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Abstract

The lightest right-handed neutrino in keV range and sneutrino dark matter are
studied in two models: the supersymmetric minimal inverse-seesaw model and the
B-L supersymmetric standard model BLSSM. Numerical calculations show that
the first model is excluded for keV range sterile neutrino dark matter if sterile
neutrinos are produced by Shi-Fuller mechanism, and sneutrino dark matter is
overproduced. The model BLSSM is then studied. In this model the annihilation
of the lightest right-handed sneutrinos is mediated by a singlet Higgs and produces
lightest sterile neutrinos. This Higgs-funnel can effectively reduce the relic density
of sneutrinos. Numerical calculations show that there exists regions in parameter
space where the sneutrino relic density is consistent with the astronomical obser-
vations and allowed by collider experiments.





Zusammenfassung

In dieser Arbeit werden zwei supersymmetrische Modelle untersucht: zum einen
ein Modell beruhend auf einem effektiven minimalen Inverse-Seesaw-Mechanismus,
zum anderen das um eine zusätzliche Eichgruppe U(1)B−L erweiterte supersym-
metrische Standardmodell BLSSM. In diesen Modellen sind sowohl das leichteste
rechtshändige Neutrino (mit Masse im keV-Bereich) als auch das leichteste Sneutri-
no potentialle Kandiaten für dunkle Materie. Die numerischen Ergebinsse zeigen,
dass das minimale Inverse-Seesaw-Modell ausgeschlossen ist, wenn die rechtshän-
digen Neutrinos durch den Shi-Fuller Mechanismus erzeugt werden. Weiterhin ist
auch der Beitrag des Sneutrinos zur dunklen Materie zu groß um die beobachtete
Dichte erklären zu können. Das Modell ist somit ausgeschlossen, selbst wenn je-
weils nur ein Kandidat einen Beitrag zur dunklen Materiedichte liefert.

Im BLSSM gibt es zwei neue Higgsbosonen unter der neuen Eichgruppe U(1)B−L,
die Singletts unter der SM-Eichgruppe sind. Der Beitrag des Sneutrinos zur dunklen
Materiedichte kann durch den Higgs-Funnel mit dem leichtesten Singlett reduziert
werden. Numerische Analysen zeigen, dass Bereiche im Parameterraum existie-
ren, in welchen die beobachtete dichte der dunklen Materie durch rechtshändigen
Sneutrinos erklärt werden kann. Diese Bereiche sind nicht durch Beschleunigerex-
perimenten eingeschränkt.





Contents

1 Introduction 3

2 Supersymmetry 5
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 SUSY Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Anti-symmetric (Grassman) Algebra . . . . . . . . . . . . . 6
2.2.2 Majorana Spinor . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Supersymmetry Algebra . . . . . . . . . . . . . . . . . . . . 9

2.3 Superfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 SUSY Transformations . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Chiral Superfield . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Vector Superfield . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 SUSY Invariant Lagrangian . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Chiral Superfield . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Vector Superfield . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Breaking SUSY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 MSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.1 Higgs Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.2 Neutralino and Chargino . . . . . . . . . . . . . . . . . . . . 20
2.6.3 Sfermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Neutrino Physics 23
3.1 Neutrino Mixing and Oscillation . . . . . . . . . . . . . . . . . . . . 23
3.2 Seesaw I Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Inverse-Seesaw Mechanism . . . . . . . . . . . . . . . . . . . . . . . 27

4 The Models 28
4.1 Minimal Inverse-Seesaw . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Neutrino Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 BLSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Dark Matter 37
5.1 Production Mechanism and Relic Density . . . . . . . . . . . . . . . 37
5.2 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1



Contents

6 Analytical Calculations of the Decay Widths 44
6.1 Three-body-decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Total decay width of three-body decay . . . . . . . . . . . . . . . . 51
6.3 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Numerical Results Model I 60
7.1 Neutrino Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2 Sneutrino Relic Density . . . . . . . . . . . . . . . . . . . . . . . . 65

8 Numerical Results Model II 67

9 Conclusion and Outlook 76

2



1 Introduction

Dark matter DM has long been postulated to explain the non-baryonic missing
mass observed in the nearby galaxies. Different objects are suggested to explain
the observed relic density. Among them the beyond standard model BSM parti-
cles are promising dark matter candidates. Once they are found, it will provide
strong signal for new physics. One type of very frequently studied BSM model is
supersymmetric models, especially the minimal supersymmetric extension of stan-
dard model, the MSSM. The lightest supersymmetric particle LSP is protected
by R-parity which makes it the most stable supersymmetric particle, thus neutral
LSP is naturally good dark matter candidate.

Another particle that points exactly to new physics is neutrino. As is observed
in neutrino experiments (KamLand, Kamiokande etc.), the three standard model
SM neutrinos are mixed which can be achieved by assuming neutrinos are mas-
sive. Models such as seesaw mechanism provide good explanations of the origin
and smallness of neutrino masses, which is usually done by introducing the right-
handed neutrinos (also called sterile neutrinos) that are missing in SM into neu-
trino sector. The sterile neutrino interact only weakly and can be another good
DM candidate.

In this thesis, sterile neutrino and right-handed sneutrino DM in supersymmetric
minimal inverse-seesaw model are first studied. The numerical results show that
both scenarios give overproduced dark matter and they are therefore excluded
by astronomical observations. The same sectors of B-L supersymmetric standard
model BLSSM is then probed where a Higgs funnel is available to reduce the relic
density. A second numerical test confirms this assumption and shows that there
exist certain regions in parameter space where the relic density can be fine-tuned
to fit the observation results.

The contents are structured as follows. In chapter 2 the supersymmetry theory is
reviewed. The neutrino physics and mass models are introduced in chapter 3. The
models are discussed in chapter 4. Chapter 5 is a brief review of dark matter over
the topics that is related to this thesis. After the theory part follows the analytical
calculations of the decay processes which is given in chapter 6 and numerical results
that are shown in chapter 7 and 8. In the end the conclusion and the outlook is
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CHAPTER 1. INTRODUCTION

drawn and discussed in chapter 9.
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2 Supersymmetry

This chapter is a review of the basics of supersymmetry theory. The References[28,
4, 11, 13, 31, 2] are used while writing this review. The contents are structured in
this way: first the motivation of SUSY is given at the beginning, then mathemati-
cal preparations are made which will be useful in the discussion of SUSY algebra in
section 2.2.3 and superfield formalism in chapter 2.3. Using the superfield we will
see how to construct a SUSY and gauge invariant Lagrangian in section 2.4. The
SUSY breaking is briefly discussed in section 2.5, after that the simplest SUSY
model MSSM is elaborated in 2.6.

Motivation

The standard model, SM describes the properties and interactions of elementary
particles well and successfully, but there still remains some problems that are be-
yond the scope of SM. First and the most famous one is the hierarchy problem,
which points out that the Higgs boson in SM will receive large loop corrections
that strongly depends on the Planck scale ∼ 1018 GeV. The Higgs mass in SM is
fine-tuned to fit to the electroweak scale, where the fine-tuning precision is about
the order 10−28. This is because the Higgs boson mass is not protected by any
symmetry in SM. The second problem is the gauge unification problem. Large ef-
fort is invested in the past decades to find the Grand Unified Theory, GUT, which
is supposed to unify the three gauge couplings. But this is not achievable within
SM. The third problem is related to cosmology. SM fails to give good explanation
of baryon asymmetry and to provide good candidates of Dark Matter. All these
problems SM encountered are indicating that SM must be extended.

It was first pointed out by R. Haag, J. Lopuszańsky and M. Sohnius that Supersym-
metry, SUSY is the only non-trivial extension of space-time symmetry beyond SM.
This symmetry, being able to transform the fermions into bosons and vice versa,
guarantees that the particles within one Supermultiplet have same masses, which
protects the Higgs mass. Even more, it provides a solution to the hierarchy prob-
lem.
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CHAPTER 2. SUPERSYMMETRY

To look into details how SUSY solves the hierarchy problem, consider the 1-loop
corrections of the Higgs mass that arise from coupling to fermions and scalar bosons
respectively. The fermion Lagrangian is −λfHf̄f , and the 1-loop correction is[28]

∆m2
H = −|λf |

2

8π2
Λ2
UV + ..., (2.1.1)

where Λ2
UV is the ultra-violet cut-off in regularization. Similarly one can write

down the 1-loop correction of a Higgs couples to the scalar field with Lagrangian
equal to −λs|H|2|S|2[28]:

∆m2
H =

λs
16π2

Λ2
UV + .... (2.1.2)

If we compare the two corrections we may notice that the first terms of the two
corrections have the same form and opposite signs. They can be cancelled out if a
fermion is accompanied with two scalars and the coupling of the fermion and the
scalars are the same. This is exactly the case in SUSY, since fermions and bosons
within one supermultiplet have the same coupling, same masses and degrees of
freedom.

Minimal Supersymmetric Standard Model, MSSM allows gauge coupling unifica-
tion at the scale 1016 GeV, it also provides promising candidates for dark matter,
the Lightest Supersymmetric Particle, LSP. Being protected by the R-parity of
MSSM, the LSP are stable states. Together with the fact that SUSY particles
must be heavy, these properties make neutral LSP an ideal candidate for dark
matter, specially the cold dark matter, which is favoured by the current standard
model of Cosmology, the ΛCDM. All in all, it is worth treating SUSY seriously as
the right direction leading to new physics.

SUSY Algebra

Anti-symmetric (Grassman) Algebra

The Grassmann variables are anti-commuting variables, they fulfill the relation:

θiθj = −θjθi. (2.2.1)

This follows that θ2
i and higher orders are vanished in expansions. The integration

of Grassmann variables works in the same way as ordinary differentiation. If we
define a function f as a function of Grassmann variable θ

f(θ) = f0 + f1θ, (2.2.2)
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CHAPTER 2. SUPERSYMMETRY

then the integration and differentiation rules are:∫
dθf(θ) = f1 =

d

dθ
f(θ). (2.2.3)

It follows that the following relations also valid:∫
dθ = 0

∫
dθf(θ + θ′) =

∫
dθf(θ) = f1. (2.2.4)

The delta function acting in the integral is defined as:∫
dθδ(θ − θ′)f(θ) = f(θ′), (2.2.5)

it has the same result as directly replacing the delta function with θ − θ′, thus we
can conclude that

δ(θ − θ′) = θ − θ′. (2.2.6)

The Grassmann variable is frequently used in supersymmetry when constructing
theories with superspace formalism as superspace coordinates. It is thus important
to note the following integration and differentiation rules of Grassmann variables
since these will be often encountered when discussing the SUSY Lagrangian and
action.

Two Grassman variables θα and θ̄α̇ are need for the formalisation in the theory
below. If we consider different Grassmann variables, the differentiation rules are:

dθa
dθb

= δab
dθa

dθ̄ḃ
= 0

dθ̄ȧ

dθ̄ḃ
= δȧḃ. (2.2.7)

For integration the d2θ is defined as

d2θ = −1

4
dθα dθβεαβ d2θ̄ = −1

4
dθ̄α̇ dθ̄β̇ε

α̇β̇, (2.2.8)

then the integrations with respect to these elements are just∫
d2θ θθ = 1

∫
d2θ̄ θ̄θ̄ = 1. (2.2.9)

When performing the integrations eq. (2.2.9) to superfields, this is equivalent to
take the factor in front of the corresponding superspace coordinates. Also it is
worth noticing that the integrals disappear when integrating over total derivatives
w.r.t. the superspace coordinates.
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Majorana Spinor

Majorana particle are femions whose anti-particles are themselves. This name was
given due to the Italien physicist Ettore Majorana who first proposed this concept
in 1937. Absent in the standard model, Majorana particles are now widely studied
in different BSM models and they also provide a good explanation to the neutrino
masses.

By definition, Majorana spinors means:

ψ = ψc = C−1ψ̄T , (2.2.10)

where the matrix C = iγ2γ0 is the charge conjugation matrix. This condition is
called reality/Majorana condition. Satisfying the reality condition, the Majorana
field is[30]:

ψ(x) =
∑
s

∫
p

(as(p)us(p)e
−ip·x + a†s(p)vs(p)e

ip·x), (2.2.11)

with the spinors u, v satisfying:

us(p) = vcs(p). (2.2.12)

Recall that the Weyl representation is:

γµ =

(
0 σµ

σ̄µ 0

)
γ5 =

(
−12 0

0 12

)
, (2.2.13)

where σµ = (12, σ
i) with σi the Pauli matrices. In Weyl representation the reality

condition requires:

ψ =

(
ψL
ψR

)
= C−1ψ̄T = −iγ2γ0γ0ψ

∗ =

(
iσ2ψR
−iσ2ψL

)
. (2.2.14)

This means that one can write down a Majorana spinor using only left-handed
2-component spinor with the right-handed part substituted by −iσ2ψ

∗
L, i.e.

ψM =

(
ψL

−iσ2ψ
∗
L

)
. (2.2.15)

For 2-spinors, the notation from bailinandlove[4] are used, where

ψL = χα ψR = χ̄α̇. (2.2.16)

The bar represents the hermitian conjugation of the spinors, which is defined as:

(χα)† = χ∗α = χ̄α̇ (χ̄α̇)† = (χ̄α̇)∗ = χα. (2.2.17)
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CHAPTER 2. SUPERSYMMETRY

The indices can be raised and lowered like Lorentz indices using the matrix ε:

εαβ =εα̇β̇ = −iσ2 εαβ = εα̇β̇ = iσ2

χα =εαβχβ χ̄α̇ = εα̇β̇χ̄
β̇,

(2.2.18)

and note that
χχ = χαχα χ̄χ̄ = χ̄α̇χ̄

α̇. (2.2.19)

With these relations, one can write down the mass part of the Lagrangian density
for two component Majorana spinors:

1

2
Mψ̄MψM =

1

2
M(χ̄χ̄+ χχ). (2.2.20)

Supersymmetry Algebra

The supersymmetry algebra can have N sets of generators. The one with N = 1
generator is the supersymmery algebra, the rests are called extended supersymme-
try algebras. Here we only discuss the N = 1 scenario, which is also the scenario
that MSSM is based on.

The operator P 2 is the Casimir operator, which means that all the states within
one irreducible representation share the same mass. The generator Qa, also called
supercharge, is the conserved charge of supersymmetry, it has the following (anti-)
commutation relations[28]:

{Qα,Qβ} = {Q̄α, Q̄β} = 0

{Qα, Q̄α̇} = −2σµαα̇Pµ

[Qα, P µ] = [Q̄α̇, P µ] = 0.

(2.2.21)

When acting on the massless states, only two states maintain the same supersym-
metric representation, i.e. |p, s〉 and |p, s− 1

2
〉. These two states form a supermul-

tiplet which contains one complex boson and one Weyl fermion, it is a irreducible
representation of supersymmetry. When s = 1

2
, this is called chiral supermulti-

plet. Chiral supermultiplet contains one fermion and its Supersymmetric partner,
sfermion, which is a spin-0 particle and the name was added with a s because it is
a scalar boson. Similarly for s = 1 the two states form a vector supermultiplet, it
contains a vector boson and a fermion which is called (take photon as an example)
Photino, the -ino added at the end is used to mark the fermionic superpartners.
Note that, when s = 2 the two fields are graviton and gravitino.

The above discussion is only for massless states, the case for massive states is a
little bit more complicated. It generates spin-s + 1

2
, s and s − 1

2
mutiplets and
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contains totally 2(2s+ 1) fermions(bosons)[4].

Superfield

Supersymmetry can be more conveniently expressed in superfield formalism, where
component fields from supermultiplets are written compactly as an object called
superfield, sfield, which is defined on the extended space, the superspace, with
space-time coordinate xµ and four additional anti-symmetric coordinates θα and θ̄α̇.
The chiral and the vector superfields are obtained by acquiring certain constraints
on the general superfield. A general form of superfield is[28]:

S(x, θ, θ̄) = a+ θξ + θ̄ξ̄ + θθb+ θ̄θ̄c+ θ̄σ̄µθvµ + θ̄θ̄θη + θθθ̄ζ̄ + θθθ̄θ̄d, (2.3.1)

every component in front of the superspace coordinates is a function of xµ, all the
higher terms vanished because the coordinates θ and θ̄ are anti-symmetric.

SUSY Transformations

The SUSY transformations on superspace are defined as[28]:

Q̂α = i
∂

∂θα
− (σµθ̄)α∂µ Q̂†α̇ = i

∂

∂θ†α̇
− (σ̄µθ)α̇∂µ. (2.3.2)

These operators also follow the same (anti-)commutation relations as eq. (2.2.21).
When acting on a superfield, the SUSY transformations can be viewed as transla-
tions in superspace[28]:

√
2δεS =− i(εQ̂+ ε̄ ˆ̄Q)S

=S(xµ + iεσµθ̄ + iε̄σ̄µθ, θ + ε, θ̄ + ε̄)− S(xµ, θ, θ̄).
(2.3.3)

Under SUSY transformations, every component of the field S also transforms dif-
ferently. The complete transformations can be found in [28]. Note that the d-term
is a space-time total derivative under SUSY transformations.

