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Zusammenfassung

Ziel dieser Arbeit war die Entwicklung eines Algorithmus zur Lösung der Kadanoff-Baym-
Gleichungen (KBE) für fermionische Felder im Ortsraum. Dabei wurde der (1+1)-dimensionale
Fall betrachtet. Zusammen mit einem entsprechenden, bereits implementierten Lösungsalgo-
rithmus für skalare Felder wurde damit eine Grundlage zur Beschreibung von inhomogenen,
Nicht-Gleichgewichts-Prozessen in der Quantenfeldtheorie geschaffen. Die KBE, wobei es sich
um partielle Integro-Differentialgleichungen handelt, werden im Rahmen des 2PI-Formalismus
hergeleitet und geben die exakte Zeitentwicklung des vollen Propagators wieder. Als Appro-
ximation wurde für die in den KBE auftretende Selbstenergie eine Loop-Entwicklung durchge-
führt und Beiträge bis zur 2-Loop-Ordnung berücksichtigt. Für die numerische Lösung der
KBE wurde das sogenannte staggered leapfrog-Verfahren verwendet, wodurch das Auftreten
zusätzlicher, unphysikalischer Moden (fermion doubling) vermieden werden konnte. Desweit-
eren wurde aufgrund der komplizierten Struktur der KBE die Methode des operator splittings
angewandt. Als abschliessender Test wurde mit Hilfe des entwickelten Algorithmus das Lineare
Sigma-Model, welches eine Kopplung zwischen skalaren und fermionischen Feldern beinhal-
tet, in Bezug auf den Vorgang der (Pre-)Thermalisierung untersucht. Dabei konnnte ein uni-
verselles, also von den Details der Anfangsbedingungen unabhänginges Verhalten zu späteren
Zeiten beobachtet werden.
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Abstract

The goal of this thesis was to develop an algorithm for solving the Kadanoff-Baym-Equations
for fermionic fields in position space. Thereby we have considered the (1+1) dimensional case.
Combined with a respective, already implemented algorithm for scalar fields, we thereby estab-
lished a basis for the description of inhomogeneous, non-equilibrium process in quantum field
theory. The KBE, which are partial integro-differential equations, are derived in the framework
of the 2PI formalism and incorporate the exact time evolution of the full propagator. As an ap-
proximation scheme we employed a loop expansion for the self energy appearing in the KBE
up to 2-loop order. For solving the KBE numerically we used the so-called staggered leapfrog
scheme, which avoids the emerge of additional, unphysical modes (fermion doublers). Further,
due to the complex structure of the KBE we employed an operator splitting method. As a conclu-
sive test we used the developed algorithm to investigate the linear sigma model, which couples
scalar to fermion particles in the context of the process of (pre-)thermalization. Thereby we
could observe a late-time behavior that is independent from the details of the initial condition,
i.e. universal.
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1. Introduction

The Golden Age of cosmology

We are currently in the ’Golden Age’ of observational cosmology. The recent detection of gravi-
tational waves by LIGO (Laser Interferometer Gravitational-Wave Observatory) in 2015 consti-
tutes a groundbreaking achievement in astronomy [A+16a]. Another example is the incredible
high precision to which the CMB (Cosmic Microwave Background) - which opens an obser-
vational window to the early universe at a time about 380.000 years past the Big Bang - has
been measured [A+16b]. One of the most intriguing and promising projects in the near future is
eLISA (Evolved Laser Interferometer Space Antenna). Encouraged by the recent success of the
LISA Pathfinder program, this mission is expected to launch in the early 2030s. In contrast to
the ground-based gravitational wave (GW) detectors like LIGO or VIRGO, eLISA will follow an
Earth-trailing heliocentric orbit. It is built up by three identical spacecrafts which are arranged in
an equilateral triangle and separated by a distance of 2.5 million kilometers. eLISA is not only
able to probe the entire sky but will also open a new window in the low-frequency domain for
the detection of GWs [A+17].
Besides other aspects eLISA could become of particular interest for people dealing with the sce-

Figure 1.1.: Image taken from http://www.lisamission.org

nario of Electroweak Baryogenesis (EWBG), which is one of the most popular approaches to
explain the matter-antimatter asymmetry observed today. The process of EWBG demands for a
first order electroweak phase transition, which features the nucleation of bubbles. These bubbles
are rapidly expanding and are therefore expected to collide with each other. These collisions
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could function as a source for gravitational waves, which are expected to be within the detection
range of eLISA [C+16].

Electroweak Baryogenesis
A long known yet not understood phenomena is the baryon asymmetry that can be observed in
the universe today. A common quantity to express the baryon asymmetry is the baryon to photon
ratio η. Recent estimations yield [B+13]:

η =
ηb
ηγ

= (6.19± 0.14)× 10−10.

where ηb/γ denotes the baryon/photon density respectively.
Any process that wants to describe the emergence of the measured matter-antimatter asymmetry
must fulfill the following three conditions postulated by Sakharov back in 1967 [Sak91]:

• Baryon number violation

• C- and CP-violation

• Interactions outside of thermal equilibrium

The first condition is probably the most obvious and self-explanatory. The second is needed, be-
cause without C asymmetries in particle number densities every process that violates the Baryon
number is of the same width as its C conjugate process. This argument can be pursued to find
that in addition to C- also CP-violation is needed to eventually produce an excess of baryons over
anti-baryons. For the third argument one can briefly assume we would deal with a system that is
in thermal equilibrium. Since the particle and its respective antiparticle are of the same energy,
both must obey the Fermi-Dirac-/Bose-Einstein (fermions/scalars) statistics in the same manner.
Therefore any excess of either baryons or anti-baryons would be evened out by the respective
process. This implies that the baryon-asymmetry originated in a universe out of equilibrium and
in addition was preserved from being washed out after the universe reached thermal equilibrium.
One of the most prominent and still popular approaches to explain the observed asymmetry is
the so-called Electroweak Baryogenesis (EWBG). This scenario starts out with a hot radiation-
dominated early universe. When the universe cools down and reaches temperatures T . 100 GeV
the electroweak symmetry is spontaneously broken, i.e. the Higgs field develops a nonzero vac-
uum expectation value [MRM12]. For a successful EWBG it is necessary for the phase transition
to be of first order. This implies the nucleation of bubbles, within which the eletroweak symmetry
is broken, while the surrounding plasma is still in the symmetric phase. For illustrative purposes
one can think of the forming of steam bubbles when water starts boiling.
A region of particular interest is the boundary between the two phases. Here particles from the
plasma scatter with the expanding bubbles wall by means of both C and CP-violating processes.
This is leading to non-equilibrium conditions in front of the bubble wall. The resulting asym-
metries in particle number densities can then diffuse into the symmetric regime, where they can
bias so-called sphaleron processes. These processes can convert the C-/CP- into B-asymmetries
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Figure 1.2.: Baryon production in front of the bubble walls. Image taken from [MRM12]

and are therefore B-number violating. Some of the emerging Baryon excess can get picked up by
the expanding bubble and - since the sphaleron process is strongly suppressed within the broken
phase - gets frozen in, i.e. conserved. This procedure is depicted in Fig. 1.2.
As an interim summary we can say that EWBG fulfills the three Sakharov conditions stated
above and therefore constitutes a promising scenario. Yet while the Standard Model (SM) can
provide the basic ingredients necessary for EWBG, there are obvious shortcomings demanding
for new physics beyond the SM.
To give an example for these shortcomings we take a closer look at the nature of the electroweak
phase transition. Within the SM alone a first order transition would lead to an upper bound on
the Higgs mass of about mh . 95 GeV [K+96]. This is obviously not consistent with current
measurements which yield mh ≈ 125 GeV [A+15].
Another crucial point is that even if we would stick with the first order phase transition, the
CP-violation within the SM induced by the CKM (Cabibbo-Kobayashi-Maskawa) matrix is too
suppressed to explain the magnitude of the observed baryon asymmetry [HS95]. A more recent
study suggests to cure this shortcoming via a time-varying Yukawa coupling, which results in a
baryon asymmetry of the right order [BKS17].
In spite of these ambiguities there are good reasons why EWBG still receives so much atten-
tion. First of all, in contrast to other scenarios like standard thermal leptogenesis or Affleck-Dine
baryogenesis EWBG is - due to its low-energy scale - in reach of collider experiments and there-
fore testable [MRM12]. Secondly - as mentioned earlier - the collision of the expanding bubbles
might function as a source of gravitational waves that are potentially detectable by eLISA.
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2. Non-equilibrium QFT

For the following brief introduction to non-equilibrium Quantum Field Theory, we primary fol-
low the Lecture Notes of Jurgen Berges [Ber15]. We will work in natural units and therefore set
c = ~ = kB = 1.
To describe scenarios like EWBG and non-equilibrium processes in general one needs a frame-
work that is able to render the dynamics of quantum fields out of equilibrium correctly. It should
in particular be able to describe the process of thermalization, i.e. the approach of the physical
system to thermal equilibrium. To be accurate, since thermal equilibrium itself is invariant under
time-reflection it actually can never be reached from a non-equilibrium setup. It can yet be ap-
proached to a high degree [Ber15].
To actually set up a scope that is able to meet those requirements, only few ingredients are
needed. We start by specifying a (non-equilibrium) density operator % at the initial time t0.
Since the expectation value of a arbitrary operator Â is given by

〈Â〉 = Tr
[
%Â
]
, (2.1)

one could equivalently presuppose the knowledge of all correlation functions at the initial time.
Under the assumption of a closed system the time-evolution is then completely determined by
the respective Hamiltonian Ĥ:

∂%

∂t
= −i

[
Ĥ, %

]
. (2.2)

Since standard pertubative approaches from ordinary QFT break down due to secular terms,
which are spurious effects growing with time that invalidate the expansion, other approximation
techniques have to be employed [Ber15]. The latter should not only be free of these secular terms
but also obey the principle of universality. This means that the late-time dynamics should be uni-
versal in the sense that they depend on the initial energy density and other conserved charges only
and are therefore insensitive to the details of the initial conditions.
An efficient and powerful approach that meets these requirements is the functional integral
method of n-particle irreducible effective actions. For this purpose it is important to remem-
ber that the system’s dynamics given by (2.2) can equivalently be described via a path integral
containing the classical action S. This construction will allow us to derive an effective action Γ,
which is the generating functional for the correlation functions of our theory.
We continue with outlining the basic idea of the so-called Schwinger-Keldysh-formalism, which
will be employed in the subsequent introduction to the 2PI formalism and constitutes an impor-
tant ingredient for the derivation of the Kadanoff-Baym-Equations.
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For reasons of convenience we will start out with considering a purely scalar field theory and
extend our considerations to fermion fields later on.

Schwinger-Keldysh-Contour
To begin, we write down the generating functional for correlation functions:

Z[J,R; %0] = Tr{%0TCe
i(
∫
x,C J(x)Φ(x)+ 1

2

∫
xy,C Φ(x)R(x,y)Φ(y))} (2.3)

where %0 denotes the initial density operator, TC the time-ordering operator along the contour C
and Φ(x) a (scalar) Heisenberg field operator. J(x) and R(x, y) are linear and bi-linear source
terms respectively. The notation x denotes the ’full’ space-time vector, while x represents the
spatial components only.

Figure 2.1.: Real-time contour C. Image taken from [Ber15]

As depicted in Fig. 2.1, the time-integration along C appearing in (2.3) starts at an initial value
t0, advances to some specific moment in the future and eventually returns back to t0. This
choice of the time contour is also referred to as the In-In-formalism or, honoring two of its early
developers, as the Schwinger-Keldysh-Contour (see e.g. [Sch61], [Kel64]). It stands in contrast
to the so-called In-Out-Formalism, which introduces asymptotic In- and Out-states and is usually
employed to describe scattering processes.
We also want to stress that this is not to be confused with an imaginary-time formalism, which
is often used for calculations in thermal equilibrium [ZJ00]. The offset of the contour from the
real time-axes in Fig. 2.1 is for demonstrative purposes only.
To define non-equilibrium correlation functions we take the functional derivative of (2.3) with
respect to the source terms:

δZ[J,R; %]

δJ(x)

∣∣∣∣
J,R=0

= Tr{%Φ(x)} ≡ 〈Φ(x)〉 ≡ φ(x).

This can straightforwardly be extended to higher order correlation functions, e.g. the two point
function:

δZ[J,R; %]

δJ(x)δJ(y)

∣∣∣∣
J,R=0

= Tr{%TCΦ(x)Φ(y)} ≡ 〈TCΦ(x)Φ(y)〉

This implies that the correlation functions are defined by the expectation value of time ordered
products of Heisenberg operators. Further, since in this way we can obtain any correlation func-
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tion we want, the considered quantum system is specified by (2.3) completely.
The time-ordered product of the two Heisenberg field operators can further be re-expressed in
terms of contour Heaviside step functions:

TCΦ(x)Φ(y) = Φ(x)Φ(y)θC(x
0 − y0) + Φ(y)Φ(x)θC(y

0 − x0),

where the latter are defined by:

θC(x
0 − y0) =


θ(x0 − y0) x0, y0 ∈ C+

θ(y0 − x0) x0, y0 ∈ C−

0 x0 ∈ C+, y0 ∈ C−

1 x0 ∈ C−, y0 ∈ C+

where θ(x0 − y0) denotes the standard Heaviside step function.
In complete analogy we can define the respective fermion propagator:

∆αβ(x, y) ≡ 〈TCΨα(x)Ψ̄β(y)〉 = 〈Ψα(x)Ψ̄β(y)〉θC(x0 − y0)− 〈Ψ̄β(y)Ψα(x)〉θC(y0 − x0)

where the minus sign between the two terms is a consequence of the anti-commuting property of
the fermionic field operators. Due to notational convenience we will hereafter mostly omit the
Dirac indices.
We continue by introducing the spectral function ρ and the statistical function F :

ραβ(x, y) = i〈{Ψα(x), Ψ̄β(y)}〉

Fαβ(x, y) =
1

2
〈[Ψα(x), Ψ̄β(y)]〉.

(2.4)

The advantage of expressing the propagator this way is that the two quantities ρ and F allow
for a simple physical interpretation. While the spectral function contains information about the
spectrum of the system, the statistical function encodes information about occupation numbers.
To find the relation between ρ and F and the full propagator, we split ∆ into four distinctive
parts: ∆++,∆+−,∆−+ and ∆−−. The superscripts ± thereby refer to the position of the x0 and
the y0 coordinate with respect to the time contour C. Using (2.4) we can express the different
parts as follows:

∆++(x, y) = F (x, y)− i

2
ρ(x, y)sgn(x0 − y0)

∆+−(x, y) = F (x, y) +
i

2
ρ(x, y)

∆−+(x, y) = F (x, y)− i

2
ρ(x, y)

∆−−(x, y) = F (x, y) +
i

2
ρ(x, y)sgn(x0 − y0)
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where sgn(x0 − y0) = θ(x0 − y0)− θ(y0 − x0) denotes the standard sign function.
Since there are only two linear independent parts, the full propagator can be written in terms of
ρ and F :

∆(x, y) = F (x, y)− i

2
ρ(x, y)sgnC(x

0 − y0) (2.5)

where sgnC(x0 − y0) = θC(x
0 − y0)− θC(y0 − x0).

For the sake of completeness, we also state the respective expressions for the statistical and
spectral function in case of scalars:

ρφ(x, y) = i〈[Φ(x),Φ(y)]〉

Fφ(x, y) =
1

2
〈{Φ(x),Φ(y)}〉

(2.6)

As apparent from (2.6), the statistical and spectral functions swap roles. This means while in case
of the fermions the spectral/statistical function is proportional to the anti-commutator/commutator
of the field operators, they are proportional to the commutator/anti-commutator in case of the
scalars.
In analogy to the fermions we can now write the scalar propagator G as a linear combination of
ρφ and Fφ:

G(x, y) = Fφ(x, y)− i

2
ρφ(x, y)sgnC(x

0 − y0) (2.7)

2.1. 2PI effective action

2.1.1. Initial conditions

In the following we want to give a brief introduction to the 2PI-effective action. We will again
start by considering a purely scalar field theory.
Since it will turn out to be convenient, we rewrite our expression for the generating functional
(2.3). To be specific, we use that we can represent the trace as a functional integral [Ber15]:

Z[J,R; %0] =

∫
[dϕ+

0 ][dϕ−0 ]〈ϕ+
0 |%0|ϕ−0 〉

ϕ−0∫
ϕ+
0

Dϕei
{
S[ϕ]+

∫
x,C J(x)ϕ(x)+ 1

2

∫
xy,C ϕ(x)R(x,y)ϕ(y)

}
(2.8)

where ϕ±0 = ϕ±(x0 = t0,x) with x0 ∈ C± correspond to the field configurations at the initial
time t0 and S[ϕ] denotes the classical action for a real scalar field ϕ. For the details of this path
integral construction we redirect the interested reader to [Ber15].
This representation of the generating functional reflects two central features of non-equilibrium
quantum field theory. While the matrix elements of the initial density operator occur as prefac-
tors and reflect the statistical fluctuations connected to the initial density matrix, the functional
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integral - containing the classical action S[ϕ] - encodes the quantum fluctuations [Ber15].
To describe the initial conditions of an experimental setup, we have to specify the initial density
matrix %0. Without loss of generality we can express the matrix elements of %0 as an exponential
of a polynomial in the fields [C+94]:

〈ϕ+
0 |%0|ϕ−0 〉 = exp

[
α(0) +

∫
d3xα(1)

a (x)ϕa0(x) +
1

2

∫
d3xd3yα

(2)
ab (x,y)ϕa0(x)ϕb0(y) + . . .

]
.

(2.9)

where the Latin letters a, b, .. take the values {+,−}. The first coefficient α(0) plays the role of
an irrelevant constant and can therefore be used for normalization.
Since the initial density matrix can only influence the path integral at the initial time t0, we can
further write: ∫

d3xα(1)
a (x)ϕa0(x) ≡

∫
x,C
α(1)(x)ϕ(x)∫

d3xd3yα
(2)
ab (x,y)ϕa0(x)ϕb0(y) ≡

∫
x,C
α(2)(x, y)ϕ(x)ϕ(y)

...

where the coefficients α(1)
a , α

(2)
ab , . . . have to vanish identically for t 6= t0.

In this work, we will restrict ourselves to Gaussian initial density matrices. This means we
express the matrix elements in (2.9) as a polynomial of degree two, i.e. neglect all terms including
higher powers of the initial field configuration ϕ0. The parameters α(1)

a , α
(2)
ab , . . . can be directly

related to the initial values of the 1-point, 2-point,. . . function [C+94]. This means a Gaussian
initial density matrix is equivalent to the initial specification of the 1- and the 2-point function.
As outlined in [Ber15], the knowledge of the lowest few correlation functions is often enough to
render the initial conditions of an experimental setup sufficiently well, whereas higher correlation
functions start to build up at later times. For example, the initial condition for the reheating
dynamics after the end of inflation is assumed to be well-described by a Gaussian initial density
matrix [Ber15].
Putting everything together and absorbing α(1) and α(2) into the source terms:

J(x)→ J(x) + α(1)(x), R(x, y)→ R(x, y) + α(2)(x, y),

we obtain:

Z[J,R; %gauss.
0 ] −→ Z[J,R] =

∫
Dϕei(S[ϕ]+

∫
x,C J(x)ϕ(x)+

∫
xy,C ϕ(x)R(x,y)ϕ(y))

For the construction of an analogous path integral for fermion fields one has to introduce so-
called Grassman variables, which reflect the anti-commuting properties of the fermionic field
operators. Details can be found in [Ber15].
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2.1.2. Effective action

We move on by defining the generating functional for connected n-point functions W [J,R] =
−i lnZ[J,R]. Once more we can obtain the macroscopic field as well as the connected propaga-
tor by taking the functional derivative with respect to the source terms:

δW [J,R]

δJ(x)
=

1

Z[J,R]

δZ[J,R]

iδJ(x)
= φ(x)

δW [J,R]

δR(x, y)
=

1

2
(φ(x)φ(y) +G(x, y))

Since the generating functional (2.3) can - as well known from thermodynamics - be seen as a
generalization of the partition function applying a Legendre transform (LT) to the logarithm of
Z[J,R; %] must lead to an equivalent description of the physical system.
Performing a LT of W [J,R] with respect to the linear source term J(x) yields the so-called 1-PI
(1-particle irreducible) effective action:

Γ1PI[φ] = W [J,R]−
∫
x,C

δW [J,R]

δJ(x)
J(x) = W [J,R]−

∫
x,C
φ(x)J(x) (2.10)

In the language of Feynman diagrams, a contribution is called 1-particle reducible if by cutting
one of the internal propagator lines the diagram falls apart in two separate pieces. Otherwise
the diagram is called 1-particle irreducible. This nomenclature can be extended to n-particle
irreducible contributions. To illustrate this classification, a simple example is given in Fig. 2.2.

