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Summary

In the standard model, the Higgs massmh receives radiative corrections from high energy scales.

To obtain mh = 125 GeV, the coefficient of the Higgs mass term must be fine-tuned with high

precision, which goes against the principle of naturalness. Composite Higgs models provide a

solution to this by cutting off corrections to mh at the Higgs compositeness scale. We study a

specific composite Higgs model based on the coset SU(5)×SU(6)×U(1)/SO(5)×Sp(6) with a

fermionic UV completion. To ensure that the top quark can develop a large Yukawa coupling,

the model contains composite fermions, so-called top partners, some of which can mix with the

top quark. We derive the particle content of the model, calculate parts of the Lagrangian and

determine the scalar potential for the pseudo Nambu-Goldstone bosons in the color sector coset

SU(6)/Sp(6). The latter calculation shows that the neutral color octet π8 and the charge-2/3

color triplet π3 generically have different masses, but the mass hierarchy cannot be determined

due to the large number of independent coefficients.

Next, we study the phenomenology of the model, focusing on the color octet top partners,

which we name “gluonis” in analogy to the gluino in supersymmetry. We show that they can

decay via π3 or π8 into final states such as 4t+MET, 2t2j+MET or 4j+MET, where the missing

energy is due to a stable Majorana color singlet top partner, the “boni”. We then formulate

simplified models for these decays, implement them in FeynRules and simulate the pair

production of gluonis at the LHC. By comparing the results with ATLAS and CMS searches,

we derive exclusion bounds in the gluoni-boni-mass plane. For the full gluoni multiplet, these

reach up to 2.7 TeV for a massless boni, while the strongest bounds on the boni mass are just

below 1.7 TeV. Finally, we discuss how the phenomenology would change if our assumptions

about the mass hierachies of the top partners do not hold.



Zusammenfassung

Im Standardmodell erhält die Higgs-Masse Strahlungskorrekturen von hohen Energieskalen.

Um mh = 125 GeV zu erhalten, muss der Koeffizient des Higgs-Massenterms sehr genau

eingestellt werden, was dem Natürlichkeitsprinzip widerspricht. Composite-Higgs-Modelle lösen

dieses Problem, indem sie die Korrekturen zu mh an der Skala abschneiden, bei der die Be-

standteile des zusammengesetzten Higgs berücksichtigt werden müssen. Wir untersuchen ein

spezielles Composite-Higgs-Modell mit einer fermionischen UV-Vervollständigung, das auf der

Faktorgruppe SU(5)× SU(6)× U(1)/SO(5)× Sp(6) basiert. Um sicherzustellen, dass das Top

Quark eine hinreichend große Yukawa-Kopplung bilden kann, enthält das Modell zusammenge-

setzte Fermionen, sogenannte Top Partner, von denen manche Mischungen mit dem Top Quark

eingehen können. Wir bestimmen den Teilcheninhalt des Modells und berechnen Teile der

Lagrangedichte sowie das skalare Potential für die Pseudo-Nambu-Goldstone-Bosonen in der

farbgeladenen Faktorgruppe SU(6)/Sp(6). Letztere Rechnung zeigt, dass das neutrale Oktett

π8 und das Triplett π3 mit Ladung 2/3 im Allgemeinen unterschiedliche Massen haben, aber die

Massenhierarchie kann aufgrund der vielen unabhängigen Koeffizienten nicht bestimmt werden.

Des Weiteren untersuchen wir die Phänomenologie des Modells, wobei wir uns auf die

Oktett Top Partner konzentrieren. In Analogie zum Gluino in der Supersymmetrie nennen

wir diese “Gluonis”. Wir zeigen, dass sie über π3 oder π8 zerfallen können. Die resultieren-

den Endzustände sind beispielsweise 4t+MET, 2t2j+MET oder 4j+MET, wobei die fehlende

Energie (MET) von dem stabilen Singulett Majorana Top Partner – dem “Boni” – kommt.

Anschließend formulieren wir vereinfachte Modelle für die Zerfälle, implementieren diese in

FeynRules und simulieren die Paarproduktion von Gluonis am LHC. Durch Vergleich der

Ergebnisse mit ATLAS- und CMS-Suchen bestimmen wir Ausschlussgrenzen in der Ebene der

Gluoni-Boni-Massen. Für das volle Gluoni Multiplett reichen diese bis zu 2,7 TeV für ein mas-

seloses Boni, während die stärksten Ausschlussgrenzen für die Boni-Masse bis beinahe 1,7 TeV

reichen. Abschließend diskutieren wir, wie sich die Phänomenologie ändern würde, wenn unsere

Annahmen über die Massenhierarchien der Top Partner nicht zutreffen.
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1 | Introduction

With the discovery of the Higgs boson in 2012 [1, 2], all particles predicted by the standard

model (SM) have been observed. However, despite its successes, we know that the SM is not the

full story: It includes neither neutrino masses nor dark matter, and the quantum description of

gravity breaks down above the Planck scale. The SM should therefore be viewed as an effective

field theory that gives an accurate description of nature only up to a scale ΛSM, above which

new physics sets in [3]. Besides that, the SM also has several theoretical flaws. For example,

it offers no explanation for the strong CP problem, the hierarchy among the fermion masses or

the naturalness problem associated with the Higgs mass. The latter in particular has inspired

much of the model building beyond the standard model (BSM) of the past decades and provides

the primary motivation for this thesis.

The principle of naturalness states, that the parameters of a theory at high energies cannot

be correlated with the physics of the effective theory in the infrared [4]. In that sense, the

SM is unnatural. To see this, we imagine that we know the fundamental theory replacing

the SM above ΛSM. We can then formally compute the Higgs mass from the parameters pfund
of the fundamental theory, similar to how the Fermi constant GF can be computed from the

parameters of the electroweak (EW) theory, GF = g2/(4
√
2m2

W ). In general [3],

m2
h =

∫ ∞

0

dE
dm2

h

dE
(E; pfund) =

∫ .ΛSM

0

dE
dm2

h

dE
(E; pfund) +

∫ ∞

.ΛSM

dE
dm2

h

dE
(E; pfund) (1.1a)

= δSMm
2
h + δBSMm

2
h, (1.1b)

where the integrand can include both tree-level and loop contributions. By splitting the integral

slightly below the cutoff, we obtain an unknown term δBSMm
2
h from physics above ΛSM and a

computable contribution from virtual SM particles, which is dominated by top loops,

δSMm
2
h

m2
h

&
3y2t
8π2

(
ΛSM

mh

)2

'
(

ΛSM

450 GeV

)2

. (1.2)

The quadratic divergence stems from the fact that the Higgs mass term µ2H†H is a relevant

operator. Since the Higgs has a mass ofm2
h = 2µ2 = (125 GeV)2, the contributions in Eq. (1.1b)

have to coincide almost exactly, δSMm
2
h ' −δBSMm

2
h, if ΛSM is large. For example, for ΛSM ∼

MGUT = 1015 GeV, an enormous cancellation of 24 digits has to take place between the SM and

the BSM contribution. But they emerge from completely different energy scales and should

therefore not be correlated at all. This is known as the naturalness problem of the SM [5,6].

If nature is to be described by a natural theory, there has to be new physics at the TeV

scale resolving the naturalness problem. One promising approach is to assume that the Higgs is

a composite particle with an extension of l−1
h ∼ 1 TeV. The Higgs mass would then be immune



1 Introduction 2

to large corrections, as particles with energy E & l−1
h cannot resolve the Higgs but instead

see its constituents [3]. In these so-called composite Higgs models [7–9], the Higgs emerges as

a bound state of a new composite sector. This is a purely fermionic gauge theory in the UV

that condenses at the TeV scale. The condensation spontaneously breaks the global symmetry

group G of the composite sector to the subgroup H, leading to (pseudo) Nambu-Goldstone

bosons (pNGBs) in the coset G/H, among them the Higgs. Their potential is generated by

interactions between the composite and the elementary sector (the SM minus the Higgs), which

explicitly break G. Besides the pNGBs, the composite sector also forms fermionic resonances

with masses in the TeV. In order to achieve a sufficiently large Yukawa coupling for the top

quark, we assume the physical top quark to be a linear combination of an elementary and a

composite state. This is known as partial compositeness [10] and requires the composite sector

to produce states that can mix with the top quark, so-called top partners.

In recent years, the search for UV theories that can deliver a suitable composite sector has

seen a lot of activity. In particular, a set of minimal models have been identified as promising

candidates [11–13]. In this thesis, we study one of these models, which was named M5 in [13].

It is based on the symmetry breaking pattern

G = SU(5)× SU(6)× U(1) → SO(5)× Sp(6) = H, (1.3)

which offers a rich phenomenology with 29 pNGBs. Among them are an electrically neutral

color octet π8 and a color triplet π3 with charge 2/3. We classify the leading operators that

contribute to the scalar potential of these colored pNGBs with the aim to estimate their masses.

The model M5 also includes several non-standard top partners, such as color singlet and octet

fermions. We focus on the latter, which we name gluonis in analogy to the fermionic partner of

the gluon in supersymmetry. Gluonis would be produced by the LHC with an appreciable cross

section due to large color factors. Also, to our knowledge, the LHC phenomenology of charged

color octet top partners has not yet been studied in the literature. We work out the dominant

decay channels of gluonis and implement these in FeynRules [14]. We then simulate glu-

oni pair production and subsequent decays at the LHC with MadGraph5 aMC@NLO [15].

By comparing the generated events with experimental searches implemented in MadAnaly-

sis5 [16–19] and CheckMATE [20, 21], we derive exclusion bounds on the masses of the new

particles.

The remainder of this thesis is structured as follows. In Chapter 2 we review the construc-

tion of composite Higgs models and describe the classification of fermionic UV completions.

Chapter 3 is dedicated to exploring the model M5. After defining the UV theory we derive the

particle content in the IR. We then compute parts of the Lagrangian that are relevant to the

phenomenology of gluonis. Furthermore, we classify the leading operators contributing to the

scalar potential and compute their contribution to the masses of colored pNGBs. In Chapter 4

we turn to studying the phenomenology of the model, focusing on pair production of gluonis.

We describe the tools used for the simulation and analysis, discuss the recasted searches and

present the obtained mass bounds. Finally, we summarize our results in Chapter 5 and discuss

how this research can be extended.



2 | UV Completions of Composite Higgs

Models

This chapter explains the foundations of composite Higgs models (CHMs) and their fermionic

UV completions. We begin with the general idea of the composite Higgs scenario, focusing on

the low-energy regime first. After introducing the setup of a CHM, we review the low-energy

effective theory and discuss how partial compositeness helps with understanding the large top

mass. We then discuss which specific UV completions have a chance to be phenomenologically

successful.

2.1 Basics of Composite Higgs Models

In the SM, the electroweak symmetry breaking (EWSB) is triggered by an elementary scalar,

the Higgs boson. Its mass receives radiative corrections that grow quadratically with the cutoff

scale. Thus, the coefficient of the Higgs mass has to be fine-tuned very precisely to reproduce

mh = 125 GeV. This naturalness problem of the SM has been known for decades [6], and since

then theorists have been looking for natural explanations for a light Higgs.

2.1.1 A Naturally Light Higgs

The naturalness problem is intrinsically tied to the Higgs being an elementary scalar, so it

can be avoided by constructing a model where the Higgs is a composite state. And there is

precedence in nature for a composite scalar inducing spontaneous symmetry breaking [22]: Low-

energy QCD with two flavors in the chiral limit (mu = md = 0) has a global SU(2)L × SU(2)R
symmetry that gets broken to SU(2)D by the chiral condensate 〈qRqL〉 = Λ3

QCD12, yielding

massless pions as Nambu-Goldstone bosons. These give mass to the W and Z bosons when

the electroweak interactions are turned on, albeit a small one, mW = gfπ/2 = 29 MeV. Here,

fπ = 92 MeV is the pion decay constant.

This motivated early technicolor models [6, 23, 24] to remove the Higgs sector in favor of

another strongly interacting “technicolor” gauge group, which is essentially a scaled-up version

of QCD [22]. The EW symmetry is then broken dynamically by the condensate of new “tech-

niquarks”, giving the vector bosons masses of mW = gfT/2. Thus, the technipion decay con-

stant fT corresponds to the EW scale, fT = v. But if technicolor condensed around v, we

would expect a large number of technihadrons with masses ∼ v similar to the QCD hadrons

around 1 GeV, which have not been observed. This, along with the absence of a light Higgs

and difficulties with EW precision tests, is why simple technicolor models have fallen out of

favor [25]. However, composite Higgs models [7–9] manage to resolve the phenomenological
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Figure 2.1: Hierarchy of scales (left) and different sectors (right) of a composite Higgs model,

adapted from [3]. The gauge group is respected by the complete model, the global symmetry of

the composite sector is broken explicitly by interactions with the elementary sector. The Higgs

emerges as a pNGB from the composite sector.

problems of technicolor while keeping with the spirit of avoiding elementary scalars. To see

how, we have to discuss the setup of a CHM in more detail.

The sectors and energy scales of a CHM are shown in Figure 2.1. As in technicolor, CHMs

also assume the presence of a new composite sector, which becomes strongly interacting in

the IR. It consists of a set of fermions, so-called hyperquarks ψHC, that are charged under a

new hypercolor gauge group GHC with coupling gHC, and has a global symmetry group G. The
composite sector is generated at a high energy scale ΛUV � TeV where gHC � 1, so it is close to

a free fixed point of its renormalization group equation (RGE) and thereby quasi-conformal. We

assume that the composite sector Lagrangian does not contain any strongly relevant operators

so as to avoid a new naturalness problem [3]. The composite sector will therefore remain close

to its RGE fixed point and hence the evolution of gHC is a slow running. But eventually gHC

becomes large and the composite sector starts to condense. The corresponding energy scale

ΛHC is generated purely from the RG running of a dimensionless coupling. This mechanism

is called dimensional transmutation and also occurs in QCD, where ΛQCD is generated by the

running of gs. Similar to the hadrons with masses around 1 GeV, the composite sector now

forms resonances with a typical mass ∼ ΛHC. But since no such resonances have been observed

so far, we expect ΛHC to be around 1-5 TeV [26].

As in low-energy QCD, the hyperquark condensate〈
ψiHCψ

j
HC

〉
= Λ3

HCΣ
ij
0 6= 0 (2.1)

induces a spontaneous breaking of the global symmetry, G → H, where H is determined by

the matrix Σ0. By the Goldstone theorem [27, 28], this leads to massless scalars in the coset

G/H, so-called Nambu-Goldstone bosons (NGBs). A key characteristic of a CHM is that the

Higgs is identified with one of the NGBs, H ∈ G/H. To see how the Higgs obtains a mass, we

have to take into account the second sector of a CHM, the elementary sector. It contains the

fields and interactions of the SM – except the Higgs and the Yukawa couplings1 – and does not

respect H ⊂ G. Thus, interactions Lint of the composite resonances with elementary fields, e.g.

SM gauge interactions, explicitly break H. A further source of explicit breaking are possible

hyperquark mass terms. The explicit symmetry breaking turns the NGBs into pseudo NGBs

(pNGBs) by giving them mass and generating a scalar potential, which will trigger the EWSB.

1And possibly the right-handed top quark, see Section 2.1.3.
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EWS breaking

f

θ

v = f sin θ

Figure 2.2: Alignment of the vacuum in theories with a composite sector, adapted from [9,29].

In technicolor, θ = π/2 and f = v, while the SM is recovered for θ → 0, which corresponds to

f → ∞. CHMs interpolate between the SM and technicolor with 0 < θ � 1.

We introduce a pNGB decay constant f ≈ ΛHC/(4π) to characterize the G → H breaking

scale, the analog of fT above. But while technicolor has fT ' v, a CHM assumes a separation

between the symmetry breaking and EW scales, v � f [7]. This is conveniently parameterized

with

ξ =
v2

f 2
= sin2 θ � 1, (2.2)

where θ quantifies the vacuum misalignment from the direction that preserves the EW symme-

try [9], see Fig. 2.2. Since a CHM reduces to the SM for ξ → 0 and forms a technicolor model

for ξ ' 1, a CHM can be considered an interpolation between the SM and technicolor [22]. By

pushing the scale where new resonances are expected above the EW scale, CHMs avoid the

phenomenological problems of technicolor.

To summarize, in a CHM the Higgs emerges as a pNGB from the spontaneous breaking of

the global symmetry of the composite sector. The Higgs gains a potential and mass from explicit

symmetry breaking by interactions with the elementary sector. If the breaking is small, the

Higgs is lighter than the symmetry breaking scale f and we can naturally obtainmh = 125 GeV.

The vacuum of the composite sector is misaligned with respect to the EW vacuum, leading to

a separation between f and the EW scale, v = f sin θ.

The considerations above imply several constraints on the symmetry breaking pattern [3]:

Firstly, the composite sector has to respect the SM gauge group, so we must have G ⊃ H ⊃
GSM = SU(3)c × SU(2)L × U(1)Y . The gauging of GSM means that only a subgroup of H is

gauged. This is an instance of the explicit H breaking mentioned above. Secondly, to avoid

tree-level contributions to ρ = m2
W/(m

2
Z cos

2 θW ), the composite sector must have a custodial

symmetry, so H ⊃ Gcust = SU(3)c×SU(2)L×SU(2)R. And naturally, a suitable representation

for the Higgs must be present in the coset, G/H ⊃ (1,2,2) of Gcust. The simplest coset to

satisfy these constraints is

SU(3)c × SO(5)/SU(3)c × SO(4), (2.3)

because SO(4) ∼= SU(2)L × SU(2)R and thus H = Gcust. CHMs based on the SO(5)/SO(4)

breaking are accordingly called minimal composite Higgs models (MCHMs) [30].
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2.1.2 Low-Energy Effective Theory

Assuming we have constructed a CHM with all the features lined out in the previous section,

how do we go about testing it against current experimental data? For this, we can integrate

out the heavy degrees of freedom and focus solely on the low-energy effective theory.

The physics at an energy scale well below the G → H breaking can be systematically

worked out with the Callan-Coleman-Wess-Zumino (CCWZ) construction [31, 32]. Following

the presentation in [3], we choose a basis where the generators TA of G can be divided into

unbroken (T a) and broken (XI) ones. We then define the Goldstone matrix

U(Π) = exp

(
i

√
2

f
ΠIXI

)
, (2.4)

which is a convenient parametrization of the pNGBs ΠI . Under a global transformation g ∈ G,
the Goldstone matrix transforms as

U(Π) → U(Π(g)) = gU(Π)h−1(Π, g), (2.5)

where h ∈ H is a local matrix, h = h(Π(x), g). From the Goldstone matrix, we can obtain the

d- and e-symbols, which form the basis of the CCWZ construction. To this end, we consider the

Maurer-Cartan form constructed from U and separate it into broken and unbroken components,

iU−1(Π)∂µU(Π) = dIµ(Π)X
I + eaµ(Π)T

a ≡ dµ(Π) + eµ(Π). (2.6)

From Eq. (2.5) it follows that dµ and eµ transform under the full group G as

dµ → hdµh
−1, (2.7a)

eµ → h(eµ + i∂µ)h
−1. (2.7b)

The statement of the CCWZ construction is now that all G invariant operators can be built

from dµ, eµ and derivatives – except for the Wess-Zumino-Witten term discussed at the end

of this section. But since the d- and e-symbols both transform with h, we only have to find

H invariants. For example, the kinetic term of the pNGBs is obtained by combining two

d-symbols,

L(2) =
f 2

4
dIµ(Π)d

µ,I(Π) =
1

2
∂µΠ

I∂µΠI + · · · , (2.8)

where the · · · contain higher dimensional operators. The superscript on L(2) indicates the order

in the chiral expansion, the appropriate power counting scheme for a theory with pNGBs [33].

And operator’s chiral dimension is given by the number of derivatives of pNGBs, or equivalently

the factors of pNGB momenta p. We can deduce from Eq. (2.8) that dµ contributes one factor

of p, so L(2) is the O(p2) Lagrangian. In fact, the square of dµ is the unique two-derivative

operator for the minimal coset SO(5)/SO(4), while in general there might be more [3].

So far, we have only dealt with global G transformations. But the coupling to the SM gauges

some of the generators of G. It turns out to be useful to introduce gauge fields for the complete

group G, Aµ = AAµT
A, and to only restrict Aµ to the physical gauge fields after the operator

classification. The generalized d- and e-symbols are defined by

U−1(Π)(Aµ + i∂µ)U(Π) = dIµ(Π, A)X
I + eaµ(Π, A)T

a ≡ dµ(Π, A) + eµ(Π, A) (2.9)
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and also transform according to Eq. (2.7). Using dµ(Π, A) in Eq. (2.8) gives the gauge invariant

kinetic term for the pNGBs,

L =
f 2

4
dIµ(Π, A)d

µ,I(Π, A) = (DµΠ)
†DµΠ+ · · · , (2.10)

where DµΠ is the SM-covariant derivative.

