Then inserting the RoU one obtains

f〉 =
∫

dµz z〉 〈z|0〉 f(z) (4.45)

where we just used the property of the CS that they are eigenstates of the annihilation
operator. Then demanding that f(z) is an analytic function one can show via an
explicit calculation by using the power series of f , that 〈z|f〉 = f(z) 〈z|0〉. This
shows the uniqueness also if z is multidimensional like in our case via the Schwinger
representation. Moving from the Schwinger representation to the CSS of just one fixed
dimension and the coset space X , one has to take care of the following subtlety: To
replicate Glauber’s proof into this system one can not assume a general Taylor series
for f and instead needs to take a series which does not exceed the dimension of our
representation as well as the parameter space of X . With these ideas the proof is done
straight forward and can be found explicitly in [Eis16].
This proof can now be extended to rank two and higher operators [Gla63]. Therefore
we use a decomposition like in (4.44) and then the calculation is analogous where we
just have to evaluate one more integral than in (4.45).
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Non-equality of 〈y|z〉 and δ(y − z) in the CSS We want to look at the operator

B =
∫

dµ′z zFuR〉 〈zAdR (4.46)

with the CS zFuR〉 of the FuR and zAdR〉 of the AdR. This operator B transforms
from the AdR to the FuR and its hermitian conjugate goes the other way. This is
only possible as all CS of our SU(n) can be described with the same angles over the
same domain. Just be aware that for example in the case of the FuR of SU(3) we
need to take more parameters into account as would be actually necessary as they are
redundant in the FuR but not in the AdR. The measure dµ′z is the known measure
from the construction above, viz (3.24) and (3.67), without the factor of the dimension
of the representation as we consider two different representations. Now consider the
operators B†B and BB†: In the first case we have a transformation from the AdR
onto itself but this is done via a lesser dimensional space, viz the FuR, and thus we
are only left in a subspace of the AdR. This can be verified easily through an explicit
calculation and the subspace has the same dimensionality as the FuR. Now we look
at the second one, namely BB†, and the calculation shows that we are left with a
diagonal operator in the color basis which is not proportional to the 1 as the diagonal
entries are different. In both cases we have to evaluate a scalar product 〈y|z〉, where
both y and z are from the same representation:∫

dµz dµy zα〉 〈zβ|yβ〉 〈yα , (α, β) ∈ {(FuR,AdR), (AdR,FuR)}.

In both cases the final result is not proportional to 1. On the other hand this would
be the case if 〈y|z〉 is equal to δ(y − z) but this is indeed not true, as we just saw.

Thus when in the CSS we can reduce ourself only to analytic decompositions of tensors
and thus 〈α|β〉 is the only invariant rank two tensor representation of the identity.
This freedom in choice comes from the fact that our system of CS is overcomplete
and fractions of α〉 in the decomposition of any state can be shifted to the other CS
as they are linear dependent. In consequence as already mentioned above we have
different equivalent decompositions of vectors and operators in terms of the CS and
we can choose one. Then the proof of Glauber presented above guarantees us that our
choice of analyticity will make the decomposition always unique and guarantees us its
existence.
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Averaging

Now we want to make the same calculation from the color basis also in the CSS and
hopefully find an equivalent theorem to Thm. 4.1. We start as in (4.40) with∫

external
|N |2 = O{zi}xP

x
{yi}P

{yi}
w Ow{zi} (4.47)

but this time we do not get an δwx as already discussed but we get a scalar product
〈x|w〉 and we define the constants of proportionality as cO:

Ow{zi}O{zi}x ≡ cO 〈w|x〉 (4.48)

and for P the same way. Thus we can do the following calculation:∫
external

|N |2 =
∫

dµw dµx cOcP 〈w|x〉 〈x|w〉

=
∫

dµw cOcP 〈w|w〉 〈w|w〉

=
∫

dµw Ow{zi}O{zi}wP
w
{yi}P

{yi}
w

(4.49)

where we used the RoU of the CSS in the second line as well as the fact that the CS
have unit norm: 〈w|w〉 = 1. Then in the last step we used (4.48) the other way and
we can state the following theorem equivalent to Thm. 4.1:

Theorem 4.2. In the CSS the color factor of a Feynman graph is factorizable as∫
external

|N |2 =
∫

external
|OP |2 =

∫
external

|Ow|2|Pw|2 ≡
∫

dµw Ow{zi}O{zi}wP
w
{yi}P

{yi}
w

(4.50)
if it can be cut at a single internal index w.

This factorization can save us several integrations when we want to calculate the color
factor. In the next section we are going to look at the differences between the color
case in Thm. 4.1 and the CSS in Thm. 4.2 and the consequences of these.

4.3.3 Averaging over only a part of the external indices

We can make calculations for processes for which we know exactly the initial states
and thus have no need of averaging over these. The goal of this section is to look at
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Thm. 4.1 and Thm. 4.2 again and ask when they stay valid even if we are not summing
over all external color indices. In the end we want to quickly discuss the implications
from the results we obtain.
First we look at the color case and we see from (4.40) that already only a sum over {bi}
or {ci} will result in a δed. Then it is not important if the other term is proportional
to δed or not as only the diagonal terms can contribute anyways as we already noted
in Rmk. 4.2. Thus if e.g. only final indices are in {bi} they will be all summed over
and Thm. 4.1 still holds true. This is always possible as long as our cut through the
internal line d separates our external indices in such a way that in one part are only
indices from final particles as we almost always are averaging over these.
Now we look at the CSS and especially the step from (4.47) to (4.49): If we now only
integrate over one group {yi} or {zi} we get still the scalar product 〈w|x〉 once. But
as this is non-zero even if x 6= w we get more contributions as in the case of our proof
above. Thus now Thm. 4.2 is not valid anymore.

