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There is something fascinating about science.
One gets such wholesale returns of conjecture
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Abstract

The celebrated AdS/CFT dualities provide a window to strongly-coupled quantum field
theories (QFTs), which are realized in nature at the most fundamental level on the one
hand, but are hardly accessible for the standard mathematical tools on the other hand. The
prototype examples of AdS/CFT relate classical supergravity theories on (d+ 1)-dimensional
anti-de Sitter space (AdS) to strongly-coupled d-dimensional conformal field theories (CFTs).
The AdS spacetimes are characterized by a constant negative curvature and admit a timelike
conformal boundary, on which the dual CFT is defined. In that sense the AdS/CFT dualities
are holographic, and this new approach has led to remarkable progress in understanding
strongly-coupled QFTs defined on Minkowski space and on the Einstein cylinder. On the
other hand, the study of QFT on more generic curved spacetimes is of fundamental interest
and non-trivial already for free theories. Moreover, understanding the properties of gravity
– the actual description of spacetime dynamics – as a quantum theory remains among the
hardest problems to solve in physics. Both of these issues can be studied holographically and
we are interested here in generalizations of AdS/CFT involving on the lower-dimensional
side QFTs on curved backgrounds and as a further generalization gravity.

In the first part we take the natural first step from flat-space QFT towards gravity and
expand on the holographic description of QFT on fixed curved backgrounds. The description
of a CFT on a specific background involves gravity on an asymptotically-AdS space with that
prescribed boundary structure. We discuss geometries with de Sitter and AdS as conformal
boundary to holographically describe CFTs on these maximally symmetric spacetimes. After
setting up the procedure of holographic renormalization we study the reflection of CFT
unitarity properties in the dual bulk description. The geometry with AdS on the boundary
exhibits a number of interesting features, mainly due to the fact that the boundary itself has a
boundary. We study both cases and resolve potential tensions between the unitarity properties
of the bulk and boundary theories, which would be incompatible with a duality. The origin of
these tensions is partly in the structure of the geometry with AdS conformal boundary, while
another one arises for a particular limiting case where the bulk and boundary descriptions
näıvely disagree. Besides technical challenges, the interesting hierarchy of boundaries for
the geometry with AdS conformal boundary offers the possibility of multi-layered AdS/CFT
dualities. Namely, having the dual theory on the conformal boundary itself defined on an
AdS space of codimension 1 offers the logical possibility of implementing a second instance
of AdS/CFT. We discuss an appropriate geometric setting allowing for the notion of the
boundary of a boundary and draw conclusions on limitations for such multi-layered dualities
from our previous investigation of holographic renormalization.

In the second part we consider five-dimensional supergravities resulting from string theory as
low-energy limits and whose solutions can be lifted to actual string-theory backgrounds. We
work out the asymptotic structure of the theories on asymptotically-AdS spaces, carry out
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the holographic renormalization and calculate the Weyl anomaly of the dual CFTs. These
holographic calculations confirm the expectations from the field-theory side and provide
a non-trivial test of the AdS/CFT conjecture. Moreover, the holographic renormalization
also alters the symplectic structure of the bulk theory, and building on the previous results
we show that in addition to Dirichlet also Neumann or mixed boundary conditions can be
imposed. That deformation of AdS/CFT by changing the boundary conditions in particular
promotes the boundary metric to a dynamical quantity and is expected to yield a holographic
relation between a conformal supergravity on the boundary and the bulk theory. The
boundary theory obtained this way exhibits pathologies such as perturbative ghosts, which is
in fact expected for a conformal gravity. The fate of these ghosts beyond perturbation theory
actually is a longstanding question and our setting provides a starting point to study it
from the string-theory perspective. That discussion leads to a regime where the holographic
description of the boundary theory requires quantization of the bulk supergravity.

A necessary ingredient of any supergravity is a number of gravitinos as superpartners of
the graviton, for which we thus need an effective-QFT description – to make sense of
AdS/CFT beyond the limit where bulk theory becomes classical, but also more generally
e.g. for cosmological applications. In particular, quantization should be possible not only on
rigid AdS, but also on generic asymptotically-AdS spacetimes which may not be Einstein.
In the third part we study the quantization and causality properties of the gravitino on
Friedmann-Robertson-Walker spacetimes to explicitly show that a consistent quantization
can be carried out also on non-Einstein spaces, in contrast to claims in the recent literature.
Furthermore, this reveals interesting non-standard effects for the gravitino propagation,
which in certain cases is restricted to regions more narrow than the expected light cones.
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Zusammenfassung

Die bemerkenswerten AdS/CFT-Dualitäten ermöglichen einen Zugang zu stark gekoppelten
Quantenfeldtheorien (QFT), welche einerseits für die Beschreibung der Natur auf fundamen-
taler Ebene eine große Rolle spielen, andererseits aber mittels der üblichen mathematischen
Methoden schwer zu behandeln sind. Die etablierten Beispiele solcher AdS/CFT-Dualitäten
liefern eine Identifikation von klassischen supersymmetrischen Gravitationstheorien auf
(d+ 1)-dimensionalen anti-de Sitter Räumen (AdS) mit d-dimensionalen stark gekoppelten
konformen Feldtheorien (CFT). Die AdS Raumzeiten zeichnen sich durch konstante negative
Krümmung aus und besitzen einen zeitartigen konformen Rand, auf dem die duale CFT
definiert ist. In diesem Sinn sind die Dualitäten also holographisch, und dieser neue Zugang
hat zu beachtlichen Fortschritten im Verständnis von CFT auf der Minkowski Raumzeit
und dem Einstein-Zylinder geführt. Auf der anderen Seite ist das Verständnis von QFT auf
allgemeineren gekrümmten Mannigfaltigkeiten von besonderem Interesse und nicht-trivial
bereits für freie Theorien. Darüber hinaus bleibt das Verständnis von Gravitation, der eigent-
lichen Beschreibung von dynamischer Raumzeit, als Quantentheorie eines der schwierigsten
Probleme in der Physik. Beide Fragestellungen können holographisch untersucht werden,
und wir sind hier an Verallgemeinerungen der üblichen AdS/CFT-Dualitäten interessiert,
welche auf der niederdimensionalen Seite QFT auf gekrümmten Räumen und als weitere
Verallgemeinerung auch Gravitation beschreiben.

Im ersten Teil beschäftigen wir uns mit dem natürlichen ersten Schritt von QFT auf flachen
Räumen in Richtung Gravitation und erweitern die Beschreibung von QFT auf gekrümmten
Raumzeiten. Die Beschreibung einer CFT auf einem bestimmten Hintergrund bedient
sich einer Gravitationstheorie auf einer asymptotisch-AdS Raumzeit mit dieser gegebenen
Randstruktur. Wir diskutieren Geometrien, deren konformer Rand mit de Sitter oder AdS
Raumzeiten identifiziert werden kann, um CFTs auf diesen maximal symmetrischen Räumen
holographisch zu beschreiben. Nachdem wir die holographische Renormierung auf diesen
Raumzeiten etabliert haben, studieren wir die Widerspiegelung von Unitaritätseigenschaften
der CFT in der dualen bulk-Beschreibung. Die Geometrie mit AdS als Rand zeigt eine
Reihe von interessanten Eigenschaften, was hauptsächlich darauf zurückzuführen ist, dass
der Rand dieser Geometrie selbst einen Rand hat. Wir untersuchen beide Geometrien und
lösen potenzielle Differenzen in den Eigenschaften der Rand- und bulk-Theorien, welche mit
einer Dualität inkompatibel wären. Der Ursprung dieser Differenzen liegt zum einen in der
Struktur der Geometrie mit AdS als Rand und rührt zum anderen von einem speziellen
Grenzfall, in dem sich die beiden Beschreibungen auf den ersten Blick unterscheiden. Neben
technischen Herausforderungen bietet die Hierarchie von Rändern bei der Geometrie mit
AdS als Rand die interessante Möglichkeit von mehrstufigen AdS/CFT-Dualitäten. Mit der
dualen CFT wiederum definiert auf einem AdS Raum von Kodimension 1 besteht zumindest
prinzipiell die Möglichkeit, eine weitere Instanz von AdS/CFT zu implementieren. Wir
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diskutieren den passenden geometrischen Rahmen, in dem der Begriff des Randes eines
Randes ein wohldefiniertes Konzept ist, und leiten aus unseren vorherigen Untersuchungen
erste Schlussfolgerungen über die Möglichkeiten solcher mehrstufigen Dualitäten ab.

Im zweiten Teil behandeln wir fünfdimensionale supersymmetrische Gravitationstheorien,
welche als Niederenergie-Grenzfälle aus Stringtheorie resultieren und deren Lösungen als
Stringtheorie-Konfigurationen interpretiert werden können. Wir arbeiten die asymptotische
Struktur dieser Theorien auf asymptotisch-AdS Räumen heraus, führen die holographische
Renormierung durch und berechnen die Weyl-Anomalie der dualen CFTs. Diese holographi-
schen Rechnungen bestätigen die Erwartungen von der Feldtheorieseite und liefern damit
einen nicht-trivialen Test der AdS/CFT-Vermutung. Zudem beeinflusst die holographische
Renormierung auch die symplektische Struktur der Gravitationstheorien, und aufbauend
auf den vorherigen Resultaten zeigen wir, dass zusätzlich zu den üblichen Dirichlet- auch
Neumann- oder gemischte Randbedingungen gestellt werden können. Mit dieser Deformation
der ursprünglichen AdS/CFT-Dualität durch eine Veränderung der Randbedingungen wird
insbesondere die Randmetrik zu einer dynamischen Größe, und man erwartet eine holo-
graphische Dualität zwischen der bulk-Theorie und einer konformen supersymmetrischen
Gravitationstheorie auf dem Rand. Die so erhaltene Randtheorie weist pathologische Eigen-
schaften wie perturbative Geister auf, was für konforme Gravitationstheorien tatsächlich zu
erwarten ist. Die Rolle dieser Geister über die Störungstheorie hinaus ist eine seit langem
offene Frage und unsere Konstruktion bietet einen Startpunkt, sie von der Stringtheorie-
Perspektive zu untersuchen. Dies führt uns in einen Bereich, in dem die holographische
Beschreibung der Randtheorie eine Betrachtung der Gravitationstheorie als effektive QFT
erfordert.

Ein notwendiger Bestandteil einer supersymmetrischen Gravitationstheorie ist eine Anzahl
von Gravitinos als Superpartner des Gravitons, für welche wir daher eine Beschreibung in
Form von effektiver QFT benötigen. Dies gilt speziell um AdS/CFT-Dualitäten über den
Grenzfall mit klassischer bulk-Theorie hinaus verstehen zu können, aber auch allgemeiner
für z.B. kosmologische Anwendungen. Insbesondere sollte die Quantisierung nicht nur
auf AdS selbst, sondern auch allgemeiner auf z.B. asymptotisch-AdS Raumzeiten möglich
sein, die nicht notwendig die Einstein-Bedingung erfüllen. Im dritten Teil studieren wir
die Quantisierung und Kausalitätseigenschaften des Gravitinos auf Friedmann-Robertson-
Walker Raumzeiten. Dabei zeigen wir explizit, dass eine konsistente Quantisierung auch
auf Raumzeiten möglich ist, die nicht der Einstein-Bedingung genügen, im Gegensatz zu
anderslautenden Schlussfolgerungen in der aktuellen Literatur. Darüber hinaus finden wir
interessante Effekte für die Propagation der Gravitinos, welche in bestimmten Fällen auf
echte Teilmengen der zu erwartenden Lichtkegel eingeschränkt ist.
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1 Introduction and Outline

Our current understanding of nature on shortest length scales is based on the mathematical
description in terms of quantum field theory (QFT). The predictions obtained from the
so-called Standard Model of particle physics are mostly based on perturbative expansions
in the coupling constants and as of now agree astonishingly well with the results of collider
experiments. On the other hand, coping with the theory in situations where perturbative
expansions are not available, e.g. understanding the spectra of hadrons and mesons, remains
a technically very challenging issue. Besides lattice simulations and descriptions in terms of
effective field theories, which both have their limitations, the holographic dualities among
seemingly very different theories as obtained from string theory are a promising alternative.
In addition to the prospects for their practical applications these dualities are of interest also
from a more conceptual perspective. Namely, they reduce the number of truly different QFTs
and may in turn also be used to study gravitational puzzles like the black hole information
paradox via conformal field theory (CFT).

Historically, a first indication that holography could play a role at a fundamental level was
the Bekenstein bound, which gives an upper bound on the entropy in a spacetime region in
terms of the surface area of its boundary [1]. This led to the proposal of the holographic
principle by ’t Hooft and Susskind [2]. On the other hand, the relation of U(N) Yang-Mills
theory at large N and string theory has been known for long [3] and a duality of open
and closed strings has also been investigated early, see e.g. the review [4]. However, only
with the AdS/CFT conjecture formulated by Maldacena [5] and subsequently worked out
in more detail by Witten [6] and Gubser, Klebanov and Polyakov [7], contact was made
with concrete applications to describe strongly-coupled QFTs in terms of string theory. This
is accomplished by identifying classical supergravity theories on anti-de Sitter space (AdS)
with strongly-coupled CFTs on the conformal boundary of AdS. The duality has since been
applied to describe a variety of phenomena ranging from particle physics right up to solid
state physics [8]. Nevertheless, although being well tested these dualities are still conjectural
and the range of their validity is not clear, such that non-trivial tests are still called for. We
review this in more detail in Sec. 2 where some preliminary material is covered. The main
part of this thesis will be concerned with generalizations of the AdS/CFT correspondence to
cover on the boundary also QFTs on curved spacetimes and gravity.

QFT on curved spacetimes, the tool to study fundamental phenomena like Hawking radiation,
is frequently complicated already for free theories, such that alternative descriptions are
desirable. Beyond the prime AdS/CFT examples involving gravity on global/Poincaré
AdS, which is dual to CFTs on the Einstein cylinder/Minkowski space, the holographic
study of CFT on more general curved spacetimes is therefore of particular interest. This is
true also from a more conceptual perspective, to see how far the dualities actually extend.
The holographic description of a CFT on a specific background involves gravity on an
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1 Introduction and Outline

asymptotically-AdS space with that prescribed boundary structure. We study in Sec. 3
geometries with de Sitter (dS) and AdS as conformal boundary, to holographically describe
CFTs on these maximally symmetric spacetimes. We focus on unitarity properties and the
possibility of multi-layered holographic dualities, which is offered by the setting with AdS on
the boundary. The former entails a proper setup of holographic renormalization for these
geometries and we study the reflection of the CFT unitarity properties in the spectra of bulk
scalar fields in Sec 3.1. For a specific limiting case the ‘remarkable’ singleton representation
of the AdS isometry group, discovered by Dirac [9], turns out to play a crucial role as we
discuss in Sec. 3.2. These results were published in [10] and [11]. In Sec. 3.3 we discuss
〈n〉-manifolds as an appropriate geometric setting for multi-layered holography and construct
an example which at least in principle allows for hierarchies of AdS/CFT dualities. From our
previous investigations we can draw first conclusions on the prospects for such hierarchies of
dualities.

In the second part we study the natural further generalization including gravity on the
boundary. Understanding the properties of gravity as a quantum theory remains among the
hardest problems to solve in physics, and a holographic description is a promising route to
gain insights. A prominent example of qualitative questions where AdS/CFT provides insight
is the black-hole information paradox [12]. However, the study of gravitational theories via
their CFT dual in that setting is limited to the AdS-type bulk supergravities. That limitation
can be avoided with a gravitational theory on the boundary, to study e.g. strongly-coupled
Minkowski-space CFTs coupled to gravity. The boundary theory is again expected to possess
conformal invariance, and in fact conformal gravity has long been of interest as a possible UV
completion of general relativity, although its perturbative treatments are plagued by ghosts.
In Sec. 4 we study complete supergravities on asymptotically-AdS spaces. The boundary
values of the bulk fields constitute gravity supermultiplets providing the background on which
the dual CFT is defined. In generic gravitational backgrounds the scale invariance of a CFT
may be broken by the so-called Weyl anomaly [13] (for physical consequences see also [14]),
and we calculate holographically the Weyl anomaly of the dual CFTs in generic conformal
supergravity backgrounds. This provides a test of the standard AdS/CFT conjecture and
these results were published in [15]. The boundary values of the bulk fields are fixed in the
standard AdS/CFT setting by Dirichlet boundary conditions, and we proceed by establishing
boundary conditions promoting these boundary conformal supergravity fields to dynamical
quantities. This deformation of the original AdS/CFT correspondence is expected to yield a
dual bulk description of gravity on the boundary, which should in particular provide insights
regarding the fate of the ghosts. That discussion leads to the issue of quantizing the bulk
theory.

The AdS/CFT prescription relates CFTs in the limit of infinite rank N of the gauge group to
classical bulk supergravities, and corrections to that limit are related to quantum corrections
in the bulk theory. Supergravities inevitably contain as superpartner for the graviton a
gravitino, for which a consistent quantization prescription is therefore crucial. In particular,
a quantization prescription is needed not only on rigid AdS, but also on more generic
non-Einstein spaces. In Sec. 5 we study the quantization and causality properties of the
gravitino on Friedmann-Robertson-Walker spacetimes, to explicitly show that a consistent
quantization can be carried out also on non-Einstein spaces, in contrast to claims in the
literature. These results can also be found in [16].
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2 Prelude: AdS/CFT 101

The AdS/CFT dualities relate supergravities arising as low-energy limits of string theory to
certain CFTs emerging in a similar way. In the following we provide a short introduction
emphasizing the aspects which will be relevant for the main part. A crucial ingredient are
the specific geometric properties of AdS, which we describe in Sec. 2.1, along with some
implications for field theory on that spacetime. We briefly introduce string theory and
supergravity in Sec. 2.2 and discuss some facts about CFTs in Sec. 2.3, before turning to
AdS/CFT itself in Sec. 2.4.

2.1 Geometry of Anti-de Sitter Space

AdS is one of the maximally symmetric spaces1 which have a Riemann tensor proportional
to the metric, i.e. Rµνρσ = α(gµρgνσ − gµσgνρ). There is a unique space for each α, which
is de Sitter/Minkowski/anti-de Sitter space for positive/vanishing/negative curvature. The
(d+ 1)-dimensional Euclidean and Lorentzian AdS spaces may be defined as the hyperboloid

XMXNηMN = −R2 (2.1)

in R1,d+1 and R2,d, respectively. The isometries are given by the transformations in the
ambient spaces preserving (2.1), which yields SO(1, d+1) and SO(2, d), respectively. Possible
extensions of the corresponding Lie algebras to superalgebras have been classified in [17].
The example of Lorentzian AdS2 as hyperboloid in R2,1 with metric η = diag(−1, 1,−1) is
shown in Fig. 2.1, together with the cone to which the hyperboloid asymptotes. The timelike
direction is along constant X1, such that there are closed timelike curves making the lack of
global hyperbolicity obvious. Moreover, any two points on AdS can be connected by causal
curves, such that the notion of causal commutativity is somewhat obscure. While these
problems can be solved easily by passing to the universal cover, the resulting space again
fails to be globally hyperbolic as we discuss in more detail below. Global coordinates may
be introduced on (the covering of) AdSd+1 by solving (2.1) with

X0 = R cos τ sec z , Xd+1 = R sin τ sec z , Xi = RΩi tan z , (2.2)

where z ∈ [0, π2 ), i = 1, . . . , d and
∑d

i=1(Ωi)2 = 1. For AdS we have τ ∈ [0, 2π) and τ ∈ R for
its universal cover. In the following we will only make the explicit distinction between AdS
and its covering where necessary. The resulting line element reads

ds2 =
R2

cos2z

(
− dτ2 + dz2 + sin2z dΩ2

d−1

)
. (2.3)

1 The Killing equation LXg = 0 has the maximal number of d(d+ 1)/2 independent solutions, which are the
Killing vector fields generating symmetries of the spacetime.
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2 Prelude: AdS/CFT 101

X1

X0

X2

τ

Figure 2.1: Lorentzian AdS2 as hyperboloid in R2,1 together with its asymptotic cone. The
timelike direction is along constant X1.

