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Abstract

In this work the model proposed by Fileviez Perez and Wise [1] was examined,
especially in face of deviations from the Standard Model in the observables RK(∗)

and RD(∗) . In a first step the mass structure was analysed and determined, that
indeed two out of four leptoquarks might be light. One of these representations,
R

2/3
2 is known to be able to explain these deviations.
Regarding RD(∗) , it was seen that the couplings have to be chosen small to

avoid violations of experimental data of lepton flavour violating observables. In
consequence the Wilson coefficient does not suffice to produce an acceptable
deviation from the Standard Model prediction.

In principle RK(∗) can be explained with the effects from R
2/3
2 , bounds from

lepton flavour violating decays and leptonic meson decays were violated, though.
The biggest restrictions come from the processes µ− → e− e+ e− and K0

L → e±µ∓.
In both cases the effects result through the coupling Y4, which is the same as in
the Wilson coefficient to RK(∗) .
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Zusammenfassung

In dieser Arbeit wurde das Modell von Fileviez Perez und Wise [1] untersucht,
vor allem in Anbetracht aktueller Abweichungen der Observablen RK(∗) und RD(∗)

von den Standard-Modell-Vorhersagen. Zunächst wurde dazu die Massenstruktur
bestimmt und festgestellt, dass zwei der vier skalaren Leptoquarks leicht sein können.
Eine der beiden Repräsentationen, R2/3

2 , kann bekanntermaßen Abweichung an den
Observablen erzeugen.

Im Falle von RD(∗) wurde jedoch festgestellt, dass die Kopplungen nicht groß
genug gewählt werden können, um Abweichungen vom Standard-Modell zu erzeugen
ohne leptonische Observablen zu verletzen, vor allem µ → e γ.

Prinzipiell ist es andererseits möglich, RK(∗) mithilfe von R
2/3
2 zu erklären,

jedoch hat sich auch hier gezeigt, dass experimentelle Einschränkungen von Lepton-
Flavour verletzenden Observablen und leptonischen Mesonzerfällen verletzt werden.
Die Einschränkungen kamen vor allem durch die Prozesse µ− → e− e+ e− und
K0

L → e±µ∓. Problematisch ist vor allem, dass die Effekte in beiden Fällen durch
dieselbe Kopplung Y4, die auch die Abweichung zu RK(∗) kontrolliert, verursacht
werden.
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1. Introduction

1.1. Historical overview
Starting with the development of the Quantum Theory in the 1920s, the under-
standing of physical nature got a strong boost and an appealing framework. The
fundamental difference of the behaviour of quantum particles from what was known
until then, combined with special relativity, eventually led to the Quantum Field
theory [2]. Step by step, it was discovered that nature consists of more than
the particles which had been known until then, namely the electron, proton and
photon. One of the ground-breaking experiments was the proof that the proton
and the neutron are not even elementary particles, but are built by constituents,
the so-called quarks [3, 4]. A huge field of new physics to discover had been opened
up.

Since the 1970s, the Standard Model (SM) has been a highly successful model,
predicting – in combination with measured data – the existence of the charm [5]
and top quark [6] and the Higgs boson [7, 8]. Within collider experiments and
measurements of decays of hadrons and elementary particles it has been possible
to establish the SM up to an astonishingly high precision [9]. In spite of this, there
have been several drawbacks that could not be handled within the model, ever since.
First of all, neutrinos are naively expected to have zero mass which is in contrast to
their tiny but existing mass that is proved by observation of neutrino oscillations.
Another motivation is the fact that it was possible to unify the electromagnetic
and the weak interactions into the gauge group SU(2) ⊗ U(1). Nevertheless, it
is expected that these should again unify with the strong force on a higher scale,
described then by a so-called Grand Unified Theory (GUT). Therefore the search for
a more precise and complete description of the elementary particles is continuing.

Among the models proposed, there are several which presume an interaction
between leptons and quarks via the so-called lepto-quarks (LQ). Their significant
property is that they would be able to transform leptons to quarks and vice
versa. These models also lead to a more satisfying description of the fundamental
interactions, due to the leptons being embedded as the fourth-color particles.

This idea was first presented by Pati and Salam [10], using a SU(4)C gauge
symmetry. The energy scale of their model was too high to be tested within the
possible collider experiments, though. Since then, many (phenomenological) studies
have been done [11–18], most of them trying to extend the SM by single leptoquarks.
A common approach is to consider general groups, e.g. SO(10) or SU(5), which
contain the SM gauge group as a subgroup.

The motivation in the above mentioned broader context is – as mentioned – the
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1. Introduction

unification of the gauge couplings and the generation of neutrino masses, but a
complete theory might also provide an explanation for dark matter.

1.2. Motivation by current progresses

The ever-growing accuracy of the collider experiments has enabled physicists to
widen the spectrum of observed quantities, among them rare B meson decays.
Processes like B → Xs γ are suppressed in the SM by the Glashow-Iliopoulos-
Maiani mechanism [19, 20]. They are sensitive to new contributions, though [21].
Furthermore, for the case of semi-leptonic decays, they provide a good test of lepton
flavour universality (LFU). Many haven’t shown any deviation from SM predictions
like the mentioned B → Xs γ. Others like the Lepton Flavour Violating (LFV)
µ → e γ are not present in the SM, at all, and also have not been observed yet.

The RD(∗) measurement

In 2012, however, there were measurements by the BaBar collaboration of the
charged-current semi-leptonic observables called RD and RD∗ , respectively defined
as

RD(∗) =
BR

(
B̄ → D(∗)τ ν̄

)
BR

(
B̄ → D(∗)lν̄

) , l = e, µ, (1.1)

which reported a deviation from the SM predictions by 3.5σ[22]. The measure-
ments have repeatedly been confirmed by the BaBar and Belle experiments [23–26]
as well as the LHCb collaboration [27, 28] for RD∗ . The latest averaged data state
the ratios to be [29]

RD = 0.407± 0.046 and
RD∗ = 0.304± 0.015 ,

(1.2)

where the systematic and statistical errors have been summed in quadrature.
This is a strong hint towards a possible LFU violation, which is not inherent in the
SM. The predictions are [30, 31]

RSM
D = 0.300± 0.008

RSM
D∗ = 0.252± 0.003 ,

(1.3)

Considering the measurements’ correlation, these ratios have now a deviation of
4.1σ compared to the SM prediction [29]. This discrepancy is a surprise due to the
present tree-level contribution via W boson in the SM [19].

2



1.2. Motivation by current progresses

The RK(∗) measurement

A few years after this first anomaly, another two were reported again in two similar
B meson decay by the LHCb collaboration [32]. The considered processes were the
decays into a (excited) Kaon and two leptons and the observables are defined by

RK(∗) =
BR

(
B̄ → K(∗)µ+µ−)

BR
(
B̄ → K(∗)e+e−

) . (1.4)

This is especially interesting because the decay is particularly sensitive to New
Physics in the coefficients of O(′)

7 , O(′)
9 , and O(′)

10 [33, 34] (See also chapter 4.3.3 for
a definition). The experimental values – with combined errors as before – are [32,
35]

RK = 0.745± 0.097

RK∗ = 0.69± 0.12
(1.5)

for the dilepton invariant mass squared bin 1 < q2 < 6 GeV.
All these detections tend to prove the violation of lepton flavour universality and

are used to exclude several models. Leptoquark models are naturally of big interest
as they are included in the processes at tree-level.

Can a new model give the explanation?

In 2013, Fileviez Perez and Wise [1] proposed a model which linked to the idea
of Pati and Salam, but with a much more promising approach. Above all, this
model was expected to induce effects at much lower scales and does not suffer from
magnetic monopoles. It contains several new physical bosons, eleven scalars and
two vectorials, each coupling to every fermion generation.

The subject of the presented thesis is to test whether this model explains the
anomalies of low-energy observables from the latest data of collider experiments.
For this purpose, the model was implemented in SARAH [36–39] to generate the
necessary files for the spectrum generator SPheno [40, 41]. Subsequently, the mass
hierarchy was examined and the parameter space was confined using experimental
bounds.

Therefore, this work is organized as follows:
Firstly, the operator product expansion is explained and general considerations

on RK(∗) and RD(∗) are presented. Then, in chapter 3 the model is examined,
determining the structure of the particle spectrum and the mass hierarchy. In
chapter 4 phenomenological analyses are done, regarding relevant graphs, the
leptoquark mixing and the new contributions to decays that might explain or
violate experimental data. Eventually, the numeric results are discussed in chapter
5 before the work gets summarized in chapter 6.

In the following the quantum numbers of the particles are denoted as (a, b, c)LQ for
the transformation under SU(4)C , SU(2)L and U(1)R, respectively, and in analogy
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1. Introduction

as (k, l,m)SM for the SM gauge group SU(3)⊗ SU(2)L ⊗ U(1)Y . All spinors are
considered to be two-component.
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2. Preliminaries

This chapter is here to present the necessary formalism, discuss observed anomalies
among the meson observables as well as some remarks about the their calculation.

2.1. Operator Product Expansion
In order to make theoretical predictions for hadron decays, as happening in collider
experiments, the help of the so-called Operator Product Expansion (OPE) is
necessary. The typical energies of the hadrons of O(1 GeV) are much lower than
the Electro-Weak Symmetry Break (EWSB) scale, e.g. energies of O(mW,Z). Thus,
the OPE was introduced as a solution to this multi-scale problem [42, 43]. It
provides an effective low energy theory to describe the hadronic decays [19, 33, 44].

The basic idea is to treat the interaction as point-like as illustrated in 2.1.
Therefore, one introduces an effective Hamiltonian defined as

Heff =
∑
i

Ci(µ) · Oi(µ) . (2.1)

and, calculating a matrix element M using this effective theory, the formula
becomes

M(A → B) = 〈A|Heff|B〉 =
∑
i

Ci(µ) · 〈A|Oi(µ) |B〉 (2.2)

for arbitrary states A and B. The variable µ denotes the renormalization scale,
whose dependence has to cancel in the overall expression. Normally it is chosen to
be equal to the b-quark mass. The physics is split into two parts: the operators O

α1

α2

OPE−−−→
C

Figure 2.1.: Visual explanation of the Operator Product Expansion: the heavy
physics gets encoded into ”couplings” C and the light physics into an
effective vertex O.
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2. Preliminaries

contain only the light SM fields, i.e. the quarks except the top quark, the leptons
as well as photons and gluons. The so-called Wilson coefficients C carry now the
short-distance physics, so contributions from heavy particles. Figuratively, one can
see these two parts as couplings C to vertices O [19, 33, 44].

