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Zusammenfassung

Die wichtigste Motivation dieser Arbeit war es eine nichtkommutative Er-
weiterung der Quantenelektrodynamik (QED) zu entwickeln, die auch für
eine zeitartige Nichtkommutativität, das heißt Nichtvertauschbarkeit von
Orts und Zeit Koordinaten, physikalisch interpretierbar bleibt.

Unser Modell basiert im Wesentlichen auf zwei Annahmen. Die erste
Annahme hat mit der Raumzeit selbst zu tun und ist der Grund warum
man von ”nichtkommutativen“ Theorien spricht. Wir fordern, dass zwei
Raumzeitkoordinaten nicht mehr miteinander kommutieren sollen. Diese
nichtkommutative Raumzeit kann man nun dadurch realisieren, dass man
in einer gegebenen Wirkung alle Punktprodukte durch Moyal-Weyl Stern-
produkte ersetzt. Die nach dieser Ersetzung erhaltene Wirkung ist dann
nicht mehr invariant unter der ursprünglichen, sondern unter der nichtkom-
mutativen Eichtransformation.
In der zweite Annahme fordern wir, dass eben diese nichtkommutative Wir-
kung, die wir erhalten haben, nicht nur invariant unter nichtkommutativen
sondern auch unter den gewöhnlichen Eichtransformationen sein soll. Dass
die letzte Forderung tatsächlich Sinn macht und eine Wirkung existiert, die
invariant unter beiden Eichtransformationen ist, zeigten Seiberg und Witten
[1]. Der Grund warum man die zweite Annahme fordert, liegt auf der Hand.
Man erhält eine nichtkommutative Eichtheorie, die aber die kommutati-
ven Eichstrukturen aufweist. Um der zweiten Annahme zu genügen, muss
man die Felder in der nichtkommutativen Wirkung durch die sogenannten
Seiberg-Witten Abbildungen ersetzen. Nachdem man diese Wirkung eichfi-
xiert hat, erhält man die Wirkung (2.31), auf der unser Modell basiert.

Wir wollen in dieser Arbeit das Hochenergieverhalten dieses Modells un-
tersuchen. Deswegen ist es für unsere Zwecke nicht ausreichend, wenn die
Wirkung nur bis zu einer endlichen Ordnung im nichtkommutativen Para-
meter θµν entwickelt ist. Wir benötigen eine Wirkung, in der alle Ordnun-
gen von θµν resummiert sind. Das Moyal-Weyl Sternprodukt ist in allen
Ordnungen in θµν bekannt. Das Problem vor dem wir standen war es, die
benötigten Seiberg-Witten Abbildungen in allen Ordungen im nichtkommu-
tativen Parameter zu finden. Diesem Problem widmeten wir uns in Kapitel
3. Basierend auf der Arbeit von Barnich, Brandt and Grigoriev [2] konnten
wir diejenigen Seiberg-Witten Abbildungen in allen Ordnungen in θµν be-
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stimmen, die nötig waren um den Streuprozess der Elektronen-Positronen
Paar Vernichtung auf Born Niveau zu berechnen.

Aber bevor wir diese Berechnung in Angriff nahmen, untersuchten wir
in Kapitel 4 die Seiberg-Witten Abbildung für das Eichfeld. Es stellte
sich nämlich heraus, dass die Seiberg-Witten Abbildungen im Allgemei-
nen nicht eindeutig sind. Wie wir feststellten, führen diese Mehrdeutigkei-
ten tatsächlich zu unterschiedlichen Streuquerschnitten und somit zu unter-
schiedlichen Observablen. Was auf den ersten Blick als Nachteil erscheinen
mag, beinhaltet aber auch eine Chance. Man kann diese Mehrdeutigkeiten
dazu benutzen, um ein physikalisch sinnvolles Modell zu erstellen.

Basierend auf den Berechnungen aus Kapitel 3 und den Erkenntnissen
aus Kapitel 4 bestimmten wir die Feynman Regeln, die zu diesem Modell
gehören. Mit den Feynman Regeln berechneten wir dann in Kapitel 6 die
Elektronen-Positronen Paar Vernichtung e−e+ → γγ auf Born Niveau. An-
hand dieses Streuprozesses untersuchten wir dann das Hochenergieverhalten
(tree level unitarity) dieses Modells. Das Ergebnis war, dass das Modell, zu-
mindest für diesen konkreten Prozess, ”tree level“ unitär ist, bzw. gemacht
werden kann. Die Vorderung nach Unitarität schränkte die Mehrdeutigkeit
der Seiberg-Witten Abbildung des Eichfeldes teilweise ein. Trotz dieser Ein-
schränkung der Mehrdeutigkeit blieb der differentielle Wirkungsquerschnitt
divergent für hohe Schwerpunktsenergien. Aber die eigentliche physikali-
sche Observable, nämlich der integrierte Wirkungsquerschnitt, wird kon-
stant. Das heißt, dass man die Unschärfe in der Schwerpunktsenergie als
auch die Unschärfe in den Impulsen berücksichtigen muss, um einen Wir-
kungsquerschnitt zu erhalten, der ”tree level“ unitär ist.

Wir haben somit in dieser Arbeit eine nichtkommutative abelsche Eich-
theorie mit Seiberg-Witten Abbildungen entwickelt, die in allen Ordnungen
im nichtkommutativen Parameter resummiert ist. Anhand des Prozesses
der Elektronen-Positronen Paar Vernichtung konnten wir zeigen, dass dieses
Modell ”tree level“ unitär ist.
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Chapter 1

Introduction

Up to now there are four fundamental forces known, namely gravitation,
electromagnetism, the weak and the strong force. The latter three are de-
scribed by local quantum field theories which together form the so-called
standard model of elementary particle physics. These quantum field theo-
ries are formulated on a static four dimensional Minkowski spacetime, where
the dynamical variables are the quantized fields which are functions of the
spacetime coordinates. In gravitation, which is described by the theory of
general relativity, the spacetime coordinates themselves are the dynamical
variables. Therefore the spacetime has a totally different meaning as in
the standard model of elementary particle physics. In other words, in the
standard model spacetime is the stage where the quantum fields interact,
whereas in general relativity the spacetime is an actor itself.

Naturally the question arises how a theory may look like which com-
bines general relativity and the principles of quantum theory. If we think of
classical mechanics one quantizes this theory by introducing a non-vanishing
commutation relation among the dynamical variables, which are the position
and the momentum. This of course implies that the variables become suit-
able operators. Adapting this procedure to the theory of general relativity
would lead to operator valued coordinates. The set of all those coordi-
nates is called quantum or noncommutative spacetime. At this admittedly
naive level one already sees a sign for a connection between noncommutative
spacetime and quantum gravity.
In fact, it was shown that noncommutative spacetime is necessary in order
to prevent a gravitational collapse from vacuum fluctuations near the Planck
length [3] . So it seems that the spacetime has to become noncommutative
near the Planck scale.

The string theory, which is a candidate for a theory of quantum grav-
ity, also suggest that the spacetime cannot be smooth for arbitrary short
distances. This leads to an uncertainty of the observable spacetime which
can again be represented by operator-like spacetime coordinates. Further-
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2 CHAPTER 1. INTRODUCTION

more Seiberg and Witten found that the dynamics of open strings ending on
D-branes and which are embedded in a magnetic background field can be de-
scribed by a quantum field theory on a noncommutative spacetime, too [1].
This discovery was the reason for the renewed attention to noncommutative
field theories in 2000.

Taking all the above hints into account we could conclude that a non-
commutative spacetime appears to be a general feature of any quantum
theory of gravity. So it is reasonable to investigate quantum field theories
on a noncommutative spacetime. But independently of what we have stated
so far, studying noncommutative quantum field theories leads to a deeper
understanding of the concepts of quantum field theories. This fact alone
justifies the study of this kind of extension of quantum field theory.

Historically, the idea that the spacetime may be noncommutative goes
back to Heisenberg. In a correspondence with Peierls 1930 [4] he proposed
that it could be possible to circumvent the infinities present in quantum field
theories by introducing a non-vanishing commutator between two spacetime
points. In 1947, Snyder wrote a paper [5] where he presented an ansatz
to introduce a minimal length by introducing noncommuting coordinates.
Again, the motivation was to get rid of the infinities present in quantum
electrodynamics. This ansatz was extended to curved spacetimes in the
same year by Yang [6]. The problem of the ansatz was that it explicitly
breaks the translational invariance of the theory. In addition at the same
time renormalization theory succeeded by the experimental confirmation of
Schwinger’s calculation of the anomalous magnetic moment of the electron.
Therefore this idea was not longer pursued.

On the mathematical side von Neumann was one of the first who studied
the quantum “space” which is the phase space of quantum mechanics. Due
to Heisenberg’s uncertainty relation, points become meaningless so that one
has to replace points by so called “Planck cells”. Von Neumann called the
geometry of such a space “pointless geometry” which was later on labeled as
“noncommutative geometry”. After some time this field was revived in the
1980’s by Connes, Woronowicz and Drinfeld. Especially the work of Connes
provides the mathematical background for the works on noncommutative
quantum field theories.

In the 1990s Fredenhagen et.al. [7] and Filk [8] began to investigate field
theories on quantum spaces. Wess et.al. also studied quantum spaces and
deformed algebras [9]. The fact that noncommutative field theory got the
attention it has nowadays is mainly due to the already mentioned paper
of Seiberg and Witten where they showed that a kind of noncommutative
gauge field theory appears as a low energy limit of certain string theories.

Now let us come to the often used words “noncommutative spacetime”
and the question what this notion implies. In general “noncommutative
spacetime” only means that two spacetime coordinates do not commute,
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i.e. their commutator is non-zero

[x̂µ, x̂ν ] = Fµν(x̂) , (1.1)

where the function Fµν can be an arbitrary function of the coordinate x̂µ.
The coordinates are self-adjoint operators so that the spacetime manifold
becomes a Hilbert space of states where the union of the spectra of all
the spacetime operators creates the observable spacetime. Obviously, if the
spectrum of the operators is discrete or continuous one also gets a discrete
or continuous space.

Usually three classes of deformed spacetimes can be distinguished, namely
the canonical or θ-deformed spacetime with a constant r.h.s. of the commu-
tation relation, a Lie algebra deformed spacetime where the r.h.s. depends
linearly on the coordinate and a q-deformed spacetime with a quadratic de-
pendency on the coordinate. The most simple one is a constant r.h.s. of the
commutation relation

[x̂µ, x̂ν ] = i Θ̂µν , (1.2a)

where we extract the imaginary unit for convenience. This kind of noncom-
mutative spacetime forms the basis of our work. In addition we assume that
the nested commutator of the x̂ vanishes[

[x̂µ, x̂ν ], x̂ρ
]

= i
[
Θ̂µν , x̂ρ

]
= 0 . (1.2b)

This additional assumption has an important consequence as we will explain
in the next chapter. The introduction of a non-vanishing commutation re-
lation (1.2a) poses the question wether theories based on this relation break
Lorentz invariance. The answer is somewhat subtle. If we Lorentz trans-
form the whole noncommutative spacetime, the matter content as well as
the observer himself, the physics remains unchanged. Simply because the
matter content remains constant relative to the spacetime and the observer.
In terms of this so-called “observer” Lorentz transformation the Lorentz
invariance is satisfied. Instead if one only transforms the matter content
the physics changes in respect of the observer. In terms of this so-called
“particle” Lorentz transformation the Lorentz invariance is broken.

Nevertheless by assuming the relations (1.2) it is clear that the ordinary
quantum field theory has to be changed. So the question arises how a
quantum field theory may looks like on a noncommutative spacetime. The
decisive answer is given by the Gel’fand-Naimark theorem [10]. In substance
the theorem states that the algebra of functions on a manifold includes all
information about the manifold itself. Therefore it is completely sufficient
to consider only the algebra of functions on a manifold. This means that in
the case of a noncommutative spacetime we have a noncommuting algebra
of functions rather than a commuting algebra.

So how can a noncommuting algebra of functions be realised? The first
way, which was mainly developed by Fredenhagen et.al. [3] was to deal



4 CHAPTER 1. INTRODUCTION

with fields as functions of the noncommutative spacetime coordinates. They
worked out a mathematical framework where they give answer to questions
concerning for example the noncommutative analogue of the four dimen-
sional spacetime integration.

The other way, done by Filk [8], is based on the fact that the product of
functions of noncommuting variables can be realised by a noncommutative
product of functions of commuting variables. This leads to fields as a func-
tion of the ordinary commuting coordinates but with a deformed product.
For the case of a constant commutator between spacetime coordinates, this
deformed product becomes the well known Moyal-Weyl star-product

(φ1 ∗ φ2) (x) = φ1(x) e
i
2

←
∂ µθ

µν
→
∂ ν φ2(x) . (1.3)

A different ansatz arose in the 2000s, where Chaichian et.al. assumed a
twisted Poincaré symmetry as the fundamental symmetry of the spacetime
[11]. A twisted Poincaré symmetry is the symmetry of the twisted product
of two Poincaré groups, whereas a twisted product, is essentially a direct
product of groups. One ends up with a twist product which for the simplest
case is again the Moyal-Weyl star-product. Therefore the non-vanishing
commutator of two spacetime coordinates is obtained as the consequence of
the assumed quantum spacetime symmetry.

In this work we will follow the ansatz of Filk meaning that in the first
step we create our quantum field theory on a noncommutative spacetime by
simply replacing the point-like products between the fields by an appropriate
deformed product. Because in this work we consider only the θ-deformed
spacetime the deformed product is just the already mentioned Moyal-Weyl
star-product (1.3). Therefore the noncommutative action is the ordinary
one but with the star-product instead of the ordinary product.

In the case of gauge theories this leads to deformed gauge transforma-
tions because one also has the star-product between the gauge parameter
and the gauge field. One problem with such theories is to construct an ap-
propriate noncommutative extension of the standard model which is not in
contradiction to current observations. For example in such a noncommu-
tative quantum electrodynamics (NCQED) only the charges ±1 and 0 are
allowed which of course would forbid quarks [12, 13]. A more grave problem
of all noncommutative theories which are in all orders in the noncommuta-
tive parameter is the existence of UV/IR-mixing [14]. UV/IR-mixing is a
phenomenon which appears in loop diagrams of noncommutative theories.
Namely one gets as a result in one-loop calculations besides the ordinary
UV divergent parts also UV finite parts which are instead divergent in the
limit of zero momenta. This UV/IR-mixing is the reason why those theories
are not renormalizable at least in the usual sense [15].

Studying a low energy limit of some string theories, Seiberg and Witten
discovered that one gets ordinary and noncommutative fields by regularizing
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a two-dimensional field theory in different ways. Thus, they conclude that
there has to exist a transformation between these two theories in such a
way that the standard Yang-Mills gauge invariance maps to the gauge in-
variance of noncommutative Yang-Mills theory. In a first step one may try
to redefine the gauge field and the gauge parameter separately from each
other. But if this would be possible, the noncommutative gauge group has
to be isomorphic to the commutative one. But the gauge group for the
commutative abelian gauge theory is abelian while the gauge group for the
noncommutative abelian gauge theory is nonabelian. An abelian group can
never be isomorphic to an nonabelian group. Therefore one must simulta-
neously redefine the gauge field and the gauge parameter in a consistent
manner.

There are two ways known up to now how to get the redefined gauge field
and the gauge parameter. First, as has been done by Seiberg and Witten [1],
one can extract the redefined gauge field and gauge parameter which depend
on the noncommutative parameter order by order of the noncommutativity
simply by comparing the noncommutative with the ordinary gauge transfor-
mation. If one has the first order in the redefined field and parameter one
can reinterpret these maps as the generating functional (with respect to a
change of the noncommutativity) of the exact, i.e. the all order, maps. This
results in differential equations which describe how the redefined gauge field
and gauge parameter should change when the noncommutativity is varied.
These so called Seiberg-Witten maps were used by Wess et.al. [16] to build
a noncommutative standard model (NCSM) in first order in the noncommu-
tative parameter. They circumvent the problem of integer charges by using
the freedom introduced by the maps. Because up to now the Seiberg-Witten
maps were known only up to the first order in the noncommutative param-
eter, the NCSM was only an effective theory so that one couldn’t tackle
questions such as high energy behavior, unitarity, renormalizability and so
on.

The second way to get this differential equations was taken by Barnich,
Brandt and Grigoriev [2]. They construct noncommutative Yang-Mills the-
ory as a consistent deformation of standard Yang-Mills theory. Consistent
deformation means, that the action and the gauge transformation are not
deformed independently of each other. They are deformed in such a way
that the deformed action is invariant under the deformed gauge transforma-
tion. They used the antifield-antibracket formalism to get the differential
equations Seiberg and Witten found. The advantage of their work was the
construction of recursive solutions for the maps not only with respect to the
noncommutative parameter but also with respect to the gauge field. The
last one is so important because this recursion supplies a map in all orders
in the noncommutative parameter.

Having a noncommutative theory with Seiberg-Witten maps in all orders
in the noncommutative parameter one can study questions which could not
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be answered in an effective theory. And exactly those questions underlie
this thesis: What is the high energy behavior of the theory? Is this theory
unitary?

At the end of this introduction we want ask if it is possible to measure ef-
fects predicted from noncommutative theories in the near future. Up to now
no measurements exist which verify any prediction coming from noncommu-
tative theories. From Large Electron Positron (LEP) collider experiments
the noncommutative scale has to be at least & 140 GeV [17]. Phenomeno-
logical studies for the Large Hardron Collider (LHC) can push the exclusion
limit above the TeV scale [18]. But generically one has to expect the noncom-
mutative scale near the Planck scale which is in four-dimensional spacetime
of the order of 1019 GeV. The only hope one can have to see noncommu-
tative effect in the TeV region is the existence of extra dimensions. Such
extra dimensional models can push the Planck scale down to the TeV region
which is reachable by the LHC.

Anyway, the purpose of our investigation is to clarify basic properties
of the noncommutative theory with Seiberg-Witten maps, necessary for a
consistent quantum mechanical interpretation of these models.



Chapter 2

Technical Basics

In this chapter we want to prepare the technical basics needed in this thesis.
Namely we will first look at how an explicit expression for the Moyal-Weyl
star-product can be obtained. Secondly, we will ask whether the different,
but in the commutative case equivalent, perturbation series expansions of
the coupling constant are equivalent in the noncommutative case. Then
we will construct a noncommutative action which is invariant under the
noncommutative as well as under the commutative gauge transformation.
Afterwards we will discuss how different representations of the gauge gen-
erators affect the model. Before we will present our final model we will
elaborate on the question how the nonlocal property of the noncommutative
model affects the time-ordering operator.

2.1 The Moyal-Weyl Star-Product

As we already mentioned in the introduction, we take a canonical noncom-
mutativity as the basis of our model , i.e. a constant commutator. The two
commutation relations (1.2) define an algebra A of all selfadjoint operators
x̂µ of a Hilbert space H. Because of the second equation (1.2b), Θ̂µν ∈ A is
in the center of this algebra. Hence, for a given irreducible representation of
Θ̂µν one can replace that operator valued matrix by a pure c-number valued
matrix

Θ̂µν = θµν · 1 , with 1 ∈ A . (2.1)

This matrix θµν has the dimension of an inverse squared length which sets
the length scale where noncommutative effects become important.

After having fixed the commutation relation of the spacetime operators
we have to ask how we can incorporate the noncommutative spacetime in
a quantum field theory. As mentioned, we will follow Filk [8] who stated
that instead of considering products of fields which are functions of the non-
commutative spacetime operators one can study deformed noncommutative

7
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products of ordinary fields, equivalently. In our case of a canonical noncom-
mutativity the deformed product is given by the Moyal-Weyl star-product.

Let us derive an explicit representation of this product following the
discussion in [19]. In order to be able to tackle the question how the deformed
noncommutative product looks like, we have to construct a field which is
a function of the noncommutative hermitian spacetime operators. We do
this by means of Weyl quantization of the ordinary field. This looks like
a twofold Fourier transformation whereas one transformation includes the
noncommutative hermitian spacetime operators

φ(x̂) :=
1

(2π)4

∫
d4p

∫
d4x ei px̂ e− i px φ(x)

=
1

(2π)4

∫
d4x

∫
d4p e− i px T̂ (p)φ(x) . (2.2)

The operator T̂ (p) := exp(i px̂) we introduced above has some useful prop-
erties, namely

T̂ †(p) = T̂ (−p) , (2.3a)

T̂ (p)T̂ (q) = e− i p∧q T̂ (p+ q) , (2.3b)

tr T̂ (p) = (2π)4δ(4)(p) , (2.3c)

with the antisymmetric “wedge”-product

p ∧ q :=
1
2
pµθ

µνqν = −q ∧ p . (2.4)

The ∧-product is of course antisymmetric because of the antisymmetry of
θµν . The first property is obvious. The second one follows from the Baker-
Campbell-Hausdorff formula and the property (1.2b) of the algebra we con-
sider, i.e. the nested commutator of the hermitian operators vanishes. The
third property (2.3c) is not as obvious as the other two but the expression
is not really surprising. Namely, the trace over elements x̂µ of the Hilbert
space H corresponds to the integral over the spacetime in Minkowski space

tr T̂ (p) =̂
∫

d4x ei px = (2π)4δ(4)(p) . (2.5)

Nevertheless we will derive this expression in appendix B.1.
Now we are able to calculate the trace of a noncommutative field

trφ(x̂) =
1

(2π)4

∫
d4x

∫
d4p e− i px φ(x) tr T̂ (p) =

∫
d4xφ(x) , (2.6)

where we used the above trace property (2.3c). In principle, one has to be
careful in the first step, where one swaps the trace and the integral. But
these two commute as stated in [19].
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After all the work we have done so far we only need one last step to be
able to determine the deformed product, namely the inverse map of (2.2)

φ(x) =
1

(2π)4

∫
d4p ei px tr

[
φ(x̂)T̂ †(p)

]
. (2.7)

With this map we define the Moyal-Weyl product as the product built up
from the point-wise product of two functions of the hermitian variables

(φ1 ∗ φ2) (x) :=
1

(2π)4

∫
d4p ei px tr

[
φ1(x̂)φ2(x̂)T̂ †(p)

]
=

1
(2π)8

∫
d4p

∫
d4p1

∫
d4p2 ei px φ̃(p1)φ̃(p2) tr

[
T̂ (p1)T̂ (p2)T̂ †(p)

]
=

1
(2π)4

∫
d4p1

∫
d4p2 ei(p1+p2)x φ̃(p1)φ̃(p2) e− i p1∧p2 . (2.8)

As usual, the tilded functions are the Fourier transforms of the untilded
function. Actually, the position space representation of the ∗-product is the
most commonly used one. It is just the Fourier transform of the above result

(φ1 ∗ φ2) (x) = φ1(x) e
i
2

←
∂ µθ

µν
→
∂ ν φ2(x) . (2.9)

Let us discuss our result. First of all, one can directly derive from (2.8) that∫
d4x (φ1 ∗ φ2)(x) =

∫
d4xφ1(x)φ2(x) . (2.10)

This leads to one important feature of noncommutative field theories, namely
that the free part of such a theory is equal to the commutative one.
Second, the generalisation of the Moyal-Weyl product is straight-forward for
the case of n fields, which is

(φ1 ∗ φ2 ∗ . . . ∗ φn) (x) :=
1

(2π)4

∫
d4p ei px tr

[
φ1(x̂)φ2(x̂) . . . φn(x̂)T̂ †(p)

]
=

n∏
i=1

[
1

(2π)2

∫
d4pi ei pix φ̃i(pi)

]
e− iϕ(p1,p2,...,pn) , (2.11)

with the noncommutative phase

ϕ(p1, p2, . . . , pn) :=
∑
i<j

pi ∧ pj . (2.12)

In the general case, the property (2.10) leads to a cyclical symmetry of the
∗-product∫

d4x (φ1 ∗ φ2 ∗ . . . ∗ φn) (x) =
∫

d4x (φ2 ∗ . . . ∗ φn ∗ φ1) (x) , (2.13a)
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such that one can replace one of the ∗-products by the ordinary one

∫
d4x (φ1 ∗ . . . ∗ φn) (x)

=
∫

d4x (φ1 ∗ . . . ∗ φi) (x) (φi+1 ∗ . . . ∗ φn) (x) . (2.13b)

In the case of field theories one can, roughly speaking, neglect one ∗-product
for each summand in the action.

2.2 Perturbation Theory

In ordinary local quantum field theory there exists more than one way to re-
alise a perturbation solution. One way is given by the Hamiltonian approach
which starts with the interaction Hamiltonian and leads to the Dyson series.
This approach is manifestly unitary. By Legendre transformation the Dyson
series merges into the Gell-Mann-Low formula

〈0|T e− i
R

dtHI |0〉 = 〈0|T e− i
R

d4xHI |0〉 = 〈0|T ei
R

d4xLI |0〉 , (2.14)

which finally depends on the interaction Lagrangian. The crucial point is
that the Legendre transformation is only defined for finite many time deriva-
tives1. The reason is that one needs the conjugate momenta of the field.
However, it is completely unclear how to define the conjugate momenta of a
field with infinitely many derivatives. Another way to realise a perturbation
solution is the Yang-Feldman ansatz which basically solves the interacting
field equations perturbatively.

The question is if these different ways remain equivalent in nonlocal
theories. So far a final answer cannot be given. Hence, one has to make a
decision what ansatz one wants to choose. We will base our perturbation
series on the Gell-Mann-Low formula

S(i→ f) = 〈f |T
[
ei

R
d4xLI(x)

]
|i〉 , (2.15)

which contains the interaction part LI of the Lagrange density L.
We will consider a version of the noncommutative quantum electrody-

namics (QED), because it is the simplest gauge theory. And this is essential
for our considerations.

1In the case of higher order time derivatives one can eliminate all higher order time
derivatives by recursively applying the equation of motion [20].
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2.3 Lorentz Invariance

If one introduces a non-vanishing commutation relation such as (1.2), the
question arises how the Lorentz invariance of a theory is affected by this
assumption. In principle there are three possibilities how Θ̂µν can behave
under Lorentz transformations.

1. The noncommutative parameter is an invariant tensor under Lorentz
transformation

Λµµ′Λ
ν
ν′UΘ̂µ′ν′U−1 = Θ̂µν .

This implies that the elements of the tensor have to be operator valued
objects which is not compatible with (2.1).

2. Θ̂µν is a constant matrix. This would mean that the noncommutative
parameter would be constant in every coordinate system. Thus the
observables would depend on the Lorentz frame in which one does the
calculations. Obviously, this makes no sense for a physically meaning-
ful theory.

3. The last possibility assumes that Θ̂µν is a Lorentz tensor, so that
the noncommutativity transforms like a tensor. Relative to the whole
spacetime Θ̂µν is constant and as a result it implicitly breaks the (“par-
ticle”) Lorentz invariance of the action.

Under the assumption (2.1) the only reasonable choise is to assume that
Θ̂µν and thus θµν is a Lorentz tensor. Thus one can contract θµν with two
4-vectors to obtain a scalar. But for phenomenological studies one has to
assign fixed values to θµν , which then breaks Lorentz invariance.

2.4 The Noncommutative Action

After we have derived a representation of the Moyal-Weyl star-product and
clarified which ansatz of perturbation expansion we will use, we now want
to construct the fundamental action of our theory.

2.4.1 Ordinary Quantum Electrodynamics

Before we come to the action of the noncommutative quantum electrody-
namics we first summarize some properties of the ordinary quantum electro-
dynamics because the noncommutative action is based on the commutative
one.

