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1. Introduction

As a matter of fact, most particles, either fundamental or composed, are unstable, but

in everyday life unstable particles play a minor role, for instance, directly we do only

observe photons, and in chemistry or biology the electron and proton play major roles

where the proton is believed to be stable. The situation is completely different at todays

colliders such as the Large Hadron Collider. Even though stable particles are brought

to reaction and in the final states one recovers stable particles, intermediate unstable

particles are produced and give in many cases dominant contributions to reactions.

The Standard Model (SM) is one of the most successful theories nowadays because of

its precise predictions which are confirmed by experiments. It is based on the principles

of Quantum Field Theory (QFT). Four fundamental forces are known whereas the SM

does incorporate three of them - the electroweak and strong force. The interaction is

mediated by so-called gauge bosons which is characteristic for gauge theories.

Often, calculations are carried out in the framework of perturbative QFT which is as-

sumed to be a valid perturbative expansion.

In view of the SM, even most fundamental particles are unstable and in contrast to

stable ones, unstable particles do not fit in a pure perturbative QFT. In certain cases

it turns out that a perturbative treatment is possible, but not always recommended,

in particular not near thresholds where observables take on unphysical values. As for

Quantum Electrodynamics (QED) one does not encounter such problems - photons are

stable and so are electrons though they have mass. But also when intermediate par-

ticles are present perturbative QFT might work out, for instance, the muon decay is

well-approximated by first-order perturbation theory even though there is an unstable

intermediate particle, the W boson. As soon as unstable particles are produced ‘on-

shell’ finite-width effects play a crucial role. It is known how to account for finite-widths

in perturbative QFT - one needs a mechanism transforming the Feynman propagator

into a propagator with a finite-width, but this cannot be done arbitrarily and should be

done such that none of the defining symmetries of the theory are violated. For instance,

simply adding by hand a finite-width would violate gauge independence.

In this work we consider the Complex Mass Scheme (CMS) which is one of the methods

available dealing with unstable particles in a perturbative QFT while guaranteeing exact

gauge invariance. The manipulations associated to the CMS introduce a finite-width to
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1. Introduction

the propagator of unstable particles such as complex couplings and the question arises

how unitarity is implemented. Unitarity is not expected to be violated because for

non-perturbative QFT it has been shown that unitarity is fulfilled given that unstable

particles are excluded from asymptotic states. Since perturbation theory is a perturba-

tive expansion around the full theory, if done correctly, the CMS should thus not violate

unitarity. Introducing a finite-width and complex couplings, the Cutkosky cutting rules

are no longer valid. These rules express perturbative unitarity in the case of stable

particles only and it is desirable to have corresponding rules for unstable particles. In

the first part of this work we derive such rules, similar to the cutting rules, but based

on Veltman’s Largest Time Equation (LTE) and we discuss unitarity using several ex-

amples.

In the second part of this work we go deeper into the foundation of the CMS. For non-

Abelian gauge theories the local gauge invariance has to be replaced by Becchi, Rouet,

Stora and Tyutin (BRST) invariance. There is an invariance known as the extended

BRST invariance which allows to study with ease gauge (in-)dependence. We discuss

whether such a symmetry can be implemented for a quantum theory. From an algebraic

point of view it has been proven that such an invariance can always be enforced given

that the former invariance, i.e. the usual BRST invariance, does not exhibit a quantum

anomaly. Using the example of an SU(2) Higgs model we study the case when Sponta-

neous Symmetry Breaking (SSB) is present and we revise certain arguments which were

given by Piguet for the pure Yang-Mills case.

As a result of our discussion we demonstrate the gauge independence of the definition

of the physical mass and the gauge independence of the S matrix. In view of the CMS,

the manipulations do neither violate the BRST invariance nor gauge dependence is in-

troduced by the renormalization condition which can be proved via the extended BRST

invariance, thus the CMS yields a gauge-independent S matrix.
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2. Principles of Quantum Field Theory

The language of modern particle physics is QFT, a quantum theory with infinite degrees

of freedom. Interactions occur between fields and fields consist of field quanta which

can be interpreted as particles. Classical field theory serves as a starting point where

the field content and interactions are given by the Lagrangian L. The equations of

motion (EOM) follow from the action principle

δS[ϕ] = 0⇒ ∂L
∂ϕ
− ∂µ

L
∂∂µϕ

+ higher derivatives
!

= 0.

From Quantum Mechanics (QM) it is known that position and momentum cannot be

measured simultaneously which is most naturally expressed by the commutator relation

[q, p] = i~

leading to the Heisenberg uncertainty inequality. Alike to QM there is a canonical

construction of QFT. Fields are promoted to operator-valued distributions living on a

suited Hilbert space H.

In relativistic QFT free particles are characterized according to Wigner’s classification,

i.e. free particles are represented as states of H which transform as irreducible uni-

tary representations of the Poincaré group. The Poincaré group unifies the group of

spacetime translations and Lorentz transformations and can be seen as the relativistic

pendant to the Galilean group. States are uniquely characterized by the two Casimir

invariants, which, roughly speaking, define the mass1 and the spin or helicity of the

particle, depending whether the particle is massive. Besides the space-time symmetries

there are also internal symmetries. One-particle states are represented as

|p, α〉 = â†(p, α) |0〉 ,

where p is the four momentum, p2 = m2, m is the mass, α represents further quantum

numbers such as spin et cetera and â†(p, α) is the creation operator which creates out

of the vacuum state |0〉 that one-particle state. The creation and annihilation operators

1One has to impose the condition that the mass is greater or equal to zero.
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2. Principles of Quantum Field Theory

â†(p, α), â(p, α) satisfy commutator or anti-commutator relations. Characteristic for a

QFT is the fact that interactions are not restricted to finite number of particles. From

the creation and annihilation operators one constructs n-particle Hilbert spaces

â† : H⊗n → H⊗n+1

â : H⊗n → H⊗n−1

where H⊗n :=

n︷ ︸︸ ︷
H⊗ · · · ⊗ H. Allowing arbitrary number of particles, the operators act

on the Fock space F

F :=
∞⊕
n=0

H⊗n.

Observables which can be measured by todays collider experiments are of special interest.

For instance, the momentum and energy of particles can be determined precisely by

detectors, and this suggests to favour the momentum basis over the position space.

Having characterized particles, particle physicists are interested in the probability for a

configuration of particles going over to another configuration via decays, scattering or

recombination. This probability can be expressed with the S matrix. Given initial and

final (n-particle) states |Φi(t)〉 , 〈Φf (t)| at t = −∞,+∞, respectively, we define the S

matrix Sfi as

Sfi := 〈Φf (+∞) |Φi(+∞)〉 := 〈Φf (+∞)|S |Φi(−∞)〉 ,

where the operator S transforms the initial state into a final state. Hence, S holds all

information about the time evolution and the interaction. Likewise to usual QM, |Sfi|2

is interpreted as transition probability i→ f .

2.1. Perturbative Quantum Field Theory

Any quantum mechanical problem which is defined by a Hamiltonian can be formally

transformed to a functional integral known as the path integral. The interpretation of

the path integral is that the system takes any possible configuration in traveling from an

initial to a final state. These configurations are most naturally expressed by Feynman

diagrams which are a graphical representation of the perturbative expansion of path

integrals.

In the following we define Feynman diagrams and we introduce our notation for their
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2.1. Perturbative Quantum Field Theory

visualization. Then, we sketch the concept of Green’s functions, one-particle irreducible

functions and we establish their connection to the S matrix which is given by the

Lehmann Symanzik Zimmermann (LSZ) reduction formula.

Definition 1 (Feynman diagram). A Feynman diagram F is characterized by n vertices

and m links. Each link represents a Feynman propagator ∆Fij connecting to vertices

i, j and for every vertex i there is an associated coupling constant gi. Both, links and

vertices depend on the theory and are given by the Feynman rules. We denote vertices

by spacetime points xi, i = 1, . . . , n. Generically, the diagrams are written as

F(x1, . . . , xn) =

∏
i<j

cij i∆Fij(xi − xj)

× cc, (2.1)

where the coefficients cij are given by

cij =

1 : i connected to j

0 : i not connected to j
. (2.2)

The coupling constants (cc) can differ from vertex to vertex. Generically, they are given

by cc =
∏n
i=1 igi where gi is a coupling specified by the vertex i.

In a scalar theory, the Feynman propagator is denoted by a straight line going from

one spacetime point to another. Spacetime points or vertices are denoted by dots. In-

tegrating out the inner spacetime points and going to the momentum space, we leave

out the spacetime point indication. Instead, a momentum is associated to each propa-

gator. When connecting propagators a coupling insertion is implied. Asymptotic states

are represented by straight lines without any dots indicating their end. Connecting

asymptotic states to any propagator a coupling insertion is implied.

i∆F(x1, x2) = x1 x2, ig i∆F(x1, x2) = x2x1 . (2.3)

i∆F(p) =
p

, ig i∆F(p) ig i∆F(q − p) =

q − p

p

. (2.4)
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2. Principles of Quantum Field Theory

2.2. Green’s Function and Functional Calculus

The main ingredient for the S matrix are vacuum expectation values (vev) of products

of fields. The n-point Green’s function in QFT is defined as the time-ordered vev

Gα1...αn(x1, . . . , xn) : = 〈0| T ψ̂α1(x1) . . . ψ̂αn(xn) |0〉

=

〈
00
∣∣ T ψ̂0

α1
(x1) . . . ψ̂0

αn(xn) exp
(
−iSInt

(
ψ̂0
)) ∣∣00

〉
〈00| T exp

(
−iSInt

(
ψ̂0
))
|00〉

, (2.5)

where the second line is the famous Gell-Man Low formula. T stands for the time

ordering operator and quantities with an upper 0 are in the interaction picture. General

solutions are nearly impossible to obtain and one falls back to a perturbative calculation.

This is where the representation (2.5) is advantageous, but nowadays such calculations

are performed with path integrals and an equivalent representation of (2.5) is given by

the path integral

Gα1...αn(x1, . . . , xn) =

∫
D [ψ]ψα1(x1) . . . ψαn(xn) exp (iS[ψ])∫

D [ψ] exp (iS[ψ])
, (2.6)

where D [ψ] is the path integral measure and S[ψ] is the action functional. The measure

is not well-defined, but can formally be written as D [ψ] =
∏
x∈R4 dψ(x). In the path

integral formulation the fields ψ are no longer distribution-valued operators, but numbers

or Grassmann-valued numbers in the case of fermionic fields.

The form above motivates the definition of a generating functional of n-point Green’s

functions.

Z[j] :=

∫
D [ψ] exp

(
iS[ψ] + i

∫
d4x jα(x)ψα(x)

)
It follows from the rules of functional derivation that

Gα1...αn(x1, . . . , xn) =
1

Z[0]

n∏
i=1

δ

iδjαi(xi)
Z[j]

∣∣∣∣
j=0

. (2.7)

The perturbative expansion is done in two steps. One separates the action in two parts,

namely into the free part which can be solved exactly and into the interaction part

S[ψ] = Sfree[ψ] + Sint[ψ],

then the argument of interaction is replaced by functional derivatives

Z[j] = exp

(
iSint

[
δ

iδj

])∫
D [ψ] exp

(
iSfree[ψ] + i

∫
d4x jα(x)ψα(x)

)
.
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2.3. The LSZ Reduction Formula

The free part Sfree[ψ] is by definition quadratic in the fields ψ, and in this case the path

integral can be solved exactly by Gaussian integrals yielding

Z[j] = exp

(
iSint

[
δ

iδj

])
exp

(
i

2

∫
d4xd4y jα(x)Gαβ(x− y)jβ(y)

)
, (2.8)

up to unimportant normalizations, where the free Green’s function is defined via

Lfree(x) =
1

2
ψα(x)G−1

αβψβ(x).

Example 2.1. Consider the Klein-Gordon field defined by Lfree(x) = 1
2

(
∂µφ∂µφ−m2φ2

)
.

Partial integration yields G−1 = −�−m2, thus

G =
1

−�−m2
→ G̃(p) =

1

p2 −m2

2.3. The LSZ Reduction Formula

The time-ordered correlation function encodes the full physics, but more than necessary.

Indeed, the external legs corresponding to space-time points in (2.7) are not necessarily

physical, i.e. neither must the external momenta fulfill the 4-momentum conservation

nor must they be on-shell. The S matrix, however, is a physical observable and there

should be a way to project on the physical part of the correlation functions which should

be somehow related to S and this is exactly what the LSZ reduction does. Moreover,

the LSZ reduction, being at the very heart of scattering theory, gives, in contrast to

other approaches, a precise definition of asymptotically free states and the connection

to interacting fields.

For the LSZ reduction to hold the fields must fulfill several properties, among these is

the adiabatic hypothesis

′′ lim
t→=±∞

φ̂(x) =
√
R φ̂out/in(x)′′,

which must be understood in the weak sense. The asymptotic fields do not coincide with

the interacting ones, even not in the limit of infinite time, but only being proportional

to each other. The reason for this is that interacting fields do not create one-particle

states with probability one, as it is the case for free fields, but are able of creating

multi-particle states.

The LSZ reduction depends on certain normalizations and one of them being that the

vevs of the one-point functions vanishes, i.e. 〈0| φ̂(x) |0〉 = 0. The other one is related

to the adiabatic hypothesis, namely the one-particle weight
∣∣∣〈0| φ̂(x) |p, a〉

∣∣∣2 = R. One
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2. Principles of Quantum Field Theory

can show that the latter is equivalent to the residue of the two-point function (2.10)

where the multi-particle contributions vanish because of strong oscillations (Riemann-

Lebesgue lemma).

So far the results can be compared to the full interacting theory and from a spectral

point of view the full propagator of the interacting field φ has the structure

〈0| T φ(x)φ(0) |0〉 =

∫ ∞
0

ds ρ (s) 〈0| T φ0(x)φ0(0) |0〉 (2.9)

=

∫
d4p e−ipx

(
R

p2 −m2 + iε
+

∫ ∞
m̃2

ds σ (s)
1

p2 − s+ iε

)
, (2.10)

which is known as the Källén-Lehmann representation. The spectral density ρ has been

decomposed ρ(s) = R δ(s−m2) + σ(s) into its one-particle contribution (δ) and multi-

particle continuum (σ). φ0 represents a free scalar field satisfying the Klein-Gordon

equation. This result together with the Canonical Commutation Relations (CCR) leads

to the requirement 0 ≤ R < 1.

At this point we must be very careful since we are still talking of bare quantities which

are not renormalized. It turns out that perturbation theory is inconsistent and these in-

consistencies manifest themselves in divergences, but renormalization, which takes place

at the level of the Lagrangian and which enters the theory in form of renormalization

constants, helps out and is explained later. Nevertheless, we shall now investigate the

field-renormalization. We can define renormalized fields
√
ZRφR = φ such that

|〈0|φR(x) |p, a〉|2 !
= 1 ⇒ Z = R,

which is a choice we can make and which does have no physical consequences. Clearly,

since the canonical fields φ fulfilled the CCR, the renormalized ones do not. Further, we

define a renormalized Green’s function by replacing fields with the renormalized ones.

Such a choice does of course affect n-point functions and especially the residue of the two-

point function and it seems that the connection to the full theory (2.10) is lost, but this

is not the case. One expects that the perturbative result for Z approximately matches

with the one of the full theory, but naive perturbative computation demonstrates the

opposite and Z is actually divergent and not between zero and one. The solution to this

problem is that one should not expect the correction to Z to be small and indeed they are

not. One way to deal with this2 is via the renormalization group where resummations

are performed yielding a finite and well-approximated result for Z.

Coming back to the scattering matrix S, given that all fields have vanishing vev and

that the one-particle weight is normalized to Rωi , where ωi specifies the field, the LSZ

2See discussion in [Col84]
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reduction formula reads

S = 〈k1 . . . , out| . . . kn, in〉c =

(
n∏
i=1

lim
k2
i→m2

i

i√
Ri

(k2
i −m2

i )ε
ωi

)
Gω1,...,ωn , (2.11)

where the product goes over all external particles ωi and, further, the εωi are contracted

to G and the momenta ki fulfill 4-momentum conservation, i.e.
∑

i ki = 0. The deriva-

tion of the formula is standard and is found in the literature, e.g. [IZ80]. Later, after

having discussed extended BRST transformations, we come back to this formula show-

ing that the
√
Ri are very important when gauge fields are involved. We explicitly

demonstrate in section 7.6.2 the gauge independence of the S matrix and that it is

unitary.

2.4. Connected Green’s function, the Linked Cluster

Theorem and the Vertex Functional

The definition of the S matrix is yet not complete and naive computation of Green’s

function via the generating functional Z could lead to too high cross sections. The

problem with Z is that it generates disconnected results and these are uncorrelated.

Of physical interest are only those contribution to the S matrix which are connected

to external vertices as well as among each other. A nice discussion about this can be

found in [Wei96],[Ede+66]. There it is worked out that disconnected processes factorize

into connected subprocesses which, accordingly, have nothing to do with each other.

Physically spoken, processes taking place at sufficiently distant places do not affect the

outcome of each other and only connected S matrix elements should be compared with

the experiment.

In practice, the generating functional is replaced by the generating functional for con-

nected Green’s function. Let Z[j] be the generating functional for Green’s function, then

the linked cluster theorem states that the generating functional for connected Green’s

function Zc[j] is related to Z[j] by

Z[j] = eiZc[j]. (2.12)

According to the formula (2.7) Green’s function are normalized with Z[0]. This accounts

to, speaking in terms of Feynman diagrams, eliminating vacuum contributions which

after the previous discussion do not contribute anyway to physical processes3.

3The statement follows from the linked-cluster theorem. Vacuum contributions are not connected to
the rest of the process and therefore one can exponentiate the result to connected vacuum bubbles.
Dividing by Z[0], where only vacuum bubbles are left, cancels all of them.
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2. Principles of Quantum Field Theory

The last, but very important generating functional is the vertex functional Γ also known

as the generating functional for one-particle irreducible (1PI) Green’s functions. Γ is

defined as the Legendre transform of Zc with respect to the source j

Γ[φ] = Zc[j(φ)]−
∫

d4x j(x)φ(x).

To lowest order which is tree level, the vertices are given by the action S where the

Feynman rules for a vertex can be computed by multiple functional derivatives of S

with respect to the fields participating at the vertex, i.e. δnS/δφ1...δφn. Higher contribution

involve loops and the generating functional Zc can also be thought of as the generating

functional of tree diagrams where the vertices are computed not by S, but by taking Γ

instead. In this sense Γ represents the quantum action whereas S is the classical action

[Pok03]. All generating functionals are equivalent and one is free to choose the most

suited one. With regard to proofs of renormalizability Γ plays the major role.

2.5. The Optical Theorem

The history of the optical theorem can be traced back to the nineteenth century. When

light penetrates a medium refraction is observed. The process can be fully described

by the knowledge of the refractive index in the case of plane waves and it was Rayleigh

who discovered a connection between the absorptive (imaginary) part of the refractive

index and forward scattering of photons. This connections is nothing but the optical

theorem.

Nowadays, the theorem is mostly referred to the full cross-section of a scattering process

rather than refractive indices:

σtot = flux factor× Im [Tii] , (2.13)

where σtot is the total cross-section and Im [Tii] is the imaginary part of the forward

scattering amplitude. The proof is trivial and follows directly from unitarity which is

equivalent to conservation of probability.

The situation is nearly the same for QFT, but with a crucial difference: One cannot infer

from classical field theory that the built-in symmetries and especially unitarity hold for

the quantized version. The phenomenon of field theories with symmetries which cannot

be promoted to a quantum theory is called an anomaly.

In the language of QFT unitarity implies that the S matrix fulfills

S†S = 1. (2.14)
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2.5. The Optical Theorem

Separating the non-scattered contributions from S via S =: 1+ iT , we can deduce from

the unitarity condition (2.14)(
1− iT †

)
(1+ iT ) = 1− i

(
T † − T

)
+ T †T !

= 1

⇒ T †T = i
(
T † − T

)
(2.15)

To establish the connection to the optical theorem we contract the transition operator

with initial and final states

i 〈f | T † − T |i〉 = i

〈f | T † |i〉︸ ︷︷ ︸
(〈i|T |f〉)∗

−〈f | T |i〉︸ ︷︷ ︸
=:Tfi


⇒ i

(
T ∗if − Tfi

)
=
∑
k

T ∗kfTki, (2.16)

where the sum runs over all possible intermediate states and total 4-momentum conser-

vation is implied. Forward scattering is when initial and final states coincide, then we

have

2Im [Tii] = −2Re

〈i| |i〉
 =

∑
k

〈i| |k〉 〈k| |i〉
,

where the shadowed region on the right-hand side (rhs) of the equation refers to the

complex conjugated transition operator T ∗. The cross section is proportional to the

square of the absolute value of the transition amplitude and working out the kinematics

one recovers the optical theorem (2.13).

From the rules of perturbative QFT we obtain for a given process the S matrix elements

or transition amplitude T . With these objects we can calculate the left-hand side

(lhs) of the unitarity equation (2.16) and we denote the result as left-hand side of

the unitarity equation (LHSUE). Perturbative unitarity is fulfilled if the lhs equals

right-hand side of the unitarity equation (RHSUE), i.e. (2.16), or at least up to the

given perturbative order. For a scalar theory the expression (2.16) further simplifies.

The Feynman propagator is invariant under inversion xµ → −xµ wherewith we conclude

that Tfi = Tif and consequently

⇒
LHSUE︷ ︸︸ ︷

−2Re [i(Tfi)] =

RHSUE︷ ︸︸ ︷∑
k

T ∗kfTki . (2.17)

This will be the formula we will work with in chapter 3. In section 3.1 we demonstrate

how to systematically evaluate the LHSUE with the help of cutting rules for stable
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2. Principles of Quantum Field Theory

particles and in section 3.2 we extend the rules to unstable particles.

2.6. Renormalization

In the previous section 2.5 we mentioned that canonical QFT has some inconsisten-

cies and that divergences occur beyond tree level. These divergences make any theory

useless, but there is a way out. Renormalization renders divergent vertex functions

finite giving the formal expression (2.5) a physical meaning in a unique way, but not

all theories are renormalizable. There are basically two things one must distinguish -

the defining symmetries of the field theory can or cannot be implemented in the corre-

sponding quantum theory or the interaction operators are of too high dimension making

the theory non-renormalizable. The former is disastrous and will be discussed in more

detail in 2.6.3, the latter is not that problematic. Let us first clarify the notion of renor-

malizability. Renormalizability is defined as follows - one distinguishes between non-

renormalizable, renormalizable and super-renormalizable theories. A theory is called

super-renormalizable if there is only a finite number of divergent diagrams. A theory is

renormalizable if a finite set of counter-terms is sufficient to cancel all divergences. And

finally, a theory is non-renormalizable if an infinite set of counter-terms is necessary.

To determine whether a diagram is divergent or not one usually does a power-counting

analysis leading to the so-called superficial degree of divergence. It is often possible to

eliminate the dependence of vertices and to find a closed expression which then allows

to investigate whole classes of diagrams where the degree of divergence does only de-

pend on the space-time dimension d and on how many external particles participate.

Let γ denote a generic diagram, then one finds in general for the superficial degree of

divergence ω

ω(γ) = d−
∑
Nφ∈γ

dφ +
∑

Nvert∈γ
dvert,

where the first sum runs over the number of external fields having the canonical dimen-

sion dφ. The second sum runs over special vertices which may raise the power-counting

dimension and which are taken into account in the superficial degree of divergence by

assigning a dimension for these vertices. It is noted that a power-counting divergent

graph is not necessarily divergent. Power-counting is rather a necessary condition for a

diagram being divergent, but symmetries in theories may be responsible for high mo-

mentum cancellations which is not captured by naive power-counting.

In the old days renormalizability was often assumed because of convenience. For in-

stance, the SM was postulated to be a renormalizable theory, but actually it could have

been otherwise. Todays results from high-energy colliders confirm that the relevant and
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2.6. Renormalization

marginal part of the field operators, that is the renormalizable operators, are in agree-

ment with the observations and if the SM is an effective theory, which it certainly is,

then the cutoff must be very high, where the scale is most often referred to the Planck

scale. Non-renormalizable theories are not bad and the modern way of thinking of QFT

is in terms of effective theories. These theories must not be renormalizable. Anyway, as

fundamental theories renormalizable QFT are desirable since they are more predictive

in the sense that they are valid up to arbitrary high scales.

2.6.1. Procedure of Renormalization

So far any known QFT has bad large momentum behavior, and beyond tree level di-

agrams are most likely divergent. The parameters in the Lagrangian are said to be

non observable, these are often called bare parameters and the idea of renormalization

is to distinguish bare parameters from renormalized ones which are by definition fi-

nite. Formally, bare fields, e.g. φ0, ψ0, and bare parameters, e.g. m0, g0 are related to

renormalized ones via

φ0 = Z
1
2
φ φR, m0 = ZmmR, g0 = ZggR, (2.18)

In view of gauge theories it turns out that another convention concerning gauge couplings

is more suited. Given a gauge field Aµ, the corresponding gauge coupling g0 shall

renormalize as follows

g0 =
Zg

Z
3
2
A

gR. (2.19)

In perturbative QFT the (divergent) renormalization factors Z are expanded in loop

orders and because at tree level no renormalization is necessary the expansion reads4

Z = 1 + ~δZ1 + ~2δZ2 +O(~3).

The renormalized parameter can be identified as physical parameter, for instance, the

renormalized mass may be equal to the physical one, i.e. mR = m, where m is defined

as the pole position of the 2-point function. This case is known as the mass scheme and

it is important to note that this is a special case and renormalized quantities must not

be observable.

The difference in mR − m does depend on the finite part of the counter terms which

is convention. In this sense there is an arbitrariness in the finite part of counter-terms

4There is a correspondence of loop order to orders in ~. The correspondence follows from Euler’s
famous formula for planar graphs.
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2. Principles of Quantum Field Theory

and renormalized quantities which does not have any physical meaning. This invariance

is naturally understood by the renormalization group which expresses the invariance of

the theory under rescaling, i.e. it is irrelevant at which scale the theory has been renor-

malized. In practice, one does not simply calculate observables in the full theory and

perturbation theory is a common choice. The prediction of the full theory is unaffected

by the scale, but choosing a scale does have an impact on the perturbative results which

may lead to quite wrong results and the renormalization point can be crucial for the

validity of the perturbative result.

2.6.2. Unstable Particles and the Complex Mass Scheme

From the Källén-Lehmann representation (2.10) follows that the two-point function has

poles on the real axis (p2 ∈ R) starting with the one-particle pole followed by branch

cuts originating from multi-particle states. The thresholds are fixed by the explicit

value of masses and it is possible to move the one-particle pole into the branch cut.

In this case the particle has no longer an asymptotic limit according to the LSZ and

the particle is unstable. It is well-known that the phenomenon of unstable particles

is of non-perturbative nature and it is impossible to change the pole structure of an

analytic function without resummation, i.e. without a geometric series. Veltman has

shown [Vel63] that for a super renormalizable theory the S matrix in non-perturbative

QFT was unitary on the Hilbert space spanned by only stable particles. He assumed

the existence of a Källén-Lehmann representation for unstable particles which lacks a

one-particle pole on the real axis and he showed via a LTE unitarity for dressed propa-

gators.

There is yet no fully established treatment of unstable particles within perturbation the-

ory. The problem comes, as already mentioned, from the need of resummed self-energies.

However, this resummation, if done wrong, leads to violation of gauge independence,

e.g. the naive manipulation of the propagator as it is done in the fixed-width scheme

introduces gauge dependence5. There were several attempts on including unstable par-

ticles in perturbative QFT while respecting gauge invariance. The most straightforward

way is found in [BVZ92]. They do not perform any resummation nor do they change the

propagator of unstable particles, but instead they multiply the complete matrix element

with

p2 −M2

p2 −M2 + iΓM
,

5Gauge cancellations take place between Feynman diagrams. When changing the pole structure via a
Breit-Wigner propagator these cancellations do no longer occur order by order as has been pointed
out in [Stu91].
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2.6. Renormalization

thus keeping gauge invariance while treating an intermediate particle with momentum p

as an unstable one. This procedure has become popular under the name of factorization

scheme. In the special case where the unstable particle is resonant the narrow-width

approximation is a valid method. Besides these two methods, the very first rigorous

treatment was given by R.G. Stuart [Stu91]. He proposed a Laurent expansion of the

complete matrix element around the complex poles.