��
Figure 2.2.: Exemplary diagrams for 1-particle-reducible (left) and 1-particle-
irreducible (right) contributions. When cutting the propagator between the two internal
vertices in the left diagram, it falls apart in two disconnected pieces. For the right dia-
gram one needs to cut two internal propagators to end up with two separate pieces, i.e.
it is 2-particle-reducible.

After performing a subsequent LT on (2.10) with respect to the bi-linear source term R(x, y), we
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end up with the 2-PI effective action:

Γ2PI[φ,G] = W [J,R]−
∫
x,C

δW [J,R]

δJ(x)
J(x)−

∫
xy,C

δW [J,R]

δR(x, y)
R(x, y)

= W [J,R]−
∫
x,C
φ(x)J(x)−

∫
xy,C

1

2
(φ(x)φ(y) +G(x, y))R(x, y)

(2.11)

By varying this expression with respect to φ and G we obtain:

δΓ[φ,G]

δφ
= −J(x)−

∫
y,C
R(x, y)φ(y)

δΓ[φ,G]

δG
= −1

2
R(x, y)

(2.12)

These are the quantum equations of motion for φ and G.
The 1-loop contribution can be written as [Ber15]:

Γ2PI
1loop[φ,G] = S[φ] +

i

2
TrC lnG−1 +

i

2
TrC{(G−1

0 (φ)−G−1)G},

where iG−1
0 (x, y;φ) ≡ δ2S[φ]/δφ(x)δφ(y) denotes the classical inverse propagator.

Now we can express the exact 2-PI effective action as the sum of the 1-loop expression and an
additional, higher loop-order term Γ2[φ,G]:

Γ2PI[φ,G] = S[φ] +
i

2
TrC lnG−1 +

i

2
TrCG

−1
0 (φ)G+ Γ2[φ,G] + const.

While Γ2[φ,G] includes all higher order contributions, the term i
2
TrC{G−1G} can be seen as an

irrelevant constant and be used for renormalization. We want to remind the reader that the trace
TrC includes not only the spatial integration along the time-contour C but also the summation
over field indices.
Varying this expression with respect to the full propagator G and using the second line of (2.12)
yields:

−1

2
R(x, y) = − i

2
G−1(x, y) +

i

2
G−1

0 (x, y;φ) +
δΓ2[φ,G]

δG
(2.13)

G−1(x, y) = G−1
0 (x, y;φ)− iR(x, y)− Π(x, y;φ,G) (2.14)

where we have defined the proper self energy as:

Π(x, y;φ,G) = 2i
δΓ2[φ,G]

δG(x, y)
. (2.15)
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Inverting (2.14) using the geometric series yields:

G = (G−1
0 − iR)−1 + (G−1

0 − iR)−1Π(G−1
0 − iR)−1+ (2.16)

+ (G−1
0 − iR)−1Π(G−1

0 − iR)−1Π(G−1
0 − iR)−1 + . . . (2.17)

where we have omitted the arguments for notational convenience.
The above equation for the full propagator G can also be expressed diagrammatically:

fcf = faf+fpf+fpfpf+ · · ·

which is simply the Dyson-Equation. Thus we conclude that the proper self-energy is simply the
sum of all 1-PI contributions. Further, since the self-energy is obtained by taking the functional
derivative of Γ2PI with respect to G - what can be interpreted as cutting one propagator line - we
can see that all contributions of Γ2PI have to be 2-PI.
In similar fashion one can derive the respective expression for the fermion propagator. With the
source term set to zero, we obtain:

∆−1(x, y) = ∆−1
0 (x, y)− Σ(x, y; ∆) (2.18)

where ∆−1
0 (x, y) denotes the free inverse fermion propagator:

i∆−1
0 (x, y) = δC(x− y)[i/∂x −mf ]

and Σ(x, y) the proper self energy for the fermions:

Σ(x, y) = −i δΓ2[∆]

δ∆(x, y)
(2.19)

2.2. Evolution equations for the fermion propagator

In this section we will derive evolution equations, the so-called Kadanoff-Baym-Equations (KBE),
for the fermionic two-point objects ρ(x, y) and F (x, y).
For this purpose we start from the equation of motion for the time-ordered fermion propagator
given by (2.18):

∆−1(x, y) = ∆−1
0 (x, y)− Σ(x, y; ∆)

14



Convoluting the latter expression with ∆(x, y) leads to:

iδ(x− y) = i

∫
z

∆−1(x, z)∆(z, y)

=

∫
z

i∆−1
0 (x, z)∆(z, y)− i

∫
z

Σ(x, z; ∆)∆(z, y)

=

∫
z

δC(x− z)
[
i/∂x −mf

]
∆(z, y)− i

∫
z

Σ(x, z; ∆)∆(z, y)

=
[
i/∂x −mf

]
∆(x, y)− i

∫
z

Σ(x, z; ∆)∆(z, y)

(2.20)

where we have employed the notation
∫
z

=
∫
C dz0

∫
dz.

We continue separating the self energy into a local and a non-local part:

Σ(x, y; ∆) = −iΣlocal(x; ∆)δ(x− y) + Σ̄(x, y; ∆) (2.21)

The local part Σlocal(x; ∆) can then be absorbed by defining a space-time dependent, effec-
tive fermion mass mf (x,∆) = mf + Σlocal(x; ∆). In the following we will use the notation
Σ(x, y; ∆) ≡ Σ̄(x, y; ∆).
Using the decomposition of the fermion propagator in statistical and spectral function and turn
our focus to the first term on the r.h.s of (2.20), we see:[

i/∂x −mf
]

(F (x, y)− i

2
ρ(x, y)sgn(x0 − y0))

=
[
i/∂x −mf

]
F (x, y)− i

2
sgn(x0 − y0)

[
i/∂x −mf

]
ρ(x, y)− i

2
ρ(x, y)iγ0∂x0sgn(x0 − y0)

=
[
i/∂x −mf

]
F (x, y)− i

2
sgn(x0 − y0)

[
i/∂x −mf

]
ρ(x, y) +

1

2
2ρ(x, y)γ0δ(x0 − y0)

=
[
i/∂x −mf

]
F (x, y)− i

2
sgn(x0 − y0)

[
i/∂x −mf

]
ρ(x, y) + iγ0γ0δ(x− y)

=
[
i/∂x −mf

]
F (x, y)− i

2
sgn(x0 − y0)

[
i/∂x −mf

]
ρ(x, y) + iδ(x− y)

This way the δ-function on the l.h.s of (2.20) gets canceled.
Now we will take a closer look at the convolution term on the r.h.s. of (2.20). We therefore start
with writing the self energy Σ̄ as:

Σ̄(x, y) = ΣF (x, y)− i

2
Σρ(x, y)sgnC(x

0 − y0), (2.22)
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which is in analogy to the decomposition of the propagator in statistical and spectral function in
(2.5). Employing this decomposition yields:

i

∫
z

Σ̄(x, z; ∆)∆(z, y) =

∫
z

{
iΣF (x, z)F (z, y) +

1

2
ΣF (x, z)ρ(z, y)sgn(z0 − y0)

+
1

2
Σρ(x, z)F (z, y)sgn(x0 − z0)

− i

4
Σρ(x, z)ρ(z, y)sgn(x0 − z0)sgn(z0 − y0)

} (2.23)

The first term on the r.h.s. of (2.23) has to vanish because we integrate along a closed time path
C. This argument does not hold for the other terms due to the sign functions.
Instead we can split the closed time contour integral for the second term (and in complete analogy
for the third term) in the following way:∫

C
dz0sgn(z0 − y0) =

∫ y0

t0

dz0(−1) +

∫ t0

y0

dz0 = −2

∫ y0

t0

dz0,

In similar fashion we can also rewrite the time integration for the last term:∫
C

dz0sgn(x0 − z0)sgn(z0 − y0)→ 2 sgn(x0 − y0)

∫ x0

y0
dz0

Putting everything together we end up with the following evolution equations for the statistical
and the spectral function:

[
i/∂x −m(f)(x)

]
F (x, y) =

∫ x0

t0

dzΣρ(x, z)F (z, y)−
∫ y0

t0

dzΣF (x, z)ρ(z, y) (2.24)

[
i/∂x −m(f)(x)

]
ρ(x, y) =

∫ x0

y0
dzΣρ(x, z)ρ(z, y) (2.25)

These equations are also called the Kadanoff-Baym-Equations, honoring the early work by L. P.
Kadanoff and G. A. Baym [KB62].
The r.h.s of (2.24) and (2.25) are also referred to as memory integrals, since they are integrating
over the history of the system. We further introduce the abbreviations MF (x, y) and Mρ(x, y)
for these integrals.
For the sake of completeness, we also state the respective KBE for the scalar case:

[
�x +m2

φ(x)
]
Fφ(x, y) = −

∫ x0

t0

dzΠρ(x, z)Fφ(z, y) +

∫ y0

t0

dzΠF (x, z)ρφ(z, y) (2.26)

[
�x +m2

φ(x)
]
ρφ(x, y) = −

∫ x0

y0
dzΠρ(x, z)ρφ(z, y) (2.27)
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We want to stress that so far the given equations are exact. The approximation sets in, when we
explicitly insert an expression for the respective self energies.
Further we want to remind the reader that in case of fermion fields we have again omitted the
Dirac indices, i.e. the KBE actually exhibit a matrix structure.
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3. Numerical Implementation

Since there is no analytic solution for the KBE in reach they have to be treated numerically.
This has been done by several authors already, yet under the assumption of spatial homogeneity
(see e.g. [Ber02],[BBW04], [BBS03], [LM08]). In other words, the considered systems obey
translation invariance and therefore depend on the spatial distance between two points in space
only. This setup allows for applying a Fourier Transformation and solving the KBE entirely in
momentum space. This and further exploitation of symmetries can simplify the task of solving
the KBEs dramatically.
Yet, since it is a long term goal to be able to describe setups comparable to that of the earlier
described Electroweak Baryogenesis, assumptions like spatial homogeneity are no longer well
justified. We are therefore convinced that the development of a framework, which is not limited
to the time evolution of homogeneous systems, might allow for a more proper description of
inhomogeneous non-equilibrium scenarios.
In the following we want to present the numerical tools and techniques that have been employed
for the implementation of the Dirac equation and the Kadanoff-Baym-Equations. Even though
so far only the case of (1+1)-dimensions has been implemented and therefore will be considered
in the following, the generalization to (2+1)- or (3+1)- dimensions should be straightforward.
Since this work is in particular dedicated to the numerical treatment of fermion fields, we will
restrict ourselves to the implementation details of the fermion evolution equations.
We will start out with introducing a discretization scheme for the Dirac equation, which is not
only needed in case of the 1-point function, but also appears in the KBE. This will be followed by
a brief discussion about the stability and the dispersion relation implied by the employed scheme.
In the end of this chapter we will go into details of the algorithm that was implemented to solve
the KBE, i.e. the evolution equations for the fermion propagator.

3.1. Discretizing the Dirac equation

3.1.1. Fermion doublers

To introduce the reader to employed discretization scheme, we will start out with the Dirac
equation:

(i/∂x −m)ψ(x, t) = 0
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Going to (1+1) space-time dimensions, we can write:

iγ0∂t

(
r
s

)
= (−iγ1∂x +m)

(
r
s

)
. (3.1)

where r = r(x, t) and s = s(x, t) are the components of the two-component Dirac-Spinor
ψ(x, t), while m = m(x, t) denotes a space-time dependent mass.
For the γ-matrices we make the following choice that is kept throughout this work:

γ0 = σ3 =

(
1 0
0 −1

)
, γ1 = iσ2 =

(
0 1
−1 0

)
where σi are the Pauli-matrices. As the reader might easily verify, γ0 and γ1 fulfill the so-called
Clifford Algebra:

{γµ, γν} = 2ηµν

where ηµν denotes the metric tensor. We thereby use the signature (+,−), i.e.:

η =

(
1 0
0 −1

)
Multiplying (3.1) with γ0 from the left, we end up with the so-called Schrödinger form:

i∂t

(
r
s

)
= (−i∂xα + γ0m)

(
r
s

)
⇔ ∂t

(
r
s

)
= (−∂xα− iγ0m)

(
r
s

) (3.2)

As one can see from the off-diagonal character of α = γ0γ1 =

(
0 1
1 0

)
, we end up with two

coupled differential equations.
A first naive approach to discretize the spatial derivative would be the so called midpoint scheme.
Considering the component r and setting the mass term m set to zero, we obtain:

∂tr
n
j = −

snj+1 − snj−1

2∆x
. (3.3)

It is now instructive to compare the respective dispersion relations for the continuum and the
discretized equation:

discretized: ω = ±sin(k∆x)

∆x
, − π

∆x
< k ≤ π

∆x
continuum: ω = ±k, −∞ < k <∞
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As apparent from Fig.3.1, in contrast to the continuum case the dispersion relation for the dis-
cretized equation is intersected twice by the given energy value ω = 0.5. This occurrence of

Figure 3.1.: Dispersion relation for the continuum (orange) and the discretized (blue)
massless Dirac equation. The lattice spacing ∆x was set to 1. In case of the discretized
equation there are two intersections/solutions for a given energy ω = 0.5 (green).

additional modes due to this kind of discretization scheme is also referred to as the fermion dou-
bling problem. This problem already becomes apparent when taking a closer look back at (3.3).
In this case the spatial derivative is calculated via two lattice points which are separated by a dis-
tance of 2∆x. This means that the maximum lattice momentum p = π

∆x
, i.e. a mode oscillating

between each grid point can never be resolved. The latter is rather ’seen’ as another zero mode.
This applies for all higher modes (p > π

2∆x
), meaning they effectively get mapped onto lower

modes p < π
2∆x

and therefore lead to the doubling of states (comp. Fig 3.1).
Since this is a problem that has been known for some time, different techniques on how to get rid
of these undesired modes have been developed and are available in the literature. One approach
suggests to add an additional mass term, the so-called Wilson term in the discretized Hamilto-
nian [MM94]. This term raises the energy of the undesired modes located at one boarder of the
Brillouin zone. Since this mass term is chosen to be proportional to the inverse lattice spacing
∆x−1, these states get infinitely heavy in the continuum limit and are thereby prevented from
being populated [MM94].
Another way to avoid the doublers features the introduction of so-called staggered fermions
[Sus77]. The basic idea is to introduce a second spatial grid, which is shifted by half a lattice-
spacing with respect to the initial grid. Now one of the two spinor components is defined to
the regular grid while the second lives on the staggered grid. The consequence of putting only
one of the two spinor components on each grid effectively leads to a reduction of the degrees of
freedom by a factor of two [MM94]. This will be outlined in more detail in section 3.1.3.
In this work we will pursue a modification of the latter approach, i.e. we not only introduce a
second staggered grid in space but also in time. We thereby basically follow the outline given in
[HPA14].
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3.1.2. Staggered Leapfrog

To cure the previously introduced fermion doubling problem we discretize (3.2) as follows:

rn+1
j − rnj

∆t
= −imn+ 1

2
j

rn+1
j + rnj

2
−
s
n+1/2

j+ 1
2

− sn+1/2

j− 1
2

∆x

s
n+ 1

2

j+ 1
2

− sn−
1
2

j+ 1
2

∆t
= imn

j+ 1
2

s
n+ 1

2

j+ 1
2

+ s
n− 1

2

j+ 1
2

2
−
rnj+1 − rnj

∆x
,

(3.4)

where n and j take integer values and indicate the lattice site on the regular grid. This scheme
implies that the two components r and s have to live on different sub-grids. While r is defined on
’regular’, i.e. integer grid-points, s occupies half-integer grid-points. We want to stress that this
shift affects not only the spatial but also the time coordinate. Further both grids fulfill periodic
boundary conditions (p.b.c.) in space, while they advance straightly in time. This becomes more
clear, when taking a closer look to the respective equation for the r component. When r is
evolved from time n to n + 1, the occurring spatial derivative of s is taken at the time lying in
between, i.e at n+1/2. Figuratively spoken, this can be seen as the time-evolution ’leaping’ over
the point in time where the spatial derivative is taken. The scheme is sketched out in Fig. 3.2.

Figure 3.2.: Sketch of the staggered-leapfrog scheme in (1+1) dimensions. While the
white dots denote points of the integer-valued grid, the blacks dots are shifted by half a
step-size in both space and time. The light-red arrow represents the calculation of the
spatial derivative, while the white arrow indicates the evolution in time.

As already outlined, the leapfrog scheme demands for a second sub-grid. We therefore introduce
a staggered grid, which is shifted by −1

2
∆t in time and +1

2
∆x in space with respect to the

original lattice. In the following we will further consider the case of a constant, i.e. space-time
independent mass m.
Returning to our discretization scheme (3.4) we realize that for getting the update routine started
we need – apart from the values of r at the time t = 0 – the respective values of s at the time
t = −1

2
. Instead of initializing these values, we can use the values of s at the time t = 0 and
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apply an ordinary forward Euler step to evolve s to the time t = 1
2
:

s
1/2

j+ 1
2

− s0
j+ 1

2

∆t/2
= −im

s
1/2

j+ 1
2

+ s0
j+ 1

2

2
−
r0
j+1 − r0

j

∆x

This equation allows us to calculate the values of s at time t = 1
2

without requiring the respective
values at t = −1

2
. After this first step done, the s component lives entirely on the staggered grid.

We therefore relabel the indices attached to s in the way that they indicate the lattice sites of the
staggered grid: 1

s
− 1

2
1
2

→ s0
0.

To put it more general:

s
n− 1

2

j+ 1
2

→ snj .

Applying this notation to (3.4), we obtain:

rn+1
j − rnj

∆t
= −im

rn+1
j + rnj

2
−
sn+1
j − sn+1

j−1

∆x
sn+1
j − snj

∆t
= im

sn+1
j + snj

2
−
rnj+1 − rnj

∆x

(3.5)

Rearranging the terms leads to:

rn+1
j =

1

2 + ∆tim

[
(2−∆tim)rnj − 2∆t

snj − snj−1

∆x

]
sn+1
j =

1

2−∆tim

[
(2 + ∆tim)snj − 2∆t

rnj+1 − rnj
∆x

] (3.6)

Equation (3.6) outlines how the two components r and s can be evolved in time.
The scheme as given by (3.6) provides a second order accuracy2in space and time and further
guarantees stability for r ≡ ∆t

∆x
≤ 1. The issue of numerical stability is outlined in more detail

in the following section.

3.1.3. Stability and dispersion relation

A crucial property any numerical scheme should embody is of course stability. In the following
we will therefore present a brief outline of the von Neumann stability analysis of the just intro-
duced staggered leapfrog scheme. This will be followed by a short discussion on the induced

1This means depending on to which object r or s the indices j and n are attached to they either indicate a lattice
side on the regular or the staggered grid.

2To be precise we pick up an error of order ∆t due to the initializing Euler step.
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dispersion relation. We again follow the outline of [HPA14].
Under the assumption of constant coefficients in (3.5) we apply a discrete Fourier transform in
space:

r̃n+1 − r̃n

∆t
= −imr̃n+1 + r̃n

2
− s̃n+1 (1− exp(ik∆x))

∆x
s̃n+1 − s̃n

∆t
= im

s̃n+1 + s̃n

2
− r̃n (exp(−ik∆x)− 1)

∆x
,

(3.7)

where r̃n = r̃n(k) and s̃n = s̃n(k) are complex, k-dependent numbers. The two coupled equa-
tions above can also be written in a matrix notation:(

1
∆t

+ im
2

(1−exp(ik∆x))
∆x

0 1
∆t
− im

2

)
︸ ︷︷ ︸

A

(
r̃n+1

s̃n+1

)
=

(
1

∆t
− im

2
0

− (exp(−ik∆x)−1)
∆x

1
∆t

+ im
2

)
︸ ︷︷ ︸

B=A†

(
r̃n

s̃n

)

⇔
(
r̃n+1

s̃n+1

)
= A−1A†︸ ︷︷ ︸

≡L

(
r̃n

s̃n

)
= L

(
r̃n

s̃n

)
,

where the superscript in A† denotes the Hermitian conjugate of the matrix A. We have further
defined the amplification matrix L.
Introducing the following abbreviations:

a = k∆x, b = m∆t, r =
∆t

∆x

we can rewrite L as:

1

b+ 2i

(
8r2[cos(a)−1]−(b+2i)2

b−2i
2ir(exp(ia)− 1)

2ir(1− exp(−ia)) −(b− 2i)

)
Its eigenvalues are given by:

λ± =
trL
2
±

√(
trL
2

)2

− detG

while the trace and determinant of L are given by:

trL =
8 [1 + r2 cos(a)− r2]− 2b2

4 + b2

detL = 1

(3.8)

A further analysis of the eigenvalues and their respective eigenvectors shows that |λ±| = 1 for
r ≤ 1 and that the scheme grants the Courant-Friedrichs-Lewy (CFL)-condition for stability
[HPA14]. To obtain the system’s dispersion relation, we apply a subsequent discrete Fourier
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Transformation with respect to the time to (3.7):

Aeiω∆t

(
˜̃r
˜̃s

)
= A∗

(
˜̃r
˜̃s

)
⇔ eiω∆t

(
˜̃r
˜̃s

)
= L

(
˜̃r
˜̃s

)
,

where ˜̃r = ˜̃r(ω, k) and ˜̃s = ˜̃s(ω, k). Using our knowledge of the eigenvalues of L we end up
with:

ω± =
−i
∆t

ln(λ±) (3.9)

As one can see from Fig (3.3) the dispersion relation is satisfied exactly for r = ∆t
∆x

= 1. For

Figure 3.3.: Dispersion relation ω+(k) of the staggered leapfrog scheme for different
values of ∆t, while ∆x = 0.5 is fixed. On the left we have put m = 0, on the right
m = 1. The k-values are in the domain [− π

∆x ,
π

∆x ].