To summarize, we can state that the calculation of the color terms in the color basis
gives us more possibilities to factorize our terms and saving up single summations. The
CSS is more complex in this regard due to the fact of the linear dependence of the CS.
In the case if we average over all external indices we can apply the same factorization
in both systems. This is at least the case if all initial states are colorless because then
all external color indices are from final particles over which we are averaging anyways.
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5 Numeric calculations

5.1 Numeric tools

As already seen, we need to calculate integrals in higher dimensional spaces. For this
purpose, we will use the numeric integration tool VAMP [Ohl99b]. As it was not clear
from the beginning which integrations we are going to face in this thesis, we have
chosen VAMP as it is one of the most powerful tools for numeric integration and it was
at hand easily. In hindsight maybe VEGAS [Lep78, Lep80] or even the METROPOLIS
algorithm [Met+53] would have sufficed but nevertheless VAMP gives a great insight in
the subtleties of numeric integration.

5.1.1 VAMP basics

In this section we want to give a quick overview of VAMP and its advantages and
disadvantages compared to other integration tools. The ideas in this section are from
[Wei00] which also gives a quick overview of other numerical integration concepts.
Furthermore [Ohl99a] also explains the basic feature of MC integration as well as the
ideas leading to VAMP. First we start with a general discussion over MC integration.

Monte Carlo integration MC techniques1 use random numbers to estimate the value
of an integral

I(f) =
∫
Ω

dµx f(x) (5.1)

of a function f over the domain Ω of a possibly multidimensional variable x with inte-
gration measure µ. This measure is in general chosen in such a way that

∫
Ω dµx = 1.

1For a first introduction into the history of Mont Carlo methods, take a look at [Met87].
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The expectation value 〈f〉 converges to I(f) by the law of large numbers:

〈f〉 = 1
N

N∑
n=1

f(xn), lim
N→∞

〈f〉 = I(f). (5.2)

Consequently the error for this estimation is the square root of the variance

Var 〈f〉 = 〈f
2〉 − 〈f〉2
N

(5.3)

and thus the error scales as
√
N independently of the dimension of our integration

manifold. This is an improvement to classical methods like Gaussian quadrature where
the error scales with the dimension of our integration. Now our goal is to minimize this
error via various variance reduction methods where we want to highlight importance
and stratified sampling.

Stratified sampling We can use the additivity of the integral to divide our integra-
tion manifold into smaller regions. Then if the number of MC points in each region
is proportional to the variance in this region we minimize the total variance. This
can be seen on the example of a one dimensional integral which we split up into two
regions. Then the complete variance is the sum of the variances of the two regions
which scale with their respective number of integration points. An explicit calculation
shows that the total variance is minimized as stated above when the number of points
is proportional to the variance in each region [Wei00].
Thus estimating these variances is the main bottleneck of this technique. The main
advantage of this method is a good convergence and eventually higher precision in-
tegration. The higher precision is due to the fact that we are directly addressing to
minimize the variance and thus the error.

Importance sampling Here we make use of a change of the integration variable via
a function p(x). Then we can rewrite our integral as

I(f) =
∫
Ω

dµp(x)
f(x)
p(x) (5.4)

and the measure dµp(x) contains the Jacobian determinant. Then we estimate the
error via Var 〈fp 〉 which will be minimized if f

p is constant. In general we put the
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constraints ∫
dµp(x) p(x) = 1 and p(x) ≥ 0 (5.5)

onto p and can interpret it as a probability density function. But to know p exactly we
need to know I(f) which we are aiming to calculate. Thus we are generating events
distributed according to p such that we mimic f best and thus minimizing our error
for the estimation of I(f). One problem occurs if p is very small and thus f

p can be
very large and thus our error.

Event generation The events generated with importance sampling are unweighted
in the perfect case of p ≡ f : Then each random point contributes the same amount to
the overall integral. In contradistinction to the case when we are integrating a function
as in (5.2) where points with large f(x) contribute more to I(f) and hence each point
is weighted with f(x). The advantage of unweighted events is that we only obtain
events in relevant regions. These events can then be used to test a real detector in the
kinematically relevant region as they are not distributed completely randomly.
This event generation is done via a rejection algorithm, i.e. first we estimate the
maximum of our function to be integrated and then we produce random events which
will be rejected if they are larger then the maximum. Thus a wrong estimation of the
maximum firstly leads to a wrong result as we reject events that would actually suit
for our function. And secondly it takes longer to produce the events as we reject more.
This is the limiting factor for the performance and depends on our estimation for f . In
consequence our goal is to optimize this which means we are not directly minimizing
the variance and thus the estimation for I(f) from (5.4) will not be as good as with
weighted events.

VEGAS To implement the mentioned methods we need to divide our integration man-
ifold in smaller regions and distribute the MC points according to the concepts men-
tioned above. But this division of a manifold in more than one dimension is causing
problems as we also reshape the regions which lead to numerical instabilities. The
ansatz of VEGAS thus is to assume that our function f(x) can be factorized into one
dimensional functions. VEGAS is trying to find an adequate coordinate system for this
factorization. But the integrals we are facing in high energy physics are not factoriz-
able only in one coordinate system. The motivation for VAMP is to handle these kind
of problems.
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VAMP The idea behind VAMP is to find a mapping from the multidimensional hypercube
on to our integration manifold such that we can factorize our singularities. This
problem can then be handled by VEGAS. For a concrete description and realization
of this technique we refer to [Ohl99a]. In the case of such problems which are not
factorizable in one coordinate system, VAMP shows a better error in comparison to
VEGAS besides the losses due to the effort of finding such a mapping.

5.1.2 Missing features of VAMP

Looking at the integrations we are facing in the case of the CSS we can look at an
example of a quark and an antiquark into two gluons as also considered above in
Sec. 4.2. Even with all the simplifications discussed above, we are still facing a 20-
dimensional integration for the one color factor with only a quark in the intermediate
state and only integrating over all external colors. In the last section we saw we need
to divide our integration manifold into smaller regions to optimize the result. Just
bisecting each dimension will result in 220 regions. Then to get some statistics each
region must be filled with several MC points which easily surpasses the capacity of a
normal integer type in FORTRAN.

Thus the idea was to rewrite the according VAMP variables and routines to handle long
integer type number of points. When we tried to attempt this we had one major
problem: It is not clear which variables need to be changed to long integer type.
E.g. the number of points in each dimension can still be a normal integer but this
leads to integer overflow if we try to assign the product of them to another variable
which is also normal integer type. In FORTRAN there is no runtime check if a calculation
causes an integer overflow; FORTRAN only checks at compilation the assignment between
variables based on their given type. Hence we could not guarantee the correctness of
the rewritten VAMP even in lowest order. Another way to circumvent this problem
is to use the FORTRAN compiler option -finteger-4-integer-8 which converts all normal
integers to long integers which will do the job in our case but is not a very elegant
solution.

