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Abstract

The Standard Model (SM) falls short in explaining phenomena such as neutrino masses,

the anomalous magnetic moment of the muon and dark matter. This makes the need of

physics beyond the Standard Model (BSM) evident. Scotogenic Models are a collection of

BSM theories, which introduce a Z2 symmetry under which SM particles are even and new

BSM particles are odd. They can generate naturally small neutrino masses and provide

a dark matter candidate. This thesis considers the T1-2-A’ variant of Scotogenic models,

which was proposed in the work of Alvarez et al. [1] and can additionally explain the

anomalous magnetic moment of the muon.

Central to this work is the test of novel techniques to search the parameter space of the

T1-2-A’ model. Therefore the evolutionary algorithms NSGA-III and CMA-ES are intro-

duced and utilized to find valid parameter sets, given constraints from neutrino data, the

anomalous magnetic moment of the muon, charged lepton flavour violating (CLFV) pro-

cesses and the dark matter (DM) relic density. NSGA-III is a multiobjective optimization

algorithm, while CMA-ES is designed for single objective optimization. A modification

of the CMA-ES algorithm (h-CMA-ES) is proposed, which introduces a hierarchy to the

objectives and greatly improves the convergence rate. Additionally the results are com-

pared to a previous MCMC scan [1] of the T1-2-A’ model, where a modified Casas-Ibarra

parametrization of the Yukawa like couplings was utilized, to ensure a proper fit of neu-

trino data and the anomalous magnetic moment of the muon. This comparison is done

for the Yukawa like couplings, processes involving CLFV and DM candidates.

The h-CMA-ES algorithm yields parameter sets that exhibit a more comprehensive cov-

erage of the parameter space compared to NSGA-III, which tends to generate parameter

sets in a smaller sub region. Notably h-CMA-ES provides a 46% higher sampling efficiency

when compared to NSGA-III. Both NSGA-III and h-CMA-ES demonstrate the capabil-

ity to reproduce parts of the parameter regions found by the previous MCMC scan, and

additionally provide parameter sets outside the scope of the MCMC scan.

Lastly, a brief analysis of LHC phenomenology is conducted.
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Zusammenfassung

Das Standardmodell (SM) scheitert dabei, Phänomene wie Neutrino-Massen, das anomale

magnetische Moment des Myons und Dunkle Materie zu erklären. Dies verdeutlicht die

Notwendigkeit von Physik jenseits des Standardmodells (BSM).

Scotogenic-Modelle sind eine Sammlung von BSM-Theorien, die eine Z2-Symmetrie ein-

führen, unter der SM-Teilchen gerade und neue BSM-Teilchen ungerade sind. Sie können

auf natürliche Weise geringe Neutrino-Massen erzeugen und liefern einen Dunkle Materie

Kandidaten. Diese Arbeit betrachtet die T1-2-A’-Variante der Scotogenic-Modelle, die in

der Arbeit von Alvarez et al. [1] entwickelt wurde und zusätzlich das anomale magnetische

Moment des Myons erklären kann.

Hauptbestandteil dieser Arbeit ist der Test neuartiger Techniken zur Untersuchung

des Parameterraums des T1-2-A’ Modells. Dafür werden die evolutionären Algorithmen

NSGA-III und CMA-ES eingeführt und verwendet, um gültige Parametersätze zu fin-

den. Dabei werden Einschränkungen durch Neutrino-Daten, dem anomalen magnetische

Moment des Myons, Prozesse mit Flavourverletzung der geladenen Leptonen (CLFV)

und der Überrest-dichte der Dunklen Materie (DM) berücksichtigt. NSGA-III ist ein

Multikriterieller-Optimierungsalgorithmus, während CMA-ES für die Optimierung nach

einem einzigen Ziel entworfen wurde. Es wird eine Modifikation des CMA-ES-Algorithmus

(h-CMA-ES) vorgeschlagen, die eine Hierarchie in die Ziele einführt und die Konvergenz-

rate erheblich verbessert.

Zusätzlich werden die Ergebnisse mit einem früheren MCMC-Scan [1] des T1-2-A’-Modells

verglichen, bei dem eine modifizierte Casas-Ibarra-Parametrisierung der Yukawa-ähnlichen

Kopplungen verwendet wurde, um eine Anpassung der Neutrino-Daten und dem anoma-

len magnetischen Moment des Myons zu gewährleisten. Dieser Vergleich erfolgt für die

Yukawa-ähnlichen Kopplungen, Prozesse mit CLFV und dem DM-Kandidaten.

Der h-CMA-ES-Algorithmus liefert Parametersätze, die im Vergleich zu NSGA-III eine

umfassendere Abdeckung des Parameterraums aufweisen. h-CMA-ES zeigt insbesondere

eine 46% höhere Stichprobeneffizienz im Vergleich zu NSGA-III. Sowohl NSGA-III als

auch h-CMA-ES zeigen die Fähigkeit, Teile des Parameterraums zu reproduzieren, die

durch den vorherigen MCMC-Scan gefunden wurden, und liefern zusätzlich Parameter-

sätze außerhalb des Parameterbereichs des MCMC-Scans.

Abschließend wird eine kurze Analyse der LHC-Phänomenologie durchgeführt.
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Chapter 1

Introduction

The Standard Model of Particle Phyics (SM) stands as the pinnacle of achievements

in the realm of particle physics, providing a remarkably accurate and comprehensive

framework for elementary particles and their interactions. Measurements from Tevatron

[2] at Fermilab, the Large Electron–Positron Collider (LEP) [3] and the Large Hadron

Collider (LHC) [4] in CERN have validated its predictions to great accuracy.

Despite its successes, the Standard Model is not without its puzzles. In the SM neutrinos

are considered massless, but through observations of solar neutrinos and further experi-

ments [5, 6], the process of neutrino flavour oscillations became evident. This can only

be explained by attributing a non zero mass to neutrinos. With the mechanism behind

neutrino mass generation remaining an open question up until today, the need to extend

the SM is evident.

Another intriguing anomaly lies in the anomalous magnetic moment of the muon, as

measured at Fermilab in 2021 [7]. The experimental result deviates from the Standard

Model prediction by 4.2σ and latest results show an even greater deviation [8]. This

suggests the existence of unknown particles or forces that may be influencing the magnetic

properties of the muon.

Additional problems arise from observations of galaxy rotation curves and cosmic mi-

crowave background radiation. They strongly support the existence of dark matter [9,

10], a type of matter that only interacts gravitationally and maybe through the weak

force and an additional symmetry. In the ΛCDM model of cosmology dark matter makes

up 85% of all matter in the universe [11]. This phenomenon can only be explained by a

new theory of gravity or new particles, as the SM can not provide a suitable candidate.

While the SM has proven remarkably successful in describing particle physics phenomena

within certain energy regimes, its inability to address neutrino masses, the muon’s anoma-

lous magnetic moment, and the nature of dark matter signals the need for new theoretical

frameworks.

The most common method to resolve these issues is to introduce new physics beyond the
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Standard model (BSM). There are many BSM models using different techniques to explain

the inconsistencies. This thesis studies one type of these models, called Scotogenic model

(from greek: scótos ”darkness”+ genés ”offspring”→ ”created from darkness”). Scotogenic

models introduce a Z2 symmetry with new BSM particles odd under this symmetry. They

produce naturally small Majorana masses on one-loop level for neutrinos and the new

symmetry provides a bosonic or fermionic stable dark matter candidate.

The initial Scotogenic model was introduced by Ernest Ma in 2006 [12]. Since then,

numerous variations have been put forth to explain both neutrino masses and dark matter

in a coherent manner.

In this work the variant denoted as T1-2-A’ is discussed. The nomenclature T1-2-A’ was

developed in [1], where it is derived from the classification system by Restrepo et al. [13].

It serves as an expansion of the original T1-2-A model, addressing its lack of capacity

to simultaneously account for the anomalous magnetic moment of the muon, processes

involving Charged Lepton Flavor Violation (CLFV), and neutrino masses. The model

introduces two new scalar particles, one SU(2)L singlet, one douplet and four fermions,

split into 2 singlets and two Weyl fermion doublets. These new particles are odd under

the new Z2, while SM particles remain even. This model is able to radiatively generate

neutrino masses, can explain the anomalous magnetic moment of the muon and has a

stable dark matter candidate.

This work is dedicated to explore the parameter space of the T1-2-A’ model using novel

techniques. Therefore the evolutionary algorithms NSGA-III [14] and CMA-ES [15] are

introduced and utilized to search the parameter space. An additional aspect involves com-

paring the results to a previous search for this model using Markov Chain Monte Carlo

(MCMC) methods by Alvarez et al. [1]. And investigate the differences derived from the

different methods. In their search they modified the Casas-Ibarra (CI) parametrization

[16] to reduce the complexity of the parameter space of the T1-2-A’ model, whilst simul-

taneously also reducing the parameter space. On the contrary, no such simplifications

were made for the parameter search in this work. The aim is to see if these novel methods

yield parameter sets despite the higher complexity and if there are viable regions of the

parameter space outside the ones previously found.

This thesis is structured as follows. The 2. chapter introduces fundamental topics and

presents the relevant measurements for the later parameter search. These include the

neutrino mass, the anomalous magnetic moment of the muon, charged lepton flavour

violating processes and dark matter.

In chapter 3, the T1-2-A’ model is introduced with its new scalar and fermion sector.

Additionaly a short outline is given about the generation of neutrino masses at one loop

level, the anomalous magnetic moment and the charged lepton flavour violating processes.

Chapter 4 introduces the algorithms NSGA-III and CMA-ES. Therefore a brief introduc-
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tion to evolutionary algorithms and multiobjective optimization is provided. Furthermore

the adaptation of these algorithms for the T1-2-A’ model is described.

In Chapter 5, the results of the parameter search with the evolutionary algorithms are

discussed and juxtaposed to the previous MCMC scan. Furthermore, a brief analysis of

LHC phenomenology is conducted.
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Chapter 2

Physical fundamentals

In this chapter, a selection of physical concepts such as neutrino oscillations and the

anomalous magnetic moment of the muon are introduced. Furthermore charged lepton

flavour violating processes and Dark Matter will be discussed.

2.1 Neutrino masses

The neutrino, a fundamental particle in the SM, was first postulated by Wolfgang Pauli

in 1930 [17] to explain the apparent violation of energy conservation in radioactive beta

decay. It took until 1956 that Frederick Reines and Clyde Cowan successfully detected

neutrinos emitted from a nuclear reactor and confirming their existence [18].

As the name suggests neutrinos are fermions that possess no electric charge, and conse-

quently, they only interact through the weak force. Neutrinos, beeing a type of lepton,

manifest in three distinct flavours: the electron neutrino, muon neutrino and tau neutrino.

Due to their exclusively left-handed occurrence, neutrinos lack a Yukawa coupling that

would provide them a mass, which explains their apparent masslessness in the Standard

Model. The Homestake experiment in the late 1960s, aimed to detect electron neutrinos

generated in the sun, found a discrepancy in the flux of expected and measured neutrinos.

This gave rise to the solar neutrino problem [5]. Through later experiments, like Super

Kamiokande [6], it has become evident that neutrinos can oscillate between flavors, which

explains the neutrino flux deficit from the sun. This phenomenon can only be explained

by attributing a non-zero mass to neutrinos, suggesting the need for an extension of the

Standard Model.

The following derivation of neutrino oscillations is based on [19]. These oscillations are

induced by neutrino mixing, which means that neutrino flavour fields are not identical

with the neutrino mass eigenfields, but are related through a matrix U which describes the

strength of the overlap. Therefore the neutrino flavour states |να⟩ are linear combinations



2.1 Neutrino masses 5

of neutrino mass states |mj⟩:

|να⟩ =
3∑

i=0

U∗
αj |mj⟩ , (2.1)

where |να⟩ is a neutrino with flavour α. This flavour is determined by the charged lepton

in the production or detection process.

Since mass eigenstates propagate as plane waves, the propagation state of a neutrino with

energy E can be expressed as

|να, x⟩ =
3∑

j=1

U∗
αje

−i(Ejt−pjx) |mj⟩ , (2.2)

with neutrino momenta in the limit of high energies compared to the small neutrino mass

pj =
√
E2 −m2

j ≃ E −
m2

j

2E
for E ≫ mj . (2.3)

Therefore, the probability for a neutrino |να, x⟩ with flavour α at x = 0 to be measured

with flavour β at x = L is computed as |⟨νβ|να, L|νβ|να, L⟩|2. With the explicit form (2.2)

and momentum (2.3), the neutrino transition probability is given by

Pνα→νβ(L/E) =

∣∣∣∣∣
3∑

j=1

UβjU
∗
αje

−im2
jL/2E

∣∣∣∣∣
2

. (2.4)

From this equation one can conclude that the transition probability depends only on mass

squared differences e.g. m2
2 −m2

1.