∆x > ∆t we get deviations from the exact dispersion relation, which rise with decreasing values
of r and growing wave numbers k.
As a check for consistency, we will temporarely consider the massless case. Inserting the explicit
expressions of (3.8) into the dispersion relation (3.9) we obtain:

ω± =
−i
∆t

ln

[
1 + r2(cos(a)− 1)±

√
[1 + r2(cos(a)− 1)]2 − 1

]
. (3.10)
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Choosing r = 1 yields

ω± =
−i
∆t

ln
[
cos(a)±

√
cos2(a)− 1

]
⇔ ω± =

−i
∆t

ln [cos(a)± i sin(a)]

⇔ ω± =
a

∆t
= ±k,

i.e. the exact dispersion relation for the continuum.
We further want to stress that even though there are deviations for r < 1 from the exact dispersion
relation, no additional modes are present within the momentum range [− π

∆x
, π

∆x
]. Hence, in

contrast to the midpoint scheme, the staggered leapfrog does not suffer from the appearance of
fermion doublers.

Why fermion doubling is avoided by the staggered leapfrog scheme
To understand how the staggered leapfrog scheme cures the fermion doubling problem, it is
instructive to follow the outline of [MM94]. Therefore we temporarily consider the massless
case, i.e. m ≡ 0 and define the following single component fermion field ξ by:

ξkl ≡

{
rkl if l = integer
skl if l = half-integer

The indices k and l can take integer as well as half-integer values.
Employing the integer-valued indices n and j from above and using (3.4) we can write:

∂tξ
n
j =

rn+1
j − rnj

∆t
= −

s
n+1/2

j+ 1
2

− sn+1/2

j− 1
2

∆x
∆x→0

= −∂xξ
n+ 1

2
j .

This seems to describe right moving waves only. If we now define a second field as:

ζkl = (−1)2lξkl = e±2liπξkl ,

and again use the indices n and j, we obtain:

∂tζ
n
j =

rn+1
j − rnj

∆t
= −

s
n+1/2

j+ 1
2

− sn+1/2

j− 1
2

∆x
∆x→0

= +∂xζ
n+ 1

2
j ,

i.e. left moving waves. This means each of two the single component fermion fields describes
one Dirac fermion species, i.e. the degrees of freedom have effectively been reduced [MM94].
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3.2. 2-point objects

Besides the time-evolution of the 1-point function, we are particularly interested in evolving
2-point objects like the spectral and the statistical function. In the following we will present
the basic ingredients that are employed for the numerical integration of the Kadanoff-Baym-
Equations. We will start with a short introduction to the operator splitting method and continue
with the challenge of evolving an object in two time coordinates. In the end we will outline how
the memory integrals on the r.h.s. of the KBEs are computed.

3.2.1. Operator-Splitting

Due to the complex structure of the KBE including the highly nontrivial memory integrals, we
make use of a so-called operator splitting scheme. The basic idea is to split the full operator
dictating the time evolution of the considered system into sub-operators. The latter are then
applied consecutively, which allows us to treat each of them individually. This makes us more
flexible regarding the used numerical methods and further gives us a better control over the
stability of our algorithm in total. We will therefore give a short introduction to this approach
and refer the interested reader to [H+10] for a more detailed discussion.
We start with the so-called Cauchy problem:

du

dt
+A(u) = 0,

where A denotes the full operator.
Under the assumption that A does not explicitly depend on time, i.e. ∂A

∂t
= 0 its formal solution

is given by:

u(t) = e−tAu(t0)

We now assume that we can write A as a sum of sub-operators Aj:

A =
∑
j

Aj

Hence we can - considering discretized time with step size ∆t - write the solution as:

u(tn+1) =
∏
j

e−∆tAju(tn) (3.11)

Applied to our case, i.e. the time evolution of the statistical and spectral function given by (2.24)
and (2.25) respectively, we define the following two sub-operators:

A1 = iγ0M, A2 = α∂x + iγ0mf
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whereM denotes the respective memory-’operator’ (in the sense of: MFαβ(x, y) = MFαβ(x, y))).
Considering the case of the statistical function Fαβ(x, y) and linearizing the exponential appear-
ing in (3.11) leads to:

Fαβ(n+ 1,x, n,y) = (1−∆t(α∂x + imfγ0))(1−∆tiγ0M)Fαβ(n,x, n,y)

= (1−∆t(α∂x + imfγ0)) (Fαβ(n,x, n,y)−∆tiγ0MFαβ(n,x, n,y))︸ ︷︷ ︸
F̃ (n+1,x,n,y)

where F̃αβ(n+ 1,x, n,y) denotes the intermediate result, i.e. what we obtain after the first sub-
operator has been applied. The latter is then used as an input for the second sub-operator.
As indicated before due to the complex nature of the memory integrals it is quite difficult to
estimate the impact of the respective sub-operator on the stability of the total routine. Yet a
rule of thumb suggests that the stability of the sub-operator containing the highest number of
spatial derivatives can preserve the overall stability of the numerical scheme, even though other
involved sub-operators are unstable [P+07]. In our case sub-operatorA2 contains the only spatial
derivative and is therefore required to be numerically stable. As discussed in the last section this
is guaranteed in case of the staggered leapfrog scheme.

3.2.2. Evolving two time coordinates

To quickly remind the reader of the objects we want to evolve in time, we restate the definition
of the spectral and the statistical function as given in (2.4):

ραβ(x, y) = i〈{Ψα(x), Ψ̄β(y)}〉

Fαβ(x, y) =
1

2
〈[Ψα(x), Ψ̄β(y)]〉

In (1+1) space-time dimensions the KBE equations can be written as follows:

∂x0F (x, y) = −α∂xF (x, y)− imfγ0F (x, y)− iγ0MF (x, y) (3.12)

∂x0ρ(x, y) = −α∂xρ(x, y)− imfγ0ρ(x, y)− iγ0Mρ(x, y) (3.13)

where we have omitted the Dirac indices.
The spectral and the statistical function obey the following hermicity properties under the ex-
change of their arguments [BBS03]:

(ρ(y, x))† = −γ0ρ(x, y)γ0,

(F (y, x))† = γ0F (x, y)γ0.
(3.14)

The hermitian conjugate of course has to be taken in Dirac space. These relations imply that
we only have to calculate the time evolution for times x0 ≥ y0, since the respective values for
x0 < y0 space-time points are always in reach via (3.14).
An aspect that makes dealing with 2-point objects particularly challenging is the presence of
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two distinct time coordinates. This means that we need to find a way to evolve our objects in
both, x0- and y0-direction. While the time evolution along the x0-direction is directly given by
means of the Kadanoff-Baym-Equations, we have to be more careful when addressing the time
evolution along the y0-direction. In the latter case we have to keep in mind that - since the
space-time coordinate y is the argument of an adjoint spinor (c.f. (2.4)) - we need to find an
’adjusted’ evolution equation in y0-direction. To derive the latter we take a look at the adjoint of
the Kadanoff-Baym-equation (3.12): ([

iγ0∂x0 + iγ1∂x −mf
]
F (x, y)

)†
= MF (x, y)†

⇔ −i∂x0F (x, y)†γ0† − i∂xF (x, y)†γ1† −mfF (x, y)† = MF (x, y)†

⇔ ∂x0F (x, y)†γ0 − ∂xF (x, y)†γ1 − imfF (x, y)† = iMF (x, y)†

⇔ ∂x0γ
0F (y, x)γ0γ0 − ∂xγ0F (y, x)γ0γ1 − imfγ0F (y, x)γ0 = iMF (x, y)†

⇔ ∂x0F (y, x)− ∂xF (y, x)α− imfF (y, x)γ0 = iγ0MF (x, y)†.

Relabeling the x and y coordinate and treating the spectral function in the same fashion, we
eventually get:

∂y0F (x, y) = ∂yF (x, y)α + imfF (x, y)γ0 + iγ0MF (y, x)† (3.15)

∂y0ρ(x, y) = ∂yρ(x, y)α + imfρ(x, y)γ0 − iγ0Mρ(y, x)† (3.16)

Now that we have evolution equations for both time coordinates available, we can pursue finding
an effective way of evolving the considered 2-point objects. For this purpose we introduce a new
pair of time-coordinates:

τ =
1

2
(x0 + y0), trel = (x0 − y0)

where τ denotes the absolute time and trel the relative time.
The time evolution in τ -direction implies - in the picture of the old coordinates x0 and y0 - an
evolution along the time diagonal. After a new point along the diagonal has been calculated, we
can continue the straightforward scheme for the evolution along the x0-direction. This way we
can fill the ’triangle’ of space-time points with x0 ≥ y0. Since trel vanishes for equal times, we
omit it in the following lines.
The derivative with respect to τ can be expressed as:

∂τρ(τ,x,y)x0=y0 = ∂τρ(x0, y0,x,y)x0=y0 = (∂x0 + ∂y0) ρ(x0, y0,x,y)x0=y0

This means that we evolve our system in the absolute time τ as a superposition of the evolution
along x0- and y0-direction.
For the actual time evolution we use the earlier introduced operator splitting scheme. While the
first sub-operatorA1 contains the memory integral,A2 involves the Dirac-equation like part. We
want to stress that though the latter is now acting on a matrix instead of a spinor we can still
make use of the staggered leapfrog-scheme introduced in section 3.1.2.
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We begin with the sub-operator A1, which contains the memory operator. Since the memory
integrals are very complex objects integrating over the system’s entire history, they are the main
cause for the high CPU-time. They are further the reason why we have to save every space-time
point that has been calculated during the time-evolution and are therefore responsible for the high
demands for memory. For these reasons we calculate the memory integrals at integer space-time
points, i.e. for the ’regular’ grid only. This allows us to overwrite the staggered grid values at
each time step and therefore save a significant amount of memory. Nevertheless, for evolving
the objects living on the space-time staggered grid we still need to apply the sub-operator A1.
Therefore we employ an interpolation in space and time to get staggered values of the memory
integrals:

Mρ(x0 +
1

2
,x +

1

2
, y0,y) = Mρ(x

0 +
1

2
,x +

1

2
, y0,y))

=
Mρ(x

0,x, y0,y)) +Mρ(x
0,x + 1, y0,y))

2

+
Mρ(x

0 + 1,x, y0,y)) +Mρ(x
0 + 1,x + 1, y0,y))

2
.

(3.17)

This naive interpolation can of course only be a valid approximation if the value of the memory
integral does not vary too much within the range of ∆t and ∆x. For the details of how the
memory integrals are computed, we refer the reader to section 3.2.3.
Applying the second sub-operator A2 implies the introduction of a staggered grid. To obtain
the respective staggered values, we simply interpolate between two adjacent space points of the
original grid:

ρ(x0,x +
1

2
, y0,y) =

ρ(x0,x, y0,y) + ρ(x0,x + 1, y0,y)

2

Now we can employ the earlier introduced Euler step to get the offset in time.

ρ(x0,x +
1

2
, y0,y)

Euler step−−−−−→ ρ(x0 +
1

2
,x +

1

2
, y0,y)

With these staggered values at hand, we can essentially follow the update scheme introduced in
section 3.1.2. This procedure is employed each time after we have evolved our objects to a new
point along the time diagonal to start the evolution in x0-direction.
In contrast to the example used above to explain the basic idea of the staggered leapfrog above,
we would like to end up having all quantities evolved to the same space-time. For this purpose
we have to introduce staggered as well as non-staggered values for all involved objects. A basic
sketch of the whole update procedure can be found in Fig.3.4

29



Figure 3.4.: Sketch of the procedure implemented to evolve 2-point objects in time.
While the circles represent integer grid values, the arrows depict the objects defined on
the staggered grid. In both cases one symbol contains all spatial points (x,y) at the
respective time (x0, y0). The color indicates that these space-time values are known or
have been calculated. As apparent only segments with x0 ≥ y0 are filled.

3.2.3. Calculation of the memory integrals

As pointed out earlier, the KBE in case of fermions exhibit a matrix structure. To give the reader
an impression, we explicitly write down the components of the first integral on the r.h.s. of (2.24)
in (1+1) dimensions:∫ x0

t0

dzΣρ(x, z)F (z, y) =

∫ x0

t0

dz

(
Σρ

11(x, z) Σρ
12(x, z)

Σρ
21(x, z) Σρ

22(x, z)

)(
F11(z, y) F12(z, y)
F21(z, y) F22(z, y)

)
=

∫ x0

t0

dz

(
Σρ

11(x, z)F11(z, y) + Σρ
12(x, z)F21(z, y) Σρ

11(x, z)F12(z, y) + Σρ
12(x, z)F22(z, y)

Σρ
21(x, z)F11(z, y) + Σρ

22(x, z)F21(z, y Σρ
21(x, z)F12(z, y) + Σρ

22(x, z)F22(z, y)

)
Before computing the actual memory integrals, a routine is used to calculate the self-energies
Σ(x, y) appearing in the integrands. With the self-energy values at hand, we can calculate the
memory integrals at the current time coordinate (x0, y0) for all possible pairs of spatial points
(x,y). This also enables us to calculate the respective staggered memory integrals via interpola-
tion (c.f. (3.17)).
As outlined before, we calculate and store ρ(x, y) and F (x, y) for space-time points with x0 ≥ y0

only. Depending on the integration domain of the memory integrals, values of the spectral and
the statistical function with y0 > x0 occur. To express these objects by the ones we have stored
in our memory, we use the hermicity properties ((3.14)) given earlier. To make this more clear,
we take a look at an explicit contribution to the memory integral, which includes objects with
y0 > x0 : ∫ y0

t0

dzΣF (x, z)ρ(z, y)→
∫ y0

t0

dzΣF (x, z)(−γ0ρ(y, z)γ0)†
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We now come to the implementation of the actual computation of the memory integrals. For this
purpose we make use of the so-called trapezoidal rule. This is probably the most straightforward
numerical approach for computing integrals and can be stated in the following form:∫ b

a

f(x)dx = (b− a)

(
f(a) + f(b)

2

)
This means we approximate our function f(x) linearly within the domain of integration. For
applying the trapezoidal rule to our discretized lattice, we split our integrals into sub-integrals
covering the domain between two adjacent grid points. These sub-integrals are then approxi-
mated linearly.
To give an example, we consider the spatial integral over the full length of the lattice l = N∆x

0.5 1.0 1.5 2.0
x

0.1

0.2

0.3

0.4

0.5
f(x)

Figure 3.5.: Sketch of the trapezoidal rule. The lattice points are separated by units of
the lattice spacing ∆x = 0.5. The approximated integral of the function f(x) is shown
in light blue.

in (1+1) dimensions. Keeping the p.b.c. in space in mind, we obtain:∫ N+1

0

f(x)dx =

∫ ∆x

0

f(x)dx+

∫ 2∆x

∆x

f(x)dx+ . . .

∫ (N+1)∆x

N∆x

f(x)dx

= ∆x

[
f(0) + f(∆x)

2
+
f(∆x) + f(2∆x)

2
+ . . .

f(N∆x) + f(0)

2

]
= ∆x [f(0) + f(∆x) + . . . f(N∆x)]

where we have used that the lattice point (N+1) equals the first lattice point 0 due to the p.b.c..
Since we do not utilize p.b.c. in time, we end up with a slightly different expression:∫ N

0

f(t)dt = ∆t

[
f(0) + f(∆t)

2
+
f(∆x) + f(2∆x)

2
+ . . .

f((N − 1)∆t) + f(N∆t)

2

]
= ∆t

[
f(0)

2
+ f(∆t) + . . .

f(N∆t)

2

]
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In contrast to the spatial integration we obtain so-called boundary terms.
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4. Results

4.1. Time varying, CP-violating mass

As a first test for our algorithm, we consider the the Dirac equation with a time-varying, CP-
violation mass profile. This case has been considered in [Kos15] as a simplified model for the
process of electroweak baryogenesis. While the expanding bubble wall (comp. Ch. 1) is modeled
by a time varying mass profile, the necessary CP-violation is included due to an imaginary part
of the mass. Since the mass-profile does not depend on space, the authors can maintain the
assumption of a translation invariant setup. For this given scenario analytic solutions for single
mode functions are derived. In the following we will first briefly sketch the derivation of these
analytic solutions as given in [Kos15] and then compare them to our numerical results.
It can be easily shown that the ordinary Lagrangian of the free fermion field is no longer hermitian
when when a complex mass is used. Therefore the author of [Kos15] used a modified Lagrangian
to restore hermiticity. This leads to the following Dirac equation:

(i/∂ − PRm(x0)− PLm
∗(x0))ψ(x) = 0,

where PR = 1
2
(1 + γ5) and PL = 1

2
(1− γ5) are projection operators. Since in [Kos15] the (3+1)

dimensional case was considered, ψ(x) here denotes a four component spinor.
The spinor is then expanded in a helicity basis:

ψ(x) =

∫
d3p

(2π)3

∑
h=±

[
âphµh(x

0,p)eipx + b̂†phνh(x
0,p)e−ipx

]
,

where µh(x0,p) and νh(x0,p) denote the momentum space spinors while â and b̂ are the cre-
ation and annihilation operators, respectively. Under the assumption of a conserved helicity, the
spinors µ and ν can be decomposed in the following way:

µh(x
0,p) =

[
ηh(x

0,p)
ζh(x

0,p)

]
⊗ ξh(p)

νh(x
0,p) =

[
η̄h(x

0,p)
ζ̄h(x

0,p)

]
⊗ ξh(p),
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where ξh(p) denotes the helicity eigen-spinor obeying ĥξh(p) = hξh(p) with h = ±1.
Employing a change of basis:

φ±h(x
0,p) =

1√
2

[
ηh(x

0,p)± ζh(x0,p)
]
,

φ̄±h(x
0,p) =

1√
2

[
η̄h(x

0,p)± ζ̄h(x0,p)
]
,

(4.1)

one can straightforwardly derive the following evolution equation:

i∂x0φ±h = ±mRφ±h − hpφ∓h ∓ imIφ∓h. (4.2)

Thereby we have employed the notationm(t) = mR(t)+imI(t). The respective equation for φ̄±h
has been omitted since it can be obtained by exchanging h↔ −h and φ̄±h ↔ φ±−h in (4.2). We
further want to emphasize the two coupled equations for φ±h and φ̄±h are - in case of a vanishing
imaginary part mI - equivalent to the Dirac equation for the two component spinor (3.2) as given
in section 3.1 and therefore constitute a good benchmark for us to test the developed update
routine for fermionic 1-point functions.
For a mass profile of the form m(t) = m1 +m2 tanh(− t

τw
) the analytic solutions can be written

as [Kos15]:

φ+(x0,p) = C1 × 2F1(a+, b+, c; z)

φ−(x0,p) = C2 × 2F1(a−, b−, c; z)
(4.3)

where 2F1 denotes the hypergeometric function. The parameters C1/2, a+/−, b+/−, c and z
depend on the mode p as well as on the shape of the considered mass profile. The analytic
solutions of the mode-functions are then used to construct two points objects, i.e. the so-called
Wightman functions1. Following the outline in [Kos15] we focus on S>:

∆−+(x0, y0)γ0 ≡ iS>(x0, y0)γ0 =

[
η(x0)η∗(y0) η(x0)ζ∗(y0)
ζ(x0)η∗(y0) ζ(x0)ζ∗(y0).

]
(4.4)

Thereby we have chosen a specific helicity (h = 1) and therefore dropped the respective index.
After employing absolute (τ ) and relative (trel) time coordinates, (4.4) is subjected to a Wigner
transform2defining the Wigner function W (ω, τ):

W (ω, τ) ≡ iS>(ω, τ)γ0 = i

∫ ∞
−∞

dtrele
iωtrel−Γ|trel|S>

(
τ +

trel
2
, τ − trel

2

)
γ0,

where Γ is a constant introduced by the authors to damp non-physical, long-ranged correlations.
As a central result the author of [Kos15] observed an interesting behavior in the phase-space

1The Wightman functions are 2-point correlation functions equivalent to the different parts of the propagator
∆++,∆+−, . . . as defined in Chapter 2.