There are further methods and most, especially the mentioned ones, lack in larger phase

space validity and are only valid in the region of resonance, but not below the thresholds,

in contrast to the CMS [DD06] which is valid in the full phase space. The basic idea is to

perform an analytic continuation of masses to the complex plane. The Ward identities,

being algebraic relations, are thus not violated by such a modification6. Additionally, the

renormalization conditions must be gauge independent to guarantee gauge independence

of the QFT, which is motivated by the result that the complex pole is gauge independent.

A proof of this statement is given in chapter 7.6.1. In practice, the Feynman rules are

modified by the rule that any appearing mass corresponding to an unstable particle is

replaced by the complex one in such a way that the bare Lagrangian is not modified.

We sketch the procedure: In the first step renormalized parameters are introduced. Let

m0 denote the bare mass of an unstable particle, then introduce

m2
0 = Zµµ

2 = µ2 + (Zµ − 1)µ2 =: µ2 + δµ2 (2.20)

where µ2 is resummed in the propagator while (Zµ − 1)µ2 is not. This brings us to the

CMS propagator

∆F(x− y, µ) :=
1

(2π)4

∫
d4p

e−ip(x−y)

p2 − µ2
, (2.21)

where the usual causality prescription (see (3.7)) is not necessary due to the finite

imaginary part of µ2 = M2− iΓM . The procedure implies that the mass counter terms

are complex. Since the bare mass is real, we derive the following consistency equation

Im
[
µ2
]

= −Im
[
δµ2
]
. (2.22)

Further, it happens that couplings become complex in favor of gauge invariance which

is, for instance, the case in the Glashow Salam Weinberg (GSW) theory where the weak

mixing angle becomes complex [DD06].

The last missing piece to complete the discussion of renormalization is the renormaliza-

tion condition which fixes the finite part of counter terms at a given scale. A prominent

6Actually, there is another way of thinking of the CMS. In reference [BBC00] they provide an effective
approach for the description of finite-width effects. By the addition of gauge-invariant non-local
terms they are free to choose the propagator structure. As a special case they obtain the CMS.
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2. Principles of Quantum Field Theory

example is the on-shell scheme which differs from others in the way that the renormal-

ized parameters are equal to physical observables. The direct connection to physical

quantities comes from the fact that the scale is nothing but the physical mass. More

concretely, one demands that the renormalized two-point function of a stable particle

at its mass p2 = m2 is given by the Feynman propagator (3.7). This condition does

fix both, the mass counter term and the field renormalization (see [Den93]). The on-

shell scheme can be extended to the case of unstable particles and the renormalization

conditions read

Σ(p2)
∣∣
p2=µ2 = 0, Σ′(p2)

∣∣
p2=µ2 = 0. (2.23)

Σ denotes the self-energy of the unstable particle and Σ′ is that self energy, but differ-

entiate with respect to p2. The renormalization condition together with the consistency

equation (2.22) represent a gauge independent definition of the complex pole. Even

though the renormalzation is similar to the on-shell scheme, there is a difference and

this can be measured in the experiment. For a discussion we refer to [Vel94].

2.6.3. The Quantum Action Principle

Besides the renormalization scheme which fixes the scale there are regularization schemes

which are methods to extract divergences in practice. The physics should not depend

on the regularization scheme and one must guarantee independence. Schemes such as

dimensional regularization or the Bogoliubov, Parasiuk, Hepp, Zimmermann and Lowen-

stein (BPHZL) method may or may not yield the same result, i.e. a regularized result

may depend on the regularization. As we are going to show, QFTs beyond tree level are

defined by symmetries and one distinguishes between symmetries which cannot be main-

tained in the quantum extension from symmetries which can be maintained, but which

might be broken by a particular regularization scheme. The hope of renormalization is

to obtain a well-defined QFT with the same symmetries as the classical field theory and

which is independent of the specific regularization scheme. Therefore, it is desirable to

investigate symmetries of QFT on another level independent of regularization schemes

and that is where algebraic renormalization and the Quantum Action Principle (QAP)

comes to our help. For the understanding of the QAP the notion of insertions is im-

portant. Green’s function are computed as the vevs of local field operators. When a

new operator is added to a specific Green’s function, the operation is called an inser-

tion. Concerning the definition of these operators one must be careful in the case of an

interacting theory. As in the case of elementary field operators, composed operators are

defined via Green’s functions obtained formally by the Gell-Mann Low formula or by

path integrals, thus, a proper renormalization is necessary. The so-obtained operator
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2.6. Renormalization

is then called a normal product. According to Zimmermann’s definition, insertions are

thus normal products that are the generalization of normal products of free fields in

the sense of Wick’s definition. Consider for simplicity only one field φ(x), the inser-

tion of the normal product Nd[B](x) where B is composed of elementary fields, e.g.

B(x) = (φ(x))m for some m, is defined by

Nd[B{φ}](x) ◦Gn(x1 . . . , xn) := 〈0| T B(x)φ(x1) . . . |0〉 ,

where the rhs must be understood in the renormalized sense. An insertion of B is

therefore nothing but the replacement of vertices by new vertices defined by the tree

approximation of B and a proper treatment of quantum corrections, i.e. subtractions

are needed. The index d stands for the dimension of B which enters the superficial

divergence. For more details we refer to the original literature [Zim73].

2.6.4. The Dyson-Schwinger Equation

To get a feeling what the QAP is useful for we give an example of a QAP, namely the

Dyson-Schwinger (DS) equation which can be derived by a heuristic calculation within

path integral formulation [PS95]

δS[φ]

δφ

∣∣∣∣
φ→ ~

i
δ
δJ

Z[J ] + JZ[J ] = 0.

To establish what is known as a QAP we go over to 1PI functions. In a first step we need

to cancel out non-connected diagrams and the trick is the same as usual, i.e. connect

the result for δS[φ]
δφ

∣∣∣
φ→ ~

i
δ
δJ

to a new source, say jδS , and divide by Z. Performing the

Legendre transform one arrives at

δS

δφ
· Γ :=

δΓ[φ, jδS ]

iδjδS
=
δΓ[φ]

δφ
. (2.24)

The DS equation captures the response of the theory under the change of fields (rhs)

which is an insertion (lhs). Actually, the result (2.24) is not always true and depends

on the regularization, but in general, the QAP states that whether we change fields or

parameter of the theory, within a power-counting renormalizable theory the result is an

insertion, i.e.

δΓ[φ]

δφ
= ∆φ · Γ,

∂Γ

∂λ
= ∆λ · Γ.

or put in other words: A change of fields or couplings within a vertex function can be

represented as a vertex function where several vertices are replaced by new ones. We
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2. Principles of Quantum Field Theory

do not give a proof and the difficult part is to show that regularization preserves this

structure. Actually, all known regularization schemes fulfill the QAP, for instance, for

the proof within BPHZL scheme we refer to [Low71] and within dimensional regulariza-

tion the proof has been given in [BM77]. This result makes the QAP very powerful, a

tool to investigate renormalization in a regularization independent way. In chapter 6 we

investigate gauge theories, spontaneous symmetry breaking and the gauge dependence

of such theories. There, we also discuss renormalizability and counter-terms will play a

major role. The QAP will help us out and there we make use of the result that counter-

terms fall under the certain class, namely so-called symmetric insertions which we will

introduce later. In the next section, we briefly discuss the power of the QAP and what

we are going to discuss in the forthcoming sections.

2.6.5. From the Tree Approximation to Quantum Corrections

The necessity of renormalization is indisputable and the question is if the procedure

of renormalization, which is not simply removing divergences, does violate the defining

symmetries at any stage of perturbative expansion. Renormalization can only be a valid

way of ”saving” perturbative QFT if it is possible to ensure that the defining symmetries

hold up to arbitrary high perturbative orders.

Having discussed the advantage of using the QAP when it comes down to renormaliza-

tion, we now discuss renormalization within an algebraic approach which is the approach

when investigating symmetries.

In our first steps we need to prepare the defining symmetries, i.e. the symmetry trans-

formations are being expressed in a functional way allowing us to study their effect on

the generating functional Z and therefore, in general, for all n-point functions. The re-

sult is then exponentiated and Legendre transformed, yielding a relation in terms of the

vertex functional, this is done in section 7.4.2. We are going to consider a gauge theory

(chapter 6) coupled to a scalar SU(2) Higgs which is spontaneously broken (section 7.2).

Among those symmetries are the Lorentz invariance which results from the underlying

Poincaré symmetry and the local gauge invariance which is the symmetry coupling both

kinds of fields, i.e. gauge and matter fields. The local gauge invariance is, as discussed

in 7.1, replaced by the BRST invariance.

For the moment we assume that our theory is renormalizable and we briefly discuss the

standard proof of whether a given symmetry can be promoted to a quantum symmetry

in the algebraic approach via the QAP. To this end, let S(Γ) = 0 denote the invariance

of the vertex functional under BRST transformation. Assume we have renormalized the

theory up to n− 1 loops. At loop order n after regularization the symmetries might be
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broken and we have that

S(Γn) = ∆n,

where the QAP tells us that to lowest order, here O(~n), ∆n is composed of integrated

local field polynomials. Later on we proof one of two useful identities concerning the

so-called Slavnov-Taylor (ST) operator SΓ, namely

SFS(F ) = 0, ∀F and S2
F = 0, if S(F ) = 0, (2.25)

but for the moment we take them as granted. From equation (2.25) follows that ∆n

fulfills SΓ∆n = 0. Since the violating terms are of order n, the non-linear ST can be

expanded to this order which results in simply replacing Γ by the classical action S in

SΓ, i.e. SΓ → SS . Again making use of (7.30) the most general solution ∆n has the

structure

SS∆n = 0 ⇔ ∆n = φ+ + SSφ0,

with SSφ+ = 0 and φ+ 6= SSΦ. A theory is defined to be non-anomalous if φ+ = 0,

then it is possible to restore the symmetry. Consider the corrected vertex functional

Γn → Γn − φ0 then we have that S(Γn) = O(~n+1) if and only if (iff) φ+ = 0. This

has practical applications because one often wants to use dimensional regularization

which is, for certain symmetries such as supersymmetry, a non-invariant regularization

method. For an introduction to this topic we refer to [GHS01]

The condition SS∆n = 0 is known as the Wess-Zumino consistency condition and is

solved via the so-called descent equation (see literature [PS95]).

Actually, solving the consistency equation does in general not give an answer to the

question whether the theory can be extended to a quantum theory or not, but one can

determine the full functional dependence up to a factor. The result for φ+ for simple

Lie groups reads

φ+ = rεµναβ Tr

∫
dx ua∂

µ

(
dabc∂νAαbA

β
c +
Dabcd

12
AνbA

α
cA

β
d

)
where Dabcd = deabfecd + deacfedb + deadfebc. Aµ is the gauge field, u the ghost field

and r an undetermined constant. A one-loop calculation is enough to determine if r = 0

which is known as the Adler-Bardeen Theorem [AB69].

Since we consider a SU(2) theory an anomaly is excluded because dabc = 0 ∀ a, b, c.
Furthermore, it is well known that the usual gauge theories are renormalizable because

of BRST invariance, i.e. the divergences can be absorbed with a finite set of counter

terms while maintaining the symmetries. Consequently, an SU(2) model should make

23



2. Principles of Quantum Field Theory

perfectly sense for a quantum theory.

We are especially interested in the question of gauge-dependence and we investigate the

same theory, but the BRST invariance is replaced by the extended BRST invariance.

As we are going to show, within spontaneously broken theories, we need at least two

so-called BRST doublets to implement the extended BRST invariance to be able to

describe the full gauge-dependence of the theory. In reference [Qua02] (original proof

[BDK90]) it has been shown that BRST doublets are not involved in the cohomology of

SS . Put it in other words, this means that we do not induce anomalies when we extend

the symmetry and the φ+ coincide in both theories. In section 7.5 we start investigating

symmetric insertions which are, roughly speaking, candidates for regularization inde-

pendent counter terms and we show that the theory is renormalizable for at least the

physical sector.
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3. Unitarity and the Cutting Equation

3.1. Largest Time Equation

3.1.1. The Landau Equations and the Cutkosky Cutting Rules

In this section we introduce the Cutkosky cutting rules, their basis and why they are no

longer valid when CMS propagators are involved.

Long ago, Cutkosky showed [Cut60] that the discontinuity of an arbitrary Feynman

graph is given by replacing in all possible ways propagators by δ functions. Keeping the

notation of [Cut60] any Feynman graph F has the structure

F =

∫ ∏
i

d4ki
(2π)4

B

A1 . . . AN
, (3.1)

where B is a polynomial, Ai = q2
i −m2

i +iε, qi being linear combinations of loop momenta

kj and external momenta. Cutkosky states that according to any solution to the Landaus

equations, which we introduce below, there is a contribution to the discontinuity of

F and taking along all contributions yields the optical theorem (2.16). Let us first

clarify the connection between the optical theorem and discontinuities by taking the

example of dispersion relations. Let M(z) denote an amplitude analytically continued.

It follows from the representation (3.1) that the amplitude is analytic everywhere except

for possible branch cuts on the real axis (see figure 3.1). Then, from Cauchy’s integral

formula follows

M(z) =
1

2πi

∮
γ

dz′
M(z′)

z′ − z
, (3.2)

where γ is a closed contour around z not crossing or hitting any branch cuts. Let Γ

denote the contour along the branch cut and assume that the amplitude falls off at least

as 1/z, then, in general, we have that∮
γ

dz′
M(z′)

z′ − z
+ 2πi

∑
i

ResM(zi)

zi − z
+

∫
Γ

dz′
M(z′)

z′ − z
= 0., (3.3)
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γ z
Γ

z′∞

Figure 3.1.: The picture illustrates the contours appearing in (3.3). Shown is the complex
plane z′, the branch cut goes from zero to +∞ and there is a single pole
located at z′ = z.

the middle part drops out sinceM is holomorphic in the upper and lower complex plane,

but the last part which is the discontinuity does contribute. For the special case of the

S matrix the discontinuity starts at some real threshold value and the cut is placed to

+∞, thus the discontinuity can be rewritten as an integral in the upper complex plane

over the imaginary part of M. Using (3.2) we can represent the full amplitude as a

dispersion relation which is nothing but an integral along the branch cut.

The origin of these branch points are singularities of the integral representation (3.1)

which are captured by the Landau equation. Actually, the validity of the Landau equa-

tions is not restricted to Feynman graphs and the analysis can be generalized. In the

notation of [Ede+66] the most general situation is given by an integral representation

of a function f(z) defined via

f(z) =

∫
H

∏
i

dwi g(z, w), (3.4)

where H is a hypercontour in the complex w space. The special case of (3.1) is included

in (3.4). The Landau equations have their origin in the study of singularities of the

integral representation (3.4). Consider (3.4) for i = 1 and assume the integrand g(z, w)

has singularities wr(z) (r = 1, 2, . . . ), then the representation (3.4) is well-defined as

long as the contour can be deformed to avoid singularities. This is prevented when

• there are end-point singularities, i.e. g(z, w) ∈ ∂H is singular. Actually, exactly

this happens for non-renormalized Feynman graphs, but the UV-divergence is

cured by regularization.

• there are pinch-singularities that cause the hypercontour to get caught in between

singularities, thus it is not possible to deform the contour avoiding the singularities.

• a singularity drags the contour to infinity, thus, an infinite deformation is inevitable
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making the integral potentially divergent.

In practice the difficulty lies in determining whether one of these cases occurs and this

becomes more and more difficult as the dimensionality of the problem grows. For our

purposes it is enough to know that the Cutkosky rules are derived from the Landau

equations which deal with the occurrence of pinch singularities and endpoint singular-

ities. Without going too deep into detail, it is possible to formulate with the help of

singularity surfaces conditions which can then be applied to the case of Feynman graphs.

For instance, for the Feynman parametrization of (3.1)

(3.1) =

(∫ ∏
i

dαi

)∫ ∏
i

d4ki
(2π)4

B(∑N
i=1 αiAi

)N δ (1−
∑

αi

)
,

one obtains the following Landau equations

αiAi = 0,
∂

∂ki

∑
k

αkAk = 0 ∀i (3.5)

where in this case the singularity surfaces are simply given by the Ai and the ki are

loop momenta. The Feynman parametrization makes the singularity condition obvious,

either Ai is zero or αi. The second condition is more interesting and represents the

condition that singularity surfaces/ singularities actually pinch the hypercontour.

In the case of (3.1) where the singularities are simple poles, Cutkosky has shown that the

discontinuity of F is connected to the solution Ai = 0, more concretely, the discontinuity

is given by residues at position according to the solutions to the Landau equations, thus

they can be represented as δ(Ai).

discF = (−2πi)r
∫ ∏

i

d4ki

(2π)4

δ+ (A1) . . . δ+ (Ar)

Ar+1 . . . An
(3.6)

Though, in practice it is not clear how to evaluate the discontinuity (3.6), especially

not when CMS propagators are involved where some δ functions would take on com-

plex arguments. We do not define the meaning of the + and r as it will become clear

much easier by another method. In this work we focus on another approach by Veltman

[Vel63]. His approach has the advantage that it is straightforward, easily derived, does

not need any topological arguments and the equation can be taken literally, i.e. one

knows exactly the result for the discontinuity.

In this section 3.1 we introduce the LTE which can be seen as the analogue to Cutkoskys

cutting rules. We start with a derivation based on a decomposition of the Feynman prop-

agator into advanced and retarded propagators. In section 3.2 we extend the arguments

to CMS propagators.
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3. Unitarity and the Cutting Equation

3.1.2. Decomposition of Feynman Propagators in Spacetime

The Feynman propagator in space-time representation reads for stable particles

∆F(x− y) = lim
ε→0

1

(2π)4

∫
d4p

e−ip(x−y)

p2 −m2 + iε
. (3.7)

It is possible to perform a decomposition of ∆F in positive and negative time parts in

such a way that positive (negative) time is connected to positive (negative) energy flow

and vice versa1.

Theorem 3.1 (Decomposition theorem). There exist functions ∆± with the following

properties:

∆F(xi − xj) = θ
(
x0
i − x0

j

)
∆+(xi − xj) + θ

(
x0
j − x0

i

)
∆−(xi − xj), (3.8)

∆±(xi − xj) = −
(
∆∓(xi − xj)

)∗
= ∆∓(xj − xi), (3.9)

∆F
∗(xi − xj) = −θ

(
x0
i − x0

j

)
∆−(xi − xj)− θ

(
x0
j − x0

i

)
∆+(xi − xj). (3.10)

For the moment it is enough to know that such a decomposition exists, for both stable

and CMS propagators (2.21). The proof and the explicit formulae will be given later.

Definition 2 (The underline operation). Given a Feynman diagram in the sense of

Definition 1, we define the following operations:

• A space-time point xi can be underlined: xi.

This operation shall have the following consequences for connected vertices:

• ∆ki is unchanged if xk, xi are unchanged

• Transform ∆ki → ∆+
ki if and only if (iff) xk → xk, but xi remains unchanged

• Transform ∆ki → ∆−ki iff xi → xi, but xk remains unchanged

• If two connected space-time points xk, xi are underlined, then i∆ki → −i∆∗ki.

• Any underlined space-time point implies a complex conjugation of the coupling

constant at this point, i.e. if xk → xk, then igk → −igk

At the level of Feynman diagrams the underline operation is illustrated as a circle © at

the corresponding underlined space-time points.

1The energy flow direction is related to the sign of p0 where p0 is the zeroth component of the four-
momentum. The momentum representation is connected to the space-time representation via Fourier
transform.
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3.1. Largest Time Equation

Example 3.1. Consider the following amplitude

F(x1, x2, x3, x4) =

x2

x1

x3
x4 , (3.11)

where F is given by

F(x1, x2, x3, x4) = ig i∆12 ig i∆23 ig i∆31 ig i∆34. (3.12)

If we underline the space-time point x3, we obtain the diagram

F(x1, x2, x3, x4) =

x2

x1

x3
x4 , (3.13)

which corresponds to the formula

F(x1, x2, x3, x4) = ig i∆12 ig i∆−23 (−ig∗) i∆+
31 ig i∆+

34. (3.14)

Let us assume that in example above the space-time points x4, x3 obey the condition

x0
4 > x0

3. According to the decomposition rule (3.8), we can replace ∆34 by ∆−34. Per-

forming the underline operation on x4, i.e. x4, we replace ∆34 by ∆−34 and we get an

additional minus sign. Therefore, we obtain the following relation

F(x1, x2, x3, x4) + F(x1, x2, x3, x4) = 0 for x0
4 > x0

3. (3.15)

Due to the fact that the space-time points x1 and x2 are not connected to x4, we can

extend the above relation to

F(x1, x2, x3, x4) + F(x1, x2, x3, x4) = 0, (3.16)

F(x1, x2, x3, x4) + F(x1, x2, x3, x4) = 0, (3.17)

F(x1, x2, x3, x4) + F(x1, x2, x3, x4) = 0, (3.18)

F(x1, x2, x3, x4) + F(x1, x2, x3, x4) = 0. (3.19)

Of course, we can proceed in this way for all space-time points which are not connected

to x4.

Let x3 be underlined, i.e. F(x1, x2, x3, x4), meaning that ∆34 is replaced by ∆+
34. Ap-

plying the underline operation on x4 and using the decomposition property, it is easy
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3. Unitarity and the Cutting Equation

to see that

F(x1, x2, x3, x4) + F(x1, x2, x3, x4) = 0. (3.20)

Consequently, if we have found one and only one space-time point xk which is the

largest time, then we observe that always pairs of LTE components cancel each other.

Therefore, given such a xk, we can sum over all underlinings and obtain a vanishing

result.

3.1.3. Largest Time Equation

Theorem 3.2 (Largest Time Equation). Given a Feynman diagram F in the sense

of Definition 1. If all couplings are real and all propagators fulfill the decomposition

theorem 3.1, then the following equation holds∏
i

∑
ti=0,1

F(t1x1 + (1− t1)x1, . . . , tjxj + (1− tj)xj , . . .) = 0,

where the sum runs over all possibilities of underlining elements. In total there are 2N

contributions where N is the number of vertices.

Proof. Without loss of generality (wlog), assume x0
i is the largest time, i.e.

x0
i > x0

k, ∀k 6= i, (3.21)

then for an arbitrary set A of underlinings A ∈ Underlinings {x}/{xi}

FA(. . . , xi, . . .) + FA(. . . , xi, . . .) = 0. (3.22)

Since A is arbitrary we can sum over all distinct sets of underlinings. Merging all distinct

A with the underlinings of xi we obtain all possible underlinings.

The proof does not consider equal time cases, but it is easily implemented and works

out (by chance!) for scalar particles. We meet a problem when dealing with higher

spin particles where the cancellation at equal time is no longer that simple, but the

case of equal time is irrelevant when going to Fourier space because isolated points have

zero measure and this argument holds as long as these LTE violating contributions do

not behave like distributions since then they do contribute2. Matrix elements can be

2In the case of vector bosons one has to deal with distribution-valued contributions at equal time which
violate the LTE. These terms do not affect the outcome in Fourier space. They are so-called contact
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3.1. Largest Time Equation

expressed in momentum space and fulfill physical constraints such as purely physical

ingoing and outgoing particles. To establish the connection between relations from

LTE and matrix elements we switch to momentum space and demand that all external

particles are purely physical in the sense that they lie on the mass-shell with positive

mass. Our first step is to perform a Fourier transform. Let us go back to our first

example, i.e

F(x1(p1), x2(p2), x3, x4(q1, q2)) =
x3

x2

x1
p1

p2

q1

q2

x4 . (3.23)

The apparent dependence of space-time points on momenta shall not be understood as

a dependence, but as an assignment. Ingoing particles get a factor eipx, while outgoing

particles get a factor e−ipx. Integrating over all space-time points, we transform F from

space-time to momentum space. Since all propagators in F are defined by Fourier com-

ponents (3.7), (2.21), integrating over space-time yields the well-known matrix element

expressed by Fourier components

(2π)4δ(p1 + p2 − q1 − q2) iM(p1, p2, q1, q2) =

∏
i=1,2,3,4

∫
d4xi e

i(p1x1+p2x2−q1x4−q2x4)
x3

x2

x1

x4 , (3.24)

where momentum conservation is fulfilled at every vertex. Physical or asymptotic

states are those states with positive energy, mass greater or equal zero, and physical

polarization. The cutting rules for stable particles express transformations from off-

shell particles to on-shell particles, i.e. to asymptotic states, but for the individual

case a non-vanishing contribution is only possible if for a given cut the on-shell region

is covered by the off-shell region such that the off-shell particle can be put on-shell.

Putting on-shell means to replace the Feynman propagator by Θ(±p0)δ(p2−m2) which

will, as we shall demonstrate, not always lead to a contribution due to the kinematical

situation.

In this section we derive cutting rules for stable and unstable particles and we start by

deriving the Fourier components of the decomposition (3.8). Motivated by the result

for stable particles, we extend the LTE relations for unstable particles described within

the CMS and we start with a proposition which we prove afterwards.

terms which are related to the ill-defined expressions at equal times or equally at large momentum.
Renormalization takes care of these divergences [Hoo05].
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3. Unitarity and the Cutting Equation

Proposition 3.1. The Fourier components of ∆±(x) for stable particles read

∆+(k) = 2iθ(k0)Im [∆F(k)] ,

∆−(k) = 2iθ(−k0)Im [∆F(k)] , (3.25)

where ∆F(k) is the Fourier component of the Feynman propagator. In the case of

unstable particles the decomposition reads

∆+(k) = iIm

[
1

k0
1(k0 − k0

1)

]
,

∆−(k) = −iIm

[
1

k0
1(k0 + k0

1)

]
, (3.26)

where k0
1 is given by k0

1 =
√

k2 +M2 − iΓM .

3.2. Construction of a LTE for CMS propagators

3.2.1. Recapitulation for Stable Particles

The Feynman propagator ∆F(x − y) for stable particles with mass m and causality

prescription ε→ 0 is given by (3.7)

∆F(x− y,m) =
1

(2π)4

∫
d4k e−ik(x−y) 1

k2 −m2 + iε
.

For unstable particles with mass M and width Γ the CMS provides the following Feyn-

man propagator (2.21)

∆F(x− y, µ) =
1

(2π)4

∫
d4k e−ik(x−y) 1

k2 − µ2
, µ2 = m2 − iΓm.

The pole structures are similar in both cases, for instance, in the case of unstable

particles the poles in the complex plane of the variable k0 can be read off from figure 3.2.

In the following we prove the formulae (3.25) and motivate how the result is generalized

for CMS (3.26). The properties (3.9), (3.10) are a direct consequence of equation (3.25).

We define the Fourier transform as

FT [◦] (x) =
1

(2π)4

∫
d4k e−ikx ◦ (k).

Proof. Further we define advanced and retarded propagators corresponding to the Feyn-
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3.2. Construction of a LTE for CMS propagators

Re [k0]

Im [k0]

√
E(k)2 − iΓm

−
√
E(k)2 − iΓm

∆F (k) = 1
k2−m2+iΓm

Figure 3.2.: Poles of the Feynman propagator

man propagator for stable particles3

∆A(k) :=
1

k2 −m2 − iε sgn(k0)
, (3.27)

∆R(k) :=
1

k2 −m2 + iε sgn(k0)
. (3.28)

We can perform the following decomposition

∆F(x) = θ
(
x0
)

∆F(x) + θ
(
−x0

)
∆F(x)

= θ
(
x0
)

(∆F(x)− FT [∆A] (x)) + θ
(
−x0

)
(∆F(x)− FT [∆R] (x)) (3.29)

This equation holds because θ
(
x0
)

FT [∆A] (x) and θ
(
−x0

)
FT [∆R] (x) vanish. For

instance, consider the integral θ
(
x0
)

FT [∆A] (x) illustrated in figure 3.3. We can close

the contour4 C of the integration path k0 in the lower half plane, but the advanced

propagator has no poles there. Therefore the integral vanishes. Proceeding this way, we

encounter the following subtraction of Fourier components

∆F(k)−∆A(k) =
1

k2 −m2 + iε
− 1

k2 −m2 − iε sgn (k0)

=
−iε

(
sgn

(
k0
)

+ 1
)

(k2 −m2 + iε) (k2 −m2 − iε sgn (k0))

=
−i2εθ

(
k0
)

(k2 −m2 + iε) (k2 −m2 − iε)

= θ
(
k0
)

(∆F(k)−∆∗F(k)) = 2iθ
(
k0
)

Im [(∆F(k))] .

