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Abstract

This thesis deals with the quantization of spin-2 particles by using the BRST formalism. First
the necessary notations and mathematical concepts are introduced, where the main focus
lies on the introduction of the BRST formalism. After this, spin-2 particles are discussed.
From the classical point of view, they can be described by the Fierz-Pauli action, which is
proven here. Subsequently, Stiickelberg fields are used to introduce gauge invariances. These
allow, together with suitable gauge fixings, to perform a BRST quantization for the massive
case. The resulting vector space of physical states is isometric isomorphic to the space that is
generated by the classical polarizations. This is proven by using the quartet mechanism. An
analogous result arises for the massless case.

After this, a method is presented that allows to relate the algebraic structure of the BRST
transformations of the involved fields in the massive case to the one in the massless case.
Furthermore, some possible external sources for spin-2 particles are derived in such a way
that they are compatible with the BRST formalism. Some Slavnov-Taylor identities are also
derived and in addition it is shown that the introduced gauge invariances do not uniquely
determine the resulting action. Eventually, the relation between massless spin-2 fields and
gravity is derived.

Zusammenfassung

Die vorliegende Arbeit behandelt die Quantisierung von spin-2 Teilchen unter Verwendung
des BRST-Formalismus. Nach einer Einfiihrung in die verwendeten Notationen und mathe-
matischen Konzepte, wobei der Schwerpunkt bei der Einfithrung des BRST-Formalismus an-
gesiedelt ist, werden spin-2 Teilchen diskutiert. Diese lassen sich klassisch durch die Fierz-
Pauli-Wirkung beschreiben, was hier bewiesen wird. Anschlielend werden Stiickelbergfelder
verwendet, um Eichinvarianzen einzufithren. Diese konnen zusammen mit geeigneten Eichfix-
ierungen benutzt werden, um eine BRST-Quantisierung fiir den massiven Fall durchzufiihren.
Der resultierende Vektorraum der physikalischen Zustande ist isometrisch isomorph zum Vek-
torraum, welcher durch die klassischen Polarisationen generiert wird. Dies wird mittels des
Quartettmechanismus bewiesen. Ein analoges Resultat ergibt sich fiir den masselosen Fall.

Anschliefend wird eine Methode vorgestellt, die es erlaubt die algebraische Struktur der
BRST-Transformationen der beteiligten Felder im massiven mit jener im masselosen Fall in
Bezug zu stellen. Weiterhin werden mogliche duflere Quellen fiir spin-2 Teilchen hergeleitet,
welche mit dem BRST-Formalismus vertréglich sind. Des Weiteren werden einige Slavnov-
Taylor Identitdten hergeleitet und gezeigt, dass die eingefiihrten Eichinvarianzen die daraus
resultierende Wirkung nicht eindeutig festlegen. Schliellich wird die Beziehung zwischen mas-
selosen spin-2 Feldern und Gravitation hergeleitet.
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Chapter 1

Introduction

One of the most important concepts of theoretical physics are gauge theories. In classical field
theories gauge transformations originate from physical redundancies of a given field. To be
more precise, it is possible that not every configuration of a given field resembles a different
physical state. Gauge transformations turn field configurations into other field configurations
that represent the same state. Therefore, they can be performed without any worries that
the physical setup might be altered by them. This is a very powerful tool for solving the
equations of motion for the fields of interest. By fixing the gauge, one can introduce additional
differential equations, which the fields are supposed to adhere to, without restricting the set
of the physical states that can be described by the fields. The additional differential equations
eventually allow to simplify the equations of motion.

If the dynamics of a certain field is supposed to be given by an action, this action is usually
constructed in such a way that it is invariant under gauge transformations, since this ensures
that the corresponding equations of motion are gauge invariant as well.

This strategy plays a crucial role in particle physics. One can expand the action that de-
scribes the particles of ordinary matter (i.e. fermions) in such a way that it is invariant under
certain gauge transformations. This requires the introduction of gauge bosons. Prominent
examples are the photon, the W- and Z-bosons and the gluons. The corresponding new terms
in the action in particular describe the electromagnetic, weak and strong interactions respec-
tively. So it is possible to introduce interactions simply by demanding that the corresponding
action has to be gauge invariant. Consequently, the theory of elementary particles is basically
a gauge theory.

These statements clearly show that it is important to have a good understanding of quan-
tized gauge theories. However, the quantization of them turns out to be quite subtle, since the
vector space that is generated by the quantized fields usually contains unphysical states. For
example, it is possible that this space contains states with negative norm. For abelian gauge
theories, like U(1) in the photonic case, there is a chance to identify a subspace as the actual
physical space by introducing additional supplementary conditions, like the Gupta-Bleuler
condition. For the non-abelian case this is a more subtle problem, since it is not so easy to
find a subspace that is invariant under time evolution with this strategy, as pointed out in [3].

A very elegant way to solve this dilemma is given by the BRST formalism (Becchi, Rouet,
Stora and Tyutin). It was originally discovered as a by-product of the gauge fixing method of
Faddeev, Popov and De Witt and offers a very general strategy for a covariant quantization of
gauge theories. This BRST quantization comes with an explicit form of the space of physical
states and therefore allows to make very general statements about the properties it should have.
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Furthermore, it offers a method that allows to derive identities among Green’s functions in a
very rigorous way. These identities are called Slavnov-Taylor identities. There is a very large
quantity of literature that deals with the BRST formalism and its applications. Concerning
this work, [3], [7], [8], [9], [10] [12], [13] and [17] shall be mentioned explicitly.

The BRST formalism is often applied to quantize spin-1 fields, since all the gauge bosons
that are observed in nature are particles with a spin of 1. For massless spin-1 fields the
formalism can be applied without any problems, but in the massive case the fields usually
do not offer gauge transformations. However, the existence of gauge transformations is vital
in order to perform the BRST quantization. Consequently, one has to to adapt the action
that describes the particles of interest in such a way that it is invariant under certain gauge
transformations.

Such adaptations are usually performed by applying the Higgs mechanism. However, this
approach requires an actual modification of the theory. A new field, the Higgs field, has
to be introduced, which interacts with the fields of interest. The masses of the fields are
then interpreted as a consequence of these interactions and the spontaneous breakdown of
symmetries. An introduction to these concepts can be found in [11].

It is possible to avoid this modification of the theory and still obtain the desired gauge
invariance by using the so-called Stickelberg trick instead of the Higgs mechanism. This
formalism also introduces new fields, but they do not carry any additional degrees of freedom.
Nevertheless, they can be used to introduce gauge transformations for massive spin-1 fields as
well. These gauge transformations then allow to apply the BRST formalism. This strategy for
a suitable BRST quantization of massive spin-1 fields is pursued in [7] and [13], for example.

However, the BRST formalism is not restricted to the spin-1 case. It is also possible to
treat spin-2 fields quantum-mechanically by using this formalism. In order to achieve an
advanced understanding of the method of BRST quanization, such cases with spins of higher
order certainly should not be neglected. Therefore, the BRST quantization of spin-2 fields is
discussed in this thesis.

In the literature, spin-2 particles are often treated in the context of gravity, as it is done
for example in [5]. The reason for that is the fact that the particles that cause gravitational
interactions are usually assumed to be massless spin-2 particles. So, from the physical point
of view, it is quite reasonable to work with spin-2 particles in this context. However, this
restriction is not necessary. It is also possible to treat spin-2 fields just as a certain type of
particle that gets its dynamics from a certain action, the so-called Fierz-Pauli action. This
approach is pursued in [6], for example. In this thesis, spin-2 particles are treated in this way,
too.

Just like in the spin-1 case, Stiickelberg fields need to be introduced in order to obtain
matching gauge transformations for massive spin-2 particles. This is done in [5], for example.
The resulting adapted Fierz-Pauli action allows a BRST quantization of spin-2 fields. The
main goal of this work is to understand how the vector space of quantized spin-2 fields relates
to the polarizations of their classical analogs both in the massive and in the massless case.
Furthermore, possible couplings to external sources, which are compatible with the BRST
formalism, are derived.



Chapter 2

Mathematical Concepts

Before the actual mathematical analysis of spin-2 particles can be performed, it is necessary to
introduce the corresponding mathematical concepts. Especially the BRST formalism offers a
rigorousness and elegance in its formulation that deserves a closer look. However, the general
concepts of quantum field theory will not be presented here, since they are well-known. An
introduction to them can be found for example in [3], |[12] and [16]. Furthermore, some results
from classical Lagrangian and Hamiltonian mechanics are needed to justify the Lagrangian
that is supposed to describe spin-2 particles. But first some notations, which will be used in
the following chapters, have to be presented.

2.1 Notations and Conventions

Initially, it is important to mention that all functions of any kind will be considered to be
sufficiently smooth, such that all the appearing derivatives are well-defined. The Dirac delta
distribution on RP, with D € N, is usually denoted as

5P (x). (2.1.1)

In this thesis, the dimension of the argument of the distribution will always be clear from the
context. Therefore, it will not be displayed explicitly, i.e. the convention

D) (x) = 6(x) (2.1.2)
is used.

The complex conjugate of some parameter c is represented by ¢*. The hermitian conjugate of
an operator a is denoted as af.

Furthermore, note that g, will always denote the metric tensor 7,, for a flat spacetime,
ie.

-1 0 0 0
0O 1 0 0

G = N = 0 01 0 s (213)
0 01
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since this is the standard practice in particle physics. The only exception occurs in Section
[7.3] Furthermore, the Einstein summation convention will be used. Greek indices run from 0
to 3 in this context. Latin indices, usually 7, j, k, run from 1 to 3 in this context and refer to
spatial coordinates, if nothing different is mentioned.

Coordinates are written as lowercase Latin letters, usually x in position and p in momentum
space. The p-th component of a coordinate x is denoted as x*, i.e. coordinates are identified
with contravariant vectors in position and momentum space. If only the spatial elements of
a coordinate shall be considered, this is marked by using the corresponding bold letter. For
example x is the spatial part of . In some cases, 2° will be denoted as t. A product of the
form xp always refers to the contraction of the two coordinates via the metric tensor, i.e.

xp = 2'g,,p" = z,p" and in particular p* = p,p". (2.1.4)

In order to distinguish tensor fields from coordinates and to keep track of the rank of those
fields, their indices are stated explicitly. For example, A, represents the whole tensor A, dx*
as well as its p-th component. What of the two cases is meant by A,, will be either irrelevant or
clear from the context. A shift of the index A, —— A" is always performed by the contraction
with the metric tensor:

Al = A, g, (2.1.5)

The trace of any tensor K, is abbreviated with K, i.e.
K¢ =K', =K. (2.1.6)

In order to symmetrize a tensor, the notation
1
K(;LI/) - §<KMV + KVM) (217)

is used. Furthermore, no difference between column and row vectors will be made. In the
rare cases where a vector has to be explicitly written in its components, it will be written as
column vector. If it is mentioned in the text, it will be written as row vector in order to avoid
an unnecessary waste of space.

The time derivative f of a function f refers to the derivative with respect to z°, i.e.

: d

d
f=g1=93r (2.1.8)

A functional F[¢,] is a mapping that maps fields or a set of fields ¢, to scalars or scalar
functions, i.e. functions of the form

In this work these functions and scalars will always be real valued. The index a shall be
contained in a finite set of indices.
Let F' be of the form

Flée] = /M P2 (2, 6a(), Drra(), 0,000 (). ) (2.1.10)
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where f is a scalar function in z, ¢, and its derivatives of arbitrary order and M an open
subset of RP. The functional left derivative

5LF[¢a] . 5LF[¢a]

T — 2.1.11
dq 5¢a<x) ( )
of F' is defined as the function that satisfies the relation
d 0L F[b4]
—|  Flo, W= d° 2.1.12
de'e=0 [¢ + €y ] /]\/[ x;yb(m) 5¢b(x) ) ( )

for any field y, that vanishes at the boundary of M together with all its derivatives. In the
case of an unbounded M, y, is supposed to fall off sufficiently fast at infinity. The left hand
side of this definition is basically the derivative of F' at ¢, in direction y,. Note that the
functional derivative is supposed to be the same type of function as the fields ¢,. So if the
¢, are for example symmetric tensors, the functional derivative of F' shall be chosen in such
a way that it is a symmetric tensor as well.

By using the special form of F', one can construct its functional derivative explicitly:

d
& ‘6:0F[¢a + Eya]

oLf OLf OLf
/dD$Z(ya L +Z(9r aaai%Jr?Za@zyaaaLaZ% ) (2.1.13)

/dez< aLf Z aa%if;a Z aalagg% )

where the method of partial integration has been used. Consequently, one gets

5LF . aLf aLf 8Lf
5o~ 4 ;a 504, rZaalaa et (2.1.14)

The partial left derivatives 8% are defined in an analogous way as the functional left derivative:
Let g(¢,) be a function of a field ¢,, then (%La g is the function that satisfies

d
=096 + €va) yb (2.1.15)
de

and is of the same type as the fields ¢,. The left derivatives that differentiate f with respect
to higher derivatives of ¢, are defined in the same way.

The notation left derivative refers to the fact that the test function y, is always multiplied
from the left to the corresponding derivatives. In an analogous way one can introduce a right
derivative. The distinction between left and right derivatives is irrelevant in the bosonic case,
but for fermionic fields (such as Faddeev-Popov ghosts), which anticommute, a difference in
the sign between left and right derivatives can occur. By keeping in mind, it is easy
to verify that for a ¢], which depends on a scalar parameter 7, the chain rule

] D dey 6L F (93]
_F¢ /d ZdT 5o (2.1.16)
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holds.

The function f(x, ¢a(x), Ora(x),...) itself is also a functional f[¢,](x). It is possible to intro-
duce the functional left derivative for such functions as well. One wants to obtain a mapping

that satisfies p 6 f
& o6+ el /dD’Z V)5 ) @) (2.1.17)

for all z € M. So 5L—f has to depend on two spacetime coordinates. Since this will allow to
formulate some expressmns in a very compact way in Section [2.4] the notation

5
o) 2119
will be used for
di| of (e + €yal (x / dPx ’Zyb /) 5Lf) o) (). (2.1.19)

5Lf

The explicit form of can be obtained by writing f as an integral

Flde) () = /M P 26(z — o) lbal (). (2.1.20)

This implies

ol 6u+ el = [ dPatsa =) L] o fl60+ )
/ e sz 8Lf ](x)+éa%if) G%iéb[%](xlw‘”) (2.1.21)
= [ S ( m—x’)%wa](x’)—iaj (3 = ) o1
+) -
and therefore
555(?) [al(z) = 0z — @ )g;i i ( x’)a%if;a [qﬁa](x’)) ... (21.22)

Note that % is a distribution, since it contains delta distributions.

Remark The definition of the functional derivative of f, as presented above, somehow appears
to be ill-defined from a mathematical point of view, since it contains derivatives of the delta
distribution. The more elegant way to introduce such a concept would be to define 2t ¢ L simply
as the linear operator that is given by

5Lf[¢a} i
Sb Ya

— %Lzof[gba + €Yol (2.1.23)
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In particular, this would eliminate the difference between left and right functional derivatives.
This and the subtleties with the delta distribution originate from the desire to identify the
functional derivative with a distribution that relates to the derivative of f in direction y, in
the way described in . If one interprets the integral over the product of two functionals
as a scalar product, this closely resembles the relation between derivative and gradient. The
reason Why ¢ is introduced like this is due to the fact that it turns out to be quite useful for
the discussion of the BRST transformations in Section 2.4 and the use of Poisson brackets in
Section [3.I] to have an actual expression of this object in form of a distribution.

Furthermore, one finds

5 F d d
/ dD ,Zyb I L (ba] - _| :OF[¢a+€ya] = /]\‘/lde%k:Of[(ba"i_eya](x)

(2.1.24)
[ n [ >l s lw)
and therefore o [¢]_/ D orf (6a](z) (2.1.25)
Sala) oga@) T B

i.e. the functional derivative commutes with the integration. This allows to formulate a chain
rule for the functional derivative.

Theorem 2.1.1 Let F' be a functional of the form (2.1.10) and g, functionals of the form
(2.1.9). Then the chain rule

5LF ga ¢a D ./ 5Lgb ¢a 5LF['¢ ]
~oonln) /ﬁd §: S0u(r)  Sy(a)

Va=gala] (2.1.26)

holds.

PRrROOF: Let y, be a field that vanishes at the boundary of M together with all its derivatives.
Obviously, the functional derivative of g,, and all its derivatives, in direction of y, vanishes at
the boundary of M, i.e.

d
de

d
—o9e[ba + €bal| 5y, = 0, =

—oOrbalda + €yal |5y, =0, (2.1.27)

This can be used together with the method of partial integration to get

d d
E‘e:OF[gawa + €Yl :/ dD:U/—L:Of(l‘/,gawa + €Yol (), 0rga[a + €va) ('), ...)
M
LS [Ya
/dD ’Z —L 095[@a + €ya] (2) Lfgi} v
B d O f [tha)(2")
+Z d 6 0 Tgb ¢a+ ya]( ) Laawa + ) wa:ga[ﬁba}
_ D, ./ i / 5LF[wa]
- /M P53 2l ol + @I B
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, 5 g ¢a ') 6, F (]
/dD /deZ LYb x) (;ﬁb(f,) Ya=ga[pa]
Rk cba ") 6L F[Ya]
/deZyc /dD Z Lgb ) 5L¢b( 5

which completes the proof. O

(2.1.28)

Ya=ga[¢a]’

As a final remark regarding functionals, note that the functionals in this thesis will always
considered to be functions of ¢, and its derivatives or integrals over such functions. Therefore,
the functional left derivative is defined for any functional that occurs in this work.

Let ¢ be a quantized field that describes an exterior particle with mass m in position space.
Then one can introduce creation and annihilation operators a'(p) and a(p) in momentum
space to write ¢ as

¢(z) = / Jfg%{a(p)ew + a*(p)e*"m}|p0:Ep, (2.1.29)
with Fp = \/W . In order to keep such expressions as short as possible, the abbreviation
N 3
dp = (QSTIQ’EP\]]OEP (2.1.30)
shall be introduced.
For two operators A and B the notation
[A, Bl = AB+ BA (2.1.31)

is used, i.e. [-,-]_ is the commutator and [-, -], the anticommutator.

2.2 Lagrangian and Hamiltonian Densities

The Lagrangian and Hamiltonian formalism are both well-known concepts of theoretical
physics and therefore will not be introduced. Nevertheless, some notations and useful trans-
formations for Lagrangian and Hamiltonian densities shall be illustrated.

A Lagrangian density £ that depends on a set of fields ¢, and their first order derivatives
O0u0q always comes from a certain action, which is assumed to have the form

Stea) = [ at [ @'xe(6,0,00) (2.2.1)

Here [t1, 5] is a given time interval. The fields do not necessarily need to be scalars but can
also be 4-vectors or tensors of higher order. In this subsection, the fields ¢, are regarded to be
bosonic. This means that the functional and partial left derivatives are the same operation as
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the corresponding right derivatives. The integral of £ over the spatial components is usually
interpreted as a Lagrangian function

Lioul = [ #xL(00.0,00) (229)

which relates to the Lagrangian density in a natural way.
The requirement that S disappears gives the Euler-Lagrange equations. Therefore, an

arbitrary functional F [gba] Wlth 5L F = 0 for all field configurations of ¢, can be added to

S|¢pa] without changing the Euler Lagrange equations. If F' is the integral of a function, this
gives a possible transformation of £ that does not change the dynamics. One special case for
such functions are total time derivatives.

Theorem 2.2.1 Let f be a sufficiently smooth function of x, ¢, and its space and time deriva-
tives of arbitrary order and L(¢pq,0uPa) a Lagrangian density. Then L + %f gives the same
FEuler-Lagrange equations as L.

PROOF: It is sufficient to show that

5%/ dt/d3x flda(z) = (2.2.3)

holds for a given time interval [¢1,¢5]. This can be done by a direct calculation. Let y, be an
arbitrary field that disappears at the boundary of [t1, t5] x R3, together with all its derivatives.
Then the variation of ¢, according to y, yields

60/ it [ x5 1l + vl =

So the result is just the difference of two integrals over subsets of the boundary of [t1, 5] X
R3. Therefore, the 3, vanish in the remaining integrals and with them the e dependency.
Consequently, one gets

de =0 / d*xfla + eval ()]0, (2.2.4)

3
de o 0/ dt/dx flba + €ya)(z) =0 (2.2.5)
for any y,, which implies ([2.2.3)). O

By performing a Legendre transformation on £ according to 8y, = ¢a, a Hamiltonian density
‘H can be constructed from £. The momenta then have the form
orL
Iy (2.2.6)
00a

The resulting Hamiltonian density can be related to a Hamiltonian function by integration:

H(¢q, 7] = /d3x’H[¢a,7r“]. (2.2.7)

Usually the Hamiltonian density does not depend on the spatial derivatives of the momenta
but in a more general context this is possible. The equations of motion then read
- Q

5LH 5LH
= —7% and

S5 o = u (2.2.8)
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Note that the corresponding functional derivatives now correspond to integrals over space, not
spacetime. This means that the time parameter has to be regarded as an additional scalar
parameter on which the functions y, that are used to calculate the functional derivative do
not depend.

The method of adding a total time derivative to the Lagrangian density without changing
the physics leads to a possibility to derive such a transformation for the Hamiltonian density
simply by Legendre-transforming £ = £ + % f. In order to do so one has to assume that f
is a function of x, ¢, and only its spatial derivatives of arbitrary order. f is not allowed to
depend on time derivatives of any order. Otherwise the resulting Lagrangian £ could depend
on time derivatives of second or higher order, which would not allow to perform an appropriate
Legendre transformation. This additional restriction leads to the momenta[

7= 7%+ 6Lé;[f“], (2.2.9)
with
Flga] = /dSXf[aﬁa], (2.2.10)
and to a new Hamiltonian density
~ < ~, OLF|¢p,
H(pa, ™) = H[d)a,w“ — L(STW} — fi[®d] (2.2.11)

where f; denotes the derivative of f according to the explicit time dependence. The fact that
this transformation delivers the correct dynamics can be proven without the transformation
back to the Lagrange formalism.

Theorem 2.2.2 Let H|[p,, 7] be a Hamiltonian function, which corresponds to a Hamiltonian

density H[oq, ], and [ a function of x, ¢, and its spatial derivatives of arbitrary order

and possibly additional ﬁelds that do not get their dynamics from H. Furthermore, let F, =
LF — [ &>, b M with F(¢,) = [ d®xf[¢a). Then the Hamiltonian

5LF[¢a]
0¢q

g, 7) = H |60, 7" - — F[¢d] (2.2.12)

gives the dynamics for the transformed momenta T = 7* + %}f“].

L H = $q and ‘5(; H = —7" hold. The first equality is
trivial. The later can be shown by a dlrect calculation. In order for the statement to be true,
one explicitly has to use the fact that all fields are considered to be bosonic. This implies

é 5LF[¢(1] _ 5LF[¢a]
oo, o

!This is an immediate consequence of (2.1.16)), with 7 = t.

. (2.2.13)
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By using the chaln rule of Theorem [2.1.1] “ the canonical equations and the easy to
verify relatlon gbb = 0, one finds

S H|pa, 7  (0pH|¢a, - y 51 F[a
gﬁx)]_( ?f v [ ch (7 - 6¢f<[¢>]>

% 0pH[¢a, 7 ]) s (5LFt[¢a]
(57Tb( /) ﬂafﬂa—# 5¢a( )
L 5L a / 5L t|Pa
= 10 oty /d3 '25 5;;;3)]45 (x)—% (2.2.14)
~a d 5LF 3 / 5LF

g+ Miﬁ 5% / DM () + Fla])
_za d 01, F[¢a] or,
=W G s =)

Note that in this calculation the time dependence of the fields is implicit. Furthermore, it has
been used that d and ‘LL commute. Since the time in this context is just an additional scalar
parameter, Wthh has nothing to do with the functional derivative, this is easy to verify. O

Remark The freedom that f can also depend on additional fields appears to be somehow
unnecessary, since this could also be put into the explicit time dependenceﬂ. However, such
a dependence will become important for some results for the spin-2 fields. Therefore, it is
mentioned explicitly.

By keeping (2.1.16]) in mind, one can easily see that F; is just the integral of f; over space.
This leads to the desired result (2.2.11]).

Remark The momenta 7% are usually introduced as Z&= a £ (see for example [9], [10] and [12]).
This is clearly an equivalent definition if £ only depends on ¢, and 0,¢,. However, the mod-
ified £ depends on spatial derivatives of ¢, and ¢, of arbitrary order. The definition of the
momenta as it is presented here is still valid for this more general case. The proof that this
leads to canonical equations that are equivalent to the Euler-Lagrange equations works in a
completely analogous way as for the dynamics of classical point particles. One only needs to
use the fact that the Euler-Lagrange equations can also be formulated as

oL _ d ol
do  dt ¢,

= 0. (2.2.15)

Here the functional derivative of course corresponds to an integral over space once more. This
property can be shown by a straightforward calculation.

2 Explicit time dependence in this context means that the function does not just depend on time via ¢,.
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2.3 Spin Representations of the Poincaré Group

One important part of this thesis is to understand why the Fierz-Pauli action actually describes
spin-2 particles. Therefore, some aspects of the theory of irreducible unitary representations of
the group of inhomogeneous proper orthochronous Lorentz transformations 1SO(3,1)", which
is called Poincaré group in this thesis, need to be reviewed. The results presented in this
section are taken from [1], which deals with this subject in a more detailed way.

Elementary particles are mathematically described as irreducible, unitary representations of
IS0(3,1)". Thus a method to explicitly construct such representations would be extremely
useful. In fact such a method exists. To understand the idea behind it, consider the Lie
algebra is0(3, 1). It is spanned by generators P* and J*” that obey the commutation relations

iR JP7) = PR — ghe YT — TR o g e (2.3.1)
i[P*, JP7)_ = gh*P? — g PP (2.3.2)
i[P*, P]_ = 0. (2.3.3)

Therefore, the negative square of the momentum — P, P* is a quadratic and the square of the
Pauli-Lubanski vector

1
W = e, P, (2.3.4)

a quartic Casimir operator. Since they are proportional to the unit in an irreducible represen-
tation, their value can be used to classify such a representation. More precisely, an unitary
irreducible representation with

— P, P" =m?*1 (2.3.5)

and
W, WH =m?s(s + 1)1 (2.3.6)

describes a particle with mass m > 0 and spin s. For m = 0, things become more subtle,
since W,/W# can not be used to get a spin in this case. Nevertheless, since the momentum
operators P* commute, they have common eigenvectors |p, A) with

Pt|p, A) = p"[p, A), (2.3.7)

for any m > 0. Here A denotes possible other degrees of freedom. These |p, A) can be
used to express any vector |¥) as linear combination of them. Furthermore, p? = —m?
and P,P|U) = —m?|¥) follow directly from (2.3.5)). So the vectors in such an irreducible
representation have to satisfy

(P, P" +m?*1)|¥) = 0, (2.3.8)

which is the well-known Klein-Gordon equation. Thus a first step towards a construction
of irreducible representations has been done. For the following, let U(A,a) be the unitary
operator, representing the element (A,a) € 15O(3,1)", where A is an element of the proper
orthochronous Lorentz group SO(3,1)" and a € R* represents an arbitrary spacetime transla-
tion. For any two such elements (A, a) and (A, a’) the relation

U(A,a)U(N,ad") = U(AN,a+ Ad') (2.3.9)
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holds. By looking at an infinitesimal translation (see [1]),

U(L,a)lp, A) = ™p, A) (2.3.10)

can be derived. Furthermore, by using some properties of SO(3,1)" (see [1]),

UA)p, A) = > Cara(A,p)|Ap, A'), (2.3.11)

Al

where U(A) = U(A,0), can be obtained, i.e. U(A)|p, A) is an eigenvector of the momentum
operators with eigenvalues (Ap)*. Furthermore, note that a A € SO(3,1)" conserves the sign
of p® for any p with p? < 0. Since an irreducible representation is supposed to be constructed,
all vectors except 0 are cyclic. So in particular, shows that all the eigenvalues p°
of P? have the same sign. The matrix Ca/4(A,p) basically defines U(A). Thus determining
the C4r4(A, p) means determining the corresponding irreducible unitary representation of the
Poincaré group, since the translations only contribute a phase factor. This problem can be
reduced to identifying a similar matrix of so-called little groups by the method of induced rep-
resentations.