If we want to include some of the hyperbaryons Ψ in the low-energy description, we have

to find an adequate covariant derivative. According to Eq. (2.7b), the e-symbol transforms as

an adjoint of H. As the hyperbaryons live in irreps of H, we can use eµ(Π, A) as a generalized

gauge field,

DµΨ = ∂µΨ− ieaµ(Π, A)T
aΨ, (2.11)

and the kinetic Lagrangian

L = Ψ(i /D −mΨ)Ψ (2.12)

includes the interactions of Ψ with both the gauge fields and the pNGBs.

There is one term that the CCWZ construction misses, the Wess-Zumino-Witten (WZW)

term [34,35]. To see its origin, we follow [36] and return to low-energy QCD, this time including

the strange quark and QED. The classical theory has a SU(3)L × SU(3)R symmetry, but the

axial current jµ,aA = qγµγ5T
aq is anomalous,

∂µj
µ,a
A = −Nce

2

16π2
εµνρσFµνFρσ Tr

(
T aQ2

)
, (2.13)

where Nc = 3 is the number of colors, Fµν is the QED field strength tensor, T a = λa/2 are

the SU(3)c generators and Q is the quark charge matrix, Q = diag(2
3
,−1

3
,−1

3
). So far we have

not yet used the condensation of QCD, so Eq. (2.13) holds also at high energies. But it must

be reproduced by the low-energy Lagrangian with the same coefficient, since the coefficient of

an anomalous conservation law is not renormalized in the RG evolution to the IR [36]. This is

achieved by the gauged WZW action, which was shown in [35] to contain the term

Sgauged WZW ⊃ ke2

96π2fπ

∫
d4xπ0ε

µνρσFµνFρσ, (2.14)

where π0 ≡ π3 is the neutral pion, one of the eight pNGBs πa that emerge from the spontaneous

breaking of SU(3)L×SU(3)R → SU(3)D when the 〈qRqL〉 condensate forms. The axial Noether

current (i.e. the one corresponding to g → L†gR with R = −L) from Eq. (2.14) satisfies

∂µj
µ,3
A = − ke2

96π2
εµνρσFµνFρσ, (2.15)

which matches Eq. (2.13) if we choose k = Nc. The WZW term has important phenomeno-

logical consequences, e.g. Eq. (2.14) induces the decay π0 → γγ of the neutral pion. More

generally, the WZW term can allow pNGBs to decay to two vector bosons. Which couplings

it includes depends on the symmetry breaking pattern and can for example be computed from

the formulation with differential forms given in [12,37].
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2.1.3 Partial Compositeness

Besides triggering the EWSB, one of the crucial roles of the Higgs field in the SM is to generate

mass terms for the fermions. But since the Higgs is no longer an elementary scalar in a CHM,

we have to find a way to generate the Yukawa couplings dynamically. As the EWSB originates

from the composite sector, it must be transmitted to the elementary sector by an appropriate

interaction term. Motivated by the SM, one might be tempted to use a bilinear interaction of

the form

Lint = −λt qLtROc
S − λb qLbROS + h.c. , (2.16)

where OS = ψHCψHC is a composite scalar with the quantum numbers of the Higgs [3]. Such

interactions are for example generated in extended technicolor [38,39]. Since we assumed that

the composite sector is near a conformal fixed point of its RGE above ΛHC, the evolution of the

couplings λi from ΛUV where they were generated down to the condensation scale is determined

by the dimension of OS,

λi(ΛHC) ' λi

(
ΛHC

ΛUV

)[OS ]−1

. (2.17)

There are several problems with this approach [3,22]: Since Lint must be a small perturbation

of the composite sector, there is an upper bound on the λi, making it difficult to obtain a large

Yukawa coupling for the top if ΛUV � ΛHC. But ΛUV has to be very large to avoid constraints

on flavor-changing neutral currents from a four SM fermion interaction that also gets generated

at ΛUV. Also, the large scale separation cannot be counteracted by having [OS] close to 1,

because then O2
S is a relevant operator, leading to a new naturalness problem.

A possible solution is to couple the SM fermions linearly to composite operators, as was

first pointed out in [10]. Focusing on the contributions to the top Yukawa coupling, the linear

interaction reads [3]

Lint = −λLqLOL
F − λRtROR

F + h.c. . (2.18)

The composite operators are now fermionic and have the same SM quantum numbers as qL and

tR, i.e. OL
F ∈ (3,2)1/6 and OR

F ∈ (3,1)2/3. Therefore, the OL,R
F can excite fermionic resonances

Q, T from the vacuum, 〈0|OL
F |Q〉 6= 0 and 〈0|OR

F |T 〉 6= 0. As Q, T also have the same quantum

numbers as qL, tR, they are called top partners and can mix with the SM fermions. As we will

see below, in general the OL,R
F contain further resonances. Since these emerge from the same

G multiplet as Q, T , we refer to them as top partners as well.

The physical mass eigenstates of the top and bottom quarks are therefore superpositions of

elementary and composite fermions, giving this approach the name partial compositeness. To

see what makes this preferable to the bilinear couplings, we again evolve the UV couplings to

the IR,

λi(ΛHC) ' λi

(
ΛHC

ΛUV

)[OiF ]−
5
2

. (2.19)

For [Oi
F ] ' 5/2, a large Yukawa is possible even for a large scale separation. The difference to

OS is that for the critical value ofOF , |OF |2 is an irrelevant operator, thus retaining naturalness.

Furthermore, since there are different OF,f for each flavor, Eq. (2.19) offers an explanation of

flavor hierarchies in the form of larger operator dimensions for the lighter quarks [3].

Having established its viability, let us now investigate the phenomenological consequences

of partial compositeness. First we note that both chiralities of the top partners are present
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with the same quantum numbers, so they can form a Dirac mass term and are also referred

to as vector-like quarks (VLQs). From dimensional analysis, the mass terms for the top and

VLQs can be estimated as [3]

Lmass = −m∗
(
QQ+ TT

)
− m∗

g∗

(
λLqLQ+ λRtRT + h.c.

)
, (2.20)

where λL,R are the IR couplings, m∗ = ΛHC is the typical mass of the resonances and g∗ a

composite sector coupling constant. The mass matrix can be diagonalized by rotating the

fields as (
qL
Q

)
→

(
Q̂1

Q̂2

)
=

(
cos θL sin θL
− sin θL cos θL

)(
qL
Q

)
, sin θL =

λL√
g2∗ + λ2L

, (2.21)

with an analogous expression for tR and T . This results in two massless eigenstates Q̂1, T̂1,

which we identify with the physical qL and tR, as well as two heavy resonances Q̂2, T̂2. The

degree of compositeness of the physical SM quarks is determined by sin θL,R.

The composite sector Lagrangian contains interactions of the top partners with the pNGBs,

among them a term QTH̃. After mixing, this generates the top Yukawa couplings,

Lcomp ⊃ −g∗QTH̃ + h.c. ⊃ −g∗ sin θLQ̂1 sin θRT̂1H̃ + h.c. , (2.22)

and we can read off the top Yukawa as

yt = g∗ sin θL sin θR. (2.23)

This shows that heavier particles typically have larger compositeness angles θL,R, which is why

we have neglected lighter quarks and leptons so far: While they can have mixing terms with

composite states as well, they are strongly suppressed by their small Yukawa. It is however

possible for one chirality to have a much larger compositeness fraction than the other. For

example, there are models where tR is a completely composite state [3].

While the CCWZ construction described in Section 2.1.2 is universal in any model with G/H
symmetry breaking, the details of partial compositeness are model dependent. In particular,

we have to specify the G representations of the composite operators OL,R
F , which affect the

top couplings to the Higgs. To illustrate this, we consider a model based on G = SU(3)c ×
SO(5)× U(1)X → SU(3)c × SO(4)× U(1)X = H. The SU(2)L is taken as one of the factors of

SO(4) ∼= SU(2)L × SU(2)R and the hypercharge is embedded as Y = T 3
R + X. Compared to

the MCHM introduced in Section 2.1.1, this symmetry breaking pattern contains an additional

unbroken factor of U(1)X , which is necessary to accommodate top partners. By choosing

the composite operators in the (3,5)2/3 of G, we obtain the model MCHM5, which was first

discussed in [40]. Under G → H → GSM, this representation decomposes as

52/3 → 42/3 + 12/3 → 27/6 + 21/6 + 12/3, (2.24)

where the 3 of color is implicit. The last two representations are the desired top partners. The

first doublet gives rise to two additional VLQs with electric charges 5/3 and 2/3 after EWSB.

As mentioned above, the presence of further top partners is a common feature of CHMs. In

fact, the 27/6 is also present in the model M5 that is studied in the following chapters.
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To formulate the mixing terms Eq. (2.18) with the composite operators (OL,R
F )I ∈ 52/3,

it is useful to embed qL and tR into incomplete SO(5) fiveplets. In the basis used in [3], the

embeddings read

ζL =
λL√
2
(−ibL,−bL,−itL, tL, 0)

T , ζR = λR(0, 0, 0, 0, tR)
T . (2.25)

The linear couplings can now be written in a formally SO(5) invariant way,

Lint = −(ζL)
I(OL

F )I − (ζR)
I(OR

F )I + h.c. . (2.26)

The advantage of this is that while ζL,R do not transform as full representations of SO(5), we

are free to act as if they do and only restrict them to their physical values in Eq. (2.25) at the

end of any calculation. To this end we define so-called spurions by

ΞL,R ∈ 52/3 with ΞL,R

∣∣∣
phys

= ζL,R. (2.27)

The spurions are very useful in the calculation of the effective Lagrangian with the fermionic

resonances integrated out, which can be constructed by forming G invariant operators from the

spurions. For top partners in the representation R of G, the result can be written as

Lint = −mttt− kRt
mt

v
h tt− cR2

mt

v2
h2 tt+ · · · . (2.28)

For the case of fiveplet top partners [3],

k5t =
1− 2ξ√
1− ξ

, c52 = −2ξ. (2.29)

The parameters λL,R were removed by fixing the coefficient of −tt as the top mass. We could

also have chosen the top partners in the (3,4)1/6 of G, as 41/6 → 21/6 + 12/3 + 1−1/3 under

SU(2)L × U(1)Y . In this so-called MCHM4 [30], the couplings are given by [3]

k4t =
√

1− ξ, c42 = −ξ
2
. (2.30)

We note that for both models, we recover the SM coupling of the top quark to the Higgs in the

limit ξ → 0, as expected from the discussion in Section 2.1.1.

2.2 Classification of Fermionic UV Completions

Following the introduction of CHMs in the 1980s, the literature has been mostly focused on

studying their low-energy effects with the CCWZ construction. Inspired by the AdS/CFT

correspondence [41], the 2000s saw the appearance of holographic CHMs with a dual bulk

description on five-dimensional Anti-de Sitter space [22,30,42]. But not until the 2010s did the

study of the UV theory in four-dimensional models receive a lot of attention. In this section, we

summarize the classification of fermionic UV completions of CHMs with partial compositeness

that was performed by Ferretti and collaborators [11–13] starting in 2013.
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2.2.1 Assumptions and Requirements

We start by describing the framework of the classification [11]. The aim is to find minimal

UV models that yield a CHM with partially composite top quarks. Thus, we only consider

the case of a simple hypercolor group GHC. For the hyperquarks, we limit ourselves to two

distinct irreducible representations (irreps) Ri of GHC. That is, ψHC ∈ n1R1 + n2R2, where

ni is the number of flavors of the respective irrep. For now, we discuss only (pseudo-)real

irreps. We denote the hyperquarks in R1 and R2 by ψ and χ respectively, and work with

left-handed Weyl fermions. The anomaly-free global symmetry group of these models is G =

SU(n1) × SU(n2) × U(1). The SU(ni) come from rotating the ni hyperquarks in Ri among

each other. Actually, the flavor symmetry is U(ni) ∼= SU(ni) × U(1). But only one linear

combination of U(1)ψ and U(1)χ is anomaly-free, whereas the orthogonal combination induces

a U(1)G2
HC Adler-Bell-Jackiw (ABJ) anomaly [13].

In the case of a complex irrep, there are ni pairs of hyperquarks (ψ, ψ̃) or (χ, χ̃) in the

(Ri, Ri) representation. The associated flavor symmetry is U(ni)×U(ni)
′ ∼= SU(ni)×SU(ni)

′×
U(1)A × U(1)V , where the phase rotations act as

U(1)ψA : ψ → eiαψ, ψ̃ → eiαψ̃, U(1)ψV : ψ → eiαψ, ψ̃ → e−iαψ̃ (2.31)

and identically for (χ, χ̃). The axial U(1)
ψ/χ
A can again be combined with U(1)χ/ψ to construct

one anomaly-free combination, and the vector-like U(1)
ψ/χ
V is an additional anomaly-free factor

in G that remains unbroken when GHC condenses [12].

While the SM particles are neutral under GHC, we have to assign SM quantum numbers to

the hyperquarks so that Higgs-like and top-like bound states can be formed. To this end, we

give EW quantum numbers to the ψ, and QCD color and hypercharge to the χ. This separation

is useful for avoiding problems like spontaneous color breaking and light colored pNGBs [13].

There are several technical conditions the models have to satisfy: As the composite sector

should condense in the IR, we require the theory to be asymptotically free. For the case of

GHC = SU(N) (Sp(2N)), the theory must not have gauge (global) anomalies, and GSM must

be free of ’t Hooft anomalies [11]. Furthermore, the theory must be conformal in the UV to

be able to generate a large anomalous dimension for the top partner. On the other hand, a

conformal theory cannot become strongly interacting in the IR. A possible solution is to look for

theories that lead to a valid CHM with top partners but are not conformal [13]. The theory is

then brought into the conformal window by adding additional hyperfermions with mass ∼ ΛHC.

These explicitly break the conformal invariance in the IR, but the theory is conformal in the

UV. Following this approach, we look for models outside of the conformal window. However,

for this we have to rely on some heuristics, as it is not yet possible to identify the conformal

region for a non-supersymmetric gauge theory [12].

2.2.2 Minimal Cosets

The global symmetry group is spontaneously broken by the chiral condensates 〈ψψ〉 and 〈χχ〉.
We denote the unbroken subgroups by Hψ/χ. The symmetry breaking pattern depends on

the reality of the hyperquark irreps: SU(n) → SO(n) for a real (R), SU(2n) → Sp(2n) for a

pseudo-real (PR), and SU(n)×SU(n)′×U(1)V → SU(n)D×U(1)V for a complex (C) irrep [12].

Since the ψ form the EW sector, Hψ must contain the custodial SU(2)L × SU(2)R ∼= SO(4)

to protect the ρ-parameter from tree-level contributions. Furthermore, the coset must contain
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ψ ∈ R ψ ∈ PR ψ ∈ C

χ ∈ R
SU(5)

SO(5)

SU(6)

SO(6)

SU(4)

Sp(4)

SU(6)

SO(6)

SU(4)× SU(4)′

SU(4)D

SU(6)

SO(6)

χ ∈ PR
SU(5)

SO(5)

SU(6)

Sp(6)

SU(4)

Sp(4)

SU(6)

Sp(6)

SU(4)× SU(4)′

SU(4)D

SU(6)

Sp(6)

χ ∈ C
SU(5)

SO(5)

SU(3)× SU(3)′

SU(3)D

SU(4)

Sp(4)

SU(3)× SU(3)′

SU(3)D

SU(4)× SU(4)′

SU(4)D

SU(3)× SU(3)′

SU(3)D

Table 2.1: Minimal cosets for CHMs with hyperquarks in two distinct irreps of GHC, split into

real (R), pseudo-real (PR), and complex (C) irreps [12]. Each coset includes an additional

U(1) that is spontaneously broken. For each complex irrep there is also a U(1) factor of G that

remains unbroken. For the grayed-out cosets, the models cannot form top partners.

a (2,2) of the custodial group to accommodate a Higgs. The minimal cosets fulfilling these

requirements are SU(5)/SO(5), SU(4)/Sp(4) and SU(4) × SU(4)′/SU(4)D. The second set of

hyperquarks χ carry QCD color and hypercharge, so we need Hχ ⊃ SU(3)c × U(1)X . This

leads to the minimal cosets SU(6)/SO(6), SU(6)/Sp(6) and SU(3) × SU(3)′/SU(3)D for the

color sector2 [12]. All possible combinations of EW and colored cosets are shown in Tab. 2.1,

neglecting the spontaneously broken anomaly-free U(1) that is common to all cases. Of those,

three cosets can be excluded as the corresponding models cannot form top partners, leaving six

minimal cosets.

Suppose we have chosen a GHC and irreps R1, R2 in accordance with the requirements from

the previous section. Then one important question we have not discussed yet is whether the

theory will actually form condensates that lead to the desired symmetry breaking pattern, as

opposed to e.g. breaking GHC. This can be addressed with the MAC hypothesis [43], a heuristic

for identifying symmetry breaking patterns in a condensing gauge theory. Applied to our case,

it works as follows [11]: We form the three products Ri × Rj =
∑

k R
′
k corresponding to the

bilinears ψψ, χχ, ψχ. Each (Ri, Rj, R
′
k) represents a possible channel for the condensation.

The MAC hypothesis states that the first channel to condense, called the maximally attractive

channel (MAC), is the one with the lowest value of C2(R
′
k) − C2(Ri) − C2(Rj), where C2(R)

is the quadratic Casimir of R. The irreps in the MAC are removed and the process is iterated

until none are left. If the MAC hypothesis favors a condensate that breaks GHC or SU(3)c, the

model is discarded.

Before listing the possible UV completions of CHMs, we impose a final constraint. A com-

mon phenomenological hurdle for CHMs is avoiding large contributions to the ZbLb̄L coupling,

which can easily arise due to the large coupling of the qL = (tL, bL) doublet to the composite

sector. But it was shown in [44] that the ZbLb̄L coupling is protected if the custodial SO(4) is

enlarged to O(4) ∼= SO(4) × Z2, where Z2 corresponds to the parity transformation PLR that

exchanges L ↔ R. We therefore require top partners to be eigenstates of PLR, which excludes

models where they come in a (2,1) of SU(2)L × SU(2)R. For the present class of models, this

concerns models with top partners of type χψχ with ψ in a complex irrep [12].

2Note that the complex coset has an additional unbroken factor of U(1)V , so that SU(3)×SU(3)′×U(1)V →
SU(3)D ×U(1)V ≡ SU(3)c ×U(1)X .
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Name GHC ψ χ Coset Top Partners

M1 SO(7) 5× F 6× Spin (R, R) χψχ

M2 SO(9) 5× F 6× Spin (R, R) χψχ

M3 SO(7) 5× Spin 6× F (R, R) ψχψ

M4 SO(9) 5× Spin 6× F (R, R) ψχψ

M5 Sp(4) 5×A2 6× F (R, PR) χψχ

M6 SU(4) 5×A2 3× (F,F) (R, C) χψχ

M7 SO(10) 5× F 3× (Spin,Spin) (R, C) χψχ

M8 Sp(4) 4× F 6×A2 (PR, R) ψχψ

M9 SO(11) 4× Spin 6× F (PR, R) ψχψ

M10 SO(10) 4× (Spin,Spin) 6× F (C, R) ψχψ

M11 SU(4) 4× (F,F) 6×A2 (C, R) ψχψ

M12 SU(5) 4× (F,F) 3× (A2,A2) (C, C) ψχψ

Table 2.2: Possible UV completions of a CHM with a partially composite top quark, based

on [12,13]. The shown models satisfy all requirements from the previous sections. In particular,

they are asymptotically free, likely non-conformal and protect to the ZbLb̄L coupling. We denote

by F, A2 and Spin the fundamental, two-index antisymmetric and spinoral irreps, respectively.

The column “Coset” indicates the reality of the (ψ, χ) irreps, which determines the coset by

Tab. 2.1.

2.2.3 Possible Models

Determining the possible UV models of partial compositeness is now a matter of listing all

combinations of irreps of the simple Lie groups and checking which ones satisfy all requirements

laid out in the previous sections. For each group, we consider only the lowest-dimensional R,

PR and C irreps. All in all, there are 12 promising models, shown in Tab. 2.2 with the names

introduced in [13]. More detailed lists with likely conformal models included are given in [12,13].

Only few of these models have been studied in the literature: In [45], the model M8 was

constructed independently of the classification in [11]. Its symmetry breaking was analyzed

and the top partner was argued to have a scaling dimension sufficiently close to 5/2. A more

detailed investigation was performed for the model M6 in [46], studying both the UV and IR

regime. Phenomenological studies have so far been focused on signatures common to several

models, e.g. [13,47–51]. In the remainder of this thesis, the model M5 is studied in detail with

a particular focus on the LHC phenomenology of fermionic resonances.



3 | The Composite Higgs Model M5

In this chapter we explore a specific composite Higgs model in detail, which was named M5

in [13]. We start by presenting the field content of the UV theory and the symmetry breaking

pattern. Following [52], we then describe the composite particles after the UV theory has

condensed and work out a part of the Lagrangian. Finally, we classify the operators that

contribute to the scalar potential using the spurion method.