3The following calculation cannot be adopted for CMS because we use analytic continuation. The
sgn(z) function cannot be continued analytically since it is a function of z and z∗.

4This is only allowed because of the limit ε→ 0.
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3. Unitarity and the Cutting Equation

Re [k0]

Im [k0]

√
E(k)2 + iΓm sgn(k0)−

√
E(k)2 + iΓm sgn(k0)

θ
(
k0
)

FT [∆A(k)] = 0

C

Figure 3.3.: The Fourier transform of the advanced propagator ∆A. The figure only shows
the integration contour of k0.

Analogously we obtain

∆F(k)−∆R(k) = 2iθ
(
−k0

)
Im [(∆F(k))] .

Using equation (3.29) and the results above, we have proved the identities (3.25).

3.2.2. Extended LTE for Unstable Particles

The idea is the same for the CMS and we demonstrate how to perform a decomposition

similar to (3.29) in the case of CMS-propagator. Such a decomposition in addition to the

properties of ∆±, which we discuss in more detail below, is the basis for LTE relations.

Our procedure is not unique, but the result is easily interpreted. Our approach consists

of defining meromorphic functions ∆A/R with similar pole structure as in the case of

stable particles, and we demand that∫
dp0 ∆A/R(p0,p,M,Γ)e±ip0|x0| = 0, (3.30)

∆F(p, µ)−∆A(p0,p,M,Γ)
!

= ∆+(p0,p,M,Γ), (3.31)

∆F(p, µ)−∆R(p0,p,M,Γ)
!

= ∆−(p0,p,M,Γ). (3.32)

The equations above shall be understood in such a way that ∆A/R must be chosen

so that ∆± fulfills the decomposition theorem 3.1. The first equation (3.30) is the

condition that the advanced/retarded propagator has only poles in the upper/lower

complex plane. Consequently, we have the same situation as in the stable case, namely

θ(±x0)FT
[
∆A/R

]
(x) = 0. Formulating the decomposition theorem 3.1 in Fourier space,
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3.2. Construction of a LTE for CMS propagators

we obtain the following constraint

∆−(p0,p,M,Γ) = −
(
∆+(−p0,p,M,Γ)

)∗
. (3.33)

Furthermore, we demand that similar as in the case of stable particles (3.28) the retarded

propagator changes over to the advanced propagator by complex conjugations and vice

versa

∆A(p0,p,M,Γ) =
(
∆R(p0,p,M,Γ)

)∗
. (3.34)

Due to the assumption (3.34) and the fact that the poles of the Feynman propagator

are point symmetric to the origin, we show that with (3.33) the poles of ∆A/R must be

symmetric with respect to the imaginary axis. For the following discussion it proves to

be useful to represent the Feynman propagator as a function of p0 and to reveal its pole

structure

∆F(p, µ) =
1

p0 − p0
1

1

p0 + p0
1

, with p0
1 =

√
p2 +M2 − iΓM

∆∗F(p, µ) =
1

p0 + p0
2

1

p0 − p0
2

, with p0
2 = −

√
p2 +M2 + iΓM = −

(
p0

1

)∗
(3.35)

The retarded propagator has poles in the lower complex plane which we denote with

pR1 and pR2 . The advanced propagator, on the contrary, has poles only in in the upper

complex plane

Re
[
p0
]

Im
[
p0
]

pR1pR2

∆R(p0)

Re
[
p0
]

Im
[
p0
]

pA1pA2

∆A(p0)

The location of the residues are related via condition (3.34) and we obtain the pole

positions of ∆A: pR1
∗

= pA1 and pR2
∗

= pA2 . With these preliminary words we solve

condition (3.33) graphically

Re
[
p0
]

Im
[
p0
]

p0
1pR1

−p0
1

pR2

∆F(p0)−∆R(p0)

complex conjugation

−−−−−−−−−−−→
Re
[
p0
]

Im
[
p0
]

p0
1
∗

pR1
∗

−p0
1
∗

pR2
∗

(
∆F(p0)−∆R(p0)

)∗
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3. Unitarity and the Cutting Equation

p0→−p0

−−→
Re
[
p0
]

Im
[
p0
]

p0
1
∗

−pR1
∗−p0

1
∗ −pR2

∗

(
∆F(−p0)−∆R(−p0)

)∗
!

=
(3.33)

(−1)
Re
[
p0
]

Im
[
p0
]

p0
1

pR1
∗−p0

1 +pR2
∗

∆F(p0)−∆A(p0)

(3.36)

In order to fulfill (3.36) the following is necessary

pR1 = p0
1, p

R
2 = p0

2, Resp0
1

∆F = Resp0
1

∆R, Resp0
2
∗ ∆F = Resp0

2
∗ ∆A

We can now give the proof of the decomposition rule for unstable particles (3.26).

Proof. Considering the pole structure allows us to derive necessary conditions, but (3.33)

must be valid not only for the poles, but for the whole function. A closer look at the

Feynman propagator leads to the partial fraction decomposition

∆F(p0) =
1

2p0
1

(
1

p0 − p0
1

− 1

p0 + p0
1

)
. (3.37)

As a function of p0, the Feynman propagator is a superposition of poles of first order

with constant coefficients and this motivates the following ansatz:

∆R(p0) =
f1

p0 − p0
1

+
f2

p0 − p0
2

(3.38)

Of course, we have to check whether the required conditions are fulfilled or not. The

necessary conditions yield

1

p0
1 + p0

1

(3.37)
= Resp0

1
∆F

!
= Resp0

1
∆R

(3.38)
= f1,

1

−p0
1 − p0

1

(3.37)
= Resp0

2
∗ ∆F

!
= Resp0

2
∗ ∆A

(3.38)
= f2∗, ⇒ f2 =

1

2p0
2

.

And therefore we obtain

∆R(p0) =
1

2p0
1

1

p0 − p0
1

+
1

2p0
2

1

p0 − p0
2

, ∆A(p0) = − 1

2p0
2

1

p0 + p0
2

− 1

2p0
1

1

p0 + p0
1

.

Having determined the advanced and retarded propagator, we calculate the Fourier

components of ∆± with the help of (3.31), (3.32) and we obtain

∆F −∆R =
1

p0 − p0
1

1

p0 + p0
1

− 1

2p0
1

1

p0 − p0
1

− 1

2p0
2

1

p0 − p0
2
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=
1

p0 − p0
1

(
p0

1 − p0

2p0
1(p0 + p0

1)

)
− 1

2p0
2

1

p0 − p0
2

= − 1

2p0
1(p0 + p0

1)
− 1

2p0
2(p0 − p0

2)
= −iIm

[
1

p0
1(p0 + p0

1)

]
= ∆−

∆F −∆A = iIm

[
1

p0
1(p0 − p0

1)

]
= ∆+ (3.39)

Our solutions fulfill all requirements (3.30), (3.31), (3.32), (3.33), (3.34) and (3.26) is

proved.

Corollary 3.1. Properties of ∆F,∆A/R,∆
±:

From the decomposition theorem (3.29) and representation of ∆± (3.25), (3.26), we can

derive the following properties

Re
[
∆A/R(p,m/µ)

]
= Re [∆F(p,m/µ)] , valid for stable/unstable (3.40)

Im
[
∆A/R(p,m)

]
= ∓ sgn(p0)Im [∆F(p,m)] , valid for stable (3.41)

∆+ + ∆− = ∆F −∆∗F = 2iIm [∆F] , valid for stable/unstable (3.42)

Proof. The first relation (3.40) follows from (3.31), (3.32) and the fact that Re [∆±] = 0.

Relation (3.41) follows from the well-known Sokhotski–Plemelj theorem which can be

derived via Cauchy’s integral formula

∆F(p,m) = P∆F − iπδ(p2 −m2),

∆A/R(p,m) = P∆F ± i sgn (p0)πδ(p2 −m2), (3.43)

where P denotes the Cauchy principal value. Relation (3.42) can be proved by direct

calculation, but it is more instructive to use the LTE. The LTE states

+ = − − .

Dividing this equation by (ig)2, we have proved (3.42).

Corollary 3.2. In the limit Γ → 0 we recover the Cutkosky cutting rules [Cut60] (see

equation (3.6)).

Proof. We have to show that ∆±(p, µ) → ∆±(p,m) for Γ → 0+. Consider the singular
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part of ∆+

lim
Γ→0+

1

p0 − p0
1

= lim
Γ→0+

1

p0 −
√

p2 +M2 − iΓM

=
1

p0 − Ep + iε

→ lim
Γ→0+

Im

[
1

p0 − p0
1

]
= −πδ(p0 − Ep)

→ lim
Γ→0+

∆+(p, µ) = lim
Γ→0+

iIm

[
1

p0
1

1

p0 − p0
1

]
= −iπ

1

Ep
δ(p0 − Ep) = −2iπδ(p2 −m2)θ(p0)

= 2iθ(p0)Im [∆F(p,m)] = ∆±(p,m)

3.2.3. Discussion of Regions and Physical Constraints

The cutting rules are a special subset of the LTE relations and many contributions to

the LTE do not contribute because the S-matrix underlies physical restrictions. As

we shall show in a moment, the vanishing of LTE contributions is due to kinematical

constraints which are enforced by the δs and θs. Since the situation is similar when

dealing with unstable particles we consider stable particles first. Therefore, we return

to our previous example

F(p1, p2, p3, p4) =
p2

p1

p3

p4
. (3.44)

If we sum over all possible underlinings, the result equals zero due to the LTE, but there

are some underlined diagrams which vanish for themselves. The following diagram does

vanish

F(p1, p2, p3, p4) =

θ(−k0)

p2

p1 k

p3

p4
= 0, (3.45)

but

F(p1, p2, p3, p4) =
p2

p1 k

p3

p4

, (3.46)
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3.2. Construction of a LTE for CMS propagators

does not. In (3.45) a θ-function arises which enforces a backward energy flow. It is

therefore no more energy available for producing the outgoing particles p3, p4. For the

second example, there is no reason why it should vanish.

The example also shows that, at least in this special case, the solutions of the LTE

for stable particles tend to split into two separate regions where the normal part (non-

shadowed) is given by the black dots, while the complex conjugated part (shadowed) is

given by the white circles. In between we have to use cut propagators, i.e. ∆±. We

visualize cuttings by

p2

p1

p3

p4

:=
p2

p1

p3

p4
. (3.47)

In the case of the physical constraints and stable particles there is always a well-defined

shadowed- and non-shadowed region which is a consequence of unitarity.

Corollary 3.3. It is well-known that unitarity follows from the Cutkosky cutting rules

[Cut60] which are valid for stable particles and we conclude that the unitarity equation

is fulfilled, i.e. we have that (2.17)

−2Re [i(Tfi)] =
∑
k

T ∗kfTki,

which shows that there is a well-defined shadowed (T ∗) and non-shadowed region (T ).

3.2.4. Relevant and Irrelevant Contributions to the LTE

As in the case of stable particles, one would like to have the same structure of the cutting

rules for unstable particles, i.e. a split into shadowed and non-shadowed region which is

a priori not given. We motivate that we actually obtain the same behavior for unstable

particles in a perturbative sense, meaning that those LTE contributions that violate

the ”split” structure are always of next order in the coupling constant. These violating

contributions come from the fact that for the CMS ∆± there is neither a θ
(
±p0

)
nor a

δ
(
p2 −m2

)
, but smoothed functions instead. The smoothing does no longer enforce the

same strict kinematical constraints as one has with stable particles which is necessary

for well-defined shadowed and non-shadowed regions.

Before going further into detail, we discuss how to simplify LTE relations. We show

that irrelevant contribution stay irrelevant even if the calculation is extended to higher

orders. This mimics the fact that contributions which are kinematically forbidden in
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3. Unitarity and the Cutting Equation

the case of stable particles and correspondingly would be suppressed in the case of

unstable particles, do not appear in a higher order calculation. The statement is trivial

for stable particles because kinematically forbidden contributions are zero, but it is

not immediately clear for unstable particles since suppressed contributions might be of

the same order as higher order contributions. The mechanism doing the trick is the

resummation and it is closely linked to the imaginary mass counterterm iΓM appearing

in the CMS (see (2.22)). By now we have implicitly accepted that there are no complex

couplings and in our current framework we cannot derive a LTE when iΓM is involved.

On the other hand, we do not have to adapt the LTE for complex couplings5 because

iΓM is related to the imaginary part of complex pole (2.22). The idea is the following:

Diagrams containing iΓM can be related to diagrams where iΓM is missing and where

the LTE relations can be applied. Afterwards one can undo the mapping (which is a

differential operation) and obtain the result for the LHSUE.

We start with an oversimplified approach where we take along multiple insertions of

iΓM . Then, we perform the resummation to show that if the contribution is irrelevant,

then it goes to zero as one performs the limit of infinite insertions. Finally we give the

argument for perturbation theory. For all propagators of unstable particles

, (3.48)

there are corresponding higher order contributions6

+
ΓM

+ . . . , (3.49)

and so on. This sum can also be written in the following form

(
e−ξ

∂
∂ΓM

)
n

 ∣∣∣∣∣∣
ξ=ΓM

, (3.50)

with

(
e−ξ

∂
∂ΓM

)
n

:=
n∑
k=0

1

k!

(
−ξ ∂

∂ΓM

)k
. (3.51)

5In principle, complex couplings are allowed, e.g. angle in CKM, and it is possible to derive a LTE
as long as the Lagrangian is real, but the argument fails for iΓM which has its counterpart in
propagator.

6These higher orders emerge from more insertions of renormalized self-energies in the 2-point function.
Extracting the imaginary part of each mass counter term which is associated with a self-energy, one
arrives at the given statement. This will be discussed in more detail later.
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3.2. Construction of a LTE for CMS propagators

Taking the real part commutes with differentiation with respect to a real parameter

and we can compute the LHSUE. For a more general amplitude one encounters sev-

eral unstable propagators and differentiation with respect to ΓM does not make sense

anymore. One defines the unstable propagator as ∆(p, µ) → ∆(p, µ)|ΓM→ΓM+α. Then

instead of performing the differentiation with respect to ΓM , one can differentiate with

respect to α and at the end put α to zero. This procedure can be taken over for all un-

stable propagators and each differentiation can be uniquely assigned to a given unstable

propagator.

Taking the limit n → ∞ the differential operator (3.51) is nothing but the translation

operator and in the sense above it acts in the following way on a function P

e−ε0
∂
∂εP (ε)

∣∣∣
ε0=ε

= P (ε− ε0)|ε0=ε = P (0)

Consider contributions involving ∆± of unstable particles.

∆+ = iIm

[
1

p0
1

1

p0 − p0
1

]
, ∆− = −iIm

[
1

p0
1

1

p0 + p0
1

]
For the whole phase-space the function ∆± is suppressed because of the small imaginary

part of p0
1, except in the region of resonance where the small imaginary part gives rise

to a non-negligible contribution. ∆± is a nascent delta function in the limit Γ→ 0 and

on the resonance (p0 = ±Ep) we have

±Ep ∓ p0
1 = ±Ep ∓

√
E2

p − iΓM

= ±Ep ∓ Ep

(
1− iΓM

2E2
p

+O

((
iΓM

E2
p

)2
))

= ±Ep

(
iΓM

2E2
p

+O

((
iΓM

E2
p

)2
))

⇒ ∆± ∝ Im

[
1

iΓM

]
Applying the translation operator on ∆±, we obtain a vanishing result if and only if we

are not on the resonance since then Im [R] = 0. For p2 = M2 the operation is undefined.

This can also be seen from the geometric series i∆F
∑n

k=0 q
k with q = i(−iΓM)i∆F. The

series converges only for |q|2 < 1 and we have

|q|2 =
Γ2M2

(p2 −M2)2 + Γ2M2
, |q|2

< 1 p2 6= M2

= 1 p2 = M2
. (3.52)
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3. Unitarity and the Cutting Equation

All contributions with non-resonant ∆± of unstable particles are non-relevant meaning

that with the above argumentation they do not contribute at all. As against, resonant

unstable ∆± have to be treated separately.

We translate the statement for perturbation theory. Assume we have done a calculation

of a process up to order gn. We evaluate the LHSUE and assume there is somewhere a

contribution involving ∆+(p, µ). Furthermore, assume ∆+(p, µ) cannot become resonant

due to the kinematical situation. Since it is non-resonant the order is at least O
(
g2
)
.

Formally, this follows from

lim
Γ→0,p0 6=E(p)

∆+ = 0, lim
Γ→0,p0 6=E(p)

∣∣∣∣∆+

Γ

∣∣∣∣ <∞, (3.53)

or from Taylor expansion. Now assume that the contribution involving that ∆+ is

negligible, then the question is whether this contribution remains of higher order when

going to higher perturbative orders gn+1, gn+2, . . .. The argument is the same as before.

Since we extend our calculation to higher orders, we have insertions of ΓM and we need

to include these contributions and make use of the inverse resummation to show that

the contribution is always of higher order. The ∆+ arises from one specific unstable

propagator ∆(p, µ) and for the same process up to order gn+2m the same diagram with

up to m insertions of ΓM . On the other hand, we can obtain those diagrams if we

replace ∆(p, µ), in the amplitude we were starting with, with7

∆(p, µ)→
(

e−ξ
∂

∂ΓM

)
m

∆(p, µ)
∣∣∣
ξ=ΓM

, (3.54)

where the differentiation takes care of the multiple insertions of ΓM (3.49). Again, we

evaluate the LHSUE making use of the LTE. Among the LTE contributions we retrieve

the previous one with the ∆+, and at the end we have to act with the differentiation on

what became of ∆(p, µ). Since ∆→ ∆+, we have the following replacement

∆+ →
(

e−ξ
∂

∂ΓM

)
m

∆+
∣∣∣
ξ=ΓM

. (3.55)

Making use of our order argument and for simplicity assume ∆+ behaves like ΓMf(p, µ)

where f(p, µ) is a suited non-singular function. For m = 1 we find(
1− ξ ∂

∂ΓM

)
ΓMf(p, µ)

∣∣∣∣
ξ=ΓM

= − ξΓM ∂

∂ΓM
f(p, µ)

∣∣∣∣
ξ=ΓM

= O(α2)
∂

∂ΓM
f(p, µ).

(3.56)

7The width actually depends on the perturbative order and is obtained via the renormalization condi-
tion. In the following discussion it is irrelevant what the width looks like as long as the lowest order
is ΓM = O(g2) which is always the case.
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3.2. Construction of a LTE for CMS propagators

Assuming f behaves well which is the case away from the resonance, we conclude that

this contribution is negligible compared to O(α). For the general case we make use of

the Hausdorff formula

eXY e−X = eadXY. (3.57)

Plugging in X = −ξ ∂
∂ΓM , Y = ΓM, [X,Y ] = −ξ ⇒ eadXY = Y − ξ, we find that(

e−ξ
∂

∂ΓM

)
m

ΓMf(p, µ)
∣∣∣
ξ=ΓM

= (ΓM − ξ)
(

e−ξ
∂

∂ΓM

)
m
f(p, µ)

∣∣∣
ξ=ΓM

+ O(ξ)
1

m!

(
−ξ ∂

∂ΓM

)m
f(p, µ)

∣∣∣∣
ξ=ΓM

= O(Γm+1) = O(g2m+2). (3.58)

where the second line on the rhs contains contributions of higher order. They are present

because we cut off the exponential at order O(ξm+1). We started with a diagram of the

order of O (gn) and (3.55) yields a term proportional to O
(
g2m+2

)
(3.58) and the whole

contribution is therefore non-relevant because it is of the order of O
(
gn+2m+2

)
and our

current accuracy is O
(
gn+2m

)
. Therefore, we conclude that LTE contributions involving

non-resonant ∆±(p, µ) of unstable particles of an n-th order diagram do not contribute

even if the calculation is extended up to order gn+2m. Because m is arbitrary, non-

resonant ∆±(p, µ) do not contribute at all.

From these results it is clear that a diagram solely involving non-resonant unstable

propagators obeys the normal Cutkosky cutting rules without cuttings through unstable

propagators because there are only ∆± of stable particles which correspond to real cuts,

but we can say more. In the case of stable particles physical external parameters lead

to a special subset of LTE relation where a shadowed and non-shadowed region is well-

defined. As already discussed, this is no longer the case for the CMS and there are

contributions to the LTE that violate this structure, but these violating contributions

are exactly the non-relevant contributions. Relevant contributions cannot violate the

structure because one could replace the unstable propagator that is responsible for the

violation by a stable propagator (LTE still valid) and since relevant contributions are

by definition those contributions which can become resonant, the substitution would

lead to an on-shell state. Since for stable particles we know that the shadowed and non-

shadowed region are well-defined, we conclude that the structure violating contributions

must be irrelevant. Finally, resummation of iΓM makes sure that these contributions

are always of higher order and we can neglect them once and for all.
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3. Unitarity and the Cutting Equation

Example 3.2. Consider the s-channel tree level amplitude

+ = − − .

On the right hand side we have two contributions, but only the second one is relevant

because it can become resonant. If one replaces the intermediate unstable particle by a

stable propagator, the first contribution on the right hand side would be exactly zero,

but the second one could still become resonant. The example is oversimplified because

the resonance condition for the intermediate particle cannot be achieved by a stable

particle. However, the example demonstrates that the irrelevant contribution, i.e. the

first one on the right hand side, violates our structure argument since the incoming

particles are in the shadowed region (white circle).

Corollary 3.4. Connection to Cutkosky cutting rules.

The observation above leads to the following consequence: The cutting rules for unstable

particles have the same structure as the Cutkosky cutting rules meaning that contribu-

tions to the LTE in the case of stable particles that are physically not realized, are, in

the case of unstable particles, contributions of higher order.

One can take over the usual Cutkosky cutting rules, but modified by the replacement

∆±(p,M) → ∆±(p, µ) for unstable particles. Obviously, relevant ∆±(p, µ) may not be

negligible in the region of the resonance. We cannot tell what happens with regard to

unitarity for unstable particles without further investigations and we still have to clarify

the meaning of ∆±(p, µ) in the region of resonance.

Corollary 3.5 (Cutting Equation/Extended Largest Time Equation). Given a Feyn-

man diagram F in the sense of Definition 1. If F fulfills the theorem 3.2 (LTE), then

the cutting rules read

• We refer cut to ∆±(p,m) in the case of stable particles and pseudo cut to ∆±(p, µ)

in the case of unstable particles.

• Write down all possible contributions where propagators are replaced by cut-propagators

and pseudo cut-propagators respectively.

• Discard all kinematically forbidden contributions and neglect all non-relevant con-

tributions. The results split individually in a shadowed and non-shadowed region

(corollary (3.4)).

• The non-shadowed region is obtained by applying the Feynman rules while for the

shadowed region the complex conjugated Feynman rules must be applied.
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3.2. Construction of a LTE for CMS propagators

• Appearing iΓM are expressed as derivatives as explained above.

• The result is up to irrelevant contributions equivalent to −2× Re [F ].

In the next part we clarify the meaning of resonant ∆±(p, µ). Assume we can assign to

it a reasonable meaning such on both sides of the unitarity equation we find matching

expressions, then we can conclude that unitarity is fulfilled because

• Away from resonances we encounter the usual cuts from the Cutkosky cutting

rules and if we can show that the same holds for the region of resonance then we

have covered the whole phase-space.

• The structure of the LTE relations within the CMS is the same as for stable

particles.

The last missing piece of information is Γ and the LTE does not know anything about

it and especially not the relations following from the renormalization procedure. In the

next sections we show how the renormalization condition comes in and how to treat

resonances. We start with some examples and then we generalize the statements.
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4. Unitarity at Tree Level and

One-Loop Order

In this section we go further into the question how perturbative unitarity is actually

implemented in the CMS. One may imagine that the unitarity equation is fulfilled only

for the sum over all diagrams such that only the sums on both sides of the unitarity

equation coincide, though, in the case of stable particles, diagrams can be separated

according to their topology and loop order. Perturbative unitarity then follows from

the fact that the coupling can be chosen arbitrarily meaning that we can, in principle,

distinguish between orders by varying the coupling. This argument fails, as we show,

when the theory is renormalized according to the CMS. The distinction of loop orders

does no longer work because of resummation and we actually have to consider sums of

diagrams, but the occurrence of non-trivial dependencies between topologically different

Feynman diagrams can be excluded at least in scalar theories.

In the following sections we study two different topologies of 2→ 2 processes with regard

to unitarity. We apply the LTE to the LHSUE and extract the relevant contributions

which follow from the extended cutting rules. The result is then checked against the

right hand side of the unitarity equation (2.17). We start by demonstrating how things

can be interpreted at tree level. Then we work out the example at NLO and we show

how the results can be extended to N2LO and beyond.

Unstable particles are characterized by a complex pole of the propagator which is related

to a finite width, but the width or rather the complex pole is, in perturbative quantum

field theory, determined from higher perturbative orders, hence even at tree level we

have to deal with loops when unstable particles are involved. In practice one simply

replaces the width by the experimental value. This approach makes sense even though

we explicitly mix up loop orders, but actually, it does make more sense than preserving

the loop order. As long as we stay away from the resonance, tree level is assumed to give

the leading contribution and as we come close to the resonance we take into account

finite-width effects via iΓM which justifies the approach. The point is that preserving

loop order does not preserve the order of accuracy, as we shall see in more detail later.

• Consider the phase-space p2 for a given unstable propagator with mass M and
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4. Unitarity at Tree Level and One-Loop Order

width Γ. We subdivide the space into two sets Dω
>, D

ω
<

Dω
> : =

{
p2
∣∣ ∣∣p2 −M2

∣∣ > ω ΓM,ω > 1, ω = O(α0)
}
,

Dω
< : =

{
p2
∣∣ ∣∣p2 −M2

∣∣ ≤ ω ΓM,ω > 1, ω = O(α0)
}
.

Dω
< describes the region of resonance while Dω

> is the non-resonant region. We

demand that for any given order

iΣR,φ

ΓM

(
p2
)∣∣∣∣
p2∈Dω<

= O(α) (4.1)

where ΣR,φ is the renormalized self-energy of the unstable particle φ. This state-

ment follows from the renormalization condition

iΣR,φ|p2=µ2 = 0.

We evaluate the renormalized self-energy iΣR,φ for p2 ∈ Dω
< on the real axis.

Therefore and because the unrenormalized self-energy is at least of order O(α),

we expect iΣR,φ to behave even of higher order in α. Explicitly:

Σ|p2∈Dω< = Σ|p2=µ2︸ ︷︷ ︸
=0

−
(

Σp2=µ2 − Σp2∈Dω<

)
︸ ︷︷ ︸

O(α2)

(4.2)

In the last step one could perform a Taylor expansion to formally obtain the

statement (4.1), but it may happen that the self-energy cannot be Taylor expanded

as it is the case for charged fields (see appendix A).

But nevertheless we assume the contribution (4.1) to be small compared to one.

Remark 4.1. We will often allude to order and we distinguish between two types of

orders:

• There is the order in α which we are going to elaborate in more detail below.

• There is the loop order (Feynman rules), i.e. tree level, one-loop, et cetera, which

is uniquely defined by the diagrammatical representation.