The action of quantum electrodynamics (QED) is

S =
∫

d4x

[
ψ̄(x) (i /D(x)−m)ψ(x)− 1

4g2
Fµν(x)Fµν(x)

]
, (2.16)
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which is invariant under the local abelian gauge transformation

δaψ(x) = i a(x)ψ(x) ,
δaψ̄(x) = − i ψ̄(x)a(x) ,
δaAµ(x) = ∂µa(x)− i[Aµ(x), a(x)] = ∂µa(x) ,
δaFµν(x) = i[a(x), Fµν(x)] = 0 ,

(2.17)

where a(x) is the spacetime dependent gauge parameter. The covariant
derivative and the field-strength tensor are defined as usual

Dµ = ∂µ − iAµ , Fµν = i[Dµ, Dν ] = ∂µAν − ∂νAµ . (2.18)

Note that the covariant derivative satisfies the Jacobi identity[
Dµ, [Dν , Dρ]

]
+
[
Dν , [Dρ, Dµ]

]
+
[
Dρ, [Dµ, Dν ]

]
= 0 (2.19)

and as a consequence of that identity the field-strength tensor satisfies the
Bianchi identity

DµFνρ +DνFρµ +DρFµν = 0 . (2.20)

Based on the above action (2.16) we will now construct the noncommutative
action.

2.4.2 Noncommutative Quantum Electrodynamics

After introducing the noncommutative algebra (1.2) for the coordinates, the
action becomes a product of fields of these hermitian spacetime operators.
However, as we mentioned in section 2.1 one gets an equivalent noncom-
mutative action by replacing every ordinary product by the Moyal-Weyl
star-product which leads to the action

S∗ =
∫

d4x

[( ¯̂
ψ ∗ (i /̂D −m) ∗ ψ̂

)
(x)− 1

4g2
tr
[(
F̂µν ∗ F̂µν

)
(x)
]]

. (2.21)

Consequently, this action is now invariant under the noncommutative gauge
transformation

δ̂âψ̂(x) = i
(
â ∗ ψ̂

)
(x) , δ̂â

¯̂
ψ(x) = − i

( ¯̂
ψ ∗ â

)
(x) ,

δ̂âÂµ(x) = ∂µâ(x)− i[Âµ ∗, â](x) , δ̂âF̂µν(x) = i[â ∗, F̂µν ](x) ,
(2.22)

where the graded star commutator [ · ∗, · ] is defined as

[A ∗, B] = A ∗B − (−1)|A||B|B ∗A . (2.23)

The ghost field C has an odd Grassmann parity |C| = 1. All other fields we
deal with are Grassmann even, i.e. the parity of them is zero.
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Due to the star-product the defining commutator of the field-strength
tensor is now also a star commutator

F̂µν = i[D̂µ
∗, D̂ν ] = ∂µÂν − ∂νÂµ − i[Âµ ∗, Âν ] , (2.24)

so that this commutator of two gauge fields doesn’t vanish although we
have abelian gauge fields. As an important consequence of this non vanish-
ing commutator such theories generally possess couplings among photons,
i.e. there is a 3- and 4-photon vertex. As in the commutative case, the Jacobi
and the Bianchi identities are satisfied in the noncommutative case.

2.4.3 Seiberg-Witten maps

Based on the noncommutative action (2.21) one could proceed by gauge
fixing this action ending up with a noncommutative QED which is invariant
under noncommutative BRST transformations [21, 22]. The same holds also
for arbitrary U(N) gauge theories all of which have the drawbacks mentioned
in the introduction. For a purely space-like noncommutativity (θ0i = 0) this
class of theories doesn’t possess any problems with unitarity [23]. However,
in the time-like case (θ0i 6= 0) which we are interested in, it turns out that
those theories cannot be simultaneously gauge invariant and unitary at least
with a perturbation series based on the Gell-Mann-Low formula2.

We will postulate an additional assumption which our noncommutative
theory has to possess and which was first considered by Seiberg and Witten
[1]. Namely, they discovered that one gets ordinary and noncommutative
fields3 by regularizing a two-dimensional field theory in different ways. Thus,
they conclude that there has to exist a transformation between these two
fields in such a way that the standard Yang-Mills gauge invariance maps to
the gauge invariance of noncommutative Yang-Mills theory. This transfor-
mation is not just a redefinition of the fields. The reason is simple, namely
in the case of QED the commutative gauge group is abelian (2.17) whereas
the noncommutative one is nonabelian (2.22). An abelian group can never
be isomorphic to a noncommutative one. Instead one must simultaneously
redefine the gauge field and the gauge parameter in a consistent manner.

With the above said, we assume in addition to the fundamental assump-
tion (1.2) which leads to the action (2.21) the additional postulation that
the above action should not only be invariant under the noncommutative
gauge transformation (2.22) but also under the commutative one (2.17). So
there must exist maps, known as Seiberg-Witten maps,

ψ̂(ψ,A) , ¯̂
ψ(ψ̄, A) , Âµ(A) , F̂µν(F,A) , â(a,A) , (2.25)

2There is also a proposal [24] to get an unitary and gauge invariant result by solving
the equations of motion perturbatively (Yang-Feldman ansatz).

3By a “noncommutative field” we mean a field which transforms under the noncommu-
tative gauge transformation and by an “ordinary field” we mean a field which transforms
under the commutative gauge transformation, respectively.



14 CHAPTER 2. TECHNICAL BASICS

in such a manner that the gauge equivalence equations for each of the fields

δ̂â(a,A)ψ̂(ψ,A) != δaψ̂(ψ,A) , δ̂â(a,A)
¯̂
ψ(ψ̄, A) != δa

¯̂
ψ(ψ̄, A) ,

δ̂â(a,A)Âµ(A) != δaÂµ(A) , δ̂â(a,A)F̂µν(F,A) != δaF̂µν(F,A) ,

δ̂â(a,A)â(a,A) != δaâ(a,A) ,

(2.26)

are satisfied. The commutative and the noncommutative gauge transforma-
tion of the gauge parameter are

δaa(x) =
i
2
[a(x), a(x)] = 0 , δ̂ââ(x) =

i
2
[a ∗, a](x) . (2.27)

From the above discussion it should be clear that the Seiberg-Witten maps
depend not only on the appropriate commutative field but also on the com-
mutative gauge field Aµ. Thus when δ acts on a noncommutative field,
this means that it basically acts on the commutative fields from which the
noncommutative one is built up, by using the chain rule.

The result of the Seiberg-Witten maps to first order in θµν are

ψ̂(ψ,A) = ψ − 1
2
θρσAρ(∂σψ) +O(θ2) , (2.28a)

¯̂
ψ(ψ̄, A) = ψ̄ − 1

2
θρσAρ(∂σψ̄) +O(θ2) , (2.28b)

Âµ(A) = Aµ +
1
2
θρσ(∂ρAµ + Fρλ)Aσ +O(θ2) , (2.28c)

F̂µν(F,A) = Fµν +
1
2
θρσ
[
2FµρFνσ −Aρ(Dν + ∂ν)Fµν

]
+O(θ2) , (2.28d)

â(a,A) = a− 1
2
θρσAρ(∂σa) +O(θ2) . (2.28e)

One can derive these maps order by order in θµν by using a polynomial ansatz
and comparing both sides of the appropriate gauge equivalence equations.

How to calculate the maps in all orders in the noncommutative param-
eter, was one of the main challenges of this thesis and will be the topic of
the next chapter.

2.4.4 Noncommutative Action with Seiberg-Witten maps

At this stage there are two different ways to proceed. One way is to first
gauge fix the action, which is then invariant under noncommutative BRST
transformation

γ̂Âµ = ∂µĈ − i[Âµ ∗, Ĉ] , γ̂Ĉ =
i
2
[Ĉ ∗, Ĉ] , γ̂ψ̂ = i Ĉ ∗ ψ̂ , (2.29)

and then to replace the fields by their Seiberg-Witten maps. This is the
composition of the upper and the right arrow in the commutative diagram
2.1 which leads to the gauge fixed action
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S∗g.f., SW =
∫

d4x

[
ˆ̄ψ ∗ (i /̂D −m) ∗ ψ̂ − 1

4g2
tr
[
F̂µν ∗ F̂µν

]
− 1

2ξg2
(∂Â) ∗ (∂Â) + ˆ̄C ∗ ∂µ∂µĈ − i tr

[
ˆ̄C ∗ ∂µ[Âµ ∗, Ĉ]

]]
, (2.30)

with the freely choosable parameter ξ. All symbols with a hat in the above
action as well as in the following equations denote the appropriate Seiberg-
Witten map. The other way would be to first replace the fields by their

S∗(Â, ψ̂)
g.f.

- S∗g.f.(Â, ψ̂)

S∗SW(A,ψ)

SW

? g.f.
- S∗(g.f., SW)(A,ψ)

SW

?

Figure 2.1: Equivalence of the commutative and noncommutative gauge-
fixed action

Seiberg-Witten maps and then gauge fix the resulting action, which gives

S∗SW, g.f. =
∫

d4x

[
ˆ̄ψ ∗ (i /̂D −m) ∗ ψ̂ − 1

4g2
tr
[
F̂µν ∗ F̂µν

]
− 1

2ξg2
(∂A)(∂A)

]
. (2.31)

The action obtained this way is invariant under the commutative BRST
transformation

γC = 0 , γAµ = ∂µC , γψ = iCψ . (2.32)

The gauge equivalence equations ensure that S∗g.f., SW and S∗SW, g.f. describe
equivalent physics, i.e.

〈0|S∗g.f., SW|0〉 = 〈0|S∗SW, g.f.|0〉 , (2.33)

which basically should be picture by the commutative diagram 2.1.
So we are free to choose the action which implicates the fewest work for

calculating the cross sections. Because in the action (2.31) the ghost fields
decouple, as in the ordinary QED, one doesn’t need to calculate the ghost-
photon vertex which also means that one has to calculate fewer Feynman
diagrams. Thus we will choose this action to calculate our cross section in
chapter 6.
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2.5 Choice of the Representation

In ordinary gauge theories the trace of different representations of the gen-
erators are equal up to a reparametrisation of the fields so that the explicit
choice of a representation leaves the physical observables invariant.

In noncommutative theories this is no longer true. Consider the case
where the U(1) generator T a is the Pauli matrix T a = σ3. This leads to a
vanishing 3-gauge boson coupling, because

tr[σ3σ3σ3] = 0 . (2.34)

Of course such a model differs from models with, for example T a = 1, where
the 3-photon vertex exists. Furthermore the commutator of two gauge fields
does not close in the Lie algebra. Namely one gets for T a = σ3

[AaµT
a ∗, AbνT

b] =
1
2
{Aµ ∗, Aν}[T a, T b]

+
1
2
[Aµ ∗, Aν ]{T a, T b} = [Aµ ∗, Aν ]δab , (2.35)

where δab is an element of the enveloping algebra.
So in general, different representations lead to different physical models

so that one has to specify the trace in the Maxwell part of the action. The
representations are constrained by the commutative limit. That implies
that the trace of the product of two generators has to be one: trT aT a = 1.
The freedom we have in the choice of the representation leads to different
3-photon couplings. This freedom we parametrise by the factor kγγγ :=
tr[T aT aT a] to which the 3-photon vertex is proportional.

2.6 Time-Ordering

Another question will arise in time-like noncommutative theories (θ0i 6= 0)
in all orders in the noncommutative parameter. Namely how one has to
deal with the time-ordering operator present in the Gell-Mann-Low formula
(2.15) if one has infinitely many time derivatives.

At first sight one would make an error if one interchanges the time deriva-
tives with the time-ordering operator because they do not commute. But
in ordinary field theory in the case of finitely many derivatives one has to
interchange them in order to get a covariant propagator [25]. The difference
between interchanging and non interchanging is a term which is proportional
to the Dirac delta distribution

〈0|T[∂µφ(x)∂νφ(y)] |0〉 − ∂xµ∂
y
ν 〈0|T[φ(x)φ(y)] |0〉

= − i gµ0gν0δ
(4)(x− y) . (2.36)
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Hence, to get a covariant result one defines a modified time-ordering operator
T̃ (eq. (6-60) in [25]) so that

〈0| T̃{∂µφ(x)∂νφ(y)} |0〉 := ∂xµ∂
y
ν 〈0|T[φ(x)φ(y)] |0〉 . (2.37)

The question is of course what has to be done in the case of noncommutative
theories or in theories with infinitely many time derivatives.

In many publications the authors usually used the modified time-order-
ing operator, i.e. they interchanged the operator with the derivatives. But
this leads in the case of time-like noncommutative theories to problems with
unitarity [26]. In order to fix this problem there was a proposal [27] not to in-
terchange the time-ordering operator with the time derivatives. This leads to
the so called time-ordered perturbation theory (TOPT). However, in the case
of noncommutative abelian gauge theories without Seiberg-Witten maps we
have shown earlier [28] that with TOPT the Ward identities couldn’t be sat-
isfied. Hence, those gauge theories have no consistent interpretation. There
are other proposals [29, 30] which suggest a different time-ordering operator
to get rid of the unitary problem of noncommutative time-like theories. Yet,
up to now it is not known if these proposals are successful.

To illustrate what one typically gets in noncommutative theories if one
doesn’t interchange the time derivatives with the time ordering operator we
have calculated a simple example, which can be found in appendix B.2.

As we mentioned, the above problem only occurs in the case of time-like
noncommutativity. The purely space-like case (θ0i = 0) has not infinitely
many time derivative so the point is moot. But because we explicitly want
to investigate time-like noncommutative gauge theories we have to make
a decision. Before a statement can be made whether the noncommutative
time-like QED with Seiberg-Witten maps satisfies the unitarity or not, it is
reasonable to interchange the time derivatives with the time-ordering opera-
tor, thus using the modified operator. Although the modified time-ordering
operator is used, we will nevertheless use the symbol T for it.

2.7 The Model

Now it is time to summarise the decisions we made so far and which fix our
model:

1. We consider an abelian gauge theory on a flat spacetime but where
the spacetime coordinates are hermitian operators which satisfy (1.2).
This leads to a noncommutative QED where the products in the action
are replaced by the Moyal-Weyl star product (2.21).

2. Afterwards we postulate that the noncommutative action (2.21) should
not only be invariant under the noncommutative but also under the
commutative gauge transformation which leads to the Seiberg-Witten
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maps. These maps are replacing the appropriate fields present in the
action which gives, after gauge fixing, the basic action (2.31) of our
theory.

3. The starting point of our perturbation theory will be the Gell-Mann-
Low formula (2.15).

4. In the calculation of n-point functions we use the modified time-
ordering operator, i.e. we interchange the time derivatives with the
time-ordering operator.



Chapter 3

Seiberg-Witten Maps

In order to construct the Lagrange density for the noncommutative QED
which we want to consider, we need the Seiberg-Witten maps of the gauge
and matter fields in all orders in the noncommutative parameter θµν . For
the calculation of these maps one also needs the Seiberg-Witten map of the
ghost field. The problem is that up to now the exact Seiberg-Witten maps
are not known and it is totally unclear how to get a closed solution. So
what can we do? All phenomenological studies of this class of theories use
an effective theory, that means an expansion in orders in θµν . But this is not
sufficient for the question we want to tackle. As already mentioned, we want
to analyse the unitarity of this theory. Thus we need the Seiberg-Witten
maps to all orders in θµν and not up to some finite order. To illustrate this,
consider

n∑
i=0

(−1)i

(2i+ 1)!
(p ∧ q)2i+1 vs. sin(p ∧ q) . (3.1)

A cross section which is proportional to the series would be divergent for
p, q →∞ for any finite n, whereas the sine is bounded.

The solution to this problem arises if one realises that the maps don’t
only build a power series in θµν but also in the gauge field Aµ. With this
knowledge we can formally expand the unknown exact Seiberg-Witten maps
of the ghost, matter and gauge field in powers of the gauge field

Ĉ(C,A, θ) =
∞∑
k=1

C [k](C,A, θ) , C [k] ∝ Ak−1 , C [1] = C , (3.2a)

ψ̂(ψ,A, θ) =
∞∑
k=1

ψ[k](ψ,A, θ) , ψ[k] ∝ Ak−1 , ψ[1] = ψ , (3.2b)

Âµ(A, θ) =
∞∑
k=1

A[k]
µ (A, θ) , A[k]

µ ∝ Ak , A[1]
µ = Aµ . (3.2c)

To understand how this can be a way out of the dilemma, let us look at the
process e+e− → γγ at Born level. This process has two external and one

19
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internal photon (in noncommutative theories one has in general a 3-photon
vertex and therefore a s-channel diagram is allowed). As a consequence,
a vertex with two matter fields and more than two gauge fields does not
contribute to the process. The same holds for a 4-photon vertex. If we
translate this to the level of the Seiberg-Witten maps we only need the
matter map up to ψ[3] and the gauge field map up to A[2]

µ . We actually need
only the second order in the gauge map because each photon of the gauge
map couples either to another photon or to two fermions.

The conclusion is that for a given process in a fixed order of the loop
expansion one only needs a finite power of the gauge field. This means that
it is sufficient to tackle the above mentioned questions if we calculate the
maps recursively order by order in the gauge field whereas each order has
to be in all orders in the noncommutative parameter.

Now we have circumvented the problem of having to calculate the exact
maps but we still have to derive the monomials in the above series up to
the desired power, i.e. the C [k]s, ψ[k]s and A[k]

µ s. Fortunately the answer for
A

[k]
µ and C [k] was provided by Barnich, Brandt and Grigoriev in [2]. They

showed that

A[k]
µ = −ρ[0]

(
γ[1]A[k−1]

µ − ∂µC
[k] + i

k−1∑
l=1

[
A[l]
µ
∗, C [k−l]

])
,

k ≥ 2 , A[1]
µ = Aµ (3.3a)

and

C [k] = −ρ[0]

(
γ[1]C [k−1] − i

2

k−1∑
l=1

[
C [l] ∗, C [k−l]

])
, k ≥ 2 , C [1] = C (3.3b)

are the desired recursive relations needed in order to calculate A[k]
µ and C [k].

With this knowledge it was an easy task to find the appropriate relation for
the matter field

ψ[k] = −ρ[0]

(
γ[1]ψ[k−1] − i

k−1∑
l=1

C [l] ∗ ψ[k−l]

)
, k ≥ 2 , ψ[1] = ψ . (3.3c)

That these recursive relations indeed lead to the maps satisfying the gauge
equivalence equations is proofed in appendix C.5. Of course what remains
is to define the two operators γ[1] and ρ[0], where the latter is the crucial
one. But first let us introduce γ[1] which is nothing else but the quadratic
part of the commutative BRST differential γ = γ[0] +γ[1]. If one applies this
operator to the three fields Aµ, C and ψ one gets

γAµ = DµC = ∂µC − i [Aµ, C] = ∂µC ,

γC =
i
2
[C,C] = 0 ,

γψ = iCψ ,

(3.4)
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where in the noncommutative case one only has to replace the ordinary
commutator by the star commutator (2.29). From the above equations we
can read off, how the linear and quadratic term act on the fields, namely

γ[0]Aµ = ∂µC , γ[0]C = 0 , γ[0]ψ = 0 , (3.5)

and

γ[1]Aµ = 0 , γ[1]C = 0 , γ[1]ψ = iCψ , (3.6)

respectively. The above relations are only valid for the abelian case. For
nonabelian gauge theories one has to change these equations appropriately.

If one looks at the recursive equations (3.3) one can check that the
r.h.s. of the equations have the right field dependencies after γ[1] has been
applied to the fields. By “right field dependencies” we mean that all terms
in the outer parenthesis have to have exactly the field content needed in
order to get only terms for the order in the gauge field under consideration.

Now we come to the contracting homotopy operator ρ[0]. In order to
understand the origin of this operator we have to introduce the basic math-
ematics of cohomology.

3.1 Basics on Cohomology1

Let F be a vector space over the field K, such that f i ∈ F ⇒ λif
i ∈ F , λi ∈

K. Then D is called a differential in F when it is a linear operation which
squares to zero

D : F → F , D(λif i) = λi(Df i) , D2 = 0 . (3.7)

f ∈ F is called “cocycle of D” if Df = 0 and f ∈ F is called “coboundary
of D” if f = Dg for some g ∈ F . Due to D2 = 0 one sees directly that
every coboundary is a cocycle. The interesting cocycles are those which are
not coboundaries. This set of cocycles is called the cohomology of D. Or
more precisely the cohomology H(D,F) is the quotient space of cocycles
and coboundaries of D

H(D,F) =
cocycle of D

coboundaries of D
. (3.8)

Now let us suppose that the vector space F decomposes into eigenspaces Fλ
of an operator N

F =
⊕
λ

Fλ, Fλ = {f ∈ F : Nf = λf} . (3.9)

1This section based on lectures from Brandt [31]
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Then the elements of f decompose into eigenfunctions of N

∀f ∈ F : f =
∑
λ

fλ, Nfλ = λfλ . (3.10)

An operation B : F → F whose anticommutator with D yields N

N = BD +DB , λfλ = Nfλ = (BD +DB)fλ , (3.11)

is called a contracting homotopy for N . Roughly speaking, the operator B
is a kind of an “inverse” operator to the differential D.

Now, let us relate the above abstract notation with the notation we used
so far. We can identify the differential D by the linear part of the BRST
differential γ[0] and the contracting homotopy B/λ by ρ[0]

D ↔ γ[0] ,
B

λ
↔ ρ[0] . (3.12)

We will identify the eigenspaces Fλ in the next section because we first need
new coordinates in the space of fields and their derivatives.

3.2 The Contracting Homotopy

Before we come to the explicite formula for the contracting homotopy, we
introduce for convenience new coordinates in the space of fields and their
derivatives. These new coordinates yi, zi and wi form a basis in such a way,
that the basis vectors are totally symmetric with respect to the indices of
the fields and their derivatives{

yi
}

=
{
∂(ν1 . . . ∂νnAµ)

}
,{

zi
}

=
{
∂(ν1 . . . ∂νn∂µ)C

}
= {∂ν1 . . . ∂νn∂µC} ,{

wi
}

=
{
C, ∂(ν1 . . . ∂νnFµ)ρ, ψ, ∂ν1 . . . ∂νnψ

}
,

(3.13)

where the field-strength tensor is the ordinary abelian one Fµν = ∂µAν −
∂νAµ. The parenthesis around the indices denote the total symmetrisation
with respect to the indices (for a precise definition see appendix A.3). The
above variables are independent and complete in the sense that every local
function of fields and their derivatives can be uniquely expressed in terms
of them. For example one can express a gauge field with n derivatives by

∂µ1 . . . ∂µnAρ = ∂(µ1
. . . ∂µnAρ) +

n

n+ 1
∂(µ1

. . . ∂µn−1Fµn)ρ , (3.14)

where the first term on the r.h.s. is element of {yi} and the second term is
element of {wi}, respectively (cf. appendix C.1).
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Now we can express the eigenspaces Fλ explicitely using these new vari-
ables, namely

Fλ = spam
({(

yi
)α(

zi
)λ−α(

wi
)β})

, (3.15)

where α = 1, . . . , λ and β ∈ N. This means that the function fλ(y, z, w) ∈ Fλ
is composed of λ yis and zis and arbitrarily many wis. The eigenvalue λ
just counts the number of the gauge and ghost fields. For example a term
contributes to C [3] is Aµ1(∂(ν1Aµ2))(∂ν2C) ∈ F3.

Using the new coordinates Barnich, Brandt and Grigoriev [2] found an
explicite expression of the contracting homotopy

ρ[0]f(y, z, w) :=

1∫
0

dt
t

[
yi

∂

∂zi
f

]
(ty, tz, w) . (3.16)

The integration over t extracts the inverse of the eigenvalue λ which is de-
fined within the operator ρ[0] (3.12). So essentially the contracting homotopy
replaces a zi by a yi whereas γ[0] does the inverse. Thus, ρ[0] is indeed a
kind of an inverse operator to the BRST differential.

In order to check that the above definition is indeed the contracting
homotopy of the operator ρ[0]γ[0] + γ[0]ρ[0] the equation(

ρ[0]γ[0] + γ[0]ρ[0]
)
f(y, z, w) = f(y, z, w) (3.17)

has to be verified as it is shown in appendix C.4. In [2] the r.h.s. of the
above equation possesses an additional term −f(0, 0, w) which is zero in all
the cases we consider. The term becomes relevant when f depends only
on the coordinate w which actually is not the case in the calculations we
consider. Note that the ghost number of the homotopy operator is one, hence
ρ[0] anticommutes with the BRST differential γ[0] and with the ghost fields.
Actually, the reason why the above operators anticommute is not that they
have ghost number one but that they have an odd Grassmann parity. But
because we never deal with objects which have an odd Grassmann parity
and a ghost number of zero or vice versa, we can use “ghost number” as a
synonym for “Grassmann parity”.

Now we have all ingredients in order to be able to calculate the first
recursive step, i.e. to calculate the maps C [2], ψ[2] and A

[2]
µ , which is the

subject of the next sections.

3.3 The Leading Order Ghost Field Map

Using the calculation of C [2] as an example we demonstrate how a calculation
can be done. We start with C [2] not only because it is the simplest example
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but also because we need this map in order to be able to calculate the maps
for the matter and the gauge field. For k = 2 equation (3.3b) becomes

C [2] = −ρ[0]

[
γ[1]C − i

2
[C ∗, C]

]
= −ρ[0](C sin∧12C) , (3.18)

where the first term is zero due to γ[1]C = 0. The bidifferential ∧12 which
is proportional to θµν is defined by

A ∧12 B :=
1
2
(∂µA)θµν(∂νB) . (3.19)

The first step is to change the basis of the fields and its derivatives
to the symmetrised variables yi, zi and wi, defined above. To be able to
perform the basis transformation we first have to rewrite the sine in its
series representation

C [2] = −ρ[0]
∞∑
n=0

(−1)n

(2n+ 1)!
(C ∧2n+1

12 C) . (3.20)

With the definition of ∧12 we can write each of the above summand in the
new coordinate basis

C [2] = −
∞∑
n=0

(−1)n

(2n+ 1)!
θµ1ν1

2
. . .

θµ2n+1ν2n+1

2

ρ[0]
[
(∂(µ1

. . . ∂µ2n+1)C)(∂(ν1 . . . ∂ν2n+1)C)
]
. (3.21)

Obviously, both ghost fields and their derivatives are elements of {z2n+1}.
Although we don’t have to symmetrise the indices of the partial derivatives
for this special case we nevertheless write them down in order to illustrate
where they would be.

Now, we let ρ[0] operate on the ghost field or more precisely on the z2n+1.
Therefore we need (3.16) which gives

C [2] = −
∞∑
n=0

(−1)n

(2n+ 1)!
θµ1ν1

2
. . .

θµ2n+1ν2n+1

2

1∫
0

dt
t

[(t∂(µ1
. . . ∂µ2nAµ2n+1))(t∂(ν1 . . . ∂ν2n+1)C)

− (t∂(µ1
. . . ∂µ2n+1)C)(t∂(ν1 . . . ∂ν2nAν2n+1))] . (3.22)

Because the ghost number of ρ[0] is one it anticommutes with C such that
the second term gets a minus sign. Let us look more precisely at the result
we have so far. Firstly, the integral over t is trivial and is just one-half.
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Secondly, the first and second terms of our result are equal if we interchange
the indices µi ↔ νi, which leads to one minus sign for each exchange due to
the antisymmetry of θµν . And because we have 2n+ 1 swaps we obtain an
overall minus sign which cancels the minus sign of the second term. Thirdly,
if we look at the sum of the symmetrised gauge field we notice that all terms
are equal. This is due to the fact that the corresponding indices on the ghost
field side are totally symmetric. If we take all three observations into account
we obtain finally

C [2] = −
∞∑
n=0

(−1)n

(2n+ 1)!
θµν

2
Aµ ∧2n

12 (∂νC) = −1
2
θµνAµ

sin∧12

∧12
(∂νC) , (3.23)

which is a quite simple result. Of course this map depends on a ghost and
a gauge field as it should be because of the recursive equation (3.3b). The
series expansion of the map begins with the first order in θµν and has only
odd powers of the noncommutative parameter. Obviously, the map C [2]

vanishes in the commutative limit |θµν | → 0, as we expected.
The operator-like functions are defined by their series representation as

we implicitly already assumed. In order to be able to keep formulas compact
and easy to read we introduce an abbreviation for this function

∗s (∧12) :=
sin∧12

∧12
=

∞∑
n=0

(−1)n

(2n+ 1)!
∧2n

12 (3.24)

in analogy to the Moyal-Weyl star-product. In the following we will neglect
the argument of the ∗s-function because it is, at least in this chapter, always
∧12.

