
Fakultät

für Physik und Astronomie

Master thesis

Efficient solutions of memory integrals

Author: Fabian Pfeuffer
Fabian.Pfeuffer@stud-mail.uni-
wuerzburg.de

Supervisor: Prof. Dr. W. Porod

Abstract

In this work, we present the implementation and effects of a history cut-off reduction

scheme for the Kadanoff-Baym equations in case of a spacial homogeneous system in

(1+1)-dimensions. As our model, we used a scalar theory with a ϕ4-theory interaction

term and considered loop corrections to the self-energy up to the second order. We found

out, that a history size which is too small for the given system can alter the course of

the system’s time evolution strongly and might even lead to divergences in the correlation

functions. However, when the size of the fixed history is increased, the deviation between

the data of the time evolution for different histories rapidly declines. This indicates that it

is not always necessary to keep the full history of the system. Besides the implementation

of the history cut-off reduction scheme, we also developed a procedure, the DHS algorithm,

to find a fitting history during the time evolution of the system. We tested different

weighting factors for the weighted average that is used in this procedure and found out

that weighting the determined history size for each momentum mode with their linear

entropy leads to reasonable results.

Using the history cut-off reduction scheme, we observed the system’s time evolution for

the so-called quench and tsunami initial conditions up to late times x0 > 3000 for 2-loop

corrections to the self-energy. What we found is, that for both quench and tsunami,

thermalization could be observed. Additionally, we look at the tsunami for a thermal

background. For this setup up, we observed the particle distribution and the linear entropy

up to x0 = 2500. At the end of the time evolution, we fit the particle distribution with

a Bose-Einstein distribution and saw an agreement between the fit and the data, which

indicated the system’s approach to thermal equilibrium. For the total linear entropy, we

saw a fast initial increase followed by a steady state, which also indicates a thermalized

state of the system.

Lastly, we investigated the effects of the lattice size and the lattice spacings on the sys-

tem’s time evolution. We observed that finite lattice effects are only relevant for 1-loop

corrections, when the observation time x0 becomes greater than (0.573± 0.018)Vs, or for

2-loop corrections, when the system’s volume is small, i.e. Vs < 20. For the lattice spac-

ings we saw, that a rough spacing alters the course of the time evolution significantly.

However, the courses of the time evolutions for different lattice spacings start to approach

each other with a quadratically decreasing error, when the lattice spacings are decreased.

I

Zusammenfassung

In dieser Arbeit wird die Implementation, sowie die Effekte eines ”history cut-off” Reduk-

tionsverfahrens für die Kadanoff-Baym Gleichungen, für den Fall eines räumlich homoge-

nen Systems in (1+1)-Dimensionen präsentiert. Wir verwenden eine skalare Theorie mit

ϕ4-Wechselwirkung als Modell und betrachten Loop-Korrekturen zur Selbstenergie bis zur

zweiten Ordnung. Wir haben beobachtet, dass eine für ein gegebenes System zu kurze

Vorgeschichte dazu führt, dass große Abweichungen oder sogar Divergenzen bei der Zeit-

entwicklung der Korrelationsfunktionen auftreten. Eine Vergrößerung der Vorgeschichte

führt schnell zu einer signifikanten Verkleinerung dieser Abweichungen. Daraus wird deut-

lich, dass es nicht zwangsweise nötig ist die komplette Vorgeschichte des Systems bei der

Lösung der Kadanoff-Baym Gleichungen zu berücksichtigen. Neben dem Reduktionsver-

fahren haben wir eine zusätzliche Routine entwickelt, den DHS Algorithmus, der dazu

dient eine passende Größe für die Vorgeschichte des Systems zu finden. In der Routine

tritt ein gewichteter Mittelwert auf, für den sich gezeigt hat, dass die lineare Entropie ein

sinnvoller Gewichtungsfaktor ist.

Für das implementierte ”history cut-off” Verfahren haben wir die Zeitentwicklung unseres

Systems für ”Quench”- und ”Tsunami”-Anfangsbedingungen untersucht. Dabei betra-

chteten wir das System bis zu Zeiten x0 > 3000 und berücksichtigen 2-Loop Korrekturen

zur Selbstenergie. Wir haben beobachtet, dass das System sowohl für ”Quench” als auch

”Tsunami” thermalisiert. Weiterhin haben wir den ”Tsunami” noch unter der zusätzlichen

Annahme eines thermischen Hintergrunds untersucht, wobei wir die Teilchenverteilung

und die lineare Entropie beobachtet haben. Das System wurde bis zur Zeit x0 = 2500

entwickelt und die Teilchenverteilung mit einer Bose-Einstein-Verteilung gefittet. Die

Übereinstimmung zwischen Teilchenverteilung und Fit war sehr gut, was darauf schließen

lässt, dass das System tatsächlich ein thermodynamisches Gleichgewicht erreicht hat. Die

total lineare Entropie ist zum Beginn der Zeitentwicklung rasch gestiegen, hat dann aber

einen konstanten Wert angenommen. Auch dies ist ein Indiz für das Annähern an einen

Gleichgewichtszustand.

Abschließend werden die Effekte der Gitterparameter untersucht. Es hat sich gezeigt,

dass Störungen aufgrund der endlichen Größe des Gitters nur im Fall von 1-Loop, oder

bei 2-Loop Korrekturen mit Gittergrößen Vs < 20, relevant sind. Bei der Untersuchung

der Gitterabstände hat sich gezeigt, dass ein grobes Gitter einen großen Einfluss auf die

Zeitentwicklung des Systems hat. Wird der Gitterabstand verkleinert, so verringert sich

jedoch der Fehler zwischen den Daten für die unterschiedlichen Gitterabstände mit einer

quadratischen Abhängigkeit.

II

Contents

Abstract I

1 Introduction 1

2 Nonequilibrium quantum field theory 3

2.1 The nonequilibrium problem . 3

2.2 Nonequilibrium Green’s function . 6

2.3 The generating functional . 7

2.4 2PI-effective action . 10

2.5 Decoherence and entropy in nonequilibrium processes 12

2.5.1 Relevant and irrelevant observables 12

2.5.2 Linear entropy of a Gaussian state 14

3 Numerical Implementation 18

3.1 Spacial setup . 18

3.2 Time evolution . 20

4 Runtime analysis 23

4.1 Memory usage . 23

4.2 Computation time . 24

5 Model 28

5.1 Quench initial conditions . 30

5.1.1 1-loop approximation . 31

5.1.2 2-loop setting-sun approximation 32

5.2 Tsunami initial conditions . 33

5.2.1 1-loop approximation . 34

5.2.2 2-loop setting-sun approximation 34

6 Numerical effects 42

6.1 Finite lattice effects . 42

6.1.1 1-loop approximation . 42

6.1.2 2-loop setting-sun approximation 43

6.2 Time and spacial spacing . 45

6.2.1 Time spacing dependency . 45

6.2.2 Spacial spacing dependency . 47

III

7 Efficient solutions for memory integrals 50

7.1 The history cut-off . 51

7.2 Cyclic memory . 54

7.3 Effects of the history cut-off . 56

7.4 Finding a suitable history size . 61

7.4.1 Calculating a fitting measure . 61

7.4.2 Determine history size algorithm 63

8 Conclusion 72

8.1 Summary . 72

8.2 Outlook . 73

Appendix 75

A Settings 75

B Additional Graphs 78

B.1 Model . 78

B.2 Numerical effects . 79

B.3 Effects of a history cut-off . 80

C Code segments 87

C.1 Double cyclic memory . 87

C.2 DHS algorithm . 88

C.3 Resizing the systems history . 92

D Graphical user interface 95

References 99

IV

1. Introduction

As of today, one of the great unsolved mysteries of our observable universe is the asym-

metry of matter and antimatter. As far as we know, everything around us is almost

entirely made out of what we define as matter. The closest systems for this observa-

tion is the earth itself and our solar system, which both could not exist if they where

made of equal parts of matter and antimatter. Antiprotons can be observed in cosmic

rays, but they are outnumbered by protons 1 to 104, which suggest that they are created

through cosmic ray collisions in the interstellar medium (see [1]). One could argue that

some galaxies are partially or entirely made out of antimatter. However, the absence of γ

rays from matter-antimatter annihilation between such galaxies and the intergalactic gas

suggests that, within a distance of 10 Mpc, matter significantly dominates antimatter [1].

The matter-antimatter asymmetry is typically expressed by the baryon-to-photon ratio

β, which, through recent measurements, indicates a ratio of

β =
nB − nB̄

nγ
≈ 6 · 10−10.

This is significantly higher than the ratios nB/nγ = nB̄/nγ ∼ 10−18, which would be

expected from a homogeneous baryon-symmetric universe [1]. However, this leaves the

question where all the antimatter has gone.

A possible answer to this question might be given by nonequilibrium many-body physics.

The generation of a baryon-antibaryon asymmetric universe from an initially baryon-

antibaryon symmetric one can be described by the theory of baryogenesis. Amongst

other things, baryogenesis requires processes out of thermal equilibrium [2]. Typically,

one uses Boltzmann equations to describe these processes. However, Boltzmann equa-

tions assume the classical particle picture with instantaneous interactions and well lo-

calized particle excitations. Therefore, they are only a classical approximation to the

quantum mechanical equations. Shortly after the Big Bang, where baryogenesis is ex-

pected to occur, the reliability of these approximations is questionable. For this reason,

more complex nonequilibrium quantum field theoretical approaches might be necessary.

These nonequilibrium quantum field theoretical approaches lead to the so-called Kadanoff-

Baym equations, which are able to describe nonequilibrium quantum processes from first

principle [3].

Nonequilibrium quantum field theory, and in particular the Kadanoff-Baym equations,

are not limited to high energy physics theories like baryogenesis. They also have various

applications in other fields of modern physics. The Kadanoff-Baym equations are used in

1

low energy condensed matter physic topics, for example, the evolution of photon excited

correlated electron systems [4]. Furthermore, they might even give answers to fundamental

questions about the concepts of quantum decoherence, entropy and the thermalization of

quantum systems [5] [6] [7]. This is a testament to the universality of this theory. However,

they have one major downside. That is, that they are on the one hand not analytically

solvable and on the other hand require considerable amounts of computation power and

memory for their numerical solution.

Fortunately, the high computational requirements for solving the Kadanoff-Baym equa-

tions can be reduced significantly. Using the work of Thomas Garratt, a PhD student

at the department of particle physics (TPII) of the University of Würzburg as a basis,

we implemented a reduction scheme for the simplified case of a spacial homogeneous sys-

tem into the framework. In this work, we’ll explain and discuss this reduction scheme

and its effects on the numerical solution of the Kadanoff-Baym equations for a spacial

homogeneous system.

2

2. Nonequilibrium quantum field theory

Before we start our introduction to the theory of nonequilibrium mechanics, we want to

give a brief remark on natural units. As it is common in quantum field theory, we choose

the natural unit system given by ~ = c = kB = 1.

Because

[energy] = [mass] = [temperature] = [length]−1 = [time]−1,

everything will be given in units of the system’s initial mass M0, which we’ll come across

later on in this work, when choosing the natural unit system.

2.1. The nonequilibrium problem

We want to begin with the description of the general nonequilibrium problem. Consider a

many-particle system, which can be represented by the n particle state |n〉 in Fock space.

This system can be described by the time independent Hamiltonian H which acts on the

Fock space. The general nonequilibrium problem begins in thermal equilibrium, where

the system is time translation invariant, hence the time independence of H. In this state,

one can define a temperature T and describe the system by a equilibrium density operator

ρeq =
e−βH

Tr(e−βH)
, (1)

where β is the inverse temperature ([8] p. 79). To bring the system out of thermal

equilibrium, at a time t0, an additional term H ′(t), which represents a time-dependent

disturbance, is introduced to H in such a way, that the system is given by H for t ≤ t0

and

H(t) = H +H ′(t). (2)

for times t > t0 ([8] p. 81). This time dependent term breaks the time translation

invariance and thus the system is no longer in thermal equilibrium.

In nonequilibrium quantum statistical mechanics, our main interest doesn’t lie within

the specific dynamics of the microscopic variables, but instead within the calculation of

macroscopic observables, which are given by the expectation value of operators O(t), to

determine the state of our system. These expectation values can be computed via

〈O(t)〉 = Tr (ρ(t)OS) = Tr (ρ(t0)OH(t)) , (3)

3

whereOS represents the operator in the Schrödinger andOH(t) the operator in the Heisen-

berg picture for the Hamiltonian (2). The time evolution of the operator is governed by

the Heisenberg equation

− i d
dt
OH(t) = [H(t),OH(t)]− i

[
∂

∂t
OS(t)

]
H
, (4)

while the evolution of the density operator in the Schrödinger picture is given by the

von-Neumann-Liouville equation

i∂tρ(t) = [H(t), ρ(t)] . (5)

Both (4) and (5) can be formally solved with the ansatz

OH(t) = U †(t, t0)OSU(t, t0), ρ(t) = U(t, t0)ρ(t0)U †(t, t0), (6)

where U(t, t0) is the time evolution operator ([9] p. 4-5), given by ([8] p. 84)

U(t, t′) = Te−i
∫ t
t′ dt̄H(t̄). (7)

T is the time order operator, which shifts terms with smaller time arguments to the left

and vise versa.

By changing into the interaction picture, we can seperate the time independent part H

of the Hamiltonian from the time dependent perturbation. First, we rewrite (3) using (6)

and get

Tr (ρ(t0)OH(t)) = Tr
(
ρ(t0)U †H(t, t0)OSUH(t, t0)

)
. (8)

Afterwards, we express the Schrödinger picture operator in the Heisenberg picture of the

time independent Hamiltonian H, i.e.

OS = UH(t, t0)OH(t)U †H(t, t0), (9)

with U †H(t, t0) = e−iH(t−t0). After inserting this into (8), the terms U †H(t, t0)UH(t, t0) and

its adjoint, can be combined to

V (t, t0) = U †H(t, t0)UH(t, t0) = Te
−i

∫ t
t0
dt̄H′(t̄)

, (10)

and we have isolated the evolution operator V (t, t0) for the interaction Hamiltonian

4

([8] p. 84-86). With this, the operator OH(t) can be written as a time evolution

OH(t) = V †(t, t0)OH(t)V (t, t0) = T̃ e
i
∫ t
t0
dt̄H′(t̄)OH(t)Te

−i
∫ t
t0
dt̄H′(t̄)

, (11)

where T̃ is the anti-time order operator, shifting terms with smaller time arguments to

the right and vise versa. The time evolution in (11) evolves the system from t0 to t and

back to t0. This is the so called in-in formalism, which is suitable for the calculation of

expectation values.

The in-in time evolution can be conveniently described via a closed time path C, also

known as the Keldish contour, with a forward C+ and a backward C− part, as shown in

Fig. 1.

Figure 1: Closed time contour C, also known as the Keldish contour. The time path starts
at a point t0, goes to t and back to t0. The shift of the time path away from the
time axis is only for illustrative purposes and has no physical meaning.

On this time path, OH can be conveniently written as ([8] p. 85)

OH(t) = TCe
i
∫
C dτH

′(τ)OH(t), (12)

where TC is the contour ordering operator that is defined by

TCA(t1)B(t2) =

A(t1)B(t2)Θ(t1 − t2) +B(t2)A(t1)Θ(t2 − t1) for t1, t2 on C+

A(t1)B(t2)Θ(t2 − t1) +B(t2)A(t1)Θ(t1 − t2) for t1, t2 on C−

A(t1)B(t2) for t1 on C+, t2 on C−

B(t2)A(t1) for t1 on C−, t2 on C+,

≡ A(t1)B(t2)ΘC(t1 − t2) +B(t2)A(t1)ΘC(t2 − t1) (13)

where A(x) and B(x) are two arbitrary operators and Θ(x) is the Heaviside step function.

In the last line of (13) we introduced the contour step function ΘC(t1−t2), which is defined

through the contour ordering in the lines above it ([10] p. 22). Note that in case of the

time contour, one has to differentiate between the real times t and the contour time τ . A

5

contour time τ2 > τ1 can correspond to either t2 < t1 or t2 > t1, depending on where the

τi lie on the contour C.

2.2. Nonequilibrium Green’s function

In the previous chapter, we discussed the general nonequilibrium problem and introduced

the Keldish contour as a convenient tool for the calculation of the average values of

operators O. The one ingredient that we somewhat neglected was the density operator

ρ. For the setup of a nonequilibrium system, one has to specify an initial nonequilibrium

density operator ρ(t0). However, instead of ρ(t0), one can also specify all initial correlation

functions of the system ([10] p. 19).

As we’ll see later on, the framework we’re using is built on determining these correlation

functions. This is why we want to give a brief introduction to nonequilibrium Green’s

functions (NEGF), also known as correlation functions, in the following.

Consider the Schrödinger equation for a wave function 〈x|Φ(t)〉 = Φ(x, t)

i~
∂

∂t
Φ(x, t) = H(t, x)Φ(x, t). (14)

Using the Green’s function G, which is defined by(
i~
∂

∂t
−H(t, x)

)
G(x, t;x′, t′) = i~δ(x− x′)δ(t− t′), (15)

the solution of (14) can be constructed by the convolution

Φ(x, t) =

∫
dx′G(x, t;x′, t′)Φ(x′, t′), (16)

between the wave and the Green’s function. Now, consider the position space wave func-

tion again, however this time we use the time evolution operator U(t, t′), which transitions

a state from time t′ to t to rewrite the equation in the following way:

Φ(x, t) = 〈x|Φ(t)〉 = 〈x|U(t, t′)|Φ(t′)〉 =

∫
dx′〈x|U(t, t′)|x′〉〈x′|Φ(t′)〉 (17)

=

∫
dx′〈x, t|x′, t′〉Φ(x′, t′).

In the second to last step, we inserted a complete state
∫
dx′|x′〉〈x′| = 1. If we compare

(17) with (16), we see that the Green’s function is equivalent to the transition element

6

i.e.

G(x, t;x′, t′) ≡ 〈x, t|x′, t′〉. (18)

Because the transition element, and therefore the Green’s function, describes the propa-

gation of a particle from point x′ at time t′ to some other point x at time t, the Green’s

function is also known as the propagator or correlation function, correlating the two

spacetime points to one another (see [8] p. 4).

Now, we can draw the connection between our goal, the calculation of average values

of operators O(t) via (3) and the appearance of NEGFs. In quantum field theory, all

operators can be expressed by field operators Φ(x, t) and Φ†(x, t) ([11] p. 1). The

particle density operator for example is given by

n(x, t) = Φ†(x, t)Φ(x, t). (19)

If we consider a pure state ρ = |Φ〉〈Φ|, the average particle density can be expressed by

〈n(x, t)〉 = Tr
(
ρΦ†(x, t)Φ(x, t)

)
=
∑

Ψ

〈Ψ|Φ〉〈Φ|Φ†(x, t)Φ(x, t)|Ψ〉 (20)

= 〈Φ|Φ†(x, t)Φ(x, t)|Φ〉 = 〈Φ′(x, t)|Φ′(x, t)〉 = G(x, t, x, t),

where we used Tr (...) =
∑

Ψ〈Ψ|...|Ψ〉, as well as the orthogonality condition 〈Ψ|Φ〉 = δΨΦ.

As we can see in (20), the average particle density equals the equal time Green’s function.

Because all the other possible operators can be expressed by a combination of the field

operators Φ and Φ†, an arbitrary N-point-NEGF is therefore in general given by

G(1, ..., N) = 〈Φi1
1 (1), ...,ΦiN

N (N)〉, (21)

with ij indicating either the field operator or its adjoint. The arguments N represent

a set of variables, for example position xN , time tN and spin σN . As we can see from

the example (20), knowing all N-point-correlation functions is equivalent to knowing all

operator expectation values and therefore knowing ρ.

2.3. The generating functional

In the previous chapter, we introduced the method of nonequilibrium Green’s functions

as a tool to perform nonequilibrium calculations and an alternative to the knowledge of

the density operator ρ. Now, we want to present an efficient way on how to calculate

these Green’s functions.