Within the CMS the Feynman rules do no longer yield a strict perturbative expansion

in α, but the orders are mixed and one must determine the order of accuracy of the

amplitude which is crucial in view of perturbative unitarity. For instance, a one-loop cal-

culation far from resonances is of next-to-leading order while near any (non-integrated)

resonance the accuracy drops and the calculation is only accurate to leading order.

• Tree level with Γ from one-loop is accurate up to LO for the whole phase space.
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• One-loop with Γ from two-loop is accurate up to NLO for the whole phase space.

• etc.

Before proceeding we mention two problems we have faced:

• When speaking of a perturbative order, one usually means the Taylor expansion in

the coupling constant. For the CMS there is no perturbative order because there is

no well-defined order in α due to resummation. The CMS propagator contributes

to the perturbative order and, roughly speaking, one has to deal with functions

like 1
1+x2 which are not Taylor expandable around x = ±1.

• Beyond that, topologically different diagrams, but of the same loop order may

behave differently to the given external parameters with regard to their order in

α.

Strictly speaking, we cannot investigate the CMS for perturbative unitarity, however, it

turns out that for certain phase-space regions one can extract a well-defined perturbative

order. Our strategy is therefore the following:

• Perturbative unitarity is fulfilled if the LHSUE and the RHSUE coincide up to a

given accuracy. The idea is to show that for a given accuracy of the RHSUE, we

can always find corresponding contributions on the LHSUE such that unitarity is

fulfilled. To get that result we perform manipulations that involve higher-order

contributions. Finally, one can count the order (if possible) and dismiss higher-

order contributions.

• For some phase-space regions the order is ill-defined, but we do not have to worry

since unitarity will be fulfilled automatically. One may define perturbative uni-

tarity for the whole phase-space by an interpolation between the cases where a

power-counting is possible.

In the examples below we count the order as follows:

• Count any coupling constant g with α = g2 as one would could the usual pertur-

bative order.

• Count any resonant s-channel propagator with 1
α (s ∈ D<)

We do not take into account any integrated unstable propagator when counting the

order. This last point is the critical, especially if the unstable propagator is resonant

and when massless particles are involved which we do not consider here (see appendix

A) .
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4. Unitarity at Tree Level and One-Loop Order

4.1. Unitarity at Tree Level

We start with the most simple case, namely a tree level s-channel example. There are

three contributions at tree level for the 2 → 2 process and the most interesting one is

the s-channel where the unstable particle can be produced on the resonance.

iM =
p

(4.3)

Non-resonant region: p2 ∈ D>

We apply the extended cutting rules to iM and we obtain the LHSUE

−2Re


 =

︸ ︷︷ ︸
O(α2)

,

where we used arguments of section 3.2.4 concerning the order of non-resonant ∆±. The

RHSUE has no contribution at LO, i.e. O(α), and for p2 ∈ D> the LHSUE is of the

order of O(α2), i.e. NLO which is in agreement with the unitarity equation.

Resonant region: p2 ∈ D<

Our cutting rules are useful for the discussion of unitarity as long as no unstable particle

is resonant, but they are unpractical in the region of the resonance since information

in Γ is missing. In the following we do not directly make use of the LTE and instead

we evaluate the LHSUE in the region of resonance simply by taking the real part. This

approach has the advantage that one can easily plug in the missing piece of information

from Γ and it can be generalized for the n-loop 2-point function, as we shall see later.

Evaluating the LHSUE of the amplitude iM, we obtain

−2Re

[
ig

i

p2 −M2 + iΓM
ig

]
= −2(ig)2

∣∣∣∣ i

p2 −M2 + iΓM

∣∣∣∣2 Re

[
p2 −M2 − iΓM

−i

]
= ig

i

p2 −M2 + iΓM
2ΓM

−i

p2 −M2 − iΓM
(−ig), (4.4)
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4.1. Unitarity at Tree Level

where ΓM is determined by the (one-loop) renormalization equation, i.e.

iΣ1
R,φ

∣∣
p2=µ2 = 0 = iΣ1

φ(p2)
∣∣
p2=µ2 − iδµ2

⇒ iδµ2 = iΣ1
φ(p2)

∣∣
p2=µ2

Im
[
δµ2
]

= −Im
[
µ2
]

=: ΓM

⇒ ΓM = −Re
[

iΣ1
φ(p2)

∣∣
p2=µ2

]
In the next step we make use of equation (4.1) to find a senseful meaning for ΓM

O
(
α2
)

= Re
[

iΣR,ϕ|p2∈D<

]
= Re

[
iΣϕ|p2∈D<

]
+ ΓM

⇒ ΓM = −Re
[

iΣϕ|p2∈D<

]
+O

(
α2
)

= −Re
[

iΣϕ|p2∈D<

]
(1 +O (α))

This equation expresses what is known from the usual on-shell scheme, i.e. the width

is the cut through loops and can be interpreted as the decay width. At one-loop order

the widths of both schemes coincide, but this is no longer true for higher loops and we

are not able to argue this way in the general case. Nevertheless, let us make use of

this result to demonstrate unitarity. At one-loop order the unrenormalized self-energy

is given by

iΣ1
φ = Σ = ,

and we can directly apply the Cutkosky cutting rules to it since Σ1
φ does not have any

intermediate unstable particles

−2Re
[
iΣ1
φ

]
= Σ = .

Plugging this result into (4.4), we obtain

− 2Re

 p

 =

 p

 (1 +O(α)) , p2 ∈ D<. (4.5)

The one-loop cut (4.5) does also appear on the RHSUE and is the lowest order contri-

bution for the s-channel topology.

Remark 4.2. It seems that for p2 = infp2∈D>
∣∣p2 −M2

∣∣ there is a jump from no cut

contribution to a cut contribution (4.5). Since the formula (4.4) holds for any p2 ∈ D<,

we automatically fulfill the unitarity condition and we do not have to worry about the
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4. Unitarity at Tree Level and One-Loop Order

changeover of orders. On the other hand, this means that the tree level amplitude in

the region D< can produce one-loop cuts. That was to be expected since Γ contains

loop informations and as we approach the resonance, the Γ becomes more important

which explains loop contributions. This does not mean that unitarity is violated, on

the contrary. The calculation is LO for the full phase-space, and unitarity is fulfilled at

LO, in contrast to what we show in the next section. If we simply extend the s-channel

to one-loop without determining ΓM from higher loop orders, unitarity stays accurate

only for LO. Thus, the s-channel resonance reduces the order of accuracy by α.

4.2. Unitarity at One-Loop Order: s-channel

In this section we extend the tree level amplitude of the last section to one-loop order

while keeping the topological structure.

iM =

k1
+

k2
+

k3
(4.6)

If all particles were stable we could separate these diagrams by varying the coupling

constant g. As already mentioned before, for the CMS this is not possible because the

diagrams become of the same order in g which in turn depends on incoming momentum

squared s. The phenomenon becomes significant as we approach the resonance of an

unstable propagator, i.e. for s = M2 and as they reach the same order in α cancellations

take place due to (4.1). We show at one-loop order that the LHSUE is given by

− 2Re


 =


 (1 +O(Γ)) , (4.7)

which agrees with the RHSUE. If this was not the case then perturbative unitarity

would be violated since there are no other diagrams with the given topological structure

which could solve the problem.

Non-resonant region

Since there are no resonant pseudo-cuts, we can make use of the usual Cutkosky cutting

rules and unitarity is guaranteed. Anyway, we work out this example and show explicitly
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4.2. Unitarity at One-Loop Order: s-channel

how unitarity is implemented.

Taking the real part of the loop contribution k3 , we obtain according to the extended

cutting rules three relevant contributions

−2Re

 p

 =

+
p

+
p

. (4.8)

For the diagrams k1 + k2 we make use of the Dyson resummation trick. Taking the

real part, we obtain

−2Re

 +

 =

(
1− ΓM

∂

∂ΓM

)
×−2Re




=

(
1− ΓM

∂

∂ΓM

)
(4.9)

For p2 ∈ D> we neglect all pseudo-cuts from one-loop diagrams (4.8). Furthermore,

with the argumentation given in corollary 3.4 the contribution from k1 + k2 (4.9) is

also negligible and, as expected, we have a match with unitarity.

Region of the resonance

In the region of resonance we can adopt the result from the tree level example and we

conclude that in LO the LHSUE agrees with the RHSUE. The leading order is given

by the s-channel tree level amplitude which is now of the order of α0 while the order of

the s-channel one-loop contribution k2 + k3 is α due to (4.1)

ig i∆F(p, µ) iΣ1
R,φ i∆F(p, µ) ig

∣∣
p2∈D<

= O(α).

Because of the resonance the amplitude (4.6) can no longer be accurate up to NLO1,

i.e. O(α) and we would need two-loop contributions in order to fulfill both sides of the

1This reflects the necessity of higher-loop contributions for describing resonances.
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4. Unitarity at Tree Level and One-Loop Order

unitarity equation. For instance, ∣∣∣∣∣∣∣∣∣∣
p2∈D<

= O(α)

is of the same order as the one-loop contribution of (4.6), and clearly this contribution

cannot be obtained from the LHSUE since Γ is determined from one-loop self-energies.

4.3. Unitarity at One-Loop Order: Vertex-function

In this section we closely monitor how the situation changes for another topology. We

choose as one-loop contribution for the 2 → 2 process a vertex function. The usual

Cutkosky rules in the case of stable particles envisage

− 2Re [F ] := −2Re


 ?

= . (4.10)

When dealing with stable particles one does only encounter resonant propagators whose

momenta are integrated out, meaning that these propagators appear inside an integral.

In contrast, unstable particles can be produced on the resonance, and we observe that

the singularity is regulated by the width. Describing the process on the resonance,

we observe a decrease in the order of α. Since the unstable s-channel propagator can

become resonant, we must be careful with our first guess and we should expect other

contributions. The following proposition gives more insights.

Proposition 4.1. The relevant contributions to the cutting rules read

− 2Re [F ] := + . (4.11)

Proof. We have to show that all other contributions do not have a resonant unstable
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4.3. Unitarity at One-Loop Order: Vertex-function

propagator. Consider the following pseudo-cut

p− q

p
q

k
. (4.12)

From the cutting rules we obtain the kinematically allowed phase-space

θ(−q0), θ(k0 − 2m), θ(p0 −m) → q0 − p0 < 0. (4.13)

The question is whether ∆+(q− p, µ) can become resonant or not. In the latter case we

conclude that it is a non-relevant contribution. The resonance condition for ∆+(q−p, µ)

is given by

q0 − p0 −
√

(q− p)2 +M2 − iΓM
∣∣∣
Γ=0

!
= 0,

and can due to (4.13) never be fulfilled. The same argument holds for all other non-

mentioned contributions to the LTE and we have proved (4.11).

We might be confronted with a problem. Far from the resonance (k2 ∈ D>) equation

(4.11) is in accordance with the unitarity condition since the pseudo-cut is suppressed in

that phase-space region, but on top of the resonance we have an additional contribution

which cannot be swept under the rug. This fact suggests the following equation in the

region of resonance

− 2Re [F ] =

k1
+

k2
, (4.14)

and it looks like we are getting into trouble because of the appearance of two-loop

contributions. The solution to this problem is very simple, but let us first have a look at

the orders. Both amplitudes are of the same order in α in the region of the resonance.

For instance, take the first diagram k1 and count the couplings. We obtain g4 = O(α2),

but near the resonance we have an additional factor of 1
ΓM from the unstable propagator

and therefore the order is O(α2/α) = O(α). For the second diagram k2 we can do the

same analysis and we obtain

k1 =

O(α2), k2 ∈ D>

O(α), k2 ∈ D<

, k2 =

O(α3), k2 ∈ D>

O(α), k2 ∈ D<

. (4.15)

55



4. Unitarity at Tree Level and One-Loop Order

This means that if we expand up to a definite perturbative order there is a natural

mixing of diagrams on the right-hand side of the unitarity equation. On the resonance,

our first guess (4.10) is definitely wrong because there is another contributions of the

same order. Returning to the question if (4.14) contributes or not actually depends on

our current accuracy. We conclude that on the resonance the contribution is not accurate

since LO is α0 (compare with purely s-channel discussion). This in turn means that on

the resonance we discard any of these cut diagrams of (4.14), even though there is a

cut one-loop diagram. At first sight it seems that the contributions (4.14) become more

significant as s→M2, but actually the vertex topology becomes irrelevant compared to

purely s-channel one-loop cut contribution (4.7). Finally, unitarity is fulfilled because

away from the resonance the usual Cutkosky rules are valid and on the resonance there

is no cut contribution from this topology at LO.

The Feynman rules do not yield a strict perturbative order and we have seen how

different topologies behave differently on the resonance even though they may be of

the same loop order. Considering perturbative unitarity, the important question is not

which diagram contributes up to a given accuracy, but the question whether all necessary

contributions are there such that unitarity is fulfilled. Of course, we must assume that

perturbation theory makes sense and that our amplitude is well approximated by loop

orders.
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5.1. Extending the Examples to N2LO / NLO

We verified the unitarity equation for selected diagrams of a 2 → 2 process at leading

order for the whole phase space and at next-to-leading order far from any resonances

of unstable particles. On the resonance we proposed an interpretation for ∆+ which

is compatible with the unitarity equation, namely, we made use of the fact that ΓM

equals, at leading order, the usual decay width from the on-shell scheme which itself

is proportional to cuts through the self-energy. For higher orders ΓM does no longer

represent self-energy cuts and we have to find another mechanism which explains cut

contributions. In this first part we demonstrate how our previous results are extended

to NLO on resonances and to N2LO far from resonances. The mechanism we propose

is fairly the same mechanism which takes place when using dressed propagators [Vel63]

instead of the CMS propagator. Summing up, we expect perturbative unitarity because

of the following arguments:

• Away from resonances the imaginary part of the denominator of the propagator

is irrelevant and consequently corresponding pseudo-cuts are negligible. Further-

more, due to resummation of iΓM pseudo-cuts are irrelevant (corollary (3.4))

• In the region of resonance we can formally use dressed propagators which is com-

patible with the renormalization condition (4.1) and reexpanding in iΣR,ϕ/ΓM

yields the correct perturbative result in the CMS.

Going to higher orders, the renormalization procedure must be repeated and the self

energy is evaluated at two-loop order. It becomes more and more intricate and we do

not go into detail and we assume the renormalization succeeded, i.e. the CMS conditions

are fulfilled.

5.2. The Two-Point Function at Two-Loop Order

For a detailed analysis we again face the problem of power-counting and the question

which diagrams must be considered for a given accuracy and again we simplify the
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5. Perturbative Unitarity in the CMS

discussion the same way as we did for the one-loop examples. In contrast to the one-

loop example, we now have several two-loop contributions to consider and we hide our

ignorance of these contributions simply in the self-energy Σ. For the s-channel, we

consider the two-point function with external legs

iM = + Σ2
R φ + Σ

2(1)
R φ Σ

2(1)
R φ

(5.1)

where Σ2
R,φ = Σ

2(1)
R,φ + Σ

2(2)
R,φ is the renormalized (according to the CMS) two-loop self-

energy of the unstable particle φ, and Σ
2(1)
R,φ ,Σ

2(2)
R,φ denotes the one-loop,two-loop con-

tribution (also renormalized) of the two-loop self-energy, respectively. Clearly, this ap-

proach can only make sense if the mass counter-term has been split in two parts in such

a way that the one-loop and two-loop contributions of the self-energy can be regularized

independently.

To analyze unitarity for arbitrary amplitudes we need to find a systematic way to plug

in the information coming from the renormalization procedure. Remembering that the

renormalization condition makes use of the self-energy up to a given loop order, the

easiest way to achieve our goal is to extend any appearing self-energy to the loop-order

at which the renormalization has been carried out. This allows us to analyze the LTE

relations on the resonance and finally we can reexpand to obtain the perturbative result.

We demand that the amplitude (5.1) is well approximated by

iM = + Σ2
R φ + Σ2

R φ Σ2
R φ (5.2)

for the whole phase space. Away from any s-channel resonance we are accurate up to

N2LO(α, α2, α3) and on the resonance we have NLO(α0, α1). Clearly, extending the

matrix element to (5.2) is valid if perturbation theory within the CMS makes sense.

Formally, this means that

• O
(
α2
)

= O
(

Σ
2(2)
R,ϕ

)
> O

(
Σ

2(1)
R,ϕ

)
= O (α) , p2 ∈ D>.

• O
(

Σ
2(2)
R,ϕ

)
≥ O

(
Σ

2(1)
R,ϕ

)
= O

(
α2
)
, p2 ∈ D<.

The first restriction says that pure two-loop contribution should be N2LO away from

resonances. The second one follows immediately from the renormalization condition.

As pointed out, ΓM does not represent well-defined cut-contributions beyond one-loop
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which was to be expected since we can express the resummed two-point function as

i

p2 − µ2 + ΣR,ϕ
=

i

p2 − µ2 + ΣR,ϕ

(
p2 − µ2 + ΣR,ϕ

i

)∗(
i

p2 − µ2 + ΣR,ϕ

)∗
, (5.3)

and taking the real part of this expression, we obtain

−2Re


p

 = 2Re

 1PI



!
= Σ (−1). (5.4)

Note that when taking the real part of (5.3) one must only compute the real part of(
i
(
p2 −M2

)
+ ΓM − (iΣR,ϕ)∗

)
because other factors form a real number and, conse-

quently, one expects that

−2Re [ΓM − iΣR,ϕ] =: 2Re
[
iΣ̃
]

(5.5)

yields well-defined cuts. On the resonance, the leading-order contribution of (5.5) is

exactly ΓM and this case is gone into (5.5), i.e. we have to all orders

ΓM = + higher orders. (5.6)

and in the following section we motivate that the result holds in a perturbative sense.

5.2.1. Resonance region

Further difficulties arise, namely the occurrence of unstable resonances in loops. In

this section we demonstrate how to systematically eliminate pseudo-cuts in favor of

cuts of self-energies and we go on with the example at two-loop level. We reproduce the

NLO(α0, α1) cut on the RHSUE and since we are only accurate up to NLO, it is sufficient

to consider one insertion of the self energy for p2 ∈ D<. Denoting the renormalized self-

energy as Σ2
R,ϕ = Σ, we represent the two-point function (5.2) generically as

i

p2 −M2 + iΓM

(
1 + iΣ

i

p2 −M2 + iΓM

)∣∣∣∣
p2∈D<

=
i

p2 −M2 + iΓM + Σ
+

i

p2 −M2 + iΓM
×O

((
iΣ

ΓM

)2
)
, p2 ∈ D<, (5.7)
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where we used that

1� i

p2 −M2 + iΓM
iΣ

∣∣∣∣
p2∈D<

= O
(

iΣ

ΓM

)
. (5.8)

The resummed propagator on the rhs of (5.7) is manipulated as in (5.3). Therefore, we

have that (up to higher orders)

i∆F(p, µ) (1 + iΣ i∆F(p, µ)) =
i

p2 −M2 + iΓM

(
1 + iΣ

i

p2 −M2 + iΓM

)
= (5.3),

where the self-energy in (5.3) has to be replaced by the two-loop approximation. We

note that the resummation step is not necessary, but it makes the computation of the

real part easy and reveals the general structure. From here on we obtain a useful

representation for the LHSUE of the amplitude (5.7) by taking the real part of the

leading contributions of (5.3).

2Re [i∆F(p, µ) (1 + iΣ i∆F(p, µ))]

(5.3)
= i∆F(p, µ) (1 + iΣ i∆F(p, µ))

(
−2Re

[
iΣ̃
])

(i∆F(p, µ) (1 + iΣ i∆F(p, µ)))∗

= i∆F(p, µ)
(
−2Re

[
iΣ̃
])

(i∆F(p, µ))∗ k1
+ [i∆F(p, µ) iΣ i∆F(p, µ)]

(
−2Re

[
iΣ̃
])

(i∆F(p, µ))∗ k2
+ i∆F(p, µ)

(
−2Re

[
iΣ̃
])

[i∆F(p, µ) iΣ i∆F(p, µ)]∗ k3
+O(α), p2 ∈ D<, (5.9)

where we used the definition ΓM−iΣ =: −iΣ̃. As we motivate in section 5.2.3, −2Re
[
iΣ̃
]

yields well-defined cuts through stable particles only. With this knowledge the result

(5.9) can be visualized as follows

Σ

k1
+ Σ Σ

k2
+ Σ Σ

k3
, (5.10)

which is nothing but the perturbative expansion of (5.4).

5.2.2. Extension to the Whole Phase Space

Away from the s-channel resonance we make use of the extended cutting rules and

we dismiss all non-relevant contributions, especially the s-channel pseudo-cuts and we
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can directly apply the cutting rules to the self-energy parts. The result is a set of

cut amplitudes and there are some relevant pseudo-cuts appearing in the two-loop self-

energy, as we shall demonstrate.

Both regions can be merged to one final result. We dismiss all contributions for s ∈ D<

which are of higher order in (5.10) and we obtain

2Re [(5.1)] = Σ2 + Σ2(1) Σ2(1) + Σ2(1) Σ2(1)

+

O(α3) s ∈ D>

O(α) s ∈ D<

Even though the results for the different regions have the same structure they are ob-

tained by different arguments. In the region s ∈ D< one can study the amplitude with

the extended cuttings rules and one must make sense out of the resonant pseudo-cuts.

This has been achieved above and it is important to mention that one can only deduce

the above equation if the sum of all loop contributions is considered in the region of

resonance. The LTE we deduced does not know about that piece of information and we

have to put it in by hand.

Coming back to iΣ̃, we argue why the cut-visualization is actually justified. iΣ̃ is given

by the self-energy up to two-loop order, but is missing the iΓM contribution. When

taking the real part there is therefore no ΓM contribution and there are only diagrams

so that we can apply the extended cutting rules. We find that the one-loop contribution

yields exactly the one-loop cut, but for the two-loop contributions we do have resonant

pseudo-cuts. The idea is to replace these pseudo-cuts by self-energy cuts.

Example 5.1. Consider the two-loop contribution

,

and apply the extended cutting rules to the two-loop self-energy. We obtain four relevant

contributions and plugging in into k1 , we obtain

+ + +

The first two contributions are real cut contributions, while for the other two contribu-
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tions pseudo-cuts show up. How do we argue about unitarity it this case? We show that

the relevant contributions are there, on both sides of the unitarity equation. To that

end, we fix the loop-momenta which flow through the pseudo-cut and we consider sepa-

rately the region of resonance and the non-resonant region of that pseudo-cut. Clearly,

we do not have a cut contribution away from the resonance and on the resonance we

can just recursively plug in our results. We expect the result to be

LHSUE :

∫
d4q

(2π)4
q ?

=

∫
d4q

(2π)4
(1 +O(α))

and we are going to use that ΓM represents to lowest order the cut of the one-loop self-

energy and this is also true even if ΓM is determined from higher-loop self-energy (5.6).

Since the accuracy of our calculation is bound by the two-loop contribution the leading

order contribution for the pseudo-cut is enough. Note that the leading contributions

to the pseudo-cut forces the unstable particle with momentum q to be produced on-

shell and the delta-function is the leading contribution to the pseudo-cut. With the

narrow-width approximation we derive the relation

πδ(p2 −M2) = πδ(p2 −M2)
ΓM

ΓM
∼ ∆F(p, µ)ΓM (∆F(p, µ))∗ (1 +O(α)),

which makes only sense under an integral. Plugging in the diagrammatical solution for

ΓM (5.6) yields the desired result and matches the RHSUE. In this way one takes care

of any two-loop contribution and one can show that −2Re
[
iΣ̃
]

yields self-energy cuts

up to two loop order.

For a more accurate calculation the narrow-width approximation is not enough, but in

that case we find the same diagram with more insertions of self-energies, e.g.

+ Σ = ,

and we can repeat the same calculation. This time, we do not simply replace the relevant

pseudo-cut from the previous example by a real cut contributions, but we replace the

whole one-loop two-point function. This goes on and on and we replace cut/pseudo-cut

two-point functions by real cut contributions until the recursive step stops and it stops

either when all pseudo-cuts are replaced by cuts or when contributions become negligible

due to the accuracy bound. At this point we already assumed that we can play the game

up to arbitrary high orders, but yet we have not shown this. In the next section we show
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that we can make use of the cutting equation to demonstrate perturbative unitarity for

any topology.

5.2.3. Generalization

In this section we generalize the ideas from the last sections and we show by induction

that −2Re
[
iΣ̃
]

as well as of the 2-point function are well-defined perturbative cuts. In

section 5.2.2 we discussed and motivated unitarity at two-loop order that we now use as

a basis. For the inductive step, we assume that the following is true up to n loops

− 2Re
[
iΣ̃
]

= Σ (1 +O(α)) (5.11)

and

− 2Re

[ ]
= (1 +O(α)) . (5.12)

Note that in the last sections we chose the loop order of the renormalization condition

to match the loop order of the amplitude we were investigating, but in the following

we allow Γ being determined from higher loop order. As long as the loop order of the

renormalization condition exceeds the loop order of the given amplitude, the procedure

is correct. After all, higher loop orders are supposed to give higher perturbative correc-

tions which we can reject at the end of our calculation. For the inductive step we assume

(5.12) to be valid up to n-loop order and we start with the self-energy at n + 1 loops.

The idea is the following: Applying the extended cutting rules to the self-energy iΣ̃, we

reduce the problem to two-point functions. Starting from the highest-loop contribution,

we look for pseudo-cuts and replace them with cut 2-point functions and this works as

follows. Assume we have found a pseudo-cut at loop order m

(5.13)

then there are higher order contributions and by these we mean all contributions which

emerge when replacing the CMS propagator, which is responsible for the pseudo-cut,

with

︸ ︷︷ ︸
O(α0)

→ + Σ + . . . = ︸ ︷︷ ︸
O(α0)...O(αn+1−m)

,

where the above 2-point function has up to n+ 1−m loops. From the structure of the

LTE follows that we do not only have (5.13), but we have the same contribution with
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the same ”background” where pseudo-cut is replaced by

→ −2Re

[
+ Σ + . . .

]
= −2Re

[ ]
.

(5.14)

We give an example of this property in the appendix 8. Since the two-loop function has

less than n+ 1 loops, it follows from the basis (5.12) that

(5.14)→ (1 +O(α)) . (5.15)

Again it is important to consider the sum of cut and pseudo-cut contributions which

are part of a two-point function because cancellations take place within this structure

and we cannot just plug in the leading order contribution to ∆+. In this way we deal

with further pseudo-cuts and we have shown that (5.11) is valid up to n+ 1 loops.

Next we use this result to show that the same holds for the 2-point function at n + 1

loop-order and we make use of resummation which is allowed if perturbation theory

makes sense

i

p2 − µ2 + Σ
= i∆F(p, µ)

∞∑
k=0

(iΣ i∆F(p, µ))k , (5.16)

where Σ = Σn
R,ϕ. Recall the calculation at two-loop order (5.3) where we performed some

manipulation to get a more suited form. We proceed the same way and we encounter

the following product

i∆F(p, µ)
∞∑
k=0

(iΣ i∆F(p, µ))k ×

(
i∆F(p, µ)

∞∑
m=0

(iΣ i∆F(p, µ))m
)∗

. (5.17)

which is simply the perturbative expansion of both 2-point functions in (5.4). Then we

keep n+ 1 = m+ k constant to obtain a perturbative expansion

∞∑
k=0

∞∑
m=0

(iΣ i∆F(p, µ))k ((iΣ i∆F(p, µ))m)∗

→
n+1∑
k=0

k∑
m=0

(iΣ i∆F(p, µ))m ((iΣ i∆F(p, µ))∗)
k−m

+ higher orders (5.18)

64



5.2. The Two-Point Function at Two-Loop Order

We multiply this result with −2Re
[
iΣ̃
]

and obtain the desired result

−2Re


p

 = Σ

+ Σ Σ + Σ Σ + higher orders (5.19)

which represents all possible cuts through the two-point function up to n + 1 loops.