5.2 Numeric results

In this section we are looking at the numeric results of the previously discussed color
terms in Sec. 4.3. The main idea is to start at a point equivalent to (4.37) and (4.38) in
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the CSS. Instead of executing the sum in the color basis we calculate the integral over
the CS. For this purpose we have written a short FORTRAN program using VAMP which
will be introduced now. In all calculations, if not stated otherwise, our setup will be
six iterations and 1000 MC points for the grid adaptation and then four iterations over
various number of integrations points for the actual integration. This actual means
we are solely using the VEGAS parts of VAMP which is enough due to the non-singular
functions we are facing currently.

When talking about the program and its features, we stay always in the scope of
mathematics and pseudocode and will not mention any particular code if not absolutely
needed. This thesis, and in particular this section, is much more a description of how
to implement the ideas presented into a functional program. And we are not aiming at
completely describing our program here, rather together with the comments in the code
the program should be comprehensible. Furthermore the program is written to show a
validation of the statements made in this thesis and to play with the different settings.
In addition it is meant to analyze advantages and disadvantages of the CSS over the
color basis. Hence it is not written in a way to easily calculate total cross sections
and highly precise predictions for QCD processes. Consequently an integration into
another tool would require some recoding. Furthermore it is solely written to test the
scope of the CSS for color SU(n), a first basic analysis and understanding. Thus to
move on this path, there is a big room for improvement and deeper research.

5.2.1 Features of our program

The main task of the program is to calculate complete contractions of two color tensors
N and N ′. The calculation of the kinetic terms C in (4.36) are not our focus of interest
as there are refined tools available to do such tasks. This complete contraction of two
tensors N and N ′ are the color factors we already encounter on our example process
in Sec. 4.2. The first possibility of calculating this contraction is via calculation of the
tensors N in the color basis, i.e. the contraction over all internal indices is performed
in this basis. Then we transform this quantity to the CSS and execute only the
contraction over the external indices in this system. The main purpose of this approach
is more to verify that this method of CS indeed works and won’t give any particular
insight into the color-flow. The next step is to calculate the tensorN from the Feynman
rules in the CSS and then contracting the two tensors. Hence we are performing the
contraction of the internal and the external indices with the CS. When we have twice
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the same tensor and are thus calculating the absolute square value of it, we can use
the factorization as stated in Thm. 4.2 to save some integrations. Furthermore we
can save even more integration if we use the simpler RoU of Thm. 3.1, Thm. 3.2 or
Thm. 3.3. We want to sum up these three possibilities again:

• Calculation of the tensor N via the Feynman rules in the CSS

• Factorizing the color factor

• Using the simpler RoU

For brevity we will just state the boolean value of these three options. Thus false
for the first one with the Feynman rules means, we calculate the contraction over the
internal indices in the color basis and only the contraction over the external indices
will be performed in the CSS. Further the factorization can only be done if we use the
Feynman rules in the CSS and thus we have six different possibilities to choose from.
Finally all calculations can be done in SU(2) and SU(3).

The VAMP interface is written that it is not possible to pass allocatable objects to it,
e.g. when specifying the borders of our integration domain. Thus we need to know
the length of certain arrays already at compilation as the dimension of our integration
depends on the considered graphs as well on our parameters, i.e. the SU(n), using the
simpler RoU, factorization and using Feynman rules. Hence we opted for using the
C-preprocessor to set these parameters and allowing an easy switch between them.

As an example case, we are always looking at the color terms of the example in Sec. 4.2
and compare the precision, calculation time and different graphs. Our program is
written to handle any Feynman graph but the given examples should be enough for
general statements at the first level.

5.2.2 Results

Proof of consistency

In this section we are going to see that the methods explained above indeed work. As
a consequence all results presented here are confirming what we already expect. Thus
we will not point this out every time.

75



5 NUMERIC CALCULATIONS

103 104 105 106 107 108 109 1010 1011

Integration points

10−1

100

101

102

103

104

105

106

T
im

e
[s]

SU(2)
SU(2) long integer
SU(3)
Linear dependence

Fig. 5.1: The times for runs with different number of MC points.

First in Fig. 5.1 we see the dependence of the integration time on the number of
integration points. For n = 2 the times are shown with blue dots and we did ten runs
for each number of MC points. For n = 3, we only did five runs and the results are
plotted with cyan ’x’s and in both cases all runs are plotted individually. When we
are doubling the number of points the program also takes double the time, thus the
runtime is linear dependent on the integration points [Ohl99b]. This is as expected for
a MC method and this dependence is shown in Fig. 5.1 with red, solid lines for each
case respectively. There is also no apparent variation between the different runs. In
the case of SU(2), we also did two runs with the long integer implementation which
are shown with black crosses. We see that this only takes a marginal time longer than
with normal integers. This might just be due to the larger data type but it does not
alter our main statement.

Next we are looking at the error between the MC integration and the exact value and
in the following we always look at the color factor of graph 2 in Fig. 4.1b as example.
First we are looking at the improvement of our result when we are increasing the
number of MC points. In Fig. 5.2 we see the result: The same color factor with blue
dots for n = 2 in Fig. 5.2a and for n = 3 in Fig. 5.2b. This time for each number
of integration points we did 100 runs except for 109 and more MC points in case of
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(5.2a) The SU(2) case.
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(5.2b) The SU(3) case.

Fig. 5.2: Value of the integral for the color factor of graph 2 in Fig. 4.1b from 100
runs for different number of MC points.
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(5.3a) The SU(2) case.
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(5.3b) The SU(3) case.

Fig. 5.3: Comparison of the VAMP estimation for the error with the error from the
variance over 100 runs. This is shown for setups with different number of
MC points.