In this basis, the matrix U matches the Pontecorvo-Maki-Nakagawa-Sakata matrix

(PMNS-matrix), which can be parameterized with the three mixing angles θ12, θ13, θ23

and the charge parity phase δ

UPMNS =

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδ

0 1 0

−s13e
iδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1

 , (2.5)

where sjk = sin θjk and cjk = cos θjk. The current best estimates for the values of the

mixing angles and the charge-parity phase are [20]

sin2(θ12) = 0.304± 0.012 , (2.6)

sin2(θ13) = 0.02219+0.00062
−0.00063 =

(
22.19+0.62

−0.63

)
· 10−3 , (2.7)

sin2(θ23) = 0.573+0.016
−0.020 , (2.8)

δ = 197+27
−24

◦ . (2.9)
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Figure 2.1: The normal and the inverted 3-neutrino mass spectrum.

Due to the extremely small mass of neutrinos, direct measurement is a challenging task.

Experiments like KATRIN, employing tritium beta decay, can only provide upper limits

(mνē < 0.8 eV/c2 [21]) for the neutrino mass. As a consequence, more precise information

is obtained through neutrino oscillations, but these are limited to mass squared differences.

Due to this limitation, the specific ordering of the masses remains unclear, giving rise to

the neutrino hierarchy problem. For simplicity, one can assume m1 < m2, establishing

the solar parameter ∆m2
⊙ = ∆m2

21 = m2
2 − m2

1 > 0 as positive. Consequently, the sign

of ∆m2
31 is undetermined, resulting in two types of mass spectra illustrated in Fig. 2.1.

Normal ordering implies m3 ≫ m2 > m1, while inverted ordering implies m3 ≪ m1 < m2.

The determination of the atmospheric parameter is based on measurements of atmo-

spheric neutrinos and lacks a unique definition. However, a widely adopted convention

assumes that ∆m2
atm represents the largest possible mass-squared difference. Adhering to

this convention, normal ordering corresponds to ∆m2
atm = ∆m2

31, and inverted ordering

corresponds to ∆m2
atm = ∆m2

23.

Due to the current preference for normal ordering over inverted ordering, the following

squared mass difference parameters are considered under normal ordering [20]

∆m2
⊙ = ∆m2

21 = 7.42+0.21
−0.20 · 10−23 (GeV)2 ,

∆m2
atm = ∆m2

31 = 2.517+0.026
−0.028 · 10−21 (GeV)2 . (2.10)

To generate neutrino masses beyond the standard model, new methods must be devised

which also should naturally yield small neutrino masses. The T1-2-A’ Scotogenic model

generates neutrino masses radiatively through one loop diagrams. This approach has the

advantage that the mass terms are inherently suppressed by a high energy scale ∝ v2/Λ0.
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2.2 Muon anomalous magnetic moment

Due to Quantum Electrodynamics (QED), every particle with a non-zero spin possesses

a magnetic moment

m⃗ = g
q

2m
S⃗ , (2.11)

where q represents the charge of the particle, m denotes its mass, S⃗ signifies the particle’s

spin, and g represents the gyromagnetic factor or g-factor. For particles with a spin of
1
2
, elementary charge e and mass me, the g-factor at the tree level is precisely g = 2.

This outcome stems directly from the Dirac equation. However, when taking into account

higher-order loop corrections, this is no longer true, leading to minor deviations.

To characterize this deviation the anomalous magnetic moment is defined as follows:

aα =
gα − 2

2
(2.12)

where α = {e, µ, τ}. The anomalous magnetic moment of the electron is one of the

most precisely masuered quantities in the realm of physics. The best experimental value,

determined from high precision cyclotron measurements [22], is

aexe = (1 159 652 180 59± 13) · 10−14 . (2.13)

This result aligns with the currently best theoretical prediction of [23],

athe = (1 159 652 18± 75) · 10−11 . (2.14)

Such agreement stands as one of the notable achievements of the standard model.

In the case of the muon, discrepancies between experimental measurements and theoretical

predictions have persisted for over a decade, suggesting potential new physics beyond the

standard model.

In the SM, the anomalous magnetic moment is determined through a perturbative ex-

pansion in the fine-structure constant α. This expansion starts with the Schwinger term

α/(2π) and extends up to and including terms of O(α5). Electroweak corrections have

been meticulously computed up to the full two-loop order and accounting for dominant

three-loop effects. These calculations only introduce minor uncertainties in comparison

to experimental uncertainties.

Theoretical uncertainties mainly arise from QCD corrections, particularly hadronic vac-

uum polarization (HVP) and hadronic light-by-light scattering (Hlbl) [24]. Calculating

these effects poses a significant challenge due to their non-perturbative nature. There

are two fundamental approaches to calculating these QCD corrections. The data driven

approach (DDA) utilizes experimental data from scattering processes. While lattice QCD
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discretizes spacetime into distinct points. This makes it possible to make numerical cal-

culations and later take to continuum limit. The problem here arises, because the data

driven approaches and lattice QCD give slightly different results for HVP. While lattice

calculations tend to agree with the experimental value, the more precise DDA results have

a substantial deviation.

As this tension requires further investigation, this work relies on the theoretical value from

the white paper [24]:

athµ = (1 165 918 10± 43) · 10−11 . (2.15)

As for the experimental value, combining FNAL 2021 results [7] with previous BNL 2006

measurements yields an experimental average of:

aexµ = (1 165 920 61± 41) · 10−11 . (2.16)

This results in a total discrepancy of

∆aµ = (2.51± 0.59) · 10−9 , (2.17)

equivalent to a deviation of approximately 4.2σ between theory and experiment. Conse-

quently, the anomalous magnetic moment of the muon emerges as an intriguing testing

ground for BSM physics.

The latest results from FNAL in October 2023 [8] improved the experimental uncertainties

by a factor of 2

aexµ = (1 165 920 59± 22) · 10−11 ,

∆aµ = (2.49± 0.48) · 10−9 . (2.18)

Which leads to an even greater deviation of about 5.1σ, intensifying the interest in further

investigation. However, in this study, the 2021 results are employed due to the comparison

with the previous MCMC scan [1]. Moreover these results where published after the data

collection for this project began.

2.3 Charged lepton flavour violating processes

Charged lepton flavor violating processes are rare particle interactions in which a charged

lepton (e.g., electron, muon, or tau) transforms its flavor, converting into another charged

lepton of a different flavour. This transformation typically involves the emission of a

photon

lα → lβγ with α ∈ {µ, τ} , β ∈ {e, µ} and α ̸= β . (2.19)



2.3 Charged lepton flavour violating processes 9

Additionally there are processes including four leptons:

lα → lβlξlκ with α ∈ {µ, τ} , β, ξ, κ ∈ {e, µ} and α ̸= β, ξ, κ , (2.20)

These CLFV processes have never been observed. However, their existence is somewhat

expected, since flavor is not a fundamental symmetry of the SM. Therefore they serve as

important precision observables. Additionally, flavour is violated by weak decays of quarks

in the CKM matrix and by neutral leptons through neutrino oscillations, as described in

section 2.1.

The branching ratios for these processes are calculated from the partial Γ(lα → lβγ) and

total Γtot(µ) decay width

BR[lα → lβγ] =
Γ(lα → lβγ)

Γtot(lα)
.

BR[lα → lβlξlκ] =
Γ(lα → lβlξlκ)

Γtot(lα)
. (2.21)

As of now, no observations of CLFV processes have been observed, resulting only in upper

limits for the branching ratios. Their current best estimate is given by [25]

BR[µ → eγ] < 4.2 · 10−13 , BR[τ− → µ−µ+µ−] < 2.1 · 10−8 ,

BR[τ → eγ] < 3.3 · 10−8 , BR[τ− → µ+e−e−] < 1.5 · 10−8 ,

BR[τ → µγ] < 4.2 · 10−8 , BR[τ− → µ−e+e−] < 1.8 · 10−8 ,

BR[µ− → e−e+e−] < 1.0 · 10−12 , BR[τ− → µ−e+µ−] < 1.7 · 10−8 ,

BR[τ− → e−e+e−] < 2.7 · 10−8 , BR[τ− → e−µ+µ−] < 2.7 · 10−8 . (2.22)

Lepton flavor-violating processes can occur during scattering on the nuclei of elements

such as titanium, lead, and gold, leading to strongly constraint conversion ratios

CRµ→e(A) =
Γ(µ−A → e−A)

Γ(µ− A → capture)
with A = {Ti, Pb, Au} , (2.23)

with the currently best limits [25]

CRµ→e(Ti) < 4.3 · 10−12 ,

CRµ→e(Pb) < 4.3 · 10−11 ,

CRµ→e(Au) < 7.0 · 10−13 . (2.24)

Additionally there are decays for the τ− to another charged lepton and pion π or a newly

introduced scalar η from the Scotogenic model, which have to be considered

τ− → lαπ with α = {µ, e} ,
τ− → lαη with α = {µ, e} . (2.25)
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Their current experimental bounds are given by [25]

BR[τ− → e−π] < 8.0 · 10−8 , BR[τ− → µ−π] < 1.1 · 10−7 ,

BR[τ− → e−η] < 9.2 · 10−8 , BR[τ− → µ−η] < 6.5 · 10−8 ,

BR[τ− → e−η′] < 1.6 · 10−7 , BR[τ− → µ−η′] < 1.3 · 10−7 . (2.26)

Lastly the Z0 boson decay has to be considered, as it can possibly decay into two different

charged leptons. This decay is again strongly constraint with the current best limits [25]

BR(Z0 → e±µ∓) < 7.5 · 10−7 ,

BR(Z0 → e±τ∓) < 5.0 · 10−6 ,

BR(Z0 → µ±τ∓) < 6.5 · 10−6 . (2.27)

2.4 Dark matter

Dark matter is a hypothetical, non-luminous form of matter that constitutes about 85%

of the total mass in the universe [11]. Its existence is inferred from its gravitational effects

on the visible matter in galaxies and galaxy clusters. The concept of dark matter was

first postulated by the Swiss astronomer Fritz Zwicky in 1933 [9] when he observed that

the visible matter within the Coma Cluster was insufficient to account for the cluster’s

gravitational dynamics. Subsequent astrophysical observations, including galaxy rota-

tion curves and the cosmic microwave background radiation, have provided compelling

empirical evidence for the existence of dark matter [10].

One theory presumes that dark matter is made up of primordial black holes (PBH), a

hypothetical type of black holes that where created in the inflation era of the universe,

shortly after the Big Bang [26]. But there are strong constraints on the mass ranges of

these PBH [27].

Other theories include axions, a type of particle originally introduced by R. D. Peccei and

Helen R. Quinn in 1977 [28], to resolve the strong CP problem [29]. If axions exist within

a certain mass range, they are a probable candidate for dark matter.

However, this work looks at the concept of weakly interacting massive particles (WIMPs)

as a potential explanation for dark matter [10]. As the name implies, WIMPs solely

engage in gravitational interactions and interactions through the weak force. However,

no particle fitting this description has been detected thus far. Additionally, introducing a

charge under a new symmetry, guarantees a stable dark matter candidate as the lightest

particle after electroweak symmetry breaking.

WIMPs are theorized as relic particles from the early Universe when particles were in

thermal equilibrium. At high temperatures, dark matter particles and their antiparticles

would form and annihilate into lighter particles. As the Universe expanded and cooled,
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the thermal energy of these lighter particles decreased, preventing the formation of dark

matter particle-antiparticle pairs. Although annihilation continued, the number density of

dark matter particles exponentially decreased. As the Universe expanded, the interaction

eventually ceased, and the abundance of dark matter particles remained constant. The

number density of dark matter particles after this ”freeze-out” is called relic density.

The relic density serves as one of several observables well-suited for testing new models,

and it is subsequently employed in this work. Current measurements of the relic density

by the Planck space telescope [30] provide a value of

ΩDMh
2 = 0.120± 0.001 . (2.28)
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Chapter 3

Scotogenic Model

This chapter presents the T1-2-A’ Scotogenic model, introducing its extensions to the SM

and investigating the generation of neutrino masses. Furthermore, contributions to the

anomalous magnetic moment of the muon and processes involving charged lepton flavour

violation will be examined.

3.1 T1-2-A’ Scotogenic model

The original Scotogenic model (greek: ”created from darkness”) was introduced in 2006

by Ernest Ma [12] as a straightforward extension of the Standard Model. This model

introduces a new Z2 symmetry to the SM gauge group. It has the capability to generate

small majorana neutrino masses and due to the new Z2 symmetry features a stable dark

matter candidate.

In this work a variant called T1-2-A’ scotogenic model is discussed. The nomenclature

T1-2-A’ was developed in [1], where it is derived from the classification system proposed

by Restrepo et al. in their 2013 work [13]. It serves as an extension of the original T1-

2-A model, addressing its lack of capacity to simultaneously account for the anomalous

magnetic moment of the muon, processes involving charged lepton flavor violation, and

neutrino masses. Consequently, the model has been enhanced by the inclusion of an

additional singlet fermion, which is denoted by the prime symbol.