3.1 Model Definition

The model M5 is based on the gauge group GHC = Sp(4) × SU(3)c × SU(2)L × U(1)Y . The

hyperquarks are shown in Tab. 3.1 as two-component spinors. The five EW sector hyperquarks

ψi transform under the real two-index antisymmetric irrep A2 of Sp(4) and form a 5 of the

global SU(5) flavor symmetry. Using the notation of [53], we arrange the ψi into two SU(2)L
doublets ψ±

d with hypercharge ±1/2 and the SM neutral ψs,

ψ+
d =

(
ψ1, ψ2

)T
, ψ−

d =
(
ψ3, ψ4

)T
, ψs = ψ5. (3.1)

The color sector hyperquarks χi live in the pseudoreal fundamental irrep F of Sp(4) and come

in six flavors, thus forming a 6 of SU(6). We split them into a color triplet χ3 and antitriplet χ3̄,

χ3 =
(
χ1, χ2, χ3

)T
, χ3̄ =

(
χ4, χ5, χ6

)T
. (3.2)

In addition to the rotations in flavor space, we can perform a simultaneous phase rotation of

all ψi or χi. By assigning the charges under the corresponding U(1)ψ,χ groups as in the last

column of Tab. 3.1, we can construct one anomaly-free U(1) as a linear combination of U(1)ψ
and U(1)χ. Therefore, the total global symmetry group of M5 is SU(5)× SU(6)× U(1).

Sp(4) SU(3)c SU(2)L U(1)Y SU(5) SU(6) U(1)ψ,χ

ψ1,2 A2 1 2 1/2
 5 1 −3

5
qχψ3,4 A2 1 2 −1/2

ψ5 A2 1 1 0

χ1,2,3 F 3 1 x
}

1 6 qχ
χ4,5,6 F 3̄ 1 −x

Table 3.1: Quantum numbers of the hyperquarks in M5 under the gauge group GHC = Sp(4)×
SU(3)c × SU(2)L × U(1)Y and the flavor symmetries SU(5)× U(1)ψ and SU(6)× U(1)χ.
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When the Sp(4) gauge theory condenses, the condensates 〈ψψ〉 and 〈χχ〉 spontaneously

break the flavor symmetries, SU(5) → SO(5) and SU(6) → Sp(6) respectively, as well as the

anomaly-free U(1). All in all, the symmetry breaking pattern is

G = SU(5)× SU(6)× U(1) → SO(5)× Sp(6) = H. (3.3)

In the EW sector, we identify the SU(2)L×SU(2)R subgroup of SO(5) with the custodial group

and gauge the SU(2)L factor. The gauged color group and the X-charge are embedded in the

color sector, Sp(6) ⊃ SU(3)c × U(1)X , and the EW hypercharge Y is a gauged combination of

U(1)X and SU(2)R, Y = X + T 3
R.

3.2 Particle Content

In the low-energy regime, the hyperquarks form composite resonances. Among them are the

pNGBs in the coset G/H and three-hyperquark bound states of the form ψχχ, from which

we obtain the top partners. While vector resonances can also occur [3], we limit ourselves to

scalar and fermionic ones in this work. In this section, we work out which composite states are

present and define our notation.

3.2.1 Pseudo Nambu-Goldstone Bosons

The pNGBs come from the cosets SU(5)/SO(5), SU(6)/Sp(6) and from the global U(1).

Global U(1) The spontaneous breaking of the anomaly-free U(1) gives rise to a SM neutral

pNGB a. This state is present in all models in Tab. 2.2, making it an interesting object for

general studies [13, 47, 51]. However, we do not consider it further because it does not couple

to the color octet fermions that are the focus of this thesis.

Color Sector The colored hyperquark condensate

〈χiχj〉 ∝ Σij
0,χ, Σ0,χ =

(
0 −13

13 0

)
(3.4)

breaks SU(6) → Sp(6). Of the 35 generators of SU(6), 21 unbroken ones TA preserve the

vacuum and generate Sp(6),

TAΣ0,χ + Σ0,χ(T
A)T = 0, (3.5)

while 14 broken generators XI instead satisfy

XIΣ0,χ − Σ0,χ(X
I)T = 0. (3.6)

The generators of the SU(3)c × U(1)X subgroup of Sp(6) are

SU(3)c :
1√
2

(
T a 0

0 −(T a)T

)
, (3.7a)

U(1)X : TX = NX

(
13 0

0 −13

)
, (3.7b)



3.2 Particle Content 16

where T a are the SU(3) generators in the fundamental irrep and we need NX = −1/3 for the

correct embedding of the hypercharge. The broken generators are conveniently expressed as

XI = Xa =
1√
2

(
T a 0

0 (T a)T

)
, a = 1, . . . , 8 (3.8a)

XI = X8+j =
1

2
√
2

(
0 −tj
tj 0

)
, j = 1, 2, 3 (3.8b)

XI = X11+j =
1

2
√
2

(
0 itj

itj 0

)
, j = 1, 2, 3 (3.8c)

where we chose a basis that helps identifying the color multiplets in Eq. (3.11). The tj are

antisymmetric 3× 3 matrices,

t1 =

0 −1 0

1 0 0

0 0 0

, t2 =

0 0 −1

0 0 0

1 0 0

, t3 =

0 0 0

0 0 −1

0 1 0

, (3.9)

and the XI are normalized as

Tr
(
XIXJ

)
=

1

2
δIJ . (3.10)

The pNGBs Πχ ∈ SU(6)/Sp(6) form a 14 of Sp(6), which decomposes as

14 → 80 + 32x + 3̄−2x ≡ π8 + π3 + π∗
3 (3.11)

under SU(3)c × U(1)em. Since the Πχ are singlets under the custodial group, their electric

charge is simply given by their X-charge. In the next section we will see that we need to choose

x = 1/3 to obtain top partners. Thus, π8 is an electrically neutral color octet and π3 is a

color triplet with charge 2/3. The π8 and π3 can be interpreted as scalar partners of the gluon

and the top quark, respectively. Using the naming convention of the supersymmetry (SUSY)

literature, we refer to them as sgluon and stop.

According to Eq. (3.11), the matrix representation Πχ = ΠI
χX

I of the pNGBs can be split

into a color octet part,

Π8 =
8∑
I=1

πI8X
I =

1√
2

(
πa8T

a 0

0 πa8(T
a)T

)
, (3.12)

and a matrix for the triplet and antitriplet,

Π3+3̄ =

(
0 κ†

κ 0

)
, κij =

1

2
εijkπ

k
3 , (3.13)

where the generators corresponding to π3 and π∗
3 are linear combinations of X8+j and X11+j.

The total matrix of the colored pNGBs is now given by

Πχ = Π8 +Π3+3̄. (3.14)

The normalization was chosen such that

Tr
(
Π†
χΠχ

)
=

1

2
πa8π

a
8 + π†

3π3 (3.15)
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has the canonical normalization of a mass term. By exponentiating Πχ, we obtain the Goldstone

matrix,

Uχ = eiΠ
I
χX

I/(2fχ), (3.16)

which transforms as Uχ → gUχh
−1 with g ∈ SU(6) and h ∈ Sp(6).

To make the connection with the vacuum Σ0,χ, we have another look at the condensate in

Eq. (3.4). Considering only the SU(6) irreps, the two-hyperquark operator

6× 6 3 χiχj =
1

2
(χiχj − χjχi) +

1

2
(χiχj + χjχi) ∈ 15+ 21 (3.17)

can be split into the two-index antisymmetric (15) and symmetric (21) irreps. As the vacuum

is antisymmetric, only the 15 contributes to the symmetry breaking. The pNGBs can therefore

be parametrized by a scalar field Σχ in the 15 of SU(6) with 〈Σχ〉 = Σ0,χ. This field transforms

as Σχ → gΣχg
T with g ∈ SU(6). This is achieved by “dressing” the vacuum with the Goldstone

matrix,

Σχ = UχΣ0,χU
T
χ = eiΠ

I
χX

I/fχΣ0,χ (3.18a)

= Σ0,χ +
i

fχ

(
−κ∗ − 1√

2
πa8T

a

1√
2
πa8(T

a)T −κ

)
+O(Π2

χ), (3.18b)

which is antisymmetric by construction. Since Sp(6) is unbroken, the pNGBs do not develop a

vacuum expectation value (vev), which ensures 〈Σχ〉 = Σ0,χ, and the correct transformation is

guaranteed by the Goldstone matrix.

EW Sector The EW pNGBs Πψ live in the coset SU(5)/SO(5), which results from1 [53]

〈ψiψj〉 ∝ Σij
0,ψ, Σ0,ψ =

 iσ2
−iσ2

1

. (3.19)

The vacuum preserves the custodial symmetry SU(2)L × SU(2)R ⊂ SO(5), whose generators

are embedded as

T iL =
1

2

(
12 ⊗ σi

0

)
, T iR =

1

2

(
σi ⊗ 12

0

)
. (3.20)

The pNGBs form a 14 of SO(5), which decomposes as

14 → (3,3) + (2,2) + (1,1) (3.21a)

→ 31 + 30 + 3−1 + 21/2 + 2−1/2 + 10 (3.21b)

≡ π+ + π0 + π− +H + H̃ + η (3.21c)

under SO(5) → SU(2)L × SU(2)R → SU(2)L ×U(1)Y since the ψi do not carry X-charge. The

πi are SU(2)L triplets with hypercharge ±1 and 0,

π0 =
1√
2
πi0σ

i =
1√
2

(
1√
2
π3
0 π+

0

π−
0 − 1√

2
π3
0

)
, π± = πi±σ

i = (π∓)
†, (3.22)

1There is another inequivalent choice for the vacuum with 1 → −1 in Σ0,ψ [53]. For simplicity, we only

consider the form in Eq. (3.19).
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where we have set π±
i = 1√

2
(π1

i ∓ iπ2
i ). H is the Higgs doublet, H̃ = iσ2H∗ is its dual, and η is

SM neutral. The EW pNGB matrix can be compactly expressed as

Πψ = ΠI
ψX

I =
1

2


η√
10
12 + π0 π+ H

π−
η√
10
12 − π0 −H̃

H† −H̃† − 4√
10
η

, (3.23)

and exponentiating yields the Goldstone matrix,

Uψ = e2iΠ
I
ψX

I/fψ . (3.24)

Finally, we construct a matrix

Σψ = UψΣ0,ψU
T
ψ = e4iΠ

I
ψX

I/fψΣ0,ψ (3.25)

so that 〈Σψ〉 = Σ0,ψ. By analogous reasoning to the color sector, Σψ is in the two-index

symmetric representation 15 of SU(5) and transforms as Σψ → gΣψg
T with g ∈ SU(5).

Note that the colored and EW pNGBs have different decay constants. As these are dy-

namically determined quantities, their ratio can in principle be calculated on the lattice [13].

However, no lattice data is available yet, so we have to resort to less reliable methods. For ex-

ample, in [13] their ratio was estimated with the MAC hypothesis to be fψ/fχ = 2.8. Another

approach is to use holographic techniques, by which a strongly coupled gauge theory can be

mapped to a weakly coupled gravitational theory on a higher dimensional space. This allows

for the calculation of some observables which would otherwise not be feasible. This idea was

applied in [26] to study the spectra of CHMs, yielding fψ/fχ = 1.7 for M5. These estimates

should be treated with care, however, and in the following we keep both fψ and fχ as free

parameters.

The matrix Σ0,ψ gives the orientation of the SO(5) preserving vacuum within SU(5). But

the true vacuum Σ̃0,ψ of the theory is misaligned from the EW preserving vacuum by an angle θ

due to the vev of the Higgs [53],

Σ̃0,ψ = ΩθΣ0,ψΩ
T
θ =


0 0 0 1 0

0 −s2θ −c2θ 0 i√
2
s2θ

0 −c2θ −s2θ 0 − i√
2
s2θ

1 0 0 0 0

0 i√
2
s2θ − i√

2
s2θ 0 c2θ

, (3.26)

where sθ = sin θ = v/fψ and the misalignment matrix is given by

Ωθ = e4iX
h θ

2 =


1 0 0 0 0

0 c2θ/2 s2θ/2 0 i√
2
sθ

0 s2θ/2 c2θ/2 0 − i√
2
sθ

0 0 0 1 0

0 i√
2
sθ − i√

2
sθ 0 cθ

, Xh =
1

2
√
2


0

1

−1

0

0 1 −1 0

. (3.27)

We define the pNGBs with respect to the misaligned vacuum. This way, no pNGB develops a

vev. We also have to rotate the Goldstone matrix

Ũψ = ΩθUψΩ
−1
θ , (3.28)
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and dressing the rotated vacuum with Ũψ yields

Σ̃ψ = ŨψΣ̃0,ψŨ
T
ψ = ΩθΣψΩ

T
θ . (3.29)

In Eq. (3.21c), we have written the pNGBs as gauge eigenstates. However, the Higgs vev

breaks the SU(2)L×SU(2)R symmetry to the custodial SU(2)D, so when we use the misaligned

vacuum, we should express the pNGBs as custodial eigenstates. The Higgs bidoublet becomes

(2,2) → 3+1 ≡ φ+h, where the triplet φ = (φ+, φ0, φ−) contains the longitudinal components

of the W±, Z and h is the physical Higgs boson. They are related to the Higgs doublet by

H =

(
φ+

1√
2
(h+ iφ0)

)
. (3.30)

The bitriplet decomposes under the custodial SU(2)D as

(3,3) → 5+ 3+ 1 ≡ η5 + η3 + η1. (3.31)

The change of basis is given by

π+
+ = η++

5 , π0
+ =

iη+3 − η+5√
2

, π+
0 =

iη+3 + η+5√
2

(3.32a)

π3
0 =

η01 −
√
2η05√

3
, π−

+ =

√
2η01 + η05√

6
+ i

η03√
2

(3.32b)

and π−
− = (π+

+)
†, π0

− = (π0
+)

†, π+
− = (π−

+)
† and π−

0 = (π+
0 )

† [53].

3.2.2 Top Partners

In M5, top partners occur in three-hyperquark bound states of the form ψχχ. More concretely,

the combinations ψχχ, ψχ̄χ̄ and ψχχ̄ are possible. The respective representations under the

global symmetries read

ψχχ ∈ (5,15)G + (5,21)G → (5,14)H + (5,1)H + (5,21)H ≡ B1
14 + B1

1 + B1
21, (3.33a)

ψχ̄χ̄ ∈ (5,15)G + (5,21)G → (5,14)H + (5,1)H + (5,21)H ≡ B2
14 + B2

1 + B2
21, (3.33b)

ψχχ̄ ∈ (5,35)G + (5,1)G → (5,14)H + (5,21)H + (5,1)H ≡ B3
14 + B3

21 + B3
1, (3.33c)

where we used

15SU(6) → 14Sp(6) + 1Sp(6), 21SU(6) → 21Sp(6), 35SU(6) → 14Sp(6) + 21Sp(6) (3.34)

and we neglected the global U(1) in G, which is irrelevant for the following. We decompose the

SO(5) and Sp(6) irreps further under SU(2)L × SU(2)R and SU(3)c × U(1)X respectively,

5SO(5) → (2,2) + (1,1), (3.35a)

14Sp(6) → 80 + 32x + 3̄−2x, (3.35b)

21Sp(6) → 80 + 6−2x + 6̄2x + 10, (3.35c)

to identify the irreps that contain partners of qL ∈ (3,2)1/6 and tcR ∈ (3̄,1)−2/3. Note that

we work with two-component spinors in this chapter. The 14Sp(6) contains a color triplet and

antitriplet. Pairing the 3 with the (2,2) and the 3̄ with the EW singlet, we obtain

(3,2)2x+1/2, (3,2)2x−1/2, (3̄,1)−2x (3.36)
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Figure 3.1: Decomposition of the top partners in OF ∈ (5,15)G under SU(3)c×U(1)X (horizon-

tal) and SO(5) → SU(2)L × SU(2)R (vertical). All fermions are two-component Weyl spinors

except for g̃ and B̃, which are Majorana fermions.

of the SM gauge group GSM. By choosing x = 1/3, we can identify the last two states as top

partners proper. Thus, the top partners originate from the 14Sp(6), which in turn can come

from the antisymmetric 15SU(6), its conjugate 15SU(6) or the adjoint 35SU(6). In this thesis, we

only consider the case where the top partners are embedded in the 15. We denote the operator

that contains the top partners by OF ∈ (5,15)G.

Now that the representation of OF under G is fixed, the next step is to work out the physical

states inOF . The decomposition under SU(3)c×U(1)X and SU(2)L×SU(2)R is shown in Fig. 3.1

along with our notation for the corresponding states. We denote the components of the color

octet and singlet bidoublets by

G̃ =

((
G̃+
u

G̃0
u

)
,

(
G̃0
d

G̃−
d

))
, h̃ =

((
h̃+u
h̃0u

)
,

(
h̃0d
h̃−d

))
, (3.37)

where the index u/d indicates the hypercharge Y = ±1/2 of the SU(2)L doublet and the

superscript is the electric charge after EWSB. For the color (anti)triplets, we set

QL =

((
X5/3

X2/3

)
,

(
T

B

))
, Qc

L =

((
Xc

5/3

Xc
2/3

)
,

(
T c

Bc

))
. (3.38)

Since both chiralities appear with the same EW quantum numbers, we refer to these states as

vector-like quarks (VLQs).

The doublet (T,B)T ∈ (3,2)1/6 and the singlet T ′c ∈ (3̄,1)−2/3 mix with the SM quarks

qL, t
c
R. After EWSB, there are actually three states that can mix with the top: Analogous to

the EW pNGBs, we can rewrite the VLQs as eigenstates of the custodial SU(2)D. This leads

to a triplet (X5/3, T3, B) and two singlets T1, T2, with

T1 = T ′, T2 =
1√
2
(X2/3 − T ), T3 =

1√
2
(X2/3 + T ). (3.39)
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The Ti all have electric charge 2/3 and as such can mix with the top quark. While only a few

of the states in Tab. 3.1 mix with SM quarks, they all emerge from the same multiplet (5,15)G.

We therefore refer to all of them as top partners.

In the next chapter, we work with the top partners in the phase of broken EW symmetry

and in terms of four-component spinors. The color octets are then expressed as two Dirac and

one Majorana spinor2,

G̃+ =

(
G̃+
u

¯̃G−
d

)
, G̃0 =

(
G̃0
u

¯̃G0
d

)
, g̃ =

(
g̃
¯̃g

)
, (3.40)

where we allow for a notional ambiguity in g̃. Our notation is reminiscent of SUSY, where

the fermionic partner of the gluon is a Majorana fermion g̃ called gluino. To highlight this

similarity while making it clear that we do not work with a supersymmetric model, we name

the color octet fermions gluonis. We write Q8 as a collective symbol for the charged, neutral

and Majorana gluonis, Q8 = (G̃+, G̃0, g̃). Repeating this for the color singlets, we obtain

Q1 = (h̃+, h̃0, B̃), which are defined analogously to Eq. (3.40). Their SUSY analogs are the

higgsinos and the bino, so we call h̃+,0 the charged and neutral higgsonis, and name B̃ the boni.

Finally, the VLQs can be written as Dirac spinors by

X5/3 =

(
X5/3

X̄c
5/3

)
, Ti =

(
Ti
T̄ ci

)
, B =

(
B

B̄c

)
, (3.41)

where we again accept an ambiguous notation for readability. For the remainder of this chapter

we keep working with two-component spinors.