The SUSY chiral covariant derivatives are defined as:

Dα =
∂

∂θα
− i(σµθ̄)α∂µ Dα = − ∂

∂θα
+ i(θ̄σ̄µ)α∂µ,

D̄α̇ =
∂

∂θ̄α̇
− i(σ̄µθ)α̇∂µ D̄α̇ = − ∂

∂θ̄α̇
+ i(θσµ)α̇∂µ,

(2.3.4)

they anti-commute with SUSY transformations therefore are useful in defining the
chiral superfield.
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Chiral Superfield

The chiral superfield is defined using chiral covariant derivative:

D̄α̇Φ = 0. (2.3.5)

To solve this equation, define

yµ = xµ + iθ̄σ̄µθ, (2.3.6)

using the new coordinate yµ the chiral covariant derivatives are

Dα =
∂

∂θα
− 2i(σµθ̄)α

∂

∂yµ
Dα = − ∂

∂θα
+ 2i(θ̄σ̄µ)α

∂

∂yµ

D̄α̇ =
∂

∂θ̄α̇
D̄α̇ = − ∂

∂θ̄α̇
.

(2.3.7)

This means, when applying the condition eq. (2.3.5) to the general superfield
eq. (2.3.1), the terms involving θ̄ don’t contribute, the general chiral superfield
is therefore:

Φ =φ(y) +
√

(2)θψ(y) + θθF (y)

=φ(x) + iθ̄σ̄µθ∂µφ(x) +
1

4
θθθ̄θ̄∂µ∂

µφ(x) +
√

2θψ(x)

− i√
2
θθθ̄σ̄µ∂µψ(x) + θθF (x).

(2.3.8)

This superfield contains one scalar φ, one fermion ψ and one auxiliary field F .
Note that F is total space-time derivative and it plays an important role in spon-
taneous SUSY breaking. The multiplication of chiral superfields results in chiral
superfields, this enables the superpotential formalisation.

Vector Superfield

The condition imposed on vector superfield is

V = V ∗. (2.3.9)

Define the following component fields with the ones in eq. (2.3.1)

ηα = λα −
i

2
(σµ∂µξ̄)α vµ = Aµ d =

1

2
D +

1

4
∂µ∂

µa, (2.3.10)
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the vector superfield is then

V =a+ θξ + θ̄ξ̄ + θθb+ θ̄θ̄b∗ + θ̄σ̄µθAµ + θ̄θ̄θ(λ− i

2
σµ∂µξ̄)

+ θθθ̄(λ̄− i

2
σ̄µ∂µξ) + θθθ̄θ̄(

1

2
D +

1

4
∂µ∂

µa).
(2.3.11)

One thing to point out here is, when performing SUSY transformations to the
vector fields, the D-term transforms into a total derivative of space-time coordinate
xµ, and it is the factor of the element θθθ̄θ̄. This fact will be used when deriving
the SUSY invariant Lagrangian. Also one can show that, the component fields a,
b and ξ can be gauged away when considering the Wess-Zumino gauge, where the
vector superfield reduces to

V = θ̄σ̄µθAµ + θ̄θ̄θλ+ θθθ̄λ̄+
1

2
θθθ̄θ̄D. (2.3.12)

This contains a vector field Aµ, a fermion field λ and an auxiliary field D, where
D is implemented under the same consideration as the F field, and it will also be
important in SUSY breaking.

SUSY Invariant Lagrangian

The action S
S =

∫
dxµ

∫
d2θ d2θ̄S(xµ, θ, θ̄), (2.4.1)

is automatically invariant under SUSY transformations for any superfield S(xµ, θ, θ̄)
that is a combination of chiral and vector superfields. For SUSY invariant La-
grangian L the terms that satisfy this condition are the F -term of chiral superfield
and D-term of vector superfield. Note that the F -term must be added with an
hermitian conjugation part to guarantee that the action is real.

Chiral Superfield

To construct kinetic and interaction terms between chiral component fields, con-
sider the terms Φ∗iΦj, ΦiΦj and ΦiΦjΦk, take the D- or F -terms respectively. The
Φ∗jΦj transforms as a vector field, the corresponding D-term is

[Φ∗jΦj]D = F ∗j Fj − ∂µφ∗j∂µφj + iψ̄jσ̄
µ∂µψj + total derivative. (2.4.2)

12
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The other two combinations can be summarised as the superpotential W

W =
1

2
M ijΦiΦj +

1

6
yijkΦiΦjΦk. (2.4.3)

Since the multiplication of chiral fields results in chiral field, the F -term of the
Superpotential is then the part that contributes to the Lagrangian. Sum up the
terms in the above discussion, the Lagrangian of chiral supermultiplets is

Lchiral = [Φ∗jΦj]D + [W ]F + h.c.. (2.4.4)

The auxiliary field F can be eliminated using its equation of motion, it shows that

Fj = −W ∗
j =

δW

δΦj

∗
. (2.4.5)

The scalar potential of the chiral superfield is:

V(φ, φ∗) = F ∗F. (2.4.6)

Vector Superfield

In the abelian case, the field strength superfields are defined as

Wα = −1

4
D̄D̄DαV W̄α̇ = −1

4
DDD̄α̇V. (2.4.7)

Express the vector sfield in Wess-Zumino gauge (see eq.2.3.12) with coordinate yµ:

V (yµ, θ, θ̄) = θ̄σ̄µθAµ + θ̄θ̄θλ+ θθθ̄λ̄+
1

2
θθθ̄θ̄D, (2.4.8)

the field strength sfield is then

Wα(y, θ, θ̄) = λα + θαD +
i

2
(σµσ̄νθ)αFµν + iθθ(σµ∂µλ̄)α. (2.4.9)

The F -term of [WW ]F contributes to the Lagrangian:∫
d4xL =

∫
d4x

1

4
[WW ]F +h.c. =

∫
d4x

[
1

2
D2 + iλ̄σ̄µ∂µλ−

1

4
F µνFµν

]
. (2.4.10)

Now add the U(1) gauge transformation

Φj → e2igqjΩΦj Φ∗j → Φ∗je−2igqjΩ
∗
, (2.4.11)
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where Ω is a non-dynamical chiral superfield and qj is the U(1) charge. The chiral
interaction term [Φj∗Φj]D is not gauge invariant, this is compensated by adjusting
the Lagrangian to

[Φ∗je2gqjV Φj]D, (2.4.12)

with the vector sfield V transforms as

V → V + i(Ω∗ − Ω) (2.4.13)

under the general gauge transformation. In Wess-Zumino gauge

[Φ∗je2gqjV Φj]D = F ∗jFj−∇µφ
∗j∇µφj+iψ̄

jσ̄µ∇µψj−
√

2gqj(ψ
j∗ψjλ+λ̄ψ̄jφj)+gqjφ

∗jφjD.
(2.4.14)

The Lagrangian for Abelian gauge theory is then

LAbelian = [Φ∗je2gqjV Φj]D + (WF (Φj) + h.c.) +
1

4
([WW ]F + h.c.). (2.4.15)

The same procedure can be generalised to non-Abelian gauge theory as

Φj → e2igΩaTaΦj = (eiΩ)kjΦk

L = [Φ∗j(e2gTaV a)kjΦk]D = [Φ∗j(eV )kjΦk]D,
(2.4.16)

where T a is the generator of the gauge group and g is the gauge coupling. Substi-
tute V with VWZ , this term is

[Φ∗j(eV )kjΦk]D =F ∗jFj −∇µφ
∗j∇µφj + iψ̄jσ̄µ∇µψj

−
√

2g(ψ∗jT aψj)λ−
√

2fλ̄(ψ̄jT aφj) + g(φ∗jT aφj)D
a.

(2.4.17)

The non-Abelian field strength sfield is defined as

Wα = −1

4
D̄D̄(e−VDαe

V ) = 2gT aWa
α, (2.4.18)

where Wa
α is the field strength sfield in adjoint representation. The SUSY and

gauge invariant quantity is

1

2g2
Tr[WαWα]F =[WaαWa

α]F

=DaDa + 2iλaσµ∇µλ̄
a − 1

2
F aµνF a

µν +
i

4
εµνρσF a

µνF
a
ρσ,

(2.4.19)

and the Lagrangian for non-Abelian gauge theory is

L =
1

4
[WaαWaα]F + h.c.+ [Φ∗j(e2gTaV a)kjΦk]D + (WF + h.c.), (2.4.20)

with the scalar potential

V(φj, φ
∗j) = F ∗jFj +

1

2

∑
a

DaDa = W ∗jWj +
1

2

∑
a

g2(φ∗jT aφj)
2. (2.4.21)
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CHAPTER 2. SUPERSYMMETRY

Breaking SUSY

The preservation of SUSY indicates SM particles have same masses as their su-
perpartners. Since such particles are until now not detected in any experiments,
SUSY must be broken. From first intuition one would expect that SUSY gets
broken spontaneously as what was happened in SM. This is equivalent to say that
the vacuum is not invariant under SUSY transformation, Q |0〉 6= 0. Since the
Hamiltonian takes the form

H =
1

4
(Q1Q̄1 + Q̄1Q1 +Q2Q̄2 + Q̄2Q2), (2.5.1)

this means that the vacuum should have positive energy 〈0|H|0〉 > 0. Therefore
the SUSY scalar potential in eq. (2.4.21) should also have positive value in vac-
uum. This demands that the F and/or D field should acquire a non-vanishing
value in the vacuum. These two scenarios are called F-type SUSY breaking and
D-type SUSY breaking respectively.

To break SUSY with F field, one can add a linear term to the superpotential.
This method was first brought up by L. O’Raifeartaigh where the superpotential
is taken to be[1]

W = mφ1φ2 + gφ2(φ2
3 −M2). (2.5.2)

The Fi field equals to (∂W
∂φi

)†, substitute W with eq. (2.5.2) one gets

F †1 = −mφ3 F †2 = −g(φ2
3 −M2) F †3 = −mφ1 − 2φ2φ3. (2.5.3)

F1 and F2 can not be zero simultaneously, SUSY is thus broken if one choose

〈0|F1|0〉 = 〈0|F3|0〉 = 0, 〈0|F2|0〉 6= 0. (2.5.4)

F2 can be chosen freely and this is called a flat direction of the scalar potential,
and breaking SUSY results in a massless fermion called goldstino. This scenario
seems to provide a good opportunity to break SUSY spontaneously, but it dose
have its only defect. According to Nelson-Seiberg theorem, if the SUSY is broken
by the F field, then the R-symmetry should also be broken otherwise the gaugino
masses can not be explained. If R-symmetry is broken, then a R-axion will be
generated which is in turn also hard to find in experiments. This theorem rules
out F -type SUSY breaking in the visible sector.

The same trick can be done to the gauge sector by adding a linear part κD to the
Lagrangian, as indicated by P. Fayet and J. Iliopoulos, where D contains only the
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U(1) part, we then arrive at the D-type SUSY breaking. The D part of scalar
potential becomes[28]

V = κD − 1

2
D2 − gD

∑
i

qi|φi|2. (2.5.5)

The equation of motion of the D field is therefore

D = κ− g
∑
i

qi|φi|2. (2.5.6)

Suppose that the scalars φi have the masses mi, the scalar potential then becomes

V =
∑
i

|mi|2|φi|2 +
1

2
(κ− g

∑
i

qi|φi|2)2, (2.5.7)

this term clearly can not be zero, SUSY is therefore broken. But just like the F -
type breaking, this mechanism is also not applicable for visible sector. First this
mechanism only applies to the abelian gauge field, for non-abelian gauge theories
a Fayet-Iliopoulos term is not allowed. Second if the U(1) gauge breaks in this
way, it then indicates that the scalar will get mass |mi|2−gqiκ where their fermion
partners will have mass |mi|2, i.e. the SUSY scalars will be lighter than their
fermion partners, which is against the experimental observations[28]. In MSSM,
the SUSY breaking terms are added to the Lagrangian density to break SUSY
explicitly. Also the breaking terms are taken to break SUSY softly, which means
they will break SUSY without introducing any more divergences and thus MSSM
still solves the hierarchy problem[3]. The explicit form of soft breaking terms will
be given in the chapter 2.6.

MSSM

Minimal Supersymmetric Standard Model, MSSM expands the particles of SM into
supermultiplets which contain both SM particles and their superpartners, and the
Higgs sector is also extended to two Higgs doublets and Higgsino doublets. To
illustrate this idea in detail, take the left-handed lepton of the first generation as
an example

l1 =

(
νe
e

)
e∗R

l̃1 =

(
ν̃e
ẽ

)
ẽ∗R,

(2.6.1)
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the supermultiplet L and E contains

L̂1 =

(
Lνe
Le

)
, ˆ̄E1,

Lνe ⊃ (νe, ν̃e), Le ⊃ (e, ẽ), ˆ̄E1 ⊃ (eR, ẽR).

(2.6.2)

The same form is applied to every other family of lepton and quark.

In SM, the charge conjugate higgs field φc couples to the up-type right chiral quarks
to give them masses, but this is not the case in MSSM, since such a field will not
be allowed. In stead, two higgs doublets are needed in MSSM to couple to the
down- and up-type quarks:

Hd =

(
H0
d

H−d

)
Hu =

(
H+
u

H0
u

)
, (2.6.3)

and two higgsino doublets

H̃d =

(
H̃0
d

H̃−d

)
H̃u =

(
H̃+
u

H̃0
u

)
(2.6.4)

are employed to solve the chiral anomaly. Also the SM gauge bosons have super-
partners, called gauginos. As we will see in the coming section, after higgs bosons
acquired vevs, the gauginos and higgsinos will mix to form charginos and neutrali-
nos. The full superfield content is given in table 2.1.

The MSSM Lagrangian density is

LMSSM = LSUSY + LSOFT , (2.6.5)

where

LSOFT =− 1

2
(M3g̃

α · g̃α +M2W̃
α · W̃α +M1B̃ · B̃ + h.c.)

−m2
Q̃ij
Q̃†i · Q̃j −m2

˜̄Uij

˜̄U †i
˜̄Uj −m2

˜̄Dij

˜̄D†i
˜̄Dj

−m2
˜̄Lij

˜̄L†i · ˜̄Lj −m2
˜̄Eij

˜̄E†i
˜̄Ej

−m2
HuH

†
u ·Hu −m2

Hd
H†d ·Hd − (bHu ·Hd + h.c.)

− aiju ˜̄UiQ̃j ·Hu + aijd
˜̄DiQ̃j ·Hd + aije

˜̄EiL̃j ·Hd + h.c.

(2.6.6)

is the soft breaking terms added to break SUSY explicitly by introducing gaugino
masses M1,2,3, scalar squared-masses m2 and the scalar coupling aij. The SUSY
part is[11]

LSUSY = Lg + LM + LH , (2.6.7)
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Names spin 0 spin 1
2

(SU(3)c, SU(2)L, U(1)y)

Q̂ (ũL, d̃L), (uL, dL) (3, 2, 1
6
)

ˆ̄U ũ∗R u†R (3̄, 1,−2
3
)sqarks,quarks

ˆ̄D d̃∗R u†R (3̄, 1, 1
3
)

L̂ (ν̃, ẽL) (ν, eL) (1, 2,−1
2
)

sleptons, leptons ˆ̄E ẽ∗R e†R (1, 1, 1)

Ĥu (H+
u , H

0
u) (H̃+

u , H̃
0
u) (1, 2, 1

2
)

Higgs, higgsinos
Ĥd (H0

d , H
−
d ) (H̃0

d , H̃
−
d ) (1, 2,−1

2
)

Names spin 1
2

spin 1 (SU(3)c, SU(2)L, U(1)y)

gluino,gluon ˆ̃g ĝ (8, 1, 0)

winos, W bosons ˆ̃W±, ˆ̃W 0 Ŵ±, Ŵ 0 (1, 3, 0)

binos, B bosons ˆ̃B0 B̂0 (1, 1, 0)

Table 2.1: The full superfield content in MSSM. Table taken from P. Martin A
Supersymmetry Primer [28]. Hatˆmarks supermultiplets.

where

Lg =
1

4

∫
d2θ(Ŵ aα

g Ŵ a
gα +

~̂
Wα
W ·

~̂
WWα + Ŵα

Y ŴY α) + h.c. (2.6.8)

is the pure gauge part of the Lagrangian density, W represent three field strength
superfields of each gauge group.