AdS may now be visualized as a cylinder, a timelike section of which is shown in Fig. 2.2(a).
The geometry of a spatial section is illustrated in Fig. 2.2(b). The solid and dashed curves
starting at t = 0 in 2.2(a) are timelike and null geodesics, respectively. As remnant of the
time-periodicity of AdS the geodesics are periodic on the cover of AdS. This in particular
implies that not all points which are in causal contact can be connected by causal geodesics.
The null geodesics go off to infinity at z = π

2 in finite coordinate time. Thus, for any surface
in AdS one easily constructs maximal causal curves which do not intersect it, such that
there are no Cauchy surfaces. By the classical result of [19] AdS thus fails to be globally
hyperbolic. The grey shaded region in 2.2(a) shows the domain of dependence D(S) for a
spatial section S of the AdS cylinder, which certainly is not the complete spacetime. The
situation is similar to considering a strip of Minkowski space and one can indeed formulate
well-defined dynamics if boundary conditions are specified. This analogy can be made more
precise by noting that the causal structure does not depend on the geometry but only on
the conformal structure. AdSd+1 can be conformally embedded into the globally hyperbolic
Einstein static universe R×Sd, see Fig. 2.3. The metric is that of (2.3) without the overall
factor R2/ cos2z, and z extended to the range [0, π). This embedding of AdS may be used to
formulate well-defined dynamics for conformally invariant theories by pulling back a theory
on the Einstein cylinder to AdS. Another coordinate system which is frequently employed
for AdS are so-called Poincaré coordinates, obtained by setting

X0 =
y

2
+
R2 − t2 + ~x2

2y
, Xi =

Rxi

y
, Xd =

y

2
− R2 + t2 − ~x2

2y
, Xd+1 =

Rt

y
, (2.4)

where y > 0 and i = 1 . . . d− 1. This solves (2.1) and the resulting line element reads

ds2 =
R2

y2

(
dy2 − dt2 + d~x2

)
. (2.5)

These coordinates cover a patch of global AdS which is bounded by a horizon at y →∞. We
have X0 −Xd = R2/y, so the patch is given by the part of the AdS hyperboloid for which
X0 > Xd, compare Fig. 2.1 where it corresponds to the part with X0 > X1. A more general
class of spacetimes which is relevant for AdS/CFT are asymptotically-AdS spaces, which at
spacelike infinity asymptote to an AdS geometry. They will be discussed in Sec. 4.1.
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2.1 Geometry of Anti-de Sitter Space

S

D(S)

τ = 0

τ = 2π

z = π
2

z = π
2

z = 0

(a) (b)

Figure 2.2: A timelike section of the cover of AdS realized as the interior of a cylinder is
shown in 2.2(a). For AdS itself the surfaces τ = 0 and τ = 2π are to be identified.
The boundary of the cylinder corresponds to spacelike infinity. The geometry of
a spatial slice of AdS is illustrated by Escher’s ‘Circle Limit IV’ [18] in 2.2(b).

Conformal compactification

We now discuss the conformal compactification of rigid AdS. A more general discussion of
conformally compact manifolds is given in Sec. 4.1. Consider AdS in global coordinates (2.2),
i.e. as the interior of a cylinder as shown in Fig. 2.2(a). The metric can not be extended
directly to the boundary of the cylinder as the overall factor 1/ cos2z diverges at z = π/2.
However, given a function f which vanishes on the boundary with df 6= 0 and is positive
in the interior, we can define an unphysical metric ds 2 = f2ds2, which does extend to the
boundary. The simplest option is to just remove the overall factor in (2.3) with f = R−1 cos z,
but of course this choice is not unique and the metric induced on the boundary is therefore
not well defined. The procedure does, however, yield a well-defined conformal structure
on the boundary, i.e. a class of metrics which are related by conformal rescalings. For the
case of AdS itself the boundary is S1 × Sd−1, and R× Sd−1 for the covering. These are a
compactification of Minkowski space and an∞-sheeted cover thereof, see Sec. 2.3. Performing
the same construction for the Poincaré patch of AdS with metric (2.5) yields a more direct
identification of the conformal boundary at y = 0 with Minkowski space.

Field Theory on AdS

We close with some remarks on (scalar) QFT on AdS, which will be relevant in particular for
the holographic discussion of unitarity in Sec. 3. A group-theoretical discussion of certain
aspects including masslessness and conformal invariance for AdS field theories can be found

5



2 Prelude: AdS/CFT 101

z

τ

Sd

θ = 0

θ = π
2

Figure 2.3: The conformal embedding of global AdSd+1 into half of a (d+ 1)-dimensional
Einstein universe R× Sd.

in [20]. In [21] a nice treatment for conformally coupled scalar fields on AdS is given, based
on the conformal embedding into the Einstein cylinder described above. The procedure
is to define a QFT on the globally hyperbolic Einstein cylinder using the Cauchy surfaces
there. Employing the periodicity properties of the solutions, this can be reinterpreted as
specifying initial data on two complete spatial hypersurfaces inside AdS. Demanding then
energy conservation on the subspace of the Einstein cylinder corresponding to AdS yields the
boundary conditions suitable for the specific case of a conformally coupled scalar on AdS.

Scalar fields with generic mass were investigated in [22]. The derivation of suitable boundary
conditions is based on demanding finiteness and conservation of the Killing energy for
solutions of the Klein-Gordon equation. The definition of the Killing energy employs the fact
that there is a global timelike Killing vector field ξ on AdS (simply ∂τ in the coordinates
(2.3)), such that one can define the – up to boundary terms – conserved energy

E =

∫

Σ
nµTµνξ

ν , (2.6)

where Σ is a spatial hypersurface with timelike unit normal vector field n and Tµν the
energy-momentum tensor. Conservation of the energy functional is achieved by imposing
generalizations of the familiar Dirichlet and Neumann boundary conditions as follows.
The solutions to the field equation have a definite asymptotic behaviour as the conformal
boundary of AdS is approached: They split into two groups according to the leading term
in their asymptotic expansion around the conformal boundary. Selecting the set with
dominant/subdominant behaviour corresponds to generalized Neumann/Dirichlet boundary
conditions, respectively. These boundary conditions also yield a well-defined Cauchy problem
on AdS. As it turns out, even for tachyonic scalars with negative squared mass m2, such that
the potential is not bounded from below, the energy of the fluctuations around the maximum
of the potential at φ ≡ 0 is positive provided that m2 ≥ −d2/4 on AdSd+1. This bound
is referred to as Breitenlohner-Freedman bound and the theory is stable if it is satisfied.
Normalizability of the solutions allows for both choices of boundary conditions only in an
interval just above the Breitenlohner-Freedman bound, while in the generic case only the
Dirichlet boundary condition is allowed. For a more explicit discussion see Sec. 3.1.
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2.2 String Theory and Supergravity in a Nutshell

The basic concept underlying string theory is that the elementary building blocks of matter
and the mediators of interactions are one-dimensional extended objects rather than pointlike
particles. The theory a priori depends on only a single parameter ls setting the fundamental
length scale. On sufficiently low energy scales where the string length can not be resolved,
these objects appear as pointlike particles and different spins correspond to different vibra-
tional modes of the strings. The interactions are due to joining and splitting of the strings
and their strength is controlled by the dilaton, which itself arises as a scalar excitation of
closed strings. The spectrum of excitations is obtained by quantizing the Polyakov action
for the embedding functions of the string worldsheet into the target spacetime, which is
classically equivalent to the area of the worldsheet swept out by the propagating string.
Depending on the amount of supersymmetry and its realization there are five consistent
theories, all defined in ten-dimensional spacetime: type I, IIA/B and two heterotic. Common
to all of them is a graviton describing fluctuations of the background geometry, a two-form
field B and a dilaton φ in the massless spectrum of closed strings, and a Yang-Mills vector
field in that of open strings.

In addition to the fundamental strings there are solitonic extended objects which were first
found in terms of the corresponding supergravity solutions [23]. These branes are higher-
dimensional analogs of black holes and carry charges corresponding to the various fields in the
massless closed-string spectrum. Besides the NS-branes corresponding to the Kalb-Ramond
field B and the fundamental string corresponding to the dilaton there are Dp-branes of
various dimension in the type II theories. They correspond in perturbative string theory to
(p+ 1)-dimensional hypersurfaces on which open strings end. These open-string excitations
describe the fluctuations of the brane. The different descriptions of D-branes are at the
heart of the AdS/CFT dualities, as we review for the case of D3-branes in Sec. 2.4. More
complicated brane configurations will play a role in Sec. 4.

To define for the worldsheet theory describing excitations of the string a consistent quantum
theory, where negative-norm states decouple, its conformal invariance is a crucial requirement.
Considering the background fields like the target-space metric as (an infinite series of) coupling
constants for the embedding functions, worldsheet conformal invariance requires their β-
functions to vanish. This requirement yields at leading order in α′ ∼ l2s the supergravity field
equations as constraint on the allowed background geometries [24], and thus the intimate
relation of string theory and supergravity. The higher-order contributions to the β-functions
provide the specific string-theory corrections to the supergravity description.

Supergravity theories (see e.g. [25] for reviews) are of interest in their own right, as e.g.
the four-dimensional N=8 supergravity could possibly provide a finite theory of quantum
gravity [26]. Here, however, our interest is for their role in holography, which arises due to
the intimate relation to string theory. From the type IIA and IIB string theories one obtains
the corresponding ten-dimensional IIA/B supergravities. These are N=2 supersymmetric
extensions of the pure Einstein-Hilbert action with the field content matching the massless
spectrum of the corresponding string theories. An interesting supergravity which can not be
obtained directly from string theory arises as follows. Demanding the theories to contain
no fields of spin greater than two yields upper bounds on the spacetime dimension and

7



2 Prelude: AdS/CFT 101

the amount of supersymmetry. The maximal theory in that sense is eleven-dimensional
N=1 supergravity, also called M-theory, which yields IIA supergravity upon dimensional
reduction. The presence of p-form gauge fields for various p in these theories immediately
allows for Freund-Rubin type solutions of the form AdSn×Sm [27]. Truncating the theory to
a finite number of Kaluza-Klein modes on Sm is in many cases consistent in the sense that
solutions of the truncated lower-dimensional theory can be lifted to solutions of the original
theory, see e.g. [28]. These truncations yield so-called gauged supergravities, which were first
constructed independently by promoting part of the global R-symmetry to an actual gauge
symmetry. The corresponding gauge fields are employed from the Abelian vector fields of the
original supergravity. This procedure introduces new interactions and breaks supersymmetry
in the first place, and invariance under supersymmetry transformations is then restored by
adding terms proportional to the gauge coupling. This in particular includes cosmological
constants such that the theories have AdS vacua. In Sec. 4 we study specific five-dimensional
gauged supergravities.

The supergravity description of the string-theory branes involves a kind of solution which
interpolates between the maximally symmetric AdSn×Sm and Minkowski solutions. The
metric for these extremal p-branes which are BPS objects and break half the supersymmetry
generically takes the form

ds2 = H(r)−1/2ηµν dx
µ ⊗ dxν +H(r)1/2

∑

α

drα ⊗ drα , (2.7)

where η is the (p+ 1)-dimensional Minkowski metric, µ, ν = 0 . . . p, α = 1 . . . 9− p and H(r)
is a harmonic function. The dilaton is given by eφ = gsH(r)(3−p)/4 and depending on the
choice of the harmonic function H the solution describes different brane configurations. For
a single stack of N p-branes we have H(r) = 1 + dpgsN(ls/r)

7−p with the numerical factor
dp = (4π)(5−p)/2Γ(7−p

2 ). We come back to these geometries in Sec. 2.4.

Supergravity theories inevitably contain fermions as superpartner for the metric. In the
absence of a global Lorentz symmetry with respect to which fermions can be defined as
spinor representations, one introduces local orthonormal frames in the tangent spaces. One
may then freely pass between the coordinate basis and this new non-coordinate basis, and
the transformation is described by the vielbein field eaµ. The introduction of orthonormal
frames is not unique and different choices are related by local Lorentz transformations.
However, as geometric quantities should not depend on the specific choice of frames we
have thus introduced a local Lorentz symmetry, and fermions can be defined as spacetime
scalars or vector fields which transform as spinors under local Lorentz transformations.
The corresponding connection, the spin connection ω ab

µ , turns out to be non-dynamical in

supersymmetrizations of Einstein-Hilbert gravity. In the so-called 1.5th-order formulation,
employed e.g. for the theories in Sec. 4, it is fixed to its on-shell value but not inserted
explicitly. In variations of the action it is then not necessary to vary the vielbein and possible
other fields ‘inside’ the spin connection: Considering for the sake of argument the spin
connection and vielbein alone, such that the variation of the action reads

δS =
δS

δeaµ
δeaµ +

δS

δωabµ

δωabµ
δecν

δecν , (2.8)
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we note that the second term vanishes since the spin connection extremizes the action. A
technical issue which we have to deal with in Sec. 4 concerns the variational problem for
(super)gravity on a manifold with boundary. In the metric formulation, the variation with
respect to the metric yields a boundary term including the derivative of the metric. To have
a well-defined variational problem for δĝ subject only to the condition δĝ|∂M ≡ 0, one has to
add the Gibbons-Hawking-York term [29]. As explained above it is usually not necessary to
vary the vielbein and possible other fields inside the spin connection. However, in the presence
of a boundary the variation of the action with respect to the spin connection vanishes only
up to a boundary term, which includes the spin connection and hence derivatives of the
vielbein. Thus, the same problem occurs and one has to add the GHY boundary action

S =

∫

M
L+

∫

∂M

1

2
gµνKµν , (2.9)

where the extrinsic curvature Kµν := P ρ
µ P σ

ν ∇ρnσ is defined from the outward-pointing
(unit) normal vector field n and the projector P ρ

µ = g ρ
µ − nµnρ/g(n, n).

2.3 Aspects of Conformal Field Theory

In the best-understood examples of holographic dualities, the theories appearing on the
lower-dimensional side are invariant under conformal transformations. Intuitively, this means
that there is no fundamental scale in the theory, like in four-dimensional massless φ4 or
Yang-Mills theory which as classical theories are scale invariant. Under certain assumptions
one can show that this scale invariance for theories on d-dimensional Minkowski space R1,d−1

actually implies invariance under the full conformal group SO(2, d), see e.g. [30]. These
transformations are easily derived in infinitesimal form from the conformal Killing equation(
LXη

)
µν

= Λ(x)ηµν , and are given for d > 2 by the Lorentz transformations Pµ = ∂µ,
Mµν = xµ∂ν − xν∂µ supplemented by the generators of dilatation D = xµ∂µ and special
conformal transformations Kµ = 2xµx

ν∂ν − x2∂µ. The exponentiated form of the special
conformal transformations reads xµ → x′µ = (xµ − bµx2)/(1 − 2b · x + b2x2) and it maps
points of Minkowski space to infinity. To have a well-defined action of the conformal group
it is thus necessary to consider a compactification of Minkowski space.

A construction going back to [31] is to consider in the real projective space RPd+1 :=
(Rd+2 \ {0})/∼, where the equivalence relation is given by X ∼ λX for λ ∈ R \ {0}, the
quadric defined by

Q := {X ∈ RPd+1 | η(X,X) = 0} , η = diag(−1, 1, . . . , 1,−1) . (2.10)

The condition η(X,X) = 0 is invariant under rescalings of X such that Q is well defined and
it is also invariant under SO(2, d) transformations acting linearly on Rd+2. Choosing specific
representatives of the equivalence classes this can be written as

Q = {X | (X0)2 + (Xd+1)2 = 1 = (X1)2 + · · ·+ (Xd)2}/(X ∼ −X) , (2.11)
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so we have Q ∼= S1 × Sd−1/Z2. To identify d-dimensional Minkowski space as a subspace
one introduces coordinates (κ, xµ, λ) on Rd+2 with

κ = Xd +Xd+1 , xµ = Xµ/κ , λ = XMXM , (2.12)

where M = 0, .., d+ 1 and µ = 0, .., d− 1. That coordinate transformation is non-singular
except for κ = 0. The quadric (2.10) corresponds to λ = 0 and using the freedom to rescale
XM we fix κ = 1, such that we find R1,d−1 ∼= {X ∈ Rd+2 |κ = 1, λ = 0} ⊂ Q. Theories with
manifest conformal invariance may now be constructed by defining them directly on Q.

The introduction of compactified Minkowski space, on which the action of the conformal
group is well defined, brings about another problem. Namely, with time being S1 there are
closed timelike curves and the notion of a global causal ordering is lost. This is avoided
by the concept of weak conformal invariance as follows. For a Minkowski-space QFT
satisfying the Wightman axioms the Wightman functions can be extended to a complex
domain with an ∞-sheeted cover of Minkowski space as real boundary. The QFT possesses
weak conformal invariance if the restriction of these extended Wightman functions to the
Euclidean are invariant under the Euclidean conformal group. This implies invariance of the
Minkowski-space Wightman functions under infinitesimal conformal transformations and the
real boundary has a global conformally invariant causal ordering. For more details see [32]
and references therein.

With that concept of conformal invariance we are ready to study Minkowski-space CFTs
which are invariant under the infinitesimal conformal group. The fields and composite
operators form representations of the conformal group. Restricting attention to operators
which are polynomials in the fundamental fields, they have a definite behaviour under
dilatations, i.e. O(x) → O′(x) = λ∆O(λX) where ∆ is the scaling dimension. While Pµ
raises the scaling dimension, Kµ lowers it and there is a lower bound on the scaling dimension
for unitary representations. Thus, in each unitary representation there is a so-called primary
operator which is annihilated by Kµ. The corresponding representations containing the
primary and all descendants obtained by acting with the generators on the primary are
classified by the respective Lorentz representation and the scaling dimension. A complete
classification of the unitary representations in four dimensions has been given in [33] and
for the supersymmetric extensions of the conformal group in [34]. In [35] restrictions on the
scaling dimensions have been discussed in more general spacetime dimensions. We close the
discussion of theories on a fixed background by pointing out that, while the construction
of theories which are conformally invariant at the classical level is rather straightforward,
relatively few examples are known where this extends to the quantized theories. The prime
example of the latter category in four dimensions is N=4 supersymmetric Yang-Mills theory
(SYM), which exhibits conformal invariance at least to all orders in perturbation theory, see
[36] for a review and references.

Conformal gravity and the Weyl anomaly

The concept of scale invariance, which we have discussed so far for theories on a fixed geometry,
can be extended to gravitational theories and this will play a role in Sec. 4 for the discussion
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of gravity on the boundary. The relevant symmetry in addition to the diffeomorphisms is
the Weyl symmetry. It amounts to rescaling the metric locally by a non-vanishing function,
gµν(x)→ g′µν(x) = e−2λ(x)gµν(x), and similarly for possible matter fields which transform

as φ(x)→ φ′(x) = eαλ(x)φ(x) according to their Weyl weight α. The linearization of such a
theory around a fixed background is conformally invariant, the conformal transformations
arising as combinations of conformal isometries and compensating Weyl rescalings. In d= 4
the action for a pure gravity theory with Weyl invariance is constructed from the Weyl tensor

Cλµνρ = Rλµνρ− 2δ
[λ
[νR

µ]
ρ] + 1

3δ
λ
[µδ

ν
ρ]R which is a traceless version of the Riemann tensor. The

action is given by

S =
1

2

∫
d4x
√
g CµνρσCµνρσ =

∫
d4x
√
g
(
RµνRµν −

1

3
R2 + E4

)
, (2.13)

where the four-dimensional Euler density E4 = 1
4εµνλρε

αβγδRµναβR
λρ
γδ yields a boundary

term. To construct free Weyl-invariant matter actions one compensates for the non-covariant
parts of the transformation of the kinetic term by adding suitable curvature couplings2, e.g.
the quadratic Weyl-invariant action for a scalar with Weyl weight d/2− 1 reads

S =

∫
ddx
√
g

(
gµν∂µφ∂νφ+

1

4

d− 2

d− 1
Rφ2

)
. (2.14)

The resulting Weyl-covariant Laplacian will play a role later and is given by �W = �− 1
4
d−2
d−1R.

For a more general discussion of conformally covariant differential operators see [37]. We
also note that Yang-Mills theory in four dimensions is already Weyl invariant with Weyl
weight zero for the connection. Furthermore, the Weyl-invariant action for a four-dimensional
antisymmetric, anti-selfdual rank 2 tensor field Cµν reads

S =

∫
d4x
√
g
(
2DµCµνDρC

ρ
ν −RµνCµρCνρ

)
, (2.15)

where the bar denotes complex conjugation. Supersymmetric gravity theories with Weyl
invariance are constructed by combining (2.13) with suitable matter field actions and Weyl-
invariant couplings. A review and constructions of theories with up to N=4 supersymmetry
can be found in [38].

An interesting effect which we will study holographically in Sec. 4 is the Weyl anomaly.
Coupling a theory which is conformally invariant in flat space to gravity and considering it
in general backgrounds does not necessarily preserve the conformal invariance. The coupled
system of CFT and gravity is Weyl invariant and classically this implies tracelessness of the
energy-momentum tensor gµνTµν = 0. The failure of this tracelessness for the quantized
CFT in the classical gravitational background, gµν〈Tµν〉 6= 0, is referred to as Weyl anomaly
and signals the breakdown of conformal invariance. For reviews see [13, 39]. The form of the
anomalous trace of the energy-momentum tensor is rather restricted and given by curvature
invariants, see [40]. In four dimensions it is a combination of the Euler density and the
squared Weyl tensor

A := 〈T µ
µ 〉 = aE4 + bCµνρσCµνρσ , (2.16)

2 The transformed d-dimensional Christoffel symbols and Ricci tensor are Γ′ρµν = Γρµν − δρµξν − δρνξµ + gµνξ
ρ

and R′µν = Rµν + (d− 2) (Dµξν + ξµξν) + gµν (Dρξ
ρ − (d− 2)ξρξ

ρ) with ξν = ∂νλ.
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Figure 2.4: The low-energy limits of the configuration with N D3-branes yielding the duality
of four-dimensional N=4 SYM theory and IIB supergravity on AdS5 × S5.

with the constants a, b depending on the specific CFT. The anomaly vanishes for a Minkowski
background but is non-zero in general. In particular, this anomaly is non-vanishing also for
the N=4 SYM theory discussed above. The anomaly can be avoided by tuning the matter
content such that the contributions to A from the various fields exactly cancel. This approach
was followed in [41] where N=4 SYM theory with a gauge group with four-dimensional Lie
algebra (e.g. U(2) or U(1)4) coupled to N=4 conformal supergravity was found as a suitable
combination.

