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Summary

Composite Higgs models are a theoretically well motivated extension of the stan-
dard model. The therein contained additional pseudo Nambu-Goldstone bosons are
potentially accessible to searches at the high luminosity Large Hadron Collider. A
characteristic process is the decay of doubly charged scalars to a W+tb̄ (W−t̄b) sys-
tem. We focus on a final state containing many jets and two same-sign isolated
leptons and propose various deep neural networks to discriminate this signal process
from relevant standard model backgrounds.
For this, we simulate a dataset containing three representations of the collision
events. Firstly, we calculate a set of high-level kinematic data and use a multi-
layer perceptron on it to classify signal events. Furthermore, we target a jet image
representation of the events with a convolutional neural network based on ResNet.
Finally, we construct graphs on a point cloud representation of the event. We then
use a graph attention network for this representation. In each case, we beat our
benchmarks, which are models that have proven to be successful on comparable
tasks in established literature.
We also show how important it is to combine the different representations, as they
highlight different physical aspects of the event. Adding high-level information to
the jet images as new channels corresponding to jet-center positions improves the
performance of the convolutional neural networks significantly. Moreover, by con-
structing classifiers that combine pretrained models that work on each representation
into a single classifier that can access all representations simultaneously, we further
enhance the discriminatory power of the neural networks. This combined classifier
achieves the best performance and leads to an expected exclusion limit of 710 GeV
and a discovery reach of 550 GeV for the doubly charged scalar production.



Zusammenfassung

Composite Higgs Modelle sind theoretisch fundierte Erweiterungen des Standard-
modells. Die darin enthaltenen doppelt geladenen Skalarteilchen und deren Paarpro-
duktion können voraussichtlich am high-luminosity Large Hadron Collider sondiert
werden. Ein typischer Prozess ist der Zerfall der doppelt geladenen Skalare in ein
W+tb̄ (W−t̄b) System. Dabei fokussieren wir uns auf einen Endzustand, der viele
Jets und zwei isolierte Leptonen mit selber Ladung enthält. Um diesen Signalprozess
von den relevanten Standardmodell-Hintergrundprozessen zu unterscheiden, schla-
gen wir vor, verschiedene neuronale Netzwerke zu verwenden.
Dazu simulieren wir einen Datensatz, der drei Repräsentationen der Kollisions-
ereignisse enthält. Wir verwenden ein Multi-Layer-Perceptron, das auf einem Satz
an kinematischen Daten arbeitet. Des Weiteren implementieren wir Modelle, die
auf ResNet basieren, und bezwecken damit eine Klassifizierung von Jet-Bildern.
Letztlich konstruieren wir Graphen auf einer Teilchenwolken-Darstellung und klas-
sifizieren diese mit Graph-Attention-Networks. In jedem Fall übertreffen wir unsere
Vergleichsmodelle, die sich in etablierter Literatur als erfolgreich erwiesen haben.
Darüber hinaus zeigen wir, dass es wichtig ist, die unterschiedlichen Repräsentatio-
nen zu verbinden, da diese Informationen über unterschiedliche physikalische As-
pekte des Kollisionsereignisses beinhalten. Die Leistung der Convolutional Neural
Networks wird durch das Hinzufügen von Jet-Mittelpunktpositionen zu den Jet-
Bildern deutlich verbessert. Des Weiteren kann ein Klassifikator konstruiert werden,
der alle Repräsentationen des Kollisionsevents verbindet. Dazu werden vortrainierte
Netzwerke, die auf den einzelnen Darstellungen arbeiten, verbunden und verbessern
die Fähigkeit, Signal von Hintergrund zu trennen, weiter. Dieser kombinierte Klas-
sifikator erreicht ein erwartetes Ausschlusslimit von 710 GeV und kann die Paarpro-
duktion des doppelt geladenen Skalarteilchens bis zu 550 GeV entdecken.
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1. Introduction

The standard model (SM) of particle physics has proven to be an exceptionally ac-
curate description of nature, with many of its predictions tested to high precision by
collider experiments over the past decades. The discovery of the Higgs boson by the
ATLAS and CMS collaborations at the Large Hadron Collider (LHC) in 2012 [1, 2]
has completed the discovery of all particles predicted by the standard model.
Despite its successes, not all aspects of particle physics phenomenology are explained
by the standard model. It does not account for neutrino masses, dark matter or
matter-antimatter asymmetry, nor does it give a full quantized description of grav-
ity. Furthermore, the standard model has several theoretical challenges, such as the
strong charge parity (CP) problem, the hierarchy among fermion masses, and the
naturalness problem associated with the Higgs mass.
Given these limitations, the standard model is considered an effective field theory
that describes nature only up to a certain energy scale ΛSM, beyond which new
physics could emerge. These unresolved issues and theoretical shortcomings moti-
vate model building efforts that construct theories beyond the standard model.
One such model class are the composite Higgs models [3–6]. In composite Higgs
models, the Higgs boson is not a fundamental scalar but a pseudo Nambu-Goldstone
boson (pNGB), arising from the spontaneous breaking of a global symmetry in a new
strongly coupled sector at the TeV scale. This is comparable to how the hadronic
bound states in quantum chromodynamics (QCD) arise. This expanded sector in-
volves new fermions, known as hyperquarks, interacting via a new gauge group. A
key advantage of composite Higgs models is their potential to solve the naturalness
problem. The relatively small mass of the Higgs compared to other states in these
models is naturally explained by its pNGB nature.
In addition to the standard model Higgs boson, these models predict other scalar
particles and fermionic resonances that can mix with standard model particles like
the top quark. This mixing, termed partial compositeness [7], can explain the rel-
atively high mass of the top quark. The search for ultraviolet completions of these
composite sectors has identified several minimal models [8–10], including one based
on the symmetry breaking pattern

G = SU(5)× SU(6)× U(1)→ SO(5)× Sp(6) = H, (1.1)

which was referred to as M5 in [10].
This model and the therein contained additional pNGBs motivate this thesis. It
should be noted, that the doubly charged scalars are not only present in model M5,
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but rather all models with the SU(5)/SO(5) electroweak (EW) coset. Making this
analysis interesting for the phenomenology of many composite Higgs models.
Their LHC phenomenology has been studied, e.g. in [10–15].
A characteristic prediction of this model are doubly charged scalar pNGBs S±±,
which are common to all composite Higgs models, which contain the SU(5)

SO(5)
elec-

troweak coset. The final states produced by their Drell-Yan production are rather
busy, as they contain multiple jets. The three-body decay of those scalars via the
decay chain S++ → W+tb̄ (S−− → W−t̄b) is the main focus of this work. To re-
duce the standard model background, we focus on the di-leptonic decay of the W+t

(W−t̄) system, originating from one of the doubly charged scalars. This leads to a
final state with two same-sign isolated leptons and high hadronic activity, resulting
from many jets, some of which are b-tagged. We expand on the work done in [15] by
using deep neural networks to target those final states. The neural networks func-
tion as classifiers of our signal process and the relevant standard model background
processes.
We use the b-tagging information of the jets to further enrich the information con-
tained in the jet images and apply advanced convolutional neural networks (CNNs)
to the classification task. The application of computer vision inspired neural net-
works on jet images has proven to be a powerful tool in particle physics, e.g. in
jet-tagging and jet-substructure analysis [16–24]. We compare the performance of
different CNN architectures for the identification of our signal process.
Furthermore, we implement neural networks operating on graph representations of
the LHC events. Networks based on the message-passing algorithm have also been
successfully used in jet-physics [25, 26]. We use a point cloud representation of the
LHC event inspired by [27] and compare different graph neural networks (GNNs).
The calculation of higher-level kinematic features of the events, allows us to use
multilayer perceptrons and Transformers to target this third event representation.
Finally, we combine the best architectures for each representation to produce a
model that has access to all three representations of the events. We show that this
multi representation classifier provides significant increases in discriminatory power
over the classifiers acting on a single representation.
We organize this thesis as follows: In section 2 we give a short review of composite
Higgs models and explain the origin of the doubly charged scalars. Section 3 gives an
introduction to deep learning and neural networks. To train the various networks,
we have simulated a dataset containing signal and background LHC events. We de-
scribe the simulation process and data structure in section 4. Section 5 contains the
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description of the neural networks that we compare in this thesis, and the results of
this comparison are shown in section 6. Finally, we summarize and give an outlook
on future research possibilities in section 7.
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2. Composite Higgs models

Firstly, we give a brief review of the composite Higgs models. We start with the
general motivation of composite Higgs models, followed by their general construction
and classification. Finally, we introduce the concrete model that motivates this
thesis.

2.1. The naturalness problem

The Higgs boson in the Standard Model is a scalar boson characterized by a mass
of mH = 125 GeV. It triggers the electroweak symmetry breaking and endows other
elementary particles with mass through its non-vanishing vacuum expectation value
(VEV) of v = 246 GeV. However, the incorporation of the Higgs boson into the
standard model gives rise to the naturalness problem. Following the arguments
in [28], the naturalness problem emerges due to the consideration of higher-order
corrections to the bare mass of the Higgs boson mh,0. For the Higgs boson, one
would anticipate its mass to be on the order of the scale Λ2

SM, where the Standard
Model breaks down as a fundamental theory. This scale could be taken as the scale
of a grand unified theory (GUT) ΛGUT ∼ 1015 GeV or the Planck scale ΛPlanck ∼
1019 GeV as in [28]. Explicitly, for a scalar Higgs boson, the effective squared Higgs
mass m2

h can be expressed as

m2
h = m2

h,0 + c2Λ2
SM, (2.1)

where c2 represents a factor stemming from loop corrections. The measured Higgs
boson mass being of the same order as the electroweak symmetry breaking scale
poses a problem, since a cancellation of numerous orders of magnitude must occur
to ensure the Higgs boson’s relatively light mass. This situation gives rise to the
naturalness problem, as the extensive fine-tuning required to maintain this alignment
is considered inherently unnatural.
Other than the Higgs boson, there are no other elementary scalar particles. However,
there are a plethora of non-elementary scalar particles, namely the QCD condensate
mesons such as the pions. It is therefore reasonable to ask whether the Higgs boson
could also be a non-elementary, i.e. composite particle. If this were the case the
naturalness problem could be solved as any corrections to the effective mass of the
Higgs boson would be cut off at the condensation scale of the composite Higgs and
therefore could be orders of magnitudes closer to the electroweak symmetry breaking
scale ΛEW. One would expect this new scale to be at the TeV level, since one would
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expect a plethora of new composite particles at this scale. Such particles have not
been observed by current experiments, and therefore the condensation scale must
lie outside of the grasp of contemporary experiments. Above this scale, one would
have a new QCD like theory of a set of so called hyperquarks. Below this scale,
the composite Higgs would function as the standard model Higgs boson. Therefore,
preserving the standard model physics and solving the naturalness problem.

2.2. Composite Higgs scenario

The modern variants of the composite Higgs models [3,4,6,29] rely on the breaking
of a new global symmetry group G to a subgroup H ⊂ G with the coset G/H con-
taining pseudo Nambu-Goldstone bosons (pNGBs), one of which must be the Higgs
boson.
The spontaneous breaking of G generates a number of massless Goldstone bosons
according to the Goldstone theorem [30, 31]. Those acquire a mass through the
explicit breaking of G by an interaction Lint with the elementary standard model
sector turning the Goldstone bosons into pNGBs and therefore allowing them to
potentially contain the Higgs boson among them. Since the standard model Higgs
boson is rather light with a mass of the order of ΛEW = v it is necessary for the in-
teraction Lint to be a small perturbation of the so-called composite sector associated
with the global group G. In order to be compatible with the standard model, the
subgroup H must be large enough to contain the electroweak part of the standard
model symmetries H ⊃ SU(2)L×U(1)Y and the coset G/H must be able to contain
the Higgs doublet. In fact, it is common for many explicit composite Higgs models
that even the custodial SU(2)L × SU(2)R is part of the breaking pattern:

H ⊃ SU(2)L × SU(2)R ⊃ SU(2)L × U(1)Y . (2.2)

This allows for a convenient implementation of ρ = m2
W/(cwmZ)

2 ∼ 1, since other-
wise dimension six operators would introduce tree level corrections to the value of
ρ that depend on the details of the composite scenario.
This restricts the possible symmetry breaking patterns and leads to the most min-
imal pattern being SO(5)/SO(4), since SO(4) ≃ SU(2) × SU(2). This so-called
minimal composite Higgs model (MCHM) has, however, been severely constrained
by experiments. Furthermore, it does not contain any possible top-partners that are
an important part of modern composite Higgs models, as we will discuss later.
The spontaneous symmetry breaking is implemented by assuming that the vacuum
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state F is only invariant under the subgroup H

T̂ âF ̸= 0, (2.3)

where T̂ â are the broken generators of G, whilst the unbroken generators T a preserve
the vacuum

T aF = 0. (2.4)

It should be noted that this is merely a choice of a particular embedding of a refer-
ence system in the algebra of G. All embeddings are equal, since in the context of the
global group G there is no preferred direction. However, this choice is particularly
convenient.
In accordance with the electroweak symmetry-breaking mechanism in the stan-
dard model and, in more general terms, the Callan-Coleman-Wess-Zumino (CCWZ)
mechanism that will be discussed later, the Goldstone Fields can be written as

Φ = eiθ
â(x)T̂ â

F. (2.5)

In the case of the MCHM with the breaking pattern SO(5)/SO(4) this leads to
exactly four Goldsotne bosons which can form the complex Higgs doublet as required
by the standard model.
Due to the explicit symmetry breaking introduced by the interaction between the
composite and standard model sectors, the Goldstone bosons θ acquire a vacuum
expectation value ⟨θ⟩.
This can be interpreted as a misalignment of the real vacuum to the reference vacuum
F by the angle ⟨θ⟩. This leads to the relation v = f sin (⟨θ⟩), where f = |F| is the
scale where G spontaneously breaks to H. This can be geometrically represented as
in Figure 1. If there is no misalignment and thus f = v, the class of models are
called technicolor models [33–35]. Those models have phenomenological problems
and have been replaced by models with misalignment. If there is misalignment,
which is indicated by the important ξ-parameter

ξ =
v2

f 2
≪ 1, (2.6)

there arise interesting differences to the technicolor models. This is the class of
models which motivated this thesis.
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Figure 1: Depiction of vacuum misalignment on the SO(3) group manifold. The
SO(3) symmetry is broken to a SO(2) symmetry by vacuum misalignment.
The breaking is proportional to the projection of the reference vacuum
state F to the SO(2)-plane. Taken from [32].

2.3. CCWZ construction

To construct an arbitrary composite Higgs theory there exists a construction formal-
ism known as the Callan-Colemann-Wess-Zumino (CCWZ) formalism [36, 37]. The
idea is to use the general transformation behavior under the global group G and the
subgroup H respectively to construct minimal building blocks for the composite the-
ory and finally arrive at a low-energy effective Lagrangian. However, this prescrip-
tion does not include potential anomaly induced terms like the Adler-Bell-Jackiw
anomaly [38, 39] that can also be present in composite Higgs theories. However, it
is possible to construct those terms with the Wess-Zumino-Witten action [40, 41].
Such terms and their constructions will however not be discussed in detail in the
scope of this thesis.
In the following we give a quick summary of the CCWZ formalism which follows the
depictions in [32].
Any general group transformation gα (with the whole set of generators TA) can be
decomposed into a transformation acting with the broken generators T̂ â and the
unbroken generators T a:

gα = eiαATA

= eiαâT̂
â

eiαaTa

. (2.7)

7



If one studies the transformation behavior of the so-called Goldstone matrix

U(Π) = ei
√
2

f
ΠâT̂

â

, (2.8)

which is a fundamental object in composite Higgs theories and coincides with the
Goldstone Fields in eq. (2.5) with a slight reparametrization, one finds

U(Π)→ U(Π(g)) = gU(Π)h−1(Π, g). (2.9)

Here the decomposition of the general group element was used to define Π(g) implic-
itly and h is an element of the subgroup H.
To arrive at the fundamental building blocks of the theory, namely the so called e-
and d-symbols, it is useful to introduce the Maurer-Cartan Form:

iU(Π)−1∂µU(Π) = dµ,â(Π)T̂
â + eµ,a(Π)T

a = dµ + eµ, (2.10)

which separates in broken and unbroken components. It follows from eq. (2.9), that
the d− and e−symbols transform as

dµ → h(Π, g)dµh
−1(Π, g) (2.11)

eµ → h(Π, g) (eµ + i∂µ)h
−1(Π, g). (2.12)

Since those transformation behaviors are only dependent on the subgroup element
h, the CCWZ construction allows us to construct the Lagrangian using only H-
invariant terms and guarantees the global invariance under G automatically.
The perhaps simplest term is the contraction of two of the d−symbols

L ⊃ f 2

4
Tr(dµd

µ) (2.13)

=
1

2
∂µΠâ∂

µΠâ +
∑
n

O
(
(∂Π)2 · Π

n

fn

)
, (2.14)

which gives the kinematics of the Goldstone fields. Up to this point, we have only
looked at global transformation of G and H. To introduce the standard model to
our composite Higgs theory, it is necessary to gauge at least a subgroup of H. To
do this, one can introduce a gauge field for all the G generators and set all the
unphysical fields to zero at the end of the procedure. Hence, one finds the usual
transformation behavior of the gauge fields with now local transformations g(x):