LM =

∫
d4θ

[
L̂†ie

(g2
~̂VW ·~τ−gY V̂ Y Y )L̂i + ˆ̄E†i e

2gY V̂
Y Y ˆ̄Ei + ˆ̄U †i e

(gsV̂ ag λ̄
a− 4

3
gY V̂

Y Y ) ˆ̄Ui

+ ˆ̄D†i e
(gsV̂ ag λ̄

a+ 2
3
gY V̂

Y Y ) ˆ̄Di + Q̂†ie
(gsV̂ ag λ

a+2g2
~̂VW ·~τ+ 1

3
gY V̂

Y Y )Q̂i

]
(2.6.9)

is the matter part of the Lagrangian density. The V is the gauge supermultiplet,
λa represents 8 Gell-Mann matrices, τ is the usual Pauli matrices. The Higgs part
is

LH =

∫
d4θ

[∑
p

Ĥ†pe
(g2

~̂VW ·~τ+(−1)ngY V̂
Y Y )ĤP +WMSSMδ

(2)(θ̄) +W †
MSSMδ

(2)(θ)

]
(2.6.10)

where p is the summation over up- (n=2) and down-type (n=1) Higgs doublets.
The superpotential is

WMSSM = µĤu · Ĥd − ˆ̄UYuQ̂ · Ĥu − ˆ̄DYdQ̂ · Ĥd − ˆ̄EYeL̂ · Ĥd. (2.6.11)
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Higgs Sector

The scalar potential of Higgs sector is

VH =
1

8
(g2
Y + g2

2)(|Hu|2 − |Hd|2)2 +
g2

2

2
|H†uHd|2 + |µ|2(|Hu|2 + |Hd|2)

+m2
1|Hd|2 +m2

2|Hu|2 + (BµHu ·Hd + h.c.).
(2.6.12)

By letting Higgs acquire vevs

〈Hd〉 =
1√
2

(
v1

0

)
〈Hu〉 =

1√
2

(
0
v2

)
, (2.6.13)

the electronweak symmetry will be broken spontaneously. The expressions of W
and Z bosons are altered due to the two Higgs doublets as

MW =
g2

2
(v2

1 + v2
2)

1
2 , MZ =

(g2
2 + g2

Y )
1
2

2
(v2

1 + v2
2)

1
2 , (2.6.14)

which means the two vevs v1 and v2 combine into the SM vev v

v =
√
v2

1 + v2
2 ≈ 246 GeV. (2.6.15)

The parameter tan β is then introduced to parameterise the two vevs

tan β ≡ v2

v1

, (2.6.16)

and the β is within the range [0, π
2
] if one requires the two vevs to be positive.

Setting the vevs from eq. (2.6.13) into eq. (2.6.12) and requiring the scalar potential
to take minimum at this point, one can solve out the expressions for Higgs soft
mass parameters

m2
1 = Bµ tan β − 1

8
(g2
Y + g2

2)(v2
1 − v2

2)

m2
2 = Bµ tan β +

1

8
(g2
Y + g2

2)(v2
1 − v2

2).
(2.6.17)

Now consider the Higgs masses, they can be calculated using the equations

V
(2)
H =

1

2
m2
lmφlφm m2

m = 〈 ∂
2VH

∂φl∂φm
〉 . (2.6.18)

The Higgs can be sort into CP-odd (imaginary neutral), CP-even (real neutral)
and charged Higgs. To calculate the masses, the general idea is to write all the
mass terms in a combined form ΦMΦ and rotate the field Φ into mass basis by
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diagonalize the mass matrxi M. The explicit steps are omitted here, only the
results as given in the following:

CP-odd Higgs

Diagonalization results in one massless neural Goldstone Boson G, which will be
absorbed by the Z boson, and one neutral CP-odd Higgs boson A, also called
Pseudoscalar. The masses are

m2
G0 = 0 m2

A =
2Bµ

sin 2β
. (2.6.19)

CP-even Higgs

Diagonalize the mass matrix one gets two neutral CP even Higgs bosons h and H
with masses

m2
H,h =

1

2
[m2

A +M2
Z ± {(m2

A +M2
Z)2 − 4M2

Zm
2
A cos2 2β}

1
2 ], (2.6.20)

the masses are taken to be mh < mH .

Charged Higgs

Diagonalization results in two massless Goldstone Bosons G± that will be eaten
by W± and two massive charged Higgs H±, the masses are

m2
G± = 0 m2

H± = (
Bµ

v1v2

+
1

4
g2

2)(v2
1 + v2

2). (2.6.21)

Neutralino and Chargino

After spontaneous symmetry breaking, the electroweak gauginos λ1 and λ2 (or
winos W1 and W2) mixed with the charged higgsinos and this allows one to rewrite
the mass Lagrangian density into the form

− LcMASS = (ψ−)TMψ+ + h.c., (2.6.22)

where

ψ+ =

(
λ+

H̃+
u

)
, ψ− =

(
λ−

H̃−d

)
,

λ± =
1√
2

(λ1 ∓ iλ2).

(2.6.23)
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The mass matrix M is diagonalized with unitary matrices U and V

U∗MV −1 = MD
c , (2.6.24)

these two matrices rotate the fields ψ± into mass basis

χ+
k = Vkmψ

+
m χ−k = Ukmψ

−
m, (2.6.25)

which are called charginos. The matrices U and V diagonalize the hermitian ma-
trices MM † and M †M respectively. After diagonalization, the eigenvalues of the
squared masses are

M̃2
2,1 =

1

2

[
|M2

2 |+ |µ2|+ 2M2
W ± {(|M2

2 | − |µ2|)2

+ 4M4
W cos2 2β + 4M2

W (|M2
2 |+ |µ2|+ 2 Re(M2µ) sin 2β)}

1
2

]
.

(2.6.26)

Similarly, the neutral gauginos λ0 and λ3 (or Bino and Wino) and higgsinos can
be defined in a vector

(ψ0)T ≡ (λ0, λ3, H̃
1
d , H̃

2
u), (2.6.27)

this allows us to write the mass term Lagrangian density as

LnMASS = −1

2
(ψ0)TMnψ0 + h.c., (2.6.28)

the mass matrix Mn is

Mn =


M1 0 −MZcβsW MZsβsW
0 M2 MZcβcw −MZsβcW

−MZcβsW MZcβcw 0 −µ
MZsβsW −MZsβcW −µ 0

 , (2.6.29)

where c, s represent cos and sin, β is defined by eq. (2.6.16) and cw = cos θw with
θw the Weinberg angle. As usual, rotate the fields into mass basis using the unitary
matrix Z diagonalizes the mass matrix Mn:

χ0
l = Zlnψ

0
n

MD = Z∗MnZ−1.
(2.6.30)

The detailed expressions of matrix Z and mass eigenstates are omitted here and
note that they are at best to be solved numerically. But one can still get some
general ideas about the masses purely using the matrix eq. (2.6.29). If the pa-
rameters take the values |µ| � |M1,2| � |Mz|, then the light neutralinos will be
mainly bino and wino like while the heavy two will be higgsino like neutralinos. If
the hierarchy is reversed , the light neutalinos will be mainly higgsino like and the
heavy ones will be wino like.
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Sfermions

For the sfermion sector1 one can also define a 6 component vector just as in the
chargino and neutralino case, where

f̃ =

(
f̃L
f̃R

)
(2.6.31)

for each fermion family. The Lagrangian density is then

− Lf̃ =
∑
f̃

f̃ †M2
f̃
f̃ , (2.6.32)

where the squared mass matrix

M2
f =

(
M2

LL M2
LR

M2
RL M2

RR

)
(2.6.33)

contains the left-right mixing parts. Dagonalizing this matrix employs the unitary
matrix W

f̃M = W f̃ f̃ , M f̃
D = W f̃M2

f̃
W f̃†, (2.6.34)

this is equivalent to say

f̃iL = W f̃
isf̃M,s f̃iR = W f̃

i+3,sf̃M,s. (2.6.35)

In the end, there is still one important parity of MSSM need to be mentioned, the
so called R-Parity or matter parity

PR = (−1)3(B−L)+2s PM = (−1)3(B−L), (2.6.36)

where B and L are the baryon and lepton number and s is the spin of the particle.
MSSM postulated that R-partiy is conserved and assigned PR = −1 for all the
sparticles and PR = +1 for the rests. Since R-parity is conserved, it means that
there exists a lightest supersummetric particle, LSP. All the sparticles will finally
decay into the LSP and it is the most stable sparticle in MSSM. This property
makes neutral LSP a natural good candidate for dark matter. The details of dark
matter will be reviewed in chapter 5.

1The scalar potential and Lagrangian density of the sfermion sector is omitted here, one can
easily find thorough discussions in many textbooks, for example[11]
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3 Neutrino Physics

Neutrino was first postulated by Wolfgang Pauli in 1930 when he tried to explain
the energy conservation problem of the β decay. Erico Fermi was then the first one
that wrote down the interaction for β decay using the neutrinos. This happens
to open a new area of particle physics called weak interaction, especially after the
70s where more and more particles are found which confirmed the theories that
predicted them. We now know the fundamental particles are well described by the
standard model of particle physics. Even though addressed to be ”standard”, it still
fails to explain many problems properly, for example those related to the neutrinos.

One problem comes from the astronomical observations. Neutrinos are emitted
from the Sun when Hydrogen fuse to Helium, mainly through a process called pp-
chain[30]. The neutrino flux from the Sun was first measured by the experiment
”Homestake” and it was found out that the measured flux is about only one third
of the predicted value. A successful explanation states that neutrinos are massive
particles, the flavor eigenstates are mixtures of mass eigenstates.

The main purpose of this chapter is to review basic ideas of neutrino mixing and
neutrino mass. The neutrino mixing mechanism and neutrino oscillation for three
flavor left-handed neutrinos are reviewed in section 3.1, and the seesaw mechanism
is introduced in section 3.2. The references used in this review are [30, 34, 25, 16].

Neutrino Mixing and Oscillation

The mixing matrix of 3 flavor neutrinos, also called PMNS-matrix (Pontecorvo-
Maki-Nakagawa-Sakata), takes the same form as the CKM matrix except with
additional Majorana phase terms. The PMNS matrix is:

PMNS =

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

eiβ1 0 0
0 eiβ2 0
0 0 1

 ,

(3.1.1)
where c23 and s23 represent cos θ23 and sin θ23, θij is the mixing angle between
neutrino flavors i and j. δ is the Dirac phase, when δ 6= nπ, n = 0,±1,±2...
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CP is violated. β1,2 are the Majorana phases, they can be determined through
neutrinoless double beta decay once the process is observed.

Since the flavor basis is a mixture of mass basis, an electron neutrino can constantly
evolve into other flavors like muon and taon neutrinos. Quantum mechanically, we
can write the neutrino of flavor j at the time t as:

|νj(t)〉 =
∑
a

e−iEatUja |νa〉 , (3.1.2)

with the index a marking the mass eigenstates. The probability of finding neutrino
of flavor j at the time t is then:

Pνj′→νj =| 〈νj′ |νj(t)〉 |2

=
∑
ab

∣∣∣∣U∗j′aUjaUj′bU∗jbe−i(Eb−Ea)t

∣∣∣∣. (3.1.3)

For relativistic neutrinos, the energy can be approximated by

Ej ≈ |~p|+
m2
j

2|~p|
, (3.1.4)

the probability thus has the form

P ∼
∑
ab

∣∣∣∣U∗j′aUjaUj′bU∗jbexp{−i∆m2
ab

2|~p|
L

}∣∣∣∣, (3.1.5)

where
∆m2

ab = m2
a −m2

b , (3.1.6)

and the time t is substituted with the Length L/c in natural unit because the prob-
ability is hard to track with time, the travelled length of neutrino is clearly more
easy to control. Many experiments, for example solar and atmospheric neutrino
oscillation, only measure mixing between two neutrinos. In this case, the mixing
matrix components in eq. (3.1.5) is equal to sin2 θab.

The mixing angles and mass differences are determined through different pro-
cesses. The 23 part is measured by atmospheric experiments (KamLand, (Su-
per)Kamiokande) and long baseline reactor experiments, 12 is measured by solar
neutrinos and 13 is measured by the short baseline reactor experiments. Note
that only the mass differences instead of the masses are measured, which leads
to two mass hierarchies, i.e. normal (m1 < m2 � m3) and inverted hierarchy
(m3 � m2 < m1). This hierarchy is until now not settled, but there has been an
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indication showing the preference on normal hierarchy[14]. The probability can be
measured by disappearance or appearance experiments. The exponential part of
eq. (3.1.5) donates the oscillation. Current values are listed in table 3.1.

Parameter Value Comment
sin2 θ12 0.307+0.013

−0.012 KamLAND+global solar;3ν
sin2 θ23 0.421+0.033

−0.025 Inverted ordering, quadrant I
0.592+0.023

−0.030 Inverted ordering, quadrant II
0.417+0.025

−0.028 Normal ordering, quadrant I
0.597+0.024

−0.030 Normal ordering, quadrant I
sin2 θ13 (2.12± 0.08) · 10−2

∆m2
21(10−5 eV 2) 7.53± 0.18 KamLAND+global+SBL+accelerator;3ν

∆m2
32(10−3 eV 2) −2.56± 0.04 Inverted mass hierarchy

2.51± 0.05 Normal mass hierarchy

Table 3.1: The current PDG results on neutrino parameters[21]. In the comment
column lists the relevent data sources, SBL is the abbreviation of short
baseline reactor. The data are averaged by the author of [21] if no
resource is shown.

Note that the eq. (3.1.5) only works for stable neutrinos propagating in the vac-
uum. Neutrinos can also decay into light neutrinos and interact with matter. In
these two scenarios the possibilities take different forms with respect to eq. (3.1.5).

Neutrino mixing solves most of the puzzles but it also has anomalies, like the large

mass difference measured from the LSND experiment where ∆m2 = m2
3−

m2
2+m2

1

2
∼

1eV 2[16]. Also the absent of right-chirality in neutrino sector motives the right-
handed neutrinos (also called Sterile Neutrinos), which are considered to interact
only through gravitation. Their masses, depend on the exact model, can be several
orders heavier than the active neutrinos. This property contains rich phenomeno-
logical consequences, such as explaining the dark matter, the evolution of the
Universe and also the lightness of active neutrino mass. The mass model that
involves sterile neutrinos is called seesaw mechanism as will be elaborated in the
next section.
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CHAPTER 3. NEUTRINO PHYSICS

Seesaw I Mechanism

In this model right-handed neutrinos νRs are added to the SM fermions and the
related Majorana mass terms is (in 4-spinor form):

1

2
ν̄cRMRνR (3.2.1)

and the Dirac mass term:

mDν̄LνR. (3.2.2)

The neutrino mass part of the Lagrangian is then:

Lν mass =
1

2
ν̄cRMRνR −mDν̄LνR + h.c.. (3.2.3)

This Lagrangian can be written in a compact form with neutrino mass matrix M
if we define a basis

ν = (νL, ν
c
R)T , (3.2.4)

the Lagrangian is then:

Lν mass =
1

2
ν̄Mν, (3.2.5)

with M defined as:

M =

(
0 mD

mT
D MR

)
. (3.2.6)

This matrix can be diagonalized by an orthogonal 6 × 6 matrix U . Take one
generation of neutrinos as an example, the matricesMR andmD reduce to numbers,
this yields two mass eigenvalues:

|m1,2| =
1

2
(
√
M2

R + 4m2
D ∓MR). (3.2.7)

The Majorana mass is not bounded by any constraints. This allows one to choose
the Majorana mass to be much larger than the Dirac mass. When applying the
relation MR � mD to the mass eigenvalues in eq. (3.2.7), one can show that the
two masses reduce to:

m1 =
m2
D

MR

, m2 = MR +
m2
D

MR

∼MR. (3.2.8)

Raising Majorana mass will reduce m1 and raise m2 and vice versa, this explains
the name ”seesaw”.
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Inverse-Seesaw Mechanism

By adding a U(1) gauge non-singlet right-handed neutrino S 1to the SM/MSSM
Seesaw I Lagrangian, after electroweak symmetry breaking the neutrinos have the
mass matrix[29]

Mν =

 0 mD 0
mD 0 MR

0 MR MS

 (3.3.1)

in the basis (νL, ν
c
R, S), where mD is the Dirac mass of νLν

c
R, MR is the Dirac mass

of νcRS and MS is the Majorana mass of singlet S. This matrix has the eigenvalues

m1 =
m2
DMS

M2
R

, m2,3 =
1

2
[MS ± (M2

S + rM2
R)1/2], (3.3.2)

where m1 is the lightest neutrino mass. Since mD = Yν 〈v〉, m1 = (Yν〈V 〉)2MS

M2
R

, while

keeping MR constant, one can get a relative big Yukawa coupling by setting the
MS to a small value without changing the neutrino mass m1. This fact can help
achieving a large Yukawa for the measurements and maintain the small neutrino
mass as indicated by the experiments.