7

As we have seen in (21), nonequilibrium Green’s functions can be expressed by the ex-

pectation values of field operators. All the necessary ingredients we need to describe our

system are therefore the initial conditions, given by either the initial density operator ρ0,

or all initial correlation functions, and the field operators Φ(xi, ti). In the following, we’ll

chose the field operators to be scalar fields. Both initial conditions and field operators are

part of the generating functional of correlation functions

Z[J,R, ρ0] = Tr
(
ρ0TCe

i(
∫
X J(x)Φ(x)+ 1

2

∫
XY Φ(x)R(x,y)Φ(y))

)
, (22)

which is a generalization of the partition function for nonequilibrium systems and defined

on the time contour C (see Fig. 1) ([10] p. 21). The coordinate x and y, respectively, is

a spacetime variable, containing the contour time x0 and the spacial component x. For

the integral, we used the shorthand notation
∫
X ≡

∫
C dx0

∫
dx. J(x) and R(x, y) are two

source terms which are used to generate the correlation functions.

One can calculate nonequilibrium correlation functions from (22) by using the functional

derivative with respect to the source J(x), which fulfills

δJ(x)

δJ(y)
= δC(x− y) = δC(x

0 − y0)δ(x− y), (23)

and then setting the source terms J and R to zero. For example the one-point function,

also known as the macroscopic field, can be calculated by

δZ[J,R, ρ0]

iδJ(x)

∣∣∣∣
J,R=0

= 〈Φ(x)〉. (24)

Higher order correlation functions can be obtained by differentiating (22) multiple times

with respect to J ([10] p. 22).

Because of the explicit appearance of the trace and the initial density operator ρ0, (22) is

still in a somewhat inconvenient form. This can be avoided by changing into the functional

integral representation and fixing the initial conditions afterwards. In the following, we’ll

present a brief outline how this change is done. More information about the derivation

can be found in [10].

To evaluate the trace, we use the eigenstates

Φ±(t0,x)|ϕ±〉 = ϕ±0 (x)|ϕ±〉 (25)

of the fields Φ for the forward C+ and the backward C− contour at time t0. The ϕ(x) are

8

classical fields and fulfill the boundary condition ϕ±(x0 = t0,x) = ϕ±0 (x) for x0 on C±.

The functional integral representation of (22) is then given by

Z[J,R, ρ0] =

∫ ∏
x

dϕ+
0 (x)

∏
y

dϕ−0 (y)〈ϕ+|ρ0|ϕ−〉 (26)

×
∫ ϕ−0

ϕ+
0

D′ϕei(S[ϕ]+
∫
X J(x)ϕ(x)+ 1

2

∫
XY ϕ(x)R(x,y)ϕ(y)),

where S[ϕ] is a classical action for the real scalar field ϕ. In this representation, the gener-

ating functional is split into two central parts. The first integral contains the information

about the initial conditions of the system, while the second integral describes the system’s

quantum fluctuations ([10] p. 25).

We now want to give an expression for the initial conditions. The most general density

matrix to describe the initial conditions of the system can be parametrized as

〈ϕ+|ρ0|ϕ−〉 = N · exp

(
i

(
a0 +

∫
X
a1(x)ϕ(x) +

1

2

∫
XY

a2(x, y)ϕ(x)ϕ(y) (27)

+
1

3!

∫
XYZ

a3(x, y, z)ϕ(x)ϕ(y)ϕ(z) + ...

))
.

N is a normalization constant and the ai are the coefficients of a power series in the fields

ϕ. Because the initial conditions only contribute at t = t0, the exponent has to vanish for

t > t0, which in turn constrains the coefficients ai to vanish identically for t > t0. Plugging

(27) back into (26), neglecting the irrelevant constants N and exp(ia0) and redefining the

source terms J(x) +a1(x)→ J(x) and R(x, y) +a2(x, y)→ R(x, y), we end up with ([10]

p. 31-32)

Z[J,R, ρ0] =

∫
D′ϕei(S[ϕ]+

∫
X J(x)ϕ(x)+ 1

2

∫
XY R(x,y)ϕ(x)ϕ(y)+ 1

3!

∫
XYZ a3(x,y,z)...). (28)

In this work, we’ll restrict ourselves to the observation of Gaussian initial conditions,

which suffice for many practical purposes [10], where the highest order of ϕ that appears

in (27) is of the second order. Therefore all ai with i ≥ 3 vanish and the generating

functional takes the simple form

Z[J,R] = eiW [J,R] =

∫
D′ϕei(S[ϕ]+

∫
X J(x)ϕ(x)+ 1

2

∫
XY R(x,y)ϕ(x)ϕ(y)). (29)

It should be noted, that there are no approximations for the dynamics of the system. We

merely restricted our choice of initial conditions to be Gaussian. During its time evolution,

9

higher irreducible correlations, which correspond to non-Gaussian density matrices, can

still build up inside the system (cf. [10] p. 34).

2.4. 2PI-effective action

Our main interest lies in the dynamics of the correlation functions. For their description,

we need the equations of motion of the nonequilibrium quantum system. The equations

of motion can be derived from the two-particle-irreducible effective action (2PI-effective

action) Γ[Φ, G], which in turn can be obtained from the generating functional (29). We

can get Γ[Φ, G] by Legendre transforming the exponent of the generating function W [J,R]

after the source terms J and R, resulting in

Γ[Φ, G] = W [J,R]−
∫
X

δW [J,R]

iδJ(x)
J(x)−

∫
XY

δW [J,R]

iδR(x, y)
R(x, y) (30)

= W [J,R]−
∫
X

Φ(x)J(x)−
∫
XY

1

2
(Φ(x)Φ(y) +G(x, y))R(x, y),

where G(x, y) is the connected two-point function

G(x, y) = 2〈TCΦ(x)Φ(y)〉 − 〈Φ(x)〉〈Φ(y)〉. (31)

The effective action in (30) is the quantum mechanical equivalent of a classical action.

Therefore the equations of motion can be extracted via its stationarity conditions given

by

δΓ[Φ, G]

δΦ(x)
= −J(x)−

∫
Y
R(x, y)Φ(y) (32)

δΓ[Φ, G]

δG(x, y)
= −1

2
R(x, y). (33)

These two equations are the quantum equations of motion for Φ and G (see [10] p. 36).

We can write the effective action from (30) in a loop expansion, so that we can easily

perform approximations if necessary. In this case the effective action takes the form

Γ[φ,G] = S[φ] +
i

2
TrC lnG−1 +

i

2
TrC G

−1
0 (φ)G+ Γ2[φ,G] + TrC G

−1G, (34)

where iG−1
0 = δ2S[Φ]/δΦ(x)δΦ(y) is the classical inverse propagator. The first three terms

are the one-loop contribution and the term Γ2[φ,G] contains all higher order contributions.

The last term TrCG
−1G leads to a normalization constant and is irrelevant for our further

10

discussion. If we vary (34) with respect to G, i.e. calculate the stationarity condition (33)

again, and compare them with one another, we get

G−1(x, y) = G−1
0 (x, y)− Σ(x, y)− iR(x, y). (35)

The term Σ(x, y) is the proper self-energy defined by (see [10] p. 35-37)

Σ(x, y;φ,G) ≡ 2i
δΓ2[φ,G]

δG(x, y)
. (36)

This equation can be inverted by building the convolution with G(x, y) on both sides,

which leads us to the partial differential equation∫
Z
G−1

0 (x, z)G(z, y)−
∫
Z

[Σ(x, z) + iR(x, z)]G(z, y) = δC(x− y). (37)

In the absence of a macroscopic field 〈Φ〉 = 0, the inverse operator G−1
0 is given by

G−1
0 = i

(
�x +m2

)
δC(x− y). (38)

Inserting (38) into (37) leads to the evolution equation of G (see [10] p. 41)

(
�x +m2

)
G(x, y) + i

∫
Z

[Σ(x, z) + iR(x, z)]G(z, y) = −iδC(x− y). (39)

The source term R only contributes at the initial time t0. Therefore the contribution of

the integral part with R vanishes for all times x0 > t0. Because of this, the R term is

more of interest for the specifications of the initial conditions and less for the explicit time

evolution of the correlation functions, which is why we only consider the R = 0 case in

our further discussion (see [10] p. 41).

From a standpoint of physical intuition, the object G is somewhat hard to grasp. To make

its physical contend clearer, we can decompose the two-point function. This can be done

by introducing the two functions

ρ(x, y) = i〈[Φ,Φ]−〉, (40)

F (x, y) =
1

2
〈[Φ,Φ]+〉, (41)

where []− denotes the commutator and []+ the anti-commutator, respectively. The

first function ρ is called the spectral function or spectral component and encodes the

spectrum of the theory, while the second function F is called the statistical propagator

11

or statistical component and gives information about occupation numbers (see [10]). The

full two-point propagator G is connected to ρ and F via

G(x, y) = F (x, y)− i

2
ρ(x, y) · sgnC(x

0 − y0), (42)

where sgnC(x
0−y0) = ΘC(x

0−y0)−ΘC(y
0−x0). Similar to (40) and (41), the self-energy

can also be decomposed into a statistical ΣF (x, y) and a spectral part Σρ(x, y) (see [10]).

Using these decompositions, as well as the shorthand notation
∫ x0
y0
dz =

∫ x0
y0
dz0
∫∞
−∞ d

dz,

(39) can be split into the coupled evolution equations for the statistical and the spectral

function

[
�x +M2(x)

]
ρ(x, y) = −

∫ x0

y0
dzΣρ(x, z)ρ(z, y), (43)

[
�x +M2(x)

]
F (x, y) = −

∫ x0

0

dzΣρ(x, z)F (z, y) +

∫ y0

0

dzΣF (x, z)ρ(z, y). (44)

The two equations (43) and (44) are known as the Schwinger-Dyson or Kadanoff-Baym

equations (KBE) (see [10] p. 45). Due to the so-called memory integrals on the right

hand side of (43) and (44), which integrate over the systems history and grow with the

time evolution, solving the Kadanoff-Baym equations is a difficult task. It is the main

topic of this work to find a efficient solution to numerically solve them.

2.5. Decoherence and entropy in nonequilibrium processes

The process of quantum decoherence and the production of entropy are related to nonequi-

librium quantum dynamics, especially in terms of thermalization ([5], [12]). Entropy

production in nonequilibrium systems is an interesting topic and will be made use of later

on in this work. Because of this, we’ll in the following, give a brief introduction to ob-

servables, quantum purity and entropy for nonequilibrium systems. Our introduction to

this topic will be mainly based on [13] and [9].

2.5.1. Relevant and irrelevant observables

The entropy of a system is not uniquely defined. There are various types of entropies

one could define for some system at hand, for example in case of a system in thermal

equilibrium, one can define the thermostatic entropy Sth (thermostatic refers to a ther-

modynamic system in equilibrium). This entropy is a function of a set of measurable

12

macroscopic thermostatic variables like for example the particle number and the energy,

which define the system on a macroscopic scale.

On the other hand, one could consider the other extreme, an entropy that is fully defined

on the microscopic scale of the system, as it is the case for the von-Neumann entropy SvN

given by

SvN = −kD lnD. (45)

Here, in terms of its probabilistic features, the system’s state is fully defined on a micro-

scopic scale by the total density operator D. In thermal equilibrium, the von-Neumann

entropy can be identified with the thermostatic entropy Sth. However, when one considers

a dynamical system, as it is the case in nonequilibrium physics, this identification is no

longer justified.

As already stated above, the knowledge of the total density operator D completely deter-

mines the state of the system on a statistical level, so that the expectation value of any

observable A can be calculated by

〈A〉 = Tr (DA) . (46)

In practice, the complete knowledge of the microstate of a system, and therefore D, is

not obtainable. One has to differentiate between macroscopically observable quantities

Ai, that correspond to the expectation value of an observable 〈Ai〉 and the remaining

unobservable quantities. In accordance with [13], we term the observable quantities as

relevant set R ≡ {Ai} and the unobservable quantities as irrelevant set. The relevant

observables fulfill the equation

Tr (DAi) = 〈Ai〉 = Ai, (47)

which defines their expectation values. Note however, that the density operator D that

fulfills (47) is not uniquely defined. For different sets of unobservable quantities, D can

still fulfill (47).

To avoid such a redundancy, one can split the total density operator into two parts D0

and D1, where D0 is the relevant density operator, which fulfills (47), and is given purely

by the observables Ai. D1 is the irrelevant density operator given by the remaining

unobservable variables.

In this way, the total system can now be split into two parts. The part that is observable

through the relevant set R and described by D0, which one conveniently terms as the

13

Figure 2: Schematic depiction of an isolated quantum system, which can be separated
into an observable part, the system S described by a density operator D0 and
an unobservable part, the environment E described by the density operator D1.

system S and a second part, the environment E, which is unobservable and described by

D1. Together, the system and the environment build the open system shown in Fig. 2

(see [9]).

We’re interested in the least biased state D0, i.e. a D0 which contains the minimal amount

of information and is still compatible with (47) [13]. That is because it contains the least

amount of necessary information which still enables us to make predictions about the

system through measuring the set of Ai’s. Such a D0 can be achieved by choosing it

in such a way, that it maximizes the von-Neumann entropy (45). This is because the

von-Neumann entropy is in fact a measure for the ”lack of information which arises from

the incompleteness of [the] statistical description by means of the density operator D” [13].

2.5.2. Linear entropy of a Gaussian state

In section 2.3, we stated that we’ll only consider Gaussian initial conditions. For this

reason, we limited the following discussion to a Gaussian density operator.

Consider the most general Gaussian density operator given by

ρ(t) =
1

Z
exp

(
−1

2

(
α(t)Q2 + β(t){Q,P}+ γ(t)P 2 + δ(t)Q+ η(t)P

))
(48)

where Q and P are the generalized coordinate and the conjugated momentum, α, β, γ, δ

and η are real valued functions and the partition function Z is a normalization constant

14

so that Tr (ρ) = 1. By performing a shift Q = q+ 〈Q〉 and P = p+ 〈P 〉 where 〈·〉 denotes

the expectation value of the operator, (48) can be simplified to (see [9])

ρ(t) =
1

Z
exp

(
−1

2

(
α(t)q2 + β(t){q, p}+ γ(t)p2

))
. (49)

Our goal in this discussion is the calculation of Tr (ρ2) which we’ll further use to derive

the linear entropy of the system. To perform calculations, it is convenient to diagonalize

(49). This can be achieved by introducing a pair of operators

b(t) =

√
σ

2α~

(
i
α

σ
q +

(
1 +

iβ

σ

)
p

)
, b†(t) =

√
σ

2α~

(
−iα
σ
q +

(
1− iβ

σ

)
p

)
, (50)

where σ(t) =
√
αγ − β2 and ~ = 1 for the natural unit system we chose. With these two

operators (49) can be written as

ρ(t) =
1

Z ′
exp (−σ(t)N(t)) , N(t) = b†(t)b(t), Z ′ = e

σ
2Z, (51)

where N(t) is the number operator of a Fock basis |n〉 with the creation and annihilation

operators b†(t) and b(t). In this basis, N(t) fulfills the eigenvalue equation N(t)|n〉 = n|n〉
and the density operator takes the form

ρ(t) =
1

Z ′

∞∑
n=0

e−σ(t)n|n〉〈n|. (52)

Now, the density operator is in a form in which we can easily perform the calculation of

Tr (ρ(t)2) ([9] p. 12). But before we perform this calculation, we still need to fix Z, which

can be done by using the normalization condition Tr (ρ(t)) = 1. This leads us to

Tr (ρ(t)) =
1

Z ′

∞∑
i,n=0

〈i|e−σ(t)n|n〉〈n|i〉 =
1

Z ′

∞∑
n=0

(
e−σ(t)

)n
=

1

Z ′
· 1

1− e−σ(t)
= 1, (53)

where we used 〈n|i〉 = δni in the second and the geometrical series in the third step. The

normalization constant then takes the form

Z ′ =
1

1− e−σ(t)
= 1 +

1

eσ(t) − 1
. (54)

Taking a closer look at the second term in (54), one can see that its shape is that of a

Bose-Einstein distribution with
E

T
= σ. In fact, when calculating the expectation value

15

of N we get

〈N(t)〉 = Tr (ρ(t)N(t)) =
1

Z ′

∞∑
i,n=0

〈i|e−σ(t)n|n〉〈n|N(t)|i〉 =
1

Z ′

∞∑
n=0

n
(
e−σ(t)

)n
(55)

=
(
1− e−σ(t)

)
· e−σ(t)

(1− e−σ(t))
2

=
1

eσ(t) − 1
,

where we used a commonly known expression

∞∑
n=0

a0 · nqn = a0
q

(1− q)2 , (56)

that is related to the geometrical series, in the second to last step. If one compares this

to (54), one can see that (55) follows the same Bose-Einstein distribution as the second

term in (54). We can therefore identify

1

eσ(t) − 1
= 〈N(t)〉 ≡ n̄(t) (57)

as the average statistical particle number, which we denote with n̄(t) ([9] p.12). With

(52) and (54) at hand, we are now able to calculate

Tr
(
ρ(t)2

)
=

1

Z ′2

∞∑
i,n,m=0

〈i|e−σ(t)n|n〉〈n|e−σ(t)m|m〉〈m|i〉 =
1

Z ′2

∞∑
n=0

(
e−2σ(t)

)n
. (58)

After inserting Z ′ and using the geometrical series again, we get

Tr
(
ρ(t)2

)
=

1

(1− e−σ)−2 ·
1

1− e−2σ
=

1

(1− e−σ)−2 ·
eσ − 1 + 1

eσ − 1 + 1− e−σ
(59)

=
1

(1 + n̄)2 ·
1
n̄

+ 1
1
n̄

+ 1
1+n̄

=
1

2n̄(t) + 1
.

Tr (ρ2) is a measure for the purity of the state described by ρ, which can be seen from the

property

Tr
(
ρ2
)= 1, pure state,

< 1, mixed state.
(60)

It is therefore reasonable to address Tr (ρ2) as the quantum purity µ of a state ([14] p.

10). Note that the statistical particle number n̄ is related to the purity of a state. It can

be interpreted as an indicator for the number of decohered regions in a Gaussian state

16

([9] p. 14). Finally, we want to introduce another measure connected to µ, the linear

entropy SL, which is defined as

SL (ρ) = (1− µ) =
(
1− Tr

(
ρ2
))
, (61)

in the case of continuous variables ([14] p.10 & p.38). The linear entropy is the first-

order approximation of the von Neumann entropy. It is therefore connected to the lack

of information that arises from the description of our system by the density operator ρ

([14] p.10). Using (61) should enables us to quantify this lack of information and draw

conclusions about the flow of information between the system S and its environment E.

17

3. Numerical Implementation

In this chapter, we want to present the setup to numerically solve the KBE in (d + 1)

dimensions under the assumption of a spacial homogeneous system with d dimensions. A

numerical solution for the homogeneous KBE is nothing new regarding the treatment of

the KBE. Several authors have already done calculations of this kind (see. [15], [3], [5], and

more.). We chose this simplified framework, because the main focus of this work is not

another solution for the KBE for a spatial homogeneous system in d+ 1 dimensions, but

rather to find an efficient way of solving this problem, especially in regards of providing a

basis to efficient solution for the significantly more advanced problem of inhomogeneous

systems.

3.1. Spacial setup

For our implementation, we mainly followed the work of J. Berges [15]. We restrict

ourselves to d = 1 and consider a scalar field theory for a spatial homogeneous system,

meaning that only the distance b = |x− y| between two space-time coordinates x and y

is of importance. The restriction to homogeneous systems allows us to shift the problem

completely into momentum space by Fourier transforming

F̃ (x0, y0,p) =
1

(2π)d

∫
dz F (x0, y0, z) · eipz (62)

ρ̃(x0, y0,p) =
1

(2π)d

∫
dz ρ(x0, y0, z) · eipz, (63)

where z = x − y. The change from real to momentum space causes the differential

operator of the KBE to become algebraic in its spacial component, i.e.

[
�x + M(x)2

]
→
[(
∂2
x0 + p2

)
+ M(x)2

]
. (64)

The Fourier transformation effectively reduces the 2(d + 1) dimensional phase space to

a (d + 2) dimensional one. Instead of starting from real space and performing a Fourier

transformation, we redefine F̃ → F and ρ̃→ ρ and initialize the system in momentum

space. When needed, the components of the 2-point-function can then be transformed

back into real space via a reversed Fourier transformation. For our numerical solution of

the KBE, we use the FFTW package (see. [16]) for all Fourier transformations, that need

to be done.