TAA
A
µ → (TAA

A
µ )

(g) = g(x)(TAA
A
µ + i∂µ)g(x)

−1. (2.15)
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From this point on, for the sake of brevity, the contraction TAA
A
µ is abbreviated as

Aµ.
Following the example of the Maurer-Cartan Form, we can split the result of the
action of the Goldstone Matrix U(Π) on the gauge fields into broken and unbroken
terms and introduce generalized d− and e−symbols, that contain the gauge fields
as follows:

Āµ = U(Π)−1(Aµ + i∂µ)U(Π) = dµ(Π, A) + eµ(Π, A) (2.16)

The generalized symbols dµ(Π, A) and eµ(Π, A) now transform in accordance with
eq.(2.12) and can be used to construct a H-invariant Lagrangian. Applying this
procedure to the kinematic term (2.14), one obtains the kinematic term of the
Goldstone fields as well as their gauge interactions via minimal substitution:

L ⊃ f 2

4
Tr (dµ(Π, A)d

µ(Π, A)) =
1

2
(DµΠâ)

† (DµΠâ
)
+ . . . (2.17)

2.4. Top partners

A ubiquitous aspect of modern composite Higgs models is partial compositeness.
Partial compositeness solves the problem of the unexpectedly high top-quark mass
in comparison to the other much lighter quarks, by introducing a so called top-
partner. This is a composite particle that has the same standard model quantum
numbers as the top-quark and therefore produces a mixed state with the elementary
top-quark. The mass of the top-quark is then partially generated by the composite
state, and the fundamental top-quark could be much lighter. It should be noted
that this procedure can be done for all quark generations, however it is of explicit
interest for the top-quark and hence the following discussion will focus on it.
The mixing is realized by introducing a linear coupling of the standard model quarks
qL and tR to condensate operators OL/R

F , leading to the interaction

Lint = −λLq̄LOL
F − λRt̄ROR

F + h.c., (2.18)

as first developed in [7]. This is done in contrast to the technicolor approach, where
a bilinear operator is introduced to the Lagrangian

Lint =
λt

Λd−1
UV

q̄LOc
Str +

λb

Λd−1
UV

q̄LOSbR + h.c. , (2.19)

which can lead to the reintroduction of the naturalness problem. A further advantage
of the partial compositeness way is that it gives the possibility of explaining the flavor
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hierarchies by analyzing the dimensionality of the Yukawa-like operators and their
scaling dimensions. Further details are discussed in [32].
Since the operators OL/F

F are expected to be able to excite a single particle state
from the vacuum they are associated with the fermionic resonances Q and T with
a mass near the typical scale of the composite resonances m∗ the effective mass
Lagrangian can be estimated to be

Lmass = −m∗Q̄Q−m∗T̄ T − m∗

g∗
(λLq̄LQ+ λr t̄rT + h.c.) . (2.20)

2.5. Characterization of composite Higgs models

Since the MCHM is severely constrained and does not include top-partners in the
form presented here, the question arises: what other (minimal) composite Higgs
models are possible. We follow the characterization of composite Higgs models as is
done in [42,43].
In general, it is possible to have multiple sets of hyperquarks that are in different
representations of the hyperquark gauge group GHC. One usually splits the hyper-
quarks into one set that interacts with the strong sector of the standard model and
one that interacts with the electroweak sector. The strong sector hyperquarks would
then contribute to the construction of top-partners. Since the idea is to construct
a minimal scenario, the assumption is that there is only one set of hyperquarks per
sector. The hyperquarks associated with the electroweak sector shall be called Ψ and
the ones associated with the strong sector χ. The minimal breaking patterns of the
electroweak sector must be able to contain a (2,2) representation of the custodial
SU(2)× SU(2) symmetry that contains the complex standard model Higgs doublet.
The strong sector needs to be able to contain the standard model QCD sector. Ad-
ditionally, they carry hypercharge, and thus we require Hχ ⊃ SU(3)c × U(1)X for
the strong sector.
The global symmetry group is in general

U(nΨ)× U(nχ) ∼= SU(nΨ)× SU(nχ)× U(1)Ψ × U(1)χ, (2.21)

where two additional U(1) arise. They form one linear combination that is anomaly
free, while the other linear combination is responsible for the Adler-Bell-Jackiw
anomaly. The anomaly free U(1)u, contributes to the standard model hypercharge
and is spontaneously broken, resulting in a standard model neutral pNGB a. This
pNGB does not depend on the choice of the electroweak and strong sector groups,
and is present in all minimal composite Higgs models. It has been studied in [10,
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Ψ ∈ R Ψ ∈ PR Ψ, Ψ̃ ∈ C

χ ∈ R SU(5)
SO(5)

SU(6)
SO(6)

SU(4)
Sp(4)

SU(6)
SO(6)

SU(4)×SU(4)′

SU(4)D

SU(6)
SO(6)

χ ∈ PR SU(5)
SO(5)

SU(6)
Sp(6)

SU(4)
Sp(4)

SU(6)
Sp(6)

SU(4)×SU(4)′

SU(4)D

SU(6)
Sp(6)

χ, χ̃ ∈ C SU(5)
SO(5)

SU(3)×SU(3)′

SU(3)D

SU(4)
Sp(4)

SU(3)×SU(3)′

SU(3)D

SU(4)×SU(4)′

SU(4)D

SU(3)×SU(3)′

SU(3)D

Table 1: The minimal cosets that can be formed. The left and right cosets denote
the electroweak and strong sector representations of the hyperquarks re-
spectively. The two distinct representations of the hyperquark gauge group
GHC can be real (R), pseudo real (PR) or complex (C). The crossed-out
combinations cannot form top-partners.

44,45].
The anomaly free global symmetry group then is

G = SU(nΨ)× SU(nχ)× U(1)u. (2.22)

For the electroweak part of the composite Higgs model that leads to the possible
minimal cosets of SU(5)/SO(5) for real representations, SU(4)/Sp(4) for pseudo-
real representations, and SU(4) × SU(4)′/SU(4)D for complex representations. For
the strong sector, this leads to the cosets SU(6)/SO(6) for real representations,
SU(6)/Sp(6) for pseudo-real representations, and SU(3) × SU(3)′/SU(3)D for com-
plex representations. Hence, we arrive at the minimal set of models that we sum-
marize in Table 1, where the spontaneously broken and anomaly-free U(1)u is not
listed but present for all coset pairs.
In [44] it has been shown that the Zbb̄ coupling can become a problem for the
composite Higgs models with top-partners, as the new particles can modify this
coupling via strong couplings to the top-quark. The Zbb̄ coupling can however be
protected by requiring that the top-partners transform equivalently under SU(2)R

and SU(2)L by imposing a parity symmetry PLR [46]. This leads to the classification
of composite Higgs models that follows [9, 10] and is shown in Table 2.
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Model Name Gauge group GHC Ψ χ

M1 SO(7) 5× F R 6× Spin R

M2 SO(9) 5× F R 6× Spin R

M3 SO(7) 5× Spin R 6× F R

M4 SO(9) 5× Spin R 6× F R

M5 Sp(4) 5×A2 R 6× F PR

M6 SU(4) 5×A2 R 3× (F,F) C

M7 SO(10) 4× F R 4× (F,F) C

M8 Sp(4) 4× F PR 6×A2 R

M9 SO(11) 4× Spin PR 6× F R

M10 SO(10) 4× Spin,Spin C 6× F R

M11 SU(4) 4× (F,F) C 6×A2 R

M12 SU(5) 4× (F,F) C 3× (A2,A2) C

Table 2: The composite Higgs scenarios that fulfill the above-mentioned criteria as
characterized in [9, 10]. The number of hyperfermions Ψ (electroweak sec-
tor) and χ (strong sector) and their representation are denoted by F for
the fundamental, A2 for the two-index antisymmetric, and Spin for the
spinorial.

2.6. The composite Higgs model M5

Most of the composite Higgs models characterized in Table 2 contain the doubly
charged scalars we are interested in, namely all models containing the electroweak
coset SU(5)/SO(5) (M1-M7).
In the following, we focus on the model M5, the study of which has motivated this
thesis. We limit ourselves to a brief description of the electroweak sector of this
model and refer to [45] for more details on the strong sector, and only show where
the pNGBs that are of interest for this thesis originate from. For more details on
the electroweak sector, we refer to [11]. We follow the introduction of the model M5
as is done in [42,43].
The electroweak pNBGs originate from the breaking of the global SU(5) to SO(5),
where the hyperquarks Ψ are gauged via an additional gauge group GHC = Sp(4)
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Global symmetry SM gauge group

SU(5) SU(6) U(1) SU(3)C SU(2)L U(1)Y

Ψ1,2 5 1 −3qχ

5
1 2 1

2

Ψ3,4 5 1 −3qχ

5
1 2 −1

2

Ψ5 5 1 −3qχ

5
1 1 0

χ1,2,3 1 6 qχ 3 1 x

χ4,5,6 1 6 qχ 3̄ 1 −x

Table 3: Quantum numbers of the five electroweak sector hyperquarks Ψ in the two
index antisymmetric representation A2 and the six strong sector hyper-
quarks χ in the fundamental representation F. The U(1) charged is only
determined up to a factor qχ.

and form condensates below the composite Higgs scale. The model contains five
hyperquarks Ψ in the electroweak sector and six hyperquarks χ in the strong sector.
Table 3 summarizes their quantum numbers and representations under the global
groups of the strong and electroweak sector as well as the standard model quantum
numbers.
The electroweak pNGBs live in the coset SU(5)/SO(5). The SU(5) and SO(5) have
24 and 10 generators resepctivly; hence, there are 14 broken generators and, follow-
ing that, 14 pNGBs. The pNGBs form a 14 of SO(5), which decomposes according
to the breaking pattern discussed above:

SU(5)→ SO(5) ⊃ SU(2)L × SU(2)R ⊃ SU(2)L × U(1)Y . (2.23)

Concretely, they decompose as

14→ (1,1) + (2,2) + (3,3) (2.24)

→ 10 + 2 1
2
+ 2− 1

2
+ 31 + 30 + 3−1, (2.25)

where, for example, in the case of 3−1 the index is the standard model hypercharge
and the 3 represents a SU(2)L triplet.
We identify these mutiplets as sets of new particles as well as the standard model
Higgs boson:

η +H + H̃ + π+ + π0 + π− ≡ 10 + 2 1
2
+ 2− 1

2
+ 31 + 30 + 3−1. (2.26)
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Here the H is the standard model complex Higgs doublet, and the H̃ its dual. The
η ∈ 10 is a singlet with respect to the standard model, and the (π+, π0, π−) are
the triplet components of the custodial SU(2)L × SU(2)R bitriplet (3,3). Finally,
the Higgs VEV breaks the SU(2)× SU(2) to the diagonal SU(2)D, under which the
pNGBs decompose as

η ≡ 10 → 1 ≡ η, (2.27)

H + H̃ ≡ 2 1
2
+ 2− 1

2
→ 1+ 3 ≡ h+ ϕ, (2.28)

π− + π0 + π+ ≡ 31 + 30 + 3−1 → 5+ 3+ 1 ≡ η5 + η3 + η1, (2.29)

where the complex Higgs doublet decomposes into the three would be Goldstone
bosons ϕ, that form the longitudinal degrees of freedom of the heavy vector bosons
and the Higgs boson h analogously to the standard model. The η remains a stan-
dard model neutral singlet and the bitriplet decomposes into a singlet, triplet and
quintuplet. The η5 quintuplet contains the scalar pNGBs that motivate this thesis.
Namely, it contains the doubly charged scalars η++

5 , that constitute the signal pro-
cess for the machine learning task in this thesis. The decay chain of those scalars is
model dependent and characteristic for the composite Higgs models with the SU(5)

SO(5)

electroweak coset. Whilst the name η5 is common for those pNGBs, we will hence-
forth refer to them as S±± in accordance with [15], on which the work in this thesis
is based.
In addition to the pNGBs there also arise other resonances, among them the fermionic
resonances of the form χΨχ that act as the top partners of the model M5. Those
resonances will, however, not be discussed further in this work.
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3. Introduction to deep learning

In this chapter, we review the basics of machine learning, and in particular, of neural
networks. First, we explain the general idea of machine learning using the example of
a so-called multilayer perceptron (MLP). After this, we explain the training process
and describe some common components of neural networks.
Machine learning is based on learning abstract information from data. Here, the
way information is extracted from the data is not predetermined but rather learned
iteratively. This allows the machine learning algorithms to find interdependencies
and features that are not immediately obvious. This behavior is then used to make
predictions about new data. For example, one could predict the membership to a set
of classes or a value associated with the input. The former is called a classification
task, whereas the latter is called a regression task.
One differentiates between the approaches of so called unsupervised and supervised
learning. The latter relies on a dataset that is already labeled, meaning that for any
given data point, the class or value of the corresponding data point is already known.
In contrast, in unsupervised learning, one would, for example, try to determine the
set of distinct classes by abstracting from the dataset. All applications that are
discussed in this thesis fall into the category of supervised learning for classification
tasks. Concretely, classifying a collision event at the high luminosity LHC as either
a background or a signal event. In our scenario, a signal event would be an event
that contains new particles from the composite Higgs sector. For this task, we study
the application of various neural networks.
In general, a neural network is a universal function approximator, meaning that the
network tries to approximate the output of a function f̂(x) given the input vector
x, where f̂ : Rn → Rm, x → f̂(x). We call the approximating function f and
the abstract target function f̂ . In the case of a classification task, one often talks
about predicting labels instead of approximating a function, nonetheless the neural
network learns a function that predicts the label.
For such a classification task, the produced output of the network f(x) is a vector
of the predicted scores, indicating the membership of the input to a certain class. In
this case, every component of the vector f corresponds to a different class, and the
value of the component fj is the predicted score assigned to the input x for class j.
To interpret the output of the neural network as an assigned probability, the output
needs to be transformed, so that the sum of the output vector components is one
and all entries are positive. For this, the softmax function is used. The softmax
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function σ(z) is an n dimensional generalization of the logistic function and reads

σi =
exp zi∑n
j exp zj

, (3.1)

where z is the neural network output of dimension n and σ, z ∈ Rn as well as
i, j ∈ {1, ..., n}. The class with the highest predicted probability is then chosen as
the predicted label y given the correct label ŷ. In the case of a prediction task,
the output of the neural network does not necessarily need to be preceded by the
softmax function.
The behavior as a universal function approximator is useful when the computation
of the function f̂(x) is computationally expensive or the function itself is unknown.
The latter is prominently the case in computer vision, where one, for example, tries
to label an image as belonging to multiple classes (e.g. dog or cat). For this to be
possible, it is important that the data used for training is already labeled, meaning
that such tasks also fall in the realm of supervised learning and are somewhat similar
to the problems tackled here. In fact, many techniques commonly used in computer
vision are applied in this thesis.
One of the earliest types of neural networks is the multilayer perceptron (MLP),
where all the layers are fully connected, as is visualized in Figure 2. There, each
neuron of the previous layer is connected to all neurons of the next. For this reason,
they are often simply called fully connected networks. MLPs are also responsible
for giving neural networks their name, as their structure can be compared to the
structure of interconnected neurons in the human brain.
It consists of an input layer, one or more hidden layers, and the output layer. The
input layer transforms the input into a potentially higher-dimensional embedding,
which is then further transformed by the hidden layers, and finally an output is
produced by the output layer that projects the higher-dimensional embedding to
the output dimension, which can, for example, be the number of classes. It should
be noted that the hidden layers can have varying dimensionality. In principle, each
layer could have an arbitrary hidden dimension.
Mathematically, this connectivity is realized by matrix multiplication. Each of
the connections corresponds to an element of a matrix called the weight matrix
W ∈ RM×N . The components Wij, with i ∈ {1, ...,M} and j ∈ {1, ..., N} are the
learned parameters. Input, output, and the internal state of the network after each
layer are represented by vectors of varying dimensionality, meaning the weight ma-
trices W can have varying dimensions M and N . In addition to the weight matrices,
a vector with learned components can be added to the state after the multiplication
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Figure 2: Visualization of a simple MLP. The neurons in the hidden layer are fully
connected with the input and output layer. Taken from [47].

with the weight matrix. This vector is called a bias b ∈ RM . Together, the weights
and biases of one layer form an arbitrary linear transformation of the input to the
layer.
A simple series of such layers would be limited to linear functions in their expres-
siveness. Therefore, it is necessary to introduce nonlinearities into the model. For
this purpose, the internal state vector is passed through a nonlinear function after
each layer. This nonlinear function is called the activation function (a hint at neu-
ron activation). The most common activation function is the rectified linear unit
(ReLU) [48]:

ReLU(x) = max(0, x), (3.2)

which is applied element-wise.
However, many other functions can be used, like the above-mentioned softmax or
the tanh (x), with x being the input to the activation function, which can also be
the hidden state hl of the neural network after one or multiple hidden layers l. We
denote an arbitrary activation function as σ.
The goal of the network is to approximate a function by learning from the data. To
achieve this, there needs to be a metric by which the network is judged. This metric
is the so-called loss function, sometimes also called the cost function. This metric
could be something like the root mean squared error (RMSE) for a prediction task:

RMSE
(
f(x), f̂(x)