Therefore, the resummation trick tells us again that we can directly apply the extended

cutting rules to the self-energy parts and this is what was to be proved.
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6.1. Motivation

It is believed that our world is fully described by four fundamental forces acting be-

tween fundamental particles, leptons and quarks. These forces have in common that

they are governed by an invariance. Limiting ourselves to electromagnetic phenom-

ena, the Maxwell equations describe our macroscopic world with great success. The

corresponding field theory is given by the following Lagrangian

L = −1

4
FµνF

µν + jµA
µ,

where Fµν = ∂µAν − ∂νAµ is called the field strength tensor and jµ is an electromag-

netic conserved current (∂µj
µ = 0). The underlying invariance is the so-called gauge

invariance, i.e. the EOM stay the same under gauge transformations

Aµ → A′
µ

= Aµ + ∂µχ.

This invariance expresses the presence of unphysical degrees of freedom which do not

enter the EOM. Fixing the gauge explains that the photon field has only two degrees of

freedom, namely the transversal modes. The quantum version of the Maxwell equations

is known as QED, and one of the most famous predictions of QED is the g factor of the

electron. Todays precision measurements reach far beyond QED, and corrections from

weak and strong force are essential. The principle of gauge invariance also applies to

the weak and strong force which differ from QED, in particular, in their non-Abelian

gauge group. For instance, the non-Abelian character plays a crucial role in Quantum

Chromodynamics (QCD) and asymptotic freedom. The GSW theory combines QED

and the weak force to the electroweak interaction by the gauge group SU(2) × U(1).

The representations of particles in the in the GSW theory make it difficult to introduce

masses without violating gauge invariance. The Higgs mechanism was proposed, solving

this problem and giving not only individual masses to all fermions, but also predicting

mass relations for the gauge bosons. In fact, there are many reasons to study gauge

theories, and the next big step is the unification of all these theories with general rela-
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tivity where, roughly speaking, the diffeomorphism invariance takes on the role of gauge

invariance.

6.2. Construction of Gauge Invariant Lagrangians

In this section we give a short introduction to non-Abelian gauge theories. Non-Abelian

gauge theories are characterized by symmetry groups where the fields are in a given rep-

resentation transforming according to the rules of that specific group. A representation

of a group is a homomorphism from the group to the general linear group (GL(V )) on

a vector space V . More precisely, a representation is a map [Geo99]

ρ : G→ GL(V ) such that ρ(g1g2) = ρ(g1)ρ(g2), for all g1, g2 ∈ G.

On the level of a field theory the Lagrangians are constructed to be invariant under

group actions which is then called an internal symmetry. Given a field multiplet φi, i =

1, . . . , N , we define the group action of an element U ∈ G as

φi → φ′i =
∑
j

Rij(U)φj ,

where R a suited matrix representation matching to the dimension of φ. Many groups are

possible candidates for model building. For instance, of special interest are the special

unitary groups which in the defining representation are given by unitary N×N matrices

with determinant one. As example take the SU(2) in the defining representation which

is given by all 2× 2 unitary matrices

SU(2) =

{(
α −β
β α

)
: α, β ∈ C, |α|2 + |β|2 = 1

}
.

An important concept is the Lie algebra which represents the algebraic relations of

infinitesimal group transformations. Any element U ∈ SU(2) can be written as expo-

nential

R(U) = eiR(ta)αa , a = 1, 2, 3

where R(ta) is the fundamental representation of the generators. These generators

satisfy a Lie Algebra g, i.e.

• bilinearity: [α a+ β b, c] = α [a, c] + β [b, c],

• antisymmetry: [a, b] = −[b, a],

• Jacobi identity: [a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0.
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where [·, ·] : g×g→ g is called the Lie bracket. A Lie Algebra is closed by definition and

is fully determined by the so-called structure constants fabc which satisfy the following

relation

[ta, tb] =
∑
c

ifabct
c. (6.1)

In view of quantum anomalies the symmetric structure constants dabc play an essential

role. They can be defined by the anticommutator. For SU(2) dabc vanishes for all a, b

and c.

Example 6.1. Consider the generators of SU(2) which form the Lie Algebra su(2).

From the defining representation we obtain ta = σa

2 , a = 1, 2, 3 and fabc = εabc where

σa are the Pauli matrices and ε is the Levi-Civita symbol. Given a SU(2) doublet

φi, i = 1, 2, the matching representation for the gauge transformation is given by the

defining representation, and the transformation rule reads φ→ φ′ = eiσ
a

2
αaφ.

As in this example, we proceed in this work with the following convention for the nor-

malization of the generators

Tr[tatb] =
1

2
δab. (6.2)

From gauge invariance to local gauge invariance

From experimental side the Maxwell-Dirac equation has been confirmed to be a valid

theory, explaining the interaction of electrons to photons. The inhomogeneous Maxwell

equation is coupled to the Dirac source

∂µF
µν = ψ̄γνψ.

It is possible to motivate this result by requiring the invariance of the Lagrangian under

local gauge transformations. The Dirac equation is already invariant under U(1) and by

Noether’s theorem there is a conserved charge - the electric charge. Going over to local

gauge transformations α → α(x) does no longer leave the Dirac Lagrangian invariant.

That is where the covariant derivatives comes in. The usual derivative is replaced by

the covariant one which transforms under local gauge transformations as follows

∂µφ(x)→ U−1(α(x))∂µU(α(x))φ(x) = ∂µφ(x) + U−1(α(x)) (∂µU(α(x)))φ(x),

69
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where we dropped the R, i.e. U stands for a suited representation R(U) matching the

dimension of φ(x). The corresponding covariant derivative is defined as

Dµ := ∂µ − iAµ (6.3)

In this way the kinetic part can be made invariant under local gauge transformations.

More precisely, the second part in (6.3) lives in the Lie algebra and can be canceled by a

Lie-algebra-valued field where one chooses the gauge transformation of Aµ such that

Aµ → U(α(x))AµU(α(x))−1 + iU(α(x))
(
∂µU

−1(α(x))
)
⇒ Dµ → U−1DµU. (6.4)

The local gauge invariance can be regarded as a way of introducing an interaction

between gauge fields and matter fields, but in a controlled way. By this we mean that

the interaction results from an invariance - the local gauge invariance which turns out

to have very nice properties when it comes to quantum theories.
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Broken Gauge Theories

7.1. Faddeev-Popov Quantization

Defining a perturbative QFT via (2.8) does not work out for gauge theories where the

problem is that the gauge-field propagator is undefined unless the gauge is fixed. As has

been shown by Faddeev and Popov [FP67], fixing the gauge must be compensated by a

term which would, if missing, imply gauge dependence of the theory. The result for a

gauge invariant quantization reads

Z(A,χ) =

∫
DADχ δ(F (A)− Φ)det

(
δF

δα

)
exp

(
i

∫
d4x L(A,χ)

)
.

Here, F (A) denotes a gauge-fixing function of the gauge-field A which is set to be equal

to Φ, and α is the parameter of the gauge transformation. Φ is arbitrary, and wlog

the generating functional is integrated over a Gaussian weight e−
1
2

Φ2
. Re-expressing the

appearing determinant by a Gaussian Grassmann-valued path integral one arrives at

Z →
∫
DūDuDADχ exp

(
i

∫
d4x L − 1

2
F 2 + ū

δF

δα
u

)
. (7.1)

Thus, ghosts u, ū are necessary to guarantee gauge independence, but may be neglected

if they decouple from the theory, though, this is not the case for non-Abelian gauge

theories. We note that the gauge transformation δαF = δF
δαα is going to be replaced by

a BRST variation δF
δαu = δBF .

7.2. Spontaneous Symmetry Breaking and the Higgs

Mechanism

The validity of the LSZ reduction formula (2.11) relies on the vanishing of vevs of single

fields. The Higgs potential is an example for a potential which exhibits a non-vanishing

vev. In this case the field cannot be interpreted as a physical field and one has to
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7. Gauge Dependence in Spontaneously Broken Gauge Theories

reparametrize the field around the vev to identify the real physical field [EB64; Hig64].

If there is no unique vev, we are free to choose a vev and the symmetry is broken.

In the following section we discuss an SU(2) Higgs model coupled to gauge fields giving

them masses via the Higgs mechanism. Our main concern is to investigate the underlying

quantum symmetry. Based on gauge invariance, we construct the BRST transformations

which will then be used later on. Besides that, we discuss the rigid symmetry of the

model which is just as important as the BRST invariance in view of renormalizability.

7.2.1. SU(2) Higgs Model

Consider a Higgs doublet ϕi transforming as fundamental representation of SU(2). We

sketch a calculation of an isomorphism, namely SU(2) × SU(2) ∼= SO(4), and the trick

is a simple parametrization where the components of the doublets are expanded in the

basis of Pauli spin matrices which, with a closer look, reveals the connection. The

statement and several steps of the calculation have been taken from [Van10]. The SO(4)

appears in all invariant complex doublet products such as ϕ2, ϕ4 and ∂µϕ∂
µϕ. Coupling

the Higgs to gauge-fields requires a covariant derivative and it turns out that only one

of the two SU(2) can be promoted to a local invariance. On the other hand, the rigid

SO(4) symmetry is preserved and plays a crucial role for the proof of renormalization.

Consider only the kinetic part as the same statement follows trivially for the potential.

The first step is a suited parametrization of the doublet

ϕ =

(
σ̃ + iχ3

iχ1 − χ2

)
=
(
σ̃σ0 + iχ · σ

)
·

(
1

0

)
, σ0 = 12×2

The Higgs potential reads V (ϕ) = µ2ϕ2 + λϕ4 and for values of µ2 < 0 the potential

implies symmetry breaking. There are infinite possible choices for a vev and a common

choice is 〈σ̃〉 = v,
〈
χi
〉

= 0 which is equivalent to

ϕ =
(
(v + σ)σ0 + iχ · σ

)
·

(
1

0

)
, 〈σ〉 = 0,

〈
χi
〉

= 0, (7.2)

where we have identified possible candidates for physical fields, namely σ and χi. The

Goldstone theorem [GSW62] states that for every broken continuous symmetry there is

a Goldstone boson. In our case all generators break the symmetry ta 〈ϕ〉 6= 0 ∀a and it

turns out that the χs are massless would-be Goldstone bosons giving the gauge-fields

A mass.

The Higgs field is coupled to the gauge bosons via the covariant derivative (6.3) and

we replace the kinetic part as follows ∂µϕ∂
µϕ → DµϕD

µϕ. We expand the covariant
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7.2. Spontaneous Symmetry Breaking and the Higgs Mechanism

derivative and collect the terms in front of the Pauli matrices and the one. Using the

representation (7.2), we obtain in a first step

Dµ(v + σ + iχ · σ) =

Dµσ:=︷ ︸︸ ︷
∂µσ +

g

2
Aµ · χ+iσ ·

Dµχ:=︷ ︸︸ ︷(
∂µχ−

g

2
A(v + σ) +

g

2
(Aµ × χ)

)
,

and it follows that

⇒ Dµϕ = (Dµσ + iσ ·Dµχ) ·

(
1

0

)
.

Since Dµσ = (Dµσ)∗ and Dµχ = (Dµχ)∗ the kinetic part is easily evaluated using

properties of the spin algebra1

(Dµϕ)†Dµϕ = sT ·
[
(Dµσ)2 + (Dµχ)2

]
σ0 · s, s =

(
1

0

)
. (7.3)

The form of (7.3) reveals a redundancy in the choice of the symmetry vector and s can

be chosen arbitrarily provided that it is appropriately normalized. Consequently, we

can rewrite (7.3) by the trace

(Dµϕ)†Dµϕ =
1

2
Tr
[
(DµΦ)† (DµΦ)

]
, (7.4)

where we set Φ = (v+σ)σ0 +iχ ·σ. The representation makes the isomorphism obvious.

We have the usual SU(2) invariance ϕ → U(α)ϕ which corresponds to the left action

of U(α) on Φ, i.e. UL : Φ → U(α)Φ. On the other hand, we can transform Φ from

the right UR : Φ → ΦU(α). UL, UR are inequivalent and only UL can be promoted to

a non-local gauge transformation U(α(x)) if we demand that the covariant derivative

transforms in the adjoint of SU(2). The local invariance is checked explicitly. Given a

gauge-field Aµ the covariant derivative Dµ = ∂µ − igAµ transforms according to (6.4),

therefore

UL : (Dµϕ)†Dµϕ→ 1

2
Tr
[(
UDµU

−1UΦ
)†
UDµU

−1UΦ
]

=
1

2

[
(DµΦ)† U †UDµΦ

]
= (Dµϕ)†Dµϕ.

Since the transformation rule for Dµ is fixed, a local UR transformation does not leave

(7.4) invariant. Nevertheless, UR is a rigid invariance and according to the isomorphism,

1 (a · σ)(b · σ) = (a · b) I + i(a× b) · σ,
[
σ, σ0

]
= 0.
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7. Gauge Dependence in Spontaneously Broken Gauge Theories

the full SO(4) rigid invariance can be written as

U(α1,α2) : Φ→ U(α1)ΦU(α2), (α1,α2) ∈ R6

DµϕD
µϕ→ DµϕD

µϕ. (7.5)

From the structure in (7.3) it is clear that an SO(4) rotation of (Dµσ,Dµχ) ∈ R4 leaves

the Lagrangian invariant. To complete the isomorphism one would have to show that

there is a bijective map between the six angles of SO(4) and (α1,α2).

We come back to rigid symmetry which plays an important role in sections 7.5.5 where

we construct a basis of integrated local insertions which must be invariant under rigid

SO(4). The calculation is dramatically simplified by demanding a necessary condition

for SO(4) invariance instead of requiring SO(4) invariance from the beginning. The trick

we propose is to transform Φ in the adjoint representation of SU(2):

Φ→ U(α)ΦU(α)−1, i.e. α2 = −α1, (7.6)

which obviously leaves (7.4) invariant. Translating this transformation to σ,χ, it follows

that σ does not transform while χ transforms under the adjoint representation which

makes totally sense because χ is Lie-algebra-valued. How does this help us? All the

fields transform similar, except for the Higgs σ which transforms trivially. Further, we

know how to construct all invariant tensors in this case. Let TαR denote Lie-algebra-

valued fields, for instance, a gauge-field Aaµ or a would-be Goldstone boson χa, i.e.

TR = (A,χ, . . .), then invariant tensors Mα1...αn,m read

Mα1...αn,m = σm Tr [Tα1 . . . Tαn ] , (7.7)

where the invariance follows from the transformation rules for the adjoint representation,

i.e. TαR → UαβA T βR = URT
α
RU
−1
R . We make use of the fact that (7.7) are all possible

invariant tensors, but we do not proof this statement.

From a practical point of view it is useful to formulate symmetries in functional form. To

this end, consider the transformation rule of the gauge-field under a local infinitesimal

gauge transformation (6.4). Setting α(x) = α, one obtains the rigid transformation

rule

Aµ(x)→ Aµ(x) + i [α,Aµ(x)]

which is non-trivial in the case of non-Abelian gauge groups. Since α is arbitrary, the

rigid transformation can also be written as

δarig = i [ta, ◦] (7.8)
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7.2. Spontaneous Symmetry Breaking and the Higgs Mechanism

Thus, αaδ
a
rigAµ(x) reproduces the desired result. For more than one field one must make

sure that the transformation acts on the field it is supposed to. This can be achieved

by a functional derivative. Let W denote the rigid invariance operator

W = i

∫
d4x

[
Aµ,

δ

δAµ

]
:= i

∫
d4x [Aµ, t

a]
δ

δAaµ
, (7.9)

where the i is convention. One verifies that W aAbµ yields the result corresponding to

(δaAµ)b. The generalization to more Lie-algebra-valued fields is straightforward. Let ∆

be part of the basis of integrated local insertions. Rigid invariance means W∆ = 0 and

the general solution is given by (7.7). This concludes the part of rigid invariance, and

we give the general form of W in section 7.5.5.

Finally, we derive the infinitesimal non-Abelian gauge transformations which are needed

to construct the corresponding BRST transformations (see section 7.3). Consider

UL : Φ→ U(α(x))Φ =
(
σ0 + iα(x) · σ

2

)
Φ +O(α2)

= Φ + δαΦ. (7.10)

We plug in the explicit form of Φ in (7.10) and we collect all terms proportional to σ0,σ.

Defining

δαv := 0, δασ := −1

2
gα · χ, δαχ :=

g

2
((v + σ)α− (α× χ)) ,

we have that δαΦ = (δασ)σ0 + (δαχ) · σ.

7.2.2. Mixing Fields and the Rξ Gauges

Our construction of the theory involves mixing of fields which follows from the kinetic

part of φ (7.4). To see this, consider (7.3) which is simpler to derive vertices. In (Dµχ)2

we encounter after partial integration

g

2
v (∂µAµ)χ. (7.11)

The mixing is not a problem, but unwanted and it is well-known how to deal with it.

Within the Rξ gauges (’t Hooft gauges [Hoo71b; Hoo71a]) we can choose a linear gauge-

fixing function F which eliminates any kind of field mixing. Given the gauge-fixing

Lagrangian Lfix = 1
2γabF

aF b (7.1), we choose

γab =
1

ξ
δab, F = (−∂µAµ +

1

2
gξvχ).
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7. Gauge Dependence in Spontaneously Broken Gauge Theories

From Lfix we obtain, apart from other vertices, a mixing field Lfix ⊃ −1
2gv (∂µAµ) · χ

which exactly cancels the mixing field (7.11).

7.3. BRST Transformation

The physics should not depend on different gauges and as a consequence of the fixing

of the gauge one has to introduce ghost fields. However, explicit gauge invariance is

violated as one can verify by direct computation. Further, it is not immediately clear

that the Faddeev-Popov quantization leads to a physical S matrix and the question of

unitarity should be revisited. Thereby related, there should be a mechanism relating

non-physical fields such as the χs to non-physical degree of freedom (dof) of particles.

This connection is given by the BRST invariance [BRS74; Tyu75] which is the extension

of gauge invariance for non-Abelian gauge theories.

We extend gauge transformations δ by BRST transformations δB

δB◦ = [QBRST, ◦]± ,

where QBRST is the BRST charge and [ , ]± is the super-bracket. The ± indicates that

the transformation δB is Grassmann-valued which originates from the fact that QBRST

has ghost-charge +1. Depending on whether δB acts on fermions or bosons, the bracket

[ , ]± is either commutative or anticommutative, respectively. Since we will not use the

explicit expression of QBRST we only mention the graded Leibniz rule

δB (AB) = (δBA)B + (−1)|A|AδBB, (7.12)

which follows from the rules of the super-bracket and |A| = 1(0) if Grassmann-valued

(not Grassmann-valued). If we know the action of δB on elementary fields, we can derive

the action of δB on products of fields with the help of (7.12). The usual construction is

as follows. One replaces the gauge parameter in the gauge transformation by a ghost-

field, changing the transformations to global, but non-linear ones. In the second step

one requires BRST invariance of the full Lagrangian under the constraint that δB is

nilpotent, i.e. δ2
B = 0. As we will show, this fixes the BRST variation of ghost and

anti-ghost fields. For the gauge and matter fields we obtain

δαAµ = (Dµα)→ δBA
a
µ := (Dµu)a ,

δασ = −1

2
gα · χ→ δBσ := −1

2
gu · χ,

δαχ =
g

2
((v + σ)α− (α× χ))→ δBχ :=

g

2
((v + σ)u− (u× χ)) .
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7.3. BRST Transformation

7.3.1. Gauge-Fixing and Ghost Lagrangian

The BRST transformations are more restrictive than the usual gauge transformations

in the sense that gauge invariant parts are BRST invariant

δB

(
(Dµφ)†Dµφ

)
= 0, δB (FµνFµν) = 0,

but we further require that the whole action is invariant under BRST variation. Ap-

plying the Leibniz rule (7.12) to the gauge-fixing yields δBLfix = γabF
aδBF

b 6= 0 and

BRST invariance requires δBLfix = −δBLghost. From Faddeev-Popov quantization (see

section 7.1) follows that Lghost = −ūaδBF
a. Requiring BRST nilpotency leads us to the

following ansatz

δBū
a = γabF

b. (7.13)

In case δ2
BF

a = 0 we have succeeded and as promised, the requirement of nilpotency

fixes the BRST transformation of the ghost field δBu
a as discussed below. Actually,

the definition (7.13) implies breaking of nilpotency of the anti-ghost field which we will

simply accept for the moment, then, with the help of auxiliary fields, we shall restore

nilpotency later.

Given the Rξ gauges, the explicit form of δBF reads

δBF = ∂µδBAµ −
1

2
gvξδBχ = ∂µDµu−

1

4
g2ξv (u(v + σ) + i [u,χ]) .

We need the nilpotency on F, but this is equivalent to the nilpotency on A and χ.

Yet, we have not defined the BRST variation of ghost fields and we choose it such that

nilpotency is guaranteed. This is achieved for

δBu =
i

2
{u,u} ⇒ δBu

a = −1

2
εabcu

buc. (7.14)

Proof. We show that δ2
Bχ, δ

2
BAµ = 0. Consider δ2

Bχ first.

4

g
δ2

Bχ = 2δB (u(v + σ)− (u× χ))

= − (u× u) (v + σ) + u (u · χ) + ((u× u)× χ) + (v + σ) (u× u)− (u× (u× χ))

Making use of the following vector identities (u× u)×χ = 2 (χ · u) u and u×(u× χ) =

(u · χ) u, where one has to pay attention to the Grassmannian character of u, we obtain

4

g
δ2

Bχ = u (u · χ) + 2 (χ · u) u− (u · χ) u = 0.
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The statement for δ2
BAµ follows by direct computation

δ2
BA

a
µ = −1

2
∂µ (u× u) +

1

2
(u× u)×A + u× (∂µu)− u× (u×A) = 0.

For the case where structure constants are not given by the Levi-Civita symbol, the

BRST variation of the ghost is still given by the super bracket (7.14). Actually, it is

possible to give a more general prove of BRST invariance for simple Lie groups which

is based on the super Jacobi identity instead of our vector identities.

7.3.2. The SU(2) Higgs Model Summarized

In the last sections we introduced non-Abelian gauge theories and SSB. To sum every-

thing up, the model is described by the total Lagrangian

L =LYM + Lfix + Lghost + Lmat

Besides the gauge LYM and matter fields Lmat, we additionally have ghosts Lghost and

the gauge-fixing Lfix which are necessary for self-consistent QFT and the individual

parts are taken from the previous sections

LYM =− 1

2
Tr [FµνF

µν ] , (7.15)

Lfix =
2

ξ
Tr
[
F2
]

=
2

ξ
Tr

[(
−∂µAµ +

1

2
gξvχ

)2
]
, (7.16)

Lghost =2 Tr

[
ū

(
∂µDµu−

1

4
g2ξv (u(v + σ) + i [u,χ])

)]
, (7.17)

Lmat = (Dµϕ)†Dµϕ− V (ϕ†ϕ). (7.18)

7.4. BRST Nilpotency, Extended BRST Invariance and

the Nielsen Identities

We mentioned that the BRST variation is yet not nilpotent because of δ2
Bū = 1

αδBF 6= 0.

With regard to unitarity this is no problem because only nilpotency on physical fields

is required, but nevertheless it is possible to restore nilpotency and we need this step

for a proper derivation of the extended BRST transformations. To this end, we express
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the gauge-fixing Lagrangian Lfix as

Lfix = αTr [bb] + 2 Tr [Fb] ,

which can be seen by simply integrating out the fields b and using Gb
ab = 1

αδab for the

b propagator. The field b, having no physical relevance, is an auxiliary fields and to

recover the BRST invariance we define the following transformation rules under BRST

variation

δBb = 0, δBū = b, (7.19)

but this time we have, in contrast to (7.13), nilpotency on the anti-ghost field and we

arrived at what we wanted to show, namely

δ2
B{u; ū; A; b;σ;χ} = 0 ⇒ δ2

B = 0. (7.20)

7.4.1. Extended BRST Invariance

The Nielsen Identities (NI) were discovered by Nielsen [Nie75] when analyzing the ef-

fective potential. He paved the way for investigating the validity of what is thought of

the most fundamental property of the SM, the gauge invariance. The set of identities

are expressed as extended BRST transformations or extended ST identities. They are

very useful to prove gauge (in)dependence of quantities, for instance, with the help of

the NI one can show the gauge independence of the physical mass [GG00; BLS95], the

gauge independence of the phenomenon of SSB [Nie75; DFP99] or even the gauge inde-

pendence of the S matrix [Kum01], therefore, serving for verifying whether quantities

may serve as observables.

The NI involve new interaction terms which do not show up in physical processes. These

additional contributions induce unphysical effects and the NI should be seen as a tool

rather than a fundamental symmetry.

The first part is devoted to give a proper introduction and derivation of the NI. We

follow reference [DFP99] giving the proof that the NI can be implemented for the case

of arbitrary Rξ gauges. In the second part we show that the renormalization can be

carried out where the ST operator is replaced by the extended one and we show that

divergences occurring in physical amplitudes can be absorbed by appropriate counter

terms.

The whole idea behind the extended BRST transformation is the observation that trans-

79



7. Gauge Dependence in Spontaneously Broken Gauge Theories

formations like

L → L+ χub, (7.21)

do not change the physics. Here, u is a ghost field, χ a Grassmann-valued parameter and

b a scalar field. The transformation (7.21) implies a transformation of the generating

functional Z[j]→ Zχ[j]. Since χ is Grassmann-valued, the expansion

Zχ[j] = Z[j] + χ
∂

∂χ
Zχ[j]

∣∣∣∣
χ=0

is no approximation. Physical amplitudes are free of unphysical asymptotic fields which

in the path integral sense means that unphysical fields can be integrated out. Excluding

asymptotic ghosts implies the vanishing of the χ-dependent part of Zχ, thus Z = Zχ

up to unphysical amplitudes. As a matter of fact, the statement follows from ghost

conservation, i.e. # ghosts in |in〉 states equals # ghosts in 〈out| states. We proof this

statement and show that

χ
∂

∂χ
Zχ[j]

∣∣∣∣
χ=0

=

∫
D[φ]

(
iχ

∫
dx u(x)b(x)

)
eiS ?

= 0. (7.22)

As already mentioned, the proof follows simply by integrating out the ghost fields which

is a special case of ghost-charge conservation. Consider the theory without having

performed (7.21). Coupling sources j, j̄ to the ghost fields and integrating them out

yields ∫
D[u]D[ū] eiŜ+i

∫
d4x ū Ô u+j̄u+ūj∫

D[u]D[ū] eiŜ+i
∫

d4x ū Ô u
= eiS̃+i

∫
d4x j̄ Ô−1 j ,

where we made use of the fact that in the usual action ghosts appear only as a ghost

and anti-ghost pair. S̃ denotes the action without any ghost parts. In the next step we

differentiate the lhs with respect to j̄ and put j, j̄ to zero. The rhs vanishes∫
D[u]D[ū] u eiS∫
D[u]D[ū] eiS

= Ô−1j eiS̃+
∫

d4x j̄ Ô−1 j
∣∣∣
j,j̄=0

= 0,

and consequently equation (7.22) is proven and we have shown that the transformation

(7.21) does not alter physical amplitudes.

A very natural way of introducing the extended BRST transformation, which also works

out of the box when SSB is present, is to simply require nilpotency under extended

BRST transformation, but keeping the BRST transformation rules for the fields. A

non-trivial change of the transformation rule of course implies a change of the action.