1This can also be realised by adding a vector-like gauge singlet fermion N = NR + NL to the
SM Lagrangian[26].
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4 The Models

Minimal Inverse-Seesaw

The first studied model is the one reported in [9], which is MSSM with addi-
tional right-handed neutrino superfield that contains right-handed neutrinos and
sneutrinos. The superpotential is

W =WMSSM +
1

2
(MR)ij ν̂R,iν̂R,j + (Yν)ijL̂i · Ĥuν̂R,j, (4.1.1)

and the corresponding soft breaking terms are

Vsoft = VsoftMSSM + (m2
ν̃R

)ij ν̃
∗
R,iν̃R,j +

1

2
(Bν̃)ij ν̃R,iν̃R,j + (T )ijL̃i ·Huν̃R,j. (4.1.2)

The neutrino masses are explained by the seesaw I model, and the neutrino mixing
matrix is parametrized by a Casas-Ibarra like parameterization:

UT
6×6 =

(
Ual Uah
Usl Ush

)
(4.1.3)

for a = e, µ, t and s = s1, s2, s3, and the blocks are:

Ual = UPMNSH, Uah = iUPMNSHm
1
2
l R
†M
− 1

2
h ,

Usl = iH̄M
− 1

2
h Rm

1
2
l , Uah = H̄R†M

− 1
2

h ,
(4.1.4)

with ml = diag(m1,m2,m3) and MR = diag(M4,M5,M6) for the light and heavy
neutrino masses.

The UPMNS matrix is defined in eq. (3.1.1), H and R are parametrized as:

H =(I +m
1
2
l R
†M−1

h Rm
1
2
l )−

1
2 ,

H̄ =(I +M
− 1

2
h RmlR

†M
− 1

2
h )−

1
2 ,

(4.1.5)

R =

1
c56 s56

−s56 c56

 c46 s46

1
−s46 c46

 c45 s45

−s45 c45

1

 , (4.1.6)
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where cij = cos θ′ij and θ′ijρij + iγij are the mixing angles in this 6 × 6 mixing
matrix. The sine and cosine of this angle are

sin(ρij + iγij) = sin ρij cosh γij + i(cos ρij sinh γij)

cos(ρij + iγij) = cos ρij cosh γij − i(sin ρij sinh γij).
(4.1.7)

With these parametrizations, the Yukawa coupling and the mass matrix for right-
handed neutrinos are:

Yν = −i
√

2

vu
U∗PMNSH

∗m
1
2
l (mlR

† +RTMh)M
− 1

2
h H̄

MR = H̄∗M
1
2
h (I −M−1

h R∗m2
lR
†M−1

h )M
1
2
h H̄.

(4.1.8)

From the above equation one can see that the Yukawa coupling can be enhanced
exponentially by changing γ, i.e. the matrix R, without varying the neutrino
masses, which is similar to the inverse-seesaw scenario. This model is in this sense
”minimal inverse-seesaw”.

For the use in numerical test the neutrino mass matrix is given here[9]:

M2
ν̃ =

(
M2

RR M2
RI

M2
IR M2

II

)
, (4.1.9)

where

M2
RR =

 m2
L̃

+ 1
2
m2
Z cos 2β + 1

2
v2
uYνY

†
ν Re

[
vu√

2
(Tν + YνM

†
R − µ∗Yν cot β)

]
Re

[
vu√

2
(T Tν +M †

RY
T
ν − µ∗Y T

ν cot β)

]
m2
ν̃R

+M †
RMR + 1

2
v2
uY
†
ν Yν + Re(Bν̃)



M2
II =

 m2
L̃

+ 1
2
m2
Z cos 2β + 1

2
v2
uYνY

†
ν Re

[
vu√

2
(Tν − YνM †

R − µ∗Yν cot β)

]
Re

[
vu√

2
(T Tν −M

†
RY

T
ν − µ∗Y T

ν cot β)

]
m2
ν̃R

+M †
RMR + 1

2
v2
uY
†
ν Yν − Re(Bν̃)



M2
RI =

 0 Im

[
vu√

2
(Tν + YνM

†
R + µ∗Yν cot β)

]
− Im

[
vu√

2
(T Tν +M †

RY
T
ν − µ∗Y T

ν cot β)

]
− Im(Bν̃)


=(M2

IR)T

(4.1.10)
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Neutrino Interactions

Notations

The neutrinos are Majorana particles, the spinors are written as:

ν =

(
ν2,Lα

ν̄α̇2,R

)
ν̄α̇2,R = (iσ2ν

∗
2,R)α̇ ν†2,Lα = ν̄2,Lα̇, (4.2.1)

indices α and α̇ are raised and lowered by the matrices εαβ = −iσ2 and εα̇β̇ = iσ2.
The neutrino mixing matrix is defined as:

ν2,La =
∑
j

U∗jaν2,Mj ν̄2,Ra =
∑
j

Uj,a+3ν̄2,Mj, (4.2.2)

here ”M” marks the mass basis. The other mixing matrices are:

l̃ : l̃L,i =
∑
j

R∗jil̃j,
¯̃lR,i =

∑
j

Rj,i+3
¯̃lj

H± : H−d =
∑
j

Z+
j1H

−
j , H+

u =
∑
j

Z+
j2H

+
j .

(4.2.3)

Via Z Boson

The lagrangian is:

L =
−g

2 cos θw
Zµ

3∑
a=1

ν̄aγ
µPLνa, (4.2.4)

to derive the Feynman rule of this interaction, we first write the 4-spinor La-
grangian

L ∼ ν̄aγ
µPLνa (4.2.5)

into 2-spinor form, this part of Lagrangian is then:

ν̄aγ
µPLνa

=(ν†2,La, 0)

(
σ̄µ 0
0 σµ

)(
ν2,La

0

)
=ν̄2,Laα̇(σ̄µ)α̇αν2,Laα.

(4.2.6)

Rotate the neutrinos from flavor basis to mass basis and notice that[4]:

ν̄2,jα̇(σ̄µ)αα̇ν2,iα = −να2,i(σµ)αα̇ν̄
α̇
2,j, (4.2.7)
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we get:

L =
−g

2 cos θw
Zµ

3∑
a=1

6∑
i=1

6∑
j=1

UjaU
∗
iaν̄2,jσ̄

µν2,i

=
−g

2 cos θw
Zµ

3∑
a=1

6∑
i=1

6∑
j=1

1

2
[UjaU

∗
ia ν̄2,jσ̄

µν2,i︸ ︷︷ ︸
ν̄jγµPLνi

−UiaU∗ja ν̄2,jσ
µν2,i︸ ︷︷ ︸

ν̄jγµPRνi

],

(4.2.8)

therefore the vertex of the Feynman diagram is1:

νj

νi

p

k1

Z
= − i

2

g

cos θw

3∑
a=1

UjaU
∗
ia(γµPL) +

i

2

g

cos θw

3∑
a=1

UiaU
∗
ja(γµPR)

= − i
2

g

cos θw
γµ

[ 3∑
a=1

UjaU
∗
ia︸ ︷︷ ︸

oji

PL −
3∑

a=1

UiaU
∗
ja︸ ︷︷ ︸

o∗ji

PR

]

= − i
2

g

cos θw
γµ
[
ojiPL − o∗jiPR

]
.

(4.2.9)

Via Higgs Boson

Write the spinors in 2-component form and rotate to the mass basis, the Lagrangian
is then:

1Here the whole vertex is multiplied by 2, because the neutrinos are Majorana particles, see
[24], Appendix C and D.
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−L =
3∑

m,n=1

(Yν)
∗
mnν̄4,LmH

0
uν4,Rn + h.c

=
3∑

m,n=1

(Yν)
∗
mnν̄2,LmH

0
uν̄2,Rn + h.c

=
3∑

m,n=1

6∑
i=1

6∑
j=1

(Yν)
∗
mnUimν̄iH

0
uUj(n+3)ν̄j + h.c

=
3∑

m,n=1

6∑
i=1

6∑
j=1

1

2
(Yν)

∗
mn[UimUj(n+3)ν̄iν̄jH

0
u + UjmUi(n+3) ν̄j ν̄i︸︷︷︸

=ν̄iν̄j

H0
u] + h.c.

(4.2.10)
Noticing that ν̄iν̄j = ν̄4,iPRν4,j, write out the hermitian conjugate term explicitly,
the final Lagrangian is then:

−L =
3∑

m,n=1

6∑
i=1

6∑
j=1

1

2
[(Yν)

∗
mn(UimUj(n+3) + UjmUi(n+3))ν̄4,iPRν4,jH

0
u

+(Yν)mn(U∗imU
∗
j(n+3) + U∗jmU

∗
i(n+3))ν̄4,iPLν4,jH

0∗
u ].

(4.2.11)

H0
u is equal to[28]

H0
u = vu +

1√
2

[cosαh0 + sinαH0 + i(sin βG0 + cos βA0)], (4.2.12)

one can show that when the produced masses are much smaller than the initial
mass, the G0 part disappears. The vertex of the Feynman diagram is:

νj

νi

p

k1

H
=− i√

2

3∑
m,n=1

[(Yν)
∗
mn(UimUj(n+3) + UjmUi(n+3))PRηf

+ (Yν)mn(U∗imU
∗
j(n+3) + U∗jmU

∗
i(n+3))PLη

∗
f ]

=− i√
2

(XijPR +X∗ijPL),

(4.2.13)

with Xij defined as:

Xij =
3∑

m,n=1

(Yν)
∗
mnηf (UimUj(n+3) + UjmUi(n+3)). (4.2.14)
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For simplicity, the different factors in front of the higgs parts are substituted with
a combined notation ηf :

ηf =


sinα f = h0

cosα f = H0

i cos β f = A0.

(4.2.15)

W+l

The Lagrangian is:

L =
3∑

a=1

g√
2
ν̄aγ

µPLW
+
µ la

=
3∑

a=1

3∑
m=1

6∑
j=1

g√
2
ν̄jUjaU

e∗
L,maγ

µPLW
+
µ lm,

(4.2.16)

and the corresponding vertex of the Feynman diagram is:

νj

W+

la

= −i 2g√
2
ν̄jUjaU

e∗
L,maγ

µPL. (4.2.17)

χ̃+l̃

In mass basis the lagrangian is:

L =
6∑
j=1

6∑
a=1

2∑
b=1

ν̄j(d
L
jabPL + dRjabPR)l̃aχ̃b

dLjab =V ∗b2

3∑
m,n=1

Uν∗
j,3+mY

ν
mnR

∗
an

dRjab =− gUb1
3∑

m=1

Uν
jmR

∗
am + Ub2

3∑
m,n=1

Uν
j,nY

e∗
mnR

∗
a,3+m,

(4.2.18)
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where V , U are the mixing matrices of chargino and R is the mixing matrix of
slepton. The corresponding vertex and Feynman diagram are:

νj

l̃a

χ̃+
b

= −2i(dLjabPL + dRjabPR). (4.2.19)

H+l

The lagrangian is (take (νl,l) as an example):

L =
3∑

a,b=1

(Yν)ablaH
+
u ν

c
b+3 + (Ye)abνaH

−
d l

c
b + h.c.

=
3∑

a,b=1

3∑
n=1

2∑
m=1

6∑
j=1

[(Yν)abU
e∗
L,nalnU

ν∗
j,b+3νjZ

+
m2H

+ + (Ye)abU
e∗
R,nbU

∗
jaνjl

c
nZ

+
m1H

−

+ (Yν)
∗
abU

e
L,nal̄nU

ν
j,b+3ν̄jZ

+
m2H

− + (Ye)
∗
abU

e
R,nbU

ν
jaν̄j l̄

c
nZ

+
m1H

+],
(4.2.20)

the vertex of the feynman diagram is therefore:

νj

H+
m

ln

=− 2i
3∑

a,b=1

[(Yν)abU
e∗
L,naU

ν∗
j,b+3Z

+
m2PL + (Ye)

∗
abU

e
R,nbU

ν
jaZ

+
m1PR]

=− 2i(DL
jmnPL +DR

jmnPR).
(4.2.21)

BLSSM

The model receives its name from the U(1)B−L gauge group added to the MSSM,
i.e. the gauge group has a structure U(1)Y × SU(3)c × SU(2)L × U(1)B−L. This
introduces two higgs singlets in additional to the MSSM: η and η̄, the bileptons.
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The superpotential and the soft breaking terms are[12]

W =Y ij
u ÛiQ̂jĤu − Y ij

d D̂iQ̂jĤd − Y ij
e ÊiL̂jĤd + µĤuĤd

+ Y ij
ν L̂iĤuν̂j − µ′η̂ ˆ̄η + Y ij

x ν̂iη̂ν̂j,

LSB =LMSSM −m2
η|η|2 −m2

η̄|η̄|2 −m2
ν,ij(ν̃

c
i )
∗ν̃cj

+ (−λB̃λB̃′MBB′ −
1

2
λB̃λB̃′MB′ − ηη̄B′µ + T ijν Huν̃

c
i L̃j + T ijx ην̃

c
i ν̃

c
j + h.c.),

(4.3.1)
the chiral superfield contents are listed in table 4.1.

Superfield Spin 0 Spin 1
2

Generations (U(1)Y × SU(2)L × SU(3)c × U(1)B−L)

Q̂ Q̃ Q 3 (1
6
, 2, 3, 1

6
)

D̂ d̃c dc 3 (1
3
, 1, 3̄,−1

6
)

Û ũc uc 3 (−2
3
, 1, 3̄,−1

6
)

L̂ L̃ L 3 (−1
2
, 2, 1,−1

2
)

Ê ẽc ec 3 (1, 1, 1, 1
2
)

ν̂ ν̃c νc 3 (0, 1, 1, 1
2
)

Ĥd Hd H̃d 1 (−1
2
, 2, 1, 0)

Ĥu Hu H̃u 1 (1
2
, 2, 1, 0)

η̂ η η̃ 1 (0, 1, 1,−1)
ˆ̄η η̄ ˜̄η 1 (0, 1, 1, 1)

Table 4.1: The chiral superfields in the BLSSM. The table is taken from [12].

When the doublet and singlet Higgs acquire vevs, the new gauge group is sponta-
neously broken into SU(3)c × U(1)em[12]:

H0
d =

1√
2

(σd + vd + iφd), H0
u =

1√
2

(σu + vu + iφu)

η =
1√
2

(ση + vη + iφη), η̄ =
1√
2

(ση̄ + vη̄ + iφη̄),
(4.3.2)

which generates a Z ′ boson, one additional pseudoscalar Aη, four scalar Higgs
bosons and twelve phyical sneutrinos (real and imaginary, six of each kind). The
vevs of the singlets define the parameter tan β′ = vη

vη̄
. One important consequence

of implementing a second abelian gauge group results in general in the gauge kinetic
mixing. The non-canonical covariant derivative takes the form

Dµ = ∂µ − iQT
φGA, (4.3.3)

where Qφ is the charge vector of the field φ with respect to the two Abelian fields,
A is the gauge bosons and

G =

(
gY Y gY B
gBY gBB

)
(4.3.4)
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is the gauge coupling matrix.

For the later use in numerical calculations, it is worth writing down the squared
mass matrices and the relevant approximations of the Higgs bosons and the right-
handed sneutrinos. The squared mass matrix of Higgs bosons in the basis (σd, σu, ση, ση̄)
is[5]

m2
h,T =

m2
A0s2

β + g2
Σv

2
u −m2

A0cβsβ − g2
Σvuvd

ḡgBL
2
vdvη − ḡgBL

2
vdvη̄

−m2
A0cβsβ − g2

Σvuvd m2
A0c2

β + g2
Σv

2
d − ḡgBL

2
vuvη

ḡgBL
2
vuvη̄

ḡgBL
2
vdvη − ḡgBL

2
vuvη m2

A0
η
c2
β′ + g2

BLv
2
η −m2

A0
η
cβ′sβ′ − g2

BLvηvη̄

− ḡgBL
2
vdvη̄

ḡgBL
2
vuvη̄ −m2

A0
η
cβ′sβ′ − g2

BLvηvη̄ m2
A0
η
s2
β′ + g2

BLv
2
η̄

 ,

(4.3.5)
where g2

Σ = 1
4
(g2

1 + g2
2 + ḡ2),

ḡ =
gY BgBB + gBY gY Y√

g2
BB + g2

BY

, (4.3.6)

g1, g2 and gBL are the couplings of U(1)Y , SU(2)L and U(1)B−L gauge groups
respectively. The mass of the new pseudoscalar is given by[5]

m2
A0
η

=
2Bµ′

sin 2β′
, (4.3.7)

and the Z ′ mass is approximated by[5]

MZ′ ≈ gBLx, x =
√
v2
η + v2

η̄. (4.3.8)

The sneutrino has the form

ν̃ =
1√
2

(ν̃S + i ν̃P ), (4.3.9)

where ν̃S denotes scalar- and ν̃P denotes pseudoscalar sneutrino. Their masses can
be approximated by[5]

m2
ν̃S ≈m

2
νc +M2

Z′

(
1

4
cos(2β′) +

2Y 2
x

g2
BL

sin2 β′
)

+MZ′

√
2Yx
gBL

(Ax sin β′ − µ′ cos β′)

m2
ν̃P ≈m

2
νc +M2

Z′

(
1

4
cos(2β′) +

2Y 2
x

g2
BL

sin2 β′
)
−MZ′

√
2Yx
gBL

(Ax sin β′ − µ′ cos β′)

(4.3.10)
for the scalars (S) and pseudoscalars (P) when the gauge kinetic mixing and the
left-right mixing neglected.
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5 Dark Matter

In this chapter, the ideas and formulas that will be useful to understand the numer-
ical calculations are introduced. For further enlightening readings please consult
[7, 22, 8]. In this thesis only the right-handed sneutrinos and sterile neutrinos are
good DM candidates, thus the following discussions will be mainly focus on νR
and ν̃R DM.