78



5.2 NUMERIC RESULTS

10
−

5 1
0−

4 1
0−

3 1
0−

2 1
0−

1
01020304050

Count

10
4

M
C

po
in

ts

10
−

5 1
0−

4 1
0−

3 1
0−

2 1
0−

1

10
5

M
C

po
in

ts

10
−

5 1
0−

4 1
0−

3 1
0−

2 1
0−

1

SU
(2

)
10

6
M

C
po

in
ts

10
−

5 1
0−

4 1
0−

3 1
0−

2 1
0−

1

10
7

M
C

po
in

ts

10
−

5 1
0−

4 1
0−

3 1
0−

2 1
0−

1

10
8

M
C

po
in

ts

10
−

4 1
0−

3 1
0−

2 1
0−

1
10

0
01020304050

Count

10
−

4 1
0−

3 1
0−

2 1
0−

1
10

0
10

−
4 1

0−
3 1

0−
2 1

0−
1

10
0

A
bs

ol
ut

e
er

ro
r

SU
(3

)

10
−

4 1
0−

3 1
0−

2 1
0−

1
10

0
10

−
4 1

0−
3 1

0−
2 1

0−
1

10
0

Fig. 5.4: Distribution over 100 runs of the deviation from the exact value of the in-
tegral from Fig. 5.2 compared with the average of the VAMP error estimation
from Fig. 5.3. The top row is for SU(2), the bottom row for SU(3) and each
column is the data with the number of MC points shown on top.
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SU(2). For these high number of integration points the time for each run is just too
long to do several runs and as we see on the plots this cases already give really good
results. The red, solid line symbolizes the exact value calculated via the color basis.
When increasing the number of integration points, the distribution gets more narrow
around the exact value.
A measure for this is the sample variance of each integration as defined in (5.3) and
which is estimated by VAMP itself based on the values of the individual MC points.
The square root of this variance, viz the error of our integration, is shown in Fig. 5.3
with the same data set as the previous plot with blue dots for n = 2 in Fig. 5.3a
and for n = 3 in Fig. 5.3b. We see that the estimation of the error for the different
integrations is always almost the same over the 100 runs. Only in the case of 104

MC points for SU(3) we have a spread. This might just be due to the high number
of dimensions, thus the large integration domain and the small number of integration
points in relation to it. The VAMP error as square root of the sample variance should
scale with

√
N [Ohl99a] just from its definition in (5.3). This behavior is shown by the

red, solid line in each figure. Further the variance of the integral of Fig. 5.2 over the
100 runs for less than or equal to 108 MC points should coincide with the estimation
from VAMP just by the law of large numbers. This variance is shown with black ’x’s in
both cases of SU(n) and there is a very good agreement. For the SU(2) cases with 109

and more integration points we only had a couple or just a single run and thus not
enough statistics to give the variance over these runs any significant meaning. Hence
there are no ’x’s for these cases.
The last plot analyzing our error of the integration is shown in Fig. 5.4: Here we
take the integral of the 100 runs and calculate its deviation from the exact value and
plotted this distribution. This is essentially the data that lead to the black ’x’s in
Fig. 5.3. We compare this distribution to the average of the VAMP estimation of the
error from this figure. There we saw that these errors are always almost the same
and thus we can just take the average. This average is plotted with red dashed lines
in each individual case. We can state that the VAMP estimation reflects very well the
mode of each distribution and is a very good approximation for the real error.

Next we want to look at the grid adaptation and thus the event generation. We will
analyze these through the efficiency of VAMP which is a measure for rejection criteria
mentioned on page 72. The efficiency is calculated via [Ohl15]

efficiency =
∫
Ω dx f(x)

Vol(Ω) maxΩ f(x) (5.6)
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Fig. 5.5: The analysis of the efficiency (5.6).
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where Ω is the integration domain. We know the exact value of the integral already
from the color basis. Further we can estimate the maximum value of f on our domain
easily from just calculating f(x) for a high number of random points x and take the
maximum. This should be very close to the actual maximum especially if f has no
singularities and is thus not very localized. Further this is much faster with a higher
accuracy than VAMP, as VAMP only takes the maximum of the set of MC points from the
integral calculation. We can then compare our almost exact result to the estimation
of the efficiency from VAMP.
We took five different runs and in each we let adapt the grid over 20 iterations. Then
we repeated this for different number of MC points. We want to emphasize here
that we changed the setup mentioned in the first paragraph of Sec. 5.2 here: We
manipulated the number of iterations and MC points for the grid adaptation and did
not look at the integration afterwards. The result of this analysis is shown as blue
dots in Fig. 5.5a where we omitted the distinction between the five runs with the
same number of integration points. The red, solid line is our more accurate estimation
of the efficiency. The main result is that the distribution of the VAMP efficiency gets
closer to this exact value with more points. Taking in account the results of the
previous paragraphs we see that the large deviations in the efficiency cannot be from
wrong estimation of the integral. As already mentioned VAMP fails to estimate the
maximum of f by a large margin which is naturally biased. This results in mostly
too large efficiencies. We assume with around 106 MC points the maximum should
be approximated very well as this is the same magnitude of points we needed to use
when finding the maximum. In addition the distribution in this last case around the
exact value is very symmetric but an error in the maximum can only lead to a larger
efficiency and thus an uneven distribution around the red line.
Fig. 5.5b shows the efficiency over the 20 iterations. We have chosen just one sample
of the five runs from each number of integration points. The different runs are plotted
with different colors and linestyles and the red, solid line shows the exact value from
our estimation. We do not see any improvements over the number of iterations which
indicates that our function f is very smooth and constant, particularly it does not
have any singularities. This is as expected as we are dealing essentially with products
and sums of sine and cosine functions which have a limited range. Thus there is no
particular grid configuration which improves the integration as there are no regions
which contribute far more to the integral than others.

This finishes this section: We saw that the VAMP integration produces the results we
expect and also confirmed that VAMP has a good estimation of its error. In the end we

82



5.2 NUMERIC RESULTS

also saw that our function in the integral behaves just as we would expect from the
structure of the CS from (3.16) and (3.68). Now after confirming that our approach
as well as VAMP are yielding the results we except, we can move on to analyze the CSS
in more depth and look for any insight into the color-flow of QCD.