In order to convince us that the map given above really satisfies the
gauge equivalence equation we will check this. What we have to show is
that

γ̂Ĉ(A,C) = γĈ(A,C) , (3.25)

namely that the noncommutative gauge transformation on the l.h.s. is equiv-
alent to the commutative one on the r.h.s. With (3.4) we get for the non-
commutative BRST transformation of the ghost field

γ̂Ĉ(A,C) =
i
2
[Ĉ ∗, Ĉ] . (3.26)

Now let us replace the exact map Ĉ by the first and second order map.
It should be clear that on both sides of the equation one has to have the
same field content in order to satisfy this equation. Therefore in the star
commutator on the l.h.s. one only has to consider the first order ghost field
C because the commutator is then already of second order in the ghost field.
Hence, the above equation reads up to the second order

i
2
[C ∗, C] = −C sin∧12C = −1

2
θµν(∂µC) ∗s (∂νC) = γC [2] , (3.27)

which is correct by the definition of (3.24).
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3.4 The Leading Order Matter Field Map

After we have seen how the leading order ghost field map can be derived
we now want to perform a similar calculation for the matter field ψ[2]. The
calculation is as simple as that of the previous section, therefore we present
it briefly. We have to determine

ψ[2] = −ρ[0]
(
γ[1]ψ − iC ∗ ψ

)
, (3.28)

where we know from (3.4) that γ[1]ψ = iCψ. As in the calculation of the
C [2] we have no gauge field which could mark one of the indices. This means
that the above term in the parenthesis is already symmetric in its indices of
the derivatives. If we express the star-product by its series representation
(2.9), we get

ψ[2] = −ρ[0]

(
iCψ − i

∞∑
n=0

1
n!
C(i∧12)nψ

)

= i ρ[0]

( ∞∑
n=1

in

n!
(∂µ1 . . . ∂µnC)

θµ1ν1

2
. . .

θµnνn

2
(∂ν1 . . . ∂νnψ)

)
. (3.29)

It is important that we have only ghosts with at least one derivative in
the above calculation. Namely this fact is required by the proof that the
recursive equation satisfies the gauge equivalence equation (for details see
appendix C.5.3). Now, let us apply ρ[0]. The integral over t is again trivial,
namely it is just unity. Because we already have a symmetric term we
directly replace the ghost field and its derivatives by the symmetrised gauge
field

ρ[0](∂µ1 . . . ∂µnC) = ∂(µ1
. . . ∂µn−1Aµn) . (3.30)

Summing over n leads to the desired matter field map

ψ[2] = −1
2
θµνAµ

∞∑
n=1

(i∧12)n−1

n!
(∂νψ) = −1

2
θµνAµ ∗e (∂νψ) . (3.31)

With ∗e we denote the above sum, namely

∗e (∧12) :=
ei∧12 −1

i∧12
=

∞∑
n=1

in−1

n!
∧n−1

12 . (3.32)

In contrast to the map C [2] the series expansion of the matter field map
contains even as well as odd powers of θµν . In the commutative limit the
matter map is the identity, i.e. ψ[2] = 0.

Let us check the gauge equivalence equation which in the case of the
matter map is

γ̂ψ̂(A,ψ) = γψ̂(A,ψ) . (3.33)
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If one wants to check that the l.h.s. and the r.h.s. are equal, one has to be
careful to consider all terms. Because terms with different gauge fields mix
after the application of γ. This is due to the fact that the nonlinear part of
the BRST differential is non-zero γ[1]ψ = iCψ. In our case we get for the
above equation

iC ∗ ψ = iCψ − 1
2
θµν(∂µC) ∗e (∂νψ) , (3.34)

which is indeed equal. One can easily apply the whole procedure to the case
of ˆ̄ψ. We will not separately discuss this here.

3.5 The Leading Order Gauge Field Map

After we have calculated the two simplest examples we can now tackle the
next more complicated calculation, namely the map A[2]

λ .
Why is the calculation of the gauge map more complicated than the one

for the ghost and the matter map? The answer is quite simple, namely
because the gauge field has an Lorentz index. This index breaks the sym-
metry of the indices under permutation. So in this calculation we have a
qualitative difference to the previous two.

Let us begin with the calculation. First of all remember that γ[1]Aµ = 0.
In section 3.3 we have calculated the second term C [2] so that we obtain

A
[2]
λ = −ρ[0]

[
γ[1]Aλ − ∂λC

[2] + i [Aλ ∗, C]
]

= −ρ[0]

[
−∂λ

(
−1

2
θµνAµ ∗s (∂νC)

)
− 2Aλ sin∧12C

]
= −1

2
θµνρ[0] [(−2∂µAλ + ∂λAµ) ∗s (∂νC) +Aµ ∗s (∂λ∂νC)] . (3.35)

We have written the above equation in such a manner that we have only one
operator like product, namely the ∗s which we already had in the map for
the ghost field C [2]. Generically we can split up our work into three pieces

θµνρ[0]
[
(∂µAλ) ∧2n

12 (∂νC)
]
, (3.36a)

−1
2
θµνρ[0]

[
(∂λAµ) ∧2n

12 (∂νC)
]
, (3.36b)

−1
2
θµνρ[0]

[
Aµ ∧2n

12 (∂λ∂νC)
]
, (3.36c)

where we already have written the n-th summand of the series (3.24) of the
∗s operator. Note that the detailed appearance of the three parts is not
fixed because one can express the gauge fields by the field-strength tensor
and vice versa. But if one switches over to the independent variables yi, zi

and wi one gets an unique expression.
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As an example we now want to calculate the first part. The calculation
of the other two expressions contains no conceptual differences so that we
will present just the result after this calculation. Since we have to write the
expression in the brackets in terms of the new coordinates yi, zi and wi we
have to split up the gauge field with its derivatives into a symmetric part
and a part which contains the field-strength tensor

∂µ1 . . . ∂µ2n+1Aλ

= ∂(µ1
. . . ∂µ2n+1Aλ) +

2n+ 1
2n+ 2

∂(µ1
. . . ∂µ2nFµ2n+1)λ . (3.37)

We can always perform such a decomposition because the new variables
form a complete basis, as already mentioned above. It is obvious that the
first term on the r.h.s. of the above equation is element of {yi} whereas the
second term is an element of {wi}. The factor

2n+ 1
2n+ 2

(3.38)

in front of the field-strength tensor needs a more detailed discussion. To see
that this factor is indeed the correct one let us first determine the number of
different terms of ∂(µ1

. . . ∂µ2n+1Aλ). We have (2n+2)! terms where (2n+1)!
of them are equal. So each different term comes with a factor (2n + 2)−1.
But in order to get the l.h.s. of (3.37) we need additional terms from the
second expression, namely

2n+ 1
2n+ 2

∂µ1 . . . ∂µ2n+1Aλ . (3.39)

On the other hand the unwanted terms which we obtain from the symmetri-
sation have to vanish. This cancellation is only possible if the appropriate
term in the expression containing the field-strength tensor comes with a fac-
tor −(2n+ 2)−1. This leads to the factor (3.38). A detailed calculation can
be found in appendix C.1.

Thus, with the knowledge of (3.37) we have the first part of our calcu-
lation. Namely we can let ρ[0] operate, which basically means, that

∂(ν1 . . . ∂ν2n∂ν)C → ∂(ν1 . . . ∂ν2nAν) . (3.40)

The integration over t is still trivial. One only has to be careful with the
wis because within the definition of the operator ρ[0] (3.16) they don’t have
a t in front of them. Therefore one obtains a factor one-half for ρ[0][yz] and
unity for ρ[0][wz], respectively. If we combine what we found so far we get

θµνρ[0]
[
(∂µAλ) ∧2n

12 (∂νC)
]

=
θµ1ν1

2
. . .

θµ2nν2n

2

[
1
2
∂(µ1

. . . ∂µ2n∂µAλ)
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+
2n+ 1
2n+ 2

∂(µ1
. . . ∂µ2nFµ)λ

]
∂(ν1 . . . ∂ν2nAν) . (3.41)

The next step is to get rid of the symmetrisation parenthesis. But before
we do this we rewrite the two terms in the bracket

1
2
∂(µ1

. . . ∂µ2n∂µAλ) +
2n+ 1
2n+ 2

∂(µ1
. . . ∂µ2nFµ)λ

=
1
2

4n+ 3
2n+ 2

∂µ1 . . . ∂µ2n∂µAλ −
1
2

2n+ 1
2n+ 2

∂λ∂(µ1
. . . ∂µ2nAµ) , (3.42)

so that we only have to consider one term where the gauge field carries the
“external” index λ and another term where the gauge field has only one of
the “internal” indices µ1 . . . µ2nµ. In the above equation we used the identity
(3.37) and

∂(µ1
. . . ∂µ2n∂µAλ) =

1
2n+ 2

∂µ1 . . . ∂µ2n∂µAλ

+
2n+ 1
2n+ 2

∂λ∂(µ1
. . . ∂µ2nAµ) (3.43)

(cf. appendix C.1). Note that we would get just ∂µ1 . . . ∂µ2n∂µAλ if we didn’t
have the factor one-half coming from the integration over the parameter t.

Now we consider the rewritten terms times the rightmost one (3.41),
which comes from the ghost field. The first one is easy, namely

[∂µ1 . . . ∂µ2n∂µAλ][∂(ν1 . . . ∂ν2nAν)]

= [∂µ1 . . . ∂µ2n∂µAλ][∂ν1 . . . ∂ν2nAν ] . (3.44)

We can neglect here the symmetrisation because all summands are equal.
For the second product we get two different terms

[∂λ∂(µ1
. . . ∂µ2nAµ)][∂(ν1 . . . ∂ν2nAν)]

=
1

2n+ 1
[∂λ∂µ1 . . . ∂µ2nAµ][∂ν1 . . . ∂ν2nAν ]

+
2n

2n+ 1
[∂λ∂µ1 . . . ∂µ2nAµ][∂ν1 . . . ∂ν2n−1∂νAν2n ] , (3.45)

because there is obviously only one term proportional to (∂λAµ)∧2n
12 Aν and

2n terms of the type (∂λ∂µ1Aµ2)∧2n−1
12 (∂ν2Aν1). In the above two expressions

we have implicitly assumed that the indices µi and νi are contracted with
θµiνi .

If we summarize the calculation for the first part (3.36a) we obtain the
following result

ρ[0]
[
(∂µAλ) ∧2n

12 (∂νC)
]

=
1
2

1
2n+ 2

[
(4n+ 3)(∂µAλ) ∧2n

12 Aν
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− (∂λAµ) ∧2n
12 Aν −

θρσ

2
2n(∂λ∂µAρ) ∧2n−1

12 (∂σAν)
]
. (3.46)

Can we understand why three different terms appear in our result? Let us
look at the number of fields with an index and at the number of “external”
indices. In our case we have two gauge fields where one has an “internal”
index and the other one has an “external” index λ. So how many different
terms can be obtained with these given number of gauge fields and external
indices? The answer is of course three, namely the three given in our result.
One can ask why our result has the maximum number of different terms. We
know that the operator ρ[0] implies the change to the symmetric variables
yi, zi and wi. So the result is symmetric in all indices and thus contains
all possible index combinations. This means that one gets actually all index
structures i.e. tensor structures which are non zero.

We will now discuss the sums. In order to get more manageable functions
of the bidifferential ∧12 we will perform the sums. Therefore we have to
consider the series representation of three functions involved. The series
representation of the ∗s we already know. In addition we also get a function
which contains the cosine and which we will call ∗c and a function which
contains an integral sine which we will abbreviate with ∗si

∗s(∧12) :=
sin∧12

∧12
=

∞∑
n=0

(−1)n

(2n+ 1)!
∧2n

12 , (3.47a)

∗c(∧12) := 2
1− cos∧12

∧2
12

= 2
∞∑
n=0

(−1)n

(2n+ 1)!
1

2n+ 2
∧2n

12 , (3.47b)

∗si(∧12) :=
si∧12

∧12
=

1
∧12

∧12∫
0

dt
sin t
t

=
∞∑
n=0

(−1)n

(2n+ 1)!
1

2n+ 1
∧2n

12 . (3.47c)

Note that the ∗-functions are defined in such a manner that they become
unity for the commutative limit |θµν | → 0, or in other words the power
series of the functions starts with unity. With these three functions we can
perform all sums, so that we get the following final result for the first part

θµνρ[0]
∞∑
n=0

(−1)n

(2n+ 1)!
[
(∂µAλ) ∧2n

12 (∂νC)
]

= θµν
[
(∂µAλ)

(
∗s −

∗c

4

)
Aν

−(∂λAµ)
∗c

4
Aν −

1
4
θρσ(∂λ∂µAρ)

∗s − ∗c

∧12
(∂σAν)

]
, (3.48)

where we again neglect the argument of the ∗-functions.
As mentioned we will only give the result for the second and the third

part of the expression for the gauge field map A[2]
λ without a detailed calcu-

lation. For the second part (3.36b) one obtains
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− 1
2
θµνρ[0]

∞∑
n=0

(−1)n

(2n+ 1)!
[
(∂λAµ) ∧2n

12 (∂νC)
]

= −1
2
θµν

[
−1

4
(∂µAλ + ∂λAµ) ∗c Aν + (∂λAµ) ∗si Aν

−1
4
θρσ(∂λ∂µAρ)

2 ∗si − ∗c −∗s
∧12

(∂σAν)
]

(3.49)

and the third part (3.36c) is just

− 1
2
θµνρ[0]

∞∑
n=0

(−1)n

(2n+ 1)!
[
Aµ ∧2n

12 (∂λ∂νC)
]

= −1
2
θµν

[
−1

4
(∂µAλ + ∂λAµ) ∗c Aν

−1
4
θρσ(∂λ∂µAρ)

∗s − ∗c

∧12
(∂σAν)

]
. (3.50)

As one can see we need the above introduced ∗si-function only for the second
part. And in this part the ∗si-function appears only at two positions. We
stress this fact, because this function will play a crucial role in the next
chapter.

We now have all three parts of the gauge field map. So the last step is
to combine these three parts. What one gets is a quite short and compact
expression but, as we will see, not the simplest one possible. We will come to
the question of ambiguities in the Seiberg-Witten maps in the next chapter.
But up to now we obtained the solution of the recursion relation (3.3a) in
the leading order for the gauge field map, namely

A
[2]
λ =

1
2
θµν [2(∂µAλ) ∗s Aν − (∂λAµ) ∗si Aν ]

− 1
4
θµνθρσ(∂λ∂µAρ)

∗s − ∗si

∧12
(∂σAν) . (3.51)

If we look at the result we see that the complete map for the gauge field
is independent of the ∗c-function. This is no longer true if one consider
nonabelian gauge theories. In this case one gets not only the ∗c-function but
also a function which contains the integral cosine analogue to ∗si (for more
details, see [32]). We also see that we have all non-zero indices combinations
i.e. tensor structures which are possible as we already motivated earlier.
Note that the first term in the result begins with order θ where the second
term begins with order θ3. As a trivial consequence the map A

[2]
µ becomes

zero if we take the commutative limit |θµν | → 0, as it should be. Otherwise
we would have made an error. Further more the result has the property
that it includes only odd powers of θµν so that the map is an odd function
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of the noncommutative parameter. This is of course due to the presence of
only the ∗s and the ∗si-function which are both even functions.

As we did in the previous section we again want to check our result by
plugging the gauge field map A

[2]
λ into the gauge equivalence equation for

the gauge field
γ̂Âλ(A) = γÂλ(A) (3.52)

and verify that this equation is satisfied. Again let us rewrite this equation
with the knowledge of (3.4), which leads to

∂λC
[2](A,C)− i[Aλ ∗, C] = γA

[2]
λ (A) , (3.53)

where we have only the ordinary field in the star commutator because all
others would generate terms with more than two fields. Now let us first
look at the r.h.s. part which contains the sine integral, i.e. the ∗si-function.
After a short and simple calculation one sees that these two terms with
the ∗si-function vanish exactly. This is an important observation regarding
the question of ambiguities of the Seiberg-Witten maps. For the remaining
terms with the ∗s-function and therefore for the whole r.h.s. of the above
equation one gets

1
2
θµν [(∂µ∂λC) ∗s Aν + (2∂µAλ − ∂λAµ) ∗s (∂νC)]

= −1
2
θµν [Aµ ∗s (∂ν∂λC) + ∂λAµ ∗s (∂νC)] + 2Aλ sin∧12C , (3.54)

which is indeed equal to the l.h.s. of (3.53).

3.6 Higher Order Maps

Until now we have seen the calculations of the leading order Seiberg-Witten
maps. The calculation of the maps in the next higher order in the gauge
field becomes much more complicated. One reason is that one has more
different terms. The other complicating factor is that there are more fields
with an index, i.e. gauge fields. In particular the gauge field complicates the
calculation because the vector property of this field destroys the symmetry
with respect to the indices. So the symmetrisation and in the end the
summation is much more complicated. But what we can relatively easily
consider are all the different tensor or index structures one can get. Thus, the
main work will be to get the functions in front of these structures explicitly,
which we will not calculate at this place but which can be found in appendix
C.3.

What is the tensor structure of the ghost map C [3]? We know that it
depends on one ghost field and two gauge fields. This means that we have



3.7. THE CALCULATION IN THREE STEPS 33

two distinguished indices. It is not hard to find that the next to leading
order ghost map has five different terms, namely

C [3](A,C) =
1
2
θµ1ν1FCI (i∧12, i∧13, i∧23)Aµ1Aν1C

+
1
4
θµ1ν1θµ2ν2FCII (i∧12, i∧13, i∧23)(∂µ1Aµ2)(∂ν2Aν1)C

+
1
4
θµ1ν1θµ2ν2FCIII(i∧12, i∧13, i∧23)(∂µ1Aµ2)Aν1(∂ν2C)

+
1
4
θµ1ν1θµ2ν2FCIV(i∧12, i∧13, i∧23)Aµ1(∂ν1Aµ2)(∂ν2C)

+
1
4
θµ1ν1θµ2ν2FCV (i∧12, i∧13, i∧23)Aµ1Aµ2(∂ν1∂ν2C) , (3.55)

where the functions FC are given in appendix C.3. The arguments of these
functions are the bidifferentials which extended to three versions because we
have three fields now. The definition should be clear, namely

∧12ABC :=
θµν

2
(∂µA)(∂νB)C , (3.56a)

∧13ABC :=
θµν

2
(∂µA)B(∂νC) , (3.56b)

∧23ABC :=
θµν

2
A(∂µB)(∂νC) . (3.56c)

Thus, the index of the ∧ operators indicates on which field the partial deriva-
tives act.

In the case of the matter field map we get the same tensor structure but
of course different functions labeled by Fψ

ψ[3](A,ψ) =
1
2
θµ1ν1FψI (i∧12, i∧13, i∧23)Aµ1Aν1ψ

+
1
4
θµ1ν1θµ2ν2FψII (i∧12, i∧13, i∧23)(∂µ1Aµ2)(∂ν2Aν1)ψ

+
1
4
θµ1ν1θµ2ν2FψIII(i∧12, i∧13, i∧23)(∂µ1Aµ2)Aν1(∂ν2ψ)

+
1
4
θµ1ν1θµ2ν2FψIV(i∧12, i∧13, i∧23)Aµ1(∂ν1Aµ2)(∂ν2ψ)

+
1
4
θµ1ν1θµ2ν2FψV (i∧12, i∧13, i∧23)Aµ1Aµ2(∂ν1∂ν2ψ) . (3.57)

3.7 The Calculation in Three Steps

If we go back and remember the example calculations we can extract three
steps which one has to go through in every calculation:

1. One has to replace the gauge fields and their derivatives by the sym-
metrised one, i.e. one has to introduce the coordinates yi, zi and wi.
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In order to do this order by order one has to rewrite the functions of
the bidifferential in their series representation.

2. Afterwards one can perform the contracting homotopy ρ[0] which ba-
sically replaces one ghost field by a gauge field.

3. After this the sums should be perform and expressed, if possible, in
terms of known functions.

This sounds not very complicated and actually it isn’t for the first recur-
sive step. But already the maps of the next recursive step become very
lengthy. We will see that the level of complexity can be reduced if one takes
ambiguities into account. Yet, even then, the result is still not simple.



Chapter 4

Ambiguities

In the previous chapter we learned how to calculate the Seiberg-Witten
maps in all orders in the noncommutative parameter but order by order in
the gauge field. In this chapter we want to discuss an alternative way to
construct the Seiberg-Witten maps presented by Zumino et.al. [33]. The
big problem of this ansatz is that it only works for the first recursive step,
i.e. for the C [2], ψ[2] and A

[2]
µ maps. To illustrate the break down of this

ansatz we calculated the next-to-leading order ghost field map in appendix
D. The result of this calculation is that the map doesn’t satisfy the gauge
equivalence equation (2.26). But as we will see by using the ansatz from
Zumino et.al. we will obtain a different result for the leading order gauge
field map. And this will give us a hint how the ambiguity for A[2]

µ looks like.

4.1 Alternative Ansatz

The authors of [33] replaced the noncommutative parameter θµν → tθµν in
order to be able to differentiate with respect to the order in the noncommu-
tativity. Therefore the Moyal-Weyl star-product now reads

∗(t) = ei t∧12 ,
∂ ∗ (t)
∂t

= i∧12 ∗ (t) . (4.1)

The starting point of their recursive equations are the “differential evolution
equations”

Ċ(t) =
1
4
θµν

[
∂µC

∗(t), Aν

]
+
, (4.2a)

Ȧλ(t) = −1
4
θµν

[
Aµ

∗(t), ∂νAλ + Fνλ

]
+
, (4.2b)

where the dot on the l.h.s. denotes the differentiation with respect to the
parameter t. These “differential evolution equations” arise out of the coho-
mological approach the authors developed in [34] and continued to work out

35
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in [33]. Note that for Ċ(t = 0) and Ȧλ(t = 0) one gets the Seiberg-Witten
maps in first order in θµν (cf. (2.28)). With (4.2) Zumino et.al. propose to
get the n-th order result in the noncommutative parameter by calculating
the n-th derivative with respect to the parameter t at the point t = 0

C(n) :=
1
n!

∂nC(t)
∂tn

∣∣∣∣
t=0

, A
(n)
λ :=

1
n!

∂nAλ(t)
∂tn

∣∣∣∣
t=0

, (4.3)

where C(0) = C and A
(0)
λ = Aλ. The terms for n = 1 are obtained from

(4.2) for t → 0. The terms with higher derivatives of t can be derived
by recursively inserting the terms (4.2). The exact Seiberg-Witten map
is then given by the sum over all n. Nevertheless we showed by direct
calculation that the next-to-leading order ghost field map is not a solution
to the gauge equivalence equation (cf. appendix D). Even if we are not able
to calculate the Seiberg-Witten maps to all orders in the gauge field and in
the noncommutative parameter we can nevertheless calculate the maps in
all orders in θµν and the gauge field up to a fixed order.

Let us look at the recursive algorithm in more detail. If we first consider
the derivative of the star-product we see that for each derivative we get one
order in θµν in the limit t→ 0

∂n ∗ (t)
∂tn

∣∣∣∣
t=0

= (i∧12)n . (4.4)

Thus in order to obtain all orders in θµν we have to consider all derivatives
with regard to the star-product. If we now look at the derivatives with
regard to the fields than we see that for each derivative we get an additional
gauge field or in other words, the order in the gauge field increases by every
derivative with regard to a field. This is due to the fact that the derivative
of the fields depends nonlinear on themselves as one can see in (4.2).

4.2 Leading Order Gauge Field Map

Now let us calculate the first order in the gauge field map which we will
denote as Ã[2]

λ in order to distinguish it from the map we calculated in the
chapter before

Âλ =
∞∑
n=0

1
n!

∂nAλ(t)
∂tn

∣∣∣∣
t=0

= Aλ + Ã
[2]
λ +O(A3) . (4.5)

This map contains two gauge fields so that we don’t have to consider deriva-
tives with respect to the fields because the first derivative depends already
on two fields. Therefore we only have to consider the derivatives regarding
the star-product. In addition we can also neglect the star commutator in
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the field-strength tensor because otherwise we would again get more than
two fields. With this knowledge we obtain for the desired map

Ã
[2]
λ = −1

4
θµν

∞∑
n=1

1
n!

(
Aµ

∂n ∗ (t)
∂tn

(2∂νAλ − ∂λAν)

+(2∂νAλ − ∂λAν)
∂n ∗ (t)
∂tn

Aµ

)
t=0

, (4.6)

where we already expanded the anticommutator. Computing first the deriva-
tives and afterwards performing the sum over all the terms we find with (4.4)

∞∑
n=1

1
n!

(i∧12)n =
ei∧12 −1

i∧12
= ∗e(∧12) . (4.7)

If we plug this into our calculation, we get the very compact result

Ã
[2]
λ = −1

4
θµν (Aµ ∗e (2∂νAλ − ∂λAν) + (2∂νAλ − ∂λAν) ∗e Aµ)

= −1
2
θµνAµ ∗s (2∂νAλ − ∂λAν) , (4.8)

where we have used that ∗e(∧12) + ∗e(−∧12) = 2 ∗s (∧12).
Like in the last chapter we want to check the gauge equivalence equation

for Ã[2]
λ . The equation which has to be satisfied is the same as for the gauge

field map we calculated in the previous chapter (3.53), up to the r.h.s.

∂λC
[2](A,C) + 2Aλ sin∧12C = γÃ

[2]
λ (A) . (4.9)

Let us take a closer look at the r.h.s. of the above equation. Due to the
absence of the sine integral function ∗si we have only one term on which the
operator γ acts

− 1
2
θµνγ [Aµ ∗s (2∂νAλ − ∂λAν)]

= −2C sin∧12Aλ −
1
2
θµν [−(∂µC) ∗s (∂λAν) +Aµ ∗s (∂ν∂λC)] . (4.10)

As one can see this is again exactly the l.h.s. of the gauge equivalence equa-
tion. Thus two maps for the same field are known both satisfying the gauge
equivalence equation. Remember that this is the only relevant constraint
which has to be satisfied by a Seiberg-Witten map. This leads us directly
to the next section where we will take a closer look at this subject.
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4.3 Comparison

Let us take a closer look at the Seiberg-Witten map of the gauge field in
leading order. First we recall our results of the two maps (3.51) and (4.8)

A
[2]
λ =

1
2
θµν [2(∂µAλ) ∗s Aν − (∂λAµ) ∗si Aν ]

− 1
4
θµνθρσ(∂λ∂µAρ)

∗s − ∗si

∧12
(∂σAν) , (4.11a)

Ã
[2]
λ = −1

2
θµνAµ ∗s (2∂νAλ − ∂λAν) , (4.11b)

where the first one was obtained from the recursive algorithm developed
by Brandt et.al. [2] and the second one from Zumino et.al. [33]. As we
mentioned at the end of section 3.5 the terms which contain the sine integral
function ∗si cancel each other if the BRST operator γ acts on them. This
is due to the tensor structure of the fields and their derivatives and has
nothing to do with the operator function between the two fields. So nothing
prevents us from writing an “almost” arbitrary function instead of the sine
integral. Hence this map will still be a Seiberg-Witten map. To be concrete
the map

A
[2]
λ =

1
2
θµν [2(∂µAλ) ∗s Aν − (∂λAµ) ∗f Aν ]

− 1
4
θµνθρσ(∂λ∂µAρ)

∗s − ∗f

∧12
(∂σAν) (4.12)

with the “almost” arbitrary function ∗f is also a Seiberg-Witten map. By
“almost arbitrary” we mean those functions ∗f which multiplied by θµν van-
ish for |θµν | → 0, since our theory should become the ordinary QED for the
commutative limit i.e. a vanishing noncommutativity. Nevertheless, we have
infinitely many different functions namely all functions whose coefficient of
the Laurent series with negative powers are identically zero.