To do so, consider a fixed and non-vanishing momentum & with k> = —m?2. Then for any
momentum p, for which p° has the same sign as k° and with p? = —m?, there is a standard
proper orthochronous Lorentz transformation L(p), such that

L(p)k =p (2.3.12)
holds. This can be used for the following definition of the |p, A):
p. A) = N@)U(L)|k,4). (2:313)

where N(p) is just a numerical normalization factor. The L(p) are of course not uniquely

determined. In fact it is straightforward to show that two such transformations L(p) and L(p)
always relate to each other via B
L(p) = L(p)W, (2.3.14)

where W € SO(3,1)" is some transformation that keeps k: invariant. These W obviously form
a group, the so-called little group corresponding to k. From ([2.3.11)) it immediately follows
that there is a matrix D, ,(W) such that

W)‘l%,A> =S Dh W
=

> (2.3.15)

and

Dk, (W'W) ZDA,B "Dk (W), (2.3.16)

for another element W’ of the little group, hold. Thus the Di, (W) give a representation of
the little group. Furthermore, it is easy to see that W (A, p) = L~ (Ap)AL(p) is an element of
the little group. By inserting some units (See [1]), one obtains

U(A)[p, A

W (A, p))|Ap, A'). (2.3.17)
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So in order to find an irreducible unitary representation of the Poincaré group, it is sufficient
to find an irreducible unitary representation of the little group corresponding to a chosen k.
For this it is clearly necessary to identify the little group. In the massive case one can
choose k = (m,0,0,0). The little group of k obviously is just the group of rotations in space,
ie. SO(3) C SO(3,1)". The massless case however does not offer such a trivial identifica-
tion. By choosing k= (k°,0,0,k°), it is clear that its little group contains spatial rotations
around the z-axis, i.e. SO(2) C SO(3,1)". Further investigations show that it is in fact the
two-dimensional Euclidean group 1SO(2). A proof of this can be found in [16].

In a quite similar way as for 1SO(3,1)", the method of induced representations can be applied
to 150(2). By taking a look at the commutation relations of the generators my, mo and J3 of
i50(2),

i[?Tl,Jg]_ = T, i[?Tl,J3]_ = Ty and [7T1,7T2]_ :O, (2318)

/%, &, a> of the transla-

one can see that |k, A> can be written in terms of a common eigenbasis

tion generators 7, where Wn‘ff, &, a> =&, /Ac, &, a>. Just like in the previous case, the problem

reduces to finding an irreducible unitary representation of the group of transformations which
keep a specific £ invariant. The short little group of £ = 0, which obviously is SO(2), corre-
sponds to so-called helicity representations. They are the representations that are interesting
for this work.

Now, after reducing the problem to finding irreducible unitary representations of special or-
thogonal groups, a procedure for constructing an irreducible unitary representation of the
Poincaré group can be formulated. This is known as the Bargmann-Wigner program (see [1]).
The idea behind it is to introduce manifestly covariant equations’] whose solutions transform
according to a certain unitary irreducible representation of the inhomogeneous Lorentz group
I0(3,1). One of these equations has to be the Klein-Gordon equation. Clearly, these solutions
only carry a reducible unitary representation of the Poincaré group. However, this method
allows to formulate the concepts of time reversal and parity symmetry, which are usually re-
quired in field theories. The actual irreducible representation of 1SO(3,1)" is then identified
with the positive-energy solutions, i.e. the subspace on which p® > 0 holds for all eigenvalues
p° of P°. Since representations of IO(3, 1) shall be constructed, one has now to work with the
(short) little group of this group. For m? > 0 the little group is the orthogonal group O(3),
while the short little group for m? = 0 is O(2). For them, the following general procedure can
be applied.

i.) Choose an irreducible unitary representation of the (short) little group.

ii.) Introduce a wave function on Minkowski space whose values are contained in a represen-
tation R of the Lorentz group O(3,1). This representation does not necessarily have to
be unitary, but its restriction to the (little) group has to contain the representation of
i.). That means, there has to be a subspace of R, such that the application of the little
group on it delivers the representation of i.).

i11.) Introduce a system of linear covariant equations, such that the solutions of these evalu-
ated at a fixed momentum carry the unitary representation of i.).

3Differential equations in position space or algebraic ones in momentum space.
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To understand this concept, consider for example a solution p — > ®,(p)|a), where the |a)
shall form some basis of R. Because of the Klein-Gordon equation, ®,(p) vanishes for all p
with p? # —m?. These solutions shall be interpreted as momentum space representation of
some abstract vector space. On this space one can use as definition of U(A), where A
is now allowed to be any homogeneous Lorentz transformation. The parameter A then clearly
labels a basis of the subspace that is spanned by the 3> ®,(k)|a), which carries the irreducible
representation of the little group from step 4.). This ensures that this representation is in fact
irreducible.

Still representations of the (short) little and Lorentz group need to be found. There is a
very general formalism that allows to explicitly construct such representations as subspaces of
representations of the general linear group GL(4). The method uses Young diagrams to find
tensorial irreducible representations of GL(4) with certain index symmetries. This is basically
a generalization of the decomposition of V&V into the spaces of symmetric and antisymmetric
tensors, which carry irreducible representations of GL(4) if the vector space V' carries such a
representation. The general formulation of this method can be found in |1]. Here only the
resulting equations for particles with integer spin s shall be presented.

Just as during the introduction of the (short) little groups, which is given above, one has
to treat the massive and the massless case separately.

The representations that are identified with massive spin-s particles are totally symmetric
traceless tensor fields ®,,, . (i.e. any contraction of two indices vanishes), which satisfy the
Klein-Gordon equation

(0" +m*) Dy (p) =0 (2.3.19)

and furthermore the transversality condition
PP (p) = 0. (2.3.20)
The massive spin-s field carries an irreducible representation of O(3). There is an explicit
formula for the dimension of irreducible, symmetric tensorial representations VOP) with rank

s of any O(D) (see [1]):

D+2s—2)(D+s—3)!
sl(D —2)!

dim(VOD)) = ( (2.3.21)

Therefore, massive spin-s particles have dimension 2s + 1.

The massless case can be described by using the so-called field strength tensor ICp ). \usvss
which has to satisfy the following conditions:

i.) Kuin..jusvs is antisymmetric in every pair of indices (y1;, ;).
ii.) The antisymmetrization of ICp,,,|...|u.0, in every set of three indices vanishes.
ii.) Any contraction of two indices in K ... |u,v, Vanishes.

iv.) The equations

ppICmm|...\mui|..-\usus (p) +p,uilcuwlI-..Iuipl...\usl/s <p> +pwlcuwl|--~|pm\~..\usl/s (p) =0 (2'3'22)
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PRy ] s (P) = O (2.3.23)
hold for all i =1, ..., s.

The fourth condition obviously implies

pQICM1l/1|..,|MSVS (p) == 07 <2324)

i.e. the massless Klein-Gordon equation. One way to construct such a field strength is by intro-
ducing a totally symmetric gauge field ¢,, .., and writing K\, ... |uavs (p) as antisymmetrization
of Py Pu. oy .., (p) With respect to exchanging p; and v, i.e.

Iculm\---lusvs (p) =P Puz -+ Puis Ponvo...vs (p) — PurPpus -+ -Pps Ppuava..vs (p)
+pl/lPl/zpug-'-pus¢mu21/3.-.l/s (p) e pm-'-pus—1pvs¢V1-..Vs—1/ts (p) (2-3'25>
= = Kpsvi | fvipsil s (),

for all i = 1,...;s. This ensures that i.) and 4.) are always fulfilled. Clearly, there is more
than one configuration of the gauge field that produces the same field strength. So not every
configuration corresponds to a different physical state. One can show (see [1]) that this strat-
egy in fact delivers two physical degrees of freedom for any s.

It is quite easy to see that this construction leads to K., (p) = pudv(p) — P@u(p) for s = 1,
i.e. the electromagnetic field tensor. Condition 7v.) then gives the well-known Euler-Lagrange
equations for the electromagnetic 4-potential. For s = 2 the only nontrivial equation that
follows from 7ii.) is

,CMVI‘,U«VQ (p) = pup“(b,,l,@ (p> - pulp'u¢;wz (p) - p,,Qp“@,w(p) + p,,lpl,qu“u(p) = 0. (2-3'26)

Furthermore, it is easy to check that this already guarantees that 7v.) is fulfilled. Therefore,
massless spin-2 particles can be characterized by a symmetric gauge field that satisfies .
By switching to position space via a Fourier transformation, they alternatively can be described
as a symmetric tensor field h,, that solves

Ohy — 0*0uhy, — 00, hyy + 0,0,k = 0. (2.3.27)

2.4 The BRST Formalism

This section focuses on the introduction of the BRST formalism, which is the center piece of
the subject of this thesis. It is a very rigorous method to treat gauge theories quantum mechan-
ically and offers a strategy to deal with the subtleties of quantizing such in an algebraically
quite illuminating way.

2.4.1 Subtleties of Quantizing Gauge Theories

In order to grasp the value of the BRST formalism, one has to understand the problems that
occur during the quantization procedure of gauge theories. Therefore, a short review of the
quantization of the U(1) gauge theory, which is used to model photons, is given as an example.
It is taken from [3], where the subject is treated in a far more detailed way. The main focus
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of the following presentation lies on the subtleties of the quantization.

Take the classical action for the U(1) gauge field A,

S[A,] = / Azl — / a'z{ - }lFWFw}, (2.4.1)

with F,, = 0,A, — 0,A,. This action offers the well-known invariance under the gauge
transformations

Ay — Ay + 0,A (2.4.2)

of A,. A is supposed to be an arbitrary function that falls off sufficiently fast at infinity. In
order to perform the procedure of canonical quantization for this theory, one has to introduce
the conjugate momenta

or L
o= ==, (2.4.3)
0A,
that allow to formulate the canonical commutation relations
[AM<$), ZV(y)]— |x0:y0 = iguu(s(X - Y)- (244)

They offer a way to turn the functions from the classical theory into corresponding operators
for a quantum theory (see [3] or [9]). But already at this point there is a problem. It turns
out that ¥ = 0 holds. So there is no way to introduce the canonical commutation relation
[Ao(z), Eo(y)],’xozyo = —i§(x —y). The usual way to avoid this dilemma is to introduce a
gauge fixing, which shall be set to

g =0,A" (2.4.5)

in this little example. By performing a gauge fixing, S[A,] can be replaced by the gauge fixed
action

SGF[AM,E, ¢l = S[A,] + /d%{ — %QZ + 5DC}, (2.4.6)

where ¢ and ¢ is the Faddeev-Popov anti-ghost and ghost corresponding to G, respectively.
The way from S to Sgr is a well-known procedure and shall not be presented here in detail.
A good reference, which even deals with the more general case of non-abelian gauge fields,
is [17]. In order to keep the equations as simple as possible, the parameter « shall be set to 1
in this section. This choice is usually referred to as Feynman gauge (see [12]) and leads to

_ 1 _
SerlA G, () = / d4x{ — SOuAO A + ng} (2.4.7)
and therefore to the gauge fixed Lagrangian
1 _
Lor = _58;#41/8“14” — 0,00"C. (2.4.8)
Now the introduction of canonical momenta is possible. One finds
S = AP, (2.4.9)

However, this does not solve all the problems that occur during the quantization process.
Clearly, A, can not describe an independent physical degree of freedom for each p, since that
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would imply a total number of four degrees of freedom. But a massless spin-1 particle only
has two. One degree of freedom can be eliminated by only working with states |¥) that satisfy
the so-called Gupta-Bleuler supplementary condition (see [3])

AL |W) =0, (2.4.10)

where A
A = /%Ze;(p)a;eim. (2.4.11)

r=1

Here the ez(p) denote a basis of polarization vectors and aj, the corresponding annihilation
operators (see Section for more details). So instead of working with the full vector space
V of the theory, one has to look at the subspace V' that contains only vectors that satisfy
(2.4.10) and no ghosts, since they are unphysical. In order for this method to work, one has
to ensure that V' is invariant under time evolution.

Another obstacle is the fact that V turns out to contain elements |w) with non-positive norm,
i.e. (wjw) < 0. But this is quite a dilemma, since that makes the probability interpretation of
the inner product impossible, not to mention that V is not even a Hilbert space. Vectors with
(w|w) = 0 but |w) # 0 also show up in V'. So on V' the probability interpretation works, but
this space is still no Hilbert space. However, these critical elements turn out to be orthogonal
to any other state in V' and therefore can be modded out by introducing equivalence classes
[|W)] with

T~ |T) & (0] (|\1/> . |\1ﬂ>) =0 (2.4.12)

for any |W), |[¥'), |¥"”) € V'. The completion of the space of these equivalence classes is iden-
tified with the space that describes the actual physical polarizations, i.e. the wanted Hilbert
space. It comes by construction with the desired positive definite inner product.

The most important result of this example is the fact that it is necessary to deal with un-
physical states in order to quantize the gauge field appropriately. But this does not seem to
be too surprising after all, since even in the classical case A, is not the physical quantity, but
F,, is. So the problems seem to originate from the fact that there are transformations, namely
the gauge transformations, that change the A, but not the physical system. This of course is
in general the case for any gauge field. Therefore, one would expect that it is never so easy to
quantize a gauge field appropriately and that several manual adjustments and reformulations
of the definition of the actual physical space need to be made, similar to the case presented
here. So a general formalism that allows to treat all these subtleties in a systematic approach
would be very desirable. This is what the BRST formalism does.

2.4.2 The BRST Transformations for Gauge Fields

It is based on a very well hidden additional invariance of Lagrangians that describe gauge
theories. To motivate the following more general procedure, consider once more the action
(2.4.7). By introducing a constant Grafmann number 6, one can formulate a new set of
transformations for the fields:

Ay Ay +0gA, = A+ 00,0, (> C+6¢=C+00,A", (— C+0p¢ =C. (2.4.13)
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By using 62 = 0, one can easily show that Sgr is invariant under this transformation. The
existence of such an additional invariance is the key to formulating a consistent quantization
for gauge fields. It is possible to generalize this so-called BRST transformation 0y for any
gauge theory.

The formulation and motivation of the BRST transformation and quantization, as presented
in the following subsections, is in most instances taken from [17], where the subject is treated
in a more general way. However, it also contains some elements of [9] and [10]. Furthermore,
some properties of the formalism, like the proofs of Theorem and Theorem [2.4.2] are
discussed more carefully than it is done in the literature.

In order to quantize massive spin-2 particles, it is necessary to work with fields that are
invariant under several independent gauge transformations. So this has to be considered in
an appropriate introduction of the formalism as well.

The generalization of the BRST invariance from the U(1) case requires several modifica-
tions of the action that is supposed to describe the fields of interest. It is possible to formulate
a classical version of the BRST formalism by using constraints (see for example [10]), but
since only the quantum formulation of the BRST transformations is relevant for this work,
this approach shall be omitted. Instead, the generating functional is adapted in such a way
that the BRST invariance can be exploited to derive an appropriate quantization.

To do so, consider a set of gauge fields ¢, that get their dynamics from an action S[¢,].
This action shall be invariant under infinitesimal gauge transformations of the form

(Zsa — ¢a + §M6M¢a- (2414)

Here the De Witt notation (see |17]) is used: The indices a and M are allowed to include
spacetime coordinates and also discrete labels. Over equal upper and lower indices shall be
summarized, by convention. In the case of spacetime coordinates the sum has to be an integral.
For example, in this notation the gauge transformation of A, can be written as

Ay — Ay + N6, Ay, (2.4.15)

with

ié(m —vy), A =Au(x) and AY=A(y). (2.4.16)

e = =5

This results in

N8, A == [ atydt)snoe =) = [ s m A -0 = 9A0) (2417)
and therefore gives the gauge transformation, as it is presented in ([2.4.2]).

So &M resembles the parametrization of the gauge transformation, while §,,¢, determines
how &M is used to transform ¢,. The index M in particular contains discrete indices that
label the sets of gauge transformations that are considered. Note that £M 6,6, in particular
is assumed to be linear in &V,

The operator d); can be introduced for arbitrary functionals F'[¢,], simply by setting
oL

d
10 Flgu] = |y Fl6a+ e€buuu] = Mot s

Fléa). (2.4.18)



20 CHAPTER 2. MATHEMATICAL CONCEPTS

As usual, gauge fixing functionals Gy/[¢,], i.e. functions which are allowed to depend on ¢,
and its derivatives of higher order, can be introduced. They restrict the integration over all
field configurations in the generating functional to the ones that satisfy Gys[¢.] = xar, where
Xum is a given auxiliary field. This can be obtained by replacing the generating functional

2057 = / (dgs,]eiSI6el=i0ei (2.4.19)

where [d¢,] = [, d¢, denotes the path integral measure, by the functional

Z'lj% xm) = / [da)6(Gar — xar) det (S Gy )etS1Eal—i0ai” (2.4.20)

The fields x s can be integrated out in the following way to obtain the gauge fixed generating
functionall]

ZGF[ja] :/[dXM]e_;{IXMXMZ/(ja,XM)
(2.4.21)
/[dgba} det (OnGar)e™ 329" O (i8[6al— ibaj®

where « is some arbitrary finite constant. Note that x ;s usually is supposed to resemble
the sum (integral) of xasxar over M. However, it is possible that M also contains the indices
of a 4-vector, i.e. u, or the like. In this case, in order to formulate a Lorentz-invariant quantity,
the raising of the corresponding part of the index M is done by contracting with the metric
tensor, as usual. All the following cases where a index is raised or lowered shall be treated in
the same way.

By rewriting e~ 2a9"'9M as Fourier integra (see [17])

efigMg]w - /[dBM]eigBMBM+iBMg]\/I (2422)

and det (0nyGar) as integral over Grafmann fields (see [17]), i.e. Faddeev-Popov anti-ghosts
and ghosts

det(5xGnr) o / (iMoo (2.4.23)

one finds a generating functional that allows to formulate suitable BRST transformations:
Zprstli®] = / [doa][di™[dn™][dBM]eiSprsTléa B0 i [ =idaj® (2.4.24)

with the new action

Sprsrlda, BY, 7", 0™ = S[¢a] + BYGar + 23 B + 7N oG (2.4.25)

The auxiliary fields BM are called Nakanishi-Lautrup fields (see [17]). Their role will become
clear later on.

4 This construction of Zgr[j?] from Z[j%] is a straightforward generalization of the case treated in [10],
where ¢, is a 4-vector.

5The proportionality symbol o, which is used in the following relations, shall indicate that the corresponding
objects differ only by field-independent multiplicative factors.
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Now consider for an arbitrary functional F|[¢,, BM, 7 nM] the transformation

Flpa, BY, ™ M| = F[¢a + 6900, BM + 6oBM ™ 4 s9™ , n™ + 59n™]

=Fl¢0, B, 0" "] + 6o F (60, B, 0", "], (2420
with

8000 = O™ Orr Pas (2.4.27)
son™ = —6BM, (2.4.28)
don™ = —%QfMNRnNnR7 (2.4.29)
5y BM =0, (2.4.30)

and the structure constants f™ v, defined by
[0n5,08]- = fM NROw. (2.4.31)

The mapping F' —— dgF' is called BRST transformation.

The action Sgrsr is invariant under the transformation from above, i.e. 99Sprsr = 0. To
prove this, first note that dp¢, has just the same structure as a gauge transformation. So the
invariance of S[¢,| is trivial. Furthermore, the BRST transformation of a given functional
Fl¢,, B, 7™ nM] always has the form of an infinitesimal transformation, i.e.

dr,
oF L0, BY i ) =000y Flga, BY, i) = 0B S Flgu, BY, i o

(2.4.32)

1 or,
- §9fMNR77N77 5—F[¢a>BM M 77M]

This is easy to see by writing F[¢,, BM, 7™, n™] as a power series and exploiting #? = 0.
Therefore, one gets

SoSprst =B 0G0 + S97™ 0™ nGar + 7V don™ OnGar + 1M 0N 090N Gar
=0BMnNSnGa — 0BMnNonGar + %GfNRoﬁMan%NQM
+00" 0" n"oRon G (2.4.33)
=0 ( 7010k, 00) -Gy + ﬁMUNTIR5R5NQM>

:‘9( — M0 900G + ﬁMnNUR5R5NgM> =0,

where 6% = 0 and the anticommutativity of all ghost fields with # and each other have been
used.

The gauge transformations that are used in this thesis commute with each other, i.e. [0y, dn]- =
0. Therefore, the structure constants will be set to zero from now on.
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Remark Before the discussion of the BRST formalism is continued, a warning needs to
be given. During the derivation of Zggrsr, a gauge fixing G,; was introduced for each gauge
transformation d,;. In order for this method to work, it is necessary to ensure that all the
gauge transformations d,; are independent from each other. For example, one could introduce
a second gauge transformation

5 =4, (2.4.34)

for the U(1) gauge field A,. Clearly, the two operators J, and ¢, correspond to the same
transformation, so fixing the gauge for both independently can not be correct. There are more
subtle cases, where this problem of gauge fixings that are dependent from each other is not
that obvious. The most prominent example occurs during the quantization of antisymmetric
tensor fields. This is discussed in [3] and [17].

So in order to ensure that the presented procedure works, one has to check whether all the
occurring gauge transformations are independent from each other, i.e.

Moy =Mooy & M= (2.4.35)

or equivalently, by using the linearity of d;,
Msy=0 « M=o, (2.4.36)
For spin-2 particles this turns out to be true, so the BRST procedure works without further

difficulties.

2.4.3 The Slavnov Operator and BRST Charge

This formulation of BRST transformations differs from the one presented for the U(1) gauge
field, where no Nakanishi-Lautrup fields showed up. How these two formulations relate to
each other is explained in Section [2.4.4] However, the more general BRST transformations
now come with another operator, which relates to them in a quite natural way. This is the
so-called Slavnov operator s, which is defined in |17] by

By using the relation (2.4.32) with f™ . = 0, one can easily verify that

— B — 2.4.
5o, D o (2.4.38)

5= nM6M¢a
holds. This expression can be used to prove the following important theorem.

Theorem 2.4.1 The Slavnov operator is nilpotent, i.e. s> = 0.
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Proor: This statement can be proven by a straightforward calculation:

) 4]
2 M _ npM YL N N YL
> _< 5M¢“5¢a BT 5 M)( 5N¢b5¢b B 5w >
01,0 )
=S (P + G ) qﬁb
o, 0 o o, 0
. MnpN L °L M or N OL MpN 9L 0L
n'B 6M¢a5¢a - B 5N¢b5 syl 5¢b+B B 57 57 (2.4.39)
0LONG 5 1 O0LON Dy 0LOr D
N LON®s O _ 1 N LONPb oL
=0 onrda Son o0y 2" (5 Pa 7 ONPa 56, >5¢b
Loy N o
=5 ([5Ma5N]—¢b)5¢b =0,
where the anticommutativity of the ghosts, which implies %—LMnN - 5‘:]%4 and %—LM(;;—LN =
(;;LN AT has been explmtedﬂ 0

Clearly, Spgrsr is also invariant under s. Furthermore, it offers a very elegant way to write
SBRST:

Sprsr =S —s (1" (G + 2BM)) (2.4.40)

In this form the invariance of Sgrgr is trivial. It is just a consequence of the nilpotency of s
and the gauge invariance of S.

The invariance under comes with a conserved Noether current and therefore with
a conserved charge €2, the so-called BRST charge. At the level of operators this self-adjoint
operator generates the BRST transformations via

i0p® = ifs D = 0[Q, D], (2.4.41)

i.e. is = [0, ]1. Here the anticommutator is used for fermionic fields, while the commutator
refers to bosonic ones. ® stands for any of the operators ¢,, 7’ and n™

It is sufficient for this work to assume that the Lagrangian Lpgrsr, that corresponds to
Sprsr, only depends on ¢,, 7™, n™ and their first order derivatives and has a polynomial
structure in them. To get an explicit expression for €2, one has to find a J* such that s Lzpsr =
oI hold. The Noether current that corresponds to dy is given by

oL
i LLBRST
=J E sb——— 900 (2.4.42)

Consequently, the BRST charge reads

Q= / Px.J° = / {JO Z @aL;BRST}. (2.4.43)
0

6 In order to ensure that the Slavnov operator is nilpotent for non-vanishing structure constants, one needs
to introduce an additional consistency condition for them. This is treated in [17].

"Note that , by construction, always has the form of an infinitesimal transformation, which is
parametrized by the Grafimann variable 6. So the ansatz that is pursued here in order to find a Noether
current is certainly correct. A derivation of the general form of Noether currents can be found in |12].
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For simplicity, one can assume that J also has a polynomial structure in the fields and their
derivatives. Obviously, it is always possible to find such a J*.

Now let ¥ be an arbitrary fermionic or bosonic polynomial in ¢,, 7™ and 7™ and their
derivatives. By using the fact that s turns a fermionic field into a bosonic one and vice versa,
which follows directly from ([2.4.27) to (2.4.30)), it is easy to see that

0=—s*U=[Q,[Q V)]s =[Q* V] (2.4.44)

holds. Again, the commutator corresponds to bosonic and the anticommutator to fermionic
polynomials. In order for this relation to be true for any ¥, ? has to be proportional to the
unit, i.e.

Q? = al. (2.4.45)

However, it turns out that « has to be 0. This statement is subject of the next theorem.

Theorem 2.4.2 The BRST charge is nilpotent, i.e. Q? = 0.

PROOF: In order to proof this statement, the so-called Faddeev-Popov ghost charge Q)¢ has
to be introduced] It is defined via the following commutation relations:

[iQa, ™M]- = =™, [iQq, ¢a]— = [iQq, BM]_ =0 and [iQq,n™]_ =n™M. (2.4.46)

The eigenvalues of iQg are called the (Faddeev-Popov) ghost number of the corresponding
eigenvectors. By keeping ([2.4.27)) to (2.4.30)) in mind, it is easy to understand that the BRST
charge always raises the Faddeev-Popov ghost number by one, i.e. if ¥, is a fermionic or
bosonic polynomial in the fields and their derivatives with [iQg, V,,|- = nV,, where n € Z,
then

[(Qa, [Q, Wnls]- = (n+ 1)[Q, W]+ (2.4.47)

holds. The center piece of this proof is to show that the BRST charge has the Faddeev-Popov
ghost number 1, i.e. [iQg, Q] = Q. To do so, first consider J*. It is possible to split J* into

two parts: B 3
JY=J)+ R, (2.4.48)

where jl’\ denotes the part of J* with ghost number 1 and R* its remaining parts, i.e. the sum
of all the monomials that appear in J* and have a ghost number that is not one. Obviously, it
is not possible to change the ghost number of a monomial by taking derivatives. So 9y R* also
contains no monomials with ghost number 1. The Lagrangian Lzrsr clearly has a vanishing
ghost number. Consequently, s Lgrsr = —i[S2, Lprsr|- has the ghost number 1. It is quite
obvious that polynomials with different ghost numbers can not cancel each other. Therefore,
one obtains

R = 0. (2.4.49)
Otherwise, s LprsT = dyJ* would not have the ghost number 1. Consequently, one gets
QR = —OLR* (2.4.50)
and therefore .
RO(t, %) = — / IR (¥, %). (2.4.51)

8 The concept of the ghost charge is taken from [9].
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So only J? contributes to Q:
OLLpRsT
(
Q= / /oodtﬁRtx) E:sq) o }
/ { - scbaL‘CBRST / dt' / dPPx0, R* (¢ (2.4.52)
00y ®

®
/ { z@: s P 8L@£@B;RST }7

since R* vanishes at infinity. Now the only thing that needs to be shown is that >4 s @%%

has the ghost number one. But this is quite trivial, since s (ID%%ST has ghost number 1 for
any ®, as can easily be verified. Therefore, ) is the integral over a polynomial in the fields
and their derivatives with ghost number 1. This clearly implies

[iQc, Q- = Q. (2.4.53)

and therefore, together with Q2 = a1, gives
0 = [iQq, O] = 20° (2.4.54)
So ©? = 0 has been derived. O

Remark The Faddeev-Popov ghost charge Q)¢ plays a crucial role in the algebraic structure
of the BRST formalism. This is treated in [9] in more detail, from where the relation (2.4.53)

has been taken.