To perform numerical calculations, we are bound to perform a discretization. This is

18

done by the standard method of lattice discretization. The spacial part of this lattice

is a d-dimensional hypercube with periodic boundary conditions, a side length of Nsp

lattice points and a spacing denoted by as between them. The time part of the lattice is

quadratic with a side length of Nt lattice points and a spacing denoted by at. Due to the

lattice discretization, the momentum modes can only take discrete values given by

pni =
2

as
sin

(
πni
Nsp

)
, (65)

where i = 1, ..., d indicates the dimension and ni = 0, ..., Nsp − 1 a specific lattice point

for the i-th dimension (see. [3] p. 469). The squared momentum can then simply be

calculated using the scalar product which yields

p2 =
d∑
i=1

4

a2
s

sin2
(aspi

2

)
, pi =

πni
Nspas

. (66)

The lattice discretization introduces a momentum cutoff − π
as
≤ p ≤ π

as
. From the perspec-

tive of the lattice, momentum modes with absolute values higher than |pmax| = π
as

look

just like lower frequency modes on the lattice. This effect is shown for a 1-dimensional

lattice with Nsp = 11 spacial points, that is depicted in Fig. 3.

Figure 3: Depiction of the momentum cutoff of high frequency modes due to a lattice
discretization. The black dots represent the lattice points with a spacing of as
in 1-dimension. A high frequency mode with p = 1.6 · pmax is given by the blue
curve. The response of the lattice is depicted by the red curve with p = 0.6·pmax.
One can see that the lattice is too rough to resolve the high frequency mode,
causing the mode to appear as though it was the lower frequency mode (red
curve).

The high momentum mode with wave length λHF can’t be resolved by the lattice and is

projected onto a corresponding low frequency mode with wave length λLat within the cutoff

interval. As we’ll see in sec. 6.2.2, cutting off high momentum modes can significantly

influence the dynamics of the system.

19

3.2. Time evolution

In case of a lattice discretization, the continuous time coordinates x0 and y0 are turned into

their discrete version x0
dis = n at and y0

dis = mat, where n and m are two integer numbers.

We will use x0 ≡ x0
dis and y0 ≡ y0

dis for the rest of this work, if not explicitly stated

otherwise. Because of the discretization, we can write the statistical and the spectral

component F (n,m) and ρ(n,m) as functions of the two integers n,m and the momentum

p, which we suppressed in the notation for the upcoming discussion.

We now have to deal with the derivative and the integral in (43) and (44). For our

discretization scheme, we again chose the same approach as J. Berges [15], which is the

finite difference method for the derivative and the trapezoidal rule for the integral. In

case of a second derivative, appearing in the KBE, the finite difference method consists

of two steps. First we perform a difference quotient in the forward direction, meaning

(F (n+1,m)−F (n,m))/at and equivalently for ρ, and then another one in the backwards

direction (F (n,m)− F (n− 1,m))/at. The second derivative of x0 then turns into

∂2
x0F (x0, y0)→ 1

a2
t

(F (n+ 1,m) + F (n− 1,m)− 2F (n,m)) . (67)

As already stated above, in order to calculate the memory integrals in the KBE, we made

use of the trapezoidal rule, where the integral is approximated by a set of trapezes with

respective area A = at (F (n,m) + F (n+ 1,m)) /2. In its discretized version, the first

memory integral of the statistical function F is then given by∫ x0

0

dz Σρ(x, z)F (z, y)→ at

(
Σρ(n, 0)F (0,m)

2
+

n−1∑
l=1

Σρ(n, l)F (l,m) +
Σρ(n, n)F (n,m)

2

)
. (68)

The other memory integrals transform in the same way. Because of the way all the trapezes

are added up to calculate the integral, we get boundary terms that contain a factor of
1
2
. Note however, that because of the anti-commutation relation (40), all boundary terms

for ρ and Σρ with equal time components n = m vanish. Taking this fact into account,

and using previously discussed approximation schemes, we can rewrite the KBE into a

20

numerically solvable form given by [15]

F (n+ 1,m,p) = 2F (n,m,p)− F (n− 1,m,p)

− a2
t

(
p2 +M(n)2

)
F (n,m,p)

− a3
t

{
Σρ(n, 0,p)F (0,m,p)

2
− ΣF (n, 0,p)ρ(0,m,p)

2

+
m−1∑
l=1

(Σρ(n, l,p)F (l,m,p)− ΣF (n, l,p)ρ(l,m,p))

+
n−1∑
l=m

(Σρ(n, l,p)F (l,m,p))

}
.

(69)

After fixing the initial conditions F (0, 0,p), F (1, 0,p) and F (1, 1,p), the initial values of

ρ are fixed to ρ(0, 0,p) = 0, ρ(1, 1,p) = 0 and ρ(1, 0,p) = at by its anti-commutation

relation, (69) allows us to stepwise determine all the correlation functions of the system.

The process on how the evolution takes place is illustrated in Fig. 4.

(a) (b) (c)

Figure 4: Depicted is the process of the discrete time evolution for statistical function
F (n,m, p) from a), b) the n-th to n+1-th time step and further to c) the n+2-
th step. Each block represents Nsp momentum values of F (n,m, p). Blue blocks
have been, white blocks have to be and grey blocks do not need to be calcu-
lated. The opaque arrow indicates the value that is currently calculated, the
transparent one indicate values that have already been calculated in the current
x0 step.

At the n-th step, the values of the correlation function F (n,m, p) for the n+1-th step are

calculated stepwise, starting from m = 0 and continuing until m = n (Fig. 4 a)). The

opaque arrow in Fig. 4 indicates the value that is calculated for the current m, while

the transparent arrows indicate values that have been calculated previously in the same

n step. Blue blocks represent values that have already been and white blocks values that

will be calculated during the time evolution. The grey blocks indicate possible values of F

which do not need to be calculated due to the commutation relations. Each block contains

21

Nsp momentum points. After calculating the values up until m = n, the last remaining

component is the equal time one for the n+1-th step. By making use of the commutation

relation for F (41), one can then calculate the F (n+1, n+1) from F (n+1, n) (Fig. 4 b)).

Afterwards, the process starts anew for the n+2-th step (Fig. 4 c)). The time evolution

for ρ is done in a similar way. Additionally, due to the anti-commutation relations, the

values ρ(n, n, p) and ρ(n, n−1, p) are already fixed and no further calculations are needed

for them.

22

4. Runtime analysis

Solving the Kadanoff-Baym equations is a difficult task. This is especially true for the

amount of memory and computation time that is needed for the numerics. The rapidly

increasing usage of both memory and computation time the further time evolution goes,

makes an analysis of the scaling behavior of them important. In the following, we’ll give

a brief discussion on this scaling behavior.

4.1. Memory usage

We want to start our discussion with the use of storage. In general, every value of F and

ρ that has to be stored is a complex number with double precision. A double precision

number takes 8 bytes [17]. A complex double number consists of a real and an imaginary

part, both of which are of double precision, and therefore needs 16 bytes. The total

amount of data points we have to store for the full calculation is given by

Nhom
data (Nt, Nsp, d) = 2 ·N2

t N
d
sp (70)

in case of a homogeneous system for Nt time steps and Nsp spacial points in d dimensions,

where we only consider the 2-point Greens function. For the more general case of n-point

functions in an inhomogeneous system, we would need

N inhom
data (Nt, Nsp, d, n) = 2 ·

(
NtN

d
sp

)n
, (71)

where n is the number of points for the Greens function. The factor of 2 in both (70) and

(71) comes from the need that we have to calculate both F and ρ. The number of data

points we have to store, can be reduced by a factor of 2 by making use of the commutation

relations. However, this makes the calculations slightly more complicated and increases

the computation time. Most of the time, the memory is not the limiting factor, so we

kept this factor of 2 for simplicity reasons.

From the amount of data points, we can estimate the total memory that is needed to run

the calculation. Suppose we have a system of 150 spacial points and 800 time steps in

1-dimension. For most of the calculations done in this work, such a number of time steps

would only be enough to observe the early to intermediate time behavior of the system. To

observe the late time behavior, depending on the chosen run parameters, several thousand

steps might be necessary. The amount of storage we need for our example model would

23

already be

S = 16 · Bytes ·Nhom
data (800, 150, 1) = 3.072 GB. (72)

Considering that the data is stored in the RAM, the usage of the hard drive would be very

slow, this is already quite a lot of storage that is needed to perform the computation. If we

further take into consideration that the number of data points and therefore the memory

usage scales with O(N2
t), then it becomes obvious that observing several thousand steps

is a very difficult task. It should also be noted, that for our toy model, we only considered

one spacial dimension. The case of higher dimensions or for inhomogeneous systems is on

a completely different scale and without reduction techniques a hopeless endeavor.

4.2. Computation time

Besides the storage, the computational work load poses another problem to the solution

of the KBE. We want to start with the dependency of the computation time on the

number of spacial points. The number of spacial points remains constant for each time

step throughout the system’s time evolution. Each additional spacial point adds the same

amount of work load, so the computation time should depend linearly on the total number

of spacial points Nsptotal = Nd
sp. This dependency can be seen in Fig. 5.

Figure 5: Depicted is the total computation time Ttotal needed to perform 500 time steps,
starting from x0 = 0, as a function of the total number of spacial points
Nsptotal = Nsp. The data is fitted by a linear function, indicated by the red
curve.

For the benchmark in Fig. 5, we chose to calculate 500 time steps, starting from x0 = 0,

and measure the total computation time Ttotal(Nsptotal) that is necessary to perform the

24

computation. We varied the total number of spacial points Nsptotal = N1
sp = Nsp from 80

to 300 and ran our calculations on the Julia High Performance Cluster (HPC) using the 8

CPUs of the Intel R© Xeon Gold 6134 Processor for one standard node [18]. From Fig. 5,

one can see that, as expected, Ttotal closely follows a linear course. To find the concrete

dependency of Ttotal on Nsptotal for the chosen setup, we fit the data with a linear function.

The fit is indicated by the red line in Fig. 5 and has a slope of mT = (0.761± 0.011) s.

Besides the spacial dependency, we also have to consider the dependency of the compu-

tation time per step ts on the current time step nt. With each time step, the amount of

data points that need to be calculated in the next one is increased by one (see Fig. 4).

When we take into account that the memory integrals run over the complete history of

the system, we would expect a scaling behavior of

ts(nt, Nsptotal) = Nsptotal ·
(
a0 + a1 · nt + a2 · n2

t

)
=
(
c0 + c1 · nt + c2 · n2

t

)
, (73)

where the ai are constants specific to our solver and the machine the program is running

on. Again, we ran a test computation for Nsp = 200 spacial points up to nt = 1000 on

the Julia HPC for the same setup as above. The result can be seen in Fig. 6.

(a) (b)

Figure 6: a) Double logarithmic plot of the computation time per step ts as a function of
the current time step nt with Nsp = 200 spacial points for a test computation
on the Julia high performance cluster. For nt ≥ 200, the data on the double
logarithmic scale is fitted linearly (red curve). b) Double logarithmic plot of
the total computation time Ttotal needed to perform a total amount of Nt time
steps. Again, the data is fitted linearly (red curve) on the double logarithmic
scale, in this case for Nt ≥ 200.

25

Fig. 6 a), shows the course of ts as a function of nt on a double logarithmic scale. We

chose this scale, because it is convenient to determine the scaling behavior of ts later on.

One can see that for a nt ≥ 200, the graph tends to a linear course. On the other hand,

for nt < 200, the linear course gets notably distorted. This behavior is expected when we

consider (73). For large nt, the quadratic term outweighs the others and should almost

completely determine the scaling behavior of ts, which results in a linear course on the

double logarithmic scale. In case of smaller nt, the contribution of the constant and linear

term become comparable to the quadratic one and the course of ts is no longer linear on

this scale.

We want to find the scaling behavior of ts. To do this, we perform a linear fit of

log(ts(log(nt))) for large nt, i.e. nt ≥ 200. This fit is indicated by the red line in Fig. 6 a)

and has a slope of mt = (2.081±0.009), which suggests a scaling behavior of O(n2.081
t) for

ts. This is slightly larger than the O(n2
t) scaling we would expect from (73) for large nt,

even within the error range. The small difference might be caused by parts of our solver,

which are not directly related to the solution of the KBE, like the storage of the data on

the hard drive.

Besides the computation time necessary for a single step, we also calculated the total time

Ttotal(Nt, Nsptotal) needed to perform all Nt time steps. The total computation time can

be gained by simply integrating, or in this case summing over ts for all nt, i.e.

Ttotal(Nt, Nsptotal) =

∫ Nt

0

dnt ts(nt, Nsptotal)→
Nt∑
nt=0

ts(nt). (74)

The course of the total computation time can be seen in Fig. 6 b), where we again chose

a double logarithmic scale. We can see that, similar to ts, Ttotal describes a linear course

for Nt ≥ 200 that gets distorted for Nt < 200. Due to the summation, we would expect

that the scaling order of Ttotal is one order higher than that of ts and should therefore be

O(N3
t). Again, we performed a linear fit, this time of log(Ttotal(log(Nt))) for Nt ≥ 200.

The fit is indicated by the red line in Fig. 6 b) and has a slope of mt = (3.133± 0.001).

We can see that the scaling behavior of Ttotal has indeed increased by roughly one order

compared to ts. The deviation from the expected O(N3
t) are again probably caused by a

part of the solver that is not directly related to the solution of the KBE.

From Fig. 6, the problem of solving the KBE becomes obvious. For the time spacing

at = 0.1 (a time stepping we frequently use in this work), that we chose to perform this

test computation with, we can only observe the system for a relatively small time frame of

x0
max = Nt ·at = 100. Being able to observe this small time frame for the full computation

26

took us roughly 2.3h. Later on in this work, we’ll consider x0 > 1000 using a reduction

scheme to observe thermalization. From the fit of Ttotal, that we performed previously,

we can extrapolate the time it would take us for a full computation of the KBE up to

only x0 = 1000. In fact, it would would take us roughly 100 days to perform such a

computation for the setup we used above. Needless to say, that is not an acceptable time

consumption. Because of this huge time consumption, we need a reduction scheme for the

computation of the KBE.

We want to close this section with a note about parallelization. One could argue that the

long computation time could be shortened by a sufficient parallelization and enough CPUs.

An elaborate parallelization was done in [3], where the time history of the system is split

into parallelized strips. The computations for these strips are parallelized and each of these

parallelized units exchanges values of F and ρ with one another, that are needed for further

calculations (for more details see [3]). However, a completely independent parallelization

of these strips is not possible due to the appearance of the memory integrals in the

calculations. Even when the time evolution is split into separate computation blocks,

each block still has to wait until the necessary data for its computation is produced. A

parallelization for the time evolution with respect to the time arguments is therefore only

partially possible, but for the momentum modes, the case is different. After performing

the computation of the effective mass and the self energies at each x0 step, the remaining

calculations for each momentum mode are independent from the others. This enables

one to, with the exception of the calculation of the effective mass and the self energies,

fully parallelize the time evolution for each momentum mode. This is what we did in our

solver.

27

5. Model

In this section, we want to introduce the model we use for testing our approach to reduce

the necessary computational workload to solve the KBE. For our test model, we consider

a quantum theory for a real scalar field ϕ with one component and a ϕ4-coupling in one

spacial dimension. The classical action has a O(1)-symmetry and is given by

S[ϕ] =

∫
X
dx

1

2
∂µϕ(x)∂µϕ(x)− m2

2
ϕ(x)2 − λ

4!
ϕ(x)4, (75)

where
∫
X is a shorthand notation for

∫
C dx

0
∫
dx, like in sec. 2.3 (see also [19]). The

coupling is denoted as λ and the bare mass parameter is given by m.

In sec. 2.3 and 2.4, we discussed the derivation of the 2PI-effective action. We performed

a loop expansion, resulting in

Γ[ϕ,G] = S[ϕ] +
i

2
TrClnG

−1 +
i

2
TrCG

−1
0 (ϕ)G+ Γ2[ϕ,G] + const

= Γ[ϕ,G]1Loop + Γ2[ϕ,G] + const.

This led to the Kadanoff-Baym equations (43) and (44), which are exact for the complete

knowledge of the self-energies ΣF and Σρ. However, their exact expression is given by the

infinite sum of diagrams

Γ2[ϕ,G] = Γ2Loop
2 [ϕ,G] + Γ3Loop

2 [ϕ,G] + ... (76)

contained in Γ2[ϕ,G], which can only be computed approximately. For the purpose of

this work, we only compute (76) up to the 3-loop order, which corresponds to the two

diagrams shown in Fig. 7 (see [10]).

Figure 7: 2- and 3-loop vacuum diagrams, which contribute to the 2PI-effective action.

The 3-loop diagram is already enough for the system to take scattering processes from

the memory integrals into account [15].

28

From the loop diagrams Fig. 7, we can derive the self-energy using (36). The derivative

of (76) with respect to G reduces the loop order of the diagrams by one, resulting in the

new diagrams shown in Fig. 8.

Figure 8: 1- and 2-loop diagrams that contribute to the self-energy.

This approximation is called the setting-sun approximation [3]. The 2-loop diagram

(setting-sun diagram) in Fig. 8 leads to the equations

ΣF (x, y) = −λ
2

6

(
F (x0, y0, |x− y|)3 − 3

4
ρ(x0, y0, |x− y|)2F (x0, y0, |x− y|)

)
, (77)

Σρ(x, y) = −λ
2

6

(
3F (x0, y0, |x− y|)ρ(x0, y0, |x− y|)− 1

4
ρ(x0, y0, |x− y|)3

)
, (78)

for the decomposed self-energy. Note that these self-energies have to be calculated in real

space. Because we consider the system in momentum space, we have to Fourier transform

the correlation function F and ρ before computing (77) and (78). This can be done with

a fast Fourier transform (FFT) routine like for example the FFTW [16], which we used.

The 1-loop diagram in Fig. 8 causes a shift in the system’s mass, leading to the effective

mass [15]

M(x0, F)2 = m2 +

∫
dp

2π
F (x0, x0,p). (79)

The mass term m2 can be calculated at the initial time x0 = 0 from

M(0, F)2 = M2
Init = m2 +

∫
dp

2π
F (0, 0,p), (80)

where MInit is a free initial mass parameter. Putting everything together, the KBE in the

29

setting-sun approximation for a homogeneous system read[
∂2
x0 + p2 +m2 +

∫
dp

2π
F (x0, x0,p)

]
ρ(x0, y0,p)

=
λ2

6

1

2πd

∫ x0

y0
dz0

∫
dz eipz

(
3F (x0, z0, z)ρ(x0, z0, z)− 1

4
ρ(x0, z0, z)3

)
ρ(z0, y0,p),

[
∂2
x0 + p2 +m2 +

∫
dp

2π
F (x0, x0,p)

]
F (x0, y0,p)

=
λ2

6

1

2πd

(∫ x0

0

dz0

∫
dz eipz

(
3F (x0, z0, z)ρ(x0, z0, z)− 1

4
ρ(x0, z0, z)3

)
F (z0, y0,p)

−
∫ y0

0

dz0

∫
dz eipz

(
F (x0, z0, z)3 − 3

4
ρ(x0, z0, z)2F (x0, z0, z)

)
ρ(z0, y0,p)

)
,

where z = |x− y|. In the following, we’ll look at the numerical results from these

equations for different initial conditions.

We have seen that the KBE beyond 1-loop corrections in principle demand that one has to

take the system’s complete history and with it all unequal time correlation functions that

build up inside the system at x0 > 0 into account. However, in sec. 4, we have also seen

that for late time observations x0 > 1000, using the system’s whole history is a hopeless

endeavor. This chapter should introduce the model and provide the reader with a sense

of what to expect for the different initial conditions that we’ll use throughout this work.

In this section, as well as sec. 6, we therefore already make use of the reduction scheme,

which will be introduced later on in sec. 7, to enable the reader to get an understanding

of the system’s late time evolution.

5.1. Quench initial conditions

The first set of initial conditions we want to discuss are the quench initial conditions.

The idea behind the quench is to initialize the system in an equilibrium state, where the

statistical particle density is given by the Bose-Einstein-distribution

np(0) =
1

e
ω
T0 − 1

, ω =
√
p2 +M2

0 , M2
0 = 2 ·M2

Init, (81)

with an initial temperature T0 and an initial effective mass M0. Through an instantaneous

drop of the effective mass square M2
0 from 2 ·M2

Init to M2
Init, the system is brought out of

its equilibrium state and one can then observe its relaxation process (see [15]).