)
=

√√√√ 1

N

N∑
i

(
f(xi)2 − f̂(xi)2

)
, (3.3)
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where the error is calculated for a dataset of N data points and the f(xi) are the
predicted (scalar) values for the i−th datapoint.
For the classification task with two classes, discussed in this thesis, the cross-entropy
loss is used. The cross-entropy is used to compare two probability distributions
and measures their dissimilarity. In the case of machine learning, the probability
distribution estimated by the neural network is compared to the underlying ground
truth, meaning the target distribution of the task at hand. A lower cross-entropy
means the approximated probability distribution of the networks coincides better
with the ground truth. The cross-entropy loss CE(p, ŷ) of a binary classification
task is calculated as

CE(p, ŷ) = − (ŷ ln (p) + (1− ŷ) ln (1− p)) , (3.4)

where ŷ is the binary ground truth label and p the predicted probability of the input
belonging to that label. It should be noted here that the predicted probability and
not the predicted label is used to calculate the cross-entropy.
This can also be generalized for multiple probabilities corresponding to multiple
classes, where ŷ and p become vectors. In the case of M distinct classes, the cross-
entropy of a predicted probability distribution p ∈ RM becomes

CE(p, ŷ) = −
M∑
i

ŷi log(pi), (3.5)

where ŷi = 1 indicates that the data-point belongs to this class and ŷi = 0 indicates
that it does not, with ŷ ∈ RM . One can also see that the binary case in eq. (3.4)
follows from eq. (3.5).
Since p is the predicted probability, there should always be a softmax proceeding
the calculation of the cross-entropy. Therefore, all outputs of the models discussed
in this thesis are the logits and the final softmax is always applied while calculating
the cross-entropy.
In conclusion, the output f(x) of an MLP with L layers given the input vector x can
be written as a composition of linear transformations, realized by the weight matrices
W l and the biases bl, and nonlinear activation functions σl of fitting dimension:

f(x) = σL
(
WLσL−1

(
WL−1...σ1

(
W 1x+ b1

)
...+ bL−1

)
+ bL

)
, (3.6)

where l ∈ {1, ..., L} denotes the layer and each W l ∈ RM×N is a rectangular matrix
with possibly varying dimensions M and N .
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3.1. The training process

A good network should achieve a low loss value. Hence, the parameters θ of the
network need to be chosen in a way that minimizes the loss, meaning the task of
training a neural network is fundamentally an optimization problem for the parame-
ters θ of the network. Those parameters include the weights W l

ij as well as the biases
blj, but can furthermore include other learned parameters of the network, such as the
batch-normalization parameters that will be discussed later. Since the composition
of many hidden layers leads to millions of free parameters, namely the weights and
biases, the optimization problem is solved approximately.
The techniques used to solve the optimization problem are variants of the so-called
gradient descent method. This is an iterative technique, where the neural network
equation, illustrated by the example of equation (3.6) and the loss function are
evaluated, and the gradient of the loss with respect to the model parameters θ is
calculated. The exact form of the loss function depends on the problem at hand,
however, in this thesis, we mainly use the above discussed cross-entropy loss. By
taking a step in the opposite direction of the gradient, one converges to a (perhaps
local) minimum of the optimization space. To perform the updates of the weights
and biases, the gradients are calculated via backpropagation. Backpropagation uses
the chain rule to compute the gradients for each learned parameter of the neural
network efficiently. The update then consists of changing the parameters by the
gradient, scaled by a factor λ. This factor is called the learning rate and is one of
the most important so-called hyperparameters. Those are free parameters that are
not associated with the weights and biases or other components of the neural net-
work, but are rather parameters that change the training behavior of the network.
Hyperparameters play a crucial role in successfully training a neural network, and
finding a good set of hyperparameters constitutes one of the significant challenges
during the training process.
The learning rate is arguably the most important of those hyperparameters and
has an impact on the time needed for training, the performance, and the networks’
ability to generalize. A high learning rate allows for fast training by quickly travers-
ing across the optimization space while running the risk of not properly converging.
The high learning rate will lead to big steps taken in the optimization space, which
might overshoot the minimum, as illustrated in Figure 3 B and result in oscillating
learning behavior. A too low learning rate will result in long training times and
the problem of getting stuck in local minima. A good learning rate will efficiently
converge to a minimum of the loss function, as demonstrated in Figure 3 A. This
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Figure 3: Left: An optimal learning rate decreases the cost function continuously
and finds the optimal weight configuration as seen in A.
Right: A too high learning rate leads to oscillatory behavior and makes
it harder to find the minimum in the optimization space.
Taken from [49].

minimum is ideally the global minimum of the optimization problem. However, in
reality, this is often times a local minimum, which can pose a problem as this can
lead to bad network performance, if the optimization process gets stuck in such a
local minimum.
Due to the immense computational overhead of calculating the gradient for all train-
ing examples for each update-step and the slow update rate associated with this
method, a stochastic method is used to approximate the gradients. This is called
mini-batch gradient descent and uses a randomly chosen subset of the data to cal-
culate the gradient. An update is performed with the estimated gradient, and the
next subset is chosen. In machine learning, this subset is usually called a batch or
mini-batch. Once all training examples have been used to update the network, one
so-called epoch is finished, and different batches are created randomly. The batch
size and the number of epochs used during training are further hyperparameters.
Usually, the batch size is chosen to be rather small. This is called mini-batching.
Mini-batching helps with overcoming local minima, as the small subsection of the
dataset introduces noise into the calculated gradients. This helps the network find
its way out of local minima due to the statistical fluctuation in the gradients. How-
ever, choosing the batch size too small comes with the risk of badly approximating
the overall gradient landscape and thereby hindering efficient training.
The methods used to update the model parameters are not limited to the mini-batch
stochastic gradient descent (SGD). There are a number of advanced optimization
algorithms, usually called optimizer, used for training neural networks. All of them
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are variants of the SGD that implement additional features to improve the training
process. One of those methods is momentum, in which the gradient of the pre-
vious iterations is taken into consideration when performing the next update by
calculating moving averages over the gradients. The gradient of the previous itera-
tions is, for example, decayed exponentially, where the decay constant β is another
hyperparameter. The gradient at iteration t is typically updated following

gt ← βgt−1 + (1− β)gt. (3.7)

The momentum allows the optimization process to overcome small local minima,
and rather continue in the direction of the global minima. Furthermore, it can
also help with the problem of oscillating learning behavior as seen in Figure 3, by
smoothing the gradient descent.
A commonly used optimizer, which is also used in this thesis, is called ADAM [50]
and combines SGD with momentum and adaptive optimization algorithms. The
adaptive learning rate used in this method allows for parameter-specific updates,
increasing the training efficiency. Adam has a couple of parameters that control this
adaptive behavior, which is realized through bias-corrected estimated moments. The
algorithm can be summarized as follows:

ADAM Algorithm

while θt not converged do
t← t+ 1

gt ← ∇θft(θt−1)

mt ← β1 ·mt−1 + (1− β1) · gt
vt ← β2 · vt−1 + (1− β2) · g2t
m̂t ← mt

1−βt
1

v̂t ← vt
1−βt

2

θt ← θt−1 − λ · m̂t√
v̂t+ϵ

end while
return θt

The first moment, which is the estimation of the gradient gt, is estimated by an
exponential moving average of the gradient mean mt and the second moment is
estimated analogously through the squared gradient vt, where t denotes the opti-
mization step. In general, the parameters associated with the exponential decay of
the moving average need little tuning [50]. Good values for the exponential decay
rates for the moment estimates are β1 = 0.9 and β2 = 0.999. The factor ϵ = 10−8
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guarantees numeric stability. With Adam even the learning rate λ requires less tun-
ing than with other optimizers and a good starting choice is 0.001. Firstly, the first
moment m0 and the second moment v0 are initialized to zero. Then, the following
updates are performed on the initial model parameters θ0 to best approximate the
objective function f(θ). This optimization function is, in the context of this the-
sis, the loss function L and concretely the cross-entropy loss. Note here that the
functional dependence is denoted as depending on the parameters θ and not the
inputs x as above, since the goal of the optimization is to find the best parameters
θ for any input x. From this, one can see that the initial choice of the parameters
θ will always impact the training behavior of the model. This poses the question
of how one can optimally initialize the weights of neural networks. As it turns out,
this is to some extent dependent on the choice of activation function. However,
all initializations should aim to avoid excessive reduction or magnification of the
input values. For ReLU (and more general rectifiers), it has been shown in [51] that
a sampling of the weights that is proportional to a zero-centered Gaussian with a
standard deviation of

√
2
Nl

, where Nl denotes the number of learned parameters in
the layer l, leads to increased performance. This is known as Kaiming uniform or
He normal initialization and is used for the initialization of all weight matrices of
dense layers in this thesis.
Since in principle a neural network can approximate any function [52], it is plausi-
ble for very complex networks to learn a mapping from each training sample to its
correct label, i.e. a lookup table. This is an extreme example of overfitting, where
a network learns the dataset instead of general features of the data. This can be
understood at the example of polynomials, where a polynomial of n-th degree can
be described by n+ 1 parameters and can be used to fit n+ 1 data-points perfectly
even if the underling ground truth is a polynomial of lower degree with some noise
in the data as can be seen in the left part of Figure 4.
Overfitting manifests as a problem when the network is exposed to new data. As the
network has not learned general features, its ability to correctly classify the unseen
data points is limited. To check whether the network is learning general features
or the data itself, one splits the available data into multiple subsets. The so-called
validation set is used to evaluate the performance of the network during the train-
ing period, while the training set is used for training. The use of the validation set
also allows comparison between different sets of hyperparameters. Different sets of
hyperparameters are compared via the validation loss. For this, the best (meaning
lowest) validation losses during the training of each model are compared. The set of
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Figure 4: Left: Overfitting visualized by the example of polynomials, taken from
[53]. The solid black line represents the ground truth distribution, from
which the data-points are sampled with an artificially introduced variance.
The dashed white line represent an over fitted polynomial, that matches
the data-points perfectly but deviates from the ground truth distribution,
fitting the variance instead of the underlying function.
Right: How overfitting manifests in a loss curve. The training- and val-
idation loss diverge as the networks starts to learn the dataset instead of
abstract features.

hyperparameters that produce the lowest validation loss is then chosen for the final
model. Since the validation set is used during the optimization of the network and
of the hyperparameters, the validation set is not completely new to the network.
The performance of the model on the validation set has been used to optimize the
hyperparameters, and should not be seen as an independent metric for the general
performance of the network. For this reason, a hold-out test set is created, which
is only used after all optimization and training have been performed. The test set
is used to evaluate the final performance of the model after the hyperparameters
have been chosen via the validation loss. Those results can then be presented as an
independent (of the training process) metric.
Overfitting during training is manifested as a divergence between the training and
validation loss. If the training loss continues to decrease and the validation loss
starts to increase, this is a clear sign of overfitting. This is demonstrated in the
right part of Figure 4.
To avoid this, regularization strategies can be implemented. One such method is the
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so-called weight decay (also known as L2 regularization or ridge regression in the
case of regression tasks). The weight decay α is part of a penalty term added to the
optimization problem that discourages model complexity. This penalty term Lreq is,
in the case of weight decay, the L2 norm of the model parameters θ scaled with the
hyperparameter α: Lreq = α

∑
i θ

2
i , with i counting all model parameters. There-

fore, the optimization function given the loss function L (e.g. the cross-entropy in
eq. 3.4) becomes L + Lreq = L + α

∑
i θ

2
i . It should be noted that the definition of

the L2 regularization in machine learning does not apply the square root as in the
typical mathematical definition of the L2 norm. The process of adding a regular-
ization term is akin to the implementation of Lagrange multipliers for Lagrangian
mechanics, where the imposed constraint is low model complexity.
The L2 norm is not the only choice for a regularization term in the optimization
function. One could also choose the L1 norm, however in this thesis weight decay
will always mean the hyperparameter associated with introducing a L2 norm penalty
term to the optimization function.
Lastly, we introduce methods to control the learning rate during the training process
to reduce training times and improve the networks ability to generalize. Namely,
learning rate scheduling. Here, the learning rate is changed dynamically during
training, meaning the learning rate for the next set of iteration is dependent on the
current epoch or iteration. This has the advantage that at the beginning of the
training, a high learning rate that converges quickly can be chosen. Then, towards
the end of training, the learning rate can be reduced to converge to a minimum.
There is a plethora of different learning rate schedulers, of which two will be dis-
cussed in more detail. The so-called StepLR scheduler reduces the learning rate
after a fixed number of epochs. One usually starts with a higher learning rate and
then reduces the learning rate by an order of magnitude during the training. This
step in the learning rate usually manifests as a sudden step in the loss function, as
can be seen in Figure 5 at epoch 40. More complex schedulers have an oscillating
learning rate. Those procedures were first proposed in [54] and have been refined
to produce so-called super convergence [55] by implementing a one cycle learning
rate policy. Super convergence aims to drastically reduce training time by cycling
from a medium learning rate to one possibly multiple magnitudes larger and then
to one that is magnitudes smaller than the initial learning rate. By this, the policy
allows the model to find a direction in the optimization space what converges with
the medium learning rate and then traverse quickly in this direction by increasing
the learning rate and achieving convergence by then lowering it again.
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Figure 5: A loss curve with a StepLR learning rate scheduler. The learning rate
is divided by ten at epoch 40. Subsequently, the training loss decreases
further.

3.2. Neural network components

3.2.1. Additional regularization layers

In addition to the already mentioned components of neural networks, there are many
common components used in neural networks. Some of them will be discussed in
this section.
One such layer used to further reduce overfitting is the dropout layer. The dropout
process sets a random subset of outputs (neurons) after a given layer to zero. This
introduces a new hyperparameter, namely the dropout probability p. Setting a ran-
dom subset of neuron activations to zero during each training iterations help to
prevent the model from co-adapting [56]. Co-adaptation leads to neurons becoming
overly reliant on each other during training, leading to redundancy, inefficiency, and
poor generalization to new data. At test time, no dropout is applied, meaning all
neurons are active and contribute to the model prediction. This can be interpreted
as a set of thinned out networks being trained and then averaged during testing
time [56]. The dropout probability p needs to be optimized and usually lies some-
where between 0 and 0.5. In this thesis, the dropout layer is always added after the
activation function, setting some inputs of the next layer to zero.
Another layer that adds regularization are the batch normalization layers [57]. Those
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layers normalize the input of a given mini-batch x around the mean E(x) and scale
them according to the variance V ar(x). This does not only add regularization but
also helps the network learn by eliminating internal covariate shifts, where the dis-
tribution of inputs to each layer changes during training, due to updates performed
to the preceding layers [57]. Batch normalization provides a stable input distribu-
tion to the next layer, which also addresses the problem of vanishing or exploding
gradients [57], a common issue in training deep neural networks [58]. The prob-
lem of exploding gradients occur when the gradients of the loss function during
the backpropagation process become very large, compared to their typical values.
This leads to training instability, as the update to the weights is proportional to
the value of the gradient. In case of large gradients, the updates performed during
the backpropagation are also very large, leading to poor model convergence because
the minima in the optimization space cannot be reached as the updates overshoot
the minima. Vanishing gradients lead to a non-learning network, as the parameter
updates are vanishing with the gradients before the minima has been reached. To
combat this, [57] introduces the batch normalization layer

y =
x− E(x)√
V ar(x) + ϵ

· γ + δ, (3.8)

where the input is shifted by the mean over the batch E(x) and scaled by the
batch variance V ar(x). The mean and variance are calculated for each dimension
of the input across the batch. For example, for an image like input with dimension
50× 50 with 3 channels, the mean of the 50× 50 images is calculated for each of the
3 channels across the batch. Furthermore, the output of the batch normalization
layer is then also scaled by the learned parameter γ and shifted by δ. This helps
to conserve the expressiveness of the neural network and for example also allows
learning to disregard the normalization by choosing δ = E(x) and γ =

√
V ar(x).

As can be seen in the above example, the dimensionality of the parameters depends
on the type of input to the batch normalization layer. The parameter ϵ is introduced
to guarantee numerical stability and is set to ϵ = 10−5. During evaluation of the
model, learned estimators for E(x) and V ar(x) are used to normalize the inputs
instead of the normalization across the batch. A batch normalization layer (short
BatchNorm) is usually applied directly before the activation function, to center the
inputs around the active region of the activation function.
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3.2.2. Covolutional layers

In addition to the fully connected (dense) layers already introduced above, there
are a couple of other commonly used layers with free parameters what are learned
during the training process, one of which is the convolutional layer. They mainly
find application in the field of computer vision and are especially useful for mul-
tidimensional inputs like images. This layer consists of a convolutional kernel of
varying size (usually denoted (H, W)) where the entries of the kernel are learned
parameters. The kernel is convoluted with the image and an output feature map is
produced. Depending on the size of the kernel and the stride size (number of pixels
between the applications of the convolutional kernel) this reduces the size of the
original input image. To counteract this effect, padding is used. Hereby, the border
of the image are padded with empty pixels, allowing the network to keep the same
dimension after each convolutional layer or reduce the dimension in a controlled way.
A convolutional layer can also have a bias, however in this thesis this bias is not
added unless stated otherwise. Since almost all convolutional layers are followed by
a BatchNorm, the free parameter δ fulfills a similar purpose and the network does
not lose any expressiveness.
A typical image consists of three channels corresponding to the RGB values of the
pixels meaning the input is of shape (Cin, Hin, Win) where Cin denotes the number of
input channels of the image. The convolutional kernel is then applied to all channels
and the convolutions of each channel are summed up. Furthermore, a convolutional
layer usually has multiple learned kernels, often also refered to as channels C or the
width of the network. Each kernel generates its own feature map, so that after the
layer the output has the possibly different shape (C, Hout, Wout). In the case of
quadratic kernel with size k and uniform stride s as well as uniform padding p, the
output dimension can be calculated as(

C,
Hin + 2 · p− k

s
+ 1,

Win + 2 · p− k

s
+ 1

)
. (3.9)

This means that for a stride of one and a kernel size of three a padding of one leads to
preserved image sizes. In the case of convolutional neural networks, dropout layers
are less common and are not used in this thesis.