Observations

Now we are going back to the possibilities of different calculation we have which we
have already mentioned in Sec. 5.2.1: We can use the Feynman rules in the CSS, the
factorization theorems and the simpler RoU. We want to examine how these different
possibilities influence our result. Our first observation is that all give us the correct
value for a color factor within their respective error as we expect. A comparison be-
tween the different times of the runs for these setups is not meaningful as they differ
quite strong in the amount of calculation steps performed at each evaluation of the
integrand. These numbers of steps are the dominating part of the complete integration
time.
However it is more interesting to look at the error estimation of VAMP which is a good
measure for the actual error as we saw. If we choose one of the different possibilities
mentioned above, our function to be integrated can be more flat or more oscillating.
Functions which are almost constant will automatically give a smaller variance. Fur-
ther the different possibilities also change our dimension of the integration domain.
Lower dimensionality means we need less MC points for the same accuracy. That is
the idea of Fig. 5.6: For the same number of integration points we look at the error
estimation of VAMP dependent on the dimension of our integration. In the plot we see
this for SU(2) with blue dots and with cyan crosses for SU(3). As mentioned above
we have six different possibilities to choose the boolean values of the different setups
as we cannot factorize anything if we do not use the Feynman rules in the CSS. The
different setups lead to different dimensions shown on the bottom horizontal axes and
the top horizontal axes is labeled with the respective boolean values. These are shown
according to the data points with blue font for SU(2) and cyan, italic font for SU(3)
and ’T’ means true and ’F’ false for the respective value. We see that higher dimen-
sional integrals give in general a larger error as expected.
The structure of the data in this semilogarithmic plot lets assume a exponential de-
pendency of the error on the dimension. Thus we make a fit of the form

∆ = C eαd (5.7)
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where ∆ is the error and d the dimension of our integration. The two parameters C
and α are obtained from the fit. The fit is done for SU(2) and SU(3) individually and
respectively plotted with a red line. The fit gives us the following values:

SU(2) SU(3)
C (1.14± 0.38)× 10−5 (5.1± 1.4)× 10−5

α 0.150± 0.036 0.173± 0.012

and, as we can already see in Fig. 5.6, the SU(3) case gives the better fit. The value
of α is the more interesting one as it describes how fast the error is growing with the
dimension. As we already see on the plot itself, the values of α for n = 2 and n = 3
are roughly the same. This is also the conclusion from our fit where both values of
α coincide very well. Moreover with α we can estimate our error if we change the
dimension of our integration for other color factors and processes.

Next we want to discuss the event generation. We are looking at unweighted events
which are distributed with a probability function p(x) which should mimic our inte-
grand f(x) as discussed on page 72. We saw that we are dealing with high dimensional
integrations and thus we can only plot a projection of the events onto a one or two
dimensional subspace. For example looking at the one dimensional case, we want to
know how many events we created in a given interval Δxi which means we sum over all
the other dimension. The index i just labels the different dimensions of our integration
manifold. Analytically this sum over the other dimensions corresponds to an integra-
tion over all these. The result for each integration variable is shown in Fig. 5.7, for
the SU(2) CS in Fig. 5.7a and for SU(3) in Fig. 5.7b. For each case, one can calculate
the covering function by just executing the integration in the other dimensions. These
results are shown with the red, solid curves. Due to different integration domains we
opted to norm the area under the curves to be equal the volume of the respective
domain.
For the both cases n = 2 and n = 3 we only show the plot for one particle each as they
are the same for internal and external particles as well as CS from the FuR and AdR.
Further it is also independent from the particular color factor we are calculating and
also the absolute square matrix element of any given process will produce the same
distributions. We can understand this fact from a theoretical point of view: Looking
at (4.37) and (4.38) in the CSS, we see, we need to calculate an object like N{zi}N ′{zi}
where N ′ is not necessary unequal to N . Then when integrating out all parameters
except one we can first integrate out all other particles except the one which carries
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Fig. 5.7: The event generation marginalized over all other parameters except the one
shown. The red, solid line is the analytic result for each plot.

86



5.2 NUMERIC RESULTS

our parameter we want to look at. Let us rearrange the tensors in N and in N ′ that
we explicitly write the integration over the one particle we do not integrate at first:

N{zi}N ′{zi} = O{yi}xO′x{yi}, {yi} ∪ {x} = {zi}. (5.8)

Then our statements from above, i.e. Sec. 4.3.2, tells us that the expression in (5.8)
integrated over all {yi} must be proportional to 〈x|x〉 and we can write:

O{yi}xO′x{yi} = cOO′
∫

dµx 〈x|x〉 = cOO′
∫

dµx 1. (5.9)

The proportionality constant cOO′ is defined as in (4.48) and our CS are normalized
by definition. Thus we are only left with an integral over the measure of our CSS
independent of our color factor. When we consider the squared absolute value of a
matrix element when calculating the cross section of a process, we have the sum over
several color factors with different coefficient as in (4.36). When we integrate out all
particles except one, then each color factor is just an integration over the measure.
Thus also |M |2 as a sum of these terms is only this integral and consequently the
distribution of the events marginalized over all except one parameter is always the
same regardless of the representation of the particle and the specific process: As the
histograms represent an probability distribution an overall prefactor has no influence
on it. From this we also see that any correlation of two parameters of the same particle
is always the same. This we will see later when we look at the projection of our events
onto two dimensional subspaces. This also holds true when we use the simpler RoU
as well as when we factorize our color factors as both these concepts do not change
our integrations measure of the parameters still involved in the integral.
Now that we have understood why all histograms for one parameter always look like
in Fig. 5.7, we can further analyze this plot. As these distributions are over different
domains, viz [0, π2 ] and [0, 2π], we normed the total area of all histograms, i.e. the
integral over the curve to the volume of the integration domain. For all the phases,
i.e. ϕ for SU(2) and α2, α3 as well as β2 for SU(3), the result is a constant histogram.
This is just due to the fact that there is no dependence of these parameters in our
measures, viz Eq. 3.24 and Eq. 3.67. Looking at these, we see that for ω of SU(2) and
ϕ, χ of SU(3) we have a sin 2x dependency, x ∈ {ω, ϕ, χ}, when we use (3.21). The
last parameter left is θ of SU(3) where we have sin3 θ cos θ and all these functions are
shown in the respective plot with red lines. Lastly we want to mention that the CS of
the FuR of SU(3) can be described with less parameters than of the AdR. Nevertheless
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we can still take these redundant parameters into account also for the FuR and as we
then have no dependence of them in any term, we only get an integral over the measure
anyways and thus the same shape as in the case of AdR.
Finally we want to list the setup for the plots in Fig. 5.7: The SU(2) plot is from a
total set of 106 events and the SU(3) one from 105 events and they are generated from
a color factor and not only from the integral over the measure. Due to the higher
dimensionality, the SU(3) event generations takes longer which lead to less events.