2.4 AdS/CFT – Low-Energy Limits of String Theory

The AdS/CFT dualities are obtained by considering particular low-energy limits of brane
configurations in string theory [5, 6, 7], which yields two descriptions of the setup, both
consisting of two decoupled sectors. While the sector asymptotically far from the branes
agrees in the two descriptions, the near-brane theories are different and identifying them yields
the conjectured correspondence of a gravitational and a Yang-Mills theory. Reviews can be
found in [42, 43]. Following [42] we describe the limits and the line of thought for the specific
example of a stack of D3-branes, resulting in the celebrated duality of four-dimensional N=4
SYM theory with gauge group SU(N) and type IIB supergravity on AdS5×S5.

Perturbative string theory on flat ten-dimensional spacetime with a stack of N D3-branes as
illustrated in Fig. 2.4 contains two kinds of excitations: closed strings propagating in the
bulk and open strings ending on the branes. Interactions in particular include the joining of
open strings on the brane to form a closed string which is radiated off and the inverse process.
In a somewhat schematic form the theory is described by a bulk action for the closed-string
sector, a brane action for the open-string sector and an interaction part. The spectrum
of massless excitations of the closed strings is given by the fields of type IIB supergravity,
while the open-string massless spectrum is given by an N=4 vector multiplet. An effective
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2.4 AdS/CFT – Low-Energy Limits of String Theory

action describing the massless excitations can be obtained by integrating out the massive
excitations. This yields the total action

S = Sbulk + Sbrane + Sint , (2.17)

where the bulk part is given by the type IIB supergravity action with an additional series
of higher-derivative terms and likewise the brane part is given by the action of N=4 SYM
theory with a series of higher-derivative terms. One now performs the specific low-energy
limit ls → 0 while keeping the dimensionless parameters gs and N fixed. In that limit
the gravitational coupling κ ∝ gsα

′2 vanishes such that the interaction of the bulk and
brane sectors becomes negligible and the bulk gravity becomes free. At the same time, the
higher-derivative terms in the effective bulk and brane actions vanish, such that we have two
decoupled sectors comprising free supergravity in the bulk and pure N=4 SYM theory on
the branes.

Another way of looking at the system is from the supergravity perspective. Here the D3-
branes are understood as massive charged objects which source the supergravity fields. The
corresponding type IIB supergravity solution is given by eφ = gs and

ds2 = f−1/2ηµνdx
µdxν + f1/2

(
dr2 + r2dΩ2

5

)
, F5 = (1+ ?)dx0dx1dx2dx3df

−1 , (2.18)

where f = 1 + R4/r4 and R4 = 4πgsα
′2N (compare (2.7)). The energy Er of an object

as measured by an observer at constant r and the energy E measured by another one at
asymptotically large r are related by the redshift factor E = f−1/4Er. Thus, to an observer
at infinity the energy of an object seems to vanish as it moves towards r = 0. In the
corresponding low-energy limit there are therefore two kinds of excitations: massless particles
with large wavelengths and any kind of excitation in the region close to r = 0. These two
sectors decouple, as a calculation of the absorption cross section of the branes shows [44],
and we again have a description of the brane setup in terms of two decoupled sectors. One of
them is free flat-space supergravity at large r where f ≈ 1 and the other one supergravity on
the near-horizon geometry at r � R. In that near-horizon limit f ≈ R4/r4 and the geometry
becomes AdS5×S5. Comparing the two descriptions of the brane setup we have in both cases
two decoupled sectors one of which is free supergravity. Identifying the remaining sectors
yields the conjectured duality of the four-dimensional N=4 SYM theory and type IIB string
theory on AdS5×S5. The respective coupling constants are related by gs ∝ g2

YM, see Fig. 2.5.

Figure 2.5: The closed-string vertex ∝ gs regarded as two glued open-string vertices ∝ g2
YM

yields the identification of open and closed string coupling strengths.

The weakest form of the correspondence is obtained by considering the limit of large N and
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large λ := g2
YMN . In this limit we have ls/R � 1 and κ � 1 such that the gravitational

description becomes classical type IIB supergravity on AdS5×S5. In the stronger forms of
the conjecture the expansions in α′ and the string loop expansion in gs are assumed to be
dual to the expansions in λ−1/2 and 1/N on the Yang-Mills side, respectively.

Geometrically, the conformal boundary of AdS can be identified with Minkowski space as
discussed in Sec. 2.1. The CFT on the lower-dimensional side of the AdS/CFT duality,
which is N=4 SYM theory here, can therefore be regarded as defined on the conformal
boundary of AdS, such that the duality indeed is holographic. In fact, the quadric (2.10)
discussed in Sec. 2.3 can be understood as the lightcone {X ∈ R2,d | η(X,X) = 0} modulo
the identification X ∼ λX for λ ∈ R \ {0}. It thus corresponds to the asymptotic cone
shown in Fig. 2.1. Identifying its ‘celestial sphere’ at infinity with the boundary of AdS, we
manifestly obtain the projective model of conformal Minkowski space discussed in Sec. 2.3
at the conformal boundary of AdS, with the SO(2, d) AdS isometries acting as the conformal
transformations on the Minkowski space boundary. Likewise, the boundary of the cover of
AdS is the cover of conformal Minkowski space discussed in Sec. 2.3.

The theories involved on both sides of the duality are very different concerning the field
content and the structure of interactions. However, the symmetry groups on both sides
agree, the AdS5 isometries corresponding to the conformal symmetry of the N=4 SYM
theory, the S5 isometries corresponding to its R-symmetry and similarly for the fermionic
symmetries. To make the duality explicit it is crucial that the AdS theory depends on the
choice of boundary conditions on the timelike conformal boundary. The boundary values of
the gravitational fields are interpreted as sources for gauge-invariant operators of the gauge
theory, and the bulk partition function as functional of the boundary conditions is identified
with the generating functional of connected correlation functions for the boundary theory.
For example, the metric/vielbein field which is present in any of the supergravity theories
is related to the energy-momentum tensor of the dual CFT. The explicit formula in the
Euclidean case reads

Zstring

∣∣
φ|∂M=φ0

= 〈e
∫
∂M φ0O〉CFT , (2.19)

where φ denotes the collection of bulk fields, φ|∂M their residue at the conformal boundary
and O represents the dual gauge-invariant operators of the boundary theory. For the
Lorentzian case see (4.41) in Sec. 4.1.3. In the limit where the bulk theory reduces to classical
supergravity the left hand side reduces to the exponentiated bulk action evaluated on shell.
This on-shell action in general is divergent and calls for a ‘holographic renormalization’,
which we discuss in more detail in the main part. We thus have an explicit relation between –
in the weakest form of the correspondence – classical supergravity in the bulk and a strongly
coupled gauge theory on the boundary. This in fact makes the duality not only hard to
test or disprove, but also extremely useful as the technically very accessible weakly-coupled
regime of the bulk theory is mapped to the much more involved strong-coupling regime of the
boundary theory. Of course, this reasoning may also be reversed to study the bulk gravity
by means of the dual gauge-theory description. Tests of the correspondence are possible by
comparing gravity calculations to quantities of the dual gauge theory which are known to
agree in the strong and weak coupling regimes. Such tests have been performed in great
number and so far only provided support for the conjecture, see [42, 43] for references.
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An alleged puzzle arises for the gauge group of theN=4 SYM theory. Namely, the gauge group
of the worldvolume theory of N D3-branes naturally is U(N), which is locally isomorphic to
SU(N)⊗U(1). But the decoupled U(1) sector is not found in the dual string-theory description,
where all fields interact at least gravitationally, suggesting that the dual description covers the
SU(N) sector only. This is resolved by noting that the bulk supergravity can be formulated
with a topological sector employing the singleton representation of the AdS isometry group,
to which we come back in the holographic discussion of unitarity in Sec. 3.2. The AdS5

supersingleton is equivalent to a four-dimensional Maxwell supermultiplet on the boundary
of AdS5 [45]. This topological sector thus corresponds to the U(1) factor and describes the
center of mass motion of the brane stack [46]. For explicit constructions of singleton theories
on the boundary of AdS4 and the connection to M-theory branes see [47].

The dualities derived from string theory are still unproven, although in special situations like
topological string theory the arguments can be made more precise [48]. On the other hand,
holographic identities can be proven in the axiomatic framework of algebraic QFT [49]. The
proof provides for a given QFT on AdS the construction of an equivalent CFT on Minkowski
space of one dimension less, and vice versa. This is technically astonishingly simple and not
restricted to specific limits of the involved theories. However, the physical interpretation is
less accessible and identifying the dual theory constructed this way with known theories is
not straightforward. Moreover, as this algebraic holography is not restricted to gravitational
theories but actually relates ‘ordinary’ QFTs, it is somewhat complementary to AdS/CFT
(for a critical discussion see also [50]). Nevertheless, the construction shows that the specific
features of AdS allow for holographic relations also in a broader sense than suggested by the
specific string-theory setups employed in AdS/CFT.

Normalizability vs. Boundary Conditions on AdS

The canonical quantization of a classical theory employs a complete set of solutions equipped
with a symplectic structure and a notion of positive frequency, see e.g. [51]. On AdS the
existence of a well-defined symplectic structure plays a crucial role for admissible boundary
conditions, while the split into positive and negative frequency is straightforward thanks to
the timelike Killing vector field. Crucial e.g. for our holographic investigation of unitarity in
Sec. 3 is the observation [52] that a serious treatment of boundary terms yields a well-defined
symplectic structure for much more general boundary conditions than näıvely expected. The
argument rests upon a universal construction of a conserved current for a given Lagrangian
field theory [53, 54], which we review below. This construction will serve us well also for the
quantization of the gravitino in Sec. 5.

The construction is based on a geometrization of the calculus of variations, which can be
made precise using∞-jet bundles [55, 56]. Consider an n-dimensional spacetime manifoldM
and a fibre bundle E

π−→M over it such that a field configuration corresponds to a section of E
overM. For a real scalar field as example, the fibre would be R. We denote by S the space of
sections of E overM, i.e. the space of field configurations. On the product space the de Rham
complex is bigraded, Ω(M×S) = ⊕p,qΩp,q(M×S). Accordingly the exterior differential d
onM×S splits into d = D+ δ with D of degree (1, 0) corresponding to the usual spacetime
exterior derivative along M and δ of degree (0, 1) corresponding to the notion of variation,
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2 Prelude: AdS/CFT 101

satisfying d2 = D2 = δ2 = 0. A classical field theory defined by a least action principle is then
given by a Lagrangian form L of degree (n, 0) onM×S. Note that L is defined onM×S, not
just onM. To recover from a form J of degree (p, q) onM×S a form onM one evaluates it
for a specific field configuration and specific variations. That is, one fixes a section ψ, tangent
vectors δ1ψ, . . . , δqψ ∈ TψS and defines J(ψ, δ1ψ, . . . , δqψ)(x) := iδ1ψ . . . iδqψJ(x, ψ)∈Ωp(M)
where iδψ is the contraction of a tangent vector with a form.

Using that geometric variational calculus one can make precise the following properties [53].
The variation of the Lagrangian splits into δL = E +DΘ with a unique source form E of
degree (n, 1) yielding the equations of motion (ψ ∈S extremizes the action iff E(ψ, δψ) = 0
for all variations δψ) and a local form Θ of degree (n− 1, 1), unique up to D-exact forms.
Furthermore, u := δΘ satisfies δu = 0 and Du = δE. This u is also uniquely determined by
L up to D-exact forms and its restriction to M yields a conserved current. More precisely,
let SL be the variety of extremals for L and TψSL be the corresponding subspace of the
tangent bundle TψS. By Theorem 10 of [53] the restriction of u from M×SL to M defines
a closed (n− 1)-form, the universal conserved current associated to L. Note that u is thus
closed (only) when evaluated on solutions of the linearized field equations.

A pairing of solutions to the linearized field equations is defined by fixing a Cauchy surface Σ
(a complete spatial section for AdS) and defining 〈δ1ψ, δ2ψ〉 =

∫
Σ ιδ1ψιδ2ψu. With ιδ1ψιδ2ψu

being a closed (n− 1)-form on M, this pairing is conserved up to possible boundary terms
by virtue of Stokes’ theorem. For a Klein-Gordon field, this yields the standard symplectic
structure. The fact that u is unique only up to D-exact forms was exploited in [52] to
cancel divergences in the symplectic structure on AdS for Neumann or mixed boundary
conditions by taking into account the natural contributions from boundary terms arising in
the holographic renormalization.
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3 Holographic Description of Curved-Space
QFT and Multi-Layered AdS/CFT

In this part we study holographically CFTs defined on the maximally symmetric de Sitter
(dS) and AdS spacetimes. This is not only a natural first step from flat to generic curved
spacetimes, but also provides a link to CFTs on manifolds with boundary (BCFT) [57],
since global AdS is conformally related to half of the Einstein static universe. BCFTs have
received attention recently, e.g. in the context of brane configurations with branes ending on
branes [58, 59, 60]. Furthermore, the case with AdS on the boundary offers an interesting
possibility for multi-layered AdS/CFT dualities.

The holographic description of a CFT on a specific background involves gravity on an
asymptotically-AdS space with that prescribed boundary structure. The geometries for
a dual description of CFTs on dS and AdS have been discussed recently in [61] and [62],
respectively, and earlier related works can be found in [63]. It is sufficient in these cases to
choose specific coordinates on global AdSd+1 such that it is sliced by (A)dSd hypersurfaces
and perform the conformal compactification adapted to these coordinates. For the AdS
slicing this results in two copies of AdSd on the boundary and a single AdSd boundary is
obtained by taking a Z2 quotient of AdSd+1. The bulk theory then depends on boundary
conditions on the hypersurface which is fixed under the Z2 action, and the resulting geometry
resembles the general construction for BCFT duals outlined in [64, 65].

In Sec. 3.1 we examine how violations of the unitarity bound in CFTs defined on dS and
AdS are recovered in the dual bulk description. We consider a Klein-Gordon field on the
geometries with (A)dS conformal boundary and choose masses and boundary conditions such
that the corresponding boundary operator violates the CFT unitarity bound. The setup
with AdSd boundary has a particularly interesting structure since the boundary itself has a
boundary. Indeed, the bulk theory turns out to crucially depend on the choice of boundary
conditions on the boundary of the AdSd slices. We find that violations of the unitarity bound
in CFTs on dSd and AdSd are reflected in the bulk through the presence of ghost excitations.
In Sec. 3.2 we turn to a puzzle already present on global AdS but also for the geometries
with (A)dS conformal boundary. Namely, the standard Klein-Gordon field corresponding
to an operator saturating the unitarity bound contains ghosts, although a unitary CFT
exists. We investigate the holographic description of CFTs on the cylinder and on AdS,
which include an operator saturating the unitarity bound, and identify a limit in which
the singleton field theory is obtained from the bulk Klein-Gordon theory with renormalized
inner product. This provides the unitary bulk theory corresponding to an operator which
saturates the unitarity bound. In Sec. 3.3 we discuss multi-layered AdS/CFT and single
out particular 〈n〉-manifolds as an appropriate geometric setting. Employing this notion
we first construct geometries which at least in principle allow for an extreme case, where a
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3 Holographic Description of Curved-Space QFT and Multi-Layered AdS/CFT

chain of dualities could relate a theory on AdSd+1 for generic d eventually to a theory on
the boundary of AdS2. Building on the previous results we identify obstructions to such
multiply nested dualities. We then turn to double-layered holography and give an outlook
on a concrete realization involving the worldvolume theory of M2-branes.

3.1 Beyond the Unitarity Bound in AdS/CFT(A)dS

Facilitated by the matching of bulk isometries and boundary conformal symmetries, the
AdS/CFT correspondence provides a concrete map between the bulk and boundary Hilbert
spaces. For a free scalar field φ with mass m on AdS with unit curvature radius there are
in principle two dual operators with conformal dimensions ∆± = d/2 ±

√
d2/4 +m2, up

to 1/N corrections. This is related to the fact that solutions to the second-order Klein-
Gordon equation are characterized by two asymptotic scalings near the conformal boundary.
Imposing boundary conditions such that the slower/faster fall-off is fixed, which we shall
refer to as Dirichlet and Neumann boundary conditions below, yields a bulk field dual to an
operator of dimension ∆+/∆− [66, 67]. Note that the conformal dimensions are real so long
as the Breitenlohner-Freedman (BF) stability bound m2 > −d2/4 =: m2

BF [22] is respected.
For m2

BF < m2 < m2
BF + 1 Dirichlet and Neumann boundary conditions yield well-defined

theories [22], and in fact even more general boundary conditions can be imposed [68]. On the
other hand, as noted in [66, 67], Neumann boundary conditions for m2 > m2

BF + 1 lead to
∆− < d/2− 1, in conflict with unitarity bounds in the CFT [33, 34, 35]. Consequently, the
freedom in the choice of boundary conditions was expected to break down for m2 > m2

BF + 1.
This expectation was recently confirmed for global and Poincaré AdS in [69]1. A crucial
point is that normalizability of the Neumann modes requires a modification of the symplectic
structure [52], sacrificing manifest positivity of the associated inner product. Interestingly,
the pathologies in the bulk theory show up in different ways for the two cases. While on
global AdS the Neumann theories contain ghosts for m2 > m2

BF + 1, such that unitarity
in the bulk is explicitly violated, on Poincaré AdS there is no manifest violation of bulk
unitarity. Instead, the 2-point function for the Neumann theories is found to be ill-defined
even at large separations.

In this section we take a further step towards a holographic understanding of (A)dS CFTs.
We consider a scalar field with m2 ≥ m2

BF + 1 on AdSd+1 and choose coordinates and
compactification such that the boundary is (A)dSd. Imposing Neumann boundary conditions
in this mass range is dual to a CFT on (A)dSd with an operator of scaling dimension
∆ ≤ d/2− 1. We will investigate the precise way in which this violation of the CFT unitarity
bound is reproduced by the dual bulk theory. In the setup with the boundary CFT defined
on AdSd, the bulk theory depends not only on the boundary conditions on the AdSd+1

conformal boundary, which we refer to as Neumannd+1/Dirichletd+1, but also on the orbifold
boundary conditions and on the boundary conditions on the boundary of the AdSd slices,
referred to as Neumannd/Dirichletd in the following. Furthermore, due to the fact that the
AdSd boundary itself has a conformal boundary, the structure of divergences is more involved

1 The ghosts found there may be eliminated by imposing a radial cut-off [70], which corresponds to breaking
conformal invariance in the boundary theory and therefore is not in conflict with the unitarity bound.
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than for global or Poincaré AdS. Thus, in order to properly deal with this configuration we
have to adapt the well-established procedure of holographic renormalization [71, 72, 73]. The
choice of Neumannd/Dirichletd turns out to be quite crucial. For Dirichletd the adaption
of regularization and renormalization is straightforward, and we find the complete sets of
Dirichletd+1 and Neumannd+1 modes normalizable with respect to the renormalized inner
product. On the other hand, our construction of the theory with Neumannd boundary
condition leads to a drastically reduced spectrum of normalizable modes, making the AdSd+1

theory equivalent to an AdSd theory in a trivial way. This will allow us to draw some
conclusions on the possibility of multi-layered holographic dualities. The setup with dS on
the boundary, on the other hand, is obtained from global AdS by a coordinate transformation
which merely results in a rescaling of the boundary metric, such that this setting is more
closely related to global AdS. However, the dSd slicing covers only a patch of AdSd+1 bounded
by a horizon, analogous to the Lorentzian Poincaré AdS. We will investigate whether there
is a similarly tricky manifestation of the pathologies as found for Poincaré AdS in [69].

In Sec. 3.1.1 we introduce the setups for a holographic description of CFTs on (A)dS and
give the relevant properties of the Klein-Gordon field in these settings. Unitarity of the bulk
theories for AdSd and dSd on the boundary is studied in Sec. 3.1.2 and 3.1.3, respectively. In
Sec. 3.1.4 we discuss a scalar field with tachyonic mass below the BF bound on global AdS.
This research was carried out in collaboration with Tomás Andrade and published in [10].