2The Wigner transform reveals information about the phase space structure of the considered system.
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structure caused by the changing mass. For early times the Wigner function is determined by the
initial condition, which is chosen to consist of the positive frequency (ω =

√
p2 +m2) solution

only. At the late time structure exhibits three distinct peaks. These are interpreted as a particle-
antiparticle pair and an additional coherence shell located at zero energy. The latter is predicted
by the cQPA (coherent quasiparticle approximation) and can be interpreted as encoding infor-
mation about the quantum coherence between particle and antiparticle [Kos15].
To test our algorithm3in this context we have chosen a spacial lattice with N = 40 points and
a lattice spacing ∆x = 0.5. For the momentum p = 0.31 we evolved the mode-functions φ+

and φ− for 400/800 timesteps (∆t = 0.1/0.05) up to a final time of tfinal = 40. The considered
mass profile is plotted in be found in Fig. 4.1, the numerical results for the time evolution of the
φ+ mode-function can be found in Fig. 4.2. The respective results for φ− are displayed in the
Appendix A. For ∆t = 0.05 we can observe a very good agreement of the numerical results with
the analytic solutions. In case of ∆t = 0.1 we can see clear deviations (especially around the
mass change) from the analytic solution, yet the qualitative behavior is rendered correctly.

Figure 4.1.: The real (blue) and imaginary (yellow) part of the time dependent mass.

Since our numerical data (in contrast to the analytic solutions in [Kos15]) only covers a finite
period in time, we employ a Wigner transform in a box with size L to obtain the desired Wigner
function:

W (ω, τ) = iS>(ω, τ)γ0 = i
1

2L

∫ L

−L
dtrele

iωtrelS>
(
τ +

trel
2
, τ − trel

2

)
γ0

In Fig. 4.3 we have plotted the absolute value of the 11-component of W . Thereby we have
used the data from the ∆t = 0.05 run. One can see that for early times there is one peak around
the energy ω =

√
p2 +m(t = 0)2 ≈ 3. For late times one can observe two peaks around

ω = ±
√
p2 +m(t = 40)2 ≈ 2 as well as a third peak around ω = 0. This is in agreement with

the three shell structure observed in [Kos15].

3We want to remind the reader that in the scope of our work only the case of (1+1) space-time dimensions was
considered. The core of the algorithm that was developed and employed to solve the Dirac Equation with a
complex mass can be found in the Appendix H.
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Figure 4.2.: Time evolution of the mode-function φ+ for the momentum p = 0.31 and
two different choices of ∆t. The analytic solutions are displayed in the light colors.
While we clearly see deviations for the ∆t = 0.1 (left) run, the ∆t = 0.05 (right) run
agrees very well with the analytic solution.

Figure 4.3.: Absolute value of the 11 component of the Wigner function. While we can
see one peak around ω ≈ 3 in the early times, the three peak structure at late times is
apparent.
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4.2. (Pre-)Thermalization in the linear sigma model

The main goal of this thesis is to develop an algorithm that is able to solve the Kadanoff-Baym-
Equations for fermions entirely in position space. In particular it should be able to render
the basic features of the process of (pre-)thermalization. To test our algorithm we will con-
sider homogeneous setups - for which numerical results are available in the literature - as a
benchmark. To be more specific we will focus on the the well-known linear sigma model,
which has been studied extensively in the context of thermalization by several authors (e.g.
[BBW04],[BBS03],[LM08])4.
In the first subsection 4.2.1 we will give a brief introduction to the concept of prethermalization
as discussed by the authors of [BBW04]. The second subsection 4.2.2 contains details about the
considered linear sigma model. We will continue with an outline of the employed approximation
scheme for the involved self energies and afterwards explain some technical aspects regarding
exploited symmetries and the initialization. The third subsection 4.2.3 will embody the presen-
tation of our numerical results.

4.2.1. (Pre-)Thermalization

Probably the most central and fundamental phenomena concerning non-equilibrium physics is
the process of thermalization, i.e. the system’s internal drive towards thermal equilibrium. Tak-
ing a closer look one can further classify the thermalization process into sub-processes with
regard to the involved time scales. In other words certain physical quantities reach their thermal
equilibrium values on time scales significantly smaller then the time needed for the actual ther-
malization process. This prethermalization was investigated and described by J. Berges et al in
[BBW04]. The authors thereby investigated the linear sigma model in a spatially homogeneous
setup. In Fig. 4.4 we can see a plot of the time evolution of the fermion occupation number for
two different (non-equilibrium) initial conditions with the same energy density. All quantities
are thereby given in terms of the thermal scalar mass m, which is evaluated in equilibrium.
In the plot above one can clearly identify two distinct time scales:

• the damping time tdamp

• the equilibration time teq

After the significantly shorter damping time tdamp / 30 m−1 both runs have approached each
other to a very high degree and continue evolving in a uniform manner. In other words a major
part of information about the initial conditions appears to be lost, even though the system is
still far from equilibrium. The actual thermalization process does not take place until teq '
95 m−1. Another example for a characteristic involved in thermalization given by the authors of
[BBW04]is the so-called Kinetic prethermalization. As a consequence of dephasing i.e. loss of
phase information one can observe an almost conserved equation of state - which is defined as
the ratio of pressure over energy density - after a very short time of the order m−1. The Kinetic

4We want to stress that the just mentioned authors considered the (3+1) dimensional case.
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Figure 4.4.: Fermion occupation number n(f)(t; p) for three different momentum modes
as a function of time. The evolution is shown for two different initial conditions with
same energy density. The long-time behavior is shown on a logarithmic scale for t ≥
30m−1. Image taken from [BBW04]

prethermalization is illustrated in Fig. 4.5, where the equation of state – which is defined as the
ratio of pressure over energy density w = P

ε
– is plotted as a function of time. The inset in Fig.

4.5 shows the same run for different coupling constants and demonstrates the independence of
Kinetic prethermalization from the actual scattering driven thermalization process.
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4.2.2. Linear sigma model

The classical action of the linear sigma model can be stated in the form:

S =

∫
d4x

{
ψ̄i/∂ψ +

1

2
[∂µσ∂

µσ + ∂µπ
a∂µπa] + gψ̄ [σ + iγ5τ

aπa]ψ − V (σ2 + π2)

}
, (4.5)

where we have employed the abbreviations V = 1
2
m2

0 (σ2 + π2)+ λ
4!N2

f
(σ2+π2)2, and π2 = πaπa.

The τa’s are thereby denoting the standard Pauli matrices with a = 1, 2, 3. The particle content
can be interpreted as two fermion flavors (’quarks’) coupled via a Yukawa-like interaction g to
a scalar field σ (’meson’) and a triplet of pseudo scalars πa (’pions’) [BBS03]. Another pos-
sible interpretation are two leptons coupled to four scalar fields, where the latter works as a
parametrization for the complex Higgs bi-doublet [LM08].
Since there is no mass term for the fermion fields ψ and we further consider the case of vanish-
ing expectation values for the scalar fields, the given action is invariant under SU(2)L×SU(2)R
transformations, i.e. exhibits chiral symmetry.

Coupling expansion

The 2-PI-effective action for the model given above can be stated as [LM08]:

Γ2PI[G,∆] =
i

2
TrC lnG−1 +

i

2
TrCG

−1
0 G− iTrC ln ∆−1 − TrC∆

−1
0 ∆ + Γ2[G,∆] + const

where field-indices and arguments of the propagators have been omitted.
Due to the given chiral symmetry we can - without loss of generality - assume the scalar propa-
gator Gab(x, y) to be diagonal in O(4)-space [BBS03]:

Gab(x, y) = G(x, y)δab.

In analogy we can assume the fermion propagator D(x, y) to be diagonal in flavor space:

∆ij(x, y) = ∆(x, y)δij

This can be extended to the respective self-energies in analogous manner.
As outlined before, the derived Kadanoff-Baym-Equations are exact as given in (2.24) and (2.25).
Yet for actually solving them numerically one of course needs to apply some sort of approxima-
tion. For this purpose we employ a loop expansion, i.e. classify the terms of the effective action
with respect to the number of closed loops:

Γ2[G,∆] = Γ2−loop
2 [G,∆] + Γ3−loop

2 [G,∆] + . . .
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With the explicit expression for V as given above:

V =
1

2
m2

0

(
σ2 + π2

)
+

λ

4!N2
f

(σ2 + π2)2, (4.6)

we obtain - up to 2 loop order - the following contributions [Ber15, BBS03]:

Γ2−loop
2 [G,∆] =− ig2NfNs

2

∫
C
d4xd4y tr [∆(x, y)∆(y, x)]G(x, y)

− λ

4!N2
f

Ns (Ns + 2)

∫
C
d4xG2(x, x).

(4.7)

Ns and Nf denote the number of scalar components and fermion flavors respectively.
We want to stress, that this first non-trivial order already contains scattering as well as off-shell
effects [BBS03]. The two contributions on the r.h.s. of (4.7) are depicted diagrammatically in
Fig. (4.6).

��
Figure 4.6.: 2-loop contribution to the 2-PI effective action. Solid (dashed) lines repre-
sent fermion (scalar) propagators.

To obtain the respective self energies we follow (2.15) and (2.19), i.e. take the functional deriva-
tive of the effective action with respect to the scalar and fermion propagator respectively:

scalar: Π =
1

Ns

2i
δΓ2

δG
(4.8)

fermion: Σ = − 1

Nf

i
δΓ2

δ∆
(4.9)

Starting out with the scalar self energy, we remind the reader that the latter can be decomposed in
a local and a non-local part (c.f. (2.21)). The local part can further be absorbed into an effective
mass term:

m2
eff (x) = m2

0 + Πlocal(x;G) (4.10)
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Applying (4.8) to the local contribution of (4.7) yields:

Πlocal(y;G) =
1

Ns

2
λ

4!N2
f

Ns (Ns + 2) 2

∫
C
d4xG(x, x)

δG(x, x)

δG(y, y)︸ ︷︷ ︸
δ(x−y)

= λ
Ns + 2

6N2
f

G(y, y).

Employing the decomposition of the scalar propagator (2.7) and remembering that the scalar
spectral function vanishes for equal times, x0 = y0 leaves us with:

Πlocal(x;G) = Πlocal(x;Fφ) = λ
Ns + 2

6N2
f

Fφ(x, x)

In analogy we get for the non-local contribution:

Π(w, z) =
1

Ns

2g2NfNs

2

∫
C
d4xd4y tr [∆(x, y)∆(y, x)]

δG(x, y)

δG(w, z)︸ ︷︷ ︸
δ(x−w,y−z)

= g2Nf tr [∆(w, z)∆(z, w)] .

Using the decomposition of the full fermion propagator ∆ in spectral and statistical function
(2.5), we end up with:

Π(x, y) = g2Nf tr

[
(F (x, y)− i

2
ρ(x, y)sgn(x0 − y0))(F (y, x)− i

2
ρ(y, x)sgn(y0 − x0))

]
= g2Nf tr

[
F (x, y)F (y, x) +

1

4
ρ(x, y)ρ(y, x) sgn2(x0 − y0)︸ ︷︷ ︸0, for x0 = y0

1, for x0 6= y0

− i

2
[ρ(x, y)F (y, x)− F (x, y)ρ(y, x)] sgn(x0 − y0)

]
= g2Nf

(
tr

[
F (x, y)F (y, x) +

1

4
ρ(x, y)ρ(y, x)sgn2(x0 − y0)

]
︸ ︷︷ ︸

ΠF

− i

2
tr [ρ(x, y)F (y, x)− F (x, y)ρ(y, x)]︸ ︷︷ ︸

Πρ

sgn(x0 − y0)

)
.

In the last line we have indicated the respective decomposition of the self-energy. The two
contributions to the scalar self energy are depicted graphically in Fig. (4.7).
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��
Figure 4.7.: One-loop contribution to the scalar self energy. Solid (dashed) lines rep-
resent the fermion (scalar) propagator. Since the left contribution is local, it can be
absorbed into an effective mass term.

The fermionic self energy is obtained in the same fashion via (4.9):

Σαβ(w, z) = −g2Ns

2

δΓ2

δ∆βα(z, w)

= −g2Ns

2

∫
C
d4xd4y

δ(∆γδ(x, y)∆δγ(y, x))

δ∆βα(z, w)
G(x, y)

= −g2Ns

2

∫
C
d4xd4y

δ∆γδ(x, y)

δ∆βα(z, w)︸ ︷︷ ︸
δγβδδαδ(x−z)δ(y−w)

∆δγ(y, x)G(x, y)

+
δ∆δγ(y, x)

δ∆βα(z, w)︸ ︷︷ ︸
δδβδγαδ(y−z)δ(x−w)

∆γδ(x, y)G(x, y)

= −g2Ns

2

(
∆αβ(w, z)G(z, w) + ∆αβ(w, z)G(w, z)︸ ︷︷ ︸

=G(z,w)

)
= −g2Ns∆αβ(w, z)G(w, z).

Employing the decomposition of ∆ and G, we end up with:

Σαβ(x, y) = −g2Ns

(
Fαβ(x, y)− i

2
ραβ(x, y)sgn(x0 − y0)

)(
Fφ(x, y)− i

2
ρφ(x, y)sgn(x0 − y0)

)
= −g2Ns

(
FαβFφ −

1

4
ραβρφ︸ ︷︷ ︸

ΣFαβ

− i
2

(Fαβρφ + ραβFφ)︸ ︷︷ ︸
Σραβ

sgn(x0 − y0)

)
.

In the last line we have omitted the arguments to ease the notation. The fermionic self energy is
graphically depicted in Fig. 4.8.
With these 2-loop expressions for the self energies we have all necessary ingredients at hand to
calculate the respective memory integrals and are therefore ready to solve the KBE employing
the numerical implementation as described in Chapter 3.

42



�
Figure 4.8.: One-loop contribution to the fermion self energy. Solid (dashed) lines rep-
resent the fermion (scalar) propagator.

Lorentz decomposition

It turns out to be useful to decompose the objects F (x, y) and ρ(x, y) into terms of equal trans-
formation properties under Lorentz transformation. We therefore express the spectral function in
the following basis [BBS03]:

ρ = ρS + iγ5ρP + γµρ
µ
V + γµγ5ρ

µ
A +

1

2
σµνρ

µν
T

This decomposition can of course be applied to the statistical function F in analogous manner.
Following the argumentation of [BBS03] one can exploit the symmetries of the model and the
initial conditions (i.e. parity, CP-invariance and chiral symmetry), which eventually leads us to:

ρS = ρP = ρµA = ρµνT = 0.

This means we are left with the vector components ρµV only. For a more detailed discussion we
refer the reader to [BBS03].
In (1+1) dimensions we obtain:

ρ = γµρ
µ
V = γ0ρ

0
V − γ1ρ

1
V

With our choice of Dirac matrices γ0 = σ3, γ
1 = iσ2 this reduces to:

ρ =

(
ρ0
V −ρ1

V

ρ1
V −ρ0

V

)
.

The statistical function F can accordingly be written as:

F =

(
F 0
V −F 1

V

F 1
V −F 0

V

)
.

In total, this leaves us with four independent quantities. Yet since our algorithm is designed for
solving the KBE for more general forms of F and ρ, we evolve all 4 matrix components in time.
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Initialization

The 2PI-formalism as introduced in Chapter 2 requires the specification of an initial density ma-
trix. As discussed earlier, we will consider a Gaussian initial density matrix, which is equivalent
to the initialization of the lowest two correlation functions.
Since we further consider the case of vanishing field expectation values, i.e. 〈φ〉 = 0 and
〈ψ〉 = 0 we only have to concern ourselves with the initial specification of the 2-point objects
Fφ(x, y), ρφ(x, y), Fαβ(x, y) and ραβ(x, y).
In case of the fermions the spectral function is completely determined by the anti-commutation
relation of the field operators [Ber15]:

{Ψα(x),Ψ†β(y)}|x0=y0 = δ(x− y)δαβ (4.11)

⇒ ραβ(x, y)|x0=y0 = iγ0δ(x− y)δαβ (4.12)

This leads us to the following initialization for the components of the Lorentz decomposition:

ρ0
V (x, y)|x0=y0=0 = iδ(x− y)5, ρ1

V (x, y)|x0=y0=0 = 0.

In case of the scalars, the equal-time commutation relation of two field operators implies [BBS03]:

ρφ(x, y)|x0=y0 = 0, ∂x0ρφ(x, y)|x0=y0 = δ(x− y)

As outlined in Chapter 2 the statistical function encodes information about the occupation num-
bers. Accordingly the components of the fermionic statistical function can in momentum space
be written in terms of the fermion initial particle number distribution nf0(p) [BBS03]:

F 0
V (x0, y0, p)|x0=y0=0 = 0, (4.13)

F 1
V (x0, y0, p)|x0=y0=0 =

1

2
− nf0(p). (4.14)

The analogous initialization for the scalar statistical function is of the following form:

Fφ(x0, y0, p)|x0=y0=0 =
1

ε0

(
1

2
+ n0(p)

)
∂x0Fφ(x0, y0, p)|x0=y0=0 = 0

∂x0∂y0Fφ(x0, y0, p)|x0=y0=0 = ε0

(
1

2
+ n0(p)

)
where n0(p) denotes the scalar initial particle number distribution and ε0 the initial mode energy6.
We want to stress that our algorithm is not limited to this kind of initialization. Yet - as outlined
before - in the current phase we are mainly interested in testing the developed algorithm, i.e. in

5Instead of initializing the Delta-function in position space directly, we have chosen the equivalent way of putting a
constant ’1’ in momentum space. To restore the identity

∫∞
−∞ δ(x)dx = 1, spatial integrals need to be multiplied

by factor of 1
∆x .
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reproducing results for homogeneous systems available in the literature.
Since the above initialization is in momentum space but our program solves the Kadanoff-Baym
Equations in position space, we have to apply a Fourier transform (using the FFTW library
[FJ05]) before actually starting the computation. When the desired time evolution has been
performed, we can transform the relevant objects back to momentum space or use the position
space data directly.

6The quasi-particle mode energy is defined via ε(x0, p) =

(
∂x0∂y0Fφ(x0,y0;p)

Fφ(x0,y0;p)

)1/2

x0=y0
. For details see [BBS03].
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4.2.3. Numerical results

In the following we will present our numerical results for the linear sigma model. This subsec-
tion is divided into a part addressing the solution of the ’free’ fermion evolution equations, i.e.
neglecting the memory integrals in the respective KBE. In this case there are analytic solutions
at hand, which provide a first benchmark for our algorithm 7. In the second part we will present
our results for solving the full KBEs and thus study the linear sigma model in the context of the
process of (pre-)thermalization.

Free Equations

As a first test for the developed algorithm we will consider the ’free’ evolution equations, i.e.
neglect the memory integrals in (2.24) and (2.25). Based on this simplification and with the
initialization given above, the solution is given by [BBS03]:

F 0
V (x0, y0, p) = −i

(
1

2
− nf0(p)

)
sin[p(x0 − y0)]

F 1
V (x0, y0, p) =

(
1

2
− nf0(p)

)
cos[p(x0 − y0)]

ρ0
V (x0, y0, p) = i cos[p(x0 − y0)]

ρ1
V (x0, y0, p) = sin[p(x0 − y0)]

(4.15)

These expressions imply that F (x, y) and ρ(x, y) are conserved for equal times x0 = y0. In case
of the statistical function this is reasonable, since for the free evolution we do not expect our
occupation numbers to change. The spectral function is fixed by the anti-commutation-relation
and therefore is not supposed to change for equal times anyway. For a varying time ’distance’
(x0 − y0) the components show a momentum-dependent oscillatory behavior.
With an exact expression for the time evolution at hand, this scenario constitutes a good possibil-
ity to learn something about the algorithms dependencies on the choice of the lattice parameters
like ∆x, ∆t or the total grid size N .