2.4.4 The Physical Sector

Now, after introducing the BRST charge, it is finally possible to identify the states which
are regarded to be physical. For this, consider )V to be the overall vector space of the theory.
Clearly, V contains states, such as the ones with non-vanishing ghost number, which have no
physical meaning. So the physical states of the system must be contained in a subspace of V,
which clearly has to be invariant under time evolution. Furthermore, all the matrix elements
(V| Sprst|¥’') for two physical states |¥) and |¥’) have to be independent of the special choice
of the gauge fixing Gy, in order for this formalism to make sense. In other words, if G}, is
another gauge fixing, one must find

(W[(S —s (7™ (Gm + %ﬁMBM))) ') = (O|(S —s (7™ (G + %f]MBM))) W), (2.4.55)
This implies
0= (W[s (7" (Gn — Gar)) [¥') = —i{W|[Q, 7" (Gar — Gar)]-|T). (2.4.56)
In order for this to be true for any G and G', the relation (see [17])

(T|Q = QI) =0 (2.4.57)



26 CHAPTER 2. MATHEMATICAL CONCEPTS

is necessary for all physical states. Exploiting the hermiticity of €2, it follows that it is sufficient
to demand that |¥) and |¥’) are contained in the kernel of Q, i.e. |U), |¥') € ker Q. So the
physical sector can be identified with ker €2, which is of course invariant under time evolution,
since () is a conserved charge, i.e. commutes with the Hamiltonian operator. Furthermore,
the vacuum state |0) clearly is physical and therefore must be contained in ker 2. However,
this can not be the desired vector space with the positive definite inner product that gives the
usual description of physical states. There are at least states with vanishing norm included,
namely the elements of the image of €2, im ). This follows directly from the nilpotency of €2.
To see this, let [¢) € V, then Q|s) € ker Q2 since Q?|¢) = 0 and furthermore

(5]Q1QI¢) = (5|Q3¢) = 0. (2.4.58)
But this result is just a special case of the more general relation
(U|Qlsy =0 (2.4.59)

for any |¥) € ker 2, which means
(V]w) =0 (2.4.60)

holds for any |w) € im{2. So a state |¥) + |w) has the same matrix element with any other
state in ker Q as |[¥). Consequently, the two are physically indistinguishable, i.e. equivalent.
Therefore, a good candidate for the actual physical space, which includes only distinguishable
states, would be the so-called cohomology of ()

U = ker 2/ im . (2.4.61)
The discussion above ensures that the inner product
() = (P (2.4.62)

of two equivalence classes [|W)] and [|¥')] in U, with representatives |¥), |¥') € ker(l, is
well-defined.

The question, if this inner product in fact turns U into a Hilbert space, is a nontrivial
problem. Note that the most important part is to ensure that the inner product is positive
definite, since then one can always consider the completion

$H=kerQ/imQ (2.4.63)

as the actual physical Hilbert space. A general discussion of the positive definiteness can be
found in [8] and [9]. The fact that all elements of im () are equivalent to zero clearly is a
step in the right direction. The positive definiteness will be considered to be fulfilled for the
rest of this chapter. For the gauge theories that are discussed in this thesis it will be proven
explicitly.

An essential property, which has to be fulfilled in order to obtain the positive definiteness,
is that the only elements in ker 2 with non-positive norm are the ones of im 2. Otherwise,
there would be elements in ¥ which are unequal to zero but have no positive norm, which
would contradict the desired positive definiteness of the cohomology.

In order to work with creation and annihilation operators instead of the abstract cohomol-
ogy of (2, it is helpful to identify a subspace V,;,s C ker {2 that is isometric isomorphic to the
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cohomology. If one is able to find creation operators allj, ap' f_ for example operators that
correspond to different polarizations of the discussed partlcles that (anti)commute with €2,
but can not be written as (anti)commutators of 2 with some other operators, the space gener-
ated by these creation operators is a good candidate for such a V5. Clearly, it is contained
in ker €2, since all the basis vectors ai}jl . l” ]0> are contained in ker {2

Qalif . af [0) = +apl .al 0]0) =0, (2.4.64)

where |0) € ker() has been exploited. Furthermore, an operator b;f) that can be written as
(anti)commutator of 2 and another operator dL can not be a generator for V,,,,, because this
would mean that the element

bi10) = [€2,af].[0) = Qal|0) € im O (2.4.65)

of Vpnys has zero norm and is not zero itself. The assumption that 2 has a positive inner
product therefore does not allow the existence of such a vector in V. In fact this strategy
to find Vs works for the cases presented in this thesis.

Remark If one is only interested in the exterior fields, which is for example sufficient for a
non-interacting theory, the auxiliary fields BM can be integrated out, i.e. the Euler-Lagrange
equations for BM | which are

1
BM = ——gM, (2.4.66)
o
can be applied to Sgrsr to obtain the usual gauge fixed action
1 _
SGF =5 - %QMQM + 77MT]N(5NQM. (2467)
The BRST transformation of 7 then becomes
VIR S,
g = —0G™. (2.4.68)
!
This gives just the transformations from the beginning for the U (1) casdﬂ. Sqr is then invariant
under the resulting transformation that corresponds to dg, but in order to ensure the nilpotency

of s, one has to use the Euler-Lagrange equations for 7, i.e. 5%2# = 0. This follows from
the fact that s becomes

)
M YL
004 " g oM

in this case. By performing the same calculation as in the proof of Theorem [2.4.1] this then
leads to

$ = 1M bara L (2.4.69)

1 LGN ¢ 1 0 196 4]
s° = —77 OMPa—— = LN = —77 o G™ LN = = (77 77M5MQR) =
0P, 0N « on a(577 0NN (2.4.70)
_ 10pSqr o1 o
o 0N iy

9 The BRST formalism for U(1) is presented in [17] by using this strategy.
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The application of Euler-Lagrange equations is of course no restriction for the exterior fields.

Under this additional requirement, the nilpotency of 2 and all its consequences are also guar-

anteed, since the only properties necessary to prove Q? = 0 are the nilpotency of s and the fact

that ) raises the ghost number by one, which of course also remains valid. This procedure is

applied for the cases treated in this work, since only non-interacting fields are reviewed.
Furthermore, this leads td'

(W[GM W) = —ai (W[, 7] [¥) =0, (2.4.71)

for any |U), |¥’) € ker 2. This is the operator version of the classical gauge fixing condition
Gy = 0. For the example, discussed at the beginning of the chapter, this is basically the way
how the Gupta-Bleuler condition shows up in the BRST formalism. How the actual condition
(2.4.10) comes into place will be discussed later on in the context of massless spin-2 particles.
It is only mentioned here to clarify that the BRST formalism is in fact a more rigorous version
of the manual quantization approach that has been performed at the beginning of this section.

2.4.5 Operators in the BRST Formalism

The last sections derived a very elegant formulation of physical states for gauge theories. They
are elements of the abstract space §, which is the completion of the cohomology U of a given
nilpotent and hermitian operator. This operator is defined on a vector space V with an inner
product which is neither positive nor definite. This construction of $ is known as BRST
quantization. In order to learn more about the implications of this picture, the examination
of operators for the BRST formalism is a good point to start with.

To formulate operators on U that then can be extended to operators on ), the most intu-
itive way is to look at V first. In particular, the field operators ®,, that shall resemble any of
the fields ¢,, 7 and n™, are defined on this space. They can be used to formulate a special
type of operators, so-called smeared field operators. These are the elements of the polynomial
algebra F generated by operators of the form

D wye D, [0 (2.4.72)

with a test function f that decreases sufficiently fast. Here the index a of ®, is explicitly

expressed as multi-index ¢z with a spacetime coordinate x and an additional index 7 from

some discrete index set. Let O be a given bounded and open subset of Minkowski space. The

subalgebra of F that is generated by monomials of the form with test functions that
n

———
have compact support on O x ... x O is denoted by F(O). Its elements are called smeared
local field operators.
In this context the definition of BRST transformations for smeared field operators can be

motivated. For this let R be such an operator that consists only of bosonic monomials of
the form (2.4.72). Then its BRST transformation is defined as

SoRE = 0[iQ, RP)_. (2.4.73)

0The equation (2.4.71]) is motivated from [9], where similar relations are presented.
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In an analogous way, the BRST transformation of an operator R that consists only of
fermionic monomials is defined by

SoRY = 0[iQ, RY] . (2.4.74)

An arbitrary smeared operator R can always be decomposed into bosonic and fermionic parts,
i.e. R = RP + RF. Its BRST transformation is then given by

i6oR = 0[Q, R+ = 0], R®]_ + 0], Y], (2.4.75)

where [-, -]+ shall indicate to take a commutator for the bosonic and an anticommutator for
the fermionic part of R. This definition of BRST transformations is clearly consistent with its

counterpart (2.4.32)) for functionalﬂ.

In order to bring operators on V in touch with operators on U, one needs to know how
an operator R on V), which does not necessarily have to be smeared, can be transformed into
an operator R on U. The most intuitive way to do this would be to use the definition

R[|W)] = [R|V)], (2.4.76)

where [|U)] is one of the equivalence classes in U and |¥) € ker ) a particular representative
of it. But this definition only makes sense when the following two properties are fulfilled.

First R|¥) has to be contained in ker (2 for any representative of any equivalence class, i.e.
Rker Q C ker (. (2.4.77)

Otherwise, one would not be able to find an equivalence class that contains R|W). Second, the
definition of R has to be independent of the special choice of the representative, which means
that R|W) has to be in the same equivalence class as R(|¥V) + |w)) for any |w) € im Q. More
precisely, for any |w) € im 2 there must be another |w) € im Q2 so that the relation

R|VU) + Rlw) = R|¥) + |w) (2.4.78)
holds. This is equivalent to the statement
Rim Q Cim €. (2.4.79)

Clearly, not every operator R satisfies these two conditions, but to get an operator R on the
actual physical space §) from R they are unavoidable. So they can be regarded as additional
properties that R has to satisfy in order to have an actual physical meaning. Such operators
will be called physical operators from now onE. The algebraic structure that comes with €2
can be used to prove the more or less powerful implications of and that are

1 These definitions of smeared field operators and their BRST transformations have been taken, up to some
notational conventions, from [9).

12 This definition of physical operators is motivated from the observable operators in 8] and [9]. These are
defined in a different, but equivalent way. The notation has been changed from observable to physical, since
observables are usually identified with operators that are hermitian. This restriction is not necessary for the
following discussion.
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taken from [9] and given in the following theoremd™| But before they can be formulated, two
additional assumptions for V, which are also taken from [9], have to be mentioned.

First the inner product on V is assumed to be non-degenerate, i.e. if the inner product
of a given |¥) € V with any other element in V vanishes, then |U) is zero. This is basically
no real restriction. If V would contain such elements that are non-trivial, they would clearly
form a subspace V, C V. Therefore, in an analogous way as the transition from V' to U was
motivated, one could abandon V and work with /), instead, which has a non-degenerate
inner product, by construction.

Secondly the vacuum state, whose existence has already been assumed implicitly, is the
only vector that is invariant under translations and is cyclic with respect to F, i.e.

Y = FJ0). (2.4.80)

This is one of the general postulates of relativistic quantum field theory. It gives V a more
decent topological structure.

Theorem 2.4.3 Let R be an arbitrary operator on V, then following statements are equiva-
lent:

i.) Rker Q) C kerQ and R'ker Q C ker Q.
i.) RimQ CimQ and RTimQ C im Q.
iii.) For any |Vq), |Wa) € ker Q and |wy), |we) € imQ the relation
(O] + (i) R(1Ts) + |wa)) = (T1|Ry) (2.4.81)
holds.

iv.) R is a physical operator, i.e. Rker Q C ker Q) and Rim Q2 C im Q hold.
PRrOOF: The statement can be shown by proving ¢.) = i.) = 4ii.) = i.) and ii.) < iv.).

i.) = di.): Let |w) € im €, then |w) is in particular contained in ker Q. So 4.) implies
RTR|w) € ker Q and therefore
(WR'R|w) = 0, (2.4.82)

since |w) € im Q. But this means that R|w), which is also an element of ker 2, is a vector
with vanishing norm and therefore has to be contained in im 2. So Rim () C im () is proven.
RTim Q C im 2 can be proven in just the same way.

ii.) = iii.): Since R|wsy) and Rf|w;) are assumed to be contained in im €2, one gets
((W1] + (wi]) Rlws) = (wi|R|¥s) = 0 (2.4.83)

and therefore 7. ).

13They can also be found in [8]. Furthermore, note that the proof of Theorem is presented here in a
more detailed way than it is done in [8] or [9] and that its item 4v.) is not mentioned there.
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iti.) = i.): Let |¢) € V and |V) € kerQ. Then |¢) is contained in im 2. Therefore, iii.)
implies, together with the hermiticity of €2,

(<|QR|¥) = 0. (2.4.84)

Since |¢) was chosen to be an arbitrary element of V and the inner product on V is assumed
to be non-degenerate, one gets

QR|¥) = 0. (2.4.85)
That means R|V) € ker Q) for any |U) € ker 2, which implies Rker Q C ker 2. The remaining

statement R ker Q C ker) can be proven in a completely analogous way. One only has to
look at the complex conjugate of (2.4.81)) to find

((Wa| + (wa ) RT(|W1) + |wi)) = (o RT|Ty). (2.4.86)
So if R fulfills 4. ), R' does it as well and the argumentation from above can be performed in

a completely analogous way.

ii.) < iv.): The direction 4. ) = iv.) is already guaranteed by dii.) = .) and dii.) = i.). So
the only thing left to show is v.) = ii. ).
Since R(|Ws) + |wa)) is assumed to be contained in ker © and |w;) € im (), one gets

(Wil R(|W2) + wa)) = 0. (2.4.87)

Furthermore, R|ws) is assured to be contained in im €2, this gives
(V1| R|ws) = 0. (2.4.88)
These two properties clearly imply . ). O

A direct consequence of this theorem is that the physical operators form a subalgebra of the

operators, i.e. if R; and R, are physical, then, along with any linear combination of them,
R Rs, RI and R; are, too.

Theorem 2.4.4 Let R € F(O) be a smeared local operator on a bounded open spacetime
region O. Then [, R]+ = 0 holds if and only if QR|0) = 0 holds.

PROOF: =: Let [Q, R]x = 0 and R? the bosonic and R the fermionic part of R. Then one
finds
0= [Q, R|.|0) = (QR” — RPQ + QR" + R"Q)[0) = QR|0), (2.4.89)

since ©2]0) = 0.

<: Let QR|0) = 0. By keeping in mind that R is just a sum of monomials of the form ([2.4.72]),
one can easily verify that [(2, R]+ is also a smeared local operator, i.e. [, Ry € F(O). So,
by using ©|0) = 0 once more, one finds

0 = QR|0) = [, R].|0). (2.4.90)

Therefore, [§2, R] is a smeared local operator that annihilates the vacuum. There is a theorem
that states that such an operator has to vanish itself. This is sometimes called the separating
property of the vacuum (see [9]). To prove it, a more detailed examination of the structure of V
is necessary that does not depend on the BRST formalism, but only on the general postulates
of relativistic quantum field theory and therefore will not be performed here. In particular,
the proof requires the cyclicity of |0) according to F and can be found in [9]. O
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Theorem 2.4.5 Let R € F(O) be a smeared local operator on a bounded open spacetime
region O. Then R is physical if and only if it is invariant under BRST transformations, i.e.

[, Rl = 0. (2.4.91)

ProoFr: Let R® be the bosonic and R be the fermionic part of R. Then it is easy to see,
since € turns bosonic fields into fermionic ones and vice versa, that [Q, RP]_ is a fermionic
smeared local field operator and [©2, RF], a bosonic one. So [, R]l+ = [Q, RP]_ + [, RF],
does vanish if and only if [, RP]_ and [Q, RF], do. Therefore and since R only appears
linearly in all the mentioned relations, it is sufficient to proof the theorem for purely bosonic
and fermionic operators. So let R be either purely bosonic or fermionic from now on.

«: Let [Q, R]+ = 0, then clearly [Q, Rf]+ = 0 holds, too. This implies
QRker Q = FROQ ker 2 = {0} (2.4.92)

and

QR ker Q = FRIQker Q = {0} (2.4.93)

and therefore Rker Q C ker Q and R ker Q2 C ker Q. This is according to Theorem equiv-
alent to the physicality of R.

=: Let RkerQ C ker (2, then it follows
QR|0) = 0 (2.4.94)
and therefore, because of Theorem [2.4.4] [Q, R]. = 0. O

The last theorem shows that a smeared local operator R has a physical meaning if and only if
it commutes with the BRST charge, or equivalently dp R = 0, i.e. R is BRST-invariant. This is
also what one would have expected from the physical point of view. The BRST transformation
for the fields ¢, basically is just a gauge transformation that is parametrized by On™. And
since a physical operator should be gauge invariant, its BRST invariance would be a logical
consequence. However, it speaks for the BRST formalism that this condition does not has to
be demanded in some way, but is an immediate consequence of the structure of 0.

Remark Note that for smeared local operators R a stronger version of Theorem [2.4.3 can be
shown. In the proof of Theorem [2.4.5( only the property Rker 2 C ker() has been used to
show [, R]l+ = 0. QimQ C im €2, which is also guaranteed for a physical operator, has not
been required. Consequently, the last three theorems show the equivalence of the statements

i.) One, and therefore all of the statements from Theorem hold for R.
i.) R is BRST-invariant.
iii.) R|0) € ker Q.

iv.) RkerQ C ker (2.
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Theorem [2.4.3] also helps to understand how physical operators R, which do not necessarily
have to be smeared, can be transformed to operators R that act on a subspace Vs C ker (2
that is isomorphic to U, in a way that is compatible with the isomorphism. This means, if Z
is an isomorphism between U and V,;,s one would like to find

RI =1IR, (2.4.95)

because that leads to }N%IRQ R1R2 for all phys1cal operators R; and Ry. So all the commu-
tation relations would be the same as for R1 and Rg and consequently also the same as for R;
and R,.

Since Vpnys is supposed to be interpreted as a subspace of ker €2, it appears only natural to
demand that the inner product that originates from the isomorphy is just the one on V from
the beginning, i.e. Z is considered to be an isometric isomorphism. This leads to the following
important result.

Theorem 2.4.6 Let Vs C kerQ be a vector space that is isometric isomorphic to U and
|U) € ker Q. If there is a |) € Vpnys such that [|¥)] = [|1)] holds, i.e. if the decomposition
|U) = |) + |w) with |Y) € Vynys and |w) € im Q exists, then it is unique.

PRrOOF: Since U has a positive definite inner product, the one of Vs has that property, too.
Since it is the same as on V,

Vonys Nim Q = {0} (2.4.96)

is the consequence. Now assume that there is another decomposition |¥) = |¢)) + |w’) of |¥)
with [¢") € Vpnys and ') € im Q. Then one gets

) +1w) = W) + 1) & ) =) =) —|w) (2.4.97)
and therefore (1)) — |¢')) € Vpnys Nim Q. This implies

) = [¢) =0 (2.4.98)

and therefore |¢) = [¢') and |w) = |w'), which proves the statement. O

Note that for a given Vs the decomposition that is described in Theorem @ does not
necessarily exist for every |¥) € ker Q. To see this, consider an arbitrary V. Since this is
usually an infinite dimensional vector space, one can construct an actual subspace V;/)hys C Vphys
that is isometric isomorphic to Vpu,s. Consequently, V! phys 1S also isometric isomorphic to U.

But for a [1)) € Vpnys\Vy,s there is no [¢) € V’hys such that [|[v))] = [|¢")] holds. The
reason for this is the fact that |¢)") would also be contained in V,p,s. So Theorem implies
[v) = |¢'), which can not be true because of [¢) € Vpuys\Vyp,, and [¢) € V.. However,
one can always find a vector space that is isometric isomorphic to U and for that such a
decomposition is possible for all |¥) € ker ().

Theorem 2.4.7 There is always a subspace Vppys C ker §2 that is isometric isomorphic to U
and contains for every |V) € ker Q a [¢) such that [|¥)] = [|¢)] holds.
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PROOF: Let B be a basis of . Select for every element of B an element |1, ), such that

{1} aer = B (2.4.99)

holds for a suitable set of indices I. The aziom of choice guarantees that this is always possible.
These [1),) now can be used to define a mapping Z between U and span{|i,) }aer C ker 2. To
do so, one simply has to set

Z|[Ya)] = [tba) (2.4.100)

to define it for the basis B and demand its linearity. By construction this mapping is linear
and surjective. Furthermore, one can easily show that it is also an isometry. This guarantees
that it is injective as well. The inverse of 7 is given by

') = [1¥)] (2.4.101)

for all 1) € span{|1s) }acr- So Z is an isometric isomorphism between U and span{|¢) }aer-
By setting span{|¢a) }acr = Vpnys one clearly finds for every |¥) € kerQ a [¢)) € Vypys such
that [|U)] = [|¢)] holds. Namely |¢) = Z[|¥)]. O

In the following V,,s will always assumed to be a vector space such that for every |U) € ker Q2
there is a [1)) € Vppys for which the relation [|¥)] = [|¢)] holds. According to Theorem
such a space always exists and because of Theorem , this |¢) is then uniquely determined.
The reason for this choice of Vs is the following theorem.

Theorem 2.4.8 Let X C kerQ be a vector space such that for all |¥) € ker() there is a
unique |[¢) € X with [|¥)] = [|¥)]. Then X is isometric isomorphic to 0.

PROOF: According to the assumptions, the mapping
Z:0—X% |[¥)]— ) (2.4.102)
is well-defined, bijective and obviously linear. Furthermore, one gets
ZIHZI]) = ()T (2.4.103)

for all |W), |W') € ker (2, which follows directly from the definition of the inner product on J.
So Z is an isometry. Therefore, it is an isometric isomorphism between U an X. O

Remark This theorem offers a strategy to check whether U comes in fact with a positive
definite inner product. One only has to identify a subspace X C ker(), such that for all
|[¥) € kerQ there is a unique [¢0) € X with [|W)] = [|¢)]. This ensures that X is isometric
isomorphic to U and therefore U has a positive definite inner product, if and only if X has one.

The assumption that there is a unique |¢)) € Vppys for every |¥) € ker Q with [|U)] = [|¢)],
suggests to take the mapping

Z:8 — Vohys, [|U)]+— [¢) (2.4.104)
as isomorphism. Clearly, 7 is also an isometry. It comes with the projection

PO kerQ — Vg, |U) — [3) (2.4.105)
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as a shortcut from ker Q to V,uys. Now let R be an arbitrary physical operator on V. Then
one finds B A
R|y) = IR[|[¢)] = Z[R[¢)] = PO R[y) (2.4.106)

for any [¢)) € Vypys. So R = POR is the consequence. By construction it is clear that this
mapping must be compatible with the multiplication of operators, as described above. But
since P is a projector, this does not seem to be easy to understand. Therefore, it is proven
explicitly.

Theorem 2.4.9 Let R, and Ry be two physical operators on V. Then PORPOR, =
PO R, Ry holds on ker Q.

PROOF: Let |¥) € ker Q. Then R»| V) is also contained in ker €2, which means that there is a
|w) € im Q such that

Ry| ) = PO R, + |w) (2.4.107)

holds. Since P im Q = {0} and R;|w) € im ©, one finds
POR R, | W) = PO R, POR,|T), (2.4.108)
which completes the proof. O

Note that this theorem gives an even stronger statement than necessary in order for this defi-
nition of R to work. It would be sufficient that PO R, PO Ry = PO R, R, holds on V.. But
it is even true on all of ker €2.

Earlier in this section it has been shown that every physical operator on V can be turned
into an operator on . In fact Vs can be used to show that the opposite is also true. For
every operator R on U there is a physical operator R on V that relates to R via

R =R. (2.4.109)

This is easy to see: By defining R = ZRZ " on V,p,s and R = 0 on VpLhys, one obtains an

operator that keeps ker {2 and im {2 invariant, since im ) C V;ys and obviously relates to R
via , as can be shown by a simple calculation.

So one can work with Vs instead of 20 without loss of generality. The only thing necessary
is to identify a V,pys. For all operators on U there is a physical operator on V. These operators
can be applied to the elements of Vs without any restrictions. One only has to project back
onto Vyuys after all transformations have been performed.

As a final result for this section, note that operators (smeared or not) of the form

R=[QR]-+[ R, (2.4.110)

where R’ and R” are other operators, clearly map ker € to im €). Therefore, they are certainly
physical. But since P()R vanishes, they are just manifestations of the mapping identical to
zeroE. As a consequence, they can be neglected. Furthermore, all operators of the form

R=Ri.Ry([QR]_+[Q R )Rni1...Ra, (2.4.111)

with some other physical operators Ry, ..., R,, can be neglected, since P(Y) R = 0, which follows
directly from Theorem [2.4.9]

14This is also mentioned in |9], however it is justified in a similar but different way.
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2.5 The Faddeev-Popov Determinant

During the adaptation of the generating functional in the last section the formulation of the
determinant of dyGy, as a path integral over ghost fields, known as the Faddeev-Popov deter-
minant, has been performed without any comment. If G, is a Lorentz scalar, this method is
a well-known trick, which is discussed for example in [12] and [18]. But for spin-2 particles
a vectorial gauge fixing shows up. Consequently, the indices M and N also contain vector
indices ;v and v, i.e. there is a matrix of the form ¢,,G,,. The method how the formulation of
the determinant as path integral can be motivated for such a problem is basically the same as
in the scalar case. To do so, one has to consider a set of anticommuting Grafmann numbers
and formulate a concept of integration for them. This formulation, as performed here, is taken
from [18], with a few different notations. If one is interested in a more detailed discussion of
Grafimann variables, this is a good reference to start with.

Consider a GraBmann variable 6. Since #? = 0, the power series expansion of any analytic
function f in such a variable breaks down after the first order, i.e. any analytic function in 6

is of the form
f(0) =a+ b0, (2.5.1)

where a and b are complex constants. So the structure of analytic functions of a Graimann
number is very simple and it is possible to introduce a concept of integration simply by setting

/de{a +b0} =b. (2.5.2)

This integral comes with the substitution rule (see |16])

/d@' = %/d@, (2.5.3)

where 0’ = cf for some complex number c.
These concepts can be generalized for an arbitrary number of n Gramann variables '
with
007 = —070" (2.5.4)

for 7,7 = 1,...,n. One can introduce a complex conjugation on such sets of variables by setting
(0'07)* = 670" = —9™ 07", (2.5.5)

as pointed out in [12]. A power series of these fields clearly contains only terms where each 6
shows up at most one time. So an analytic function has the form

O, .., 0") = a+ b10" + 0o + ...+ b, 0" + b0 0% + ..+ b, 0M07..0" (2.5.6)

with complex coefficients a, by,..., b12..,. The only term of order n in this power series clearly is
bia. n00%...0". So, analogous to the case of one Gramann variable, one can define the integral
over f via

/ A0 d6>...d0" (0", ..., 07) = e by, . (2.5.7)

Here €1 is a Levi-Civita symbol. Note that €""~!+1b;, , is just the coefficient of 76" ~1...0"
in the series expansion of f. So the idea behind this definition is to ignore all the terms with
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order less than n and rearrange the 6 in the term of order n such that the most inner integral,
i.e. the one for #", can be performed just as in the case of n = 1, then the second most inner
integral can be performed and so on:

/ do'do?...do" f(6*,...,0") = / do'de?...d0" by, 0" ...0"

= / 40107 A0 by 1R = ey, / do'de?...dgmen1 gt (258)
=

Note that it is possible to generalize the substitution rule (2.5.3). To do so, consider an
invertible n x n matrix m;; of ordinary (i.e. commuting) numbers. Then one finds (see [16]),

: 1
Voder = —— [ ag*..do" 2.5.
/ do"..d0" = — o / dor...do", (2.5.9)

where 07 = > i_ymyt for i =1,...,n. Furthermore, it is easy to verify that

/d@“...d@"" = ¢ltin /d@l...den (2.5.10)
holds.