3.1.1 (A)dSd slicings of AdSd+1

In this section we introduce the foliations of AdS that will be relevant for the subsequent
analysis and discuss some generic features of the Klein-Gordon field in these coordinates. We
consider AdSd+1 with curvature radius L in global coordinates (ρ, ζ, t) ∈ [0,∞)×[0, π]×R
such that the line element takes the form

ds2 = −
(
1 + ρ2/L2

)
dt2 +

1

1 + ρ2/L2
dρ2 + ρ2dΩ2

d−1 , dΩ2
d−1 = dζ2 + sin2 ζdΩ2

d−2 . (3.1)

In the following we discuss coordinate transformations resulting in a metric of the form

ds2 = dR2 + λ(R)2 γµνdx
µdxν , (3.2)

with R ∈ [0,∞) and the conformal boundary of AdS at R =∞. The slicing by dSd hypersur-
faces with Hubble constant H is obtained by the coordinate transformation (ρ, t,Ωd−1)→
(R, τ,Ωd−1) with τ ∈ R and

ρ = L cosh(Hτ) sinh
R

L
, tan(t) = L sinh(Hτ) tanh

R

L
. (3.3)

The resulting metric is of the form (3.2) with

γdS
µνdx

µdxν = −dτ2 +H−2 cosh2(Hτ) dΩ2
d-1 , λdS(R) = LH sinh

R

L
. (3.4)

Note that (3.3) implies | tan(t)/ρ| < 1, which restricts the range of t to |t| < arctan(ρ) < π/2.
The coordinates (R, τ) therefore cover a patch as shown in Fig. 3.1(b). The patch is bounded
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3 Holographic Description of Curved-Space QFT and Multi-Layered AdS/CFT

by a causal horizon at | tan(t)/ρ| → 1, which is an infinite-redshift surface as λ2
dS vanishes

there. The conformal boundary of the patch at R → ∞ is part of the AdSd+1 conformal
boundary, and from (3.4) we see that the boundary metric at R =∞ is that of global dSd,
as desired.

The foliation of AdSd+1 by AdSd hypersurfaces with curvature radius l is obtained from the
transformation (ρ, ζ, t,Ωd−2)→ (R, z, τ,Ωd−2) with z ∈ (0, π/2], τ ∈ R and

ρ2

L2
= csc2 z cosh2 R

L
− 1 , ρ2 sin2 ζ = L2 cot2 z cosh2 R

L
, t = Lτ . (3.5)

The resulting metric again is of the form (3.2) but with

γAdS
µν dxµdxν =

l2

sin2 z

(
− dτ2 + dz2 + cos2 z dΩ2

d−2

)
, λAdS(R) =

L

l
cosh

R

L
. (3.6)

As we have to choose the domain for the sine in the 2nd equation in (3.5) to be either
ζ ∈ [0, π/2) or ζ ∈ (π/2, π] we need two patches to cover the full AdSd+1. The patches are
‘joined’ at ζ = π/2, the equator of Sd−1. This is realized in [62] by letting R run on (−∞,∞)
and choosing the appropriate domains for ζ on the two half lines. To obtain a holographic
description of a CFT on a single copy of AdSd we consider the Z2 quotient of global AdS
identifying the two patches, as discussed in [62]. This quotient is covered by the coordinates
discussed above for any of the two choices for the domain of ζ. In turn, this implies that the
fields under consideration should have definite Z2 parity, which imposes boundary conditions
at R = 0, as will be discussed in Sec. 3.1.2.1. Furthermore, note that the resulting single
copy of AdSd at the conformal boundary of AdSd+1 has itself a conformal boundary, which,
in the coordinate system (3.6), corresponds to the locus z = 0.

The setup for a holographic description of CFTs on AdSd discussed above resembles the
holographic description for generic BCFT proposed in [64, 65]. For a CFT on a d-dimensional
manifold M with boundary it was proposed there to consider as dual a gravitational theory
on a d+1-dimensional asymptotically-AdS manifold with conformal boundary M and an
additional boundary Q, such that ∂Q = ∂M . The AdSd slice at R → ∞ in our setup
corresponds to M , the Z2-fixed hypersurface at R = 0 to Q, and imposing even/odd Z2

parity translates to Neumann/Dirichlet boundary conditions on Q. This similarity of the
setups can be understood as a consequence of the relation of CFTs on AdS to BCFTs
discussed in the introduction.

3.1.1.1 Klein-Gordon field

We consider a free, massive Klein-Gordon field on AdSd+1 foliated by (A)dSd and discuss the
features that apply to both slicings in parallel. Our starting point is the ‘bare’ bulk action
for a free scalar field,

S = −1

2

∫
dd+1x

√
g
(
gMN∂Mφ∂Nφ+m2φ2

)
, (3.7)
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R→∞-R→−∞�

z = 0

z = 0

(a)

t = π
2

t = −π
2

ρ̃ = π
2ρ̃ = 0

R → ∞-

6

τ
→

∞

(b)

Figure 3.1: The slicing of global AdSd+1 by (A)dSd hypersurfaces. 3.1(a) shows the Poincaré
disk representation of AdSd+1 sliced by AdSd in the (R, z) coordinates used in
(3.2), (3.6). Horizontal/vertical curves have constant z/R. The boundary consists
of two copies of AdSd joined at their boundaries at z → 0. 3.1(b) shows the dSd
slicing (3.2), (3.4) of AdSd+1 as cylinder with radial coordinate ρ̃ = arctan ρ and
the Ωd−1 part suppressed. Horizontal/vertical curves have constant τ/R.

which will later be augmented by boundary terms. For a metric of the form (3.2) the resulting
Klein-Gordon equation reads

∂2
Rφ+ d

λ′(R)

λ(R)
∂Rφ+ λ(R)−2 �γφ = m2φ . (3.8)

We separate the radial and transverse parts by choosing the ansatz φ(x,R) = ϕ(x)f(R),
such that ϕ are the modes on the (A)dSd slices and f are the radial modes. Introducing M
as separation constant, (3.8) separates into the radial equation

f ′′ + d
λ′

λ
f ′ =

(
m2 −M2λ−2

)
f , (3.9)

and the (A)dSd hypersurface part �γϕ = M2ϕ. The latter is a Klein-Gordon equation for the
transverse part with ‘boundary mass’ M . Note that (3.9) can be written in Sturm-Liouville
form,

Lf = αf , where L =
1

w(R)

[
− d

dR

(
p(R)

d

dR

)
+ q(R)

]
. (3.10)

Fixing p(R) = λ(R)d, w(R) = λ(R)d−2 and q(R) = m2λ(R)d reproduces (3.9) with α = M2.
The inner product defined from the ‘bare’ symplectic current associated to (3.7) is the
standard Klein-Gordon product

〈δ1φ, δ2φ〉M = −i
∫

Σ
ddxΣ

√
gΣn

M δ1φ
∗ ↔
∂M δ2φ . (3.11)
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The spacelike hypersurface Σ can be chosen constant along the radial coordinate labeling the
(A)dSd slices, such that the unit normal vector field n has no radial component nM = (0, nµ).
The inner product (3.11) can then also be factorized. In fact, with nµ =: λ(R)−1nµγ such
that nµγ is normalized with respect to γµν , (3.11) becomes

〈φ1, φ2〉M = 〈ϕ1, ϕ2〉slice 〈f1, f2〉SL , (3.12)

where 〈ϕ1, ϕ2〉slice is the Klein-Gordon inner product on the (A)dSd slice and 〈f1, f2〉SL is
the Sturm-Liouville inner product

〈ϕ1, ϕ2〉slice = −i
∫

∂Σ
dd−1x∂Σ

√
γ∂Σn

µ
γ

(
ϕ∗1
↔
∂ µ ϕ2

)
, 〈f1, f2〉SL =

∫ ∞

0
dR λd−2f∗1 f2 . (3.13)

Using integration by parts and (3.9) yields2

〈f1, f2〉SL =
1

M∗21 −M2
2

lim
a→0,b→∞

[
λd
(
f∗1 f

′
2 − f ′1

∗
f2

)]b
a
. (3.14)

The inner product (3.11) is finite and conserved for Dirichlet and Neumann boundary
conditions if m2 < m2

BF + 1. However, for larger masses the holographic renormalization
of the bulk action introduces derivative terms on the boundary, which in turn induce the
necessary renormalization of the inner product [52]. We shall discuss this issue in detail in
Sec. 3.1.2.

3.1.1.2 Asymptotic solutions

The covariant boundary terms introduced by the holographic renormalization of the bulk
theory are crucial for the construction of the renormalized inner product. The construction
of these terms involves the asymptotic expansion of the on-shell bulk field, which we shall
now discuss. The relevant computations are most conveniently carried out with the metric
in Fefferman-Graham form. For the dSd slicing (3.2), (3.4) this form is obtained by the
coordinate transformation y := 2H−1e−R/L ∈ (0, 2H−1], resulting in the metric

ds2 =
L2

y2

(
dy2 +

(
1− H2y2

4

)2
γdS
µνdx

µdxν
)
. (3.15)

Likewise, for the AdSd slicing (3.2), (3.6) the transformation y := 2le−R/L ∈ (0, 2l] yields

ds2 =
L2

y2

(
dy2 +

(
1 +

y2

4l2

)2
γAdS
µν dxµdxν

)
. (3.16)

The conformal boundary of AdSd+1 is at y = 0 in both cases. The asymptotic expansion of
φ in these coordinates is obtained by solving the Klein-Gorden equation expanded around
the conformal boundary. With m2L2 =: −d2

4 + ν2 we obtain

φ(xµ, y) = y
d
2
−νφD(xµ, y) + y

d
2

+νφN(xµ, y) , (3.17)

2 Although the derivation of (3.14) is only valid for M∗1 6= M2, (3.14) can be continued to M∗1 = M2 by
taking the appropriate limits, as we discuss later. We also note that for continuous boundary mass (3.14)
has to be understood in the distributional sense. This procedure is justified by the fact that the obtained
results exhibit conservation and finiteness of the symplectic structure.
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where φN/D have regular power-series expansions around y = 0, and in particular

φD = φ(0)

D + y2φ(2)

D + . . . , φ(2)

D =
1

4(ν − 1)
�W
γ φ

(0)

D , ν ∈ (1, 2) , (3.18a)

φD = φ(0)

D + y2 log(y)φ(2)

D + . . . , φ(2)

D = −1

2
�W
γ φ

(0)

D , ν = 1 . (3.18b)

Here we have defined �W
γ := �γ − d−2ν

4(d−1)R[γ] , with R[γ] denoting the curvature of the
hypersurface metric. For ν = 1 this is the conformal Laplacian discussed in Sec. 2.3. The
curvature convention is such that R[γAdS] = −l−2d(d− 1) and R[γdS] = H2d(d− 1).

3.1.2 AdS on the boundary

In this section we study the case of AdS on the boundary. After setting up the regularization
and renormalization procedure we discuss the Dirichletd theory in the mass range dual to
a CFT beyond the unitarity bound and discuss the special properties of the Neumannd
theories.

3.1.2.1 Renormalization and boundary conditions

We consider the AdSd slicing of AdSd+1 using the coordinates (y, z, τ,Ω) such that the metric
is of the Fefferman-Graham form (3.16). The action (3.7) evaluated on-shell is divergent
as a power series in a vicinity of the boundary at y = 0, and we also expect divergences
from z = 0. To renormalize the divergences we introduce cut-offs at y = ε1, z = ε2 and
boundary counterterms to render the asymptotic expansions in y, z finite as the cut-offs
are removed by ε1/2 → 0. The form of the cut-offs is the standard prescription adapted to
the current slicing, and is illustrated in Fig. 3.2(a). We use the notation M = AdSd+1 and
parametrize the boundary ∂M of the regularizedM as follows: ∂0M := {M| y = 2l, z > ε2}
is the hypersurface which is invariant under the orbifold action, ∂1M := {M| y = ε1, z > ε2}
denotes the (regularized) AdSd part at large R, ∂2M := {M| ε1 < y < 2l, z = ε2} consists
of the boundaries of the AdSd slices and ∂∂M := {M| y = ε1, z = ε2} is the boundary of
∂1M, see Fig. 3.2(a).

We briefly discuss the boundary conditions to be imposed on the various parts of the boundary.
On the Z2-fixed part at R = 0/y = 2l, definite orbifold parity demands either vanishing
function value φ = 0 or vanishing normal derivative ∂Rφ = 0. In view of the decomposition
φ = ϕf discussed in Sec. 3.1.1.1, this places restrictions on f . Further restrictions are
imposed on f by Dirichletd+1/Neumannd+1 or more general mixed boundary conditions
at R → ∞/y = 0. For non-Dirichlet boundary conditions and ν ≥ 1, the inner product
needs to be properly renormalized, as usual. On the remaining part, which is the boundary
of the AdSd slices at z = 0, Dirichletd/Neumannd or mixed boundary conditions can be
imposed. We focus on Dirichletd first and discuss non-Dirichlet boundary conditions in
Sec. 3.1.2.4. Finally, regularity and normalizability at the origin of the AdSd slices at z = π/2
places restrictions on the AdSd modes ϕ. This condition is satisfied by choosing for ϕ the
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∂1M∂0M

∂2M

∂2M
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∂M

h

h

(b)

Figure 3.2: The boundaries of the regularized geometries. 3.2(a) shows the regularization of
the AdS slicing discussed in Sec. 3.1.2.1. The intersection of ∂1M and ∂2M is
∂∂M. 3.2(b) shows the regularization of the dS slicing discussed in Sec. 3.1.3.

modes discussed in [67], which decay as a power-law at the origin. In the following we set
L = l = 1.

Focusing on Dirichletd boundary conditions we now construct the counterterms that render
the action finite and stationary when both the equations of motion and the boundary
conditions hold. Using integration by parts and dropping terms which vanish by orbifold
parity and normalizability at z = π/2 the action (3.7) reads

S =
1

2

∫

∂1M
φ
√
gyy∂yφ+

1

2

∫

∂2M
φ
√
gzz∂zφ+ EOM . (3.19)

The volume forms are suppressed throughout, they are the standard forms constructed from
the (induced) metric on the respective (sub)manifold. Note that both terms are divergent
for ε1 → 0. The familiar divergence of the first term has to be cancelled by counterterms
on ∂1M. The second term is divergent due to the integral over y ∈ (ε1, 2l). Expanding the
integrand in y and performing the integral order by order we isolate the divergent part, which
is to be cancelled by a counterterm on ∂∂M. For ν ∈ (1, 2) we find the counterterms

S∂M = −1

2

∫

∂1M

[(
d

2
− ν
)
φ2 +

1

2(ν − 1)
φ�W

gind
φ

]
+

1

4(ν − 1)

∫

∂∂M
φLnφ , (3.20a)

where Ln is the Lie derivative along n = −√gzz∂z, which is the outward-pointing normalized
vector field in T∂1M normal to ∂∂M. �W

gind
is defined below (3.18) and gind is the induced

metric. For ν ∈ (0, 1) the second term in the first integral in (3.20a) is absent, such that the
boundary terms do not contain derivatives. For ν = 1 we find

S∂M = −1

2

∫

∂1M

[(
d

2
− 1

)
φ2 −

(
log y + κ

)
φ�W

gind
φ

]
− 1

2

∫

∂∂M
(log y + κ)φLnφ . (3.20b)
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Here we have included, with an arbitrary coefficient κ, a combination of boundary terms
which is compatible with all bulk symmetries and finite for ν = 1. Note that invariance
under radial isometries, corresponding to conformal transformations on the boundary, is
broken by the log y terms. We also emphasize that integration by parts in the counterterms
has to be carried out carefully, since e.g. ∂1M itself has a boundary. The counterterms also
enter the symplectic structure and the associated inner product. Following [52], we find

〈φ1, φ2〉ren = 〈φ1, φ2〉M −
1

2(ν − 1)
〈φ1, φ2〉∂1M , ν ∈ (1, 2) , (3.21a)

〈φ1, φ2〉ren = 〈φ1, φ2〉M +
(

log ε1 + κ
)
〈φ1, φ2〉∂1M , ν = 1 . (3.21b)

For calculating CFT correlation functions we need the variations of the action to be finite
when evaluated on-shell. The variation of Sren := S + S∂M reads

δSren = EOM−
∫

∂0M
δφ
√
gyy∂yφ+

∫

∂2M
δφ
√
gzz∂zφ+ δSνren . (3.22)

The first boundary term vanishes for solutions with definite Z2 parity. The ∂2M integral is
divergent for ε1 → 0 and the remaining part is

δSνren =

∫

∂1M
2νφ(0)

N δφ(0)

D +
1

2(1− ν)

∫

∂∂M
δφ
√
gzz∂zφ , (3.23a)

δSνren =

∫

∂1M
δφ(0)

D

(
2φ(0)

N + (1− 2κ)φ(2)

D

)
+

∫

∂∂M
(log y + κ)δφ

√
gzz∂zφ , (3.23b)

for ν ∈ (1, 2) and ν = 1, respectively. The ∂∂M terms are divergent for ε1 → 0 and combine
with the divergent ∂2M term in (3.22) to render the variation finite as we remove the cut-off
on y. For fixed Dirichletd boundary conditions there are no divergences for ε2 → 0, such that
the limit ε1/2 → 0+ is finite and independent of the order in which the limits are performed.
Thus, we have renormalized the theory such that we have finite variations with respect to the
boundary data at y = 0, while keeping fixed Dirichlet boundary conditions at z = 0. This
allows to compute correlators for the dual CFT on AdSd with fixed boundary conditions.

In summary, the renormalized action is stationary for solutions of the Klein-Gordon equation
with Dirichletd boundary conditions, provided they have definite Z2 parity such that the
∂0M integral in (3.22) vanishes and satisfy either the Dirichletd+1 condition δφ(0)

D = 0 or the
Neumannd+1 condition

φ(0)

N = 0 , ν ∈ (1, 2) , 2φ(0)

N + (1− 2κ)φ(2)

D = 0 , ν = 1 , (3.24)

such that the ∂1M integral in (3.23) vanishes. The remaining finite combination of the ∂2M
and ∂∂M integrals vanishes for Dirichletd boundary conditions. This can be seen as follows,
expanding

ϕ = z
d−1
2
−µ(ϕ(0)

D + . . .
)

+ z
d−1
2

+µ
(
ϕ(0)

N + . . .
)
, (3.25)

where µ is defined in (3.26), and using the fixed Dirichletd boundary condition ϕ(0)

D = δϕ(0)

D = 0,
bilinears in φ, δφ scale at least as zd−1+2µ.

√
gzz∂z does not decrease the order in z and

the volume forms on ∂2M, ∂∂M are ∝ z−(d−1). Thus, the overall scaling is with a positive
power of z and as the integrations are performed for fixed z = ε2 the integrands vanish for
ε2 → 0.
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3.1.2.2 Dirichletd beyond the unitarity bound

With the renormalization set up in the previous section, we now study the bulk theory in the
mass range corresponding to a CFT with an operator violating the unitarity bound. We use
the decomposition φ = ϕf discussed in Sec. 3.1.1.1 and determine the spectrum from the
boundary conditions at y = 0 and Z2 parity, which impose restrictions on the radial profiles
f . This yields a quantization condition on the ‘AdSd mass’ M introduced in Sec. 3.1.1.1,
which we parametrize by an in general complex complex parameter µ as

M2 =: −(d− 1)2

4
+ µ2 . (3.26)

Note that modes with µ ∈ R respect the AdSd BF bound. We start with non-integer ν
and discuss the case ν = 1 separately. For completeness we discuss both Neumannd+1 and
Dirichletd+1 boundary conditions, but of course expect unitarity violations only for the
former.

The two independent solutions to the radial equation (3.9) for non-integer ν are given by

fN/D = (coshR)−
d
2 P

a
N/D

ν

µ− 1
2

(
tanhR

)
, aN = 1, aD = −1 , (3.27)

where P βα are the generalized Legendre functions. For the discussion of Dirichletd+1 and
Neumannd+1 boundary conditions we use the radial variable y = 2e−R, see Sec. 3.1.1.2. The
asymptotic expansions of the radial modes (3.27) around the conformal boundary at y = 0 are

given by fN/D = y
d
2
−a

N/D
ν(

2
a
N/D

ν
/Γ(1− aN/Dν) + . . .