Dependencies on lattice parameters

As a first test case we consider a system with N = 10 and a lattice spacing ∆x = 0.5. The
system is evolved to a final time tf = 10, where we have varied the time-lattice spacing ∆t. The
initial particle distribution was thereby chosen in the form of a Fermi-Dirac-Distribution with
vanishing chemical potential, i.e.:

nf0(p) = nf0(E) =
1

exp( E
Tinit

) + 1
. (4.16)

7The core of the two implemented subroutines corresponding to the two sub-operators A1 and A2 as defined in
3.2.1 can be found in the Appendix I.
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Thereby Tinit denotes the initial temperature and was set to 2 for the following runs.
In Fig. (4.9) we have plotted the purely imaginary F 0

V as well as the real F 1
V component of the

statistical function for different momenta and different values of ∆t.
Since ∆x = 0.5 is fixed in these plots, we effectively vary the ratio r = ∆t

∆x
. This results in a

Figure 4.9.: Time evolution of the purely imaginary F 0
V (top) and the real F 1

V (bottom)
component for two different momenta, a fixed lattice spacing ∆x = 0.5 and varying ∆t.
The exact solutions are given in light red, blue and green. For r < 1 there are deviations
in the amplitude for the F 0

V component. The latter are absent in the case r = 1.

change in the dispersion relation (c.f. (3.10)), i.e. the momenta on our lattice are depending on
the choice of our lattice parameters. The solid lines in light red, blue and green represent the
exact solution given by (4.15), where we have employed the momenta given by (3.10).
While for r = 1 we cannot observe any deviations from the exact solutions, in the case of r < 1
we get obvious errors in the amplitude for the purely imaginary F 0

V -component. These errors are
growing with increasing momenta and for smaller values of r. It is therefore close at hand that
these errors are related to the deviations from the exact dispersion relation that was discussed in
Chapter 3. In case of the maximal momentum F 0

V actually drops to zero.
In similar fashion we have plotted the two components of the spectral function in Fig.(4.10). The
general behavior is the same, yet in this case the amplitude errors appear in the real-valued ρ1

V

component.
Analogue plots for N = 20 and ∆x = 0.5/0.25 are showing similar patterns and can be found
in the Appendix C. We have thereby only plotted F 0

V and the ρ1
V components, i.e. the ones for

which the errors in the amplitude have been observed. Increasing the total number of lattice
point N did not lead to any observable effects on the results. Choosing a smaller lattice spacing
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Figure 4.10.: Time evolution of the purely imaginary ρ0
V (top) and real ρ1

V (bottom)
component for two different momenta, a fixed lattice spacing ∆x = 0.5 and varying ∆t.
The exact solutions are given in light red, blue and green. For r < 1, there are visible
deviations in the amplitude for the ρ1

V component. These are absent for r = 1.

48



∆x = 0.25 leads to a clear decrease of the amplitude error for r < 1. This can be explained by
taking a look back at the dispersion relation (3.10) and the plot in Fig. 3.3. We could see that the
deviations from the exact dispersion relation start to get large at around π

2∆x
, i.e. half the value

of the maximum momenta. This means when we consider smaller values of ∆x the growth of
the deviations sets in later, i.e. for larger values of p.
In summary we can say that our numerical results match the exact solution to a satisfactory
degree. The change of the momenta with varying r as predicted by the dispersion relation could
be observed. However the error in the amplitude for values r 6= 1 should be kept in mind for
further investigations.

Prethermalization via memory integrals

In the following we will present our numerical results from solving the ’whole’ KBEs, i.e. in-
clude the memory integrals. This means we explicitly take the interaction between scalar and
fermion fields into account, which is encoded in the contributions to the respective self energies.
Due to the high demands for memory and CPU the late-time behavior of the system, i.e. the
actual way into thermal equilibrium was not in reach with the conventional computers used
mainly8during this work. Therefore our focus will be on the previously introduced process of
prethermalization, which occurs on a significantly shorter time scale. We are thereby especially
interested in the earlier discussed system’s loss of memory regarding the details of its initial
condition. Concerning the potential V we will consider three distinct scenarios. Starting with a
purely quadratic potential (λ = 0) as considered in [BBS03], we will continue with a λ of the
order of the Yukawa coupling g and in the last case consider a significantly larger value for λ as
discussed in [LM08].

Purely quadratic potential

We start with considering a purely quadratic potential V , i.e. set the quartic coupling λ to zero.
As outlined by [BBS03] this is sufficient to study the process of thermalization within this model.
While the Yukawa coupling g was set to 1, the scalar bare mass m0 was set to

√
2. The latter was

further used to set the scale for all other involved physical quantities, e.g. t ≡ t[m−1
0 ], p ≡ p[m0].

For numerically solving the KBE we have chosen a spatial lattice with N = 20 and a lattice
constant ∆x ≡ ∆x[m−1

0 ] = m0

2
. The stepsize in time was set to ∆t ≡ ∆t[m−1

0 ] = m0

20
. Using

the conventional computers at our institute we evolved the system up to 300 timesteps, which
made us confident to cover the relevant time scale of the prethermalization process. To probe the
system in this context we have done runs for two different initial conditions, A and B. To allow
for a more direct comparison A and B have been chosen in a qualitatively similar fashion as in
[BBS03] (see Fig 4.11).
On the l.h.s. of Fig. 4.12 we have plotted the equal-time evolution of F 1

V (t, t, p) for three different

8In the final phase of this work we could employ the institute’s cluster computer, which has been put into operation
recently. Therefore some of the numerical results given in the following have been produced using this cluster.
If this is the case, it will be explicitly pointed out in the text.
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Figure 4.11.: Fermion (left) and scalar (right) particle number distributions for the two
initial conditions A and B containing the same average energy density.
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Figure 4.12.: On the left side we have plotted the equal time evolution of F 1
V (t, t, p) for

three different momenta and two different initial conditions. One can clearly observe
an approach of the two runs. On the right side we see the correlation to the initial time
F 1
V (t, 0, p), which shows a damped behavior.
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momenta p and the two initial conditions. We want to remind the reader that F 1
V (t, t, p) is directly

related to the particle number distribution nf (p) via (4.14). For early times we can observe a rapid
decrease of F 1

V (t, t, p) for all three momenta. Since this implies an increase of nf (p) this can be
interpreted as a production of particles. At a time t ≈ 5 the system continues to evolve in a more
smooth and stationary behavior. We further see that the two runs A and B clearly approach each
other and continue to evolve in a uniform manner. This clearly indicates the system’s loss of
memory about the details of the initial conditions, i.e. universality. In this context our results are
in good agreement with the respective plots given in [BBS03].
The system’s loss of memory can also be related to the correlation to the initial time F 1

V (t, 0, p),
which is plotted on the r.h.s. of Fig. 4.12 for the initial condition A. We can observe a strongly
damped behavior, which is consistent with the fast approach of the F 1

V (t, t, p) values for the
two runs. The respective plots for the ρ0

V component of the spectral function can be found in
the Appendix D. While the equal-time evolution is conserved exactly as demanded by the anti-
commutation relation 4.11, the correlation to the initial time is damped in a similar manner as
the F 1

V component.
In Fig. 4.13 we can see analogous plots for the scalar statistical function Fφ. The equal-time
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Figure 4.13.: On the left side the equal time evolution of Fφ(t, t, p) is plotted for three
different momenta and the initial conditions A (solid) and B (dashed). We can observe
a weakly damped, oscillatory drift motion. The correlation to the initial time Fφ(t, 0, p)
on the right side is clearly damped weaker compared to the fermionic case.

evolution on the l.h.s. shows an oscillatory, weakly damped drift motion. The approach of the
two initial conditions A and B is clearly slower than in the fermionic case. This is consistent with
the less strong damping of the correlation to the initial condition (comp. r.h.s. of Fig 4.13). The
overall behavior is once more in good agreement with the results in [BBS03]. The respective
plots for the scalar spectral function can again be found in the Appendix D.
To investigate the impact of the Yukawa coupling g in more detail we have repeated run A with
a smaller Yukawa coupling g = 0.8. In case of the equal-time evolution of F 1

V (t, t, p) (l.h.s.
of Fig. 4.14) we see a clear discrepancy for the two choices of the coupling g. In case of the
weaker coupling the values of F 1

V (t, t, p) settle on significantly larger values, i.e. on smaller
occupation numbers. This can be explained by the fact that the Yukawa coupling determines

51



g=1.0
g=0.8

p = 0.44

g=1.0
g=0.8

p = 0.87

g=1.0
g=0.8

p = 1.28

0 5 10 15 20

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

t[m0
-1]

F
V1
(t
,t,
p)

g=1.0
g=0.8

p = 0.44

g=1.0
g=0.8

p = 0.87

g=1.0
g=0.8

p = 1.28

0 5 10 15 20

-0.2

0.0

0.2

0.4

t[m0
-1]

F
V1
(t
,0
,p
)

Figure 4.14.: Evolution of the F 1
V for equal (left) and unequal (right) times for two

different values of the Yukawa coupling, g = 1 (solid) and g = 0 (dashed). As expected
decreasing g reduces the damping of the correlation to the initial time.

the interaction strength and therefore the energy exchange between scalar and fermionic fields.
For the correlation to the initial time F 1

V (t, 0, p) the decrease of the coupling g leads to a weaker
damping (see r.h.s of Fig. 4.14), which appears reasonable.
To probe the system in context of an approach to thermal equilibrium, we have extracted the
fermion particle distribution number nf (p) from F 1

V (t, t, p) via the relation (4.14) and plotted the
function ln(1/nf (p) − 1) (see l.h.s. of Fig 4.15).9The latter should – in case of a Fermi-Dirac
distribution – reduce to a straight line with the inverse temperature given by the slope. In our
case we observe the emerge of a structure symmetric around p ≈ 1.5, i.e. close to half the value
of the maximal momentum. This is obviously in contradiction to the expectations of a tendency
towards a straight line and is further not in accordance with the observations in [BBS03]. In
particular the trend towards a symmetric shape suggests that we still encounter some kind of
fermion doubling. Since in case of the suboperator A2, which contains the spatial derivative we
explicitly avoid fermion doublers by employing the staggered leapfrog scheme, we presume that
these doublers are related to the memory integrals.
In analogous manner we have plotted n(ε) and ln(1/n(ε) + 1)10to investigate the scalars in the
context of an approach to thermal equilibrium (see r.h.s. of Fig 4.15). The overall behavior looks
rather chaotic, including a non-monotonic behavior of the mode energy ε. The latter might be a
consequence of an insufficiently high resolution of the dynamics by the discretization employed
to calculate ε. We further observe negative occupation numbers for early times (t = 3, 7), which
lead to negative arguments for the logarithm they are therefore excluded from the plots. Because
there are no negative values for n(ε) at late times, in stands to reason that these are a consequence
of the strong early time dynamics. We can further observe a tendency towards a more smooth
and linear shape for late times (t = 42). Though this might indicate an approach to thermal

9For this run we have employed the cluster computer at our institute. This enabled us to double the number of time
steps and reach a final time tfinal[m−1

0 ] = 42.
10To calculate quasi-particle mode energy ε(x0, p) we have employed the following discretization:
∂x0∂y0Fφ(x0, y0; p) =

Fφ(x0+∆t,y0+∆t;p)−Fφ(x0+∆t,y0−∆t;p)−Fφ(x0−∆t,y0+∆t;p)+Fφ(x0−∆t,y0−∆t;p)
4∆t2 .
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equilibrium, we have to record that the overall behavior clearly differs from the one observed
in [BBS03]. To give the reader an additional perspective we have also created non-logarithmic
plots for the time evolution of the occupation numbers nf (p) and n(ε). These can be found in
Appendix E.
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Figure 4.15.: Plot of the fermionic (l.h.s.) and scalar (r.h.s.) particle number distribution
for different values of the time t. We have plotted the functions ln(1/nf (p) − 1) and
ln(1/n(ε) + 1) which both should – in case of Fermi-Dirac/Bose-Einstein distribution
– reduce to a straight line. For the fermions we can observe the emerge ob a symmetric
shape, which indicates that our algorithm still suffers from fermion doublers.

As indicated before, the driving force behind the system’s dynamics are the memory integrals, i.e.
they play the central role for the (pre-)thermalization process. To give the reader an impression
of the nature of these objects, we have plotted some snapshots in time of the memory integrals
for the run with initial condition A and the Yukawa coupling g = 1. To be more specific, we
have generated contour plots of the imaginary part of the [MF (t, t′, r)]12 component. These can
be found in the Appendix F. Each of this plot is for a fixed time t while the spatial distance r and
the value of the second time coordinate t′ are varied. One can clearly see how the contributions
to the memory integral are located around r = 0 at early times and spread to larger distances with
ongoing time. Besides an overall damping with time, one can observe a damping with growing
distance t− t′ for later times.
To conclude the investigation for the purely quadratic potential, we have probed the algorithm
in regard to it’s dependence on the choice of the lattice constants ∆t and ∆x. As a desirable
property of any numerical algorithm, we would like to see a convergence when choosing smaller
values for the lattice spacing. Therefore we have repeated the upper run (initial condition A,
g = 1) with reduced lattice spacing (∆t = m0

40
) while keeping the remaining run parameters

constant. Though there are apparent deviations from the run with ∆t = m0

20
, the qualitative

behavior is very similar. Decreasing the lattice spacing once more (∆t = m0

80
) shows only a small

effect, i.e. the algorithms converges for ∆t→ 0. In the same fashion we have reduced the spatial
lattice spacing from m0

2
to m0

4
. In contrast to reducing the lattice spacing in time, this has a very

strong impact.11 Reducing the lattice spacing once more to ∆x = m0

8
has a smaller, yet still

11We want to emphasize that in our case ∆x is one order of magnitude larger than ∆t, which makes a direct
comparison difficult.
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Figure 4.16.: Dependency of F 1
V on the choice of the lattice spacings ∆t and ∆x. While

we can see a clearly converging behavior for ∆t, reducing ∆x still has a large impact.
We want to emphasize that ∆t and ∆x are not of the same order of magnitude.

significant effect. On the one hand this indicates a convergence for ∆x → 0 but on the other
hand implies that for reaching the latter, the algorithm demands for significantly smaller values
of ∆x.
In summary we can on the one hand say that - regarding the early time behavior and the concept
of universality - our results are in good agreement with the momentum space approach by Berges
et al in [BBS03]. On the other hand we see a clearly deviating behavior in case of the time
evolution of the particle number distributions nf (p) and n(ε) compared to the results in [BBS03].
We could further observe that for our choice of ∆x the algorithm is still far from convergence.

Quartic scalar self-interaction λ = g = 1

In this subsection we present our numerical results for λ = g = 1. This choice has been
employed for the results presented in [BBW04]. As discussed in 4.2.2 this term leads to an
additional local contribution to the scalar self-energy, i.e. a shift to the scalar effective mass. For
the first run we have stuck to the former run parameters, i.e. N = 20, ∆x = m0

2
, ∆t = m0

20
and

g = 1. Once more we did runs for the two different initial conditions A and B as introduced
above. In Fig. 4.17 we have displayed the equal time evolution of F 1

V (t, t, p) and Fφ(t, t, p). For
the fermions we can see an almost identical behavior compared to the runs without the quartic
scalar self interaction. The rather small impact on the dynamics of the fermions can be explained
by the strongly suppressing 1/4!N f term in (4.6) and the fact that the additional contribution
leads to a shift in the scalar effective mass only. In comparison to the results in [BBW04] our
values of F 1

V (t, t, p) for p < 1 are in good agreement, while p ∼ 1.3 they settle on significantly
smaller values. Also in case of the scalars we observe a very similar behavior compared to
the λ = 0 run. A discrepancy can yet be observed in the envelope of the oscillating equal
time evolution Fφ(t, t, p). Instead of a monotone decrease, one can observe an oscillation in the
envelope itself. It stands to reason that this is a consequence of the additional contribution to the
scalar effective mass.
Due to the very similar behavior compared to the purely quadratic potential we have omitted
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Figure 4.17.: Time evolution of the F 1
V (l.h.s.) component of the fermion statistical

function and the scalar statistical function Fφ (r.h.s.). While the impact of the additional
quartic scalar self-interaction is clearly visible for the scalars, it is hardly observable in
case of the fermions.

further analysis for this scenario.

Quartic scalar self-interaction λ = 24

As a final setup we have considered the case λ = 24, i.e. a significantly larger scalar quartic
self-coupling. This choice corresponds to the one employed by the authors of [LM08], which
for solving the KBE explicitly follow the approach given in [BBS03].12 The authors of [LM08]
observe an approach to thermal equilibrium on significantly shorter time scales. On the one hand
this might be a consequence of the larger value for the quartic scalar self-interaction, but on
the other hand could also be related to the different initial conditions. In contrast to [BBS03]
the scalars modes are not populated strikingly higher than the fermions. To allow for a proper
comparison we have modified our initial conditions A and B (see Fig. 4.18) to qualitatively
match the ones given in [LM08]. For the following results we have used the institutes cluster
computer and – apart from the choice of λ – stuck to the former run parameters.
In Fig. 4.19 we have plotted F 1

V (t, t, p) (l.h.s.) and Fφ(t, t, p) (r.h.s.). To allow for a more direct
comparison with the results in [LM08] we have also employed a logarithmic time axes. In case
of the fermions we can see strong movement in the early times that tends to a more smooth and
drifting motion for late times. For the scalars we can observe a damped oscillation that also
evolves towards a drift-like motion for late times. In this sense our results are in good agreement
with those displayed in [LM08]. However neither the transition to an almost completely constant
regime nor an approach of the runs two runs A and B to a degree of indistinguishability as
observed in [LM08] can be observed within the considered time scale. Both might yet simply
be a consequence of not having reached sufficiently late times. A discrepancy in the timescales
could be related to the fact that we have considered (1+1) instead of (3+1) dimensions as in

12The authors of [LM08] did not consider the factor 4!N2
f appearing in the denominator of (4.6) and therefore

effectively considered a significantly larger self coupling λ.
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Figure 4.18.: Fermion (l.h.s.) and scalar (r.h.s.) particle number distributions for the
two initial conditions A and B. Both contain the same average energy density.

[LM08].
The plots for the correlation to the initial time F 1

V (t, 0, p) and Fφ(t, 0, p) can be found in the
Appendix G. For both fermions and scalars we see the expected damped behavior. In contrast to
scenarios with λ = 0 and λ = 1 the damping for fermions and scalars appears to be of a similar
magnitude. This might again either be a consequence of the different initial conditions or the
effect of the significantly larger self-coupling λ.
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Figure 4.19.: Equal time evolution of F 1
V (t, t, p) (l.h.s.) and Fφ(t, t, p) (r.h.s.). In both

cases we can observe an approach of the two initial conditions A (solid) and B (dashed).
The time scale of this approach appears to be similar for fermions and scalars.

Once more we have probed the system in regard to an approach to thermal equilibrium (see Fig.
4.20). In case of the fermions (l.h.s.) we can again observe an evolution towards a symmetric
shape, which increases the suspicion that our algorithm still suffers from the existence of fermion
doublers. For the scalars (r.h.s.) we see – as in the case λ = 0 – a chaotic early time behavior that
becomes more smooth and linear for late times (t = 28, t = 42). This might indicate an approach
to thermal equilibrium, yet the system is still clearly far from a Bose-Einstein distribution. In
this context a direct comparison with the results in [LM08] is not possible, since the authors
show plots for late times only. Without the late time behavior in reach, we are therefore not able
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Figure 4.20.: Plot of the functions ln(1/nf (p) − 1) (l.h.s.) and ln(1/n(ε) + 1) (r.h.s.).
While in case of the fermions we once more see the emerge of a symmetric structure,
the scalars tend towards a more smooth and linear shape for late times (t = 28, t = 42),
but are yet clearly still far from thermal equilibrium. The missing data points in case of
the scalars (t = 3, 7) are due to the occurrence of negative occupation numbers at early
times.

to judge this conclusively. The non-logarithmic plots for the time evolution of the occupation
numbers nf (p) and n(ε) can be found in the Appendix G.
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5. Conclusions and Outlook
Within this work we have developed an algorithm to numerically solve the Kadanoff-Baym Equa-
tions for fermions entirely in position space. For reasons of simplicity we have thereby restricted
ourselves to the case of (1+1) space-time dimensions. To our knowledge all approaches avail-
able in the literature solved the KBE in momentum space, i.e. under the assumption of spatial
homogeneity. Our more general framework does not suffer from this restriction but allows for
a description of quantum systems out of equilibrium which explicitly violate translation invari-
ance.
To avoid the so-called fermion doubling problem, we have employed the staggered leapfrog
scheme as a discretization. We have further made us of an operator splitting scheme to get better
control over potential numerical instabilities.
As a test for the developed algorithm we have solved the KBE for the linear sigma model within a
homogeneous and highly symmetric setup. The latter has been investigated in (3+1) dimensions
by several authors employing a momentum space approach [BBS03] [BBW04] [LM08]. Try-
ing to reproduce these results with our position space approach in (1+1) dimensions, we could
observe a good agreement for the early time behavior including the fundamental feature of uni-
versality. Considering the time evolution of the particle number distribution we yet found clear
deviations from the literature. In particular for the fermions we could observe the emerge of an
symmetric shape, which indicates that our algorithm still suffers from the existence of fermion
doublers.
Though we were able to use the cluster computer at the final phase of this work, the late-time
behavior and therefore an approach to thermal equilibrium was not in reach within the scope
of this work. However, we are confident that extending the usage the cluster will enable us not
only to cover the late time behavior but will also allow for the consideration of larger systems.
For this purpose we currently work on a way to economize the algorithms demands for memory,
i.e. try to find a more flexible and efficient way to deal with the involved memory integrals. A
promising approach in this context has been suggested by Berges et al. in [Ber15]. They argue
that the influence from the early time dynamics on the late time behavior is typically damped.
Therefore certain domains of the memory integrals can be neglected in further calculations. This
implies that some part of the memory can be released and used otherwise.
In the near future we intend to implement a routine for the calculation of the system’s total en-
ergy, which will allow us to probe our system in the context of energy conservation. It is further
planned to implement a routine for solving the KBE for fermions in momentum space. This
will provide a possibility to crosscheck the reliability of our position space approach. After a
successful reproduction of the results for homogeneous systems in (1+1) dimensions, we want
to extend our investigations to (3+1) dimensions and to more general, non-homogeneous setups.
As a long-term goal, we would like to use our framework for a proper numerical simulation of
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the process of electroweak baryogenesis, including the CP-violating scattering of the surround-
ing plasma with the expanding bubble wall as well as bubble collisions. If the latter leads to the
emerge of gravitational waves we could calculate the respective spectrum, which then could be
compared to recent data from LIGO.
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Appendices
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A. Time evolution of the φ−
mode-function

Figure A.1.: Time evolution of the mode-function φ− for the momentum p = 0.31 and
two different choices of ∆t. The analytic solutions are displayed in the light colors.
While we clearly see deviations for the ∆t = 0.1 (left) run, the ∆t = 0.05 (right) run
agrees very well with the analytic solution.
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B. Momentum discretization for scalar
fields

For the scalars we employ the following standard momenta discretization:

p2 →
d∑
i=1

4

(∆x)2
sin2

(
∆xpi

2

)
, pi =

2πni
N∆x

This can be motivated by taking a look at the standard discretization of the second derivative
appearing in the Klein-Gordon-Equation:

∂2
xe
ipx → eipx

[
eip∆x + e−ip∆x − 2

]
(∆x)2

= −eipx
4 sin2

(
∆xpi

2

)
(∆x)2

In the limit ∆x→ 0 we obtain:

lim
∆x→0

p2 = p2
i .
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C. Dependence on lattice parameters

N = 20,∆x = 0.5

Figure C.1.: Time evolution of the purely imaginary F 0
V (top) and the real F 1

V (bottom)
component for two different momenta, a fixed lattice spacing ∆x = 0.5 and different
values of ∆t. The exact solutions are given in light red, blue and green. There are no
apparent differences to the run with N = 10.