Up until now we have seen primarily that the calculation of the color factors in the
CSS work well and also the ideas and simplifications we worked out in the previous
chapters hold true on the examples as expected. Before we move on to the total cross
section of our example process in Sec. 4.2 we look at the color factor from a Feynman
graph with a loop as the following one:

Γ


k

c

d

e

j

i

b

a


= |[Tc]ik[Td]kjfcaefdeb|2. (5.10)

The result in the color basis gives us 9
4 and an integration in the CSS results in

2.261± 0.032 and both values coincide. But from the proof of Thm. 4.1 and Thm. 4.2
we saw that these theorems should not hold in general if we cut through a loop and
indeed the integration in the CSS with factorization gives us 1.4996± 0.0016 which
is wrong and the same as in the color basis where we have 3

2 . Thus the factorization
theorems can only be applied if we do not cut a loop line as already stated.

Next we draw our attention towards the total cross section (4.33) of our example
process of quark and antiquark into two gluons. We integrate this differential cross
section over the dimensionless variable − t

s which runs from 0 to 1 as we can see from
(4.18) with θ ∈ [0, π] and we already took the symmetry factor in account. The total
cross section is infrared divergent due to the two gluons in the final state, similar to
the electron-positron annihilation into two photons. Thus we need to define a cut
for our scattering angle θ which we fix at 5◦. We can then calculate the total cross
section together with the integration in the CSS based on (4.28) or (4.30) of the total
matrix element. Further we can perform the calculation completely analytical and in
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the case of SU(3) we can also compare it with WHIZARD [KOR11, MOR01]. We get the
following results:

σ[fb] CSS Analytic WHIZARD
SU(2) (5.1665± 0.0043)× 106 5.166326× 106 -
SU(3) (1.1241± 0.0040)× 107 1.122843× 107 (1.1217± 0.0012)× 107

which are in good agreement with each other. In addition the result with the CS is
always the same if we use the Feynman rules, the simpler RoU or the factorization as
we expect. In the case of WHIZARD we also tried to change the model file to color SU(2)
but we still obtained the SU(3) result. The reason for this is that the color-flow is hard
coded in WHIZARD and there is no check for the values set in the model file. However
as we are always working in the framework of color SU(3), this is not a problem in
general but could be addressed if more analysis for different SU(n) is needed. We only
did all calculations in the SU(2), too, as it facilitated the understanding of the CS of
SU(3) but there is currently no physical reason to look at any SU(n) for n 6= 3.

For the total cross section we already discussed the event generation for one dimensions
and saw that we end up only with an integration over the measure and thus we get
indeed the same plots as in Fig. 5.7. For the total cross section we also need to integrate
over our scattering angle of the kinematic as we already did in the previous paragraph.
We will use the differential cross section (4.33) and integrate over the dimensionless
variable − t

s . The event generation of this is shown in Fig. 5.8 and we see the familiar
distribution as well as the comparison to the analytic result with a red, solid line. The
SU(2) Fig. 5.8a and SU(3) Fig. 5.8b only differ slightly in the flat region in the middle
due to the different color factors. Therefore we also included an inset in each case to
specially show this part. Otherwise the difference is too marginal to see in our plots
and further an overall factor has, as always, no influence on our histograms. We want
to remark that these histograms are obtained from weighted events. We saw that the
quality of unweighted events is related to the estimation from VAMP of the maximum of
the functions to be integrated. But in this case we have two singularities at the borders
where the function has its maximum value. Thus an estimation of it via random points
will normally miss it. Then we will miss some events at the singularities which will get
distributed over the whole interval. In the middle where we only have a small number
of events these added ones have a large influence and we have a significant deviation
from the theoretic prediction. Thus we used weighted events in this case to obtain the
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better plots as the ones with unweighted events are biased in the middle like we just
discussed.

Now we look at the marginalization over all parameters except two. This is most inter-
esting for the cross section as it shows the correlation of the particles from our process.
Thus all the following results are taken from the cross section and not only from a
single color factor as mostly above. Then we have two possibilities: Both parameters
can be from one particle or they can be from different particles. Let us look at the
first case when both parameters are only from one CS. We already saw in the one
dimensional case above that we will always get the same distribution, independent of
the particle and its representation. Thus we only get a product of two different plots
of Fig. 5.7. Then we have only one possibility in the SU(2) case and in the SU(3)
case we would have 15 but only five are different. These different cases are shown
in Fig. 5.9 in comparison to the analytic prediction. The distributions of SU(2) are
shown in Fig. 5.9a and of SU(3) in Fig. 5.9b and again we normed the plots in such
a way that the integration over the complete domain is equal to the volume of this
domain. We see that the event generation has the expected distribution and for a
better three dimensional perception of the plots, one can just imagine the products of
Fig. 5.7 as already stated. There is nothing special to note about these plots after we
have already seen these one dimensional cases.
Next we look at the second case where the two parameters are from two different CS.
This is the most interesting part as it gives us an insight into the quantum correlation
between two particles. This can enable us to understand the mechanics of color-flow
and obtain an insight into the QCD mechanics. But for this we need to understand
the relation of the parameters of the CS to the physical quantities we can measure.
However this is still a largely unexplored area where we cannot make any statements
right now and for any conclusion of our results more analysis in this topic is needed.
Nevertheless we can list the different distribution we encounter at least on our example
process from Sec. 4.2. Thus we will not list all various distributions we found but only
one example for each different main structure we encounter. The first idea might be
to look if we can associate any substructure to a certain color factor of the three we
considered above, aka (4.16), (4.19) and (4.23). But looking at (4.28) we see that they
contribute with various coefficients given by the kinetic terms and a quick calculation
shows that the dominant contribution is from the first color term. Thus if this color
factor has any structure, this one will give the main structure of our two dimensional
distributions. Further there might be distributions which deviate from others only
slightly either due to additional terms with smaller coefficients or because these terms
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have a similar shape. We cannot resolve these small differences and in addition at our
current stage, these details do not give us any meaningful information as we cannot
utilize them further. Hence we will only show one plot for each dominating structure
to give a first overview but for a deeper analysis one needs to also consider the small
deviations. Further the results are taken essentially at the basis of (4.30) where we
have used the equivalence of Γ 1 and Γ 3 from (4.29) but we still implemented the ex-
plicit terms from (4.20) with Γ 2. This might look a bit artificial at first but these were
the first results at hand and a inclusion of Γ 3 gives essentially the same structures as
the main contribution is from Γ 1 anyways as already discussed. For further work on
this subject, especially including Γ3, one needs more discussion and research to make
any conclusions: This is due to the fact that the terms t