)
, where the ellipsis denotes subleading

terms of integer order. Hence, we conclude that modes with radial profile fN/fD satisfy
Neumannd+1/Dirichletd+1 boundary conditions. Imposing definite Z2 parity translates to
the conditions f |R=0 = 0 for odd and f ′|R=0 = 0 for even parity. For the modes (3.9) we
have

fD/N(0) =

√
π 2

a
D/N

ν

Γ
(

3
4 −

µ
2 − aD/N

ν
2

)
Γ
(

3
4 + µ

2 − aD/N
ν
2

) , (3.28a)

f ′D/N(0) =
−√π 2

1+a
D/N

ν

Γ
(

1
4 −

µ
2 − aD/N

ν
2

)
Γ
(

1
4 + µ

2 − aD/N
ν
2

) . (3.28b)

The expressions on the right hand sides vanish when the appropriate Γ-functions in the
denominator have a pole, which is for non-positive integer arguments. The spectrum can
therefore be read off from (3.28a) for odd and (3.28b) for even Z2 parity, which yields

µ2
D/N,even/odd =

(
2n+

1

2
− aD/Nν + beven/odd

)2
, n ∈ N , (3.29)

where beven = 0 and bodd = 1 for even and odd parity, respectively. Note that these µ are real,
such that the transverse modes ϕ of the bulk field with Dirichletd+1/Neumannd+1 boundary
conditions do not violate the AdSd BF bound. However, there can be modes with µ = 0
which saturate the BF bound for half-integer ν and Neumannd+1 boundary condition.
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For a concrete realization of the transverse modes ϕ we use the AdS modes discussed in
[67]. Imposing normalizability at the origin and boundary conditions on the conformal
boundary of the AdSd slices yields a quantization of their frequencies depending on µ. For
the Dirichletd case, all the modes are normalizable with respect to the usual symplectic
structure and the frequencies ω are given by

ωD/N,even/odd = ±
[
`+ 2p+

d− 1

2
+ µD/N,even/odd

]
, p ∈ N , (3.30)

where ` denotes the principal angular momentum. Note that the subscripts D/N in (3.30)
refer to Dirichletd+1/Neumannd+1 boundary conditions on the conformal boundary of AdSd+1.
For the case of Neumannd to be discussed in Sec. 3.1.2.4, the frequencies are given by (3.30)
with µD/N,even/odd→ − µD/N,even/odd.

For Dirichletd boundary conditions the AdSd norms are positive [69], so the existence of
ghosts depends only on the norms of the radial modes, which we now calculate. With the
decomposition φ = ϕ(x)f(R) the renormalized inner product (3.21a) reads 〈φ1, φ2〉M =
〈ϕ1, ϕ2〉slice〈f1, f2〉SL,ren , where the renormalized SL product is given by

〈f1, f2〉SL,ren = 〈f1, f2〉SL −
1

2(ν − 1)
(coshR)d−2f∗1 f2

∣∣
R→∞ . (3.31)

We evaluate (3.31) using (3.14) for the modes fN and fD given in (3.27), which satisfy
Neumannd+1 and Dirichletd+1 boundary conditions for all µ, respectively. The divergence of
the bare SL product 〈f1, f2〉SL for Neumannd+1 and ν ∈ (1, 2) is cancelled by the boundary
term, such that the inner product is finite. Furthermore, the finite contribution from R =∞
vanishes for all µ if Neumannd+1/Dirichletd+1 boundary conditions are satisfied. The inner
product thus evaluates to

〈f1, f2〉SL,ren = − 1

M2
1 −M2

2

(coshR)d(f∗1 f
′
2 − f ′1

∗
f2)
∣∣
R=0

. (3.32)

Note that the term in parenthesis on the right hand side vanishes if orbifold boundary
conditions are satisfied, and therefore modes with different boundary mass are orthogonal.
The expression (3.32) as it stands is not defined for M1 = M2. However, it can be extended
continuously to coinciding masses given by (3.29), since in that case the term in parenthesis
vanishes as well. Defining ||f ||2 := 〈f, f〉SL,ren, the inner product for AdSd+1 fields φD/N

with Dirichletd+1/Neumannd+1 boundary conditions reads

〈φD,1, φD,2〉M = δM1M2
〈ϕ1, ϕ2〉slice ||fD||2 ,

〈φN,1, φN,2〉M = δM1M2
〈ϕ1, ϕ2〉slice ||fN||2 .

(3.33)

For the Dirichletd+1 modes with even/odd Z2 parity we find

||fD,even/odd||2 =
(2n+ beven/odd)!

(1 + 2ν + 4n+ 2beven/odd)Γ(1 + 2ν + 2n+ beven/odd)
. (3.34)
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As expected, these are positive for all n ∈ N and ν ≥ 0. Thus, since < ·, · >slice is non-negative
for Dirichletd boundary conditions, the spectrum is ghost-free. Similarly, for Neumannd+1

boundary conditions we find the norms

||fN,even/odd||2 =
(2n+ beven/odd)!

(1− 2ν + 4n+ 2beven/odd)Γ(1− 2ν + 2n+ beven/odd)
, (3.35)

which are positive for ν ∈ [0, 1) as expected. For ν > 1 we first consider ν /∈ Z + 1
2 . If

m := b2ν − beven/oddc, where b·c denotes the integer part, is even, the n = 0 mode has
negative norm since the coefficient of the Γ-function in the denominator is negative while the
Γ-function itself is positive. If m is odd the n = (m− 1)/2 mode is of negative norm since
the coefficient is positive while the Γ-function is negative. As < ·, · >slice is non-negative we
thus have ghosts in the spectrum for non-half-integer ν in (1, 2), such that the non-unitarity
of the dual boundary theory is nicely reflected in the bulk. For ν = k + 1

2 , 1 ≤ k ∈ Z the
AdSd modes have integer µ and by continuity of (3.35) there are modes with vanishing or
negative norm. The n = 0 and n = k − beven/odd modes are of norm zero and yield the same
µ2 unless k = 1 with odd Z2 parity3. This degeneracy in the spectrum indicates that the
basis of solutions we are using is incomplete, so we expect ‘logarithmic modes’, analogous to
those in [74]. Once the log-modes are incorporated, continuity of the spectrum indicates that
ghosts must be present [75]. For k = 1 with odd parity the n = 0 mode is of negative norm
and the others are positive, such that the non-unitarity of the dual theory is reproduced in
the bulk.

We close this section noting that the results established explicitly here for ν < 2 extend to
higher ν /∈ Z even without knowledge of the exact counterterms. We consider the expansions
of the Dirichlet and Neumann bulk fields near the conformal boundary ∂1M

φD = y
d
2
−ν∑

k

φ(2k)

D y2k , φN = y
d
2

+ν
∑

k

φ(2k)

N y2k , (3.36)

where k is a non-negative integer. For 2ν /∈ Z the only way to get boundary terms which are
quadratic in the field and have an integer scaling – finite terms, in particular – is through
the combination φDφN. However, since φDφN = O(yd) and derivative/curvature-terms are
subleading with even powers of y, while the volume form is O(y−d), only the boundary
term without derivatives can yield a finite part. This implies that there are no extra finite
contributions to the norm from the additional boundary terms. For half-integer ν the
combination of two φD fields with the volume form scales as an odd power of y, so such
terms can again not yield finite contributions. The results (3.34), (3.35) are therefore also
valid for generic ν /∈ Z.

3.1.2.3 Dirichletd at the unitarity bound

We now consider the special case ν = 1, corresponding on the boundary to an operator which
saturates the unitarity bound4. The modes (3.27) are not linearly independent for integer ν,

3 For k large enough there are further pairs of modes with norm zero and the same µ2, which are of the
form (n1, n2) = (1, n− beven/odd − 1) , (2, n− beven/odd − 2) etc.

4 Here we slightly abuse notation – boundary conformal symmetry is broken for integer ν due to the
logarithmic counterterms, such that the unitarity bound does not strictly apply.
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so we instead use the basis of radial profiles

fi(R) = u2ci− 3
2
(
1− u2

) d+2
4

2F1

(
ci −

µ

2
, ci +

µ

2
; 2ci − 1;u2

)
, i = 1, 2 , (3.37)

where u = tanh(R) and c1 = 3/4, c2 = 5/4. Since f1(0) = 1, f ′1(0) = 0 and f2(0) = 0,
f ′2(0) = 1, the modes are independent and f1/f2 has even/odd Z2 parity. The expansions
around y = 0 are

fi =
√
π 21−iy

d
2
−1
(
f

(0)
i + y2 log(y)f

(1)
i + y2f

(2)
i + . . .

)
, (3.38)

where f
(0)
i = 1/

(
Γ
(
ci − µ

2

)
Γ
(
ci + µ

2

) )
, f

(1)
i = 1

8(1− 4µ2)f
(0)
i and

f
(2)
i =

(
1− 4µ2

) (
ψ(ci − µ

2 ) + ψ(ci + µ
2 ) + 2γ − 1

)
− 2d− (−1)i4

16Γ
(
ci − µ

2

)
Γ
(
ci + µ

2

) . (3.39)

Here, γ is the Euler-Mascheroni constant and ψ the digamma function.

We now discuss the spectrum, which for even/odd Z2 parity is found by imposing Dirichletd+1

or Neumannd+1 boundary conditions on f1/f2. We first consider Dirichlet boundary condi-

tions, which amount to setting to zero the leading coefficient in (3.38), i.e. f
(0)
i = 0. This

yields µi,D = ±2(n+ ci) with n ∈ N. Note that for these choices of µ the coefficients f
(2)
i are

finite despite the pole in the denominator, namely f
(2)
i

∣∣
µi,D

= (−1)n(n+ 2)!/Γ(n− 1 + 2ci).

This ensures that the modes are non-trivial. The norms for the Dirichlet case are positive
∀n ∈ N, as expected:

||fi,D||2 = πn!(n+ 1)!
n+ 2ci − 1

4i(n+ ci)Γ(n+ 2ci)2
. (3.40)

We now come to the Neumannd+1 boundary condition which, as seen in (3.24), amounts to

2f
(2)
i + (1− 2κ)f

(1)
i = 0 . (3.41)

The specific solution µ2 = 1
4 only exists for d = 2 and even parity. For the remaining solutions

we note that, as f
(2)
i is finite for the choices of µ which make its denominator diverge while

f
(1)
i vanishes, those µ do not yield solutions. Therefore, (3.41) is equivalent to

ψ(ci −
µ

2
) + ψ(ci +

µ

2
) + 2(γ − κ) =

2d+ (−1)i4

1− 4µ2
. (3.42)

We first argue that there are only real or purely imaginary solutions. Assume that we have
µ = a + ib with a, b 6= 0 satisfying (3.42). Due to the non-vanishing imaginary part of µ
the arguments of the digamma functions in (3.42) are non-integer, such that we can expand
ψ(1 + z) + γ =

∑∞
n=1

z
n(n+z) [76]. Taking the imaginary part of (3.42) then yields

−
∞∑

n=0

n+ ci∣∣n+ ci + µ/2
∣∣2 ∣∣n+ ci − µ/2

∣∣2 = 16
d+ (−1)i2

|1− 4µ2|2 . (3.43)
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Since each term in the sum on the left hand side is positive, the overall left hand side is
negative. On the other hand, the right hand side is non-negative, which yields a contradiction.
The assumption that there are solutions with a, b 6= 0 therefore has to be dropped and we
only have real or purely imaginary solutions. For such µ’s the modes (3.37) are real.

We now focus on the lowest-M2 solutions. To see whether we have tachyons, i.e. states with
negative mass squared below the BF bound, we consider purely imaginary µ = iλ. Equation
(3.42) then becomes

Reψ(ci +
iλ

2
) + γ − κ =

d+ (−1)i2

1 + 4λ2
. (3.44)

Both sides of the equation are monotonic functions of |λ|. While the right hand side decreases
with |λ| and tends to zero, the left hand side increases and tends to infinity. Thus, we have
one tachyonic state if at λ = 0 the right hand side is greater than the left hand side, and
none otherwise. This translates to κ > 2− d− log 8− (−1)i π2 as condition for the existence
of a tachyon in the spectrum. A discussion of such a tachyonic scalar field with negative
mass squared below the BF bound in global AdS is given in Sec. 3.1.4. If κ is such that
there is no tachyon, the left hand side of (3.42) is greater than or equal to the right hand
side at µ = 0. Since the left hand side is bounded for real µ ∈ [0, 1

2), while the right hand
side tends to +∞ for µ→ 1

2 , the lowest-M2 solution in that case has µ ∈ [0, 1
2).

With the properties of the spectrum discussed above we can now examine the norms.
Calculating the renormalized inner product for the modes (3.37) and using (3.42) to simplify
it, we find

||fi,N||2 = π
−8d+(−1)i2

1−4µ2
+ 1−4µ2

4µ

(
ψ(1)(ci + µ

2 )− ψ(1)(ci − µ
2 )
)

24ciΓ(ci − µ
2 )2 Γ(ci + µ

2 )2
, (3.45)

where ψ(1) is the trigamma function. The denominator is positive for µ real or purely
imaginary, so the sign of the norm only depends on the numerator. For any choice of κ,
d ≥ 2 and µ ∈ [0, 1

2) or µ purely imaginary, the first term in the numerator is non-positive
and the second one negative, such that the norm is negative and we find ghosts in all these
cases.

3.1.2.4 Neumannd and dimensional reduction

In this section we study the case of Neumannd boundary conditions at the boundary of the
AdSd slices for non-integer ν. It turns out that normalizability in that case is quite delicate,
as we will see shortly. We expect similar features for all boundary conditions which allow the
Neumannd modes to fluctuate. The values of µ2 corresponding to Neumannd+1/Dirichletd+1

and even/odd orbifold parity were given in (3.29) and read

µ2
D/N,even/odd =

(
2n+

1

2
− aD/Nν + beven/odd

)2
, n ∈ N . (3.46)

In the previous section we have discussed Dirichletd boundary conditions. In that case,
normalizability of the inner product (3.12) was equivalent to normalizability of the radial part
〈f1, f2〉SL since the transverse part 〈ϕ1, ϕ2〉slice was finite. On the other hand, for Neumannd
normalizability of 〈ϕ1, ϕ2〉slice is not given a priori. Instead, counterterms on ∂2M with their
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contribution to the symplectic structure are needed to render the associated inner product
〈ϕ1, ϕ2〉slice,ren finite for µ2 > 1. Additional terms on ∂∂M may also be required to cancel
combined divergences in the radial and slice parts of the inner product. The (standard)
geometric counterterm action on ∂2M can be arranged as a series of terms with decreasing
degree of divergence as z → 0 :

S∂2M =

∫

∂2M
αφ2 + β φ�gind

φ+ γR[gind]φ2 + ... , (3.47)

with fixed coefficients α, β etc. Note that, to render modes with µ2 > 1 normalizable,
the precise relation between the coefficients and µ would be required, as seen for the
corresponding relation to ν in (3.20a). Thus, with fixed coefficients we could at most
render the modes for one µ2 > 1 normalizable5. Moreover, calculating explicitly the
contribution to the inner product and factorizing off the radial part similarly to (3.12),
we find 〈φ1, φ2〉∂2M = 〈ϕ1, ϕ2〉

∫∞
0 dRλd−3f∗1 f2 , where 〈ϕ1, ϕ2〉 denotes the R-independent

part at fixed z. Note that the radial part is not the Sturm-Liouville inner product and
therefore – in contrast to the counterterm contribution from ∂1M – the renormalization can
not be absorbed by renormalizing only one of the factors in (3.12). Thus, the counterterms
can not cancel the divergences coming solely from the 〈., .〉slice part of the inner product
(3.12) and only the modes with µ2 < 1 are normalizable. Finally, we note that since the
boundary geometry is global AdSd the results of [69] apply and we conclude that even if the
AdSd part 〈ϕ1, ϕ2〉slice of (3.12) was properly renormalized, it would be indefinite for µ2 > 1.
The bulk theory would then contain ghosts immediately and we therefore choose to add no
counterterms on ∂2M.

In summary, the Neumannd theory is specified by the AdSd+1 action (3.7) with mass
parametrized by ν, and the ν-dependent counterterms discussed in Sec. 3.1.2.1 to render
the inner product finite as ε1 → 0. The spectrum of normalizable excitations is given by the
modes with µ2 as in (3.46) subject to the condition that the AdSd part of the inner product
〈ϕ1, ϕ2〉slice,ren is finite. This is only the case for µ2 < 1, i.e.

− 3

2
< 2n− aD/Nν + beven/odd <

1

2
. (3.48)

This immediately implies that there is at most one normalizable radial mode. For Dirichletd+1

boundary conditions there are only normalizable modes for even parity and ν ∈ [0, 1
2). They

have n = 0 and, as seen in (3.34), their norm is positive, such that there are no ghosts for
Dirichletd+1 as expected. The spectrum is slightly richer for Neumannd+1. For even Z2

parity there is a normalizable radial mode for all ν ≥ 0, namely n = b(2ν + 1)/4c. For odd
Z2 parity we find a normalizable mode only for ν > 1/2, and it has n = b(2ν − 1)/4c. In
both of the Neumannd+1 cases the normalizable modes – if any – have positive norm for
ν < 1 and negative norm for ν ∈ (1, 2), see (3.35). The spectrum, although somewhat trivial,
is therefore ghost-free for ν ∈ (0, 1) and contains ghosts for ν ∈ (1, 2), which matches our
expectations based on boundary unitarity. The discussion extends to ν > 2 for the same
reason as discussed in Sec. 3.1.2.2. Interestingly, for even Z2 parity and ν ∈ (2, 5

2), we find

5 We have not attempted to generate coefficients like 1/(1 − µ) by acting on φ with non-local operators
containing e.g. inverse z-derivatives.
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that the only normalizable modes have n = 1 and positive norm, see (3.35). Thus, the
spectrum, although very simple, is free of ghosts in that case. A similar mechanism applies
to odd Z2 parity and ν ∈ (5

2 , 3).

What we see here is a kind of dimensional reduction – the radial dependence of the AdSd+1

field φ is completely fixed, such that it has only the degrees of freedom of ϕ, i.e. of the AdSd
field. The space of normalizable solutions to the Klein-Gordon equation on AdSd+1 with
mass m2 = −d2/4 + ν2 and Neumannd boundary condition is thus isomorphic to the space
of solutions to the Klein-Gordon equation on AdSd with Neumannd boundary condition and
mass M2 = −(d − 1)2/4 + µ2, where µ2 is given by the only one normalizable µ2 < 1 of
(3.46). In that sense, the bulk theory is equivalent to a boundary theory in a trivial way.

Some further comments are in order. We notice that the bulk theory is non-local in the
sense that with only the solutions for one µ2 available it is impossible to localize initial data
along the radial direction. Furthermore, we note that the boundary theory lacks conformal
invariance, as it is simply a scalar field with a fixed mass, which fails to be conformally
coupled6. Hence, we do not expect the unitarity bound to hold, which explains the cases
with only positive-norm modes found above.

3.1.3 dS on the boundary

In the present section we study the Klein-Gordon theory defined on AdSd+1 foliated by dSd
slices which, as noted in the introduction, corresponds to a boundary dual theory defined
on dSd. More precisely, we take the metric to be (3.4) and set L = H = 1 henceforth.
As mentioned in the introduction, this bulk set up is closely related to the global AdSd+1

case discussed in [69] and one could in principle argue that the results should translate
from those in the global case, at least in conformal invariant scenarios. However, as the
dSd slicing covers only a patch of AdSd+1 and a horizon is present, one could expect the
bulk manifestations of the unitarity violations in the boundary theory to resemble those
in Poincaré AdS. Furthermore, there are cases of interest in which conformal invariance is
broken, and this motivates our study of the dSd case in detail. We shall also see that the
spectrum possesses an interesting structure, making this discussion worthwhile.

Our main interest is to find possible violations of unitarity in the bulk when the dual theory
contains an operator whose dimension violates the unitarity bound. Thus, we will focus on
Neumann boundary conditions with mass m2 = −d2/4 + ν2 and 0 < ν < 2. For comparison,
we shall also include the Dirichlet results. The boundary of the patch covered by the dSd
foliation consists of the causal horizon located in the interior, where R goes to zero in the
coordinate system (3.1), (3.3), and a piece of the conformal boundary where R goes to infinity.
Below, we impose normalizability on the causal horizon and shall not add counterterms
in this region, in analogy to the usual treatment of the Poincaré horizon in the Poincaré
patch of AdS, see e.g. [52], [69], [77]. On the other hand, on the conformal boundary we will

6 The field equation for a conformally coupled scalar in d dimensions is �φ− 1
4
d−2
d−1
Rφ = 0, compare (2.14),

where in our case R = −d(d− 1). This corresponds to µ2 = 1
4
, which is only possible for integer ν as can

be seen in (3.46). Although we have not discussed the integer-ν cases in detail for Neumannd, we expect
tachyons/ghosts similar to the situation in Sec. 3.1.2.3.

32



3.1 Beyond the Unitarity Bound in AdS/CFT(A)dS

require the usual Dirichlet or Neumann boundary conditions, which can be implemented by
adding the familiar counterterms.

In order to solve the wave equation we use the mode decomposition discussed in Sec. 3.1.1.1
with the dSd harmonics ϕ = Yσ,~j . Since these will play an important role in our analysis,
we now review their main properties following [78]. We refer the reader to [79] for a more
extensive discussion. By definition, the dSd harmonics satisfy eigenvalue equation

�γYσ,~j = −σ(σ + d− 1)Yσ,~j , (3.49)

where σ is an arbitrary complex parameter. The collection ~j corresponds to (d− 1) angular
momentum quantum numbers, i.e. the components of ~j are non-negative integers such that
jd−1 > jd−2 > . . . |j1|. Note that, as a consequence of the definition (3.49), the dS harmonics
are unchanged under the replacement σ → −(σ + d− 1). Thus, without loss of generality,
we can restrict ourselves to Reσ > −(d− 1)/2. The space spanned by the dS harmonics is
endowed with the inner product

〈Yσ,~j , Yσ,~k〉slice = −i
∫

∂Σ
dΩ
√
g∂Σ n

iY ∗
σ,~j

↔
∂ i Yσ,~k . (3.50)

With the convention Reσ > −(d − 1)/2, it can be shown that the dS harmonics furnish
unitary representations, i.e. that (3.50) is positive definite, if σ belongs to one of the
following

• Principal series: σ = −d−1
2 + iρ, with ρ ∈ R,

• Complementary series: −d−1
2 < σ < 0, with σ ∈ R.