63



N = 20,∆x = 0.25

Figure C.2.: Time evolution of the purely imaginary F 0
V (top) and the real F 1

V (bottom)
component for two different momenta, a fixed lattice spacing ∆x = 0.25 and different
values of ∆t. The exact solutions are given in light red, blue and green. Compared to
the run with ∆x = 0.5 we see less deviations from the exact solution for r < 1.
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D. Quadratic potential - Spectral
function
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Figure D.1.: Equal and unequal time evolution of ρ0
V . While for equal times ρ0

V (t, t, p)
is conserved exactly, we see a damped behavior for the correlation to the initial time
ρ0
V (t, 0, p).
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Figure D.2.: Correlation to the initial time of the scalar spectral function ρφ(t, 0, p). As
for the statistical function we see a damped behavior.
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E. Quadratic potential - Time evolution
of the particle number distributions
nf (p) and n(ε)
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Figure E.1.: Time evolution of the fermionic (l.h.s.) and scalar (r.h.s.) particle number
distributions nf (p) and n(ε).
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F. Memory Integrals for quadratic
potential

Figure F.1.: Snapshots of the imaginary part of the [MF ]12 component of the memory
intergral. While the contributions are cumulated near r = 0 for early times, they spread
out in space with ongoing time. For late times (t = 14.1, 21.2) a damping with growing
distance t− t′ becomes visible.
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G. λ = 24

Correlation to the initial time
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Figure G.1.: Correlation to the initial time of the F 1
V (l.h.s.) component of the fermion

statistical function and the scalar statistical function Fφ (r.h.s.). In both cases we see the
expected damped behavior.

Time evolution of the particle number distributions nf (p) and n(ε):
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Figure G.2.: Time evolution of the fermionic (l.h.s.) and scalar (r.h.s.) particle number
distributions nf (p) and n(ε).
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H. Source code: 1-point function
Core of the update routine for the discretized Dirac Equation with an imaginary mass:

1 / / C a l c u l a t e s t a g g e r e d g r i d a t t =0 v i a s p a t i a l i n t e r p o l a t i o n
2

3 i f ( t ==0) {
4 f o r ( i n t l =0 ; l <2 ; l ++) { / / l oop ove r s p i n o r components
5

6

7 f o r ( i n t j =0 ; j < t i m e s t e p s i z e ; j ++) { / / l oop ove r a l l s p a c i a l p o i n t s a t t =0
8

9 / / e v a l u a t e v a l u e o f s t a g g e r e d g r i d
10 i f ( j ==( t i m e s t e p s i z e −1) ) {
11 newder iv = 0 . 5 * ( func−>v a l ( j + l * c o m p o f f s e t ) + func−>v a l ( l * c o m p o f f s e t ) ) ;
12 }
13 e l s e {
14 newder iv = 0 . 5 * ( func−>v a l ( j + l * c o m p o f f s e t ) + func−>v a l ( j +1+ l * c o m p o f f s e t ) ) ;
15 }
16 / / a s s i g n v a l u e o f s t a g g e r e d g r i d
17 func−>d e r i v a s s i g n ( j + l * d e r i v o f f s e t , newder iv ) ;
18 }
19 }
20 }
21

22 / / F i r s t s t e p : Evolve s t a g g e r e d g r i d
23

24 f o r ( i n t l =0 ; l <2 ; l ++) / / l oop ove r s p i n o r components
25 {
26 i n t m = ( l +1) %2; / / f a c t o r f o r mixing components
27

28 / / l oop t o c o v e r a l l r e l e v a n t space−t ime p o i n t s
29 f o r ( l ong long j =0; j < t i m e s t e p s i z e ; j ++)
30 {
31 / / c a l c u l a t e s p a t i a l d e r i v a t i v e u s i n g r e g u l a r g r i d
32 s p a t i a l d e r i v = ( func−>v a l ( l a t t i c e −>Neighbour ( t i n d e x + j +m* compo f f s e t , 0 ) )
33 −func−>v a l ( t i n d e x + j +m* c o m p o f f s e t ) ) / d e l t a x ;
34

35 i f ( t i n d e x == 0) { / / f i r s t s t e p t o e v o l v e space−s t a g g e r e d g r i d from t =0 t o t =1/2
36

37 / / e v a l u a t e u p d a t e d v a l u e
38 newder iv = ( 1 . 0 / ( 4 . 0 + pow(−1.0 , l ) * i m a g u n i t * d e l t a t * mass ) )
39 *((4 .0−pow(−1.0 , l ) * i m a g u n i t * d e l t a t * mass )
40 * func−>d e r i v v a l ( j + l * d e r i v o f f s e t ) / / v a l u e a t t =0
41 −2.0* d e l t a t * s p a t i a l d e r i v / / s p a t i a l d e r i v a t i v e
42 −2.0* d e l t a t * massimag *pow(−1.0 , l ) / / i m a g i n a r y p a r t o f mass
43 *( func−>v a l ( t i n d e x + j +m* c o m p o f f s e t ) ) ) ;
44

45 / / a s s i g n u p d a t e d v a l u e
46 func−>d e r i v a s s i g n ( j + l * d e r i v o f f s e t , newder iv ) ;
47 }
48 e l s e { / / e v o l v e s t a g g e r e d g r i d t =n−1/2 t o t = n +1/2
49

50 / / e v a l u a t e u p d a t e d v a l u e
51 newder iv = ( 1 . 0 / ( 2 . 0 + pow(−1.0 , l ) * mass * i m a g u n i t * d e l t a t ) )
52 *((2 .0−pow(−1.0 , l ) * i m a g u n i t * d e l t a t * mass )
53 * func−>d e r i v v a l ( j + l * d e r i v o f f s e t ) / / v a l u e a t t =n−1/2
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54 −2.0* d e l t a t * s p a t i a l d e r i v / / s p a t i a l d e r i v a t i v e
55 −2.0* d e l t a t * massimag *pow(−1.0 , l ) / / i m a g i n a r y p a r t o f mass
56 *( func−>v a l ( t i n d e x + j +m* c o m p o f f s e t ) ) ) ;
57

58 / / a s s i g n u p d a t e d v a l u e
59 func−>d e r i v a s s i g n ( j + l * d e r i v o f f s e t , newder iv ) ;
60 }
61 }
62

63 }
64

65 / / Second s t e p : Evolve r e g u l a r g r i d
66

67 f o r ( i n t l =0 ; l <2 ; l ++) / / l oop ove r s p i n o r components
68 {
69 i n t m = ( l +1) %2; / / f a c t o r f o r mixing components
70

71 / / l oop t o c o v e r a l l r e l e v a n t space−t ime p o i n t s
72 f o r ( l ong long j =0; j < t i m e s t e p s i z e ; j ++)
73 {
74 / / c a l c u l a t e s p a t i a l d e r i v a t i v e u s i n g s t a g g e r e d g r i d
75 s p a t i a l d e r i v = ( func−>d e r i v v a l ( j +m* d e r i v o f f s e t )
76 −func−>d e r i v v a l ( l a t t i c e −>Neighbour ( j +m* d e r i v o f f s e t , 1 ) ) ) / d e l t a x ;
77

78 / / e v o l v e r e g u l a r g r i d from t = n t o t = n+1
79

80 / / e v a l u a t e u p d a t e d v a l u e
81 newval = ( 1 . 0 / ( 2 . 0 + pow(−1.0 , l ) * mass * i m a g u n i t * d e l t a t ) )
82 *((2 .0−pow(−1.0 , l ) * i m a g u n i t * d e l t a t * mass )
83 * func−>v a l ( t i n d e x + j + l * c o m p o f f s e t ) / / v a l u e a t t =n
84 −2.0* d e l t a t * s p a t i a l d e r i v / / s p a t i a l d e r i v a t i v e
85 −2.0* d e l t a t * massimag *pow(−1.0 , l ) / / i m a g i n a r y p a r t o f mass
86 *( func−>d e r i v v a l ( j +m* d e r i v o f f s e t ) ) ) ;
87

88 / / a s s i g n u p d a t e d v a l u e
89 func−>a s s i g n ( t i n c i n d e x + j + l * compof f s e t , newval ) ; / / a s s i g n u p d a t e d v a l u e
90 }
91 }
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I. Source code: 2-point function
Core of the update routine for the sub-operator A1:

1 / / u p d a t e o f t h e two p o i n t o b j e c t s w i th t h e c a l c u l a t e d memory i n t e g r a l
2

3 f o r ( i n t l =0 ; l <( m a t r i x e n t r i e s ) ; l ++) {
4 l ong long s p a c i a l i n d e x 0 =0;
5 i n t row = l / ma t r ixd im ; / / row i n d e x of t h e c o n s i d e r e d m a t r i x e l e m e n t
6 i n t c o l = l%mat r ixd im ; / / column i n d e x of t h e c o n s i d e r e d m a t r i x e l e m e n t
7

8 / / s p a t i a l i n d e x of f i r s t p o i n t o f g r e e n s f u n c t i o n
9 f o r ( l ong long k =0; k< s p a c i a l p o i n t s ; k ++) {

10

11 / / s p a t i a l and t ime i n d e x of second p o i n t o f g r e e n s f u n c t i o n ( y0<x0 )
12 f o r ( l ong long j =0; j < t i m e s t e p s i z e ; j ++)
13 {
14 dyn index = j + s p a c i a l i n d e x 0 ;
15

16 d y n i n d e x x s t a g g e r e d = dyn index + s t e p s i z e ;
17 i f ( k== s p a c i a l p o i n t s −1){ d y n i n d e x x s t a g g e r e d = j ; }
18 d y n i n d e x y s t a g g e r e d = dyn index +1;
19 i f ( j == s p a c i a l p o i n t s −1){ d y n i n d e x y s t a g g e r e d = s p a c i a l i n d e x 0 ; }
20

21 gamma0Mstat = 0 . 0 ; / / gamma0*M( x , y ) _ s t a t
22 gamma0Mspec = 0 . 0 ; / / gamma0*M( x , y ) _spec
23 gamma0Msta t s t aggered = 0 . 0 ; / / gamma0*M( x + 1 / 2 , y ) _ s t a t f o r s t a g g e r e d g r i d
24 gamma0Mspecstaggered = 0 . 0 ; / / gamma0*M( x + 1 / 2 , y ) _spec f o r s t a g g e r e d g r i d
25

26 / / m a t r i x m u l t i p l i c a t i o n f o r f i x e d o u t e r i n d i c e s ( row and c o l )
27 f o r ( i n t m = 0 ; m<( ma t r ixd im ) ;m++) {
28

29 gamma0Mstat += gammas [ row *( ma t r ixd im ) +m]
30 * func−>memval ( dyn index +(m* mat r ixd im + c o l ) * d y n g r e e n o f f s e t ) ;
31 gamma0Mspec += gammas [ row *( ma t r ixd im ) +m]
32 * func−>specmemval ( dyn index +(m* mat r i xd im + c o l ) * d y n g r e e n o f f s e t ) ;
33

34 / / s p a t i a l i n t e r p o l a t i o n t o g e t s t a g g e r e d memory v a l s
35 / / t ime s t a g g e r i n g a l r e a d y done i n CalcFermionMem −> memstagval , . .
36 gamma0Msta t s t aggered += 0 . 5 * ( gammas [ row *( ma t r ixd im ) +m]
37 * func−>memstagval ( dyn index +(m* mat r i xd im + c o l ) * d y n g r e e n o f f s e t )
38 +gammas [ row *( ma t r ixd im ) +m]
39 * func−>memstagval ( d y n i n d e x x s t a g g e r e d +(m* mat r i xd im + c o l ) * d y n g r e e n o f f s e t ) ) ;
40 gamma0Mspecstaggered += 0 . 5 * ( gammas [ row *( ma t r ixd im ) +m]
41 * func−>specmemstagva l ( dyn index +(m* mat r ixd im + c o l ) * d y n g r e e n o f f s e t )
42 +gammas [ row *( ma t r ixd im ) +m]
43 * func−>specmemstagva l ( d y n i n d e x x s t a g g e r e d +(m* mat r ixd im + c o l ) * d y n g r e e n o f f s e t ) ) ;
44 }
45

46 / / e v a l u a t e and a s s i g n F ( n +1 ,m) t i l d e , m<n
47 newval= func−>v a l ( t i n d e x + dyn index + l * g r e e n s i z e )−i m a g u n i t * d e l t a t *gamma0Mstat ;
48 func−>a s s i g n ( t i n c i n d e x + dyn index + l * g r e e n s i z e , newval ) ;
49

50 / / e v a l u a t e and a s s i g n rho ( n +1 ,m) t i l d e , m<n
51 newval= func−>s p e c v a l ( t i n d e x + dyn index + l * g r e e n s i z e )−i m a g u n i t * d e l t a t *gamma0Mspec ;
52 func−>s p e c a s s i g n ( t i n c i n d e x + dyn index + l * g r e e n s i z e , newval ) ;
53
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54 / / e v a l u a t e and a s s i g n s t a g g e r e d F ( n + 1 / 2 ,m) −> F ( n + 3 / 2 ,m) t i l d e , m<n
55 newder iv = func−>d e r i v v a l ( dyn index + l * d y n g r e e n o f f s e t )−i m a g u n i t * d e l t a t *

gamma0Msta t s t aggered ;
56 func−>d e r i v a s s i g n ( dyn index + l * d y n g r e e n o f f s e t , newder iv ) ;
57

58 / / e v a l u a t e and a s s i g n s t a g g e r e d rho ( n + 1 / 2 ,m) −> rho ( n + 3 / 2 ,m) t i l d e , m<n
59 newder iv = func−>s p e c d e r i v v a l ( dyn index + l * d y n g r e e n o f f s e t )−i m a g u n i t * d e l t a t *

gamma0Mspecstaggered ;
60 func−>s p e c d e r i v a s s i g n ( dyn index + l * d y n g r e e n o f f s e t , newder iv ) ;
61 }
62

63 / / s p a t i a l and t ime i n d e x of second p o i n t o f g r e e n s f u n c t i o n ( y0=x0 )
64 f o r ( l ong long j = t i m e s t e p s i z e ; j <( t i m e s t e p s i z e + s p a c i a l p o i n t s ) ; j ++)
65 {
66 l ong long dyn index = j + s p a c i a l i n d e x 0 ;
67

68 / / swap s p a t i a l c o o r d i n a t e s a t e q u a l t ime
69 l ong long permdynindex = func−>g r e e n s p e r m i n d e x ( dyn index + t * func−>t i m e s t e p ( 0 ) )
70 %func−>t i m e s t e p ( 0 ) ;
71

72 / / dyn index wi th s p a t i a l i n d e x of f i r s t p o i n t i n c r e a s e by one
73 / / needed t o c a l c u l a t e space−s t a g g e r e d memory i n t e g r a l v i a i n t e r p o l a t i o n
74 l ong long d y n i n d e x x s t a g g e r e d = dyn index + s t e p s i z e ;
75 i f ( k== s p a c i a l p o i n t s −1){ d y n i n d e x x s t a g g e r e d = j ; }
76

77 / / dyn index wi th s p a t i a l i n d e x of second p o i n t i n c r e a s e by one
78 / / needed t o c a l c u l a t e space−s t a g g e r e d memory i n t e g r a l v i a i n t e r p o l a t i o n
79 l ong long d y n i n d e x y s t a g g e r e d = dyn index +1;
80 i f ( j == s p a c i a l p o i n t s −1){ d y n i n d e x y s t a g g e r e d = s p a c i a l i n d e x 0 ; }
81

82 / / swap d y i n d e x y s t a g g e r e d t o c a l c u l a t e s t a g g e r e d M( y , x )
83 l ong long p e r m d y n i n d e x y s t a g g e r e d = func−>g r e e n s p e r m i n d e x ( d y n i n d e x y s t a g g e r e d
84 + t * func−>t i m e s t e p ( 0 ) )%func−>t i m e s t e p ( 0 ) ;
85

86 gamma0Mstat = 0 . 0 ; / / gamma0*M( x , y ) _ s t a t
87 gamma0Mspec = 0 . 0 ; / / gamma0*M( x , y ) _spec
88 gamma0Mstatdagger = 0 . 0 ; / / gamma0*M( y , x ) _ s t a t ^ d ag ge r ( y0−e v o l u t i o n )
89 gamma0Mspecdagger = 0 . 0 ; / / gamma0*M( y , x ) _spec ^ d ag ge r ( y0−e v o l u t i o n )
90 gamma0Msta t s t aggered = 0 . 0 ; / / gamma0*M( x + 1 / 2 , y ) _ s t a t f o r s t a g g e r e d g r i d
91 gamma0Mspecstaggered = 0 . 0 ; / / gamma0*M( x + 1 / 2 , y ) _spec f o r s t a g g e r e d g r i d
92 gamma0Msta tdagge r s t agge red = 0 . 0 ; / / gamma0*M( y + 1 / 2 , x ) _ s t a t ^ d ag ge r f o r
93 / / s t a g g e r e d g r i d ( y0−e v o l u t i o n )
94 gamma0Mspecdaggers taggered = 0 . 0 ; / / gamma0*M( y + 1 / 2 , x ) _spec ^ d ag ge r
95 / / f o r s t a g g e r e d g r i d ( y0−e v o l u t i o n )
96

97 / / m a t r i x m u l t i p l i c a t i o n f o r f i x e d o u t e r i n d i c e s ( row and c o l )
98 f o r ( i n t m = 0 ; m<( ma t r ixd im ) ;m++) {
99

100 gamma0Mstat += gammas [ row *( ma t r ixd im ) +m]
101 * func−>memval ( dyn index +(m* mat r i xd im + c o l ) * d y n g r e e n o f f s e t ) ;
102 gamma0Mspec += gammas [ row *( ma t r ixd im ) +m]
103 * func−>specmemval ( dyn index +(m* mat r ixd im + c o l ) * d y n g r e e n o f f s e t ) ;
104 gamma0Mstatdagger += gammas [ row *( ma t r ixd im ) +m]
105 * s t d : : c o n j ( func−>memval ( permdynindex +( c o l * ma t r i xd im +m) * d y n g r e e n o f f s e t ) ) ;
106 gamma0Mspecdagger += gammas [ row *( ma t r ixd im ) +m]
107 * s t d : : c o n j ( func−>specmemval ( permdynindex +( c o l * ma t r i xd im +m) * d y n g r e e n o f f s e t ) )