s and u
s of (4.28) are not

symmetric under an exchange of t and u. Thus the coefficients of Γ3 are the only ones,
different under such an exchange which leads to slightly different correlations between
quark-gluon and antiquark-gluon, viz a difference of t- and u-channel. As we want to
give here only a overview of the structures of correlations we encounter, we omit the
third color term and work with the setup mentioned above where we express Γ 3 via
Γ 1.
For SU(2) the different distributions are shown in Fig. 5.10 which we will discuss now
column by column where we indicate on top of each column to which pair of particles,
i.e. quark (q), antiquark (q) and gluon (g), the correlation corresponds. If there is no
symmetry in the exchange of the two axes, the order of the particles is abscissa first
and ordinate second and we generated a total of 106 events for these plots. The first
column is just nothing else than a product of two ω distributions we already know
from the measure in Fig. 5.7a. The second correlation is almost the one from Fig. 5.9a
but just a bit curvy due to a sinϕ cos 2ω contribution. We have chosen this correlation
because there we can actually recognize the small deviation from the main structure
and we see that they do not alter the overall correlation. The most interesting plots
are from the correlation of the phase ϕ between two different particles. Thus between
quark and antiquark shown in the third, between a fermion and a gluon in the fourth
and two gluons in the last column. In all cases the structure lies on top of a constant
distribution due to the product of two ϕ histograms of Fig. 5.7a. Thus in the first and
second case of the ϕ-ϕ correlations we need to change the range of the color shading
for better visibility of the pattern. This is indicated with blue color and diagonal solid
lines. Here we see that the deviation from the constant is roughly of the order of 10%
and this is why they can be best seen in the case of a correlation between two ϕ as
they lie on top of a constant distribution. In the case where one ω angle is involved,
we cannot resolve the additional contributions and a further analysis would need to
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(5.8a) The SU(2) case.
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Fig. 5.8: The distribution of the events from the total cross section of our example
process, marginalized over all parameters except the dimensionless quantity
− t
s . The inset shows the same plot zoomed into the range − t

s ∈ [0.3, 0.7].
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(5.9b) The SU(3) case. Be aware that the ordinate changes after the third column.

Fig. 5.9: Correlation of the parameters of the CS of just one particles and marginal-
ized over all other particles and remaining parameters. Shown are just all
different combinations of the respective SU(n) of Fig. 5.7 and the corre-
sponding analytic solution.
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Fig. 5.10: The different structures of correlations of two parameters of different parti-
cles for the case of SU(2) except the one already shown in Fig. 5.9a. They
are labeled on top whether it is a correlation between a quark (q), antiquark
(q) or gluon (g) in the order abscissa-ordinate where it is not symmetric
under an exchange of the axes. Below we see the corresponding analytic
solution and the third and fourth column has a different color mapping to
recognize the structure.
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Fig. 5.11: The same plot as Fig. 5.10 for SU(3) where we only show the structures
different to the ones shown in this and to the ones from the measure in
Fig. 5.9b. The labeling is according to Fig. 5.10 but due to the small struc-
ture we have chosen another color mapping. Further we have interpolated
the event generation to better recognize the structure.
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subtract the main distribution to view the underlying structure. Moreover we cannot
discuss these distribution in more depth at our stage due to the lack of understanding
the physical consequences of the parameters of the CS. Nevertheless we see a good
coincidence with the analytic prediction.
Next we look at the SU(3) case and we have again the structure we already encoun-
tered from the measure in Fig. 5.9b and small deviations to it. We will see that these
differences from the structure of the measure are of the order of 1% or less and we
are again facing the problem that we can only recognize them on top of a constant
distribution. We could also subtract the underlying main structure from the corre-
lations but as the plots will show, the distribution from our 106 events is not very
smooth. Thus it is already hard to recognize any patterns in the plots with a constant
structure and it gets even worse if we subtract the main structure. This is also due
to the fact that we have a 21 dimensional integral and hence we need more events
than for SU(2) to get the same smooth distributions. But the 106 events took already
several days to generate which limited to use more events. As a result we only look
at the structure between the phases α2, α3 and β2 as the other correlations do not
have a constant structure from the measure. Besides the structures we already know
from the measure in Fig. 5.9b we also find again the same plots as the third and last
column of Fig. 5.10 for quark-antiquark and gluon-gluon correlation respectively. Fur-
thermore we have structures which only deviate of the order of 0.1% from the constant
and thus we can not distinguish them in the event generation and can only recognize
them in the analytic case. Except all these cases we have the correlations shown in
Fig. 5.11 where we have chosen a different colormap in green due to the small devia-
tions. In addition we have chosen to interpolate in the case of the event generation as
this facilitates to recognize the structure. Again we discuss the four plots column by
column: The first is the third column of Fig. 5.10 with some deviations. The next two
columns have a similar relation to each other just with more stripes. The last column
is something completely different as well as the last distribution where the correlation
pattern can still be recognized in the event generation at least with the help of the
analytic solution. We haven chosen these four plots in Fig. 5.11 as the first three show
very good how already known correlations occur differently because the structure is
repeated more often. Further we see how these distributions then get altered twice
the same way.