3.2.3. Graph neural network layers

A common representation of a graph is the so-called adjacency matrix, which indi-
cates which nodes of the graph are connected. Here i, j ∈ 1, ..., N , where N denotes
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the number of nodes in the graph. If an element Aij of the adjacency matrix A is not
zero, this shows that the nodes i and j are connected. This also allows expressing
various details of the connection between i and j by giving meaning to the elements
Aij. This is, however, not done in this thesis. An alternative to the adjacency ma-
trix is the adjacency list, which is significantly more space-efficient for sparse graphs
(graphs with low connectivity). For this, each node is given an arbitrary identifier,
e.g. a number, and all pairs of connected nodes are listed as tuples of their identi-
fiers.
In the case of graphs as the representation of the LHC event, defining a neural
network is not so straight-forward. A feature of our data is that, in principle, the
number of neighbors of each node in the graph is not predetermined. This makes
it impossible to simply concatenate the features of all neighbors and pass them
through an MLP. Hence, there is a need for an algorithm that can take in the full
graph structure and make use of the graph connectivity. Furthermore, the typical
representation of graphs, the adjacency matrix, is permutation-invariant, meaning
the output of the network should not depend on the ordering of the nodes in the
adjacency matrix either. The convolutions of CCNs depend on the grid structure
of the input data, and MLPs always expect a fixed input size. Since those are
not applicable to the case of graphs, a different approach is chosen. Namely, the
message-passing algorithm that is the basis of some of the graph neural networks
(GNNs) used in this thesis. Message passing consists of two stages. The message
phase, in which each node receives a message from all its neighbors, followed by a
permutationaly invariant aggregation of all messages and the update phase. For the
messages, the features of each node are usually processed by a neural network, whose
output is the message to its neighboring nodes. The permutationaly invariant ag-
gregations can be, for example, the element-wise mean or maximum of all messages.
The update consists of another network that takes the aggregated message and the
node features of the local node and constructs a new updated node representation
that incorporates the neighborhood information. Therefore, message-passing layers
map one node representation to another updated representation and are therefore
usable in succession, and deep graph neural networks can be constructed. A visual
representation of the message-passing algorithm is shown in Figure 6. However, most
GNNs do not stack many message-passing layers, as the more layers are stacked,
the more distant nodes can influence the update process. For example, a two-layer
GNN will aggregate information from its second order neighbors. The advantage
of GNNs is their ability to contextualize local information in the updated graphs
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Figure 6: The message-passing algorithm constructs updated node embeddings by
aggregating messages from the local graph neighborhood. Taken from [59].
The figure shows a two-layer message-passing scheme where node A can
collect information from its second-order neighbors. Since all messages are
constructed with the same aggregation network, the computational graph
can be constructed without knowing the number of neighbors a priori.

representations, if too deep GNNs are constructed, one runs the risk of losing the
local structure of the graph representation.
The variants of the message-passing algorithms are used to construct updated graph
representations of the particle graph. At the end of the update process, the feature
vectors of all nodes (constituent particles) are averaged and then passed through an
MLP to project the feature vectors to the required output dimension.
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4. Machine learning data in particle physics

This chapter will focus on the structure of the data that is used for training the
various classifiers used in this thesis and how it was simulated. The data is funda-
mentally a detector simulation for events at the high-luminosity LHC. Firstly, we
present the general structure of the data in sec. 4.1. Then we elaborate on the issues
of the detector simulation as it was performed in [15] and outline how to correct
them in sec. 4.2. Lastly, we present the details of the event simulation as performed
for this thesis in sec. 4.3.

4.1. Data structure

For the machine learning task presented in this thesis, the data is divided into three
datasets, containing three different representations of the LHC events.
During the simulation process, higher-level features of the events are calculated,
such as the transverse momentum of the light and b-tagged jets and other kine-
matic features. In total, there are 106 such features that constitute the kinematic
representation K of each event, which is given as

K =
⋃
i

{px,y,z, E,m, pT}i||
⋃
i ̸=j

Mij||
⋃
i ̸=j

∆Rij||{ /⃗P T , ST}, (4.1)

where {px,y,z, E,m, pT}i is the set of momenta, energy and mass of the reconstructed
objects i and Mij and ∆Rij are the invariant mass and the angular distance between
two of those objects. The invariant mass is defined as Mij =

√
(pi + pj)µ(pi + pj)µ,

with pµi being the associated four-vector of a reconstructed object. The angular
distance between objects is calculated as ∆Rij =

√
(∆η)2 + (∆ϕ)2, with the pseu-

dorapidity and detector angle differences ∆η and ∆ϕ of the reconstructed objects.
/⃗P T is the missing transverse momentum of the event, and ST the scalar sum of
transverse momenta, which includes the isolated leptons present in the events, and
|| denotes the concatenation of the variables into one flat list. The kinematic rep-
resentation contains information about the three most energetic b-tagged jets and
light jets as well as the two isolated leptons, that are required to be present in all
events, which will be explained in section 4.3.
Furthermore, a low-level detector simulation is performed to generate constituent-
level detector images. They are a more low-level representation of the above de-
scribed kinematic data. Those images have a resolution of 50× 50 pixels where the
x-axis is the pseudo-rapidity η and encompasses a range from η ∈ [−2.5, 2.5]. The
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Figure 7: A typical jet image where the ϕ- (y-) and η- (x-) axes are converted to 50
detector pixels in each direction. In black, one can see the charged and
neutral detector hits. The intensity of all pixels is set to be the same to
better visualize the structure of detector images. The blue pixels are the
two isolated leptons required to be present in all selected events.

y-axis is the detector angle ϕ and spans the range from −π to π. The intensity
of each pixel is given by the summed transverse momentum pT of all constituent
particles that fall within this detector pixel. Each image consists of three channels
representing the charged and neutral hadrons, as well as one channel for the isolated
leptons. A typical jet image can be seen in Figure 7, where the intensity of all active
pixels is set to the same level to better visualize the image structure.
Seeing the image in Figure 7, one realizes that the detector images are fundamen-
tally different from the images used in computer vision. In computer vision, one
usually deals with black-and-white or colored images in which most pixels have val-
ues, whereas the detector images consist of mostly empty space. The application
of convolutional neural networks is, therefore, not obvious at first. However, if one
looks at the overall distribution of pT in the images, one can see that the distri-
butions are distinct. This can be seen in Figure 8 at the example of one signal
and background process. It should be noted that these distributions can only be
observed if all events are transformed into the same reference frame. This will be
discussed in more detail later on. Those distributions have first been shown in [15]
and the here shown distributions follow the same patterns, even though the simu-
lation process used differs slightly, as will be discussed in sec. 4.3. The hypothesis
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Figure 8: Distribution of the transverse momenta of the relevant background pro-
cesses and signal processes (m(S±±) = 900 GeV and m(S±±) = 400 GeV).
The detector images encompass the pseudorapidity region from η = −2.5
to η = +2.5 and the detector angle ϕ is displayed from -π to π. The
detector images have a resolution of 50 × 50 pixels. The distributions
of signals and background processes are distinctly different in shape and
mean transverse momentum pT per pixel.

is that the neural networks are able to identify to which distribution the images
belong, since the shape of the distribution and the mean transverse momentum pT

per pixel are distinctly different. The signal processes are generally more energetic
than the background processes, meaning they have a higher transverse momentum
pT . Figure 8 only shows the distribution of two mass points. However, this trend
is observable for all mass points and is more pronounced for higher signal masses.
Furthermore, the isolated lepton impacts of the signal processes are scattered less
broadly along the pseudorapidity axes. They have a lower angular separation, since
both same-sign leptons originate from the same doubly charged scalar S±±, which
decays into highly boosted particles, that in the end produce the same-sign leptons.
Hence, they have a low angular separation in their rest frame (which is the reference
frame for the distributions). On the other hand, the same-sign leptons of the back-
ground processes cannot originate from the same particle, which leads to a larger
spread of the distribution.
In addition to the neutral, charged and lepton detector images, we can calculate
additional input channels from the kinematic data. There is a b-tagging procedure
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Figure 9: A jet image with added bottom (red) and light (yellow) jet-center posi-
tions. The ϕ- (y-) and η- (x-) axes are converted to 50 detector pixels
in each direction. In black, one can see the charged and neutral detector
hits. The intensity of all pixels is set to be the same to better visualize the
structure of detector images. The blue pixels are the two isolated leptons.

applied to all reconstructed jets. Therefore, it is possible to construct additional jet
images that display the jet-center positions of b-tagged and light jet-centers. We in-
troduce a fourth (b-tagged jet-centers) and fifth (non-b-tagged jet-centers) detector
image for the jet image part of the event representation. To calculate the images
with jet-center positions, one first needs to calculate the η and ϕ coordinates from
the kinematics and then transform them into the lepton rest frame and implement
the artificial periodicity, as will be described in sec. 4.2. The value of the active
pixels in the new image channels is the pT of the reconstructed jets. A jet image
example with the added jet-center position is shown in Figure 9. It can be seen
that the jet-center positions indeed mark different jets. Since the intensity of all
constituent particles is set to be the same for visualization purposes, it is hard to
see if the positions lie in the exact center of the jet. In each image the three most
energetic jets are marked, however the images may also contain constituent particles
of other jets. We hypothesize that the addition of those new channels that incor-
porate some of the higher-level features of the LHC event into the jet image data,
will improve the discriminatory power of the CNNs, as both of the jet-center images
also display characteristic distributions as shown is Figure 10.
Finally, the constituent particles are presented as a point cloud (also called particle
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Figure 10: Mean transverse momentum pT distributions of the bottom and light jet-
center images. The signal process has a distinct distribution. Both the
light and bottom jet-center images have a higher total pT compared to
the background events.

cloud). This was inspired by the data structure used for the successful “Parti-
cleNet” [27]. In contrast to the images, the constituents are not summed up into
detector pixels but are rather kept distinct. Therefore, it is possible to attribute
more features to each constituent.
Each constituent is given a feature vector that contains information about its type
(charged or neutral hadron, or isolated lepton) and its kinematics. The feature vec-
tors contain the total energy E, the transverse momentum pT , the detector angle
ϕ, the pseudorapidity η and the momentum components px,y,z. Lastly, the particle
type (charged or neutral hadron, or isolated lepton) is one-hot encoded in the fea-
ture vector, meaning we append three labels to the feature vector, which take the
value one if the constituent is of the given particle class and zero otherwise.

4.2. Issues with the detector simulation

At the beginning of this thesis, it was planned to use the original data from [15].
However, there were multiple factors that led to the creation of a new dataset.
Firstly, the dataset only encompasses around 80,000 training events, which might
hinder the training process for more complex neural networks since those require
a large variety of training examples, and this is not a particularly large dataset,
especially considering that no data augmentation is used.
Moreover, the original data did not include the point cloud representation of the
events. Such a particle cloud could have been calculated from the detector images;
however, it would not resolve the individual constituent particles, as was done in [27]
and would encompass fewer features per point in the cloud.
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Most importantly, there were multiple issues with the simulation process in the
preprint version of [15], which have been uncovered during the work for this thesis.
Those issues lie mostly on the level of the Delphes detector analysis, as will be
discussed in the following.
Since all the data needs to be Lorentz-boosted into a common reference frame to
make use of the underlying distributions, a shift in the η and ϕ coordinates has to be
calculated and applied to all jet image pixels. We chose to boost all events into the
rest frame of the isolated leptons, fixing the origin of the pseudorapidity-azimuth
plane at the lepton rest frame center. All other constituent particles are then shifted
accordingly. The shift in ϕ is unproblematic, since the detector images are periodic
in ϕ. The η-coordinate is, however, restrained by the physical limits of the detec-
tor. The implementation of this is what has led to problems in the preprint version
of [15].
The simulated data has, at first, no limits on η. Therefore, the physical detector
limits need to be imposed. A limit of η ∈ [−2.5, 2.5] has been chosen. However,
during the generation of the data in the paper [15] a limit of η ∈ [−3, 3] has been
wrongfully applied. Furthermore, this wrong limit was not enforced consistently.
Which meant the limit was only enforced for values of η > 3, but not for η < −3
for the neutral constituent particles of the jets.
This results in unobservable constituent particles being displayed in the jet images.
Since the maximally allowed η-shift is δη = 2.5 this could, in the most extreme case,
result in particles with an η-coordinate of almost η = ±5 being present in the jet
images. A pseudorapidity of η = 5 corresponds to a relative angle to the beam axis
of below 1◦. This would be, of course, a particle that is firmly outside the detector
range and therefore could never be observed.
Therefore, it is necessary to correct the analysis. The correct cuts can be applied
when simulating new data, or can be enforced during the training process as a mask
that is laid over each image before it is passed to the neural networks. This, how-
ever, results in large chunks of the images being just empty space. Namely, the
parts of the image that had a pseudorapidity coordinate of over |η| = 2.5 before the
Lorentz-Boost but now lie within the jet image. Since no particles can be physically
detected in this region, only empty pixels are displayed. This could be a problem
for the convolutional neural networks, since it is unclear if the presence of so many
empty pixels in some images could lead to training instability and therefore impaired
learning.
The whole procedure also comes with another problem, as there are not just empty
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Figure 11: A schematic illustration of the issue that arises with the Lorentz-boost in
the pseudorapidity η. The gray background grid symbolizes an extension
of the 50×50 detector grid for visualization purposes. The dashed square
gird is the simulated detector image before the η−transformation and
includes the physical detector impacts (green and blue pixels). After the
η−transformation (solid black line) the green impacts are shifted outside
the detector image. If the cuts are applied incorrectly, unphysical (red)
detector hits are contained in the jet images.

.

pixels being shifted into the jet images, but there are also constituents that have
been detected that are now shifted outside of the jet image bounds. Those parti-
cles had an η-coordinate of less than |η| = 2.5 before the Lorentz-boost but have
now acquired an apparent pseudorapidity of more than 2.5 and are therefore not
displayed in the jet images. This leads to a lot of physical data being lost for the
neural network analysis. Hence, it is desirable to implement methods that salvage
the physical data points. The issue of unphysical data being displayed and physical
data being lost is illustrated in Figure 11.
Two ideas have been tested for their feasibility. Firstly it is possible to simply en-
large the images to, for example, a size of 100× 50 pixels, where all constituents are
shifted to the lepton rest frame and all the nonphysical image space that corresponds
to a pseudorapidity |η| > 2.5 holds just empty pixels. This leads to an off-center
embedding of images like in Figure 7 in the bigger 100× 50 pixel images. However,
this also comes with the problem of having large empty spaces in the jet images and
further requires a lot of computational resources to hold the larger images in the
video-memory of the GPUs used for training. The alternative of implementing an
artificial periodicity in η is therefore preferred. Here, all the pixels that fall outside
the image bounds in the η direction are periodically shifted back into the frame.
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This artificial periodicity is, of course, unphysical. However, this representation is
only used as input to the neural networks and hence does not necessarily need to
be a physical image, as long as it only contains physical and observable particles.
Furthermore, it is a reasonable compromise to salvage the physical data points and
not incur the cost of increased memory usage and computational costs.
Since it is suspected that the ability of the convolutional neural networks to properly
classify the jet images is dependent on the underlying differences in the pT distri-
butions, those have been calculated for a single background and signal channel as
shown in Figure 8 and they do not differ significantly from the original distributions
from [15].
Those changes to the data used for training the neural networks have also been
applied to later releases of the paper [15].
Two other discrepancies in the code that was used to generate the original datasets
were discovered. Namely, two preselection cuts in the Delphes analysis were not
imposed correctly. The preselection cuts will be discussed in detail in sec. 4.3, how-
ever, we mention the problematic cuts here for the sake of completeness.
The minimum pT requirement for the muons (part of the isolated leptons) was set to
be 10 GeV which is not in accordance with [15]. There is a cut of 20 GeV is proposed.
This should, however, not have a big impact on the analysis. There was a similar
issue in the calculation of the missing transverse momentum of the bottom-tagged
jets. Here the cut is stated to be done at 25 GeV but was implemented as 20 GeV.
Both discrepancies were fixed for the preceding evaluations in this thesis. Further-
more, it should be noted that the definition of the missing transverse momentum
used in [15] which was originally defined in [60] and the Delphes implementation
are not congruent. In the definition in [60] the missing transverse momentum is
calculated in regard to the transverse momenta pT of all the leptons, photons, jets
and soft tracks that pass a certain pT threshold

/⃗P T = −
(∑

p⃗T,l +
∑

p⃗T,γ +
∑

p⃗T,j +
∑

p⃗T,track

)
, (4.2)

whereas in the Delphes implementation, all the aforementioned particles are taken
into account regardless of the minimum pT requirement. This is physically useful
since those constituents are not detected and therefore contribute to the missing
transverse momentum, but it is in contradiction to the stated definition. We keep
the implementation of the missing transverse momentum as described here.
The above-mentioned issues have not been fixed in the current version of [15], how-
ever, they should not influence the final analysis significantly, since the deviations
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are minor.