This means, that the two maps (4.11) are only special cases of the general
map (4.12). Namely if we choose ∗f = ∗s we get the map (4.11a) and for
∗f = ∗si we get (4.11b).

Now we come to the question wether the above general map is really the
most general map. The answer is yes, at least if one thinks about possible
tensor structures which cancel after applying the BRST operator γ. The
reason is that the formalism from Brandt et.al. provides us with all possible
tensor structures since we have to symmetrise our fields and their derivatives
with regard to the indices. Therefore we can be sure that we really get all
possible terms. Of course, all terms which depend only on zi and wi give
also zero if one applies γ[0], but those terms don’t exist. The reason is, that
we explicitly consider summands of a series expansion (3.2) of the gauge
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field. Therefore each summand, beside the trivial zeroth order one, contains
at least one gauge field, i.e. one yi.

What happens in the case of the ghost and matter field maps? In the
leading order case there is only one map for each, because they have only one
gauge field. This is not sufficient to get terms which are non-zero and which
become zero after γ is applied. Consequently, the alternative ansatz leads
to the same maps as the one of Brandt et.al.. Of course, if one considers the
next higher maps C [3] and ψ[3] then each of them has two gauge fields and
accordingly one gets ambiguities as in the case of the leading order gauge
field map.

As we will see each choice of a function ∗f will lead to a different physical
theory. This means that the observables depend on the concrete choice of
this function. At first sight this sounds not very good but tinking a little
more deeper we have a freedom which we will possibly can use in order
to build a theory which satisfies physically important properties such as
unitarity.
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Chapter 5

Feynman Rules

After calculating the Seiberg-Witten maps in chapter 3 we have discussed
the ambiguities of these maps in the previous chapter. There we found
that the leading order maps for the ghost field and for the matter field are
unique. For the gauge field map which is not unique we found an explicit
expression for the most general map. In the following we will consider this
general map in order to be able to see how the Feynman rules depend on
the ambiguities of the gauge map. The dependence of the Feynman rules
on the ambiguities will then result in a dependency of the cross section on
the ambiguities as well. We will get a whole class of theories with different
physical observables.

The next step which we will discuss in this chapter is to calculate the
Feynman rules which follow from the NCQED Lagrangian (2.31). What we
have to do is to take the maps we obtained in the last two chapters and
insert them into the Lagrangian. Then we have to go through all the terms
and collect those terms which contribute to the appropriate Feynman vertex.
After obtaining all relevant terms we can change to the momentum space
where the Feynman vertices are formulated. Note that in this chapter we
choose all momenta as incoming momenta.

Let us now replace the exact Seiberg-Witten maps by the expansion
with respect to the gauge field in order to be able to combine all terms
which contribute to a given vertex. If we do this for the Maxwell part of the
NCQED action we get

i
∫

d4x ˆ̄ψ ∗ (i /D −m) ∗ ψ̂ = i
∫

d4x
[
Lf̄f + Lf̄fg + Lf̄fgg

]
+O(A3) , (5.1)

where the different pieces of the Lagrangian combine the terms with the
same number of gauge fields

Lf̄f = ψ̄(i /∂ −m) ∗ ψ , (5.2a)

Lf̄fg = ψ̄ ∗ /A ∗ ψ + ψ̄(i /∂ −m) ∗ ψ[2] + ψ̄[2](i /∂ −m) ∗ ψ , (5.2b)

41
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Lf̄fgg = ψ̄ ∗ /A[2] ∗ ψ + ψ̄ ∗ /A ∗ ψ[2] + ψ̄[2] ∗ /A ∗ ψ

+ ψ̄(i /∂ −m) ∗ ψ[3] + ψ̄[3](i /∂ −m) ∗ ψ + ψ̄[2](i /∂ −m) ∗ ψ[2] . (5.2c)

Of course, due to (2.13b) one can neglect one ∗-product in each term. One
important consequence is that the two-point functions, i.e. the propagators,
are the same as in the commutative theories. This ensures that the the-
ory for large distances is independent of the noncommutative spacetime.
This property of the theory is demonstratively understandable, namely the
fields far before and far after the interaction are considered to be free fields,
i.e. (almost) plane waves. Hence they should not depend on the structure
of the spacetime at very small distances.

An important feature of noncommutative theories with Seiberg-Witten
maps is the existence of the terms Lf̄fgg where two matter and two gauge
fields couple. These so called contact terms are unique to the kind of non-
commutative theories we consider. Actually they have to be there. Other-
wise the action wouldn’t be BRST invariant.

We stopped at order A2 because higher order terms in the gauge field
would result in vertices which we don’t need for the tree level calculation
for the process e+e− → γγ which will be considered in the next chapter.

We can of course also expand the gauge boson part of the action in
powers of the gauge field

i
∫

d4x

[
− 1

4g2
tr
[
F̂µν ∗ F̂µν

]
− 1

2ξg2
(∂A)(∂A)

]
= i
∫

d4x [Lgg + Lggg] +O(A4) . (5.3)

As mentioned above, the term which is bilinear in the gauge field is the same
as in ordinary QED, namely

Lgg = − 1
2g2

[
(∂µAν)(∂µAν)− (∂µAν)(∂νAµ) +

1
ξ
(∂A)2

]
=

1
2g2

Aµ

[
∂2gµν −

(
1− 1

ξ

)
∂µ∂ν

]
Aν , (5.4a)

with the gauge parameter ξ. Note that the last equal sign holds only under
the space time integral, because we performed an integration by parts and
neglected one ∗-product. Now we come to the 3-photon vertex. Here we
have two different terms. First we get a term which is proportional to the
star commutator which we also have in noncommutative theories without
Seiberg-Witten maps. And we have a term which comes from the bilinear
term by replacing one gauge field by its leading order Seiberg-Witten map
A

[2]
µ . Since we have two fields which we can replace we get the corresponding

term twice. Thus, if we combine what we said, the Lagrangian becomes
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Lggg = −kγγγ
g2

{
− i(∂µAν) ∗ [Aµ ∗, Aν ]

−Aµ

[
∂2gµν −

(
1− 1

ξ

)
∂µ∂ν

]
∗A[2]

ν

}
. (5.4b)

Note that the gauge parameter appears in the 3-photon vertex but neverthe-
less any observable still has to be independent of the gauge parameter. In
the explicit calculation within the next chapter we will see this cancellation
for the process we consider. We have absorbed the freedom in the choice of
the trace in the parameter kγγγ , introduced in section 2.5.

5.1 Propagators

First let us look at the two propagators. As already stated the Feynman
propagators are the same as in the ordinary QED. Nevertheless for com-
pleteness we will also present them. The propagators of the fermion and the
gauge boson are

p
=

i(/p+m)
p2 −m2 + i ε

=: Df(p) ,

p
=

− i
p2 + i ε

[
gµν −

(
1− 1

ξ

)
pµpν

p2

]
=: Dµν

g (p) .

In the next sections we will take a closer look at the calculation of the
Feynman vertices of our noncommutative theory.

5.2 The f̄fg Vertex

The first and also simplest vertex which already exists in the ordinary QED
is the f̄fg vertex. As already mentioned in the introduction of this chapter
we choose all momenta to be incoming so that a derivative with respect to
a field gives − i times the momenta.

εµ(q)

u(p2)

v̄(p1)

= V µ

f̄fg
(p1, p2, q)
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What we have to do now is to calculate the vertex function V µ

f̄fg
.

The relevant terms for this vertex are given in (5.2b). The first term is
the vertex of the noncommutative QED without Seiberg-Witten maps. It
is well known and also easy to calculate, namely one obtains the ordinary
vertex of the commutative QED times a phase factor

i ψ̄ ∗ /A ∗ ψ → i gγµ ei q∧p1 , (5.5)

where q is the momenta of the gauge boson and p1 is the momenta of the
anti-fermion as pictured in the above graph. The ∧-product is defined in
(2.4). If we look at the above equation (5.5) one may ask why we only
have the momenta of the photon and the anti-fermion in the phase and not
the momenta of the fermion. The answer is quite simple, namely we could
neglect either the first or the second ∗-product in the vertex. The underlying
reason is the energy-momentum conservation in the vertex. Therefore one
can arbitrarly choose one of the two momenta, but one has to pay attention
that one has the correct sign.

The second and third term are new contributions to the f̄fg vertex coming
from the Seiberg-Witten maps. If we explicitely write down the second term
we get

− i
2
θµνψ̄(i /∂ −m) (Aµ ∗e (∂νψ))

→ − i
2
g ∗e ((− i q) ∧ (− i p2)) (θ(− i p2))µ(/q + /p2 −m)

=
1
2
g ∗e (p2 ∧ q) (p2θ)µ(−/p1 −m) , (5.6)

where we have again used the antisymmetry of the ∧-product and the energy-
momentum conservation q + p2 = −p1.

For the third term the procedure is the same as for the second so that
we can combine our result

V µ

f̄fg
(p1, p2, q) = i g

[
γµ ei q∧p1 − i

2
∗e (q ∧ p1) (p1θ)µ(/p2 −m)

− i
2
∗e (p2 ∧ q) (p2θ)µ(−/p1 −m)

]
. (5.7)

As one can already see from the Lagrangian Lf̄fg the terms coming from
the maps are proportional to the equation of motion of the fermions. In
momentum space the equations of motion lead to the factor (/p2 − m) or
(−/p1 − m). If these momenta are on-shell the corresponding part of the
vertex becomes zero.

Let us look what happens if we take the commutative limit |θµν | → 0.
The phase in the first term then becomes just unity, because the exponent
becomes zero. In the second and third term the ∗e-function becomes unity
so that this term vanishes in this limit. Therefore just i gγµ remains which
is the ordinary QED vertex, as it should be.
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5.3 The ggg Vertex

Now we come to the 3-gauge boson vertex which is totally new for non-
commutative abelian gauge theories, but is well known from ordinary non-
abelian theories like QCD.

εµ1(p1)

εµ2(p2)

εµ3(p3)

= V µ1µ2µ3
ggg (p1, p2, p3)

There are two sources of the gauge boson self-coupling in noncommutative
QED. First due to the star commutator in the definition of the field-strength
tensor (2.18), where one has a non-vanishing commutator of the gauge boson.
The second reason is the presence of the Seiberg-Witten map A

[2]
µ which is

also responsible for the photon self coupling. As we already mentioned in
section 2.5, we can choose the representation of the U(1) generators such
that the trace over the product of three generators becomes zero. The
consequence would be that with this special choice the 3-photon vertex is
absent. But we want to consider the whole class of such theories so that we
absorb this freedom in the parameter kγγγ .

If we now want to calculate the Feynman vertex V µ1µ2µ3
ggg of the 3-photon

self coupling we first have to find all terms which are relevant for this vertex,
i.e. all terms with three gauge fields. This are exactly the terms of the
Lagrangian Lggg (5.4b). The first part is the part of the vertex which is also
present in the noncommutative theories without Seiberg-Witten maps. The
result is known, namely

− i(∂µAν)[Aµ ∗, Aν ] → −2 i g3 sin(−p2 ∧ p3)p
µ2
1 gµ1µ3 =: V µ1µ2µ3

ggg,1

+ all permutations of {(µ1, p1), (µ2, p2), (µ3, p3)} . (5.8)

We have this sum of all permutations due to the indistinguishability of the
three photons. The sine has its origin in the star commutator where the
tensor structure is known from ordinary QCD, for example.

The second term is new in theories with Seiberg-Witten maps. It is the
Lagrangian of the free theory where one gauge field has been replaced by the
Seiberg-Witten map A[2]

µ . Thus, this part is proportional to the equation of
motion of a photon. Due to the structure of the Lagrangian we can split
up our calculation into two parts. The first part is the calculation of the
bracket which is in essence the propagator
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−
[
∂2gµν −

(
1− 1

ξ

)
∂µ∂ν

]
→
[
p2
1g
µ1ν −

(
1− 1

ξ

)
pµ1
1 pν1

]
= i p4

1D
µ1ν
g (p1) =: iV µ1ν

g (p1) . (5.9)

The second part is also straightforward to calculate. It is just the next to
leading order map of the gauge field

A[2]
ν → − i g2

[
∗s(−p2 ∧ p3)(p2θ)µ3gµ2

ν − 1
2
∗f (−p2 ∧ p3)θµ2µ3p2,ν

− 1
4
(p2θ)µ3(θp3)µ2

∗s(−p2 ∧ p3)− ∗f(−p2 ∧ p3)
p2 ∧ p3

p2,ν

]
=: V µ2µ3

ν,ggg,2

+ all permutations of {(µ1, p1), (µ2, p2), (µ3, p3)} . (5.10)

We also used in the above calculation the overall energy momentum conser-
vation at this vertex, namely p1 + p2 + p3 = 0.

Now let us combine our results. The whole 3-photon vertex is then

V µ1µ2µ3
ggg (p1, p2, p3) = − i

g2
kγγγ[

V µ1µ2µ3
ggg,1 (p1, p2, p3) + i g {Vg(p1)Vggg,2(p1, p2, p3)}µ1µ2µ3

]
+ all permutation of {(µ1, p1), (µ2, p2), (µ3, p3)} . (5.11)

Note that the coupling constant g in front of the p4
1 comes from the leftmost

gauge field in the second term of (5.4b).
Depending on how one chooses ∗f it is possible to cancel either the second

or third term in (5.10). But one of these two terms is always present, at least
if the 3-photon vertex exists, i.e. kγγγ 6= 0. Note that we have a part, namely
the terms with the ∗s-function whose series expansion starts with order θµν

just as V µ1µ2µ3
ggg,1 does. We also have the terms with the freely choosable

function ∗f whose series expansion can start with an arbitrary non-negative
power in θµν . So the order at which the second term of (5.10) begins is until
now freely choosable. But as we will see in chapter 7 we obtain a restriction
to the minimum power at which the series expansion of the ∗f-function has
to start. The above mentioned restriction to non-negative powers in θµν has
its origin in the fact that we want to get a vanishing 3-photon vertex in the
commutative limit (cf. chapter 4).

If we look at the terms in the 3-photon vertex for the limit |θµν | → 0 we
see that the term Vggg,1 becomes zero because of the sine. The other term
also vanishes because the series expansion of the function ∗s and ∗f starts, at
least, with a constant. Therefore in the commutative limit these functions
times θµν give always zero, so that the whole vertex vanishes.
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5.4 The f̄fgg Vertex

In this section we want to discuss the f̄fgg-vertex which has the particular-
ity that it is only present in noncommutative theories with Seiberg-Witten
maps. This is not really amazing because the only new structure in abelian
noncommutative theories without the maps is the commutator of two gauge
fields which appears in the field-strength tensor. Of course this cannot pro-
duce a vertex with two fermions and two photons.

u(p2)

v̄(p1)

εµ1(q1)

εµ2(q2)

= V µ1µ2

f̄fgg
(p1, p2, q1, q2)

In (5.2c) we have combined the relevant terms. So we have six parts which
we have to calculate. The first three parts come from the interaction vertex
of the ordinary QED in which one has replaced one field by the appropriate
leading order Seiberg-Witten map. The last three parts come from the free
Maxwell part. One important consequence is that these three parts are
proportional to the equation of motion of the matter field. So if the fermion
and the anti-fermion are on the mass shell, most of these terms vanish. Only
one term coming from the sixth part is non-zero in this case.

Now let us look somewhat closer at the first part ψ̄ /A[2] ∗ψ. This part of
the vertex contains basically a phase which comes from the ∗-product and
the map A[2]

λ . Thus we get for the first part the following expression

ψ̄ /A[2] ∗ ψ → i g2

[
−(q1θ)µ2γµ1 ∗s (q1 ∧ q2) +

1
2
θµ1µ2 ∗f (q1 ∧ q2)/q1

+
1
4
(q1θ)µ2(θq2)µ1

(∗s − ∗f)(q1 ∧ q2)
q1 ∧ q2

/q1

]
ei p1∧p2 =: g2V µ1µ2

f̄fgg,1
, (5.12)

where we neglect the terms which come from the exchange (q1, µ1) ↔
(q2, µ2). Note that the derivative in the ∗-product acts on the left only
on the gauge field and not on the anti-fermion.

The next two parts are calculated quickly. One obtains for the second
and the third part

ψ̄ /A ∗ ψ[2] → i
2
g2γµ1(θp2)µ2 ∗e (p2 ∧ q2) e− i p1∧q1 =: g2V µ1µ2

f̄fgg,2
, (5.13a)

ψ̄[2] /A ∗ ψ → i
2
g2γµ2(θp1)µ1 ∗e (q1 ∧ p1) e− i q2∧p2 =: g2V µ1µ2

f̄fgg,3
. (5.13b)
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Let us look at the sixth part ψ̄[2](i /∂ − m)ψ[2]. Here we have two leading
order matter maps. Because the partial derivative /∂ acts not only on the
matter field within the ψ[2] but also on the gauge field one gets a term which
is not proportional to the equation of motion. Therefore the sixth part is
given by

ψ̄[2](i /∂ −m)ψ[2] → −1
4
g2(θp1)µ1(θp2)µ2

∗e (q1 ∧ p1) ∗e (p2 ∧ q2) (/q2 + /p2 −m) =: g2V µ1µ2

f̄fgg,6
, (5.14)

where the term mentioned above is proportional to /q2.
Now we come to the remaining two parts which depend on the next to

leading order matter map ψ[3] (3.57). Let us first look at the derivative /∂
within the two parts. If the matter map ψ[3] is on the r.h.s. then the partial
derivative becomes the sum of the two photon momenta and the fermion
momentum. With the use of the four momentum conservation p1 +p2 +q1 +
q2 = 0 we get in this case (−/p1 −m). If the map is on the l.h.s. we get for
the partial derivative just (/p2 −m). So all these terms are proportional to
the equation of motion of either the matter or anti-matter field

v̄(p1)(−/p1 −m) = 0 , for p2
1 = m2 , (5.15a)

(/p2 −m)u(p2) = 0 , for p2
2 = m2 . (5.15b)

For the case that one fermion or anti-fermion is on-shell the corresponding
equation becomes zero (5.15).

The functions Fψ of the bidifferentials, present in the map ψ[3], become
now a function of the appropriate momenta. Note that these functions
are purely real so if we complex conjugate these functions we only have to
complex conjugate the arguments. Therefore, for the fourth part we get

ψ̄(i /∂ −m)ψ[3]

→ g2

2
(−/p1 −m)

[
FψI (− i q1 ∧ q2,− i q1 ∧ p2,− i q2 ∧ p2)

θµ1µ2

2

− FψII (− i q1 ∧ q2,− i q1 ∧ p2,− i q2 ∧ p2)
(q1θ)µ2

2
(θq2)µ1

2

− FψIII(− i q1 ∧ q2,− i q1 ∧ p2,− i q2 ∧ p2)
(q1θ)µ2

2
(θp2)µ1

2

− FψIV(− i q1 ∧ q2,− i q1 ∧ p2,− i q2 ∧ p2)
(θq2)µ1

2
(θp2)µ2

2

−FψV (− i q1 ∧ q2,− i q1 ∧ p2,− i q2 ∧ p2)
(θp2)µ1

2
(θp2)µ2

2

]
=: g2V µ1µ2

f̄fgg,4
.

(5.16)

The only difference between the function Fψ of the forth and the fifth part
is that the arguments of the functions F have to be complex conjugates and
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that one has to replace the momenta p2 of the fermion by the momenta of
the anti-fermion p1 and vice versa. By doing that we get for the fifth part

ψ̄[3](i /∂ −m)ψ

→ g2

2
(/p2 −m)

[
FψI (i q1 ∧ q2, i q1 ∧ p1, i q2 ∧ p1)

θµ1µ2

2

− FψII (i q1 ∧ q2, i q1 ∧ p1, i q2 ∧ p1)
(q1θ)µ2

2
(θq2)µ1

2

− FψIII(i q1 ∧ q2, i q1 ∧ p1, i q2 ∧ p1)
(q1θ)µ2

2
(θp1)µ1

2

− FψIV(i q1 ∧ q2, i q1 ∧ p1, i q2 ∧ p1)
(θq2)µ1

2
(θp1)µ2

2

−FψV (i q1 ∧ q2, i q1 ∧ p1, i q2 ∧ p1)
(θp1)µ1

2
(θp1)µ2

2

]
=: g2V µ1µ2

f̄fgg,5
. (5.17)

If we combine our results we obtain the final expression for the f̄fgg vertex,
namely

V µ1µ2

f̄fgg
(p1, p2, q1, q2) = i g2

6∑
n=1

V µ1µ2

f̄fgg,n
(p1, p2, q1, q2)

+ (q1, µ1) ↔ (q2, µ2) , (5.18)

where we now have considered also the terms which one gets by exchanging
the two photons.

Again if we look at the commutative limit we know from the discussions
in the last two sections that the first, second, third and sixth term vanish.
Now what is with the functions F φ in the fourth and fifth term? As one can
see the series expansions of these functions have only non-negative powers
of θµν so that these function will vanish, too. This means that the whole
contact vertex vanishes for |θµν | → 0, as expected.

5.5 Remarks

In this chapter we have calculated three Feynman vertices which allow us to
calculate almost every two to two cross sections at Born level. The vertex
which was not calculated is the 4-photon vertex. The reason is that the
needed next to leading order gauge field map A

[3]
µ becomes very complex

and lengthy at least in the general form. The problem is that we do not
know how we can get a more compact and thus more manageable map.

Nevertheless with the Feynman rules derived in this chapter we can
calculate the pair annihilation process e+e− → γγ which we will tackle in
the next chapter.
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Chapter 6

Scattering Process

After we had calculated the Seiberg-Witten maps of the various fields in
chapter 3 we were able to derive the Feynman rules in the preceding chapter.
The next step is to examine a concrete scattering process. We choose the
electron-position annihilation process where a fermion and an anti-fermion
pair annihilate into two photons. We choose this process because already at
Born level two new vertices appear, namely the 3-photon and the contact
vertex.

6.1 The Amplitude of ff̄ → γγ

As we just said we want to calculate the amplitude for the process ff̄ → γγ.
In addition to the t- and u-channel which already exist in the ordinary QED
one also gets a s-channel and a contact vertex.

qt

us2(p2)

v̄s1(p1)

ε∗ν,r2(k2)

ε∗µ,r1(k1)

qu

us2(p2)

v̄s1(p1)

ε∗ν,r2(k2)

ε∗µ,r1(k1)

us2(p2)

v̄s1(p1)

ε∗ν,r2(k2)

ε∗µ,r1(k1)

qs

us2(p2)

v̄s1(p1)

ε∗ν,r2(k2)

ε∗µ,r1(k1)

The contact vertex, also denoted as c-channel, is totally new and is a partic-
ularity of noncommutative theories with Seiberg-Witten maps whereas the
s-channel is already present in noncommutative theories without the maps.

51
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We consider an incoming fermion with momentum p2 and spin s2 and
an incoming anti-fermion with momentum p1 and spin s1. These fermions
annihilate into two outgoing photons with momentum k1 and polarisation r1
and with momentum k2 and polarisation r2, respectively. The momentum
flow inside the t-, u- and s-channel is denoted by q with an appropriate lower
index. These internal momenta depend on the external one and are defined
as usual, namely

qs = p1 + p2 , pt = p2 − k2 , qu = p2 − k1 , p1 + p2 = k1 + k2 . (6.1)

With the Feynman rules calculated in the previous chapter we can write
down the corresponding amplitudes to the above Feynman graphs

Aµνt (s1, s2)ε∗µ,r1(k1)ε∗ν,r2(k2) = v̄s1(p1)V
µ

f̄fg
(p1, qt,−k1)ε∗µ,r1(k1)

Df(qt)ε∗ν,k2(k2)V ν
f̄fg(−qt, p2,−k2)us2(p2) , (6.2a)

Aµνu (s1, s2)ε∗µ,r1(k1)ε∗ν,r2(k2) = v̄s1(p1)V
µ

f̄fg
(p1, qu,−k2)ε∗µ,k2(k2)

Df(qu)ε∗ν,k1(k1)V ν
f̄fg(−qu, p2,−k1)us2(p2) , (6.2b)

Aµνc (s1, s2)ε∗µ,r1(k1)ε∗ν,r2(k2) = v̄s1(p1)ε∗µ,k1(k1)

V µν

f̄fgg
(p1, p2,−k1,−k2)ε∗ν,k2(k2)us2(p2) , (6.2c)

Aµνs (s1, s2)ε∗µ,r1(k1)ε∗ν,r2(k2) = v̄s1(p1)V
ρ

f̄fg
(p1, p2,−qs)us2(p2)

Dg,ρσ(qs)V σµν
ggg (qs,−k1,−k2)ε∗µ,k1(k1)ε∗ν,k2(k2) , (6.2d)

which we now want to consider in detail. In the following we won’t write
out the spin index of the amplitudes, which is always s1 and s2.

6.2 The t- and u-Channel

First of all let us look somewhat closer at the t-channel amplitude. It con-
tains two f̄fg vertices where the lower one includes the incoming fermion with
momentum p2 the outgoing photon with −k2 and an outgoing anti-fermion
with momentum −qt = k2 − p2. The intermediate fermion is off the mass
shell where the incoming and outgoing particles are on-shell. With these
momenta the vertex becomes

V ν
f̄fg(qt, p2,−k2) = i gγν e− i k2∧p2

+
g

2
∗e (k2 ∧ p2) (k2θ)ν(/p2 −m) +

g

2
∗e (k2 ∧ p2) (p2θ)ν(−/q2) , (6.3)
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where the second term is proportional to /p2 −m which is zero due to the
equation of motion if one multiplies this expression with the spinor u(p2). In
an analogue way we get for the upper vertex with the momentum qt flowing
now into the vertex

V µ

f̄fg
(p1, qt,−k1) = i gγµ ei p1∧k1

+
g

2
∗e (p1 ∧ k1) (p1θ)µ/q1 +

g

2
∗e (p1 ∧ k1) (k1θ)ν(−/p1 −m) , (6.4)

where the last term becomes again zero because the external anti-fermion
is on-shell. After knowing the two vertices of the t-channel, we can mul-
tiply them with the propagator. After some simplifications we obtain four
compact terms for the t-channel, namely

Aµνt = −g2

[
i
4
∗e (p1 ∧ k1) ∗e (k2 ∧ p2) (p1θ)µ(p2θ)ν v̄s1(p1)/q2us2(p2)

+
1
2
∗e (p1 ∧ k1) ei k2∧p2(p1θ)µv̄s1(p1)γνus2(p2)

+
1
2
∗e (k2 ∧ p2) ei p1∧k1(p2θ)ν v̄s1(p1)γµus2(p2)

+
i
t
ei(p1∧k1+k2∧p2) v̄s1(p1)γµ(/pt +m)γνus2(p2)

]
. (6.5)

Note that the last term is exactly the same as in noncommutative theories
without Seiberg-Witten maps. If we look at the limit |θµν | → 0 we see that
the first three terms vanish while the phase in the last term becomes just
unity so that we get the ordinary QED as it should be.