The virtue of this expansion in regard to New Physics (NP) is that one has only
to compute new contributions to the Wilson coefficients and – only if necessary –
extend the set of operators.

2.2. Calculus to RK and RK∗

A paper published in 2017 did some phenomenological analysis in face of the
anomalies in RK and RK∗ , considering also leptoquarks [45]. Its content shall be
briefly summed up in this section. Regarding a operator basis defined as

ObX lY = (s̄γµPXb)
(
l̄γµPY l

)
with l = e, µ and X,Y = L,R (2.3)

the ratio RK is in terms of the respective Wilson coefficients

RK =

∣∣CbL+RµL−R

∣∣2 + ∣∣CbL+RµL+R

∣∣2∣∣CbL+ReL−R

∣∣2 + ∣∣CbL+ReL+R

∣∣2 (2.4)

where the shorthand notation is used in which the subscript denotes what sum
of coefficients is meant, e.g. CbL+RµL−R

= CbLµL
− CbLµR

+ CbRµL
− CbRµR

. The
formula is based on the neglection of the electromagnetic dipole operator, which
is justified by the cut-off q2 > 1GeV2 in the observable, and ”non-factorizable
contributions from the weak effective Hamiltonian” [45].

For the calculation of RK∗ one can rely on a similar formula

RK∗ =

(1− p)
(∣∣CbL+RµL−R

∣∣2 + ∣∣CbL+RµL+R

∣∣2)+ p
(∣∣CbL−RµL−R

∣∣2 + ∣∣CbL−RµL+R

∣∣2)
(1− p)

(∣∣CbL+ReL−R

∣∣2 + ∣∣CbL+ReL+R

∣∣2)+ p
(∣∣CbL−ReL−R

∣∣2 + ∣∣CbL−ReL+R

∣∣2)
(2.5)

in which p ≈ 0.86 is the polarization fraction.
The most important statement was that a leptoquark representaion R2 ∼

(3, 2, 7/6)SM could achieve a correct tuning of the branching ratio. In contrast,
a particle R̃2 ∼ (3, 2, 1/6)SM would give the wrong correlation between RK and
RK∗ , i.e. RK < 1 < RK∗ [45, 46]. Crivellin et al. [47] pointed out that there might
be unavoidable effects in the process µ → e γ and transitions similar to b → s µ e,
e.g. Bs → µ e. This is the basis for the investigations made later-on.
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2.3. Standard Model coefficient for RD(∗)

2.3. Standard Model coefficient for RD(∗)

Inside the SM the quark-level transition corresponding to RD(∗) , b → c τ ν̄τ is
described by the effective Hamiltonian [48]

Heff =
4GFVcb√

2
(c̄LγµbL) (τ̄Lγ

µντL) + h.c. (2.6)

The coefficent has a value of [49]

4GFVcb√
2

= (1.336± 0.049) · 10−6 GeV−2 . (2.7)
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3. Model basics

In this chapter, the model is presented as given by [1], first considering the fermions
and the Lagrangian, then going on to the scalar sector, with basic considerations
on the mass spectrum. The nomenclature is based on [50].

3.1. The new gauge group
The essence of this extended model is that the SM is only a subgroup of some larger
gauge group, that has been broken down by some vacuum expectation values. The
considered model is introduced via the gauge group

GLQ = SU(4)C ⊗ SU(2)L ⊗ U(1)R . (3.1)

This group might again be a subgroup of SO(10) or SU(6) [1]. As a preliminary
remark, this gauge group does not lead to proton decay as has been pointed out in
general in [51] for one specific leptoquark, considered also in later chapters, and
specifically for this gauge group in [52].

As with other leptoquark models the peculiarity with regard to the SM is that
it unifies quarks and leptons, considering the latter as particles with the fourth
color. This corresponds to the SU(4)C gauge group, where C stands for colour.
The indices L and R stand for the handedness. The SU(4) elements are generated
by a set of matrices, which are the extension of the Gell-Mann matrices used in
the SU(3) group. They can be looked up in appendix A.

Broken down, the group GLQ yields the known GSM = SU(3)⊗SU(2)L⊗U(1)Y .
The quantum numbers from GLQ to GSM are computed by

Y = R+

√
6

3
T15 , (3.2)

where T15 stands for the 15th generator of the SU(4) group in the basis explained
in chapter A.

The electro-weak symmetry break is done by two other Higgs particles, each one
acquiring a vev. Their vevs must combine together to the known vSM = 246 GeV,
so they can be parametrized using an angle β and the equations

v1 = vSM · sinβ and v2 = vSM · cosβ , (3.3)

resulting in tanβ ∈ R+ being a input parameter. On the other hand it would
be unnatural to suppose quasi no mixing, i.e. tanβ → ∞ or 0, that’s why the
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3. Model basics

confinement tanβ ∈ [1/50, 50] is made. The electromagnetic charge is computed by
Q = TL

3 + Y .
Now, it is time to have a look on the fermionic representations.

3.2. Fermionic sector

3.2.1. Gauge eigenstates

The fermions in the LQ gauge are introduced as

FQL =

(
Qi

L

LL

)
=

(
uiL diL
νL eL

)
∼ (4, 2, 0)LQ ∼

{
(3, 2, 1/6)SM
(1, 2, 1/2)SM

(3.4)

Fu =
(
ūiR ν̄R

)
∼ (4̄, 1, 1/2)LQ ∼

{
(3̄, 1, − 2/3)SM
(1, 1, 0)SM

(3.5)

Fd =
(
d̄iR ēR

)
∼ (4̄, 1, − 1/2)LQ ∼

{
(3̄, 1, 1/3)SM
(1, 1,−1)SM

(3.6)

N ∼ (1, 1, 0)LQ ∼ (1, 1, 0)SM (3.7)

where the index i = 1, 2, 3 counts the three components under the colour groups.
The field N is introduced for explanation of the neutrino masses, whereas the
Yukawa interactions of the particles are given as

−LY ⊃FuY
T
1 H1FQL + FuY

T
2 ΦFQL + FdY

T
3 H†

1FQL+

+ FdY
T
4 Φ†FQL + FuY

T
5 χN +

µ

2
NN + h.c.

(3.8)

To obtain the small neutrino masses an inverse seesaw mechanism is chosen.
For each generation, the known left-handed neutrinos νL are complemented by a
field of right-handed neutrinos ν̄R as well as a field of Majorana neutrinos N with
mass matrix µ. Its interactions and mass term are given in the last two terms in
the formula above. The other terms shall be explained in chapter 3.2.2, while the
procedure for the neutrino masses is given here.

The Dirac mass term between the left and right handed neutrinos is

MD
ν =

v1√
2
Y T
1 −

√
3v2

2
√
2
Y T
2 (3.9)

and between the right-handed and the Majorana neutrinos

MD
χ =

vχ√
2
Y T
5 . (3.10)

Hence, the resulting mass matrix for the neutrinos is:

10



3.2. Fermionic sector

(
νL ν̄R N

) 0 MD
ν 0

MD,T
ν 0 MD

χ

0 MD,T
χ µ

νL
ν̄R
N

 (3.11)

This matrix possesses now three light eigenstates without the necessity of any
fine-tuning.

Having set up all fermions and their interactions, it is now time to parametrize
the particles’ masses and the present variables in a convenient fashion.

3.2.2. The fermions’ masses

For the sake of simplicity, in this subsection the mass eigenstates are denoted with
a tilde, this sign is omitted again in subsequent sections.

Regarding the charged leptons, the basis is chosen such that their mass matrix is
diagonal, i.e. they don’t mix in this basis. But in the quark sector, it is possible to
assume mixing within every subset of quark type:

uL = VuũL

uR = UuũR ⇒ ūR = ¯̃uRU
†
u

dL = Vdd̃L

dR = Udd̃R ⇒ d̄R =
¯̃
dRU

†
d

(3.12)

These mixings give together with the interaction written in eq. 3.8 the mass
terms

U †
uM̂uVu =

v1√
2
Y T
1 +

v2

2
√
6
Y T
2

U †
dM̂dVd =

v1√
2
Y T
3 +

v2

2
√
6
Y T
4

M̂e =
v1√
2
Y T
3 − 3v2

2
√
6
Y T
4

(3.13)

The particles’ masses are known (see e.g. [49]) and expressed in the formula with
the diagonal M̂p ≡ ŶpvSM/

√
2 matrices for particle p. To arrive at Yukawa couplings

in accordance with the fermion masses, one rearranges the above equations to

Y T
1 =

√
1 + tan2 β

tanβ
V †
u ŶuUu +

√
3

6 tanβ
Y T
2

Y T
3 =

1

4

√
1 + tan2 β

tanβ

(
3V †

d ŶdUd + Ŷe

)
Y T
4 =

√
3

2

√
1 + tan2 β

(
V †
d ŶdUd − Ŷe

)
(3.14)
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3. Model basics

Here Y2 has already been chosen to be a input parameter: in eq. 3.11, there are
three matrices and one has to be used to set the light neutrino masses, which now
is µ. So the other two Yukawa couplings Y2 and Y5 are free input.

It is noteworthy that in the limit tanβ � 1 both Y1 and Y3 converge to constant
values, while Y4 ∝ tanβ. For the complementary limit tanβ � 1, Y4 becomes a
constant and the other two get enhanced, with Y1, Y3 ∝ 1/ tanβ.

Another constraint on the couplings is the demand that they should be symmetric:
Y T
i = Yi. This is done firstly to limit the parameter space. But secondly, it would

be a natural consequence when breaking down to GLQ from a greater gauge group,
for example SO(10). As one can easily reproduce, the symmetry of the Yukawa
matrices implies the relation between the mixing matrices

Ud = V ∗
d and Uu = V ∗

u . (3.15)

Going on, the so-called Cabibbo-Kobayashi-Maskawa (CKM) matrix is defined
as the product of the left-handed quark’s mixing:

VCKM = V †
uVd (3.16)

This matrix is known and thus constrains again the parameter space that can be
chosen for the mixing. Both upper formulae leave now only one mixing matrix free
to choose, parametrized by three angles θkl and a phase δ. This matrix has been
chosen to be

Vd =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 (3.17)

where skl = sin θkl and ckl = cos θkl.
Regarding the neutrinos, a 9× 9 matrix describes the mixing, defined in analogy

to before, it is νL
νR
N

 = Uν

ν1
...
ν9

 . (3.18)

Just like in the quark sector, the mixing between the SM neutrinos is a meas-
ured quantity, known as the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix.
Assuming the known neutrinos to be in the first three components one arrives at
the constraint

VPMNS,mn ' Uν,mn with m,n = 1, 2, 3 (3.19)

for the submatrix of the neutrino mixing. Note that the 3× 3 submatrix of Uν

can not be unitary in contrast to the PMNS matrix. The deviation from unitarity
lies within the current errors of the measurements of the PMNS matrix, though.
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3.3. Scalar sector

The proof was done through a rough calculation by Rösch [53]. In order to project
out the different interaction states, the following submatrices are defined:

Uν =

Uν,L

Uν,R

Uν,N

 (3.20)

Each of these matrices Uν,{L,R,N} is a 3× 9 matrix.