4.3. Simulation process

(a) Production of the S±± pNGBs and the
following decay chain.

(b) Production of singly charged pNGBs
S− and their decay chain.

Figure 12: Drell-Yan production of doubly (left) and singly (right) charged scalar
pNGBs. Taken from [15]. The doubly charged scalars constitute the
signal process for the machine learning task in this thesis.

A larger dataset is generally useful when training neural networks, as it prevents
overfitting and allows the model to learn abstract features more easily. Furthermore,
a larger dataset might also combat stability issues during training. Therefore, we
aimed to generate a dataset that is almost ten times the size of the original dataset
used in [15]. For this, we follow the simulation process in [15], as outlined in the
following.
We consider the Drell-Yan production of the doubly charged scalars S±± described
in sec. 2.6, which follow the decay path

q̄q → S++S−− → (W+tb̄)(W−t̄b)→ (W+W+bb̄)(W−W−bb̄), (4.3)

as shown in Figure 12a. The decay is mediated by off-shell singly charged pNGBs
S±, that decay predominantly into third-generation quarks since their coupling to
electroweak bosons is loop-suppressed. This produces a decay chain consisting of
four b-quarks and four W -Bosons after the top-quarks decay. This decay chain is
similar to the decay chain produced by qq̄ → S±±S∓ as shown in Figure 12b, with
S∓ being from the same multiplet. The influence of those decay channels on the
analysis has been studied in [15]. Here, the final states resulting from singly charged
pNGBs are disregarded.
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To simulate the LHC events, the public FeynRules [61] implementation of the
eVLQ model [12, 62], is used to create a UFO file [63] with which, a new dataset
is generated using MadGraph_aMC@NLO version 3.5.1 [64–66] to generate the
events at a center of mass energy

√
s = 14 TeV and Pythia8 version 8.3.06 [67] is

used to shower the events. We use the NNPDF2.3QED parton distribution func-
tion [68] with dynamical renormalization and factorization scales. To perform the
detector simulation, Delphes 3.5.0 is used [69]. The Delphes configuration is
based on [60] and the jet reconstruction is done using FastJet 3.4.1 [70]. An anti-
kT algorithm [71] is used with a cone radius of r = 0.4 and for b-tagging, a flat
efficiency of 80% is assumed, whereas the probability of mistagging a c-jet to a b-jet
is assumed to be 20%. Mistagging for a normal jet to a b-jet is set at 1%. This
implementation follows the ATLAS report [72] as is done in [15]. We generate signal
events with different masses m(S±±) ranging from 400 GeV to 1000 GeV in steps of
100 GeV. A flat k-factor of 1.15 [73] is applied to the cross sections to take next to
leading order (NLO) effects into consideration.
Table 4 summarizes the important background processes. Due to computational
limitations, the 2 → 4 background processes tt̄tt̄ and tt̄V V are only generated at
leading order (LO). Here V denotes the gauge bosons W± and Z. The other dom-
inant backgrounds, tt̄V and tt̄H are generated at NLO. All background processes
are otherwise simulated in the same way as the signal processes. Other backgrounds
like V V V and V V are negligibly small [15] and are not taken into account for this
thesis.

Process ϵpreselection Cross section [fb] Events at 3 ab−1

S++S−− 1.01 · 10−2 4.89 · 10−2 146

tt̄W± 2.21 · 10−4 9.82 · 10−2 295

tt̄Z 1.40 · 10−4 1.29 · 10−1 387

tt̄h 3.76 · 10−4 2.12 · 10−1 636

ttt̄t̄ 1.52 · 10−2 1.80 · 10−1 540

tt̄V V 1.43 · 10−3 2.71 · 10−2 81

Table 4: Preselection efficiency and cross section as well as the expected number of
events for the high luminosity LHC for the relevant background processes
and the signal process with m(S±±) = 400 GeV.
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Numerous preselection cuts are imposed on the events to be selected for the analysis,
which follow [15] with the in sec. 4.2 described deviations. Two same-sign isolated
leptons are required for every event to reduce the standard model background. Iso-
lated leptons are required to fulfill the isolation criterion pT (l)

pT (l)+
∑

i pT,i
> 0.7, where∑

i pT,i is the sum of the transverse momenta of nearby particles which have a
transverse momentum pT > 0.5 GeV and an angular distance ∆Ril > 0.3 to the
next reconstructed objects. Furthermore, the isolated leptons need to have a mini-
mum transverse momentum of pT > 20 GeV and a pseudorapidity that falls within
the detector |η| < 2.5.
The typical decay of the doubly charged scalar particle, as seen in Figure 12a, would
imply a final state with four b-tagged and four non-b-tagged jets. This is, however,
a very restrictive cut since this busy final state makes it difficult to identify all jets
correctly. Hence, we choose the more inclusive search strategy proposed in [15] and
only require three b- and non-b-tagged jets in the final state. For both types of jet,
we select the three most energetic jets for the kinematic representation of the events
discussed above and require them to have a minimum pT > 25 GeV. Furthermore,
the events have to have a minimum missing transverse momentum of /⃗P T > 20 GeV,
which is defined as discussed above in eq. (4.2). Lastly, the events are required to
have a scalar sum of transverse momenta of the reconstructed jets and same-sign lep-
tons of ST > 400 GeV. The preselection efficiencies are summarized in tab. 4. The
preselection efficiencies denotes the part of events that pass the above-mentioned
cuts. This table further shows the cross section after the preselection cuts as well as
the expected events at the high-luminosity LHC with a total luminosity of 3 ab−1.
During the simulation process, we experimented with implementing in-line decays,
analogously to eq. (4.3), for the background processes. Implementing such in-line
decays would decrease the simulation time significantly, since irrelevant decay paths
that would hardly ever pass the preselection cuts could be eliminated and would
not need to pass through Pythia and Delphes. The relevant decay paths could
then be implemented on the MadGraph level of the simulation. However, this
procedure has led to a couple of questions that have not been fully answered so far.
Hence, all background processes are simulated without any in-line decays in this
work and suggest studying this technique in further work.
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5. Deep learning models for semi-hadronic final

states

In this chaper we present the different neural networks that are applyed to the clas-
sification task in this thesis. All networks have been implemented using the PyTorch
library [74]. The implementation of the models used in this thesis can be found at
a publicly available GitHub repository and we refer there for the specific details of
the networks 1.
All CNN models in this thesis use BatchNorm and all MLPs and GNN use Batch-
Norm and dropout.
Deep learning models require extensive hyperparameter tuning and sometimes even
tuning of the architectural parameters like hidden dimensions. For this purpose, we
use the OPTUNA framework [75]. This allows for an optimized search strategy in
the hyperparameter space, where each run using a specific set of hyperparameters,
is called a trial. Further, we use median pruning to terminate unpromising trials
before completion. Median pruning terminates a trial if the trial’s best intermedi-
ate result is worse than the median of intermediate results of previous trials at the
same epoch. Usually, each trial is given a grace period of at least half the maximal
training epochs after which median pruning is applied, which leads to a very lenient
pruning scheme. We present the used hyperparameters in appendix A.1.
Some models have defining architectural parameters, such as the number of layers
in a deep convolutional network model. Since those parameters define a plethora
of different levels of model complexity, it is not feasible to optimize for all of them;
rather, we pick a subset of such parameters, defining more and less complex model
classes and compare those, whereas the number of hidden neurons in an MLP is a
less architecture-defining feature and is keep as an optimization parameter.
In addition to such parameters, the most important hyperparameters to optimize
are batch size, learning rate, weight decay, and drop-out rate. Those are always
optimized for each model, where applicable. For this, we proceed in two stages.
Firstly, the hyperparameters are varied over many orders of magnitude and a sub-
set of the whole training-data is used. For this, we usually use around 100- to
200-thousand training examples. After this, the hyperparameter range is narrowed
around the region what has been deemed optimal during the first search, and the
optimization is tuned on a larger subset of around 500 thousand training examples.

1Full address: https://github.com/ManuelSchmidt707/Machine-learning-methods-for-

semi-hadronic-final-states-at-the-LHC
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Finally, the whole training-dataset is used to fine-tune the hyperparameters and em-
ploy learning rate schedulers. This is done manually for each network. The chosen
hyperparameters for each model are summarized in the appendix A.1.

5.1. Jet image classification

5.1.1. Convolutional neural network CNL

We adapt the convolutional neural network architecture, termed CNL from [15] to
perform as a baseline for the comparative study in this thesis. For this purpose, the
hyperparameters are optimized on the new dataset for a fair comparison.
This architecture exists in different variants, taking as input either the charged and
leptonic detector images or the charged or neutral hadronic and leptonic detector
images. Here we focus on the variant that uses all three input channels and refer to
it as the CNL model.
Using both the neutral and charged channels for this analysis is an optimistic as-
sumption, since pileup effects for the neutral channel cannot be easily cleaned. There
exist propositions for cleaning the pileup effects for charged particles [76]. However,
those do not work for neutral particles, and other methods are being developed to
tackle this issue [76, 77]. The impact of working only with the neutral and leptonic
channel has been analyzed in [15] and we refer there for more details. The takeaway
is that this reduces the overall network performance. In this thesis, we restrict our-
selves to an analysis using all three channels. However, we expect that the same
behavior would be observed here.
In [15] it was shown that combining multiple classifiers into one model working on
multiple representations of the LHC event is beneficial. Hence, we expand on this
strategy and take the CNLK model from [15], which works on jet images and the
kinematic data, as a baseline.

5.1.2. ResNet and ResNeXt

Modern state-of-the-art CNNs implement additional architectural features such as
residual connections, group convolutions, and “bottleneck blocks”. Those types of
features have been explored in [78], where the now ubiquitous residual connections
(a specific type of skip connection) have been implemented for image recognition
tasks with great success. The hypothesis is that instead of learning an unreferenced
mapping, it is easier to learn a residual mapping, where, after a few convolutional
layers, an identity mapping is added to the generated feature maps. Thus, the
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Figure 13: The basic residual convolution block used in the ResNet architecture, as
first described in [78]. Two convolutional layers are used to learn the
residual F , which is combined with the identity mapping x. Figure also
taken from [78]

.

mapping after a residual block H(x) is given by the learned residual F(x) and the
identity maping of x as H(x) = F(x) + x, as depicted in Figure 13.
As discussed earlier, deep neural networks often suffer from vanishing gradients and
gradient flow problems [58]. The residual connections further help with this prob-
lem. Moreover, very deep networks suffer from a degradation problem that is neither
caused by gradient flow issues nor by overfitting but is rather related to the fact that
deeper networks are harder to train [79, 80]. A deeper model should, in principle,
always be able to replicate the performance of a shallower model, as the deeper
model could always just consist of identity maps stacked onto the original model.
However, experiments have shown that this is not the case, but residual connections
can help alleviate the problem.
For this thesis, a ResNet network has been implemented that follows the design
principles outlined in [78]. Each residual block consists of two 3 × 3 convolutional
layers, each followed by a BatchNorm layer and a ReLU activation function. To
keep the input and output dimensions of each residual block consistent, a stride and
padding of (1,1) are used. An input layer with a 7×7 convolutional kernel, padding
of (10,10) and a stride of 2 is used to bring the input into a more convenient di-
mensionality. To read out the last convolutional layer, adaptive 2D pooling is used,
which is then passed through a linear output layer to project down to the output
dimension of two.
The network consists of three stages, each of which consists of l residual blocks.
During each stage, the dimensionality of the feature maps is kept constant by the
design of the residual blocks. The first stage starts with 32 feature maps with 32×32
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pixels. After each stage, the feature map is down-sampled with a convolutional layer
with kernel size one and stride two and the number of kernels per convolutional layer
is doubled. This leads to a halving of the feature map size after each stage. So for
example, after the first stage, the feature map size is reduced to 16 × 16 and the
number of convolutional kernels per layer is doubled to 64.
This results in a model class with easily scalable depth, where the total number of
layers N is fixed as N = 3 · 2 · l + 2. In this thesis, two ResNet variants have been
examined with l = 3 and l = 18, leading to one model with 20 layers, which shall
be called ResNet-20 and one with 110 layers: ResNet-110.
The here described residual block can also be replaced by bottleneck blocks as de-
scribed in [78]. There, the two 3× 3 convolutional layers of each block are replaced
by three convolutions. One of them has a lower input/output dimension. For this
purpose, one usually uses a 1× 1 convolution followed by a 3× 3 with fewer feature
maps followed by another 1× 1 convolution to restore the original dimensionality.
A conceptual successor of the ResNet architecture is the so-called ResNeXt model
type [81], where the bottleneck blocks are used in conjunction with the introduction
of a new dimension to the convolutional setup, namely the cardinality. The cardi-
nality introduces a number of C different paths in the residual bottleneck blocks.
The paths each consist of a bottleneck setup with a 1× 1 kernel, which reduces the
dimensionality of the feature maps, followed by a 3× 3 kernel with F

C
feature maps,

where F represents the number of input feature maps. This is followed by another
1 × 1 convolution, which restores the original dimensionality. All paths are added
together and then combined with the residual connection. This type of splitting can
be thought off as a version of group convolution [82] and it has been shown in [81]
that one can reformulate the above-described splitting as one residual block with
the group convolution implemented in the 3 × 3 kernel, as is shown in Figure 14.
Since it is easier to implement and more efficient, this approach is taken in this
thesis. The addition of independent groups might allow the network to learn more
distinct features, as the groups could focus on different aspects of the input, as those
groups are completely independent of each other, which is not the case for normal
convolutional layers. The projection to the output dimension works analogously to
the ResNet implementation.
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Figure 14: Depiction of the ResNeXt residual block, taken from [81].
Left: The block has a cardinality of C = 32 and splits the incoming 256
featuremaps into 32 paths with 4 paths each.
Right: This can also be thought of as a group convolution, with 32
groups in the 3× 3 convolutional layer.

5.2. Classification based on sparse point clouds

The point cloud representation of the event-data is used to construct graphs, where
the nodes represent the constituent particles. Each particle is given a feature vector
that contains information about its type (charged hadron, neutral hadron or iso-
lated lepton) and its four-vector. The feature vectors contain the total energy E,
the transverse momentum pT , the detector angle ϕ, the pseudorapidity η as well as
the momentum components px,y,z. The later could be considered redundant; how-
ever, presenting the same information to the networks in different forms often proves
useful. Finally, the node’s feature vector contains information about the class of the
particle it represents, namely whether it is a charged hadron, neutral hadron or an
isolated lepton. This is one-hot encoded in the feature vector, meaning we append
three labels to the feature vector, which take the value one if the constituent is of
the given particle class and zero otherwise.
The connectivity of the graph is determined by a distance metric between the nodes.
For this, two approaches are compared. Firstly, the graphs can be constructed by
using the angular distance ∆R2 = ∆η2 + ∆ϕ2 and secondly, by using the whole
four-vector for the distance calculation. In both cases, the euclidean distance be-
tween two particles is used for the calculation. One could argue that for the case
of four-vectors, one should take the Minkowski distance, however since we do not
calculate physical distances this is a matter of choice. Based on those distances, we
construct knn-graphs, meaning the k nearest neighbors are considered connected.
The graph is constructed on the 150 most energetic constituent particles, unless
mentioned otherwise. This is done to keep the video-memory usage during training
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constant, and is necessary to balance the size of the graph, based on the number of
constituents included, against the maximal possible batch size.
A sensible alternative to the knn-approach is to connect the nodes based on their
distance to other nodes, whereby all nodes within a certain radius would be con-
nected. In the case of the angular distance as the distance metric, this gives the
physical interpretation of all particles within a cone coming from the collision point
being connected. However, this approach comes with the problem that it is not clear
how many particles are going to be connected in each event, which leads to strongly
varying video memory usage during training. While optimizing the batch size, this
can easily lead to memory errors during training if one encounters a particularly
strongly connected graph. For this technical reason, we have limited ourselves to
the knn-graphs, even though this radius-based approach would be interesting for
further research and has already been implemented.

5.2.1. ParticleNet

As a baseline for the comparison for graph based neural networks, we take the
“ParticleNet” from [27] and modify the implementation of [83] to suit our data rep-
resentation.
ParticleNet implements edge convolution [84] in conjunction with dynamic graph

Figure 15: Structure of the ParticleNet edge con-
volution block. Taken from [27]. An
edge convolution block takes in the po-
sition and features of each constituent
particle and constructs a knn−graph.
An MLP is used to implement the edge
convolution. The feature vectors of
each constituent particle are updated,
and the new embeddings are used as co-
ordinates and features for the next con-
volution block.
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updates. The dynamical update of the graph, allows the network to learn the graph
structure itself, by updating the connectivity of the graph with the learned embed-
ding after each edge convolution layer. The structure of one such edge convolution
block is depicted in Figure 15. Each block takes as input the coordinates to con-
struct the knn-graph with 16 neighbors. The four-vectors in pseudorapidity-azimuth
space are used as the coordinates and the features are the complete feature vector of
each constituent in the point cloud, as described above. The subsequent blocks use
the learned feature vectors as coordinates and features. The architectural makeup
of the network follows [27] and employs three such edge convolution layers with the
edge convolution realized through a three layer MLP as depicted in Figure 15.