We now discuss how the top partners described above are embedded in OF . To this end it is

useful to write the flavor indices explicitly: (OF )IMN carries one index I in the 5SU(5) and two

indices M,N for the 6SU(6), with (OF )IMN = −(OF )INM . For the unbroken subgroups we use

the same letters but lowercase. We start with the embedding in the color sector. The 14Sp(6)

is embedded in the 15SU(6) by

(B1
14)mn =

(
−Qc

3 − 1√
2
Qa

8T
a

1√
2
Qa

8(T
a)T −Q3

)
, (3.42)

where Q
(c)
3 are antisymmetric color space matrices, Q

(c)
3,xy = 1

2
εxyzQ

(c)
3,z. For later reference we

also give the expression for the embedding in the 15SU(6),

(B2
14)mn =

(
Q3

1√
2
Qa

8(T
a)T

− 1√
2
Qa

8T
a Qc

3

)
. (3.43)

To turn the Sp(6) indices into SU(6) ones, we recall that the Goldstone matrix has indices

(Uχ)Mm, so the embedding in SU(6) reads

(O14)MN = (Uχ)Mm(Uχ)Nn(B1
14)mn = UχB1

14U
T
χ . (3.44)

2Technically, we should also express the color octets and singlets as custodial eigenstates. This would result

in a field redefinition that has no physical effect on the processes studied in this thesis, as we do not consider

couplings to EW pNGBs.
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Applying the same procedure to the singlet 1Sp(6), we obtain

B1
1 = Q1

(
0 −13

13 0

)
, O1 = UχB1

1U
T
χ . (3.45)

The dressed operators O14 and O1 can be used independently in the construction of the La-

grangian [3]. Note that (O14,1)I and (Q8,3,1)I still carry a SU(5) index. The VLQs are embedded

in the 5SO(5) by

(Q′
3)i = (X5/3, X2/3, T, B, iT

′)T , (3.46a)

(Qc
3
′)i = (Bc,−T c,−Xc

2/3, X
c
5/3,−iT ′c)T . (3.46b)

They were chosen to reproduce the correct SU(2)L product,

Qc′
3Q

′
3 = Qc′

3,iε̃ijQ
′
3,j = Xc

5/3X5/3 +Xc
2/3X2/3 + T cT +BcB + T ′cT ′, (3.47)

where

ε̃ =


0 0 0 1 0

0 0 −1 0 0

0 −1 0 0 0

1 0 0 0 0

0 0 0 0 1

 = Σ0,ψ (3.48)

to match the choice of the EW vacuum in Eq. (3.19). The SO(5) index can be transformed to

a SU(5) index with the EW Goldstone matrix,

Q3 = UψQ
′
3, Qc

3 = UψQ
c
3
′. (3.49)

Similarly, the gluonis and higgsonis/boni are embedded by

Q′
8 = (G̃+

u , G̃
0
u, G̃

0
d, G̃

−
d , ig̃)

T , Q8 = UψQ
′
8, (3.50a)

Q′
1 = (h̃+u , h̃

0
u, h̃

0
d, h̃

−
d , iB̃)T , Q1 = UψQ

′
1. (3.50b)

3.2.3 Embeddings of the Standard Model Quarks

For the formulation of the elementary-composite interactions,

Lmix ∼ −λLOF ζL − λROF ζ
c
R + h.c. , (3.51)

we need to determine the embeddings ζL, ζ
c
R of the SM quarks qL, t

c
R in the relevant G irreps.

Since OF ∈ (5,15)G, we need ζ ∈ (5̄,15)G for Eq. (3.51) to be G invariant. The color sector

embedding for the 15SU(6) is given in Eq. (3.43), from which we read off

ζL =

(
κL 0

0 0

)
, κL,xy =

1

2
εxyzξL,z, (3.52a)

ζcR =

(
0 0

0 κR

)
, κR,xy =

1

2
εxyzξ

c
R,z. (3.52b)

For the EW sector embedding, Eq. (3.46) yields

ξL =
(
0, 0, tL, bL, 0

)
, ξcR =

(
0, 0, 0, 0,−itcR

)
. (3.53)
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3.3 Model Lagrangian

In preparation for the phenomenological studies in Chapter 4, we work out parts of the IR

Lagrangian of M5 in this section. In particular, we focus on the sectors that lead to decay

channels of the gluonis and the colored pNGBs.

The total Lagrangian can be split into the elementary sector (SM minus the Higgs), the

composite sector, mixing terms between the two and the anomalous WZW term,

LM5 = L′
SM + Lcomp + Lmix + LWZW. (3.54)

The elementary-composite interactions in Eq. (3.51) are oversimplified, since O14 and O1 can

couple independently to the SM quarks. More correctly,

Lmix = −λL,14O14ζL − λR,14O14ζ
c
R − λL,1O1ζL − λR,1O1ζ

c
R + h.c. , (3.55)

where the index contractions are implicit. We start the calculation in the color sector. Since

we work with a matrix representation, the indices are traced out, e.g.

Tr(O14ζL) = Tr
(
UχB1

14U
T
χ ζL

)
. (3.56)

We expand the Goldstone matrix and keep only the leading order in the pNGBs since higher

orders are suppressed by 1/fnχ . Performing the traces yields [54]

Lmix =− λL,14

(
2Qc

3ξL − i√
2fχ

Qc
3π8ξL − i√

2fχ
π†
3Q8ξL +O(Π2

χ)

)
(3.57a)

− λR,14

(
2Q3ξ

c
R − i√

2fχ
Q3π8ξ

c
R − i√

2fχ
π3Q8ξ

c
R +O(Π2

χ)

)
(3.57b)

− λL,1

(
− i

fχ
π†
3Q1ξL +O(Π2

χ)

)
− λR,1

(
− i

fχ
π3Q1ξ

c
R +O(Π2

χ)

)
+ h.c. , (3.57c)

where the SU(3)c indices are implicit, e.g. π†
3Q8ξL = π†

3,xQ
a
8T

a
xyξL,y. Next, we expand in the

EW sector. Since we are not interested in couplings to the EW pNGBs, we expand Q = UψQ
′

to zeroth order in Πψ, Uψ = 15 +O(Πψ). Using Q
′ξ = Q′

iε̃ijξj,

=− λL,14

(
2(T ctL +BcbL)−

i√
2fχ

(T cπ8tL +Bcπ8bL)−
i√
2fχ

π†
3(−G̃0

utL + G̃+
u bL)

)
(3.58a)

− λR,14

(
2T ′tcR − i√

2fχ
T ′π8t

c
R − i√

2fχ
π3g̃t

c
R

)
(3.58b)

+
iλL,1
fχ

π†
3(−h̃0utL + h̃+u bL) +

iλR,1
fχ

π3B̃t
c
R +O(Πψ,Π

2
χ) + h.c. . (3.58c)

The first two lines open the decay channel of gluonis into π3 and a third-generation quark,

the third line allows π3 → Q1q. After taking into account the mixing induced by the O(Π0
χ)

contribution, the couplings to π8 lead to π8 → tt̄, bb̄.

The composite sector Lagrangian Lcomp consists of the generalized kinetic terms of the top

partners as in Eq. (2.12) and the series of operators built from the so-called Maurer-Cartan

forms dµ and eµ defined in Eq. (2.6). Among the latter are the derivative couplings [54,55]

Lcomp ⊃ ic14B1
14σ

µB̄1
14dµ + ic1B1

14σ
µB̄1

1dµ + h.c. . (3.59)
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Considering only the color sector dµ ' − 1
2fχ
∂µΠχ and performing the SU(6) traces, we obtain

Tr
(
B14σ

µB̄1∂µΠχ

)
+ h.c. = Tr

(
Qc

3σ
µQ̄1∂µκ−Q3σ

µQ̄1∂µκ
† −Q8σ

µQ̄1∂µπ8
)
+ h.c. (3.60a)

= −1

2

(
Qc

3,iσ
µQ̄1∂µπ3,i +Q3,iσ

µQ̄1∂µπ
†
3,i +Qa

8σ
µQ̄1∂µπ

a
8

)
+ h.c. . (3.60b)

Of those, only the last term opens new decay channels for the gluonis,

Qa
8σ

µQ̄1∂µπ
a
8 =

(
G̃+,a
u σµ¯̃h+u + G̃0,a

u σµ¯̃h0u + G̃0,a
d σµ¯̃h0d + G̃−,a

d σµ¯̃h−d + g̃σµ ¯̃B
)
∂µπ

a
8 , (3.61)

namely Q8 → π8Q1. The interaction of two 14-plets includes the coupling of gluonis to VLQs

and the stop,

Tr
(
B14σ

µB̄14∂µΠχ

)
+ h.c. (3.62a)

=
√
2Tr

(
Qc

3σ
µQ̄c

3∂µπ8 −Q3σ
µQ̄3∂µπ8 −Q8σ

µQ̄8∂µπ8 +Q8σ
µQ̄3∂µκ+Q8σ

µQ̄c
3∂µκ

†) (3.62b)

⊃
√
2
(
G̃+,a
u σµX̄5/3 + G̃0,a

u σµX̄2/3 + G̃0,a
d σµT̄ + G̃−,a

d σµB̄ + g̃aσµT̄ ′
)
ta∂µπ3. (3.62c)

In the next chapter, we will need the form of the WZW term for the pseudo-scalar π8. In

the gauge eigenbasis, it is given by

LWZW,π8 =
g2s

16π2fχ
dχ

1

2
dabc πa8 ε

µνρσGb
µνG

c
ρσ +

gsg
′

16π2fχ
dχYχ π

a
8 ε

µνρσGa
µνBρσ, (3.63)

where dχ = 4 is the dimension of the Sp(4) irrep of the χ and Yχ = 1/3 is their hypercharge [13].

The first term induces the decay π8 → gg and the second term couples the sgluon to gZ and gγ

after EWSB.

As a final remark, we note that the Lagrangian is invariant under an accidental parity,

X → −X : π3, G̃, g̃, h̃, B̃, (3.64a)

X → X : otherwise. (3.64b)

This means that the lightest of the odd states is stable. We will make use of this fact when we

discuss the phenomenology of the model in Section 4.1.

3.4 Calculation of the Scalar Potential

The elementary-composite interactions shown in the previous section explicitly break G. This

turns the massless NGBs into pseudo NGBs by generating a potential for them. The scalar

potential V fulfills the crucial role of giving a vev to the Higgs field, thereby triggering EWSB.

Besides that, it contains the mass terms of the pNGBs and encodes the couplings of the pNGBs

among each other, which are phenomenologically important for potential cascade decays.

In this section, we discuss the different contributions to the scalar potential and determine V

to O(p2) in the chiral expansion. As in Section 3.2.2, we limit the discussion to the case where

the top partners come from a single representation (5,15) of G. The goal of this calculation is

to estimate the masses of the colored pNGBs. This allows us to further simplify the calculation

by mostly neglecting the contributions of EW pNGBs. However, our analysis can also be used

as a starting point for studying the EW sector.



3.4 Calculation of the Scalar Potential 25

3.4.1 Gauge Terms

The covariant derivative for a generic field from the composite sector reads

Dµ = ∂µ − i
(
gsG

a
µT

a + g′BµTX
)
− i
(
gW i

µT
i
L + g′BµT

3
R

)
. (3.65)

The brackets group the generators that belong to SU(3)c × U(1)X ⊂ SU(6) and SU(2)L ×
SU(2)R ⊂ SU(5), respectively. Since only a subgroup of G is gauged, Eq. (3.65) explicitly

breaks the global symmetry of the composite sector. This allows for gauge boson loops that

would have canceled if G had been fully gauged. The counterterms for these loops contribute

to the scalar potential.

To O(p2), the EW sector contribution to the potential can be expressed as [56]

V EW
gauge = Cgf

4
ψ

(
g2Tr

[
T iLΣψ(T

i
L)
TΣ†

ψ

]
+ g′2Tr

[
T 3
RΣψ(T

3
R)

TΣ†
ψ

])
. (3.66)

Here, Cg is a (typically positive) low-energy constant (LEC) that can be computed on the

lattice. Expanding Σψ to first order in the pNGBs3,

V EW
gauge = Cgf

4
ψ

(
3g2 + g′2

)(
−c2θ + s2θ

h

fψ

)
+O(Π2

ψ), (3.67)

we reproduce the result from [53], where the pNGB potential was calculated for a CHM based

on SU(5)/SO(5). Eq. (3.66) can straightforwardly be applied to the color sector,

V C
gauge = C ′

gf
4
χ

(
g2s Tr

[
T aΣχ(T

a)TΣ†
χ

]
+ g′2Tr

[
TXΣχ(TX)

TΣ†
χ

])
(3.68a)

=
3

8
C ′
gf

2
χg

2
s π

a
8π

a
8 + C ′

gf
2
χ

(
1

3
g2s +

2

9
g′2
)
π†
3π3 +O(Π3

χ) (3.68b)

up to a constant offset. The numerical prefactors of the QCD contributions are determined by

the quadratic Casimir,

(mQCD
R )2 = C ′

gf
2
χg

2
s

C2(R)

4
, (3.69)

with C2(3) = 4/3 and C2(8) = 3. For the octet, we can compare our result with [57] where the

colored pNGBs emerging from SU(6)/SO(6) are studied. We find agreement with Eq. (3.69).

The form of the gauge contributions to V can be understood with the spurion method [56].

A spurion is a source of explicit G breaking that gets formally promoted to a complete repre-

sentation. For example, the spurion for the gauging of SU(3)c is

Ξµ ∈ (1,35)G, Ξµ → gχΞµg
†
χ, Ξµ

∣∣∣
phys

= gsT
aGa

µ. (3.70)

In the following, we leave the restriction of the spurions to their physical values implicit. For

the calculation of the potential we define a projector P a by factoring out the gluon field,

Ξµ = P aGa
µ, P a ∈ (1,35;8,1, 0) of G ×GSM, P a

MN = gsT
a
MN . (3.71)

Note that the projector carries both global and SM quantum numbers. To find the operators

that contribute to V , we have to identify the independent G × GSM invariants that can be

3Here and in the following, we evaluate Σψ in the misaligned vacuum, i.e. using Σ̃ψ from Eq. (3.29).
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constructed from the projectors and the Σ matrices to a given order in the chiral expansion,

where Σ counts as O(p0) and P a as O(p). Thus, operators contain two projectors at O(p2),

and SM invariance forces them to belong to the same gauge field. Using Σ → gΣgT , we find

two independent operators for a generic gauge projector PA,

Tr
(
PAPA

)
, Tr

(
PAΣ(PA)TΣ†). (3.72)

Conjugated projectors do not appear because Adj = Adj and a different order in the second

trace is equivalent to the given form due to the cyclic property of the trace. The first operator

can be ignored since it only shifts the potential by a constant amount, leaving the traces in

Eqs. (3.66) and (3.68) as the only O(p2) contributions.

3.4.2 Hyperquark Mass Terms

The global symmetry is also broken explicitly by mass terms for the hyperquarks,

Lmass = −1

2
ψMψψ − 1

2
χMχχ+ h.c. . (3.73)

For the ψ, the most general gauge invariant mass matrix reads [53]

Mψ =

 0 µd(iσ
2) 0

−µd(iσ2) 0 0

0 0 µs

, 1

2
ψMψψ = µdψ

+
d ψ

−
d +

1

2
µsψsψs, (3.74)

which breaks SU(5) → SO(4) for µd 6= µs. For the colored hyperquarks, we choose

Mχ =

(
0 −µχ13

µχ13 0

)
= µχΣ0,χ,

1

2
χMχχ = µχχ3̄χ3, (3.75)

which breaks SU(6) → Sp(6) [11]. Note that with this mass matrix, we have assumed that the

χ are mass degenerate. The spurions associated with the mass terms are given by the mass

matrices,

Ξψm = Mψ, Ξχm = Mχ, (3.76)

and transform in the same irreps as the Σψ,χ. Since they count as O(p2) in the chiral expan-

sion [56], the leading order (LO) operator in the potential contains only one Ξm,

Tr
(
ΞmΣ

† + ΣΞ†
m

)
. (3.77)

Thus, the contributions of the hyperquark mass terms to the potential are

V EW
mass = −Cmf 3

ψ Tr
[
MψΣ

†
ψ + ΣψM†

ψ

]
(3.78a)

= 2Cmf
3
ψ

(
−3µd − (µd + µs)c2θ + 2(µd + µs)s2θ

h

fψ

)
+O(Π2

ψ), (3.78b)

V C
mass = −C ′

mf
3
χ Tr

[
MχΣ

†
χ + ΣχM†

χ

]
(3.78c)

=
1

2
C ′
mµχfχ (π

a
8π

a
8 + 2π∗

3π3) +O(Π3
χ), (3.78d)

with new LECs C
(′)
m . The normalization was chosen to coincide with [53], where the same result

was obtained for the EW sector4. In V C
mass we again neglected a constant contribution.

4Note that while [53] uses Eq. (3.78a) with Mψ ↔ M†
ψ, this does not change the result as Mψ is hermitian.
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3.4.3 Top Couplings

A third source of explicit symmetry breaking are the interactions of the top partners with the

elementary quarks, schematically5

Lmix ∼ −λLOF ζL − λROF ζ
c
R + h.c. , (3.79)

because the SM quarks are embedded into incomplete multiplets ζL, ζ
c
R.

Since OF ∈ (5,15)G, the spurions ΞL,R must be in the (5̄,15)G irrep. As with the gauge

spurions, we define a set of projectors by

ΞL = qαL,iPα
L,i, ΞR = tcR,iPR,i, (3.80)

where α and i are SU(2)L and SU(3)c indices, respectively. The projectors factorize into an

EW (P̂ ) and a colored (P ) part,

PL = λLP̂L ⊗ PL ∈ (5̄,15; 3̄, 2̄,−1
6
) ↔ Pαi

L,IMN = λLP̂
α
L,IP

i
L,MN , (3.81a)

PR = λRP̂R ⊗ PR ∈ (5̄,15;3,1, 2
3
) ↔ P i

R,IMN = λRP̂R,IP
i
R,MN , (3.81b)

which means that we can construct invariants separately in the EW and color sectors. From

Eqs. (3.52) and (3.53) we read off the projectors as

P̂L =

(
0 0 1 0 0

0 0 0 1 0

)
, P̂R =

(
0 0 0 0 −i

)
(3.82)

and

P i
L =

(
κi 0

0 0

)
, P i

R =

(
0 0

0 κi

)
, κi,jk =

1

2
εijk. (3.83)

We construct the operators contributing to the pNGB potential by forming singlets out of the

PL,R and the Σψ,χ. Since the spurions only count as O(
√
p) in the chiral expansion [56], the

operators up to O(p2) contain two or four spurions, which allows for a lot more independent

operators than for the gauge and mass terms.

EW sector We demonstrate our method for classifying the operators in detail for the EW

sector, following the approach of [53, 56]. We start by ignoring the SM quantum numbers

and only looking for invariants under the global SU(5). To simplify the notation, we write

P̂L/R → P̂ , Σψ → Σ for now. Under g ∈ SU(5),

P̂ → g∗P̂ , P̂ † → P̂ †gT , Σ → gΣgT , Σ† → g∗Σ†g†, (3.84)

and we recall that ΣT = Σ. Now, the idea is to construct operators transforming like an adjoint

X → gXg† or quasi-adjoint X → g∗XgT , so that Tr(X) is invariant under SU(5). To this end,

we form Kronecker products of P (∗) with P T,† and combine them with Σ(†) in Tab. 3.2. There

are no further classes like ΣΣPP since Σ is unitary. In each class there are two operators

transforming like a (quasi-)adjoint. However, using Tr(XY ) = Tr(Y X) = Tr
(
(XY )T

)
, we

identify only three algebraically independent operators after taking the trace,

O1 = Tr
(
P̂ P̂ †

)
= P̂ †P̂ , O2 = Tr

(
P̂ ∗P̂ †Σ†

)
, O3 = Tr

(
ΣP̂ P̂ T

)
. (3.85)

5The implications of the separation of OF into O14 and O1 are discussed in Appendix A.
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X → gXg† X → gXgT X → g∗XgT X → g∗Xg† Class

P̂ ∗P̂ T P̂ ∗P̂ † P̂ P̂ † P̂ P̂ T PP

ΣP̂ P̂ T ΣP̂ P̂ † Σ†P̂ ∗P̂ † Σ†P̂ ∗P̂ T ΣPP

P̂ ∗P̂ †Σ† P̂ ∗P̂ TΣ P̂ P̂ TΣ P̂ P̂ †Σ† PPΣ

ΣP̂ P̂ †Σ† ΣP̂ P̂ TΣ Σ†P̂ ∗P̂ TΣ Σ†P ∗P †Σ† ΣPPΣ

Table 3.2: All combinations of two EW spurions P̂ in the anti-fundamental representation and

the pNGB matrix, as well as their transformation under g ∈ SU(5). Tr(X) is SU(5) invariant

for the first and third columns.

The last two are related by complex conjugation,

O∗
2 = Tr

(
P̂ ∗P̂ †Σ†

)∗
= Tr

(
(P̂ ∗P̂ †Σ†)†

)
= Tr

(
ΣP̂ P̂ T

)
= O3. (3.86)

Next, we construct the operators with four spurions. To simplify the classification, we note that

an operator can only be SM invariant if it contains an equal number of P (T ) and conjugates

P ∗,†. Thus, we already impose this constraint instead of determining all SU(5) invariants first.

The unique operator with no Σ insertions is the square of O1,

O4 = (O1)
2 =

(
P̂ †P̂

)2
. (3.87)

With one Σ, no SM invariants can be built, while there is one operator with two Σ,

O5 = Tr
(
ΣP̂ P̂ †Σ†P̂ ∗P̂ T

)
. (3.88)

By rewriting the trace in index notation,

O5 = ΣIJ P̂J P̂
∗
KΣ

†
KLP̂

∗
LP̂I =

(
ΣIJ P̂J P̂I

)(
Σ†
KLP̂

∗
LP̂

∗
K

)
(3.89a)

= Tr
(
ΣP̂ P̂ T

)
Tr
(
P̂ ∗P̂ †Σ†

)
= O3O2, (3.89b)

we see that it can also be built out of two-spurion operators.