3.3. Scalar sector
3.3.1. Scalars’ spectrum
The SU(4) breaking particle is modelled by

χ =

(
S̄†,i
1

χ0

)
, i = 1, 2, 3 (3.21)

and it transforms under GLQ as χ ∼ (4, 1, 1/2)LQ and in the SM gauge as
S̄†
1 ∼ (3, 1, 2/3)SM and χ0 ∼ (1, 1, 0)SM. The field yields a vacuum expectation value

in the last component, which breaks the SU(4) group, parametrized by

〈χ0〉 = vχ√
2

(3.22)

The vev controls the mass of the vector leptoquark U1 (see the subsequent
section 3.4) with mU1 = gs · vχ/2, where gs is the strong coupling. Because this
particle would give significant contributions to K meson decays, the constraint of
the K0

L → e±µ∓ process limits the mass of the vector leptoquark to mU1 ≥ 1.6 · 103
TeV, thus a value vχ ≥ 4 · 106 GeV [54].

Another scalar particle is furthermore introduced with a Higgs doublet

H1 =

(
H+

1

H0
1

)
∼ (1, 2, 1/2)LQ,SM , where 〈H0

1 〉 =
v1√
2

(3.23)

The leptoquarks come into place by considering a representation that transforms
as (15, 2, 1/2)LQ, which can be displayed as

Φ =

(
Gij Rj

2

R̃i
2 0

)
+ T15H2, i, j = 1, 2, 3 (3.24)

Each of these particle has still two components in the SU(2) space. Note
that there is an additional Higgs doublet H2 included inside of this scalar. The
components have the following SM quantum numbers:

• G ∼ (8, 2, 1/2)SM, being a scalar gluon, mediates quark-quark interactions

• R̃2 ∼ (3̄, 2, − 1/6)SM is the first scalar leptoquark

13



3. Model basics

• R2 ∼ (3, 2, 7/6)SM is the second scalar leptoquark

• H2 ∼ (1, 2, 1/2)SM has the same quantum numbers as the H1, acquiring the
vev 〈H0

2 〉 = v2√
2

An overview of all the scalar particles is given in tab. 3.1.

GLQ GSM G31

Φ ∼ (15, 2, 1/2)

R2 ∼ (3, 2, 7/6)
R

5/3
2 ∼ (3, 5/3)

R
2/3
2 ∼ (3, 2/3)

R̃†
2 ∼ (3̄, 2, − 1/6)

R̃
†,1/3
2 ∼ (3̄, 1/3)

R̃
†, − 2/3
2 ∼ (3̄, − 2/3)

G ∼ (8, 2, 1/2)
G+ ∼ (8, 1)
G0 ∼ (8, 0)

H2 ∼ (1, 2, 1/2)
H+

2 ∼ (1, 1)
H0

2 ∼ (1, 0)

χ ∼ (4, 1, 1/2)
S̄†
1 ∼ (3, 1, 2/3) ∼ (3, 2/3)

χ0 ∼ (1, 1, 0) ∼ (1, 0)

H1 ∼ (1, 2, 1/2) ∼ (1, 2, 1/2)
H+

1 ∼ (1, 1)
H0

1 ∼ (1, 0)

Table 3.1.: Compact view of the different components of the new scalar particle
spectrum.

3.3.2. Scalar potential

The potential of the scalar particles is expressed by

−L ⊃m2
HH†

1H1 +m2
χχ

†χ+m2
ΦTr

(
Φ†Φ

)
+ λ1H

†
1H1χ

†χ+

+ λ2H
†
1H1Tr

(
Φ†Φ

)
+ λ3χ

†χTr
(
Φ†Φ

)
+
(
λ4H

†
1χ

†Φχ+ h.c.
)
+

+ λ5H
†
1Tr
(
Φ†Φ

)
H1 + λ6χ

†Φ†Φχ+ λ7

(
H†

1H1

)2
+

+ λ8

(
χ†χ

)2
+ λ9Tr

((
Φ†Φ

)2)
+ λ10

(
Tr
(
Φ†Φ

))2
(3.25)

where the traces are taken only within the SU(4) space. The parameters m2
H ,

m2
χ and m2

Φ are eliminated using the tadpole equations. For now, the ten couplings
are left as free to choose. Some of them, however, will be discussed in section 3.3.4.

This potential, however, is not the most general one, but is missing some
combinations of the scalar fields. As will be discussed in section 3.3.4, this leads
to quasi-degenerate masses for some of the scalars. In the most general form, one
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3.3. Scalar sector

would have more parameters and thus more degrees of freedom when setting the
scalars’ masses.

3.3.3. Mixing
Turning to the scalar mixing, one should have a closer look to tab. 3.1. When
looking at the electromagnetic charge Q, it is noticeable that both scalar leptoquarks
mix in their second SU(2)-component together with the S̄†

1.
While the first components of the scalar leptoquarks don’t mix with any other

particle, the mixing of the mentioned three particles is defined asR
2/3
2

R̃
2/3
2

S̄†
1

 = ZLQ

GU1

R′
(2)

R′
(3)

 . (3.26)

As hinted in the equation, one state is the Goldstone boson for the vector
leptoquark U1. A convention is now introduced to shorten the specification of the
particles:

R̃
1/3
2 → R̃2

R
5/3
2 → R2

(3.27)

The next particles to look at are the Higgs fields. The fields can be parametrized
as usual by

H1,2 =

(
H+

1,2

v1,2 + φ1,2 + iA1,2

)
(3.28)

and in a similar fashion the χ0 field. Then, the components mix as

(
H+

1

H+
2

)
= Zh+

(
GW

h+

)
(3.29)φ1

φχ

φ2

 = Zh

h1
h2
h3

 (3.30)

A1

Aχ

A2

 = ZA

GZ

GZ′

A

 (3.31)

where one of the charged Higgs becomes the Goldstone of the W boson, and
pseudo scalar fields give mass to Z and Z ′, see 3.4.

The scalar gluon can be decomposed into three particles, one charged G+ and two
uncharged G0

(1,2), analogous to eq. 3.28. Their masses, however, will be degenerate
due to the incomplete scalar potential.
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3. Model basics

3.3.4. Transformation into mass eigenstates
Regarding the masses, the actual steps were done automatically by SARAH [36–39].
One arrives at the mass matrices and their eigenvalues that are presented in this
section. As a convention the mass matrices are denoted by a capital M and the
eigenvalues are called m.

In the model, there are ten scalars’ masses to be calculated. Now, apart from
tanβ and the vev vχ, the masses are determined by the ten couplings λi in eq. 3.25.

Looking at the matrices, one sees that the mass of the pseudo-scalar depends on
only one coupling, with the corresponding mass matrix being

M2
A =

1
4

√
3λ4 cot(β)v2χ 0 −1

4

√
3λ4v

2
χ

0 0 0

−1
4

√
3λ4v

2
χ 0 1

4

√
3λ4 tan(β)v2χ

 . (3.32)

The non-zero eigenvalue follows the equation

m2
A =

√
3

4
λ4

(
tan2(β) + 1

)
cot(β)v2χ =

√
3

2
λ4 sin(2β)v2χ (3.33)

By specifying a mass for the pseudo-scalar, one can substitute λ4 in the equation
for the mass of h+, which is described by the matrix

M2
h+ =

−λ5 tan2(β)v2SM
2(tan2(β)+1)

−
√
3
4 tan(β)λ4v

2
χ

1
4

(
2λ5 tan(β)v2SM

tan2(β)+1
−
√
3λ4v

2
χ

)
1
4

(
2λ5 tan(β)v2SM

tan2(β)+1
−

√
3λ4v

2
χ

)
−2λ5 tan(β)v2SM−

√
3λ4

(
tan2(β)+1

)
v2χ

4(tan3(β)+tan(β))


(3.34)

This leaves the formula with a dependence only on λ5, which is determined by
the mass through

m2
h+ =

1

4
cot(β)

(√
3λ4

(
tan2(β) + 1

)
v2χ − 2λ5 tan(β)v2SM

)
(3.35)

= m2
A − 1

2
λ5 tan(β)v2SM (3.36)

Note that the value of λ5 specifies the mass difference between the charged Higgs
h+ and the pseudo-scalar A, but only suppressed by vSM/vχ.

For the following calculations, two parameters are introduced to simplify expres-
sions, by

η :=
λ9

tan2(β) + 1
v2SM (3.37)

α :=
1

8
λ6v

2
χ (3.38)

So, unless λ6, λ9, and tanβ are tuned, α is a non-negligible contribution to the
masses, whereas η is only a suppressed term. Looking at the mass equation for the
two scalar leptoquarks R2 and R̃2,
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3.3. Scalar sector

m2
R2

=
v2χ
8

(
2
√
3λ4 tan(β)− 3λ6

)
+

v2SM
(
λ9 − 3λ5 tan2(β)

)
6 (tan2(β) + 1)

(3.39)

=
tan2(β)

tan2(β) + 1
m2

h+ − 3α+
η

6
(3.40)

m2
R̃2

=
v2χ
8

(
2
√
3λ4 tan(β) + λ6

)
−

v2SM
(
λ5 tan2(β) + λ9

)
2 (tan2(β) + 1)

(3.41)

=
tan2(β)

tan2(β) + 1
m2

h+ + α− η

2
(3.42)

m2
R̃2

−m2
R2

=
λ6v

2
χ

2
− 2λ9

3 (tan2(β) + 1)
v2SM = 4α− 2η

3
(3.43)

one can see that through the previous calculations these masses depend only on
α and η or λ6 and λ9, respectively. Furthermore, it’s visible that λ6 controls which
of the two particles is lighter and is fixed through setting one of the leptoquark
masses. The correction by λ9 is negligible here due to its suppression with v2SM/v2χ.