5.2.2. Graph convolution networks

A simple network to apply to the classification task on graphs is the graph convolu-
tion network from [85]. Here, the matrix of activations hl after layer l are updated
by the layer-wise propagation rule

hl+1 = σ
(
D̃− 1

2 ÃD̃− 1
2hlW l

)
, (5.1)

where Ã is the adjacency matrix with added self-connections (meaning each node is
connected to itself), D̃ii =

∑
j Ãij is the degree matrix and W l are learnable weight

matrices. The non-linearity σ is chosen to be the ReLU function. This approach is
motivated by a first-order approximation of localized spectral filters on graphs [86].
The above-described Graph Convolution Operator is implemented as a one-layer
Graph Convolution Network (GCN) with a hidden dimension of 238 (the dimen-
sionality of the updated feature vectors). After the graph convolution layers, the
updated feature vectors are aggregated as the mean over all nodes, after which they
are fed through an MLP to project to the output dimension. The input to the
network is a knn−graph with five neighbors, and uses the angular distance as the
distance metric to create the graphs.

5.2.3. Graph attention networks

Attention mechanisms have proven to be incredibly powerful since their application
to transformers in the paper “Attention is all you need” [87]. The general concept
of an attention mechanism is, however, not limited to transformers and can be used
in the context of message-passing graph networks, as done in [88]. Here the fea-
ture vectors of the nodes h⃗i are transformed with the learnable weight matrix W
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Figure 16: Left: The attention coefficient αij is calculated with a learned attention
vector a⃗ by concatenating the transformed feature vectors Wh⃗j of the
neighboring node and the local node Wh⃗i.
Right: Multi-head attention is applied by calculating multiple (here
up to three) independent attention mechanisms that are aggregated to
update the local node.
Taken from [88].

as in the message passing scheme. In addition, for all neighbors j of the local node
i an attention score αij is calculated with a learnable attention vector a⃗. This is
illustrated in Figure 16. To calculate the attention score, the local and neighboring
transformed feature vectors are concatenated, and the scalar product with the atten-
tion vector a⃗ is calculated and then normalized using the softmax function across all
neighbors j. This way, the attention scores are more easily comparable for different
nodes. This is done for each neighbor j. Additionally, to inject non-linearity into
the attention calculation, before the application of the softmax function, a variant
of the rectified linear unit is applied. Namely, the LeakyReLU, which is charac-
terized by a hyperparameter µ and is slightly permeable for negative activations:
LeakyReLU(x) = max(0, x)+µmin(0, x). All in all, the normalized attention scores
αij are calculated as

αij =
exp

(
LeakyReLU

(
a⃗T · (Wh⃗j||Wh⃗i)

))
∑

k∈Ni
exp

(
LeakyReLU

(
a⃗T · (Wh⃗j||Wh⃗i)

)) , (5.2)

where Ni is the neighborhood of the node i, i.e. all nodes that i is connected to.
The messages to the node i from its neighbors j are then weighted by the attention
score αij. The input to the first graph attention layer is the knn-graph of the event,
based on the angular distance calculation. The messages of the neighbors are then
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weighted with the attention score αij. If multiple such attention mechanisms are
used at once, we speak of multi-head attention. In this case, the weighted messages
produces by each attention head are concatenated and used as the input of the next
graph attention layer.
After the input has been passed through all graph attention layers, the updated
graph embedding is aggregated as the mean over the features of all nodes. The ag-
gregation is then projected to the output dimension with an MLP with three layers.
We implement this network architecture to work with a knn-graph based on 5 neigh-
bors (determined by the angular distance) and construct one model with one atten-
tion head (GAT-1) and another model with three attention heads (GAT-3). Each
model has two graph attention layers.

5.3. High level feature analysis

For the high-level features, the most straight-forward approach is to pass the kine-
matic features through an MLP. This has been done in [15]. Here, the same network
is implemented and trained on the new dataset to make a fair comparison. We
will call this model FC, as is done in [15]. Since this network does not have any
BatchNorm- or dropout-layers, we also implement a version of this network with
those additional regularization layers (FC+Reg.). We also propose another MLP
architecture, which has significantly shorter training times and fewer parameters. It
consists of 6 fully connected layers, dropout layers and BatchNorm layers. It has a
total of almost 2.5 million parameters, compared to the 11.7 million parameters of
the FC models. We call this more efficient multilayer perceptron eMLP.
Furthermore, we implement a more sophisticated network architecture and compare
it to the MLPs. Since the high-level features are fundamentally a list of related phys-
ical variables that represent different parts of the LHC event, an architecture with
an attention mechanism is chosen, namely the Transformer structure from [87]. This
architecture was first proposed for text translation tasks, and hence its application
to this task is not obvious. However, the application of neural networks from image
recognition tasks to jet images, which are very different from classical photographs,
has already shown that such approaches might be fruitful.
Since the original encoder decoder setup from [87] is used for translation tasks
(meaning generative tasks), we focus on the encoder part of the Transformer. The
hypothesis is that the encoder structure will learn an embedding of the kinematic
variables that can easily be read out with an MLP. Such encoder-only setups are
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also commonly used in natural language processing, for example, in text classifica-
tion or sentiment analysis. An example of such an encoder-only setup is the BERT
model [89], which inspired this implementation. As the structure of the encoder
part follows [87] exactly, we reference this paper for the details and describe only
the free parameters in this thesis.
A Transformer encoder with six encoder layers and eight attention heads is imple-
mented with a model dimension of 128 and a feed-forward dimension of 256. To
construct an initial embedding with the model dimension, the kinematic data (106-
dimensional) is padded with zeros and then fed directly into the encoder. After the
encoder layers, the output is fed through a simple MLP to project to the output
dimension.
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6. Results

For the new dataset generated during the work on this thesis, over 1.5 billion LHC
events have been simulated. This has resulted in a dataset of almost one mil-
lion simulated LHC events that have passed the preselection cuts, as discussed in
sec. 4.3. We partition the data into the training-, validation- and test set according
to a 70/15/15 split. This reduces the relative size of the test set from 20% to 15%
compared to [15], however, with 142,500 total test- and validation-samples, we still
have more than five times the amount of data points than in [15], further increasing
the statistical robustness. Moreover, we have 665 thousand training samples, which
is eight times the original amount. All sets are composed of 50% signal and 50%
background events. Each background process is weighted with the cross section to
determine its respective portion in the dataset. For the training and validation set,
the signal part of the dataset is composed of all signal mass points, ranging from
400 − 1000 GeV in steps of 100 GeV in equal parts. The test set uses the same
background mix but uses only one signal mass. The models are then successively
evaluated with a test set containing each signal mass.
To compare the different neural network architectures, we proceed in two stages.
Firstly, we select the model checkpoint with the lowest validation loss from all op-
timization runs of one architectural class. For this, we then calculate the network
scores (logits) for all test set events. Then we can calculate the Receiver Operator
Characteristic Curve (ROC-curve), which is commonly used to compare classifiers.
The ROC-curve plots the true positive rate against the false positive rate for differ-
ent threshold settings. The threshold denotes above which assigned probability an
event is classified as a signal-event. The most basic threshold would be to consider
everything that has an assigned signal probability of more than 50% to be a signal;
however, in practice, we chose this threshold to optimize for the discovery and ex-
clusion bounds. This will be discussed in more detail later. The ROC-curve gives
a measure to quantify the discriminatory power of a model. Furthermore, the Area
under the Curve (AUC) of the ROC-curve is a commonly used metric. It is 1 for
a perfect classifier and 0.5 for random guessing. The AUC, whilst useful, should,
however, not be taken as the predominant metric for our tasks since we select only
one point on the ROC-curve as our working-point (WP). It should be noted that we
will show an altered version of the classical ROC-curves, as is often done in particle
physics (see ROC-curves in [15,27]). When we refer to a ROC-curve, we will always
mean a plot of one over the false positive rate against the true positive rate. This has

51



the physical interpretation of plotting the background rejection against the signal
efficiency. The AUC refers to the area under the classical ROC-curve.
We use the ROC-curve to select the best model for each representation of the LHC-
data and perform a physical analysis. For this, we calculate the 2σ exclusion bound
and the 5σ discovery reach [90]. For the 2σ exclusion

Zexc =

√
−2 ln

(
L(S +B|B)

L(B|B)

)
≥ 1.64, (6.1)

is required, where L(x|n) is the likelihood of observing n events, where x events
are expected. S and B are the number of signal and background events. For the
discovery reach

Zdis =

√
−2 ln

(
L(B|S +B)

L(S +B|S +B)

)
≥ 5, (6.2)

is required analogously. As mentioned above, one has to choose a threshold for the
predicted probabilities to accept them as a signal. This is usually done in a way that
maximizes eq. (6.2) [91], however, in [15] it has already been shown that this leads
to cuts with very few background events remaining. This would then jeopardize the
statistical validity of eq. (6.2) and eq. (6.1) and hence we adopt the same procedure
as in [15] and impose a fixed number of background events that have to remain after
the working-point has been selected and rescale the cross section iteratively. We
have chosen a threshold of 20 background events, which corresponds to the working
point at a background rejection of 1

ϵB
= 97. For details on the imposed background

threshold, we refer to appendix A.2.
It should be noted that there have been significant technical difficulties during the
work for this thesis. The high-performance computational cluster at the University
of Würzburg has experienced multiple outages during this time. The cluster was,
however, vital for the event generation as well as the neural network training. This
led to the necessity of cutting down on the computational time spent on the network
optimizations. Furthermore, there are several further tests regarding some architec-
tural choices that had to be cut out entirely.
Most importantly, one would like to average the results of different model check-
points for each network with the same hyperparameters but different initializations.
This would allow quantifying the run-to-run variance that is present in most neural
networks. Unfortunately, this was simply not feasible, as it would require, for exam-
ple, training each network around 20 times, as was done in [15]. We limit ourselves
to the investigation of the run-to-run variance of a ResNet-20 model, by training
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Figure 17: Comparison of two differently initialized trainings runs of the ResNet-20
model. There is a slight difference in the ROC-curves. Whilst it would
be optimal to average the results of multiple runs to quantify the run-to-
run variance, the differences between runs are small enough to compare
different network architectures based on a single run.

two separate instances of the model with different initializations, and compare their
ROC-curves in Figure 17 and conclude that the run-to-run variance has a visible
but small impact on the ROC-curve. However, we suggest a more comprehensive
analysis of the run-to-run variance of all models in this thesis for further work.
Finally, we have to mentioned that the interpretation of neural network results can
be very challenging, due to their black-box nature. The inner workings of neural
networks are not easily understood, and a thorough explanation of those mecha-
nisms is beyond the scope of this thesis. In the analysis in the following sections,
we will offer explanatory approaches for the results. However, there may still be
additional hidden factors that influence the network results.

6.1. Model instability

Before we present the results of the different classifiers presented in this thesis, we
address an anomaly that has manifested during the training of the CNN models
in [15]. The models from [15] exhibit unusual behavior in the validation loss curve
during the training period. An oscillation of the validation loss is observed, whereby
the validation loss oscillates from low values to values up to an order of magni-
tude higher than its previous value, as can be seen in Figure 18. The training loss
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Figure 18: Oscillatory behavior of the CNL model form [15]. The validation loss
drastically changes from epoch to epoch, oscillating between states that
achieve a low validation loss and states that perform badly.

decreases as expected. This behavior is very atypical for well-tuned models and
signifies an instability in the learning process. In the following chapter, potential
reasons behind this instability will be examined.
One of the first approaches is to check if this behavior is dependent on the hyperpa-
rameters of the models. An extensive search across the hyperparameter space shows
that this is not the case. The examined hyperparameters include the learning rate,
batch size, weight decay as well as the optimizer itself. The aforementioned param-
eters have been varied over multiple orders of magnitude. However, it was found
that, if the model trained well, the oscillations manifested. If a suboptimal set of
hyperparameters was chosen, the instability did not always manifest itself. Instead,
the validation loss did not reach as low values in the examples with the oscillations.
Or, in the case of a very low learning rate, for example, the oscillations only showed
up very late in the training process, e.g. only after multiple hundreds of epochs.
This means whether the anomaly manifest is dependent on the region of optimiza-
tion space and not the value of the hyperparameter. With the lower learning rate,
the training simply takes longer to reach the optimal region in the optimization
space. It does not, however, change the oscillatory behavior. A similar behavior
has been found for the batch size. With an increased batch size, fewer updates of
the model parameters are performed, meaning that training needs to be done on
more epochs to achieve comparable results. As in the tests for the learning rate, the
anomaly manifests at higher epoch numbers. In conclusion, it can be said that the
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hyperparameters cannot be solely responsible for the instability during training.
As mentioned earlier, a common problem in training deep neural networks are ex-
ploding or vanishing gradients. A strategy to overcome this problem has been pro-
posed in [92]. There, the norm of the gradients is restrained to a maximal allowed
value, mitigating the risk of exploding gradients. This is called gradient clipping.
If the gradient g⃗ has a norm ∥g⃗∥ that is larger than an upper limit Λ the gradi-
ent is rescaled as ĝ = Λ

∥g⃗∥ g⃗. This has been implemented in the training process of
the CNNs used in this thesis. Here, it was found that if the value of the maximal
gradient is chosen to be too small, the model trains slowly. This makes sense since
smaller gradients mean that there is less distance traversed in optimization space.
Hence, it takes longer to find better network configurations.
However, the gradient clipping does not prevent the oscillation of the validation loss.
This behaviour is still observed at higher epoch numbers with the smaller maximally
allowed gradients, and a higher value for the clipped gradients does not change the
training behavior significantly.
Another reason for the instability during the training process could be the structure
of the jet image data. Those images are mostly empty, as can be seen in Figure 7.
In the case of the CNNs, this could lead to instability because it creates a kind of
binary input to the network as a single pixel is either completely off or has a finite
value. This is very different from the usual application of CNNs in computer vision,
where every pixel has an RGB value and is hardly ever empty. This can make it
hard to learn interesting feature maps that correspond to interesting features of the
images. It is plausible that this is much more difficult with the hard features of the
detector images.
To combat this issue, one can implement a form of data augmentation. A Gaussian
blur is applied to the image during the training process. This corresponds to a sort
of washing out of the detector hits, leading to fewer empty pixels in the jet image
and softer features. Different sizes of the Gaussian kernel are tested, and the stan-
dard deviation of the Gaussian distribution used in the kernel is drawn at random
before it is applied to one specific image. This further diversifies the features of each
detector image. To limit the necessary computation time, this process is done only
once before the training. So each image always has the same blur. However, this
procedure did not significantly decrease the observed instability during the training
process and does not increase model performance.
It is clear that the oscillatory behavior is not model-dependent, since all CNNs de-
scribed in this thesis display this behavior. The above tests have been performed
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for the ResNet and CNL models.
In conclusion, the anomaly does not depend on any hyperparameters of the model or
training process. Therefore, the reason must lie elsewhere. To rule out that this be-
havior is inherent to the model, a new convolutional network has been implemented.
This means that the anomaly is not dependent on either the hyperparameters or
the model itself. This arguably means that this behavior is a consequence of the
training data. It could either be that this behavior is intrinsic to this classification
task or that it is a consequence of too few training samples. This could mean that
the anomaly could disappear if the models are trained on a bigger dataset.
However, as we have described in section 4.3 we have created a dataset that is almost
an order of magnitude bigger than the one used in [15]. The anomaly is present in
both cases, making this unlikely.
Furthermore, we have found that the GAT type GNNs also display this behavior,
even though to a lesser degree. The GCN network does not exhibit this behavior.
As we have described above, the anomaly only manifests when the CNN models
start to train well and the validation loss falls below a certain point. It is possible
that the GCN model never reaches this point and therefore does not display this
behavior. The GAT networks reach a performance that is comparable to the CNNs
and also display this oscillatory behavior. However, it is less pronounced.
This leads us to believe that the oscillations might be intrinsic to this classification
task. It should, however, also be mentioned that this should not be detrimental
to the results that can be achieved with the classifiers presented here, since the
model configurations that achieve a low validation loss are selected for the analysis.
In [15] it has already been shown that the network performance also generalizes to
the testset.