Now we construct SM invariants from the SU(5) invariant building blocks. We have two

projectors, P̂α
L ∈ 2̄−1/6 and P̂R ∈ 12/3, which always have to appear in pairs of the form P̂ ∗

XP̂X
with X = L,R. At O(p) (i.e. two spurions), there are only two operators,

OEW
L = P̂α†

L P̂α
L = 2, OEW

R = P̂ †
RP̂R = 1. (3.90)

Note that we cannot disregard the constant operators at this stage as they still get multiplied

with a color sector operator which might be non-trivial. At O(p2), we have O4 and O5 with

appropriate index contractions. Schematically, the spurions can be chosen as LL, RR and LR,

where each letter stands for a pair of spurions. The constant O4 can be built as

OEW
LL,1 =

(
P̂α†
L P̂α

L

)2
= 4, OEW

RR,1 =
(
P̂ †
RP̂R

)2
= 1, OEW

LR,1 = P̂α†
L P̂α

L P̂
†
RP̂R = 2. (3.91)
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For O5 = O2O3, we find the following hermitian operators,

OEW
LL,2 = Tr

(
P̂α∗
L P̂ β†

L Σ†
ψ

)
Tr
(
ΣψP̂

α
L P̂

βT
L

)
= s4θ − 4s2θcθ

η03
fψ

+ 4s3θcθ
h

fψ
+O(Π2

ψ), (3.92a)

OEW
RR,2 = Tr

(
P̂ ∗
RP̂

†
RΣ

†
ψ

)
Tr
(
ΣψP̂RP̂

T
R

)
= c22θ − 2s4θ

h

fψ
+O(Π2

ψ), (3.92b)

OEW
LR,2 = Tr

(
Pα∗
L P †

RΣ
†
ψ

)
Tr
(
ΣψPL,αP

T
R

)
=

1

2
s22θ + 2sθs2θ

η03
fψ

+ s4θ
h

fψ
+O(Π2

ψ). (3.92c)

This classification is in agreement with [56]. The potentially problematic tadpoles of η03 are

addressed in Section 3.4.4.

Color Sector The classification of the color sector operators proceeds analogously to the EW

sector. The spurion P ∈ 15SU(6) and the pNGB matrix Σ ∈ 15SU(6) are both antisymmetric

and transform as

P → g∗Pg†, P † → gP †gT , Σ → gΣgT , Σ† → g∗Σ†g† (3.93)

with g ∈ SU(6). There are six building blocks,

X → g∗XgT : PP †, PΣ, Σ†P †, (3.94a)

X → gXg† : P †P, P †Σ†, ΣP, (3.94b)

out of which we construct the SU(6) invariant traces in Tab. 3.3. Turning to SM invariance,

there are four color singlet combinations of the spurions PL ∈ 3̄ and PR ∈ 3,

P i
LP

i†
L , P i

RP
i†
R , P i

LP
i
R, P i†

L P
i†
R . (3.95)

However, each operator must have an even number of left- and right-handed spurions. Otherwise

the corresponding EW operator would be in the 2×2×2×1 or 2×1×1×1 of SU(2)L, neither of

which contain a singlet. Thus, contractions of the form P i
LP

i†
L P

j
LP

j
R are not possible even though

they are color singlets. Furthermore, to match the EW operators, the projectors must occur in

pairs P ∗
XPX with X = L,R. Still, there is a large number of color sector operators at O(p2),

many of which do not contribute to the pNGB masses. We therefore relegate the complete list

of operators to Appendix A, where we also argue the completeness of the classification, and

show only those with a O(Π2
χ) contribution in Tab. 3.4.

Number of spurions Traces

1P Tr(PΣ), Tr
(
P †Σ†)

2P Tr
(
P †P

)
, Tr(PΣPΣ), Tr

(
P †Σ†P †Σ†)

3P Tr
(
PP †PΣ

)
, Tr

(
PP †Σ†P †)

4P Tr
(
PP †PP †), Tr(PP †PΣPΣ

)
, Tr

(
PP †Σ†P †Σ†P †), Tr(PP †Σ†P †PΣ

)
Table 3.3: SU(6) invariants with up to four spurions P in the antisymmetric 15.
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Name Operator Contribution to pNGB mass

OC
L,1 Tr(P i

LΣχ) Tr
(
P i†
L Σ

†
χ

)
π†
3π3/(4f

2
χ)

OC
R,1 Tr(P i

RΣχ) Tr
(
P i†
RΣ

†
χ

)
π†
3π3/(4f

2
χ)

OC
LL,2 Tr(P i

LΣχ) Tr
(
P i†
L Σ

†
χ

)
Tr
(
P j†
L P

j
L

)
3π†

3π3/(8f
2
χ)

OC
LL,3 Tr(P i

LΣχ) Tr
(
P j†
L Σ†

χ

)
Tr
(
P j†
L P

i
L

)
+ h.c. π†

3π3/(8f
2
χ)

OC
LL,8 Tr(P i

LΣχ) Tr
(
P j
LP

j†
L Σ†

χP
i†
L

)
+ h.c. π†

3π3/(8f
2
χ)

OC
LL,10 Tr

(
P i
LP

i†
L Σ

†
χP

j†
L P

j
LΣχ

)
π†
3π3/(8f

2
χ)

OC
LR,3 Tr(P i

LΣχ) Tr
(
P i†
L Σ

†
χ

)
Tr
(
P j†
R P

j
R

)
3π†

3π3/(8f
2
χ)

OC
LR,4 Tr(P i

RΣχ) Tr
(
P i†
RΣ

†
χ

)
Tr
(
P j†
L P

j
L

)
3π†

3π3/(8f
2
χ)

OC
LR,7 Tr(P i

LΣχ) Tr(P
i
RΣχ) Tr

(
P j†
L Σ†

χP
j†
R Σ†

χ

)
+ h.c. −3π†

3π3/(8f
2
χ)

OC
LR,8 Tr(P i

LΣχ) Tr
(
P j
RΣχ

)
Tr
(
P i†
L Σ

†
χP

j†
R Σ†

χ

)
+ h.c. −π†

3π3/(8f
2
χ)

OC
LR,13 Tr(P i

LΣP
i
RΣ)Tr

(
P j†
L Σ†

χP
j†
R Σ†

χ

)
−(3πa8π

a
8 + 12π†

3π3)/(16f
2
χ)

OC
LR,14 Tr

(
P i
LΣP

j
RΣ
)
Tr
(
P i†
L Σ

†
χP

j†
R Σ†

χ

)
−π†

3π3/(4f
2
χ)

OC
LR,21 Tr

(
P i
LP

i†
L Σ

†
χP

j†
R P

j
RΣχ

)
−π†

3π3/(8f
2
χ)

OC
LR,22 Tr

(
P i
LP

j†
L Σ†

χP
j†
R P

i
RΣχ

)
−(3πa8π

a
8 + 8π†

3π3)/(64f
2
χ)

Table 3.4: Color singlet operators with up to four spurions PL ∈ 3̄ or PR ∈ 3. We show only

those operators that contribute to the masses of the colored pNGBs. Additionally, there are

RR operators identical to the second panel with L→ R.

Combination The operators in the pNGB potential are built from PL,R and can schemati-

cally be written as

OL = P†
LPL = λ2L(P̂

†
LP̂L)(P

†
LPL) = λ2LO

EW
L OC

L , (3.96a)

OLL = P†
LPLP

†
LPL = λ4L(P̂

†
LP̂LP̂

†
LP̂L)(P

†
LPLP

†
LPL) = λ4LO

EW
LL O

C
LL, (3.96b)

OLR = P†
LPLP

†
RPR = λ2Lλ

2
R(P̂

†
LP̂LP̂

†
RP̂R)(P

†
LPLP

†
RPR) = λ2Lλ

2
RO

EW
LR O

C
LR, (3.96c)

with analogous expressions for OR,ORR. The parentheses represent appropriate index contrac-

tions and potential insertions of Σψ,χ. We have to take into account all combinations of EW

and color sector operators. At O(p), there are only two non-trivial operators,

OL = λ2LO
EW
L OC

L,1 = 2λ2L
π†
3π3
f 2
χ

+O(Π3
χ), OR = λ2RO

EW
R OC

R,1 = λ2R
π†
3π3
f 2
χ

+O(Π3
χ). (3.97)

For the four-spurion operators however, 8 LL, 8 RR and 16 LR combinations can be built from

Eqs. (3.91), (3.92) and Tab. 3.4. In general form, the top contribution to the pNGB potential
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reads [53]

Vtop =
f 4
χ

4π
(CLOL + CROR) +

f 4
χ

(4π)2

∑
n

(CLL,nOLL,n + CRR,nORR,n)

+
f 4
χ

(4π)2

∑
n

CLR,nOLR,n, (3.98)

where the inclusion of the hermitian conjugate for complex operators is understood and the

factors of 4π follow from naive dimensional analysis [58,59].

3.4.4 Discussion

The masses of the colored pNGBs can now be read off from V C
gauge, V

C
mass and Vtop. First, we

can slightly reduce the complexity of Vtop by using θ � 1, which means that OEW
LL,2 and OEW

LR,2

can safely be ignored and we may set c22θ ≈ 1 in OEW
RR,2. This leaves four low-energy constants

in the mass of π8,

m2
π8

=
3

4
C ′
gf

2
χg

2
s + C ′

mµχfχ −
λ2Lλ

2
Rf

2
χ

(4π)2

(
3

4
C1,13
LR +

3

16
C1,22
LR

)
. (3.99)

Here, we label the coefficients in Vtop with the indices of the EW and color sector operators,

e.g. C1,13
LR is the coefficient of λ2Lλ

2
RO

EW
LR,1O

C
LR,13. The triplet mass is given by

m2
π3

= C ′
gf

2
χ

(
1

3
g2s +

2

9
g′2
)
+ C ′

mµχfχ +
f 2
χ

4π

(
1

2
λ2LCL +

1

4
λ2RCR

)
+
λ4Lf

2
χ

(4π)2

(
3

2
C1,2
LL + C1,3

LL + C1,8
LL +

1

2
C1,10
LL

)
(3.100)

+
λ4Rf

2
χ

(4π)2

(
3

8
C1,2
RR +

1

4
C1,3
RR +

1

4
C1,8
RR +

1

8
C1,10
RR +

3

8
C2,2
RR +

1

4
C2,3
RR +

1

4
C2,8
RR +

1

8
C2,10
RR

)
+
λ2Lλ

2
Rf

2
χ

(4π)2

(
3

4
C1,3
LR +

3

4
C1,4
LR − 3

2
C1,7
LR − 1

2
C1,8
LR − 3

2
C1,13
LR − 1

2
C1,14
LR − 1

4
C1,21
LR − 1

4
C1,22
LR

)
.

Note that the contributions from complex operators receive a factor of 2 from the hermitian

conjugate since the coefficients are real. The overall mass scale is set by the condensation scale

fχ and the mass of the hyperquarks µχ.

Our goal with this calculation was to gain insight into the mass hierarchy of π8 and π3.

Unfortunately, this is not possible with such a large number of unknown coefficients. One might

argue that the next-to-leading order (NLO) operators from the top sector can be neglected since

they are suppressed by λ2L,R/4π compared to the LO term. In this case, the mass splitting is

m2
π3

−m2
π8

' C ′
gf

2
χ

(
− 5

12
g2s +

2

9
g′2
)
+
f 2
χ

4π

(
1

2
λ2LCL +

1

4
λ2RCR

)
. (3.101)

The gauge terms on their own imply a heavier π8. All in all however, the hierarchy depends

on the relative sizes of the gauge and top contribution, as well as the signs of CL,R, which are

a priori unknown. This last fact also poses a problem for the approximation in Eq. (3.101): It

implicitly assumes that the signs of the NLO coefficients are roughly evenly distributed. But if
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they instead mostly align, the sheer number of NLO operators can be enough to overcome the

suppression, making them a relevant contribution again. To summarize, without lattice data

on the LECs we cannot determine whether π8 or π3 are heavier.

Our classification can be used as a starting point for an analysis of the scalar potential

of the EW pNGBs. Firstly, their masses can be calculated analogously to the Πχ. To this

end, the O(Π2
ψ) contribution to the EW sector operators has to be determined. Apart from

that, the results of Section 3.4.3 can be straightforwardly applied. The lower number of EW

sector operators significantly reduces the number of independent parameters for the masses.

Furthermore, by minimizing V (θ) with the pNGBs set to 0, the misalignment angle θ can

be expressed in terms of LECs. Finally, the linear order of two EW operators in Eq. (3.92)

includes tadpoles of η03. These are problematic as they induce a vev for the η3 triplet that

breaks the custodial symmetry [53]. The coefficients of the potential must therefore be chosen

to cancel these tadpoles. By imposing the mass relations, the minimization of the potential

and the vanishing tadpoles, the freedom in the parameter space of the EW potential may be

significantly reduced.
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Due to its large particle content, the model M5 offers a rich phenomenology. Besides the

partners for the third generation quarks required for a partially composite top quark, there are

additional fermionic resonances in the 8 (gluonis) and the 1 (higgsonis and boni) of SU(3)c,

which are named in analogy to supersymmetric particles with the same quantum numbers.

In this chapter we explore the phenomenology of these exotic top partners, focusing on the

gluonis as they have the largest production cross section at the LHC, and investigate to which

extent current LHC data constrains the parameter space. After determining the possible decay

channels for the BSM particles we formulate simplified models for different scenarios. We then

implement these in the Universal FeynRules Output (UFO) format [60] to simulate events

with a Monte Carlo generator. By comparing the simulation results with recasted ATLAS and

CMS searches, we derive bounds on the masses of the new particles.

4.1 Phenomenological Considerations

We start by discussing how gluonis can be produced at the LHC. Then we derive their decay

channels and formulate appropriate simplified models.

4.1.1 Gluoni Pair Production

The cross section for pair production of gluonis at the LHC is dominated by QCD pair produc-

tion. At tree level, the hard scattering processes are

. (4.1)

From the partonic processes, the total production cross section is obtained by convolving the

hard cross section σ̂ with the corresponding parton distribution functions (PDFs),

σ(pp→ Q8Q8) =
∑
i

∫
dx1dx2 fi/p(x1, µ

2
F )fī/p(x2, µ

2
F )σ̂(īi→ Q8Q8;x1x2s), (4.2)

where we write Q8 as a collective symbol for the Dirac gluonis G̃±,0 and the Majorana g̃, i runs

over the partons and fi/p(x, µ
2
F ) is the PDF of i in the proton with momentum fraction x and
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factorization scale µF . In practice, the pair production is dominated by gg because the LHC

is “essentially a gluon-gluon collider” [61] in the sense that the large gluon PDF dominates the

production cross section.

The Dirac gluonis G̃±,0 originate from a SU(2)L doublet, so they couple to EW gauge bosons.

Thus, EW production via Drell-Yan is also possible,

γ∗/Z∗

q

q̄

G̃+

G̃−

W+,∗

qu

q̄′d

G̃+

G̃0

. (4.3)

However, for most of the phase space the EW production represents only a small correction to

the QCD production, which is dominant because of the larger coupling constant αs and the

presence of color factors. Therefore, we only consider QCD pair production in the following.

We finally comment on the expected size of the cross section. The production cross section

of color octets is enhanced by large color factors. For example,∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

∝ (faa
′cf bb

′c)(faa
′df bb

′d)∗ = N2
c (N

2
c − 1) = 72, (4.4)

whereas for a color triplet top partner,∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

∝ (faa
′cT cij)(f

aa′dT dij)
∗ =

1

2
Nc(N

2
c − 1) = 12. (4.5)

This remains qualitatively true when higher orders are taken into account: At
√
s = 13 TeV

and m = 1.5 TeV, for example,

σ(pp→ g̃g̃) = (15.7± 2.4) fb, σ(pp→ T T̄ ) = (2.0± 0.2) fb, (4.6)

where the calculation was performed to NNLOapprox+NNLL for the gluoni [62] and to NNLO

for the triplet top partner [63, 64]. The fact that such detailed calculations are available for

gluonis is thanks to their similarity to the gluino in SUSY. The LHC SUSY Cross Section

Working Group has published cross sections for gluino pair production at the LHC with squarks

decoupled [62, 65], which is the same process as pair production of the Majorana gluonis in

M5. For G̃±,0, we have to take into account the Dirac nature, σG̃ = 2σg̃. This neglects EW

contributions, but they are small corrections as explained above.

4.1.2 Decay Channels

We now derive the decay channels of the gluonis. As a first step, we reduce the number of

free parameters by defining a few common mass scales. As we have seen in Section 3.4, the

colored pNGBs are in general not mass degenerate, mπ8 6= mπ3 . However, we take the top

partners within the same color representation to be degenerate with masses m8, m3 and m1 for
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the color octets, triplets and singlets, respectively. In fact, as they both emerge from 14Sp(6),

we can expect m8 ≈ m3. To allow for on-shell decays, we assume that the gluonis are the

heaviest particles in the model. Also, we require the decays to respect the parity identified in

Eq. (3.64), so the lightest of the odd particles is stable. An AdS/QCD study suggests that the

color singlets might be the lightest BSM particles [26, 66]. In the following, we assume that

this is the case. The phenomenology depends strongly on this assumption. In Chapter 5, we

discuss how the results would change if the pNGBs were the lightest particles instead.

Next, we determine which couplings are allowed by symmetry, considering only two-body

decays. Starting with SU(3)c, there are three combinations of color representations with at

least one octet that can occur in the Lagrangian,

8× 8× 8 3 1, 8× 8× 1 3 1, 8× 3× 3̄ 3 1. (4.7)

To satisfy Lorentz invariance, the gluoni has to decay into one fermion and either a scalar or

a vector. This rules out the three-octet vertex and fixes the second 8 in 8 × 8 × 1 to be the

sgluon or gluon, since all octet fermions have the same mass. Matching the electric charges

leaves the following decay channels,

G̃+ → π8h̃
+, π8l

+, gh̃+, π∗
3X5/3, π3B̄, π3q̄d, (4.8a)

G̃0, g̃ → π8h̃
0, π8B̃, π8ν, gh̃

0, gB̃, π3T̄i, π3q̄u, (4.8b)

and it is understood that the charge conjugate decays of the Majorana gluonis are also allowed.

We should also take into account the SU(2)L representations before EWSB. G̃0 and h̃0 emerge

from doublets, while the Majoranas g̃ and B̃ are EW singlets. Thus, only G̃0 decays to a higgsoni

and only g̃ to a boni. More precisely, the mass eigenstates are actually linear combinations of

the neutral states, which also allows for G̃0 → π8B̃ and g̃ → π8h̃
0. But these interactions are

proportional to a mixing angle sin 2α, which we assume to be small. The decays into π8 and

l+, ν do not occur as they are forbidden by the parity Eq. (3.64).

This is as far as symmetry arguments will lead us and we turn to the Lagrangian to see if

the remaining couplings actually occur. The elementary-composite interactions in Eq. (3.58)

include couplings of the gluonis to the stop and only third generation quarks, so we can neglect

the first two generations. The gluonis do couple to the sgluon and the higgsonis/boni in the

derivative couplings in Eq. (3.60). In Eq. (3.62), gluonis also couple to π3 and VLQs. However,

since m8 ≈ m3, the decays to top partners are likely to be kinematically forbidden, so we

ignore them in the following. We also neglect the decays to a gluon and color singlet as they

are loop-suppressed. This leaves

G̃+ → π8h̃
+, π3b̄, (4.9a)

G̃0 → π8h̃
0, π3t̄, (4.9b)

g̃ → π8B̃, π3t̄, π
∗
3t (4.9c)

as the possible decay channels for the gluonis.

Since we assumed that m1 < m8,3,π3,π8 , the higgsonis and the boni are stable, which opens

the interesting possibility to interpret them as dark matter (DM). However, dark matter cannot

interact with photons, ruling out h̃+ as a DM candidate. We can easily fix this by assuming a

small mass splitting between h̃+ and h̃0, mh̃+ = mh̃0 + δm with δm ∼ 150 MeV. This allows



4.1 Phenomenological Considerations 36

h̃+ to decay to h̃0 and a pion or two leptons,

h̃+ h̃0

u

d̄

W+,∗

π+

h̃+ h̃0

l+

ν̄l

W+,∗

(4.10)

where l = e, µ. Of those, the decay to leptons is phase space suppressed, being a three-body

decay, whereas h̃+ → h̃0π+ is an effective two-body decay. We further take mh̃0 = mB̃ + δm,

so that h̃0 → π0B̃, leaving us with B̃ as the only DM candidate. The boni does not leave a

signature in particle detectors and can only be indirectly observed as missing transverse energy

(missing ET , MET). The pions from the higgsoni decays are very soft, i.e. they have very little

kinetic energy. Since the triggers of particle detectors apply cuts on the transverse momentum

pT of at least order GeV, very soft particles are essentially invisible to the detector.

We now turn to the decay channels of the pNGBs, starting with the stop. QCD and charge

conservation allow

π3 → q̄dq̄
′
d, quν, h̃

+qd, h̃
0qu, B̃qu. (4.11)

We do not consider the first two decays since they violate the parity Eq. (3.64). The couplings

to Q1q are present for third generation quarks in Eq. (3.58),

π3 → h̃+b, h̃0t, tB̃. (4.12)

To simplify the topology of the final states, we assume in the following that π3 → tB̃ dominates.