In the Scotogenic model new added particles are all odd under the new Z2 symmetry and

can be found in Table 3.1, while all SM particles are even under this symmetry. The

scalar sector is extended with a SU(2) singlet S and a doublet η. The fermion sector is

extended by two SU(2) singlets F1,2 and two Weyl fermion doublets Ψ1,2 having opposite

hypercharge.
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SU(3)c SU(2)L U(1)Y Z2

η 1 2 1 −
S 1 1 0 −
F1,2 1 1 0 −
Ψ1 1 2 −1 −
Ψ2 1 2 1 −

Table 3.1: Additional particle content of the T1-2-A’ model. All new fields are odd under Z2.

There is one additional SU(2)L doublet scalar η and one additional singlet scalar S. In the

Fermionic sector there are two additional singlets F1,2 and two doublet Weyl fermions Ψ1,2.

3.1.1 Scalar sector

The scalar doublet η has the same quantum numbers as the Higgs field H, except for

the Z2 symmetry. Because electroweak symmetry breaking (EWSB) exclusively involves

the Higgs doublet, only the Higgs acquires a vacuum expectation value (vev). Therefore

subsequent to the EWSB the scalar doublets can be expanded into their components as

follows

H =

(
G+

1√
2

[
v + h0 + iG0

]) , η =

(
η+

1√
2

[
η0 + iA0

]) . (3.1)

Here, h0 is the SM Higgs boson, v =
√
2⟨H⟩ ≈ 246 GeV denotes the vev and G0 and G+

are the would-be Goldstone bosons, that get absorbed by Z and W bosons. Moreover, η0

and A0 are CP -even and CP -odd neutral scalars, and η+ is a charged scalar.

The scalar potential of the model is given by

Vscalar = M2
H

∣∣H∣∣2 + λH

∣∣H∣∣4 + 1

2
M2

SS
2 +

1

2
λ4SS

4 +M2
η

∣∣η∣∣2 + λ4η

∣∣η∣∣4
+

1

2
λSS

2
∣∣H∣∣2 + 1

2
λSηS

2
∣∣η∣∣2 + λη

∣∣η∣∣2∣∣H∣∣2 + λ′
η

∣∣Hη†
∣∣2

+
1

2
λ′′
η

[(
Hη†

)2
+ h.c.

]
+ α

[
SHη† + h.c.

]
.

(3.2)

The first two terms correspond to the SM part associated with the Higgs doublet H.

Both new scalars S and η have a mass term and interactions with the Higgs doublet H.

Additionally there is a trilinear coupling α involving all three scalars. For simplicity, both

λ′′
η and α are assumed to be real. Therefore all couplings are real. This assumption implies

the absence of any mixing between the CP-odd state A0 with the CP-even states η0 and

S. After EWSB, the typical minimisation relation in the Higgs sector

m2
h0 = −2M2

H = 2λHv
2, (3.3)
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enables the elimination of the mass parameter M2
H in favor of the Higgs self-coupling

λH . A Higgs mass of mh0 = 125GeV leads to a tree level value of λH ≈ 0.13. In the

subsequent parameter search, wherein one-loop corrections are taken into account, the

relation becomes more intricate, leading to a deviation in the value of λH . Consequently,

it is included as a free parameter to appropriately fit the Higgs mass.

Scalar Masses

By inserting the scalar doublets (3.1) into the scalar potential (3.2), the masses of the

BSM scalars after EWSB can be derived. The relevant terms contributing to the masses of

the BSM scalars originate from the Lagrangian quadratic in S, η0 and A0. The resulting

mass matrix of the neutral scalars in the basis {S, η0, A0} is given by

M2
ϕ =

M2
S + 1

2
v2λS vα 0

vα M2
η + 1

2
v2λ+ 0

0 0 M2
η + 1

2
v2λ−

 . (3.4)

with the definition λ± = λη + λ′
η ± λ′′

η. This Matrix can be diagonalized by an orthogonal

matrix Uϕ to get the mass eigenstatesϕ0
1

ϕ0
2

ϕ0
3

 = Uϕ

 S

η0

A0

 . (3.5)

Note that the mass eigenstate ϕ0
3 is the same as the CP-odd scalar A0, because there is

no mixing with the other neutral scalars. The corresponding squared masses at tree-level

read as

m2
ϕ0
1,2

=
1

2

M2
S +M2

η +
1

2
v2 (λS + λ+)∓

√[
M2

S −M2
η +

1

2
v2 (λS − λ+)

]2
+ 4v2α2

 ,

m2
ϕ0
3
= M2

η +
1

2
v2λ− , (3.6)

where mϕ0
1
< mϕ0

2
. The tree-level mass of the charged scalars is given by

m2
η± = M2

η +
1

2
v2λη . (3.7)

3.1.2 Fermion sector

The Lagrangian for the additional fermions reads

Lfermion = i
(
Ψjσ

µDµΨj +
1

2
F jσ

µ∂µFj

)
− 1

2
MFij

FiFj

−MΨΨ1Ψ2 − y1iΨ1HFi − y2iΨ2H̃Fi

− gkΨΨ2LkS − gkFj
ηLkFj − gkRe

c
kη̃Ψ1 + h.c.

(3.8)
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with i, j = 1, 2 and k = 1, 2, 3. Lk and eck denote the left-handed and right-handed

leptons, respectively. Moreover, the notation ϕ̃ = iσ2ϕ
∗ is introduced for ϕ = H, η. The

fermionic Lagrangian comprises not only kinematic and mass terms but also Yukawa like

couplings (yij) for the BSM fermions. Additionally, there are Yukawa like couplings (g)

linking SM leptons to a BSM scalar and fermion, respectively. Eventhough these are not

actual Yukawa couplings, they will be refered to as yukawa couplings in the following.

For the singlet masses, one can always find a basis where MFij
is diagonal. Therefore the

notation can be simplified by setting Mi = MFii
for i = 1, 2. Moreover, it is assumed that

|M1| ≤ |M2|.

Fermion masses

For the masses of the fermions the SU(2)L representation of the Weyl Fermions

Ψ1 =

(
Ψ0

1

Ψ−
1

)
, Ψ2 =

(
Ψ+

2

−Ψ0
2

)
, (3.9)

is inserted into the Lagrangian (3.8). After EWSB, one gets four neutral fermions with

the corresponding mass matrix in the Basis {F1, F2,Ψ
0
1,Ψ

0
2}

Mχ =


M1 0 v√

2
y11

v√
2
y21

0 M2
v√
2
y12

v√
2
y22

v√
2
y11

v√
2
y12 0 MΨ

v√
2
y21

v√
2
y22 MΨ 0

 . (3.10)

This matrix can be diagonalized by a unitary matrix Uχ, giving the four mass eigenstates
χ0
1

χ0
2

χ0
3

χ0
4

 = Uχ


F1

F2

Ψ0
1

Ψ0
2

 , (3.11)

with the eigenvalues mχi
ordered in the convention mχi

≤ mχj
for i < j. Additionally

there is one charged lepton of the form χ− = (Ψ−
1 , Ψ̄

−
2 )

T , using the convention Ψ̄−
2 = (Ψ+

2 )
†

with mass m−
χ = MΨ.

3.2 Generation of neutrino masses, the anomalous magnetic

moment of the muon and CLFV processes

The following effects are generated at one-loop level and can be modeled by using effective

operators. An effective operator or effective theory is an approximation to describe the
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behavior of a system at a lower energy scale. The key concept is that at lower energies,

certain degrees of freedom may become irrelevant, and their effects can be effectively

encoded in terms of a smaller set of fields and parameters. Effective theories work best

when there is a large gap between the energy scale of interest and the energy scale of the

underlying dynamics. The four-fermion interaction proposed by Enrico Fermi in 1933 is

one of the best-known effective field theories. It described the beta decay as a point like

interaction between the four involved fermions and therefore serves as a low energy limit

of the weak force.

3.2.1 Neutrino masses

To generate neutrino masses it is practical to introduce a vev to the neutrinos through

interactions with the Higgs field. But it must be taken care of, that the neutrino mass is

sufficiently small, to agree with current measurements (mνē < 0.8 eV/c2 [21]).

Because the new scalars in the T1-2-A’ model do not acquire a vev the lowest order

operator generating neutrino masses is the five dimensional Weinberg operator

OWB = LLHH . (3.12)

This higher dimensional operator is suppressed by a high energy scale Λ0, leading to

naturally small neutrino masses proportional to v2/Λ0. At tree level there are three

realizations of this operator. The Seesaw mechanism type I,II and III, distinguished

by the new mediating particle. In the present case, the Z2 symmetry forbids tree level

diagrams. Therefore neutrino masses are generated radiatively through one loop diagrams.

There are seven different diagrams (depicted in the appendix Figure A.2), which can be

differentiated into three categories depending on the yukawa couplings g. There are two

diagrams ∝ g2F and ∝ gFgΨ each, and three diragrams ∝ g2Ψ.

One example (∝ g2F ) is shown on the left in Figure 3.1. The Leptons L interact with the

majorana fermions Fi and the doublet scalars η through the new yukawa coupling gF . To

complete the fermion line a majorana mass term is inserted. The new scalars η complete

via the coupling λ′′
η with the Higgs doublet H.

After EWSB, the Higgs contributes its vev and there is only one type of diagram left

depicted on the right hand side of Figure 3.1. It contains a loop consisting of a neutral

scalar ϕ0
k with k = {1, 2, 3} and a neutral fermion χj with j = {1, 2, 3, 4}. To calculate

the majorana mass matrix the loop in the diagram has to be calculated. This calculation

is done after EWSB with the new couplings λα
j,k. Because p2 = m2

ν and the mass of the

neutrinos is very small compared to the masses of the neutral scalars and fermions, the

calculation can be viewed in the limit p → 0. With this simplification the neutrino mass
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H H

Lα Fi Fj Lβ

η η

MF

gαFi gβFj

λ′′
η να

φ0
k

χj

νβ
λαj,k λβj,k

1

Figure 3.1: Neutrino mass generation in the T1-2-A’ Scotogenic model. The vertex factors are

added in blue. Left side represents one example of the total seven possible diagrams in gauge

basis depicted in the appendix A. Right side is the only type of diagram in the mass basis. The

arrows indicate the flow of hypercharge (left) and electric charge (right).

matrix can be calculated

(mν)αβ =
1

16π2

∑
j,k

λα
j,kλ

β
j,kmjB0(0,mj,mk) , (3.13)

with the two point function

B0(0,m0,m1) =
m2

0

m2
0 −m2

1

ln

(
m2

1

m2
0

)
. (3.14)

To complete this calculation the λα
j,k couplings have to be determined from the original

g couplings. This is done by rewriting the lagrangian (3.8) with the mixing in the scalar

and fermionic sector (3.5, 3.11).

L = −gαΨνα(U
†
χ)4j(U

T
ϕ )1kχjϕ

0
k

−
2∑

i=1

(
gαFi

1√
2
να(U

†
χ)ij(U

T
ϕ )2kχjϕ

0
k + gαFi

i√
2
να(U

†
χ)ij(U

T
ϕ )3kχjϕ

0
k

)
!
= λα

j,kναχjϕ
0
k . (3.15)

From this it follows that the new couplings are described by:

λα
j,k = −

[
gαΨ(U

†
χ)4j(U

T
ϕ )1k +

2∑
i=1

gαFi

1√
2
(U †

χ)ij
(
(UT

ϕ )2k + i (UT
ϕ )3k

)]
. (3.16)

Inserting the explicit couplings into (3.13) gives the mass matrix depending on the original

couplings before EWSB and the neutral scalar and fermionic mixings. This neutrino mass

matrix can be expressed as [1]:

mν = GTMLG , (3.17)
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where G contains the yukawa couplings gΨ and gF1,2 :

G =

g1Ψ g2Ψ g3Ψ
g1F1

g2F1
g3F1

g1F2
g2F2

g3F2

 , (3.18)

and ML is a symmetric 3× 3 Matrix containing the information of the loop function and

the mixing of the neutral scalar and fermionic sector. The explicit entries read

(ML)11 =
∑
j,k

bjk(U
†
χ)

2
4j(U

T
ϕ )

2
1k , (3.19)

(ML)12 = (ML)21 =
1√
2

∑
j,k

bjk(U
†
χ)1j(U

†
χ)4j(U

†
ϕ)1k(U

T
ϕ )2k , (3.20)

(ML)22 =
1

2

∑
j,k

bjk(U
†
χ)

2
1j

[
(UT

ϕ )
2
2k − (UT

ϕ )
2
3k

]
, (3.21)

(ML)13 = (ML)31 =
1√
2

∑
j,k

bjk(U
†
χ)2j(U

†
χ)4j(U

T
ϕ )1k(U

T
ϕ )2k , (3.22)

(ML)23 = (ML)32 =
1

2

∑
j,k

bjk(U
†
χ)2j(U

†
χ)1j

[
(UT

ϕ )
2
2k − (UT

ϕ )
2
3k

]
, (3.23)

(ML)33 =
1

2

∑
j,k

bjk(U
†
χ)

2
2j

[
(UT

ϕ )
2
2k − (UT

ϕ )
2
3k

]
, (3.24)

where j = 1, 2, 3, 4, k = 1, 2, 3 and the loop integrals are expressed in the functions

bjk =
1

16π2

mχ0
j

m2
ϕ0
k
−m2

χ0
j

[
m2

χ0
j
ln
(
m2

χ0
j

)
−m2

ϕ0
k
ln
(
m2

ϕ0
k

)]
. (3.25)

This mass matrix can then be diagonalized into the mass eigenstates and the eigenvalues

represent the neutrino masses mi, from which the corresponding mass squared differences

can be calculated. In the Basis, where the SM lepton yukawa couplings are diagonal, the

rotation matrix Uν corresponds to the PMNS matrix from which the mixing angles and

CP phase can be determined.