Three of the remaining masses are now – up to λ9 correction – determined: the
mass of the scalar colour-octet G

m2
G = m2

R2
− 2

3
η (3.44)

and – after projecting out the matrix’ zero eigenvalue – and the masses of R′

M2
R′ =

(
−1

8v
2
χ

(
λ6 − 2

√
3λ4 tan(β)

)
+ η

2 −1
4v

2
χλ6κ

−1
4v

2
χλ6κ −v2χ

8

(
λ6 − 2

√
3λ4 tan(β)

)
κ2

)
(3.45)

with κ =

√
1 +

8v2SM
3v2χ(tan2(β)+1)

≈ 1. When setting κ = 1 as an approximation, but
still minding η, the corresponding eigenvalues are

m2
R′

(2)
=

1

4

(√
3λ4 tan(β)v2χ − 4α−

√
64α2 + η2 + η

)
(3.46)

≈ 1

4

√
3λ4 tan(β)v2χ − 3α+

η

4
− η2

64α
(3.47)

m2
R′

(3)
=

1

4

(√
3λ4 tan(β)v2χ − 4α+

√
64α2 + η2 + η

)
(3.48)

≈ 1

4

√
3λ4 tan(β)v2χ + α+

η

4
+

η2

64α
(3.49)

In the limit tanβ � 1 the term proportional to λ4 is approximately m2
A. If mA

is chosen to be higher than the SM contributions, the latter can be neglected and
one yields mR′

(1)
= mR2 and mR′

(2)
= mR̃2

, deviating only up to few percent.
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The same counts for the scalar gluon, as η gets smaller for large values of tanβ
and it follows mG = mR2 . This degeneration is however a mere consequence of
the incomplete potential. Adding the missing combinations to arrive at the most
general form, one would yield also couplings that result in a non-negligible mass
difference between the scalar gluon G and the scalar leptoquark R2.

Note that for tanβ ≤ 1 all the scalar leptoquarks naively become light as the
first terms in each eq. 3.40, 3.43, 3.47 and 3.49 will be small.

To conclude, it is possible to divide these particles in two set: On the one hand,
there is the mass of R2, which determines – up to some corrections – the mass of
R′

(1) and the mass of the colour octet G, too. On the other hand, there is the mass
of the pseudo-scalar A, approximately equal to the mass of charged Higgs h+ and
the masses of the other two scalar leptoquarks which, depending on tanβ and α,
are higher than mA.

Thus, two input parameter can be chosen to set up the masses of these particles:
the high masses’ scale with mA and the lower masses by choosing mR2 .

3.3.5. Fixing the neutral Higgs mass

These considerations have left only the uncharged Higgs particles untouched. The
corresponding mass matrix is under-determined with respect to the couplings and
one of the diagonal entries is already close to an eigenvalue:

M2
h = v2χ

−
√
3λ4

(
tan(β)2+1

)
4(tan(β)3+tan(β)) 0

√
3λ4
4

0 2λ8 0√
3λ4
4 0 −1

4

√
3λ4 tan(β)

+

+ vχvSM


0

√
3λ4+2λ1 tan(β)
2
√

tan(β)2+1
0

√
3λ4+2λ1 tan(β)
2
√

tan(β)2+1
0 4λ3+3λ6+2

√
3λ4 tan(β)

4
√

tan(β)2+1

0 4λ3+3λ6+2
√
3λ4 tan(β)

4
√

tan(β)2+1
0

+

+ v2SM


2λ7 tan(β)3

tan(β)3+tan(β) 0 λ2 tan(β)
tan(β)2+1

0 0 0
λ2 tan(β)

tan(β)2+1
0 12λ10+7λ9

6(tan(β)2+1)


(3.50)

where mh3 ≈ 2λ8v
2
χ. In an approximation with vSM = 0, the matrix has the

eigenvalues
{
0, 14

√
3λ4

tan2(β)+1
tan(β) v2PS, 2λ8v

2
PS

}
, where the second entry is equal to

m2
A.
This motivates the application of a seesaw-approximation to first order, to simplify

the lengthy calculations and fix the lightest eigenvalue at 125 GeV. Therefore λ8

can be set equal to 0.2, which is motivated firstly to justify the approximation
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3.4. Gauge bosons

that necessitates the condition λ4 � λ8. But also secondly, in order to get the
corresponding Higgs mass near the scale of symmetry breaking vχ.

The matrix depends on the free parameters λ1, λ2, λ3, λ7, λ8, λ9, and λ10.
Applying the approximation, one arrives at the matrix

M2
h ≈M2

h,SSA − δM2
h,SSA

=

( √
3λ4

4(tan2(β)+1)
−1

4

√
3λ4

−1
4

√
3λ4

1
4

√
3λ4 tan(β)

)
v2χ +

(
8λ7 tan2(β)

4 λ2 tan(β)
λ2 tan(β) 12λ10+7λ9

6

)
v2SM

tan2(β) + 1
−

−
((√

3λ4 − 2λ1 tan(β)
)
2
(
2λ1 tan(β)−

√
3λ4

)
γ(

2λ1 tan(β)−
√
3λ4

)
γ γ2

)
·

v2SM
8λ8 (tan2(β) + 1)

,

(3.51)

where γ = 3
2λ6 + 2λ3 − 1

√
3λ4 tan(β) was used for reasons of shortness and

M2
h,SSA was split into two terms, proportional to v2SM and v2χ, respectively.
λ7 is the coupling for the quartic H1 coupling, which makes it primarily suitable

for setting the correct SM Higgs mass to the known 125 GeV, especially in the
limit tanβ � 1. In that limit the vevs follow v1 = vSM and v2 → 0, so h1 can
indeed be regarded as the SM Higgs particle, and furthermore this limit is needed
for the purpose of explaining the anomalies, see chapter 5.5. Also, together with
λ10, it appears only once in the expression, which makes it easier to rearrange it
into a solution. Solving the equation and implementing the resulting function in
the SPheno input files, the h1 mass is fixed up to machine precision.

3.4. Gauge bosons
Regarding the gauge bosons, the SM set is extended and additionally described by
the multiplet

Aµ =

(
Gµ U1,µ/

√
2

U∗
1,µ/

√
2 0

)
+ T15B

′
µ ∼ (15, 1, 0)LQ (3.52)

The field Gµ ∼ (8, 1, 0)SM are the SM gluons and U1,µ ∼ (3, 1, 2/3)SM is the vector
leptoquark, while B′

µ mixes together with the Bµ gauge field of the U(1)R group
and the SU(2)L gauge field Wµ to the known W and Z bosons plus an additional
Z ′, as well as the photon. The mass of both, the vector leptoquark and Z ′ lie at
the scale of SU(4) breaking. The gauge bosons are not further relevant for the
phenomenological examinations in this work.

19





4. Phenomenological considerations

In this chapter the relevant new Feynman graphs are presented and remarks are
made on the mixing matrix ZLQ. Last but not least the Wilson coefficients due
to the new particles for the anomalies are calculated at tree-level as well as the
additional loop diagram by G− in b → sγ.

4.1. New graphs

Here, some basic graphs shall be presented that contribute to the processes and
which are expected to be of relevant magnitudes.

RK(∗)

The decay underlying RK(∗) receives a tree-level contribution through the down-
quark-lepton-coupling of R′, see 4.1. This means that it is not suppressed by the
mixing because the same interaction state is concerned with both vertices.

R′b

l−

s

l+

Figure 4.1.: Tree-level graph via the scalar leptoquark R′ to the process b → s l l.

RD(∗)

Here, the R′ adds a tree-level graph to the decay, as well, see 4.2. But, except for
one term, the two different interaction states that are mixed within R′ enter in this
decay: one on the u-ν-, the other on the d-l-vertex.

B → Xsγ

In this process, the new scalar gluon can mediate through each of its representations,
and either an up-type or a down-type quark, for the charged and the uncharged
scalar gluon(s), see 4.3.
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R′b

l−

c

ν̄

Figure 4.2.: Tree-level graph via the scalar leptoquark R′ to the process b → c l ν̄.

ug

G−

G−b

γ

s G−/G0

ug/dg

ug/dgb

γ

s

Figure 4.3.: New loop contributions via the scalar gluons, with either up- or down-
type quarks, contributing to b → s γ.

Lepton Flavour Violating decays

As mentioned, the LFV decay µ → e γ gives crucial constraints when trying
to explain the anomaly in RK(∗) . It corresponds to the same vertices as the
b → s l+ l− process. As the photon can induce effects through penguin-type
diagrams, constraints from µ− → e− e+ e− might get violated as well. Additionally,
the latter process receives contributions through box-type diagrams via leptoquark-
quark loops as in fig. 4.6.

Similarly, the muonic decays can be mediated through R2-u loops, as well, but
also the extended neutrino sector does contribute to the processes, either with the
SM W -boson or the charged Higgs h+. The diagrams are depicted in fig. 4.4 and
4.5, respectively.

ν

h−/W−

h−/W−µ−

γ

e−

Figure 4.4.: Possible dominant contribution to the µ → e γ process if the six
additional neutrinos are light enough.

Leptonic meson decays

Just as to RK(∗) , the leptoquark contributes via tree-level to the leptonic decay
of a meson consisting of two down-type quarks, see fig. 4.7. Examples for these
decays are the processes K0

L → e± µ∓ and Bs → µ+ µ−.

22



4.1. New graphs

dg

R′

R′µ

γ

e R′

dg

dgµ

γ

e

ug

R2

R2µ

γ

e R2

ug

ugµ

γ

e

Figure 4.5.: Contributions from the leptoquarks R′ (upper diagrams) and R2 (lower
diagrams) to the decay µ → e γ.

R′ dg

R′dg

µ−

e−

e+

e−

R2 ug

R2
ug

µ−

e−

e+

e−

Figure 4.6.: Box diagram via leptoquark-quark loops to the process µ− → e− e+ e−.

R′

d l−

l′+d̄′

Figure 4.7.: Tree-level graph via the scalar leptoquark R′ to the process M → l− l′+,
where M consists of two down-type quarks.
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4.2. The mixing matrix of the scalar leptoquarks
Because the mixing of the R′ plays a crucial role especially in the Wilson coefficient
of RD(∗) , it shall be discussed in this separate chapter. As shall be proven here, the
matrix does not provide any mixing large enough for the purposes of explaining
RD(∗) , unless at some fine-tuned points in parameter space that are not of interest.
This will allow for restricting the discussion of the present Wilson coefficients to
only one term.