The definition of the integral now can be used to show that the determinant of any com-
plex n X n matrix a;; can be written as

det (az;) / Hd@lde’ exp (Z 9@93%) (2.5.11)

2,7=1

where the 6% and 6 form a set of 2n Grafmann variables and I, d#'dd" is an abbreviation
for d0*dAde2dh?...d6md". The proof of this can be found in [18]. This very nice result is the
center piece of the motivation to reformulate determinants as path integrals of ghost fields for
the generating functional in the scalar case. However, the argumentation for the non-scalar
case works in just the same way. Consider a set of 8n Grafimann variables 6+ o1 with
i =1,..,nand p = 0,...,3, as usual. Furthermore, let a,;,; be the matrix elements of a
linear mapping in these variables. The trick how this apparently more complicated case can
be reduced to the previous one is simply to introduce a new set of indices I, J =1, ...,4n and
to use them to rename the Grafimann variables and matrix components:

el =" 2= .., o6,=6". o"=¢" (2.5.12)
Ol =@ @@, . O =@ . &M =@ and (2.5.13)
An = 01,01, Ay = 11,015 +-+5 Ap = 31,015 -+ Aspan = A3n,3n- (2-5-14)

This then leads to

det (A;)) = / Hd@fd@f exp ( Z @f@JAU>

1,J=1

/ H H do"idfH exp (Z Z 060,15,

i=1 pu=0 4,j=1 p,v=0

(2.5.15)
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And since det (A7) = det (a,;,,;) clearly holds, it follows

n 3 n 3
det (ayins) = [ TLTL0"d0" exp (3 37 06 ). (2.5.16)

=1 p=0 i,7=1 p,v=0

At this point the Grafimann variables can be considered to be real, i.e. 6 = 6#* and fri = frix,
By substituting 0*/ = i#* one can formulate the integral by using new variables 0%/ with

Gri* = —gra, (2.5.17)
This is an important feature, since it implies
(6HVI)r = —prIigrt = prigvi, (2.5.18)

which will guarantee that the action Spgrsr is real valued. By performing this substitution
and using ([2.5.10]) together with the Einstein summation convention, one finds

n

n 3 n 3
det (ay;,;) o /H H doH H H d6"’ exp <z Z é”iHVja#i,l,j). (2.5.19)

i=1 p=0 j=1v=0 ij=1

The path integral transition i, — x,y € R*, #, 07 — #* n"¥ then gives

3 3
det(&/ygﬂx) o /H H dnt® H H dnl/yeiﬁ*“n'fyéuyguz (2520>

z p=0 y v=0

for the matrix 4,,G,,. This is just the relation (2.4.23)) for this special choice of dxGys. Fur-
thermore, at the level of operators, the relation §#* = —@* causes the antihermiticity of the
operator "%, i.e. Nttt = —pHe

2.6 The Stiickelberg Trick

The BRST formalism clearly can only be introduced for gauge theories. But not every action
that is supposed to be used to formulate a quantum theory comes with a gauge invariance.
As an example consider the action

1 2
S[A,] = / T Y W R (2.6.1)

The corresponding Euler-Lagrange equations are

oS _ OA* — 9"9,A” — m*A* = 0. (2.6.2)
5A,

By contracting them with d,, one finds 9, A* = 0 for m # 0. This obviously shows that the
Euler-Lagrange equations are equivalent to the set of equations

(O-m*A,=0 and 9,A"=0. (2.6.3)
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According to Section [2.3] S therefore describes a spin-1 field of mass m. The mass term
i d4xm72A#A” is not invariant under the gauge transformations, known from the massless case.
Therefore, the action S itself is also not gauge invariant. So the BRST formalism can not be
applied in order to quantize massive spin-1 fields. However, the problems that occur when
one is trying to canonically quantize the massless theory are also present here. Again, it is not
possible to introduce canonical momenta for all of the field components A, and even worse,
this time there is no gauge invariance, so one can not introduce a gauge fixing in order to solve
this dilemma. One way to quantize A, is to restore the gauge invariance from the massless
case.

As already mentioned in the introduction, the most prominent way to obtain a concept
of gauge transformations for massive fields is to apply the Higgs mechanism. But since this
would require an actual modification of the theory, this approach will not be pursued here.
Instead of that, the Stickelberg trick shall be applied. The way as it is presented here is taken
from [5]. It is quite pragmatic and focuses only on the goal to restore the gauge invariance.
There are more profound ways to formulate it. If one is interested in a description, how the
Stiickelberg trick was originally motivated, [13] is a good paper to start with. It can also be for-
mulated in the context of path integrals, which is done in [14]. In [7] it is applied to introduce a
gauge invariance for massive spin-1 fields, which then is used for a BRST quantization of them.

The idea behind the Stiickelberg trick is to introduce a new scalar field qg, the so-called Stii-
ckelberg field, and to replace S[A,] by a new action

S'[Au, ¢] = S[A, + 0,9, (2.6.4)

i.e. A, is just replaced by A, + augg in S. Note that the transition A, — A, + 8;@ has just
the form of a gauge transformation of A,. This new action S’ clearly is invariant under the
gauge transformation

Ay — Ay + 9N, pr— ¢ — A (2.6.5)

This invariance has nothing to do with the special form of S but only with the way, how S’ is
obtained from S, i.e. . Furthermore, note that the gauge transformations of gg indicate
that it is just a redundant, unphysical degree of freedom. All its field configurations can be
turned into each other by performing a suitable gauge transformation and therefore can be
regarded as equivalent, from the physical point of view. By fixing the gauge gg = 0 or more
precisely, by performing a gauge transformation with A = gg, one can restore S from S’. So
in this context S is interpreted as a special gauge fixed case that comes from a more general
gauge theory, described by 5.

Note that the Higgs mechanism also allows to restore the original action of the massive par-
ticle by choosing a sufficient gauge, the so-called unitarity gauge (see [11]). However, there
is a significant difference between the Higgs mechanism and the Stiickelberg trick: The Higgs
mechanism starts with a gauge field that is considered to be massless and introduces a new
field that interacts with the former. This new field is constructed in such a way that it has a
non-vanishing vacuum expectation value. The interactions, in combination with this vacuum
expectation value, cause terms in the action that look like a mass term in a certain gaugeﬁ.

15 An introduction to the Higgs mechanism can be found in [11]
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The Stiickelberg trick on the other hand starts with a field that is assumed to be massive
from the very beginning of the discussion and then forces the corresponding action to be gauge
invariant by introducing additional, redundant degrees of freedom.

Nevertheless, it is important to mention that it is also possible to motivate the Stiickelberg
trick from the Higgs mechanism. For this, one has to interpret the Stiickelberg field as the
phase of a Higgs field. This quite intriguing approach is presented in [13].

The Stiickelberg trick obviously can be generalized to turn any action for any set of fields
¢, into a gauge invariant action, simply by replacing ¢, with ¢, + ¢™dy;¢,. The resulting
action then is invariant under the gauge transformations

(ba — ¢a + £M5M¢a7 &M — ng - £M (266>

and the Stiickelberg field QASM clearly provides no additional physical degree of freedom, once
more. The fields that are supposed to be quantized in this thesis are either massless and
the corresponding action already carries a gauge invariance or the massive generalization of
such fields. So the choice of the gauge transformations for the latter can be motivated from
the massless case. This offers an interesting way to smoothly pass from the massive to the
massless case. To understand this, consider the vector field A, once more. In the massive case
it comes with three degrees of freedom, since it describes a massive spin-1 field, but for m = 0
there are only two. So the transition from massive to massless spin-1 fields can not be smooth.
However, the Stiickelberg trick helps to fix this problem. To see this, first the substitution
ngS = L4 has to be performed. This leads to the action

T m

Sewl A 6] = S[A,, —¢] = /d4:r;{ g - e L ong —ma 8“¢} (2.6.7)
o #’m 4 2l 9 H 9 H H ) e

which comes with the gauge transformations
Ay — A+ 0.\, ¢o— o —mA. (2.6.8)

For the massive case, this action describes three physical degrees of freedom, which are all
manifested in A,. In the limit m — 0, Sgy describes a massless spin-1 field, which has
two degrees of freedom, and an additional decoupled scalar field, that carries one degree of
freedom. The field ¢ does no longer change under gauge transformations, therefore this degree
of freedom can now be regarded as an actual, physical one. So the total number of degrees
of freedom is conserved in the limit of a massless field, which is necessary for the limit to
be smoothm. For spin-2 fields, as discussed below, an analogous method can be applied to
conserve the total number of degrees of freedom.

Another interesting aspect of the Stiickelberg formalism is the fact that it does not destroy the
invariance of a theory under a set of gauge transformations dy as long as they commute with
the transformations d,, that shall be introduced, qAbM is invariant under them and ¢a+g5M O Do
transforms like ¢, under them, i.e.

[5M7 SN]_ = 0, SNQgM =0 and SN(¢0, + QEM(;MQﬁa) = SNgba (269)

¢a:¢a +(Z§M 6lbl¢a ’

16 This strategy, that allows to preserve the total number of physical degrees of freedom, is also taken
from [5].
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This can be seen quite easily. Let S[¢s] = S[¢a + EVdnda] be the action of interest. Then one
finds
§'[¢a + €V N0, 6 + €V 0NOM] =560 + ENOnba, 3]
Spa +E¥Onda + M Srsda + ENGM S1rdn ]
S0+ M 0ardu + E¥0x (G0 + 0¥ 00100)] (2.6.10)
[
[

S[¢a + NNl |¢a:¢a+$MaM¢a
S ¢a + QgMéM(ba] = S/[(ba? QEM]

So as long as one ensures that the new gauge transformations from the Stiickelberg formalism
commute with the old ones that might already exist, these old ones are not expanded to
transform ¢?M and the modified argument of S behaves like the original ¢,, the Stiickelberg
trick does not destroy any existing gauge structure.






Chapter 3

Spin-2 Particles

Now, since the necessary mathematical tools have been introduced, it is time to construct an
action that can be used to formulate quantized spin-2 particles. To do so, one starts with the
action that describes classical spin-2 fields. However, it turns out that this action does not
carry a gauge invariance in the massive case. Therefore, one has to introduce a such with the
help of Stiickelberg fields in order to apply the BRST formalism.

3.1 The Fierz-Pauli Action

To describe classical spin-2 particles, the Fierz-Pauli action

1
Slhuw] = / d'zL = / d%{ = SO OB 4 00 -
— aﬂh‘“’&,h + %(%héﬁh — %mQ(huthj _ h2)}

can be used. Here hy,, is a symmetric tensor and h = h*,. Note that S ‘m:O is invariant under
gauge transformations of the form

B — hyw + 0,6, + 0,6, (3.1.2)

for any vector field &, that falls off sufficiently fast at infinity. This can be shown by a straight-
forward calculation and the use of the method of partial integration. This will play a crucial
role in the following chapters.

There are two possibilities to justify that S in fact represents spin-2 particles. The first is
to perform a Legendre transformation in the spatial parts h;; of the field. This gives a Hamil-
tonian that allows to count the degrees of freedom. The corresponding discussion is taken
from [5]. It requires some results from a more detailed mathematical analysis of gauge theories
and constraints. They will be used without a proof in this thesis. For a detailed mathematical
discussion of gauge theories in this context, the reference [4] is highly recommended.

To apply this method of counting the degrees of freedom, the transformation

- d
En—>£=£+d—];, (3.1.3)

43
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with
S (hyu; Qi) = (hoo 4 h'3)0 hyo, (3.1.4)

of the Lagrangian has to be performed. The transformation clearly breaks the Lorentz invari-

ance of the Lagrangian. This is acceptable, since this transformation is only done to get a

decent Hamiltonian, which of course also does not carry the Lorentz invariance. The fact that

the transformation does not change the physical system follows from Theorem .
The resulting momenta have the form

T = (SL—L = h¥ — hFL5Y 4 20010 4 20K hyo69 3.1.5

= = K09 4 + 20" hyod”, (3.1.5)

ij

where L is the Lagrangian function corresponding to L. Contracting with ¢“ implies

which can be used to get
. " 1_
hij = 7Tij — §7Tkk6ij + 28(112])0 (317)

By performing some partial integrations corresponding to spatial derivatives, this leads to
/ d4.TE = / d4.f13{hw7NTU - Ho + QhOin%ij — m2hi0hi0 + hoo(aiaihjj - alﬁjh” — mQhZZ) } y (3 18)

where

1. .. 1 _. 1 . o
H(] :—7Tij7Tl] — 1(71' 2‘)2 + §akhijakhm — &hjkajhzk

} - | o (3.1.9)

+ 8ih”8jhkk — §8Zhjj81hkk + §m2(hijh” — (hlz)2>
Note that, since the Legendre transformation was performed only for the spatial field compo-
nents, the canonical equations will not give the dynamics for all components of h,,. To do a
Legendre transformation for all field components, a gauge fixing has to be introduced. This is
done in Section [3.3| after some additional modifications of £. Nevertheless, the procedure pre-
sented here is mathematically correct and can be regarded just as a helpful way to formulate
the action S, such that the counting of the degrees of freedom becomes easier.

Remark It is also possible to derive (3.1.8) by Legendre transforming £ and applying Theorem
2.2.2l This Legendre transformation leads to the momenta

7w = i — pF59 4 200 R0 4 §F Ry (3.1.10)
and therefore gives, by using the same trick as before,

. 1
hij = M5 — §<7Tkk + 8khk0)5w + 28(,~hj)0. (3,1,11)
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This results in the Hamiltonian

H = hyn? — L _2%( T — 49'h1%) — 775+ 20 hj0)
+ 5c‘)z-hjk(aiiﬂk — 20Fh") — 9;h"9;hgg
1. . :
- éalhfj(zakhki + 20;hoo — 2hoi — O;h") (3.1.12)
3

+ 0"hio(hoo — Zajhjo) +20"hjod hig — 9" hoohio
1 - ) ) )
-+ §m2(hijh” + 2h00h/zi — (hli)Q + 2h20hi0).
Finally, by using f as defined in (3.1.4) and Theorem [2.2.2| one gets the Hamiltonian

1/ 1~ ’Vz % 1 ~3
H :§7TU( J — 40 th) Z(TF Z‘)Q

+ %aihjk(aihjk — 20Fh") — 9;h"9;hgg
+ %aihﬂ' (208 hyy + 205hoy — 2he; — BiR%) (3.1.13)
— O'hio(h?j + hoo) — O hoohio — 2(ihjod ' + (0'hi)?)
- %m2(hw~hij + 2hgoh’s — (h%)? + 2hih™),
which differs only by some partial integrations corresponding to spatial derivatives from
Ho — (2h0;0;77 — m*high™ + hoo(8'O;0 j — ' hyy — m*h%)), (3.1.14)

i.e. the Hamiltonian that belongs to L. Note that the dynamics of the fields hg, are not given
by the canonical equations. Therefore, they have to be regarded as additional exterior fields
during the transformation from H to H.

To count the degrees of freedom, first consider m = 0. Then the fields hg, in (3.1.8)) can
be interpreted as Lagrange multipliers that imply the four constraints

Y =077 =0 and x*=09'0;h'; — 0 h;; =0. (3.1.15)

One can show by a straightforward calculation that the Poisson bracket of every pair of them
vanishes, i.e.

{X ( Yy } /d3 / 6LX t X) 5LX ( 7Y> . 6an(t7x) 5LXb(t,Y)
" Shy(xX) oFI(x) | omi(x) Ohy(x)

for all a,b =1, ...,4. So in particular, they vanish on the surface on which y* = 0 holds for all
a =1, ...,4. Therefore, these constraints are so-called first class constraints. Furthermore, it is
easy to see that they are all independent from each other, which means no constraint y* =0
is a consequence of the other ones, i.e. X = 0 for all b # a. In addition, one can easily show
that

} —0 (3.1.16)

3 6LHO 5 4(t,X) 5LH0(t) 5LX4(t,X)
{HO( iX} /d 57‘(”()(’) o 57~Tz‘j(xl> 5hz‘j(xl) } (3.1.17)

:aiajﬂ- (7 )
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and
{Ho(t), X’ (t,x)} = 0 (3.1.18)

hold. Hj is the Hamiltonian function that corresponds to Hy. So on the surface on which
x* = 0 holds for all @ = 1,...,4 those Poisson brackets vanish as well. This means that
Hy is a first class Hamiltonian. This property and the ones for the Poisson brackets of the
constraints show that describes a so-called first class gauge system. So there are four
gauge invariances, which are generated by the four constraints.

Now the counting of the degrees of freedom is quite simple: The four constraints restrict
the dynamics on the 12-dimensional phase space that is spanned on each space point by the
symmetric fields 77 and h;; to an eight-dimensional surface. Furthermore, the four gauge
invariances imply that the gauge orbits are four-dimensional. Therefore, the quotient of the
surface by the orbits, i.e. the set of equivalence classes that corresponds to the physical degrees
of freedom, is four dimensional. So there are two polarizations and their conjugate momenta,
which is just the desired number of degrees of freedom for massless spin-2 particles.

The massive case is a little more subtle since the hg, now appear quadratically and there-
fore can no longer be interpreted as Lagrange multipliers. Instead they are fields that obey
the algebraic equations of motion

1 .
hOi = —ﬁﬁjmj, (3119)

which is an immediate result of the usual variation principle formalism. Applying this to S
suggests to introduce another Hamiltonian

Hy = Ho + %ajmjamik. (3.1.20)
This allows to write S as
S = / d%{hiﬁ” — M)+ oo — T hy; — m%)}. (3.1.21)
hoo again is a Lagrange multiplier. It gives the constraint
X = =00k + 0" hy; +m*h'; = 0. (3.1.22)
The Hamiltonian is now no longer first class, since the Poisson bracket
{H],x} = %m% + 0;0;7" (3.1.23)
does not vanish on the surface on which xy = 0 holds. So one finds a secondary constraint:
X = {H),y} = 0. (3.1.24)
This set of constraints is secondary class, i.e. not first class, since

(6%, X (1. 9)) = Sm*o(x —y). (3.1.25)

This means that there is no additional gauge freedom. So the two constraints restrict the
dynamics to a 10-dimensional surface in the 12-dimensional phase space, i.e. there are five
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degrees of freedom and their conjugate momenta, which is the case for massive spin-2 particles.

The second way to verify that the Fierz-Pauli action actually describes spin-2 particles is
to check whether the solutions of the Euler-Lagrange equations are just the fields presented in
Section 2.3l That means the fields have to be symmetric, which is guaranteed by construction
and the Euler-Lagrange equations must be equivalent to

h=0, (O-m*h, =0, 0"h, =0 (3.1.26)

for the massive and

Ohy — 020k, — 00, h,, + 0,0,h = 0 (3.1.27)

for the massless case. But this is quite easy to check: For an arbitrary mass, the Euler-Lagrange
equations read

Ohy — 0*0,hyy — 020, hy, + 0,0,h + (0x0,h — Oh) g, — m*(hy, — hg) = 0. (3.1.28)

For the massive case the proof of the equivalence of (3.1.26) and (3.1.28) is taken from [5]. By
acting with 0" on the Euler-Lagrange equations, one gets

0"hyy — 0,h = 0. (3.1.29)

This can be applied to the Euler-Lagrange equations to get
Ok — 0,0,h — m*(hy, — hgu) = 0. (3.1.30)
The contraction of this relation with ¢*” then implies h = 0, which turns into

O hy, = 0 and (3.1.30) into (O — m?)h,, = 0. So (3.1.28)) implies (3.1.26). The other di-
rection can be shown by applying (3.1.26)) to (3.1.28)).

The massless case can be treated in a very similar way. Set m = 0 in (3.1.28)) and contract it
with g"” to get
Oh — 0\0,h™ = 0. (3.1.31)

By plugging this back into (3.1.28]), one gets (3.1.27)). Contracting this with g once more

gives (3.1.31) and therefore (9,0,h* — Oh)g,,,, which is 0, can be added to (3.1.27) to regain
(3.1.28]). Thus the two sets of equations are equivalent.

The massive spin-2 fields, i.e. the solutions of (3.1.26)), can easily be found. In particular,
they are solutions of the massive Klein-Gordon equation. So they can be written as an inte-
gral over the momentum space in the following wayﬂ:

By () = / El}{izw(p)em + B;V(p)e*ipx}. (3.1.32)
The remaining two equations from ([3.1.26]) obviously imply

Phu(p) =0 and h(p) = 0. (3.1.33)

!The following discussion is taken from [5].
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The solutions of these equations span a vector space. One can choose an orthonormal basis
é;,j(p) of this space, i.e. the space of the classical spin-2 polarizations. By doing so it is
possible to find suitable functions ny, for every spin-2 field configuration f,,,, such that it can

be expressed as a linear combination of the form
hy(x) = /dp Z {n;ézy(p)eim + n;*éz’,‘,(p)e_im}. (3.1.34)

A more detailed discussion of the structure this basis can be chosen to have is given in [5].

So a mnaive quantization approach would be to replace all the ny with annihilation and
their complex conjugates with the corresponding creation operators. The result would be an
operator that generates fields that carry the polarizations of a classical spin-2 field. This is
just what one would expect from an appropriate quantization of spin-2 fields. Therefore, in
order for the BRST quantization to be physically meaningful, it must be possible to identify
the resulting physical vector space with the space that is generated by the classical spin-2
polarizations.

3.2 The Stiickelberg Trick in the Massive Case

As mentioned before, the gauge invariance of the Fierz-Pauli action for a finite mass has to
be restored from the massless case in order to perform the BRST procedure. This restoration
can be done by using the Stiickelberg trick to introduce new fields that carry no additional
degrees of freedom. The application of the trick, as it is presented here, is taken from [5).
There it is performed in order to solve a different quite interesting problem, known as the
vDVZ-discontinuity (van Dam, Veltman, Zakharov). The massless Fierz-Pauli action is used
in this paper to formulate a linearization of gravity (see Section for more details) and
a corresponding generalization by adding the mass term. It turns out that some physical
predictions like the light bending angle in the massless case are not compatible with the
predictions resulting from the massive case by taking the limit m — 0, as one would hope.

That the transition from the massive to the massless case is not that simple can already
be seen by counting the physical degrees of freedom. While for the massive case there are five,
the massless case offers only two degrees of freedom. So it should not be surprising that the
massless particles can not just be treated as a special case of the massive ones.

In order to formulate spin-2 particles in a way that conserves the total number of degrees of
freedom, Stiickelberg fields that remain unphysical as long as m # 0 holds, but turn physical
and offer the missing three degrees of freedom for m = 0, are introduced.

The first step to obtain this quite desirable connection between the massive and the mass-
less case is to introduce a vectorial Stiickelberg field /Alu by replacing h,, with hMV—I—GMAVqL@VAM
in the Fierz-Pauli action. By exploiting the gauge invariance of the massless case and perform-
ing some partial integrations, one obtains the action

A 1
S/[hlﬂ/?A#] = /d4${£m:0(huua 8)\h;w) - §m2(hm,hl“’ — h2)
1 I I ~ A
_ §m2FMVFMV o 2m2(hW8“A” . h@MA“)},

(3.2.1)

where L,,—¢g = ﬁ}mzo and F w = GMAV —8,,121”. In order to prevent the terms of the Stiickelberg
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field to vanish for m = 0, flu needs to be rescaled by

A, = iAH. (3.2.2)

m

This leads to the action

1! 1 v
S [, A,] = / d%{zmzo(hw,amw) — 5 (hyu b — %)

1
— S Fu = 2m(hy, 0" A7 — hauA”)},

(3.2.3)

with F},, = 0,A, — 0,A,. It is easy to check that S” is invariant under the gauge transforma-
tions

hyw =y + 0,8 + 0,8, Ay r—r Ay —mé,. (3.2.4)

For m = 0, S” simply describes a massless spin-2 field and a massless spin-1 field. The total
number of degrees of freedom therefore obviously is four. So there still is one degree of freedom
missing. This can be changed by performing the Stickelberg trick once more, but this time
on A,. By replacing A, with A, + 0 gb where gb is a scalar field, one can translate the gauge
invariance under A, — A, + 8 A from the massless case to the case of arbitrary mass. A is
supposed to be an arbitrary function that falls off sufficiently fast at infinity. The result is the
action

1 1
—m?(h " — h*) — = F,, F"

S/H[h/w’Au??g] = /d4x{£m:0(huma>\huu) — 5 9
(3.2.5)
— 9m(hy " A — hd, A") — 2m(h,, 00" — hng)},

which is invariant under the two distinct gauge transformations

hyw — hpy + 0,60 + 0,8, Ay — A, —mé,, gz; — gfg and (3.2.6)
Pyw = By Ay — Ay + 0N, Gr— ¢ — A (3.2.7)

Again, in order to prevent the additional scalar field terms from vanishing for m = 0, a
rescaling of the form ¢ = %gb is necessary. This gives the action

1 1
S Py Ay @] = /d%{ﬁmo(h,w, b)) — §m2(h,wh’“’ — h?) — §F;WFW

(3.2.8)
— 9m (R 0" A” — h, A") — 2(h, 00" — hm¢)}
and the corresponding gauge transformations
hpw — hpy Ay — Ay + 0N, ¢ — ¢ —mA. (3.2.9)

In order to see that this action in fact always gives five degrees of freedom, one last substitution
needs to be performed:

P = N, + GGy (3.2.10)
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This results in the final form of the action, which will be referred to as Sgy.

1 1
SStb[ v M7¢} / {E ( uwa/\h/ ) _ _m (h/ W h/2) . §F/U/FMV
+30(0+ 2m*)¢ — 2m(h;wa“A” — h'9,A") (3.2.11)
3(m2h'é + 2mq§8#A“)}.

It is invariant under the gauge transformations

W — by, + 6, Ay— Ay +68A, dr— p+ 60 (3.2.12)

with
§'h,, = 0l + 0,8, 0'Ay=-—mE,, 6'¢=0 and (3.2.13)
52h;1,1/ = mAgW, 52Au = 8;LA, 52¢ = —mA. (3.2.14)

The corresponding Lagrangian, i.e. the integrand of , shall be denoted as Lgy. For
m = 0 one can see that Sgy simply is the action for a massless spin-2 field, a massless spin-1
field and a massless scalar field, which completely decouple from each other. They carry the
desired five degrees of freedom. Also the gauge transformations turn into the ones which are
characteristic for those fields.

Furthermore, in the massive case all the field configurations of the Stiickelberg fields are
equivalent with respect to gauge transformations. By choosing the gauge transformations with
§u = %Au and A = %qﬁ, one regains the Fierz-Pauli action for hj,,. For m = 0 the Stiickelberg
fields become physical and offer the remaining three degrees of freedom, just as described
above.

As a last statement of this section note that the gauge transformations (3.2.13)) and (3 m
do nothing but adding extra terms to the fields, which themselves are 1nvar1ant under gauge
transformations. So they clearly commute with each other.

3.3 Gauge Fixings for Spin-2 Particles

The next step is to formulate gauge fixings that are suitable for a quantization of the fields. But
before a gauge fixed action can be derived, one has to ensure that all the gauge transformations
are independent from each other, as pointed out in Section [2.4.2] By using the De Witt
notation, the gauge transformations can be written as

5111' J(x)=¢ y51,\yhum with 51,\thz = _(g)‘yﬁiy“ + g’\“(()iyV>6(x —v), (3.3.1)
§'A(x) =¢ yélAyAum with 15 A = —mgr.d(x — ), (3.3.2)
§'o(x) = My d,  With  diy¢. =0, (3.3.3)
62hiw(x) = Ay62yh;”m with 52yh;m: =mgud(r —vy), (3.3.4)
0% A (x) = A9y A, Wwith o, A,, = —%(5(1‘ —y) and (3.3.5)
5%p(x) = N¥09y¢, With oy0, = —md(z — y). (3.3.6)
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So to check the independence of all gauge transformations, the relation
6y + N0y =0 & £,=0 and A=0 (3.3.7)

has to be shown. For the massive case this is quite trivial. By applying £y, + AYd, to ¢
one gets

0= fkydl)\yqﬁr + Ay52y¢x = —mA(x) (338)
and therefore A = 0. This result can be used to derive
0= M1y Ape + N9y Ay = —mé,(z), (3.3.9)

which implies ¢, = 0.

The massless case however requires a closer look. Here one gets
0= g)\yélAyA;w + Ay52yAuz = aMA(l‘), (3310)

so A has to be constant and in order for it to vanish at infinity, it has to vanish everywhere.
&, can be treated in a similar way. The relation

0= fAyéuyh;w + A0, = 048 (2) + 0,6,(x) (3.3.11)

implies
0,6 (x) + 0,6, (z) = 0. (3.3.12)

This is the so-called Killing equation for flat spacetime. Its solutions are of the form
Eu(r) = Kpa” + cp, (3.3.13)

where ¢, is a constant vector and K,, a constant antisymmetric matrix, which is proven
in [15]. So again, in order for &, to vanish at infinity it has to vanish everywhere. Therefore,
the gauge transformations are always independent and the gauge fixing procedure can be per-
formed without any problems for any mass m.

Now proper gauge fixings have to be identified. Those should guarantee that the terms in
Ssu that mix the fields 2/, A, and ¢ vanish after the gauge fixing. Gauge fixing terms of the

form "
- /d4x{iglgl” + g29’2} (3.3.14)
2007
with .
G,=0"h,, — 3Oul +2amA, (3.3.15)
and
G* = 9,A" Ly
= 0,A" + m<§ + 3¢) (3.3.16)

satisfy this criterion.