3.2.2 Anomalous magnetic moments and charged lepton flavour violat-

ing processes

The charged lepton flavour violating processes lα → lβγ can be modeled with the effective

operator

O = Lσµνe
c
RF

µνH , (3.26)

where L and ecR are the left handed lepton doublet and the right handed lepton singlet

respectively. H is the Higgs doublet. The field strength tensor F µν contains a photon
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and is contracted with σµν = i
2
[γµ, γν ], where [γµ, γν ] is the commutator of two gamma

matrices γµ. This operator is called Wilson operator.

The following calculation regarding magnetic moments and the simple CLFV processes

follows the approach of Crivellin et. al. [31]. With the Higgs contributing its vev, the

effective Hamiltonian is given by

H = c
lβ lα
R l̄βσµνPRlαF

µν + h.c. , (3.27)

where c
lβ lα
R is a so called Wilson coefficient and PR is the right projection operator. Note,

that the vev is absorbed into the Wilson coefficient c
lβ lα
R . From this Hamiltonian simple

formulas for the anomalous magnetic moment and the CLFV processes for the two body

decays can be derived

aα = −2mα

e

(
clαlαR + clαlα∗R

)
= −4mα

e
Re
[
clαlαR

]
,

BR[lα → lβγ] =
mα

4πΓtot(lα)

(
|clαlβR |2 + |clβ lαR |2

)
. (3.28)

where e is the elementary charge. In a general BSM model with new fermions Ψ and new

scalars Φ the general lagrangian can be expressed in the form

L = Ψ̄
(
ΓαL
ΨΦPL + ΓαR

ΨΦPR

)
lαΦ

∗ + h.c. , (3.29)

where lα are the SM leptons and ΓαL
ΨΦ the new couplings. From this all BSM contributions

to the Wilson coefficients can be expressed as

c
lαlβ
R =

e

16π2

MΨ

M2
Φ

ΓβL∗
ΨΦ ΓαR

ΨΦ

[
f

(
M2

Ψ

M2
Φ

)
+Qg

(
M2

Ψ

M2
Φ

)]
+

e

16π2

1

M2
Φ

(
mαΓ

βL∗
ΨΦ ΓαL

ΨΦ +mβΓ
βR∗
ΨΦ ΓαR

ΨΦ

) [
f̃

(
M2

Ψ

M2
Φ

)
+Qg̃

(
M2

Ψ

M2
Φ

)]
, (3.30)

where Q is the electric charge of Ψ and MΦ, MΨ are the masses of the BSM scalars and

fermions, respectively. The explicit form of the loop functions f , g, f̃ and g̃ can be found

in equation (B.1) in the appendix. Since this holds true for all BSM models, the only

challenge is to find the model specific coefficients Γ.

The dominant contributions in the T1-2-A’ model stem from the diagrams depicted in

Figure 3.2. The left side is represented in the gauge basis, while the right side is expressed

in the mass basis following EWSB. In the upper diagram, the fermion line is linked through

the mass term MΨ, and the scalar line is connected via the trilinear coupling α. In the

lower diagram, the singlet fermion Fi couples with Ψ1 and the Higgs, whereas the scalar

η establishes a direct link with the leptons. The key distinction lies in the coupling to the

left-handed fermion doublet: it is gΨ in the upper diagram and gF in the lower diagram.

The F µν field can couple to any field with non zero hypercharge.
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Lα S η ecRβ

Ψ2 Ψ1

H†

α
gΨ gR

MΨ

l−α

χ−

φ0
k

l−β

γ

Lα Fj Ψ1 ecRβ

η

H†

y1
gF gR l−α

χ0
j

η−

l−β

γ

Figure 3.2: Dominant contributions to the anomalous magnetic moment of the muon and the

charged lepton flavour violating processes. The vertex factors are added in blue. Left side is in

gauge basis. Right side is in mass basis after EWSB. The arrows indicate the flow of hypercharge

(left) and electric charge (right). In the left diagrams the Fµν field can couple to any field with

a non zero charge.

After EWSB, particles are depicted in the mass basis and form the diagrams on the right

in Figure 3.2. In the upper diagram the majorana fermions Ψi provide a charged fermion

χ−, the Higgs contributes its vev and and due to the scalar singlet S the bottom line

yields a neutral scalar ϕ0
k, resulting in the top right diagram. In the lower diagram the

scalar doublet η provides a charged scalar η− and the neutral fermion χ0
j stems from the

singlet Fj connecting the fermion line, resulting in the diagram in the bottom right.

The top diagram yields the coefficients

ΓαL
k = −gαΨ(U

T
ϕ )1k (3.31)

ΓβR
k = −gβR

1√
2
(UT

ϕ )2k + gβR
i√
2
(UT

ϕ )3k . (3.32)

For the bottom diagram the coefficients are given by

ΓαL
j = −

2∑
i

gαFi
(U †

χ)ij (3.33)

ΓβR
j = −gβR(U

†
χ)3j . (3.34)

From this the Wilson coefficients can be determined and therefore the anomalous magnetic

moment and the Branching ratios for lα → lβγ.
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In this model there are also processes involving four leptons lα → lβlγlδ, which have strong

experimental constraints. The calculation of these processes follows Ernesto Arganda et

al. [32].

The fundamental processes involve penguin diagrams, wherein the photon couples with the

charged fermion χ− or scalar η− in the loop, as illustrated in Figure 3.2 right, resulting

in a lepton-antilepton pair. Furthermore, this intermediary photon can be substituted

with a Z0 boson , giving rise to supplementary diagrams. Moreover, the neutral fermion

χ0
j or scalar ϕ0

k in the loop can couple to the Higgs, which can then aswell produce a

lepton-antilepton pair. Additionally, box diagrams incorporate either a charged scalar

and neutral fermion or a neutral scalar and charged fermion, contributing further to the

overall process. All these processes contribute to the four lepton decay lα → lβlγlδ.

Additional constraints come from Z0 decays into two different charged leptons. For these

processes Z0 → l±i l
∓
j one part can be derived from the diagrams in Figure 3.2 where the

Z0 boson couples to the charged fermion χ− or scalar η− in the loop, resulting in two

leptons of different flavour. Moreover, because the Z0 boson couples differently to left

and right handed fermions, additional contributions have to be considered.

The µ → e conversion process occurring at the cores of titanium (Ti), lead (Pb), and gold

(Au) is once again depicted by the diagrams presented in Figure 3.2. In this scenario,

the photon or Z0 boson interacts with the atomic nucleus of the corresponding elements.

Contrary, the diagrams involving the Higgs connecting the neutral scalar or fermion in

the loop to the atomic nucleus are significantly suppressed. Additionally there are no box

diagrams, as the BSM particles do not couple to the quarks. Consequently, the conversion

rate CRµ→e(E) for E = {Ti, Pb, Au} can be determined from the dominant processes.
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Chapter 4

Algorithms NSGA-III and CMA-ES

With the goal of exploring the parameter space of the T1-2-A’ model using the NSGA-III

and CMA-ES algorithms, this chapter provides an introduction to these optimization tech-

niques. Beginning with fundamental principles of evolutionary algorithms, followed by an

in-depth presentation of the single-objective algorithm, CMA-ES. Additionally, the con-

cepts of Pareto improvement and non-dominated fronts are introduced, and subsequently

applied to explain the NSGA-III algorithm. Finally, the adaptation of these algorithms

for the T1-2-A’ Scotogenic model is described and the MCMC scan from the previous

work by Alvarez et al. [1] is introduced.

4.1 Introduction to Evolutionary algorithms

To explore the parameter space of the scotogenic model and find suitable parameter sets,

evolutionary algorithms are employed. Evolutionary algorithms are a class of optimiza-

tion algorithms inspired by the principles of biological evolution. They mimic the process

of natural selection to iteratively improve solutions to complex problems. In each gener-

ation, a population of these candidate solutions undergoes selection, crossover (mating),

and mutation operations to produce a new generation of potential solutions. Over time,

these algorithms converge towards optimal or near-optimal solutions. Due to the close

connection to biological evolution, solutions are referred to as individuals and a set of

solutions as a population.

In this thesis two kinds of evolutionary algorithms are employed. One kind of evolutionary

algorithms are genetic algorithms (GA), e.g. NSGA-III. And the other kind is Evolution-

ary strategy (ES), e.g. CMA-ES. The fundametnal flow of genetic algorithm consists of

four steps:

• Calculate fitness for each individual

• Select best individuals
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• Generate new population using Crossover (mating)

• Mutation

Firstly, the algorithm calculates the fitness of a each individual in the population. Follow-

ing this, it selects the most promising individuals for reproduction. Thirdly, it generates

new individuals through a combination of crossover and mutation, resulting in offspring

with potential improvements. Lastly, the algorithm replaces parts or the entire population

with this new generation of offspring. This iterative process continues until a predefined

convergence criterion is achieved. Ideally, this can result in offspring that inherit and

combine the strengths exhibited by both parents. Mutation plays a crucial role in the

exploration of parameter spaces to generate traits beyond those already inherent within

the existing population.

For crossover there is one important operator called simulated binary crossover (SBX) [33,

34]. This operator involves taking two parents and producing two offspring individuals.

The key characteristic of the offspring is that the average of their genes is the same as

the average of the parental genes. Incorporating the crowding degree parameter ηc, this

operator utilizes a random distribution. The random number drawn from this distribution

determines how similar the offspring is to the parents. A higher value of ηc tends to result

in offspring closely resembling the parents, while a lower value of ηc leads to greater

dissimilarity among individuals. For details see appendix C. The crossover operation

is usually done step by step, taking two individuals off the parent population into the

offspring population and apply the crossover operation based on the crossover probability.

For mutation the polynomial mutation [35] will be important. It utilizes a polynomial

distribution to perturb the gene of an individual in its vicinity. The perturbation is

regulated by a crowding degree denoted as ηm. Similar to the simulated binary crossover,

an elevated ηm leads to minor deviations, whereas a higher value of ηm induces a more

pronounced mutation. For details see appendix C. In genetic algorithms, the mutation

of an individual is determined by a mutation probability. Subsequently, each gene of this

individual undergoes mutation based on a specific probability known as the individual

mutation probability. This value is typically small (∼ 1) and signifies, on average, the

amount of genes that undergo mutation.

The polynomial mutation operator is crafted to be constrained within a specified interval,

preventing the generation of mutations outside that range. A similar constraint can be

applied to the SBX operator.

In evolutionary strategies, the fundamental process shares similarities with genetic al-

gorithms (GAs), involving fitness determination and selection. However, the generation

of the subsequent population does not strictly rely on crossover and mutation mecha-

nisms. In the case of Covariance Matrix Adaptation Evolution Strategy, for instance, the
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succeeding generation is sampled from an iteratively adapted covariance matrix.

Evolutionary algorithms are versatile and can be applied to a wide range of problem types.

Especially, not needing derivatives is an advantage when dealing with non-differentiable or

non-continues objective functions. However, they can get computationally expensive when

dealing with high numbers of populations or generations. Furthermore the performance

is highly dependent on hyperparameters and finding the right set of hyperparameters can

be challenging.

4.1.1 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a second-order ap-

proach that estimates the positive definite covariance matrix of the multivariate normal

distribution through an iterative procedure. The approach follows a maximum-likelihood

principle, aiming to enhance the probability of successful candidate solutions. The mean

of the distribution is iteratively updated to maximize the likelihood of previously suc-

cessful candidate solutions. Simultaneously, the covariance matrix of the distribution

undergoes incremental updates to increase the likelihood of previously successful search

steps. Thereby approximating the inverse Hessian matrix. Furthermore, the trajectory

of the distribution mean is documented as evolution paths. These paths capture crucial

information about the correlation between consecutive steps.

The standard CMA-ES algorithm is designed for single-objective optimization. However,

for the given problem the requirement arises for a methodology capable of handling mul-

tiple objectives. This is elaborated on in section 4.2.

The algorithm depicted below follows the methodology outlined by Nikolaus Hansen [36].