The u-channel is identical to the t-channel if one exchanges (k1, µ) with
(k2, ν). So we give only the result, which is

Aµνu = −g2

[
i
4
∗e (p1 ∧ k2) ∗e (k1 ∧ p2) (p1θ)ν(p2θ)µv̄s1(p1)/q1us2(p2)

+
1
2
∗e (p1 ∧ k2) ei k1∧p2(p1θ)ν v̄s1(p1)γµus2(p2)

+
1
2
∗e (k1 ∧ p2) ei p1∧k2(p2θ)µv̄s1(p1)γνus2(p2)

+
i
u

ei(p1∧k2+k1∧p2) v̄s1(p1)γν(/pu +m)γµus2(p2)
]
. (6.6)

6.3 The s-Channel

Now we come to the s-channel. Here, we have one f̄fg-vertex and a 3-photon
vertex which is complex at first sight due to the indistinguishability of the
three photons, i.e. of all the permutations of the momenta and the indices.
But if one performs the calculation of V σµν

ggg (qs,−k1,−k2) one sees that many
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terms vanish because the two external photons are on-shell, i.e. k2
1,2 = 0 and

physically polarized, i.e. kµ1,2ε
∗
µ(k1,2) = 0. But before we look at the 3-photon

vertex let us write down the f̄fg-vertex which in the case of the s-channel is
only the term with the phase factor, since now both fermions are on-shell
and thus the second and third term are zero

V ρ

f̄fg
(p1, p2,−qs) = i gγρ ei p1∧p2 . (6.7)

Coming to the 3-photon vertex we first want to count the number of terms
we have overall. The vertex (5.11) is composed out of two parts Vggg,1 and
Vg · Vggg,2. Due to the permutations of the photons each part will give
3! terms. Thus altogether we have twelve terms. But as we already said
above, a lot of terms will vanish, because the two external photons are
on the mass shell and physically polarized. In the first part of the 3-photon
vertex one only use that the external photons are physically polarized. With
this property we get for the part which is independent of the Seiberg-Witten
maps

V σµν
ggg, 1(qs,−k1,−k2) + all permutations

= 2 i g3 sin(k1 ∧ k2) [2kν1g
µσ − 2kµ2 g

νσ + (k2 − k1)σgµν ] . (6.8a)

This is basically the s-channel amplitude of the NCQED without the maps.
The second part of the 3-photon vertex becomes quite a bit larger, so that
we will spit this part into three terms. The first term contains only the
∗s-function

− i gV σα
g (qs)

(
− i g2 ∗s (−k1 ∧ k2)(−k1θ)νgµα

)
+ all permutations

= − i g3 ∗s (k1 ∧ k2)

[{
2(k1k2)gµσ −

(
1− 1

ξ

)
qµs q

σ
s

}
(k1θ)ν

+
{

2(k1k2)gνσ −
(

1− 1
ξ

)
qνs q

σ
s

}
(k2θ)µ

]
. (6.8b)

Because V µν
g (p) is proportional to the fourth power of its argument, it will

vanish if p becomes an on-shell photon momentum. So only the terms which
are proportional to V σα

g (qs) survive. In the term, which is proportional to 1−
ξ−1, the external momenta are multiplied with each of the two polarisation
vectors. Thus, one product becomes always zero.

The second term contains only the ∗f-function

− i gV σα
g (qs)

(
i
2
g2 ∗f (−k1 ∧ k2)θµν(−k1)α

)
+ all permutations

= − i
2
g3(k1k2)θµν

[
∗f(k1 ∧ k2)

{
2kσ2 −

(
1− 1

ξ

)
qσs

}
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− ∗f (−k1 ∧ k2)
{

2kσ1 −
(

1− 1
ξ

)
qσs

}]
. (6.8c)

Again only the terms with the internal momentum in Vg survive. What one
can also see is that the function ∗f is present once with the positive and
once with the negative argument. This is due to the fact that the function
∗f is arbitrary therefore it is not known if it is an even or odd function or a
mixture of both.

Now we come to the last term, namely the term which contains the
difference of the ∗s- and ∗f-function. The function Vg is contracted with the
same momenta as in the previous cases so that we can take over this part

− i gV σα
g (qs)

(
i
4
g2 (∗s − ∗f)(−k1 ∧ k2)

k1 ∧ k2
(k1θ)ν(θk2)µ(−k1)α

)
+ all permutations = − i

4
g3(k1k2)(k1θ)ν(θk2)µ[

(∗s − ∗f)(k1 ∧ k2)
k1 ∧ k2

{
2kσ2 −

(
1− 1

ξ

)
qσs

}
−(∗s − ∗f)(−k1 ∧ k2)

k1 ∧ k2

{
2kσ1 −

(
1− 1

ξ

)
qσs

}]
. (6.8d)

Of course we know that the ∗s-function is even with respect to its argument
so that we could combine this function but to keep the existing structure we
leave them as they are.

Note that all terms which come from the Seiberg-Witten maps and which
are nonzero at the end include the Mandelstam variable s on the numerator
which cancels the s−1 of the photon propagator. So these terms do no longer
depend on the pole of the s-channel. As we shall see, we will get the same
expressions form the contact term up to the factor kγγγ . For a special choice
of this parameter this will lead to a cancellation of these terms. This means,
that only the first term, namely the one already present in NCQED without
Seiberg-Witten maps, would survive in this special case.

After we have calculated the two vertices of the s-channel we will combine
them. But before we do this, let us look at those terms which contain a /qs.
After a short calculation one sees that these terms vanish due to the equation
of motion of the fermions

v̄s1(p1)/qsus2(p2) = v̄s1(p1)(/p1 +m+ /p2 −m)us2(p2) = 0 . (6.9)

Of course this also allows us to exchange /k1 by −/k2 due to momentum
conservation. If we use the above equation we could again simplify our
result, namely all terms in (6.8d) which are proportional to qρs vanish.

After all the calculations done in this section we finally combine all terms
with the same spinor structure. The first part is



56 CHAPTER 6. SCATTERING PROCESS

Aµνs,I = g2kγγγ

[
−4
s

sin(k1 ∧ k2)gµν +
1
2
{∗f(k1 ∧ k2) + ∗f(−k1 ∧ k2)} θµν

+
1
4

{
(∗s − ∗f)(k1 ∧ k2)

k1 ∧ k2
+

(∗s − ∗f)(−k1 ∧ k2)
k1 ∧ k2

}
(θk2)µ(k1θ)ν

]
ei p1∧p2 v̄s1(p1)/k2us2(p2) , (6.10a)

which is the only part where the arbitrary function ∗f appears. The second
and third part contain only the sine and the ∗s-function

Aµνs,II = g2kγγγ

[
−4
s

sin(k1 ∧ k2)kν1 + ∗s(k1 ∧ k2)(k1θ)ν
]

ei p1∧p2 v̄s1(p1)γµus2(p2) , (6.10b)

Aµνs,III = g2kγγγ

[
4
s

sin(k1 ∧ k2)k
µ
2 − ∗s(k1 ∧ k2)(θk2)µ

]
ei p1∧p2 v̄s1(p1)γνus2(p2) , (6.10c)

where the complete s-channel amplitude is then of course Aµνs = Aµνs,I +
Aµνs,II + Aµνs,III. Now let us discuss the above result. If we look at the s-
channel pole, we observe that it appears only in terms which are proportional
to the sine. All terms coming from the Seiberg-Witten maps contain no
s-channel pole. Hence, they are similar to a Feynman graph without a
propagator i.e. to a contact graph. And as we will see in the next section
the contact amplitude contains many similar terms. What we also observe
is that As,III becomes As,II if one exchanges (µ, k1) with (ν, k2) and vice
versa. The first part remains the same under this exchange. This is not
really amazing and actually it has to be because the two outgoing photons
are indistinguishable. Therefore the whole s-channel is symmetric under the
exchange of (µ, k1) ↔ (ν, k2), as expected.

6.4 The Contact Vertex

In this section we will calculate the last contribution to the amplitude which
we have to consider, namely the contact vertex V µν

f̄fgg
(p1, p2,−k1,−k2). As

mentioned during the calculation of the Feynman rules in the previous chap-
ter the fifth, sixth and one half of the fourth term of the vertex becomes
zero. The reason is that these terms are proportional to the equations of
motion of the fermions. This holds of course only if the fermions are on-shell
as it is the case in our calculation. Before we will discuss the first part of
the vertex let us write down the second, third and the remaining half of the
fourth part. The calculation is straightforward so that we just present the
result



6.4. THE CONTACT VERTEX 57

Aµνc,II = −g
2

2

[
ei p1∧k1 ∗e (k2 ∧ p2) (θp2)ν v̄s1(p1)γµus2(p2)

+ ei p1∧k2 ∗e (k1 ∧ p2) (θp2)µv̄s1(p1)γνus2(p2)
]
, (6.11a)

Aµνc,III = −g
2

2

[
ei k2∧p2 ∗e (p1 ∧ k1) (θp1)µv̄s1(p1)γνus2(p2)

+ ei k1∧p2 ∗e (p1 ∧ k2) (θp1)ν v̄s1(p1)γµus2(p2)
]
, (6.11b)

Aµνc,IV = i
g2

4

[
∗e (p1 ∧ k1) ∗e (k2 ∧ p2) (θp1)µ(θp2)ν v̄s1(p1)/k2us2(p2)

+ ∗e (p1 ∧ k2) ∗e (k1 ∧ p2) (θp1)ν(θp2)µv̄s1(p1)/k1us2(p2)
]
. (6.11c)

Each term above contains two summands which differ by the interchange
(µ, k1) ↔ (ν, k2). Of course the reason is, that the photons are bosons.

Now let us look at the first term of our t- and u-channel (6.5) and (6.6).
These terms are exactly the terms we obtained inAc,IV but with the opposite
sign. Not only this but also the second and the third term in the t- and u-
channel are exactly the same terms we have in the part of the c-channel
amplitude Ac,II and Ac,III, again with the opposite sign. So if we merge
At and Au with the appropriate terms of Ac then only two terms survive,
namely

Aµνt+c =
i
t
g2 ei(p1∧k1+k2∧p2) v̄s1(p1)γµ(/pt −m)γνus2(p2) , (6.12)

Aµνu+c =
i
u
g2 ei(p1∧k2+k1∧p2) v̄s1(p1)γν(/pu −m)γµus2(p2) . (6.13)

This means that the only terms which are non-zero are precisely those which
don’t have contributions from the Seiberg-Witten maps, i.e. the amplitudes
At+c and Au+c are exactly the corresponding t- and u-channel amplitudes
of the noncommutative QED without Seiberg-Witten maps.

The question which now arises concerns the remaining part of the c-
channel, namely Ac,I, and the s-channel. To answer this question we first
have to calculate the remaining Ac,I which we split up into three pieces

Aµνc,Ia = −g2 ei p1∧p2 [∗s(k1 ∧ k2)(k1θ)ν v̄s1(p1)γµus2(p2)

+ ∗s (k1 ∧ k2)(k2θ)µv̄s1(p1)γνus2(p2)] , (6.14a)

Aµνc,Ib =
g2

2
ei p1∧p2 {∗f(k1 ∧ k2) + ∗f(−k1 ∧ k2)}

θµν v̄s1(p1)/k1us2(p2) , (6.14b)
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Aµνc,Ic =
g2

4
ei p1∧p2

{
(∗s − ∗f)(k1 ∧ k2)

k1 ∧ k2
+

(∗s − ∗f)(−k1 ∧ k2)
k1 ∧ k2

}
(k1θ)ν(θk2)µv̄s1(p1)/k1us2(p2) . (6.14c)

Now let us combine the above three pieces with the corresponding parts
of the s-channel. Since As is proportional to the parameter kγγγ it is in
general not possible to have a cancellation as we had in the case of the t-
and u-channel. But if we combine Ac,Ib, Ac,Ic and As,I

Aµνs+c,I = −g2 ei p1∧p2
[
−kγγγ

4
s

sin(k1 ∧ k2)gµν

+
1
4
(kγγγ − 1)

{
(∗s − ∗f)(k1 ∧ k2)

k1 ∧ k2
+

(∗s − ∗f)(−k1 ∧ k2)
k1 ∧ k2

}
(θk2)µ(k1θ)ν

+
1
2
(kγγγ − 1) {∗f(k1 ∧ k2) + ∗f(−k1 ∧ k2)} θµν

]
v̄s1(p1)/k1us2(p2) , (6.15a)

we see that the second and third term in the above expression vanish for
the special choice kγγγ = 1. The only term we would then have is the term
which has no contribution from the Seiberg-Witten map. Thus we obtain
again only the contribution which we already had in the noncommutative
QED without Seiberg-Witten maps. The same is true for the other two
parts. So if we combine Ac,Ia with As,II and As,III we obtain

Aµνs+c,II = −g2 ei p1∧p2
[
kγγγ

4
s

sin(k1 ∧ k2)kν1

− (kγγγ − 1) ∗s (k1 ∧ k2)(k1θ)ν
]
v̄s1(p1)γµus2(p2) , (6.15b)

Aµνs+c,III = −g2 ei p1∧p2
[
−kγγγ

4
s

sin(k1 ∧ k2)k
µ
2

+ (kγγγ − 1) ∗s (k1 ∧ k2)(θk2)µ
]
v̄s1(p1)γνus2(p2) . (6.15c)

Thus we have for the s-channel plus the appropriate c-channel amplitude
three parts with different spinor structures where in each part one term is
proportional to kγγγ and one is proportional to (kγγγ − 1). As mentioned
the terms which are proportional to kγγγ are exactly those which have no
map dependencies.

6.5 Differential Cross Section

Before we come to the differential cross section we will summarise the whole
amplitude of the process e+e− → γγ at Born level, which is

Aµν = Aµνt+c +Aµνu+c +Aµνs+c,I +Aµνs+c,II +Aµνs+c,III , (6.16)
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where the above amplitudes are listed in (6.12), (6.13) and (6.15). This
model is gauge invariant by construction and thus the amplitude satisfies
the Ward identity. The unphysical photon polarisation modes coming from
the s-channel are absorbed by parts of the contact vertex.

With this amplitude the unpolarized differential cross section is in the
massless limit

dσ(s1, s2, r1, r2)
dΩ

=

∣∣Aµν(s1, s2)ε∗µ,r1(k1)ε∗ν,r2(k2)
∣∣2

64π2s
. (6.17)

To clarify that the amplitude depends on the spins of the fermions we ex-
plicitly write down this dependency. The massless limit is sufficient because
the noncommutative scale is at least around the TeV scale.

6.6 Discussion

For the special choice of our free parameter kγγγ we get an surprising result:
independently of the function ∗f we get exactly the amplitude of the NC-
QED without Seiberg-Witten maps. This means that the NCQED without
Seiberg-Witten maps is a special case of the NCQED with Seiberg-Witten
maps, at least for the considered process. This is a remarkable result which
gives us the opportunity to compare our results to that of the NCQED
without the maps by only setting kγγγ to unity.

In general one can say that the trigonometric functions present in Aµνs+c
will lead to an oscillating cross section. The frequency of these oscillations
depends on the square of the center of mass energy, since the argument
contains two photon momenta. In addition to the trigonometric functions
there are only phase factors present in the amplitude. So one would naively
assume that the cross section is well-behaved and converges like s−1 for
s → ∞. But there exist cases where the cross section diverges, at least at
first sight. The investigation of theses cases is the topic of the next chapter.
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Chapter 7

Tree Level Unitarity

In this chapter we want to answer the question whether the cross section cal-
culated in the previous chapter is unitary in the sense of tree-level-unitarity
and wether the function ∗f can be constrained if we postulate the tree level
unitarity for the cross section. If so, how does these constraints look like?

First of all let us clarify what we mean by tree level unitarity. By tree
level unitarity we mean that the Froissart-Martin bound [35, 36] is satisfied,
which basically states that a total cross section must not increase faster than

σtot(s) ≤ const · log2 s

s0
, for s→∞ , (7.1)

where
√
s is the center-of-mass energy.

Before we will think about the question wether the cross section satisfies
tree level unitarity and how the ∗f-function can be constrained from the
above bound let us first introduce some notation. In analogy to the usual
decomposition of the field-strength tensor of ordinary electrodynamics into
an electric and magnetic field we want introduce the vectors ~E and ~B which
are build up out of θµν in the following manner

θµν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 . (7.2)

In order to obtain concrete expressions for the four momenta we introduce
the center-of-mass system as our coordinate system. The momenta of the
fermions are assumed to be along the z-axis. In this frame they are

p1 =
√
s

2
(1, 0, 0, 1) , p2 =

√
s

2
(1, 0, 0,−1) . (7.3)

Consequently, the momenta of the outgoing photons are

k1 =
√
s

2
(1, sinϑ cosϕ, sinϑ sinϕ, cosϑ) , (7.4a)

61
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k2 =
√
s

2
(1,− sinϑ cosϕ,− sinϑ sinϕ,− cosϑ) , (7.4b)

where ϑ is the polar and ϕ is the azimuthal angle. Hence the argument of
the trigonometric functions and the ∗f-function can be written as

k1 ∧ k2 = ω(ϑ, ϕ, ~E)s =
(
E3 cosϑ+

[
E1 cosϕ+ E2 sinϕ

]
sinϑ

)
s , (7.5)

where we have separated the angle function ω from s.
The argument k1θk2 is the only one which appears in the trigonometric

functions and the ∗f-function (6.12), (6.13) and (6.15). The other momentum
combinations, such as p1∧p2 or k1∧p2, appear only in various phase factors.
It is obvious that phase factors can’t influence the high energy behavior of
an amplitude. Hence they aren’t relevant for the following considerations.

7.1 Constraints

Let us remember what we know so far about the function ∗f. We have already
forbidden that this function contains negative powers of θµν . Otherwise the
Seiberg-Witten maps wouldn’t have a commutative limit. We also observe
that the amplitude of the scattering process discussed in the previous chapter
includes only the even part of the ∗f function, i.e. only the sum ∗f(k1∧k2)+
∗f(−k1 ∧ k2) appears. This means that we can only constrain the even part
of the function, whereas the odd part can’t be constrained from this process
at Born level.

How can the function ∗f be additionally constrained? A simple constraint
comes from the term

(∗s − ∗f)(k1 ∧ k2)
k1 ∧ k2

+
(∗s − ∗f)(−k1 ∧ k2)

k1 ∧ k2
, (7.6)

which is part of Aµνs+c,I (6.15). This term has to remain finite in the limit
k1∧k2 → 0. Thus in order to keep the above term finite, the series expansion
of ∗f has to start with unity, simply because the series expansion of the ∗s-
function starts with unity. In particular, this means that the function ∗f

can’t be chosen to be identically zero!
Now we come to the asymptotic behavior of the ∗f-function. Let us look

at the last term of Aµνs+c,I, which only depends on ∗f, namely

Aµν∗f = −g
2

2
ei p1∧p2(kγγγ − 1)[

∗f(k1 ∧ k2) + ∗f(−k1 ∧ k2)
]
θµν v̄(p1)/k1u(p2) . (7.7)

The part of the cross section depending on the square of the absolute value
of this part of the amplitude is

dσ∗f(s)
dΩ

= N s |∗f(ωs) + ∗f(−ωs)|2 , (7.8)
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where we implicitly have summed over all spin and polarisation states. The
factor N is independent of s, namely

N =
g4(kγγγ − 1)2 sin2(ϑ)( ~E2 + ~B2)

64π2
.

Let us first consider the case ω 6= 0. In order that the part (7.8) of the cross
section satisfies the Froissart-Martin bound the even part of ∗f has to satisfy

| ∗f (s) + ∗f(−s)| ≤ const · log(s)√
s
, for s→∞ . (7.9)

One may ask if it is sufficient to look only at this part of the cross section.
The answer is yes, because if this part satisfies the bound (7.1) than the
remaining parts will do that, too. This happens simply because if the square
of the absolute value of a function satisfies a given bound then the function
times a bounded function satisfies that bound, too. The same holds also for
the difference of two functions. If we go through the terms of the amplitude
(6.12), (6.13) and (6.15) we see that there are, besides various phase factors,
only sine and ∗s-functions which are both bounded. Hence all other functions
which have their origin in the Seiberg-Witten maps are bounded for s→∞,
at least for ω 6= 0.

One could object that the above cross section is the differential cross
section and not the total one as in the definition of the bound (7.1). An
integration can’t lead to a worse asymptotic behavior of the expression (7.8),
because the mean value theorem for integration states that the integral over
a non-divergent function integrated over a finite interval is finite. And if the
bound (7.9) is satisfied then the cross section is finite, at least if one excludes
the t- and u-channel poles, i.e. for cos(ϑ) ∈ ]− 1, 1[ . Indeed the integration
will enhance the convergence of the integrand, as we will see below.

These two constraints are all constraints one can obtain from the scat-
tering process discussed in the previous chapter. As expected the functions
∗s as well as ∗si satisfy the above constraints which is consistent with (4.11).

7.2 Irregularities

In the above considerations we assumed that ω 6= 0. Now let us consider
the case where ω = 0. Naively this leads to a total cross section which
diverges like s. In order to see this behavior, let us split up the complete
amplitude (6.12), (6.13) and (6.15) into a part which is regular and one
which is divergent for s→∞

Aµν = Aµνreg +Aµνdiv , (7.10)

where the divergent part is
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Aµνdiv = −g2 ei p1∧p2(kγγγ − 1)[
1
2
{∗f(k1 ∧ k2) + ∗f(−k1 ∧ k2)} θµν v̄(p1)/k1u(p2)

− ∗s(k1 ∧ k2)(k1θ)ν v̄(p1)γµu(p2) + ∗s(k1 ∧ k2)(θk2)µv̄(p1)γνu(p2)
]
. (7.11)

As an example let us assume ~E = 0. The differential cross section of Adiv

then becomes

dσdiv

dΩ
=

g4

128π2s
(kγγγ − 1)2(B2

1 +B2
2)s2 , (7.12)

which means that the differential cross section diverges like s. And thus the
cross section would violate tree level unitarity. So we have to investigate
the cases where ω becomes close to zero. Appart from the case ~E = 0 there
exist values for the angles ϑ and ϕ where ω can vanish, too.

7.3 The Case ~E = 0

Let us first consider the case ~E = 0. From (7.5) we see that for a vanishing
~E the angle function ω becomes zero and as a result the cross section naively
diverges. The way out of the problem is to consider small discrepancies of
the center-of-mass frame and the laboratory frame. In any experiment, the
energy is in principle not a delta-like distribution. So one has to integrate
over small variations. To realize such variations one can integrate over a
small boost, what we indeed want to do. The connection between the center-
of-mass frame and the laboratory frame in the case of e+e− → γγ is the usual
one, namely

s? = x1x2s , cosϑ? =
cosϑ− β

1− β cosϑ
, ϕ? = ϕ .

Beside the energy and the scattering angles we also have to boost θµν

E?1 = γ(E1 − βB2) , B?
1 = γ(B1 + βE2) ,

E?2 = γ(E2 + βB1) , B?
2 = γ(B2 − βE1) ,

E?3 = E3 , B?
3 = B3 ,

where the Lorentz factor and the velocity are defined as usual

γ =
1√

1− β2
, β =

x2 − x1

x2 + x1
=
y1

y2
.

The variables with the star ? belong to the center-of-mass frame whereas
the variables on the r.h.s. of the above equations belong to the laboratory
frame.
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Since we consider only small boosts we can expand the argument of the
trigonometric functions and the ∗f-function in powers of y1 = x2−x1. Thus
in the laboratory frame, we have for the argument

k1 ∧ k2 =
1
2
sy1(y2

2 − y2
1)(B2 cosϕ−B1 sinϕ)

√
1− cos2 ϑ

(y2 − y1 cosϑ)2

=
1
8
s| sinϑ|(B2 cosϕ−B1 sinϕ)y1y2 +O

(
y2
1

)
+O( ~E) . (7.13)

If we choose for the arbitrary function ∗f = ∗s, the squared of the diver-
gent part of the amplitude is

dσ?div

dΩ
=
c2
s

(
sin
(
c1sy1y2 +O(y2

1)
)

c1sy1y2 +O(y2
1)

)2

s2y2
2(2y

2
1 + y2

2) , (7.14)

where the two factors

c1 :=
1
4
| sinϑ|(B2 cosϕ−B1 sinϕ) ,

c2 :=
1

64π2

g4

32
(kγγγ − 1)2(B2

1 +B2
2) ,

are independent of s. We can choose ∗s for the arbitrary function ∗f without
loss of generality, because we consider this function when its argument is
around zero, i.e. ω ≈ 0 (cf. section 7.1). And because ∗f as well as ∗s start
their series expansion with unity we can set ∗f = ∗s. With the integration
over y1 from −y2 to y2 and over y2 from 0 to 2 one covers the whole critical
region, which is y1 = 0. In the case of c1 6= 0 this leads to

dσdiv

dΩ
≈

2∫
0

dy2

y2∫
−y2

dy1
c2
s

(
sin c1sy1y2

c1y1y2

)2

y2
2(2y

2
1 + y2

2) =
c2
c1

[
∗si(8c1s)

+
1
c1

2 + cos(8c1s)
s

+
1

8c21

sin(8c1s)
s2

− 1
2c21

∗si(8c1s)
s2

]
, (7.15)

where the approximation means that we neglect the O(y2
1) terms present

in (7.14). This approximation is sufficient for our considerations even if we
integrate y1 over the interval [−y2, y2]. The reason is that except for the
critical point y1 = 0 the integrand is convergent for s → ∞ and thus not
relevant for our discussion. The important case occurs when y1 is around
zero. And for this case the above approximation is sufficient.

If we finally consider the limit s → ∞ one sees that only the first term
survives. So the high energy limit of the cross section is constant

lim
s→∞

dσdiv

dΩ
= 2π

c2
|c1|

. (7.16)
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Now let us consider the case where c?1 = 0. This case occurs if the
azimuthal angle becomes

ϕdiv = arctan
(
B2

B1

)
. (7.17)

In addition, c?1 becomes zero for ϑ = 0, π. But then the photons would
be scattered exactly along the beam axis. And this case is in principle
undetectable.

In the case where the azimuthal angle becomes ϕdiv one has to integrate
over a small interval over this angle. The reason for doing this is that
one has no sharp momenta of the outgoing photons, so that the angles are
blurred. After this integration one still has a well behaved, i.e. in a Taylor
series expandable, function. Thus the integration over the boost parameters
finally gives a constant cross section in the high energy limit.

7.4 Irregular Angles

The case ~E = 0 is not the only one for which the argument can become zero.
Namely if the polar angle is given by

ϑdiv(ϕ) = arccos

− E1 cos(ϕ) + E2 sin(ϕ)√
E2

3 +
(
E1 cos(ϕ) + E2 sin(ϕ)

)2
 , (7.18)

then ω becomes zero, too. The set of all points (ϕ, ϑdiv(ϕ)) we call irregular
points.

Let us look somewhat closer at the above relation between ϑdiv and the
azimuthal angle ϕ. First, let us determine the codomain of ϑdiv. Or in other
words, are there polar angles where ω is nonzero for all azimuthal angles? To
answer this question let us look at figure 7.1 where we plotted ϑdiv over ϕ for
~E = (0.3, 0.7, 1.0). One sees that if the polar angle lies between the dashed
lines one has two azimuthal angles for which ω = 0. If cos(ϑdiv) ≈ ±0.61
then there is only one ϕ. But if the polar angle is above or below the dashed
lines one finds no azimuthal angles for which ω becomes zero.

Of course, the position of the dashed lines depends on ~E, because the
two maxima are at the azimuthal angles

ϕmin = arccos

(
E1√

E2
1 + E2

2

)
, ϕmax = − arccos

(
− E1√

E2
1 + E2

2

)
.

If we insert these two angles in (7.18) we obtain

cos
(
ϑdiv(ϕmax, min)

)
= ±

√
E2

1 + E2
2√

E2
1 + E2

2 + E2
3

. (7.19)
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Figure 7.1: The function cos(ϑdiv(ϕ)) for ~E = (0.3, 0.7, 1.0). For a given
polar angle ϑ one obtains either one (dashed line), two (dotted line) or
no (drawn through line) azimuthal angle ϕ for which the differential cross
section diverges

As one can see, the argument of the arccos is always in the interval [−1, 1].
For the case where E3 → 0 the dashed lines tend to ±1. And if E1 = E2 = 0
then there exist only one ϑdiv independent of ϕ. But in general there exists
either one, two or no azimuthal angles where, for a given ϑ, the differential
cross section diverges.