As pointed out by F. Zwicky in 1937, the total mass of the Coma cluster estimated
using Virial theorem is much larger than the luminous mass[35]. The non-luminous
contribution to the mass is then denoted as Dark Matter,DM by Zwicky, which
now is assumed to be objects or particles that do not or only weakly interact
with the electromagnetic radiations. In 1970 V. Rubin and W. Ford pointed out
that the rotational curves observed from M31 indicates that only 57% of the mass
is contained within 24 kpc of the radius. The rest mass lies in the ouside part
of this range forming the dark matter halo, where no optical emission had been
detected[32].

To explain what DM consists of, many models are invented, different candidates
are brought up from both cosmology and particle physics point of view, such as
Massive Compact Halo Object, MACHO, extra dimension, axion, neutrlinos, sterile
neutrinos and so on. Being able to explain the neutrino mass and being the only
extension of space-time symmetry beyond SM, sterile neutrino and SUSY parti-
cles are the frequently studied DM candidates. In the following, the production
mechanism that is related to these two kinds of candidates will be first introduced,
it is then followed by a brief discussion of the detection method.

Production Mechanism and Relic Density

For particle DM candidates, they can be generated thermally or non-thermally.
For most WIMP particles, like the SUSY LSPs, they are produced thermally while
sterile neutrinos, especially the keV range ones, are produced through non-thermal
processes.
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Thermal Production

In general, when the temperature of the Universe is larger than the DM particle
mass mχ, the dark matter particles are relativistic. At this stage, the dark matter
particles are on the one hand produced by the collisions of other particles and on
the other hand they are also consumed by the annihilation and coannihilation pro-
cesses. The total effect is, the DM density within a comoving volume a3 maintains
equilibrium. Define the reaction rate for one species of DM particle as

Γ = nσv, (5.1.1)

where n is the number density within the comoving volume, σ is the cross-section,
v is the velocity of the particle, then at this stage

Γ� H, (5.1.2)

the DM particles are in thermal equilibrium.

As the Universe expands the temperature drops down. The number density of DM
particle is diluted by the expansion where in the meanwhile the other particles
do not have enough kinetic energy to produce DM particles anymore[22]. The
reaction rate Γ decreases and finally drops below the Hubble constant H. The
DM particles are neither produced nor consumed efficiently, the number density
within a comoving volume remains constant thereafter. The DM particles are said
to freeze-out or decouple from the thermal equilibrium, and temperature at the
time when Γ = H is called freeze-out temperature TFo. Depending on the mass
to temperature ratio at freeze-out, the dark matter can be categorised into mainly
three species[7, 8]:

1. mχ � TFO is called hot dark matter since when decoupled, the particles are
relativisitc. This scenario is already excluded because when assumed, the
Universe cannot form the fine structures that are observed today;

2. mχ � TFO is called cold dark matter, this case is more frequently studied and
is one of the assumptions of the standard cosmological model ΛCDM. The
most representative candidate is the Weakly Interacting Massive Particles,
WIMPs ;

3. if the particles are relativistic when decoupled but are cooled down to be
non-relativistic, they are called warm dark matter, the sterile neutrinos, de-
pending on the masses that are given in different models, can be categorised
into this type.
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The whole evolution process for SUSY partcles can be described by[6]

dN

dt
= −3HN − 〈σeffv〉T (N2 −N2

eq), (5.1.3)

where N is the number density of all the odd particles within a comoving volume,
σeff is the effective annihilation cross-section contains production, annihilation
and coannihilation processes1. Since the particles follow the Boltzmann distribu-
tion, the reaction rate is averaged over the temperature. The particle density in
equilibrium is[6]

Neq =
∑

odd particles

ni
∫

dp3

(2π)3

(
e

√
p2+M2

i
T ± 1

)−1

≈
∑

odd particles

ni
∫

dp3

(2π)3
e−
√

p2+M2
i

T .

(5.1.4)
Define two parameters

Y =
N

s
x =

mχ

T
, (5.1.5)

where s is the entropy density per comoving volume. Convert eq. (5.1.4) with
Y and x and notice that in standard cosmology model the entropy density is
conserved during the expansion:

ds

dt
= −3Hs, (5.1.6)

the evolution equation eq. (5.1.4) can be written as[6]

dY

dx
=

1

3H
〈σeffv〉T (Y 2 − Y 2

eff ). (5.1.7)

The Hubble constant is given by the Friedman equation as[8]

H2 =
8π

3M2
p

ρ. (5.1.8)

For the relativistic particles the energy density and the entropy density are[8]

ρ(T ) =
π2

30
geff (T )T 4 s =

2π2

45
heff (T )T 3, (5.1.9)

where geff and heff are the effective degree of freedom and they are related by the
parameter[8]

g1/2
∗ =

heff

g
1/2
eff

(
1 +

T

3heff

dheff
dT

)
. (5.1.10)

1The complete form of reaction rate taking into account of coannihilation contributions can not
be easily implemented. For a thorough discussion please consult [8] chapter 7.2.2.
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Adopting g
1/2
∗ and H to rewrite the evolution equation eq. (5.1.7)[8, 22]

dY

dx
= −

√
πM2

p

45

g
1/2
∗ m

x2
〈σeffv〉T (Y 2 − Y 2

eq), (5.1.11)

this equation can be solved numerically by integrating from x = 0 to x0 = mχT0

[22] to find the present Y0
2. The relic density is therefore[8]

Ωχh
2 =

ρ0
χh

2

ρ0
c

=
mχs0Y0h

2

ρ0
c

= 2.755× 108Y0mχ/GeV, (5.1.12)

where ρ0
c =

3H2
0

8πG
= 1.9 · 10−29h2 g cm−3 is the present critical density[7], and s0 is

the present day entropy density. As a comparison for the future calculations on
relic density, the currently reported cold non-baryonic matter density is [21]

Ωnbmh
2 = 0.1186± 0.0020. (5.1.13)

As illustrated in fig. 5.1, the Y0 value decreases with the increasing reaction rate.
This is ususally called the weakest wins. This is due to the fact that for particles
with higher annihilation cross-section, they are more likely to get exhausted before
decoupling from the equlibrium. This observation can be used in fine-tuning the
parameters to match with the current dark matter density.

Nonthermal Generation

As mentioned in section 3.1, when neutrinos are produced initially in the plasma,
the neutrino oscillations get modified by the matter inside the plasma. Assume
only one species each for active neutrino and sterile neutrino, then the effective
mixing angle in the plasma is[20]

sin2 2θm =
∆2(p) sin2 2θ

∆2(p) sin2 2θ + [∆(p) cos(2θ)− VD − VT ]2
, (5.1.14)

where θm is the mixing angle in the plasma, θ is the mixing angle in the vacuum,
∆(p) = ∆m2/(2p), ∆m2 is the mass-squared splitting in the vacuum. VD is the
density potential, which only takes values when the lepton asymmetry is present.
VT is the temperature potential that comes from higher order corrections and
scattering with the background particles. If the parameters are set properly, a
resonance can be induced. Based on this consideration, two models are proposed:

2Theoretically the equation eq. (5.1.11) can be solved this way, but in micrOMEGAS a Runge-
Kutta method is employed to find the initial point and approximations are also adopted
during the numerical calculation. For details see [6] chapter 6.3.
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Figure 5.1: The evolution of the DM number density. As pointed by the arrow,
the higher reaction rate will result in lower Y0 value and thus a smaller
amount of the DM will contribute to the relic density. This relation
is called ”the weakest wins”. Figure taken from G. Bertone, ”Particle
Dark Matter”[8].

Dodelson-Widrow Mechanism (Non-Resonant Production)[10] The sterile neu-
trinos are produced non-resonantly through the oscillation from active neutri-
nos to sterile neutrinos, by letting the production time longer than the oscilla-
tion time. The proposed DM has a mass about 100 eV. This mechanism, even
though being simple and nice, is ruled out by the X-Ray observations[18].

Shi-Fuller Mechanism (Resonant Production)[33] The level-crossing is enhanced
by the lepton asymmetry Lα which impacts on the density potential VD.
This mechanism restricts the DM to be produced at a temperature below
150 MeV, which acquires a lepton asymmetry for at least one flavor to be
about 10−3 ∼ 10−1, this results in a 100 eV to 10 keV sterile neutrino DM.

Except the two mechanism mentioned above, the sterile neutrino DM can also be
generate through the decay of a singlet scalar boson.

Decay of a Singlet Scalar[20] The Lagrangian is

Lint =
y

2
(νR)cνRS + h.c., (5.1.15)
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where the field S is the singlet scalar boson. The DM density depends no more on
the mixing angle but to depend totally on the coupling constant y. Whether the
DM will be cold or warm depends on the explicit models.

Detection

DM particles, if exist, can be detected directly or indirectly. The idea of direct
detection is to measure the recoil energy when the DM is scattered by the nucleus.
This idea can be realised in three ways, i.e. through scintillation (DAMA/LIBRA),
ionization (XENON, LUX, XMASS) and photon detection(CDMS, CRESST, EDEL-
WEISS) [8]. The disadvantage of this detection scheme is, it only applies to WIMP
like particles and the signal is also not strong. For example, a 100 GeV neutralino
travels at a speed of 220 km/s can maximally pass 26.9 keV to the nucleus, where
the real energy emitted is certainly fewer, a naturally radioactive event will easily
make this signal undetectable[22]. Until now, only the DAMA/LIBRA has claimed
the detection of this signal which is unfortunately not observed by any other ex-
periments of the same kind.

The other detection scheme is to detect the byproducts of the decay or annihi-
lation of DM particles, such as photons. By observing the X-Ray signals in the
outer space, certain constrains are set to the mass of DM particles. For sterile
neutrino DM, the upper limit is set by the non-detection of the X-Ray produced
by the neutrino decays. If the DM obeys Fermi-Dirac statistics, then the so called
Tremaine-Gunn bound is set with the dwarf spherical satellites, dSph, which re-
quires the sterile neutrino mass to be at least 0.5 keV. Another lower bound is
set by the observation of Lyman-α forest, which takes different bounds depending
on the analysis[8]. A summary of the astronomical constraints on keV range ster-
ile neutrino dark matter is given in fig. 5.2[17], where the bounds are production
model independent.

Take NuSTAR bound as an example, this bound is set by the observed flux as[17]

F =
Γ

4πmχ

∆ΩJ

≈2.6× 10−6cm−2s−1

(
mχ

20 keV

)4(
sin2 2θ

10−14

)
×
(

∆Ω

4 deg2

)(
J

40 GeV cm−3 kpc sr−1

)
,

(5.2.1)

where [17]
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Figure 5.2: The summary of constraints on keV range sterile neutrino dark matter
shown in the nuSTAR paper [17]. All the comstraints except the νMSM
are model independent. The allowed region is the white area and the
area between νMSM and BBN line if no νMSM model is considered.
The point marked with a sqaure is the 3.5 keV X-Ray, which was
suspected to be a signal of sterile neutrino dark matter with mass 7
keV.

Γ = 1.38 · 10−32s−1

(
sin2 2θ

10−10

)(
mχ

keV

)5

(5.2.2)

is the decay width of the DM particle χ, mχ is its mass, ∆Ω is the average solid
angle and J is the J-factor that paramaterizes the DM distribution in the FOV.
The ∆Ω and J depends on the instrument and the galaxy profile, which is in-
dependent factors of the DM production model. Thus the DM mixing angle is
bounded by eq. (5.2.1) for different masses. Since the mixing angle takes small
values which makes sin θ ≈ θ possible, the mixing angle in our model is then

sin2 2θ =
3∑

a=1

|Ui,4|2. (5.2.3)

This equation is used later in the comparison with the NuSTAR bounds.
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6 Analytical Calculations of the
Decay Widths

The calculations of the three-body decay take the Feynman -’t Hooft gauge, and
the loop calculations take non-linear gauge as discussed in [23].

Three-body-decay

Via Z Boson

νj

νi

νl

νk

p

k1

Z

k2

k3

Figure 6.1: The Feynman diagram of the three-body decay meidated by a Z boson.

The corresponding Feynman diagram is shown in fig. 6.1. It is worth noting
that the contribution of s-channel dominates. Since the neutrino mixing matrix
U is quasi-unitary, similar to the GIM Mechanism (Glashow- Iliopoulos-Maiani
Mehcanism), the combination UjaU

∗
ia can be approximated to be 0 when j 6= i.

Feynman diagrams of other decay channels by exchanging the indices are thus
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suppressed. The matrix elements are:

M = ū2,l
−i
2

g

cos θW
γµ (olkPL − o∗lkPR) v3,k

−igµν

q2 −m2
Z

v̄1,i
−i
2

g

cos θW
γν
(
oijPL − o∗ijPR

)
up,j

=
−ig2

4 cos2 θWm2
Z

ū2γµ (olkPL − o∗lkPR) v3v̄1γ
µ
(
oijPL − o∗ijPR

)
up

M† =
ig2

4 cos2 θWm2
Z

ūp
(
o∗ijPR − oijPL

)
γνv1v̄3 (o∗lkPR − olkPL) γνu2.

(6.1.1)
Once the indices are given to the respective particles, they are omitted in the
spinors in the following calculations.

Using eq. (6.1.1) and notice that q2 � m2
Z , one get:

1

2

∑
Spins

|M|2 =
g4

2× 16 cos4 θWm4
Z︸ ︷︷ ︸

A:=G2
F

ū2γµ (olkPL − o∗lkPR) v3v̄1γ
µ
(
oijPL − o∗ijPR

)
up

× ūp
(
o∗ijPR − oijPL

)
γνv1v̄3 (o∗lkPR − olkPL) γνu2

=ATr [ /k2γν (olkPL − o∗lkPR) /k3 (o∗lkPR − olkPL) γµ]

× Tr
[
/k1γ

µ
(
oijPL − o∗ijPR

)
(/p+mj)

(
o∗ijPR − oijPL

)
γν
]

=64A(k2k1)(k3p)|olk|2|oij|2. (6.1.2)

Notice that, when integrating the expression in momentum space, (k2p)(k3k1) and
(k2k1)(k3p) give the same result. This is employed in all the calculations of decay
width when necessary for simplicity.
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The total decay width of νj decay via Z boson into different final states is 1:

Γ =
3∑

i,k,l=1

∫
1

2E
(2π)4Dk1Dk2Dk3δ

(4)(p− k1 − k2 − k3)|M|2

=
3∑

i,k,l=1

∫
(2π)4 1

2E

1

2E1

1

2E2

1

2E3

d3kkk1

(2π)3

d3kkk2

(2π)3

d3kkk3

(2π)3
δ(p− k1 − k2 − k3)

× 64A(k1k2)(pk3)(|olk|2|oij|2)

=4A
3∑

i,k,l=1

∫
1

(2π)5

1

E

d3kkk1

E1

1

6
π
(
gµνq2 + 2qµqν

)
k1,µpν(|olk|2|oij|2)

=4A
3∑

i,k,l=1

∫
1

(2π)5

1

E

d3kkk1

E1

1

6
π
[
(k1p)q

2 + 2(qk1)(qp)
]

(|olk|2|oij|2),

(6.1.3)

where q = p− k1 and
∫

dΩ integrates over all the diractions of emitted neutrinos.
In the rest frame of the heavy neutrino νj,

p = (mj,000), q = (mj − E1,−kkk1), (6.1.4)

using these relations, the decay width is:

Γ =4A
3∑

i,k,l=1

∫
1

(2π)5

1

E

d3kkk1

E1

1

6
π[(mjE1) [(mj − E1)2 − |kkk1|2]︸ ︷︷ ︸

m2
j−2mjE1

+ 2mj [(mj − E1)E1 + |kkk1|2]︸ ︷︷ ︸
mjE1

(mj − E1)](|olk|2|oij|2).