As mentioned before the mixing matrix ZLQ is the rotation between the three
interaction states S̄†

1, R2/3
2 and R̃

2/3
2 , yielding the Goldstone boson for the vector

leptoquark and two massive states. The mixing matrix is given by

ZLQ
(3) =

0 1 0
0 0 1
1 0 0

+
2vSM√

3
√

tan2(β) + 1vPS

−1 0 0
−1 0 0
0 1 1

−

−
v2SM

3 (tan2(β) + 1) v2PS

0 2 3λ9−4
√
3λ4 tan(β)+6λ6

2λ6

0 4
√
3λ4 tan(β)+2λ6−3λ9

2λ6
2

4 0 0

+

+
v3SM

3
√
3 (tan2(β) + 1)

3/2
v3PS

·

·

8 0 0
8 0 0

0 3λ9−4
√
3λ4 tan(β)−6λ6

λ6

−10λ6−3λ9+4
√
3λ4 tan(β)

λ6


(4.1)

where a series expansion has already been done around vSM = 0 up to third order
in order to obtain a more compact and readable expression. The approximation is
justified up to high precision deduced from the fact that both vevs are basically
fixed. One can substitute vSM/vχ → x and rearrange the components in powers
of x. As discussed in section 3.3, it is x ≈ 6 · 10−5. The matrix shall be discussed
up to second order now. It is obvious that the third order term is suppressed too
much to give terms O(0.1) in ZLQ.

It also is clear that the first order terms can’t change the mixing as they are
equal to 2x/

√
3 or suppressed, for low or high values of tanβ, respectively.

The coefficient for x2 in the elements (2,2) or (1,3) can be rearranged in terms
of the masses which are chosen to be input parameters. Starting with the complete
expression

1

3 (tan2 β + 1)
− λ9

2λ6 (tan2 β + 1)
+

2
√
3 tanβλ4

3λ6 (tan2 β + 1)

!
= O

(
108
)

(4.2)

one of these three terms should be at the order of magnitude of 108 in order to
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counterbalance the suppression by x2 = 3.8 · 10−9.
This is not possible for the first term, the second however can fulfil the requirement

with

tanβ ≈ 0.1

λ9 ≈ −1

λ6 ≈ 7.2 · 10−8

⇒ α ≈ 1.44 · 105 GeV2 .

(4.3)

This implies for the mass of R̃2:

mR̃2
=
√
m2

R2
+ 5.76 · 105GeV2 ∈ [930, 1693] GeV

⇒ mR̃2
−mR2 = [193, 430] GeV

(4.4)

having inserted typical values mR2 ∈ [0.5, 1.5] TeV, see the later chapter 5.5.
With these values, one can arrive at a mixing of few percent, for this point there

was still no effect in RD(∗) , though. Even more, RK(∗) couldn’t be tuned due to the
choice of tanβ (see section 5.5) and due to the fact that R̃2 favours RK < 1 < RK∗

– with such light masses it gives non-negligible contributions. Furthermore, in a
full calculation the LFV constraints were violated. To conclude on this term, no
further efforts were done to tune the parameters for a significant mixing.

For the third term, one can substitute the expression 2
√
3 tanβλ4/(3λ6) ≈

1 + 8m2
R2

/(3λ6v
2
χ) (see eq. 3.40) and split the fraction into

2
√
3 tanβλ4

3λ6 (tan2 β + 1)
≈ 1

(tan2 β + 1)
+

8m2
R2

3λ6v2χ (tan2 β + 1)
(4.5)

The second term is maximized e.g. with the choice λ6 =
3
8 · 10−14, mR2 = 1500

GeV, and tanβ = 0.1. This would mean a value of α = 0.01 GeV2 and therefore
again all the leptoquarks being light. So, the discussion above holds again.

Altogether, the mixing matrix provides suppression with typical mixing not larger
than 10−2, except for singular points, which again are not of further interest for
the purpose of explaining the anomalies.

4.3. Relevant NP calculations

The new particles extend severely the possible graphs for several observables.
Calculations were done to determine the tree-level contributions for the anomalies
RD(∗) and RK(∗) as well as the charged scalar gluon’s contribution to b → s γ.
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4. Phenomenological considerations

4.3.1. Contribution of the scalar gluon G+ to b → s γ

All three scalar gluon contribute to the process b → s γ, for the sake of simpicity only
the one for the charged one has been computed. Furthermore, the approximation
mb � ms has been applied.

iM =
[
f1(V

†
d Y

∗
2 Y

T
2 Vd) + f2(U

†
dY

T
4 Y ∗

4 Ud)−

− f3(V
†
d Y

∗
2 UuV

†
uY

∗
4 Ud)

]
imb

e

8π2
O′

7+

+
[
f1(U

†
dY

T
4 Y ∗

4 Ud) + f2(V
†
d Y

∗
2 Y

T
2 Vd)−

− f3(U
†
dY

T
4 VuU

†
uY

T
2 Vd)

]
imb

e

8π2
O7 ,

(4.6)

where O(′)
7 is defined in eq. 4.15 and the functions f1,2,3 have been used, defined

as

f1 =
1

m2
b

1

2(x− 1)2
(−1 + 4x− 3x2 + 2x2 logx)+ (4.7)

+
1

m2
G

1

54(x− 1)4
(5− 27x+ 27x2 − 5x3 + 6 logx− 18x logx)

f2 =
1

m2
G

1

54(x− 1)4
(11− 18x+ 9x2 − 2x3 + 6 logx) (4.8)

f3 =
mq

mbm
2
G

2

3(x− 1)2
(1− x+ logx) . (4.9)

Here mq denotes the mass of the up-type quark in the loop and the variable is
x = m2

q/m
2
G. The neutral scalar gluons contribute with terms of a similar structure

to the ones above and there are contributions to the operator O8 = (s̄σµνPRb)G
µν ,

too. As the process was unexpectedly not of interest for constricting the parameter
space, further calculations to this process were not done.

4.3.2. Tree-level contribution for RD(∗)

Regarding the corresponding tree-level graphs for RD(∗) , b → c l να, the process
receives additional terms through R′ and h+.

As discussed in chapter 3.3.4, it is possible to choose the charged Higgs’ mass
as high as necessary to avoid undesired effects in the observables. Furthermore,
the mixing matrix ZLQ provides no relevant mixing, consequently terms with e.g.∑

k Z
LQ
1k · ZLQ

2k are suppressed, see the previous section 4.2. Going on, decays with
right-handed neutrinos as external states are also not to be considered because
they are too heavy, thus kinematically inaccessible, and their mixing into the
light-weighted neutrinos is negligible. Nevertheless, for the sake of completeness
the full expressions can be found in appendix D.
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4.3. Relevant NP calculations

As pointed out in sec. 3.3.4, always one of the representation of R′ is light
while the other one is heavy. It follows that in the sums over the leptoquark
representations R′

(k) only the term k = 2 has to be taken into account for an
approximation. As a consequence, the only term of interest is

iM =
1

2

∣∣∣ZLQ
12

∣∣∣2
m2

R′
(2)

(Y T
4 Vd)i3 · (U †

uY
T
2 Uν,L)2α(c̄RbL)(lRνα,L) (4.10)

where α and i is the index for the neutrino and charged lepton generation,
respectively. However, Sakaki et al. [55] performed a fit of this operator to RD

and RD∗ . The result was a size of the couplings of approx. 2 for a mass m
R

2/3
2

=

O(1 TeV). This fit also counts for the above formula for our representations and
will be examined later-on in sec. 5.4.

4.3.3. Tree-level contribution for RK(∗)

Looking at the possible interactions, the B meson decay receives tree-level contri-
butions by three of the scalar particles: the neutral Higgses h, the pseudo-scalar A,
and the mixed scalar leptoquark R′.

Again, the whole expressions can be looked up in the appendix D.2. Because
mA and mh2 can be chosen arbitrarily high and h3 is heavy in any case, their
corresponding terms are suppressed. It has been proven numerically that h1 is
not contributing. The leptoquark is left as the only particular exchange particle.
The tensor term can also not be considered because it is suppressed by the absent
mixing in ZLQ. This is in agreement with Alonso, Grinstein, and Martin Camalich
[56], and their statement that tensor operators cannot be generated within an
effective theory.

The standard basis commonly used in literature is defined as follows [34]:

O(′)
7 = (s̄σµνPR(L)b)F

µν (4.11)
O9,l = (s̄γµPLb)(l̄γ

µl) (4.12)
O10,l = (s̄γµPLb)(l̄γ

µγ5l) (4.13)
O′

9,l = (s̄γµPRb)(l̄γ
µl) (4.14)

O′
10,l = (s̄γµPRb)(l̄γ

µγ5l) (4.15)

The primed operators are however strongly suppressed in the SM. The basis used
in section 2.2 is connected with the standard one here by

ObLlR = (s̄γµPLb)
(
l̄γµPRl

)
=

1

2
(O9,l +O10,l) (4.16)

ObRlL = (s̄γµPRb)
(
l̄γµPLl

)
=

1

2

(
O′

9,l −O′
10,l

)
. (4.17)

This means that the NP coefficients are pairwise (oppositely) equal:
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4. Phenomenological considerations

CNP
9,l = CNP

10,l =
1

2
CNP
bLlR

= −1

4

3∑
k=2

1

m2
R′

(k)

|ZLQ
1k |2(Y T

4 VD)g3(V
†
DY

∗
4 )2g (4.18)

C ′,NP
9,l = −C ′,NP

10,l =
1

2
CNP
bRlL

= −1

4

3∑
k=2

1

m2
R′

(k)

|ZLQ
2k |2(Y ∗

4 UD)g3(U
†
dY

T
4 )2g (4.19)

Here, g means the generation of the lepton l. This coincides with the necessity of
effects in RK(∗) being produced by the coefficients C

(′)
9 and C

(′)
10 , as stated in [56].
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5. Results
In this chapter the generated scans are presented together with the conclusions
drawn from them. For this purpose first the setup is presented and then, step by
step, reasonable choices shall be found for each of the input parameters: first for
the ones that are not necessary for explaining the anomalies, then the ones relevant
to RK(∗) and RD(∗) .

Some scans use the choice θ12 = π/2, θ13 = 0 and θ23 = π/4. Due to a stringent
argumentation this choice can be only explained a posteriori in section 5.6. The
same counts for the standard input that has been used for the scans: it also can be
explained afterwards and are therefore presented not until eq. 5.3-5.7 in section
5.6.