Remark When Q}L is chosen to have the given form (3.3.15)), it is easy to verify that the
second gauge fixing must be the one given in (3.3.16f), in order to let the remaining couplings
disappear. It contains no free parameter like o in the Q; case. To see this, consider the mixing
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terms of Sy, — [ d*z5-G.G". With the method of partial integration, they can be brought
into the form

/d%{mh’@MA“ + 3(m*h'¢ + 2m8NA“¢)}. (3.3.17)

The gauge fixing that eliminates them must be scalar, since the theory only comes with five
independent gauge transformations from which four already have been exploited to formulate
Q}L. So one can make the general ansatz

G = ad, A" + mbh' + mce. (3.3.18)

It clearly contains all possible scalars that can be constructed out of the fields and contain at
most one derivative. Terms with higher order derivatives, such as 9,0,h'*, can be neglected,
since they cause terms in the gauge fixed action that are quadratic in second or higher order
derivatives of the fields. Such terms obviously cause difficulties during the construction of a
Hamiltonian for the gauge fixed action, which is necessary for an appropriate quantization of
the theory.
The coefficients a, b and ¢ now have to be determined. The mixing terms that result from
G%G? are
2abmh’ 9, A" + 2bem*h' ¢ + 2acmd), A . (3.3.19)

In order to eliminate the remaining mixing terms of the action one finds

2ab=1, 2bc=3 and 2ac=6. (3.3.20)
This implies
1
a==+1, b= i§ and ¢ = 13, (3.3.21)
and therefore gives
1
g2=i(@A”+n(§M+3@». (3.3.22)

This is up to a sign just the gauge fixing given in (3.3.16)). The existence of a free parameter
like o, which can be chosen arbitrarily, would have led to a G? that contains such a parameter.
So such a free parameter does not exist for G2. The freedom of the choice of the sign does
not really lead to two different gauge fixings. The only difference between the two gauge fixed
actions is the sign of the corresponding ghost term. This does not lead to different results
since one can always replace one ghost with its negative via substitution.

It is important to ensure that the two gauge fixings G, and G are compatible. A worst
case scenario would be that the two gauge fixing conditions Q}L = 0 and G* = 0 contradict
each other, since their operator versions hold on the physical sector, as pointed out in Section
. The easiest way to avoid such effects is to choose Q/i in such a way that it is invariant
under 6% and vice versa, i.e. G is supposed to fix only ' and G* should only fix §*. 6'G* =0
is already given. To ensure that 0°G) = m(2a — 1), A vanishes as well the parameter o has
to be set to % The resulting gauge fixings are

1
%z@%b—5@5+mAi (3.3.23)
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and of course G2 as given in (3.3.16). They are presented in [5] as well. However, the argu-
mentation from above clarifies that the ansatz (3.3.15]) uniquely determines G2 and also a, if
one additionally demands that Q}L only fixes 4! and G? only fixes §%2. Furthermore, note that

§'G, = (O—m?)¢, (3.3.24)

holds. So the p-th component Q}L is invariant under the gauge transformations that are offered
by &, for all v # p. This means that Q}L just fixes the part of 4! that is generated by the u-th
component §,,. Consequently, one can rest assured that the components Q; are gauge fixings
that do not contradict each other as well.

Now the only thing left to do, in order to finish the gauge fixing procedure, is to calculate
the terms that contain the ghost fields. By exploiting the invariance of g; under 6% and the
respective invariance of G2 under !, one finds that the matrix d5Gys has the block structure

31y G 0
) = vy p ) 3.3.25
- (8 0 229

So the ghost terms that occur in the gauge fixed action Sgr can be written as
ﬁMnN(;NgM - 77/#$77Vyalyyg;$ + Excy52yg§7 (3326)

with vectorial ghosts 7, and 7, and scalar ones ¢ and ¢. By a direct calculation one gets

, 08, . 0 0 ,
5luy poy’ 6h‘/0:y/ :/d Yy {<guaayp + gupaya>5(y -y )
a / o ]‘ o
3y — ) (9*(’39 V=9 g%)} (3.3.27)

% oy’ )
0 0 0 0 0 0
:(_g,w/ >(5(az—y),

%3_% Oz Oy+ * ozt dy

5Lg1x / / /
51uyAAy/ﬁ = - / d'y'm?g\o(y — y)d(x = y)g*, = —m?gud(z — y) (3.3.28)
y/
and 5,01
L
1y —HT — (). 3.3.29
1 y¢y 5¢y/ ( )
This then gives
_ _ ;08 0LG 10 0LG iz
nuznyyélvyg}m =n""n"Y (511’?4 poy’(SZ/—M + 511/?4’4)\1/’(;4—“ + 51Vy¢y’§—“>
poy’ a4 Oy (3.3.30)
— [ @@ -
In an analogous way it follows
. 062 6.G2 6.G2
52yg§ :52yhpay’# + 52yA/\y’5jl— + 52y¢y’5L_
oy’ Ay’ ¢y’
’ 5 9 (3.3.31)
=2m*§(x — ) — ——=——0(x —y) — 3IM*§(z — y)

Oyr Ox,
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and therefore

C7CY09,G% = / d*z¢(0 - m?)C. (3.3.32)
So the gauge fixed action Sgr has the very nice form
Sar[h, Ay 6,7 f = [ aed i @ —m2y — Lo - mew
GF[ ) u7¢777u7nu><><]_ x{é ;uz( _m) _4_1 ( _m)
+ A, (O — m?) A" 4 3¢(0 — m?)¢ (3.3.33)

+ (0= m + (O = m)c .

At this point it appears to be a good idea to rescale the Stiickelberg fields once more in order
to ensure that the usual commutation relations for the creation and annihilation operators
in momentum space fit with the canonical commutation relations for the fields and their
conjugate momenta. The rescaled fields

A =V24, and ¢ =69 (3.3.34)

do the job. The gauge transformations of these new fields are
Al = —mV2¢,, §'¢' =0 and (3.3.35)
Al = 0,0, °¢ = —mV6A. (3.3.36)

The gauge fixings have the form

1

G = 0l — SOH + %A; and (3.3.37)
1 1

G2 — %@A’“ n m<§h’ + \/;b) (3.3.38)

The action reads

1 1
Ser = /d‘*x{—h’ (O = mHh = 2h(O = m?)h

2 K
1 1

+ 5 A0 = m?)AY 4 2¢O - mP)¢ (3.3.39)

(0 = mA + {0 = m)C .
Qﬁ = 0 turns into the so-called de Donder gauge (see [5]) for m = 0, which only concerns A/,
and G2 = 0 becomes just the Feynman gauge. So at this point it can already be seen that for
the massless case the BRST transformations of the Stiickelberg fields will have nothing to do
with the ones of the spin-2 field. Therefore, the BRST quantization will essentially reduce to

the one for massless spin-2 particles without Stiickelberg fields and the one for massless spin-1
fields, since the scalar field does not carry any gauge freedom.
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3.4 Hamiltonian Formulation of Spin-2 Particles

In order to perform the quantization, the momenta of the corresponding Hamiltonian have to
be derived. Just as in the case of the U(1) gauge field, it is not possible to perform a Legendre
transformation of Lgy, without fixing the gauge. The corresponding momenta

0r,Lsw

5}'%/ — j 4 20pm0 _ Ok 4 O hiog — gt (3.4.1)

which give
%;:b = Oph"™, %:t” =0'h'"™ + %aih’ and (3.4.2)
5;;’;51] — 7 1 296 RI0 1 9FRL 6T — k61, (3.4.3)

can not be inverted such that all A/ , can be expressed in terms of them, since the hlou do not
appear in any of them. From it is easy to see that they also do not appear in any of
the momenta of the Stiickelberg fields. A similar problem occurs for the massive spin-1 field.
Furthermore, note that

orLsw 0L O0pLpm—o

on,, on,, on,,

holds. So the fact that one can not perform an appropriate Legendre transformation does not
originate from the Stiickelberg fields but is already present for the Fierz-Pauli Lagrangian, just
as it is the case for the Lagrangian of a massive spin-1 particle, which is discussed in Section 2.6

(3.4.4)

As it can be deduced from (3.3.39), the Lagrangian that results from the gauge fixings g;

and G? reads

__1 / )\/;w_l 21/ pluv 1 VYN 1 ANANG
Lap == S0, N — Smhy, B + SONW O + Zm*h'h
_1 / /\/u_l 2 A I,u_l /)\/_1 2 47 41 (345)
SOALDAN — SmP AL A _ S0x0 8_¢ S0
— 0N 0™ — mP " — 9:00°¢ — m*(C.

It offers the canonical momenta

ﬂ-/“/ — Mi — h/,LLI/ — lh/g/'“/’ Z'U’ = Mi = A/'LL, Y= ij = (bl, (346)
ons, 2 0A;, ol
_— 5L[:GF g = 5LZ%GF — (3.4.7)
Oy Oy
orL : orL *
R il =LA Sl Y (3.4.8)
8¢ o¢

The only nontrivial inversion of these concerns the 7. By contracting with g, one gets
m = —h’ and therefore

. 1 . 1
o = hH 4 éﬂg‘“’ & hy =T — §7rgw,. (3.4.9)
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So in terms of the momenta the Lagrangian reads

1 1 1 , 1 , 1 1
Lar =3 (WWW’“’ — §7r7r> —3 (@h;,,a’h’“” - §8ih’0’h') — §m2 <hiwh”“’ — éh’h’)
1 A 1
—N M — Z9, AT PA — —m2 Al A
L S 2" (3.4.10)
1 1 , 1
T30~ 531'@5,3195 - §m2¢’¢’
- 7";17:“ - azﬁuaznu - mzﬁ;ﬂ?“ —2Z— azgazg - m2EC>
which leads to the Hamiltonian
H =i, ™ + Al S 4§y + it + i+ (4 (Z— Lop
1 1 1 , 1 , 1 1
=2 (mu = S + 5 (Db, O = SONTH ) + Sm? (hy, W — SHH)
1 1 Z. 1,
1 1 /i 1/ 1 2 41 !
577+ 50000 + omiPd

+ 7t 4 O Ot 4+ mPimt + 22 + 0;C0'¢ + m2(C.



Chapter 4

The BRST Formalism for Massive
Spin-2 Fields

Now all the necessary preparations for the BRST quantization have been made. For the formu-
lation of the quantization, the Nakanishi-Lautrup fields will be integrated out. Consequently,
the gauge fixed Lagrangian Lgr and the corresponding equations of motion will be used for
the quantization of the fields.

4.1 Canonical Quantization of the Fields

If one assumes Lgr as the Lagrangian that is suitable for a quantization of spin-2 fields, the
usual canonical quantization can be performed. This leads to field operators that generate
a vector space V with an inner product that is neither positive nor definite. The BRST
formalism then constructs the actual physical space from V.

4.1.1 Quantization of the Spin-2 Field
The Euler-Lagrange equations for A/ , which originate from (3.3.39)), are

pv

1
(O —m?)h,, — 5(D —m?)W g, = 0. (4.1.1)
By contracting them with g#, it follows that they imply (O — m?)h/ = 0 and therefore the

massive Klein-Gordon equation (O—m?)h/,, = 0 for every field component. The Klein-Gordon
equations on the other hand also imply (O — m?)h' = 0 and therefore (4.1.1)). This means

1
(O —m?)h),, — 5([] —m?)W g, =0 < (O—m?h,, =0. (4.1.2)

Since these Klein-Gordon equations describe a particle with mass m, their solutions in mo-
mentum space have to satisfy the on-shellness condition p?> = —m?. Like in the photonic
case (see [12]), the classical positive energy solutions of the spin-2 field then have the form
£, (p)e?® for p> = —m? and p° > 0, and vanish for all other p. The symmetric tensor &, (p)
appears to be a generalization of the polarization vectors of the photonic case and will be

called polarization tensor in the following. Since the only restriction for such tensors is that

57
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they have to be symmetric, they span a 10-dimensional space. So the quantized spin-2 field
can be expressed as

9
> (< @)mye™ + < (p)mre )
=0 (4.1.3)

D
_ / dp{n,u(p)e -+, (p)e 7 |,

S

with
nw (D) = Y eh,(P)ny,. (4.1.4)
In order to obtain matching completeness and orthogonality conditions for the polarization

tensors €], (p) and commutation relations for the corresponding creation and annihilation

operators ng and n;, the canonical commutation relations, which are motivated from the

Poisson brackets of the corresponding classical fields,
[h;“,((l}), 7TPU<y)]— ‘xozyo = igu(pga)u(S(X - Y) (415)

have to be established. By a straightforward calculation and the application of [n;, nﬁl]_ =0,
this leads to

) 5L =1 [ i [ 5 >

r,l=0
r ¥ . B0t (4.1.6)
el (p) X (—q)[nh, n'l ] e~ Epr FiEay’
7% T iFEpz0—i 0 1pxX+1
27 (—P) X (@)l | e T Y gexriay|
where .
Xéa(l)) = é‘lpa(p> - §€l(p)gpcr- (417)

In order to interpret the ng and nj, as creation and annihilation operators respectively they
have to satisfy commutation relations of the form

[nr n”} =2E,(27)3G™5(p — q), (4.1.8)

jo i

where the G™ are constant real parameters, which are not determined yet. A first naive
approach would be to choose G = §™, but this will cause contradictions with the canonical
commutation relations, as will be shown later on. However, (4.1.8)) implies

o). )] =1 [ 51555 Z_Grl(,w p)X% (p)

+ s::,<—p>xga<—p>) PO L g3 (%~ Y)

(4.1.9)

and therefore it follows

Z Grl( e (p) X% (p )+6Z’;(—p)X,’)U(—p)> = 20,(p9o)v- (4.1.10)

=0
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By using the additional assumption that 22,1:0 G"er,(p) X (p) is real and independent of p,
the relation

9
rl _r * 1 «
Z G lg;w(p) <€lpa(p) - §‘€l (p>gp0> = Gu(pYo)v (4111)
r,l=0

can be derived. By contracting with ¢?° one gets Ziz:o G”laz,/(p)el*(p) = —¢u, which can

be inserted into (4.1.11f) to find

? 1

Z GTZEZu(p)Ei:;(p) = Gu(pY9o)vy — §g,wgpa- (4.1.12)
r,l=0
This relation can be used to derive
1
[nﬂl’(p>7 nza(q)]— = (gu(pga)u - §g,uz/gpo>2Ep(27T>35(p - Q) (4113)

by a straightforward calculation. At this point it is quite easy to see that G™ can not be 6.
By assuming the opposite one can contract (4.1.12)) with g**¢*° to find

Y e(p)e(p) = —4. (4.1.14)

But the left hand side of this is just a sum of non-negative values and therefore can not be
negative. Thus G™ can not be a Kronecker delta. Such problems are not unknown. Something
similar occurs for photons in Feynman gauge. This case is treated in [3]. The following idea
of how to treat this subtlety is strongly motivated from the appropriate quantization in the
photonic case.

First one has to keep in mind that the nj shall correspond to different independent polar-
izations of h,,. Therefore, n, and nll should commute for different r and [. This means that
G has to be diagonal. Furthermore, not all of the entries can be non-negative. Otherwise,
S, Ge"(p)e™(p) would still be a sum of non-negative parameters and the argument above
also holds for this more general case. So the consequence is that some of the entries have to
be negative. Also note that all n;, and ny shall be interpreted as pairs of creation and an-
nihilation operators, so they are not allowed to commute, i.e. no G'" is zero. Therefore, by
reparametrizing the e/, (p), the G"' can be chosen to be (—=1)* 6™, where A, € {0,1} for all 7.
This corresponds to the commutation relations

[nh, nd]- = (=1)2E,(27)%6"6(p — q). (4.1.15)

Now choose £),(p) = 39 and €"(p) = 0 for all ¥ > 0 and p € R? ie. only &), shall
contribute to the trace of hy,,. This immediately shows, by setting A = 1,

T % 1
Z(_]‘))\Tg,uJ/(p)gpo'(p) = gu(pgo)y - Zlg'ul/gpa' - P'u]/pa-- (4116)

P, 40 1s the projector onto the symmetric traceless tensors, which directly follows from P, ,, =
P,

vppas PHupe =0, PWaﬁ Pogpe = Puvpe and PWO‘B K.3 = K, for any symmetric and traceless
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tensor K. Consequently, the remaining £],, can be chosen to be an orthogonal basis of the
subspace of the symmetric and traceless tensors. By doing so, it follows

& (P) = P e (p) = ) (=1)V e, ()" (P)el, (P)

— (4.1.17)

= (=1)"e,, (P)"" (P)2)0 (D).

since "7 (p)el,,(p) vanishes for r # I. So the orthogonality condition
e (p)el,(p) = (=1)Nd", (4.1.18)

for [ > 0, has been derived.

Note that not all A\, for » > 0 can be chosen to be 0. This follows from (4.1.16). By set-
ting u = p =1 and v = 0 = 0 one gets

1 1

Z(—l)”ﬁfo(p)gﬁ (P) = iigoy — 2 Ji09i0 = 59igo0 = —

5 (4.1.19)

and the same argument as in the previous cases can be applied: Would all A\, be 0 for r > 0,

the left hand side of this equality would be non-negative, which is a contradiction to the right
hand side.

To get a better understanding of the effects that are caused by the polarization tensors with
Ar = 1, it is useful to take a closer look at (0|ngnii|0). A simple calculation shows

(0lngng'10) = (0[ng, ng]-10) = (1) 2E,(27)°d(p — q). (4.1.20)

p’''q

Thus, just as in the photonic case (see [3]), the polarizations with A\, = 1 cause states with
negative norm. So it is important to ensure that states with such polarizations do not con-

tribute to physical phenomena. To do so it is necessary to get a better understanding of the
BRST charge, which is subject of Section [4.2]

To conclude the quantization of &, a certain basis €], (p) of polarization tensors shall be
presented that turns out to be quite useful for the analys1s of the physmal sector. For this,
let k be the 4-momentum of a particle with mass m in the rest frame, i.e. k = (m,0,0,0). By
defining the polarization tensors &?W(IA{) it is possible to construct €7, (p) for any momentum
p with p?2 = —m? and p° > 0, simply by choosing a Lorentz transformation L(p) that turns k
into p and setting €},,(p) = L(p),”L(p). ¢ U(f{) (as it is done in [5]). A suitable choice for a
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basis is
-1 0 0 0 3000
N 1 0 100 N 1 0100
e (k) == ;e (k)= ——= ,
oK) 0 010 “”Uzﬁ 0010
0 00 1 0001
0100 0010
N 1 1 0 00 N 1 0000
2 3
e k)=— , e k) =—7 :
W( ) 21 0 0 0 0O ”( ) 21 1.0 0 0
0000 0000
00 01 00 0 O
N 1 0000 N 1 01 0 O
4 5
e (k)= — . e k)=—7 , 4.1.21
’W( ) 21 0 0 0 O ’”< ) 21 0 0 -1 0 ( )
1 0 00 00 0 O
000 O 0000
N 1 010 0 N 1 0010
6 7
e k)=— , enlk)=—7 ,
“”()\/60010 oK) 21 01 00
000 =2 0 00O
0000 0000
N 1 0001 N 1 0000
giu(k) = = ) 621/(1() ==
V21 0 0 00 V2 00 01
01 00 0010
Just as described above, 52V(1A<) is simply %gw. Furthermore, (4.1.18) can be used to find
A =0, =X3=XN=1and A5 = ... = \g = 0, while Ay has to be set to 1. It is also easy

to check that /Ac“&?;;y(f{) #0for 0 <r <4 and /%“52,,(12) —0for r > 5 and e"(k) = 0 for r > 0
hold. All these properties are invariant under Lorentz transformations. Therefore, they are
true for all p, i.e.

1
e, (p) = 59 p'e,,(p) £0 for 0<r <4, (4.1.22)
p'e,,(P)=0 for r>5 and £'(p)=0 for r>0. (4.1.23)
Also the A, do not change for different p*. So €7, (p),..., €, (p) form an orthonormal basis that

spans the space of all symmetric traceless tensor fields K, (p) such that p*K,, (p) disappears.
Therefore, the projector P,,,, onto that space can be written as

Pupe(P) =D €, (P)ers (D). (4.1.24)

The space spanned by ezy(p) e) (p) clearly is just the one that is generated by the classi-

s Epy
cal polarizations of spin-2 particles. Furthermore, all their corresponding creation operators

correspond to positive norm states, as discussed in (4.1.20). So one would hope that the po-

4

larizations 821/(1)),..., €,,(p) turn out to be the unphysical ones, in order for the formalism to

be consistent with the classical formulation.
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4.1.2 Quantization of the Stiickelberg Fields

The Euler-Lagrange equations for A}, and ¢' are obviously just massive Klein-Gordon equations.
For the quantization of the spin-1 field the same strategy as for the spin-2 field can be applied.
The field has the classical positive energy solutions eu(p)eiim. Therefore, the quantized field
has the form

4
Al (r) = /dpz {ez(p)a;eim + e;*(p)a;Te_ipx} = /dp{au(p)eipx + aL(p)e_ipx}. (4.1.25)
r=1

Here the €], form a basis of the polarization vectors and a,(p) = S €, (p)ay. To choose an
appropriate basis of polarization vectors, an analogous approach as in the spin-2 case can be

used. The choice

1 0 0 0
~ 0 N 1 N 0 ~ 0
1 2 3 4
eﬂ(k) = o | eu(k) = o |’ e#(k) =, | (—:“(k) = 0 (4.1.26)
0 0 0 1

turns out to be quite useful for the analysis of BRST transformations. ¢, (p) is then defined by

A

applying the same Lorentz transformation L(p)," as for £],,(p) on €], (k). This leads together
with the canonical commutation relations, which are again motivated from the corresponding
Poisson brackets,

A (), B W))-|o_yo = 198 (x — ). (4.1.27)
the relation
4 4
Y e e (k) = g =Y (=DM () (p) (4.1.28)
r=1 r=1
and analogous arguments as in the spin-2 case to the commutation relations
[ay, ad]- = (1) T2E,(27)%0"0(p — q) and [a],al]- = 0. (4.1.29)
Here A, is defined just as in the spin-2 case. In particular, this implies
[a,(p),al(q)]- = g,u2Fp(27)%5(p — q). (4.1.30)
Furthermore, note that the polarization vectors come with the orthogonality condition
e, (p)e"*(p) = (—1)MH1o (4.1.31)

By keeping €/, (p)e'**(p) = EL(IA{)EZ“*(IA{) in mind, this is easy to see.

The scalar field can be quantized in the same way. By introducing its creation and anni-
hilation operators bL and by, in momentum space via

¢ (z) = /Zi\];{bpe”’x + bLeiim} (4.1.32)
and demanding the canonical commutation relation
@' (@), 7 ()] | oo = 10(x — ) (4.1.33)

one obtains the commutation relations

[bp,bl]- = 2E,(27)*6(p —q) and  [bp, bg)- = 0. (4.1.34)
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4.1.3 Quantization of the Ghost Fields

For the ghosts the commutation relations become a little more subtle. By introducing the

relation]
[9(2) 70 ()] oo = —191d(x —y) (4.1.35)

together with the momentum space expressions

o) = [ ) ~si@e ™} o) = [ ) + o)} (1130

for the ghostﬂ and making use of [v,(p),v,(q)]+ = 0, one finds

s = [ [ 558 i) bl e

(4.1.37)
il (), Do) e P
This strongly suggests to introduce the commutation relations
[0,(P), UH ()] = —gu2Ep(27)%3(p — q) (4.1.38)
in order to obtain
(@), 70 ()] | oo = =i [ dp2Epe™®> g, = —ig,,d(x —y). (4.1.39)

By using the same polarization vectors as for the spin-1 field to express v,(p) and v,(p) in
terms of this basis as

0,(P) =D _(P)vp. u(P) =) . (P)v}, (4.1.40)

one finds that this is compatible with

[U;,EQ]JF = (—1)*2E,(27)*0"5(p — q) and (4.1.41)
[0p, vl = [05, 0]y = [vh, vhl4 = [vh, o] = [0, 0] =0 (4.1.42)

to obtain (4.1.38]). The parameter A, again is the same as in the spin-2 case. Furthermore,
(4.1.38) also guarantees the remaining canonical commutation relation

[7(2), 70 ()4 | yo_yo = —1Gu0(x = ¥)- (4.1.43)

The quantization of the scalar ghost fields works just the same way. The representation in
momentum space

((x) = / &E{Epe’“ = Ei,e*ipz}, (z) = / Zz}S{cpeW +c§,e*im} (4.1.44)

I Note that the sign convention in this commutation relation is motivated from the convention that is used
in [9]. It is important in order to ensure that the BRST charge (2, which will be derived in the next section,
generates the correct transformations. This also justifies the sign convention for the scalar ghosts.

2The minus sign in the expression of 7, is necessary in order to ensure its antihermiticity.
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together with the canonical commutation relations

[C(:IZ‘), z(y)]Jrlmo:yo = —ié(X - Y) and [C(ZL'), E(y)]+|10:y0 = _i(S(X - y) (4'1'45>
suggests to use
leps e+ = —2B5(27)5(p — ) (4.1.46)
and
[Cp, Cal+ = [Cp Cal4 = [cp, Cal+ = [Cmcgh = [EmEMJr =0 (4.1.47)

as commutation relations.

Remark Note that the orthogonality conditions (4.1.18]) and (4.1.31]) imply together with
e"(p) =0 for r > 0 and 5gy(p) = %gW that the spatial integral over the Hamiltonian (3.4.11])
is diagonal in the chosen set of creation and annihilation operators, i.e.

H:/d?’xH:/EzEEp{i(—n ( rnr 4+ ;[n;,ng]>

4
+Z Al+1<alTal — ool — o'l 4 [l alf] + o] v”]+> (4.1.48)
=1

—_

P’ P P’ P

[\g

+ bpr il LCp — cle LCp T+ [bp, bl,] + [Cp, CI)]+}.

This can be shown by a straightforward calculation.

4.2 The BRST Transformations and Charge

The operators that have been obtained by the canonical quantization of the fields now can
be used to find an explicit expression of the BRST charge operator €2. To do so, one has to
derive it by using the Noether procedure.

The gauge transformations (3.2.13)) and (3.2.14]) of the spin-2 field and the ones of the Stiick-
elberg fields, (3.3.35)) and (3.3.36)), give the BRST transformation dy with

59h,/u1/ = 0(9um + Oump + mCGu), 6014:1, = ‘9\/5(_7”77# + 0,0), op¢ = _8\/6mC= (4.2.1)
Somy = —0B,,, 8o = —0C, (4.2.2)
(597]# = 59C = 0, 593# = (590 = O, (4.2.3)

where B, and C are the Nakanishi-Lautrup fields corresponding to 7, and (, respectively.

These transformations come with a Slavnov operator s that allows to write the full BRST-
invariant action Sgrgr in the form

SBRsT = Sstb — S/d4${7]“ (Q}L + iBﬂ> + E(gz + 411(])}

(4.2.4)
1 1 _
— S, + /d‘lx{g;Bﬂ + BB + G0+ 10+, (0 — mp + {0 — m?)c .
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By integrating over the auxiliary fields B, and C, they can be replaced by —ZQi and —2G?
respectively, which leads to the gauge fixed action Sgr and

s, =2G,, s(=2G". (4.2.5)

To explicitly calculate the BRST charge, it is necessary to calculate s Lgp first and identify a
fitting J* such that s Lop = 9xJ* holds. It is easy to verify that s Lop can be brought into
the form

sLar = 8>\< — 20,m, 0" — 2mPn, W 4 0, 0K + mPn

(4.2.6)
— V20,00" A — VamACA™),

which offers a J* with the desired property. The Noether current J* that corresponds to dy
then has the form

J/\ — j)\ . qu)aaLqu)F ZQauny(aAhl,uu . aphlz\ll) + (mZT])\ + ma)\g>h/
> A

+ 20, 0,0 — 2mPn, WM + (9, — ™, )oK
— (0,m" +mC)ON 4+ V20,( (A — GHA)

— V2mn, 0 A"+ V2md n, AM — 2mAC A

+ M (Veme' + v20,A™) — V6m(d ¢

The sum over ® shall denote the sum over all fields. By using the momenta from (3.4.6)),
(3-4.7) and (3.4.8), the BRST charge Q = [ d°xJ" can be brought into the form

(4.2.7)

Q= / dSX{aknOakh' +m2n°h — 204, 0" W — 2mn, KO — \/20,(D" A
—V2m2CA® — 27, 7% — 204, 7 — mCr + V2mn, 2 — /2250
— V20,C8F + mV6Cy — T, (20,00 + V2mAM) + 7 OF R
— (V20 A" + mh + \/6m¢’)}.

(4.2.8)

In terms of creation and annihilation operators in momentum space, €2 takes the form

0 = [ {20, (0101 (0) + 2,0 (D)1 (8) — 5 (B)! (B) — ™ (DI (p)
+ imcpn' (p) — z'mcl,n(p) +iv2mu,(p)at(p) — i\/ﬁmvz(p)au(m (4.2.9)
+ ﬂcppuam(p) + ﬂcl,pua“(p) + i\/émcpb;r, — i\/émci,bp}.