30

Before we discuss the results, we still need to add one piece of information. That is, how to

initialize the statistical correlation function F (0, 0,p), F (1, 0,p) and F (1, 1,p) mentioned

in sec. 3. The initial conditions can be derived from the equations [15]

F (0, 0, p) =
np(0) + 1/2

ω
, ∂tF (t, 0, p)|t=0 = 0, (82)

F (0, 0, p)∂t∂t′F (t, t′, p)|t=t′=0 = (np(0) + 1/2)2 . (83)

By discretizing the partial derivatives, one can then calculate the initial values for F ,

which are given by

F (0, 0, p) =
np(0) + 1/2

ω
, (84)

F (1, 0, p) =
np(0) + 1/2

ω
· cos (ωat) , (85)

F (1, 1, p) =
np(0) + 1/2

ω
. (86)

Remember that because of the anti-commutation relations it follows that ρ(0, 0, p) = 0,

ρ(1, 0, p) = at and ρ(1, 1, p) = 0. Equipped with these initial conditions, we can now

discuss the quench case.

5.1.1. 1-loop approximation

We want to start our discussion by only considering the 1-loop case for the quench. In

this case, there are no memory integrals and thus scattering does not occur. Nonetheless,

it’ll be useful later on for our discussion of numerical effects.

When the system is brought out of equilibrium, the effective mass begins to oscillate

rapidly, which can be seen in Fig. 9 a). The oscillation is damped fast and the system

approaches an asymptotically constant new mass. Naively one might think, that the

system has approached a new equilibrium state, however, this is not the case. If the

system were to approach an equilibrium state, it would become invariant under time

translation. This in turn would mean that F (x0, y0) → F (|x0 − y0|), which, in case of

the 1-loop approximation would result in a constant mass M2(x0, F) = M2
Init (see [15] p.

25-26). This can be seen from (79) and (80), which, when taking the time translation

invariance into account, leads to

M2
eq(x

0, F) = m2 +

∫
dp

2π
F (
∣∣x0 − x0

∣∣ ,p) = m2 +

∫
dp

2π
F (0,p) = M2

Init. (87)

31

However, the system’s new mass M2(x0 = 250) = 0.58 differs from the mass M2
eq = 0.5,

we would expect in thermal equilibrium for our chosen initial mass of M2
Init = 0.5. The

system does not thermalize.

(a) (b)

Figure 9: Time evolution of a) the effective mass M(x0) as well as b) the equal time
correlation function F (x0, x0, 0) for the quench initial conditions in the 1-loop
approximation up to x0 = 250. For this simulation, we used the settings S1,
which can be found in appendix A.

That the system does not approach thermal equilibrium in the 1-loop approximation

can be seen nicely in Fig. 9 b). After the quench, the system oscillates with a high

amplitude. The amplitude of the equal time correlation function F (x0, x0, 0) is rapidly

damped, though at later times, when the effective mass has approximately become a

constant, F (x0, x0, 0) is still oscillating and the damping tends to zero. The system

doesn’t reach equilibrium.

5.1.2. 2-loop setting-sun approximation

In the setting-sun approximation, the calculation becomes significantly more costly. In

the case of 2-loop corrections, the memory integrals come into play. At times x0 > 0,

unequal time correlations build up inside the system and scattering starts to take place.

The scattering effects enable the system to thermalize, which can be seen in Fig. 10.

After the quench, F (x0, x0, 0) shoots up, similar to the 1-loop case (see insert Fig. 10).

However, the oscillation is rapidly damped down and this initial oscillatory phase ends

at about x0 = 20. Afterwards, the system goes into a much longer, smooth drifting

phase, where the zeroth mode significantly increases. The drifting phase ends at roughly

x0 = 500 and the system slowly transitions into thermal equilibrium, where no more

32

Figure 10: Course of the equal time zeroth mode F (x0, x0, 0) for a quench in the setting-
sun approximation. The inserted graph shows the early time behavior from
x0 = 0 to 30. After the early oscillatory phase, the system transitions into
a drifting phase. At roughly x0 = 500 the drifting phase ends and thermal
equilibrium is approached. The settings S1 were used to observe this course.

changes occur. To be sure of the stability, we explicitly investigated the time evolution to

up to x0 = 6000, as well as for different momentum modes. Up to this time, the system

didn’t seem to leave its equilibrium state again.

5.2. Tsunami initial conditions

Now, we want to discuss a different set of initial conditions, the so-called tsunami. For

the tsunami, the initial particle distribution has the form of a Gaussian peak [15]

n0(p) = A exp

(
−(|p| − pts)2

2σ

)
, (88)

with an Amplitude A, a peak width σ and a center at p = pts. In Fig. 11, the initial

particle distribution is shown as a function of the 1-dimensional momentum p.

The distribution is symmetric under p→ −p and one can think of such initial conditions

as two colliding wave packages in one dimension. The effective mass at the initial time

x0 = 0 is given by M(0, F) = MInit and the renormalized mass can be determined through

33

Figure 11: Initial particle distribution n0(p) for the tsunami initial conditions as a function
of the momentum. The distribution is peaked around p = pts = 1 with an
amplitude of A = 3 and a width of σ = 0.2.

(80) ([15] p. 35). The initial values for F and ρ are the same as for the quench.

5.2.1. 1-loop approximation

The 1-loop case for the tsunami initial conditions is extremely plane. That is, because

there is neither scattering, nor is there a forced change in the effective mass. The two

wave packages do not interact and all quantities of the system remain constant. From

our previous argument for the 1-loop quench, one can conclude that the constancy of

the effective mass indicates a time translation invariant state of the system. Due to the

missing interaction, the system has therefore reached its thermalized state from the very

beginning.

5.2.2. 2-loop setting-sun approximation

Other than the 1-loop case, the 2-loop one is very interesting. In case of the tsunami, there

is another momentum mode, which is especially interesting besides the zeroth momentum

one. That is the mode ppeak where the peak of the Gaussian particle distribution lies.

Fig. 12 and 13 show the course of modes p = {0, ppeak, pmax} for the particle distribution

given in Fig. 11.

In Fig. 12 we show the early time behavior (damping phase) for the tsunami. The

damping phase ranges from x0 = 0 to roughly 25 and makes up only a very small part of

34

Figure 12: Early time behavior of the equal time correlation function F (x0, x0, p) for the
tsunami initial condition and the momentum modes p = 0 (red), p = ppeak = 1
(brown) and p = pmax = 5 (green). The dotted line indicates the estimated
end of the early time damping phase. The settings we used for this plot are
given in S1 (appendix A).

the total time evolution. After one small oscillation, the zero mode immediately shows a

drifting behavior. One might estimate the time frame of the damping phase even smaller,

however, we chose x0 = 25 because of the peak momentum mode. While the zero mode

significantly increases at early times, the peak mode on the other hand decreases rapidly.

The change of the maximal momentum mode pmax = 5 is minuscule. However, even for

the high momentum modes , one can observe a growth, that can be seen in Fig. B.1 (see

appendix B.1).

After the damping phase, similar to the quench, the system transitions into the drifting

phase (Fig. 13). This phase is significantly longer than the previous one, ranging to about

x0 = 1000. One can see, that the change in the peak momentum mode during the drifting

phase become small rather fast. On the other hand the zero momentum mode shows an

interesting behavior. The initial rapid increase of the zero mode causes it to overshoot.

At x0 = 60, it seems to reach a peak value. From this point, the mode slowly decreases

drifts to a lower value, until the system only shows minor changes. At this point the

system transitions to the thermalization phase.

35

Figure 13: Full time evolution up to x0 = 5000 of the equal time correlation function
F (x0, x0, p) for the tsunami initial condition and the momentum modes p = 0
(red), p = ppeak = 1 (brown) and p = pmax = 5 (green). The evolution can
be split into three phases. The damping (see Fig.12), drifting and the ther-
malization phase. The settings we used for this plot are given in S1 (appendix
A).

The transition between the drifting and the thermalization phase can be seen best from the

highest momentum mode pmax, whose course is shown in Fig. B.1. After a long oscillation

phase, the mode also shows a drifting behavior, with a minor, but steep increase. At

x0 = 1000, the steep increase flattens and even the highest momentum mode only shows

slow, slight changes, indicating its gradual approach to thermal equilibrium.

Particle distribution

As we saw in the introduction to nonequilibrium systems, one can derive macroscopic

variables from the correlation functions of the system. In case of the tsunami, the course

of these macroscopic variables is more interesting then it is for the quench, which is why

we didn’t look at them previously.

36

We slightly change the tsunami initial condition by adding a thermal background given

by a Bose-Einstein-distribution

n0(p) =
1

eε0(p)/T0 − 1
, ε0 =

√
p2 +M2

0 . (89)

The tsunami peak is simply added on top of the thermal background, leading to the new

initial particle distribution

n0(p) = A exp

(
−(|p| − pts)2

2σ

)
+ 1/ (exp (ε0(p)/T0)− 1) . (90)

The tsunami on a fixed thermal background enables us to do a comparison between

the system’s background temperature at the initial time and the temperature which the

system reaches after thermalization. First, we need an expression for the time dependent

particle distribution n(x0, p) of the system. The time dependent particle distribution of

the system can be calculated via

n(x0, p) =
(
F (x0, y0, p)∂x0∂y0F (x0, y0, p)−

(
∂x0F (x0, y0, p)

)2
) 1

2

∣∣∣∣
x0=y0

− 1

2
. (91)

For the 1-loop approximation, this is a conserved quantity. However, in the setting-

sun approximation, the particle distribution does not remain constant due to scattering.

Besides n(x0, p), we also need the time dependent energy density ε(x0, p), given by

ε(x0, p) =

(
∂x0∂y0F (x0, y0, p)

F (x0, y0, p)

) 1
2

∣∣∣∣∣
x0=y0

(92)

for our discussion. We evaluated the derivatives ∂x0∂y0F (x0, y0, p) as well as ∂x0F (x0, y0, p),
that are used in (91) and (92), using finite differences

∂x0F (x0, y0)→
F (x0 + at, y0)− F (x0 − at, y0)

2at

∂x0∂y0F (x0, y0)→
F (x0 + at, y0 + at)− F (x0 + at, y0 − at)− F (x0 − at, y0 + at) + F (x0 − at, y0 − at)

4(at)2
.

For the tsunami part of our initial conditions, we chose A = 4, pts = 2.5 and σ = 0.1. The

full set of settings, which we used for the rest of this section, can be found in appendix

A, set S2.

When plotting snapshots of ln (1 + 1/n(x0, p)) for various times against the energy density

ε(x0, p), we get the graph shown in Fig. 14.

37

Figure 14: The graph shows snapshots of the course of ln (1 + 1/n(x0, p)) as a function
of the energy density ε(x0, p) for different times during the evolution of the
tsunami. The initially deep distortion of the tsunami peak is quickly flattened.
After a much longer time, the system has approached a new equilibrium state,
indicated by the pink line. For this equilibrium state, a linear fit (black dashed
line) was performed and a new equilibriums temperature was determined.

The red line shows the the course of ln (1 + 1/n0(p)) for the initial particle distribution

n0(p) with a thermal background of temperature T0 = 2. For p � ppeak and p � ppeak,

the graphs course is linear and thus following a Bose-Einstein-distribution, as expected

from the thermal background. Around ε(x0, ppeak) the graph dips down, indicating the

tsunami peak. The lines brown to pink show snapshots of the particle distribution for

different times. One can clearly see that the tsunami peak flattens rapidly and deforms

the part of the system’s thermal background that has previously been undisturbed. As

time passes ln (1 + 1/n(x0, p)) approaches a linear course, which can be seen from the

pink line that shows ln (1 + 1/n0(p)) at a time x0 = 2500. At this point, the system has

completely approached a new equilibrium state and follows a Bose-Einstein distribution.

We performed a linear fit (black dashed line) of the final state, resulting in a slope of

mT = (0.40256 ± 0.00005), which fits the pink line very well. By taking the inverse

of slop, we can calculate a new equilibrium temperature Teq = (2.4841 ± 0.0003). The

energy of the tsunami was transfered to the thermal background, resulting in a rise in

temperature of ∆T = (0.4841± 0.0003).

38

Linear entropy

Another quantity which is directly connected to the particle distribution for a nonequi-

librium Gaussian system is the quantum purity, which we calculated in sec. 2.5.2. From

the quantum purity one can then derive the linear entropy (61). The quantum purity and

thus the entropy of a nonequilibrium evolution is a interesting quantity that, similar to

the particle density (cf. [5]), enables us to characterize the systems degree of thermaliza-

tion. For this reason, we’ll take a closer look at the entropy during the time evolution of

a tsunami with a thermal background, but before that, we first want to briefly show the

analogies between our model and the Gaussian state we discussed in sec. 2.5.2.

For the real scalar theory we chose, we define an observer that can only measure equal

time two-point functions (cf. [5], [12])

Fp(x
0) = 〈Φp(x

0)Φp(x
0)〉 = F (x0, y0, p)

∣∣
x0=y0

, (93)

Rp(x
0) =

1

2
〈
[
Φp(x

0)Πp(x
0)
]

+
〉 = ∂x0∂y0F (x0, y0, p)

∣∣
x0=y0

, (94)

Kp(x
0) = 〈Πp(x

0)Πp(x
0)〉 = ∂y0F (x0, y0, p)

∣∣
x0=y0

, (95)

which are the relevant observables of the least biased density D0 (see sec. 2.5.2) for the

system at hand. One can now split this least biased state into subsystems a, where each

subsystem has a set of local observables Aia and is described by an effective Gaussian

density matrix [13]. In our case, these subsystems correspond to the different momentum

modes p and we can decompose the least biased state to D0(x0) =
∏

pDp(x
0) with

Dp(x
0) =

1

Z
exp

(
−κp(x0)

(
Kp(x

0)q2 −Rp(x
0) [q, p]+ + Fp(x

0)p2
))
. (96)

This corresponds to the shifted general Gaussian density matrix (49) for (cf. [5])

α(x0) = −2κp(x
0)Kp(x

0), β(x0) = 2κp(x
0)Rp(x

0), γ(x0) = −2κp(x
0)Fp(x

0). (97)

For a Gaussian state, as we saw in sec. 2.5.2, the quantum purity of the system is then

simply given by

Tr
(
D2
p(x

0)
)

=
1

2np(x0) + 1
, (98)

where np(x
0) is the quasi-particle density, and the linear entropy by

SL(x0, p) = 1− Tr
(
D2
p(x

0)
)
. (99)

39

The quasi-particle density is given by [5]

np(x
0) +

1

2
=
√
Fp(x0)Kp(x0)−R2

p(x
0). (100)

Inserting (93)-(95) into (100) then leads to the same expression of the particle distribution

that we gave in (91). With the quantum purity at hand, we can now calculate the linear

entropy SL(x0, p) of each mode. In Fig. 15 we, present the time evolution of the entropy

for the three different momentum modes p = {0, ppeak, pmax}, as well as the average linear

entropy per mode

S̄L(x0) =
1

Nsp

Nsp∑
i=0

SL(x0, i), (101)

for the thermal background tsunami up to x0 = 2500.

Figure 15: Course of the linear entropy during the time evolution of a tsunami with ther-
mal background for different momentum modes (red, brown, green), as well as
for the average entropy per mode S̄L(x0) (blue) up to x0 = 2500. After a time
interval of relatively fast change, the graphs approach a constant course, where
no more changes occur.

Initially, the peak momentum mode is highly occupied, which also leads to a high entropy.

As the peak mode begins to lose occupation due to scattering, the peak modes entropy

rapidly decreases. This might seem somewhat problematic given the fact that the entropy

should increase monotonously. However, while the entropy of the peak mode decreases,

low and high momentum modes record a significant increase in linear entropy. As a

matter of fact, when looking at the average entropy per mode, illustrated by the blue line

40

in Fig. 15, one can see that the system’s total entropy increases. This is in agreement

with the second law of thermodynamics and is to be expected from a thermodynamic

system when approaching thermal equilibrium. After the relatively quick changing period,

at roughly x0 = 500, the entropy for all the momentum modes, as well as the average

entropy of the system, have become constant, indicating the system’s approach to thermal

equilibrium. Even up to x0 = 2500, no more changes in the linear entropy can be observed.

41

6. Numerical effects

The knowledge of the numerical effects that can influence the evolution of the system,

as well as the numerical stability of the algorithm, play an important role in choosing

meaningful parameters and the interpretation of the results at hand.

6.1. Finite lattice effects

The numerical effects in the algorithm are a result from the lattice discretization one has

to perform. For this reason, the parameters we’re most interested in are the ones that

determine the lattice discretization, i.e. the lattice spacings at (time spacing), as (spacial

spacing) and the spacial volume Vs of the lattice.

We’ll begin our discussion with the observation of finite lattice effects. To produce the

data for this section, we used the settings S3 (appendix A). The finite lattice effects result

from the finite length, or volume Vs of the lattice and can cause disturbances in the system.

The significance of these effects differs for 1- and 2-loop corrections, which is why we’ll

discuss them separately in the following.

6.1.1. 1-loop approximation

At first, we consider the case of 1-loop corrections and restrict ourselves to the quench

initial condition, because, as we saw in sec. 5.2, the tsunami initial condition for 1-loop

corrections is rather uninteresting.

In Fig. 16 we show the equal time correlation function F (x0, x0, 0) of a quench for two

different lattice sizes Vsa = 160 and Vsb = 640.

In both cases, the system begins to show a beat-like behavior, which occurs at about

x0 = (90± 5) for a) and x0 = (370± 10) for b), respectively. As one can see, the dis-

turbances scale with the size of the lattice. To find the dependency at which point the

disturbance occurs, we varied the lattice size from 160 to 640 in steps of 80 and observed

at which point in time the system gets disturbed. We found that the occurrence of the

disturbance follows a linear dependency with x0
disturbance = (0.573 ± 0.018) · Vs. These

disturbances are the result of the superposition for the different momentum modes during

the calculation of the effective mass. When calculating the effective mass, the system is

damped due to the overlapping of the F (x0, x0, p) which oscillate with different phases.

42

(a) (b)

Figure 16: Equal time correlation function F (x0, x0, 0) of the 1-loop quench for two
different total spacial volumes a) Vsa = 160 b) Vsb = 640. In the be-
ginning, F (x0, x0, 0) behaves like we’ve seen in sec. 5.1.1, but begins to
show a unexpected beat-like behavior at a) x0

disturbancea
= (90 ± 5) and b)

x0
disturbanceb

= (370± 10), indicated by the vertical dashed black lines.

After some time, the systems phase information is recovered, causing a reversion of the

initial damping (see [15] p.23-24).

6.1.2. 2-loop setting-sun approximation

For the 1-loop case, we found that the system gets disturbed by finite lattice effects after

x0 = (0.573±0.018) ·Vs. In the case of the 2-loop corrections, which introduces scattering

effects, such a behavior can’t be observed. Due to the scattering effects, disturbances from

the finite lattice are suppressed with increasing lattice size (see [15] p. 24). This fact can

be seen in Fig. 17, where we show the course of F (x0, x0, 0) for quench initial conditions

(the case of tsunami initial conditions can be found in Fig. B.2 in the appendix B.2) in

the 2-loop approximation, for different lattice sizes.

We varied the lattice size from Vs = 10 to Vs = 150. From Fig. 17, one can clearly see,

that for small lattice sizes Vs ≤ 20, the system shows noticeable deviations in its course.

However, the bigger the lattice size gets, the smaller the deviations become. For a volume

of Vs = 40 there are already no more visible differences compared to the course of the

graph with the much higher volume Vs = 150.

43

Figure 17: Depicted is the course of the equal time correlation function F (x0, x0, 0) for
quench initial conditions and different lattice sizes Vs, ranging from Vs = 10 to
150. The insert shows a magnification of the graph from x0 = 1200 to 2000.

To get a better grasp on the deviations between the different runs, we want to quantify

them. We’ll do this by calculating the mean squared error

MSE =
1

n

n∑
i=1

(
Yi − Ŷi

)2

, (102)

where Yi are the values predicted by a function for a sample of n data points and the

Ŷi are the observed data. We don’t have access to an analytic expression we could use

as a function for the Yi. For this reason, when we calculate the MSE in this work, we

use the data from the most precise run (in this case Vs = 150) as a reference. In Tab. 1,

we calculated the MSE from the equal time F (x0, x0, 0) for different spacial volumes

using the biggest volume Vs = 150 as the reference function. For all measurements, the

observation time ranged from 0 to 2000.