CMA-ES follows the basic principles of evolutionary algorithms. An offspring generation,

denoted as g + 1, is generated by sampling λ ≥ 2 individuals from a multivariate normal

distribution. The fundamental equation from which the individuals x
(g+1)
i are sampled is

as follows:

x
(g+1)
i ∼ m(g) + σ(g)N

(
0,C(g)

)
for i = 1, . . . , λ , (4.1)

Here, N
(
0,C(g)

)
describes a multivariate normal distribution with a mean of zero and a

covariance matrix C(g) at generation g. m(g) represents the mean of the distribution, and

σ(g) is the step size at generation g. For the multivariate normal distribution follows that

N
(
m, σ2C

)
∼ m+ σN (0,C)

∼ m+ σC
1
2N (0, I) . (4.2)

As is typical in evolutionary algorithms, the fitness of each individual is determined based
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on the given problem.

fi = f
(
x
(g+1)
i

)
for i = 1, . . . , λ , (4.3)

and they are subsequently sorted x
(g+1)
i:λ , where i : λ denotes the individuals sorted by

their fitness. To complete the evolutionary step the mean m(g+1), the covariance matrix

C(g+1) and the step size σ(g+1) need to be determined for the next generation g + 1.

Update Mean

The new mean m(g+1) is calculated as the weighted average of the best µ ≤ λ individuals

m(g+1) =

µ∑
i=0

wi x
(g+1)
i:λ , (4.4)

where
∑µ

i=1wi = 1 and w1 ≥ w2 ≥ wµ > 0. If wi = 1/µ, this results in a simple mean

of the best µ points. This method introduces a basic selection mechanism as only the

best µ individuals contribute. Furthermore, assigning different weights strengthens the

contribution of better individuals. The final update generalizes the concept of weighted

average (4.4) to

m(g+1) = m(g) + cm

µ∑
i=0

wi

(
x
(g+1)
i:λ −m(g)

)
, (4.5)

where cm is the learning rate, commonly set to 1. For cm
∑µ

i=0wi = 1, (4.5) resembles

(4.4).

Adapting the Covariance Matrix

In the following is the full generational update of the covariance matrix divided into three

parts

C(g+1) = (1− c1 − cµ
∑

wj) C
(g)︸ ︷︷ ︸

previous matrix

+ c1 p(g+1)
c p(g+1)⊺

c︸ ︷︷ ︸
rank-1 update

+ cµ

λ∑
i=1

wi y
(g+1)
i:λ

(
y
(g+1)
i:λ

)⊺
︸ ︷︷ ︸

rank-µ update

, (4.6)

where c1, cµ are the learning rates for rank-1 and rank-µ updates respectively. The first

part describes the influence of the previous covariance matrix. In the following the rank-1

and rank-µ update are discussed.

The rank-µ update works similar to the update of the mean, by estimating the variance

of sampled steps x
(g+1)
i:λ −m(g) and incorporating weights

C(g+1)
µ =

λ∑
i=1

wi

(
x
(g+1)
i:λ −m(g)

)(
x
(g+1)
i:λ −m(g)

)⊺
. (4.7)
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This estimation is then used to update the Covariance matrix

C(g+1) = (1− cµ
∑

wj) C
(g) + cµ

λ∑
i=1

wi

σ(g)2

(
x
(g+1)
i:λ −m(g)

)(
x
(g+1)
i:λ −m(g)

)⊺
= (1− cµ

∑
wj) C

(g) + cµ

λ∑
i=1

wi y
(g+1)
i:λ

(
y
(g+1)
i:λ

)⊺
, (4.8)

with y
(g+1)
i:λ = (x

(g+1)
i:λ −m(g))/σ(g).

Because the sign information is lost in the rank-µ update, −y(−y)⊺ = yy⊺, the rank-1

update utilizes the evolution path to generate the new covariance matrix. The evolution

path p
(g)
c at generation g is generated from consecutive steps

p(g+1)
c = (1− cc)p

(g) +N
m(g+1) −m(g)

cmσ(g)
, (4.9)

where N is a normalization factor, cc is the learning rate of the evolution path, commonly

set between 1/n an 1/
√
n, and with p

(0)
c = 0. From the evolution path (4.9) the rank-1

update of the covariance matrix is calculated as

C(g+1) = (1− c1) C
(g) + c1 p(g+1)

c p(g+1)⊺

c . (4.10)

Combining both rank updates produces (4.8), where the advantages of both approaches are

combined. The rank-µ update efficiently leverages information from the entire population,

important for larger populations. Additionally, the rank-1 update harnesses information

about the correlation between generations through the utilization of the evolution path,

making it particularly valuable for smaller populations.

Updating the step size

The matrix adaptation lacks the capability to control the overall scale of the distribution

and can only re-scale in a single direction. This limitation hinders fast convergence. To

address this issue, a step size σ is introduced to significantly boost the learning rate.

In order to regulate the step size, an evolution path is employed, as previously done

for updating the covariance matrix (see Equation (4.8)). Fortunately, this method can

be applied independently of the covariance matrix update. To construct the evolution

path the same principle as in (4.9) is used, but this time the conjugate evolution path is

constructed

p(g+1)
σ = (1− cσ)p

(g)
σ +N C(g)−

1
2 m

(g+1) −m(g)

cmσ(g)
. (4.11)

Where C(g)−
1
2 re-scales the step m(g+1)−m(g), so that the length of the evolution path is

independent of its direction. To decide if the step size should be increased or decreased,
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the length of the evolution path ∥p(g+1)
σ ∥ is compared with its expected length E∥N (0, I) ∥.

If the evolution path is long, single steps point towards the same direction, therefore the

step size can be increased to cover the same distance in fewer steps. Conversely when

the evolution path is short, steps counteract each other, indicating a lack of correlation,

necessitating a reduction in step size. In summery if the evolution path is longer than its

expected length the step size is increased and vice versa, giving the following update

σ(g+1) = σ(g) exp

{(
cσ
dσ

(
∥p(g+1)

σ ∥
E∥N (0, I) ∥

− 1

))}
, (4.12)

where dσ ≈ 1 is a dampening factor for the change in step size, and cσ the learning rate. It

turns out that the length of the evolutionary path serves as an intuitively and empirically

well-validated metric for assessing the overall step length [36].

This concludes one generational update of the CMA-ES algorithm. On the one hand,

it has only 3 hyperparameters making it cheap to tune. The hyperparameters are the

population size, the initial stepsize and the maximum generations. It is also very robust

to noise in the objective function making it suitable to complex objective spaces. On

the other hand, CMA-ES can be very sensitive to the initial starting point and is only

single objective which can be a disadvantage in multiobjective optimitation problems.

Additionally, once a viable solutions is found, subsequent solutions tend to cluster closely

around this point.

4.1.2 Pareto improvement and non-dominated sorting

Optimizing a problem for multiple objectives presents a challenging task, especially when

these objectives conflict with one another. The following NSGA-III algorithm addresses

this challenge by employing a technique known as non-dominated sorting to assess the

fitness of a solution for multiple objectives.

Firstly, let’s clarify the concept of Pareto improvement. In the context of our discussion,

let’s assume that solutions within the objective space have already been identified. A

Pareto improvement refers to a transition from a solution B to another solution A, where

at least one objective demonstrates improvement, while no other objective is worse off.

In other words, A is said to dominate B if

∀i ∈ Objectives, Ai ≤ Bi and ∃j ∈ Objectives such that Aj < Bj . (4.13)

A solution A is considered Pareto optimal if no Pareto improvement can be made. The

set of Pareto optimal solutions is called the Pareto optimal front or non-dominated front.

In the two dimensional example depicted in Figure 4.1 (left), the blue solutions form the

non-dominated front of the set of all solutions.
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Figure 4.1: Pareto optimal front for a two dimensional example (left). Solutions assigned into

non-dominated fronts (right).

To sort the solutions by non-dominated fronts, ranks are systematically assigned through

an iterative process. Initially, the non-dominated front F1 of the set S of all solutions is

identified and designated rank 1. Subsequently, the solutions within front F1 are excluded,

and the non-dominated front F2 of the remaining solutions in S \ F1 is determined. This

process is reiterated until all solutions are allocated to a non-dominated front. An example

is depicted in Figure 4.1 (right), where all solutions have successfully been assigned to a

non-dominated front.

4.1.3 Non-dominated Sorting Genetic Algorithm - III (NSGA-III)

The Non-dominated Sorting Genetic Algorithm - III (NSGA-III) is a modification of the

NSGA-II [37] algorithm, to handle more than 3 objectives. They only differ in their

diversity-preserving mechanisms. While NSGA-II is well-suited for 1 to 3 objectives,

using a crowding distance approach, NSGA-III can handle 3 or more objectives due to

its utilization of reference point selection, which is better suited for high dimensional

objective spaces.

The following illustration of the algorithm follows the approach of Kalyanmoy Deb et

al. [14]. The basic flow of both NSGA-II and NSGA-III follow the diagram depicted in

Figure 4.2. The difference is that NSGA-III uses reference point sorting and NSGA-II

utilizes the crowding distance at this selection step. To illustrate one generational step

the nth generation is considered. The pseudo code for this algorithm can be found in the

appendix D. Assume Pn is the parent population of size N , from which the Offspring pop-

ulation Qn of size N is generated. This is accomplished by using crossover and mutation

operations. specifically the simulated binary crossover and the polynomial mutation [33–
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Figure 4.2: One generational update of the NSGA-III evolutionary algorithm [14].

35]. To acquire the next generation Pn+1, N individuals from the combined population

Rn = Pn∪Qn have to be selected. Therefore Rn is sorted by non-dominated ranks. These

ranks are then successively selected until the size of Pn+1 reaches N or surpasses N . In the

former case the selection is finished. In most cases the last rank exceeds N individuals.

For this last non-dominated front Fl a diversity preserving selection is used. Therefore

reference points are defined in the objective space. These reference points serve as the

basis for selecting diverse solutions of the last Front. The reference points are placed on

a normalized hyper plane that intersects at one with all objectives. This is depicted for a

three dimensional example in Figure 4.3. With p divisions across each objective and M

objectives, the total number of reference points is given by

H =

(
M + p− 1

p

)
. (4.14)

To begin, individuals are first rescaled to the interval [0, 1] in each objective. To asso-

ciate individuals with reference points, reference lines are drawn between the origin and

each reference point. The individuals are then assigned to the closest reference point by

calculating the perpendicular distance. Consequently, each point can have one, many or

no individual associated with it. Each point j is then assigned a niche count pj based

on how many individuals from the already selected fronts are associated with them. The

reference points are then sorted by pj and the lowest is picked. If there are multiple points

with the same niche count pj, one point is chosen at random. Now two cases have to be

distinguished, pj = 0 and pj ≥ 1

For pj = 0 there can be two scenarios. One or more members of Fl are associated with

j, in which case the one with the smallest distance is selected and the niche count is
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Figure 4.3: Association of individuals with the reference points. Taken from [14]

incremented. Second, there is no individual in Fl associated with j. In this case the

reference point j is excluded from future searches for this generation.

For pj ≥ 1 a random individual from Fl, if exists, is selected and the niche count is

incremented. This procedure is repeated until all empty spots in Pn+1 are filled. This

completes one generational update of the NSGA-III algorithm.

The algorithm incorporates elitism as the new population Pn+1 is chosen from the com-

bined population Rn. This ensures the survival of the best individuals. Additionally,

the utilization of reference points and Pareto fronts emphasizes diversity in the objective

space. Moreover, maintaining a high population number makes the algorithm more re-

silient and provides more global information. Furthermore, calculating the fitness of an

individual is independent of other factors than the individual, making it easy to parallelize

this algorithm.

However, NSGA-III has a high number (8) of hyperparameters compared to CMA-ES

making it computationally more expensive to tune for a given problem. These hyperpa-

rameters are the population size, the maximum generations, the crossover probability, the

crossover crowding degree, the mutation probability, the mutation crowding degree and

the individual mutation probability. Moreover, NSGA-III only preserves diversity in the

objective space, once the algorithm found a suitable solution, the population will converge

around this point in the parameter space.
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Parameter Interval mapping

λH [0.1; 0.3] lin

λ4S, λ4η [10−8; 1] log

λSη, λS, λη, λ
′
η, λ

′′
η [−1;−10−8], [10−8; 1] bilog

α [−104;−1], [1; 104] bilog

M2
S, M

2
η [5× 105; 5× 106] lin

M1, M2 [100; 2000] lin

MΨ [700; 2000] lin

yij, (i, j = 1, 2) [−3;−10−8], [10−8; 3] bilog

gkR, g
k
Ψ, g

k
Fj
, (k = 1, 2, 3), (j = 1, 2) [−3;−10−8], [10−8; 3] bilog

Table 4.1: Ranges for the input parameter. These are chosen to be comparable to the MCMC

search [1]. All dimensional quantities are given in GeV. The red colored parameters are assumed

to be complex and the interval is defined for the real and imaginary part.

4.2 Adapting NSGA-III and CMA-ES for the T1-2-A’

model

The NSGA-III and CMA-ES algorithms are implemented in Python using the DEAP

evolutionary computation framework [38]. The T1-2-A’ model has already been imple-

mented in SAHRA [39] to generate the code for SPheno [40, 41] and Micromegas

[42]. SPheno computes the mass spectrum and low energy observables andMicromegas

computes the dark matter relic density. The management of these modules is also handled

through Python. The project’s code is available in the repository [43].

To implement the evolutionary algorithms, first a genetic representation of the model

parameters is needed. Examination of the Lagrangian equations (3.2) and (3.8) reveals

the introduction of 14 real and 16 complex parameters in this model, as presented in

Table 4.1. The complex parameters are represented by two real valued numbers for the

real and imaginary parts, respectively. This gives a total of 46 real valued parameters.