Some comments are in order here. First, it is important to keep in mind that, since we are
interested in searching for ghosts/violations of unitarity, we must consider all σ’s allowed by
normalizability, and not restrict ourselves to modes in the principal or complementary series.
Second, we have defined ghosts as solutions with positive frequency and negative norm. The
notion of positive frequency we shall adopt here is closely analogous to that depicted in [80]
in the context of asymptotically flat spaces foliated by dS slices. That is, we shall choose
Yσ,~j such that φ = Yσ,~jfσ is positive frequency in the usual sense in AdSd+1. Third, we note
that σ1, σ2 in the principal series are indistinguishable if σ1 = σ∗2. We shall remove this
ambiguity by taking ρ > 0 below.

3.1.3.1 Renormalization

The goal of this section is to find a properly renormalized action and symplectic product for
the case of the dSd slicing. As mentioned above, we will only add to the action counterterms
on the conformal boundary of the patch of AdSd+1. Having found a satisfactory (i.e. finite
and stationary) action, we shall follow the prescription of [52] to determine the renormalized
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symplectic structure. In analogy to the AdSd case, the action we consider is SdS
ren = S +S∂M,

where S is given by (3.7) and

S∂M = −1

2

∫

∂M

[(
d

2
− ν
)
φ2 +

1

2(ν − 1)
φ�W

gind
φ

]
for ν 6= 1 , (3.51a)

S∂M = −1

2

∫

∂M

[(
d

2
− 1

)
φ2 − (log y + κ)φ�W

gind
φ

]
for ν = 1 . (3.51b)

Here �W
gind

is the differential operator defined in Sec. 3.1.1.2, the radial variable y is defined

via y = 2e−R and ∂M denotes the part of the boundary at the radial cut-off y = ε, see
Fig. 3.2(b). Note that in (3.51b) we have introduced an extra finite counterterm with an
arbitrary coefficient κ. Using the results of Sec. 3.1.1.2, it is not hard to verify that SdS

ren

provides a well-defined variational principle for the relevant boundary conditions. In fact,
taking an arbitrary on-shell variation we obtain

δSdS
ren = −2ν

∫

∂M
φ(0)

N δφ(0)

D for ν 6= 1 , (3.52a)

δSdS
ren = −

∫

∂M

(
2φ(0)

N + (1− 2κ)φ(2)

D

)
δφ(0)

D for ν = 1 , (3.52b)

where the coefficients of the asymptotic expansion are those given in Sec. 3.1.1.2. For
0 < ν < 2, with ν 6= 1, we observe from (3.52a) that δSdS

ren is indeed finite and stationary for
either Dirichlet boundary conditions, φ(0)

D = 0, for all ν or Neumann boundary conditions,
φ(0)

N = 0. In the ν = 1 case, (3.52b) reveals that δSdS
ren is finite and stationary for the Dirichlet

boundary condition φ(0)

D = 0 and for

2φ(0)

N + (1− 2κ)φ(2)

D = 0 , (3.53)

which we shall refer to as Neumann. The renormalized inner products constructed along the
lines of [52] read

〈φ1, φ2〉ren = 〈φ1, φ2〉M −
1

2(ν − 1)
〈φ1, φ2〉∂M for ν 6= 1 , (3.54a)

〈φ1, φ2〉ren = 〈φ1, φ2〉M + (log ε+ κ)〈φ1, φ2〉∂M for ν = 1 , (3.54b)

where the subscripts M, ∂M indicate the slices in which the usual KG products are to be
evaluated. As outlined in Sec. 3.1.1.1, after inserting the mode decomposition φ = Y f in
(3.54a) we find

〈φ1, φ2〉ren = 〈Yσ1,~j1 , Yσ2,~j2〉slice〈f1, f2〉SL,ren , (3.55)

where

〈f1, f2〉SL,ren = 〈f1, f2〉SL −
(sinhR)d−2

2(ν − 1)
f∗1 f2

∣∣
R=∞ for ν 6= 1 , (3.56a)

〈f1, f2〉SL,ren = 〈f1, f2〉SL + (κ+ log 2−R)
(sinhR)d−2

2(ν − 1)
f∗1 f2

∣∣
R=∞ for ν = 1 . (3.56b)

Note that the first factor in the right hand side of (3.55) corresponds to the inner product of
two dS harmonics with different values of σ. At first sight, this might seem problematic since
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the inner product (3.50) was only defined for two harmonics with the same boundary mass.
However, as we shall see shortly, the renormalized SL factor defined in (3.56a) vanishes for
σ1 6= σ2, so no inconsistency arises. Finally, as mentioned in Sec. 3.1.1.1, we note that the
unrenormalized SL product can be evaluated by means of (3.14) with λ = (sinhR)d−2.

We shall explicitly verify below that the inner product (3.55) is finite and conserved in the
cases of interest, namely, Dirichlet boundary conditions for all ν and Neumann boundary
conditions for non-integer ν in the range 0 < ν < 2.

3.1.3.2 Beyond the unitarity bound

Let us now study the ghost content of the theories defined by the boundary conditions of
interest. To this end we first determine the spectrum of normalizable solutions and then
compute the norms of the various modes. We focus on the requirement of normalizability in
the interior, i.e. R = 0 in the coordinate system (3.4), since normalizability at the boundary
is either automatic (for Dirichlet boundary conditions and Neumann boundary conditions
for 0 < ν < 1) or guaranteed by the presence of the boundary terms (for Neumann boundary
conditions and ν ≥ 1). In the present section we restrict ourselves to non-integer ν and
postpone the analysis of the special case ν = 1 until Sec. 3.1.3.3.

As stated in Sec. 3.1.1.1, the equation of motion is given by (3.8) with λ = sinhR. Using the
mode decomposition and the property (3.49), this reduces to (3.9) with M2 = −σ(σ+ d− 1),
which, according to the general discussion in Sec. 3.1.1.1, can be written as a SL problem
with eigenvalue α = −σ(σ+d−1). Studying the radial equation near R = 0, we find that the
two characteristic behaviors are f ≈ Rσ and f ≈ R1−d−σ. Inspecting (3.54a), we conclude
that for Reσ > −(d− 1)/2 only f ≈ Rσ is normalizable near the origin, while for σ in the
principal series, both fall-offs are δ-function normalizable at the horizon7.

In order to write down the full solution, we introduce x = (coshR)−1, so the boundary is
located at x = 0 while the deep interior corresponds to x = 1. In terms of this variable, the
two independent solutions can be expressed as

fD/N = x
d/2+a

D/N
ν
(1− x2)σ/2 2F1

(
cD/N , cD/N +

1

2
; 1 + aD/Nν , x

2
)
, (3.57)

where cD/N = (d + 2σ + 2aD/Nν)/4 and aD = 1, aN = −1. Near the boundary, the radial

profiles (3.57) behave as

fD = xd/2+ν(1 +O(x2)) , fN = xd/2−ν(1 +O(x2)) , (3.58)

where the sub-leading terms consist solely of integer powers of x. Noting that near the
boundary we have x = y +O(y3) and comparing (3.58) with (3.17), we conclude that the
profile fD satisfies Dirichlet boundary conditions while fN satisfies Neumann boundary
conditions.

7 They oscillate near R = 0 in such a way that we can construct wave packets that decay faster than any
power law. Instead of constructing these wave packets, one can treat the norms of the modes in the
principal series as distributions. We shall do so below and obtain well-defined results. As anticipated
above, this resembles the behavior of timelike modes near the Poincaré horizon of Poincaré AdS.
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It is convenient to organize the following discussion according to the value of σ that charac-
terizes the radial profiles. For σ in the principal series, we have seen that both characteristic
behaviors are allowed near the origin. This implies that the spectrum is continuous. In fact,
Dirichlet/Neumann modes are simply given by the profiles (3.57) with σ = −(d− 1)/2 + iρ.
We now proceed to compute the respective norms, following [69]. We observe that since the
spectrum is continuous, the norms are understood in the distributional sense. Taking ρ > 0
by convention, we find for the symplectic product of the modes in the principal series

〈φ1, φ2〉ren = δ~j1,~j2δ(ρ1 − ρ2)

[
πΓ(1 + aD/Nν)

2νρ sinh(πρ)

]2 ∣∣∣∣
1

Γ(1− aD/Nν + iρ)Γ(iρ)

∣∣∣∣
2

. (3.59)

It should be noted that the renormalized SL product yields the factor of δ(ρ1 − ρ2) in (3.59).
Thanks to this property, we only need to compute the dS inner product for modes of the
same boundary mass. Moreover, consistently with the fact that σ belongs to the principal
series, we have assumed the dS harmonics to be normalized as 〈Yσ,~j , Yσ,~k〉slice = δ~j,~k . Note

that (3.59) is positive definite for both Dirichlet and Neumann boundary conditions. Also,
we emphasize that, for 1 < ν < 2 and Neumann boundary conditions, the explicit boundary
contribution in (3.54a) exactly cancels a divergence coming from the bulk term so that (3.59)
is finite. Finally, we note that (3.59) does not mix modes of different quantum numbers.

Let us consider now the case Reσ > −(d− 1)/2. With this restriction, only the solution that
behaves as f ≈ Rσ near R = 0 is normalizable, which implies that the allowed values of σ
form a discrete set. In fact, expanding (3.57) near R = 0, we find

fD/N = 2
a
D/N

ν
π−

1
2 Γ(1 + aD/Nν)

(
C

(1)
D/N(Rσ + . . . ) + C

(2)
D/N(R1−d−σ + . . . )

)
, (3.60)

where the ellipses denote subleading terms and

C
(1)
D/N =

2−
1
2

(d+σ)Γ
(

1
2 − d

2 − σ
)

Γ
(
1− d

2 + aD/Nν − σ
) , C

(2)
D/N =

2
1
2

(σ−1)Γ
(
d−1

2 + σ
)

Γ
(
d
2 + aD/Nν + σ

) . (3.61)

As stated above, normalizability requires C
(2)
D/N = 0, which translates into the quantization

condition

σ = σD/N := −(d− 1)

2
− n−

(
aD/Nν +

1

2

)
for n ∈ N ∪ {0} . (3.62)

Note that σD violates the assumption Reσ > −(d− 1)/2 for all n, so there are no Dirichlet
modes in this class. On the other hand, depending on the value of ν, some discrete modes are
allowed for Neumann boundary conditions. In particular, restricting ourselves to 0 < ν < 2,
we note that the mode n = 0 is allowed for ν > 1/2, while n = 1 is allowed for ν > 3/2.

Now, the norm of the Neumann modes that satisfy (3.62) is given by

〈φ1, φ2〉ren = 〈Yσ1,~j1 , Yσ2,~j2〉sliceδσ1,σ2(−1)n
n! csc(πν)

23+2n−2ν

(2ν − 2n− 1)Γ
(
ν − n− 1

2

)2

Γ(2ν − n)
. (3.63)

Note that for 1/2 < ν < 1 the n = 0 mode has positive SL norm and σ < 0, such that the
overall norm is positive. On the other hand, this mode has negative SL norm for 1 < ν < 2,
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and also the n = 1 mode which belongs to the spectrum for ν > 3/2 has negative SL norm.
Since the slice part 〈Yσ1,~j1 , Yσ2,~j2〉slice is positive for σ < 0 and indefinite for σ ≥ 0, we find
ghosts in any case for 1 < ν < 2.

Summing up, we conclude that the Neumann spectrum is free of ghosts for ν < 1, while
for ν > 1 the norm becomes indefinite. In addition, the Dirichlet spectrum is ghost-free for
all ν, in complete agreement with the CFT unitarity bound. It is worthwhile noting that
it is possible to have a unitary theory that contains one discrete – yet degenerate – mode
if the dimension of the operator is above but sufficiently close to the unitarity bound, i.e.
for d/2 − 1 < ∆− < d/2 − 1/2. Assuming that ∆− = d/2 − ν > 0, so that the boundary
operator is relevant, it follows from (3.62) that this discrete mode always occurs in the
complementary series, which is in principle a continuous series. Interestingly enough, the
authors of [81] encountered an analogous structure in the corrected 2-point function in the
weakly interacting scalar theory in dSd. We can partly understand this qualitative agreement
between the strongly and weakly coupled regimes from the argument that operators close to
the unitarity bound should interact weakly, since operators saturating the unitarity bound
must be free fields in a unitary theory.

3.1.3.3 Saturating the unitarity bound

So far we have assumed that ν is not an integer. In this section we tackle the case
ν = 1 paying special attention to the Neumann-like boundary condition (3.53), although
we shall also include the Dirichlet results. The main feature of the integer ν cases is the
presence of logarithms of the radial coordinate in the asymptotic expansion. As a result,
the counterterms required to renormalize the action contain the radial variable explicitly
so conformal invariance is broken, see (3.51b). The intuition about the existence of ghosts
developed in the conformally invariant setups does therefore not transfer straightforwardly
to this case.

We first proceed to find the spectrum of normalizable solutions. Again, we use the mode
decomposition φ = Y f , where Y is a dS harmonic and f a radial profile. Introducing the
variable x = (coshR)−1, so that the boundary is at x = 0, the two independent solutions to
the radial equation read

f1 = xd/2−1(1− x2)σ/2 2F1

(σ − 1

2
+
d

4
,
σ

2
− d

4
;
d+ 1

2
+ σ , 1− x2

)
, (3.64a)

f2 = xd/2−1(1− x2)(1−d−σ)/2
2F1

(
− d

4
− σ

2
,

1− σ
2
− d

4
;

3− d
2
− σ , 1− x2

)
. (3.64b)

As in the non-integer ν case, both characteristic behaviors are allowed near the origin for
modes in the principal series. Thus, for both Dirichlet and Neumann boundary conditions
there are continuous families of modes in the principal series and one can readily verify that
the norms are positive definite in this subspace.

Let us now study the discrete part of the spectrum. Defining σ = −(d − 1)/2 + λ, the
candidates for discrete modes are those with Reλ > 0. This is because in that case only
(3.64a) is regular at the origin, which implies that the boundary conditions at the conformal
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boundary will fix the value of λ. Letting y = 2e−R, we find that the near-boundary expansion
of (3.64a) is of the form (3.17) with

f
(0)
1D =

2λ+ 1
2 Γ(1 + λ)√

π Γ
(
λ+ 3

2

) , f
(2)
1D =

2λ−
1
2 Γ(1 + λ)√

π Γ
(
λ− 1

2

) , (3.65a)

f
(0)
1N =

f
(0)
1D

16

[
2d− 4 +

(
4λ2 − 1

)
(2ψ(λ+ 1/2) + 2γ − 1− log 4)

]
, (3.65b)

where ψ is the digamma function and γ is the Euler-Mascheroni constant. Dirichlet boundary

conditions require f
(0)
1D = 0, which according to (3.65a) implies λ = −(n+ 3/2), where n is a

non-negative integer. Since this violates our assumption Reλ > 0 for all n, we conclude that
there are no Dirichlet modes in this class. We now study the discrete Neumann modes. It

follows from (3.53) that these must satisfy 2f
(0)
1N + (1− 2κ)f

(2)
1D = 0. We note that λ = 1/2 is

a solution only for d = 2. Now, assuming λ 6= 1/2 and given (3.65), the Neumann condition
translates into

b(λ) :=
d− 2

4λ2 − 1
− κ̃+ ψ

(
1

2
+ λ

)
= 0 , (3.66)

where κ̃ = κ − γ + log 2. Though we have not found the spectrum in closed form, it is
still possible to extract the relevant physics. In order to do so, we first recall that complex
solutions constitute a pair of ghost/antighosts, so we only need to examine the norms of the
real λ solutions. Assuming that such solutions exist, the norm of the corresponding modes
can be written as

〈φ1, φ2〉ren = δ~j1,~j2δσ1,σ2〈Yσ1,~j1 , Yσ2,~j2〉slice〈f, f〉SL,ren , (3.67)

where

〈f, f〉SL,ren = A(λ)(1− 4λ2)
d

dλ
b(λ) (3.68)

with A(λ) = 4λ−1Γ(λ)Γ(1 + λ)/[πΓ
(

3
2 + λ

)2
] > 0. In (3.68), λ is given implicitly by the real

solutions of (3.66) that satisfy λ > 0. Note that in writing (3.67) we have not assumed that
the dS harmonics belong to a unitary representation.

Let us now study the existence of solutions to (3.66). We first note that b(0) = 2−d−log 8−κ
and that b → −∞ as λ → 1/2−. Furthermore, b → ∞ when λ → 1/2+ and b → ∞ when
λ → ∞. If κ < κc,1 := 2− d− log 8, we have b(0) > 0 and thus there is a real solution λ0

in the range (0, 1/2), which in fact is the only one. Moreover, this solution is such that
b′(λ0) < 0, so it follows from (3.68) that the associated mode is a ghost. If we increase κ
above κc,1, we find two real solutions in (0, 1/2) as long as κ < κc,2, where κc1 < κc,2 < 0. In
this regime, the solution with higher value of λ is a ghost. Further increasing κ, the solutions
move to the complex plane. Finally, there is another threshold κc,3 > 0 such that for κ > κc,3
there are real solutions in (1/2,∞). To see this we note that b(λ)→∞ for λ→ 1/2+ and for
λ→∞. It therefore has a minimum in (1/2,∞) with a minimum value bmin = bmin|κ̃=0 − κ̃.
For sufficiently large κ̃ the minimum value is negative and we thus find real solutions. For at
least one of them we have d

dλb > 0, such that it has negative SL norm. Since 〈Yσ,~j , Yσ,~j〉slice

is either positive for σ < 0 or indefinite for σ ≥ 0 this means we have ghosts in any case.

In summary, we have established analytically that theories with Dirichlet boundary conditions
have a ghost-free spectrum for ν = 1. On the other hand, for the family of Neumann-like
boundary conditions we have found that there are ghosts for all values of κ.
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3.1.4 Below the BF bound on global AdS

In Sec. 3.1.2.3 we found tachyonic AdS modes below the BF bound, which we discuss in
more detail now. We consider a scalar field φ with squared mass m2 = −d2/4 + (iλ)2, λ ∈ R,
below the BF bound on global AdSd+1 with metric

ds2 = sec2ρ
(
− dt2 + dρ2

)
+ tan2ρ dΩd−1 . (3.69)

Changing the radial coordinate to r = cos ρ such that the boundary is located at r = 0, the
asymptotic expansion of the field reads

φ = rd/2+iλφ(+) + rd/2−iλφ(−) . (3.70)

The symplectic structure constructed from the symplectic current ωµ(φ1, φ2) = i(φ1∂µφ2 −
φ2∂µφ1) is finite without adding counterterms, and we shall impose boundary conditions at
the conformal boundary such that it is conserved. The flux through the boundary is given
by

F = 2iλ

∫

∂M

(
φ(−)

1 φ(+)

2 − φ(−)

2 φ(+)

1

)
. (3.71)

We choose a boundary condition which makes F vanish and is compatible with reality of φ
as a formal power series8

φ(+)
∣∣
r=0

= φ(−)
∣∣
r=0

. (3.72)

It should be noted that the boundary condition (3.72) breaks invariance under radial
isometries, as it relates the coefficients of different powers of r. Alternatively, from the
boundary perspective conformal invariance is broken since the operators associated to φ(+)

and φ(−) have different conformal dimensions.

In order to solve the Klein-Gordon equation we employ the mode decomposition φ =
e−iωtYL(Ω)ψ(r) where YL is a spherical harmonic on Sd−1 satisfying ∆Ωd−1

YL = −L(L +

d − 2)YL. For notational convenience we introduce a± := c ± ω
2 and b± := c∗ ± ω

2 , where
c = (d+ 2L− 2iλ)/4. For λ ∈ R the solution which is regular at the origin is (see e.g. [69])

ψ(r) = r
d
2
−iλ(1− r2

)L
2

2F1

(
a− , a+ ,

d

2
+ L , 1− r2

)
. (3.73)

Note that, using 2F1(a, b; c; z) = (1− z)c−a−b 2F1(c− a, c− b; c; z), one can show that the
radial profile (3.73) is real for ω∗ = ±ω. From (3.73) we find φ(±)

∣∣
r=0

= e−iωtYL(Ω)ψ±
where

ψ+ =
πcsch(πλ)Γ

(
d
2 + L

)

λΓ(iλ)Γ (a−) Γ (a+)
, ψ− =

πcsch(πλ)Γ
(
d
2 + L

)

λΓ(−iλ)Γ (b−) Γ (b+)
. (3.74)

The boundary condition (3.72) therefore amounts to ψ+ = ψ−. This is equivalent to9

Γ(iλ)

Γ(−iλ)
=

Γ (b−) Γ (b+)

Γ(a−)Γ(a+)
. (3.75)

8 The boundary condition (3.72) can be generalized to include a phase as φ(+)
∣∣
r=0

= ei2αφ(−)
∣∣
r=0

, α ∈ R.
This corresponds to rescaling the coordinate r as can be seen from (3.70), and we therefore set α = 0
without loss of generality.