As we already saw in Fig. 17 and Fig. B.2, we get noticeable, or, in case of the tsunami,

even big deviations for Vs = 10. However, the deviation decreases very fast and is pretty

much already negligibly small for volumes bigger than Vs = 30. From Tab. 1 we can

see that for the quench (tsunami), the deviation calculated via the MSE is already three

(seven) orders of magnitude smaller when we chose a volume of Vs = 40, than it is for

Vs = 10. We can conclude that in the case of 2-loop corrections, finite lattice effects

get drastically reduced by increasing the systems volume and become unnoticeable for

44

Volume MSE[10−3]
Quench Tsunami

10 0.49 36.3
20 0.43 0.026
30 1.3 · 10−4 1.5 · 10−6

40 4.0 · 10−6 1.1 · 10−7

50 1.9 · 10−6 3.0 · 10−8

60 3.0 · 10−7 3.0 · 10−9

150 0 0

Table 1: Listed are the deviations from the course of the equal time correlation function
F (x0, x0, 0) for different lattice sizes Vs against a reference course with Vs = 150.

Vs ≥ 40. To be safe for our computation, but still avoid long run times, we chose a

volume of Vs = 60 or greater for our measurements throughout this work.

6.2. Time and spacial spacing

Besides the dependency on the lattice size, the other two important factors for numerical

effects and stability are the time and the spacial spacing at and as of the lattice. First,

we want to take a closer look at the time spacing.

6.2.1. Time spacing dependency

We observed the system up until x0 = 4000 with a fixed lattice spacing of as = 0.4 for

different time spacings at. For these settings, as we saw in sec. 5, we can assume that the

system should be very close to a thermalized state at the end of the time evolution. Our

results are shown in Fig. 18 for both tsunami and quench. To produce this data, we used

the settings S4 (appendix A).

From Fig. 18, we can see that, for both the tsunami and the quench, the course of

F (x0, x0, 0) significantly depends on the time spacing. For the rough spacing of at = 0.2,

can see significant deviations, however, the system still thermalizes. When we decrease

the time spacing, the deviation between the graphs seem to decrease stronger than linear.

An additional observation that can be made is that smaller spacings tend to cause a higher

value of the zero momentum mode when the system approaches an equilibrium state. To

get a better grasp on how big the deviation truly is, we again calculate the MSE. The

mean square error that we calculated is shown in Tab. 2, where we used the at = 0.05

course as a reference.

45

(a) (b)

Figure 18: The graphs shows the course of the equal time correlation function F (x0, x0, 0)
for different time spacings in the case of a) tsunami and b) quench initial con-
ditions. A rough time spacing of at = 0.2 leads to significant deviations in the
course of the time evolution, but does not hinder thermalization. Decreasing
at causes the different courses to approach each other faster than linear.

at MSE[10−3]
Quench Tsunami

0.05 0 0
0.075 1.04 1.06
0.1 6.03 6.21
0.15 43.9 45.2
0.2 161 121

Table 2: Mean square error MSE of F (x0, x0, 0) for different time spacings at and for both
quench and tsunami initial conditions. The course of F (x0, x0, 0) for at = 0.05
was chosen to be the reference function to calculate the MSE.

From Tab. 2, we can see that by decreasing the time spacing, the mean square error

between the different courses decreases in fact quadratically. This is to be expected from

our solving method. In sec. 3, we presented the discretization method (67) we chose

for the second partial derivative in time. For this finite difference method, the error is

expected to scale with a2
t (see [20] p. 183-184). Thus, we would also expect the MSE to

scale quadratically with the changing time spacing.

Note that, like previously mentioned in sec. 5, these long time runs are only possible using

the reduction technique, which we’ll discuss later on. With or without this reduction,

decreasing the time spacing comes at a price of a significant increase in computation time

to reach the same final time x0
final. It is therefore important to choose at in such a way

46

that the results are still meaningful, while the computation time stays in an acceptable

range. The spacing at = 0.1 leads to results close to at = 0.075 and at = 0.05, while still

allowing a fast computation up to late times, which is why we most of the time chose

at = 0.1 in this work.

6.2.2. Spacial spacing dependency

We want to conclude the observation of numerical effects with the analysis of the system’s

dependency on the spacial spacing. Again, we observe the equal time correlation function

F (x0, x0, 0) both quench and tsunami with a fixed time spacing at = 0.05 and vary the

spacial spacing as. The result of our investigation is presented in Fig. 19. We used set S5

(appendix A) to compute the data.

(a) (b)

Figure 19: Depicted are the courses of F (x0, x0, 0) for different spacial spacing as with a
fixed time spacing at = 0.05. For tsunami initial conditions a), one can see
that decreasing the lattice spacing damps down the overshoot of the zeroth
momentum mode. Additionally, the time until thermal equilibrium is reached
seems to increase significantly. In the case of quench initial conditions b),
decreasing the lattice spacing on one hand also decreases the occupation of
the zero momentum mode and on the other hand increases the thermalization
time.

As it can be seen from Fig. 19, the system is even more sensitive to the change of as

and the from it resulting change in the momentum cutoff. However, both quench and

tsunami seem to at least show a behavior, which indicates the a approach to thermal

equilibrium for all observed as. Opposite to the case of the time spacing, for the spacial

spacing, a smaller as decreases the occupation of the zeroth momentum mode. This can

47

be seen nicely for the quench (Fig. 19 b)), for the tsunami (Fig. 19 a)) this behavior

can only be partially seen in the figure. Nonetheless, for the tsunami, the decrease of the

zeroth mode can be seen at the damping of the overshoot during the drifting phase when

decreasing as and at the decreasing tendency of F (x0, x0, 0) for as < 0.4. The courses

for spacing as = 0.2 indicates a similar behavior, however, in the limited observation

time, this behavior is only indicated through a slight decline. Besides this decrease of

F (x0, x0, 0), smaller spacial spacing also significantly increases the thermalization time.

While the zeroth mode for as = 0.4 seems to have reached thermal equilibrium after

roughly x0 = 1500, only the as = 0.35 course seems to be close to thermalization in the

observed time frame up to x0
max = 4000. For all the other as, the thermalization time

seems to be significantly longer. In case of the quench, both the tendency of decrease of

the zeroth mode for smaller as as well as the increased thermalization time can be seen

directly from Fig. 19 b).

Similar to the time spacing, we also calculated the MSE between the different courses

of F (x0, x0, 0), taking as = 0.2 as our reference course. The calculated MSE is shown in

Tab. 3.

as MSE[10−3]
Quench Tsunami

0.2 0 0
0.25 0.41 4.7
0.3 2.2 6.5
0.35 16.6 9.5
0.4 57.5 11.4

Table 3: Listed is the MSE from the course of the equal time correlation function
F (x0, x0, 0) for both quench and tsunami initial conditions and different lat-
tice spacings as. The course of as = 0.2 was used as a reference to calculate the
MSE.

From Tab. 3, we can see that the deviations for the quench and the tsunami differ

quite significantly. For the quench, the MSE again indicates a quadratical decrease with

decreasing spacial spacing as. In the differential operator (64) of the KBE, the spacial

derivative is, similar to the time derivative, a second order one. For this reason, we might

also expect a quadratic dependency of the MSE on the spacial spacing, which is shown

by the quench.

In case of the tsunami, this quadratic dependency of the MSE is not observed. There are

two reasons for this. The first is the way in which the zeroth mode of the tsunami behaves

under changing as. Different from the quench, the tsunami shows a significant crossing

48

between the courses of F (x0, x0, 0) for the different as. This crossing strongly influence

the result gained by the MSE. The second reason is the limited time frame we observed.

If the system thermalizes (i.e. becomes constant in time) and we observe it for a long

enough time, the change of the MSE due to the crossing of the graphs should become

negligible. In this case, we expect would the MSE to show a quadratic dependency on

as for the tsunami, too.

49

7. Efficient solutions for memory integrals

In sec. 3, we presented the basics of the numerical implementation for solving the KBE.

However, as we saw in sec. 4, the computational workload and therefore the total time

needed to perform the computation as well as the necessary storage memory, increases

with O(N3.133
t) and O(n2.081

t), respectively, for the time evolution. This rapid increase

makes it impossible to evolve the system to late times, where thermalization occurs. To

keep the computational effort within an accessible range, a reduction scheme is necessary.

Fortunately, there is a possibility for such a reduction, namely a history cut-off. We’ll get

to the history cut-off in a bit, but to understand the reason behind it, we first need to

take a closer look at the unequal time correlations of F and ρ. We want to note, that

we used the settings from set S6 (appendix A) throughout this chapter to enable easier

comparisons between the plots shown in the following.

(a) (b)

Figure 20: Depicted are the unequal time correlations (red curve) a) F (x0, 0, 0) and b)
ρ(x0, 0, 0) for tsunami initial conditions. One can clearly see the decay of the
amplitude for both functions. To show that this decay is exponential, we fitted
the amplitude of the oscillation from above and below with an exponential
decaying function, indicated by the dashed black curves.

Fig. 20 shows the decay over time of the initial time correlations F (x0, 0, 0) and ρ(x0, 0, 0)

for a tsunami with a relatively low coupling of λ = 3. One can see, that both F and ρ

decay rapidly in a similar fashion. We performed a fit of the amplitudes’ peak values

over time, represented by the dashed, black curve that envelops the oscillation. The fit

50

function is a decaying exponential function y(x) = y0 + A exp (−x/t) with

F above: y0 = 0.001± 0.007 A = 0.521± 0.011 t = 22.3± 1.2

F below: y0 = −0.009± 0.003 A = −0.5545± 0.0075 t = 19.79± 0.56

ρ above: y0 = 0.011± 0.011 A = 1.101± 0.021 t = 20.62± 0.93

ρ below: y0 = −0.023± 0.006 A = −1.184± 0.019 t = 19.37± 0.55

The decay rate of F and ρ are in agreement with the error range. This exponential

decay is in fact quite general to the evolution of the KBE and appears for all correlation

functions F (x0, y0, p) and ρ(x0, y0, p) the further they are away from the time diagonal

td = |x0 − y0| = 0. It should be noted that the decline of the unequal time correlations

depends of the system’s coupling constant λ. We’ll come across this dependency later on

in sec. 7.4.

The loss of the past correlations is the very reason why the observation of the late time

evolution of the KBE is a feasible endeavor. From a physical point of view, one might

think of this behavior in the following way. The equal time correlation functions describe

the measurable current state of the system through macroscopic observables, while the

off-diagonal correlations y0 6= x0 at time x0 describe the correlation between the current

state to some previous configuration. The exponential damping of these correlations can

then be thought of as a memory loss of the system. The system ”forgets”about its previous

states as time passes. Naturally, we build the reduction scheme in such a way, that it

makes use of this memory loss.

7.1. The history cut-off

The loss of the system’s past enables us to chose a specific point, at which we can simply

cut off all previous correlations (the history) of the system, without changing its future

course too significantly (see [3]). Because we cut off the system’s history in the process,

this reduction scheme is termed a history cut-off. The important question, at which point

one should perform this cut-off so that one gets a good ratio between the reduction of

computational workload and deviation from the unreduced history is not a trivial matter

and will be discussed later in this work. First, we want to show how to implement such

a history cut-off into a solver. For this implementation, we made use of [3].

To implement the history cut-off, we introduce a fixed history matrix (or fixed history)

H(x0, y0, p), which is a cutout of the system’s lattice. The area of the fixed history is

AH = (at · NH)2 = t2H , where tH is the size or length of the history matrix in time and

51

NH (history steps) are the number of data points that make up the history length. This

fixed history is then evolved along the time diagonal, like it is shown in Fig. 21.

Figure 21: Depicted is the evolution of a fixed history matrix (thick bordered square)
with size tH along the time diagonal. Each square of the grid represents the
correlation functions for different time values, that could be calculated during
the evolution (Note that each square contains an additional Nsp number of
spacial points). White squares represent correlation functions that have not
been, or will not be calculated during the time evolution. The light blue
squares are values that have been previously calculated and have already been
discarded. The dark blue ones represent the data, that is stored for the current
state of the system. When evolving the fixed history along the time diagonal
it gets shifted by tshift in the x0 and y0 direction.

After the history matrix is completely filled once, it is shifted along the time diagonal,

thereby discarding all values with y0 < (x0 − atNH) = atNshift = tshift. It is important to

account for this shifting, by keeping the lower bound MemLB of all memory integrals in the

Kadanoff-Baym equations within a range tshift ≤ MemLB ≤ x0. All values for F (x0, y0)

and ρ(x0, y0) where y0 < tshift holds obviously do not need to be calculated anymore and

can be neglected.

52

With the history cut-off in place, the discrete equations of motion for the statistical

component (103), for x0 > tH , take the form

F (n+ 1,m,p) = 2F (n,m,p)− F (n− 1,m,p)

− a2
t

(
p2 +M(n)2

)
F (n,m,p)

− a3
t

{
Σρ(n,Nshift,p)F (Nshift,m,p)

2
− ΣF (n,Nshift,p)ρ(Nshift,m,p)

2

+
m−1∑

l=Nshift+1

(Σρ(n, l,p)F (l,m,p)− ΣF (n, l,p)ρ(l,m,p))

+
n−1∑
l=m

(Σρ(n, l,p)F (l,m,p))

}
,

(103)

with m ranging from Nshift to n. For the calculation of the spectral function ρ(n,m,p)

nothing changes. Its memory integrals already only range from y0 to x0, so no additional

shift is necessary in this case (see (43)). However, values of ρ with m < Nshift do not need

to be calculated, due to the shift of the history matrix.

Reducing the history of the system in such a way is accompanied by a tremendous saving

in computational effort and memory. In case of a fixed history, the necessary storage

memory can still be calculated using (70). However, the total number of time steps Nt

for the whole lattice is now replaced by the number of history steps NH . For a given

history, the storage requirements are therefore fixed and no longer dependent on the total

observation time. This is the first contribution of the history cut-off to the possibility of

observing the late time behavior of systems, which might require the calculation of several

thousand steps. The second and in most cases also most important effect of introducing a

fixed history size is the tremendous reduction of computational effort. For a fixed history

size the number of points that need to be calculated for each time step remains constant

(see Fig. 21 and 22). Furthermore, because of the required shifting of MemLB, the range

of the memory integrals also remains constant. After the history is filled, this leads to a

constant amount of time necessary to perform each additional time step, enabling us in

principle to calculate an arbitrary number of steps. However, reducing the system’s history

comes at the cost of altering the result of the numerical computation. Depending on the

fixed history size, this change might be minuscule, quite significant or even devastating

to the time evolution. We’ll discuss this dependency in a bit, but for now, we’ll show how

to implement the fixed history in an efficient way.

53

7.2. Cyclic memory

A reasonable storage architecture to implement a fixed history into a program is the use of

a double circular buffer. A circular buffer is a type of memory architecture, that operates

after the first in, first out principle. This means that the newest data that is stored

overwrites the oldest one in the storage (see [21]). In our case, the storage is not really a

buffer, which is why we’ll use the term circular memory or cyclic memory in the following.

(a) (b) (c)

(d) (e) (f)

Figure 22: (a)-(f) shows a schematic depiction for the storage process of the cyclic memory
in cause of the statistical component F starting from the time x0 = tH , where
the fixed history matrix has been filled once. For the spectral component, the
general process is equivalent. The additional column and row, that is added in
each graph symbolizes the new F-values for the n+1-th step, that are calculated
and stored in the history storage. The grey colored part is already determined
by the commutation relations and is therefore neither calculated nor stored. It
is kept in this figure to visualize the analogy to Fig. 21.

We’ll illustrate the filling process for a fixed history with a size of NH = 5 steps for the

statistical function F . Note that the way the history is filled is in principle equivalent

for both F and ρ. However, because of its anti-commutation relation the calculation of

ρ(n, n) and ρ(n, n− 1) is not necessary and can be omitted.

Our starting point is the time x0 = tH = 5 · at, shown in Fig. 22 a), where the history

has just been filled once for the first time. The blue boxes represent the values of F that

54

are already stored in the history matrix. The additional, shifted, different colored (here

green) boxes indicate the NH new values of F for the (NH+1)-th time steps. The gray

boxes illustrate the values of F (n,m) with n < m, which do not need to be calculated due

to the commutation relations. Lastly, the brightness of the boxes indicates their distance

from the time diagonal.

The green values get permuted once in x0 and y0 direction. The x0 permutation puts

them in the first column, while the y0 permutation places the equal time value F (5, 5)

on the diagonal, and thus, preserving the overall structure of the storage. This process

is repeated with an increasing number of permutations for further time steps, indicated

by the different colored values (Fig. 22 b)-f)). After repeating this cycling NH times

(Fig. 22 f)), at x0 = 10 · at = 2 · tH , the system is in a similar configuration as it was

initially at time tH . The values above the diagonal became irrelevant, due to their second

time component being lower than Nshift and one might think of them as the empty blue

squares from Fig. 22 a). Only the values on the diagonal and below contribute to the

calculations, as it has been the case for our starting point. The process then repeats itself

again for x0 = 3 · tH and so forth until the desired final time is reached.

In a matrix like representation, this cycle process can be implemented by performing two

modulo operations, one in each time direction, i.e. H (at(n mod NH), at(m mod NH)) [3].

In our work, we chose to store our data inside a line vector. We use the column-major

ordering to map data from the matrix representation onto this line vector. A convenient

way to perform the cycling and manage the transition from matrix to line vector is the

use of a mapping function

fH : N2 → N,

which cycles the time indices via (n mod NH ,m mod NH) in the matrix representation

and then maps the result onto the line vector. A more detailed description, as well as the

specific implementation of this function is shown in appendix C.1.

Before we change to the discussion of our numerical results for the history cut-off, we want

to give the reader a way to visually imagine the double cyclic memory. First, consider

a single cyclic memory. One can think of this as nothing more than a line with periodic

boundary conditions. These boundary conditions in turn can be interpreted as the action

of ”gluing” together both ends of this line, resulting in a circle.

55

Figure 23: Geometrical visualization of the cycled memory for a square storage. The
periodic boundary conditions of the cycling function are depicted by the colored
lines on the top and bottom (red), as well as on the left and right (green) of the
plane. Enforcing one boundary conditions effectively wraps the plane a) into a
cylinder b). When enforcing the second boundary condition, the top and the
bottom of the cylinder have to be connected, resulting in a torus shape c).

In case of the fixed history matrix, the line would be replaced by a plane like it is shown

in Fig. 23 a). When we impose periodic boundary conditions in x0 direction, we have

to ”glue” the left and the right side of the plane together which results in a cylinder

(Fig. 23 b)). The second boundary condition, the one in y0 direction, can then be achieved

by ”gluing” the top and the bottom of the cylinder together. What we end up with is a

torus shape (Fig. 23 c)) as an illustration of our double cyclic memory.

7.3. Effects of the history cut-off

In the following, we want to analyze the deviation that the history cut-off causes, as well

as the effects it has on the system’s time evolution. We observed both tsunami and quench

with as = 0.4, at = 0.1 and coupling constants λTsunami = 7 and λQuench = 2.5 for various

history sizes ranging from tH = 1 to tH = 50. For our analysis, we again use the zeroth

momentum mode F (x0, x0, 0). The tsunami case is shown in Fig. 24, where we present

the course of F (x0, x0, 0) for a sample of the history sizes we tested. The corresponding

plot for the quench is given in Fig. B.3 and had to be placed into appendix B.3.

One can see that the course of F (x0, x0, 0) for small history sizes tH = 8 and tH = 10

deviates quite strongly from the course of a large history size tH = 50. However, as the

history size increases, the graphs approach each other fast and the deviation becomes small

quickly. This behavior can be observed for both tsunami and quench and is to be expected

considering the exponential decaying early time correlations illustrated in Fig. 20. From

Fig. 24 and B.3 one can also see that the deviation decreases more rapidly for tsunami

than it does for the quench. This observation can be explained by the differently fast

56

Figure 24: The graph shows the course of the equal time correlation function F (x0, x0, 0)
with tsunami initial conditions for different history sizes tH ranging from 8
to 50. While small histories of tH ≤ 10 show quite significant deviations,
larger histories are barely distinguishable. For a better visualization, a zoomed
version of the course for larger histories from x0 = 1200 to 2000 is shown in the
insert. For tH = 13 and 15 one can still see a small but with the magnification
observable difference between the courses. However, between tH = 30 and
tH = 50, this is no longer the case.

decline of the initial correlations between quench and tsunami for the chosen parameters.

In Fig. 25, we show the decline initial time correlation F (x0, 0, 0) for both quench and

tsunami up to x0 = 50.

One can see that the correlations for the tsunami (red) decrease faster than they do for

the quench (blue). This faster decline of the correlations makes them negligible earlier,

which results in a smaller deviation for the same history size in case of the tsunami than

it does compared to the quench.