Incorporating these 46 parameters into the genetic algorithms involves representing each

solution with an individual comprising 46 real-valued genes.

To simplify the calculations for evolutionary operations such as crossover and mutation,

each individual is assigned both a phenotype and a genotype representation, each com-

prising 46 genes. he genotype representation is confined within a box space, where each

gene g falls within the interval [0, 1]. All evolutionary operations take place within this

box space.

The phenotype represents the actual physical values of the parameters. To establish the

phenotype representation, a mapping from the genotype representation to the phenotype
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representation is employed. To facilitate an effective scan these mappings are split into

three kinds linear, logarithmic, or bilogarithmic.

Plin(g) = gmin +

(
gmax − gmin

b− a

)
(g − a) , with a = 0, b = 1 ,

= gmin + (gmax − gmin) g , (4.15)

Plog(g) = 10logmin +(logmax − logmin) g , (4.16)

Pbilog(g) =

10(logmin +(logmax − logmin) 2 (g−0.5)) if g ≥ 0.5

−10(logmin +(logmax − logmin) 2g) if g < 0.5
, (4.17)

where g is the genotype representation, logmin = log(gmin) (logmax = log(gmax)) and gmin,

gmax are the minimal and maximal values of the phenotype representation of the pa-

rameter, respectively. Logarithmic mappings are utilized to achieve an even distribution

across different orders of magnitude, while the bilogarithmic mapping additionally accom-

modates negative values. Depending on the specific requirements for each parameter, one

of these mappings is selected, as outlined in Table 4.1.

The parameter search in this study is compared with the prior work conducted by Alvarez

et al. [1], therefore similar parameter ranges are adopted. These ranges remain consistent

for all shared parameters, with the exception of the Yukawa couplings yij and g, which are

assigned an expanded range to be able to explore novel regions in the parameter space.

Furthermore, slight adjustments are made to the ranges for λ4S, λ4η, and λH .

As a next step the observables for an individual have to be calculated to determine its

fitness. This involves employing the previously mentioned tools, namely SPheno and

Micromegas. The observables are also refereed to as objectives or constraints. In

total, there are 31 objectives, including the already discussed neutrino masses, mixing

angles (including the charge parity phase), the anomalous magnetic moment of the muon,

and the relic density of dark matter. Additionally, the Higgs mass is introduced as an

objective, due to one-loop corrections to its mass. These objectives are displayed in Table

4.2 together with the uncertainties applied in this study. Note, that for the Higgs mass

MH and the relic density ΩCDMh2 the theoretical uncertainties in this model are larger

than the experimental ones, due to electroweak corrections and dark matter annihilation

calculations. Consequently, the theoretical uncertainties are applied to them, whereas the

remaining objectives incorporate the experimental uncertainties.

Furthermore, the upper limits of 22 relevant CLFV processes, presented in Table 4.3, are

taken into account.

These observables form the basis for calculating the fitness of each individual. The fitness

of an individual characterizes its validity, and this validity is determined by the proximity

of its observables to the objectives in the objective space. Consequently, a cost function
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Objective Interval

MH 125.25± 1.00 GeV

∆m21 7.42+0.21
−0.20 ·10−5 eV2

∆m31 2.517+0.026
−0.028 ·10−3 eV2

sin2(θ12) 0.304± 0.012

sin2(θ13) 0.02219+0.00062
−0.00063

sin2(θ23) 0.573+0.016
−0.020

δ 197+27
−24

◦

∆aµ 2.51± 0.59

ΩCDMh2 0.12± 0.01

Table 4.2: Objectives for the parameter search: Higgs mass [25], neutrino data [20], anomalous

magnetic moment of the muon [7] and dark matter relic density [30]. Note that the errors for

the Higgs mass and the DM relic density are not the experimental errors, but estimations of

theoretical uncertainties.

is computed as follows

C(O) = max(0,−O +OLB,O −OUB) , (4.18)

where OLB and OUB are the upper and lower bounds of the observable, respectively. For

an observable outside the bounds, this function is positive C(O) > 0. If the observable

is within the bounds, signifying the agreement with the objective, the cost function is

C(O) = 0. Consequently finding valid points corresponds to minimising this cost function.

The observables exhibit largely different magnitudes. In order to enhance comparability,

the constraint function undergoes scaling through a logarithmic transformation, facilitat-

ing the comparison of observables of different magnitudes.

Find(O) = log10 (1 + C(O)) . (4.19)

This scaling has an added advantage of introducing a numerical infinity, given that the

maximum value for the fitness, using 64-bit floats, is approximately 700. This proves

useful when handling parameter sets that produce unphysical results. In such cases, the

fitness of the individual can be set to the maximum value, ensuring its exclusion from

selection.

The fitness is computed for each observable, resulting in a 31-dimensional fitness vector.

The NSGA-III algorithm is adept at utilizing this vector, given its design for handling mul-

tiple objectives. Conversely, the CMA-ES is fundamentally a single objective algorithm.

There are several methods to deal with multiple objectives. Addressing this requirement

involves combining multiple objectives into a single value. In this case through an arith-
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Constraints limit Constraints limit

BR[µ− → e−γ] < 4.2 · 10−13 BR[τ− → e−η] < 9.2 · 10−8

BR[τ− → e−γ] < 3.3 · 10−8 BR[τ− → e−η′] < 1.6 · 10−7

BR[τ− → µ−γ] < 4.2 · 10−8 BR[τ− → µ−π] < 1.1 · 10−7

BR[µ− → e−e+e−] < 1.0 · 10−12 BR[τ− → µ−η] < 6.5 · 10−8

BR[τ− → e−e+e−] < 2.7 · 10−8 BR[τ− → µ−η′] < 1.3 · 10−7

BR[τ− → µ−µ+µ−] < 2.1 · 10−8 CRµ→e(Ti) < 4.3 · 10−12

BR[τ− → µ+e−e−] < 1.5 · 10−8 CRµ→e(Pb) < 4.3 · 10−11

BR[τ− → µ−e+e−] < 1.8 · 10−8 CRµ→e(Au) < 7.0 · 10−13

BR[τ− → µ−e+µ−] < 1.7 · 10−8 BR(Z0 → e±µ∓) < 7.5 · 10−7

BR[τ− → e−µ+µ−] < 2.7 · 10−8 BR(Z0 → e±τ∓) < 5.0 · 10−6

BR[τ− → e−π] < 8.0 · 10−8 BR(Z0 → µ±τ∓) < 6.5 · 10−6

Table 4.3: Constraints from the charged lepton flavour violating branching ratios or conversion

ratios [25].

metic mean. This is conducted by initially rescaling the fitness values to lie within the

interval [0,1] and subsequently summing them up.

Alternatively, there exists a dedicated multiobjective version of the CMA-ES algorithm,

details in [44]. Although this variant was also applied to search the parameter space of the

T1-2-A’ model, it yielded no results. This is further discussed in chapter 5. Moreover, the

standard CMA-ES algorithm had challenges to fit all objectives. This was addressed by

introducing a hierarchy to the objectives, forcing the algorithm to first focus on one ob-

jective and subsequently, consider the other objectives. This lead to a great improvement

and was termed h-CMA-ES. It is further elaborated on in chapter 5.

Through hyperparameter tuning using optuna [45] preferred sets of hyperparmeters where

determined for both algorithms. For NSGA-III a population size of 400 was chosen, span-

ning a maximum of 2000 generations. The crossover operation was assigned a probability

of 0.9 and a crowding degree of ηc = 30. For mutation, a probability of 0.5 was selected,

along with a crowding degree of ηm = 40 and an individual mutation probability of 4.

For all variants of CMA-ES the population was set to 10 with an initial step size of

σ(0) = 0.3 and a maximum generation of 4000. This corresponds to a maximum of 40000

points calculated per run. Both algorithms are set to stop searching when at least 100

valid points are found.

The previous MCMC scan

The parameter search in this study is also compared to the previous work conducted by

Alvarez et al. [1]. In their research, they employed a Markov Chain Monte Carlo approach.
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To mitigate complexity and enhance computational efficiency, they adopted the Casas-

Ibarra parametrization [16] for expressing the Yukawa couplings gΨ and gFj
in terms of

neutrino oscillation data. This approach ensures that, for any given parameter set, the

neutrino data fits the measurements at least on tree level. The chosen CI parametrization

method takes into account the generation of the anomalous magnetic moment of the muon,

contributing to a reduction in the parameter space to a region with a high likelihood of

discovering valid parameter sets. Respecting the constraints imposed by ∆aµ and CLFV

processes, particularly the two-body decays µ → eγ, τ → µγ, and τ → eγ, establishes a

hierarchy for the Yukawa couplings:

|g1Ψ| ≲ 10−5 ,

|g2Ψ| ∼ 1 ,

|g3Ψ| ≲ 10−3 ,

|gαFj
| ≲ 10−3 , for α = {1, 2, 3} , j = {1, 2} . (4.20)

The coupling g2Ψ must be sufficiently large to accommodate the anomalous magnetic mo-

ment of the muon. Conversely, the couplings for the other two lepton flavors need to be

sufficiently small to satisfy the CLFV limits. In total, this reduces the parameter space

to 20 free parameters, but also limits the search to a specific region. The MCMC scan

performed 75 chains of 200 points each, where the initial 35 points were omitted to only

keep points where the chains were well-initialized. Note that for this method not all points

necessarily fit all objectives, however they are all close to the experimental bounds.

The MCMC scan utilized a modified CI parametrisation to reduce complexity, in contrast

NSGA-III and CMA-ES handle the whole complexity of the T1-2-A’ models parameter

space. It is intriguing to compare the different results and ascertain if the new methods

proposed in this work are viable to find parameter sets within this heightened complexity.

Additionally, the analysis aims to determine the presence of regions in the parameter

space that extend beyond those previously identified.
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Chapter 5

Results

This chapter presents the results of the parameter space scan of the evolutionary al-

gorithms NSGA-III and CMA-ES, respectively h-CMA-ES. The initial phase involves a

random scan, followed by a comparison of the performance of NSGA-III and h-CMA-ES.

Subsequently, an assessment of Yukawa couplings, CLFV processes, and DM candidates is

conducted, drawing comparisons between NSGA-III h-CMA-ES and the previous MCMC

scan by Alvarez et al. [1]. Finally, a brief analysis of LHC phenomenology is conducted.

5.1 Random scan

Firstly, a random scan of the parameter space was conducted to establish a baseline for

comparison. In this process, 106 random points were evaluated. Despite the extensive

scan, no point satisfying all objectives was identified. The percentage distribution of

random points meeting a specific number of objectives is illustrated on the left in Figure

5.1, where the majority of points successfully satisfy 15 to 23 objectives simultaneously.

Notably, a maximum of 26 objectives was achieved concurrently. Considering this, shows

that finding a point through a random scan would require a few orders of magnitude more

sampled points. The right side of Figure 5.1 provides a breakdown of the points from the

random scan based on individual objectives. It is observed that most CLFV processes are

relatively easy to satisfy, with the anticipated exception of BR(µ → eγ) and BR(µ → 3e)

being the most challenging among them. Also the Conversion ratios CRµ→e where more

difficult to fit. Additionally, other objectives such as neutrino data, aµ, and dark matter

relic density were predictably more challenging to accommodate.
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Figure 5.1: Percentage of points generated by the random scan, satisfying a specific number of

constraints simultaneously (left). Percentage of points satisfying each constraints divided into a

linear and logarithmic part (right).

5.2 General results

Initially O(102) iterations of the CMA-ES algorithm produced unsatisfactory outcomes,

with only a 3% convergence rate. The basic implementation of CMA-ES of the algorithm

lacks efficiency in handling all constraints simultaneously. Notably, the algorithm consis-

tently fitted all but one objective: the anomalous magnetic moment of the muon. Due to

the inherent challenge posed by fitting ∆aµ, an enhancement is proposed through the in-

troduction of a hierarchical structure to the observables. This restructuring of the fitness

evaluation comprises that if the objective ∆aµ is met, the fitness is calculated conven-

tionally. However, if ∆aµ is not satisfied, all other observables are assigned the maximum

fitness, resembling a severely bad fit, as the fitness metric is geared towards minimization.

This improved methodology, termed the hierarchical CMA-ES (h-CMA-ES), initially pri-

oritizes the anomalous magnetic moment of the muon before addressing the remaining

objectives. Implementing this modification significantly raises the convergence rate to

approximately 12%, which makes this approach much more practical.

The NSGA-III algorithm encountered challenges in satisfying the anomalous magnetic mo-

ment of the muon, as well. Despite these difficulties, the algorithm successfully identified

valid points, demonstrating a convergence rate of 29%.

Since CMA-ES converged relatively fast and NSGA-III has a high convergence rate, a

multiobjective CMA-ES (MO-CMA-ES) scan was implemented, which could potentially

combine the fast convergence of CMA-ES and the higher convergence rate of NSGA-III.