Besides nilpotency, one requires invariance of the so-obtained transformed action under
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extended BRST transformation. It will be shown that the physical content is untouched

and that the difference between both theories is built in the style of (7.21). Following

reference [DFP99], we rewrite the sum of gauge-fixing and ghost Lagrangian as a BRST

variation

Lghost + Lfix = αTr[b2]− 2 Tr[ūδBF] + 2 Tr[Fb]

= δB Tr [αūb + 2ūF] . (7.23)

This result implies δB (Lghost + Lfix) = 0 provided δB is nilpotent, (7.20), which we

prove below (proposition 7.1). We notice that the gauge dependence of the Lagrangian

is given by a BRST transformation

∂

∂α
L = δB Tr[ūb],

∂

∂ξ
L = 2vg δB Tr[ūχ]. (7.24)

Physical states are invariant under δB and the gauge dependence of the Lagrangian is

proportional to δB indicating the unphysical nature of gauge dependence. The fact that

the gauge dependence is only present in Lghost +Lfix (7.24) and that this term is a BRST

variation (7.23), allows to define gauge-parameter transformations while maintaining

(extended) BRST invariance. In this sense, let us define a new set of parameters by the

following rules2

δBEα = β, δBEβ = 0,

δBEξ = η, δBEη = 0, (7.25)

where β, η are Grassmann-valued parameters (or global ghosts). The transformation

rules for gauge-parameters α, ξ and partners χ, η preserve nilpotency. Next we define a

new Lagrangian Lβη which differs from L by the replacement

δB Tr [αūb + 2ūF]→ δBE Tr [αūb + 2ūF] ,

and we claim that the physics does not change. First we prove that Lβη is extended

BRST invariant which follows from extended BRST nilpotency

δ2
BE{u; ū; A; b;χ;σ;α;β; ξ; η} = 0. (7.26)

Proposition 7.1. Let A,B be fields with grading |A| , |B|, respectively, i.e. AB =

(−1)|A||B|BA. Further, let δ2
BE{A;B} = 0. Then all polynomials of these fields are

nilpotent δ2
BE{AA;AB;BA;AA; . . .} = 0.

2Pairs of parameters/fields which are related via BRST variation as in (7.25) are known in the literature
as BRST doublets.
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Proof. It is enough to show that δ2
BE (AB) = 0

δBE (AB) = (δBEA)B + (−1)|A|A (δBEB) ,

and

δ2
BE (AB) =

(
δ2

BEA
)
B +A

(
δ2

BEB
)

+ (−1)|A|+1 (δBEA) (δBEB) + (−1)|A| (δBEA) (δBEB)

=
(
δ2

BEA
)
B +A

(
δ2

BEB
)

Therefore δ2
BE{A;B} = 0 ⇒ δ2

BE (AB) = δ2
BE (BA) = 0 and the statement for higher

polynomials follows by induction.

The field content of LBE is nilpotent and therefore δ2
BE Tr [αūb− 2ūF ] = 0. Apart from

the ghost and gauge-fixing sector nothing has changed and because of gauge invariance

extended BRST invariance holds in this sector and in total we have shown δBELβη = 0.

Proposition 7.2. The Lagrangian Lβη has the same physical content as L.

Proof. The difference of both Lagrangians is given by

Lβη − L = Tr [(δBEα) ūb+ 2vg (δBEξ) ūχ]

= β Tr [ūb] + 2vgηTr [ūχ] (7.27)

and both contributions have the structure of (7.21). Again, we are not interested in

external ghosts and because of ghost-charge conservation we conclude that both contri-

butions (7.27) to the generating functional do not contribute to physical amplitudes.

There is one subtlety, namely one can construct a pathological example where individ-

ual contributions like (7.27), (7.21) do not contribute, but that the combination, i.e. a

higher-order effect, does. For instance, this is the case for L → Lα1α2 = L+α1ūb+α2ub.

To check this perform an expansion of Zα1α2 [j] (Lα1α2 as input Lagrangian) in α1 and

α2

Zα1α2 [j] = Z[j] + α1
∂

∂α1
Zα1α2 [j]

∣∣∣∣
α1,α2=0︸ ︷︷ ︸

=0

+ α2
∂

∂α2
Zα1α2 [j]

∣∣∣∣
α1,α2=0︸ ︷︷ ︸

=0

− α1α2
∂2

∂α1∂α2
Zα1α2 [j]

∣∣∣∣
α1,α2=0

.

Z is the generating functional of the former theory, the two terms in between vanish

because we restrict ourselves to physical amplitudes, but the last term is non-vanishing.
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To prevent such cases one must make sure that there are only ghosts or anti-ghosts in

(7.21), but no mixing which may lead to ghost-charge conservation by accident. In view

of the extended BRST invariance this cannot happen because the prescription (7.25)

always leads to anti-ghost fields as can be seen from (7.27).

Having clarified that both Lagrangians Lβη,L lead to the same physical amplitudes,

we observe that Lβη,L is not invariant under δB, δBE, respectively. Consequently, the

BRST variation may not leave L invariant to maintain the physical content and that

is the point where we get more information about the unphysical sector compared to

the usual ST identities, more precisely, we get information about gauge dependence of

n-point functions.

7.4.2. The Nielsen Identities

We derive the NI which express by a set of vertex identities the invariance of the theory

under extended BRST transformations. From the invariance of the generating functional

Zβη (Lβη as input Lagrangian) under BRST transformations δBZ
βη[j] = 0, we find the

infinitesimal version∫
D[φ]

∫
d4x

((
δBLβη

)
(x) +

∑
i

(−1)|ψi| (jiδBψi) (x)

)
eiSβη+i

∑
i

∫
d4x jiψi = 0,

where the fields are given by {ψi} = {Aµ,χ, σ,u, ū} and by definition δBj = 0 such as

|ji| = |ψi|. Evaluating the BRST transformation, we obtain

δBLβη = δB

(
Lβη − L

)
= δB (β Tr [ūb] + 2vgηTr [ūχ])

= −βδB Tr [ūb]− 2vgη δB Tr [ūχ] .

In the first line we used BRST invariance of L and from the first to the second line

(7.27). The BRST variation δBLβη is exactly the gauge dependence of the action (7.24)

and we replace it as follows by partial derivatives

δBZ
βη[j] =

∫
D[φ]

(
−β ∂

i∂α
− η ∂

i∂ξ
+

∫
d4x

∑
i

(−1)|ψi|jiδBψi

)
eiSβη+i

∑
i

∫
d4x jiψi

= 0.

The BRST variations of fields are non-linear and we cannot easily switch to the gener-

ating functional of connected Green’s functions. A possible solution to the problem is to
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couple the non-linear transformations δBφi to so-called anti-fields φ∗i where φi ∈ {ψi}

Zβη[j]→ Zβη[j, φ∗] =

∫
D[φ] eiSβη+i

∑
i

∫
d4x jiφi+i

∑
j

∫
d4x φ∗j δBφj .

In our case only the anti-ghost transformation δBū is linear in the fields (7.13) and we

have {φi} = {Aµ,χ, σ,u}. The quantum action must be real and has to have vanishing

ghost-charge. Therefore, the grading of the anti-fields are related via |φi| = |φ∗i | + 1.

Replacing δBφi by δ
iδφ∗i

, we obtain the extended ST identities [DFP99]

(
−β ∂

i∂α
− η ∂

i∂ξ
+

∫
d4x

(∑
i

ji(−1)|φi|
δ

iδφ∗i
− 2 Tr [jū (δBū)]

))
Zβη[j, φ∗] = 0.

(7.28)

We replace Z by Zc via Z = eiZc (2.12) which works out because there are no sec-

ond (functional) derivatives and we obtain formally the same result for the generating

functional of connected Green’s function. Then, we perform a Legendre transform with

respect to (wrt) all sources except for anti-fields

Γ = Zc −
∫

d4x
∑
i

jiψi,
δΓ

δψi
= −(−1)|ψi|ji,

δZc
δji

= ψi,

and we arrive at what is known as the NI for the vertex function

S(Γ) = T̃r

[∫
d4x

∑
i

δΓ

δφi

δΓ

δφ∗i
+ b

δΓ

δū

]
+ β

∂Γ

∂α
+ η

∂Γ

∂ξ
= 0, (7.29)

where {φi} = {Aµ,χ, σ,u} and

T̃r =

2 Tr φi = {Aµ,u,χ}

1 φi = σ

distinguishes between the cases whether the fields are Lie-algebra-valued or not. Our

convention for Lie-algebra-valued functional derivatives is simply δ
δAµ

= ta δ
δAaµ

which

explains the factor of 2 because of normalization (6.2).

7.5. Renormalizability

7.5.1. From the Classical Action to Quantum Corrections

The proof of renormalizability rests on showing that symmetries are respected at quan-

tum level. To simplify things we make use of several relations, some of them listed now
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and the rest given later. Besides the NI, there is the so-called (extended) ST operator

which significance will become clear when studying counter terms. The extended ST

operator is a functional and is defined as

SF = T̃r

[∑∫
d4x

δF

δφ∗
δ

δφ
+
δF

δφ

δ

δφ∗
+ b

δ

δū

]
+ β

∂

∂α
+ η

∂

∂ξ
.

SF does not coincide with the ST identity, i.e. SΓΓ 6= S(Γ), but is related to the ST

identities. The ST operator fulfills the following identities [PS95]

SFS(F ) = 0, ∀F and S2
F = 0, iff S(F ) = 0 (7.30)

We sketch the proof of the first identity which mainly relies on the proper treatment of

grading of fields and therefore is independent of the specific functional F . The difficult

part is when acting on the non-linear terms in Γ of S(Γ)

(
δΓ

δφi

δ

δφ∗i
+

δΓ

δφ∗i

δ

δφi

)
δΓ

δφj

δΓ

δφ∗j
+ i↔ j

x↔y
=
δΓ

δφi

 δ2Γ

δφ∗i δφj

δΓ

δφ∗j
♣

+
δ2Γ

δφ∗i δφ
∗
j

δΓ

δφj

 (7.31)

+
δΓ

δφ∗i

(
δ2Γ

δφiδφj

δΓ

δφ∗j
+

δ2Γ

δφiδφ∗j

δΓ

δφ∗j

)
(7.32)

+i↔ j
x↔y

(7.33)

where the x↔ y; i↔ j means that for every pair {(x, y), (i, j)} we encounter the same

object, but with exchanged coordinates and indices {(y, x), (j, i)}. This is true for x 6= y

and i 6= j and follows from the fact that the coordinates x, y are integrated out and the

indices i, j are summed. We now show that the four terms (7.31),(7.32) are canceled by

the interchanged counter parts (7.33). Consider ♣

δΓ

δφ∗i

δ2Γ

δφiδφj

δΓ

δφ∗j
+ i↔ j

x↔y
.

The gradings of fields φi and anti-fields φ∗i are related by |φi| = |φ∗i |+ 1 and the vertex

function has grading |Γ| = 0. Applying the grading rules yields

δ2Γ

δφiδφj

δΓ

δφ∗j
=(−1)|φ

∗
j ||φi| δΓ

δφ∗j

δ2Γ

δφiδφj
(7.34)

δΓ

δφ∗i

δΓ

δφ∗j
=(−1)|φ

∗
i ||φ∗j | δΓ

δφ∗j

δΓ

δφ∗i
(7.35)
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and we obtain

δΓ

δφ∗i

δ2Γ

δφiδφj

δΓ

δφ∗j

(7.34),(7.35)
= (−1)|φ

∗
j ||φi|+|φ∗i ||φ∗j | δΓ

δφ∗j

δΓ

δφ∗i

δ2Γ

δφiδφj

=(−1)|φ
∗
j ||φi|+|φ∗i ||φ∗j |+|φi||φj | δΓ

δφ∗j

δΓ

δφ∗i

δ2Γ

δφjδφi

=(−1)|φ
∗
j ||φi|+|φ∗i ||φ∗j |+|φ∗i ||φj |+|φi||φj | δΓ

δφ∗j

δ2Γ

δφjδφi

δΓ

δφ∗i

where in the second line we changed the order of the functional derivatives. The prefactor

is simplified by using |φi|
(∣∣∣φ∗j ∣∣∣+ |φj |

)
= |φi|, |φ∗i |

(∣∣∣φ∗j ∣∣∣+ |φj |
)

=|φ∗i | and |φi|+|φ∗i | = 1,

and the final result reads

δΓ

δφ∗i

δ2Γ

δφiδφj

δΓ

δφ∗j
= − δΓ

δφ∗j

δ2Γ

δφjδφi

δΓ

δφ∗i

which is what had to be shown.

The linear and non-linear cross terms in SΓS(Γ) are easily verified, for instance(
δΓ

δφi

δ

δφ∗i
+
δΓ

δφi

δ

δφ∗i

)
β
∂Γ

∂α
+ β

∂

∂α

δΓ

δφi

δΓ

δφ∗i
=

∂

∂α

δΓ

δφi

δΓ

δφ∗i
β + β

∂

∂α

δΓ

δφi

δΓ

δφ∗i

=
(

1 + (−1)|β|(|φi|+|φ∗i |)
)
β
∂

∂α

δΓ

δφi

δΓ

δφ∗i
= 0

where in the first line we used |α| = 0 and |φi| = |φ∗i | + 1 and the second line follows

from |β| = 1.

The proof for the second identity is similar but more difficult. One uses the same

properties and one then extracts S(F ) in S2
F wherefrom the second identity follows.

The second relation is nothing but nilpotency and can be interpreted as the analogue

to δB since the classical action of SS on fields equals the action of δB on those fields. SΓ

is more than just δB in the sense that it serves as a symmetry for a QFT, besides it can

also act on anti-fields which is not defined for δB.

7.5.2. The Gauge Dependence of Symmetric Insertions

This sections purpose is to simplify the functional dependence of the basis of integrated

symmetric insertions (see section 7.5.5). We start by taking care of the functional de-

pendence of counter terms on BRST doublets (7.25) or equally on the gauge parameter

closely following [PS85] and extending the arguments to more than one gauge parame-

ter.

• The problem consists of solving SΓ∆ = 0 where for the moment the interpretation
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of ∆ is irrelevant. Later we find that ∆ = Γn,div are the counter terms.

• From the QAP follows that the canonical dimension of ∆ is equal or smaller four

and ∆ is spanned by the space of integrated local functions [PS95] and we restrict

the case to vanishing Faddeev-Popov charge Qφπ = 0.

Since β, η are Grassmann-valued, the most general expression for ∆ is

∆ = β∆−,β + η∆−,η + ∆0 =: x ·∆− + ∆0,

where we defined

x =

(
β

η

)
, ∆− =

(
∆−,β

∆−,η

)
.

Remark 7.1. ∆ cannot have contributions proportional to βη because of rigid invari-

ance, ghost-charge and dimension (see table 7.1). Only external sources have negative

Qφπ except for the anti-ghost field ū. The only possible contribution is u∗βη satisfying

ghost-charge and dimension where u∗ is the anti-field of the ghost, but there is no non-

trivial rigidly invariant term of this form and Tr[u∗]βη = 0. Consequently, we do not

have such a contribution.

∆−,∆0 are independent of β, η, have canonical dimension four and ghost-charge −1 and

0, respectively.

The problem can be highly simplified by using nilpotency of the ST operator and the

fact that β, η are Grassmann-valued. Let S̄Γ denote a modified ST operator missing the

parts β∂α + η∂ξ. Applying the ST operator on ∆, we can write

SΓ∆ = −β
(
S̄Γ∆−.β − ∂α∆0

)
− η

(
S̄Γ∆−.η − ∂ξ∆0

)
− βη (∂ξ∆−,β − ∂α∆−,η) + S̄Γ∆0

!
= 0

S̄Γ does not generate contributions proportional to β, η and this way we know that the

factors in front of these parameters must be zero, since β, η are arbitrary. From the

terms linear in β, η we obtain

S̄Γ∆−,β = ∂α∆0

S̄Γ∆−,η = ∂ξ∆0

}
S̄Γ∆− = ∇∆0. (7.36)

From the term independent of β, η we obtain S̄Γ∆0 = 0 and the quadratic term yields

∂ξ∆−,β − ∂α∆−,η = 0⇔∇×2 ∆− = 0,
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where ×2 is the crossproduct in 2 dimensions. The rotation of ∆− vanishes which

implies the existence of a potential

∇×2 ∆− = 0⇒ ∃φ with ∆− = ∇φ (7.37)

Combining this result with (7.36) yields

0 = S̄Γ∆− −∇∆0 = ∇
(
S̄Γφ−∆0

)
S̄Γ is nilpotent and the general solution is

∆0 = S̄Γφ+ Λ0, with
∇Λ0 = 0

S̄ΓΛ0 = 0

}
⇒ SΓΛ0 = 0, (7.38)

where we used that SΓ = S̄Γ + x ·∇. Plugging in ∆ = x ·∆− + ∆0 the results for ∆−

(7.37) and ∆0 (7.38) yields

∆ = SΓφ+ Λ0. (7.39)

At first sight the result does not seem to be that enlightening since such a structure is

expected anyway, but now we know about the functions φ and Λ0. Λ0 is independent

of α, β, ξ, η and that the terms proportional to β, η are absent in φ.

7.5.3. The Antighost Equation

In this section we derive the so-called antighost equation which further simplifies the

functional dependence of symmetrical insertions and we go into the renormalization.

Besides the quantum symmetries one has to define a quantum version of the gauge fixing,

i.e. we need to define how the gauge fixing behaves beyond tree level. A common choice

is to demand that the gauge fixing does not renormalize which we assume throughout

this work. Given the vertex functional Γ, we demand that the gauge fixing does not

take any quantum corrections. More precisely, we demand that [DFP99]

δΓ

δb
= αb + F +

β

2
ū

is valid at any stage of the perturbative expansion. To proceed, it is advisable to separate

the gauge fixing from Γ and to go over to Γ̄ which is defined to be independent of b

Γ =: Γ̄ + Tr

[∫
d4x αb2 + 2bF + βūb + . . . (b independent)

]
, (7.40)
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where the dots indicate a term specified later. In view of renormalization (7.40) implies

the following relations (see (2.18) for conventions)

Zα = Z−1
b , Z

1
2
b = Z

1
2
A = Z

1
2
χZgZvZξ, ZβZ

1
2
u = Z

− 1
2

b ,

where we chose the convention to renormalize the anti-ghost as the ghost, i.e. ū0 =

Z
1
2
u ūR, u0 = Z

1
2
u uR. The ST identities and the rigid invariance are global symmetries.

From the ST identities and the gauge fixing (7.40) we derive the antighost equation (see

[MSS95] for pure Yang-Mills model) which is, in contrast to the previous symmetries, a

local symmetry. The antighost equation follows by taking the functional derivative of

the ST identities (7.29) wrt b. Consider the part SA,A∗(Γ) which is defined as the part

of S̄S̄ (see equation (7.29)) involving functional derivatives wrt to A and A∗

δ

δb(x)
SA,A∗(Γ) =

δ

δb(x)
2 Tr

∫
d4y

δΓ

δAµ(y)

δΓ

δA∗µ(y)
= ta2 Tr

∫
d4y

δ2Γ

δba(x)δAµ(y)

δΓ

δA∗µ(y)

= ta2 Tr

∫
d4y

δF a(x)

δAµ(y)

δΓ

δA∗µ(y)
= −ta2 Tr

∫
d4y ∂νx

δAaν(x)

δAµ(y)

δΓ

δA∗µ(y)

= −ta∂νx2 Tr

∫
d4y δ(x− y)δabtb

δΓ

δA∗µ(y)
= −∂νx

δΓ

δA∗µ(x)

where we used the explicit form of the gauge fixing (7.40). Similarly, one derives

δ

δb(x)
Sχ,χ∗(Γ) =

1

2
ξgv

δΓ

δχ∗
,

δ

δb(x)
Su,u∗(Γ) = 0,

δ

δb(x)
S ū(Γ) =

δΓ

δū
− βb

2
,

and for the part involving partial derivatives wrt α and ξ yields

δ

δb(x)
Sα,ξ(Γ) = βb +

1

2
ηgvχ.

Using S(Γ) = 0 and combining the previous results we obtain the antighost equation

for our SU(2) model

GΓ := −∂µ δΓ

δA∗µ
+

1

2
ξgv

δΓ

δχ∗
+
δΓ

δū
= −1

2
(βb + ηgvχ) .

In the next step we specify the missing pieces in (7.40). Define Γ̄ as

Γ− Γ̄ = Tr

[∫
d4x αb2 + 2bF + βūb + ηgvūχ

]
. (7.41)
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In this way the antighost equation can be transformed to a homogeneous functional

equation

GΓ̄ = 0.

The solution to such a functional differential equation is obtained by similar strategies

as in the case of partial differential equations. In our case we apply the same method as

for linear first-order partial differential equations. Since G is linear we can decompose

it as follows

G1(Γ̄) = 0, G1 := −∂µ δ

δA∗µ
+

δ

δū
,

G2(Γ̄) = 0, G2 :=
1

2
ξgv

δ

δχ∗
+

δ

δū
,

and the general solution is given by combining both solutions obtained from G1, G2.

From G1 we get the functional dependence Γ = Γ(ρ∗,µ1 , . . .) with ρ∗,µ1 = A∗,µ−∂µū since

G1ρ
∗,µ
1 = 0. G2 restricts Γ̄ = Γ̄(ρ∗,µ1 ,ρ∗2) with ρ∗2 = χ∗ − 1

2ξgvū and we have GΓ̄ = 0.

7.5.4. Combining the Antighost Equation and the Slavnov-Taylor

Identities

The antighost equation from the last section restricted the functional dependence of

the reduced vertex function Γ̄ on the fields A∗,χ∗ and ū to ρ∗1 and ρ∗2. To take full

advantage of this reduction we need to rewrite the ST identities in the new basis. With

the help of the definition (7.41) we give the ST identity for Γ̄ corresponding to (7.29).

The gauge parameter dependence transforms as

∂Γ

∂α
=
∂Γ̄

∂α
+ Tr

∫
b2,

∂Γ

∂ξ
=
∂Γ̄

∂ξ
+ vgTr

∫
bχ,

and the extra contributions on the rhs are canceled against the Γū term

Tr

∫
b
δΓ

δū
= Tr

∫
b
δΓ̄

δū
− Tr

∫ (
βb2 + vgηbχ

)
.

A new contribution can only enter from derivatives wrt Aµ and χ

δΓ

δAµ
=

δΓ̄

δAµ
+ ∂µb,

δΓ

δχ
=
δΓ̄

δχ
+

1

2
(gvηū + vξgb) .
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Collecting all terms we arrive at

S(Γ) = S̄(Γ̄) + T̃r

∫
b

(
−∂µ δΓ̄

δA∗µ
+

1

2
ξgv

δΓ̄

δχ∗
+
δΓ̄

δū

)
+ T̃r

∫
1

2
gvηū

δΓ̄

δχ∗
, (7.42)

with

S̄(Γ̄) = T̃r

∫ d4x
∑

φi∈{Aµ,u,χ,σ}

δΓ̄

δφi

δΓ̄

δφ∗i

+ β
∂Γ̄

∂α
+ η

∂Γ̄

∂ξ
. (7.43)

The equation in the parenthesis in (7.42) is the homogeneous antighost equation and

vanishes for Γ̄. In our last step we eliminate the last term on the rhs of (7.42) by going

over to

δ

δA∗,µ
→ δ

δρ∗,µ1

,
δ

δχ∗
→ δ

δρ∗2
,

Γ̄(. . . ,A∗,µ,χ∗, ū, . . .)→ Γ̄(. . . ,ρ∗,µ1 ,ρ∗2, . . .).

ρ∗2 depends on ξ and additionally we have to transform the variation wrt ξ

∂Γ̄(. . . ,χ∗, ū, ξ, . . .)

∂ξ
→ dΓ̄(. . . ,ρ∗,µ1 ,ρ∗2(χ, ū, ξ), ξ, . . .)

dξ
=
∂Γ̄

∂ξ
+ T̃r

∫
dρ∗2
dξ

δΓ̄

δρ∗2
.

Evaluating the last term we obtain

T̃r

∫
dρ∗2
dξ

δΓ̄

δρ∗2
= −1

2
gvT̃r

∫
ū
δΓ̄

δχ∗
,

and this result, multiplied with η from the left, cancels the previous term and we obtain

S̄(Γ̄(Aµ,χ, σ,u︸ ︷︷ ︸
{φi}

,ρ∗,µ1 ,ρ∗2, σ
∗,u∗︸ ︷︷ ︸

{φ∗i }

)) = 0.

S̄(Γ̄) is given by (7.43), but with {φ∗i } = {ρ∗,µ1 ,ρ∗2, σ
∗,u∗}.

7.5.5. The Slavnov-Taylor Operator and the Basis of Symmetric

Insertions

The symmetries introduced in the last sections restrict the divergences of our theory.

Assume our theory has been successfully renormalized in n − 1 loop-order and the
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induction begins at tree level

Γ0 = S,

Γren =
n−1∑
k=0

Γk is finite. (♠)

Using the claim ♠, the counter terms (divergences) at order n fulfill the ST identity

S̄S̄Γdiv = 0 which follows from collecting all terms of order n in S̄
(
Γ̄
)

= 03. The

counter terms can also be characterized otherwise - in fact, one speaks of symmetric

insertions. The QAP relates the change of a (renormalized) parameter in Γ to an

insertion λ∂λΓ = ∆λ · Γ, where ∆ has canonical dimension four and zero ghost-charge.

Let ε denote generically a variation of all parameters in our theory, then the QAP yields

Γε = Γ + ε∆ · Γ. A change in parameters does not spoil our symmetries, i.e. we still

have that S̄S̄Γε = 0 and consequently we derive S̄S̄∆ · Γ = 0 and we identify as possible

candidates ∆ · Γ ?
= Γdiv for invariant counter terms [PS85].

We follow the same strategy as in reference [PS85] in order to obtain the integrated basis

of local symmetric insertions, but applied to our SU(2) SSB model (See also appendix

of [MSS95] for a similar strategy).

Here is a good place for recapitulating what has been done in the last sections and

to explain what we investigate now. From our analysis leading to (7.39) we learned

that neither β nor η appear explicitly, but only in connection with the ST operator.

In section 7.5.3 we studied the consequences of having a non-renormalized gauge fixing

and BRST invariance, and the result has been expressed as a functional differential

equation restricting the functional dependence of the vertex function. In the previous

section 7.5.4 we combined all results and we found that for symmetric insertions one

only has to consider the reduced ST operator S̄ and the reduced anti-field dependence

{φ∗i } = {ρ∗,µ1 ,ρ∗2, σ
∗,u∗}. The linearized reduced ST operator therefore reads

S̄S̄ = T̃r

[∫
d4x

∑
i

φi∈{Aµ,χ,σ,u}
φ∗
i
∈{ρ∗,µ1 ,ρ∗2,σ

∗,u∗}

δS̄

δφi

δ

δφ∗i
+
δS̄

δφ∗i

δ

δφi

]
+ β

∂

∂α
+ η

∂

∂ξ
. (7.44)

S̄ is the classical solution to Γ̄, i.e. it equals the usual action S, but is missing the gauge

fixing and the extended BRST induced couplings (7.41), thus

S̄ = SYM + Smat + Sghost +
∑

φi∈{Aµ,χ,σ,u}
φ∗
i
∈{A∗,µ,χ∗,σ∗,u∗}

∫
d4x φ∗i δBφi

3The ST identities are non-linear, thus, expanding up to a given loop-order, the result can be written
as the ”linearized” ST operator S̄S̄ .
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Aµ χ σ, v ū u b ρ∗,µ1 ρ∗2 σ∗ u∗ α, ξ β, η g

Dimension D 1 1 1 2 0 2 3 3 3 4 0 0 0
Ghostcharge Qφπ 0 0 0 -1 1 0 -1 -1 -1 -2 0 1 0

Table 7.1.: The table shows the field content, the corresponding canonical dimensions D
and the ghost-chargeQφπ. The individual values for the dimension are obtained
by power counting. There is a convention (see [MSS95]) concerning the ghosts
because ghosts always appear as a pair.

and the individual actions are the spacetime integrated versions of (7.15), (7.17), (7.18).

In section 7.2.1 we discussed rigid invariance and we mentioned that it is easier not

to require SO(4) invariance (see equation (7.5)) from the beginning which led us to

a necessary condition for SO(4) invariance. Including the full field content, the rigid

invariance operator (not including SO(4) invariance, but (7.6)) reads

W = i

∫
d4x

([
Aµ,

δ

δAµ

]
+

[
ρ∗,µ1 ,

δ

δρ∗,µ1

]
+

+

[
χ,

δ

δχ

]
+

[
ρ∗2,

δ

δρ∗2

]
+

+

[
u,

δ

δu

]
+

+

[
u∗,

δ

δu∗

])
,

and structures annihilated by W are constructed in the way of (7.7).