We again calculated the MSE between the measured courses of F (x0, x0, 0) for different

history sizes, with tH = 50 as our reference course. The results are presented in Tab.

4. There are a couple of observations that can be made from Tab. 4. First, we didn’t

present deviations for tH < 6, that is because for such small histories, the system becomes

unstable and shows a divergent behavior. Second, the system does not show a monotonous

decrease in deviation for history sizes from small history sizes tH ≤ 13. This is a result

57

Figure 25: Initial time correlation F (x0, 0, 0) of a system with a coupling λ = 7 for tsunami
(red) and λ = 2.5 for quench (blue) initial conditions.

tH MSE[10−3] tH MSE[10−3]
Quench Tsunami Quench Tsunami

50 0 0 11 0.74 0.042
30 1.7 · 10−6 2.3 · 10−7 10 2.5 1.8
25 4.1 · 10−4 5.3 · 10−6 9 7.8 0.062
19 5.4 · 10−3 3.2 · 10−4 8 51.4 4.9
15 0.20 3.7 · 10−3 7 176 17.5
13 0.82 0.016 6 900 1.7

Table 4: Listed are the deviations from the course of the equal time correlation function
F (x0, x0, 0) for both quench and tsunami initial conditions and different history
sizes tH . The course for the large history H = 50 was used as a reference to
calculate the MSE.

from the high sensitivity that the system shows in its course when considering changes

in small history sizes. The high sensitivity can be attributed to the significant portions

of the unequal time correlation functions for small histories, that are either within or

outside the history, depending on its size. For larger history sizes tH ≥ 15, the unequal

time correlations have already declined far enough, so that small changes in tH do not

influence the system’s time evolution notably.

Because of its strong activity, the correlation function F (x0, x0, 0) for the zeroth mode is

a good quantity to observe for the evolution of the system. However, we don’t want to

completely neglect the other momentum modes. For this reason, we want to also look at

quantities which contain the information about all momentum modes. We can get these

quantities from the the particle density n(x0, p) and the linear entropy SL(x0, p). By fitting

a Bose-Einstein distribution to the graph of the particle density n(ε) as a function of the

energy density ε(x0, p) (see sec. 5.2.2), and therefore including all momentum modes, we

58

can calculate the final temperature Tf of the system at the end of the time evolution

x0 = 2000 for the different histories we chose. The results for both tsunami and quench

are shown in Fig. 26.

(a) (b)

Figure 26: Depicted is the final temperature Tf of the system after a time x0 = 2000 for
both a) tsunami and b) quench initial conditions and different history sizes.
The temperature was computed by fitting a Bose-Einstein distribution to the
particle density n(ε).

From Fig. 26 we can see, that for both tsunami and quench, the temperature changes

quite drastically for history sizes tH < 12.5. In case of the quench, the temperature for

small history sizes doesn’t even seem to make sense, due to the fact that the late time

temperature is bigger than the initial temperature T0. For the quench, where we drop the

system’s initial mass by half at the beginning of the time evolution and therefore take

energy out of the system, we would rather expect the temperature to decrease (as it is

the case for larger history sizes). These history sizes are just too small for the system

to yield reasonable results. However, we can see that for increasing history sizes, the

temperature rapidly converges against a constant value, indicating that the deviation of

the time evolution of the system is only minuscule.

Besides the temperature, we can also observe the average linear entropy per mode S̄L(x0),

given in Fig. 27 for x0 = 2000, which due to being an average value, takes also all of the

system’s momentum modes into account.

The behavior of S̄L is similar to the one we observed for the temperature. Here, histories

tH < 15 result in strong fluctuations of the final average linear entropy. However, like it

was the case for the temperature, when we increase the system’s history size far enough,

59

(a) (b)

Figure 27: Depicted is the average linear entropy per mode S̄L(x0) of the system after
a time x0 = 2000 for both a) tsunami and b) quench initial conditions and
different history sizes.

S̄L approaches a constant value. This again indicates, that the deviation to the time

evolution is minuscule for larger history sizes.

All of our observations lead to the conclusion, that a consideration of the system’s full

history for the KBE is not necessary to achieve results which only show small deviations.

But there remains the question on how big we have to choose our history size for a given

system. In the next section, we’ll try to give an answer to this question.

60

7.4. Finding a suitable history size

As we saw in the previous sections, reducing the system’s history to a fixed size leads to

a tremendous decrease in computational effort and memory usage, making it possible to

even observe KBE late time evolution. However, we also saw, that choosing a history size

for the system that is too small can lead to big deviations, while calculations with big

history sizes take a long time and use a lot of memory. Because of this, it is important

to find a way to determine a suitable history size, which is big enough to avoid huge

deviations and still small enough to avoid unnecessary long computation times. We now

want to present our method on how to determine such a history size.

7.4.1. Calculating a fitting measure

The first step to determine a good history size is to find a fitting measure on how much

correlation is lost when introducing the history cut-off. We’ll achieve this by making use

of the decay of unequal time correlation functions.

From Fig. 20 and Fig. 25, we saw the exponential decline of the initial correlations

F (x0, 0, 0) and ρ(x0, 0, 0) as time passes. We stated, that this decline is quite general and

can be observed for all correlation functions F (x0, y0, p) and ρ(x0, y0, p) for an increasing

distance td = |x0 − y0| away from the time diagonal td = 0 and depends on the coupling

constant λ of the system. Because we’ll make use of F (x0, y0, p) and ρ(x0, y0, p) in the

following, we want to show their decline again for different couplings (see Fig. 28).

In Fig. 28 we present the courses of F (x0, y0, 0) and ρ(x0, y0, 0) as a function of y0 for

a fixed value of x0 = 100. We used the tsunami initial conditions and three different

couplings λ = {1, 3, 7}. In the figure, we can see the discussed exponential decline,

which is most prominent for the high coupling λ = 7 and only small for λ = 1. Using

these correlation functions in our approach of finding the most suitable history size for

the observed system is similar to the short memory approximation from [13], where the

Green’s function is used to determine the cut-off point.

61

(a) (b)

Figure 28: Depicted are the unequal time correlation functions a) F (x0, y0, 0) and b)
ρ(x0, y0, 0) of a system with tsunami initial conditions for different coupling
constants λ. The time component x0 is fixed to x0 = 100. Similar to the
initial time correlations, both F (x0, y0, 0) and ρ(x0, y0, 0) decay exponentially
for increasing y0. For the small coupling λ = 1 this decay is only small and
the amplitude of the unequal time correlations changes only slightly within the
time interval. For the high coupling λ = 7 the decay is fast and the amplitudes
of F and ρ effectively vanishes for y0 > 35.

We start our search for suitable history size by defining the measure

ΛF (x0, τ, p) =

∫ x0

τ

dz0
∣∣F (x0, z0, p)

∣∣ (104)

Λρ(x
0, τ, p) =

∫ x0

τ

dz0
∣∣ρ(x0, z0, p)

∣∣ . (105)

The variable τ , will be our cut-off parameter, which we vary to determine our new his-

tory size. One might wonder why we consider the course of F (x0, y0, p) and ρ(x0, y0, p)

along the y0- like it was shown in Fig. 28 and not, like we showed in Fig. 20, along

the x0-direction. As we saw from these figures, they all showed the exponential decay

of unequal time correlation functions the further we get away from the time diagonal.

Therefore as a matter of fact, we could also use the decline of unequal time correlations

along the x0-direction. We simply chose the y0 dependency because it kept our equations

for finding a suitable history size in a nicer form.

In the next chapter, we’ll present the general procedure on how we determine a fixed

history size using the measures (104) and (105).

62

7.4.2. Determine history size algorithm

Before we present the determine history size (DHS) algorithm (see also appendix C.2), we

first want to explain how to use it to avoid confusion. In general, when using the program

to do late time calculations, one has specify a maximal history size tHmax for the system.

In case of a completely unknown model, this maximal history should be as big as possible,

preferably as big as the system, where the program is running on, allows it to be. If the

model is known to some degree, one might do an educational guess and choose a smaller

but still sufficiently big history size. Now, the program solves the KBE until x0 = tHmax .

At that point, if enabled, the DHS algorithm starts to calculate a new history size t′H .

After the calculation is finished, the maximal history tHmax is resized to t′H , using the

resizeHistory-routine (appendix C.3). The time evolution of the system then continues

with the reduced history t′H until the final time x0
f is reached (see also Fig. 29).

Figure 29: Illustration of the resizing of an initial maximum history tHmax (blue + green
square) to a new history t′H (green square) determined by the DHS algorithm
and its subsequent time evolution. Colored squares represent values of the
correlation functions that are, or will be (light green squares) calculated during
the evolution of the system. White squares are correlation function values that
no longer appear in the computations.

Note, that in principle we could also determine a new history at a later time x0 > tHmax

and perform smaller history changes more than once during the time evolution. During

our studies, we experimented with these approaches, but further future investigation is

needed to get concrete results. For now, let’s take a closer look at the DHS method.

63

To determine a suitable history size, we proceed as follows. At some time step x0
c (following

the example from above, we x0
c = tHmax), we first calculate the maximum value of ΛF and

Λρ, i.e.

Λmax
F (x0

c , tshift, p) =

∫ x0c

tshift

dz0
∣∣F (x0

c , z
0, p)

∣∣ (106)

Λmax
ρ (x0

c , tshift, p) =

∫ x0c

tshift

dz0
∣∣ρ(x0

c , z
0, p)

∣∣ . (107)

The lower bound of the integral is given by the shifting parameter tshift, that has been

previously shown in Fig. 21. When the DHS algorithm is run at x0
c ≤ tHmax , the shifting

parameter would be zero. However, one could also run the algorithm at some later time

x0
c > tHmax . In this case, as we saw earlier in this chapter, the shifting parameter would

be given by tshift = x0
c − tH .

After we are done calculating the maximum values of ΛF and Λρ, we compute (104) and

(105) using the relations

ΛF (x0
c , τ, p) = Λmax

F (x0
c , tshift, p)−

∫ τ

tshift

dz0
∣∣F (x0

c , z
0, p)

∣∣ (108)

Λρ(x
0
c , τ, p) = Λmax

ρ (x0
c , tshift, p)−

∫ τ

tshift

dz0
∣∣ρ(x0

c , z
0, p)

∣∣ . (109)

We now stepwise increase the parameter τ from tshift to x0
c until either

ΛF (x0
c , τ, p)

Λmax
F (x0

c , tshift, p)
≤ η, or

Λρ(x
0
c , τ, p)

Λmax
ρ (x0

c , tshift, p)
≤ η. (110)

So in principle, we compare the total absolute area under the graph of F (x0
c , z

0, p) and

ρ(x0
c , z

0, p), with z0 ranging from tshift to x0
c , with an ever increasingly truncated area,

where z0 only ranges from τ to x0
c . The parameter η, which has to be specified by the

user, sets a lower bound for the relative remaining area under the curve of the unequal

time correlation functions F (x0
c , z

0, p) and ρ(x0
c , z

0, p) after the history of the system is

changed. Because of this we’ll refer to η as the relative remaining correlations. We define

the value of τ at which one of the conditions (110) is fulfilled as τcut(p). This τcut(p)

determines the cut-off time, for which correlations with y0 ≤ τcut(p) will be discarded,

which is equivalent to shrinking the system’s history to t′H(p) = x0
c − τcut(p).

However, doing the calculation in such a way would lead us to perhaps up to p different

new history sizes, one for each momentum mode p. We do not want to split our history

matrix into p differently sized smaller ones. We unify the p different history sizes t′H(p)

64

into one new history size by calculating their weighted average t̄′H , i.e.

t̄′H =

Nsp∑
p=0

wp · t′H(p)

Nsp∑
p=0

wp

. (111)

The weighting factor wp for each mode is necessary, because on one hand, as we have seen

in sec. 5.2.2, not every momentum mode thermalizes equally fast and on the other hand,

different modes contribute differently strong to the general evolution of the system as it

was for example the case of the tsunami peak momentum mode. In the following, we’ll

neglect the bar of the average and, similar than before, use t̄′H ≡ t′H .

The weighting factor

The question that needs to be answered is, what to choose for the weighting factor wp.

To answer this question, we tested different weighting factors for the DHS algorithm.

We considered the unweighted average i.e. wp = 1, a weighting of each mode with its

linear entropy SL(p, x0
c) and its particle distribution n(p, x0). We chose these weighting

factors because they, on one hand, reflect the thermalization state of the system, and

on the other hand contain the occupation information about the different modes. As

we stated previously, it seems reasonable to give momentum modes that have a high

occupation and contribute strongly to the system’s dynamics (like the peak mode of the

tsunami or the zeroth mode) more weighting then momentum modes with a minuscule

occupation and a tiny contribution. The difference between the particle density and the

linear entropy, which from (61) we know that it is a function of the particle density,

is, that the linear entropy is limited to values between 0 and 1 for n(p, x0) → ∞ and

0, respectively. Therefore the linear entropy is a more ”tame” version of the particle

distribution, which is not limited from above.

To test the DHS algorithm for the different weighting factors, we used both tsunami and

quench initial conditions. The other settings are equivalent to the ones used in Fig. 24

and B.3 (see set S6 in appendix A).

We started the computation with a fixed maximum history of tHmax = 100. After filling this

maximum history, the DHS algorithm was called to determine a new history. We varied

the parameter η and measured the new history size t′H that the algorithm determines for

different weightings.

65

The results for λTsunami = 7 and λQuench = 2.5 are shown in Fig. 30, where we show the

dependency between η and the relative new history size t′H/tHmax , which we’ll from now

on denote as trelH .

(a) (b)

Figure 30: Depicted is the dependency between the relative remaining correlations η and
the relative new history size t′H/tHmax , determined by the DHS algorithm. The
DHS algorithm was used for an initial history of tHmax = 100 and different
weighting factors for both a) tsunami and b) quench initial conditions. Addi-
tionally, the results from the DHS algorithm when we only consider the zeroth
or the maximum momentum mode, and thus do not compute the average (111),
are indicated by the dashed curves.

The parameter η is a free input parameter, so its choice lies with the user of the algorithm.

As of now, we do not know the concrete dependence between η and the deviations in

the course of the system’s time evolution. Further investigation regarding this area is

needed in the future. However, considering that we observe an exponential decay of the

unequal time correlations, taking the point where 1/e of the correlations are discarded,

i.e. η = 1− 1/e ≈ 0.63, seems to be a reasonable choice.

In Tab. 5, we show the determined history sizes from Fig. 30 for η = 0.63. We can

compare these new history sizes computed by the DHS algorithm with our results from

Fig. 24 and B.3, that we showed previously. What we learned from these figures is that

the courses of F (x0, x0, 0) for tH = 30 and tH = 50 is already indistinguishable. Smaller

histories like tH = 15 still lead to good results. However, they show a visible alteration

for the course of the correlation functions. Additionally, from the history dependency of

the temperature and the average linear entropy (see Fig. 26 and Fig. 27), we saw that

both final temperature and average linear entropy seem to converge against a constant

value for tH ≥ 20 in the case of both quench and tsunami initial conditions. This leads

66

Determined history t′H
Quench Tsunami

p = pmax = 5 only 55 42.6
unweighted average 40.8 27.3
entropy weighted 35.7 22.5
particle density weighted 19.2 12.4
p = 0 only 7.74 5.5

Table 5: Listed are the new history sizes t′H for different weighting factors, determined by
the DHS algorithm for η = 1− 1/e ≈ 0.63. We considered quench and tsunami
initial conditions with couplings λQuench = 2.5 and λTsunami = 7, respectively, and
a starting maximum history size of tHmax = 100.

us to the conclusion that the most suitable history size of the system should be around

20 ≤ toptimal
H ≤ 30. When we look at Tab. 5, we can see that the zeroth mode p = 0

extremely underestimates the history size. Conversely, when we only consider the maxi-

mum momentum mode, the determined history seems far too big. All the averages on the

other hand lead to acceptable history sizes, but only the entropy weighted average seems

to truly fit the criteria we set for the system’s optimal new history matrix toptimal
H . For

this reason, the linear entropy is the weighting factor of our choice and will be used for

the next discussion.

Avoiding unnecessary history cuts

There is one problem of the DHS algorithm that has not been addressed until now. That

is the fact that without further checks, the DHS algorithm will always cut the history.

In the worst case scenario this cut will have a linear dependency between η and trelH . To

make it more clear where this problem originates from, we’ll consider the example of a

vanishing coupling constant λ = 0. In this case, the amplitude of the x0 6= y0 correlations

does not decay exponentially with increasing distance from the time diagonal, but remains

constant instead. This can for example be seen in Fig. 31, where we show the absolute

value of the unequal time correlation function F (x0 = tH , y
0, 0), with tH = 100, as a

function of y0, like it is used in the DHS algorithm.

The DHS algorithm now computes the total area under this curve and stores it as

Λmax
F (x0

c , tshift, 0). Starting at tshift = 0, the algorithm then begins to subtract the with the

cutoff parameter τ increasing area under the curve from the total area and thus calculates

ΛF (x0
c = tH , τ, 0), which is then further used to determine the relative remaining corre-

lation η from (110) (see sec. 7.4.2). The problem is now, that because of the vanishing

coupling, the amplitude of the oscillation of F (x0, y0, 0) did not decline from y0 = x0 = tH

67

Figure 31: Depicted is the absolute value of the correlation function F (x0, y0, 0) at x0 =
100 for the two couplings λ = {0, 1}. The maximum starting history was
tHmax = 100 and tsunami initial conditions were used. For λ = 0 one can see
that the correlations do not decline at all, while they decline to some degree
for λ = 1. Integrating the graph along y0 lead to a close to linear increasing
area for λ = 0. For λ = 1 this increase should be slightly diminished for large
y0, but still somewhat close to linear.

to y0 = 0. This means, that the area ΛF (x0
c = tH , τ, 0) declines roughly linear with in-

creasing τ , which in turn results in an almost linear dependency between η and t′H . The

algorithm would then run until the chosen η (for example η = 1− 1/e) is reached. In this

case the relative new history size would be trelH ≈ η = 1− 1/e despite the fact that the

unequal time correlations have not declined in the slightest.

This problem remains when the coupling is too small for the predetermined maximal

history size tHmax of the system, like it is the case for the coupling λ = 1, which we also

show in Fig. 31. In this case, the correlation functions do not have the time to decline

sufficiently within the range of this fixed history and the course of t′H(η) will be somewhat

close to a linear one. If the DHS algorithm then starts to cut the history even further, the

resulting smaller history might lead to significant deviations. It goes without saying, that

the DHS algorithm should in this case refrain from a further reduction of the already too

small history and request a bigger one from the user.

In the following, we’ll address this issue and present our method on how to deal with it.

We already stated that the entropy weighting is our measure of choice. For this reason,

we’ll focus our discussion on this weighting method. Note however, that the solution to

our problem is not limited to the entropy weighting and could also be used for others.

68

Above, we’ve discussed that the DHS algorithm shows a close to linear dependency be-

tween η and trelH if the maximal history tHmax is too small for the chosen coupling constant

λ. This problem is reflected in Fig. 32, where we show the dependency between η and

trelH , determined by the DHS algorithm, for various coupling constants and tsunami initial

conditions. We chose the same maximal history tHmax = 100, as we did for Fig. 30.

Figure 32: Courses between the relative new history size t′H/tHmax = trelH and the relative
remaining correlations η, determined with the DHS algorithm for different
couplings and an entropy weighting. The considered system has tsunami initial
conditions and a maximal starting history tHmax = 100. The red threshold
area is parameterized by δ, which describes the distance between the black
line through the origin and the dashed boundary line. All graphs that are
completely within the threshold area will be deemed too linear and the DHS
algorithm avoids cutting and demands a larger maximal history tHmax .

In Fig. 32 we can see that, as we already argued above, the dependency between η and

trelH for λ = 1 is comparatively close to the linear one that is indicated by the black line.

This is expected, because, as we can see especially good from Fig. 31, a maximal history

of tHmax = 100 does not seem to be big enough for the unequal time correlation functions

to decline sufficiently enough. In this case, we should refrain from cutting the history even

further and request a bigger maximal history size. On the other hand when we consider

higher couplings λ ≥ 3, like we did in Fig. 28, we can see that the dependency between η

and trelH deviates quite significantly from the linear course and cutting the history further

should be acceptable.