5.1. The setup
The model had been implemented in SARAH to produce the necessary model files
for SPheno [40, 41], used in version 3.3.8. For a compact and useful generation
of data, an auxiliary program was written to automatically adjust the parameters
to get a physically meaningful variation of variables. This means that the masses
mR2 and mA(' mh+) were input, as well as the angles and the phase of the quark
mixing matrix Vd, see 3.17, tanβ and Y2 and Y5. vχ was always set to 4 · 106 GeV
in order to not come in conflict with the constraint of the Kaon decay, see [54] and
chapter 3.3. The phase δ in Vd was set to zero because observables sensitive to the
phase were not taken into account. If not stated differently, the angles were varied
in the ranges θ12, θ23 ∈ [0, π/2] and θ13 ∈ [−π/2, π/2]. In the chosen parametrization
of eq. 3.17, these ranges already include all possible combinations of signs.

From the two input masses, corresponding scalar couplings λ4,6 were calculated
and λ7 was adjusted to yield the correct mass of 125 GeV for the lightest Higgs.
The other scalar couplings were set to 0.1. The whole input was inserted into
a LesHouches.in file for SPheno. For the calculation of RK(∗) and RD(∗) , the
resulting coefficients were handed over to flavio [57], in version 0.28, using the
interface format WCxf [58].

Several experimental values were already taken into account to constrict the
parameter space. The calculation of the respective Branching Ratios (BRs) were
done in SPheno and a list can be found in tab. 5.2. For still unmeasured decays the
experimental limit for the BR was also taken as the acceptance threshold: any BR
from the calculation larger than this limit was seen as a violation of this constraint.

For the measured decays, the experimental values and theoretical predictions
[59–61] were compared. Because the theoretical uncertainties were smaller than the
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5. Results

experimental ones, the latter were used to define the bin, in which the branching
ratios were acceptable. SPheno also provides the ratio of the full branching ratio
and the SM branching ratio. Any deviation of this ratio from 1 that was smaller
than the relative experimental error at 1σ was accepted. For the used bins, see tab.
5.1.

These bounds are depicted in the graphs as red dashed lines.

Observable relative error bin for BR/BRSM

B0
s → µµ 0.7/3.1 = 23% [ 0.77, 1.23 ]

B → Xs γ 1.1/3.1 = 35% [ 0.65, 1.35 ]

Table 5.1.: Relative experimental errors [49] for measured decays and their bins in
which a deviation from the SM prediction was acceptable.

In the input files the option was provided to switch the inclusion of particles in
the loop calculations on and off. With this feature it was possible to determine
which particles were responsible for certain effects.

Observable experimental BR
µ− → e− γ < 4.2 · 10−13

µ− → e− e+ e− < 1.0 · 10−12

τ− → e− γ < 3.3 · 10−8

τ− → µ− γ < 4.4 · 10−8

τ− → µ− µ+ µ− < 2.1 · 10−8

K0
L → e± µ∓ < 4.7 · 10−12

B → Xs ν ν < 6.4 · 10−4

B0
s → e e < 2.8 · 10−7

B0
s → µµ (3.1± 0.7) · 10−9

B → Xs γ (3.1± 1.1) · 10−4

Table 5.2.: Considered constraints, values taken from [49].

5.2. Scan over mA

Knowing that the required effect is caused by the representation (3, 2, 7/6), the
other particles should be chosen very heavy in order to prevent avoidable violations
and effects through other particles like the pseudo-scalar A and the charged Higgs
h+, which indeed can effect the constraints, e.g. Bs → ll.

The necessary mass scale was determined by some sample scans, see figure 5.1.
As a result, the masses were fixed on the range mA,mh+ ≥ 50 TeV. For reasons of
simplicity, the mass was set to 100 TeV for the following scans.
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Figure 5.1.: Plot of BR(Bs → µ+ µ−)/BRSM in dependence of mA. The angles
were chosen θ12 = π/2, θ13 = 0, θ23 = π/4 and the leptoquark mass
was set to mR′

(2)
= 2 TeV.

5.3. Input for Y2 and Y5

Having discussed the neutrino masses in chapter 3.2, it is known that the masses
are determined by the input for Y2 and Y5, which a priori is completely arbitrary
as long as the neutrinos are too heavy to be observed.

This is however not the case. Scanning the parameter space, it is noticeable that
the process µ → e γ can receive severe contributions by W−-ν- and h−-ν-loops, as
discussed in sec. 4.1 and see e.g. the graph in fig. 4.4. The same argumentation
counts for τ → µγ and τ → e γ.

The loop including h− can be avoided by choosing a very high mass for this
particle. On the other hand, this is not possible for the W boson. Thus, the
Yukawa input had to be chosen large enough to get the new neutrinos heavy and
suppress this contribution with the neutrino masses.

The matrix product U †
uY2 also couples ūR–R2–eL interactions, and can enter the

above process as displayed in fig. 4.5. This means that the coupling has to suppress
these interactions, in order to not come in conflict with the constraints. Two plots
of the branching ratios in dependence of the scale of Y2 can be seen in fig. 5.2.
There it is also visible that it would be in principle possible to achieve destructive
interference between the terms ∝ Y2 and the other terms. This effect depends on
the angles and would have to be fine-tuned for each choice of angles, though.

To simplify the matter, the matrices were chosen to be diagonal. The used values
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Figure 5.2.: Plot of BR(µ → e γ) in a scan were Y2 as defined in eq. 5.1 has
been overall scaled with the factor s. The angles were chosen θ12 =
π/2, θ13 = 0, θ23 = π/4 for the upper scan and θ12, θ13, θ23 = 0.1 for
the lower. The leptoquark mass was mR′

(2)
= 750 GeV.
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5.4. Results on RD(∗)

are

Y2 = diag
(
10−8, 10−7, 10−5

)
and Y5 = diag

(
10−2, 5 · 10−2, 10−1

)
(5.1)

where the hierarchy in the Y2 is a compromise between the smallness of the
entries and the mass hierarchy of the up-type quarks, in which this matrix enters.
Y5 is not further constrained and can be used to set the neutrino masses high
enough. For the angles θ12 = π/2, θ13 = 0 and θ23 = π/4 there is indeed destructive
interference with these values for Y2 as is visible in the upper plot in fig. 5.2.

These values in eq. 5.1 were used as input in all the scans, except for the one in
the following chapter.

5.4. Results on RD(∗)

Regarding RD(∗) , the new contributions caused a deviation only of O(10−5), which
is still four orders of magnitude too small with respect to the anomalies in RD(∗) .
The values obtained while scanning over tanβ and the angles can be seen in fig.
5.3, in which the couping Y2 has been scaled up already by factor 100 compared to
eq. 5.1 to magnify the effect. Re-examining the results in 4.3.2 and the previous
section 5.3, one can now assess the coupling in eq. 4.10, a rough estimation gives
an upper bound

(Y4Vd)g3 · (U †
uY2Uν,L)2α < O(10−3) . (5.2)

This is too small compared to the SM contribution to obtain any deviation
from the prediction. The smallness is mainly driven by the violated LFV decays:
They are increased with higher values for Y2 and thus make it impossible to not
suppress the respective couplings in the Wilson coefficients for RD(∗) . Therefore an
explanation of RD(∗) by this model can not be achieved.

5.5. Scans over tanβ and mR′
(2)

To fit RK(∗) , every value was accepted that lay within the 1σ range of the measure-
ments, eq. 1.5. Therefore, the ranges RK ∈ [0.648, 0.842] and RK∗ ∈ [0.57, 0.81]
were considered.

For a first insight into the parameter space scans varying the three angles and
tanβ were done. As one can see in 5.4 the value of RK(∗) depends stronger on
tanβ than on the three angles. As already has been pointed out, in the limit
tanβ � 1, the coupling is enhanced ∝ tanβ, which means that the associated
effects get increased while contributions from the other two couplings, Y1 and Y3
will not be magnified, see eq. 3.14.

For a specific value of the leptoquark mass, one has to surpass a certain value
of tanβ to get a significant effect in the observable. This behaviour however can
be easily understood as the New Physics contributions come into place with the
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Figure 5.3.: Plots of RD (upper) and RD∗ (lower), varying the angles θkl in 6
steps and tanβ from 1 to 50 in 9 steps, with mR′

(2)
= 750 GeV and

mA = 100 TeV.
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5.6. Scans over the angles’ space

coupling Y4 ∝ tanβ and it is visible to a fair extent in fig. 5.5, where the angles
have been chosen to be θ12 = π/2, θ13 = 0 and θ23 = π/4. This choice for the
angles shall also be discussed in the next chapter.
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Figure 5.4.: Plot of RK(∗) , varying the angles θkl in 5 steps and tanβ from 1 to 50
in 8 steps, with mR′

(2)
= 750 GeV and mA = 100 TeV.

To conclude, tanβ should be able to tune up the desired coupling without
increasing the other ones, thus opening space for setting a higher mass and still
obtaining a result within the bounds for RK(∗) . Regarding the mass of R′, with the
maximal value tanβ = 50, one can still see effects in RK with mR′

(2)
= 913 TeV. A

one-dimensional scan over the mass mR′
(2)

for mA = mh+ = 100 TeV, tanβ = 50,
θ12 = π/2, θ13 = 0 and θ23 = π/4 can be seen in 5.6.

5.6. Scans over the angles’ space
Up to here the sections provided an insight in how to choose the input parameters
trying to explain the anomalies and avoiding violations of experimental bounds.
The following standard input was used unless stated differently:

tanβ = 50 (5.3)
mA = mh+ = 100 TeV (5.4)

Y2 = diag
(
10−8, 10−7, 10−5

)
(5.5)

Y5 = diag
(
10−2, 5 · 10−2, 10−1

)
(5.6)

mR′
(2)

= 900 GeV (5.7)

The minima of RK and RK∗ in the scans were both reached for the choice
θ12 = π/2, θ13 = 0 and θ23 = π/4, which is exactly the configuration that has been
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Figure 5.5.: Plot of RK (upper) and RK∗ (lower), varying mR′
(2)

and tanβ, with
(θ12 = π/2, θ13 = 0, θ23 = π/4) and mA = 100 TeV. The red lines mark
the range within which the anomaly was considered to be explained.