That is, we assume λR,1 � λL,1 in Eq. (3.55). In practice, this does not require a huge tuning,

a relative factor of about 3 is sufficient to ensure that the right-handed coupling dominates.

The sgluon can decay to gg, gγ and gZ through the anomalous WZW term Eq. (3.63). The

branching ratios are related by

Br(π8 → gγ)

Br(π8 → gg)
= 0.048,

Br(π8 → gZ)

Br(π8 → gg)
= 0.014, (4.13)

with a mass and renormalization scale of the couplings of 1 TeV [13]. Thus, the dominant

diboson decay is into gg and we neglect the gγ and gZ decays in the following. Another decay

channel can be found in the following terms of the elementary-composite interactions Eq. (3.58),

Lmix ⊃
iλL,14√
2fχ

(T cπ8tL +Bcπ8bL) +
iλR,14√
2fχ

T ′π8t
c
R + h.c. . (4.14)

When transforming to the mass eigenbasis, the VLQs mix with the top and bottom. This

allows π8 to decay into tt̄ and bb̄. To summarize, the sgluon can decay as

π8 → gg, tt̄, bb̄. (4.15)

The branching ratios depend strongly on the coupling constants and the octet mass [13]. How-

ever, having two free branching ratios significantly increases the number of scenarios that have

to be simulated. Therefore, we assume that the decay π8 → bb̄ is negligible. This is generically

not the case, but our results remain quite general, since Eq. (4.15) can be roughly divided into

final states with heavy jets (tt̄) and light jets (gg, bb̄). That is, we can expect the results for

π8 → bb̄ to be similar to π8 → gg.
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4.1.3 Simplified Models

Based on the phenomenology described in the previous section, we now formulate simplified

models as the basis for the simulations, following the guidelines laid out in [67,68]. A simplified

model is an extension of the SM by only a few particles and parameters. They are used by

experimental collaborations to set limits on processes that occur in various BSM models. A

simplified model can be defined by its Lagrangian, or equivalently by listing production cross

sections, masses and branching ratios needed to fully characterize it. In the following, we do

not show the kinetic terms.

We start with the pNGBs, which only occur as intermediate particles in the gluoni decays,

LpNGB =
(
λπ3π

†
3B̃PRt+ h.c.

)
+ λtt i tπ8γ5t+ λgg d

abcεµνρσπa8G
b
µνG

c
ρσ. (4.16)

The stop decays to tB̃ with a branching ratio of 100% independent of λπ3 . The coupling is to

the right-handed top since B̃ is a SU(2)L singlet. The terms for the (pseudo-scalar) sgluon,

adapted from [13], leave one free branching ratio Br(π8 → tt̄) = 1 − Br(π8 → gg). Next, we

formulate the decays of higgsonis to the boni,

LQ1 = λh̃W h̃
+ /W

+
h̃0 + λh̃Z h̃

0 /ZB̃ + h.c. , (4.17)

where the off-shell gauge bosons mediate the decays h̃+ → h̃0 + soft and h̃0 → B̃ + soft with

soft pions or leptons. Finally, the underlying Lagrangian of the gluonis can be expressed as

Lg̃ =
(
λ1 π

†
3 g̃PRt+ λ2 i g̃π8γ5B̃ + h.c.

)
+ LpNGB, (4.18a)

LG̃+ =
(
λ1 π

†
3 G̃

+cPLb+ λ2 i G̃
+π8γ5h̃

+ + h.c.
)
+ LpNGB + LQ1 , (4.18b)

LG̃0 =
(
λ1 π

†
3 G̃

0cPLt+ λ2 i G̃
0π8γ5h̃

0 + h.c.
)
+ LpNGB + LQ1 , (4.18c)

where ψc denotes the charge conjugate of a fermion ψ. The gluonis are characterized by

Br(Q8 → π3q̄) = 1− Br(Q8 → π8Q1).

Note that we wrote the scalar-fermion-fermion couplings as dimension-four operators even

though some of them occur as dimension-five derivative couplings in the composite sector

Lagrangian. This is only to simplify the notation and does not have any physical effect: In a

two-body decay, the momenta of the particles can be expressed in terms of their masses. So

while the Feynman rule corresponding to λψγµψ(∂µφ) depends on the scalar momentum, this

can be absorbed into λ for the case of two-body decays.

4.2 Simulation Tools

In this section, we discuss the tools that were used for simulating the production and decays of

gluonis as well as determining bounds on the mass scales in the model. The first step was to

translate the simplified models from the previous section into a computer-readable form. One

possibility is to implement one’s model in FeynRules [14] and produce a Universal Feyn-

Rules Output (UFO) [60], a collection of Python files that define the particles, parameters

and vertices of a model. The UFO is compatible with all common Monte Carlo (MC) event

generators.
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We did not write a new model from scratch but built on the eVLQ implementation [69], which

extends the SM [70] by vector-like quarks (VLQs) of charge 5/3, 2/3,−1/3,−4/3 [71] and color

singlet scalars of charge 1 and 0. The implementation is completely general, including all

gauge invariant interactions, so that it can be used for many different models by setting the

coupling constants of the superfluous vertices to zero. In our implementation, CHM5, we extended

eVLQ to be able to describe our model. To this end, we created copies of existing files where

multiple particles have the same quantum numbers (e.g. neutral color singlet scalars a, η, η01,3,5)

and implemented the particles that were not yet covered: the doubly charged scalar η++
5 , the

colored scalars π8 and π3 and the color singlet and octet top partners. The new files include all

interactions with particles in eVLQ and can thus be used as a modular expansion. Due to the

large number of particles we did not implement all BSM-BSM-SM or BSM-BSM-BSM vertices

of the new BSM particles, but only those in the simplified models in Section 4.1.3. The CHM5

implementation is documented in Appendix B.

We then simulated events with gluonis using the MC generator MadGraph5 aMC@NLO

(MG) [15]. MG considers the pair production and the subsequent decay of gluonis separately,

using the narrow-width approximation: If an unstable particle’s width is small compared to its

mass, then the total cross section can be factorized into the production cross section and the

branching ratio for a given decay [72],

σ(pp→ X → Y ) = σprod(X)

(
ΓX→Y

ΓX
+O

(
ΓX
mX

))
' σprod(X) Br(X → Y ). (4.19)

Since we expect m8 > 1 TeV and the couplings facilitating the decays scale with 1/fχ, we can

be sure that ΓQ8 � m8. We used MG in LO mode, so the gluonis were pair produced as in

Eq. (4.1). The center of mass energy was set to
√
s = 13 TeV to allow for a comparison with

recent LHC data. The hard scattering events were convolved with the NNPDF23 lo as 0130 qed

PDF set [73] included in the LHAPDF6 library [74]. The renormalization and factorization scales

were set to µR = µF = m8. For the decays, we used MadWidth [75] to compute the widths.

We then decayed the gluonis and the pNGBs with MadSpin1 [76]. Finally, the events were

showered with Pythia 8 [77] and saved in the HepMC format [78]. For the further analysis

detailed below we used the LO events but scaled up the cross section to NNLOapprox+NNLL.

Before we discuss how to obtain bounds on the masses from the simulated events, we review

how the experimental collaborations go about it. ATLAS and CMS regularly publish searches

for evidence of new physics in the LHC data, using the following analysis. First, the events

are reconstructed from the detector signatures and jets are identified using the anti-kT jet

clustering algorithm [79, 80]. Depending on which signatures are searched for, the events are

then required to satisfy several conditions such a minimal or maximal number of jets, bounds

on the transverse momenta or other kinematic observables, etc. Events that do not satisfy these

are not considered signal candidates and are discarded, while the remaining events are sorted

into signal regions (SRs). The results of the search are then the observed number of events in

each SR. By comparing the observed event yield with the number of events expected from the

SM, limits on the masses, production cross sections and branching ratios of BSM particles can

be obtained using the CLs method [81].

1For the decays of the sgluon, MadSpin was not able to deal with the color structures. In this case, we used

MadGraph’s decay chain syntax.
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The experimental collaborations set limits in the context of simplified models for standard

scenarios. Naturally, not every model that is discussed in the theory literature can be taken

into account. However, the cuts and signal regions of a given search can be implemented

and then applied to MC generated events. This way, searches can be recasted and limits can

be obtained for an arbitrary model. Two popular tools for this purpose are MadAnalysis5

(MA) [16–19] and CheckMATE (CM) [20, 21]. Both accept a HepMC file and perform a

detector simulation using Delphes [82]. The reconstructed events are then sorted in the SRs

and the MC event yield is compared with the number of events observed in the experiment. To

this end, the cross section of the process has to be supplied to correctly scale the event yields.

For this we used the NNLOapprox+NNLL gluino production cross section [62, 65] as explained

in Section 4.1.1. Finally, the exclusion level is computed with the CLs method. CM calculates

an expected and observed CLs, of which we use the latter. We chose to use both MA and CM,

since different searches have been recasted. While the CM database contains mostly ATLAS

searches at 13 TeV [83], the MA Public Analysis Database [84] has about the same number of

ATLAS and CMS searches implemented.

To determine the mass bounds, we simulate a given process on a grid in the m8-m1 mass

plane. Using a Python script, we then triangulate the grid, linearly interpolate the CLs values

with the LinearTriInterpolator of the matplotlib library [85] and plot the contours of the

95% CL and sometimes also 68% CL exclusions.

4.3 Simulated Scenarios

We consider three different scenarios for the decays of the gluonis:

(S1) Decay exclusively via π3, e.g.

t̄

t

B̃

t

B̃

t̄

p

p

π3

π3g̃

g̃

(4.20)

where the blob indicates QCD pair production. The Majorana gluoni can decay to π3t̄ or

π∗
3t, while the pair of Dirac gluonis G̃

+G̃− or G̃0 ¯̃G0 always decays to π3q̄π
∗
3q with q = b, t.

In this class we simulate pair production of

(S1a) only the Majorana gluoni g̃. The final state consists of four top quarks and two

undetectable bonis, 4t+MET. This process is also present in SUSY models as a

decay channel of the gluino, g̃ → t̄t̃ → t̄tχ̃0
1, where t̃ is the scalar partner of the

top quark and χ̃0
1 the lightest neutralino. The SUSY process has been extensively

searched for, e.g. [86, 87]. It can therefore be used as a benchmark for testing our

simulation setup by checking if we can reproduce the limits obtained by ATLAS and

CMS.
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(S1b) only the charged gluoni G̃+ with final state 2b2t+MET. Due to the Dirac nature of

G̃+, this process has a larger cross section than (S1a), σG̃+ = 2σg̃.

(S1c) the whole octet multiplet Q8 with combined cross section σQ8 = 5σg̃.

(S2) Decay exclusively via π8, e.g.

B̃

t

t̄

g

g

B̃

p

p

π8

π8g̃

g̃

. (4.21)

Since we do not know the branching ratios of π8, we consider the three cases where

Br(π8 → tt̄) = 100%, Br(π8 → gg) = 100% and Br(π8 → tt̄) = Br(π8 → gg) = 50%. The

resulting final states are 4t+MET, 4j+MET and 2t2j+MET, plus soft pions or leptons

in case of Dirac gluonis. For purely π8 → tt̄, the final state is the same as for (S1a) but

with different kinematics. We simulate the three scenarios for π8 with

(S2a) only g̃,

(S2b) the whole multiplet.

(S3) Decay via π3 and π8 with Br(Q8 → π3q̄) = Br(Q8 → π8Q1) = 50%, e.g.

t̄

t

B̃

g

g

Q1

p

p

π3

π8g̃

g̃

. (4.22)

In this combined analysis we consider only the mixed case Br(π8 → gg) = Br(π8 → tt̄) =

50% since we found the bounds for (S2) to be mostly independent of the decay of π8, as

we will see in the discussion of Fig. 4.6. We derive the bounds for pair production of

(S3a) only g̃,

(S3b) only G̃+,

(S3c) the whole multiplet.
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4.4 Recasted Searches and Consistency Checks

In this section, we highlight the recasted searches that are most sensitive to the gluoni decays.

To this end, we show the mass bounds for the scenarios (S1c) and (S2b) separately for each

search in Fig. 4.1. Here, the gray dots are the simulated points. The coarse structures in the

contour lines are due to the limited resolution of the grid and could be improved if a more

precise knowledge of the bounds is required. Fig. 4.1 shows that the bounds are dominated by

only a few searches.

• CMS-SUS-19-006 [87]: This is a search for gluino and squark pair production with mul-

tiple jets and large MET in the final state using 137 fb−1 of data. The results are inter-

preted within multiple simplified models, including the 4t+MET, 4b+MET, 4q+MET and

4q2V+MET final states from gluinos, where q = u, d, s, c are light quarks and V = W,Z.

The signal candidates are divided into 174 orthogonal SRs, and covariance and correla-

tion matrices for the SRs are provided. These are used by the recast implemented in

MA [89] to perform a statistical combination of the SRs. This explains why this search

gives the strongest bound for most scenarios. The optimization for both 4t and 4j final

states makes the recast competitive both for π8 → tt̄ and π8 → gg.

• ATLAS-CONF-2019-040 [88]: This search looks for gluinos and squarks in final states

containing jets and MET but no charged leptons. It uses the full Run 2 dataset of

139 fb−1. The simplified model for the gluinos assumes g̃ → qqχ̃0
1 or g̃ → q′qWχ̃0

1, where

q(′) are light quarks. We therefore expect the recast to be very sensitive to final states

with multiple light jets, such as those from π8 → gg. This is confirmed by comparing

Figs. 4.1c-e. For the final states dominated with top quarks, however, this search is

subdominant. Note that it is implemented in both MA and CM.

• ATLAS-CONF-2018-041 [86]: This is a search for gluino pair production with decays

to third generation quarks and neutralinos using 79.8 fb−1 of data. The search looks for

b-tagged jets and MET, and considers both hadronic and leptonic decays of the W . It

is implemented in CM, but the recast can rarely keep up with the strong bounds from

CMS-SUS-19-006.

Fig. 4.1 also shows the mass bounds from several other searches, which however are less

sensitive to our signatures. We briefly summarize those: ATLAS-1908-03122 [90] searches for

bottom-squark production with Higgs bosons in the final state. ATLAS-SUSY-2016-07 [91]

is a search for gluinos and squarks in final states with light quarks and no leptons. It is

implemented in both MA and CM. CMS-SUS-16-033 [92] searches for pair production of gluinos

and stops decaying to light or third-generation quarks, similarly to CMS-SUS-19-006 but using

only 35.9 fb−1. Finally, ATLAS-2101-01629 [93] searches for pair production and chain decays

of gluinos g̃ → qq̄′χ̃±
1 and squarks q̃ → q′χ̃±

1 with χ̃±
1 → W±χ̃0

1.

We took several steps to test our FeynRules implementation and simulation setup. We

should be able to reproduce the mass bounds from SUSY searches for gluino pair production

with g̃ → t̄t̃→ t̄tχ̃0
1 from the scenario (S1a). To this end, we focus on ATLAS-CONF-2018-041

and CMS-SUS-19-006, which both search – among other SUSY processes – for gluinos in this

channel, as discussed above. In both searches, the stop was actually taken off-shell, i.e. the

gluino had a three-body decay g̃ → t̄tχ̃0
1, which slightly changes the kinematics.
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(a) Scenario (S1c) with mπ3 = m8−200 GeV
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(b) Scenario (S1c) with mπ3 = 1.4 TeV
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(c) Scenario (S2b) with π8 → gg
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(d) Scenario (S2b) with π8 → gg, tt
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(e) Scenario (S2b) with π8 → tt

Figure 4.1: Comparison of the bounds at 95% CL obtained from different searches implemented

in MA (solid lines) and CM (dashed lines) for scenario (S1c) in (a)-(b) and scenario (S2b) with

mπ8 = 1.1 TeV in (c)-(e). The dotted lines indicate the kinematically forbidden regions, the

gray dots are the simulated points. The coarse features of the contour lines are due to the

limited grid resolution.
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Figure 4.2: Comparison of the mass bounds in ATLAS-CONF-2018-041 [86] (left) with the

recast implemented in CM (right) for the SUSY scenario (S1a) with stop mass mπ3 = m8 −
200 GeV.
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Figure 4.3: Comparison of the mass bounds in CMS-SUS-19-006 [87] (left) with the recast

implemented in MA (right) for the SUSY scenario (S1a) with stop mass mπ3 = m8 − 200 GeV.
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Figure 4.4: Comparison of the mass bounds obtained from the recast of ATLAS-CONF-

2019-040 [88] implemented in MA (left) and CM (right) for the scenario (S2b) with π8 → gg.

The sgluon mass was fixed to mπ8 = 1.1 TeV.
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For the comparison, we simulated (S1a) withmπ3 = m8−200 GeV. The results obtained from

the recasts of the ATLAS and CMS SUSY searches are shown in Figs. 4.2 and 4.3 respectively,

along with the experimentally determined mass bounds. ATLAS finds an observed bound of

2.25 TeV on the gluino mass for vanishing neutralino mass, and a maximum bound on mχ̃0
1
of

about 1.2 TeV. The bound from the recast2 reaches up to 2.15 TeV for m8 and 1.2 TeV for m1.

The bounds from recasts are expected to be lower than from the experiment, since correlations

among the signal regions are usually neglected for the recasts. Therefore, a deviation of 100 GeV

is well within the acceptable range. The recast of CMS-SUS-19-006 overshoots the maximum

bounds of about 2.2 TeV onm8 and 1.3 TeV onm1 by ∼100 GeV each. This can be explained by

the statistical combination of SRs mentioned above. In light of this and the different kinematics,

we find a bound that is too large by 100 GeV acceptable.

A further opportunity to test our setup is provided by analyses that are implemented in

both MA and CM. In Fig. 4.4, we compare the two recasts of ATLAS-CONF-2019-040 for the

scenario they are most sensitive to, (S2b) with π8 → gg. We find good agreement between the

two tools.

4.5 Mass Bounds

Having established that our simulation setup is reliable, we can finally discuss the results,

starting with the decay via the stop, scenario (S1). The bounds on the gluoni and boni masses

are shown in Fig. 4.5. We considered two cases for the stop mass: In the first row, mπ3 is

variable and close to the gluoni mass, mπ3 = m8−200 GeV. Here, the dashed line indicates the

region where the π3 is off-shell, mπ3 < m1 +mt. From SUSY searches for pair production of

a stop with subsequent decay t̃ → tχ̃0
1, bounds on mπ3 have been established up to 1250 GeV

by ATLAS [94] and 1310 GeV by CMS [95]. When fixing the stop mass in the second row of

Fig. 4.5, we therefore chose mπ3 = 1.4 TeV to lie just above the current bounds. For vanishing

boni mass, g̃, G̃+ and the full multiplet are excluded up to 2.3 TeV, 2.4 TeV and 2.6 TeV,

respectively, independently of the stop mass. The 68% CL exclusion lies 200-300 GeV higher.

The hierachy of the bounds is as expected, as the G̃+ is produced with double the cross section

of g̃, and the full multiplet even with σQ8 = 5σg̃. For Q8, the bounds on m1 reach almost up to

1.7 TeV. In Fig. 4.5d-e, the bounds for g̃ and G̃+ decrease with increasing boni mass, whereas

they remain approximately constant for Q8 due to the larger cross section.