69

As of now, we implemented a rather basic solution to the problem of unnecessary history

cuts. That is, we defined a threshold area, indicated by the red area in Fig. 32, which

corresponds to the area between the black line through the origin and another parallel,

dashed black line which is shifted by a distance δ away from the first one (see Fig. 32).

This distance δ can in principle range from 0 to 1/
√

2. When the DHS algorithm does

its calculation, it sweeps through η to get the dependency η(trelH), like they are shown in

Fig. 32. If the graph of η(trelH), does not leave the threshold area at least at one point, its

course is deemed too linear. In this case, the DHS algorithm avoids further cutting and

suggests the user to restart the computation with a bigger initial maximum history size

(see also appendix C.2). On the other hand, if the graph leaves the area, like it is the

case for λ = {3, 5, 7} in Fig. 32, the DHS algorithm deems the chosen maximal history

tHmax as cuttable. In this case, the DHS algorithm takes the users input value of η (for

example η = 1 − 1/e), determines the corresponding new history size t′H and resizes the

old history to t′H via the resizeHistory-routine (appendix C.3). For further information

about the DHS algorithm see appendix C.2.

The last remaining question that needs to be answered is how to choose the threshold area

or rather the parameter δ from Fig. 32, so that the DHS algorithm accepts reasonable

courses between η and trelH and declines the ones where the course is too linear. As of

now, we use δ as a free parameter in the DHS algorithm and can only give an estimate

on which δ should be chosen. We get this estimate in the following way. At first, we use

Fig. 32 and our previous criteria η = 1− 1/e, to determine new suitable history sizes for

the different couplings. The results are shown in Tab. 6.

η = 0.63
λ t′H
1 59.6
3 44.8
5 32.5
7 22.5

Table 6: Listed are the new history sizes t′H determined by the DHS algorithm with an
entropy weighting for different coupling constants λ and tsunami initial condi-
tions. The initial maximal history size is tHmax = 100 and the relative remaining
correlation is η = 1− 1/e = 0.63.

We considered the equal time correlation function F (x0, x0, p) for different momentum

modes, couplings and history sizes from appendix B.3 (Fig. B.7-B.9) and sec. 7 (Fig. 24).

We want to choose our estimate in such a way, that the suggested history sizes from

Tab. 6, for the corresponding couplings, should at worst only lead to small deviations

in the course of the equal time correlation function. When we do the comparison, only

70

the case of λ = 1 (see Fig. B.7) still shows significant deviations around the determined

history t′Hλ=1
= 59.6. The F (x0, x0, p) for the higher couplings λ = 3 to λ = 7, show small

deviations around their determined history sizes. Because of this, δ should be chosen in

such a way, that the threshold area completely includes the graph of η(trelH) in Fig. 32 for

λ = 1, while it should still exclude parts of the graph for λ = 3. From Fig. 32 we can

determine that δ should therefore lie between 0.026� δestimate < 0.130 to avoid cutting

a system’s history, which is already too small. We want to emphasize, that an estimate

in favor of larger δ should suffice for the choice of δ. If δ is too big, the DHS algorithm

only suggests the user to choose a larger history size, but does not alter the current one

or interrupt the time evolution. The choice on how to proceed from this point lies within

the users own discretion.

71

8. Conclusion

8.1. Summary

In this work, we implemented the history cut-off reduction scheme for the case of a spacial

homogeneous system in (1+1)-dimensions into our solver of the Kadanoff-Baym equations.

With the reduction scheme in place, we observed and discussed the time evolution of the

system for our test model, a scalar field theory with a ϕ4-interaction, to get an idea of

its general behavior for different initial conditions. For both quench and tsunami we

considered the case of 1- and 2-Loop corrections. We observed that 1-Loop corrections

could not describe the thermalization of the system. However, for 2-Loop corrections, at

late times, the system approaches an equilibrium state, where no more changes occurred.

For the tsunami initial conditions, we additionally observed the particle distribution, as

well as the linear entropy under the further condition of a thermal background. The

particle distribution and the linear entropy both indicated thermalization and we could

observe a temperature increase between the initial temperature of the background and

the system’s temperature after thermalization.

To further improve our understanding of the numerical solution for the Kadanoff-Baym

equations, we discussed numerical effects. Finite lattice effects occurred for both 1- and

2-loop approximations, however for the latter, these effects were highly suppressed and

changed the course of the evolution only for very small volumes. Besides finite lattice

effects, we also analyzed the system’s dependency on the time and spacial lattice spacing.

For decreasing time spacing we saw that the numerical error decreases quadratically. In

case of the spacial spacing, the quench also indicated a quadratic decrease in the numerical

error for the zeroth mode. However, the results for the tsunami were inconclusive within

the observation time.

Lastly, we introduced and discussed the history cut-off reduction scheme. We gave a justi-

fication of the history cut-off through the exponential decline of the correlation functions

with their distance from the time diagonal and showed the steps necessary to implement

the history cut-off. Furthermore, we used a simplified example to illustrate an efficient

way of implementing the history cut-off into a numerical solver, using a double cyclic

memory. After presenting the implementation of the history cut-off, we discussed its ef-

fects on the course of the system’s time evolution depending on the size of the history.

We showed that, depending on the initial conditions and the coupling, small history sizes

lead to significant deviations. However, the courses quickly approach each other when the

history size is increased. We then proceed to presented our method, the DHS algorithm,

72

to find a suitable history size for the system. This method was discussed for different

couplings and weighting factors for the weighted average that is used in the calculations.

We decided that the linear entropy is the most reasonable weighting factor to determine a

fitting history sizes. Afterwards we discussed an issue, that arises from the way the DHS

algorithm works and presented a way to avoid it.

Besides the work that is directly presented here, we also implemented a graphical user

interface into our framework. A basic introduction to it can be found in appendix D.

8.2. Outlook

The history cut-off for the case of a spacial homogeneous system was only a small stepping

stone to test the viability and the best approach to implement it for the more complex

case of a spacial inhomogeneous system. We already started working on a history cut-off

implementation for the inhomogeneous system. However, more work is needed before a

functioning version can be reported. This work lays the foundation for the implementation

of the history cut-off in the inhomogeneous case and should also helps to provide a better

understanding of the numerical solution of the Kadanoff-Baym equations, so that further

improvements can be made in the future. One of these future improvements, whose

implementation is already planed, is a perhaps improved version of the DHS algorithm

for the solver of the inhomogeneous Kadanoff-Baym equations.

73

Acknowledgment

First of all, I want to thank my supervisors, Prof. Dr. Werner Porod and Thomas Garratt,

for their help and support during my work for this thesis. I am grateful that there was

always someone listening when I had a theoretical question, or when I wanted to discuss

how to approach the work done in this thesis.

I want express my deep thanks to my family, who always supported me throughout my

studies and the creation process of this work. Without their aid, this work would have

never been possible and I’m very grateful to have such amazing parents and such a nice

sister.

I also want to thank Simon Geisler. He is a very good friend of mine and our discussions,

be they physics related or not, are always fun and productive. You are a central pillar in

my endeavors to always improve. I’m glad that we met each other during our studies and

had the chance to complete our master’s degree together.

Lastly, I want to thank all my other friends, who kept me entertained and helped me to

relax during the creation of this thesis.

74

Appendix

A. Settings

The following tables show a detailed list of the settings, that were used in our solver to

produce the data that is shown in this work. The settings tables are denoted as sets Si,
with i = 1, ..., 6 and grouped together depending on the section in which they have been

used. Parameters that equal ”varied” are the ones, which vary or are varied for the figures

that are listed at the bottom of the table.

Model

For the model section (sec. 5), we choose two different sets. The first is used in the

beginning of the section, when the quench and the tsunami are shown for the first time.

The second set is used for the observation of the particle density and the linear entropy.

To get a good resolution for the plot of n(x0, p), we used a significantly greater number

of spacial points Nsp = Vs/as in the second set.

Set S1
Tsunami Quench

Model λ = 7 λ = 2.5
parameters MInit = 1 MInit = 0.5

T0 = 2
Initial A = 3
conditions pts = 1

σ = 0.2
Lattice at = 0.1 at = 0.1
parameters as = 0.4 as = 0.4

Vs = 60 Vs = 60
History tH = 15 tH = 15
size

Fig. 9-13,B.1

Set S2
Tsunami +

thermal background
Model λ = 7
parameters MInit = 1

T0 = 2
Initial A = 4
conditions pts = 2.5

σ = 0.1
Lattice at = 0.025
parameters as = 0.4

Vs = 400
History tH = 15
size

Fig. 14,15

75

Numerical effects

We choose to split our parameter choice for section 6 into three tables S3−5. The first

and second table show the settings for finite volume effects and time spacing effects,

respectively. For the last table, we additionally added the number of spacial points Nsp.

We did this, because we varied both as and Vs to always get a constant integer number

(Nsp = 350) for the spacial steps.

Set S3
Tsunami Quench

Model λ = 7 λ = 2.5
parameters MInit = 1 MInit = 0.5

T0 = 2
Initial A = 3
conditions pts = 1

σ = 0.2
Lattice at = 0.1 at = 0.1
parameters as = 0.4 as = 0.4

Vs = varied Vs = varied
History tH = 15 tH = 15
size

Fig. 16,17,B.2

Set S4
Tsunami Quench

Model λ = 7 λ = 2.5
parameters MInit = 1 MInit = 0.5

T0 = 2
Initial A = 3
conditions pts = 1

σ = 0.2
Lattice at = varied at = varied
parameters as = 0.4 as = 0.4

Vs = 60 Vs = 60

History tH = 15 tH = 15
size

Fig. 18

Set S5
Tsunami Quench

Model λ = 7 λ = 2.5
parameters MInit = 1 MInit = 0.5

T0 = 2
Initial A = 3
conditions pts = 1

σ = 0.2
Lattice at = 0.05 at = 0.05
parameters as = varied as = varied

Vs = varied Vs = varied
Nsp = 350 Nsp = 350

History tH = 15 tH = 15
size

Fig. 19

76

Efficient solution of memory integrals

Throughout sec. 7 we used the same basics settings, so that we can easily compare our

results. The only quantities that were varied are the history size tH and the coupling

constant λ.

Set S6
Tsunami Quench

Model λ = varied λ = varied
parameters MInit = 1 MInit = 0.5

T0 = 2
Initial A = 3
conditions pts = 1

σ = 0.2
Lattice at = 0.1 at = 0.1
parameters as = 0.4 as = 0.4

Vs = 60 Vs = 60
History tH = varied tH = varied
size

Fig. 20, 24-32,B.3-B.9

77

B. Additional Graphs

The following section contains additional plots, that we could not fit into the main part

of this thesis.

B.1. Model

Tsunami initial conditions

Fig. B.1 shows the time evolution of the isolated maximum momentum mode for the

tsunami initial conditions from sec 5.2. This momentum mode is also shown in Fig. 12

and 13, but its amplitude is too small to notice anything than a constant line. For this

reason an additional plot was made.

Figure B.1: Time evolution of the maximum momentum pmax = 5 mode for the equal
time correlation function F (x0, x0, pmax) with tsunami initial conditions. The
insert shows a magnification of the early time behavior of the mode. The
settings we used for this plot are given in S1 (appendix A).

78

B.2. Numerical effects

Finite lattice effects

The finite lattice effects could already be seen in Fig. 16. For completeness, we also

observed the tsunami. The result of this observation can be seen in Fig. B.2, where we

show the time evolution of the tsunami for different finite lattice sizes Vs.

Figure B.2: Depicted is the course of the equal time correlation function F (x0, x0, 0) for
tsunami initial conditions and different lattice sizes Vs, ranging from Vs = 10
to 150. The insert shows a magnification of the graph from x0 = 1200 to
2000. The settings we used for this plot are given in S3 (appendix A).

79

B.3. Effects of a history cut-off

This section shows additional plots for the effects of a history cut-off. The settings S6

were used to produce the data for all the plots, which are shown in this section.

Quench λ = 2.5

Here, we present the quench for λ = 2.5, that we discussed in sec. 7 together with

the tsunami. We choose to place this Fig. B.3 here, because we wanted to keep a nice

formatting for this work.

Figure B.3: Depicted is the equal time correlation function F (x0, x0, 0) with quench initial
conditions for different history sizes tH ranging from 8 to 50. Similar to Fig.
24, the course of F (x0, x0, 0) shows large deviations for tH ≤ 10. However,
for the quench, even larger histories show comparatively large deviations.
Nonetheless when comparing tH = 30 and 50 the deviation again becomes
minuscule.

Besides the case of λ = 7 for the tsunami and λ = 2.5 for the quench, we observed the

system for various other coupling constants and history sizes. The results are shown in

the figures B.4-B.9 below.

80

Quench λ = 1

(a)

(b)

Figure B.4: Time evolution of the equal time correlation function F (x0, x0, p) for the mo-
mentum modes a) p = 0 and b) p = pmax = 5 and different history sizes. The
system has quench initial conditions and a coupling of λ = 1.

81

Quench λ = 1.5

(a)

(b)

Figure B.5: Time evolution of the equal time correlation function F (x0, x0, p) for the mo-
mentum modes a) p = 0 and b) p = pmax = 5 and different history sizes. The
system has quench initial conditions and a coupling of λ = 1.5.

82

Quench λ = 2

(a)

(b)

Figure B.6: Time evolution of the equal time correlation function F (x0, x0, p) for the mo-
mentum modes a) p = 0 and b) p = pmax = 5 and different history sizes. The
system has quench initial conditions and a coupling of λ = 2.

83

Tsunami λ = 1

(a)

(b)

Figure B.7: Time evolution of the equal time correlation function F (x0, x0, p) for the mo-
mentum modes a) p = 0 and b) p = pmax = 5 and different history sizes. The
system has tsunami initial conditions and a coupling of λ = 1.

84

Tsunami λ = 3

(a)

(b)

Figure B.8: Time evolution of the equal time correlation function F (x0, x0, p) for the mo-
mentum modes a) p = 0 and b) p = pmax = 5 and different history sizes. The
system has tsunami initial conditions and a coupling of λ = 3.

85

Tsunami λ = 5

(a)

(b)

Figure B.9: Time evolution of the equal time correlation function F (x0, x0, p) for the mo-
mentum modes a) p = 0 and b) p = pmax = 5 and different history sizes. The
system has tsunami initial conditions and a coupling of λ = 5.

86

C. Code segments

C.1. Double cyclic memory

This section shows two code extractions, which perform the cycling of the time indicies,

as well as the transformation from the matrix to the line vector representation. These

functions determine where data has to be written into and read from the memory and

more or less represent the double cycled memory itself. Whenever data is written to or has

to be read from the memory, the respective cycling function has to be called to determine

the line vector index correctly. Otherwise the memory will return the wrong data or write

it at a false position.

1 unsigned i n t Npointfunc : : calcCycleHomIndex (unsigned i n t x0 , unsigned i n t

y0 , unsigned i n t p)

2 {
3 re turn (x0HistoryStep ∗(x0%mHistorySize) + y0Step ∗(y0%mHistorySize) + p

) ;

4 }

Listing 1: Code for the cycling routines, that generate the effect of the double cyclic

memory for the spacial homogeneous case.

The first code segment manages the cycling for the spacial homogeneous case for two-

point functions. The real time indicies x0, y0 and p are taken as inputs by the function.

Using the member variable mHistorySize (NH), the two time indicies are cycled via a

modulo (%) operation. The remaining cycled real time index is then transformed to a line

vector index by multiplying it with the x0/y0-stepping factor of the history matrix. The

stepping factors are given by x0HistoryStep = NH ·y0Step = NH ·Nsp for the x0-stepping

and y0Step = Nsp for the y0-stepping. The spacial index does not need cycling and is in

the case of the line vector representation simply added at the end.

1 unsigned i n t Npointfunc : : ca l cCyc l e Index (std : : vector<unsigned int>

paramVec) {
2 unsigned i n t indexOut = 0 ;

3

4 f o r (i n t i = 0 ; i < paramVec . s i z e () ; i +=2){
5 indexOut += mStepSizeVec [i] ∗ (paramVec [i]% mHistorySize) ; //Adding the

cyc l ed time i n d i z e s

6 }
7 f o r (i n t i = 1 ; i < paramVec . s i z e () ; i +=2){
8 indexOut += mStepSizeVec [i] ∗ (paramVec [i]) ; //Adding the s p a c i a l

i n d i z e s

87

9 }
10

11 re turn indexOut ;

12 }

Listing 2: Code for the cycling routines, that generate the effect of the double cyclic

memory for the general, inhomogeneous case.

The second code segment shows the more general case for an inhomogeneous system with

an arbitrary number of n-point-functions. In this case the number of input parameters is

not fixed like it has been the case in the previous code segment. For this reason, the input

parameters are handed over via a vector. Every component of this vector with an even

index contains a time index, which is cycled, while every component with an uneven index

contains a spacial component, where no cycling is necessary. For the computation of the

line vector index, each cycled (or not cycled in the case of the spacial part) component is

multiplied by their respective stepping factor which is contained in a vector mStepSizeVec,

that is stored as a member variable in the Npointfunc-class.

C.2. DHS algorithm

In the following, we present the implementation of the full DHS algorithm, which avoids

unnecessary history shrinking when the system’s old history matrix is already too small.

This version of the code only contains the case of the entropy weighting.

The algorithm is separated in two parts. The first is the findNewHistory-routine, which

manages the determination of the system’s new history size t′H for a given η like it has

been discussed in sec. 7.4. The second part is the determineHistorySize-routine (the full

DHS algorithm), which contains the findNewHistory-routine to find a new history, but

also checks if the system’s history should be shrunk at all.

We begin our discussion with the findNewHistory-routine.

1 unsigned i n t Model : : f indNewHistory (double eta , unsigned i n t t , Npointfunc

∗ func)

2 {
3

4 unsigned i n t H i s t o r y S h i f t = func−>getSh i f tParameter () ;

5 unsigned i n t Spac i a lPo in t s = l a t t i c e −>Spac i a lPo in t s () ;

6

7 double AverageNewHistSizeEntropyWeight =0; // Average new h i s t o r y s i z e

8 double Total Entropy =0; //The t o t a l entropy i s needed f o r the

denominator o f the weighted average

88

9

10 //−−−−−For loop to f i n d the new h i s t o r y s i z e f o r each mode−−−−
11 f o r (unsigned i n t p = 0 ; p < Spac i a lPo in t s ; p++){
12 double S t a t T o t a l I n t e g r a l = 0 , Spec Tota l In t eg ra l = 0 ;

13 std : : vector<double> S t a t I n t e g r a l P a r t s , Spe c In t eg ra lPa r t s ;

14

15 double intVal = 0 ;

16

17 //−−−For loop that performs the numerica l i n t e g r a t i o n o f the

abso lu t e va lue o f the s t a t i s t i c a l and s p e c t r a l component−−−−−−
18 f o r (unsigned i n t i = H i s t o r y S h i f t ; i < t−1; i++){
19

20 // I n t e g r a l f o r the s t a t i s t i c a l part

21 in tVal = 0 .5∗ parameters . dt ∗(std : : abs (func−>va l (func−>
calcCycleHomIndex (t , i , p))) + std : : abs (func−>va l (func−>
calcCycleHomIndex (t , i +1,p)))) ;

22 S t a t I n t e g r a l P a r t s . push back (intVal) ;

23 S t a t T o t a l I n t e g r a l += intVal ;

24

25 // I n t e g r a l f o r the s p e c t r a l part

26 in tVal = 0 .5∗ parameters . dt ∗(std : : abs (func−>specva l (func−>
calcCycleHomIndex (t , i , p))) + std : : abs (func−>specva l (func−>
calcCycleHomIndex (t , i +1,p)))) ;

27 Spec In t eg ra lPa r t s . push back (intVal) ;

28 Spec Tota l In t eg ra l += intVal ;

29 }
30 //−−−
31

32 double S ta t Cur r en t In t eg ra l = S t a t T o t a l I n t e g r a l ;

33 double Spec Current Integ ra l = Spec Tota l In t eg ra l ;

34

35 unsigned i n t tau cut = 0 ;

36

37 //−−−−While loop that runs u n t i l the r e l a t i v e remaining c o r r e l a t i o n

eta drops under the input threshhold−−−−−
38 whi le (tau cut < S t a t I n t e g r a l P a r t s . s i z e ()) {
39

40 Sta t Cur r en t In t eg ra l −= S t a t I n t e g r a l P a r t s [c] ;

41 Spec Current Integ ra l −= Spec I n t eg ra lPa r t s [c] ;

42

43 tau cut++;

44 i f (S t a t Cur r en t In t eg ra l / S t a t T o t a l I n t e g r a l < eta) break ;

45 i f (Spec Current Integ ra l / Spec Tota l In t eg ra l < eta) break ;

46 }
47 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

89

48 unsigned i n t Mode NewHistSize = t−His to rySh i f t−tau cut ; //

Ca l cu l a t ing the new h i s t o r y s i z e f o r each mode

49

50

51 double Mode Entropy = calcLinearEntropy (t , p , func) ; // Ca l cu la t ing

the entropy o f the mode

52

53 AverageNewHistSizeEntropyWeight += Mode Entropy∗Mode NewHistSize ; //

Ca l cu l a t ing the numerator o f the weighted average

54 Total Entropy += Mode Entropy ;

55 }
56 //−−
57

58 AverageNewHistSizeEntropyWeight/=Total Entropy ; // Ca l cu l a t ing the

weighted average

59

60 re turn (unsigned i n t) AverageNewHistSizeEntropyWeight ;

61 }

Listing 3: Code of the findNewHistory-routine that, is used to find a fitting history

size for a given value of the relative remaining correlation η

The findNewHistory-routine is the heart of the DHS algorithm and runs over all momen-

tum modes p. For each mode, the total integral of the absolute value of both correlation

functions (106) and (107) is calculated via the trapeze integral, that was already used for

calculating the memory integrals. While calculating Λmax
F/ρ , each segment of the numerical

integration is stored in a vector Stat/Spec IntegralParts. After the calculation of Λmax
F/ρ is

done, the algorithm uses the previously stored segments of the integral to compute (108)

and (109) and checks if the relative correlation integrals (110) drop below the thresh-

old η. From the variable τcut, the new history sizes Mode NewHistSize for the given η

and for each mode are determined and together with the linear entropy Mode Entropy of

each mode, their weighted average AverageNewHistSizeEntropyWeight is calculated and

returned.