We are now going to write down any integrated local Lorentz scalar ∆ respecting all

symmetries , i.e.

S̄S̄∆ = 0 BRST invariance and gauge fixing-condition

W∆ = 0 rigid invariance

Qφπ∆ = 0 vanishing Faddeev-Popov charge

D(∆) ≤ 4 Canonical dimension equal or less 4

and the idea is the following. We eliminate step by step field dependences in such an

order that the result does not interfere with further dependences. The order is crucial

as it will become clear. As a summary over fields, their canonical dimension and ghost-

charge, consider Table 7.1.

From now on any field ϕ or coupling g has to be understood as a renormalized field,

coupling in (n− 1)-loop order, i.e. ϕn−1
ren , g

n−1
ren , respectively. Recall the general solution

(7.39) ∆ = SSφ+ Λ0 and we start with φ. We need to list all possible integrated local
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composite field operators respecting the symmetries. φ has ghost-charge −1 because

SSφ has Qφπ = 0. Starting with the anti-field u∗, the only way to increase Qφπ is by

ghost fields u. Since u∗ has Qφπ = −2 (Table 7.1), we append one ghost fields u

φ = fu∗ Tr

∫
u∗u + u∗ independent.

For all the other anti-fields we proceed the same way. The left possibilities are combi-

nations with ρ1,ρ2, σ
∗:

φ = fu∗ Tr

∫
u∗u + fρ∗,µ1

Tr

∫
ρ∗,µ1 Aµ + fρ∗2 Tr

∫
ρ∗2χ + fσ∗σ

∫
σ∗σ + fσ∗v

∫
σ∗,

where ρ∗,µ1 can only be connected to Aµ because of Lorentz invariance and ρ∗2 is fixed

by rigid invariance4. The last contribution with σ∗ shall be understood in the way that

once the canonical dimension is four and once three. According to our discussion the

constants may depend on α, ξ.

Λ0 does not have to be a ST variation, but, clearly, we can take over the result for φ and

declare the proportionality constants to be independent of α, ξ and this contribution

turns out to be valid for Λ0. We now prove the statement that anti-fields in Λ0 do only

appear as a ST variation in the same way as in φ, but with gauge parameter independent

constants.

The strategy is to eliminate step by step the dependence of anti-fields starting with a

specific one which does not interfere with what is following. The order we choose is

highly important as it will become clear.

We start with the dependence of the ghost anti-field u∗. Since u∗ has dimension four

(Table 7.1), the only way to get vanishing Qφπ is to append two ghost fields u, i.e.

Λ0 ∝ Tr

∫
u∗uu + u∗ indep.

This contribution is rewritten as Tr
∫

u∗ {u,u} and appearing constants can be ab-

sorbed. The super bracket is then replaced by the BRST variation giving

Λ0 ∝ −Tr

∫
u∗δBu + u∗ indep. = S̄S̄ Tr

∫
u∗u + u∗ indep..

4σ, v are not Lie-algebra-valued which would be necessary to get a non-vanishing contraction with ρ∗2.
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The last step deserves some comments and intermediate steps. Applying the ST operator

yields

S̄S̄ Tr

∫
u∗u = 2 Tr

∫ (
δS̄

δu

δ

δu∗
+

δS̄

δu∗
δ

δu

)
Tr

∫
u∗u = Tr

∫
δS̄

δu
u + Tr

∫
δS̄

δu∗
u∗.

(7.45)

Since we are only interested in the u∗ dependence, we throw away anything which does

not involve u∗. The u∗ dependence can only enter via δS̄
δu , more precisely from the part

of the Lagrangian where we couple the anti-fields to the BRST variation of the fields

δS̄

δu
= ta

δ

δua
2 Tr

∫
u∗

i

2
{u,u} + u∗ indep.

= i2tau∗,cεcadu
d + u∗ indep.

The first contribution on the rhs of (7.45) yields

Tr

∫
δS̄

δu
u = −

∫
1

2
u∗,cεcadu

dua = −2 Tr

∫
u∗

i

2
{u,u}+ u∗ indep.

= −2 Tr

∫
u∗δBu + u∗ indep.

The second contribution simplifies to

Tr

∫
δS̄

δu∗
u∗ = Tr

∫
(δBu) u∗,

and in total we obtain S̄S̄ Tr
∫

u∗u = −Tr
∫

u∗δBu + u∗ independent. At this point it

is important that S̄S̄ [u∗ independent] stays u∗ independent, which is the case because

u∗ can only be induced by a derivative with respect to u which in turn follows from the

specific coupling of the anti-field u∗ to u (u∗ {u,u} ⊂ L). The derivative with respect

to u is coupled to the derivative with respect to u∗ via Tr
∫
δS̄
δu

δ
δu∗ ⊂ S̄S̄ , therefore, u∗

is only induced by itself.

The overall constant must be gauge-parameter independent (see section 7.5.2) and there-

fore the most general contribution to Λ0 in (7.39) involving u∗ is a ST variation5.

We go on with ρ∗,µ1 . Because of dimension, Qφπ, Lorentz and rigid invariance the most

general ansatz is

Λ0 = S̄S̄
[
f̃u∗ Tr

∫
u∗u

]
+ f̃ρ∗,µ1

Tr

∫
ρ∗,µ1 Fµ(A,u) + u∗,ρ∗,µ1 indep.,

5If the parameter were gauge dependent we could not pull SS in front.
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where Fµ is a linear combination of Aµu and ∂µu. We must solve the equation

S̄S̄ Tr
∫
ρ∗,µ1 Fµ(A,u) = 0 for F (notation from [PS85])

S̄S̄ Tr

∫
ρ∗,µ1 Fµ(A,u) = Tr

∫ [
δS̄

δAµ
Fµ − ρ∗,µ1 SS̄Fµ

]
(7.46)

We collect all contributions involving ρ∗,µ1 and we must be careful about not inducing

anti-fields from elsewhere, i.e. we need S̄S̄
[
ρ∗,µ1 indep.

]
= ρ∗,µ1 independent. We do

neither catch contributions involving u∗ since the u∗ contribution is a ST variation and

S̄2
S̄

= 0, nor do we catch contributions from u∗,ρ∗,µ1 independent terms6.

We need to extract the ρ∗,µ1 dependent part of δS̄
δAµ

δ

δAµ
2 Tr

∫
ρ∗,ν1 δBAν =

δ

δAµ
2 Tr

∫
ρ∗,ν1 Dνu =

δ

δAµ
2 Tr

∫
ρ∗,ν1 i [u,Aν ]

= i
δ

δAµ
2 Tr

∫ {
ρ∗,ν1 ,u

}
Aν = i

{
ρ∗,µ1 ,u

}
.

Inserting into (7.46) yields the ρ∗,µ1 dependent part

Tr

∫ [
δS̄

δAµ
Fµ − ρ∗,µ1 S̄S̄Fµ

]
= Tr

∫ [
i
{
ρ∗,µ1 ,u

}
Fµ − ρ∗,µ1 S̄S̄Fµ

]
+ ρ∗,µ1 indep.

= Tr

∫
ρ∗,µ1

[
i {u,Fµ} − S̄S̄Fµ

]
+ ρ∗,µ1 indep.,

and the problem reduces to solving the equation

Q̂Fµ = 0, with Q̂ = i [u, ◦]± − S̄S̄ ,

where the sign ± denotes the super bracket. This equation is easily solved with one

additional information, namely that Q̂ is nilpotent. This can be checked by direct

computation, but it follows from the nilpotency of the ST operator. The symmetries

restrict the general solution to

Fµ = ∂µu + const1 ×Aµu + const2 × uAµ.

[PS85] claim that there is only one solution and that due to nilpotency the solution is

given by Fµ = Q̂Aµ. An overall constant is irrelevant for this discussion, and one is

left with two independent (relative) constants, but only one equation and at first glance

there could be more than one solution. We take over this result and we give our proof

6S̄S̄ cannot induce terms proportional to ρ∗,µ1 when acting on something independent of u∗,ρ∗,µ1 ,
because ρ∗,µ1 appears in the Lagrangian only as ρ∗,µ1 δBAµ. Therefore, to induce ρ∗,µ1 a derivation
with respect to Aµ,u is necessary, but such terms do not show up since they are connected to
derivatives with respect to ρ∗,µ1 , u∗, respectively, and we act on something independent of that.
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below in remark (7.2). Consequently, the solution is again a ST variation

f̃ρ∗,µ1
Tr

∫
ρ∗,µ1 Fµ(A,u) = f̃ρ∗,µ1

Tr

∫
ρ∗,µ1 Q̂Aµ = S̄S̄

[
f̃ρ∗,µ1

Tr

∫
ρ∗,µ1 Aµ

]
+ ρ∗,µ1 indep.

In the last step we pulled Q̂ out of the trace and integral which is basically the same

step as in (7.46), but in the opposite direction.

Remark 7.2. We give the proof that Q̂F
!

= implies that the solution F lies in the Lie

algebra. To that end, consider the image of Q̂ which has the following form

Im
[
Q̂
]

= α′1+ β′at
a. (7.47)

Proof. (7.47) is true because 1, ta span a basis of 2 × 2 matrices. On the other hand

one observes that Q̂ preserves this structure, i.e.

Q̂ (α1 + βat
a) = α′1 + β′at

a,

Let g be the vector space spanned by t, i.e. g forms the su(2) Lie algebra and let g′ be

a vector space spanned by t and the one-element 1. From the definition of Q̂ it follows

that both vector spaces form an invariant subspace under the action of Q̂7, i.e.

Q̂ : g→ g,

Q̂ : g′ → g′. (7.48)

From Im
[
Q̂
]

= 0 we conclude that the coefficient in front of 1, i.e. α′ must vanish

independently of β′. This means iff α′ is non-vanishing then α must be zero. We apply

the statement to Fµ. Rewriting Fµ we obtain wlog

Fµ = ∂µu + const1 × [u,Aµ] + const2 × [u,Aµ]+

Clearly [u,Aµ] is not in the Lie algebra, but lives in g′. The relevant part in g′ is given

by Tr [uAµ]18. It is easily verified that α′ = Tr
[
Q̂ Tr [uAµ]1

]
6= 0:

{u,Tr [uAµ]1} = 0,

⇒ Q̂ Tr [uAµ]1 = Tr [(δBu) Aµ + u (δBAµ)]1

7The argument is that the Lie bracket closes and the same holds for the superbracket [◦; ◦]± which takes
into account Grassmann valued fields. Further, the ST variation SS̄ acting on fields is proportional
to the BRST variation and the BRST variation on Lie-algebra-valued fields lies again in the Lie
algebra.

8For su(2) we have {u,Aµ} = 2 Tr[uAµ]1. In the general case one would have to project out g, for
instance, by taking the trace.

97



7. Gauge Dependence in Spontaneously Broken Gauge Theories

and finally the non-vanishing of

Tr [(δBu) Aµ + u (δBAµ)] = Tr

[
i

2
{u,u}Aµ

]
+ Tr [uDµu]

= Tr

[
3i

2
{u,u}Aµ

]
+ Tr [u∂µu] 6= 0,

implies α = 0. Consequently, Fµ = ∂µu + const × [u,Aµ] is the most general solution

proving there is only one solution given by Fµ = Q̂Aµ.

We go on with the SSB sector starting with σ∗. Symmetries restrict the dependency

to

Λ0 = S̄S̄
[
f̃u∗ Tr

∫
u∗u + f̃ρ∗,µ1

Tr

∫
ρ∗,µ1 Aµ

]
− f̃σ∗ Tr

∫
σ∗uχ

+ u∗,ρ∗,µ1 , σ∗ indep.,

where the minus sign is just convenience. Making use of δBσ = −Tr[uχ] allows us to

rewrite the last term as

−f̃σ∗ Tr

∫
σ∗uχ = f̃σ∗ Tr

∫
σ∗δBσ = S̄S̄

[
f̃σ∗ Tr

∫
σ∗σ

]
+ u∗,ρ∗,µ1 , σ∗ indep.

In the last step we used that δS̄
δσ is indepedent of σ∗ and moreover that δS̄

δσ can only induce

ρ∗2 and neither u∗ nor ρ∗,µ1 . Yet, this result is not complete because we have missed

const× SS̄
∫
σ∗ which must be taken into account with an independent proportionality

constant and in analogy to φ we call those constants f̃σ∗σ , f̃σ∗v .

The left anti-field dependence is ρ∗2 and the most general ansatz in this case reads

Λ0 =S̄S̄
[
f̃u∗ Tr

∫
u∗u + f̃ρ∗,µ1

Tr

∫
ρ∗,µ1 Aµ + f̃σ∗σ Tr

∫
σ∗σ + f̃σ∗v Tr

∫
σ∗σ

]
+ f̃ρ∗2 Tr

∫
ρ∗2F(χ, σ, v,u) + u∗,ρ∗,µ1 , σ∗,ρ∗2 indep.

The last term must vanish after ST variation and we conclude

S̄S̄Λ0 = S̄S̄ f̃ρ∗2 Tr

∫
ρ∗2F(χ, σ, v,u) + u∗,ρ∗,µ1 ,ρ∗2 indep.

= Tr

∫
ρ∗2Q̂F(χ, σ, v,u) + u∗,ρ∗,µ1 ,ρ∗2 indep.

!
= 0 + u∗,ρ∗,µ1 ,ρ∗2 indep.
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The operator Q̂ is obtained by collecting all terms proportional to ρ∗2 and we need to

evaluate the ρ∗2 dependent part of

δS̄

δχ
=

δ

δχ
2 Tr

∫
ρ∗2δBχ + ρ∗2 indep. =

δ

δχ
i Tr

∫
ρ∗2 [u,χ] + ρ∗2 indep.

Therefore Q̂ = i
2 [u, ◦]± − S̄S̄ . Looking for the kernel, one solution is given by F = Q̂χ

due to nilpotency of Q̂, but again there may be others and the situation is a bit more

complicated. The most general structure is given by

F = [χ,u] + const× {χ,u}+ const× σu + const× u.

Applying remark 7.2 reduces the problem to F = [χ,u] + const× σu + const× u, but

this time we are left with two constants. We must now argue why again there is a unique

solution and this time we give the answer by direct computation. Applying Q̂ on F we

obtain

Q̂u = i {u,u}

Q̂σu = − (δBσ) u + σ (δBu) = −Tr [χu] u + σ
i

2
{u,u}

Q̂ [χ,u] =
i

2
{u, [χ,u]} − {δBχ,u}+ [χ, δBu]

Some further manipulations reveal

i

2
{u, [χ,u]} =

i3

2
u× (u× χ) = i Tr [uχ] u,

[χ, δBu] =
i

2
[χ, {u,u}] =

i3

2
χ× (u× u) = 2i Tr [uχ] u,

and we can read off the basis elements of the image of Q̂:〈
Q̂u
〉

= {u,u}〈
Q̂σu

〉
= σ {u,u},Tr[uχ]u〈

Q̂ [χ,u]
〉

= {u,u}, σ {u,u},Tr[uχ]u

One parameter is needed to cancel the term {u,u} in the first and third line and another

one is needed to cancel terms beween the second and the third line. Therefore, there

only one unique solution which is given by F = Q̂χ 6= 0. Because the result for F is a

Q̂ variation the result for Λ0 is a ST variation and we have

Λ0 =
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S̄S̄
[
f̃u∗ Tr

∫
u∗u+ f̃ρ∗,µ1

Tr

∫
ρ∗,µ1 Aµ + f̃σ∗σ Tr

∫
σ∗σ + f̃σ∗v Tr

∫
σ∗ + f̃ρ∗2 Tr

∫
ρ∗2χ

]
+ u∗,ρ∗,µ1 , σ∗,ρ∗2 independent.

We have eliminated any dependence on anti-fields, and up to now all the contributions

in φ and Λ0 are S̄S̄ exact. This result can be merged to an ST exact term where the

proportionality constants have a gauge dependent (fφ∗) and a gauge independent (f̃φ∗)

part.

We argue that there are no further exact terms. Assume there is another contribution

S̄S̄ρ. Because of ghost-charge Qφπ, ρ must be composed of fields and anti-fields9, but

there cannot be more exact anti-field contributions and the only possible contributions

allowed by ghost-charge, Lorentz invariance and rigid invariance are listed in φ,Λ0.

Having eliminated the anti-field dependence, the missing contributions to Λ0 are gauge

invariant terms. Since we have eliminated any dependence on the gauge-fixing and ghost

part, only the Yang-Mills part LYM and the matter part Lmat are possible and we have

found the most general structure of ∆

∆ =S̄S̄
[
gu∗ Tr

∫
u∗u + gρ∗,µ1

Tr

∫
ρ∗,µ1 Aµ + gσ∗σ

∫
σ∗σ + gσ∗v

∫
σ∗ + gρ∗2 Tr

∫
ρ∗2χ

]
+ gYMSYM + gmatSmat,

where the constants g may depend on the gauge. To proof renormalizability we must

show that a suited redefinition of fields and couplings cancels ∆. In reference [SV94]

they prove the renormalizability of our SU(2) Higgs model, but imposig the usual BRST

invariance instead of extendend BRST invariance. Their result for ∆ is formally equal

to ours and only the ST operator is replaced by the usual one. Let ρ denote the

exact contributions to ∆, then the difference between both theories is given by δ∆ =

β ∂ρ∂α+χ∂ρ∂ξ
10. A closer look at these terms reveals that they have the structure (7.21), i.e.

they are ghost-charge violating and therefore do not contribute to physical amplitudes.

Consequently, they must not be renormalized and the theory is renormalizable.

We skip the proof of renormalizability for the usual BRST invariance which is lengthy

and which is worked out in full detail in [SV94]. Instead, we sketch steps of the proof,

but in the case of pure Yang-Mills theory. Setting all kind of matter dependence to zero,

the divergences ∆ take the form

S̄S̄
[
gu∗ Tr

∫
u∗u + gρ∗,µ Tr

∫
ρ∗,µAµ

]
+ gYMSYM (7.49)

9A contribution with ū is possible, but this case is already gone in ρ∗1,ρ
∗
2 because of the antighost

equation.
10The theories differ in their ST operator and the difference S̄extended BRST

S̄ − S̄usual BRST
S̄ is given by

β ∂
∂α

+ χ ∂
∂ξ

.
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Evaluating the ST operator one obtains for u∗

S̄S̄ Tr

∫
u∗u = Tr

∫
δS̄

δu
u + Tr

∫
u∗

δS̄

δu∗

= Tr

∫
ρ∗µD

µu− Tr

∫
u∗δBu

and for ρ∗µ

S̄S̄ Tr

∫
ρ∗µA

µ = Tr

∫
δS̄

δAµ
Aµ − Tr

∫
ρ∗µ

δS̄

δρ∗µ

= Tr

∫
δSYM

δAµ
Aµ + i Tr

∫
ρ∗µ [u,Aµ]− Tr

∫
ρ∗µδBAµ

= Tr

∫
δSYM

δAµ
Aµ − Tr

∫
ρ∗µ∂

µu

The gauge-fixing is now simpliy Lfix = 2
ξ Tr (∂µAµ)2 and since the gauge-fixing does not

renormalize it follows that Zξ renormlizes as ZA, i.e. Zξ = ZA. From the antighost

equation we deduce Zu = ZA∗ = Zρ∗ and from the ST identities we conclude Z
1
2
A∗Z

1
2
A =

Z
1
2
u∗Z

1
2
u . In total we have three independent renormalization constants ZA, Zu and Zg

where g is the gauge coupling. Having renormalized the theory in n−1 loop, we redefine

the fields in n-loop as follows

An−1,ren
µ =

√
1

Zn−1
A

Aµ =

√
ZnA
Zn−1
A

An,ren
µ =

(
1 +

δZnA
2

)
An,ren
µ ,

where we used the formal expansion in Z − 1, i.e Zn = 1 + Zn − 1 = 1 + δZ1 + δZ2 +

· · ·+ δZn. √
ZnA
Zn−1
A

=

√
1 +

δZnA
Zn−1
A

= 1 +
δZnA

2
+O(~n+1)

Let us start with the Yang-Mills Field.

Tr [FµνFµν ] = Tr
[
2 (∂µAν − ∂νAµ) (∂µAν)− 4g [Aµ,Aν ] ∂µAν + g2 [Aµ,Aν ] [Aµ,Aν ]

]
We define the renormalization of the gauge coupling according to (2.19), then we have

that

Tr
[
Fn−1
µν Fn−1

µν

]
= Tr

[
Fn
µνF

n
µν + δZnA2 (∂µAν − ∂νAµ) (∂µAν)

− 4δZgg [Aµ,Aν ] ∂µAν + (2δZg − δZA) g2 [Aµ,Aν ] [Aµ,Aν ]
]
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and we obtain the following system of linear equations

gYM + δZnA + 2gρ∗ = 0 (7.50)

gYM + δZng + 3gρ∗ = 0 (7.51)

gYM + 2δZng − δZnA + 4gρ∗ = 0 (7.52)

The divergences (7.49) do not respect manifestly the covariant derivative which is the

result of different field powers

Dn−1
µ = ∂µ − ign−1An−1

µ = Dn
µ − (δZng − δZnA)ignAnµ

taking this into account and rescaling Lghost + Lfix, we obtain

ρ∗,n−1
µ δBA

n−1,µ =ρ∗,nµ δBA
n,µ + δZgρ

∗,n
µ ∂µun − (δZng − δZnA + δZu)igρ∗,nµ [An,µ,un]

u∗,n−1δBun−1 =
√
Zu∗Zu

Zg
√
ZA

3 u∗,nδBun = (1 + δZng − δZnA + δZnu )u∗,nδBun

where we made use of the antighost equation, i.e. we did not consider the ghost La-

grangian Lghost separately. By comparing the powers in ρ∗∂u,ρ∗Au and u∗u2 we obtain

the following system of equations

δZnu = gu∗ − gρ∗ (7.53)

δZng − δZnA + δZnu = gu∗ (7.54)

The system is overdetermined, but actually solvable, for instance, combining the equa-

tions (7.50), (7.51) is consistent with the combination of (7.53), (7.54) and the counter

terms are uniquely defined by (7.50), (7.51), (7.53).

7.6. Applications of the Extended BRST Symmetry

7.6.1. Gauge Independence of Physical Poles and the Connection to

the Complex Mass Scheme

The CMS requires the renormalization condition (2.23) such that expressions stay gauge

invariant and well-defined beyond tree level. This is motivated by the fact that the

complex pole is gauge invariant, thus serving as an observable. In this section we give

a quick calculation of this property for the SU(2) Higgs model and with the help of the
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NI following references [GG00], [BLS95]. Our starting point are the NI (7.29)

S(Γ) = T̃r

∫ d4x
∑

φi=A,χ,σ,u

δΓ

δφi

δΓ

δφ∗i
+ b

δΓ

δū

+ β
∂Γ

∂α
+ η

∂Γ

∂ξ
= 0.

Taking the partial derivative wrt one of the extended BRST partners, say β, and setting

all ghost fields and b to zero, we obtain

∂Γ

∂α
+ T̃r

∫ d4x
∑

φi=A,χ,σ

δΓ

δφi

∂

∂β

δΓ

δφ∗i

 ,
where any ghost-charge-violating contribution has been dismissed because there will be

no more functional derivatives wrt fields carrying non-vanishing ghost-charge. We are

interested in the gauge dependence of the two-point function of gauge bosons, thus we

simply take the functional derivatives with respect to gauge bosons A twice and set all

fields to zero (which is not indicated explicitly)

− ∂αΓAµAν =

T̃r

∫ d4x
∑

φi=A,χ,σ

ΓφiAµAνΓβφ∗i + ΓφiΓβφ∗iAµAν + ΓφiAµΓβφ∗iAν + ΓφiAνΓβφ∗iAµ

 .
The physical part of the propagator is its transverse part. Defining tµν =

(
gµν − pµpν

p2

)
we find that

−tµν∂αΓAµAν =: −∂αΓT
AA = 2T̃r

[∫
d4x ΓT

AAΓT
βA∗A

]
. (7.55)

We list arguments and assumptions leading to that result. One imposes that tadpoles

are absent, thus Γφ = 0. From Lorentz invariance follows that for a scalar φ, ΓφAµ is

proportional to pµ and projected with tµ the contributions vanishes. The last missing

piece is that Γβφ∗ should vanish. This is the case as discussed in [GG00], but there is

one important point we must mention. Γβφ∗ is divergent and we have not renormalized

it. In the proof of renormalization we did only consider physical amplitudes, thus we

did not take care of divergences in unphysical amplitudes, but gauge dependence is of

unphysical nature and the formula above are, a priori, undefined unless appropriately

regularized. Therefore, we assume that all divergences have been regularized and that

the NI have been restored, for instance, by algebraic means. The location of the pole

for vector bosons is defined by

ΓT
AA(µ2) = 0.
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Evaluating the Fourier transform of (7.55) at the pole µ2 yields what we wanted to

demonstrate, namely the gauge independence of the pole

∂αΓT
AA(p2)

∣∣
p2=µ2 = 0 ⇒ ∂αµ

2 = 0. (7.56)

7.6.2. Gauge Independence of the S matrix

Renormalization renders the n-point Green’s functions finite, and n-fold residues are

well-defined, consequently, the S matrix is well-defined via the LSZ reduction. The

question remains whether unitarity and gauge independence survive renormalization.

There is a proof of gauge independence of the S matrix in the framework of SSB [CT74].

They have explicitly calculated the variation of Green’s functions with respect to gauge-

parameters. Further, they have shown that if the S matrix is properly defined via the

LSZ reduction formula the gauge dependence drops out. We now show how to give the

proof, but with the help of the extended BRST symmetry. The proof has already been

carried out in [Kum01] and we apply their techniques, but more detailed. We extend

the proof to the case of SSB, i.e. for more than one gauge-parameter, which is a trivial

extension.

We start with the extended ST identities (7.28) and from now on the generating func-

tional is understood as the one from the extended theory, i.e. Z = Zβη. Setting all

non-physical sources to zero we have

β
∂Z

∂α
+ η

∂Z

∂ξ
=
∑
φ

(−1)|φ|jφ
δZ

δφ∗
.

If we set all sources to zero, we conclude that Z[0] is gauge independent

∂Z

∂α

∣∣∣∣
jφ=0

=
∂Z

∂ξ

∣∣∣∣
jφ=0

= 0.

Then we expand Z in β and η where to zeroth order we retrieve the usual ST identities.

In the order O(β) we have

β

(
∂Z

∂α

∣∣∣∣
β,η=0

)
=
∑
φ

(−1)|φ|jφ
δ

δφ∗
β

(
∂Z

∂β

∣∣∣∣
β,η=0

)
=
∑
φ

β(−1)|φ|+1jφ
δ

δφ∗

(
∂Z

∂β

∣∣∣∣
β,η=0

)
,

⇒ ∂Z

∂α

∣∣∣∣
β,η=0

=
∑
φ

(−1)|φ|+1jφ
δ

δφ∗
∂Z

∂β

∣∣∣∣
β,η=0

.
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The same calculation for the order O(η) yields

∂Z

∂ξ

∣∣∣∣
β,η=0

=
∑
φ

(−1)|φ|+1jφ
δ

δφ∗
∂Z

∂η

∣∣∣∣
β,η=0

. (7.57)

In section 7.4.1 we argued that ∂Z
∂η vanishes for the case of physical amplitudes, but

this time ∂Z
∂η is followed by a functional derivative with respect to an anti-field. The

combination of derivatives wrt β, η and φ∗ respects ghost-charge conservation (see Qφπ

in table 7.1) and δ
δφ∗

∂Z
∂η

∣∣∣
β,η=0

does actually contribute.

With definition (2.7) we can to study the gauge dependence of Green’s functions

∂Gω1,...,ωn

∂{α; ξ}
=

1

Z[0]

n∏
i=1

δ

iδjωi(xi)

∂Z[j]

∂{α; ξ}

∣∣∣∣
j=0

,

where we used the gauge independence of Z[0]. Defining new generating functionals
∂Z[j]
∂{β;η} = Z{β;η}, the gauge dependence takes the compact expression

∂Gω1,...,ωn

∂{α; ξ}
=

n∑
k=1

(−1)1+
∑n
m=k|φm|G

{β;η}
ω1,...,ω∗k,...,ωn

. (♠)

where one of the external currents jωk is replaced by an external anti-field. The anti-

field φ∗ itself is determined by the would-be current jωk , i.e. φ∗ = φ∗ωk which we simply

indicate as ω∗k.