Next, we studied the decay via the sgluon in scenario (S2). To avoid the current bounds on

the sgluon mass [96], we fixed mπ8 = 1.1 TeV. In Fig. 4.6, we show the bounds for the sgluon

decaying to gg, to tt̄ and to both for the Majorana gluoni (first row) and the full multiplet

(second row). Recalling that the higgsonis decay to a boni and undetectably soft particles, we

notice that the three gluonis are identical for this process apart from the larger cross section for

the Dirac gluonis. We were therefore able to simplify the simulation setup for Q8 by generating

the events only with g̃ and then performing the analysis with a cross section of 5σg̃. For g̃, the

bounds on m8 at m1 → 0 lie between 2.3 TeV and 2.4 TeV, while the full multiplet is excluded

at about 2.7 TeV. The bounds on m1 reach as high as 750 GeV for g̃ and just above 1.1 TeV

2The exclusion levels are linearly interpolated between the simulated points, but in reality they fall off non-

linearly towards larger masses. The contours should therefore be treated with care between grid points. We

read off bounds only with a precision of 50 GeV.
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(a) g̃ → t̄π3 → t̄tB̃,

mπ3 = m8 − 200 GeV
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(b) G̃+ → b̄π3 → b̄tB̃,

mπ3 = m8 − 200 GeV
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(c) Q8 → q̄π3 → q̄tB̃,

mπ3 = m8 − 200 GeV
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(d) g̃ → t̄π3 → t̄tB̃,

mπ3 = 1.4 TeV

1750 2000 2250 2500 2750 3000
Octet fermion mass [GeV]

200

400

600

800

1000

1200

Si
ng

le
t f

er
m

io
n 

m
as

s [
Ge

V]

68% CL
95% CL

(e) G̃+ → b̄π3 → b̄tB̃,

mπ3 = 1.4 TeV
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(f) Q8 → q̄π3 → q̄tB̃,

mπ3 = 1.4 TeV

Figure 4.5: Bounds on the fermion masses for scenario (S1), pair production of a gluoni Q8 with

subsequent decay to a SM quark q and a stop π3. In the first row the stop mass is 200 GeV

below the octet mass, in the second row it is fixed to 1.4 TeV. We include only the g̃ in the first

and G̃+ in the second column. The third column shows the bounds for the full octet multiplet,

assuming it is mass degenerate. The boni B̃ is stable.
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(a) g̃ → π8B̃, π8 → gg
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(b) g̃ → π8B̃, π8 → gg, tt̄
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(c) g̃ → π8B̃, π8 → tt̄
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(d) Q8 → π8Q1, π8 → gg
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(e) Q8 → π8Q1, π8 → gg, tt̄
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(f) Q8 → π8Q1, π8 → tt̄

Figure 4.6: Bounds on the fermion masses for scenario (S2), pair production of a gluoni Q8

with subsequent decay to a singlet fermion Q1 and a sgluon π8. The sgluon mass is fixed to

mπ8 = 1.1 TeV. In the first row only the Majorana gluoni is considered, which decays to a

sgluon and a boni. In the second row the full multiplets are taken into account, assuming that

they are each mass degenerate apart from a very small mass splitting in Q1. The boni is stable,

for the sgluon we consider the decays to gg (left column), to tt̄ (right column) or to either with

Br(π8 → gg) = Br(π8 → tt̄) = 50% (middle column).
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Figure 4.7: Branching ratio of Q8 → π8Q1 for mπ8 = 1.1 TeV and mπ3 = 1.4 TeV. For very

heavy gluonis, m8 → ∞, the branching ratio tends to 50%. For m8 → 0, the decay via π8
dominates, whereas it is kinematically forbidden in the top left.
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(a) g̃ → t̄π3 or g̃ → π8B̃
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(b) G̃+ → b̄π3 or G̃+ → π8h̃
+
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(c) Q̃8 → q̄π3 or Q̃8 → π8Q1

Figure 4.8: Bounds on the fermion masses for scenario (S3), pair production of a gluoni Q8 with

subsequent decay via a stop or sgluon with Br(Q8 → q̄π3) = Br(Q8 → π8Q1) = 50% in the limit

m8 → ∞. The scalar masses are fixed to mπ3 = 1.4 TeV and mπ8 = 1.1 TeV. Above the dotted

line, Br(Q8 → π8Q1) = 0. For the sgluon, we consider only Br(π8 → gg) = Br(π8 → tt̄) = 50%.

for Q8, both for π8 → tt̄. All in all, the bounds are similar for all decays of π8. We further

note that despite the different kinematics, the bounds on m8 for (S2) are of the same order of

magnitude as those for (S1).

For the final simulations, we let the gluonis decay via either π3 or π8. The description of (S3)

given in Section 4.3 is oversimplified: To keep the branching ratios fixed to Br(Q8 → π3q̄) =

Br(Q8 → π8Q1) = 50% over the whole m8-m1 plane, we would have to redefine the couplings

at each point to account for the varying phase space factors. As this is very tedious, we instead

adopted the following procedure. We fixed the couplings so that the decay occurs with equal

branching ratio for m8 → ∞. For finite mass,

Br(g̃ → π8B̃) =
(m2

8 + 2m8m1 +m2
1 −m2

π8
)λ

1/2
π8

(m2
8 + 2m8m1 +m2

1 −m2
π8
)λ

1/2
π8 + (m2

8 −m2
π3

+m2
t )λ

1/2
π3

, (4.23)

where λπ8 = λ(m2
8,m

2
π8
,m2

1) and λπ3 = λ(m2
8,m

2
π3
,m2

t ) with the Källén function λ(x, y, z) =

x2+ y2+ z2− 2xy− 2yz− 2xz. We show the branching ratio for the relevant part of parameter

space in Fig. 4.7, where we set the scalar masses to mπ8 = 1.1 TeV and mπ3 = 1.4 TeV. The

resulting bounds are presented in Fig. 4.8. Above the dotted line m8 = mπ8 +m1, the decay

via π8 is kinematically forbidden.

The behavior of the bounds for the Majorana gluoni in Fig. 4.8a can be understood as

follows. For small m1, the bounds behave like in Figs. 4.5d and 4.6b since both scenarios give

very similar bounds. Above m1 = 700 GeV, the exclusion plateaus as in Fig. 4.6b as (S2)

makes up more than 70% of the decays in this region. As we near the kinematic line, the

stronger bounds from (S1) become more relevant again. Finally, above the dotted line we are

completely in scenario (S1) with fixed stop mass, so the bounds are close to Fig. 4.5d, reaching

m8 = 2.1 TeV for m1 = 1.2 TeV.

The bounds for the charged gluoni3, shown in Fig. 4.8b, behave analogously. In this case,

we reused the simulated points from Fig. 4.5e for the region where the channel G̃+ → π8h̃
+ is

3For technical reasons, we slightly modified the scenario: We had difficulties with the soft pions in MG. To

simplify the simulation setup, we therefore used h̃+ → φ+B̃ → e+νeB̃ with mh̃+ −mB̃ = 5 GeV. The auxiliary

scalar φ+ has a mass of 2 GeV. We treated h̃0 as stable as well. This does not have physical effects since both

the pions and leptons are too soft to be detected anyways.
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forbidden due to technical difficulties with the combined process in MG. This is possible since

this region is physically identical to scenario (S1b). In Fig. 4.8c, we consider the full multiplet.

The bounds on m8 are constant at 2.6 TeV for m1 < 900 TeV, above which they decrease

significantly more than in Fig. 4.5f. This is due to the plateau of the bounds from (S2) in

Fig. 4.6e, which reduces the combined bounds in (S3). In the case of the full multiplet, the

bounds do not reach the region where the channel Q8 → π8Q1 is forbidden.

In this chapter we have derived bounds on the gluoni masses in the model M5. However, as

mentioned above, we expect the gluonis to have similar masses to the VLQs, m8 ≈ m3. More

precisely, since they only differ in their color representation,

|m8 −m3|
m8

= O(αs) ∼ 10%. (4.24)

This allows us to translate bounds on m8 into realistic ranges for m3. For a light boni, m8

is excluded up to ∼ 2.7 TeV, so we expect the VLQ mass to be at least 2.4 TeV. Current

experimental searches for VLQs focus on the decay channels T → bW+, tZ, th for the top-

like, B → tW−, bZ, bh for the bottom-like and X5/3 → tW+ for the charge-5/3 VLQ. The

strongest bounds obtained from VLQ pair production are mT > 1.60 TeV by ATLAS [97] and

mT > 1.37 TeV by CMS [98], mB > 1.42 TeV by ATLAS [97] and mB > 1.57 TeV by CMS [99],

as well as mX5/3
> 1.33 TeV by CMS [100]. Therefore, setting bounds on m3 by recasting VLQ

searches is redundant as they are subdominant to the bounds from the gluonis.



5 | Conclusion and Outlook

In this work we studied a composite Higgs model with an underlying fermionic UV completion

based on the coset SU(5)×SU(6)×U(1)/SO(5)×Sp(6). We derived the SM quantum numbers

of the pNGBs and the top partners, which we embedded in the (5,15) of SU(5) × SU(6).

The colored pNGBs are the stop π3 and the sgluon π8, the top partners include among others

color octet Q8 (“gluonis”) and color singlet Q1 (“higgsonis” and “boni”) multiplets, where the

naming is reminiscent of the conventions in the SUSY literature. We then calculated parts of

the Lagrangian of the model and investigated the scalar potential V of the colored pNGBs Πχ

in detail with the aim of gaining insights into the mass hierarchy. To this end, we classified

the operators that contribute to V up to O(p2) in the chiral expansion and expanded them

to second order in Πχ. The scalar potential is generated by explicit breaking of the global

symmetry, such as the gauging of the SM subgroup of SO(5) × Sp(6), mass terms for the

hyperquarks and the mixing terms of the top partners with the third-generation quarks. In

particular the latter sector contributes a large number of independent operators to V . The

scalar masses are therefore dependent on too many unknown coefficients to determine whether

π3 or π8 are heavier.

The remainder of this thesis was dedicated to studying the LHC phenomenology of the

model. Here, we focused on the gluonis as they have the largest production cross section, and

since to our knowledge, charged color octet fermions have not been considered so far. We derived

the possible decay channels of the gluonis, leading toQ8 → q̄π3 andQ8 → π8Q1, where π3 → tB̃,

π8 → gg, tt̄ and the lightest color singlet B̃ is stable, making it a dark matter candidate. We

then formulated simplified models for these decays and implemented them in FeynRules. This

allowed us to simulate the gluoni pair production using MadGraph5 aMC@NLO and com-

pare the results with experimental searches recasted in MadAnalysis5 and CheckMATE.

This way we derived exclusion bounds on the masses of the gluonis and the boni. After ensur-

ing that our simulation setup was able to reproduce the bounds from searches for the SUSY

process g̃ → tt̄χ̃0
1, we studied the decay channels via π3 and π8 separately at first (see Figs. 4.5

and 4.6), followed by a combined analysis in Fig. 4.8 where both channels occur with equal

probability for m8 → ∞. Gluoni masses up to 2.7 TeV are excluded for a massless boni, the

bounds on the boni mass reach almost up to 1.7 TeV. These results along with some further

investigations are going to be published in [52].

As discussed in Section 4.3, the scenarios (S1a) and (S2a) have the same final state but differ

in the kinematics. It would be interesting to study this difference in more detail by comparing

distributions of the angle between the top quarks and the invariant mass. Firstly, one would

have to see whether the two scenarios can be distinguished at all. If they can be, the next step

might be to check if and how precisely the branching ratios of the g̃ can be recovered from the

distributions. This could be guidance for designing searches that are sensitive to our model.
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The phenomenology depends crucially on the assumption that the color singlets are the

lightest BSM particles. However, this goes against the generic situation in composite Higgs

models of top partners with mass ∼ ΛHC and the pNGB masses well below that. It might

therefore be more natural to take m1 > mπ3,π8 . The decay π3 → tB̃ is then no longer possible.

We find an interesting alternative by allowing lepton number violating terms in the Lagrangian.

This opens up the possibility of adding terms that induce a mixing between one higgsoni

doublet h̃d ∈ 2−1/2 of SU(2)L × U(1)Y with the lepton doublet `L = (ντ , τ
−
L ), which would

offer an explanation for the neutrino masses. The mixing of the other generations is suppressed

by their smaller Yukawa couplings. The derivative couplings in Eq. (3.60) now contain the

operator (neglecting prefactors)

Q3σ
µQ̄1∂µπ

†
3 ⊃ (Tσµ¯̃h0d +Bσµ¯̃h−d )∂µπ

†
3

mix−→ (tLσ
µν̄τ + bLσ

µτ̄−L )∂µπ
†
3, (5.1)

which opens the decay channels

π3 → tLν̄τ , bLτ
+
L . (5.2)

The bounds for (S1) with m1 → 0 are still applicable in the case of π3 → tLν̄τ but not for the

decay into the τ . The final states for Q8 → π8Q1 also differ from (S2) since

h̃+ → b̄Lπ3, h̃0 → t̄Lπ3, B̃ → t̄Rπ3, (5.3)

which introduces additional t and/or b quarks. A natural extension of the present work would

therefore be to determine the bounds for the case where the pNGBs are the lightest BSM

particles. To this end, it might prove useful to recast searches for gluinos in the context of

R-parity violating SUSY searches, e.g. [101].

In this thesis we have limited ourselves to the pair production of the gluonis. However, to test

the viability of the full model, different sectors should also be studied. A possibilty for further

investigation is the phenomenology of the EW pNGBs. For example, one could continue the

classification of the scalar potential using the spurion method, building on the results obtained

in Section 3.4, or determine bounds on the pNGB masses with numerical methods. In addition

to the pNGBs, the VLQs are an interesting object of study. As discussed in Section 4.5, for

the scenarios considered in this thesis, the current searches for VLQs yield weaker bounds than

we can derive from the gluonis. However, this was based on m8 ≈ m3, which in turn implicitly

assumes that the hyperquarks are mass degenerate. If we instead introduced a mass splitting

between the hyperquarks, this would translate to a mass difference for the top partners. The

VLQ searches would then be relevant again, and limits could be set analogously to the gluonis.

Besides the standard decays of a VLQ to a SM quark and an EW boson, the model also includes

exotic decays [50,53] such as

T → bη+ → bb̄t, bW+γ, bW+Z, X5/3 → bη++ → bW+W+. (5.4)

Furthermore, if m8 > m3, the decay channels

g̃ → π3T̄i, π
∗
3Ti, G̃0 → π3T̄i, G̃+ → π∗

3X5/3 (5.5)

have to be taken into account when determining the bounds for the gluonis.



A | Details on the Classification of Top

Coupling Operators

In Section 3.4.3, we abbreviated the classification of the color sector operators that contribute

to Vtop. Here, we provide more details and show that the classification is complete.

Tab. 3.3 lists the SU(6) invariant traces that serve as building blocks for the color sector

operators. In Tab. A.1, we combine them into all possible operators with four spurions, i.e.

to order O(p2) in the chiral expansion, which have two P and two P †. This matches the

classification given in [56]. We then construct all SM invariant operators by forming color

singlets out of PL ∈ 3 and PR ∈ 3, where each projector must occur an even number of times.

The results are presented in Tabs. A.2 and A.3.

Our method for classifying the operators was based on the mixing Lagrangian

Lmix ∼ −λLOF ζL − λROF ζ
c
R + h.c. . (A.1)

However, OF ∈ (5,15)G can be split into B14 ∈ (5,14)H and B1 ∈ (5,1)H, and the H multiplets

can couple separately to the quarks,

Lmix = −λL,14O14ζL − λR,14O14ζ
c
R − λL,1O1ζL − λR,1O1ζ

c
R + h.c. , (A.2)

where λX,14 = cλX,1 with X = L,R and a group theory factor c. Instead of constructing G
invariants, we should therefore classify the H invariant operators. This makes no difference in

the EW sector as there is a unique SO(5) irrep, 5SU(5) → 5SO(5). In the color sector on the

other hand, we have 15SU(6) → 14Sp(6) + 1Sp(6), so we have to show that our classification is

equivalent to one based on Sp(6) invariants. To this end, we can apply the proof in [53] with

minor modifications. The SU(6) invariants are all constructed from operators of the form ΣP

Number of traces Operators

1 Tr
(
PP †PP †), Tr(PP †Σ†P †PΣ

)
2 Tr

(
P †P

)
Tr
(
P †P

)
, Tr(PΣPΣ)Tr

(
P †Σ†P †Σ†), Tr(PΣ)Tr(PP †Σ†P †)+ h.c.

3 Tr(PΣ)Tr(PΣ)Tr
(
P †Σ†P †Σ†)+ h.c., Tr(PΣ)Tr

(
P †Σ†)Tr(P †P

)
4 Tr(PΣ)Tr(PΣ)Tr

(
P †Σ†)Tr(P †Σ†)

Table A.1: SU(6) invariants with four spurions P in the antisymmetric 15. We show only the

operators with two P and two P †.
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Name Operator Expansion to O(Π2
χ)

OC
L,1 Tr(P i

LΣχ) Tr
(
P i†
L Σ

†
χ

)
π†
3π3/(4f

2
χ)

OC
L,2 Tr

(
P i†
L P

i
L

)
3/2

OC
LL,1 Tr(P i

LΣχ) Tr
(
P j
LΣχ

)
Tr
(
P i†
L Σ

†
χ

)
Tr
(
P j†
L Σ†

χ

)
0

OC
LL,2 Tr(P i

LΣχ) Tr
(
P i†
L Σ

†
χ

)
Tr
(
P j†
L P

j
L

)
3π†

3π3/(8f
2
χ)

OC
LL,3 Tr(P i

LΣχ) Tr
(
P j†
L Σ†

χ

)
Tr
(
P j†
L P

i
L

)
+ h.c. π†

3π3/(8f
2
χ)

OC
LL,4 Tr(P i

LΣχ) Tr
(
P j
LΣχ

)
Tr
(
P i†
L Σ

†
χP

j†
L Σ†

χ

)
+ h.c. 0

OC
LL,5 Tr

(
P i†
L P

i
L

)
Tr
(
P j†
L P

j
L

)
9/4

OC
LL,6 Tr

(
P i†
L P

j
L

)
Tr
(
P j†
L P

i
L

)
3/4

OC
LL,7 Tr

(
P i
LΣP

j
LΣ
)
Tr
(
P i†
L Σ

†
χP

j†
L Σ†

χ

)
0

OC
LL,8 Tr(P i

LΣχ) Tr
(
P j
LP

j†
L Σ†

χP
i†
L

)
+ h.c. π†

3π3/(8f
2
χ)

OC
LL,9 Tr

(
P i†
L P

i
LP

j†
L P

j
L

)
3/4

OC
LL,10 Tr

(
P i
LP

i†
L Σ

†
χP

j†
L P

j
LΣχ

)
π†
3π3/(8f

2
χ)

OC
LL,11 Tr

(
P i
LP

j†
L Σ†

χP
i†
L P

j
LΣχ

)
0

Table A.2: Color singlet operators with up to four spurions PL ∈ 3. We also show the expansion

to second order in the pNGBs. The operators for the right-handed spurions PR ∈ 3 are identical

after replacing L→ R.

and P †Σ† that transform like an adjoint. Where this form is not obvious, like P †P , it can be

recovered by inserting 1 = Σ†Σ. We now separate ΣP into its trace and the traceless part,

ΣP = ΣP
∣∣∣
/tr
+

1

6
Tr(ΣP )16. (A.3)

Since the adjoint decomposes as 35SU(6) → 14Sp(6)+21Sp(6), of which only 14Sp(6) appears in P ,

the traceless part of ΣP must contain the 14Sp(6) while the second term is the 1Sp(6). The same

reasoning applies to P †Σ† and the matrices with the reversed order. Thus, the trace Tr(ΣP )

only contains the singlet. The trace of a product,

Tr(ΣPΣP ) = Tr(ΣP
∣∣∣
/tr
ΣP
∣∣∣
/tr
) +

1

6
Tr(ΣP ) Tr(ΣP ), (A.4)

can be built from a trace of two 14Sp(6) and the square of the singlet. Such a decomposition

can be performed for all operators in Tab. A.1, which shows that our SU(6) invariant basis is

equivalent to determining the Sp(6) invariants, so no operators are missing.
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Name Operator Expansion to O(Π2
χ)

OC
LR,1 Tr(P i

LΣχ) Tr(P
i
RΣχ) Tr

(
P j†
L Σ†

χ

)
Tr
(
P j†
R Σ†

χ

)
0

OC
LR,2 Tr(P i

LΣχ) Tr
(
P j
RΣχ

)
Tr
(
P i†
L Σ

†
χ

)
Tr
(
P j†
R Σ†

χ

)
0

OC
LR,3 Tr(P i

LΣχ) Tr
(
P i†
L Σ

†
χ

)
Tr
(
P j†
R P

j
R

)
3π†

3π3/(8f
2
χ)

OC
LR,4 Tr(P i

RΣχ) Tr
(
P i†
RΣ

†
χ

)
Tr
(
P j†
L P

j
L

)
3π†

3π3/(8f
2
χ)

OC
LR,5 Tr(P i

LΣχ) Tr
(
P j†
R Σ†

χ

)
Tr
(
P j†
L P

i
R

)
+ h.c. 0

OC
LR,6 Tr(P i

LΣχ) Tr
(
P j†
R Σ†

χ

)
Tr
(
P i†
L P

j
R

)
+ h.c. 0

OC
LR,7 Tr(P i

LΣχ) Tr(P
i
RΣχ) Tr

(
P j†
L Σ†

χP
j†
R Σ†

χ

)
+ h.c. −3π†

3π3/(8f
2
χ)

OC
LR,8 Tr(P i

LΣχ) Tr
(
P j
RΣχ

)
Tr
(
P i†
L Σ

†
χP

j†
R Σ†

χ

)
+ h.c. −π†

3π3/(8f
2
χ)

OC
LR,9 Tr

(
P i†
L P

i
L

)
Tr
(
P j†
R P

j
R

)
9/4

OC
LR,10 Tr

(
P i†
L P

j
L

)
Tr
(
P j†
R P

i
R

)
3/4

OC
LR,11 Tr

(
P i†
L P

j
R

)
Tr
(
P j†
R P

i
L

)
0

OC
LR,12 Tr

(
P i†
L P

j
R

)
Tr
(
P i†
R P

j
L

)
0

OC
LR,13 Tr(P i

LΣP
i
RΣ)Tr

(
P j†
L Σ†

χP
j†
R Σ†

χ

)
9/4− (3πa8π

a
8 + 12π†

3π3)/(16f
2
χ)

OC
LR,14 Tr

(
P i
LΣP

j
RΣ
)
Tr
(
P i†
L Σ

†
χP

j†
R Σ†

χ

)
3/4− π†

3π3/(4f
2
χ)

OC
LR,15 Tr(P i

LΣχ) Tr
(
P j
RP

j†
R Σ†

χP
i†
L

)
+ h.c. 0

OC
LR,16 Tr(P i

LΣχ) Tr
(
P i
RP

j†
R Σ†

χP
j†
L

)
+ h.c. 0

OC
LR,17 Tr(P i

RΣχ) Tr
(
P j
LP

j†
L Σ†

χP
i†
R

)
+ h.c. 0

OC
LR,18 Tr(P i

RΣχ) Tr
(
P i
LP

j†
L Σ†

χP
j†
R

)
+ h.c. 0

OC
LR,19 Tr

(
P i†
L P

i
LP

j†
R P

j
R

)
0

OC
LR,20 Tr

(
P i†
L P

j
LP

i†
R P

j
R

)
0

OC
LR,21 Tr

(
P i
LP

i†
L Σ

†
χP

j†
R P

j
RΣχ

)
3/4− π†

3π3/(8f
2
χ)

OC
LR,22 Tr

(
P i
LP

j†
L Σ†

χP
j†
R P

i
RΣχ

)
3/4− (3πa8π

a
8 + 8π†

3π3)/(64f
2
χ)

OC
LR,23 Tr

(
P i
LP

j†
R Σ†

χP
i†
L P

j
RΣχ

)
0

OC
LR,24 Tr

(
P i
LP

j†
R Σ†

χP
j†
L P

i
RΣχ

)
0

Table A.3: Mixed color singlet operators with two PL ∈ 3 and two PR ∈ 3. We also show the

expansion to second order in the pNGBs. The operators are separated into panels according to

the underlying SU(6) invariants in Tab. A.1.
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Implementation

We document the CHM5 FeynRules implementation, which extends the eVLQ library [71] by

the fields and interactions necessary to describe the composite Higgs model M5. The basis are

the files sm.fr and VLQ v4.fr, which adds VLQs X,T,B, Y with charges 5/3, 2/3,−1/3,−4/3,

respectively. Additional fields can be added by including different independent modules, which

include the interactions with the SM and the VLQs. The following modules are available:

• eVLQ S10.fr: Adds neutral color singlet scalar S0
1 . This extension was already imple-

mented [69].