(6.1.5)

Since

d3kkk1 = |kkk1|E1dE1dΩ, (6.1.6)

1Followed the calculations in QFT of F.Mandl, G.Shaw [27].
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the decay width is then:

Γ =4A
3∑

i,k,l=1

∫
1

(2π)5

1

mj

E1
1

6
π[(mjE1)(m2

j − 2mjE1) + 2mj(mjE1)(mj − E1)]dE1dΩ(|olk|2|oij|2)

=
3∑

i,k,l=1

(|olk|2|oij|2)

∫ mj
2

0

4G2
F

1

(2π)5

1

6
π(3m2

jE
2
1 − 4mjE

3
1)dE1dΩ

=
3∑

i,k,l=1

(|olk|2|oij|2)4G2
F

1

(2π)5

1

6
π
m5
j

16
× 4π

=
3∑

i,k,l=1

(|olk|2|oij|2)
G2
F

192π3
m5
j ,

(6.1.7)
with the complete form of coefficients:

|olk|2|oij|2 =

∣∣∣∣∣
3∑

a=1

UlaU
∗
ka

∣∣∣∣∣
2 ∣∣∣∣∣

3∑
a=1

UiaU
∗
ja

∣∣∣∣∣
2

. (6.1.8)

Via Higgs Boson

νj

νi

νl

νk

p

k1

H

k2

k3

Figure 6.2: The Feynman diagram of the three-body decay meidated by a H boson.

The Feynman diagram is shown in fig. 6.2. With the vertex eq. (4.2.13), the matrix
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elements for the s channel are:

MH,s =
∑
f

−i
2m2

f

ū2(XlkPR +X∗lkPL)v3v̄1(XijPR +X∗ijPL)up

M†
H,s =

∑
f

i

2m2
f

ūp(XijPR +X∗ijPL)v1v̄3(XlkPR +X∗lkPL)u2,
(6.1.9)

and for the t-channel are:

MH,t =
∑
f

−i
2m2

f

ū2(XljPR +X∗ljPL)upv̄1(XikPR +X∗ikPL)v3

M†
H,t =

∑
f

i

2m2
f

v̄3(XikPR +X∗ikPL)v1ūp(XljPR +X∗ljPL)u2.
(6.1.10)

|MH.s|2 and |MH.t|2

The amplitude is:

1

2

∑
spins

|MH.s|2 =
∑
f,f ′

1

8m2
fm

2
f ′
ū2(XlkPR +X∗lkPL)v3v̄1(XijPR +X∗ijPL)up

× ūp(X ′ijPR +X ′∗ijPL)v1v̄3(X ′lkPR +X ′∗lkPL)u2

=
∑
f,f ′

1

8m2
fm

2
f ′

Tr[( /k2 +mk)(XlkPR +X∗lkPL)( /k3 −ml)(X
′
lkPR +X ′∗lkPL)]

× Tr[( /k1 −mi)(XijPR +X∗ijPL)(/p+mj)(X
′
ijPR +X ′∗ijPL)]

=
∑
f,f ′

1

2m2
fm

2
f ′

(k2k3)(pk1)(X ′∗ijXij +X ′ijX
∗
ij)(X

′∗
lkXlk +X∗lkX

′
lk)

=
∑
f,f ′

2

m2
fm

2
f ′

Re(XlkX
′∗
lk) Re(XijX

′∗
ij )(k2k3)(pk1).

(6.1.11)
Similarly,

1

2

∑
spins

|MH.t|2 =
∑
spins

∑
f,f ′

1

8m2
fm

2
f ′
ū2(XljPR +X∗ljPL)upv̄1(XikPR +X∗ikPL)v3

× v̄3(X ′ikPR +X ′∗ikPL)v1ūp(X
′
ljPR +X ′∗ljPL)u2

=
∑
f,f ′

2

m2
fm

2
f ′

Re(XikX
′∗
ik) Re(XljX

′∗
lj )(k1k3)(pk2).

(6.1.12)
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The prime ’ here is employed to distinguish between the matrix element and its
hermitian conjugate, since there can be three contributions of neutral higgs from
every part, i.e,MH,s =

∑
fMH,s(ηf ) =MH0,s +Mh0,s +MA0,s. Notice that, the

indices f is also contained in the vertices, a summation must be applied both to
the higgs mass and the matrices X and X ′.

The mixed terms between higgs-channels

Using equation eq. (6.1.9) and eq. (6.1.10), the mixed terms are:

1

2

∑
spins

MH,sM†
H,t =

∑
spins

∑
f,f ′

1

8m2
fm

2
f ′
ū2(XlkPR +X∗lkPL)v3v̄1(XijPR +X∗ijPL)up

× v̄3(X ′ikPR +X ′∗ikPL)v1ūp(X
′
ljPR +X ′∗ljPL)u2

=
∑
f,f ′

1

8m2
fm

2
f ′

Tr[/k2(XlkPR +X∗lkPL)/k3(X ′ikPR +X ′∗ikPL)

/k1(XijPR +X∗ijPL)(/p+mj)(X
′
ljPR +X ′∗ljPL)

=
∑
f,f ′

1

4m2
fm

2
f ′

[
XlkX

′∗
ikXijX

′∗
lj (iε

µναβk1µk2νk3αpβ + (k1p)(k2k3))

+X∗lkX
′
ikX

∗
ijX

′
lj(−iεµναβk1µk2νk3αpβ + (k1p)(k2k3))

]
=
∑
f,f ′

1

2m2
fm

2
f ′

(k2k3)(k1p) Re(XlkX
′∗
ikXijX

′∗
lj ),

(6.1.13)
where the last step in eq. (6.1.13) the ε tensor term vanished because:

εµναβk1µk2νk3αpβ = εµναβ︸ ︷︷ ︸
antisym.

k1µk2νk3α(k1 + k2 + k3)β︸ ︷︷ ︸
sym.

= 0. (6.1.14)
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Also for the other mixed term:

1

2

∑
spins

MH,tM†
H,s =

∑
spins

∑
f,f ′

1

8m2
fm

2
f ′
ū2(X ′ljPR +X ′∗ljPL)upv̄1(X ′ikPR +X ′∗ikPL)v3

× ūp(XijPR +X∗ijPL)v1v̄3(XlkPR +X∗lkPL)u2

=
∑
f,f ′

1

8m2
fm

2
f ′

Tr[/k2(X ′ljPR +X ′∗ljPL)(/p+mj)(XijPR +X∗ijPL)

/k1(X ′ikPR +X ′∗ikPL)/k3(XlkPR +X∗lkPL)]

=
∑
f,f ′

1

2m2
fm

2
f ′

(k2k3)(k1p) Re(XlkX
′∗
ikXijX

′∗
lj ).

(6.1.15)
So one get

1

2

∑
spins

MH,tM†
H,s + h.c. =

∑
f,f ′

1

m2
fm

2
f ′

(k2k3)(k1p) Re(XlkX
′∗
ikXijX

′∗
lj ). (6.1.16)

The mixed terms involving Z-channel

1

2

∑
spins

MZM†
H,s =

1

2

∑
spins

−ig2

4 cos2 θwm2
z

∑
f

i

2m2
f

ū2γµ (olkPL − o∗lkPR) v3v̄1γ
µ
(
oijPL − o∗ijPR

)
up

× ūp(XijPR +X∗ijPL)v1v̄3(XlkPR +X∗lkPL)u2

=
∑
f

g2

16m2
Wm

2
f

Tr[ /k2γ
µ(olkPL − o∗lkPR) /k3(XlkPR +X∗lkPL)]

× Tr[ /k1γµ(oijPL − o∗ijPR)(/p+mj)(XijPR +X∗ijPL)]

=0 (because mi = ml = mk = 0),
(6.1.17)

therefore

MH,sM†
Z = 0 (mi = ml = mk = 0) (6.1.18)

for the s-channel, and
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1

2

∑
spins

MzM†
H,t =

1

2

∑
spins

−ig2

4 cos2 θwm2
z

∑
f

i

2m2
f

ū2γµ (olkPL − o∗lkPR) v3v̄1γ
µ
(
oijPL − o∗ijPR

)
up

× v̄3(XikPR +X∗ikPL)v1ūp(XljPR +X∗ljPL)u2

=
∑
f

g2

16m2
wm

2
f

× Tr[/k2γ
µ (olkPL − o∗lkPR) /k3(XikPR +X∗ikPL)

/k1γµ
(
oijPL − o∗ijPR

)
(/p+mj)(XljPR +X∗ljPL)]

=
∑
f

g2

m2
wm

2
f

Re(olkXiko
∗
ijX

∗
lj)(k1k3)(k2p),

(6.1.19)

1

2

∑
spins

MH,tM†
z =

1

2

∑
spins

∑
f

−i
2m2

f

ig2

4 cos2 θwm2
z

ū2(XljPR +X∗ljPL)upv̄1(XikPR +X∗ikPL)v3

× ūp
(
o∗ijPR − oijPL

)
γνv1v̄3 (o∗lkPR − olkPL) γνu2

=
∑
f

g2

16m2
wm

2
f

Tr[/k2(XljPR +X∗ljPL)(/p+mj)
(
o∗ijPR − oijPL

)
γν

/k1(XikPR +X∗ikPL)/k3 (o∗lkPR − olkPL) γν ]

=
∑
f

g2

m2
wm

2
f

Re(olkXiko
∗
ijX

∗
lj)(k1k3)(k2p),

(6.1.20)
for t-channel.

Combining the results of MZM†
H,t and MH,tM†

z, one get

1

2

∑
spins

MZM†
H,t + h.c. =

∑
f

2g2

m2
wm

2
f

Re(X∗ljXiko
∗
ijolk)(k1k3)(k2p). (6.1.21)

Total decay width of three-body decay

From the calculations of the process via Z boson, since we set the light neutrinos
to be massless, we see that the overall effect of the integration of (pk2)(k1k3) in

the momentum space is to multiply the factor of |M|2 with
m5
j

64×192π3 , so the total
decay width of the three-body decay is:

Γ3ν =
m5
j

64× 192π3

3∑
i,k,l=1

(
64G2

F |olk|2|oij|2 +
∑
f

2g2

m2
Wm

2
f

Re(X∗ljXiko
∗
ijolk)
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+
∑
f,f ′

1

m2
fm

2
f ′

[
2 Re(XlkX

′∗
lk) Re(XijX

′∗
ij ) + 2 Re(XikX

′∗
ik) Re(XljX

′∗
lj )

+ Re(XlkX
′∗
ikXijX

′∗
lj )

])
, (6.2.1)

where

oij =
3∑

a=1

UaiU
∗
aj

Xij =
3∑

m,n=1

(Yν)
∗
mnηf (UimUj(n+3) + UjmUi(n+3)).

(6.2.2)

Loops

The calculations follow the paper of H.E Haber and Daniel Wyler[23]. The nota-
tions in the paper are:

G = gLPL + gRPR

G∗ = g∗LPL + g∗RPR

G̃ = gRPL + gLPR

G̃∗ = g∗RPL + g∗LPR

F = fLPL + fRPR

F ∗ = f ∗LPL + f ∗RPR

F̃ = fRPL + fLPR

F̃ ∗ = f ∗RPL + f ∗LPR,

(6.3.1)

where the F and G are the couplings of incoming and outgoing neutrinos respec-
tively. The indices j and i mark the incoming and outgoing neutrino. The I2, I,
J and K are loop integrals defined as:

I =
1

m2
j −m2

i

∫ 1

0

dx

1− x
log

(
m2x+M2(1− x)−m2

jx(1− x)

m2x+M2(1− x)−m2
ix(1− x)

)
(6.3.2)

J =
1

m2
j −m2

i

∫ 1

0

dx

x
log

(
m2x+M2(1− x)−m2

jx(1− x)

m2x+M2(1− x)−m2
ix(1− x)

)
(6.3.3)

I2 =
1

m2
j −m2

i

∫ 1

0

dx log

(
m2x+M2(1− x)−m2

jx(1− x)

m2x+M2(1− x)−m2
ix(1− x)

)
(6.3.4)

K =
−1

m2
j −m2

i

∫ 1

0

dx

[
1 +

m2x+M2(1− x)−m2
jx(1− x)

x(1− x)(m2
j −m2

i )

× log

(
m2x+M2(1− x)−m2

jx(1− x)

m2x+M2(1− x)−m2
ix(1− x)

)]
. (6.3.5)

m is the mass of the loop fermions and M is the mass of loop bosons.
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Figure 6.3: The Feynman diagrams of the W+l loop.

The Feynman diagrams are shown in fig. 6.3. To calculate these loop diagrams,
the equation (47) in Haber’s paper was uesd.

Mw =eq(47)

=
−eg2

8π2

∑
k

ū(k1)[mj(G̃F̃ −G∗F ∗)(I2 − J −K)

−mi(GF − G̃∗F̃ ∗)(J −K) + 2mk(G̃F −G∗F̃ ∗)J ] /k2 /ε
∗u(p),

(6.3.6)

where mk is the loop fermion mass. For this loop, the vertices are ( to be consistent
with the paper, the coupling constant g and the four-momentum γµ are already
removed.):

F =
3∑

a=1

1√
2
UjaU

e∗
L,ma︸ ︷︷ ︸

fL

PL, G =
3∑

a′=1

1√
2
Uia′U

e∗
L,ma′︸ ︷︷ ︸

gL

PL. (6.3.7)
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Setting all the known expressions, the matrix element Mw is therefore:

Mw =
6∑

m=1

−eg2

16π2
ū(k1)[mj(I

2 − J −K)︸ ︷︷ ︸
A

(
3∑

a,a′=1

Uia′UjaU
e∗
L,maU

e∗
L,ma′︸ ︷︷ ︸

r

PR

−
3∑

a,a′=1

U∗ia′U
∗
jaU

e
L,maU

e
L,ma′︸ ︷︷ ︸

r∗

PL)−mi(J −K)︸ ︷︷ ︸
B

(rPL − r∗PR)] /k2/ε
∗u(p)

=
6∑

m=1

−eg2

16π2
ū(k1)[(Ar +Br∗)PR − (Ar∗ +Br)PL] /k2/ε

∗u(p)

=
6∑

m=1

−eg2

16π2
ū(k1)[(A−B)(r − r∗) + (A+B)(r + r∗)γ5] /k2/ε

∗u(p)

=
6∑

m=1

−eg2

16π2
ū(k1)[aw + bwγ5] /k2/ε

∗u(p)

M†
w =

6∑
m=1

−eg2

16π2
ū(p)/ε /k2[a∗w − b∗wγ5]u(k1),

(6.3.8)
where

A = mj(I
2 − J −K), B = mi(J −K), r =

3∑
a,a′=1

Uia′UjaU
e∗
L,maU

e∗
L,ma

aw = 2i(A−B) Im(r) bw = 2(A+B) Re(r).

(6.3.9)

χ̃+l̃ Loop

To calculate this loop, the equation (51) in Haber’s paper is used:

Ms =
−eg2

32π2

∑
c

ecū(k1)[mj(GF̃ − G̃∗F ∗)(I2 −K)

+mi(G̃F −G∗F̃ ∗)K +mc(GF − G̃∗F̃ ∗)I] /k2/ε
∗u(p),

(6.3.10)

mc is the chargino mass.

The Feynman diagrams are shown in fig. 6.4. fL/R, GL/R are defined as:

gL =dLiab, gR = dRiab

fL =dLjab, fR = dRjab.
(6.3.11)
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νj
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χ̃+
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νj

γ

νi

l̃

l̃

χ̃+

Figure 6.4: The Feynman diagrams of the χ̃+ l̃ loop.

The matrix elements are:

Mc =
∑
c

−eg2

32π2
ū(k1)[ac + bcγ

5] /k2/ε
∗u(p)

M†
c =
∑
c

−eg2

32π2
ū(p)/ε /k2[a∗c − b∗cγ5]u(k1),

(6.3.12)

where the abbreviations are:

Ac =mj(I
2 −K), Bc = miK, Cc = mcI;

O1 =dRiabd
L
jab − dL∗iabdR∗jab

O2 =dRiabd
R
jab − dL∗iabdL∗jab

ac =2i[(A+B) Im(O1) + C Im(O2)]

bc =2[(A−B) Re(O1) + C Re(O2)].