Remark Note that this form of {2 makes the fact that it commutes with the Hamiltonian
operator H quite trivial: Obviously, the field operators only appear in pairs of creation and
annihilation operators in 2, i.e. terms of the form GLDP, where G, and D, shall resemble
arbitrary annihilation operators of the fields. By keeping in mind, it is easy to see
that H basically is an integral over the number operator N, for particles with momentum p,
i.e. the operator that satisfies

[Np,Gll- = Glo(p — q). (4.2.10)



66 CHAPTER 4. THE BRST FORMALISM FOR MASSIVE SPIN-2 FIELDS

In terms of Ny, H reads

H = /d3pEpr. (4.2.11)
Consequently, since

LﬁﬂﬂmZ/fNMMﬂﬂ%LZ/fMHM®%waﬂ%JM}
= EqGiDq — EqGLDq = 0,

(4.2.12)

one obtains
[H,Q]_ = 0. (4.2.13)

Furthermore, (4.2.9) obviously implies |0) € ker 2.

The BRST transformations of the creation and annihilation operators of the various fields
are therefore given by

2,7, (P)]- = —puvu(P) — Povu(P) + iMCp G, (4.2.14)
2, nf,(P)]- = puvl(p) + puvf(P) + imcf gy, (4.2.15)
€2, au(p)]- = —i\/imvu(p) - \/ﬁpucm [€2, CLL(I))]* = —Z'\/imv)l(p) + \/§p#CI,, (4.2.16)
[Q,bp]— = —iv6mep,  [Qb]- = —iveme], (4.2.17)
€2, vﬂ(p)] = —2p" 0, (P) + pun(p) + iV2ma,(p), (4.2.18)
2, 9}(p)]+ = —2p"n,(p) +PunT(p) — iv/2mal(p), (4.2.19)
(€2, v,(p)]+ [ ol (p)ly = (4.2.20)
[, &p)1 = —V2p"a,(p) +@mn(p) +iv/6mby, (4.2.21)
[, ]y = —V2p*al,(p) — imn'(p) — iv6mb], (4.2.22)
[, cpl = [Q,cf]+ = 0. (4.2.23)

4.3 Analysis of the Physical Sector

Since the BRST charge now has been derived, it is possible to make quantitative statements
about the physical sector ker 2. The first step is to examine the subspace of ker {2 that only
contains spin-2 fields. From the physical point of view this clearly is the most interesting part
of the kernel of €.

4.3.1 First Results for the Structure of the Physical Sector

Let V" C V be the subspace that is generated by the n' operators, i.e. the space that only
contains spin-2 particles. In order to learn more about the subspace ker Q N V" of ker Q) it is
sufficient to restrict  to the very simple subspace V. This reduces Q to

O = [ d{2p0l0) (0) = pa* (P)n(p) ~ imcln(p) . (131)
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Now let |¢) be an arbitrary element of ker @ N V", Then

Qo) = / %{(ZPuvl(p)n“”(p) — p*(p)n(p))|Y) — imCLn(p)|¢>} (4.3.2)

is a linear combination of vectors with one vL(p) ghost and no CL ghost and vectors with one
c;r) ghost and no vL(p) ghosts. Since these two types of ghosts are independent from each
other, (2p,v}(p)n™ (p) — p,v* (p)n(p))|1) and imc,n(p)|) both have to disappear in order
to obtain Q[¢) = 0. Therefore, since v(p) and cl, are both creation operators,

n(p)ly) =0 and pn,(p)|Y) =0 (4.3.3)
follows. By setting

W (@) = [ dpny, (p)e™ (4.3.4)
this can be equivalently written as
RO (2)|¢) =0 and "B (x)]) =0, (4.3.5)

which is quite similar to the Gupta-Bleuler supplementary condition (2.4.10]) for the U(1) gauge

field. Together with the Klein-Gordon equation (OJ — mQ)hL(,Jf )W) = 0, which of course is a
direct consequence of the on-shellness of the particles, these conditions resemble the operator
version of the Euler-Lagrange equations for classical massive spin-2 particles. By using
the polarization tensors €}, (p), as defined in Section , it follows from pte,, (p) = 0 for all
r >5and € (p) =0 for all » > 0 that can also be written as

4
e (p)nple) =0 and > pey,(p)npl) =0, (4.3.6)
r=1

where the first equation has been used to eliminate the sgy(p) term in the sum of the second
one. A very desirable result would be that n;]w disappears for all » < 4. This would mean
that in ker Q N V" only the polarization tensors from the classical spin-2 particle show up. In
fact this is true, as can be shown in the following way:

ngW) = 0 is already given. To show the analogous relation for the remaining four polar-

izations, it is useful to have a look at l%“ezy(lz) for 1 < r < 4. These are, up to normalization,
just the standard basis vectors. In particular, they are linearly independent from each other.
Since the pte], (p) are just Lorentz transformations of their £ versions, they are also linearly
independent. So

| | | |
M= p‘e,(p) p'e.,(p) p'el,(p) p'ep(P) | (4.3.7)

i.e. the matrix with p*e], (p) as r-th column, is invertible. Using this matrix notation, the
second part of (4.3.6) can be written as

| | | | 2
p'e,,(p) p'er,(p) p'e,(p) pe,,(P) 5

| | | | 4

= 0. (4.3.8)
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The invertibility of M then implies ny|y)) = 0 for all r = 1,...,4. So ker 2N VI in fact is
just what would have been expected from a naive quantization, ignoring the problem that the
momenta can not be defined without introducing Stiickelberg fields.

An even more intriguing result can be obtained by looking at a |®) € ker {2 of the form

) = [ {11 Dnlup) + £ (P)a(p) + Fa(DIE} } 1) (439)

where |W) itself shall also be contained in ker 2. Using the commutation relations of € with
creation operators, it is easy to check that

i iv2

al(p) = Tom Q.04+ + —=p"nl,(P) - ﬁpw*(p) and

. (4.3.10)
b, = ——[0, & + —p"5l(p)]s — i\/gp“p”nT (b) - 1/ 20 (p)
P \/ém ’Tp m I m2 3 v 3
hold. Therefore, together with Q|¥) = 0, |®) can be written as
— iv?2 i
b)) = d {( HY VA (wpv) v A v
) = [ o] (70 + 201 (0) — <Pl
271
- \fg (v + 9 ) fo(®) )l (@) 1) (4.3.11)

0 [ dpf = )Thp) — o BT (B) + = () D)

So, by using Q? = 0, the question if Q|®) = 0 holds, reduces to the question what properties

a f"(p) must have, such that Qfa\];f“”(p)niw(p)]\lf) = 0 holds. Here f* obviously can be
assumed to be symmetric. By using Q|¥) = 0 once more, one gets

0 / dp ™ (p)nl, (p)| ) = / dp ()2 i, (p)]_| ¥)

N (4.3.12)
= / dp{quf“”(p)vl(p) +imf(p)cT(P)}|‘1’>-

The vectors 2p,, f* (p)v}(p)|¥) and im f(p)c' (p)|¥) clearly are linearly independent from each
other. Consequently, one obtains f(p) = 0 and p, f*/(p) = 0. This on the other hand implies

" (p) = ﬁ“"p"fm(p), with PP defined as in (£.1.24) and therefore
9
F(P)nf,(p) = P fe(p) > _ el (Pl

r=0
; . (4.3.13)

= foo(p) Y _ PP er (p)nil = f27(p) Y _ el (p)ny.

r=0 r=>5

So only the polarizations from ker 2 N V"' contribute. This means that a |®) € ker Q of the
form (4.3.9) can always be written as

By = / dpf* ()l (D) T) + e, (4.3.14)
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with some |[¢) € V and a f**(p) that only generates the polarizations from ker Q N V"

This result raises the question whether every element of ker{) can be written as a sum of
an element of ker Q@ N V" and one of im Q. In fact this is true. In order to prove it, one has
to understand the behavior of €2 on the level of creation and annihilation operators for the
different polarizations of the fields. For this, one can use the relations

[, ng)- 5[ (P)] 9", (4.3.15)
[Q,ny]- = (=DM nu(p)] ™ (p) for 1<r<9, (4.3.16)
[Q,a]- = (=DMQ, a,(p)] €™ (p) for 1<r <4, (4.3.17)
[Q,vp)4 = (=DMQ, 0,u(p)] €™ (p) for 1<r<4 and (4.3.18)
[Q,vp)s = (=DM Qv (p)] €™ (p) for 1 <7 <4 (4.3.19)

They are an immediate implication of (4.1.18) and (4.1.31)). Together with (4.2.14))-(4.2.23)
and the fact that

e, (P)pue™"(p) = e (k)kue(k), p'el,(p) = k€, (k) and
e,(p)e (p) = e, (k) (k)
hold for all » = 0,...,9, Il = 1,...,4 and s = 1,...,4, which is a direct consequence of the
construction of the polarization tensors and vectors via Lorentz transformations, one finds

(4.3.20)

[ np]- = —muvy +i2mep, [ ny]- = \/gmvrl,, (4.3.21)
[Qnp]- =v2mul, for r=2,3,4, [Qnl]l-=0 for [>35 (4.3.22)
[, ap]- = —im\@v; +V2mde, for r=1,2,3,4, [Q,by). = —imV6ep,,  (4.3.23)
[Q, 7] = —mn) — \/§an + i\/ima;, (4.3.24)
[Q, 5]y = —ﬂmn; + z'\/ima; for r=2,3,4, (4.3.25)
[, Gp) 4 = i2mn) — ﬂma; +iv6mb, and (4.3.26)
Q)]+ = [Qcply =0 for r=1,2,34. (4.3.27)

In particular, the n; commute with 2 for » > 5 and can not be written as anticommutator
of {2 with some linear combination of the ghost fields. This can be seen easily, since these n,
do not appear in any of the anticommutators of {2 with ghosts. According to Section [2.4.4]
the space that is generated by such fields is a good candidate for a space that is isometric
isomorphic to the cohomology . The generated space in this case is just ker @ N V", which
directly follows from its analysis above. This is another result that supports the assumption
that any element of ker Q can be written as sum of an element of ker @ N V" and one of im Q.

Furthermore, ker Q N V" already contains five independent polarizations, i.e. degrees of
freedom. The classical theory that is described by Sy, also only has five degrees of freedom,
since the introduced Stiickelberg fields offer no additional ones. So in order for the BRST
formalism, as it is presented here, to make sense, all additional independent degrees of freedom
in ker €2 have to be unphysical.

The proposition that all nj, for 7 > 5 offer independent physical degrees of freedom is

equivalent to the statement (kerQ N Vh/) Nim Q2 = {0}. It is plausible, since none of these
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ny, can be created by applying [€, ], to any ghost configuration. A formal proof is given in
the next subsection. However, this justifies to label the polarizations corresponding to nj, for
r > 5 and the states in ker Q N V" physical from now on. All other polarizations, including
the Stiickelberg and ghost fields, shall be denoted as unphysical. Furthermore, the notation
Vyhys = ker @ N VY shall be introduced. So if it can be proven that any element |¥) € ker Q2
has the form

W) = |¢) + Qs) (4.3.28)
with a unique [1)) € Vpnys and [¢) € V, according to Theorem [2.4.8) one would have shown
that Vppys is isometric isomorphic to U = ker 2/im €.

4.3.2 The Quartet Mechanism for the Massive Case

There is a very elegant way to prove this quite desirable statement by exploiting the algebraic
structure of the participating operators. This is known as the quartet mechanism. The proof
presented here is basically an adaptation of the more general formulation given in [8] and [9)
to the special case of spin-2 particles.

The first step is to introduce new fields by the following substitutions:

, 1 . /3 i 1
Xg = —mg + Ea; - 2\/;9[,, YP? = —gng + —\/— \/— bp, (4.3.29)

1 V3 i Lo, 1 ﬁ
1 _ 0 1 1 1 _ 1 1
Xp = §np + 77’Lp - Ea,p, Yp = 3 \/_ p ap’ (4330)
T 1 T . T 1 T .
X, = —=(ny, —iay), Y, =—=(n, +iay) for r=234. (4.3.31)

P2
It is quite easy to check that these new fields satisfy the commutation relations
(X5, Yoo = (=1)"2E,(27)*6"6(p — q), (4.3.32)
r ! _ T It o r ! r l
(X5, X0 =Yy Y = [X], X - =Yy, Y]-=0 (4.3.33)

P’ 'q
for all [,7 =0, ..., 4. Furthermore, they also commute with all the operators corresponding to

physical polarizations and ghosts. So the X[ and Y T form pairs of annihilation and creation
operators that are independent from each other and all other fields. One can easily verify that

1 1 1 1 1 0 0 1 1 1 1
p 3Xp 2yp <3Xp +Y ) ny, = m(QXp +3Y,), (4.3.34)
T 1 T T
n, = —2(X +Yy) for r=2234, (4.3.35)

3 p P 14

! 7(1)(°+Y°+z(2X1 Y)) aT:L\/_( ~Y7) for r=2,3,4 (4.3.36)
b

and (Xg —3Y}) (4.3.37)

VG

hold. Therefore, the X[ and Y form just another set of operators that can be used, together
with the ghost generators, to generate any configuration of unphysical polarizations. However,
this special choice of operators offers the remarkable form of BRST transformations

[, Y]]- =2mep,  [Q, 6] = —2mX], (4.3.38)
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[Q,Y7]- =2muy, [Qup)y =—2mX, for r=1,.,4 (4.3.39)

That means the fields Xg, Yl?, ¢p and ¢p form a so-called quartet, just as X[, Y, vy, and v
for r = 1,...,4. These transformations in particular imply that XIID commutes with € for all
[ =0,..,4. Thus the X and Y offer a way to reduce the more or less complex structure
of the unphysical polarizations to the much easier case of independent pairs of creation and
annihilation operators that all turn into independent ghost fields under BRST transformations.

The second step is to have a closer look at the projector P™ onto the subspace of V that
contains all the states with n unphysical fields. P© therefore is the projector onto Vihys-
According to [8] P™ can be inductively formulated as

n 1 o n— n— = n— n—1)
pn) — E/dp{ _ X‘STP( 1))/1[? _ YI?TP( 1) Xg _ CLP( 1)Cp _ CLP( 1)Cp
(4.3.40)

P

4
+3 (-1 (X;;TPWUY; + YD X7 4 gt PO 4 v;TPWW) }
r=1

forn > 1.

Remark It is easy to understand that P™ in fact is the projector onto the space with n
unphysical fields. Consider the operator

/ dp(—1) X1 pr-Dyr (4.3.41)

for some 7 = 0,...,4 and let it act onto a vector |[m) with m unphysical fields. Y, annihilates
one certain type of unphysical polarization. Therefore, Y |m) is an element of the space that
contains only vectors with m — 1 unphysical polarizations. So P(”_l)Yg |m) clearly vanishes if
m # n.

Now assume that m = n. Since P~ is the projector onto the space with n— 1 unphysical
polarizations, it leaves Y |n) invariant. So the operator takes the form

(n—1

0 Ar VT r
/ dp(—1) XY, (4.3.42)

on the space with n unphysical polarizations and vanishes on any space that corresponds to a
different number.

This argumentation now can be applied to all the remaining terms of P™ to find that it
takes the form

" 1 —~ B _
pP™ = E/dp{ — XUV — VXS — e, — cle,
(4.3.43)

4
D0 (XY VX Ty + o) |
r=1

on the space with n unphysical polarizations and is zero on all spaces with a different number
of unphysical fields. The integral in (4.3.43)) clearly is just the number operator of the unphys-
ical polarizations. The signs of the different terms are chosen in such a way that they fit to
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the signs that come from the corresponding commutation relations. So on the space with n
unphysical particles this integral is just nl and therefore P is just the unit operator on this
space. This shows that P(™ in fact projects onto it.

This form of P™ offers the possibility to prove the following quite remarkable theorem.

Theorem 4.3.1 The projectors P™ commute with Q for all n € N.

Proor: This statement can be shown by using the method of complete induction. For n =0
the statement is obviously true, since P(9) can be written as a linear combination of projectors

of the form
—/dp1 dps ”T... “T

where r1,....,7s > 5 and s € Ng. Since €2 commutes with all these creation and annihilation
operators and ©|0) = 0 holds, 2 commutes with these projectors and consequently with P©)
as well.

Now assume that [©2, P™]_ = 0 holds for one particular n € Ny, then it follows, by using
that 0 also (anti)commutes with all the X[, v and cp,

0){0[ng: - (4.3.44)

Pl’

n 1 o n n
2P0 = [ = X PRV~ (Y POXD - 2.6 P,
4
+ A PO, + S (~1) (X’"TP QY]+ [, Y2 POMXT,
r=1
+ [0, 0] PO, — UTTP(”)[Q,5;]+)}
om - (4.3.45)
- dp{ — X% P, 4 f P X0 4 X0 PO
4
n 0 Ar r n),.r r n r
—ct P X0 ¢ Z(—l) (Xp Py, — o PO X,
rt n),.r r r _
— X PO o TP< >Xp)} ~0.
This completes the induction and the statement is proven. O

Now the proof of the isometric isomorphy can be performed more or less easily. It is subject
of the following two theorems.

Theorem 4.3.2 The intersection of the space of physical polarizations and the image of the
BRST charge operator is trivial, i.e. Vppys Nim Q2 = {0}.

PROOF: First consider an arbitrary vector |¢,,) with exactly n > 1 unphysical polarizations,
i.e. [¢,) € P™Y. Then Theorem m together with the projector properties of P implies

Qfp) = QPP i,) = PUIQ). (4.3.46)

So Q1) is also contained in P™YV. This also shows that the image of an arbitrary element

[e.9]

W) = caltbn), €T (4.3.47)

n=1
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of the vector space Vynpnys, spanned by all the vectors with at least one unphysical polarization,
is still contained in Vyyuphys. Now let |thg) be an arbitrary element of V,p,,, i.e. the space that

. . . . . . . -I-
contains no unphysical polarizations. Since this space is created by the generators ngl for

r > 5, the property Qy) = 0 always holds. Therefore, the image of an arbitrary element
|¥) € V, which can of course be written as a linear combination of the form [¢)) = > ¢, |¥,)
with ¢, € €, always is contained in Vynphys:

Q) = coQbo) + D catbn) =D enQthn) € Vinphys- (4.3.48)

Thus any element of Vs Nim 2 is also an element of V,pys N Vinpnys and therefore has to be
0, since Vpnys N Vunphys = {0} O

Theorem 4.3.3 Let |¥) € ker Q. Then there is a unique |[¢) € Vppys and a |s) € V such that
|U) = |[¢) + Qs) (4.3.49)
holds.
PrROOF: Theorem can be applied to show that
P™ = [Q, R™], (4.3.50)
holds for n > 1, where R™ is defined as
Ry — 1 / EZE{EL pin-DY? 4 O pin-Dg,

~ 2mn
4 (4.3.51)
=) (=™ (@;TP(”—”YI;’ + Y;TPW—%Q) }

r=1
Therefore, by keeping > °° , P™ = 1 in mind, |¥) can be written as
B) = PO+ " PO) = PO+ [Q, RW],[T) = PO +Q Y " RM|T), (4.3.52)
n=1 n=1 n=1

since QW) = 0. By setting |¢0) = P©|¥), which per construction is contained in Vs, and
ls) = 322 R™|W), the existence is proven. Now assume that there is another |¢/') € Vs
for that a |¢') € V exists, such that

W) = [¢) + Q<) (4.3.53)
holds. Then it follows
1) = [9) +Qls) = Q) =0 & |¥) - [|¢) = Q(|<’> — |g>>. (4.3.54)

But this implies [1)) — [¢/') € Vppys N im Q. Theorem [£.3.2] states Vypys Nim Q = {0}, which
implies |¢) = [¢") and therefore the uniqueness of |v). O
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This last theorem finally shows the desired isometric isomorphy
U ~ Vphys- (4.3.55)

So the physical space that follows from the BRST formalism basically is the space one would
have expected from the classical point of view. This shows that the introduction of Stiickelberg
fields does not change the physical structure of the theory at all. They are just auxiliary fields
that enable the introduction of canonical momenta for all components of the tensor field 7,
and therefore allow a canonical quantization of the field.

Furthermore, note that the inner product of V in fact is positive definite on V. This is
a direct consequence of the commutation relations of nj, and nlg for r,1 > 5 (see (4.1.20)). So
the completion $ of U in fact is a Hilbert space.

Remark The explicit form of the fields X[ and Y] can be obtained simply by guessing.
If one demands the X to correlate to the BRST transformations of the ghosts in the given
way (see (4.3.38) and (4.3.39)), they are basically given by (4.3.24)), (4.3.25) and (4.3.26). The
only thing left to do is to find Y, such that the conditions (4.3.32), (4.3.33)), (4.3.38) and

(4.3.39) hold. However, for the massless case, which is discussed in Chapter |5, a systematic
approach for the construction of the Y, is presented.




Chapter 5

The BRST Formalism for Massless
Spin-2 Fields

In addition to the BRST quantization of massive spin-2 particles, the same shall be done for
the massless case. The methods that are used to quantize the massless fields are basically the
same as for the massive ones. It is interesting, how these two cases are related to each other
and whether there is a way to interpret the massless case as high energy limit of the massive
one on the ground of the algebraic structure that is given by the BRST transformations of the
different polarization generators.

5.1 Canonical Quantization and BRST Transformations
of the Massless Fields

The quantization of the spin-2, Stiickelberg and ghost fields can be performed in a similar way
as in the massive case. The form of the canonical momenta , and is the
same as for a finite mass. Consequently, the condition for the polarization tensors and
its analog for the polarization vectors stay the same. The momenta p now only have to satisfy
the on-shellness condition p? = 0, since the massive Klein-Gordon equations for all the fields
become massless Klein-Gordon equations. The first significant difference to the massive case
occurs at the choice of k. Since all massless particles move with the speed of light, there is no
such thing as a rest frame. Instead of this the usual choice is a momentum that describes a
particle moving in the 23-direction, i.e. k = (k°,0,0,%°). Since the commutation relations for
the corresponding creation and annihilation operators are already known, the explicit values
of the polarization tensors and vectors given in (4.1.21]) and shall not be changed.
One only has to keep in mind that k& now is no longer (m,0,0,0) but (k°,0,0,k°). The form
of the polarizations for different momenta then are created once more by performing suitable

A

Lorentz transformations on the EZV(E) and €], (k). This leads once more to the commutation
relations (4.1.15)), (4.1.29)), (4.1.34),(4.1.41)), (4.1.42)), (4.1.46|) and (4.1.47), where E}, now is
pl.

Also some results according to BRST transformations can be adapted from the massive
case. The transformations of the fields in position space are just the ones given in (4.2.1)) to

(4.2.3) for m =0, i.e.

1)
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Sohl,, = 0(0umy + Oumy), Gl = 0V20,(, Ge¢ =0, (5.1.1)
Soiy = —0B,,, 8¢ = —0C, (5.1.2)
(5077,u = (59( = 0, (SgBu = (590 = 0. (513)
The auxiliary fields B, and C' again can be replaced by —2Q1‘ = —20"h,, + 0,1 and

—292} 0= —V2 oM A}, respectively, by integrating over them. At thls point it should be clear
that the spin-2 field completely decouples from the Stiickelberg fields and the scalar ghost fields
on the level of BRST transformations, as mentioned before. Also the vectorial Stiickelberg
field no longer couples to the vectorial ghost or the scalar field. This means that the three
sets of fields {h,,,, 7, .}, {4}, ¢ c} and {¢} can be treated completely independently.
Furthermore, the BRST charge Q is just the one given in ({£.2.8) and ([£.2.9) for m = 0, i.e.

0= / d3x{8kn°8kh’ — 20, K — 20, CFA® — 27, 7% — 20y, — /2750

— V20LCTF — 27,0 + 7 h — V220, A" } -

= / 313{2puvu(p)n“”(p) + 2pol(p)n*” (p) — puv* (P)n' (p) — puot! (p)n(p) -
+V2¢ppuat(p) + \/chppua“(p)},

which then of course leads to the corresponding transformation relations for the annihilation
operators:

(2,1 (P)]- = =pu0u (P) = Povu(P), [ au(P)]- = —V2pucy, (5.1.5)
[Q,bp]- =0, [Qvﬁu( N = —2p” nuu(p) +pun(p), (5.1.6)
[Q,0,(P)]+ =0, [ )4 = —\/_p“au(p) [, cply = 0. (5.1.7)

The transformations of the creation operators can be obtained by conjugating the ones of the
annihilation operators and multiplying with —1 in the case of commutators.

5.2 Analysis of the Physical Sector

As mentioned before, the BRST procedure shall be performed for the spin-2 field and the
Stiickelberg fields separately. The reason for that is the fact that if one is only interested
in the massless case of spin-2 particles, no Stiickelberg fields have to be introduced, since
the corresponding action already carries a gauge invariance that can be used for the BRST
formalism. However, to understand the relation between the massless and the massive case,
it is necessary to treat the Stiickelberg fields for m = 0 as well.

5.2.1 The Physical Space of the Massless Spin-2 Field

The examination of ker Q@ N V" is a little more subtle than in the massive case. The BRST
charge, reduced to the space V"', takes the form

O, = [ d{2p0l D) (0) = pa” (p)n(p) | (5.2.1)
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Therefore, any 1) € ker Q N V" has to satisfy

20u) = [ dp{2p.0l )" (0) = p BIn() }) =0 (522)
which implies, since [¢)) contains no ghosts,
(pan™ (o) — () ) 9 = 0. (523)
This can once more be expressed in a Gupta-Bleuler like manner:
GLO (@) = (0H9(x) — AN D (@) ) ) = 0. (5.24)
Unlike as in the massive case, the intersection of ker Q@ N V" and im € is not trivial. A proof

of this will be given later on. However, it is easy to see that the opposite result would be
unfavorable. A straight forward calculation shows

~ A 1 A A ~ A 1 ~ A ~ A 1 ~ A
k“sgy(k) - §kye€0(k) = k“ezy(k) — §kys5(k) = k“szy(k) - 5]{,,67(1{) =0 (5.2.5)
and therefore
w0 1 0 D 1 5 _m ST 1 7 _ 0 5 2 6
P (P) = 5pue’(p) = P, (P) — 5pue’(P) = Plej(P) — 5pue’(P) = 0. (5.2.6)
In particular, this implies
1 : 1
P (P) = 5pon(p) = ) (p“éfw(p) —~ §puar(p)>n; (5.2.7)
r=0
r#0,5,7

Therefore, ensures that the space that is generated by the ngf, n‘;’;f and ny is a subspace
of ker QN V. So if im Q Nker QN V" = {0}, the corresponding three polarizations all would
be physical and independent from each other. This contradicts the classical picture, in which
a massless spin-2 particle only has two physical degrees of freedom.

In order to identify the physical polarizations ker Q N V¥ has to be examined. Here V¥ ig
the space that is generated by the spin-2 field and the two vectorial ghosts. It is again possible
to construct a set of quartets that allow to identify

" = (ker QN V™M) /im Q) (5.2.8)

with a subspace of ker Q N V¥ via isomorphy. To do so, it is necessary to have a closer
look at the BRST transformations of the creation and annihilation operators of the different
polarizations. The strategy to obtain them is just the same as in the massive case, i.e. (4.3.15|),

(4.3.16)), (4.3.18) and (4.3.19)) can be applied together with (4.3.20]) to obtain

1
[Q,np)- = —k(vp +vp),  [Qngl-=k° (\/gvrl, - %U?)), Q7] = \/Ekovi, (5.2.9)

[Q,ni’,]_ = ﬁkovi, [Q,né]_ = \/5]{;0(—1)113 + v;‘;), [Q,ni’,]_ =0, (5.2.10)
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6 _ 2 0,4 7 _ 8 0,2

[Q,n)]- = 2\/;/{ vy, [Qnylo =0, [Qn]]- = 2k v, (5.2.11)
[Q,n)]- = —V2k%3 (5.2.12)
and

[©Q,08]4 = —k°(nd, + V3nl + v2ny), (5.2.13)
[Q,02)1 = —k°(V2n2 + vV2nd), (5.2.14)
[Q, 03] = —k°(V2nd + v2n)), (5.2.15)

[, v5) ¢ —ko(—ng+7np—l—\/_n —2\/3 p>. (5.2.16)

Since the operators nf, and n; commute with €2, their creation operators are good candidates
for the generators of the space that is isomorphic to 0. In fact, this assumption turns out
to be true. Therefore, the space generated by the nJl and nlf shall be denoted as V}?f;ys for
the rest of this chapter. The corresponding polarizations shall be called physical. All other
polarizations of the spin-2 field and the ghost fields shall be denoted as unphysical. Another
argument that supports the latest assumption is the form of the corresponding polarization
tensors €3, and ¢7,,. At k they have the form

0
0 1

and gfw(f() = —

NG (5.2.17)

-1
0

—_
o O O O
o O = O
o o O O
o O O O
o = O O
o O = O
o O O O

So they are the polarizations that are transverse to k. This is a Lorentz invariant condition
and therefore true for all p with p*> = 0. So, like in the photonic case (see [3]), they are the
two polarizations for spin-2 particles one would naively expect.