In the simplest case, namely when ϑ can’t become zero for any ϕ, then
ω is always non-zero, i.e. the cross section at this polar angle is always
convergent.

The first problematic case is when the polar angle is between the two
dashed lines. The differential cross section for this case diverges at two
azimuthal angles. But if one integrates over the azimuthal angle the resulting
cross section becomes constant for s → ∞. And as we already said, in
general one has to integrate over a small angle, because the momenta of
the photons can only be measured with finite precision. To clarify how an
integration can cancel a divergent part of the integrand, let us consider the
function

f(ω, s) =
(

sin(ωs)
ωs

)2

s ,

which diverges like s for ω = 0 and s → ∞. If we integrate this function
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over ω around zero, the limit s→∞ becomes finite

lim
s→∞

ε∫
−ε

dω f(ω, s) = lim
s→∞

sε∫
−sε

dx
(

sin(x)
x

)2

=

∞∫
−∞

dx
(

sin(x)
x

)2

= π ,

where we substitute x = ωs. Thus the smearing enhances the convergent
behavior of the integrand.

Now we come to the case where the dotted line tends to one of the dashed
lines. Then the two azimuthal angles tends to one point, namely to ϕmin or
ϕmax. At such a point the degree of the divergence is doubled with respect
to the case where the divergent points were separated. In order to illustrate
this behavior let us look at the following integral

F (y) =

1∫
−1

dx
1

(x− y)(x+ y)
, y ∈ (−1, 1) . (7.20)

For y 6= 0 the Cauchy principal value of this integral is finite, namely

F (y) = 2y−1 arctanh
(
y−1
)
, y 6= 0 . (7.21)

But if y becomes zero the integrand becomes −x−2. Thus the integral di-
verges.

The way out of this dilemma is straightforward. Namely one has to
integrate not only over ϕ but also over ϑ. After these two integrations the
total cross section becomes constant for s→∞.

7.5 Illustration

After this somewhat technical discussion we now want to illustrate what we
have said in the previous section.

But before we are able to plot the differential cross section we first have
to fix some parameters. We choose

~E =
1

TeV2 (0.3, 0.7, 1.0) , ~B = (0, 0, 0) , kγγγ = 0.5 , ∗f = ∗s . (7.22)

Hence, we assume a purely time-like noncommutativity with a noncommu-
tative scale of 1 TeV. For our purpose we can set ~B = 0 without loss of
generality because ω does not depend on the ~B components of θµν . In
order that the terms proportional to kγγγ as well as those proportional to
(kγγγ−1) have the same weight we choose kγγγ to be one-half. For the func-
tion ∗f we again choose ∗s. And as already stated we can do this without
loss of generality. Finally we set the electric charge to g =

√
4πα = 0.308.

With the parameters fixed, we now can generate plots. First let us look
at the ϕ dependency of the differential cross section for

√
s = 10 TeV. We
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Figure 7.2: The differential cross section plotted over the azimuthal angle
ϕ for

√
s = 10TeV. For different polar angles ϑ the differential cross section

has either one, two or no divergent peaks.

choose cosϑ in such a way, that we have either one, two or no divergences.
One can impressively see that one has two divergent peaks for the case
cosϑ = 0.25 and one big peak for the case cosϑ = 0.606 where the two
peaks coincide. For cosϑ = 0.75 no divergent angle exists thus for this case
no peak is present.

In the next plot we choose a center-of-mass energy of 50 TeV. One sees
that the peaks become more narrow and higher. The maximum of the
peaks depend on s, as expected. The small plot in figure 7.3 zooms in
around ϕ = 3π/8. By magnifying the y-axis by a factor of 104 the different
curves can be resolved. One observes the fast oscillations of the cross section
relative to the oscillations in figure 7.2. The reason is that the argument of
the trigonometric functions and the ∗f-function is proportional to s, i.e. the
frequency depends quadratically on the center-of-mass energy.

Figure 7.4 shows the differential cross section for three different energies
plotted over cosϑ. In this graph we integrated over the whole range of
ϕ. From the previous section we would assume that the cross section is
convergent for cosϑ within the interval ] 0.606, 1 [ . For | cosϑ| ∈ ] 0, 0.606 [
we assume a constant cross section with respect to s because in this interval
we integrated over the two divergent peaks (cf. figure 7.2 or 7.3). In the case
where one has only the single peak, the integration over ϕ is not sufficient
to obtain a constant cross section. Actually the generated plot in figure 7.3
shows all the expected behavior. Looking at the amplitude of the peaks
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Figure 7.3: The differential cross section plotted over the azimuthal angle
ϕ for

√
s = 50TeV. For different polar angles ϑ the differential cross

section has either one, two or no divergent peaks. In the zoomed plot the
oscillations become visible.

for
√
s = 10 TeV and for 50TeV one observes that for the amplitude in

the latter case is approximately 25 times greater than the one for 10 TeV.
Exactly this behavior we do expect because the peaks diverge like s.

The last plot presented here shows the total cross section plotted over
the center-of-mass energy

√
s. As we can impressively see the cross sec-

tion converges to a constant value, for high energies. The frequency of the
oscillations also increases as mentioned earlier.

As we have seen, the total cross section is non-divergent for s→∞. We
have explained and illustrated that every integration leads to a less divergent
behavior of the differential cross section. We showed that if one takes two
integrations into account, namely the integration over the azimuthal and
polar angle, one ends up with a total cross section which converges to a
constant. Actually, in order to take the intrinsic uncertainty of the outgoing
momenta completely into account one has to integrate also over the polar
angle. So the Froissart-Martin bound (7.1) and thus the tree level unitarity
can always be satisfied if the function ∗f itself satisfies the constraints we
found and which are summarized below.
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Figure 7.4: The differential cross section plotted over the polar angle ϑ
and integrated over the azimuthal angle for various center-of-mass energies√
s. To the left and to the right of the peaks the differential cross section

remains bounded for high energies. Between the two peaks the differential
cross section is almost constant. The peaks diverge with s.

7.6 Discussion

First let us combine our knowledge about the function ∗f. From the com-
mutative limit and from the request of tree level unitarity we can restrict
the function ∗f to functions of the following form

1. The series expansion of ∗f has to start with unity.

2. The asymptotic behavior of the even part of ∗f is given by

| ∗f (x) + ∗f(−x)| ≤
log(x)√

x
for x→∞ . (7.23)

3. We can’t constrain the odd part of ∗f.

In section 7.3 we discussed the cases where the angle function ω becomes
zero. Naively the cross section diverges like s for s → ∞. This would lead
to a theory which violates tree level unitarity and thus this theory can’t be
interpreted in a consistent manner. But if one uses the intrinsic uncertainty
in the energy and the uncertainty in the momenta of the photons, one ends
up with a cross section which is constant for s goes to infinity. Thus tree
level unitarity is satisfied.
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Figure 7.5: The total cross section plotted over the center-of-mass energy√
s. The frequency of the oscillations increase with the energy.

Indeed, one has to take all uncertainties into account in order to get rid
of all the divergences. It seems that this is the price one has to pay if one
allows a noncommutative spacetime. But perhaps these problems appear
only because we used plane waves for the description of our particles. This
is a simplification which provides the right observables, at least in the com-
mutative case. But actually one has wave packages and not plane waves.
On the other hand the differential cross section is not an observable itself.
What one basically measures is the differential cross section integrated over
some angle dΩ. Or analogous, one measure the differential cross section
convoluted with some function. The smearing coming from the integration
over the scattering angles is similar to the smearing coming from the consid-
eration of wave packages. So it is permitted to assume that the calculations
done with wave packages will lead to the same results we got by considering
integrations over the angles.

One can ask if the optical theorem could be in general satisfied if one
has such trouble satisfying tree level unitarity. The question is justified.
Namely the NCQED without the Seiberg-Witten maps is tree level unitary
but violates the optical theorem at one loop. Thus the optical theorem is
a more stringent condition as the tree level unitarity. Another factor which
supports the argument is that the considered cross section becomes the one
of the NCQED without Seiberg-Witten maps for kγγγ = 1. Thus one can
ask whether it is possible that for kγγγ 6= 1 the NCQED with Seiberg-
Witten maps can satisfy the optical theorem. By calculating the photon
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self-energy one can check the optical theorem. With the vertices derived in
chapter 5 we calculated some of the necessary loops in appendix F. The first
results, although incomplete, don’t raise the hope that this model satisfies
the optical theorem.

On the other hand one still has the freedom in the choice of the function
∗f which may be used to obtain a cross section which satisfies the optical
theorem. But in the end, one has to complete the necessary calculations to
finally answer this question.
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Chapter 8

Summary and Outlook

The basic question which drove our whole work was to find a meaningful
noncommutative gauge theory even for the time-like case (θ0i 6= 0). In or-
der to be able to tackle questions regarding unitarity, it is not sufficient to
consider theories which include the noncommutative parameter only up to
a finite order. The reason is that in order to investigate tree-level unitar-
ity or the optical theorem in loops one has to know the behavior of the
noncommutative theory for center-of-mass energies much greater than the
noncommutative scale. Therefore an effective theory, that is by construction
only valid up to the noncommutative scale, isn’t sufficient for our purpose.

Our model is based on two fundamental assumptions. The first assump-
tion is given by the commutation relations (1.2). This led to the Moyal-Weyl
star-product (2.9) which replaces all point-like products between two fields.
The second assumption is to assume that the model built this way is not only
invariant under the noncommutative gauge transformation but also under
the commutative one. In order to obtain an action of such a model one has
to replace the fields by their appropriate Seiberg-Witten maps. We chose
the gauge fixed action (2.31) as the fundamental action of our model.

After having constructed the action of the NCQED including the Seiberg-
Witten maps we were confronted with the problem of calculating the Seiberg-
Witten maps to all orders in θµν . By means of [2] we could calculate the
Seiberg-Witten maps order by order in the gauge field, where each order
in the gauge field contains all orders in the noncommutative parameter
(cf. chapter 3). By comparing the maps with the result we obtained from
an alternative ansatz [34], we realized that already the simplest Seiberg-
Witten map for the gauge field is not unique. In chapter 4 we examined this
ambiguity, which we could parametrised by an arbitrary function ∗f.

The next step was to derive the Feynman rules for our NCQED. One
finds that the propagators remain unchanged so that the free theory is equal
to the commutative QED. The fermion-fermion-photon vertex contains not
only a phase factor coming from the Moyal-Weyl star-product but also two

75
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additional terms which have their origin in the Seiberg-Witten maps. Beside
the 3-photon vertex which is already present in NCQED without Seiberg-
Witten maps and which has also additional terms coming from the Seiberg-
Witten maps, too, one has a contact vertex which couples two fermions with
two photons.

After having derived all the vertices we calculated the pair annihilation
scattering process e+e− → γγ at Born level. By choosing the parameter
kγγγ = 1 (cf. section 2.5), we found that the amplitude of the pair an-
nihilation process becomes equal to the amplitude of the NCQED without
Seiberg-Witten maps. This means that, at least for this process, the NCQED
excluding Seiberg-Witten maps is only a special case of NCQED including
Seiberg-Witten maps.

On the basis of the pair annihilation process, we afterwards investigated
tree-level unitarity. In order to satisfy the tree-level unitarity we had to
constrain the arbitrary function ∗f. We found that the series expansion of
∗f has to start with unity. In addition, the even part of the function must
not increase faster than s−1/2 log(s) for s → ∞, whereas the odd part of
the ∗f-function can’t be constrained, at least by the process we considered.
By assuming these constrains for the ∗f-function, we could show that tree-
level unitarity is satisfied if one incorporates the uncertainties present in the
energy and the momenta of the scattered particles, i.e. the uncertainties of
the center-of-mass energy and the scattering angles. This uncertainties are
not exclusively present due to the finite experimental resolution. A delta-
like center-of-mass energy as well as delta-like momenta are in general not
possible because the scattered particles are never exact plane waves.

Some open questions still remain which have to be worked out in the
future.

One question arose within the calculation of the amplitude of the pair
annihilation process. Namely, is it a general feature that one can always find
the theories without Seiberg-Witten maps as a special case of the theories
with Seiberg-Witten maps? There are some hints which suggest that this is
not a general feature. Namely, if one has fermions off the mass shell, then
the contributions from the maps ψ[3] in the contact vertex wouldn’t vanish.
And probably these contributions can’t be canceled by other terms. So there
would be differences between the NCQED with and without Seiberg-Witten
maps, even for kγγγ = 1.

Another question arose from the discussion at the end of chapter 7.
Namely, are the uncertainties of the center-of-mass energy and the scatter-
ing angles always sufficient to obtain a cross section which satisfies tree-level
unitarity? Or are there processes or loop contributions which remain diver-
gent after the various integrations? We expect that tree-level unitarity is
always satisfied, because where should additional divergences come from?

We used tree-level unitarity to constrain the arbitrary function ∗f. Nat-
urally, the question arises if this function can be further constrained by
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considering other scattering processes or higher order contributions in per-
turbation theory? We also know that the higher order Seiberg-Witten maps
ψ[3] and especially A[3]

µ contains new arbitrary functions. So can these func-
tions also be constrained by tree-level unitarity or other conditions? It is
very likely that one can constrain new arbitrary functions analogously to
the ∗f-function. But it is doubtful if one can find additionally constraints
for ∗f in other processes.

Another whole class of questions concerns the optical theorem. As al-
ready stated, we weren’t able to do the full calculation in order to check the
optical theorem by direct calculation of the photon self-energy. The com-
plexity of the map A[3]

µ was the main obstacle to carry out the calculations.
Unfortunately we can’t give a complete and final answer to the question
whether the NCQED including Seiberg-Witten maps is unitary in the sense
of the optical theorem.

It would be very interesting to study all the open questions in the future
in order to obtain a consistent time-like noncommutative gauge theory.
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Appendix A

Notations and Definitions

In this appendix we will summerize our notations and definitions.

A.1 Units, Special Relativity and Noncommuta-
tivity

We will work in “natural” units, where

~ = c = 1 . (A.1)

As a result of this system of units

[length] = [time] = [energy]−1 = [mass]−1 . (A.2)

The metric tensor is

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (A.3)

where Greek indices run over 0, 1, 2, 3. Four-vectors are defined by

xµ = (x0, x1, x2, x3) = (x0, ~x) , xµ = gµνx
µ = (x0,−~x) . (A.4)

The noncommutative parameter θµν is assumed to be constant and real.
By definition

[x̂µ, x̂ν ] =: i θµν , (A.5)

it is antisymmetric. In analogy to the field-strength tensor one can decom-
pose the noncommutative parameter into electric and magnetic components

θµν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 . (A.6)
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The elements of ~E are also called time-like components of θµν and the ele-
ments of ~B are called space-like components of θµν , respectively.
In position space the wedge-product is a bidifferential and is defined by

A ∧12 B :=
θµν

2
(∂µA)(∂νB) . (A.7a)

We find it convenient to introduce

∧12ABC :=
θµν

2
(∂µA)(∂νB)C , (A.7b)

∧13ABC :=
θµν

2
(∂µA)B(∂νC) , (A.7c)

∧23ABC :=
θµν

2
A(∂µB)(∂νC) . (A.7d)

It carries always two indices which label the position of the quantities on
which the derivatives act. In momentum space the wedge-product appears
only between two four-momenta. It carries no index and is defined as

p ∧ q := pµθ
µνqν = −q ∧ p . (A.8)

Due to the antisymmetry of θµν , the ∧-product is antisymmetric, too.
By a tilded momenta we denote the contraction of the momenta with the
noncommutative parameter from the right p̃µ := (pθ)µ.
With the above definition of the wedge-product one can also define functions
of this object by their series expansion. The most important one ist the
Moyal-Weyl star-product

(φ1 ∗ φ2) (x) = φ1(x) ei∧12 φ2(x) . (A.9)

In analogy to the Moyal-Weyl star-product we define the following functions

∗e(∧12) :=
ei∧12 −1

i∧12
, (A.10a)

∗s(∧12) :=
sin(∧12)
∧12

, (A.10b)

∗si(∧12) :=
si(∧12)
∧12

, si(x) =

x∫
0

dt
sin t
t

. (A.10c)

By “leading order Seiberg-Witten map” we mean always the leading order
map in the gauge field, which is either C [2], A[2]

µ or ψ[2].
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A.2 Graded Star Commutator

With the definition of the Moyal-Weyl star-product we define the graded
star commutator [ · ∗, · ]

[A ∗, B] := A ∗B − (−1)|A||B|B ∗A , (A.11)

where | · | is the Grassmann parity

|A| :=

{
0 for A Grassmann even
1 for A Grassmann odd

. (A.12)

The ghost field C, the contracting homotopy operator ρ[0] and the BRST
differential γ are the only Grassmann odd quantities that appear in this
work. All other fields and quantities are Grassmann even.

A.3 Symmetrisation Parenthesis

The “symmetrisation parenthesis” are defined by

i(1 . . . in) :=
1
n!

∑
σ∈Sn

iσ(1) . . . iσ(n) , (A.13)

where Sn is the set of all symmetric n tuple. For the example n = 3 we have

i(1i2i3) =
1
3!

(i1i2i3 + i1i3i2 + i2i1i3 + i2i3i1 + i3i1i2 + i3i2i1) . (A.14)

A.4 Multi-Index Notation

With an upper bold index we label a multi-index

xα[i,j] := xαi . . . xαj for i ≤ j , xα[i,j] := 1 for i > j . (A.15)

For a tensor we define the multi-index by

θα[i,j]β[i,j] := θαiβi . . . θαjβj for i ≤ j . (A.16)

If the multi-index has only one argument then the lower index starts with
zero

xα[n] := xα0 . . . xαn . (A.17)

A.5 Miscellaneous Notation

By [a, b] with a, b ∈ R we denote the closed interval including a, b.
By ] a, b [ with a, b ∈ R we denote the open interval excluding a, b.
The Heaviside or step function is defined by

H(x) :=

{
0 for x < 0
1 for x > 0

. (A.18)
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Appendix B

Traces and Time Ordering

B.1 Traces

The following considerations are based on [19]. For simplicity we make
the following consideration for the two dimensional case. In this case the
noncommutative matrix is

θµν =
1

Λ2
NC

(
0 1
−1 0

)
, (B.1)

which leads to the commutation relation

[x̂1, x̂2] = i
1

Λ2
NC

. (B.2)

The above relation is similar to that of ordinary quantum mechanics if we
identify x̂1 = q̂, x̂2 = p̂ and 1/Λ2

NC = ~. Thus we can define the eigenstates
of x̂1 and x̂2 by

x̂1 |x〉 = x |x〉 , x̂2 |p〉 =
p

Λ2
NC

|p〉 . (B.3)

The complete states are normalized to the Dirac delta distribution as usual

〈x|x′〉 = δ(x− x′) ,
∫

dx |x〉 〈x| = 1 ,

〈p|p′〉 = δ(p− p′) ,
∫

dp |p〉 〈p| = 1 ,
(B.4)

and
〈x|p〉 =

1√
2π

ei px . (B.5)

With the above properties it is straightforward to calculate the matrix ele-
ments of T̂ (p) = exp(i px̂), namely

〈x′| T̂ (p) |x′′〉 = δ

(
p2

Λ2
NC

+ x′ − x′′
)

e
i
2
p1(x′+x′′) . (B.6)
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The desired representation of the trace of T̂ (p) is given for the two dimen-
sional case by

tr T̂ (p) =
2π

Λ2
NC

∫
dx 〈x| T̂ (p) |x〉

=
2π

Λ2
NC

δ

(
p2

Λ2
NC

)∫
dx ei p1x = (2π)2δ(2)(pµ) . (B.7)

B.2 Time Ordering

This short section demonstrates the statement of section 2.6. Assume the
time-ordered two point function with an additional phase operator coming
from the Moyal-Weyl star-product

〈0|T
[
ei ∂x∧(i q) φ(x)φ(y)

]
|0〉 = H(x0 − y0) ei ∂x∧(i q) 〈0|φ(x)φ(y) |0〉

+H(y0 − x0) ei ∂x∧(i q) 〈0|φ(y)φ(x) |0〉 , (B.8)

where q is some external momenta and H is the Heaviside function. If
we define the time-ordering operator by pulling out the phase operator we
obtain the usual Feynman propagator times the phase factor

〈0| T̃
[
ei ∂x∧(i q) φ(x)φ(y)

]
|0〉 = ei ∂x∧(i q)DF(x− y)

=
∫

d4p

(2π)4
e− i p(x−y) ei p∧q i

p2 −m2 + i ε
. (B.9)

If we do not interchange the phase operator with the time-ordering operator
in general we don’t get the Feynman propagator. But let us calculate this
in detail. First of all the vacuum expectation value of two scalar fields is

〈0|φ(x)φ(y) |0〉 =
∫

d3p

(2π)3
1

2E~p
e− i p(x−y)

∣∣∣∣
p0=E~p

. (B.10)

With the integral representation of the Heaviside function

H(x0 − y0) = i
∫

dt
2π

e− i t(x0−y0)

t+ i ε
(B.11)

and p0 = t+ E~p the integrand of the two-point function is given by

i
2E~p

(
p0 − E~p + i ε

) e− i p(x−y) ei p∧q

+
i

2E~p
(
p0 − E~p + i ε

) e− i p(y−x) ei p∧q . (B.12)
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Now if we exchange the momenta of the second summand by the correspond-
ing negative momenta pµ → −pµ, we get

i
2E~p

(
ei p∧q

p0 − E~p + i ε
+

e− i p∧q

−p0 − E~p + i ε

)
e− i p(x−y) , (B.13)

so that we finally obtain for the time-ordered two point function

〈0|T
[
φ(x)φ(y) ei

∂x+∂y
2

∧q
]
|0〉

= − i
∫

d4p

(2π)4
e− i p(x−y) 1

2E~p

−E~p cos(p ∧ q) + i p0 sin(p ∧ q)
p2 −m2 + i ε

. (B.14)

Obviously this result is not equal to (B.9). One only gets the ordinary
Feynman propagator if the phase factor vanishes, i.e. p ∧ q = 0.
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Appendix C

Seiberg-Witten maps

C.1 Some Identities

Consider the gauge field and its derivatives symmetrised in the indices with
one standing out index λ. Then the identity

∂(µ1
. . . ∂µnAλ) =

n

n+ 1
∂λ∂(µ1

. . . ∂µn−1Aµn) +
1

n+ 1
∂µ1 . . . ∂µnAλ (C.1)

holds. The proof is straightforward, namely with the definition in section
A.3 we have

∂(µ1
. . . ∂µnAλ) =

1
(n+ 1)!

∑
σ∈Sn+1

∂µσ(1)
. . . ∂µσ(n)

Aλσ(n+1)

=
1

(n+ 1)!

(
n
∑
σ∈Sn

∂λ∂µσ(1)
. . . ∂µσ(n−1)

Aµσ(n)
+
∑
σ∈Sn

∂µσ(1)
. . . ∂µσ(n)

Aλ

)

=
n

n+ 1
∂λ∂(µ1

. . . ∂µn−1Aµn) +
1

n+ 1
∂µ1 . . . ∂µnAλ . (C.2)

In the last equation we have used that the partial derivatives commute with
each other

∂(µ1
. . . ∂µn) = ∂µ1 . . . ∂µn . (C.3)

A direct corollary of (C.1) is

∂(µ1
. . . ∂µ2nFµ)λ = ∂(µ1

. . . ∂µn−1∂µn)Aλ − ∂λ∂(µ1
. . . ∂µn−1Aµn)

= ∂µ1 . . . ∂µnAλ − ∂λ∂(µ1
. . . ∂µn−1Aµn) . (C.4)

With these two identities we obtain an equation, which is important for the
calculations of Seiberg-Witten maps, namely

∂µ1 . . . ∂µnAλ = ∂(µ1
. . . ∂µnAλ) +

n

n+ 1
∂(µ1

. . . ∂µn−1Fµ)λ . (C.5)

87
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C.2 Sums

In this section we present some identities for series. First, let us define a
general class of functions of n variables x1 . . . xn

Zn (π, {x1, . . . , xn}) :=
∞∑
a1=0

· · ·
∞∑

an=0

xa1
1

a1!
. . .

xan
n

an!
π(a1, . . . , an) , (C.6)

with a parameter π depending on the summation indices a1 . . . an. In order
to transform all series which occur in our calculations into a Z-sum we need
the following transformations and identities. Firstly, the binomial theorem

(x+ y)a =
a∑
b=0

(
a
b

)
xa−byb . (C.7)

And for nested sums we have the identity

∞∑
a=0

a∑
b=0

f(a, b) =
∞∑
a=0

∞∑
b=0

f(a+ b, b) . (C.8)

Finally, for sums where only monomials with an even power are summed up
one can find the identity

∞∑
a=0

f(2a) =
1
2

( ∞∑
a=0

f(a) +
∞∑
a=0

(−1)af(a)

)
. (C.9)

Derivatives of the Z-sum with respect to one variable supply a very useful
identity. Let ai be the summation index of the variable xi. Then, for an
arbitrary π,

∂xiZn(π(a1 . . . an), {x1, . . . , xn})

=
1
xi
Zn(aiπ(a1 . . . an), {x1, . . . , xn}) , (C.10)

for all i ≤ n.
Now let us express some series representations by special functions that

have been studied in the literature. In the calculation of the map ψ[3] we
need the following sums

Z2

(
(a, b) 7→ 1

a+ b+ 1
, {ix, i y}

)
=

∞∑
a,b=0

(ix)a

a!
(i y)b

b!
1

a+ b+ 1

(C.8)
=

∞∑
a=0

a∑
b=0

(ix)a−b

(a− b)!
(i y)b

b!
1

a+ 1
(C.7)
=

∞∑
a=0

(i(x+ y))a

a!
1

a+ 1
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a→a+1=
∞∑
a=1

(i(x+ y))a−1

a!
=

ei(x+y)−1
i(x+ y)

. (C.11)

Z2

(
(a, b) 7→ 1

(a+ 1)(a+ b+ 1)
, {ix, i y}

)
=

∞∑
a,b=0

(ix)a

a!
(i y)b

b!
1

(a+ 1)(a+ b+ 1)
(C.8)
=

∞∑
a=0

a∑
b=0

(ix)a−b

(a− b+ 1)!
(i y)b

b!
1

a+ 1

=
∞∑
a=0

a∑
b=0

(
a+ 1
b

)
(ix)a−b(i y)b

(a+ 1)!(a+ 1)

a→a+1=
1
ix

∞∑
a=1

a−1∑
b=0

(
a
b

)
(ix)a−b(i y)b

a!a
(C.7)
=

1
ix

∞∑
a=1

[
(i(x+ y))a

a!a
− (i y)a

a!a

]

=
1
ix

∞∑
a=1

[
i
∫

d(x+ y)
(i(x+ y))a−1

a!
− i
∫

dy
(i y)a−1

a!

]
=

1
x

(∗ei(x+ y)− ∗ei(y)) , (C.12)

with

∗ei (x) :=
∫

dx ∗e (x) =
∫

dx
eix−1

ix
=

∞∑
a=1

(ix)a

a!a
, (C.13)

and

Z3

(
(a, b, c) 7→ 1

(a+ b+ 1)(a+ c+ 1)
, {ix, i y, i z}

)
=

ei yz
x

ix

[
∗ei

(
(x+ y)(x+ z)

x

)
− ∗ei

(
(x+ y)z

x

)
− ∗ei

(
y(x+ z)

x

)
+ ∗ei

(yz
x

)]
=: Eiψ(x, y, z) . (C.14)

One can check this identity with Mathematica or Maple.