9 The Γ-functions in the denominator only have poles or zeros if Im(ω) = ±λ. This, however, does not yield
solutions since due to the structure of the arguments the pole/zero always appears in one of ψ± only.
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We first show that there are only real or purely imaginary solutions. Using the Weierstraß
form Γ(z)−1 = zeγz

∏∞
k=1(1 + z/k)e−z/k, the modulus of (3.75) yields

1 =

∣∣∣∣
Γ(b+)Γ(b−)

Γ(a+)Γ(a−)

∣∣∣∣
2

=
∞∏

k=0

∣∣∣∣
(k + a+)(k + a−)

(k + b+)(k + b−)

∣∣∣∣
2

=

∞∏

k=0

(
1 +

(d/2 + L+ 2k)λ Re(ω) Im(ω)

|k + b+|2 |k + b−|2
)
.

(3.76)

The first equality follows from (3.75), the second one by using the Weierstraß form and the
third one by evaluating each factor. Depending on the sign of λ Re(ω) Im(ω), either each
factor in the product is greater than one, or each factor is less than one. As that makes the
entire product on the right different from 1, we conclude that there are no solutions with
Re(ω) 6= 0 and Im(ω) 6= 0.

For ω real or purely imaginary the modulus of both sides of (3.75) is identically 1. We
first analyze purely imaginary ω. In this case we can use the asymptotic expansion Γ(z) =√

2πe−zzz−1/2
(
1 +O(|z|−2)

)
which holds if z is bounded away from the negative real axis

(∃ δ > 0 : | arg z| < π − δ). Parametrizing ω = i(λ+ 2eτ ) we find

Γ (b−) Γ (b+)

Γ(a−)Γ(a+)
= e−2iλ

√
a+a−
b+b−

b
b−
− b

b+
+

a
a−
− a

a+
+

+O(|ω|−2) = e2iλτ +O(e−2τ ) . (3.77)

The second equality follows from the asymptotic expansion for generic large ω and the third
one by expanding the result for large imaginary part, i.e. large eτ . Therefore, in the regime of
large τ , solving (3.75) becomes equivalent to solving 2λτ = 2 arg Γ(iλ) mod 2π. This yields
a discrete series of solutions which for large |ω| is well approximated by ω = ±i(λ+ 2eτ ) with
τ = λ−1(arg Γ(iλ) + πk), k ∈ Z. Note that for λ→ 0 the imaginary frequency solutions go
off to ±i∞, consistent with the fact that there are no complex solutions for λ = 0. We stress
that the presence of these imaginary frequency solutions indicates the expected instabilities
that are known to occur for masses below the BF bound. Moreover, as argued in [69], the
imaginary frequency solutions constitute a pair ‘ghost/anti-ghost’.

For the real solutions we assume without loss of generality ω > 0. Using Γ(z)Γ(1 − z) =
π/ sin(πz) to rewrite (3.75) such that all the arguments of the Γ function have positive real
part and then using the asymptotic expansion discussed above yields

Γ (b−) Γ (b+)

Γ(a−)Γ(a+)
=

sin(πa−)

sin(πb−)

Γ(b+)Γ(1− a−)

Γ(a+)Γ(1− b−)
=
(ω

2

)2iλ sin
(
π
2 (ω + iλ)

)

sin
(
π
2 (ω − iλ)

) +O(ω−1) . (3.78)

Equation (3.75) for large ω then becomes

Γ(iλ)

Γ(−iλ)
=
(ω

2

)2iλ sin
(
π
2 (ω + iλ)

)

sin
(
π
2 (ω − iλ)

) = e2i
(
λ log ω

2
+arctan(tanh πλ

2
cot πω

2
)
)

=: eiϑ(ω) . (3.79)

While eiϑ(ω) is of course single-valued, the arctan is single-valued only up to addition of
integer multiples of π. We choose the values within these classes such that arctan(a cot πω2 )
becomes a continuous function on R, e.g. arctan(a cot πω2 ) = arctan0(a cot πω2 )− sign(a)π

⌊
ω
2

⌋
,
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where bxc denotes the greatest integer smaller than x and arctan0 is the principal value in
[−π

2 ,
π
2 ]. This makes ϑ a continuous function which tends to −∞ for ω → ∞. Due to the

periodicity of eiϑ(ω) this shows that there is a series of solutions to (3.79). Thus, we also have
a series of real solutions to (3.75). Finally, we note that the approximations derived above in
(3.77), (3.78) provide an accurate description already for moderately large arguments of the
Γ-functions.

3.2 Saturating the Unitarity Bound in AdS/CFT(AdS)

In our investigation of how the CFT unitarity properties are reflected in the dual bulk
description in the previous section we have found ghosts for the case where the dual operator
violates the unitarity bound, consistent with the expectations from the CFT side. On the
other hand, the case where the dual operator actually saturates the unitarity bound is of
particular interest, as fields with the corresponding mass frequently appear in supergravity
spectra on geometries relevant for AdS/CFT, see e.g. [82]. As found in Sec. 3.1 the standard
Klein-Gordon field contains ghosts in that case, although a unitary representation of the
conformal group exists. The same applies to the Klein-Gordon field on global AdS with the
dual CFT defined on the cylinder [69]. In this section we are interested in the particular
case where the unitarity bound in the dual CFT is saturated, for which the singleton field
theory turns out to play a crucial role.

The singleton [9, 83, 84, 85] is a particular representation of the isometry group SO(2,d)
of AdSd+1. The maximal compact subgroup is SO(2)⊗SO(d) and representations D(E, j)
are characterized by an energy E (the lowest weight of SO(2)) and a set of SO(d) quantum
numbers j. The scalar singleton is realized as an indecomposable representation D(d/2−
1, 0) → D(d/2 + 1, 0) for d> 2 (see [86] for AdS3). The structure can be extended to a
Gupta-Bleuler triple of scalar → physical → gauge modes as [83, 87]

D(d/2 + 1, 0)→ D(d/2− 1, 0)→ D(d/2 + 1, 0) , (3.80)

and it can be formulated using a fourth-order action [88]. Among the remarkable properties
of this representation is that it allows for the construction of a gauge theory for a scalar
field with mass m2 = −d2/4 + ν2 if ν2 = 1. Its role in AdS/CFT has been emphasized and
discussed in [89]. See also [90] where the singleton appears as a special case in the discussion
of gravity duals for logarithmic CFTs.

The particular inner product used for the singleton field theory was obtained in [83] as the
limit ν → 1 of the non-renormalized inner product of solutions to the Klein-Gordon equation
with generic ν < 1. Taking into account the contribution of the holographic counterterms to
the inner product [52] we identify an alternative limit yielding the singleton theory for fixed
ν = 1. This allows for a direct application of the standard AdS/CFT dictionary, showing
that the unitary singleton describes a free field on the boundary – as expected for a field
saturating the CFT unitarity bound.

We then turn to the holographic description of CFTs which are itself defined on AdSd,
employing the geometry discussed in Sec. 3.1.1. As discussed in Sec. 3.1.2.4, there is an
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additional subtlety if Neumann boundary conditions are chosen on the boundary of the AdSd
hypersurfaces, resulting in a breaking of the bulk isometries or unitarity. We discuss the
singleton on the AdSd slicing of AdSd+1, yielding also for that case a unitary bulk theory
for ν = 1. Furthermore, we find that the normalizability issues for Neumann boundary
conditions on the boundary of AdSd are avoided.

In Sec. 3.2.1 we derive the singleton theory on global AdSd+1 from the Klein-Gordon field
with renormalized inner product and discuss its role for the unitarity bound. In Sec. 3.2.2 we
perform the same construction on the geometry with AdSd conformal boundary and discuss
the normalizability issues found previously for the standard Klein-Gordon field. This work
was published in collaboration with Thorsten Ohl in [11].

3.2.1 The singleton on AdSd+1 in global coordinates

To fix notation we recapitulate in this section the standard construction of the singleton on
AdS in global coordinates [83, 84]. We also offer a new perspective on the choice of the inner
product in the light of [52]. We choose global coordinates (z, τ,Ωd−1) on AdSd+1 such that
the line element reads

ds2 =
l2

sin2z

(
− dτ2 + dz2 + cos2z dΩ2

d−1

)
, (3.81)

and consider a Klein-Gordon field with mass m2l2 = −d2/4 + ν2 and action

S = −1

2

∫
dd+1x

√
g
(
gMN∂Mφ∂Nφ+m2φ2

)
. (3.82)

Our focus here is on the case ν = 1. The standard inner product associated to (3.82) reads

〈φ1, φ2〉 =

∫

Σ

√
gind n

µ
(
φ?1
↔
∂ µ φ2

)
, (3.83)

where Σ is a spacelike hypersurface with unit normal vector field nµ∂µ. To solve the field
equations we employ the ansatz

φ(z, τ,Ωd−1) = e−iωτ Y~L(Ωd−1) f(z) , (3.84)

where Y~L are the spherical harmonics on Sd−1 satisfying 4Sd−1Y~L = −L(L+ d− 2)Y~L. The
resulting equation for the radial modes f(z) can be written as Sturm-Liouville problem

Kf = ω2f , K =
1

w(z)
[−∂zp(z)∂z + q(z)] , (3.85)

where w(z) = p(z) = cotd−1z and q(z) = tand−1z
[
L(L+ d− 2) cos−2 z +m2l2 sin−2z

]
.

Choosing for Σ a surface of constant τ we find

〈φ1, φ2〉 = δ~L1,~L2
(ω1 + ω2)ei(ω1−ω2)τ ld−1〈f1, f2〉SL , (3.86)
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where the Sturm-Liouville inner product is given by

〈f1, f2〉SL =

∫
dz cotd−1z f?1 f2 . (3.87)

Using integration by parts and (3.85) yields

〈f1, f2〉SL =
1

ω∗21 − ω2
2

[
cotd−1z

(
f∗1 f

′
2 − f ′1

∗
f2

)]π/2
0

, (3.88)

which is to be understood in the distributional sense. The two independent sets of solutions
to (3.85) are

f(z) = (sin z)
d
2
−ν(cos z)L 2F1

(a− ω − ν
2

,
a+ ω − ν

2
; a; cos2z

)
, (3.89)

where a = d/2 + L, and a second set which is f
∣∣
L→2−d−L for odd d and a combination

involving explicit logarithms for even d [76]. Demanding the solutions to be regular at the
origin z = π/2 selects the modes (3.89). For the singleton theory, instead of deriving the
frequency spectrum from a vanishing-flux boundary condition, one imposes [84]

±ω = a− 1 + 2n , n ∈ N ∪ {0} . (3.90)

The n ≥ 1 modes are the standard Dirichlet solutions, i.e. they are O(zd/2+1) in the boundary
limit. They form the representation D(d/2 + 1) with lowest-weight state given by the n = 1
mode with ω = d/2 + 1. Adding the n = 0 solutions yields the representation D(d/2− 1).
The n = 0 mode is O(zd/2−1) and is not normalizable with respect to (3.83). Following
[83, 84] we replace the radial part of the inner product by

〈f1, f2〉sing = lim
ν→1−

(1− ν) 〈f1, f2〉SL , (3.91)

where the fi on the right hand side are the modes f of (3.89) for generic ν < 1. Evaluating
this inner product yields

〈f1, f2〉sing =
1

2
δn1,0δn2,0 . (3.92)

Thus, except for the n = 0 mode which has positive norm all other modes are of norm zero,
i.e. pure gauge. The singleton representation is induced on the quotient space obtained by
identifying in the space spanned by the n ≥ 0 solutions those which differ only by n ≥ 1
modes. It has only a single (E, j) trajectory, hence the name.

3.2.1.1 Relation to the renormalized inner product

As discussed in detail in [52] the contribution of the holographic counterterms is crucial
for dealing with the divergences in the symplectic structure and inner product. We now
discuss the singleton representation from that perspective. The action (3.82) reduces on
shell to a boundary term Son−shell = 1

2

∫
z=0 φ

√
gzz∂zφ which is divergent for ν ≥ 1. We

suppress the standard volume form constructed from the (induced) metric from here on. For
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ν = 1 Son−shell contains a logarithmic divergence and is rendered finite by regularizing the
geometry with a cut-off z ≥ ε and adding boundary terms at z = ε. The renormalized action
is Sren := S + Sct with

Sct = −1

2

∫

z=ε

[(
d

2
− 1

)
φ2 −

(
log z + κ

)
φ�gindφ

]
. (3.93)

Note that we have included, with an arbitrary coefficient κ, a boundary term which is
compatible with all symmetries and finite for ν = 1. With the asymptotic expansion of φ
given by

φ = φ(0)z
d
2
−1 + φ(1)z

d
2

+1 log z + φ(2)z
d
2

+1 + . . . (3.94)

the variation of the renormalized action reads

δSren = EOM +

∫

z=ε
δφ(0)

(
2φ(2) + (1− 2κ)φ(1)

)
. (3.95)

The boundary conditions for a stationary action are therefore either the Dirichlet condition
δφ(0) = 0 or the Neumann condition

2φ(2) + (1− 2κ)φ(1) = 0 . (3.96)

The inner product associated to the renormalized action takes a form similar to (3.86). The
contribution of the counterterms to the inner product can be absorbed into a renormalized
Sturm-Liouville product, which then reads

〈f1, f2〉ren =〈f1, f2〉SL + (log z + κ) cotd−1z sin z f∗1 f2

∣∣
z→0

. (3.97)

We now consider a particular limit which yields the frequency quantization (3.90) and the
inner product (3.92) such that we obtain the singleton. To this end we rescale the field as
φ→ φ′ = κ−1/2φ and perform a limit κ→∞. We consider the family of theories for κ ∈ R+.
The variation of the action reads

δS =− 1

2

∫
κ−1δφ′

(
−� +m2

)
φ′ +

∫

z=ε
δφ′(0)

(
2κ−1φ′(2) + (κ−1 − 2)φ′(1)

)
. (3.98)

The bulk part has to vanish for any finite κ and so the bulk field equation also applies as
we consider the limit κ → ∞. However, had we included interaction terms in (3.82) they
would become negligible with respect to the quadratic part. The field rescaling ensures that
we get a finite on-shell action. In the boundary part of the variation the κ−1-terms become
negligible with respect to the remaining term, so the variation reduces to

δSren = EOM− 2

∫

z=ε
δφ′(0)φ′(1) . (3.99)

The Neumann boundary condition (3.96) thus becomes φ′(1) = 0. With the expansion
f = z−d/2−1(f (0) + f (1)z2 log z + f (2)z2 + . . . ) we then have to solve f (1) = 0. For the modes
(3.89) with ν = 1 we have

f (1) =
2Γ(a)

Γ
(
a−ω−1

2

)
Γ
(
a+ω−1

2

) . (3.100)
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Solving f (1) = 0 amounts to demanding the Γ-functions in the denominator to have a pole,
which yields the frequency quantization (3.90). Note that (3.90) can thus be understood as
solving vanishing-flux boundary conditions for the renormalized symplectic structure, see
Sec. 2 of [52]. For the inner product we find

〈φ′1, φ′2〉 = lim
κ→∞

δ~L1,~L2
(ω1 + ω2)ei(ω1−ω2)τ ld−1〈f1, f2〉κ , (3.101)

where 〈f1, f2〉κ = κ−1〈f1, f2〉ren. With the notation f̃n := f
∣∣
ω=(d−2)/2+L+2n

we find for the

radial part

〈f̃0, f̃0〉κ =
1

2κ

(
2κ− ψ(0)(a)− γ

)
, 〈f̃0, f̃n〉κ = − 1

2κ
(−1)nB(a, n) ,

〈f̃n, f̃m〉κ = δnm
n(a+ n− 1)

2κ(a+ 2n− 1)
B(n, a)2 ,

(3.102)

where n,m > 0 and B(x, y) is the Euler beta function. Clearly, in the limit κ → ∞ only
〈f̃0, f̃0〉κ is non-vanishing and in fact positive, such that we recover (3.92) up to an overall
factor.

This can also be understood from a scaling argument as follows. We argued above that the
action does not simply reduce to the boundary terms for κ→∞, as the bulk field equation
applies for any finite κ while the boundary terms merely affect the boundary conditions.
However, the inner product associated to the renormalized action is just the sum of the bulk
part (3.83) and the boundary contributions derived from (3.93). Thus, it indeed reduces to
the boundary part arising from the term proportional to κ as we take the limit κ→∞ with
the corresponding field rescaling. This remaining part now vanishes for the n > 0 modes as
they satisfy the standard Dirichlet boundary condition.

3.2.1.2 AdS/CFT at the unitarity bound

Realizing the singleton as discussed in the previous section allows for a direct interpretation
in the AdS/CFT context. Fluctuations of a scalar with Neumann boundary condition
correspond to a deformation of the dual CFT by an operator O with scaling dimension
d/2− ν [68]. Performing the Legendre transform

Sren → SN
ren := Sren −

∫

z=ε
φ(0)
(
2φ(2) + (1− 2κ)φ(1)

)
(3.103)

we find

δSN
ren = EOM−

∫

z=ε
φ(0) δ

(
2φ(2) + (1− 2κ)φ(1)

)
, (3.104)

and the on-shell action becomes a functional of the Neumann boundary data 2φ(2)+(1−2κ)φ(1).
For κ→∞ with the field rescaling φ→ φ′ = κ−1/2φ discussed above, we find δSN

ren = EOM+∫
z=ε 2φ′(0)δφ′(1). Following the familiar AdS/CFT identification of bulk partition function

and the generating functional for boundary correlation functions, functional differentiation
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of SN
ren with respect to φ′(1) yields the connected correlation functions of the dual operator O

of the CFT. We find

〈O〉 =
1√
g

δSN
ren

δφ′(1)
= 2φ′(0) , 〈OO〉 =

1√
g

δ〈O〉
δφ′(1)

, (3.105)

where φ′(1) = −1
2

(
�g(0) − 1

4
d−2
d−1R[g(0)]

)
φ′(0) for a generic asymptotically-AdS metric of the

form r−2(dr⊗dr−g). The n-point functions with n ≥ 3 vanish unless interactions of the bulk
scalar are included. However, for the singleton there are no gauge-invariant bulk interactions
as the field is gauge-equivalent to zero in any compact region, so the higher correlation
functions vanish. This is characteristic of (generalized) free fields and the singleton therefore
yields the dual description of a free field on the boundary, consistent with the fact that this is
the only way of realizing a unitary representation of the conformal group for ∆ = d/2− 1.

3.2.2 The singleton on the AdSd slicing of AdSd+1

We now turn to the holographic description of CFTs defined on AdSd. A geometry for the
dual description has been proposed in [62] and was discussed in the context of unitarity
from the holographic perspective in Sec. 3.1.2. As shown there, the standard Klein-Gordon
theory yields ghosts for ν ≥ 1 and the renormalization turns out to be nontrivial if Neumann
boundary conditions are chosen at the boundary of AdSd. We come back to that issue at
the end of the section.

3.2.2.1 The geometry

As explained in detail in Sec. 3.1.1 the slicing of AdSd+1 with curvature radius L by AdSd
hypersurfaces with curvature radius l is obtained by transforming the global coordinates
with line element (3.1) according to (3.5). The resulting line element reads

ds2 = dR2 +
L2

l2
cosh2 R

L
ds2

AdSd
, (3.106)

where ds2
AdSd

= l2 csc2z (−dτ2 + dz2 + cos2z dΩ2
d−2). Two patches are needed to cover the

full AdSd+1 and the conformal boundary of the resulting geometry comprises two copies of
AdSd, see Fig. 3.3(a). A geometry with a single AdSd conformal boundary is obtained by
taking a Z2 quotient identifying the two patches. This implies that we have to choose a
definite Z2 parity for the Klein-Gordon field, which imposes boundary conditions at R = 0.

As usual this geometry needs to be regularized to account for divergences in the on-shell
action and inner products. This was done in the previous section by imposing cut-offs
on y := 2le−R/L and z, i.e. y ≥ ε1, z ≥ ε2. The resulting geometry with its boundary is
illustrated in Fig. 3.3(b). The renormalized action Sren := S+Sct was constructed in Sec. 3.1
for L = l = 1, which we fix henceforth, with the counterterms

Sct =− 1

2

∫

∂1M

[(
d

2
− 1

)
φ2 −

(
log y + κ

)
φ�W

gind
φ

]
− 1

2

∫

∂∂M
(log y + κ)φLnφ . (3.107)
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R→∞-R→−∞�

z = 0

z = 0

(a)

∂1M∂0M

∂2M

∂2M

(b)

Figure 3.3: Poincaré disk representation of AdSd+1 sliced by AdSd hypersurfaces and the
boundary of the regularized Z2-quotient, for more details see Sec. 3.1.1.