36



5.6. Scans over the angles’ space

600 800 1000 1200 1400 1600 1800 2000

0.0

0.2

0.4

0.6

0.8

1.0

mR'(2)
[GeV]

R
K

600 800 1000 1200 1400 1600 1800 2000

0.0

0.2

0.4

0.6

0.8

1.0

mR'(2)
[GeV]

R
K
*

Figure 5.6.: Plot of RK (upper) and RK∗ (lower) in dependence of mR′
(2)

, with
mA = mh+ = 100 TeV, tanβ = 50, θ12 = π/2, θ13 = 0 and θ23 = π/4.
The lines mark the region wherein RK and RK∗ are explained and the
maximal mass for the leptoquark R′

(2).
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Figure 5.7.: Plots of RK and RK∗ varying one angle θkl at a time, with mR′
(2)

=

900 GeV, mA = mh+ = 100 TeV, tanβ = 50 and θ12 = π/2, θ13 = 0
and θ23 = π/4, respectively for the remaining angles.
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5.6. Scans over the angles’ space

used in some of the previous results. In one-dimensional scans it could be seen that
it is not a singular point but rather a whole environment, that induces deviations
in RK(∗) . The respective plots can be seen in 5.7.

Sensitive processes are the lepton flavour violating decays, which are plotted
in fig. 5.8. Except for one point, it was not possible to determine a parameter
combination that does not violate the process µ → 3e, while affecting RK . The
process µ → 3e is enhanced predominantly through the box-type diagrams.

The two light leptoquarks couple with the same matrix Y4 as in the Wilson
coefficient to RK(∗) . At the found minimum of RK , a SPheno calculation was done
without R2 and R′

(2) loops and it indeed was seen that the violation comes due to
the leptoquarks.

In fig. 5.9, one can see the observable b → s γ, which is well within the bounds.
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Figure 5.8.: Plot of BR(µ → e γ) and BR(µ → 3e) varying θ12, θ23 ∈ [0, π/2] in 8
steps and θ13 ∈ [−π/2, π/2] in 16 steps. The other parameters were
mR′

(2)
= 900 GeV, mA = mh+ = 100 TeV and tanβ = 50. The dashed

lines show the bounds for the respective decay. For BR(µ → 3e) only
one point is below the bound at RK ≈ 0.85.

The most restricting process is the Kaon decay K0
L → e± µ∓. This process is

on quark-level the same as in RK(∗) , so this effect might be unavoidable. There
were no points with RK < 0.9 found in which this process was not violated. The
same counts for the measured decay of Bs → µ+ µ−. A deviation of only 23%
from the SM prediction is acceptable and for some singular points this bound
was fulfilled. However, the calculations also showed deviations up to 1000% for
otherwise interesting points with RK < 0.9.

The other considered constraints were not violated and the respective plots for
these parameter scans can be seen in E. To conclude, the leptoquarks contribute in
other leptonic observables and induce non-negligible effects on leptonic observables
or leptonic meson decays. It is not possible to explain the measurement of RK(∗)

without violating experimental constraints within this model setup.
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Figure 5.9.: Plot of BR(b → s γ) varying θ12, θ23 ∈ [0, π/2] in 8 steps and θ13 ∈
[−π/2, π/2] in 16 steps.
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Figure 5.10.: Plot of BR(K0
L → e± µ∓) (upper) and BR(Bs → µ+ µ−) (lower),

varying θ12, θ23 ∈ [0, π/2] in 8 steps and θ13 ∈ [−π/2, π/2] in 16 steps.
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6. Conclusion and Outlook

Recent progress in the examinations at the collider experiments showed deviations
from the Standard Model, that necessitate a deeper understanding of the physical
constitution of the universe’s particles. Additionaly, a solution to these anomalies
would at best also provide a unification of the forces and organize the leptons and
the quarks in the same representation.

The model proposed by Fileviez Perez and Wise [1] would foremost solve the
latter problem, providing a greater gauge group and the explanation, how the known
gauge is established through symmetry breaking of a SU(4)C ⊗ SU(2)L ⊗ U(1)R
gauge group, generating the fermionic sector in its known form.

Furthermore, chances were that the leptoquarks in this model could provide
an explanation to the anomalous measurements of semileptonic observables. To
achieve meaningful tests, the model had been implemented into SARAH and SPheno
and the interesting observables were calculated with flavio. Efforts were made to
understand the model’s chances and drawbacks:

The mass structure was examined, indeed showing that two out of four leptoquarks
might be light, one of which being reportedly able to explain the anomalies.

Unfortunately, the deviation in RD(∗) was not tackled. The respective Wilson
coefficients were too small to yield a deviation from the Standard Model coefficient,
that would explain the anomaly. This was mainly driven by the necessity to choose
small values for the coupling Y2 that would have otherwise enhanced the branching
ratios in lepton flavour violating decays, mainly µ → e γ and µ → 3e.

It was possible to explain the measured values in the deviant observables RK and
RK∗ . On the other hand, this could be achieved only under the costs of violating
constraints like µ → eγ and K0

L → e±µ∓, which made it in consequence impossible
to hold on to the model in its first form.

However, one problem was that the proposed scalar potential was not the most
general form. Some terms are missing and the respective couplings change the
mass structure again. Certainly the scalar gluon does not have to be of the same
mass as the light leptoquarks, in a full potential. Possibly, there could be a way to
choose also the leptoquark R2 heavy. Future work has to be done to recalculate
the implications of the couplings that were not yet included in this work.

Looking forward, the violated constraints can be addressed by adding heavy
leptons. This should lead to the freedom to minimize the problematic elements
of the couplings that lead to the violation of the constraints. Currently, work is
done to examine this possibility and to implement this extended lepton sector in
an appropriate model in SARAH to obtain the necessary SPheno files.

Furthermore, efforts are made to implement appropriate searches. At experiments
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6. Conclusion and Outlook

like the Large Hadron Collider one might be able to find hints and signatures of
leptoquarks like lepton plus jet signals. These would certainly be a great step
towards establishing an unification of the fermion representations.
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A. The SU(4) generators

The basis of generators used to achieve the elements of the group are based on the
so-called Gell-Mann matrices and extended to four dimensions. These matrices are
not unique, so the choice shall be written explicitly here.

The basis has to consist of 15 matrices and the first are chosen to be the Gell-Mann
matrices, see [62], embedded in 4× 4 matrices and divided by two:

Ti =
1

2

(
λi 0
0 0

)
, i = 1, . . . , 8 (A.1)

For the remaining seven matrices the following ones are used

T9 =
1

2


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 , T10 =
1

2


0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0



T11 =
1

2


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 , T12 =
1

2


0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0



T13 =
1

2


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , T14 =
1

2


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0



T15 =
1

2
√
6


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3



(A.2)

This basis fulfils the relation

Tr [TmTn] =
1

2
δmn . (A.3)
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B. Fierz transformation

When working with leptoquark models, interactions come into place that are not
present in the SM. They lead to bilinears that mix leptons and quarks and are
hence not covered by standard basis, where only quark pairs or lepton pairs appear.

However, there is a transformation first introduced by Fierz [63], with which one
can rearrange the bilinears and which shall be defined here. First, a shorthand
notation is introduced, namely

ŝ (a, b; c, d) = (ab) (cd)

v̂ (a, b; c, d) = (aγµb) (cγ
µd)

t̂ (a, b; c, d) =
1

2
(aσµνb) (cσ

µνd)

â (a, b; c, d) =
(
aγ5γµb

) (
cγµγ5d

)
p̂ (a, b; c, d) =

(
aγ5b

) (
cγ5d

)
(B.1)

where the function names stand for scalar, vector, tensor, axial, and pseudo-scalar
type, respectively.

Combining the types to a vector to obtain a matrix equation, each of the bilinears
can be expressed in a different basis by the transformation [62]

ŝ
v̂

t̂
â
p̂

(a, d; c, b) =
1

4


1 1 1 1 1
4 −2 0 2 −4
6 0 −1 0 6
4 2 0 −2 −4
1 −1 1 −1 1



ŝ
v̂

t̂
â
p̂

(a, b; c, d) . (B.2)

Generalized forms of this transformation with other permutations can be found
in [64].

49





C. The Lagrangian, expanded and after
EWSB

All products within eq. 3.8 are expanded and the particles transformed into mass
basis. The resulting are written below. The summation convention counts. The
equation has been split into parts of the Yukawa couplings, i.e. Ln denotes the
term proportional to Yn.

L1 = − 1√
2
ūRU

†
uY

T
1 VuuL(v1 + Zh

1nhn + iZA
13A) + ūRU

†
uY

T
1 VddLZ

h+

12 h+−

− 1√
2
ν̄U †

ν,RY
T
1 Uν,Lν(v1 + Zh

1ihi + iZA
13A) + ν̄α(U

†
ν,RY

T
1 )Zh+

12 eLh
+ + h.c.

(C.1)

L2 = − 1√
2
ūRU

†
uY

T
2 VuuL(G

0
(1) + iG0

(2))− ūRU
†
uY

T
2 Uν,LνZ

LQ
1k R′

(k)−

− ν̄U †
ν,RY

T
2 VuZ

LQ,∗
2k R′

(k)uL − 1

4
√
3
ūRU

†
uY

T
2 Vu(v2 + Zh

3nhn + iZA
33A)uL+

+

√
3

4
ν̄U †

ν,RY
T
2 Uν,Lν(v2 + Zh

3nhn + iZA
33A)+

+ ūRU
†
uY

T
2 VddLG

+ + ūRU
†
uY

T
2 R2eL + ν̄U †

ν,RY
T
2 VddLR̃2+

+
1

2
√
6
ūRU

†
uY

T
2 VddLZ

h+

22 h+ − 3

2
√
6
ν̄U †

ν,RY
T
2 Zh+

22 h+eL + h.c.

(C.2)

L3 = − d̄RU
†
dY

T
3 VuuLZ

h+,∗
12 h− − 1√

2
d̄RU

†
dY

T
3 VddL(v1 + Zh

1nhn − iZA
13A)−

− ēRY
T
3 Uν,LνZ

h+,∗
12 h− − 1√

2
ēRY

T
3 eL(v1 + Zh

1nhn − iZA
13A) + h.c.

(C.3)
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C. The Lagrangian, expanded and after EWSB

L4 = − d̄RU
†
dY

T
4 VuG

−uL − d̄RU
†
dY

T
4 Uν,LνR̃

∗
2 − ēRY

T
4 VuuLR

∗
2−

− 1

2
√
6
d̄RU

†
dY

T
4 VuuLZ

h+,∗
22 h− +

3

2
√
6
ēRY

T
4 Uν,LνZ

h+,∗
22 h−−

− 1√
2
d̄RU

†
dY

T
4 VddL(G

0
(1) − iG0

(2))− d̄RU
†
dY

T
4 eLZ

LQ
2k R′

(k)−

− ēRY
T
4 VddLZ

LQ,∗
1k R′,∗

(k) −
1

4
√
3
d̄RU

†
dY

T
4 VddL(v2 + Zh

3nhn − iZA
33A)+

+

√
3

4
ēRY

T
4 eL(v2 + Zh

3nhn − iZA
33A) + h.c.