This finishes the discussion on our numeric results. First we proofed that the calcula-
tion of the color factors in the CSS indeed work and analyzed the VAMP error estimation
in detail. Then we saw that the grid adaptation is not very fruitful as we are facing
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a relatively flat integrand. Furthermore we found a exponential dependency between
the error of our integration and the dimension of the integral. We also verified that
the theorems for the simpler RoU and the factorization are correct in our example and
explored their scope. The last part was deviated towards the event generation and in
special the correlation between two parameters for the cross section of our example
process of quark and antiquark into two gluons. There we were only able to present
the various structures we encounter and a further analysis needs to first discuss the
meanings of the different angles which describe our CS. In addition one can also in-
vestigate the structure lying under the main structures from the measure when this
one is subtracted from the distributions. And further a closer analysis of the event
generation with the simpler RoU could enable to understand the difference between
the two cases because at first order both give the same distributions.
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6 Conclusion

In this thesis the coherent state system (CSS) especially for SU(n) was analyzed in
great detail. We saw that a coherent state (CS) is not only connected to the harmonic
oscillator in which context most physicists first learn about it. We generalized the
CS from the Heisenberg-Weyl group (HWG) to any group based on the concepts of
Perelomov [Per86]. First we reviewed the CS of the harmonic oscillator and discussed
them in more depth than usually in a first quantum mechanics course. Notably we
introduced a construction scheme of the CSS that we could generalize to any group
afterwards based on a fixed vector ψ0〉. There we found that a point in the coset
space of the isotropy group of our vector ψ0〉 is enough to completely describe a CS.
Despite the overcompleteness and thus linear dependence of the CS we can construct a
resolution of unity (RoU) of the form

∫
dµα α〉 〈α . It is this overcompleteness which

makes working with the CSS at first very unfamiliar. But we saw that this property
enables the CS to be such a versatile tool and we can even find a unique representation
of any state and operator in the CSS with the help of Glauber’s work [Gla63]. Our idea
is to understand in more depth the color-flow of Quantum Chromodynamics (QCD)
which is currently described very well via the Lund string model [And+83] of quark
and gluon confinement. This theory has a very classical concept of the color carrying
particles and thus we need CS closest to the classical states similar to the case of the
harmonic oscillator. In order to achieve this, we first needed to introduce a universal
concept of uncertainty for the eigenstates of our group generators as minimizing the
Schrödinger uncertainty relation is not as straightforward as minimizing the Heisen-
berg uncertainty relation like in the case of the harmonic oscillator. The states with
minimal uncertainty are the maximum weight states, i.e. hkhk is maximal where hk
are the eigenvalues of the eigenstates h〉 of the Cartan operators Hk.
After this discussion of the general case we moved on to the CS of SU(2) and SU(3).
First we presented the construction of the CSS of SU(2) from Perelomov [Per86] which
is easy to understand. Next we used the Schwinger representation [Sch52, Mat81] of
SU(n) to construct it again. This enables us to generalize the CS to SU(3) and even all
SU(n) [MS01, MM02] if necessary. On the basis of the construction from Perelomov
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and the SU(2) Schwinger representation, the SU(3) CS were better comprehended.
We presented all these steps in great detail as they are very concise in the mentioned
references and not easy to grasp for somebody relatively new to this subject. Thus we
highlighted the important steps precisely and omitted the subtleties which are only
important for the general or some special cases. Moreover we explicitly showed the CS
for the fundamental representation (FuR) and adjoint representation (AdR) of SU(2)
and SU(3). As always the easy SU(2) case facilitated the understanding of the diffi-
culties we faced for SU(3). One of these is that the Fock states of a tensor product
of the FuR and its conjugate representation are not in a irreducible representation of
SU(n). Thus one has to consider the CS as a linear combination of the canonical basis
states for such representations individually for each. As we are interested in calculat-
ing color factors of QCD in the CSS numerically together with the total cross section
of a process, it is helpful if our integration is less dimensional. Thus on the one hand
we found a simpler RoU which facilitates the integration but which also involves states
which are no longer closest to the classical one. This concept is a nice mathematical
and technical trick but might not help us in understanding the theory of color-flow.
On the other hand we want the isotropy group to be as high-dimensional as possible
thus its coset space is described by lesser parameters and in consequence also the CS.
Here we could verify that our constructions from before already had the least number
of parameters. Therefore we used the Cartan decomposition of elements of a Lie group
which also enabled us to motivate the Euler decomposition of SU(2) and to generalize
it to any SU(n).
With this groundwork we applied the concept of CS to the color of QCD where we
looked at the process example of quark and antiquark into two gluons. Therefore we
calculated the differential cross section without evaluating the traces in the color basis
as this one is left for the CSS. Then we first analyzed the calculation of the individual
color factors first in the color basis and afterwards in the CSS: We found that we can
factorize them, if we cut our Feynman graphs on a single internal index and average
over all external particles. But if we cut in a loop or consider a color factor from
the mixing of two different Feynman graphs, viz not the square absolute value of one
graph, this factorization should fail in general. At this point the overcompleteness
of the CS was hindering in contrast to the color basis as two different CS are not
orthogonal. In consequence one can apply the factorization in the color basis also if
one does not average over all external color indices. Here we recognized that the CSS
will not facilitate the calculation of the color factors but nevertheless it can still help
us to understand the inner mechanics of the QCD confinement.
In the last chapter about the numeric evaluation with the CS, we also concluded that
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6 CONCLUSION

these are not suited for exact calculation. Here we first introduced the concepts of
Monte Carlo (MC) integration and discussed the various methods to obtain better
results. The results showed us that the statements made before are valid on the basis
of our example and we also analyzed the VAMP error estimation in great depth which is
a very good estimation. In the end we put a lot of emphasis into the event generation
and its discussion. Here we found that the one dimensional distribution as well as the
correlation of two parameters of the same particle are just given by the integration
over the measure. Different distributions were obtained from the correlation between
different particles. As we have not yet understood the physical meaning of the param-
eters of the CS, a discussion of the consequences of our results on the physics of QCD
color-flow is currently not possible. This is left for further research as well as a deeper
analysis of our results. Nevertheless we could present the different main structures
we encountered. This resulted in some interesting plots up to the subtleties we could
resolve. Besides the open question in the numeric section also more depth is needed
in fully understanding the CS.
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