Now, we’ll focus our discussion on the complete DHS algorithm, which is shown in the

determineHistorySize-routine

1 unsigned i n t Model : : de t e rmineHi s to ryS i z e (double eta , double de l ta , i n t

sweepCount , unsigned i n t t , Npointfunc ∗ func) {
2

3 unsigned i n t newHistory ;

4 unsigned i n t o ldHi s to ry = func−>g e t H i s t o r y S i z e () ;

5 double r e l a t i v e H i s t o r y ;

90

6

7 i f (d e l t a >= 1/ s q r t (2)) {
8 std : : cout << ”DHS: The d e l t a you choose to avoid unnecessary

sh r ink ing i s too big ! ” << std : : endl

9 << ”Please choose a de l t a sma l l e r than 1/ s q r t (2) ” << std : : endl ;

10 re turn o ldHi s to ry ;

11 }
12 f o r (i n t j = 0 ; j < sweepCount ; j++){
13 double etaSweep = 1/sweepCount∗ j ;

14

15 newHistory = findNewHistory (etaSweep , t , func) ;

16 r e l a t i v e H i s t o r y = (double) newHistory / o ldHi s to ry ;

17

18 i f (s td : : abs (etaSweep − r e l a t i v e H i s t o r y) / s q r t (2) > d e l t a) {
19 newHistory = findNewHistory (eta , t , func) ;

20 re turn newHistory ;

21 }
22

23 }
24 std : : cout << ”DHS: The chosen i n i t i a l maximum h i s t o r y might be too

smal l f o r the system ! ” << std : : endl

25 << ” I f p o s s i b l e , p l e a s e choose a b igge r s t a r t i n g h i s t o r y s i z e ” << std

: : endl ;

26 re turn o ldHi s to ry ;

27 }

Listing 4: Code of the determineHistorySize-routine to determine a fitting history size

and avoid cutting a too small one

At first, the routine checks, if the input δ is bigger or equal than 1/
√

2. From sec.7.4.2 and

Fig. 32, we know that δ has to be smaller than 1/
√

2, otherwise the algorithm wouldn’t

accept any possible course of η(trelH). If δ is too big, a warning is given to the user and the

algorithm returns the previous history size. Thus the DHS algorithm does not search for

a new history size in this case. After the check of δ, the routine starts to sweep through η

from 0 to 1 with a rate of 1/sweepCount to find the course of η(trelH). The routine checks

if at least one of the point for the course of η(trelH) is further way from the diagonal than

the distance δ. This means that at least one point must lie outside the threshold area, as

we discussed in sec.7.4.2. If this is the case, the algorithm uses the η that was specified

by the user, determines the corresponding new history size newHistory and returns it.

Otherwise, the algorithm gives a warning that the old history might be too small and

returns it. Thus, no cut is performed in this case.

91

C.3. Resizing the systems history

When determining a new history size during the run time of the numerical solution, a

resizing of the previous history and therefore storage is necessary. In our program, this is

done via the resizeHistory-routine shown below.

1 void Npointfunc : : r e s i z e H i s t o r y (unsigned i n t New HistorySize , unsigned i n t

t)

2 {
3 std : : vector<std : : complex<double> > NewVal ; // Storage f o r the data

that ge t s t r a n s f e r e d from the o ld h i s t o r y s to rage

4

5 i n t N = l a t t i c e −>getN () ;

6 i n t dimension = l a t t i c e −>getdim () ;

7 unsigned long long New HistoryArraySize = pow(New HistorySize , 2) ∗pow(N

, dimension) ; // Ca l cu la te s i z e o f the new h i s t o r y

8 unsigned i n t New x0HistoryStep = New HistorySize ∗pow(N, dimension) ;

// Ca l cu la te s i z e o f the new stepp ing f a c t o r s

9 unsigned i n t New y0Step = pow(N, dimension) ; // Ca l cu la te s i z e o f the

new stepp ing f a c t o r s

10

11 NewVal . r e s i z e (2∗New HistoryArraySize) ;

12

13 i n t ShiftParam = (i n t) (t−New HistorySize)>0?t−New HistorySize :

mShiftParameter ; // Determine the s h i f t i n g parameter f o r the new

h i s t o r y s i z e

14

15 //−−−−−−−−Trans f e r ing the remaining data from the o ld h i s t o r y to the

temporary s to rage (NewVal)−−−−−
16 f o r (unsigned i n t x0 = ShiftParam ; x0 <= t ; x0++){
17 f o r (unsigned i n t y0 = ShiftParam ; y0<=x0 ; y0++){
18 f o r (unsigned i n t p = 0 ; p < y0Step ; p++){
19 unsigned i n t o ldIndex = calcCycleHomIndex (x0 , y0 , p) ;

20 unsigned i n t newIndex = ca l cArb i t r a ryH i s to ry Index (x0 , y0 , p ,

New HistorySize , New x0HistoryStep , New y0Step) ;

21

22 NewVal . at (newIndex) = th i s−>va l (o ldIndex) ;

23 NewVal . at (newIndex+New HistoryArraySize) = th i s−>specva l (

o ldIndex) ;

24 }
25 }
26 }
27 //−−−

28

92

29 //−−−Adjust ing the parameters o f the o ld h i s t o r y to f i t the new one

−−−−
30 mHistorySize = New HistorySize ;

31 mHistoryArraySize = New HistoryArraySize ;

32 x0HistoryStep = New x0HistoryStep ;

33 s i z e =2∗New HistoryArraySize ;

34 dyns i ze=2∗x0HistoryStep ;

35 //−−−

36

37 va lues=NewVal ; // r e p l a c i n g the o ld s to rage with the new one

38

39 s e tSh i f tParamete r (ShiftParam) ; // Saving the s h i f t i n g parameter t−
s h i f t to account f o r the systems new h i s t o r y

40 re turn ;

41 }

Listing 5: Code of the resizeHistory-routine, which changes the current history size of

a system to a new one and transfere the data of the former to the latter

At first a new storage NewVal for the data of the old history, that has to be kept for the

new one, is created. This storage is resized accordingly to fit the new history. Afterwards,

the shift parameter t′shift of the new history is determined and the necessary values of the

old history are transfered to the NewVal. This is done using a spacial kind of cycling

function calcArbitraryHistoryIndex , which is shown below. This cycling function allows

the determination of the correct line vector index for an externally input history. Note

that this function is in principle equivalent to calcCycleHomIndex . However, because of

its generality, its performance is comparatively slow, which is why it is only used in this

case.

1 unsigned i n t Npointfunc : : c a l cArb i t r a ryH i s to ry Index (unsigned i n t x0 ,

unsigned i n t y0 , unsigned i n t p , unsigned i n t Hi s to ryS ize , unsigned

i n t x0HistoryStep , unsigned i n t y0Step)

2 {
3 re turn x0HistoryStep ∗(x0%Hi s to ryS i z e) + y0Step ∗(y0%Hi s to ryS i z e) + p ;

4 }

Listing 6: Code of cycling function for an arbitrary history, that is parsed as an input,

for a 2-point function and a homogeneous system

After the transfer of the data is finished, the settings of the old history, which are stored

inside the Npointfunc-class for faster performance, are overwritten by the new settings.

This settings overwrite has to be done after the transfer of the data, otherwise the

93

calcCycleHomIndex -function returns the wrong values during the data transfer. When

all the settings are adjusted, the old history storage is replaced by the new one and the

new time shift t′shift is applied. The system now has a new history New HistorySize and

the computation can continue.

94

D. Graphical user interface

Besides our main work on the implementation of the history cut-off reduction scheme,

we also worked on a graphical user interface (GUI), which uses the Qt framework for

c++ [22]. The use of a GUI has various advantages for the usability of our solver. In

the following, we’ll give an overview of the graphical user interface and discuss its pros

and cons. We want to emphasize, that, at present time, the GUI is only a basic one. A

lot of functions need to be added and the design could also be improved further in the

future. Nonetheless, the basic features that the GUI provides already simplify the use of

our solver by quite a lot.

The central part of the GUI is the MainWindow, which initially is made up of the three

tabs General Parameters, Model Parameters and Plots. In the General Parameters (see

Fig. D.10) the user can choose all the currently possible parameters, which are not related

to the specific model that is observed. Amongst other things, these parameters include

the total observation time, the size of the lattice, the size of the fixed history matrix (for

a full calculation one can either choose tH ≥ ttotal or tH = 0), or if for example memory

integrals should be taken into account.

Figure D.10: Design of the General Parameters tab of our GUI

In the second tab, Model Parameters (see Fig. D.11), the user can choose settings, which

are specific to the implemented model, or in the future, change the model itself. For the

95

homogeneous case, there is only one model available at present time. For this reason there

is currently no option to switch between different models. However, using the drop down

menu, one can choose between the different initial conditions, which currently include

the tsunami and the quench. Additionally, for the tsunami initial condition, the user can

choose position, width and amplitude of the tsunami peak and is, in the 1-dimensional

case, directly provided with a plot of the initial particle distribution n0(p) as a function

of the momentum p.

Figure D.11: Design of the Model Parameters tab of our GUI

In the Plots tab (see Fig. D.12), one can pick from a list of quantities, which should be

plotted live during the evolution of the system. The plots are selected by marking the

corresponding check box. Evolutions for quantities which are not on the list first have to

be implemented inside the source code.

At the top of the screen, under the file menu, the user can choose to save his current

settings inside a text file, or load the settings from an already existing file. At the

bottom of the screen, the user has the option to start the run, or cancel the current

one. Additionally, the user is further provided with a progress bar, which indicates the

percentage of the total time steps that have already been calculated.

After all settings have been specified, the user can begin the run by pressing the start but-

ton. The GUI then starts to allocate the memory, which is necessary for the computation

96

Figure D.12: Design of the Plots tab of our GUI

and spawns a solver object, that performs the computation. At the same time, additional

tabs appear, each of them containing one of the plots, which have been chosen previously

in the Plots tab (see Fig. D.13). While the solver performs the numerical solution of the

Kadanoff-Baym equations, these plots a filled with live data of the calculations. By right

clicking them, each plot provides the possibility to save its data, either as a simple picture

file (jpeg or png), or as a text file (txt), where all the data of the plot is stored. All plots

in the GUI are created using the QCustomPlot package [23].

The usage of the GUI has several advantages. First, the user does not have to directly

access the code for changes, as it has been the case for previous builds. This allows even

users without the knowledge of the actual code to perform computations using our solver.

Additionally and perhaps most importantly, the direct feedback of the produced data

through the live plots enables the user to directly observe the time evolution of the system.

This in turn can for example help to find errors, or cancel runs with an unsatisfactory

choice of parameters before completely finishing them and therefore avoiding the waste of

a lot of time.

However, the GUI also has disadvantages. First of all, the GUI tends to generally slow

down the computation. From our experience, depending on the data that is plotted

during the run, the computation speed can be slowed down by roughly 25% compared to

97

Figure D.13: Plot tabs (the active one is the plot that shows the equal time correlation
function F (x0, x0, 0)) that appear at the start of the computation when they
are chosen in the Plots tab. The plots show the live evolution of the data
that is produced by the solver.

a computation that is now using the GUI. The second disadvantage is less a problem of

the GUI itself, then it is one of the system where it is ran on. What we mean by this

is that one typically wants to perform complex computations like solving the Kadanoff-

Baym equations on a high performance cluster like the Julia HPC, which we use. The

Julia HPC does not support graphical user interfaces, so the GUI-version of the program

can’t be run on the high performance cluster and the GUI has to be deactivated.

There are still a lot of possible ways in which the GUI can be improved in the future.

For example, we could implement the option to pause and resume a calculation that is

currently running. Nonetheless, in our opinion, even in its current state, the advantages of

the GUI outweigh the disadvantage of the increased computation time. The significantly

greater user friendliness, as well as the direct feedback from the live plots, make a great

addition to our solver and enable its use to a broader audience.

98

References

[1] C. Bambi and A. D. Dolgov, “Antimatter in the Milky Way,” Nucl. Phys., vol. B784,

pp. 132–150, 2007. doi:10.1016/j.nuclphysb.2007.06.010 [astro-ph/0702350].

[2] J. M. Cline, “Baryogenesis,” in Les Houches Summer School - Session 86: Particle

Physics and Cosmology: The Fabric of Spacetime Les Houches, France, July 31-

August 25, 2006, MacGill University, Montreal, 2006. [arXiv:hep-ph/060914 [hep-

ph]].

[3] M. Garny and M. M. Müller, “Quantum boltzmann equations in the early universe,”

in High Performance Computing in Science and Engineering, Garching/Munich 2009

(S. Wagner, M. Steinmetz, A. Bode, and M. M. Müller, eds.), (Berlin, Heidelberg),

pp. 463–474, Springer Berlin Heidelberg, 2010.

[4] M. Schüler, E. Martin, and W. Philipp, “Truncating the memory time

in nonequilibrium DMFT calculations,” Phys. Rev. B 97, 245129, 2018.

doi:10.1103/PhysRevB.97.245129.

[5] A. Giraud and J. Serreau, “Decoherence and thermalization of a pure quan-

tum state in quantum field theory,” Phys. Rev. Lett., vol. 104, p. 230405, 2010.

doi:10.1103/PhysRevLett.104.230405 [arXiv:0910.2570 [hep-ph]].

[6] D. Campo and R. Parentani, “Decoherence and entropy of primordial fluctua-

tions. i. formalism and interpretation,” Phys. Rev. D, vol. 78, p. 065044, Sep 2008.

doi:10.1103/PhysRevD.78.065044.

[7] D. Campo and R. Parentani, “Decoherence and entropy of primordial fluctu-

ations. ii. the entropy budget,” Phys. Rev. D, vol. 78, p. 065045, Sep 2008.

doi:10.1103/PhysRevD.78.065045.

[8] J. Rammer, Quantum field theory of non-equilibrium states. Cambridge: Cambridge

Univ. Press, first ed., 2007.

[9] D. Glavan and T. Prokopec, “Lecture notes: A pedestrian introduction to non-

equilibrium qft,” October,9 2017. URL: https://www.staff.science.uu.nl/

~proko101/LecturenotesNSTP530M2017oct06.pdf. Last visited on 01.12.18.

[10] J. Berges, Nonequilibrium Quantum Fields: From Cold Atoms to Cosmology. Uni-

versity of Heidelberg, March, 10 2015. [arXiv:1503.02907 [hep-ph]].

[11] L. P. Kadanoff and G. A. Baym, Quantum Statistical Mechanics. Cambridge, Mass:

Perseus Books, 2009.

99

https://www.staff.science.uu.nl/~proko101/LecturenotesNSTP530M2017oct06.pdf
https://www.staff.science.uu.nl/~proko101/LecturenotesNSTP530M2017oct06.pdf

[12] J. F. Koksma, T. Prokopec, and M. G. Schmidt, “Decoherence and dynamical en-

tropy generation in quantum field theory,” Phys. Lett., vol. B707, pp. 315–318, 2012.

doi:10.1016/j.physletb.2011.12.049 [arXiv:1101.5323 [quant-ph]], eprint =.

[13] R. Balian, “Incomplete descriptions and relevant entropies,” American Journal of

Physics, vol. 67, pp. 1078–1090, Dec. 1999. doi:10.1119/1.19086.

[14] G. Adesso, Entanglement of Gaussian states. PhD thesis, Salerno U., 2007.

[arXiv:quant-ph/0702069].

[15] J. Berges, “Controlled nonperturbative dynamics of quantum fields out-of-

equilibrium,” Nucl. Phys., vol. A699, pp. 847–886, 2002. doi:10.1016/S0375-

9474(01)01295-7 [hep-ph/0105311].

[16] J. G. Steven and F. Matteo, Fastest Fourier Transform in the West (FFTW), Version

3.3.5, 2016. http://www.fftw.org/.

[17] W. Prof. Kahan, “Lecture notes: Ieee standard 754 for binary floating-point arith-

metic,” October,1 1997. URL: https://people.eecs.berkeley.edu/~wkahan/

ieee754status/IEEE754.PDF. Last visited on 17.12.18.

[18] H. T. U. of Würzburg, Julia HPC documentation, Accessed: December, 8 2018.

http://doku.hpc.uni-wuerzburg.de/.

[19] J. Berges, “Introduction to nonequilibrium quantum field theory,” AIP Conf. Proc.,

vol. 739, pp. 3–62, 2005. doi: 10.1063/1.1843591 [hep-ph/0409233].

[20] O. J. Peter, Introduction to Partial Differential Equations. Springer, Cham, 2014.

doi:10.1007/978-3-319-02099-0.

[21] E. Azar and M. Alebicto, Swift Data Structure and Algorithms. UK, Birmingham:

Packt Publishing, first ed., November, 18 2016. [ISBN:9781785884504].

[22] Q. D. Frameworks, Qt, version 5.11.0, May, 22 2018. https://www.qt.io/.

[23] E. Eichhammer, QCustomPlot, version 2.0.0, September, 4 2017. https://www.

qcustomplot.com/index.php/introduction.

100

http://www.fftw.org/
https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
http://doku.hpc.uni-wuerzburg.de/
https://www.qt.io/
https://www.qcustomplot.com/index.php/introduction
https://www.qcustomplot.com/index.php/introduction

Erklärung

Hiermit versichere ich, dass ich meine Masterarbeit selbständig verfasst und keine anderen

als die angegebenen Quellen und Hilfsmittel benutzt habe.

Datum: ...

(Unterschrift)

	Abstract
	Introduction
	Nonequilibrium quantum field theory
	The nonequilibrium problem
	Nonequilibrium Green's function
	The generating functional
	2PI-effective action
	Decoherence and entropy in nonequilibrium processes
	Relevant and irrelevant observables
	Linear entropy of a Gaussian state

	Numerical Implementation
	Spacial setup
	Time evolution

	Runtime analysis
	Memory usage
	Computation time

	Model
	Quench initial conditions
	1-loop approximation
	2-loop setting-sun approximation

	Tsunami initial conditions
	1-loop approximation
	2-loop setting-sun approximation

	Numerical effects
	Finite lattice effects
	1-loop approximation
	2-loop setting-sun approximation

	Time and spacial spacing
	Time spacing dependency
	Spacial spacing dependency

	Efficient solutions for memory integrals
	The history cut-off
	Cyclic memory
	Effects of the history cut-off
	Finding a suitable history size
	Calculating a fitting measure
	Determine history size algorithm

	Conclusion
	Summary
	Outlook

	Appendix
	Settings
	Additional Graphs
	Model
	Numerical effects
	Effects of a history cut-off

	Code segments
	Double cyclic memory
	DHS algorithm
	Resizing the systems history

	Graphical user interface
	References