C.3 The next to Leading Order Seiberg-Witten
maps

C.3.1 The Ghost Field C [3]

We start from the recursive solution (3.3b) where we can read off the next-
to-leading order (NLO) Seiberg-Witten map of the ghost field

C [3] = −ρ[0]

(
γ[1]C [2] − i

2

[
C ∗, C [2]

]
− i

2

[
C [2] ∗, C

])
. (C.15)
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Because γ[1]Aµ = 0 and γ[1]C = 0 it follows that the first term on the r.h.s. is
zero, so that we get

C [3] = i ρ[0]
(
C ∗ C [2] + C [2] ∗ C

)
= θµνρ[0]

(
sin(∧12 + ∧13)

sin∧23

∧23
CAµ(∂νC)

)
. (C.16)

Now we write the sine in its series representation so that we obtain with
(3.23)

C [3] = θµνρ[0]
∞∑

m,n=0

(−1)m

(2m+ 1)!
(−1)n

(2n+ 1)!
(∧12 + ∧13)2m+1 ∧2n

23 CAµ(∂νC)

=
θµν

2
ρ[0]
[
∧13Z2(π2, {i∧13, i∧23})

+ ∧12Z3(π3, {i∧12, i∧13, i∧23})
]
CAµ(∂νC) , (C.17)

using the notation (C.6) with

π2(a, b) =
1
2

(1 + (−1)a)(1 + (−1)b)
(a+ 1)(b+ 1)

, (C.18a)

π3(a, b, c) =
1
2

(1 + (−1)a+b)(1 + (−1)c)
(a+ 1)(c+ 1)

. (C.18b)

Before we can apply the operator ρ[0], we must symmetrize the above equa-
tion in the indices by using (C.5). To keep the expressions compact we use
the multi-index notation (cf. section A.4). With C [3] = C

[3]
Z2

+ C
[3]
Z3

we get

C
[3]
Z2

= ρ[0]
∞∑

a,b=0

ia

a!
ib

b!
π2(a, b)

θα[a+1]β[a+1]

2
θγ[b]δ[b]

2
θµν

2

(∂α[a+1]C)
[
∂(γ[b]Aµ) +

b

b+ 1
∂(γ[b−1]Fγb)µ

]
(∂β[a]∂δ[b]∂νC) (C.19a)

and

C
[3]
Z3

= ρ[0]
∞∑

a,b,c=0

ia

a!
ib

b!
ic

c!
π3(a, b, c)

θα[a+1]β[a+1]

2
θγ[b]δ[b]

2
θε[c]ζ[c]

2
θµν

2

(∂α[a+1]∂γ[b]C)
[
∂(β[a+1]∂ε[c]Aµ) +

a+ c+ 1
a+ c+ 2

∂(β[a+1]∂ε[c−1]Fεc)µ

]
(∂δ[b]∂ζ[c]∂νC) . (C.19b)

Now, we let ρ[0] operate on C [3]
Z2

and C [3]
Z3

which leads to twice as many terms,

which we again split up C
[3]
Z2

= C
[3]
Z2,A

+ C
[3]
Z2,B

and C
[3]
Z3

= C
[3]
Z3,A

+ C
[3]
Z3,B

.
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The B-type terms have a minus sign which has its origin in the interchange
of the operator ρ[0] with the ghost field C, which anti-commutes. The four
terms one obtains are

C
[3]
Z2,A

=
1
2

∞∑
a,b=0

ia

a!
ib

b!
π2(a, b)

θα[a+1]β[a+1]

2
θγ[b]δ[b]

2
θµν

2

(∂(α[a]Aαa+1))
[
1
3
∂(γ[b]Aµ) +

1
2

b

b+ 1
∂(γ[b−1]Fγb)µ

]
(∂β[a]∂δ[b]∂νC) , (C.20a)

C
[3]
Z3,A

=
1
2

∞∑
a,b,c=0

ia

a!
ib

b!
ic

c!
π1(a, b, c)

θα[a+1]β[a+1]

2
θγ[b]δ[b]

2
θε[c]ζ[c]

2
θµν

2

(∂(α[a+1]∂γ[b−1]Aγb))
[
1
3
∂(β[a+1]∂ε[c]Aµ) +

1
2
a+ c+ 1
a+ c+ 2

∂(β[a+1]∂ε[c−1]Fεc)µ

]
(∂δ[b]∂ζ[c]∂νC) , (C.20b)

C
[3]
Z2,B

= −1
2

∞∑
a,b=0

ia

a!
ib

b!
π2(a, b)

θα[a+1]β[a+1]

2
θγ[b]δ[b]

2
θµν

2

(∂α[a+1]C)
[
1
3
∂(γ[b]Aµ) +

1
2

b

b+ 1
∂(γ[b−1]Fγb)µ

]
(∂(β[a]∂δ[b]Aν)) , (C.20c)

C
[3]
Z3,B

= −1
2

∞∑
a,b,c=0

ia

a!
ib

b!
ic

c!
π1(a, b, c)

θα[a+1]β[a+1]

2
θγ[b]δ[b]

2
θε[c]ζ[c]

2
θµν

2

(∂α[a+1]∂γ[b]C)
[
1
3
∂(β[a+1]∂ε[c]Aµ) +

1
2
a+ c+ 1
a+ c+ 2

∂(β[a+1]∂ε[c−1]Fεc)µ

]
(∂(δ[b]∂ζ[c]Aν)) . (C.20d)

Before we go on, let us rewrite our result. Due to the different factors which
come from the t integration of the operator ρ[0] (3.16) we can’t combine the
two terms inside the parenthesis to just one term. Hence, in addition to
one term which is proportional to Aµ we have all other possible terms. Our
result then becomes

C
[3]
Z2,A

=
∞∑

a,b=0

ia

a!
ib

b!
π2(a, b)

θα[a+1]β[a+1]

2
θγ[b]δ[b]

2
θµν

2

(∂(α[a]Aαa+1))
[
1
6

3b+ 2
b+ 1

∂γ[b]Aµ −
1
6

b

b+ 1
∂µ∂(γ[b−1]Aγb)

]
(∂β[a+1]∂δ[b]∂νC) , (C.21a)
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C
[3]
Z3,A

=
∞∑

a,b,c=0

ia

a!
ib

b!
ic

c!
π1(a, b, c)

θα[a+1]β[a+1]

2
θγ[b]δ[b]

2
θε[c]ζ[c]

2
θµν

2

(∂(α[a+1]∂γ[b−1]Aγb))
[
1
6

3a+ 3c+ 5
a+ c+ 2

∂β[a+1]∂ε[c]Aµ

−1
6
a+ c+ 1
a+ c+ 2

∂µ∂(β[a+1]∂ε[c−1]Aεc)

]
(∂δ[b]∂ζ[c]∂νC) , (C.21b)

C
[3]
Z2,B

= −
∞∑

a,b=0

ia

a!
ib

b!
π2(a, b)

θα[a+1]β[a+1]

2
θγ[b]δ[b]

2
θµν

2

(∂α[a+1]C)
[
1
6

3b+ 2
b+ 1

∂γ[b]Aµ −
1
6

b

b+ 1
∂µ∂(γ[b−1]Aγb)

]
(∂(β[a+1]∂δ[b]Aν)) , (C.21c)

C
[3]
Z3,B

= −
∞∑

a,b,c=0

ia

a!
ib

b!
ic

c!
π1(a, b, c)

θα[a+1]β[a+1]

2
θγ[b]δ[b]

2
θε[c]ζ[c]

2
θµν

2

(∂α[a+1]∂γ[b]C)
[
1
6

3a+ 3c+ 5
a+ c+ 2

∂β[a+1]∂ε[c]Aµ

−1
6
a+ c+ 1
a+ c+ 2

∂µ∂(β[a+1]∂ε[c−1]Aεc)

]
(∂(δ[b]∂ζ[c]Aν)) . (C.21d)

Note, that there are only five different combinations how two vector fields
plus one indexless field and their derivatives can be arranged. So we can
write the A-type field C [3]

A = C
[3]
Z3,A

+ C
[3]
Z2,A

as

C
[3]
A =

θµν

2
FCI,A(i∧12, i∧13, i∧23)AµAνC

+
θµ1ν1

2
θµ2ν2

2
FCII,A(i∧12, i∧13, i∧23)(∂µ2Aµ1)(∂ν1Aν2)C

+
θµ1ν1

2
θµ2ν2

2
FCIII,A(i∧12, i∧13, i∧23)Aµ1(∂ν1Aµ2)(∂ν2C)

+
θµ1ν1

2
θµ2ν2

2
FCIV,A(i∧12, i∧13, i∧23)(∂µ2Aµ1)Aν2(∂ν1C)

+
θµ1ν1

2
θµ2ν2

2
FCV,A(i∧12, i∧13, i∧23)Aµ1Aµ2(∂ν1∂ν2C) . (C.22)

and the B-type field C [3]
B = C

[3]
Z3,B

+ C
[3]
Z2,B

as

C
[3]
B =

θµν

2
FCI,B(i∧12, i∧13, i∧23)CAµAν

+
θµ1ν1

2
θµ2ν2

2
FCII,B(i∧12, i∧13, i∧23)C(∂µ2Aµ1)(∂ν1Aν2)
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+
θµ1ν1

2
θµ2ν2

2
FCIII,B(i∧12, i∧13, i∧23)(∂µ1C)Aµ2(∂ν2Aν1)

+
θµ1ν1

2
θµ2ν2

2
FCIV,B(i∧12, i∧13, i∧23)(∂µ1C)(∂µ2Aν1)Aν2

+
θµ1ν1

2
θµ2ν2

2
FCV,B(i∧12, i∧13, i∧23)(∂µ1∂µ2C)Aν1Aν2 , (C.23)

respectively. To determine the functions FC one has to go through (C.21)
and collect all appropriate terms. With

π2,A(a, b) =
π2(a, b)

3
, (C.24a)

π3,A(a, b, c) =
1
6

π3(a, b, c)
(a+ b+ 1)(a+ c+ 2)

, (C.24b)

π2,B(a, b) =
1
3
π2(a, b)
a+ b+ 2

, (C.24c)

π3,B(a, b, c) =
1
6

π3(a, b, c)
(b+ c+ 1)(a+ c+ 2)

, (C.24d)

the functions FC are given by

FCI,A(i∧12, i∧13, i∧23) =
1
∧12

∧12 ∧23Z3(−(a+ 1)π3,A, {i∧12, i∧13, i∧23}) , (C.25a)

FCII,A(i∧12, i∧13, i∧23) =
1
∧2

12

∧12 ∧23Z3(−a(a+ 1)π3,A, {i∧12, i∧13, i∧23}) , (C.25b)

FCIII,A(i∧12, i∧13, i∧23) =
1

∧12∧23

∧12 ∧23Z3((a+ 1)(3a+ 2c+ 5)π3,A, {i∧12, i∧13, i∧23}) , (C.25c)

FCIV,A(i∧12, i∧13, i∧23) =
1

∧12∧13

∧12 ∧23Z3(−b(a+ 1))π3,A, {i∧12, i∧13, i∧23}) , (C.25d)

FCV,A(i∧12, i∧13, i∧23) =
1

∧13∧23

[
∧13 ∧23 Z2(π2,A, {i∧13, i∧23})

+ ∧12 ∧23 Z3(b(3a+ 2c+ 5)π3,A, {i∧12, i∧13, i∧23})
]

(C.25e)
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and

FCI,B(i∧12, i∧13, i∧23) =
1
∧23

[
∧13 ∧23 Z2(−π2,B, {i∧13, i∧23})

+ ∧12 ∧23 Z3(−(3a+ 2c+ 5)π3,B, {i∧12, i∧13, i∧23})
]
, (C.26a)

FCII,B(i∧12, i∧13, i∧23) =
1
∧2

23

[
∧13 ∧23 Z2(−bπ2,B, {i∧13, i∧23})

+ ∧12 ∧23 Z3(−c(3a+ 2c+ 5)π3,B, {i∧12, i∧13, i∧23})
]
, (C.26b)

FCIII,B(i∧12, i∧13, i∧23)

=
1

∧13∧23

[
∧13 ∧23 Z2(−(a+ 1)π2,B, {i∧13, i∧23})

+ ∧12 ∧23 Z3(−b(3a+ 2c+ 5)π3,B, {i∧12, i∧13, i∧23})
]
, (C.26c)

FCIV,B(i∧12, i∧13, i∧23) =
1

∧12∧23

∧12 ∧23Z3((a+ 1)(c+ 1)π3,B, {i∧12, i∧13, i∧23}) , (C.26d)

FCV,B(i∧12, i∧13, i∧23) =
1

∧12∧13

∧12 ∧23Z3((a+ 1)bπ3,B, {i∧12, i∧13, i∧23}) , (C.26e)

respectively. The NLO Seiberg-Witten map for the ghost field is then C [3] =
C

[3]
A + C

[3]
B .

To check our result let us calculate the r.h.s. of the appropriate gauge
equivalence equation (2.26). Doing so we have to calculate the commutative
BRST transformation of the map C [3], which is with C [3] = C

[3]
A + C

[3]
B

γC
[3]
A =

1
2
θµν
[
FCI,A(i∧12, i∧13, i∧23) {(∂µC)AνC +Aµ(∂νC)C}

+ FCII,A(i∧12, i∧13, i∧23) {∧12(∂µC)AνC + ∧12Aµ(∂νC)C}
+ FCIII,A(i∧12, i∧13, i∧23) {∧12CAµ(∂νC) + ∧23Aµ(∂νC)C}
+ FCIV,A(i∧12, i∧13, i∧23) {∧13(∂µC)AνC + ∧12AµC(∂νC)}

+ FCV,A(i∧12, i∧13, i∧23) {∧13CAµ(∂νC) + ∧23AµC(∂νC)}
]

(C.27)

and
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γC
[3]
B = −1

2
θµν
[
FCI,B(i∧12, i∧13, i∧23) {C(∂µC)Aν + CAµ(∂νC)}

+ FCII,B(i∧12, i∧13, i∧23) {∧23C(∂µC)Aν + ∧23CAµ(∂νC)}
+ FCIII,B(i∧12, i∧13, i∧23) {∧23(∂µC)CAν + ∧13CAµ(∂νC)}
+ FCIV,B(i∧12, i∧13, i∧23) {∧12C(∂µC)Aν + ∧23(∂µC)AνC}

+ FCV,B(i∧12, i∧13, i∧23) {∧12(∂µC)CAν + ∧13(∂µC)AνC}
]
. (C.28)

In the next step we combine all terms which are proportional to the same
fields. The subscript labels to which fields the function is proportional. We
have six different combinations of fields and derivatives, namely

FC(∂µC)AνC
(i∧12, i∧13, i∧23) =

[
FI,A(i∧12, i∧13, i∧23)

+ ∧12FII,A(i∧12, i∧13, i∧23) + ∧13FIV,A(i∧12, i∧13, i∧23)
− ∧23FIV,B(i∧12, i∧13, i∧23)− ∧13FV,B(i∧12, i∧13, i∧23)

]
, (C.29a)

FCAµ(∂νC)C(i∧12, i∧13, i∧23) =
[
FI,A(i∧12, i∧13, i∧23)

+ ∧12FII,A(i∧12, i∧13, i∧23) + ∧23FIII,A(i∧12, i∧13, i∧23)
]
, (C.29b)

FCCAµ(∂νC)(i∧12, i∧13, i∧23) =
[
∧12FIII,A(i∧12, i∧13, i∧23)

+ ∧13FV,A(i∧12, i∧13, i∧23)− FI,B(i∧12, i∧13, i∧23)
− ∧23FII,B(i∧12, i∧13, i∧23)− ∧13FIII,B(i∧12, i∧13, i∧23)

]
, (C.29c)

FCAµC(∂νC)(i∧12, i∧13, i∧23) =
[
i∧12FIV,A(i∧12, i∧13, i∧23)

+ ∧23FV,A(i∧12, i∧13, i∧23)
]
, (C.29d)

FCC(∂µC)Aν
(i∧12, i∧13, i∧23) =

[
−FI,B(i∧12, i∧13, i∧23)

− ∧23FII,B(i∧12, i∧13, i∧23)− ∧12FIV,B(i∧12, i∧13, i∧23)
]
, (C.29e)

FC(∂µC)CAν
(i∧12, i∧13, i∧23) =

[
− ∧23 FIII,B(i∧12, i∧13, i∧23)

− ∧12FV,B(i∧12, i∧13, i∧23)
]
. (C.29f)

If we now permute these six above terms so that they become proportional
to CAµ(∂νC) we get

γC [3] =
1
2
θµνCAµ(∂νC)

[
F(∂µC)AνC(− i∧23,− i∧13,− i∧12)
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− FAµ(∂νC)C(i∧23,− i∧12,− i∧13) + FCAµ(∂νC)(i∧12, i∧13, i∧23)

+ FAµC(∂νC)(− i∧12, i∧23, i∧13)− FC(∂µC)Aν
(i∧13, i∧12,− i∧23)

+ F(∂µC)CAν
(− i∧13,− i∧23, i∧12)

]
, (C.30)

where the minus sign comes from either the interchange of µ ↔ ν or from
the interchange of the two ghost fields. If we perform all the sums in the
above equation and simplify the expression we end up with

γC [3] = θµν sin(∧12 + ∧13)
sin∧23

∧23
CAµ(∂νC) , (C.31)

which is just the l.h.s. of the gauge equivalence equation for the ghost field

γ̂Ĉ =
i
2
[Ĉ ∗, Ĉ]

O(A)
= −2C sin(∧12 + ∧13)C [2]

= θµν sin(∧12 + ∧13)
sin∧23

∧23
CAµ(∂νC) . (C.32)

C.3.2 The Matter Field ψ[3]

As in the previous section we start from the recursive solution (3.3c) where
we can read off the next to leading order Seiberg-Witten map of the matter
field

ψ[3] = −ρ[0]
(
γ[1]ψ[2] − i

[
C ∗ ψ[2] + C [2] ∗ ψ

])
. (C.33)

With γ[1]Aµ = 0, γ[1]ψ = iCψ and the maps C [2] and ψ[2] we get

ψ[3] =
i
2
θµνρ[0]

(
ei(∧12+∧13) − 1
i∧12 + i∧13

Aµ∂ν(Cψ)

−ei(∧12+∧13) e
i∧23 − 1
i∧23

CAµ(∂νψ)− sin∧12

∧12
ei(∧13+∧23)Aµ(∂νC)ψ

)
. (C.34)

Since the tensor structure of these three terms is different from each other
we will tackle them one by one.

We begin with the first term which depends only on ∧12 and ∧13. The
series representation of this term is

ψ
[3]
1 =

i
2
θµνρ[0]

∞∑
a=0

1
(a+ 1)!

(i∧12 + i∧13)aAµ∂ν(Cψ)

=
1
2
θµνρ[0]

∞∑
a,b=0

(i∧12)a

a!
(i∧13)b

b!
1

a+ b+ 1
Aµ∂ν(Cψ) . (C.35)

As in the case of C [3] we introduce the multi-index notation (A.15)
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ψ
[3]
1 = i ρ[0]

∞∑
a,b=0

(i∧12)a

a!
(i∧13)b

b!
1

a+ b+ 1
θα[a]β[a]

2
θγ[b]δ[b]

2
θµν

2

(∂α[a]∂γ[b]Aµ)
[
(∂β[a]∂νC)(∂δ[b]ψ) + (∂β[a]C)(∂δ[b]∂νψ)

]
. (C.36)

In the next step we have to symmetrise the above expression in its indices
in order to perform the operator ρ[0]

ψ
[3]
1 = i ρ[0]

∞∑
a,b=0

(i∧12)a

a!
(i∧13)b

b!
1

a+ b+ 1
θα[a]β[a]

2
θγ[b]δ[b]

2
θµν

2[
∂(α[a]∂γ[b]Aµ) +

a+ b

a+ b+ 1
∂(α[a]∂γ[b−1]Fγb)µ

]
[
(∂β[a]∂νC)(∂δ[b]ψ) + (∂β[a]C)(∂δ[b]∂νψ)

]
. (C.37)

After we have obtained the expression symmetric in its indices we can go on
and apply ρ[0]

ψ
[3]
1 = i

∞∑
a,b=0

(i∧12)a

a!
(i∧13)b

b!
1

a+ b+ 1
θα[a]β[a]

2
θγ[b]δ[b]

2
θµν

2[
1
2
∂(α[a]∂γ[b]Aµ) +

a+ b

a+ b+ 1
∂(α[a]∂γ[b−1]Fγb)µ

]
[
(∂(β[a]Aν))(∂δ[b]ψ) + (∂(β[a−1]Aβa))(∂δ[b]∂νψ)

]
. (C.38)

Now we come to the second term of (C.34). The series expansion of this
expression is just

ψ
[3]
2 = − i

2
θµνρ[0]

∞∑
a,b,c=0

(i∧12)a

a!
(i∧13)b

b!
(i∧23)c

c!
1

c+ 1
CAµ(∂νψ) . (C.39)

With the multi-index notation we obtain for the second term

ψ
[3]
2 = − i ρ[0]

∞∑
a,b,c=0

(i∧12)a

a!
(i∧13)b

b!
(i∧23)c

c!
1

c+ 1

θα[a]β[a]

2
θγ[b]δ[b]

2
θε[c]ζ[c]

2
θµν

2
(∂α[a]∂γ[b]C)(∂β[a]∂ε[c]Aµ)(∂δ[b]∂ζ[c]∂νψ) . (C.40)

Now we symmetrise our expression which leads to

ψ
[3]
2 = − i ρ[0]

∞∑
a,b,c=0

(i∧12)a

a!
(i∧13)b

b!
(i∧23)c

c!
1

c+ 1

θα[a]β[a]

2
θγ[b]δ[b]

2
θε[c]ζ[c]

2
θµν

2
(∂α[a]∂γ[b]C)
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∂(β[a]∂ε[c]Aµ) +

a+ c

a+ c+ 1
∂(β[a]∂ε[c−1]Fεc)µ

]
(∂δ[b]∂ζ[c]∂νψ) . (C.41)

After this we can apply the operator ρ[0]

ψ
[3]
2 = − i

∞∑
a,b,c=0

(i∧12)a

a!
(i∧13)b

b!
(i∧23)c

c!
1

c+ 1

θα[a]β[a]

2
θγ[b]δ[b]

2
θε[c]ζ[c]

2
θµν

2
(∂(α[a]∂γ[b−1]Aγc))[

1
2
∂(β[a]∂ε[c]Aµ) +

a+ c

a+ c+ 1
∂(β[a]∂ε[c−1]Fεc)µ

]
(∂δ[b]∂ζ[c]∂νψ) . (C.42)

The series expansion of the last term is

ψ
[3]
3 = − i

2
θµνρ[0]

(
sin∧12

∧12
ei(∧13+∧23)Aµ(∂νC)ψ

)
= − i

4
θµνρ[0]

∞∑
a,b,c=0

(i∧12)a

a!
(i∧13)b

b!
(i∧23)c

c!
1 + (−1)a

a+ 1
Aµ(∂νC)ψ . (C.43)

With the multi-index notation we have

ψ
[3]
3 = − i

2
ρ[0]

∞∑
a,b,c=0

(i∧12)a

a!
(i∧13)b

b!
(i∧23)c

c!
1 + (−1)a

a+ 1

θα[a]β[a]

2
θγ[b]δ[b]

2
θε[c]ζ[c]

2
θµν

2
(∂α[a]∂γ[b]Aµ)(∂β[a]∂ε[c]∂νC)(∂δ[b]∂ζ[c]ψ) . (C.44)

After the symmetrisation the expression is

ψ
[3]
3 = − i

2
ρ[0]

∞∑
a,b,c=0

(i∧12)a

a!
(i∧13)b

b!
(i∧23)c

c!
1 + (−1)a

a+ 1

θα[a]β[a]

2
θγ[b]δ[b]

2
θε[c]ζ[c]

2
θµν

2[
∂(α[a]∂γ[b]Aµ) +

a+ b

a+ b+ 1
∂(α[a]∂γ[b−1]Fγb)µ

]
(∂β[a]∂ε[c]∂νC)(∂δ[b]∂ζ[c]ψ) . (C.45)

Now applying ρ[0] we get

ψ
[3]
3 = − i

2

∞∑
a,b,c=0

(i∧12)a

a!
(i∧13)b

b!
(i∧23)c

c!
1 + (−1)a

a+ 1
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θα[a]β[a]

2
θγ[b]δ[b]

2
θε[c]ζ[c]

2
θµν

2[
1
2
∂(α[a]∂γ[b]Aµ) +

a+ b

a+ b+ 1
∂(α[a]∂γ[b−1]Fγb)µ

]
(∂(β[a]∂ε[c]Aν))(∂δ[b]∂ζ[c]ψ) . (C.46)

We end up with three terms (C.38), (C.42) and (C.46) where the sum of
these three expressions build the NLO Seiberg-Witten map for the matter
field. As in the previous section we can write this map as

ψ[3](A,ψ) =
θµν

2
FψI (i∧12, i∧13, i∧23) AµAνψ

+
θµ1ν1

2
θµ2ν2

2
FψII (i∧12, i∧13, i∧23) (∂µ2Aµ1)(∂ν1Aν2)ψ

+
θµ1ν1

2
θµ2ν2

2
FψIII(i∧12, i∧13, i∧23) Aµ1(∂ν1Aµ2)(∂ν2ψ)

+
θµ1ν1

2
θµ2ν2

2
FψIV(i∧12, i∧13, i∧23) (∂µ2Aµ1)Aν2(∂ν1ψ)

+
θµ1ν1

2
θµ2ν2

2
FψV (i∧12, i∧13, i∧23) Aµ1Aµ2(∂ν1∂ν2ψ) . (C.47)

With the parameters

π21(a, b) =
1

a+ b+ 1
, (C.48a)

π22(a, b) =
1

(a+ 1)(a+ b+ 1)
, (C.48b)

π3(a, b, c) =
1

(a+ b+ 1)(a+ c+ 1)
, (C.48c)

the above Fψ functions are

FψI (i∧12, i∧13, i∧23) =
i
2

[
Z3(π3, {i∧12, i∧13, i∧23})

+
1
2
[Z3(π3, {i∧12, i∧13, i∧23}) + Z3(π3, {− i∧12, i∧13, i∧23})]

− ei∧13 [Z2(π22, {i∧12, i∧23}) + Z2(π22, {− i∧12, i∧23})]
]
, (C.49a)

FψII (i∧12, i∧13, i∧23) =
i
2

1
∧12

[
Z3(aπ3, {i∧12, i∧13, i∧23})

+
1
2
[Z3(aπ3, {i∧12, i∧13, i∧23}) + Z3(aπ3, {− i∧12, i∧13, i∧23})]

− ei∧13 [Z2(aπ22, {i∧12, i∧23}) + Z2(aπ22, {− i∧12, i∧23})]
]
, (C.49b)
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FψIII(i∧12, i∧13, i∧23)

=
i
2

1
∧12

[
−ei∧13 −1

i∧13
+ ei∧23 Z2(π21, {i∧12, i∧13})

]
+

i
4

1
∧13

[Z3(bπ3, {i∧12, i∧13, i∧23}) + Z3(bπ3, {− i∧12, i∧13, i∧23})]

+
1
2
∧23

∧12
Z3(π3, {i∧12, i∧13, i∧23}) , (C.49c)

FψIV(i∧12, i∧13, i∧23) =
i
2

1
∧23

[
−2
(
ei∧23 −1

)
Z2(π21, {i∧12, i∧13})

+ ei∧13 [Z2(π21, {i∧12, i∧23}) + Z2(π21, {− i∧12, i∧23})]

− 2
sin(∧12)
∧12

ei(∧13+∧23) +
1
2
[Z3(cπ3, {i∧12, i∧13, i∧23})

+ Z3(cπ3, {− i∧12, i∧13, i∧23})] + Z3(cπ3, {i∧12, i∧13, i∧23})
]
, (C.49d)

FψV (i∧12, i∧13, i∧23) =
i
2

∧12

∧13∧23

[
sin(∧12)
∧12

ei(∧13+∧23)

− 1
2

ei∧13 [Z2(π21, {i∧12, i∧23}) + Z2(π21, {− i∧12, i∧23})]

− 1
2
[Z3(cπ3, {i∧12, i∧13, i∧23}) + Z3(cπ3, {− i∧12, i∧13, i∧23})]