(6.3.13)

H+l Loop

νj

νi

γ

H+

l

l

νj

γ

νi

H+

H+

l

Figure 6.5: The Feynman diagrams of the H+l loop.

This loop also uses the equation (51) from Haber’s paper:

Mh =
−eg2

32π2

∑
l

elū(k1)[mj(GF̃ − G̃∗F ∗)(I2 −K)

+mi(G̃F −G∗F̃ ∗)K +ml(GF − G̃∗F̃ ∗)I] /k2/ε
∗u(p),

(6.3.14)
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ml is the loop lepton mass. The Feynman diagrams are shown in fig. 6.5. The
matrix elements are:

Mh =
∑
l

−eg2

32π2
ū(k1)[ah + bhγ

5] /k2/ε
∗u(p)

M†
h =

∑
l

−eg2

32π2
ū(p)/ε /k2[a∗h − b∗hγ5]u(k1),

(6.3.15)

where the abbreviations are:

Ah =mj(I
2 −K), Bh = miK, Ch = mlI;

O1 =gRfL − g∗Lf ∗R = DR
imnD

L
jmn −DL∗

imnD
R∗
jmn

O2 =gRfR − g∗Lf ∗L = DR
imnD

R
jmn −DL∗

imnD
L∗
jmn,

(6.3.16)

ah =2i[(A+B) Im(O1) + C Im(O2)]

bh =2[(A−B) Re(O1) + C Re(O2)].
(6.3.17)

Decay width

Take W+l loop as an example, the |Mw|2 is:

1

2

∑
spins

∑
pol

|M|2 =
1

2

∑
spins

∑
pol

3∑
i=1

e2g4

162π4
ū(k1)[aw + bwγ

5]/k2/ε
∗u(p)ū(p)/ε/k2

× [a′∗w − b′∗wγ5]u(k1)

=
3∑
i=1

∑
pol

e2g4

2× 162π4
Tr[(/k1 +mi)(aw + bwγ

5)/k2/ε
∗(/p+mj)/ε/k2(a′∗w − b′∗wγ5)]

=
3∑
i=1

e2g4

2× 162π4
× 16 (k1k2)(k2p)︸ ︷︷ ︸

1
4

(m2
j−m2

i )
2

(awa
′∗
w + bwb

′∗
w)

=
3∑
i=1

e2g4

128π4
(m2

j −m2
i )

2(awa
′∗
w + bwb

′∗
w),

(6.3.18)
where the summation over loop fermions are already contained in the matrix ele-
ments, the prime ’ is used to make a difference when performing summations.

Combining all the results above, the total |M|2 is:

1

2

∑
spins

∑
pol

|Mtotal|2 = (6.3.19)
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3∑
i=1

e2g4(m2
j −m2

i )
2

4× 128π4
[4(awa

′∗
w + bwb

′∗
w) + (aha

′∗
h + bhb

′∗
h ) + (aca

′∗
c + bcb

′∗
c )

+ 2(awa
∗
h + bwb

∗
h) + 2(awa

∗
c + bwb

∗
c) + 2(aha

∗
w + bhb

∗
w)

+ (aha
∗
c + bhb

∗
c) + 2(aca

∗
w + bcb

∗
w) + (aca

∗
h + bcb

∗
h)].

(6.3.20)

Define what’s within the bracket as gcoup, the total decay width is then:

Γ =
3∑
i=1

∫
1

32π2

p′

E2
|M|2dΩ

=
3∑
i=1

e2g4

4× 128π4

1

32π2

(m2
j −m2

i )
3

2m5
j

gcoupm
2
j × 4π

=
3∑
i=1

α3

256π2 sin4 θw

(m2
j −m2

i )
3

m5
j

gcoupm
2
j

=
3∑
i=1

(m2
j −m2

i )
3

8πm5
j

α3

32π sin4 θw
gcoupm

2
j︸ ︷︷ ︸

:=g2
νjνiγ

,

(6.3.21)

where during the calculations the following relations are used:

p′ =
1

2
√
s

[s− (m′1 +m′2)2][s− (m′1 −m′2)2]
1
2

=
m2
j −m2

i

2mj

(with s = m2
j , m′1 = mi, m′2 = 0),

α =
e2

4π
,

g =
e

sin θw
.

(6.3.22)

Approximation

The loop integral can be rewritten using dilogarithm

Li2(z) = −
∫ z

0

log(1− u)

u
du (6.3.23)
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as[23]2

I =
−1

m2
j −m2

i

[
Li2

(
m2
j +m2 −M2 + λ

1/2
j

2m2

)
+ Li2

(
m2
j +m2 −M2 − λ1/2

j

2m2

)
− Li2

(
m2
i +m2 −M2 + λ

1/2
i

2m2

)
− Li2

(
m2
i +m2 −M2 − λ1/2

i

2m2

)]
I + J =

1

m2
j −m2

i

[
log2

(
m2 +M2 −m2

j + λ
1/2
j

2mM

)
− log2

(
m2 +M2 −m2

i + λ
1/2
i

2mM

)]
lim

m,M→∞
I2 =

−1

(M2 −m2)2

[
m2 +M2

2
− m2M2

M2 −m2
log

(
M2

m2

)]
K =

−1

m2
j −m2

i

[
1 +m2I +M2J −m2

jI
2

]
.

(6.3.24)
When considering keV range neutrinos, the loop integrals I, J and K can be
simplified using the expansion around 0 to the second order with respect to

y =

(
m

M

)2

x =

(
mj

M

)2

(6.3.25)

as

I =
1

36M2

{
2(93y2 + 42y + 11)x2 + 9(8y2 + 6y + 1)x

+ 6

[
2
(
18y2 + 6y + 1

)
x2 + 3

(
8y2 + 4y + 1

)
x+ 6

(
2y2 + 2y + 1

)]
log(y) + 36

}
J =

1

36M2

{(
−78y2 + 24y + 14

)
x2 − 9

(
4y2 − 2y − 3

)
x

− 18y

[
2(5y + 1)x2 + (7y + 2)x+ 4y + 2

]
log(y)− 36

}
K =

1

144M2

{
3

[
5
(
6y2 − 11y − 5

)
+ 36y(6y + 1) log(y)

]
x2 + 36y

[
2 log(y)− 3

]
+ 8

[
−3y2 + 6(9y + 2) log(y)y − 23y − 7

]
x+ 72y2

[
3 log(y)− 1

]

+
36
(

3m6 − 7M2m4 + 9M4m2 + 4M4 log
(
M2

m2

)
m2 − 5M6

)
(M2 −m2)3 − 144y

x

}
.

(6.3.26)

2A small remark should be given here, the sign of the third term of I in the original expression
is wrong.
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For I2 both the approximation

I2 =x

[
y

(
−23− 12 log(y)

18M2
− 1

3M2

)
− 1

18M2

]
+ y

(
−3− 2 log(y)

4M2
− 2

M2

)
+

1

x2

(
log(y)

2M2
− y log(y)

2M2

)
+

1

x

[
− log(y)

2M2
+ y

(
− log(y)

M2
− 3

2M2

)
+

1

M2

]
− 7

4M2

(6.3.27)
and the expression given in eq. (6.3.24) are used. Therefore mixed notations show
up in the approximation of K. All the approximations are implemented in SPheno-

4.0.3 for the later use of numerical calculations.
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The numerical results of the first model is shown and discussed in this section.
The neutrino DMscenario was first probed to see how decay widths and branching
ratios change with the variation of various parameters. Later it is shown that the
sterile neutrino DM is excluded by NuSTAR data. The sneutrino DM scenario
is tested with micrOMEGAS which is also ruled out due to the overproduced relic
density.

Neutrino Decay

The inverse of the decay width is the life time of the particle, which should be
significantly larger than the age of the Universe, i.e[21]

13.80± 0.04 Gyr ∼ 4.35 · 1017s = 6.61× 1041 GeV−1. (7.1.1)

For later comparison with the astronomical data, the decay widths are calculated
with varied variables. The calculations are done with SPheno-4.0.3 using Model
SeesawIe. SPheno is generated by the SARAH-4.9.0 which calculates all the de-
sired decay widths. The parameterization in chapter 4 is written additionally in
the Mathematica notebook calDiagonal.nb 1 which changes the SPheno input
file LesHouches.in.SeesawIe.

The constant parameters and the variables are listed in the table 7.1. The variation
intervals are set according to the former work published in [9]. Only one variable
are varied at one time, the results are read from the SPheno.spc.SeesawIe files.

The branching ratio of three-body decay is about 88% and of radiative decay is
about 11%, as shown in figs. 7.1a and 7.1c. They remain almost constant for
different variables except for neutrino mass Mν4. Thus in the following only the
branching ratio plotted against Mν4 is discussed. Equation eq. (4.1.7) indicates
that the γ adjusts the amplitude of the trigonometric function sin and cos and
thus the amplitude of the neutrino mixing matrix U , where ρ adjusts the phase.

1This .nb file is written by J. Jones-Pérez.
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Constants Varied Parameters
Parameter Value Parameter Value Variation Interval

sin θ12

√
0.304 mν,4 7 · 10−6 GeV [1 keV, 1 GeV]

sin θ13

√
0.0218 ρ56 0.02 [0, 2π]

sin θ23

√
0.452 ρ46 0.01 [0, 2π]

δ, β1, β1 0 ρ45 0.03 [0, 2π]
∆m2

atm 2.457 · 10−3 eV2 γ56 8 [0.01, 2]
∆m2

sol 7.50 · 10−5 eV2 γ46 0.14 [0.01, 2]
mν1 1 · 10−7 GeV γ45 0.01 [0.01, 2]
mν5 20 GeV Te,33 0 |Te,33| ≤ 1 TeVmτ

mw
tan β

mν6 20.001 GeV tan β 10 [5, 10]
Constants used in MSSM M2

L̃
(475 GeV)2 [(450 GeV)2, (1 TeV)2]

Parameters Value M2
Ẽ

(525 GeV)2 [(200 GeV)2, (1 TeV2)]

M1, M2 1 · 103 GeV
M3 1.8 · 103 GeV
MA0 2 · 103 GeV

Table 7.1: The parameters and variation intervals used to generate the plots.

As can be seen from fig. 7.1b, because the mixing matrix depends on sinh γ and
cosh γ, the decay width increases exponentially with respect to γ45. The ρ45 cause
the decay width to oscillate sinusoidally as shown in fig. 7.1d, which confirms that
ρ45 is an overall phase factor of the mixing matrix. The θ′46 component behaves
the same as θ′45 since 5,6 components of νR are degenerated, the related plots are
thus omitted here. Also it is shown in figs. 7.1e and 7.1f that γ56 and ρ56 does not
affect the decay width of ν4. This is what is expected since this part controls the
decay of νR,5 and νR,6 instead of νR,4.

Part of the plots of varied tanβ, Te(3, 3), Ml̃ and Mẽ are shown in fig. 7.2. As can be
seen from figs. 7.2a to 7.2c and 7.2e, the total decay width remains almost constant
while changing these variables. The fluctuations around the constant value are
caused by numerical instabilities within the loop integrals. The calculations are
improved by using the approximations of loop integrals. In figs. 7.2d and 7.2f the
decay widths of three-body decay increase with the increasing Ml̃ and Mẽ. This
is caused by the loop correction of the coupling g. But as can be seen from the
plots, this is a negligible effect.
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Figure 7.1: The branching ratios of three-bdoy and radiative decays and the total
decay width of ν4 plotted against varied γ45 and ρ45. As shown in
figs. 7.1a and 7.1c, the branching ratios stay almost constant and the
three-body decay is the dominate process. The decay width changes
exponentially with respect to γ45 because the neutrino mixing matrix
depends on sinh γ45 and cosh γ45. The sinusoidal variation of the decay
width confirms that ρ45 is an overall phase factor of the neutrino mixing
matrix. Figures 7.1e and 7.1f show that the decay widths of ν4 do not
depend on the 56 component of neutrino mixing matrix.
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Figure 7.2: The decay widths plotted against tanβ, Ml̃, Mẽ and Te(3, 3). Fig-
ures 7.2a to 7.2c and 7.2e show that decay widths of ν4 do not change
significantly with respect to tanβ and Te(3, 3). Varying Ml̃, Mẽ will
change the coupling g and therefore cause the decay widths in figs. 7.2d
and 7.2f increase slightly.
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Figure 7.3: The branching ratios and decay widths of three-body and radiative
decays varied with Mν4. The little ”kink” around 10−5 GeV is caused
by the calculations of loop integrals. This is strongly suppressed by
applying approximations of loop integrals. Only the variations between
keV und MeV are shown, since heavier neutrinos decay too fast so that
they can not be potential DM candidates any more.

According to the analytical calculations, the decay width of ν4 is proportional to
M5

ν4. This describes the decay widths well. Notice that the kink shown in fig. 7.3d
between Mν4 = 10−5 and 10−4 GeV is caused by the calculations of loop integrals.
This kink is already strongly suppressed by applying approximations of loop inte-
grals. Note that only variations from 1 keV to 1 MeV is shown here. The decay
width increases after 1 MeV which shows that the neutrinos decay too fast so that
they can not be potential DM candidates any more.
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M4ν (keV) min. sin2 2θ
7 3.38462 · 10−9

20 1.18462 · 10−9

30 7.89744 · 10−10

40 5.92308 · 10−10

50 4.73847 · 10−10

Table 7.2: The mixing angles in the considered model calculated using eq. (5.2.3)
by taking the smallest γ45 and γ46 value. Comparing with the bounds
shown in fig. 5.2 the minimun calculated values are 3-4 magnitudes
higher than the bounds. The considered model for the keV range sterile
neutrino dark matter scenario is excluded.

The results are compared with the NuSTAR bounds[17], where both the upper
limit of decay width and the mixing angle sin2 2θ are given assuming the DM de-
cays 100% through radiative decay and the neutrinos are generated by Shi-Fuller
mechanism. The bounds are given in fig. 5.2. The mixing angles in this model
is calculated using eq. (5.2.3) and the results are listed in table 7.2. For fixed
neutrino masses, only γ and ρ affects the mixing matrix. Since γ adjusts the am-
plitude, the minimums are achieved with the minimum values of γ45 and γ46, i.e.
0.01. Comparing with the bounds in fig. 5.2 the calculated minimum values are
3-4 orders of magnitude higher than the given bounds. From former calculations
one can see that the branching ratio of radiative decays are about 10%, even con-
sidering this factor there are still 2-3 orders of magnitude differences. Thus if all
the requirements in [17] are fulfilled, the considered model for the keV range sterile
neutrino dark matter is excluded.

Sneutrino Relic Density

The relic density is calculated with micrOMEGAS-4.3.5. At first a random point
that is generated during the calculation of neutrino decays is tested. This yields
Ωh2 = 1.34 · 107. To bring down the relic density, the idea is to adjust the param-
eters that effect the sneutrino mass and coupling. As shown in eq. (4.1.10) this
involves Yν , m

2
ν̃ , m

2
L̃
, tan β and Tν .

The µ parameter is fixed at 120 GeV, the gaugino masses are fixed at 1 TeV, 1 TeV
and 1.8 TeV respectively. First Yν is changed. When Yν(1, i) ≈ 10−12, i = 1, 2, 3,
the relic density is Ωh2 ≈ 107. Adjusting γ45 = 8 and Mν4 = 7 GeV to enhance
Yν(1, 1) to 10−5 while keeping the masses of the lightest neutrino below the pre-
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Constants
Para. µ M1 M2 M3 Bµ

Value 120 GeV 103 GeV 103 GeV 1.8 · 103 GeV 3.96 · 105 GeV
Variation

Variable Values Magn. of Ωh2

Yν
10−12 107

γ45 = 8, Mν4 = 7 Gev→ Yν,1 = 10−5 102

M2
l̃

(450 GeV)2 107

(750 GeV)2 107

M2
ν̃

1600( GeV)2 107

8000( GeV)2 102

Yν , M
2
ν̃ Yν,1 = 10−5, M2

ν̃ = 8000( GeV)2 10

Tν,(1,2,3)
0 107

100 10
M2

ν̃ , Tν M2
ν̃ = 8000( GeV)2, Tν = 100 10−1

M2
ν̃ , Tν , Yν,1 M2

ν̃ = 6000( GeV)2, Tν = 100, Ynu,1 = 10−5 10−2

Table 7.3: The variations of different parameters in changing the relic density. All
the three components of M2

ν̃ and Tν are set with the same value in this
table. Only the magnitudes of Ωh2 is listed. If not specified, all the
other parameters are set with standard values listed in table 7.1.

dicted bounds, yields Ωh2 ≈ 102. The soft-breaking masses are then changed.
Setting m2

L̃
= (450 GeV)2 while keeping all the other parameters at standard

values (10 keV ν4) has almost no effect to bring down the relic density. Rais-
ing m2

ν̃R
will change the relic density significantly, adjusting from 1600 (GeV)2 to

8000 (GeV)2 will reduce five oders of the Ωh2 magnitude. Combining the Yukawa
and m2

ν̃R
= 6000 GeV2 gives Ωh2 ∼ 101. Changing tan β does not change the

magnitude of Ωh2, but changing Tν does have large impact. When set all three
generations of Tν to 100 and keeping all the other parameters at standard values,
Ωh2 will change from 107 to 101. Setting together m2

ν̃R
= 8000 GeV2 and Tν = 100

will yield Ωh2 ∼ 10−1. Combining the results from Yukawa sector, Tν = 100 and
m2
ν̃R

= 6000 GeV2 yields Ωh2 ∼ 10−2. For the scalar potential to be stable, the
global minimum is usually studied. When the trilinear coupling acquires large
value, the minimum of the potential will likely become a local minimum and this
local minimum might induce a charge violating effects which are not observed by
experiments. Therefore the considered model with keV range sterile neutrino is
for ν̃R DM excluded. The variations are listed in table 7.3.
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The BLSSM provides two additional Higgs singlets, one of them can be adjusted
to around or below 125 GeV, which provides a Higgs-Funnel that consumes the
over-produced sneutrino DM and in the meanwhile generates the sterile neutrinos
non-thermally. This scenario will solve the dilemma met in the supersymmetric
minimal inverse-seesaw model and make the lightest right-handed sneutrinos a po-
tential DM candidate. The new Higgs bosons do not interact with the left-handed
neutrinos and thus will not change the decay widths of ν4 significantly. The neu-
trino DM scenario has the same behavior as in the first model, thus in the following
discussion, the sneutrino is considered as the only DM candidate.