Unfortunately this approach did not yield any results as MO-CMA-ES did not converge at
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all. One problem could be, that the MO-CMA-ES was only tested with lower population

numbers O(10), so increasing this hyperparameter could greatly increase the success, but

at a cost of much more computations per valid point, which in turn could make it less

efficient than the other two algorithms.

The two successful algorithms NSGA-III and h-CMA-ES found 14694 and 7220 valid

points for 71.2 · 106 and 23.96 · 106 evaluated points respectively. This corresponds to

1:4846 and 1:3319 valid points per sampled point respectively. Compared to the random

scan this is at least 200 times better than a random scan. Note that the random scan

did not find any valid points, making this the absolute lower bound, with the actual

improvement beeing some orders of magnitude higher. The difference in the number of

sampled points for NSGA-III and h-CMA-ES results from issues with the HPC cluster

(High Performance Computing), which the calculations were performed on and the usable

computing capacities.

In general, h-CMA-ES exhibits a more concentrated focus in individual runs, where points

closely cluster within each run. However, the outcomes of distinct runs display a broader

dispersion. In contrast, NSGA-III demonstrates a heightened distribution within indi-

vidual runs, but emphasizing a more pronounced concentration to a specific parameter

regions across different runs. Notably, NSGA-III tends to form patterns wherein one pa-

rameter remains relatively constant while others vary, resulting in recognizable lines or

crosses in the plots. This characteristic is visible in most plots of the valid parameter sets.

Consequently, it can be inferred that h-CMA-ES provides a more comprehensive coverage

of the parameter space in comparison to NSGA-III. But compared to the MCMC scan

both NSGA-III and h-CMA-ES provide a worse coverage for the shared region of the

parameter space.

This difference of NSGA-III and h-CMA-ES can also be seen in the λ couplings and

the mass parameters in the scalar sector. A selection is displayed in Figure E.1 in the

appendix.

5.3 Comparison of NSGA-III, h-CMA-ES and MCMC

In the following, the results obtained from the three distinct approaches: NSGA-III,

h-CMA-ES, and MCMC [1], are compared, focusing on crucial parameters such as the

Yukawa couplings, processes involving charged lepton flavor violation, and dark matter.

The MCMC analysis yielded 12,375 ”valid” points. It is noteworthy that not every point

generated by MCMC necessarily satisfies all objectives. However, the majority of points

do, and the others are close to the experimental bounds. In general, both NSGA-III and h-

CMA-ES demonstrate a tendency to replicate points within the same parameter regions

as those identified by the MCMC scan. Additionally, both algorithms discover extra
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points beyond the established regions of the MCMC, with h-CMA-ES providing a higher

amount and more widely distributed points compared to NSGA-III. Nevertheless, this

suggests that while the CI parametrisation in the MCMC scan constrain the parameter

space, the smaller region still encompasses a significant portion of the viable parameter

space. However, this observation should be approached with caution, considering that the

statistical significance of the results obtained by h-CMA-ES is weaker due to the smaller

number of points compared to MCMC and NSGA-III.

5.3.1 Couplings

The yukawa couplings gF1 , gF2 , gΨ and gR establish connections between the SM particles

and the BSM particles. As such, they play a crucial role in producing neutrino masses, the

anomalous magnetic moment of the muon, and influencing processes involving charged

lepton flavor violation. This makes them particularly interesting. Each coupling has

three components according to the three flavours. Figure 5.2 illustrates the correlations

among the absolute values of the components of the gFj
couplings across the three search

algorithms. Similarly, Figure 5.3 depicts the correlations associated with the couplings gΨ

and gR.

For the results of the MCMC scan, the components of gF1,2 exhibit similar behavior, ap-

proximately adhering to the upper limit |gα
F i
1,2
| ≲ 10−3 for i = 1, 2, 3. This conformity

arises from the imposed constraint on the couplings in (4.20) to simultaneously accom-

modate neutrino data, ∆aµ, and CLFV processes.

The h-CMA-ES and NSGA-III scans could each replicate portions of the parameter space

already discovered by the MCMC. Moreover, these methods identified points beyond these

established bounds. Notably, h-CMA-ES demonstrated the ability to locate points with

significantly higher values in g1,2F1
and g1,2F2

.

The scaling behavior of all components within gF1,2 during the MCMC scan is primarily

driven by the trilinear coupling α, as illustrated in the left plots of Figure 5.4. This

phenomenon arises from the fact that higher values of α correspond to significant scalar

mixing, resulting in the suppression of gF1,2 due to the neutrino mass fit. While h-CMA-ES

successfully replicates this behavior, the NSGA-III results have an insufficient coverage,

making it challenging to draw meaningful conclusions.

For gΨ, the MCMC scan shows the hierarchy described by (4.20) among its components,

which can bee seen in Figure 5.3. As previously mentioned, this hierarchy is designed

to accommodate the anomalous magnetic moment of the muon while adhering to the

constraints imposed by CLFV processes. Notably, this relationship is associated with the

coupling gR, as both couplings play an equal role in these processes, as illustrated in the

diagrams presented in Figure 3.2. To achieve consistency with the observed ∆aµ, both
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Figure 5.2: Distributions of the absolute values of the components of the Yukawa couplings

gF1 (left side) an gF2 (right side), obtained from the three scans h-CMA-ES (upper), NSGA-III

(middle) and MCMC [1] (lower). The rectangle depicts the plot range of the MCMC scan. Note

that the color map is different for h-CMA-ES, NSGA-III and MCMC.
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Figure 5.3: Distributions of the absolute values of the components of the Yukawa couplings gΨ

(left side) and gR (right side), obtained from the three scans h-CMA-ES (upper), NSGA-III

(middle) and MCMC [1] (lower). The rectangle depicts the plot range of the MCMC scan. Note

that the color map is different for h-CMA-ES, NSGA-III and MCMC.
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Figure 5.4: Correlations of selected Yukawa couplings with the trilinear coupling α. Obtained

from the different scans h-CMA-ES (upper) and MCMC [1] (lower). The rectangle depicts the

plot range of the MCMC scan. Note that the color map is different for h-CMA-ES, NSGA-III

and MCMC.

couplings g2Ψ and g2R must be sizable. However, a delicate balance is required, necessitating

that g1,3Ψ and g1,3R remain sufficiently small to avoid surpassing the limits set by BR(µ → eγ)

and BR(τ → µγ), respectively. The h-CMA-ES and NSGA-III scans largely mirror the

hierarchy observed in g1Ψ,R and g2Ψ,R. Furthermore, both algorithms identify points beyond

the defined limit of g1Ψ ≲ 10−5, with h-CMA-ES revealing instances where g1Ψ > g2Ψ,

deviating from the specified hierarchy. Additionally, both methods identify numerous

points featuring increased values in g3Ψ, reaching up to approximately 1.

The two clusters with large values in |gF1| and small values in |g2Ψ| represent a completely

new parameter region, violating the intuitive hierarchy (4.20) for the couplings and there-

fore lying outside the parameter ranges of the MCMC scan. They correspond to large

values in the Yukawa couplings yij and therefore facilitating a small mixing in the singlet

and doublet fermions.
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Figure 5.5: Results for the relevant flavor violating muon decays from MCMC [1] (left), h-CMA-

ES and NSGA-III (right), with the current limits from the MEG collaboration [46] (full lines)

and expected sensitivities (dashed lines) from MEGII [49] and Mu3e [50].

5.3.2 Charged lepton flavour violation

Charged lepton flavor-violating processes play a crucial role in constraining models that

propose neutrino mass generation. Essentially, the introduction of non-diagonal Yukawa

matrices is necessary to both generate neutrino masses and appropriately fit the mixing

angles. This, in turn, establishes a link between charged leptons, enabling transitions

between different lepton flavors.

Current limits on the branching ratios for these processes are already strong from the MEG

collaboration [46] and Belle [47, 48]. There are plans for experiemnts taking place in the

near future like MEGII [49], Mu3e [50] and BelleII [51]. These experiments are anticipated

to bring about significant advancements, with an expected sensitivity improvement of up

to four orders of magnitude for specific processes, such as µ → 3e.

In this phenomenological analysis, the outcomes of all three scans align. Consequently,

the NSGA-III and h-CMA-ES scans replicate similar results.

The most relevant CLFV decay channels for the muon and the tau are depicted in Figure

5.5 and 5.6 respectively, with the current experimental limits and prospective sensitivities.

Figure 5.5 illustrates a linear relationship between BR(µ → 3e) and BR(µ → eγ). This

observation indicates that muon decays are predominantly influenced by the dipole con-

tribution, from the penguin diagrams depicted in Figure 3.2.

Tau decays, however, exhibit deviations from linearity, as shown in Figure 5.6. This devia-

tion stems from significant contributions of box diagrams, arising from the elevated values

of g2Ψ and g2R needed to fit the anomalous magnetic moment of the muon. Furthermore,

with future improvements in sensitivity for these measurements from MEGII, Mu3e and

Belle2, a substantial portion of the parameter space can be reached.
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Figure 5.6: Results for the relevant flavor violating tau decays from MCMC [1] (left), h-CMA-

ES and NSGA-III (right), with the current limits from Belle [47, 48] (full lines) and expected

sensitivities (dashed lines) from Belle II [51].
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Figure 5.7: Histogram of the mass of the DM candidate, separated into fermionic and scalar

DM. Left: MCMC [1]. Right: h-CMA-ES (dashed) and NSGA-III (solid).

For other CLFV processes, the branching ratios remain below 10−17, except in the case

of the τ → µe+e− process, where branching ratios extend up to 10−9, close to the verge

of anticipated future sensitivity thresholds.

5.3.3 Dark matter

In the T1-2-A’ model there are three candidates for dark matter. These are the lightest

fermion χ0
1, lightest scalar ϕ

0
1 and the pseudo-scalar ϕ0

3, whichever is lighter in the given

parameter configuration. Figure 5.7 displays the distribution of dark matter masses,

categorized into fermionic and scalar components. The left side presents results from the

MCMC scan [1], while the right side displays outcomes from h-CMA-ES and NSGA-III.

In this study the DM candidates are dominated by fermionic particles, about 96% for
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Figure 5.8: Distribution of the mass in case of fermionic DM for the MCMC scan [1] (left),

h-CMA-ES and NSGA-III (right), separated into scenarios where the DM candidate is doublet-

like (blue) or singlet-like (orange).

NSGA-III and about 75% for h-CMA-ES. The MCMC scan found a greater portion of

scalar DM candidates of about 38%. Therefore the amount of valid parameter sets with

a scalar DM candidate is insufficient to draw any quantitative conclusions.

As a result, only a partial reproduction of this particular parameter region was achieved,

highlighting the necessity for additional data to enhance coverage. Note that for NSGA-

III only two runs found scalar DM. This outcome underscores the algorithm’s stronger

emphasis on specific regions of the parameter space, indicating a limitation in its current

formulation.

Pseudo-scalar dark matter has not been identified through any of the applied methodolo-

gies. This is attributed to the fact that, within the scalar sector, the mixing among the

scalar components is consistently higher, in all three scans, than the mass splitting be-

tween the scalar and pseudoscalar. Consequently, the scalar consistently exhibits a lower

mass than the pseudoscalar.

The comparison for the fermionic DM case is illustrated in Figure 5.8, distributed into

doublet-like and single-like states. It is important to note that the dataset for h-CMA-ES

is comparatively small, necessitating a cautious interpretation of these results.

The MCMC scan identified a preferred mass for fermionic DM in the range of 1 TeV to

1.2 TeV. In contrast NSGA-III exhibited a preference for a slightly lower mass range of

approximately 0.9 TeV to 1.1 TeV. The h-CMA-ES algorithm demonstrates a significantly

broader distribution, encompassing masses ranging from as low as 200 GeV to up to 1.4

TeV. Notably, a preference is observed for masses within the range of 0.7 TeV to 1.1 TeV.

In both the MCMC and NSGA-III scans, the fermionic DM displayed a dominance of

doublet-like states, and only minimal mixing of the SU(2)L singlet and doublet states Fi

and Ψj. Conversely, the h-CMA-ES scan indicated a prevalence of singlet-like fermionic



46 Results

Figure 5.9: Mass of the charged fermion χ± against the DM mass in the case of fermionic DM,

differentiated into singlet-like (orange) or doublet-like (blue) DM.

DM and revealed a few points with strong mixing.

For scalar DM the MCMC scan found again a doublet dominated set with a mass prefer-

ence for 700 GeV. The two converged runs from NSGA-III show singlet-like states with

a mass around 500 GeV. For h-CMA-ES the amount of points is relatively low and wide

spread between masses of 250 GeV and 1.7 TeV and exhibit a preference for singlet-like

DM. While the MCMC scan yielded points with stronger mixing between singlet and

doublet, both NSGA-III and h-CMA-ES only exhibit minimal mixing.

5.4 Collider aspects

In this analysis, the valid points of h-CMA-ES and NSGA-III are combined. Note, that

in this study SPheno only calculated two body decays. The fermionic doublet like states

χ±,0 have the same quantum numbers as higgsinos in supersymmetric models. Only decays

of χ±,0 with a mass lower than 1300 GeV are considered, since the production cross-section

σ(pp → χ±χ0) at the LHC, with
√
s = 14 TeV, of these is greater than 0.8 fb [52].