To construct the quartets, a more systematic approach than for the massive case is necessary.
Since there are four ghost-anti-ghost pairs involved, one would expect to find four quartets.
The operators X[, which are supposed to satisfy €2, 17;]+ oc X7, can be identified quite easily.
By using the relations (5.2.13) to ((5.2.16]), one finds that the choice

1_ .0 1 4 2 _ 2 8
X, =n,+ \/gnp + \/§np, X, = \/i(np +ny), (5.2.18)
1 2
X3=v2(nd +n)) and X3=-nd+ ﬁn + V20! — 2\£ ng (5.2.19)

lead to the relations
[, o7 =—k°X] and [X], X[ =[X], X[] =0 (5.2.20)

for all r,l =1,...,4. So the only thing left to do is to find the corresponding Y such that the
following commutation relations hold for all I, =1, ..., 4:

(X0, Y- = (—1)M2E,(27)*6"6(p —q) and (5.2.21)
Yo, Y- =[], Yl =o0. (5.2.22)
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Remark The special choice that (—1)* shall determine the sign of [X], Y2]_ is not necessary.
One could replace Y by —Y for any r and all the following arguments would hold in a quite
analogous way. However, the signs that are chosen here allow to write the following formulas

in a more compact way.

Furthermore, the Y have to satisfy

[Q, Y]] o< vy

P

(5.2.23)

in order to turn the sets {X7, Y7, v7, v} } into quartets. All these commutation relations offer
equations that allow to determine the Y. The ansatz Yp1 = aonop + \/§a1n§, + \/§a4né with

g, @104 € R can be made to obtain

(X2, YT = (—a0 + 3on — 200)2E,(27)°6(p — q) = 2E,(27)*3(p — q), (5.2.24)
V1Y) = (—a2 + 302 — 202)2E,(21)%6(p —q) = 0 and (5.2.25)
[, Y5]- = K (—ap + 3o — 2ay)v), + K (—ag — o + 20)vy & vp (5.2.26)

and therefore

—ag+3a;—204=1, —ai+3a3—2a;=0 and —ap—a;+2a;=0 (5227)

Note that this set of equations already implies [Q2, Y] = k%v}. Furthermore, it has the unique
solution . 3 |

__5 _3 _ 2.2

oo 6 o 16 and oy T (5.2.28)
So Y} has the form
1

Yy = (=5 +3V3n, — vony). (5.2.2)

The remaining commutation relations [X;,Yq”]_ = 0 for r # 1 are also fulfilled. The com-

mutation relations for r = 2 and r = 3 are simple enough to guess the correct Y. One
finds

1 1
2 _ 2 8 3_ 3 9
p — m(np — np) and Yp = 2—\/§(np — Tlp). (5230)
Ylf is again a more challenging case. By making the ansatz
1 2
Y = —Bond + %Bm; + V2B — 2\/;56713, (5.2.31)

with the real coefficients Sy, (51, S4 and Fg, one finds

!

X4V = (= B+ 55— 260+ S 25, (2)%0(p — @) £ —2B,(2nP8(b — @), (5:232)

Y Yoo = (=56 + 86, + 26,)2B,(27)"5(p — @) 2 0 (523

Yo Yoo = (- 83+ %512 — 282+ §6§>2Ep(27r)3(5(p ~q) 20 and (5.2.34)
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(2, Y2 = k(8o + B1 — 28B40, + K (50 _ %51 + 2834 — gﬂﬁ)v;ﬁ x vy (5.2.35)

and therefore the following set of equations for the coefficients:

1 8
— Bo+ 561 — 26, + gﬁﬁ =-1, =56 +381+26,=0 (5.2.36)
1 8
— G5 + 55% — 267 + gﬁg =0 and [+ f1—26,=0. (5.2.37)
Similar to the case of Yy, this set of equations already implies [, Y]- = k%]. The unique
solution of this set reads 5
Po=p1=Ps=—P6 = I (5.2.38)

So Yé has the form

2
V= 136< nd + Tnp +V2ny + 2\/; p). (5.2.39)

It is easy to check that all remaining commutation relations are fulfilled, too. These construc-
tions of the Y give the following relations:

(X5, Y& = (—1)M2E,(27)*0"6(p — q), (5.2.40)
T l T l r l r l

(X0, X0 =y, Y. = [X], X - =Yy, Y- =0, (5.2.41)

[Q,Yy]- = k%), and [Q,0]]; = —k"X] (5.2.42)

for r = 1,...,4. So the four quartets have been found. Since

5 3 3f \/' 1
0 __ 1 4 4 1 1 4 4
nh = 1—6Xp Yy -5 Xp Yy mp= +V3Y) — X — Fhe  (6:243)
2 2 2 3 3 3
n:—X +2Y2, n:—X \/_Y, 5.2.44
o 2\/§ o P 2\/_ P ( )
1 2 V3
= —16Y, +3X, 4 16Y, 60—\ /2yt - X! 5.2.45
np 8\/_( + + ) np 3 P 4\/§ P’ ( )
1
nd = —X2 V2Y) and nd = —X} — V2V, (5.2.46)

p 2\/§ P 2\/§

the quartets generate all the configurations of unphysical polarizations, just as in the massive
case.

Now in order to prove that Vphys is isometric isomorphic to 0" one has to show that for

all [¥) € ker QN V"™ there is a unique |¢) € V hys and a [¢) € V such that |¥) = |¢) + Q[)
holds. The proof of this can be performed in a quite analogous way as for the massive case.

Let PO be the projector onto Vphys The projector P™ onto the subspace of V"7 with
n > 0 unphysical polarizations once more can be expressed inductively as

4
1 —
- ﬁ/de(—wr (X;;Tp(n—l)w FYTPODXT gt Py 4yt peel) ) (5.2.47)
r=1
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A complete induction, which can be performed in the same way as for the massive case, shows
[, P™]_ =0 forall neN. (5.2.48)

This property and the fact that all generators of the space % ohys commute with 0 are the only

ingredients necessary to prove Theorem 4.3.2| So V. hys Nim Q = {0} also holds in the massless
case. Furthermore, it is easy to verify that

P™ = [Q, R™], (5.2.49)

where R™ is defined as

holds for all n > 1. Therefore, the massless version of Theorem can be proven in just
the same way as in the massive case. So once more the isometric isomorphy

gh' ~ Ph

phys

(5.2.51)

holds. And since V% ohys 1S generated by operators with commutation relations that correspond
to a positive definite inner product (see (4.1.20))), the completion H" of Y is a Hilbert space.

5.2.2 The Physical Space of the Massless Stiickelberg Fields

The BRST formalism for the Stiickelberg fields is basically just the one for a massless spin-1
field and a massless scalar field that completely decouples from the former. It works in quite
the same way as in the spin-2 case.

Before it is performed explicitly, consider the space VA'¢ that is generated by the polariza-
tions of A), and ¢'. Restricted to that subspace, € takes the form

Qfpars = V2 / dpchpua”(p). (5.2.52)
So one finds that a state [1) € ker @ N VA% has to satisfy

pua”(p)¢) =0 (5.2.53)

or equivalently
M A y) = 0. (5.2.54)

This is just the Gupta-Bleuler condition, which shows the consistency of the BRST formalism
with the manual quantization of the spin-1 field, that was presented in Section [2.4.1

Now let VA'9? he the subspace of V that is generated by the Stiickelberg fields and the
scalar ghosts. Similar to the previous cases, a subspace Vphjs C VA has to be identified,
that is isometric isomorphic to

P4 = (ker QN VAY) /im Q. (5.2.55)
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First one has to compute the commutators of the BRST charge with all participating polar-

ization generators. By using (4.3.17)) and (4.3.20]), one finds
[Qa all)]* = \/§k00p, [Q7 ai]* = 07 [Qa ai]* = O? [Qa aé]* = —\/§/€OCP, (5256>
[Q,b,)- =0 and [Q,6)4 = —V2k(al + a3). (5.2.57)
So, by taking the previous cases as motivation, the space that is generated by the af;f, ai’j and

bI) is a good candidate for a space that is isometric isomorphic to 284°?" and will be denoted

as Vﬁj’; in the following.

This time there is only one quartet. Inspired by [, ¢p]+, one can choose

1
0 _ 1, 4 0_ 1_ 4
X, = \/§(ap +ap) and Y, = ﬁ(ap —ay) (5.2.58)
to find
X0, V2] = —2E,(2m)3(p — q), (5.2.59)
X0, X = [y, YO = [X0, X0 = Y2,V =0, (5.2.60)
QY]] =k, and [Q,6)s = —k°X). (5.2.61)
Therefore, {X, YY), ¢y, cp} is a quartet. Since
1 1
ap = —=XJ+V2Y) and a) = —=XJ— V2V, (5.2.62)

P 9 \/5 P P 9 \/5 P
the space that is generated by this quartet is just the one generated by the all), aé, cp and cp.
The corresponding polarizations will be denoted as unphysical. From this point forward, the
proof that VA s isometric isomorphic to U4'?" works in the exact same way as before. The

phys
projector onto the space with n > 0 unphysical polarizations is

1 —~
P = - / clp{XgTPWUY;,J + YT P X0 4 6l pey 4 cLP(”*l)Ep}a (5.2.63)

where P now denotes the projector onto VA Tt commutes with Q and can be written as

phys*
P™ =[Q, R™], (5.2.64)
with
R = = [ dp{eh Py + Y P0G, | (5.2.65)
Furthermore, the generators of the space Vﬂj; of physical polarizations, i.e. a2f, a3l and b],

all commute with Q and therefore for any |¥) € (ker Q N VA'¥*) again a unique [¢) € V;};i;
and a |¢) € VA9 exists, such that

W) = |¥) + Qs) (5.2.66)
holds, which proves the isometric isomorphy
1l A/ /
DUSLEENRY S (5.2.67)

And again all generators of V;}L/f S, have the correct commutation relations to turn the completion

HY? of YA into a Hilbert space.
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5.3 The Physical Space for the Full Theory

Now after the structure of the physical states has been examined separately for the spin-2 and
the Stiickelberg fields, the identification of the physical states in all of V is easy to perform. As
mentioned before, the space of the spin-2 and the Stiickelberg fields have nothing to do with
each other with regard to the BRST formalism. So one would expect Vypys = Vphys ® V%j’;
to be isometric isomorphic to U = ker{2/im (2. In fact this is what turns out when the
quartet mechanism is applied to all of V. One can identify the five quartets { X}, 0 Y ,Cp, Cp}
and {X Y, Ep, vp} which correspond to creation operators that generate the same space as

ayl, agl, nof ongh, St St ndt el el ot and off, ie. the space of all the unphysical
polarlzatlons The projector onto the space of states With exactly n unphysical polarizations
then has the form

n 1 o n— n— = n— n—1)~
pn) — - /dp{ _ XSTP( 1)YI£> _ YF?TP( 1)Xg _ CI)P( 1)Cp _ CLP( 1)Cp

, (5.3.1)
+53 (-1 (X;TPWUYP: + YT XT 4 g POy 4 ngW%;) }

where P now is the projector onto Vphys- The rest of the proof works in the same way as
before. One finds [Q, P™]_ = 0, which can be applied to find P = [Q, R™)], with

n 1 n—1)y/0 0 n—1)~
RO = o [ dp{ e, P ive + TP Yg,
4 (5.3.2)
_ Z(_l))\r <@£Tp(n—1)yg + y;Tp(n—l)@;> }

r=1

and Vypys Nker = {0}. These results then lead to the isometric isomorphy
U ~ Vphys- (5.3.3)

The space V,uys clearly has a positive definite inner product and therefore, once more the
completion §) of U is a Hilbert space.

Both the massive and the massless case deliver a physical space with a total number of five
degrees of freedom. For a finite mass they correspond to n‘;’,,..., ng while for a vanishing mass
6

ny, n3 and ny are replaced by a2, a3 and by. This can be interpreted as the correction of the

vDVZ discontinuity for the Quantum theory of spin-2 particles.

5.4 The Relation Between the Massless and the Massive
Case

This final result raises the question whether it is possible to find a connection between the
algebraic structures of the massive and the massless case, i.e. is there a way to continuously
transform all the (anti)commutators of the BRST charge and the different fields for m > 0
into their analogs for m = 07 In fact this is possible. The trick is to choose i not to represent
a resting particle in the massive case, but a particle that moves with an arbitrary speed in the
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a3-direction, i.e. k = (k°,0,0, k*) with k2 = —m?. By applying the exact same steps as in the
previous cases, one gets

]433
[ n)]- = —(Kovp + KPvug) +i2mep, [, ny]- = \/gkovrl, - ﬁvé, (5.4.1)
[Q,n2]- = vV2E°2, [ nd)s = V2k0%3,  [Qni]ll = V2(—kPup + k0v), (5.4.2)
2
Q03] =0, [Qn8)_ = 2\/;{%;‘;, Q7). =0 [0S = —Vak*, (5.4.3)
[Q,n0)- = —V2k%3, (5.4.4)
[Q,ap]- = —ﬂ(imv; —Kcp), [Qai]- = —im\/ﬁvi, (5.4.5)
[Q,a2]- = —im\/ﬁvg, [Q,ap]- = —ﬁ(imvf) + Kcp), (5.4.6)
[Q,bp] - = —imV/6ep, (5.4.7)
[, 0p]+ = —(k"n) + \/gkonll) + \/§k3né — iﬂma;), (5.4.8)
[, 03] = —ﬂ(konf’ + k’ng —imal), [Q,75]; = —ﬁ(konf’) + k*n) —imal),  (5.4.9)
1 2 .
[, 0] = k°n) — %k?’n; - \/ﬁk‘onf‘) + 2\/%1@'377,?, + z\/§ma4p and (5.4.10)
[, &p]4 = —vV2(Kay, + K*ag, — iv2mn, — iv/3mby,). (5.4.11)

For m = 0, which implies k* = k°, these are just the transformations for the massless case,
while for k* = 0 they become the ones presented in Section [4.3.1] So this method offers a way
to continuously turn the one set of transformations into the other. This allows to interpret
the massless case as the high energy limit of the massive case. For high energies m becomes
insignificantly small compared to k° and k3. So one finds k3 ~ k® and m ~ 0, which means
that the transformations above become the ones for a massless particle at the high energy
limit.

Another property worth to mention is that the only polarizations of the used basis that
remain physical for all & = (k°,0,0, k%) are e>,(p) and €], (p). But this is not surprising, since
they are the only ones that are transverse to p for all k. The other physical polarizations are
linear combinations of the remaining ones for m # 0 and k® # 0. The reason for that is the
fact that the chosen basis of polarization tensors is constructed in such a way that the physical
polarizations for a resting particle can easily be identified. For a moving particle they would
need to be adapted by applying suitable Lorentz transformations. But this is just the way
how the polarizations for arbitrary momenta are constructed in Section .1 So one would just
get the (anti)commutators with €2 that are presented in the corresponding chapter.

From the case of massive spin-1 particles it is known that for a fast moving particle two
physical polarizations remain unchanged while the third begins to align itself with the 4-
momentum of the particle and disappears in the high energy limit. For the spin-2 case a
similar effect can be observed. In the high energy limit, i.e. the massless case, three of the five
physical polarizations of the spin-2 field vanish and are replaced by physical polarizations of
the Stiickelberg fields, since they are constructed in such a way that they conserve the total
number of physical polarizations.



Chapter 6

Coupling to External Sources

The physical vector space that describes spin-2 particles of arbitrary mass is now very well
understood. The next step is to couple the spin-2 fields to external sources. At this point the
spin-2 fields do not interact with any other field and therefore just form an isolated system
that has nothing to do with any other particle, which might be actually observed in nature.

A first approach to change this is to introduce sources that can actually generate spin-2
fields. While doing so one has to ensure that such a source does not produce particles that carry
unphysical polarizations, i.e. states that are not contained in the kernel of €). The easiest way
to guarantee this is to demand that the new action, which contains also the external sources,
is still BRST-invariant.

6.1 The General Structure of External Sources

The gauge fixed action Sgr can be extended by additional terms that represent couplings of
the spin-2 and Stiickelberg fields to external sources, i.e.

Ser — Sgr + Ss, (6.1.1)

with
Ssltg 4y, 8 = [ do{m, 4 44 o), (6.1.2)

Here T", j# and f is a tensorial, a vectorial and a scalar external source, respectively. Since
h,, is symmetric, T+ can be assumed to be symmetric without loss of generality.

By demanding that Sgr + Sy is still BRST-invariant, it is possible to derive certain prop-
erties the external sources have to fulfill. Since S is already BRST-invariant, the only thing
that has to be ensured is

585 = [ da{(20m, + mCg) T + VE(-mn, +0,0)1" ~ Vomes
(6.1.3)

+h;,,sTW+A;sjﬂ+¢'sf} —0.

The fields h,,, A, and ¢’ only appear in the terms A, sT*, A} sj* and ¢'s f, respectively.

So, in order to ensure that s Sg vanishes for all possible field configurations, one finds
sT" =0, sj#=0 and sf=0. (6.1.4)

85
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Therefore and by using the method of partial integration once more, it follows
sSg = /d%{ — (20, T" + vV2mj")n, + (mT — v/20,5" — \/émf)g} =0. (6.1.5)
So the same argument as above implies

20,T" +2mj* =0 and mT —/20,5" — Vémf = 0. (6.1.6)

For m = 0 this gives
0, " =0 and 09,j" =0. (6.1.7)

So both T"” and j* have to be conserved, while f can be chosen arbitrarily, as long as s f =0
holds. In the massive case one finds

= —gamw and f— g V2 —=0,0,T", (6.1.8)

Ve

while T* can be any source for that s T+ vanishes. So for any such T*” there are unique j*
and f, such that Sg is invariant under BRST transformations.

The form of j#* and f also could have been obtained in a different way. For this consider
the Fierz-Pauli action S and extend it with a term that couples h,, to T, i.e.

ST — S[hy] + / d*xh,, T (6.1.9)

Then apply the Stiickelberg trick and write A, in terms of h),,. This effectively means to
perform the replacement

1 1 2
_qb/guy _|_ J— L
V6 V2m V3m?
in S[hu] + [ d*xh,, T . By shifting all the partial derivatives from the Stiickelberg fields to
TH via partial integration, one finds

Py — Ty, + (0uA, +0,A,) + 0,0,¢' (6.1.10)

V2

o) o (et

YRRV

which is just what one gets when the j# and f from (6.1.8]) are inserted into Sg. This is a very
satisfying result. From the physical point of view it is at first not clear, why one should couple
the Stiickelberg fields to external sources, since they are known to be unphysical. However,
the argumentation from above shows that the only way to do this appropriately is to couple
the spin-2 field h,, to an external source and then perform the Stiickelberg trick, as it is done
for example in [5].

/ d*zh,, T" — / d%{h;yTWJrA;( V2 9,0 TW)}, (6.1.11)

Now it is an interesting question to ask what external sources can be formulated in terms
of other fields that are supposed to couple to massive spin-2 particles. In the following sub-
sections this is done for scalar, vector and spinor fields. In order to ensure that the limit
m — 0 can be performed without any problems, 9,7"" = 0 will be used as an additional
restriction. So the resulting sources will be just the ones that also can be coupled to massless
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spin-2 particles. Furthermore, since the sources are supposed to be external, the corresponding
fields will be assumed to be on-shell, i.e. to solve the corresponding Euler-Lagrange equations.
Interactions of the fields with themselves will not be considered. Therefore, the sources will
be assumed to be a sum of terms that only consist of products of two fields. In addition, each
term will be assumed to contain only up to two derivatives.

Furthermore, it shall be investigated what sources can be constructed that only couple to
h},, and not to the Stiickelberg fields. They clearly have to fulfill the additional condition

T =0 (see (6.1.8).

In order to ensure that the sources are invariant under BRST transformations, one would
need to know how they behave under the gauge transformations §' and 62. This will not be
discussed. The sources will simply be assumed to be BRST-invariant.

6.2 Coupling to Scalar Fields

Consider a scalar field y with mass M # 0. It is described by the action

1
Sylx] = /d4x{ﬁx(D - Mz)x}. (6.2.1)
So the corresponding Euler-Lagrange equation is just the Klein-Gordon equation
(O—- M*)x =0. (6.2.2)

By applying this to eliminate redundancies such as O(xx) = 2M?xx + 20,x9x, it turns out
that a symmetric source T}, with the restrictions from above, always has the form

T = ad"x0"x + BO"0"xx + YONXOM g + M xg"”, (6.2.3)
with real parameters a, 5, v and . By making use of the Euler-Lagrange equation, one finds
T = (o + B4 20)M*x0"x + (a + B+ 27)0\x 0" 0 x. (6.2.4)

So by demanding 9,T%" = 0, it follows

(a+p+20)=(a+5+2y) =0, (6.2.5)
which is equivalent to
1
7=0=—3(a+p). (6.2.6)

By applying this to (6.2.3)) and then performing the substitution & = o/ — 3, one gets
1
Y=o (3“X3”x — 50X+ M 2x><)9’“’> + B(0"0"xx — 9"x"X). (6.2.7)
It turns out that the remaining parameters o’ and 3 can not be chosen in such a way that T}

is unequal to zero and only couples to h;“j. As mentioned before, such a source would require
to have a vanishing trace. So one has to demand

0=T, = —(a’+ B)ox*x — (2/ — B)M*xx. (6.2.8)
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This implies o + = 0 and 20/ — § = 0 and therefore one gets o/ = 5 = 0.

This changes for the massless case. Consider y to be massless. Then it satisfies the Euler-
Lagrange equation [Jxy = 0. This can again be used to formulate a general symmetric external
source:

T = ad"x0” x + SO0 xx + ¥O\x D xg" + duPxx 9" (6.2.9)
Here p is a parameter with the dimension of a mass. It is introduced to ensure that all the
other appearing parameters have the same dimension. The appearance of an additional mass
parameter, which is not the mass of the corresponding field, seems somehow unnatural. It is
used here only for the sake of completeness. The corresponding term turns out to vanish when
0,T" = 0 is demanded. Together with Ly = 0, this condition leads to

0=0,T = (a+ B+ 27)0\x0"Ox + 201> x0"x (6.2.10)
and therefore implies
v = —%(CH—@ and §=0. (6.2.11)
So after the substitution & = o/ — (3 the resulting source takes the form
" = o (8“)(8”)( - %c%\xﬁ’\xg“”) + B(O*0" xx — O*x0”X). (6.2.12)
Now the condition T} = 0 implies
0="T, =—(a + B)oxd*x (6.2.13)
and therefore § = —a’. So the source that couples only to the spin-2 field is, up to a multi-
plicative constant, uniquely determined and has the form
T = o (28“)(8”)( — 0" xx — %8,\)(8)‘)@“”). (6.2.14)

6.3 Coupling to Vector Fields

For vector fields the same procedure as for scalar fields can be applied. First consider V), to
be a vector field with mass M # 0, i.e. a massive spin-1 field. According to Section [2.6] the
corresponding Euler-Lagrange equations can be brought into the form

(O—-M*)V, =0, oV*=0. (6.3.1)

They can again be used to eliminate redundant terms in a general ansatz for a symmetric
source T1”. Hence it can be written in the form

T =ad"V20"Vy + BOFI" VAV + y\0W VIV 4+ 50,V HOI V™ + 20, VIOV
+90,VA0°V g + kD, V\OMV P g + o MPVAVA g™ + o MPVHVY,

with real parameters o, (3, v, 9, €, ¥, k, 0 and . Furthermore, the Euler-Lagrange equations
can be used to find

1
TV =(a+ 5+ 20)0,VA0 0V + (7 + 6+ 26) 0,0,V 0V

(6.3.2)

+ (7 + 6+ 4K) V00"V + (o + B+ 20) MPVAO*Vy (6.3.3)

+ (74 6+ 20) M2\ VY VA,

N~ DN —
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So by demanding 0, T{/" = 0 once more it follows
a+pf+20=74+0+2e=7y4+0+4dc=a+F+20=7++2p =0, (6.3.4)

which is equivalent to

v:a:—%(ﬁm, 5:2/{:@:—%(%5). (6.3.5)

Therefore, by additionally substituting & = o/ — 8 and 6 = ¢’ — v, T}/ can be brought into
the form

1
Ty =o' (VY5 - SOV + M2V )
+ BORO" VAV — VLD VH) + 4(0\ 0P VIVA — 9, VoMV (6.3.6)
1 1 1
+ 3 (VI = SOV = L0,V g — SMEVIYY).

To identify the part of T}/ that only couples to the spin-2 field, one has to demand Ty = 0.
This implies, together with the Euler-Lagrange equations,

1 1
0="Ty = —5(20/ + 28 + §)9,VA0PV* — 40, VA0MV P + 5(—40/ + 26 = §)M2V,\V*. (6.3.7)

So one gets
20/ +28+ 0 =v=—4a'+28 - 4§ =0, (6.3.8)

which is equivalent to
1
B = 50/, v=0, §=-3. (6.3.9)
Therefore, the T} that only couples to h;w is, up to a multiplicative constant, once more
uniquely determined and has the form
1 1 3
Ty = o/(gaf‘wa”vA + 0OV = B0V IOV 4 SOV

3

6.3.10)
1 (
£ SMPVIVY 4+ (30,1307 = 20,1307V — 2MTA V) g").

The procedure for the massless case works basically in the same way. Since a massless vector
field is described by the action

SulV) = / aaf - }l(auvy —av)@ v - v, (6.3.11)

the corresponding Euler-Lagrange equations are
OVH = 9" V™. (6.3.12)
They can again be used to eliminate redundancies in order to get the general ansatz
T =ad" V2" Vy + BOFI" VAV + 1060 M VIV + 50UV 03V + e,V HoV VA

+IRVFOVY + kOVIVY) + 00, VA0 Vg + 00, VAV P g (6.3.13)
+ Y, VPRVAG + nOVNVAGY + EuPVIVY + o> Va Vg
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for a symmetric source. The parameters «, 3, v, 0, €, ¥, k, o, v, ¥, n, & and p are again
assumed to be real and p is supposed to have the dimension of a mass. It once more is only
included for the sake of completeness. The corresponding terms vanish when 0,71 = 0 is
demanded. This leads, together with the Euler-Lagrange equations, to

1
0=0,T¢ :5(204 + 6 4+ 200NV + (a + B+ 20)9,V,070°V*
1 1
- 5(26 + 2y + K 4 20) VA" OV + 5(26 + K 4 4p) VYOV

1
+ 50+ e+ 20+ ROVVRVY + 2 (v + e + 40), V20" PV (6.3.14)

— N | =

1

+5(r et 20)0,00\V" 0PV + 5/@D8AVAV” + &P VIV
+ &PV 4 20p2 V00V VA

and therefore implies

=2a+d0+ec+2n=a+P+20=204+2v+Kk+2n =20+ K+ 4

=04+ec+204+rk=vy+c+dp=y+ec+20=r=E=0p. (6.3.15)
This is equivalent to
a=B+(1—c), o=—B+1(—7), V=2=—=(c+n),
2 4 2 (6.3.16)
0==20=7 n=—(B+7), r=EC=0=
So T} has the form
Ty ="V V + 0" VAV = (8,1a0°V* + DA VA)g™)
+ 7(%6*“%8% + 00 BVIVA 4 9y — %awua*vv
= i(é’pwapvA OOV + 20,V O,V 4 ATV g ) (6.3.17)

5( - %aﬂvkam + VIV - %@V“@AV”
+ i(apVAapv* = 0,V )9 ).
Again, Ty, = 0 enables to identify the 7}/ that only couple to the spin-2 fields. One finds
0="Ty =—(38+7)9,V\0°V* = 3(8 +7)ONV* —49,VPHV* — 49,110V (6.3.18)

and therefore
B=~v=0. (6.3.19)

So the corresponding source again is, up to a multiplicative constant, uniquely determined:
1 1
T = g< — SOV + VIV — SOV

2 (6.3.20)
+ (O30 - apvxakvp)g“”).
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Note that this T}/ is invariant under gauge transformations of the form
V,—V, + 0ua, (6.3.21)

with a function a that falls off sufficiently fast at infinity. This is a quite nice feature. The ac-
tion (/6.3.11]), which is implicitly used by applying the corresponding Euler-Lagrange equations,
of course has the same gauge invariance. This means that a theory that also treats V, as a
dynamic field most likely comes with a corresponding BRST transformation of V,,. Therefore,
the BRST transformation for all the fields, including spin-2 and Stiickelberg fields, also takes
the transformation of V,, into account. The gauge invariance of T{/” now ensures that the
coupling terms of the fields are invariant under this expanded BRST transformation, which is
important to guarantee that the over all action is invariant under BRST transformations.