]
+

ei∧23 −1
i∧23

Z2(π21, {i∧12, i∧13)−
1
2
Z3(π3, {i∧12, i∧13, i∧23}) . (C.49e)

With the identity (C.10) and the above defined functions (C.11), (C.12) and
(C.14) we can rewrite the Fψ function

FψI (i∧12, i∧13, i∧23) = − i
2

ei∧13
1
∧12

[∗ei(∧12 + ∧23) + ∗ei(− ∧12 +∧23)− 2 ∗ei (∧23)]

+
i
4
[3Eiψ(∧12,∧13,∧23) + Eiψ(−∧12,∧13,∧23)] , (C.50a)

FψII (i∧12, i∧13, i∧23) = ∂∧12F
ψ
I (i∧12, i∧13, i∧23) , (C.50b)

FψIII(i∧12, i∧13, i∧23) =
1
2
∧23

∧12
Eiψ(∧12,∧13,∧23)

+
i
4
∂∧13 [Eiψ(∧12,∧13,∧23) + Eiψ(−∧12,∧13,∧23)]

+
i
2

1
∧12

[
− ∗e (∧13) + ei∧23 ∗e(∧12 + ∧13)

]
, (C.50c)
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FψIV(i∧12, i∧13, i∧23) = ∗e(∧23) ∗e (∧12 + ∧13)

+
i
4
∂∧23 [3 Eiψ(∧12,∧13,∧23) + Eiψ(−∧12,∧13,∧23)]

i
2

1
∧23

[
ei∧13 [∗e(∧12 + ∧23) + ∗e(− ∧12 +∧23)]

− 2
sin(∧12)
∧12

ei(∧13+∧23)

]
, (C.50d)

FψV (i∧12, i∧13, i∧23) =
i
2

∧12

∧13∧23

[
sin(∧12)
∧12

ei(∧13+∧23)

− 1
2

ei∧13 [∗e(∧12 + ∧23) + ∗e(−∧12,∧23)]
]

− i
4
∧12

∧13
∂∧23 [Eiψ(∧12,∧13,∧23) + Eiψ(−∧12,∧13,∧23)]

+ ∗e(∧23) ∗e (∧12 + ∧13)−
1
2

Eiψ(∧12,∧13,∧23) . (C.50e)

Again, we test our result by checking the appropriate gauge equivalence
equation (2.26). The r.h.s. of this equation is

γψ[3] =
1
2
θµν
[
FψI (i∧12, i∧13, i∧23) {(∂µC)Aνψ +Aµ(∂νC)ψ}

+ FψII (i∧12, i∧13, i∧23) {∧12(∂µC)Aνψ + ∧12Aµ(∂νC)ψ}

+ FψIII(i∧12, i∧13, i∧23) {∧12CAµ(∂νψ) + ∧23Aµ(∂νC)ψ}

+ FψIV(i∧12, i∧13, i∧23) {∧13(∂µC)Aνψ + ∧12AµC(∂νψ)}

+ FψV (i∧12, i∧13, i∧23) {∧13CAµ(∂νψ) + ∧23AµC(∂νψ)}
]
. (C.51)

We combine all terms which are proportional to the same fields. The four
different types of field configurations are

Fψ(∂µC)Aνψ
(i∧12, i∧13, i∧23) =

[
FψI (i∧12, i∧13, i∧23)

+ ∧12F
ψ
II (i∧12, i∧13, i∧23) + ∧13F

ψ
III(i∧12, i∧13, i∧23)

]
, (C.52a)

FψAµ(∂νC)ψ(i∧12, i∧13, i∧23) =
[
FψI (i∧12, i∧13, i∧23)

+ ∧12F
ψ
II (i∧12, i∧13, i∧23) + ∧23F

ψ
IV(i∧12, i∧13, i∧23)

]
, (C.52b)

FψCAµ(∂νψ)(i∧12, i∧13, i∧23) =
[
∧12F

ψ
III(i∧12, i∧13, i∧23)
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+ ∧13F
ψ
V (i∧12, i∧13, i∧23)

]
, (C.52c)

FψAµC(∂νψ)(i∧12, i∧13, i∧23) =
[
∧12F

ψ
IV(i∧12, i∧13, i∧23)

+ ∧23F
ψ
V (i∧12, i∧13, i∧23)

]
, (C.52d)

where the subscription of each function labels the appropriate field configu-
ration.

If we now appropriately combine the first and the second as well as the
third and the fourth term we get

γψ[3] =
1
2
θµν
[(
FψCAµ(∂νψ)(i∧12, i∧13, i∧23)

+ FψAµC(∂νψ)(− i∧12, i∧23, i∧13)
)
CAµ(∂νψ)

+
(
FψAµ(∂νC)ψ(i∧12, i∧13, i∧23)

− Fψ(∂µC)Aνψ
(− i∧12, i∧23, i∧13)

)
Aµ(∂νC)ψ

]
, (C.53)

where the minus sign comes form θµν because one has to interchange µ↔ ν.
If we perform all the sums in the above equation and simplify the expression
we end up with

γψ[3] = − i
2
θµν

[
ei(∧12+∧13) ei∧23 −1

i∧23
CAµ(∂νψ)

+
sin(∧12)
∧12

ei(∧13+∧23)Aµ(∂νC)ψ
]
. (C.54)

This is just the l.h.s. of the gauge equivalence equation of the matter field

γ̂ψ̂ = i Ĉ ∗ ψ̂ O(A)
= iC ∗ ψ[2] + iC [2] ∗ ψ

= − i
2
θµν

[
ei(∧12+∧13) ei∧23 −1

i∧23
CAµ(∂νψ)

+
sin(∧12)
∧12

ei(∧13+∧23)Aµ(∂νC)ψ
]
. (C.55)

C.4 Proof of the Homotopy Equation

Theorem C.4.1. Let yα, zα and wα be the coordinates defined in section
3.2. Let f be a function of these variables of the form

f(y, z, w) = yα[0,a]zβ[1,b]wγ[0,c] , a ≥ 0 , b ≥ 1 , c ≥ 0 , (C.56)
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i.e. the function has to depend at least on one z. The multi-index notation
is defined in section A.4. Let furthermore γ[0] be a differential of the form

γ[0]yα = zα , γ[0]zα = 0 and γ[0]wα = 0 . (C.57)

Then

ρ[0]f(y, z, w) =

t∫
0

dt
t

[
yα

∂

∂zα
f

]
(ty, tz, w) (C.58)

is the contracting homotopy for γ[0], i.e.

N = ρ[0]γ[0] + γ[0]ρ[0] (C.59)

satisfies
Nf = f . (C.60)

Proof. First note, that γ[0], ρ[0] and z all have an odd Grassmann parity. So
they all anticommute with each other. Now, let us derive how the differential
acts on yα[a], namely

γ[0]yα[1,a] =
a∑
i=1

yα1 . . . yαi−1zαiyαi+1 . . . yαa

=
a∑
i=1

yα[1,i−1]zαiyα[i+1,a] . (C.61)

Up to the t integration in the definition of ρ[0] this operator acts on zβ[b] like[
yα

∂

∂zα
zβ[1,b]

]
=

b∑
i=1

(−1)i+1zβ[1,i−1]yβizβ[i+1,b] . (C.62)

The t integral is trivial, namely

1∫
0

dt
tatb

t
=

1
a+ b

. (C.63)

Let us calculate the first term on the r.h.s. of (C.59)

ρ[0]γ[0]f(y, z, w) = ρ[0]

[
a∑
i=1

yα[1,i−1]zαiyα[i+1,a]zβ[b]wγ[c]

]

=
1

a+ b

[
ayα[1,a]zβ[1,b] −

a∑
i=1

b∑
j=1

yα[1,i−1]zαiyα[i+1,a]

(−1)j+1zβ[1,j−1]yβjzβ[j+1,b]

]
wγ[1,c] . (C.64)
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The second term is

γ[0]ρ[0]f(y, z, w) = γ[0] 1
a+ b

yα[a]
b∑

j=1

(−1)j+1zβ[1,j−1]yβjzβ[j+1,b]wγ[c]


=

1
a+ b

[
a∑
i=1

b∑
j=1

yα[1,i−1]zαiyα[i+1,a]

(−1)j+1zβ[1,j−1]yβjzβ[j+1,b] + yα[1,a]bzβ[1,b]

]
wγ[1,c] . (C.65)

Obviously the sum (ρ[0]γ[0] + γ[0]ρ[0])f(y, z, w) gives f(y, z, w).

C.5 Proofs of the Recursive Solutions

The following proofs are based on the work of Barnich, Brandt and Grigoriev
[2]. Some helpful suggestions came from Rauh [32]. The first proof is worked
out in more detail than the latter two, because the procedure is always the
same.

Definition C.5.1. The variables {y} and {z} are defined in section 3.2.
The homogeneity degree [ · ] (also called just “order”) of a function f(y, z, w)
counts the number of ys and zs. A function of homogeneity degree k will be
denoted by f [k].

C.5.1 Ghost Field Solution

Theorem C.5.1. A special recursive solution

Ĉ =
∞∑
k=1

C [k] , C [1] = C , (C.66)

of the equation
i
2
[Ĉ ∗, Ĉ] = γĈ (C.67)

is given by

C [k] = −ρ[0]

(
γ[1]C [k−1] − i

2

k−1∑
l=1

[
C [l] ∗, C [k−l]

])
. (C.68)

Proof. At first order in k, the equation (C.67) is satisfied due to γ[0]C = 0
and γ[1]C = 0

i
2
[C ∗, C]− γC = −C sin(∧12)C =: r[2] . (C.69)
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Obviously, the above expression is of second order in the homogeneity. It
vanishes if z, i.e. the differentiated ghost contribution, becomes zero.

Let us assume that Ck−1 =
∑k−1

l=1 C
[l] satisfies (C.67) up to homogeneity

degree k. This means that

γCk−1 − i
2
[
Ck−1 ∗, Ck−1

]
= r[k] +

∑
m≥0

q[k+1+m] . (C.70)

If we apply γ − i[Ck−1 ∗, · ] to the l.h.s. of (C.70) we see that it vanishes
identically

γ2Ck−1 − i
2
γ
[
Ck−1 ∗, Ck−1

]
− i
[
Ck−1 ∗, γCk−1

]
− 1

2

[
Ck−1 ∗,

[
Ck−1 ∗, Ck−1

]]
= − i

2
[
γCk−1 ∗, Ck−1

]
+

i
2
[
Ck−1 ∗, γCk−1

]
− i
[
Ck−1 ∗, γCk−1

]
= 0 . (C.71)

We used the nilpotency of γ and the fact that the nested commutator is
always zero due to the Jacobi identity. Because the l.h.s. vanishes it follows
from the r.h.s.

0 = γr[k] + γ
∑
m≥0

q[k+1+m] − i
[
Ck−1 ∗, ·r[k]

]
− i
[
Ck−1 ∗,

∑
m≥0

q[k+1+m]
]

= γ[0]r[k] +
∑
m≥0

q̃[k+1+m] . (C.72)

So in lowest order this implies that γ[0]r[k] = 0.
In homogeneity degree k (C.67) and (C.70) imply

γ[0]C [k] = −γ[1]C [k−1] +
i
2

k−1∑
l=1

[
C [l] ∗, C [k−l]] = r[k] . (C.73)

Let us assume, that r[k](0, 0, w) = 0, or that r[k] depends at least on one z.
Thus, one obtains with the use of theorem C.4.1

− r[k] = −(ρ[0]γ[0] + γ[0]ρ[0])r[k] = γ[0]
(
−ρ[0]r[k]

)
. (C.74)

Obviously C [k] = −ρ[0]r[k] solves (C.73) as we suggested.
What we still have to show is that r[k] depends at least on one differenti-

ated ghost, i.e. on one z. For k = 2 we have shown this explicitely by direct
calculation (C.69). Suppose that no r[l] for l < k depend on undifferentiated
ghosts. Then C [l] = −ρ[0]r[l] depends only on differentiated ghosts. Thus,
with (C.73), r[k] doesn’t depend on undifferentiated ghost if

γ[1]C [k−1] − i
[
C ∗, C [k−1]

]
(C.75)
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doesn’t. And indeed, this is the case, namely the first term is zero, because
γ[1]y = 0 as well as γ[1]z = 0. The second term is

− i
[
C ∗, C [k−1]

]
= 2C sin(∧12)C [k−1] , (C.76)

which depends only on differentiated ghosts, because the series expansion of
the sine starts with ∧12.

We know that r[2] depends on, at least, one ghost (C.69). Suppose
r[k−1] depends on a ghost. Then r[k] depends on a ghost, too. Namely,
the differential γ and the commutator in (C.73) increase the number of
ghosts by one whereas ρ[0] lower the number by one. Thus, with (C.73) and
C [k] = −ρ[0]r[k], one sees that r[k] depends, at least, on one ghost.

Hence we conclude that every term of r[k] depends, at least, on one
differentiated ghost which means that the theorem C.4.1 is valid for the
function r[k].

C.5.2 Gauge Field Solution

Theorem C.5.2. A special recursive solution

Âµ =
∞∑
k=1

A[k]
µ , A[1]

µ = Aµ , (C.77)

of the equation
∂µĈ − i

[
Âµ ∗, C

]
= γÂµ (C.78)

is given by

A[k]
µ = −ρ[0]

(
γ[1]A[k−1]

µ − ∂µC
[k] + i

k−1∑
l=1

[
A[l]
µ
∗, C [k−l]

])
. (C.79)

Proof. At first order in k, the equation (C.78) is satisfied due to γ[0]Aµ =
∂µC and γ[1]Aµ = 0

∂µC + ∂µC
[2] − i

[
Aµ ∗, C

]
− γAµ = ∂µC

[2] − i
[
Aµ ∗, C

]
= t[2]µ . (C.80)

Obviously, the expression t
[2]
µ of second order in the homogeneity depends

only on differentiated ghosts.
Let us assume that Ak−1

µ =
∑k−1

l=1 A
[l]
µ satisfies (C.78) up to order k. This

means that

γAk−1
µ − ∂µĈ + i

[
Ak−1
µ

∗, Ĉ
]

= t[k]µ
∑
m≥0

v[k+1+m]
µ , (C.81)
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whereas t[k]µ depends only on differentiated ghosts. Now if we apply γ−i[Ĉ ∗, · ]
to the l.h.s. of (C.70) we see that it vanishes identically

γ2Ak−1
µ − ∂µγĈ + i γ

[
Ak−1
µ

∗, Ĉ
]

− i
[
Ĉ ∗, γAk−1

µ

]
+ i
[
Ĉ ∗, ∂µĈ

]
+
[
Ĉ ∗,
[
Ak−1
µ

∗, Ĉ
]]

= − i ∂µ(Ĉ ∗ Ĉ) + i
[
γAk−1

µ
∗, Ĉ
]
+ i
[
Ak−1
µ

∗, γĈ
]

− i
[
γAk−1

µ
∗, Ĉ
]
+ i ∂µ(Ĉ ∗ Ĉ) +

[
Ĉ ∗,
[
Ak−1
µ

∗, Ĉ
]]

=
1
2

([
Ak−1
µ

∗,
[
Ĉ ∗, Ĉ

]]
+
[
Ĉ ∗,
[
Ak−1
µ

∗, Ĉ
]]

+
[
Ĉ ∗,
[
Ĉ ∗, Ak−1

µ

]])
= 0 . (C.82)

The last equality is satisfied due to the Jacobi identity. In homogeneity
degree k (C.78) and (C.81) imply

γ[0]A[k]
µ = −γ[1]A[k−1]

µ + ∂µĈ + i
k−1∑
l=1

[
A[l]
µ
∗, C [k−l]] = −t[k]µ . (C.83)

Under the assumption that t[k]µ (0, 0, w) = 0 the theorem C.4.1 is valid. With
γ[0]t

[k]
µ = 0 one finds, that A[k]

µ = −ρ[0]t
[k]
µ is a solution to (C.83), as sug-

gested.
What we sill have to show is, that t[k]µ (0, 0, w) is indeed zero. Thus we

have to show, that r[k] depends only on differentiated ghosts.
For k = 2 we have shown by a direct calculation (C.80) that t[2]µ (0, 0, w) =

0. For k > 2 the only dependence on undifferentiated ghosts can come from
the terms

γ[1]A[k−1]
µ − i

[
A[k]
µ

∗, C
]

= 2A[k]
µ sin(∧12)C . (C.84)

which depend only on differentiated ghosts, because the series expansion of
the sine starts with ∧12.

C.5.3 Matter Field Solution

Theorem C.5.3. A special recursive solution

ψ̂ =
∞∑
k=1

ψ[k] , ψ[1] = ψ , (C.85)

of the equation
i Ĉ ∗ ψ̂ = γψ̂ (C.86)

is given by

ψ[k] = −ρ[0]

(
γ[1]ψ[k−1] − i

k−1∑
l=1

C [l] ∗ ψ[k−l]

)
. (C.87)
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Proof. At first order in k, the equation (C.86) is satisfied due to γ[0]ψ = 0
and γ[1]C = iCψ

iC ∗ ψ − γψ = i(C ∗ ψ − Cψ) =: s[2] . (C.88)

Obviously, the expression s[2] of second order in the homogeneity depends
only on differentiated ghosts. The zeroth order of the star-product cancels
−Cψ. So it vanishes if z becomes zero.

Let us assume that ψk−1 =
∑k−1

l=1 ψ
[l] satisfies (C.86) up to order k. This

means that
γψk−1 − i Ĉ ∗, ψk−1 = s[k] +

∑
m≥0

u[k+1+m] , (C.89)

whereas s[k] depends only on differentiated ghosts. Now if we apply γ− i Ĉ∗
to the l.h.s. of (C.89) we see that all terms up to order k + 1 vanish

γ2ψk−1 − i γ
(
Ĉ ∗ ψk−1

)
− i Ĉ ∗

(
γψk−1

)
− Ĉ ∗

(
Ĉ ∗ ψk−1

)
=

1
2
[
Ĉ, Ĉ

]
∗ ψk−1 + i Ĉ ∗

(
γψk−1

)
− i Ĉ ∗

(
γψk−1

)
− Ĉ ∗

(
Ĉ ∗ ψk−1

)
= −Ĉ ∗ Ĉ ∗ ψk−1 . (C.90)

So in homogeniety degree k this implies that γ[0]s[k] = 0.
In order k (C.86) and (C.89) imply

γ[0]ψ[k] = −γ[1]ψ[k−1] + i
k−1∑
l=1

C [l] ∗, ψ[k−l]] = s[k] . (C.91)

Under the assumption that s[k](0, 0, w) = 0 the theorem C.4.1 is valid. With
γ[0]s[k] = 0 one finds, that ψ[k] = −ρ[0]s[k] is a solution to (C.91), as sug-
gested.

What we still have to show is, that s[k](0, 0, w) is indeed zero. Thus we
have to show, that s[k] depends only on differentiated ghosts.

For k = 2 we have shown by a direct calculation (C.88) that s[2](0, 0, w) =
0. For k > 2 the only dependence on undifferentiated ghosts can come from
the terms

γ[1]ψ[k−1] − iC ∗ ψ[k−1] = iCψ[k−1] − iC ∗ ψ[k−1] , (C.92)

which depend only on differentiated ghost, because the zeroth order of the
star-product cancels iCψ[k−1].



Appendix D

Alternative Ansatz

We want show by an explicit calculation that the “differential evolution
equations” from [34] don’t result in a valid Seiberg-Witten map for the
ghost field in next-to-leading order.

Based on the “differential evolution equations”

Ċ(t) =
1
4
θµν

[
∂µC

∗(t), Aν

]
+
, (D.1a)

Ȧλ(t) = −1
4
θµν

[
Aµ

∗(t), ∂νAλ + Fνλ

]
+
, (D.1b)

we want calculate C̃ [3], which is composed of one ghost field and two gauge
fields. The function ∗(t) is defined in (4.1). In order to be able to get the
desired map we want first calculate the n-th derivative of Ċ(t) with respect
to t

∂nĊ(t)
∂tn

=
1
4
θµν

n∑
i=0

i∑
j=0

(
n
i

)(
i
j

)[
∂µC

(n−i)(t) ∗
(i−j)(t), A(j)

ν (t)
]
+
. (D.2)

In the general case this equation would become very complex because one
recursively has to replace the derivative of the fields by (D.1). But because
we only want to calculate C̃ [3], we could stop the recursive replacement after
the first step. So for that case we obtain for the n-th derivative

∂nĊ3(t)
∂tn

=
1
16
θµνθρσ

n∑
i=0

i∑
j=0

(
n
i

)(
i
j

)
([
∂µ
[
∂ρC

∗(n−i−1)(t), Aσ
]
+
∗(i−j)(t), A(j)

ν (t)δj0
]
+

−
[
∂µC

(n−i)(t)δin ∗(i−j)(t),
[
Aρ

∗(j−1)(t), ∂σAν + Fσν
]
+

]
+

)
, (D.3)

where δij is the usual Kronecker delta. Our desired Seiberg-Witten map C̃ [3]

is according to (4.5) the sum over all n for t = 0

109
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C̃ [3] =
∞∑
n=0

1
(n+ 1)!

dn Ċ3(t)
dtn

∣∣∣∣∣
t=0

=
1
16
θµνθρσ

n∑
i=0

i∑
j=0

(
n
i

)(
i
j

)
((

(i∧12)n−i−1 + (− i∧12)n−i−1
)

(
(i(∧13 + ∧23))i−j + (− i(∧13 + ∧23))i−j

)
δj 0∂µ

(
(∂ρC)Aσ

)
Aν

−
(
(i(∧12 + ∧13))i−j + (− i(∧12 + ∧13))i−j

) (
(i∧23)j−1 + (− i∧23)j−1

)
δi n(∂µC)Aρ

(
∂σAν + Fσν

))
. (D.4)

If we perform the sums we obtain

C̃ [3] =
1
16
θµνθρσ((

ei(∧12+∧13+∧23)−1
i∧12 i(∧12 + ∧13 + ∧23)

+
ei(−∧12+∧13+∧23)−1

i(−∧12) i(− ∧12 + ∧13 +∧23)

)
(

ei(∧12−∧13−∧23)−1
i∧12 i(∧12 − ∧13 − ∧23)

+
ei(−∧12−∧13−∧23)−1

i(−∧12) i(− ∧12 − ∧13 −∧23)

)
∂µ
(
(∂ρC)Aσ

)
Aν

−

(
ei(∧12+∧13+∧23)−1

i∧23 i(∧12 + ∧13 + ∧23)
+

ei(∧12+∧13−∧23)−1
i(−∧23) i(∧12 + ∧13 − ∧23)

)
(

ei(−∧12−∧13+∧23)−1
i∧23 i(− ∧12 − ∧13 +∧23)

+
ei(−∧12−∧13−∧23)−1

i(−∧23) i(− ∧12 − ∧13 −∧23)

)

(∂µC)Aρ
(
∂σAν + Fσν

))
. (D.5)

Now let us rewrite the above expression in trigonometric functions, which
leads to

C̃ [3] = −1
8
θµνθρσ((
cos(∧12 + ∧13 + ∧23)− 1
i∧12 i(∧12 + ∧13 + ∧23)

+
cos(∧12 − ∧13 − ∧23)− 1
i∧12 i(∧12 − ∧13 − ∧23)

)
∂µ
(
(∂ρC)Aσ

)
Aν

−
(

cos(∧12 + ∧13 + ∧23)− 1
i∧23 i(∧12 + ∧13 + ∧23)

+
cos(− ∧12 − ∧13 +∧23)− 1
i∧23 i(− ∧12 − ∧13 +∧23)

)
(∂µC)Aρ

(
∂σAν + Fσν

))
. (D.6)
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Let
F (ix, i y) :=

cos(x+ y)− 1
ix i(x+ y)

+
cos(x− y)− 1

ix i(x− y)
, (D.7)

which has the property that it is even in both of its arguments

F (ix, i y) = F (ix,− i y) = F (− ix, i y) = F (− ix,− i y) . (D.8)

With this function we can rewrite (D.6), namely

C̃ [3] = −1
8
θµνθρσ

(
F (i∧12, i(∧13 + ∧23))∂µ

(
(∂ρC)Aσ

)
Aν

− F (i∧23, i(∧12 + ∧13))(∂µC)Aρ
(
∂σAν + Fσν

))
. (D.9)

Now let us check if C̃ [3] satisfies the gauge equivalence equation (2.26).
The r.h.s. of that equation is

γC̃ [3] = −1
8
θµνθρσ

(
F (i∧12, i(∧13 + ∧23))

[
−(∂µ∂ρC)(∂σC)Aν

− (∂ρC)(∂µ∂σC)Aν − (∂µ∂ρC)Aσ(∂νC)− (∂ρC)(∂µAσ)(∂νC)
]

− F (i∧23, i(∧12 + ∧13))
[
−2(∂µC)(∂ρC)(∂σAν) + (∂µC)(∂ρC)(∂νAσ)

− (∂µC)Aρ(∂ν∂σC)
])
. (D.10)

After exchanging the fields in such a way that we obtain one field configu-
ration we get

γC̃ [3] = −1
2
θµν
[
∧13F (i∧13, i(∧12 − ∧23))

− ∧12F (i∧12, i(∧13 + ∧23))
]
CAµ(∂νC) . (D.11)

If we compare this result with (C.32) we find that, actually

1
2

[
− ∧13 F (i∧13, i(∧12 − ∧23)) + ∧12F (i∧12, i(∧13 + ∧23))

]
6= sin(∧12 + ∧13)

sin∧23

∧23
. (D.12)

One can see that the left and right hand side is unequal if one expands
the two sides in ∧12, ∧13 and ∧23. The zeroth and first order are equal,
but even the second order in each argument is different. So the solution of
the “differential evolution equations” doesn’t satisfy the gauge equivalence
equations.



112 APPENDIX D. ALTERNATIVE ANSATZ


	Zusammenfassung
	Introduction
	Technical Basics
	The Moyal-Weyl Star-Product
	Perturbation Theory
	Lorentz Invariance
	The Noncommutative Action
	Ordinary Quantum Electrodynamics
	Noncommutative Quantum Electrodynamics
	Seiberg-Witten maps
	Noncommutative Action with Seiberg-Witten maps

	Choice of the Representation
	Time-Ordering
	The Model

	Seiberg-Witten Maps
	Basics on Cohomology
	The Contracting Homotopy
	The Leading Order Ghost Field Map
	The Leading Order Matter Field Map
	The Leading Order Gauge Field Map
	Higher Order Maps
	The Calculation in Three Steps

	Ambiguities
	Alternative Ansatz
	Leading Order Gauge Field Map
	Comparison

	Feynman Rules
	Propagators
	The f  g Vertex
	The ggg Vertex
	The f  gg Vertex
	Remarks

	Scattering Process
	The Amplitude of f  
	The t- and u-Channel
	The s-Channel
	The Contact Vertex
	Differential Cross Section
	Discussion

	Tree Level Unitarity
	Constraints
	Irregularities
	The Case  = 0
	Irregular Angles
	Illustration
	Discussion

	Summary and Outlook
	Notations and Definitions
	Units, Special Relativity and Noncommutativity
	Graded Star Commutator
	Symmetrisation Parenthesis
	Multi-Index Notation
	Miscellaneous Notation

	Traces and Time Ordering
	Traces
	Time Ordering

	Seiberg-Witten maps
	Some Identities
	Sums
	The next to Leading Order Seiberg-Witten maps
	The Ghost Field C[3]
	The Matter Field [3]

	Proof of the Homotopy Equation
	Proofs of the Recursive Solutions
	Ghost Field Solution
	Gauge Field Solution
	Matter Field Solution


	Alternative Ansatz
	Ghost Vertex
	Loop Calculation
	Fermion Loop Contribution
	Fermion Tadpole Contribution
	Discussion
	The Integral

	Bibliography
	Danksagung und Lebenslauf