The setup of the Higgs-funnel in acquiring relic density ∼ 0.1 requires several
fine-tunings, this involves parameters shown up in the mass matrices of the Higgs
boson and sneutrino, since building up a Higgs-funnel requires mh/2 ' mν̃ . To
have a rough idea of adjusting the Higgs mass mh, it is sufficient only considering
the lower-right block of eq. (4.3.5) when neglecting the gauge-kinetic mixing, i.e.
ḡ = 0. Even considering the gauge-kinetic mixing, the mass eigenvalues can also
be approximated in the same way. Since mA0 is about several TeV, when taking
first order approximation[12], the mass matrix eq. (4.3.5) can be approximated by

m2
h,T ≈

(
m2
Hu,Hd

0
0 m2

η,η̄

)
. (8.0.1)

Each of the two blocks will contribute a light higgs eigenstate. The higgs boson
of interest will then come from the lower 2 × 2 block. When the masses of pseu-
doscalar and Z ′ are set to be constants, the second Higgs mass only depends on
tan β′.

The Z ′ mass is fixed to be 4.2 TeV, the vev vη̄ is solved out using eq. (4.3.8) which
yields

vη̄ =
Mz′

gBL
√

1 + tan2 β′
vη = vη̄ tan β′. (8.0.2)

The vevs are set into the matrix, the gauge coupling gBL is taken to be 0.55,
the eigenvalues of Higgs mass matrix are then solved out by Mathematica. The
approximated sneutrino masses in eq. (4.3.10) are set to be equal to half of the
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smaller eigenvalue. Note that, the original idea is to reconstruct the same mass
hierarchy as the minimal inverse-seesaw model, where the lightest two sneutrinos
are almost degenerate. In the BLSSM there are 12 physical sneutrino states,
the lightest real and imaginary ones are therefore the lightest sneutrinos. In the
analysis, the mass of the imaginary sneutrino is set to be 0.5 GeV smaller than
the real one. One can easily find out that the approximations eq. (4.3.10) has the
structure

m2
ν̃S = A+B =

mh

2

2

m2
ν̃p = A−B =

mh

2

2

− 2B. (8.0.3)

The mass difference demands that mν̃S −mν̃P = 0.5 GeV, this means

B = MZ′

√
2Yx
gBL

(Ax sin β′ − µ′ cos β′) = 2∆
mh

r
−∆2, (8.0.4)

where ∆ is the mass difference, here it is set to be 0.5 GeV, and r = mh/mν̃

denotes the mass ratio. For Higgs-funnel r is equal to 2.

The parameter Ax(1, 1), Yukawa coupling YX(1, 1), soft-breaking term m2
νc and

tan β′ are free parameters. Here only the first components are considered since the
input matrices of the respective parameters are set to be diagonal and only the
lightest sneutrinos and neutrinos are of interest. It suffices to only consider the
first components. The mass difference is then fixed with eq. (8.0.4), for certain β′

and Yx(1, 1) values, solving this equation gives the respective Ax value. This value
is then set into the condition mν̃S = mh/2 which solves out m2

νc . The µ′ is fixed at
500 GeV, the Bµ′ is adjusted with respect to β′ using eq. (4.3.7). Intuitively one
would expect adjusting tan β′, Yx(1, 1) and the mass ratio r will effect the decay
width and further effects the relic density. These three parameters are therefore
taken as variables to show the relic density dependence. The values of the related
parameters are listed in table 8.1.

It should be mentioned here that all the calculations are done at tree-level. In
MSSM the normal Higgs boson will receive large loop corrections ( Higgs mass is
around 90 GeV at tree level ). To reduce the loop correction effects, the Higgs
mass matrix is corrected so that the lightest MSSM Higgs boson is always fixed
at 125 GeV. This is done by the follows. First the upper 2 × 2 block m2

Hu,Hd
is

diagonalized with an unitary matrix R

Rm2
Hu,Hd

RT = DH,MSSM . (8.0.5)

The lightest mass eigenvalue is then replaced by 125 GeV

DH,MSSM =

(
m2

1 0
0 m2

2

)
→ D′H,MSSM =

(
(125 Gev)2 0

0 m2
2

)
. (8.0.6)
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Constants Varied Parameters
Parameter Value var. Para. const. Value var. Interval

µ′ 500 GeV
tan β′

Yx(1, 1) ∈ [−5,−2, 1]
[0.9, 1.1, 0.004]

M ′
Z 4.20 TeV r = 2

mA0 6.20 TeV
Yx(1, 1)

tan β′ ∈ [0.96, 0.985, 0.005]
[10−9, 10−2, 50 points]

M1 723.95 GeV r = 2
M2 1.19 TeV

r
tan β′ ∈ (0.96, 0.972, 0.98)

[1, 3, 50 points]
M3 3.10 TeV Yx(1, 1) = 10−5

Yx,2&3 1.91 · 10−2 Induced Variables

Yv,1 10−8 Bµ′ = m2
A0

sin 2β′

2

tan β 20 mass difference mν̃S1
−mν̃P1

= 0.5 GeV

gBL 0.55 Ax(1, 1), m2
νc , Tx(1, 1) = Ax(1, 1)Yx(1, 1)

Table 8.1: The values of the parameters used in the second numerical calculation.
The squared bracket means [min, max, step/points] where the round
bracket means (min, max, used value points).

This matrix is then transformed back to the flavor basis by the matrix R and
replaced the original MSSM Higgs block

m2
Hu,Hd

→ RTD′H,MSSMR. (8.0.7)

The modified Higgs mass matrix is then calculated normally in SPheno and there-
fore the mixing matrices also get modified.

The variables are first solved in the Mathematica. The modification of Higgs mass
matrix is done within SPheno. A program is written to change the respective
parameters in the LesHouches file and run the SPheno and micrOMEGAS and fi-
nally generates the plots showing the dependence of relic density on the variables.
Moreover, the processes that contribute to 1

Ωh2 are also recorded and plotted. The
parameters are also tested with HiggsBounds-4.3.1, which compares model pre-
dictions with LHC, Tevatron and LEP analyses.

Varied tan β′

The tan β′ is varied from 0.9 to 1.1 while keeping the mass ratio r = 2. Plots are
generated with respect to different Yx(1, 1) which takes values from 10−5 to 10−2

and are changed one magnitude at a time. As will be seen in the next section,
Yx(1, 1) does not influence the final results, thus it suffices to show only one plot
here with Yx(1, 1) = 10−5, as illustrated in fig. 8.1.
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Figure 8.1: The relic density of the sneutrino dark matter and the respective con-
tributions of decay final states. tanβ′ is varied from 0.9 to 1.1 with
0.004 as step, mass ratio r = 2 and Yx(1, 1) = 10−5. The shaded
area is excluded by HiggsBounds while the white area is allowed. The
plateau around tanβ = 1 is caused by the break down of Higgs funnel.
This plot shows that there is a region in the parameter space where
the relic density agrees with the astronomical observations and in the
meanwhile is allowed by HiggsBounds.

In fig. 8.1, the relic density is shown with the thick blue curve, which is symmetric
with respect to tan β′. Therefore in the following, if not mentioned, only the left
half is discussed. The plateau around tan β′ = 1 should not be considered as data
points, because around tan β′ = 1 the Higgs and sneutrino masses are close to 0,
the lightest sneutrinos become tachyonic. For the rest points, one might notice
at first glance that two dips are present at around tan β′ = 0.96 and 1.04. This
is caused by the level-crossing of the lightest Higgs bosons. To show it more in
detail, the lightest two Higgs masses and related mixing matrix contributions are
plotted in fig. 8.2. As can be seen from the plot, the two dips lie exactly at the
position where the level-crossing happens. The Higgs boson of interest is mainly
bilepton-like with about 1% mixing from the MSSM-like Higgs. At smaller tan β′

the Higgs of interest has larger mass (about 2 times of the normal Higgs mass),
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the decay into ν4 is suppressed by the small Yukawa, which results in quark and
boson final states. In principle the averaged cross-section is inverse proportional to
the relic density. The annihilation into different particles results in the suppressed
relic density. As the Higgs mass decreases, the annihilation into heavy particles is
not possible any more. The relic density therefore increases with decreasing Higgs
mass. At the level-crossing point, the Higgs of interest is a maximally mixture
of normal Higgs and bilepton. This causes the reduce of relic density. After the
level-crossing point, annihilation into quarks and especially ν4s start to dominate.
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Figure 8.2: The masses of the lightest two Higgs bosons and their mixing matrix
contriubtions. The mixing matrix R is defined as Hmass = RHflavor.
The level-crossing happens at the position tanβ′ about 0.96 and 1.04
which explains the dips shown in fig. 8.1.

The ν4 dominance also explains the increase of the relic density after the level-
crossing. Since the total cross-section is now only determined by ν̃R/I,1ν̃R/I,1 →
ν4ν4, it is suppressed by the small Yukawa. Therefore the ν4 dominance will in-
crease the relic density. The upshot is, between the overproduced region and the
level-crossing point, there exist two regions that can provide lower relic density
(lower or around 0.1) and are allowed by collider experiments.
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Varied Yx(1, 1)

To see whether Yx(1, 1) effects the relic density, the tan β′ is fixed at points vary-
ing from 0.96 to 0.985 with 0.005 as step, r is fixed at 2, while letting Yx(1, 1)
vary from 10−9 to 10−2 at each point. This corresponds to ν4 mass spans from
8 keV to 75 GeV. The plots are shown in fig. 8.3. As shown in the figure, the
relic density shows no dependence on singlet Yukawa coupling Yx(1, 1) unless it
exceeds 10−3. If only consider the keV range sterile neutrino which corresponds
to Yx(1, 1) = 10−9 − 10−8, then changing the Yukawa coupling does not effect the
relic density. One thing to notice is that the annihilation processes into neutri-
nos are highly suppressed at lower Yukawa values, this might open a window to
the scenario where sneutrinos have relic density that fits the observation with the
lightest sterile neutrino a good DM candidate.
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Figure 8.3: The relic density varied with Yx(1, 1) while tanβ′ = 0.97 and r = 2.
The plot show no dependency of relic density on Yx(1, 1) unless Yx(1, 1)
is larger than 10−3. For the keV range sterlie neutrinos (corresponds
to Yx(1, 1) = 10−9 − 10−8), changing Yukawa coupling of the singlets
does not influence the relic density.
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Varied Mass Ratio
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(a) tanβ′ = 0.96
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(b) tanβ′ = 0.972
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(c) tanβ′ = 0.98

Figure 8.4: The relic density plotted with respect to mass ratio varies from 1 to
3. Three tanβ′ values are used in the plots while Yx(1, 1) is fixed at
10−5. All the three plots show two dips instead of one. This is caused
by the other lightest Higgs boson which is mainly MSSM-like. Also
the dip of the Higgs funnel does not show up at exactly Mh/Mν̃ = 2 as
set manually in Mathematica. As tanβ′ decreases the diviation gets
larger. It is because the Higgs and sneutrino masses decreases with
the increasing tanβ′ and the off-diagonal contribution of the sneutrino
mass sets in. But compare with the dashed lines which marks half
of the Higgs masses, the funnels happen exactly at the point where
mν̃ = mh/2.

To show the existence of Higgs funnel, the relic density is plotted with respect to
the mass ratio which vary from 1 to 3. In the meanwhile the tan β′ is set at 0.96,
0.972 and 0.98 and Yx(1, 1) = 10−5. The plots are shown in fig. 8.4. The red line
marks the relic density, the blue lines and dashed blue lines show the masses and
half of the masses of the lightest two Higgs bosons. The yellow and green lines
show the masses of the lightest two sneutrinos. Since the masses are set to be
degenerate, these two lines overlap with each other.
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At first sight one may notice that two dips instead of one show up in all the three
plots. As shown by the intersection of the dashed lines and the relic density curve,
one of the dips is caused by the MSSM-like Higgs funnel. Also the Higgs funnel of
interest does not seem to happen exactly at MH/Mν̃I = 2 as expected, and the de-
viation varies with the increasing tan β′. It is because the x-axis is set manually as
an initial condition in the Mathematica. When tan β′ is smaller, MH is larger and
the neutrino mass does not receive large corrections from the off-diagonal terms
of the mass matrices. As tan β′ increases the sneutrino mass decreases, the off-
diagonal effects start to set in. Therefore the position where Higgs funnels appear
is marked by the intersection of the sneutrino mass and MH/2 curves.
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9 Conclusion and Outlook

The neutrino and sneutrino sectors of supersymmetric minimal inverse-seesaw
model and BLSSM are discussed in this work. The decay width of the light-
est right-handed neutrino is calculated both analytically and numerically. In the
numerical calculations approximations of loop integrals are implemented. In the
minimal inverse-seesaw model, the decay widths and mixing angle of the lightest
right-handed neutrino is calculated numerically. The results are compared with the
data of NuSTAR collaboration, it shows that if one assumes the sterile neutrinos
are produced by Shi-Fuller mechanism, then the model is excluded for keV range
sterlie neutrino DM. The numerical tests of the lightest right-handed sneutrino
shows that, when assuming keV range sterile neutrino, the sneutrino is overpro-
duced. The relic density can be bring down to the order 0.1 using large trilinear
coupling, but this might induce violation of charge conservation. In general, the
minimal inverse-seesaw model is excluded for lightest right-handed sneutrino DM
with keV range sterile neutrino scenario.

The model BLSSM is then studied. A U(1)B−L gauge group is added to the
MSSM gauge groups. This model includes twelve sneutrinos (imaginary and real,
six for each) and two additional gauge singlet Higgs bosons. The lightest singlet
Higgs boson is used to build up the Higgs-funnel. The sneutrinos are taken to
be degenerated, the lightest state is the imaginary one with a mass difference of
mν̃,re−mν̃,im = 0.5 GeV. The lightest right-handed sneutrinos annihilate through
this Higgs-funnel and produce sterile neutrinos, which solves the overproduction
problem in the first model. In the numerical calculations tan β′ and Yν(1, 1) are
taken as variables. The results show that Yukawa coupling does not change the
magnitude of relic density unless it exceeds 10−3. The relic density depends largely
on tan β′ which modifies the mass of the Higgs-funnel and thus sneutrino masses.
The numerical calculations show that there exist regions that are allowed by col-
lider experiments where the relic density is reduced to below 0.1 and in the mean-
while sterile neutrinos are produced non-thermally.

In this thesis only the parameters that are related to the DM of interest are studied.
Fine-tunings of other parameters are also possible to maintain the observed relic
density. In the ongoing work it is already shown that increasing the left-right
mixing in the sneutrino sector can significantly reduce the relic density to 10−4,
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where the large trilinear coupling is avoided. In the BLSSM other parameter ranges
might also be possible to have sneutrino and/or neutrino DM that fits the observed
relic density. Beside neutrino and sneutrino, in BLSSM the lightest neutralino can
also be a good DM candidate[19]. Other supersymmetric and inverse-seesaw (-like)
models that have similar structure as BLSSM, also offer opportunities where other
funnels are possible to consume the relic density and make sneutrino good DM
candidate[15].
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