;
108

109 / / s p a t i a l i n t e r p o l a t i o n t o g e t s t a g g e r e d memory v a l s
110 / / t ime s t a g g e r i n g a l r e a d y done i n CalcFermionMem −> memstagval , . .
111 gamma0Msta t s t aggered += 0 . 5 * ( gammas [ row *( ma t r ixd im ) +m]
112 * func−>memstagval ( dyn index +(m* mat r ixd im + c o l ) * d y n g r e e n o f f s e t )
113 +gammas [ row *( ma t r ixd im ) +m]* func−>memstagval ( d y n i n d e x x s t a g g e r e d
114 +(m* mat r ixd im + c o l ) * d y n g r e e n o f f s e t ) ) ;
115 gamma0Mspecstaggered += 0 . 5 * ( gammas [ row *( ma t r ixd im ) +m]
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116 * func−>specmemstagva l ( dyn index +(m* mat r i xd im + c o l ) * d y n g r e e n o f f s e t )
117 +gammas [ row *( ma t r ixd im ) +m]* func−>specmemstagva l ( d y n i n d e x x s t a g g e r e d
118 +(m* mat r ixd im + c o l ) * d y n g r e e n o f f s e t ) ) ;
119 gamma0Msta tdagge r s t agge red += 0 . 5 * ( gammas [ row *( ma t r ixd im ) +m]
120 * s t d : : c o n j ( func−>memstagval ( permdynindex +( c o l * ma t r i xd im +m)
121 * d y n g r e e n o f f s e t ) ) +gammas [ row *( ma t r ixd im ) +m]
122 * s t d : : c o n j ( func−>memstagval ( p e r m d y n i n d e x y s t a g g e r e d
123 +( c o l * ma t r ixd im +m) * d y n g r e e n o f f s e t ) ) ) ;
124 gamma0Mspecdaggers taggered += 0 . 5 * ( gammas [ row *( ma t r ixd im ) +m]
125 * s t d : : c o n j ( func−>specmemstagva l ( permdynindex +( c o l * ma t r i xd im +m)
126 * d y n g r e e n o f f s e t ) ) +gammas [ row *( ma t r ixd im ) +m]
127 * s t d : : c o n j ( func−>specmemstagva l ( p e r m d y n i n d e x y s t a g g e r e d
128 +( c o l * ma t r ixd im +m) * d y n g r e e n o f f s e t ) ) ) ;
129 }
130

131 / / e v a l u a t e and a s s i g n F ( n +1 , n ) t i l d e
132 newval= func−>v a l ( t i n d e x + dyn index + l * g r e e n s i z e ) − i m a g u n i t * d e l t a t *gamma0Mstat ;
133 func−>a s s i g n ( t i n c i n d e x + dyn index + l * g r e e n s i z e , newval ) ;
134

135 / / e v a l u a t e and a s s i g n rho ( n +1 , n ) t i l d e
136 newval= func−>s p e c v a l ( t i n d e x + dyn index + l * g r e e n s i z e ) − i m a g u n i t * d e l t a t *gamma0Mspec ;
137 func−>s p e c a s s i g n ( t i n c i n d e x + dyn index + l * g r e e n s i z e , newval ) ;
138

139 / / e v a l u a t e and a s s i g n F ( n +1 , n +1) t i l d e
140 newval= func−>v a l ( t i n d e x + dyn index + l * g r e e n s i z e ) − 1 . 0 * i m a g u n i t * d e l t a t
141 *( gamma0Mstat−gamma0Mstatdagger ) ;
142 func−>a s s i g n ( t i n c i n d e x + dyn index + l * g r e e n s i z e + s p a c i a l p o i n t s , newval ) ;
143

144 / / e v a l u a t e and a s s i g n rho ( n +1 , n +1) t i l d e
145 newval= func−>s p e c v a l ( t i n d e x + dyn index + l * g r e e n s i z e ) − 1 . 0 * i m a g u n i t * d e l t a t
146 *( gamma0Mspec+gamma0Mspecdagger ) ;
147 func−>s p e c a s s i g n ( t i n c i n d e x + dyn index + l * g r e e n s i z e + s p a c i a l p o i n t s , newval ) ;
148

149 / / e v a l u a t e and a s s i g n F ( n + 1 / 2 , n + 1 / 2 ) t i l d e ( s t o r e d one y t i m e s t e p ahead )
150 newder iv = func−>d e r i v v a l ( dyn index + l * d y n g r e e n o f f s e t ) − 1 . 0 * i m a g u n i t * d e l t a t
151 *( gamma0Msta t s taggered−gamma0Msta tdagge r s t agge red ) ;
152 func−>d e r i v a s s i g n ( dyn index + l * d y n g r e e n o f f s e t + s p a c i a l p o i n t s , newder iv ) ;
153

154 / / e v a l u a t e and a s s i g n rho ( n + 1 / 2 , n + 1 / 2 ) t i l d e ( s t o r e d one y t i m e s t e p ahead )
155 newder iv = func−>s p e c d e r i v v a l ( dyn index + l * d y n g r e e n o f f s e t ) − 1 . 0 * i m a g u n i t * d e l t a t
156 *( gamma0Mspecstaggered+ gamma0Mspecdaggers taggered ) ;
157 func−>s p e c d e r i v a s s i g n ( dyn index + l * d y n g r e e n o f f s e t + s p a c i a l p o i n t s , newder iv ) ;
158

159 / / e v a l u a t e and a s s i g n F ( n + 1 / 2 , n ) t i l d e ( e u l e r s t e p )
160 newder iv = func−>v a l ( t i n d e x + dyn index + l * g r e e n s i z e ) − i m a g u n i t *0 .5* d e l t a t
161 *( gamma0Mstat ) ;
162 func−>d e r i v a s s i g n ( dyn index + l * d y n g r e e n o f f s e t , newder iv ) ;
163

164 / / e v a l u a t e and a s s i g n rho ( n + 1 / 2 , n ) t i l d e ( e u l e r s t e p )
165 newder iv = func−>s p e c v a l ( t i n d e x + dyn index + l * g r e e n s i z e ) − i m a g u n i t *0 .5 * d e l t a t
166 *( gamma0Mspec ) ;
167 func−>s p e c d e r i v a s s i g n ( dyn index + l * d y n g r e e n o f f s e t , newder iv ) ;
168

169 }
170

171 s p a c i a l i n d e x 0 += s t e p s i z e ;
172

173 }
174

175 }
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Core of the update routine for the sub-operator A2:

1 / / F i r s t S t ep : Evolve s t a g g e r e d g r i d
2

3 / / l oop around m a t r i x components o f F / rho − ( 1 + 1 )D: F11 , F12 , F21 , F22
4 f o r ( i n t l =0 ; l <( m a t r i x e n t r i e s ) ; l ++)
5 { s p a c i a l i n d e x 0 =0;
6

7 / / s p a t i a l i n d e x of f i r s t p o i n t o f g r e e n s f u n c t i o n
8 f o r ( i n t k =0; k <( s p a c i a l p o i n t s ) ; k ++)
9 {

10

11 row = l / ma t r i xd im ; / / row i n d e x of t h e c o n s i d e r e d m a t r i x e l e m e n t
12 c o l = l%mat r ixd im ; / / column i n d e x of t h e c o n s i d e r e d m a t r i x e l e m e n t
13

14

15 / / c o n t r i b u t i o n s from t h e mass term i n x0− and y0−d i r e c t i o n
16

17 x0_massterm = −i m a g u n i t * mass *gammas [ row* mat r i xd im +row ] ; / / i * mass *gamma0*F
18 / / w i th gamma0 d i a g o n a l
19 y0_massterm = i m a g u n i t * mass *gammas [ c o l * ma t r i xd im + c o l ] ; / / i * mass *F*gamma0
20 / / w i th gamma0 d i a g o n a l
21

22 / / Update s t a g g e r e d g r i d a l o n g t h e d i a g o n a l
23

24 / / s p a t i a l and t ime i n d e x of second p o i n t o f g r e e n s f u n c t i o n ( y0=x0 )
25 f o r ( l ong long j = c a u s a l t i m e s t e p ; j <( c a u s a l t i m e s t e p + y t i m e s t e p ) ; j ++)
26 {
27 dyn index = j + s p a c i a l i n d e x 0 ;
28

29 / / a t t ==0: e u l e r s t e p t o e v o l v e ( s p a c e ) s t a g g e r e d t o ( 1 / 2 , 1 / 2 ) i n t ime
30 i f ( t ==0) {
31 s p a t i a l d e r i v _ s t a t = 0 . 0 ;
32 s p a t i a l d e r i v _ s p e c = 0 . 0 ;
33

34 / / c a l c u l a t i o n o f t h e m a t r i x p r o d u c t s ~ a l p h a * de lx_F / rho , . . . a p p e a r i n g on t h e
35 / / r . h . s o f KBE i n x0− and y0−d i r e c t i o n
36 f o r ( i n t r =0 ; r < ma t r ixd im ; r ++) {
37 s p a t i a l d e r i v _ s t a t += −a l p h a [ row* mat r ixd im + r ]
38 * D i r a c E q S p a t i a l D e r i v a t i v e ( t i n d e x + dyn index +( r * ma t r ixd im + c o l )
39 * g r e e n s i z e , ( r * ma t r i xd im + c o l ) , f unc ) ; / / −a l p h a * de lx_F
40 s p a t i a l d e r i v _ s t a t += D i r a c E q S p a t i a l D e r i v a t i v e 2 ( t i n d e x + dyn index
41 +( row* mat r i xd im + r ) * g r e e n s i z e , ( row* mat r ixd im + r ) , f unc )
42 * a l p h a [ r * ma t r ixd im + c o l ] ; / / + de ly_F * a l p h a
43 s p a t i a l d e r i v _ s p e c += −a l p h a [ row* mat r i xd im + r ]
44 * D i r a c E q S p a t i a l D e r i v a t i v e ( t i n d e x + dyn index +( r * ma t r ixd im + c o l )
45 * g r e e n s i z e , ( r * ma t r i xd im + c o l ) , func , 0 ) ; / / −a l p h a * d e l x _ r h o
46 s p a t i a l d e r i v _ s p e c += D i r a c E q S p a t i a l D e r i v a t i v e 2 ( t i n d e x + dyn index
47 +( row* mat r i xd im + r ) * g r e e n s i z e , ( row* mat r ixd im + r ) , func , 0 )
48 * a l p h a [ r * ma t r ixd im + c o l ] ; / / + d e l y _ r h o * a l p h a
49

50 }
51 / / e u l e r s t e p t o e v a l u a t e F ( 1 / 2 , 1 / 2 )
52 newder iv = ( 1 . 0 / ( 4 . 0 − d e l t a t * ( x0_mass term+y0_massterm ) ) )
53 * ( ( 4 . 0 + d e l t a t * ( x0_mass term+y0_massterm ) ) * func−>d e r i v v a l ( dyn index
54 + l * d y n g r e e n o f f s e t +3* y t i m e s t e p ) +2 .0* d e l t a t * s p a t i a l d e r i v _ s t a t ) ;
55

56 / / a s s i g n t h e v a l u e o f F ( 1 / 2 , 1 / 2 )
57 func−>d e r i v a s s i g n ( dyn index + l * d y n g r e e n o f f s e t + y t i m e s t e p , newder iv ) ;
58

59 / / e u l e r s t e p t o e v a l u a t e rho ( 1 / 2 , 1 / 2 )
60 newder iv = ( 1 . 0 / ( 4 . 0 − d e l t a t * ( x0_mass term+y0_massterm ) ) )
61 * ( ( 4 . 0 + d e l t a t * ( x0_mass term+y0_massterm ) ) * func−>s p e c d e r i v v a l ( dyn index
62 + l * d y n g r e e n o f f s e t +3* y t i m e s t e p ) +2 .0* d e l t a t * s p a t i a l d e r i v _ s p e c ) ;
63
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64 / / a s s i g n t h e v a l u e o f rho ( 1 / 2 , 1 / 2 )
65 func−>s p e c d e r i v a s s i g n ( dyn index + l * d y n g r e e n o f f s e t + y t i m e s t e p , newder iv ) ;
66

67 }
68

69 / / a t t ! = 0 : e v o l v e s t a g g e r e d from ( n−1/2 ,n−1/2) t o ( n + 1 / 2 , n + 1 / 2 )
70 e l s e i f ( t ! = 0 ) {
71

72 s p a t i a l d e r i v _ s t a t = 0 . 0 ;
73 s p a t i a l d e r i v _ s p e c = 0 . 0 ;
74

75 / / c a l c u l a t i o n o f t h e m a t r i x p r o d u c t s ~ a l p h a * de lx_F / rho , . . . a p p e a r i n g on t h e
76 / / r . h . s o f KBE i n x0− and y0−d i r e c t i o n
77 f o r ( i n t r =0 ; r < ma t r ixd im ; r ++) {
78 s p a t i a l d e r i v _ s t a t += −a l p h a [ row* mat r ixd im + r ]
79 * D i r a c E q S p a t i a l D e r i v a t i v e ( t i n d e x + dyn index +( r * ma t r ixd im + c o l )
80 * g r e e n s i z e , ( r * ma t r i xd im + c o l ) , f unc ) ; / / − a l p h a * de lx_F
81 s p a t i a l d e r i v _ s t a t += D i r a c E q S p a t i a l D e r i v a t i v e 2 ( t i n d e x + dyn index
82 +( row* mat r i xd im + r ) * g r e e n s i z e , ( row* mat r ixd im + r ) , f unc )
83 * a l p h a [ r * ma t r ixd im + c o l ] ; / / + de ly_F * a l p h a
84 s p a t i a l d e r i v _ s p e c += −a l p h a [ row* mat r i xd im + r ]
85 * D i r a c E q S p a t i a l D e r i v a t i v e ( t i n d e x + dyn index +( r * ma t r ixd im + c o l )
86 * g r e e n s i z e , ( r * ma t r i xd im + c o l ) , func , 0 ) ; / / − a l p h a * d e l x _ r h o
87 s p a t i a l d e r i v _ s p e c += D i r a c E q S p a t i a l D e r i v a t i v e 2 ( t i n d e x + dyn index
88 +( row* mat r i xd im + r ) * g r e e n s i z e , ( row* mat r ixd im + r ) , func , 0 )
89 * a l p h a [ r * ma t r ixd im + c o l ] ; / / + d e l y _ r h o * a l p h a
90

91 }
92 / / e v a l u a t e t h e v a l u e o f F ( n + 1 / 2 , n + 1 / 2 )
93 newder iv = ( 1 . 0 / ( 2 . 0 − d e l t a t * ( x0_mass term+y0_massterm ) ) )
94 * ( ( 2 . 0 + d e l t a t * ( x0_mass term+y0_massterm ) ) * func−>d e r i v v a l ( dyn index
95 + l * d y n g r e e n o f f s e t + s p l i t o r d e r * y t i m e s t e p ) +2 .0* d e l t a t * s p a t i a l d e r i v _ s t a t ) ;
96

97 / / a s s i g n t h e v a l u e o f F ( n + 1 / 2 , n + 1 / 2 )
98 func−>d e r i v a s s i g n ( dyn index + l * d y n g r e e n o f f s e t + y t i m e s t e p , newder iv ) ;
99

100 / / e v a l u a t e t h e v a l u e o f rho ( n + 1 / 2 , n + 1 / 2 )
101 newder iv = ( 1 . 0 / ( 2 . 0 − d e l t a t * ( x0_mass term+y0_massterm ) ) )
102 * ( ( 2 . 0 + d e l t a t * ( x0_mass term+y0_massterm ) ) * func−>s p e c d e r i v v a l ( dyn index
103 + l * d y n g r e e n o f f s e t + s p l i t o r d e r * y t i m e s t e p ) +2 .0* d e l t a t * s p a t i a l d e r i v _ s p e c ) ;
104

105 / / a s s i g n t h e v a l u e o f rho ( n + 1 / 2 , n + 1 / 2 )
106 / / l a s t two s t e p s a r e s k i p p e d t o a v o i d o v e r w r i t i n g
107 i f ( t < l a t t i c e −>getT ( )−2){
108 func−>s p e c d e r i v a s s i g n ( dyn index + l * d y n g r e e n o f f s e t + y t i m e s t e p , newder iv ) ;
109 }
110

111 }
112 }
113

114 / / Update s t a g g e r e d g r i d i n h o r i z o n t a l ( x0 ) d i r e c t i o n
115

116 / / s p a t i a l and t ime i n d e x of second p o i n t o f g r e e n s f u n c t i o n ( y0<x0 )
117 f o r ( l ong long j =0; j < c a u s a l t i m e s t e p ; j ++)
118 {
119

120 dyn index = j + s p a c i a l i n d e x 0 ;
121

122 s p a t i a l d e r i v _ s t a t = 0 . 0 ;
123 s p a t i a l d e r i v _ s p e c = 0 . 0 ;
124

125 / / c a l c u l a t i o n o f t h e m a t r i x p r o d u c t a l p h a * de lx_F / rho a p p e a r i n g on t h e
126 / / r . h . s o f KBE i n x0−d i r e c t i o n
127 f o r ( i n t r =0 ; r < ma t r ixd im ; r ++) {
128 s p a t i a l d e r i v _ s t a t += −a l p h a [ row* mat r ixd im + r ]
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129 * D i r a c E q S p a t i a l D e r i v a t i v e ( t i n d e x + dyn index +( r * ma t r ixd im + c o l )
130 * g r e e n s i z e , ( r * ma t r i xd im + c o l ) , f unc ) ; / / −a l p h a * de lx_F
131 s p a t i a l d e r i v _ s p e c += −a l p h a [ row* mat r i xd im + r ]
132 * D i r a c E q S p a t i a l D e r i v a t i v e ( t i n d e x + dyn index +( r * ma t r ixd im + c o l )
133 * g r e e n s i z e , ( r * ma t r i xd im + c o l ) , func , 0 ) ; / / −a l p h a * d e l x _ r h o
134 }
135

136 / / e v a l u a t e t h e v a l u e o f F ( n + 1 / 2 ,m) , m<n
137 newder iv = ( 1 . 0 / ( 2 . 0 − d e l t a t * x0_massterm ) )
138 * ( ( 2 . 0 + d e l t a t * x0_mass term ) * func−>d e r i v v a l ( dyn index
139 + l * d y n g r e e n o f f s e t ) +2 .0* d e l t a t * s p a t i a l d e r i v _ s t a t ) ;
140

141 / / a s s i g n t h e v a l u e o f F ( n + 1 / 2 ,m) , m<n
142 func−>d e r i v a s s i g n ( dyn index + l * d y n g r e e n o f f s e t , newder iv ) ;
143

144 / / e v a l u a t e t h e v a l u e o f rho ( n + 1 / 2 ,m) , m<n
145 newder iv = ( 1 . 0 / ( 2 . 0 − d e l t a t * x0_massterm ) )
146 * ( ( 2 . 0 + d e l t a t * x0_mass term ) * func−>s p e c d e r i v v a l ( dyn index
147 + l * d y n g r e e n o f f s e t ) +2 .0* d e l t a t * s p a t i a l d e r i v _ s p e c ) ;
148

149 / / a s s i g n t h e v a l u e o f F ( n + 1 / 2 ,m) , m<n
150 func−>s p e c d e r i v a s s i g n ( dyn index + l * d y n g r e e n o f f s e t , newder iv ) ;
151 }
152

153

154 / / s p a t i a l and t ime i n d e x of second p o i n t o f g r e e n s f u n c t i o n ( y0=x0 )
155 f o r ( l ong long j = c a u s a l t i m e s t e p ; j <( c a u s a l t i m e s t e p + y t i m e s t e p ) ; j ++)
156 {
157 dyn index = j + s p a c i a l i n d e x 0 ;
158

159 s p a t i a l d e r i v _ s t a t = 0 . 0 ;
160 s p a t i a l d e r i v _ s p e c = 0 . 0 ;
161

162 / / c a l c u l a t i o n o f t h e m a t r i x p r o d u c t a l p h a * de lx_F / rho a p p e a r i n g on t h e
163 / / r . h . s o f KBE i n x0−d i r e c t i o n
164 f o r ( i n t r =0 ; r < ma t r ixd im ; r ++) {
165 s p a t i a l d e r i v _ s t a t += −a l p h a [ row* mat r i xd im + r ]
166 * D i r a c E q S p a t i a l D e r i v a t i v e ( t i n d e x + dyn index +( r * ma t r i xd im + c o l )
167 * g r e e n s i z e , ( r * ma t r ixd im + c o l ) , f unc ) ; / / −a l p h a * de lx_F
168 s p a t i a l d e r i v _ s p e c += −a l p h a [ row* mat r i xd im + r ]
169 * D i r a c E q S p a t i a l D e r i v a t i v e ( t i n d e x + dyn index +( r * ma t r i xd im + c o l )
170 * g r e e n s i z e , ( r * ma t r ixd im + c o l ) , func , 0 ) ; / / −a l p h a * d e l x _ r h o
171 }
172 / / e u l e r s t e p t o e v a l u a t e F ( n + 1 / 2 , n )
173 newder iv = ( 1 . 0 / ( 4 . 0 − d e l t a t * x0_massterm ) )
174 * ( ( 4 . 0 + d e l t a t * x0_massterm ) * func−>d e r i v v a l ( dyn index
175 + l * d y n g r e e n o f f s e t +2* y t i m e s t e p ) +2 .0* d e l t a t * s p a t i a l d e r i v _ s t a t ) ;
176

177 / / a s s i g n t h e v a l u e o f F ( n + 1 / 2 , n )
178 func−>d e r i v a s s i g n ( dyn index + l * d y n g r e e n o f f s e t , newder iv ) ;
179