For fermionic DM in scenario the DM particle is doublet-like, the main decay channel is

into a pion and a neutral fermion χ± → π± χ0
1. With mean lifetimes between 6 · 10−12 s

and 7 · 10−10 s, this can be visible as displaced vertices. Due to the small mass difference

between χ± and χ0
1 visible in Figure 5.9 the resulting muon from the pion decay would

have too low energy for detection. Additionally one point was identified with a primary

decay channel into muon and neutral scalar χ± → µ± ϕ0
1. Due to the extremely small

lifetime of the charged fermion and the small Mass difference between fermion and scalar

of 270 MeV the resulting low energy muon would not be detectable.

In the case where the DM particle is singlet-like, there are mass splittings between 200

MeV and 50 GeV. Because only two body decays where calculated, only a few points
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Figure 5.10: Mass of the charged fermion χ± (left) and charged scalar η± (right) against the

scalar DM mass, differentiated into singlet-like (orange) or doublet-like (blue) DM.

provide decays of χ±. These had dominant decays into χ0
1W

± and ϕ0
i µ

±, with mass

differences between 50 GeV and 300 GeV for the charged and neutral BSM particles. As

in the MCMC scan additional decay channels would include three final states of which a

dominant channel would be χ± → l± ν χ0
1, with a muon in the final state due to the high

Yukawa couplings to the muon.

In the case of scalar DM, the main decay channels are

χ± → ϕ0
i l

±
µ,τ , (5.1)

χ0
j → ϕ0

1 ν , η
∓ l±µ,τ , (5.2)

where j corresponds to the mass eigenstates that are dominantly SU(2)L doublets. Due

to a small mass splitting of doublet-like fermions χ0
j , they form a pseudo Dirac doublet.

Note, that the mass difference between the charged fermion χ± and the neutral doublet-

like fermions χ0
j is smaller than 5 GeV.

The requirement to accommodate ∆aµ results in large couplings to the muon, which is

therefore the dominant final state. Due to the high mass difference between 125 GeV

and 640 GeV of the fermions and scalars, as can be seen in Figure 5.10 (left), the LHC

signal will consist of high energy muons with missing transverse energy. Note, that the

mass difference between the charged fermion χ± and the neutral doublet-like fermions χ0
j

is smaller than 5 GeV.

For completeness the direct production of the scalar doublet is also possible. But for a

mass of 1000 GeV the cross-section is about 0.013 fb, which can be inferred form [52],

as they have the same quantum numbers as left-sleptons. From 5.10 one can see, that

mη± > 1200 GeV for a sizeable mass splitting in the scalar sector. Therefore, there will

be almost no contribution to the LHC signal from direct production.
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Chapter 6

Summary and Outlook

In this thesis the evolutionary algorithms NSGA-III and CMA-ES were introduced and

utilized to search the parameter space of the T1-2-A’ Scotogenic model. The T1-2-A’

Scotogenic model proposed in [1] can explain neutrino masses, the anomalous magnetic

moment of the muon, CLFV processes and has a stable DM candidate.

Firstly, the foundational aspects of neutrino masses, the anomalous magnetic moment of

the muon, and dark matter were introduced. Subsequently, the T1-2-A’ Scotogenic model

was presented. In this model the scalar sector is extended by a SU(2)L singlet S and a

doublet η. In the fermion sector two SU(2)L singlets F1,2 and two Weyl fermion doublets

Ψ1,2 are added. These are all odd under the new Z2 symmetry while SM particles are

even.

Furthermore the evolutionary algorithms NSGA-III and CMA-ES were introduced and

the specific implementation of the parameter search for this model was discussed.

A previous investigation of the model by Alvarez et al. [1] presented an analysis of the

parameter space using MCMC. In their research, the Casas-Ibarra parmetrisation was

used and modified to accommodate neutrino oscillation data and the anomalous magnetic

moment of the muon. The results of their work is compared with the results of the new

methods in this thesis.

A modification to CMA-ES, termed h-CMA-ES, is proposed which introduces a hierarchy

to the objectives and thereby greatly improving the convergence rate. The h-CMA-ES

algorithm yields parameter sets that exhibit a more comprehensive coverage of the pa-

rameter space. In contrast to NSGA-III, which tends to generate parameter sets in a

smaller sub region. But compared to the MCMC scan both NSGA-III and h-CMA-ES

provide worse coverage for the shared region of the parameter space. Notably, h-CMA-ES

demonstrates a 46% higher sampling efficiency compared to NSGA-III.

Both NSGA-III and h-CMA-ES can reproduce parts of the parameter regions produced in

the previous MCMC scan. Additionally new regions outside the previous scope could be

identified. Especially h-CMA-ES was able to find two clusters with significantly different
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parameter sets.

Due to the significant couplings to the muon, a considerable portion of the parameter

space, characterized by elevated branching ratios for the decays µ → eγ, µ → 3e, τ → µγ

and τ → 3µ, falls within the potential reach of forthcoming experiments.

Both NSGA-III and h-CMA-ES found a preference for a fermionic DM candidate, compa-

rable to the MCMC scan. NSGA-III found dominantly doublet-like DM with a preferred

mass range of 0.9 Tev to 1.1 TeV, which is a bit lighter than the range of 1 TeV to 1.2 TeV

found in the MCMC scan. h-CMA-ES displayed a preference for singlet-like DM with a

wide spread ranging from 200 GeV to 1.4 TeV.

For the small amount of parameter sets with a scalar DM, h-CMA-ES presented DM

candidates with masses ranging from 250 Gev to 1.7 TeV.

Lastly, a brief analysis of LHC phenomenology was conducted, revealing that in the scalar

dark matter (DM) case, high-energy muons with missing transverse energy serve as the

dominant signal at the LHC.

In the future additional results of both algorithms could improve the current coverage

issue. Likewise further modifications to the proposed algorithms can increase the conver-

gence rate and coverage of the parameter space. One proposed improvement concentrates

on the introduced hierarchy concept for observables. Including more hierarchy steps ac-

cording to the difficulty of fitting these observables, could improve the convergence rate

further. Another method could combine h-CMA-ES and MCMC by first searching points

with h-CMA-ES and subsequently using them as start points for an MCMC scan to im-

prove the sampling efficiency.
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Appendix

A Neutrino mass diagrams
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Figure A.1: Diagrams for neutrino mass generation in gauge basis. The vertex factors are

depicted in blue. The arrows indicate the flow of hypercharge. The top two diagrams are ∼ g2F .

The middle two diagrams are ∼ gF gΨ.
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Figure A.2: Diagrams ∼ g2Ψ for neutrino mass generation in gauge basis. The vertex factors are

depicted in blue. The arrows indicate the flow of hypercharge.
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B CLFV loop functions

Loop functions for the calculation of the Wilson coefficients in equation (3.30)

f(x) =
x2 − 1− 2x log(x)

4(x− 1)3
,

g(x) =
x− 1− log(x)

2(x− 1)2
,

f̃(x) =
2x3 + 3x2 − 6x+ 1− 6x2 log(x)

24(x− 1)4
,

g̃(x) =
1

2
f(x) . (B.1)
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C Crossover and mutation operations in NSGA-III

Simulated binary crossover

For the mating or crossover the simulated binary crossover (SBX) bounded is used. This

explenation is based on [34]. The SBX takes two parent individuals and creates two

offspring individuals.

offspring1 =
1

2
[(1 + β)parent1 + (1− β)parent2] ,

offspring2 =
1

2
[(1− β)parent1 + (1 + β)parent2] , (C.1)

where β is a real random number. The average of the offspring is the same as the average

of the parents. Additionally this formula has the following properties.

• For β = 1, the offspring is the same as the parents

• For β < 1, the offspring values are closer to each other then the parents

• for β > 1, the offspring values are further apart then the parents

The SBX is designed to produce offspring similar to the parents. Therefore the random

value β should have a higher probability for values close to 1. Therefore another uniform

distributed random value u in the interval [0, 1], is used to calculate β with the following

formula

β = (2u)
1

ηc+1 for u ≤ 0.5 ,

β =

(
1

2(1− u)

) 1
ηc+1

for u > 0.5 , (C.2)

with the crowding degree parameter ηc. A higher value of ηc tends to result in offspring

closely resembling the parents, while a lower value of ηc leads to greater dissimilarity

among the offspring.

Polynomial mutation

For the mutation the polynomial bounded mutation operator is used [35]. As the name

suggests, a polynomial distribution is employed to perturb the individual within its vicin-

ity. The probability distribution on both the left and right sides of the variable value is

adjusted, ensuring that no values outside the specified range [a, b] are generated by the

mutation operator. For a given parent solution p ∈ [a, b], the mutated individual p′ is

calculated using a uniform distributed random number u in the interval [0, 1] as follows

p′ = p+
(
(2u)

1
ηm+1 − 1

)
(p− a) for u ≤ 0.5 ,

p′ = p+
(
1− (2− 2u)

1
ηm+1

)
(b− p) for u > 0.5 , (C.3)
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with the crowding degree parameter ηm. A higher value of ηm tends to produce minor

deviations, while a lower value creates more pronounced mutations.
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D NSGA-III pseudo code

The following pseudo code for NSGA-III is based on the approach of Kalyanmoy Deb et

al. [14]. Algorithm 1 represents one generational update of NSGA-III, which utilizes the

procedures in the Algorithms 2, 3 and 4.

Algorithm 1 Generation t of NSGA-III procedure

Input: H reference points Zr, parent population Pt

Output: Pt+1

1: St = ∅, i = 1

2: Qt = Recombination+Mutation(Pt)

3: Rt = Pt ∪Qt

4: (F1, F2, . . .) = Non-dominated-sort(Rt)

5: repeat

6: St = St ∪ Fi and i = i+ 1

7: until |St| ≥ N

8: Last front to be included: Fl = Fi

9: if |St| = N then

10: Pt+1 = St, break

11: else

12: Pt+1 =
⋃l−1

j=1 Fj

13: Points to be chosen from Fl: K = N − |Pt+1|
14: Normalize objectives:

fn = Normalize(St)

15: Associate each member s of St with a reference point:

[π(s), d(s)] = Associate(St, Z
r) % π(s): closest reference point,

d: distance between s and π(s)

16: Compute niche count of reference point j ∈ Zr:

ρj =
∑

s∈St/Fl
(if π(s) = j; then 1; else 0)

17: Choose K members, one at a time from Fl to construct Pt+1:

Niching(K, ρj, π, d, Z
r, Fl, Pt+1)

18: end if
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Algorithm 2 Normalize(St) procedure

Input: St (structured points)

Output: fn (reference points on normalized hyper-plane)

1: for j = 1 to M do

2: Compute ideal point: zmin
j = mins∈St fj(s)

3: Translate objectives: fj(s) = fj(s)− zmin
j for all s ∈ St

4: Compute extreme points (zmax
j , j = 1, . . . ,M) of St

5: end for

6: Compute intercepts aj for j = 1, . . . ,M

7: Normalize objectives (fn)

Algorithm 3 Associate(St, Z
r) procedure

Input: Zr, St

Output: π(s ∈ St), d(s ∈ St)

1: for each reference point z ∈ Zr do

2: Compute reference line w = z

3: end for

4: for each s ∈ St do

5: for each w ∈ Zr do

6: Compute d⊥(s, w) =
∥∥s− wT sw/∥w∥2

∥∥
7: end for

8: Assign π(s) = w : argminw∈Zrd⊥(s, w)

9: Assign d(s) = d⊥(s, π(s))

10: end for
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Algorithm 4 Niching (K, ρj, π, d, Z
r, Fl, Pt+1) procedure

Input: K, ρj, π(s ∈ St), d(s ∈ (St), Z
r, Fl, Pt+1

1: k = 1

2: while k ≤ K do

3: Jmin = {j : argminj∈Zrρj}
4: ĵ = random(Jmin)

5: Iĵ = {s : π(s) = ĵ, s ∈ Fl}
6: if Iĵ ̸= ∅ then

7: if ρĵ = 0 then

8: Pt+1 = Pt+1 ∪ {s : argmins∈Iĵ
d(s)}

9: else

10: Pt+1 = Pt+1 ∪ {random(Iĵ)}
11: end if

12: ρĵ = ρĵ + 1, Fl = Fl\{s}
13: k = k + 1

14: else

15: Zr = Zr/{ĵ}
16: end if

17: end while
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E λ couplings and scalar mass parameters

Figure E.1: Scalar mass parameters and a selection of scalar couplings for NSGA-III and h-CMA-

ES. h-CMA-ES demonstrates a higher spread and better coverage, compared to NSGA-III, which

displays characteristically forming lines and crosses.
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Sämtliche wörtlichen oder sinngemäßen Übernahmen und Zitate sind kenntlich gemacht

und nachgewiesen.

Die Arbeit wurde bisher keiner anderen Prüfungsbehörde zur Erlangung eines akademi-
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