Proof. Assume that ♠ holds up to n external currents labeled by jω2 . . . jωn+1 . Because

j is put to zero, one of the derivatives with respect to jωi must hit jφ in (7.57) and

∂Gω1,...,ωn+1

∂{α; ξ}
=

(−i)n+1

Z[0]

δn+1

δjω1 . . . jωn+1

∑
φ

(−1)1+|φ|jφ
Z{β;η}

δφ∗

∣∣∣∣∣∣
j=0

can be separated in the cases where δ
δjω1

hits jφ and where it does not. The latter allows

to make use of the induction hypothesis

(−i)n+1

Z[0]

δ

δjω1

n∑
k=2

(−1)1+
∑n+1
m=k|φm|

Zβχ

δjω2 . . . δφ
∗
ωk
. . . δjωn+1

∣∣∣∣∣
j=0

=
n∑
k=2

(−1)1+
∑n
m=k|φm|G

{β;η}
ω1,...,ω∗k,...,ωn

.

The former case must be evaluated directly, but poses no more problem. Each time a

functional derivative δ
δjωk

passes by jφ a factor (−1)|φωk ||φ| arises, where the φ turns
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into φω1 . Then one has to bring δ
δφ∗ω1

to the left and when passing by δ
δjωk

a factor

(−1)|φωk ||φ
∗
ω1
| arises. In total the prefactor reads (−1)1+

∑n
k=1|φωk |, where we used that

|φ|+ |φ∗| = 1 and combining both results yields ♠ for up to n+ 1 external currents.

Example 7.1. To get some intuition we give an example on the formula ♠. Consider

the gauge boson-propagator in the Rξ gauges (set α = ξ). The tree level two-point

function is given by

−i

p2 −M2

[
gµν − (1− ξ) kµkν

k2 − ξM2

]

Applying formula ♠ to GAµAν reads
∂GAµAν

∂α = −G{β;η}
Aµ,A∗ν

−G{β;η}
A∗µAν

and due to the sym-

metry in µ, ν we are left with
∂GAµAν

∂α = −2G
{β;η}
Aµ,A∗ν

. We give a small calculation on

how to evaluate G
{β;η}
Aµ,A∗ν

, but without working out the details. To this end, consider the

Green’s function obtained from the generating functional Zβχ

G
{β;η}
Aaµ,A

∗,b
ν

=
1

Z[0]

∫
D[φ] Aaµ (Dνu)b

(
i

∫
Tr [ūb]

)
eiS[φ]

∣∣∣∣
connected

.

At tree level only ∂νu
b = (Dνu)b +O(g) contributes. Setting all anti-fields to zero and

replacing fields by functional derivatives yields the following structure

δ

δAaµ
∂ν

δ

δjub

(∫
Tr

[
δ

δjū

δ

δjb

])
1

Z[0]

∫
D[φ] eiS[φ],

where we already indicated by contraction which propagators will appear. Once the

interaction is turned off the lowest contribution is given by GAµb∂νGūu. We are working

with auxiliary fields and we do have a non-vanishing mixing field Feynman propagator

GAµb. On the other hand, when b is integrated out, there is a real interaction coupling

between A and ū originating from the extended BRST symmetry. The propagator

is calculated by standard techniques, for instance, one can start from the generating

functional of the free theory and integrate out the fields.

δ2Z

δjAaµδjbb

∣∣∣∣∣
j=0

∝ δ2

δjAaµδjbb

∫
D[φ] e

i
∫
ba∂αAaµ+ i

2

∫
AaαG

−1

AαAβ
Abβ+i

∫
α
2
ba2+i

∫
jAaµA

a
µ+jbab

a

∣∣∣∣∣
j=0

This would work out easily if there was not the gauge-fixing b∂A, but it can be treated

as interaction, i.e. the fields are replaced by derivatives and the derivatives are pulled

out of the path-integral. Afterwards, the Gaussian integrals can be carried out and one
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arrives at

δ2Z

δjAaµδjbb

∣∣∣∣∣
j=0

∝ δ2

δjAaµδjbb
e

i
∫

δ
iδjb

∂α δ
iδjAα e

i
2

∫
jαGAαAβ jβ+ i

2ξ

∫
j2b

∣∣∣∣∣
j=0

.

Evaluating the functional derivatives and making use of the symmetry in both Lorentz

indices and space time inversion yields

δ2Z

δjAaµδjbb

∣∣∣∣∣
j=0

=
δ2

δjAaµδjbb
e

i
∫

1
ξ
jb∂

α
∫
G
AαAβ

jβ e
i
2

∫
jαGAαAβ jβ+ i

ξ

∫
j2b

∣∣∣∣∣
j=0

∝1

ξ
∂νGAνAµ ,

and we arrive at what we wanted to show, namely

GAµb p
νGūu ∝

1

ξ
pαGAαAµ p

ν 1

p2 − ξM2

=
1

ξ

pµpν

(p2 −M2) (p2 − ξM2)
− 1− ξ

ξ

p2pµpν

(p2 −M2) (p2 − ξM2)2

=
pµpν

(p2 −M2) (p2 − ξM2)

(
1− M2(1− ξ)

p2 − ξM2

)
∝ ∂

∂ξ
GAµAν

The purpose of the example is twofold. It demonstrates explicitly that there are Feyn-

man rules which describe the change in the gauge. Secondly, we observe that the change

in the gauge of a two-point function is given by the two-point function itself connected

via a ghost-charge-violating coupling to the ghost two-point function. Both properties

are going to be important to understand qualitatively what is going to happen when

truncating gauge variations of n-point functions. We now investigate the behavior of

the gauge dependence near the on-shell phase-space, but at this point we stop following

reference [Kum01] because they give an argument concerning a ”convenient” choice of

polarization spin vectors which we think is not a freedom11, but turns out to be neces-

sary as we shall demonstrate (7.65). Instead, we recapitulate and work out the ideas of

[CT74]. In what follows we assume there are no degenerate masses, i.e. we choose ξ 6= 1

which will simplify the discussion. The case ξ = 1 does work out, but is more difficult.

Further, we drop the explicit indication of any kind of grading.

The LSZ reduction relates the S matrix to the residua of an n-point function and the

n-point function is said to be truncated which, roughly speaking, means that the exter-

nal legs (whole 2-point functions) are removed. Therefore, we are especially interested

11At the end of their calculation they choose the basis such that the would-be gauge dependence of the
S matrix drops out and claim that this is a ”suited” choice one can make. This in turn implies that
another choice would actually violate gauge independence of the S matrix.
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in the residue of

∂Gω1ω2

∂{α; ξ}
= G

{β;η}
ω∗1ω2

+G
{β;η}
ω1ω∗2

, (7.58)

and we factorize out of G
{β;η}
ω∗1ω2

the desired 2-point function. Define

G
{β;η}
ω∗1ω2

:=
∑
ωk

Yω1ωkGωk,ω2 , (7.59)

where the sum runs over all possible intermediate field configuration. For the case of no

auxiliary fields (assume they have been integrated out), on-shell 2-point functions are

diagonal in the sense that there is no field mixing in the on-shell 2-point function and

one obtains

lim
p2→m2

ω1

(
p2 −m2

ω1

)
Gω1,ω2 = δω1,ω2 lim

p2→m2
ω1

(
p2 −m2

ω1

)
Gω1,ω1 .

As a consequence, the sum in (7.59) will no longer run over different fields, but solely

over polarization states. To further simplify the notation we drop the explicit field label

and we define Gij := Gωiωj . The indices i, j are wild cards for polarization indices, for

instance, in the case of gauge bosons these indices are Lorentz indices or in the case of

fermions they are given by spinor indices.

We put (7.58) on-shell and plug in the definition (7.59), which brings us to

lim
p2→m2

ω1

(
p2 −m2

ω1

) ∂Gωi1,ωj1
∂{α, ξ}

=
∑
k

yikResm2
ω1

(Gkj) + yjkResm2
ω1

(Gki)

=
∑
k

yikResm2
ω1

(Gkj) + Resm2
ω1

(Gik)ỹkj ,

where we used GT = G (zero grading) and we defined y = Y |p2=m2 and ỹT = y. From

the Källén-Lehmann representation (2.10) follows that any two-point function near the

resonance has the following structure

Gij =

(
R

1
2

1

p2 −m2
R

1
2

)
ij

=
∑
k

R
1
2
ik

1

p2 −m2
R

1
2
kj , for p2 ≈ m2, (7.60)

where the separation in R1/2 is convention. The i, j are again the components of po-

larization states and in general the residue R
1
2 is not diagonal. The Green’s function

G itself does not depend on the basis, but depends only on the polarization sum12 and

12This follows from the fact that only the polarization sum enters the Feynman rules.
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with a suited choice of polarization vectors R
1
2 is quasi diagonal in the sense

Gij =
∑
r

e
(r)
i

Rr
p2 −m2

e
(r)
j =:

∑
r

e
(r)
i Gre

(r)
j .

In general, a gauge transformation will not only transform Rr and leave the basis e(r) as

it is, but e(r) must be transformed as well to guarantee independence of the choice of the

basis. As we shall see, this implies that the polarization vectors are gauge dependent

which is obvious from the point of view of canonical QFT.

Let z = (α, ξ) denote the gauge dependence and consider a small variation of z → z+δz,

then

Gzij → Gz+δzij =
∑
r

(
e

(r)
i + δe

(r)
i

) Rr + δRr
p2 −m2

(
e

(r)
j + δe

(r)
j

)
(7.61)

is the most general transformation rule respecting the gauge independence of the phys-

ical mass δzm
2 = 0. The shifted eigenvectors fulfill the polarization sum Pij and are

orthogonal

Pij =
∑
r

(
e

(r)
i + δe

(r)
i

)(
e

(r)
j + δe

(r)
j

)
,

δrs =
(
e(r) + δe(r), e(s) + δe(s)

)
.

From the gauge dependence of two-point functions (7.58) we derive

Gz+δzij = Gzij + δG = Gzij +
∂Gij
∂z

δz

= Gzij + YikG
z
kjδz +GzikỸkjδz

=
∑
k

(
(1 + δy)R

1
2

)
ik

1

p2 −m2

(
R

1
2 (1 + δỹ)

)
kj
, for p2 ≈ m2, (7.62)

where from the second to the third line we used the polarization basis independent

representation of G (7.60). Further, we defined yijδz = δyij and ỹijδz = δỹij .

Contracting both sides of (7.61) with e + δe, we obtain

(
e

(r)
i + δe

(r)
i

)
Gz+δzij

(
e

(s)
i + δe

(s)
i

)
= δrsG

z
r

(
1 +

δRr
Rr

)
,

and on the other hand contracting both sides of (7.62) yields(
e

(r)
i + δe

(r)
i

)
Gz+δzij

(
e

(s)
i + δe

(s)
i

)
= δrsG

z
r+
(
δe(r), e(s)

)
Gzs +

(
e(r), δe(s)

)
Gzr

+
(
e(r), δỹ(s)

)
Gzr +

(
δy(r), e(s)

)
Gzs,
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where we defined
(
δy(r)

)
i

= e
(r)
k δyki and

(
δỹ(r)

)
i

= δỹike
(r)
k . Both results must be equal

and combining them results in(
δe(r), e(s)

)
Gzs +

(
e(r), δe(s)

)
Gzr +

(
e(r), δỹ(s)

)
Gzr +

(
δy(r), e(s)

)
Gzs = δrs

δRr
Rr

Gzr .

(7.63)

This equation is solved as follows. First we note that
(
δy(r), e(s)

)
,
(
e(r), δỹ(s)

)
are not

independent of each other and because of ỹT = y they are related by
(
δy(r), e(s)

)
=(

e(s), δỹ(r)
)
. Then, in general Gzr 6= Gzs and the components in front of Gzr , G

z
s must

vanish separately. The solution reads(
δy(r), e(s)

)
=

(
δRr
2Rr

e(r) − δe(r), e(s)

)
∀r, s. (7.64)

In the case Gzr = Gzs, i.e. the case where the residues are independent of the polarization

state, one has a certain freedom in the definition of δe and one can define (7.64) to hold13.

Equation (7.64) is valid for all e(s) and we have that(
δy(r) − δRr

2Rr
e(r) + δe(r), e(s)

)
= 0, ∀s ⇒ δy(r) − δRr

2Rr
e(r) + δe(r) = 0. (7.65)

Note that usually e(r) do not span a basis of the vector space they are living in and

(7.65) has to be taken with a pinch of salt. The point is that (7.65) will be contracted

with a vector living in the subspace spanned by these vectors14 and therefore this result

is true up to unphysical polarizations.

We are now able to prove the gauge independence of the S matrix which is done simply

by direct computation

∂S

∂{α, ξ}
=

(
n∏
i=1

lim
k2
i→m2

i

i√
Ri

(k2
i −m2

i )

)
n∑
i=1

(Ri + Ei + Gi),

where the three parts R, E ,G are the gauge-transformed residue, polarization vector

and Green’s function, respectively. To keep the notation compact we introduce the

product

{eα1 . . . eαn , Gα1...αn} =

 n∏
k=1

∑
ik

 e
α
i1
1
. . . eαinn Gαi11 ...α

in
n
,

13This freedom does not alter the result for the S matrix. For that case one can check that the whole
equation (7.63) as it is here reappears.

14More concretly, (7.65) is going to be contracted with a two-point function. Since only the polarization
sum enters the two-point function, (7.65) will necessarily hit e(r).
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then the components of δS read

Ri =
−1

2Rωi

∂Rωi
∂z

{(
n∏
k=1

eωk

)
, Gω1,...,ωn

}
,

Ei =

{
eω1 . . .

∂eωi

∂z
. . . eωn , Gω1,...,ωn

}
,

Gi =

{(
n∏
k=1

eωk

)
(−1)1+

∑n
m=i|φm|, G

{β;η}
ω1,...,ω∗i ,...,ωn

}
,

and let us define

Rk :=
∑
r

(
e(ωk)
ωk

, e(r)
ωk

)
R(r)e(r)

ωk
,

then the truncated result for R, E takes the form(
n∏
k=1

lim
p2
k→m

2
k

(
p2
k −m2

k

))
Ri ={(∏

k<i

Rk

)
−1

2Rωi

∂Rωi
∂z

∑
r

(
e(ωi)
ωi , e(r)

ωi

)
R(r)e(r)

ωi

(∏
k>i

Rk

)
, Gamp

ω1...ωn

}

(
n∏
k=1

lim
p2
k→m

2
k

(
p2
k −m2

k

))
Ei ={(∏

k<i

Rk

)∑
r

(
∂e

(ωi)
ωi

∂z
, e(r)
ωi

)
R(r)e(r)

ωi

(∏
k>i

Rk

)
, Gamp

ω1...ωn

}

where

Gamp
ω1...ωn =

∏
k

lim
p2
k→m

2
k

(
p2
k −m2

k

)
Gω1...ωn

From the discussion of the generating functional Z{β;η} follows that any n-point function

originating from Z{β;η} underlies the same Feynman rules as if it would originate from

Z, except for the one extended BRST induced coupling. Due to this additional coupling

the external anti-fields may couple in a complicated way to the n-point function G,

but when truncating the only surviving structure is the one where the anti-field is

coupled to the two-point function via (7.59). That is true because first of all a two-

point function is needed for giving a contribution to the residue. On the other hand,

the two-point function cannot simply turn into an anti-field with different ghost-charge,
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but the extended BRST induced coupling can make this happen. Since this coupling

can only occur once (β2 = η2 = 0), when truncating the anti-fields from G{β;η} the

amputated result underlies the usual Feynman rules and is therefore proportional to

Gamp. Formally this means

lim
p2
k→m

2
k

(
p2
k −m2

k

)∑
j

e
(ωk)

ωjk
Gβχ
ω1,...,ω

∗,j
k ,...,ωn

=
∑
r

(
y(ωk)
ωk

, e(r)
ωk

)
R(r)

∑
i

e
(r)

ωik
Gamp

ω1,...,ωik,...,ωn
,

and the truncated result for Gi reads(
n∏
k=1

lim
p2
k→m

2
k

(
p2
k −m2

k

))
Gi =

{(∏
k<i

Rk

)∑
r

(
y(ωi)
ωi , e(r)

ωi

)
R(r)e(r)

ωi

(∏
k>i

Rk

)
, Gamp

ω1...ωn

}
.

In our final step we assemble the results for R, E , and G. Let δS = ∂S
∂z δz, then

δS =

(
n∏
k=1

i√
R(ωk)

)
×

∑
i

{(∏
k<i

Rk

)(
−δR

(ωi)

2R(ωi)
e(ωi)
ωi + δe(ωi)

ωi + δy(ωi)
ωi , e(r)

ωi

)
︸ ︷︷ ︸

(7.65)
= 0

R(r)e(r)
ωi

(∏
k>i

Rk

)
, Gamp

ω1,...,ωn

}

= 0,

which concludes the proof of the gauge independence of the S matrix.
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8. Summary

The subject of this thesis is the proper treatment of unstable particles in perturbative

QFT within the complex mass scheme (CMS), and we investigated unitarity and gauge

(in-)dependence. The CMS provides a straightforward method to consistently imple-

ment unstable particles in perturbative calculations which is an analytic continuation

of matrix elements to complex masses with an appropriate renormalization condition.

The Cutkosky cutting rules are violated, and it is no longer clear how perturbative

unitarity is implemented which results from the fact that the topological derivation

does no longer work because the +iε prescription is needed. We do not claim that

Cutkosky’s result could not have been adapted, but we chose another approach. We

derived an extended largest time equation (LTE) which could then be used to obtain

a diagrammatical solution for the imaginary part of scattering amplitudes also when

unstable particles are present. The result has been applied to several examples which

were then compared to what one would have expected of unitarity and the results were

approved. Our derivation of an extended LTE is based on the decomposition theorem

and we showed that a similar decomposition can be achieved for the CMS propagator.

As a result, one finds that the would-be cuts ∆± of unstable particles are smoothed ver-

sions of the stable ones. In case of stable particles the LTE coincides with the Cutkosky

cutting rules, but including unstable particles one has additional contributions which

can be interpreted as contributions where the energy flow is backward. Performing an

expansion solely of ∆± of unstable particles in Γ
M does indeed yield cutting rules where

unstable pseudo cuts can be replaced by higher-order cuts through stable particles only.

In this way, we demonstrated how to eliminate any appearing pseudo-cut replacing it

with real cuts. Finally, we recovered the perturbative statement of Veltman’s result,

namely that a QFT is unitary only if unstable particles are excluded from asymptotic

states.

In the second part we discussed an extended BRST invariance which is the basis for the

Nielsen identities (NI). Having demonstrated how the extended BRST invariance results

from the usual one simply by demanding nilpotency, we discussed quantum extensions

and renormalization, i.e. we went further into the question whether the extended BRST

symmetry is fitting for a quantum symmetry. We derived all possible symmetric con-

tributions which are candidates for counter-terms for the example of an SU(2) Higgs
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model. The calculation is done systematically as it is done in the case of the usual BRST

invariance provided that certain simplifications of the so-called Slavnov-Taylor operator

are made. Such simplifications were introduced by Piguet. We adopted his strategy

and we have extended the arguments for the case of spontaneous symmetry breaking

using the example of the SU(2) Higgs model. We verified that a renormalizable gauge

theory being equipped with the extended BRST invariance is renormalizable at least for

the physical sector. Studying gauge dependence relies on the unphysical sector which

has to be renormalized, for instance, by algebraic means, thus allowing to use the NI

beyond tree level and analyzing in general gauge (in-)dependence of n-point functions.

As an application of the extended BRST we discussed the gauge independence of the

renormalization condition of the CMS and of the S matrix.
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Zusammenfassung

In dieser Arbeit wird die Beschreibung instabiler Teilchen in perturbativer QFT mit

Hilfe des komplexen Massenschemas (CMS) behandelt. Dabei wurden die Schwerpunkte

auf Unitarität und Eichunabhängigkeit gelegt. Das CMS stellt eine hinreichend einfa-

che Methode dar, instabile Teilchen in Eichtheoreien im Rahmen der Störungstheorie

beschreiben zu können. Es handelt sich um eine analytische Fortsetzung von Matrixele-

menten zu komplexen Massen mit entsprechenden Renormierungsbedingungen.

Die Vorraussetzungen für die Cutkosky Cutting Regeln sind verletzt und es ist nicht

mehr klar wie perturbative Unitarität realisiert ist, da die topologische Ableitung der

Regeln von der Kausalitätsvorschrift Gebrauch macht. Wir behaupten nicht, dass es

nicht möglich sei jene Regeln anzupassen, jedoch haben wir uns für einen alternati-

ven Zugang entschieden. Ausgehend von der Largest Time Equation (LTE) wurde eine

erweiterte LTE, unter Einbezug von instabilen Teilchen, abgeleitet, welche schliesslich

genutzt werden konnte, um diagrammatische Lösungen für den Imaginärteil von Ampli-

tuden zu erhalten. Das Ergebnis wurde mit dem verglichen was von Unitarität erwartet

würde und konnte bestätigt werden. Die erweiterte LTE basiert auf dem Zerlegungstheo-

rem für Feynman-Propagatoren und wir haben gezeigt, dass eine ähnliche Zerlegung für

CMS Propagatoren existiert. Im Falle instabiler Teilchen findet man als Ergebnis an-

statt scharfer Cuts, ausgeschmierte Funktionen. Im Falle stabiler Teilchen stimmen die

LTE und die Cutkosky Cutting Regeln überein, werden allerdings instabile Teilchen ein-

geschlossen, so ergeben sich unter anderem auch Beiträge, die im Falle stabiler Teilchen

kinematisch verboten wären, beziehungsweise eine verkehrte Energieflussrichtung auf-

weisen. Wird eine Entwicklung in Γ
M unternommen, so entstehen aus den Lösungen der

erweiterten LTE Cutting Regeln, wobei relevante Beiträge von instabilen Pseudo-Cuts

als echte Cuts interpretiert werden können. So haben wir gezeigt, dass jeder zusätzliche

Beitrag, der nicht wegdiskutiert werden kann letztendlich als Cut stabiler Teilchen in-

terpretiert werden kann. Das entspricht der Aussage Veltmans, nämlich dass instabile

Teilchen nicht als asymptotische Zustände in Erscheinung treten.

Im zweiten Teil dieser Arbeit haben wir eine erweiterte BRST Invarianz untersucht,

welche die Basis für die Nielsen Identitäten (NI) darstellt. Wir haben diskutiert, wie die

erweiterte BRST Invarianz implementiert wird und wie sie sich natürlich ergibt, wenn

Nilpotenz der erweiterten BRST Variation verlangt wird. Wir haben weiterhin bespro-
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chen ob eine solche Invarianz als Quantensymmtrie tauglich ist. Für ein SU(2) Higgs

Modell haben wir alle möglichen symmetrischen Beiträge abgeleitet, welche mögliche

Kandidaten für Counterterme darstellen. Die Berechnung der Terme funktioniert syste-

matisch, wie auch im Falle der gewöhnlichen BRST Invarianz, vorrausgesetzt, dass ge-

wisse Vereinfachungen am sogenannten Slavnov-Taylor Operator vorgenommen werden.

Solche Vereinfachungen wurden von Piguet demonstriert. Wir haben seine Vorgehens-

weise übernommen und die gegebenen Argumente für den Fall von spontaner Symme-

triebrechung am Beispiel des SU(2) Higgs Modells verallgemeinert. Es wurde verifiziert,

dass eine renormierbare Eichtheorie, welche um die erweiterte BRST Invarianz erweitert

wird, renormierbar bleibt, zumindest für den physikalischen Sektor. Zur Untersuchung

von Eichabhängigkeit muss der unphysikalische Sektor z.B. algebraisch renormiert wer-

den, sodass die Relationen der NI auch in höheren Ordnungen verwendet werden können,

um auch in aller Allgemeinheit Eichabhängigkeit zu studieren. Als Anwendung haben

wir die Definition der physikalischen Masse diskutiert und die Eichunabhängigkeit der

S Matrix.
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A. Landau singularity in the scalar

two-point function

The CMS imposes, similar to the on-shell scheme, that the renormalized self-energy is

zero at the complex mass µ. We used the renormalization condition to motivate the

behavior of the renormalized self-energy near p2 = µ2 (4.1), i.e. we assumed that ΣR

stays small when evaluated near µ which would formally follow by Taylor expansion, but

a Taylor expansion is not always possible and the statement (4.1) is no longer correct.

This happens, for instance, for charged unstable particles when massless particles are

present. An example is the following diagram

W

γ

W
W

(A.1)

which is a contribution to the W-boson self-energy. The W-boson is charged and unsta-

ble and the photon γ is massless. We give a quick calculation showing that the statement

(4.1) must be generalized for such cases.

The polarizations in (A.1) make the discussion unnecessarily complicated and instead

we consider the scalar analogue
χ

ϕ

=
ig2

16π2

(
∆−

∫ 1

0
dx log

(
p2x2 − x(p2 − µ2)− iε

))
(A.2)

.
This result for the scalar two-point function has been taken from [Den93]. The UV

divergence has been extracted via dimensional regularization and resides in ∆ = 2
ε −

γE+log 4π where the limit ε→ 0 equals d→ 4−. Assuming this is the only contribution

to the self energy, we need to add a counter-term canceling any contribution on the

complex pole

= −

χ

ϕ

∣∣∣∣∣∣∣
p2=µ2

=
ig2

16π2

(
−∆− 2 + log µ2

)
(A.3)
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.
and the CMS renormalized self-energy reads

ΣR =
ig2

16π2

p2 − µ2

p2

(
logµ2 − log

(
µ2 − p2

))
. (A.4)

(A.4) behaves as requested for p2 → µ2 , but cannot be Taylor expanded around p2 = µ2.

For p2 ≈ µ2 we find the behavior α2 logα which is not what one would expect from naive

Taylor expansion (4.1), but obeys (A.4).
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B. The LTE and nested two-point

functions

One observes that nested two-point functions in an amplitude reappear as cut two-point

functions in the LTE relations of that amplitude. We discuss this property of the LTE

by an example. Consider the following amplitude

iM = + =

where we built in a nested two-point function. The example reflects the problem we have

faced, namely in the first one-loop contribution we are going to find a pseudo-cut, but we

cannot simply replace it by the first order approximation because the whole amplitude

is in two-loop order. Consequently, we have to take along higher-order contributions.

Computing the LTE of iM away from the s-channel resonance and keeping only the

relevant contributions, we obtain

−2Re [iM] = + + +

This result can be written as

= where 5 stands for 2Re
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B. The LTE and nested two-point functions

and in the last step one has to compute 5 with the help of the LTE

5 = + + +

This is what we wanted to demonstrate, i.e. the higher-order contributions can be

summarized to a cut 2-point function.
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Acronyms

1PI one-particle irreducible

BPHZL Bogoliubov, Parasiuk, Hepp, Zimmermann and Lowenstein

BRST Becchi, Rouet, Stora and Tyutin

CCR Canonical Commutation Relations

CMS Complex Mass Scheme

dof degree of freedom

DS Dyson-Schwinger

EOM equations of motion

GSW Glashow Salam Weinberg

iff if and only if

LTE Largest Time Equation

LSZ Lehmann Symanzik Zimmermann

lhs left-hand side

LHSUE left-hand side of the unitarity equation

NI Nielsen Identities

QAP Quantum Action Principle

QCD Quantum Chromodynamics

QED Quantum Electrodynamics

QFT Quantum Field Theory

QM Quantum Mechanics

rhs right-hand side

RHSUE right-hand side of the unitarity equation

SM Standard Model

SSB Spontaneous Symmetry Breaking

ST Slavnov-Taylor

vev vacuum expectation values

wlog Without loss of generality

wrt with respect to
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