6.2. Classification based on high level kinematic features

We compare the different MLPs using the kinematic data in Figure 19. We take
the MLP from [15], termed FC, as a baseline, however since this implementation
does not have any batch normalization or dropout layers we also compare a version
of this model with those added regularization layers. It is clear that the addition
of regularization layers to the in MLP proposed in [15], increases test-set perfor-
mance. Furthermore, the MLP implemented in this work (denoted as eMLP in
Figure 19) achieves the same performance, with significantly fewer parameters and
shorter training times as is elaborated in appendix A.1 and Table 8. With only
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(a) m(S±±) = 300 GeV (b) m(S±±) = 600 GeV (c) m(S±±) = 900 GeV

Figure 19: The ROC-curves of the MLPs trained on high level kinematic data. The
addition of regularization layers significantly improves performance in the
MLP described in [15] (called FC) for all signal masses. The newly im-
plemented eMLP achieves the same performance with significantly fewer
parameters and shorter training time.

around 20% of the parameters and an almost ten times shorter training time, the
new model is significantly more resource efficient.
One could argue, that the performance of this new eMLP is even slightly better for
higher signal masses, however this effect is minimal and might fall into the range of
run-to-run variance. Since this network comes with reduced computational overhead
we choose this model for further analysis and present the expected 95% confidence
level upper limit on the cross section σ (exclusion limit) and the discovery reach
cross section σ5 of this model compared to the baseline in Figure 20, where we also
display the cross section of the doubly charged scalar production of the SU(5)

SO(5)
model

at 14 TeV [15]. This reference will be present in all further physical analyses in
this thesis. As one can see, the added regularization and new network architecture
improve the expected exclusion limit and discovery reach only slightly. The upper
limit on the signal process cross section is improved to 670 GeV and the discovery
reach to 450 GeV, which constitutes an improvement of around 20 GeV for both
compared to the FC network. In general, we see that the expected exclusion limit
and discovery reach get stronger for higher masses. This is due to the increased
model performance for higher masses, as seen in 19. And the increase in the pre-
selection efficiency εpreselection for higher masses. In addition to the MLPs, we have
also implemented a Transformer architecture as described in section 5. However,
this model has unusual training behavior that is not understood and produces re-
sults that are unreasonably good. Since we do not understand the training behavior
of this model completely and thus do not trust the results completely, we present
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Figure 20: Left: Expected exclusion limit of the signal process at the high luminos-
ity LHC with 3ab−1 integrated luminosity for the MLP networks. The
eMLP raises the expected exclusion limit to 670 GeV.
Right: Expected discovery reach for the S±± production is increased to
450 GeV by the eMLP.
The dashed line is the cross section of the doubly charged scalar pNGB
production from the SU(5)

SO(5)
model at 14 TeV [15].

the results in appendix A.3 with reservations and do not include the Transformer
analysis in the main part of this thesis.

6.3. Jet image classification

We present the comparison of the different CNNs. Figure 21 shows the ROC-curves
of the CNNs for three different signal mass points. While the exact hierarchy of the
model performances varies, there are clear trends visible. The ResNet architectures
outperform the CNL architecture. In general, the models perform better for higher
masses. This is most likely due to the fact that the higher signal masses produce
events that are significantly more energetic (see Figure 8) and hence can be better
distinguished.
It might be surprising that the ResNet-20 outperforms the deeper ResNet-110 for
higher mass points; however, this might be due to the fact that the bigger net-
works start to overfit more easily at higher masses. This problem might be more
pronounced for higher masses since, those are easier to seperate in the first place.
Since more complex models overfit easier on less challenging tasks, this might ex-
plain why this effect is only observed for the higher masses. During the training,
the dataset consists of a mix of all signal masses, hence the effect of overfitting on
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(a) m(S±±) = 300 GeV (b) m(S±±) = 600 GeV (c) m(S±±) = 900 GeV

Figure 21: The ROC-curves of the convolutional neural networks. The ResNet archi-
tectures outperform the CNL model. For lower signal masses the ResNet-
110 performs best, whilst for high signal masses the ResNet-20 has the
best performance.

higher masses is not so obvious during training, while we evaluate for each mass
separately. We have implemented numerous measures to counteract overfitting, as
discussed in earlier sections; however, it is often not possible to completely prevent
it. For low signal masses, the ResNet-110 architecture outperforms the ResNet-
20, where the ResNet-20 model performes more comparable to the base-line CNL
model for lower signal efficiencies. The advantage of the ResNet-20 is in this case
only visible for high signal efficiencies. The performance of the ResNeXt-20 model
is, surprisingly, not better (or slightly worse) than the performance of the ResNet-20
model. However, it needs to be mentioned that this can be due to computational
limitations at the end of the work for this thesis. The high performance compu-
tation cluster of the university of Würzburg had outages around this time, which
limited the hyerparameter optimization. Since the ResNeXt-20 model requires more
computational resources than the ResNet-20 and the optimization was started after
the other models, it got less optimization time than the other networks. However,
we do not expect that a significant improvement in performance could be achieved
with more optimization time, rather we expect the general trend to be the same,
with the depth of the models being most important. Training an implementation
of, for example, a ResNeXt-110 network lies beyond the scope of this thesis.
As described in section 4.1 we have calculated additional input channels for the
CNN networks, that contain the b-tagged and light jet-center positions. We adapt
the ResNet-20 and ResNet-110 models to expect five input channels and retrain the
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(a) m(S±±) = 300 GeV (b) m(S±±) = 600 GeV (c) m(S±±) = 900 GeV

Figure 22: The ROC-curves of the convolutional neural networks. The ResNet ar-
chitectures outperform the CNL model, and the addition of jet-center
images as input to the CNNs further increases performance.

models with the extended jet image dataset. The impact of introducing the new
jet-center images is shown in Figure 22.
There it can be seen that this further increases network performance and is most
significant for a signal mass of 600 GeV. At lower signal masses, the ResNet-20 with
5 input channels performs better than the ResNet-110 (5 Ch.) for higher signal
efficiencies but worse for lower signal efficiencies. For higher signal masses, the
ResNet-110 (5 Ch.) performs better for higher signal efficiencies, but otherwise the
networks are similar.

Figure 23: ROC-curve of the ResNet-110 with 3 and 5 input channels compared to
the CNL model. The ResNet-110 outperforms the CNL baseline and the
addition of the jet-center images further improves the performance. It
can be said, that the addition of kinematic data into the jet images is as
important as the model choice.
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The mass point of m(S±±) = 600 GeV is of especial interest, since it is near the
middle of the region where the discovery and exclusion bounds, that have been cal-
culated in [15], lie. Therefore, it is sensible to judge the networks based on this
point, since the performance differences in this region are important for the physical
analysis. Hence, the sensitivity of the models in this region is arguably of higher
import to the bounds that can be achieved. Especially at this mass point, the addi-
tion of the b- and non-b-tagged jet-centers seems to be important for the increased
model performance of the ResNet-110. Furthermore, it can be said that the addition
of the jet-centers is as important as the architecture choice itself. This is illustrated
for the signal mass of 600 GeV in Figure 23, where the effect is strongest.
Since the ResNet-110 model with 5 input channels generally performs the best and
especially in the 600 GeV signal mass region, we chose this model for all further
analysis performed in this thesis and present the 95% upper confidence limit on the
cross section σ and the discovery reach cross section σ5 of the ResNet-110 compared
to the CNL model in Figure 24.
It can be seen that the CNNs also follow the trend of imposing stronger bounds
and increasing the discovery reach for higher masses, as discussed in the previous
section.

Figure 24: Left: Expected exclusion limit of the signal process at the HL-LHC for
the CNN networks. The ResNet-110 architecture including the jet-center
images improves the exclusion limit by around 50 GeV compared to the
CNL baseline.
Right: Expected discovery reach for the S±± production is increased by
30 GeV through the ResNet-110 architecture with additional jet-center
images compared to the CNL baseline.

61



The ResNet-110 (5 Ch.) model produces an expected exclusion limit of almost
700 GeV, whereas the CNL model can only exclude the process up to 650 GeV.
With the ResNet-110 (5 Ch.) the signal process can be discovered up to 530 GeV,
compared to the 500 GeV with the CNL model.
It should be noted that we have found that the CNN networks in general perform
worse on the new dataset, compared to the results of [15]. This might be due to
the differences during the simulation process, as well as different versions of the
Monte-Carlo generators that were used. It was however also found that a CNN can
distinguish the two datasets for one background process. We elaborate on this issue
in appendix A.4.

6.4. Graph neural networks

(a) m(S±±) = 300 GeV (b) m(S±±) = 600 GeV (c) m(S±±) = 900 GeV

Figure 25: The ROC-curves of the graph neural networks. The GAT network with
three attention heads outperforms all other networks.

We compare the in sec. 5.2 described models and present their ROC-curves in Fig-
ure 25. At a first glance, the graph convolution network (GCN) performs the worst
across all mass points, as judged by the AUC metric. This is not surprising, since,
with only one layer and around 60,000 parameters, it is a very simple network. How-
ever, this type of GNN has the advantage that it is fast to train and easy to optimize,
which is a significant challenge for the other GNNs compared in this thesis. For de-
tails concerning the training time and number of parameters of the models, we refer
to appendix A.1. This worse performance is mostly due to the low discriminatory
power at high signal efficiencies. For lower signal efficiencies, the GCN performs
comparable to the GAT with one attention head (GAT-1). For the lower signal
masses up to m(S±±) = 600 GeV, this is however not the case. There, the GCN
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performs strictly worse than the other networks. This performance is nonetheless
surprisingly good for such a simple model, since the lower signal efficiency region is
more important for the calculation of the physical bounds. The GCN even outper-
forms the ParticleNet for higher signal masses at the working point.
While the AUC of the ParticleNet is on par with the GAT networks, the perfor-
mance for low signal efficiencies is worse. Especially around the working point and
for higher signal masses, the ParticleNet performs worse than the other networks.
The GAT network with three attention heads (GAT-3) outperforms all other net-
works consistently and is therefore chosen for all further evaluations in this thesis.
In Figure 26 we show the exclusion limit and the discovery reach of the GAT-3 net-
work compared to ParticleNet. We also present the analysis for the GCN network,
due to its surprising performance for its low model complexity. For all models, the
expected exclusion bound and discovery reach start to rise again for higher signal
masses. In contrast to the CNNs, the GNNs have more discriminatory power for
lower signal masses rather than higher ones. This can already be seen in Figure 25,
where the performance of the networks decreases at the working point for higher sig-
nal masses. As we have discussed earlier, the higher mean pT in the signal events is
an important feature for the networks to discriminate signals from the background.

Figure 26: Left: Expected exclusion limit of the signal process at the HL-LHC
with 3ab−1 integrated luminosity for the GNN networks. The GAT-3
architecture increases the expected limit by almost 50 GeV compared to
the ParticleNet. The GCN slightly beats the ParticleNet.
Right: Compared to the ParticleNet baseline, the expected discovery
reach for the S±± production is increased by 30 GeV by the GAT-3 model.
The GCN is on par with ParticleNet.

63



In the kinematic and jet image representations, this information is easily accessible
to the networks. However, in the graph representation, this information might not
be so readily available for the networks due to their local nature. Each node in the
graph aggregates information over only a limited number of the other nodes in the
graph, where the number of layers determines the depth of the aggregation. While
there is also a global readout to project down to the output dimension of the net-
works, this could make the aggregation of the total pT information of an event more
difficult. This can explain why network performance does not increase for higher
masses. Giving an exact reason for why network performance gets worse for higher
masses is, however, difficult due to the black box nature of neural networks. Further
investigation would be required. The preselection efficiency rises for higher signal
masses, which would result in stronger bounds and a higher discovery reach for high
masses if this effect were not counteracted by the worst network performance.
In general, the graph networks perform worse than the CNNs, only allowing discov-
ery up to around 470 GeV and exclusion up to 600 GeV, for the GAT-3 model. The
GAT-3 model improves the discovery reach by around 30 GeV compared to Parti-
clNet and the GCN. For the exclusion limit, the GCN improves upon the ParticleNet
by 20 GeV and the GAT-3 enhances the exclusion bound by almost another 30 GeV.

6.5. Combining multiple classifiers

As has already been shown in [15] it is beneficial to combine multiple classifiers
that work on the different representations of the events via an MLP to produce a
combined prediction. In [15] this was done by simply concatenating the outputs of
the last neuron layers before the projections to the output-dimension and training
both networks conjointly. Since we have investigated a new representation of the
event, namely the point clouds, it is sensible to construct a combined classifier that
works on all three representations at once.
We hypothesize, that the addition of the graph networks for the point-cloud data
will further increase the predictive power of the model, since the graph networks
focus on the local substructure of the jets with their sparse connectivity and few
GNN layers. In contrast, the kinematic-models work on the already abstracted high
level features of the event and the deep convolutional networks have a high enough
field of view to learn the global structure of the jet images. We refer to the combined
classifier that works on all three representations, as multi representation classifier
(MRC).
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Since there are quite a few models for each representation, we restrict the analysis
to a “best in class” approach. For each type of representation, the best performing
model is chosen and combined with the others, to form a single classifier. To com-
pare the influence of the different representations on the network performance, we
also compare all two network combinations.
However, the training of such complex combined models with more than 35 million
parameters is quite challenging and also comes with immense computational require-
ments. Instead of training the combined model with freshly initialized parameters,
the parameters of the already optimized and trained single representation models
used for the previous analysis are used. Since those models project the latent-space
information down to the two-dimensional output space, two options present them-
selves.
Firstly, one could only combine the two-dimensional output of all models and feed
this forward through a combining MLP, that learns the best way of weighting this
information as well as utilizing potential correlations of the network outputs. In
this way, only the combining MLP needs to be trained, while the other network-
parameters are frozen. This significantly reduces the training time and is rather
convenient to implement but poses the risk of losing a lot of valuable information
contained in the latent-space representations learned by the classifiers.
To avoid this, we chose a different approach, which we visualize in Figure 27. We

Figure 27: The multi representation classifier (MRC) leverages the pretrained single
representation models. The last two-dimensional output layer of each
model is substituted with a higher dimensional hidden layer. The models
are then combined with an MLP to produce a single output.
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load all wights except the last layer that projects down to the two-dimensional
output. This layer is instead replaced with a newly initialized layer with higher
dimensionality. We do this by extracting the trained parameters from the single
representation networks and update the parts of the combined classifier that corre-
spond to the single representation networks.
This allows the combined classifier access to the latent-space information of all mod-
els. We then proceed to freeze all pretrained parameters and train the combined
classifier. The MLP used to combine the latent space information of the single
representation models consists of three linear layers with BatchNorm and dropout.
It learns rather quickly and only few epochs without any scheduling are needed to
achieve good network performance. The CNLK model from [15] that uses the kine-
matic and jet image representation, is used as a baseline for our comparison. It
combines the convolutional neural network CNL and the multilayer perceptron FC.
We optimize and train this network on our larger dataset for a fair comparison. We
present the ROC-curves in Figure 28.
We see that all combinations beat the baseline CNLK model for all masses. Further,
the impact of adding the eMLP working on the high level kinematic data to one of
the other models increases the performance less than adding the graph based model
and the image based model. This leads us to believe that the graph and image
based models do indeed learn complementary information about the events. The

(a) m(S±±) = 300 GeV (b) m(S±±) = 600 GeV (c) m(S±±) = 900 GeV

Figure 28: Combining multiple classifiers leads to improved results. The combina-
tion of graph and image based classifiers significantly improves perfor-
mance, indicating the networks learn complementary information from
the events that results in better classification. Combining models that
work on all three representations leads to the best results.
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(a) m(S±±) = 300 GeV (b) m(S±±) = 600 GeV (c) m(S±±) = 900 GeV

Figure 29: The comparison of the single models to the multi representation classifier
(MRC), shows that this approach leads to significantly improved results
for all signal masses. The advantage of the MRC gets smaller for higher
masses as the CNN and MLP models start to perform similarly. The
inclusion of the GNN still improves performance, even though its perfor-
mance diminishes for higher masses.

graph based models work on the constituent level jet-substructure, while the deep
ResNet-110 sees the whole image and is able to extract more global features. The
kinematic representation seems to be more similar to the jet images than to the
graph representation, as it is also a high level analysis of the event. This also mani-
fests in the similar behavior with increasing signal masses of the respective models.
Both network types gain discriminatory power for higher masses, whereas the graph
based models exhibit contrary behavior.
The MRC based on all three representations increases performance further. How-
ever, the significant part of the performance is gained by combining graph and image
based models. Figure 29 highlights the importance of combining the representations.
We see that the increase in performance by combining different physical represen-
tations as input to a neural network is as significant as the choice of network itself.
This advantage persists even at higher signal masses, where the eMLP and ResNet-
110 start to perform similarly at the working point. There, the graph based model
still contributes useful information to the classification process.
In Figure 30 we present the exclusion bound and discovery reach produced by the
MRC compared to the CNLK model. We see that the CNLK model excludes the
signal process up to 680 GeV and the MRC increases this upper limit by around
30 GeV to 710 GeV. The discovery reach is increased from 520 GeV to 550 GeV by
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Figure 30: Left: The MRC increases the expected exclusion limit to 710 GeV, which
constitutes a 30 GeV increase over the CNLK baseline.
Right: The expected discovery reach for the signal process is also in-
creased by 30 GeV by the MRC. This allows the discovery up to 550 GeV.

the MRC. The exclusion limit is not increased significantly by the MRC compared
to the ResNet-110 (5 Ch.) as the MRC only achieves a 10 GeV higher exclusion
limit. This is mainly due to the fact that the MRC does not increase the network
performance that much for the mass region from 500-700 GeV. The performance im-
provement is more significant for the higher and lower signal masses. Furthermore,
the ResNet-110 (5 Ch.) already has access to a part of the kinematic data in form
of the jet-center images. Nonetheless, the MRC achieves the highest exclusion limit
and discovery reach of all models compared in this thesis.
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7. Conclusion and outlook