180 / / e u l e r s t e p t o e v a l u a t e o f rho ( n + 1 / 2 , n )
181 newder iv = ( 1 . 0 / ( 4 . 0 − d e l t a t * x0_massterm ) )
182 * ( ( 4 . 0 + d e l t a t * x0_massterm ) * func−>s p e c d e r i v v a l ( dyn index
183 + l * d y n g r e e n o f f s e t +2* y t i m e s t e p ) +2 .0* d e l t a t * s p a t i a l d e r i v _ s p e c ) ;
184

185 / / a s s i g n t h e v a l u e o f rho ( n + 1 / 2 , n )
186 func−>s p e c d e r i v a s s i g n ( dyn index + l * d y n g r e e n o f f s e t , newder iv ) ;
187

188 }
189

190

191 s p a c i a l i n d e x 0 += s t e p s i z e ; / / i n c r e a s e s p a t i a l i n d e x o f f i r s t p o i n t o f g r e e n s f u n c t i o n
192

193 }
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194

195 }
196

197 / / Second S tep : Evolve r e g u l a r g r i d i n h o r i z o n t a l ( x0 ) d i r e c t i o n
198

199 / / i f s p l i t t i n g , memory o p e r a t o r a s s i g n e s v a l u e s a t t i n c i n d e x + y t i m e s t e p
200 / / no memory o p e r a t o r f o r t =0
201 i f ( s p l i t o r d e r ==1 && t ! = 0 ) { t i n d e x = t i n c i n d e x ; }
202

203 / / l oop around m a t r i x components o f F / rho − ( 1 + 1 )D: F11 , F12 , F21 , F22
204 f o r ( i n t l =0 ; l <( m a t r i x e n t r i e s ) ; l ++)
205 { s p a c i a l i n d e x 0 =0;
206

207 / / s p a t i a l i n d e x of f i r s t p o i n t o f g r e e n s f u n c t i o n
208 f o r ( i n t k =0; k <( s p a c i a l p o i n t s ) ; k ++)
209 {
210

211 row = l / ma t r i xd im ; / / row i n d e x of t h e c o n s i d e r e d m a t r i x e l e m e n t
212 c o l = l%mat r ixd im ; / / column i n d e x of t h e c o n s i d e r e d m a t r i x e l e m e n t
213

214 x0_massterm = −i m a g u n i t * mass *gammas [ row* mat r i xd im +row ] ; / / i * mass *gamma0*F
215 / / w i th gamma0 d i a g o n a l
216

217 / / s p a t i a l and t ime i n d e x of second p o i n t o f g r e e n s f u n c t i o n ( y0<x0 )
218 f o r ( l ong long j =0; j < c a u s a l t i m e s t e p ; j ++)
219 {
220 dyn index = j + s p a c i a l i n d e x 0 ;
221

222 s p a t i a l d e r i v _ s t a t = 0 . 0 ;
223 s p a t i a l d e r i v _ s p e c = 0 . 0 ;
224

225 / / c a l c u l a t i o n o f t h e m a t r i x p r o d u c t a l p h a * de lx_F / rho a p p e a r i n g on t h e
226 / / r . h . s o f KBE i n x0−d i r e c t i o n
227 f o r ( i n t r =0 ; r < ma t r ixd im ; r ++) {
228 s p a t i a l d e r i v _ s t a t += −a l p h a [ row* mat r ixd im + r ]
229 * D i r a c E q S p a t i a l D e r i v a t i v e D e r i v ( dyn index +( r * ma t r ixd im + c o l )
230 * d y n g r e e n o f f s e t , ( r * ma t r ixd im + c o l ) , f unc ) ; / / −a l p h a * de lx_F
231 s p a t i a l d e r i v _ s p e c += −a l p h a [ row* mat r i xd im + r ]
232 * D i r a c E q S p a t i a l D e r i v a t i v e D e r i v ( dyn index +( r * ma t r ixd im + c o l )
233 * d y n g r e e n o f f s e t , ( r * ma t r ixd im + c o l ) , func , 0 ) ; / / −a l p h a * d e l x _ r h o
234 }
235

236 / / e v a l u a t e t h e v a l u e o f F ( n +1 ,m) , m<n
237 newval = ( 1 . 0 / ( 2 . 0 − d e l t a t * x0_massterm ) )
238 * ( ( 2 . 0 + d e l t a t * x0_mass term ) * func−>v a l ( t i n d e x + dyn index + l * g r e e n s i z e )
239 +2.0* d e l t a t * s p a t i a l d e r i v _ s t a t ) ;
240

241 / / a s s i g n t h e v a l u e o f F ( n +1 ,m) , m<n
242 func−>a s s i g n ( t i n c i n d e x + dyn index + l * g r e e n s i z e , newval ) ;
243

244 / / e v a l u a t e t h e v a l u e o f rho ( n +1 ,m) , m<n
245 newval = ( 1 . 0 / ( 2 . 0 − d e l t a t * x0_massterm ) )
246 * ( ( 2 . 0 + d e l t a t * x0_mass term ) * func−>s p e c v a l ( t i n d e x + dyn index + l * g r e e n s i z e )
247 +2.0* d e l t a t * s p a t i a l d e r i v _ s p e c ) ;
248

249 / / a s s i g n t h e v a l u e o f rho ( n +1 ,m) , m<n
250 func−>s p e c a s s i g n ( t i n c i n d e x + dyn index + l * g r e e n s i z e , newval ) ;
251

252

253

254 }
255

256 / / s p a t i a l and t ime i n d e x of second p o i n t o f g r e e n s f u n c t i o n ( y0=x0 )
257 f o r ( l ong long j = c a u s a l t i m e s t e p ; j <( c a u s a l t i m e s t e p + y t i m e s t e p ) ; j ++)
258 {
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259 dyn index = j + s p a c i a l i n d e x 0 ;
260

261 s p a t i a l d e r i v _ s t a t = 0 . 0 ;
262 s p a t i a l d e r i v _ s p e c = 0 . 0 ;
263

264 / / c a l c u l a t i o n o f t h e m a t r i x p r o d u c t a l p h a * de lx_F / rho a p p e a r i n g on t h e
265 / / r . h . s o f KBE i n x0−d i r e c t i o n
266 f o r ( i n t r =0 ; r < ma t r ixd im ; r ++) {
267 s p a t i a l d e r i v _ s t a t += −a l p h a [ row* mat r ixd im + r ]
268 * D i r a c E q S p a t i a l D e r i v a t i v e D e r i v ( dyn index +( r * ma t r ixd im + c o l )
269 * d y n g r e e n o f f s e t , ( r * ma t r ixd im + c o l ) , f unc ) ; / / −a l p h a * de lx_F
270 s p a t i a l d e r i v _ s p e c += −a l p h a [ row* mat r i xd im + r ]
271 * D i r a c E q S p a t i a l D e r i v a t i v e D e r i v ( dyn index +( r * ma t r ixd im + c o l )
272 * d y n g r e e n o f f s e t , ( r * ma t r ixd im + c o l ) , func , 0 ) ; / / −a l p h a * d e l x _ r h o
273 }
274

275 / / e v a l u a t e t h e v a l u e o f F ( n +1 , n )
276 newval = ( 1 . 0 / ( 2 . 0 − d e l t a t * x0_massterm ) )
277 * ( ( 2 . 0 + d e l t a t * x0_mass term ) * func−>v a l ( t i n d e x + dyn index + l * g r e e n s i z e )
278 +2.0* d e l t a t * s p a t i a l d e r i v _ s t a t ) ;
279

280 / / a s s i g n t h e v a l u e o f F ( n +1 , n )
281 func−>a s s i g n ( t i n c i n d e x + dyn index + l * g r e e n s i z e , newval ) ;
282

283 / / e v a l u a t e t h e v a l u e o f rho ( n +1 , n )
284 newval = ( 1 . 0 / ( 2 . 0 − d e l t a t * x0_massterm ) )
285 * ( ( 2 . 0 + d e l t a t * x0_mass term ) * func−>s p e c v a l ( t i n d e x + dyn index + l * g r e e n s i z e )
286 +2.0* d e l t a t * s p a t i a l d e r i v _ s p e c ) ;
287

288 / / a s s i g n t h e v a l u e o f rho ( n +1 , n )
289 func−>s p e c a s s i g n ( t i n c i n d e x + dyn index + l * g r e e n s i z e , newval ) ;
290

291

292

293 }
294

295 s p a c i a l i n d e x 0 += s t e p s i z e ; / / i n c r e a s e s p a t i a l i n d e x o f f i r s t p o i n t o f g r e e n s f u n c t i o n
296

297 }
298

299 }
300

301 / / T h i r d S t ep : Evolve r e g u l a r g r i d a l o n g d i a g o n a l
302

303 / / i f s p l i t t i n g , memory o p e r a t o r a s s i g n e s v a l u e s a t t i n c i n d e x + y t i m e s t e p
304 / / no memory o p e r a t o r f o r t =0
305 i f ( s p l i t o r d e r ==1 && t ! = 0 ) { t i n d e x = t i n c i n d e x + y t i m e s t e p ; }
306

307 / / l oop around m a t r i x components o f F / rho − ( 1 + 1 )D: F11 , F12 , F21 , F22
308 f o r ( i n t l =0 ; l <( m a t r i x e n t r i e s ) ; l ++)
309 {
310 s p a c i a l i n d e x 0 =0;
311

312 / / s p a t i a l i n d e x of f i r s t p o i n t o f g r e e n s f u n c t i o n
313 f o r ( i n t k =0; k <( s p a c i a l p o i n t s ) ; k ++)
314 {
315

316 row = l / ma t r i xd im ; / / row i n d e x of t h e c o n s i d e r e d m a t r i x e l e m e n t
317 c o l = l%mat r ixd im ; / / column i n d e x of t h e c o n s i d e r e d m a t r i x e l e m e n t
318

319 / / c o n t r i b u t i o n s from t h e mass term i n x0− and y0−d i r e c t i o n
320

321 x0_mass term = −i m a g u n i t * mass *gammas [ row* mat r i xd im +row ] ; / / i * mass *gamma0*F
322 / / w i th gamma0 d i a g o n a l
323 y0_mass term = i m a g u n i t * mass *gammas [ c o l * ma t r i xd im + c o l ] ; / / i * mass *F*gamma0
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324 / / w i th gamma0 d i a g o n a l
325

326 / / s p a t i a l and t ime i n d e x of second p o i n t o f g r e e n s f u n c t i o n ( y0=x0 )
327 f o r ( l ong long j = c a u s a l t i m e s t e p ; j < c a u s a l t i m e s t e p + y t i m e s t e p ; j ++)
328 {
329 dyn index = j + s p a c i a l i n d e x 0 ;
330

331 s p a t i a l d e r i v _ s t a t = 0 . 0 ;
332 s p a t i a l d e r i v _ s p e c = 0 . 0 ;
333

334 / / c a l c u l a t i o n o f t h e m a t r i x p r o d u c t s ~ a l p h a * de lx_F / rho , . . . a p p e a r i n g on t h e
335 / / r . h . s o f KBE i n x0− and y0−d i r e c t i o n
336 f o r ( i n t r =0 ; r < ma t r ixd im ; r ++) {
337

338 s p a t i a l d e r i v _ s t a t += −a l p h a [ row* mat r i xd im + r ]
339 * D i r a c E q S p a t i a l D e r i v a t i v e D e r i v ( dyn index +( r * ma t r i xd im + c o l )
340 * d y n g r e e n o f f s e t + y t i m e s t e p , ( r * ma t r i xd im + c o l ) , f unc ) ; / /−a l p h a * de lx_F
341

342 s p a t i a l d e r i v _ s t a t += D i r a c E q S p a t i a l D e r i v a t i v e 2 D e r i v ( dyn index
343 +( row* mat r ixd im + r ) * d y n g r e e n o f f s e t + y t i m e s t e p , ( row* mat r ixd im + r )
344 , f unc ) * a l p h a [ r * ma t r i xd im + c o l ] ; / / de ly_F * a l p h a
345

346 s p a t i a l d e r i v _ s p e c += −a l p h a [ row* mat r i xd im + r ]
347 * D i r a c E q S p a t i a l D e r i v a t i v e D e r i v ( dyn index +( r * ma t r i xd im + c o l )
348 * d y n g r e e n o f f s e t + y t i m e s t e p , ( r * ma t r i xd im + c o l ) , func , 0 ) ; / /−a l p h a * d e l x _ r h o
349

350 s p a t i a l d e r i v _ s p e c += D i r a c E q S p a t i a l D e r i v a t i v e 2 D e r i v ( dyn index
351 +( row* mat r ixd im + r ) * d y n g r e e n o f f s e t + y t i m e s t e p , ( row* mat r ixd im + r )
352 , func , 0 ) * a l p h a [ r * ma t r i xd im + c o l ] ; / / d e l y _ r h o * a l p h a
353 }
354

355 / / e v a l u a t e t h e v a l u e o f F ( n +1 , n +1)
356 newval = ( 1 . 0 / ( 2 . 0 − d e l t a t * ( x0_massterm+y0_massterm ) ) )
357 * ( ( 2 . 0 + d e l t a t * ( x0_massterm+y0_massterm ) )
358 * func−>v a l ( t i n d e x + dyn index + l * g r e e n s i z e )
359 +2.0* d e l t a t * s p a t i a l d e r i v _ s t a t ) ;
360

361 / / a s s i g n t h e v a l u e o f F ( n +1 , n +1)
362 func−>a s s i g n ( t i n c i n d e x + dyn index + l * g r e e n s i z e + y t i m e s t e p , newval ) ;
363

364 / / e v a l u a t e t h e v a l u e o f rho ( n +1 , n +1)
365 newval = ( 1 . 0 / ( 2 . 0 − d e l t a t * ( x0_massterm+y0_massterm ) ) )
366 * ( ( 2 . 0 + d e l t a t * ( x0_massterm+y0_massterm ) )
367 * func−>s p e c v a l ( t i n d e x + dyn index + l * g r e e n s i z e )
368 +2.0* d e l t a t * s p a t i a l d e r i v _ s p e c ) ;
369

370 / / a s s i g n t h e v a l u e o f rho ( n +1 , n +1)
371 func−>s p e c a s s i g n ( t i n c i n d e x + dyn index + l * g r e e n s i z e + y t i m e s t e p , newval ) ;
372 }
373

374 s p a c i a l i n d e x 0 += s t e p s i z e ; / / i n c r e a s e s p a t i a l i n d e x o f f i r s t p o i n t o f g r e e n s f u n c t i o n
375

376 }
377

378 }

79



Erklärung der Urheberschaft

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen
direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit
wurde bisher in gleicher oder ähnlicher Form in keiner anderen Prüfungsbehörde vorgelegt und
auch noch nicht veröffentlicht.

Ort, Datum Matteo Boser

80



Bibliography

[A+15] G. Aad et al. Combined Measurement of the Higgs Boson Mass in pp Collisions
at
√
s = 7 and 8 TeV with the ATLAS and CMS Experiments. Phys. Rev. Lett.,

114:191803, 2015. arXiv:1503.07589v1.

[A+16a] B. P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole
Merger. Phys. Rev. Lett., 116:061102, 2016.

[A+16b] R. Adam et al. Planck 2015 results. I. Overview of products and scientific results.
Astron. Astrophys., 594:A1, 2016. arXiv:1502.01582v2.

[A+17] P. Amaro-Seoane et al. Laser Interferometer Space Antenna. 2017. arXiv:1702.
00786v3.

[B+13] C. L. Bennett et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Ob-
servations: Final Maps and Results. APJS, 208:20, 2013. arXiv:1212.5225v3.

[BBS03] J. Berges, S. Borsanyi, and J. Serreau. Thermalization of fermionic quantum fields.
Nucl. Phys., B660:51–80, 2003. arXiv:hep-ph/0212404.

[BBW04] J. Berges, S. Borsanyi, and C. Wetterich. Prethermalization. Phys. Rev. Lett.,
93:142002, 2004. arXiv:hep-ph/0403234.

[Ber02] J. Berges. Controlled nonperturbative dynamics of quantum fields out-of-
equilibrium. Nucl. Phys., A699:847–886, 2002. arXiv:hep-ph/0105311.

[Ber15] J. Berges. Nonequilibrium Quantum Fields: From Cold Atoms to Cosmology. 2015.
arXiv:1503.02907.

[BKS17] S. Bruggisser, T. Konstandin, and G. Servant. CP-violation for Electroweak Baryo-
genesis from Dynamical CKM Matrix. JCAP, 1711(11):034, 2017. arXiv:
1706.08534.

[C+94] F. Cooper et al. Nonequilibrium quantum fields in the large-N expansion. Phys. Rev.
D, 50:2848–2869, 1994.

[C+16] C. Caprini et al. Science with the space-based interferometer eLISA. II: Gravitational
waves from cosmological phase transitions. JCAP, 1604(04):001, 2016. arXiv:
1512.06239.

81

http://arxiv.org/abs/1503.07589v1
http://arxiv.org/abs/1502.01582v2
http://arxiv.org/abs/1702.00786v3
http://arxiv.org/abs/1702.00786v3
http://arxiv.org/abs/1212.5225v3
http://arxiv.org/abs/hep-ph/0212404
http://arxiv.org/abs/hep-ph/0403234
http://arxiv.org/abs/hep-ph/0105311
http://arxiv.org/abs/1503.02907
http://arxiv.org/abs/1706.08534
http://arxiv.org/abs/1706.08534
http://arxiv.org/abs/1512.06239
http://arxiv.org/abs/1512.06239


[FJ05] M. Frigo and S. G. Johnson. The Design and Implementation of FFTW3. Proceedings
of the IEEE, 93(2):216–231, 2005.

[H+10] H. Holden et al. "Splitting methods for partial differential equations with rough so-
lutions. Analysis and Matlab programs". European Mathematical Society Publishing
House, 2010.

[HPA14] R. Hammer, W. Pötz, and A. Arnold. A dispersion and norm preserving finite differ-
ence scheme with transparent boundary conditions for the Dirac equation in (1+1)D.
J. Comput. Physics, 256:728–747, 2014.

[HS95] P. Huet and E. Sather. Electroweak baryogenesis and standard model CP violation.
Phys. Rev., D51:379–394, 1995. arXiv:hep-ph/9404302.

[K+96] K. Kajantie et al. Is there a hot electroweak phase transition at m(H) larger or equal
to m(W)? Phys. Rev. Lett., 77:2887–2890, 1996. arXiv:hep-ph/9605288.

[KB62] L. P. Kadanoff and G. A. Baym. "Quantum statistical mechanics: Greens’s function
method in equilibrium and nonequilibrium problems". Cambridge University Press,
1962.

[Kel64] L. V. Keldysh. Diagram technique for nonequilibrium processes. Zh. Eksp. Teor. Fiz.,
47:1515–1527, 1964. [Sov. Phys. JETP20,1018(1965)].

[Kos15] O. Koskivaara. Exact solutions of a Dirac equation with a varying CP-violating
mass profile and coherent quasiparticle approximation. Master’s thesis, University
of Jyväskylä, 2015.

[LM08] M. Lindner and M. M. Müller. Comparison of Boltzmann kinetics with quantum
dynamics for a chiral Yukawa model far from equilibrium. Phys. Rev. D, 77:025027,
2008.

[MM94] I. Montvay and G. Münster. "Quantum Fields on a Lattice". Cambridge University
Press, 1994.

[MRM12] D. E. Morrissey and M. J. Ramsey-Musolf. Electroweak baryogenesis. New J. Phys.,
14:125003, 2012. arXiv:1206.2942.

[P+07] W. H. Press et al. "Numerical Recipes - The Art of Scientific Computing". Cambridge
University Press, 3rd edition, 2007.

[Sak91] A. D. Sakharov. Violation of CP invariance, C asymmetry, and baryon asymmetry of
the universe. Soviet Physics Uspekhi, 34(5):392, 1991.

[Sch61] J. Schwinger. Brownian Motion of a Quantum Oscillator. Journal of Mathematical
Physics, 2:407–432, 1961.

82

http://arxiv.org/abs/hep-ph/9404302
http://arxiv.org/abs/hep-ph/9605288
http://arxiv.org/abs/1206.2942


[Sus77] L. Susskind. Lattice fermions. Phys. Rev. D, 16:3031–3039, 1977.

[ZJ00] J. Zinn-Justin. Quantum field theory at finite temperature: An Introduction. 2000.
arXiv:hep-ph/0005272.

83

http://arxiv.org/abs/hep-ph/0005272

	Introduction
	Non-equilibrium QFT
	2PI effective action
	Evolution equations for the fermion propagator

	Numerical Implementation
	Discretizing the Dirac equation
	2-point objects

	Results
	Time varying, CP-violating mass
	(Pre-)Thermalization in the linear sigma model

	Conclusions and Outlook
	Appendices
	Time evolution of the - mode-function
	Momentum discretization for scalar fields
	Dependence on lattice parameters
	Quadratic potential - Spectral function
	Quadratic potential - Time evolution of the particle number distributions nf(p) and n()
	Memory Integrals for quadratic potential
	= 24
	Source code: 1-point function
	Source code: 2-point function