6.4 Coupling to Spinor Fields

The construction of the source that consists of a spinor field works basically just as the previous
cases. A spinor field with mass M is described by the action

Suli 0] = [ dtaf — iddw - Miv}, (641

with @ = 20 and ¥y = ¥'4°. The v* are the Dirac matrices. The corresponding Euler-
Lagrange equations - B
(—id — M)y =0 and i0ypy* — M =0 (6.4.2)

in particular imply
(O — M) = —id(—id — M)y =0 and (O — M?)p =i0,(i0xpy — Mip)y? =0, (6.4.3)

which is a direct consequence of [y*, 7]y = —2¢g""1.

Now consider M # 0. For the source 7},” the ansatz

T = ad¥ahy )b + Bby O + § Mapnbgh” (6.4.4)

is made. When the redundancies that follow from the Euler-Lagrange equations are taken into
account, it follows that this form contains all possible symmetric terms that consist of Dirac
matrices, spinors and up to one partial derivative. The terms with two partial derivatives are
neglected here, since they would require to introduce a new factor with the inverse dimension
of a mass in order to ensure that the corresponding parameters have the same dimension as
a, B and 6. M~! would be a natural candidate, but this would mean that the source strongly
couples to the spin-2 field in the limit M — 0, which does not appear to be reasonable.

Furthermore, note that the term 1y#~*)4) is also indirectly taken into account, since
[V, "] = —2¢* implies pyHy)p = —iapgh. Tt is also important to mention that the
parameters «, $ and § now have to be assumed to be complex in order to ensure that Tl’;” is
real.

From 8#T[; ¥ = 0 and the Euler-Lagrange equations one gets

0=0,T)" = %(a + B)0Nn O + %(a + B) M2 ) + SMO b+ SMPO . (6.4.5)
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This implies
f=—-a and =0 (6.4.6)

and therefore

TY = a0y — 70, (6.4.7)

Furthermore, by demanding 7,,"" = T}/ and applying ¥ = ¢Ty0, 4990 = 1 and A0y#y0 = 441,
one gets

Tgu* _ —a*(a(“z/_}’y”)w _ zz,y(,ual/)w) ; a(a(“ftﬁ’y”)w _ @V(HﬁV)w) — TQ'ZW (648)
and therefore a* = —a. So there is a ¢ € R such that a = ic holds, which leads to
T = e(i0WMpy I — iy FO ). (6.4.9)

So the condition J,T," = 0 already uniquely determines 7”. Since
Ty, = 2Mnp # 0, (6.4.10)
it follows that there is no 7}/ that only couples to A,

This changes for the massless case. Here the Euler-Lagrange equations deliver a very sim-
ilar ansatz for Tg“ as in the massive case:

lew = a0y + By 1Y + Sphnbgh (6.4.11)

Again the terms with two derivatives are neglected in order to avoid the introduction of a new
parameter with the inverse dimension of a mass. p again is a parameter with the dimension
of a mass. Once more it is only introduced to show that the corresponding parameter § has
to vanish in order to get J,7,,” = 0:

0=0,T}" = %(a + BNy OMp 4 Spd” P + Spnpd¥ap. (6.4.12)

This implies § = —a and 6 = 0. So T 1’;” has just the same form as for the massive case. The
additional fact that it has to be real again implies that there is a real parameter € such that
a = ic¢ holds. The resulting source

Th" = e(i0" iy — iy "9 )y) (6.4.13)

is uniquely determined (up to a multiplicative constant) and has a vanishing trace. This is a
direct consequence of the Euler-Lagrange equations. Thus it only couples to the spin-2 field.



Chapter 7

Further Aspects of Spin-2 Particles

To finish the discussion of spin-2 particles and their quantization some additional properties
of them shall be mentioned. It is an interesting question to ask in what way the action Sy,
which has been derived by introducing Stiickelberg fields, is unique or how spin-2 particles
relate to gravity. Furthermore, it is interesting to analyze the propagators of the theory and
their relations to each other.

7.1 Propagators and Slavnov-Taylor Identities

The quantized spin-2, Stiickelberg and ghost fields can be used to derive the corresponding
Feynman propagators. This procedure is a very well-known calculation. Therefore, it is only
sketched in this section. For an arbitrary field & the Feynman propagator has the form

(0T ® ()@ (y)|0) =O(a* — y°) (0|2 ()2 (1)[0)
+0(y” — 2°)(0[0) ()@ («)[0)
=0(z" — y")(0][@™ (), 2 ())£[0)
£ 0y’ — 2”)(0[[2) (y), 217 (x)]+[0).
The T denotes the time ordering operator. As usual, the commutator version is used for the
bosonic fields, while the anticommutator refers to the ghosts. Furthermore, in the case of
ghosts one has to consider a time ordered product of a ghost and its corresponding anti-ghost

in (7.1.1), not a time ordered product of two (anti)ghosts. The integral expression of the
Heavyside function

(7.1.1)

0 .0y _ 1 L 1 —ip(z®—y°)
Oz —y’) = 113(1) o /dpp+iee (7.1.2)

can, together with the commutation relations (4.1.13)), (4.1.30]), (4.1.34), (4.1.38)) and (4.1.46)
for the creation and annihilation operators in momentum space, be used to get

- 1
d'p_ i(9u(oIorw = 390w 9p0) ipta—yy

/ / T
(O[T hy () iy (9)|0) = lim 2r) Rt ic : (7.1.3)
d*p ig .
() A — 1 W ip(a—y)
(O[T A, (2) A, (y)]0) = lim ) o (7.1.4)
: d*p i ip(a—)
(0[T'¢(x)é(y)|0) = lim Py, (7.1.5)

=0 ) (2m)* —p? —m? +ie

93
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4

_ d*p — 1 in(z—
(0|T'7,(z)n,(v)]0) —lli% oL —p2—ﬂ§2+ie€p( v and (7.1.6)

- d’p —i ip(z—y)
(O[T¢(2)C(y)[0) = lim e : (7.1.7)

These expressions are true for an arbitrary mass m > 0.

The BRST formalism offers a way to identify relations among Green’s functions. The idea
behind this is to exploit
(0112, .40} = 0 (7.18)

for some arbitrary field operator ®. Relations that originate from such a condition are called
Slavnov-Taylor identities (see [9]).

Consider for example (0[[2, T'n,(z)h,,, (y)]+]0) = 0. Since € is time independent, it commutes
with the time ordering operator. This leads to

0 =(0[%, T, (), ( )]+10) = {OIT'[2, 7, (), ()] +10)
=(0|T'[€2, 7p(@)]+ Ay, ()]0) = (0] T, (2) (L2, h' »(y)]-10)
—Z<O|T(2‘9Ah3p($) Bl (x) + V2m A (2)) by, (y)]0) (7.1.9)
— i(0|Tn,(x ( Lo (Y) + Ounu(y) +md(y )guu)‘ )
=i(0[T (20}, (x) — D' (2)) 1, ()10) = #{O| T, () (B (y) + D)) [0)

So the relation
(O[T (207, (x) — Dk (2)) 1, (1)10) = (O|T T () (8umn (y) + Bumu())[0) (7.1.10)
can be derived. In an analogous way one can use (0|[€2, TC(z)h),, (y)]+]0) = 0 to get
m{O0|TH (x)hy,, (y)|0) = m{0[C(2)¢(y)]0) G- (7.1.11)
In the massive case this results in the relation
(O[T (x)hy,,, (1)10) = (OIT¢ ()¢ (1)]0) o (7.1.12)

The explicit expressions of the propagators, which are given above, can be used to verify that
this relation is also true for m = 0.
Furthermore, (0[[€2, T, (x)A,(y)]+|0) = 0 leads to

m(0|T Ay, () A, (y)|0) = —=m (0| T, ()1, (y)[0). (7.1.13)

For m # 0 this implies

(O[T AL (2) A, (1)]0) = — (0|, (x )1 (y)]0).- (7.1.14)

This again is also true in the massless case, just as

(0T¢'(2)¢' (y)|0) = —(0|T¢()¢(y)]0), (7.1.15)
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which follows from (0|[€2, T ()¢ (y)]+|0) = 0 in the massive case.
The last relation that shall be mentioned here is

200170 () e (9)10) = (O (17 (2) (D () + B () + 0 ()€ (y)gy) 10). (7.1.16)

It follows from (0[2, T (mi,(x) + 8p(_(x))hLV(y)}+]0> = 0 in the massive case.

Note that all these relations can also be derived from the explicit expressions of the propaga-
tors. However, the BRST formalism allows to find them only by using the algebraic structure
of the theory. No explicit quantization of the fields is necessary for this. One only has to know
how the different fields are related to each other via BRST transformations. So they offer a
very effective way to check whether the derivation of the propagators has been done correctly.

In non-abelian gauge theories, there are Slavnov-Taylor identities that are less trivial. In
[10] some examples can be found.

7.2 Gauge Theoretic Approach

The action Sgy, for massive spin-2 fields has been constructed from the Fierz-Pauli action S
in such a way that it is invariant under the gauge transformations §' and 2. This raises the
question whether it is uniquely determined by those invariances, i.e. is any action that is
invariant under 6! and §2 proportional to Sgu? The discussion of the Stiickelberg formalism
in Section [2.6| clearly shows that this can not be true. One can take an arbitrary action of h/,,
and introduce A, and ¢ in just the same way as for Ssy,. This strategy clearly always leads
to an action that is invariant under the corresponding gauge transformations. So in order to
find some kind of uniqueness for Sgy, further restrictions have to be considered.

Two very intuitive properties one could demand are first that the gauge invariant action
S should come with a Lagrangian L that only depends on the fields and their first deriva-
tives, i.e. no derivatives of higher order should show up in £, and second that L is Lorentz
invariant. Furthermore, only terms that are products of two fields shall be considered for the
Lagrangian, i.e. the corresponding action is supposed to describe non-interacting fields with
no sources. In fact even those restrictions are not enough to uniquely determine S. To see this,
the most general action S that is gauge invariant and offers such a Lagrangian shall be derived.

Before the derivation is performed, one can reduce the liberties for the different terms in
S by some careful considerations. The following notation is quite useful for them: For two ar-
bitrary tensor fields ®; and ®,, ($,P2) shall denote the integral over an arbitrary contraction
of their indices. For example, (DAOJA) shall represent any of the contractions

/ A48, A, 0" A, / d*20,A,0" A" = / 4420, A", A”. (7.2.1)

Clearly, this notation only makes sense when the total number of indices of the fields is even,
such that one can contract the fields to a scalar. It is quite obvious that the terms that are
represented by (0®;®P,) are the same as for ($;0P,), since they can be turned into each other
via partial integration. Therefore, one does not have to distinguish between them. So the only
important things about such terms that show up in S are their total number of derivatives
and the type of the involved fields.
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This is the most important conclusion for the following considerations. The gauge trans-
formations of S in particular contain terms that include the &, and A together with the other

fields and their derivatives. To ensure that S is gauge invariant, all the terms with the same
types of fields and number of derivatives have to cancel each other.

As an example, consider the (DADA) terms. Under §? they deliver (O0AOA) terms. The
only other terms that include A and A under §% are (AA), (R'OA) and (¢p0A). But they give
at most two derivatives not three, as (99AAA). Therefore, the (JADA) terms in S must have
a structure that guarantees that the resulting (0OAOA) terms cancel each other. But this

implies that the (DAJA) part of S must be proportional to
/ d*zF,, ", (7.2.2)

as is well-known from electrodynamics.

It is also easy to see that no [ d*zA, A" term, which is the only existing (AA) term, appears
in S. Under 6! it produces a term that is proportional to [ d*x€, A", which no other term
does.

Furthermore, the (0¢Oh') terms lead under §', in particular, to terms that include ¢, &,
and three derivatives. They are the only terms that show that pattern and therefore the
(0pO3'h') terms also cancel each other. By making the ansatz

Siovon) = / d4x{oz8#gz58,,h’”” + ﬁaﬂ,qsaﬂh’} (7.2.3)
for the corresponding part of the action, one gets
.
0= 51S(8¢8h’) = 2(()é + ﬁ) /d%@,@ﬂf“ (7.2.4)
and therefore a = —f.

The liberties for the (OWOh') part §(@h/ah/) of S also can be reduced by a closer look. It
leads under §' to (90SOR) expressions, in particular. They include one £, and one k. The
only other terms that do that are the (h'0§'A) terms. But they include only one derivative,
not three as (O0SOR'). Therefore, the (00§OR') terms that originate from g(ah’(?h’) have to
vanish independently from all the other terms as well. The ansatz

Stowon[hy] = / d4x{alaAh;yaAh'W + a0\h),, "W 4 azd*hly, 0K + a@h'aw} (7.2.5)

contains all possible (Oh'OR’) terms that are not equivalent in the context of partial integration.
Now relations between the coefficients ay, ..., a4 can be determined. By performing the gauge

transformation and exploiting the symmetry of 1/, one gets

615(8}1’8}1’) = /d4${ ((4@1 + 2(12)8#(9,\@ + 2agaua,,§,\)8>‘h’“”

+ (a308, + (a3 + 4a4)0,0"€,) 0" (7.2.6)
+ 2a38Va#§#8Ah/Ay} + §(ah,ah,) 0,8, + 0,6,
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Note that 2§(3h/3h/)[8u§,, +0,&,] is just the part of 51§(3h/3h/) with all the (00£OR’) expressions
for the special choice b, = 0,&, + 0,€,. Therefore, if the (00SOR’) terms cancel each other,

§(ah/ah/)[augy + 0,€,] = 0 and consequently (515(3h/3h/) = 0 is an immediate consequence.

A naive conclusion would be to demand that all the coefficients in front of the different
products of hj,, and &, have to vanish. But this is a too strong restriction. It is possible that
the different terms can be combined to form total divergences, which then would only vanish
when the integration is performed explicitly. This subtlety is best dealt with by shifting all
the derivatives in 6'Sgpan) to &, via partial integration. Since in this form no derivatives of
h;w show up, there can be no more hidden total divergence. The result is

515(8h/8h’) = /d4l‘{ — 2(20,1 + ag)DGM@,h’W
— 2(ag + a3)0,0,0 R (7.2.7)
— 2(a3 + 20) 0PN} + Sowon [0, + 0.,

Since every line in the upper expression corresponds to a different type of contraction between
third order derivatives of &, and A/, they all have to disappear independently. Consequently,

uvo
one gets
2a1 + ay = as + a3 = as + 2a4 = 0. (7.2.8)

This is equivalent to
ay = —2a1, az=2a; and a4 = —ay. (7.2.9)

By substituting a; = —%bl, one finds

1 1
Siowon) = by / d%{ — SONL O 4 D\, O — 0RO + 5C‘Ah'aw}. (7.2.10)

So g(ah'ah') is, up to a multiplicative constant, uniquely determined as the massless Fierz-Pauli
action S,,—g.

These preliminary thoughts lead to the following ansatz for an action S

g[h;w, A/H (b] :blszo + /d4${b2m2h;“,hllw + b3m2h/h/ + b4Fw,F'uV + 658)\(258)\(25
+ bm? g + bymh),, 0" A” + bsmh'9, A" + by (8,60, h" — 0,60 )  (7.2.11)
¥ bom2oh! + bum(;ﬁa#A“}.

It contains all the considerable terms with at most two derivatives, up to equivalent expressions
via partial integrations. At this point m should not be interpreted as the mass of hj,, yet, but
as a given constant with the dimension of a mass that ensures that all the parameters b, do
not carry a physical dimension. The same strategy as in the Signan) case leads to

0+6'5 = / d4a:{(462 — b )m20,E, W™ + (4bs — bs)m>0,E N
+ (4by — by)mOE, AY — (4by + by + 2bg)m0, 0, " A (7.2.12)
+ (210 — bn)m%uﬁ“(b} + 510,68, + 0,€,, —mE,, 0],
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Again S 10,8 + 0,€,, —m&,,, 0] will vanish automatically when the rest of 615 does. Once
more, all the arguments of the different contractions have to vanish independently. By some
straightforward calculations, this leads to the relations

1 1 1
b2 = —b3 = b4 = Zb7 = _st and blO = 5()11. (7213)

From this argumentation the form
S = b1Spo + / d4x{b2 <m2(h;yh'w — WH) + Fy F™ + b, 9" A”
- 4mh/(9ﬂA“) 4 b0y b + bgmd (7.2.14)
by (D00, = Dy 60" W) + big(m2GH + 2m60,A") |
of the desired action follows. Now by performing just the same procedure with 62, one gets
528 = / d4x{(2b1 + 4by + bo)m(8,8, AW — CIA)
+ (6by + big)m*(20,AA* — mAR)

(7.2.15)
4 (4brg — 2b6)m3Agz5} + S[mAgu, 9.A, —mA].
Therefore, in order for 525 to vanish, the remaining parameters have to satisfy
b
240 0 10 by
06 0 0 01 b
> | =o. (7.2.16)
002 0 3 2 bg
000 -2 0 4 by
bio

This again will ensure that S (mAg,,, 0,A, —mA] vanishes as well. All lines of the matrix M
in the expression above are obviously linear independent. Therefore, M has full rank, which
implies that its kernel is two dimensional. In fact

ker(M) = span {(1,0,3,0,-2,0),(1,-1/2,-3,6,0,3)}. (7.2.17)

The first of the two vectors that span ker(M) corresponds to an action
Sy = Sp—o + /d%{%&qﬁ@’\b + 2(9,00" ' — 8#¢8l,h"“’)}, (7.2.18)

i.e. a massless 2-tensor field and a scalar field that carry the gauge invariances §' and §2. The
second vector gives

o 1 NI 111 1 v / v /
Sy = Spo + /d%{ = (b 0 = W) = S P — 2m(h, 0" A = 119, A") -
— 30,00%p + 6m2pe + 3(moh + 2m¢8uA”)},
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which is just Sg. So any linear combination of S and Sy gives an action with the desired gauge
invariances. To determine a unique action, some additional conditions have to be established.
A quite natural one would be to claim that the %}, field should satisfy the massive Klein-
Gordon equation (O — mQ)h;ﬂ, = 0 when A, and ¢ are set to zero via gauge fixing, i.e. A, is
supposed to be a particle of mass m > 0. The Euler-Lagrange equations in this case are

5.8[1’,,,,0,0]

pv

S, =by (O, — 09,hh, — 00,h), + 0,0,h' + (0r0,h"™ — O g,u)

(7.2.20)
+ 2bym?* (R}, — W g,) = 0.

Similar as in Section [3.1] the contraction with 9%, together with the assumption that by is not
zero, leads to

"y, — 0" = 0. (7.2.21)
By applying this to the Euler-Lagrange equations, one gets

b1 (O, — 0,0,h') + 2bam? (R, — h'g,,) = 0. (7.2.22)
Contracting with g, gives ' = 0, which leads together with (7.2.22) to
(10 + 2bym?)hs,, = 0. (7.2.23)

So by demanding that k), has to satisfy the Klein-Gordon equation for a particle of mass m,
one enforces the relation by = —%bl and therefore makes (by, ba, bs, bg, bo, b10) linear dependent

to the second vector in ([7.2.17)) and by this S proportional to Sgy.

Remark The fact that S is not uniquely determined by the conditions that have been stated
at the beginning of this section can also be obtained by making use of the properties of the
Stiickelberg formalism. The gauge transformations ' and 62 commute with each other. Fur-
thermore, ¢ is invariant under 6" and h/,, +¢g,, clearly transforms just like b/, under §*. So if
one applies the Stiickelberg trick to S,,—o in order to make it invariant under §2, by replacing
h,, with I, +¢g,.,, the result is an an action that is invariant under § Vand 62, according to the
results of Section . This new action does not contain A, and therefore is not proportional
to Sssp. In fact it turns out that it is just §1, as can be shown by a straightforward calculation.
This argument already shows that one can expect at least two independent actions that are
invariant under 6 and 2. The explicit calculation from above shows that there are in fact
only two such actions.

Remark During the derivation of S it has been shown that the (OWOK') terms in S are
(up to a multiplicative constant) uniquely determined by &' to form S,,—o. This result can
also be used to show that every action that is invariant under ¢! and only contains h,, and
its first derivatives is proportional to the Fierz-Pauli action. An ansatz for such an action
contains the (Oh'OR’) terms and possibly (h’'h’) terms. The structure of the former is already
uniquely determined. Since they form a gauge invariant action, the (h'h’) terms must do the
same. By making the general ansatz

Swwy = m? / d'o{ ok, 1 + BN | (7.2.24)
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for the corresponding part of the action, one finds
0 ; 51§(h’h’) = 4m2 / d%{a@u&,h”‘” + 6aﬂf#h,} + g(h/h/)[ﬁuﬁ,, + (91,5#]. (7225)

Consequently, it follows @ = 8 = 0 and therefore §(h/h/) = 0. This proves the statement.

7.3 Connection to General Relativity

Spin-2 particles also play an important role in the context of quantizing gravity. Usually
the exchange particles that are assumed to cause gravitational effects, the so-called gravitons
(see |15]), are modeled to be massless spin-2 particles. To understand this picture consider the

FEinstein-Hilbert action )
Spn = Ton d'zy/—det (g,,)R, (7.3.1)

which is used to describe gravity in the vacuum. Here g, now is an arbitrary spacetime metric
with inverse g and R = g"’RF,,, the Ricci scalar. RP,q, is the curvature tensor, which is
defined as

R oy = 0,17y, — 0,175, + TP\, — T7,0T7,,.. (7.3.2)
The Christoffel symbols I'?,,, are given by
I, = %g’ﬁ (f%gxu + 0o — C“Ag,w)- (7.3.3)
The variation principle 5giy Sen = 0 leads to the Einstein equations for the vacuum

1
R)\/J)\l/ - §Rguu =0. (734)

The solutions of them usually are referred to as gravitational waves. The mathematical models
and concepts that are used to formulate general relativity will not be discussed in this thesis.
An introduction can be found in [2] and [15]. For this section one should just take Sy as the
action that describes the correct dynamics for the metric tensor and therefore models gravity.

In order to find some kind of particle that can be identified with gravity, consider the ansatz

I = N + h;w; (7.3.5)

i.e. one examines cases in which the metric tensor only differs by a small variation h,, from
the one for a flat spacetime. This variation is used as graviton (see [15]). To be more precise,
gravitons are modeled as small excitations of the metric tensor from its ground state 7,,.
Expressing Sgy in terms of the h,, leads to extremely complicated self interaction terms of
arbitrary order. This causes great difficulties for renormalization approaches. Nevertheless,
the expansion of Sgg up to second order gives the non-interacting part of the gravitons. So if
this part of the action turns out to be the massless Fierz-Pauli action, one would have justified
the assumption that gravitons are spin-2 particles.

In fact this is what turns out to be the case. In order to perform this expansion of Sgy
appropriately, several steps are necessary. Note that all the following contractions are done
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according to the Minkowski metric 7,,. Furthermore, since g"” is the inverse of g, its first
order approximation in terms of A, has the form

g =" — " hagn™ + O(R%) = — K™ 4+ O(R?). (7.3.6)
The term O(h?) shall denote the remaining terms of order 2 or higher in h,,.

A good point to start with is to derive the second order approximation of the Christoffel
symbols. It has the form

1
I = 5(77;))\ - hpA) <a,uh>\1/ + Oyl — a)f@;,) + O(h%). (7.3.7)

Clearly, it starts with the terms that are first order in h,,,. Since the Ricci scalar only consists of
Christoffel symbols, its approximation also starts with the first order. This is quite convenient,
because therefore y/— det(g,, ) only needs to be expanded up to first order for the second order

approximation of /—det (g,,)R. To do so, the well-known formula

d —
EL:O det(X + eH) = det (X) Z(X Vi Hiji, (7.3.8)

1,3
for the derivative of the determinant at an invertible X in direction H, can be used to get

det (1)

\/— det (1 + huv) = \/_ et (1) = 2/~ det(n,.)

This leads to

0" hpe +O(h?) = 1+ %h+ O(h*). (7.3.9)

1 v 3 12 v
Sen = 7 d%{a#ayhﬂ — Db+ S OMyu B + by O
1
— WM O hy — =Oxhy, OMRNY — 2hy,0,0™ M
2 . (7.3.10)
+ 9, 0, h + hy, 0"0h + §h(9u(9yh””
1 1
— ~0\hO*h — =hOh h?
OO — ShOh + O(h*) }
and therefore, by assuming that h,, falls off sufficiently fast for x — oo, gives
1 4 1 A uv V1 UA
Son = 55— | d 2 SO W 4 Ol p I
T (7.3.11)

— 0, h B,k + %@h@kh + O(h3)}.

So the non-interacting part is basically just the Fierz-Pauli action for m = 0. Therefore,
gravitons have to be massless spin-2 particles.

Alternatively to this calculation one can also apply the ansatz ¢, = 7., + hu to the
Einstein equations and expand them up to first order in h,,. This leads to the equa-
tions of motion that correspond to the massless Fierz-Pauli action (see for example [2] or [15]).
Since one already knows that they are equivalent to the defining equations of massless spin-2
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particles, this leads to the desired result as well. Such approximations of g,, are sometimes
referred to as linearized gravity (see for example [2]).

This relation between massless spin-2 particles and general relativity also offers a nice way
to interpret the invariance of the Fierz-Pauli action under the gauge transformations

By — Dy + 04l + 0,6 (7.3.12)

In fact it is a relict of the invariance of the Einstein-Hilbert action under coordinate transfor-
mations. To see this[L consider a coordinate transformation of the form

t — ot =gt — ¢ (7.3.13)

The & shall be chosen such that the variation %, from 7, of the metric tensor g, in the
new coordinates is still small. To be more precise, one assumes that %5” has an order of
magnitude that does not exceed the one of h,,. This assumption justifies to consider only
the terms that do not contain any products of % v and hy,, for the calculation of g, and
therefore leads to the following approximationﬂ:

ox'? 0x'° 0 0
= / = ! P __ T P o o

g/il/ gpo- ax“ (9x” (T]Pcr + hpo)(du 8x“£ )(51/ 8x”£ ) (7 3 14)

N Y 0 0 o

N Mo 7+ “”_{h“&/_ 8x”£w
Consequently, one finds
0 0

S — & 4 —¢+ 3.

My R M + 5287+ 528 (7.3.15)

for this weak field approximation. This clearly is just the gauge transformation for the spin-2
field. So one can interpret the gauge transformations as infinitesimal coordinate transforma-
tions. And consequently the gauge invariance of the Fierz-Pauli action resembles the invariance
under infinitesimal coordinate transformations.

!The following discussion is taken from [15].
2The approximation sign =~ shall indicate that all products of %5” and h:w are neglected.
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Conclusion

The BRST formalism has been successfully applied to quantize spin-2 particles of arbitrary
mass. In both cases, the massive and the massless, the correct candidate for a subspace of
ker € that is isometric isomorphic to U can already be guessed from the form of the BRST
transformations of the annihilation operators. This subspace is generated by the classical
polarizations. So one can identify the physical space that originates from the BRST formalism
with the one generated by the classical polarizations, without any problems. Especially in the
massive case this is a neat result, since it shows that the introduction of Stiickelberg fields
does not change the physical system, but is a legitimate trick to introduce a gauge invariance
that allows for a BRST quantization of the spin-2 fields.

A further remarkable result is that the presented couplings to external sources are uniquely
determined by the corresponding restrictions, if they even exist. An interesting subject for
further studies is the treatment of the corresponding external fields as interacting particles by
adding dynamical terms for them to the action. In particular, it is a fascinating question to
ask whether it is possible to introduce the gauge transformations ' and 62 for those fields
in such a way that one can regain the coupling terms simply by demanding that their action
is gauge invariant. In other words, is it possible to treat the spin-2 and Stiickelberg fields
as gauge fields that have to be introduced (just as the photon field has to be introduced in
electromagnetism) in order to ensure the gauge invariance of a certain action?

Another possible extension of the results of this thesis would be the introduction of inter-
action terms for the spin-2 fields. A natural first approach would be to consider the lowest
order interaction terms that result from a power series expansion of the Einstein-Hilbert action
and analyze whether it is possible to find similar gauge transformations as §' and §? for the
resulting action.

However, for both those considerations a more careful BRST quantization will be necessary.
Since these expansions include interactions, not all appearing fields can be assumed to be
external. Therefore, one needs to use the Nakanishi-Lautrup fields in order to formulate the
BRST transformations appropriately.

So the results of this thesis are just a small part of all the quite interesting properties of
quantized spin-2 particles. They offer a good starting point for further investigations, which
will hopefully be performed.
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