Composite Higgs models produce beyond the standard model signal processes that
are accessible to searches at the high luminosity LHC. In this thesis we have studied
the decay process of a doubly charged scalar S±± that decays to a W+tb̄ (W−t̄b) sys-
tem, motivated by such composite Higgs models. We focus on a search targeting a
final state with high hadronic activity and two same-sign isolated leptons. For this,
we simulate a dataset that contains three different representations of each event.
We compare different deep neural networks for each representation and surpass our
benchmark in each case. Our dataset is larger and therefore provides better statis-
tics and allows for easier training of more complex networks compared to previous
work done in [15].
We represent each LHC event in distinct ways that allow us to access different fea-
tures contained in each representation, allowing for discrimination between signal
and background processes.
The most abstract representation is a set of high-level kinematic data about the
isolated leptons and reconstructed jets. We use a new MLP, called eMLP, on this
representation, achieving the same performance as our benchmark with fewer pa-
rameters and training time. The benchmark is an MLP from [15] proposed for this
task, which we first improve with the addition of regularization layers and then fur-
ther surpass with the eMLP. This network achieves an exclusion limit of 670 GeV
and a discovery reach of 450 GeV, which constitutes a 20 GeV improvement com-
pared to the benchmark for both.
Furthermore, we implement a version of jet images that incorporates an artificial pe-
riodicity in the pseudorapidity, which allows the CNNs to access all physical detector
information. In the process of our event generation, we have uncovered several issues
with the detector simulation in [15] and worked to correct them. We have further
enriched the information content of the jet images by adding channels that represent
the b-tagged and light jet-center positions. We compare our ResNet and ResNeXt
based models to the CNN (called CNL) proposed in [15] that was designed for this
search. All our models surpass this benchmark, and the inclusion of the jet-center
position further increases the discriminatory power of the ResNet models. We find
the 110-layer deep ResNet-110 implementation with the added jet-center positions
allows the discovery of the signal process up to 530 GeV and achieves an exclusion
limit of 700 GeV, which is an 50 GeV and 30 GeV to the benchmark model, respec-
tively.
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The last representation of the LHC events are point clouds, on which we construct
graphs. We compare the performance of a GCN and two GAT networks to Parti-
cleNet [27] and find that a GAT network with 3 attention heads performs best. It
can discover the signal process up to 470 GeV and exclude it up to 600 GeV.
Combining the best performing models into a single network (MRC), which can
learn from all three representations, and leveraging the pretrained networks to make
training such a complex classifier possible, yields further improvements to discovery
reach and exclusion limit. We find that the upper limit on the model cross section
increases to 710 GeV, constituting a 30 GeV improvement on the combined classifier
CNLK from [15]. The discovery reach is also increased by 30 GeV compared to this
network. The MRC allows the discovery up to 550 GeV.
We find that most of the performance increase is gained by combining the jet image
based model and the graph based model, indicating that they learn complementary
information about the events. The incorporation of the jet-center positions into the
jet images already constitutes a combining of the high-level kinematic and image
based event representations. The addition of graph based networks injects informa-
tion about the local substructure into the classification process.
The choice of network architecture is clearly important and can improve perfor-
mance on the classification task, as has been shown here. However, importantly,
we also show that the way in which the data is represented and combinations of
such representations that highlight different physical aspects of the event are just as
important.
Even tough we have presented various machine learning methods and applied them
to the doubly charged scalar signal process in this thesis, there is ample opportunity
to expand on this work.
We have uncovered differences in the structure of the data of the tt̄tt̄ background
in our dataset compared to the data used in [15]. This difference can be exploited
by neural networks to discriminate between the two datasets, as we discuss in ap-
pendix A.4, and is most likely due to different Monte-Carlo generators used during
part of the simulation chain. This poses the question of the importance of the
choice of generator on the physical results. We suggest investigating this in further
research.
The application of Transformer based models in this thesis yields results that are not
completely understood yet. Nonetheless, we believe that the application of Trans-
formers to the kinematic and point cloud representations could be beneficial and
should be studied further.
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Even though GNNs have not performed better than the other network types, the
graph based representation allows for the encoding of additional physical knowledge
into the graph structure. We have already seen that the addition of jet-centers to
the images has yielded fruitful results. We suggest doing the same for the graph
representation. By connecting the graph based on the reconstructed jets, more in-
formation about the jet substructure can be encoded into this representation. For
example, one could connect the constituent particles to an additional node represent-
ing the jet itself and further connect the jet nodes to an event-level node, inducing
a hierarchy into the graph that represents the different structures of the event.
Moreover, one could apply networks that can work on time-series, e.g., temporal
graph networks, to evolving particle graphs that incorporate the angular separation
of constituents as an artificial time. The graph connectivity would be determined
by the angular distance of constituents and would increase with progression through
this artificial time.
Finally, we note that, the approaches presented in this thesis are not limited to
the search for doubly charged scalars originating from composite Higgs models.
One could easily apply the techniques presented here to other beyond the stan-
dard model searches with busy final states. The application of some of the here
discussed methods to jet-tagging is also feasible in light of publicly available jet-
tagging datasets [93]. Especially, the combination of multiple physical representa-
tions is widely applicable.

71



A. Appendix

A.1. Network hyperparameters

Network Learning Rate Weight Decay Dropout batch size

CNL 9.6× 10−4 6× 10−4 0 179

CNLK 6× 10−4 1× 10−4 0 180

ResNet-20 5× 10−5 1× 10−4 0 350

ResNet-110 9.5× 10−4 1× 10−5 0 110

ResNeXt-20 2.5× 10−2 1× 10−9 0 457

ParticleNet 3× 10−4 1× 10−4 0 200

GCN 2.5× 10−4 3× 10−7 0.3 177

GAT 1 head 3× 10−4 1× 10−9 0.3 16

GAT 3 heads 3× 10−4 3× 10−8 0.05 21

FC 9× 10−4 8× 10−9 0 59

FC+Reg. 3.3× 10−3 3× 10−10 0.37 102

MLP 1× 10−4 1× 10−5 0.3 200

Transformer 1.1× 10−5 0 0.05 64

MRC 5× 10−3 2× 10−8 0.3 127

Table 5: Summary of the hyperparameters that were used for the final model check-
points of the networks used in this thesis.

We summarize the hyperparameters used for training the neural networks in this
thesis in Table 5. They have been determined through Optuna trials as described
in section 5 and then manually fine-tuned.
The GAT networks use the LeakyReLU activation function instead of the ReLU
used for all other models. The “negative_slope” hyperparameter µ associated with
this has been set to µ = 0.05 (determined through Optuna trials).
The learning rates listed in Table 5 are the initial learning rates at the beginning
of the training. Most Networks make use of learning rate scheduling, as described
at the end of section 3.1. We have used the Pytorch [74] implementation of
the “StepLR” and “OneCycleLR” learning rate scheduler. In the following, we use
the nomenclature used in the Pytorch documentation to refer to the different
parameters associated with the schedulers and refer there for the details of the
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Network div_factor final_div anneal_strategy three_phase epochs

ResNet-20 3 15 cos False 60

ParticleNet 10 3× 103 linear True 20

MLP 10 30 cos False 35

Table 6: The “OneCycleLR” scheduling scheme used for the listed models. The
maximal learning rate is the learning rate from Table 5 multiplied with the
“div_factor”.

Model γ Step size Max epochs

GAT - 1 head 0.1 65 170

GAT - 3 heads 0.2 38 80

ResNet-110 0.1 35 80

GCN 0.5 45 100

Table 7: These models use the “StepLR” learning rate scheduler, which reduces the
learning rate with a factor γ < 1 every fixed number of epochs (Step size).

scheduling procedure. We summarize the models using the “OneCycleLR” in Table 6
and the models using the “StepLR” in Table 7. All other models do not use any
scheduling. The CNL, CNLK, FC and FC+Reg. models do not use scheduling as
they function as the baseline comparison. For the ResNeXt-20 model, we could not
implement a scheduling scheme, due to the aforementioned technical difficulties. We
can see that the models that use the “OneCycleLR” require fewer epochs to train
than the other models, proving this scheduling scheme to be effective here. However,
it is more complicated to effectivly implement, as the parameters of the scheduler
require more tuning. This is the reason why not all networks use this scheme, as
it would simply require too much time to tune the parameters for all networks.
On the other hand, the “StepLR” policy has proven to be easy and effective. It
requires little tuning and almost always benefits the training process. However,
with this policy the training usually takes longer, since the optimization process is
open-ended, meaning in contrast to the “OneCycleLR” there is not an a priori fixed
number of epochs. Rather, we let the training continue until there is no benefit in
further reducing the learning rate.
Table 8 shows the required training time on a NVIDIA P100 GPU (NVIDIA GTX

970 for the highlited models) and the number of learned parameters for each network.
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Network Time per epoch in min Parameters in 103

CNL 1.3 880

CNLK 1.6 6, 195

ResNet-20 5.6 1, 204

ResNet-110 24.6 7, 023

ResNeXt-20 10.1 699

ParticleNet 16.9 367

GCN 1.3 60

GAT 1 head 13.7 1, 985

GAT 3 heads 67.7 23, 126

MRC 126.8 36, 396

FC 2.3 11, 694

FC+Reg. 2.6 11, 712

eMLP 0.3 2, 482

Transformer 2.4 945

Table 8: The number of learned parameters and the required training time per
epoch for all networks studied in this thesis. The highlighted networks
were trained on an NVIDIA GTX 970 GPU and all other networks were
trained on NVIDIA P100 GPUs.

The GNNs require significantly longer training times due to their complex learning
algorithms. In contrast, the MLP type architectures (MLP, FC and FC+Reg.) have
a lot of parameters but require less training time (even on the significantly worse
GTX 970) than the more complex models, due to their highly parallelizable structure
and simple implementation.

A.2. Background threshold

Figure 31 shows how the discovery reach σ5 varies with the chosen background
threshold for a selection of models. In contrast to [15] we select the same thresh-
old for all models. This eliminates the influence of the chosen threshold on the
comparison of different networks. With 20 background events, a statistical analysis
is possible. Furthermore, this threshold lies in a region where the discovery reach
hardly varies with the chosen background threshold. Whilst Figure 31 shows only
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(a) CNL (b) ResNet-110 (5 input channels)

(c) eMLP (d) GAT - 3 heads

Figure 31: The discovery reach cross section σ5 depending on the chosen background
threshold for. We chose the same threshold for all models. At 20 back-
ground events, the cross section remains almost constant when changing
the background threshold slightly. Furthermore, with 20 background
events there are enough events left for a statistical analysis.

the behavior of a selection, the other models follow similar trends. It is noticeable
that for low thresholds the cross section curves of low and high masses diverge for
CNN type models and the MLP type models as can be seen in figures 31a-c. On
the other hand, for the GNN type models they do not diverge, as can be seen in
Figure 31d. This trend is common to all graph based models in this thesis.
With a chosen background threshold of 20 events, we achieve a background rejection
of 1

ϵB
= 97 for all models. This is the working point for the analysis performed in

this thesis. However, it must be mentioned that other reasonable thresholds could
be chosen.
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A.3. The Transformer model

Figure 32: Cross-entropy loss curves of the Transformer model during training. The
training loss lies well above the validation loss. This is unusual training
behavior, that is not completely understood. The model achieves unrea-
sonable good performance. For example, it achieves an accuracy of over
99.5%.

The Transformer encoder model as described in section 5 exhibits unusual training
behavior, whereby the validation loss surpasses the training loss significantly. The
validation loss can usually lie under the training loss curve at the beginning of the
training in the first few epochs, where the model rapidly learns, however we see in
Figure 32 that the validation loss consistently lies well below the training loss. In
theory, this can happen, if the model uses a high dropout rate. During the valida-
tion, the dropout is disabled and the full model is active. This often results in a
better performance during validation compared to training. However, here we have
a dropout rate of only 0.05 and have also observed this behavior with dropout com-
pletely disabled. As can be seen in Figure 32 this is also not a one time occurrence,
since the model achieves consistently lower validation loss for multiple epochs.
We observe similar behavior if we switch the role of training and validation set dur-
ing training. Meaning, we train on the validation set and validate on the training
set. This shows that this behavior is not inherent to the here used validation set.
Furthermore, we have not observed any unexpected behavior of the training loss
during the epochs. Figure 32 only shows the mean loss per epoch. To study the
behavior of the loss during the epochs, we have monitored the loss per batch over
multiple epochs. If the models would somehow end one training epoch with a sig-
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(a) m(S±±) = 300 GeV (b) m(S±±) = 600 GeV (c) m(S±±) = 900 GeV

Figure 33: The ROC-curves of the Transformer model. We see a near perfect dis-
crimination for all signal masses. This leads to a signal efficiency of
almost one at the working point and an AUC of 1.0000 rounded to the
fourth digit. This performance seems unreasonable.

nificantly lower training loss and then start the next epoch with a higher loss again,
this would signify that there is some influence on the model parameters after each
epoch. This could explain the here observed behavior since, the model state at the
end of the training epoch is better than at the beginning and the validation loss is
calculated at the end of a training epoch. The validation loss would be evaluated
on this better model state. However, we have not observed any significant change
of the training loss per batch from one epoch to the next.
This training behavior also persists for different initzializations of the model and
also manifest if the architecture is changed slightly, e.g. Transformer encoders with
more encoder layers or attention heads.
We suggest studying this behavior in further research.
Nonetheless, we perform a test set analysis of the Transformer model and show its
ROC-curves in Figure 33. The test set has never been seen by the Transformer
model and should give an independent metric for its performance. In Figure 33
we can see that the Transformer model even performs beyond what is expected to
be reasonable on the test set. The Transformer achieves an AUC of up to 1.0000
(rounded to the fourth digit), which would indicate a nearly perfect classifier. Such
a performance solely based on the kinematic data seems unrealistic. Such surpris-
ingly good performance could, in theory, be explained by data-leakage. Data-leakage
happens when information that should not be accessible to the network is present in
the features used to classify the sample. Since we use multiple different models on
the kinematic representation, and we only see this behavior with the Transformer,
we do not expect this to be the case. If data-leakage were to occur, we should also
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observe this with other models, since the same training procedure and data are used
for each model. This also does not explain the discrepancy between the training and
validation loss.
Due to the unusual training behavior and this surprising performance, we present
this result with reservations. As we can see in Figure 33 the signal efficiency at the
working point is basically 1.0 and remains there even when the background rejection
of the working point is changed by an order of magnitude. This makes the physical
analysis almost exclusively dependent on the choice of the working point.

A.4. Differences between datasets

As mentioned in section 6.3 the CNN type models have performed worse on the new
event data generated during the work for this thesis as compared to the data of [15].
We have tested the same model on both datasets, while fixing all other variables,
e.g. the hyperparameters2 and training set size. We have observed that the CNNs
perform systematically worse on the new data. As discussed in section 4.2 there
were some differences in the process used to generate the events. The main issue
of the wrong η-cut was, however, fixed in the newest version of [15] and cannot be
responsible for the difference. We do not suspect that the other differences in the
imposed cuts can be responsible for this either, since the cuts differ only slightly.
The different versions of the Monte-Carlo generators can contribute to the different
neural network performances. For example, we use MadGraph_aMC@NLO ver-
sion 3.5.1 while in [15] version 3.4.0 is used. To further investigate the differneces
between the datasets, we have trained a CNN classifier to distinguish between the
two datasets. For this, we have created a mix of both datasets for each process
(signal and background processes) and have labeled the new data as class 1 and the
other as class 0. We then use the jet images to train the ResNet-20 classifier and
find that the network is able to distinguish the tt̄tt̄-background with an accuracy
of over 80%, without much hyperparameter tuning. After consulting with the au-
thors of [15], we have found another difference during the event generation. Namely,
whilst they also simulate the tt̄tt̄-background at leading order (LO) they do so by
using the aMC@NLO codebase. This codebase is usually used for the NLO event
generation, does however also have the capability to generate LO events. They do
so by setting the QCD flag during the event generation:

generate p p > t t~ t t~ [QCD]

2Using optimized hyperparameter on each dataset leads to the same results.
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They then define the order as LO later on:

order=LO

Whereas, we do not set this flag and therefore use the MadGraph codebase. Since
this is the only significant difference between the datasets, we presume that this is
at least partially responsible for the performance difference. Since the influence of
different Monte-Carlo generators on the neural network performance and hence the
physical analysis is significant, we suggest studying this in further work.
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Acronyms

AUC Area Under the Curve.

BatchNorm Batch Normalization (Layer).

CCWZ Callan-Coleman-Wess-Zumino.

CNL CNN taking Charged, Neutral and Leptonic input.

CNLK CNN taking Charged, Neutral, Leptonic and Kinematic input.

CNN Convolutional Neural Network.

CP Charge Parity.

eMLP efficient Multilayer Perceptron.

EW Electro Weak.

FC Fully Connected (Network).

GAT Graph Attention (Network).

GCN Graph Convolution Network.

GNN Graph Neural Network.

GUT Grand Unified Theory.

LHC Large Hadron Collider.

LO Leading Order.

MCHM Minimal Composite Higgs Model.

MLP Multilayer Perceptron.

MRC Multi Representation Classifier.

NLO Next to Leading Order.
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pNGB pseudo Nambu-Goldstone Boson.

QCD Quantum Chromodynamics.

ReLU Rectified Linear Unit.

ROC-curve Receiver Operator Characteristic Curve.

SGD Stochastic Gradient Decent.

SM Standard Model.

VEV Vacuum Expectation Value.
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