(C.4)

L5 = − ūRU
†
uY

T
5 Uν,NνZLQ

3g R′
(g) −

1√
2
ν̄U †

ν,RUν,Nν(vχ + Zh
2nhn + iZA

23A) + h.c.

(C.5)
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D. Wilson coefficients

All the calculated Wilson coefficients shall be presented here, the tree-level contri-
butions to b → sl+l− and b̄ → c̄l+ν and the G−-loop contribution to b → sγ. The
definition of the mixing matrices Uu,d and Vu,d can be looked up in eq. 3.12.

D.1. b → sγ

D.2. b → sl+i l
−
i

The index i is not a summation index, but denotes the lepton generation. The used
effective Hamiltonian and the operator basis is defined as

Heff =CT (s̄Rσ
µνbL)(l̄Rσµν lL) + CSLL(s̄RbL)(l̄RlL) + CSLR(s̄RbL)(l̄LlR)+

+ CRR(s̄LbR)(l̄LlR) + CSRL(s̄LbR)(l̄RlL) + CVLR(s̄Lγ
µbL)(l̄RγµlR)+

+ CVRL(s̄Rγ
µbR)(l̄LγµlL) + CVLL(s̄Lγ

µbL)(l̄LγµlL)

(D.1)

All of these coefficents except the last one receive contributions through the new
particles. Their expressions are listed below.

D.2.1. Tensor operator

CNP
T = −

3∑
k=2

1

8

1

m2
R′

(k)

ZLQ,∗
1k (Y T

4 Vd)i3(U
†
dY

T
4 )2iZ

LQ
2k (D.2)
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D. Wilson coefficients

D.2.2. Scalar operators

bL → sRl+L l−R

CNP
SLL =

(
3∑

n=1

1

m2
hn

[√
3

12
Zh
3n(U

†
dY

T
4 Vd)23 +

1√
2
(U †

dY
T
3 Vd)23Z

h
1n

]
·

·

[√
3

4
Zh
3n(Y

T
4 )ii −

1√
2
(Y T

3 )iiZ
h
1n

]
−

−
3∑

k=2

1

2

1

m2
R′

(k)

ZLQ,∗
1k (Y T

4 Vd)i3(U
†
dY

T
4 )2iZ

LQ
2k +

+
1

m2
A

[√
3

12
ZA
33(U

†
dY

T
4 Vd)23 +

1√
2
(U †

dY
T
3 Vd)23Z

A
33

]
·

·

[
−
√
3

4
ZA
33(Y

∗
4 )ii +

1√
2
(Y ∗

3 )iiZ
A
33

])

(D.3)

bL → sRl+Rl−L

CNP
SLR =

(
3∑

n=1

1

m2
hn

[√
3

12
Zh
3n(U

†
dY

T
4 Vd)23 +

1√
2
(U †

dY
T
3 Vd)23Z

h
1n

]
·

·

[√
3

4
Zh
3n(Y

∗
4 )ii −

1√
2
(Y ∗

3 )iiZ
h
1n

]
+

+
1

m2
A

[√
3

12
ZA
33(U

†
dY

T
4 Vd)23 +

1√
2
(U †

dY
T
3 Vd)23Z

A
33

]
·

·

[
−
√
3

4
ZA
33(Y

∗
4 )ii +

1√
2
(Y ∗

3 )iiZ
A
33

])
(D.4)
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D.2. b → sl+i l
−
i

bR → sLl
+
Rl−L

CNP
RR =

(
3∑

n=1

1

m2
hn

[√
3

12
Zh
3n(V

†
d Y

∗
4 Ud)23 +

1√
2
(V †

d Y
∗
3 Ud)23Z

h
1n

]
·

·

[√
3

4
Zh
3n(Y

∗
4 )ii −

1√
2
(Y ∗

3 )iiZ
h
1n

]
−

−
3∑

k=2

1

2

1

m2
R′

(k)

ZLQ,∗
k2 (Y ∗

4 Ud)i3(V
†
d Y

∗
4 )2iZ

LQ
1k +

+
1

m2
A

[√
3

12
ZA
33(V

†
d Y

∗
4 Ud)23 +

1√
2
(V †

d Y
∗
3 Ud)23Z

A
13

]
·

·

[
−
√
3

4
ZA
33(Y

∗
4 )ii +

1√
2
(Y ∗

3 )iiZ
A
33

])

(D.5)

bR → sLl
+
L l−R

CNP
SRL =

(
3∑

n=1

1

m2
hn

[√
3

12
Zh
3n(V

†
d Y

∗
4 Ud)23 +

1√
2
(V †

d Y
∗
3 Ud)23Z

h
1n

]
·

·

[√
3

4
Zh
n3(Y

T
4 )ii −

1√
2
(Y T

3 )iiZ
h
n1

]
+

+
1

m2
A

[√
3

12
ZA
33(V

†
d Y

∗
4 Ud)23 +

1√
2
(V †

d Y
∗
3 Ud)23Z

A
13

]
·

·

[
−
√
3

4
ZA
33(Y

T
4 )ii +

1√
2
(Y T

3 )iiZ
A
33

])
(D.6)

D.2.3. Vector operators

CNP
VLR = −

 3∑
k=2

1

2

1

m2
R′

(k)

ZLQ,∗
1k (Y T

4 Vd)i3(V
†
d Y

∗
4 )2iZ

LQ
1k


CNP

VRL = −

 3∑
k=2

1

2

1

m2
R′

(k)

ZLQ,∗
2k (Y ∗

4 Ud)i3(U
†
dY

T
4 )2iZ

LQ
2k

 (D.7)

D.2.4. Conversion to standard basis

It counts:
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D. Wilson coefficients

(s̄Lγ
µbL)(l̄RγµlR) =

1

2
(O9,l +O10,l)

(s̄Rγ
µbR)(l̄LγµlL) =

1

2
(O′

9,l −O′
10,l)

(D.8)

Therefore the New Physics coefficients convert into the standard basis with

1

2
CNP

VLR = CNP
9 = CNP

10

1

2
CNP

VRL = CNP
9 = −CNP

10 (D.9)

D.3. b̄ → c̄l+i να

The indices α and i used in this section denote the neutrino and lepton generation,
respectively, and are not summation indices. The effective Hamiltonian is defined
as

Heff =CSRL(b̄LcR)(ν̄αlL) + CSRR(b̄LcR)(ν̄αlR)+

+ CSLL(b̄RcL)(ν̄αlL) + CSLR(b̄RcL)(ν̄αlR)+

+ CVLR(b̄Lγ
µcL)(ν̄αγµlR) + CVRL(b̄Rγ

µcR)(ν̄αγµlL)+

+ CSM
VLL(b̄Lγ

µcL)(ν̄αγµlL)

(D.10)

D.3.1. Scalar operators
b̄L → c̄Rl+Lνα

CNP
SRL =

(
− 1

m2
h+

[
Zh+,∗
12 (V †

d Y
∗
1 Uu)32 +

1

2
√
6
Zh+,∗
22 (V †

d Y
∗
2 Uu)32

]
·

·
[
Zh+

12 (U †
ν,RY

T
1 )αi −

3

2
√
6
Zh+

22 (U †
ν,RY

T
2 )αi

]
+

+

3∑
k=2

1

2

1

m2
R′

(k)

ZLQ
1k (V †

d Y
∗
4 )3i·

·
[
ZLQ,∗
1k (U †

ν,LY
T
2 Uu)α2 + ZLQ,∗

3k (U †
ν,NY T

5 Uu)α2

])
(D.11)

b̄L → c̄Rl+Rνα

CNP
SRR = − 1

m2
h+

[
Zh+,∗
12 (V †

d Y
∗
1 Uu)32 +

1

2
√
6
Zh+,∗
22 (V †

d Y
∗
2 Uu)32

]
·

·
[
−Zh+

12 (U †
ν,LY

∗
3 )αi +

3

2
√
6
Zh+

22 (U †
ν,LY

∗
4 )αi

] (D.12)
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D.3. b̄ → c̄l+i να

b̄R → c̄Ll
+
Lνα

CNP
SLL = − 1

m2
h+

[
−(U †

dY
T
3 Vu)32Z

h+,∗
12 − 1

2
√
6
(U †

dY
T
4 Vu)32Z

h+,∗
22

]
·

·
[
Zh+

12 (U †
ν,RY

T
1 )αi −

3

2
√
6
Zh+

22 (U †
ν,RY

T
2 )αi

] (D.13)

b̄R → c̄Ll
+
Rνα

CNP
SLR =

(
− 1

m2
h+

[
−(U †

dY
T
3 Vu)32Z

h+,∗
12 − 1

2
√
6
(U †

dY
T
4 Vu)32Z

h+,∗
22

]
·

·
[
−Zh+

12 (U †
ν,LY

∗
3 )αi +

3

2
√
6
Zh+

22 (U †
ν,LY

∗
4 )αi

]
−

−
3∑

k=2

1

2

1

m2
R′

(k)

∣∣∣ZLQ
2k

∣∣∣2 (U †
dY

T
4 )3i · (U †

ν,RY
T
2 Vu)α2


(D.14)

D.3.2. Vector operators

CNP
VLR = −

3∑
k=2

1

2

1

m2
R′

(k)

ZLQ
1k ZLQ,∗

2k (V †
d Y

∗
4 )3i · (U

†
ν,RY

T
2 Vu)α2

CNP
VRL = −

3∑
k=2

1

2

1

m2
R′

(k)

ZLQ
2g (U †

dY
T
4 )3i

[
(U †

ν,LY
∗
2 Uu)α2Z

LQ,∗
1k + (U †

ν,NY T
5 Uu)α2Z

LQ,∗
3k

]
(D.15)
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E. Plots

In this section the plots of the other observables are presented from a scan over the
angles. In the scan θ12, θ23 ∈ [0, π/2] were varied in 8 steps and θ13 ∈ [−π/2, π/2]
in 16 steps, while the phase δ = 0.

The masses were chosen to be mR′
(2)

= mR2 = 900 GeV and mA = mh+ =

100 TeV, with tanβ = 50.
Each plot shows the branching ratio in dependence of RK . The red dashed lines

show the bounds above which experimental constraints are violated, see tab. 5.2.

0.85 0.90 0.95 1.00 1.05

10-18

10-14

10-10

RK

B
R
(τ

→
e
γ
)

59



E. Plots
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