• eVLQ S11.fr: Adds singly charged color singlet scalar S1
1 . This extension was already

implemented [69].

• eVLQ S12.fr: Adds doubly charged color singlet scalar S2
1 .

• eVLQ Q1.fr: Adds color singlet fermions with charges Q = 1 (Q1
1), Q = 0 (Q0

1) and a

Majorana (Q0
1,M).

• eVLQ Q8.fr: Adds color octet fermions with charges Q = 1 (Q1
8), Q = 0 (Q0

8) and a

Majorana (Q0
8,M).

• eVLQ S80.fr: Adds neutral color octet scalar S0
8 .

• eVLQ S323.fr: Adds color triplet scalar with charge Q = 2/3 (S
2/3
3 ).

An overview of the notation for the fields is given in Tab. B.1, where we also indicate the

corresponding fields in M5. For modules that correspond to multiple fields, e.g. S10, we add

copies of the corresponding files with the replacements S10 → S102,S103 etc.

In the following we present the Lagrangians for the new fields, excluding lepton and baryon

number violating terms. The Lagrangians are formulated in the mass eigenbasis, so the fields

are eigenstates of SU(3)c×U(1)em. We have summarized our notational conventions at the end

of this chapter.
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Field Spin SU(3)c × U(1)em In FR FR numbering PDG code BSM fields in M5

ν` 1/2 10 vl F[1] 12, 14, 16

` 1/2 1−1 vl F[2] 11, 13, 15

qu 1/2 3+2/3 uq F[3] 2, 4, 6

qd 1/2 3−1/3 dq F[4] 1, 3, 5

h 0 10 H S[1] 25

A 1 10 A V[1] 22

Z 1 10 Z V[2] 23

W 1 1+1 W V[3] 24

g 1 80 G V[4] 21

X 1/2 3+5/3 x F[5] 6000005 X5/3

T 1/2 3+2/3 tp F[6] 6000006 T1, T2, T3

B 1/2 3−1/3 bp F[7] 6000007 B

Y 1/2 3−4/3 y F[8] 6000008 –

S0
1 0 10 S10 S[100] 6100001 a, η, η01, η

0
3, η

0
5

S1
1 0 1+1 S11 S[101] 6100002 η+3 , η

+
5

S2
1 0 1+2 S12 S[102] 6100003 η++

5

S0
8 0 80 S80 S[800] 6100800 π8

S
2/3
3 0 3+2/3 S323 S[323] 6100300 π3

Q1
1 1/2 1+1 Q11 F[1010] 6000011 h̃+

Q0
1 1/2 10 Q10 F[1000] 6000010 h̃0

Q0
1,M 1/2 10 Q10M F[1001] 6001010 B̃

Q1
8 1/2 8+1 Q81 F[8010] 6000081 G̃+

Q0
8 1/2 80 Q80 F[8000] 6000080 G̃0

Q0
8,M 1/2 80 Q80M F[8001] 6001080 g̃

Table B.1: FeynRules (FR) notation for SM and BSM fields. The sm.fr and VLQ v4.fr

(upper two panels) form the basis of the implementation. For the fields in the lower panel, the

interactions with the upper two are implemented. The right most column shows the fields in

M5 that can be described with the respective module.
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Coupling FeynRules LH Block

ΓXd,L
S2
1

GS12XDL GS12XDL

ΓXd,R
S2
1

GS12XDR GS12XDR

ΓY u,L
S2
1

GS12YUL GS12YUL

ΓY u,R
S2
1

GS12YUR GS12YUR

ΓXB,L
S2
1

GS12XBL GS12XBL

ΓXB,R
S2
1

GS12XBR GS12XBR

ΓY T,L
S2
1

GS12YTL GS12YTL

ΓY T,R
S2
1

GS12YTR GS12YTR

Coupling FeynRules LH Block LH counter

κW
S2
1

KS12W KS12W

κ̃W
S2
1

KP12W KP12W

κ
h,(1)

S2
1

KS12H1 KS12H 1

κ
h,(2)

S2
1

KS12H2 KS12H 2

κhh
S2
1

KS12HH KS12H 3

Table B.2: FeynRules notation for the coupling parameters for S2
1 in Eq. (B.1). Γ

Xd,L/R

S2
1

,

Γ
Y u,L/R

S2
1

are vectors in flavor space, the remaining couplings are scalars.

Doubly charged scalar singlets: eVLQ S12.fr General Lagrangian for S2
1 ∈ 12:

LS2
1
= (DµS

2
1)

†DµS2
1 −m2

S2
1
(S2

1)
†S2

1 (B.1a)

+
[
S2
1X
(
ΓXd,L
S1
1

PL + ΓXd,R
S1
1

PR

)
qd + (S2

1)
†Y
(
ΓY u,L
S1
1
PL + ΓY u,R

S1
1

PR

)
qu + h.c.

]
(B.1b)

+
[
S2
1X
(
ΓXB,L
S1
1

PL + ΓXB,R
S1
1

PR

)
B + (S2

1)
†Y
(
ΓY T,L
S1
1

PL + ΓY T,R
S1
1

PR

)
T + h.c.

]
(B.1c)

+
[
κWS2

1

g2

16π2v
S2
1W

−,µνW−
µν + κ̃WS2

1

g2

16π2v
S2
1W

−,µνW̃−
µν + h.c.

]
(B.1d)

+
1

v
κ
h,(1)

S2
1
h(DµS

2
1)

†DµS2
1 + κ

h,(2)

S2
1
vh(S2

1)
†S2

1 + κhhS2
1
h2(S2

1)
†S2

1 (B.1e)

The FeynRules notation for the couplings is shown in Tab. B.2.

Scalar triplets: eVLQ S323.fr General Lagrangian for S
2/3
3 ∈ 12:

L
S
2/3
3

= (DµS
2/3
3 )†DµS

2/3
3 −m2

S
2/3
3

(S
2/3
3 )†S

2/3
3 (B.2a)

+
1

v
κ
h,(1)

S
2/3
3

h(DµS
2/3
3 )†DµS

2/3
3 + κ

h,(2)

S
2/3
3

vh(S
2/3
3 )†S

2/3
3 + κhh

S
2/3
3

h2(S
2/3
3 )†S

2/3
3 (B.2b)

The FeynRules notation for the couplings is shown in Tab. B.3.
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Coupling FeynRules LH Block LH counter

κ
h,(1)

S
2/3
3

KS323H1 KS323H 1

κ
h,(2)

S
2/3
3

KS323H2 KS323H 2

κhh
S
2/3
3

KS323HH KS323H 3

Table B.3: FeynRules notation for the coupling parameters for S
2/3
3 in Eq. (B.2). All couplings

are scalars in flavor space.

Scalar octets: eVLQ S8.fr General Lagrangian for S0
8 = S0,a

8 T a ∈ 80:

LS0
8
=

1

2
DµS

0,a
8 DµS0,a

8 − 1

2
m2
S0
8
S0,a
8 S0,a

8 (B.3a)

+
[
B
(
ΓBd,L
S0
8
PL + ΓBd,R

S0
8

PR

)
S0
8qd + T

(
ΓTu,L
S0
8
PL + ΓTu,R

S0
8
PR

)
S0
8qu + h.c.

]
(B.3b)

+
[
qu

(
ΓuS0

8
+ iγ5Γ̃

u
S0
8

)
S0
8qu + qd

(
ΓdS0

8
+ iγ5Γ̃

d
S0
8

)
S0
8qd + h.c.

]
(B.3c)

+
[
X
(
ΓXS0

8
+ iγ5Γ̃

X
S0
8

)
S0
8X + T

(
ΓTS0

8
+ iγ5Γ̃

T
S0
8

)
S0
8T

+B
(
ΓBS0

8
+ iγ5Γ̃

B
S0
8

)
S0
8B + Y

(
ΓYS0

8
+ iγ5Γ̃

Y
S0
8

)
S0
8Y + h.c.

]
(B.3d)

+ κGS0
8

g2s
16π2v

Tr
(
S0
8G

µνGµν

)
+ κ̃GS0

8

g2s
16π2v

Tr
(
S0
8G

µνG̃µν

)
(B.3e)

+ κGZS0
8

gse/sW cW
16π2v

S0,a
8 Ga,µνZµν + κGAS0

8

gse

16π2v
S0,a
8 Ga,µνAµν (B.3f)

+ κ̃GZS0
8

gse/sW cW
16π2v

S0,a
8 Ga,µνZ̃µν + κ̃GAS0

8

gse

16π2v
S0,a
8 Ga,µνÃµν (B.3g)

+
1

v
κ
h,(1)

S0
8
h(DµS

0
8)
a(DµS0

8)
a + κ

h,(2)

S0
8
vhS0,a

8 S0,a
8 + κhhS0

8
h2S0,a

8 S0,a
8 (B.3h)

The FeynRules notation for the couplings is shown in Tab. B.4.

Fermion singlets: VLQ1.fr General Lagrangian for Dirac fermion Q1
1 ∈ 1+1:

LQ1
1
= Q

1

1

(
i /D −mQ1

1

)
Q1

1 +

(
g

2cW
Q

1

1
/Z
[
κZQ1

1
+ iγ5κ̃

Z
Q1

1

]
Q1

1 + h.c.

)
(B.4)

General Lagrangian for Dirac fermion Q0
1 ∈ 10:

LQ0
1
= Q

0

1

(
i/∂ −mQ0

1

)
Q0

1 +

(
g

2cW
Q

0

1
/Z
[
κZQ0

1
+ iγ5κ̃

Z
Q0

1

]
Q0

1 + h.c.

)
(B.5)

General Lagrangian for Majorana fermion Q0
1,M ∈ 10:

LQ0
1,M

=
1

2
Q

0

1,M

(
i/∂ −mQ0

1,M

)
Q0

1,M +

(
κ̃ZQ0

1,M

g

4cW
Q

0

1,M
/Z iγ5Q

0
1,M + h.c.

)
(B.6)

The FeynRules notation for the couplings is shown in Tab. B.5.
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Coupling FeynRules LH Block

(Γu
S0
8
)ij GS80U GS80U

(Γ̃u
S0
8
)ij GP80U GP80U

(Γd
S0
8
)ij GS80D GS80D

(Γ̃d
S0
8
)ij GP80D GP80D

ΓX
S0
8

GS80X GS80X

Γ̃X
S0
8

GP80X GP80X

ΓT
S0
8

GS80T GS80T

Γ̃T
S0
8

GP80T GP80T

ΓB
S0
8

GS80B GS80B

Γ̃B
S0
8

GP80B GP80B

ΓY
S0
8

GS80Y GS80Y

Γ̃Y
S0
8

GP80Y GP80Y

Coupling FeynRules LH Block LH counter

κG
S0
8

KS80G KS80VV 1

κ̃G
S0
8

KP80G KP80VV 1

κGZ
S0
8

KS80GZ KS80VV 2

κ̃GZ
S0
8

KP80GZ KP80VV 2

κGA
S0
8

KS80GA KS80VV 3

κ̃GA
S0
8

KP80GA KP80VV 3

κ
h,(1)

S0
8

KS80H1 KS80H 1

κ
h,(2)

S0
8

KS80H2 KS80H 2

κhh
S0
8

KS80HH KS80H 3

Coupling FeynRules LH Block

ΓBd,L
S0
8

GS80BDL GS80BDL

ΓBd,R
S0
8

GS80BDR GS80BDR

ΓTu,L
S0
8

GS80TUL GS80TUL

ΓTu,R
S0
8

GS80TUL GS80TUL

Table B.4: FeynRules notation for the coupling parameters for S0
8 as defined in Eq. (B.3). All

κ are scalars. Γf and Γ̃f are matrices in flavor space for f = u, d and scalars for f = X,T,B, Y .

ΓBd,L/R,ΓTu,L/R are vectors in flavor space.
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Coupling FeynRules LH Block

κZ
Q1

1
KQ11Z KQ11Z

κ̃Z
Q1

1
K5Q11Z K5Q11Z

κZ
Q0

1
KQ10Z KQ10Z

κ̃Z
Q0

1
K5Q10Z K5Q10Z

κ̃Z
Q0

1,M
K5Q10MZ K5Q10MZ

Coupling FeynRules LH Block

κZ
Q1

8
KQ81Z KQ81Z

κ̃Z
Q1

8
K5Q81Z K5Q81Z

κZ
Q0

8
KQ80Z KQ80Z

κ̃Z
Q0

8
K5Q80Z K5Q80Z

κ̃Z
Q0

8,M
K5Q80MZ K5Q80MZ

Table B.5: FeynRules notation for the coupling parameters for Q1 and Q8 as defined in

Eqs. (B.4)-(B.9). All couplings are scalars parameters.

Fermion octets: VLQ8.fr General Lagrangian for Dirac fermion Q1
8 ∈ 8+1:

LQ1
8
= Q

1,a

8

(
i /D −mQ1

8

)
Q1,a

8 +

(
g

2cW
Q

1,a

8
/Z
[
κZQ1

8
+ iγ5κ̃

Z
Q1

8

]
Q1,a

8 + h.c.

)
(B.7)

General Lagrangian for Dirac fermion Q0
8 ∈ 80:

LQ0
8
= Q

0,a

8

(
i /D −mQ0

8

)
Q0,a

8 +

(
g

2cW
Q

0,a

8
/Z
[
κZQ0

8
+ iγ5κ̃

Z
Q0

8

]
Q0,a

8 + h.c.

)
(B.8)

General Lagrangian for Majorana fermion Q0
8,M ∈ 80:

LQ0
8,M

=
1

2
Q

0,a

8,M

(
i /D −mQ0

8,M

)
Q0,a

8,M +

(
κ̃ZQ0

8,M

g

4cW
Q

0,a

8,M
/Z iγ5Q

0,a
8,M + h.c.

)
(B.9)

The FeynRules notation for the parameters is shown in Table B.5.

Model-specific interactions: CHM5.fr We have implemented selected vertices that mix

different modules:

LM5 = C
S
2/3
3 t

Q0
8,M

(S
2/3
3 )†Q

0

8,MPRt+ C
S
2/3
3 t

Q0
8

(S
2/3
3 )†Q

0,c

8,MPLt+ C
S
2/3
3 t

Q1
8

(S
2/3
3 )†Q

1,c

8 PLb (B.10a)

+
1

2
C
S0
8Q

0
1,M

Q0
8,M

S0,a
8 Q

0,a

8,MQ
0
1,M + C

S0
8Q

0
1

Q0
8

S0,a
8 Q

0,a

8 Q0
1 + C

S0
8Q

1
1

Q1
8

S0,a
8 Q

0,a

8 Q1
1 (B.10b)

+
g

2cW
C
Q0

1,MZ

Q0
1

Q
0

1
/ZQ0

1,M +
g√
2
C
Q0

1W

Q1
1
Q

1

1
/W

+
Q0

1 + C
Q0

1,M t

S
2/3
3

(S
2/3
3 )†Q

0

1,MPRt+ h.c. (B.10c)

These are necessary for describing the gluoni and stop decays studied in Chapter 4. The

FeynRules notation for the parameters is shown in Table B.6. The implemented vertices

differ slightly from the simplified models in Section 4.1.3 in that the coupling to S0
8 does not

have a iγ5. This does not affect the results since the differences can be absorbed in the coupling

constants and the branching ratios remain the same.

For scenario (S3), we used the following auxiliary vertex,

Laux = C
S1
1Q

0
1,M

Q1
1

Q
1

1Q
0
1,MS

1
1 + h.c. , (B.11)

with a very light S1
1 for the decay Q1

1 → Q0
1,MS

1
1 → Q0

1,Me
+νe instead of an off-shell W+. The

decay S1
1 → e+νe is implemented in eVLQ S10.fr.
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Coupling FeynRules LH Block

C
S
2/3
3 t

Q0
8,M

CQ80MS323t CQ80MS323t

C
S
2/3
3 t

Q0
8

CQ80S323t CQ80S323t

C
S
2/3
3 t

Q1
8

CQ81S323t CQ81S323t

C
S0
8Q

0
1,M

Q0
8,M

CQ80MS80Q10M CQ80MS80Q10M

C
S0
8Q

0
1

Q0
8

CQ80S80Q10 CQ80S80Q10

C
S0
8Q

1
1

Q1
8

CQ81S80Q11 CQ81S80Q11

C
Q0

1,M t

S
2/3
3

CS323Q10Mt CS323Q10Mt

C
S1
1Q

0
1,M

Q1
1

CQ11Q10MS11 CQ11Q10MS11

Table B.6: FeynRules notation for the coupling parameters in Eqs. (B.10) and (B.11). All

couplings are scalar parameters.

FeynRules Conventions We mostly follow the notation of [69].

• XB
A → XAB. Exception: Majorana fermion Q0

1,M → Q10M

• Field names are of the form Q
eQ
C for fermions and SeSC for scalars, where C is the color

irrep and eQ,S the field’s electric charge. For example, a color octet fermion with electric

charge 1 is denoted by Q1
8.

• Coupling constants for a scalar to two fermions are denoted by Γ, couplings of a scalar to

two vector bosons are κ. The index of the coupling constant is the scalar, the superscript

specifies the fermions/vector bosons.

• Couplings for a (Γ) or pseudoscalar (Γ̃) to fermions are called GS10. . . and GP10. . . , re-

spectively, for S0
1 .

• Notwithstanding the previous points, the model-specific couplings in CHM5.fr that facil-

itate the decay X → Y Z are denoted by CY Z
X .

• For a duplicate field, e.g. a second copy of the neutral scalar S0
1 , the file is copied and the

field and couplings are renamed by replacing S10 → S102.



List of Abbreviations

ABJ Adler-Bell-Jackiw

BSM Beyond the Standard Model

CCWZ Callan-Coleman-Wess-Zumino

CHM Composite Higgs model

CL Confidence level

CM CheckMATE

CP Charge-Parity

DM Dark matter

EW Electroweak

EWSB Electroweak symmetry breaking

FR FeynRules

IR Infrared

irrep Irreducible representation

HC Hypercolor

LEC Low-energy constant

LH Les Houches

LO Leading order

MA MadAnalysis5

MAC Maximally attractive channel

MC Monte Carlo

MCHM Minimal composite Higgs model

MET Missing transverse energy

MG MadGraph5 aMC@NLO

PDF Parton distribution function

PDG Particle Data Group

NLO Next-to-leading order

pNGB pseudo Nambu-Goldstone boson

QCD Quantum chromodynamics

RGE Renormalization group equation

SM Standard model

SR Signal region

SUSY Supersymmetry

UFO Universal FeynRules Output

UV Ultraviolet

VLQ Vector-like quark

WZW Wess-Zumino-Witten
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