The associated inner product is given by (3.21b) where 〈·, ·〉∂1M denotes the AdSd inner
product evaluated at fixed y = ε1.

3.2.2.2 AdS/CFTAdS at the unitarity bound

We now construct the singleton theory on this geometry analogously to the construction in
Sec. 3.2.1.1. Dropping terms which vanish upon imposing the field equations or Z2 parity,
the variation of the renormalized action reads

δSren =

∫

∂2M

δφ
√
gzz∂zφ +

∫

∂1M

δφ(0)
(
2φ(2) + (1− 2κ)φ(1)

)
+

∫

∂∂M

(log y + κ)δφ
√
gzz∂zφ , (3.108)

where ∂∂M = ∂1M∩ ∂2M and similar to (3.94)

φ = φ(0)y
d
2
−1 + φ(1)y

d
2

+1 log y + φ(2)y
d
2

+1 + . . . . (3.109)

Demanding the ∂1M boundary term to vanish imposes boundary conditions on f and we
choose the Neumann condition

2φ(2) + (1− 2κ)φ(1) = 0 . (3.110)

As discussed in detail in Sec. 3.1.1.2 the Klein-Gordon equation is conveniently solved by
a separation ansatz φ = ϕf where ϕ satisfies an AdSd Klein-Gordon equation with mass
M2 = −(d− 1)2/4 + µ2. The independent solutions to the radial part are

fi = u2ci− 3
2
(
1− u2

) d+2
4

2F1

(
ci −

µ

2
, ci +

µ

2
; 2ci − 1;u2

)
, (3.111)
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where i = 1, 2 , u = tanh(R) and c1 = 3/4, c2 = 5/4. f1 and f2 have even and odd Z2 parity,
respectively. Rescaling φ→ φ′ = κ−1/2φ and considering the limit κ→∞ the ∂1M term of
the variation (3.108) becomes δSren|∂1M = −2

∫
∂1M

δφ′(0)φ′(1) and the boundary condition

(3.110) becomes φ′(1) = 0, demanding the log-term in the expansion of fi(y) around y = 0
to vanish. This yields the spectrum of µ for which we find µ = 1/2 and µ = 2(ci + n) with
n ∈ N ∪ {0}. Solutions corresponding to the latter choice of µ are subdominant in the
boundary limit.

For the solutions constructed by means of our separation ansatz we find

〈φ′1, φ′2〉ren = 〈ϕ1, ϕ2〉 〈f1, f2〉κ , (3.112)

where 〈ϕ1, ϕ2〉 is the standard AdSd inner product and 〈f1, f2〉κ = κ−1〈f1, f2〉ren. With κ̃ =
κ+ log 2 the renormalized Sturm-Liouville inner product with the counterterm contributions
according to (3.107) is given by

〈f1, f2〉ren =〈f1, f2〉SL − (R− κ̃) coshd−2R f∗1 f2

∣∣
R→∞ . (3.113)

Denoting f̃i := fi|µ=1/2 and f̃ni := fi|µ=2(ci+n) we find

||f̃i||2κ =
1

κ

(
κ̃+

3

2
− 2ci

)
, 〈f̃i, f̃ni 〉κ =

√
2π(−1)nn!

22ciκΓ(2ci + n)
,

〈f̃ni , f̃mi 〉κ = δnm
2π(n!)2

(
2cin+ 2ci + n2 − 1

)

24ciκ(ci + n)Γ(2ci + n)2
.

(3.114)

Clearly, for κ→∞ only ||f̃i||2κ is non-vanishing and in fact positive. Thus, in that limit all
the subdominant modes f̃ni become pure gauge while the dominant f̃i remains physical, and
we obtain the singleton field on the geometry with AdS on the boundary. The choice of
Z2 parity has little effect – it only alters the spectrum of gauge modes and the form of the
radial profile of the physical µ = 1/2 mode close to the Z2-fixed hypersurface at R = 0.

In Sec. 3.1.2 it was shown that pushing the bulk scalar on the geometry considered here
beyond the unitarity bound yields ghosts in the spectrum. Likewise, ghosts were also found
for the standard Klein-Gordon field with mass such that the dual operator saturates the
unitarity bound, although in that case a unitary representation is expected to exist. The
discussion of the correlation functions of the dual CFT obtained from the singleton theory
in Sec. 3.2.1.2 immediately applies to the singleton theory on the geometry considered in
this section. Thus, the singleton yields the unitary bulk dual of a boundary free field also
for the dual CFT defined on AdSd, completing the discussion in Sec. 3.1.2. Furthermore,
it offers a way to avoid the issues with normalizability found there for Neumann boundary
conditions along z, as we discuss in more detail now.

3.2.2.3 Renormalization and Neumannd boundary conditions

The normalizability issues found in Sec. 3.1.2 for Neumann boundary conditions at z = 0
(referred to as ‘Neumannd’ there) for the standard Klein-Gordon field arise for any choice of the
bulk mass and are rooted in the AdSd factor of the inner product 〈φ1, φ2〉 = 〈ϕ1, ϕ2〉 〈f1, f2〉.
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Depending on the renormalization it either fails to be finite on the full solution space
or becomes indefinite for Neumann boundary conditions along z. The result is either a
drastic truncation of the spectrum of AdSd modes such that the bulk field fails to carry a
representation of the AdS isometries, or the appearance of ghosts such that it fails to carry a
unitary one. More precisely, the solutions we constructed by means of the separation ansatz
φ = ϕf comprise an infinite series of AdSd modes corresponding to µ = 1/2 and µ = 2(ci+n)
with the associated radial modes. The AdSd factor 〈ϕ1, ϕ2〉 of the inner product is divergent
for the µ2 ≥ 1 solutions, leaving only a drastically reduced set of normalizable modes. On the
other hand, rendering that part of the inner product finite by adding counterterms on ∂2M –
if possible – would spoil positive definiteness of the inner product. The special structure of
the singleton field theory automatically avoids these issues. In fact, since the radial part
of the norm vanishes for all µ2 > 1 modes, finiteness of the inner products as the cut-offs
on y and z are removed does not require any additional counterterm contributions to the
AdSd factor. For the physical µ = 1

2 mode the AdSd factor of the norm is positive and so
is the radial part (3.114). We thus have a well-defined semidefinite inner product on the
set of all modes also for Neumann boundary conditions along z and the drastic reduction
of the spectrum of AdSd modes found in Sec. 3.1.2 is avoided. Although promoting the
µ2 > 1 modes to pure gauge in the κ→∞ limit is in fact a similar reduction of the physical
spectrum, this way of realizing the Neumann boundary condition is compatible with the
symmetries and with unitarity.

3.3 Multi-Layered AdS/CFT

In Sec. 3.1.1 we have discussed an AdSd+1 geometry where the conformal boundary is AdSd,
and we studied the holographic description of CFTs defined on that boundary in Sec. 3.1.2
and 3.2.2. Fig. 3.4 highlights the particular structure of the boundary, offering the possibility
to implement a second instance of AdS/CFT-type duality – either by realizing a gravitational
theory on the boundary and using AdS/CFT again, or by using the boundary CFT as starting
point for algebraic holography (see Sec. 2.4). This would relate the AdSd boundary theory
to a theory on the ‘boundary of the boundary’. In this section we discuss such multi-layered
dualities in more detail10. However, this in the first place needs the notion of the boundary
of a boundary, which does not exist in the context of smooth manifolds with boundary. We
therefore first discuss in more detail the geometric nature of the (d+1)-dimensional setup
with AdSd boundary. The setting of 〈n〉-manifolds, where the boundary of a boundary indeed
is a well-defined concept, can in fact be pushed even further. In Sec. 3.3.2 we construct
a geometry with three instances of AdS spaces, i.e. where the boundary of the boundary
is again AdS, thus allowing for hierarchies of AdS/CFT dualities. While the construction
of the geometry is rather straightforward, one expects problems in trying to realize such
hierarchies of dualities. From the results of the previous sections we can conclude that
iterating AdS/CFT more than twice does not yield non-trivial relations, at least with the
renormalization prescription used here. We then turn to double-layered holography and
comment on prospects for a concrete realization within M-theory in Sec. 3.3.3. The bulk

10 An option which we do not discuss here is to combine AdS/CFT with a more speculative dS/CFT
correspondence [91] by using the dSd slicing of AdSd+1.
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Figure 3.4: The boundary of AdSd+1/Z2 is AdSd which again has a conformal boundary. A
second instance of holographic duality can thus be implemented if the boundary
theory on AdSd admits a dual description in terms of a CFTd−1 on the boundary
of the boundary.

theory in AdS/CFT necessarily is a gravitational one, since the boundary theory contains
an energy-momentum tensor as observable. Implementing nested AdS/CFT type dualities
therefore also needs gravitational theories on the boundary, an issue which we will discuss in
more detail in Sec. 4.

3.3.1 Conformally compact 〈n〉-manifolds

The geometry with AdS on the boundary discussed in Sec. 3.1.1 and shown in Fig. 3.3(a),
3.3(b) can not be described in the usual setting of a conformally compact metric on a
smooth manifold with boundary11. The full AdSd+1 geometry shown in Fig. 3.3(a) is a
smooth manifold with boundary, but the metric (3.16) on the interior fails to be conformally
compact – rescaling it to cancel the divergence in y as the boundary is approached still leaves
the γAdS

µν -part divergent as z = 0 is approached, which can not be cured by extracting a
global factor. On the other hand, the Z2-quotient of the geometry shown in Fig. 3.3(b) –
although being a topological manifold with boundary – does not fit into the class of smooth
manifolds with boundary. Thus, conformally compact metrics on smooth manifolds with
boundary are not the appropriate framework to be used here. In particular, the boundary of
a smooth manifold with boundary does not have a boundary again. However, the setup can
be understood in the more general context of manifolds with corners. We briefly introduce
that concept and some of the relevant properties following [93] and [94]. The prototype of a
smooth manifold with corners is the closed positive quadrant

Rn+ := {(x1, . . . , xn) ∈ Rn | xi ≥ 0 ∀i = 1 .. n} , (3.115)

which is a topological manifold with boundary but not a smooth manifold with boundary. A
general manifold with corners locally looks like Rn+ and the differential structure is defined
as follows.

11 A metric ĝ on the interior of a manifold with boundary is called conformally compact if, for a defining
function of the boundary f , the rescaled metric f2ĝ extends to the full manifold as metric [92].
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Definition 3.3.1 A smooth manifold with corners M is covered by (relatively) open sets
Ui ⊂M together with homeomorphisms φi : Ui → Vi ⊂ Rn+ which are smoothly compatible
in the sense that φi ◦ φ−1

j : φ−1
j (Ui ∩ Uj)→ φi(Ui ∩ Uj) admits a smooth extension to Rn.

The boundary is the set of points where at least one of the coordinates vanishes and the
points where more than one coordinate vanishes are called corner points. More precisely, we
denote for a point p ∈ M by c(p) the number of vanishing coordinates of φ(p) in a chart
(U, φ). This quantity is independent of the choice of chart, and ∂M := {p ∈M| c(p) ≥ 1}
constitutes the boundary. Points with c(p) > 1 are called corner points. With AdS/CFT
applications in mind we also need some structure on the boundary. The boundary of a
general smooth manifold with corners is not necessarily a smooth manifold with corners
again. However, for a manifold with faces which we introduce now, it is a finite union of
such. More precisely, each point p ∈M belongs to the closure of at most c(p) connectedness
components of {q ∈M| c(q) = 1}. M is called a manifold with faces if this upper bound is
saturated for all its points. The closure of a connectedness component of {q ∈M| c(q) = 1}
is called a connected face of M and then has itself the structure of a manifold with corners.
This leads to the structure of 〈n〉-manifolds [95]:

Definition 3.3.2 A manifold with faces M with a set ∂0M, . . . , ∂n−1M of faces of M is
called an 〈n〉-manifold if ∂M = ∪n−1

i=0 ∂iM and ∂iM∩ ∂jM is a face of ∂iM and ∂jM for
i 6= j. The intersections ∂i1M∩ .. ∩ ∂ikM are called 〈n− k〉-faces of M.

Smooth manifolds are recovered as 〈0〉-manifolds and smooth manifolds with boundary as
〈1〉-manifolds. The geometry discussed in Sec. 3.1 before taking the Z2 quotient can be
understood as a 〈2〉-manifold. To illustrate this we start from AdS3 in global coordinates
(τ, ρ, ζ) with line element ds2 = sec2ρ (dρ2 − dτ2 + cos2ρdζ2). In the usual discussion
global AdS3 is realized as the interior of a cylinder in R3 equipped with that metric. The
compactification is then performed as appropriate for that embedding, i.e. by adding the
boundary of the cylinder. Note that no reference is made to a metric on the ambient
space. The crucial point for us is that the compactification of a topological space is by no
means unique12. We exploit the freedom to choose a compactification as follows to obtain a
〈2〉-manifold. Instead of the embedding (τ, ρ, ζ) 7→ (τ, ρ cos ζ, ρ sin ζ) into R3 which results
in the realization as a cylinder shown in Fig. 3.5(a) we use

(τ, ρ, ζ) 7→ (τ, ρ cos ζ

√
1− 4ρ2

π2
sin2 ζ, ρ sin ζ) . (3.116)

Although that embedding is not differentiable for ρ = π/2 and ζ ∈ {0, 2π}, it is smooth
for ρ < π/2 and we thus have a smooth embedding of AdS3 itself, which corresponds to
ρ < π/2. This yields the realization shown in Fig. 3.5(b). Switching now to the slicing
by AdS2 hypersurfaces in coordinates (τ, y, z) we end up with the geometry illustrated
in Fig. 3.5(c). The closure now clearly displays the structure of a 〈2〉-manifold with the
〈1〉-faces corresponding to y = 0 and the 〈0〉-faces given by the corners at z = 0. (τ, y, z) are
valid coordinates only in the interior of that disc with two corners and the metric still is
well-defined only in the interior.

12 While the one-point or Alexandroff compactification existing under rather mild assumptions is unique,
this does not hold for the type of compactifications discussed here.
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(a) (b) (c)

Figure 3.5: The Poincaré disk representation 3.5(a) of AdS3 with lines of constant ρ and ζ in
red and blue, respectively. Note that AdS3 itself is only the interior of the disc.
3.5(b) shows the same geometry embedded according to (3.116), and the closure
clearly displays the structure of a 〈2〉-manifold. In 3.5(c) the slicing by AdS2

surfaces is illustrated and horizontal/vertical curves correspond to constant z/y.

For AdS/CFT applications we need the notion of a conformal structure on the boundary,
where the dual CFT shall be defined. This entails an extension of the usual notion of
conformal compactness to 〈n〉-manifolds. As straightforward generalization we start with

Definition 3.3.3 A metric ĝ on the interior of an 〈n〉-manifold M with n ≥ 1 is said to
be conformally compact if, for a defining function of the boundary f , the rescaled metric
g := f2ĝ extends as a metric to the interior of the 〈n− 1〉-faces of M. In this context we
call a function f , which is differentiable on the interior of M and on the interior of the
〈n− 1〉-faces ∂iM, a defining function of the boundary if f |intM > 0 while on the interior of
the 〈n− 1〉-faces we have f = 0 with df 6= 0.

Having in mind the geometry with AdS conformal boundary we can not generally expect the
rescaled metric to extend directly to the corner points. The usual definition of conformal
compactness is recovered for 〈1〉-manifolds. On the other hand, the geometry displayed
in Fig. 3.5(c) is now also conformally compact in this sense with a defining function f =
sin(πy/4), which behaves like y as y = 0 is approached. Note that simply choosing f = y is
not differentiable. For the discussion of multi-layered holography a more restrictive class of
conformally compact 〈n〉-manifolds with even more structure will be of particular interest:

Definition 3.3.4 A metric ĝ on the interior of an 〈n〉-manifold M (n ≥ 2) is said to be
conformally 〈2〉-compact if it is conformally compact in the sense of Def. 3.3.3 and g yields
conformally compact metrics on the 〈n− 1〉-faces. Conformally 〈m〉-compact 〈n〉-manifolds
for n ≥ m are defined by the straightforward generalization.

A conformally 〈m〉-compact 〈n〉-manifold (m ≤ n) yields conformally compact metrics on the
〈p〉-faces down to p > n−m and a metric for p = n−m. Of course, all these metrics depend
on the choice of defining function and we are in fact dealing only with the corresponding
conformal structures which are well defined. The example of the AdS3 geometry sliced by
AdS2 hypersurfaces discussed above is in fact conformally 〈2〉-compact. The metrics induced
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on the 〈1〉-faces are AdS2 and conformally compact. They do not contain a dy2-part anymore
and induce a conformal structure on the boundaries of the faces at z = 0. Note that this
is different from directly inducing a conformal structure on the corner points, which is not
possible. The situation is similar for generic AdSd+1 sliced by AdSd, as illustrated in Fig. 3.6
for AdS4 sliced by AdS3 to which we will come in more detail later. It again is a conformally
〈2〉-compact 〈2〉-manifold with the upper and lower halfs of the surface as 〈1〉-faces and the
equator as 〈0〉-face.

Figure 3.6: The constant-time section of AdS4 is the three-dimensional ball B3 and the
figure illustrates its slicing by AdS3, compare Fig. 3.5(a). The AdS3 slices
interpolate between the equatorial plane and half of the boundary in each of the
two patches. Regarded as 〈2〉-manifold the boundary splits into the upper and
lower hemispheres, which are 〈1〉-faces, and the equator as the 〈0〉-face.

In the previous sections we were interested in having a single copy of AdSd as conformal
boundary, which is achieved by taking a Z2-quotient of that geometry. The resulting setup
has a boundary in the usual sense as well as a conformal boundary and is therefore not
conformally compact in the sense of Def. 3.3.3. A class of geometries with similar properties
which can also be understood better in the context of 〈n〉-manifolds are the duals to CFTs on
manifolds with boundary, as discussed in the context of AdS/BCFT [64, 65]. The structure of
〈n〉-manifolds allows for the following generalization which nicely captures those geometries.

Definition 3.3.5 A metric ĝ on the interior of an 〈n〉-manifold M with n ≥ 1 is called
conformally compact with boundary if there is a function f such that

(i) f |intM > 0

(ii) on the interior of each 〈n− 1〉-face we either have f > 0, or f = 0 with df 6= 0

(iii) g := f2ĝ extends as a metric to the interior of the 〈n− 1〉-faces of M.

The generalization to 〈n〉-manifolds which are conformally 〈m〉-compact with boundary
follows the definition of conformally 〈m〉-compact 〈n〉-manifolds.

If f is positive on a face ∂iM, this face is part of a boundary in the usual sense, otherwise
it is part of the conformal boundary and we call ∂iM a conformal face of M. The usual
notions of conformally compact manifolds and of manifolds with boundary are recovered
for 〈1〉-manifolds, and this class of 〈n〉-manifolds also includes those of Def. 3.3.3. The
geometries discussed in [64, 65] are conformally compact with boundary in this sense. The
Z2-quotient of the AdSd slicing of AdSd+1 discussed in the previous section is a 〈2〉-manifold
and is conformally 〈2〉-compact with boundary. The 〈1〉-faces are given by the closures
of ∂0M = {p ∈ M| yp = 2l}, which is the Z2-fixed surface and a boundary in the usual
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sense, and ∂1M = {p ∈ M| yp = 0} as conformal boundary. The corner points are the
〈0〉-face {p ∈ M| yp = zp = 0}. The regularized geometry M̃ shown in Fig. 3.2(a) is
a 〈3〉-manifold with 〈2〉-faces ∂0M̃ = {p ∈ M̃ | yp = 2l}, ∂1M̃ = {p ∈ M̃ | yp = ε1},
∂2M̃ = {p ∈ M̃ | zp = ε2}. The corner points are the 〈1〉-faces {p ∈ M̃ | yp = 2l, zp = ε2}
and {p ∈ M̃ | yp = ε1, zp = ε2}. As discussed in [93] the definition of the usual objects of
differential geometry, such as differential forms, on manifolds with corners is straightforward.
In particular, the integration of differential forms can be defined and Stokes’ theorem can
be extended to manifolds with corners. This gives a more general justification for our
treatment of the Klein-Gordon field in the previous sections where our discussion of the
corners was adapted to the specific situation at hand. An interesting question left for
future research is whether the total boundary blow-up [96] could be employed to give an
improved renormalization prescription and possibly avoid the issues with Neumann boundary
conditions found in Sec. 3.1.2.

3.3.2 Multi-Layered AdS/CFT to the extreme

Having found an appropriate differential-geometric structure for our geometry, which in
particular allows for the notion of the boundary of a boundary, we can now discuss prospects
for multi-layered AdS/CFT. More precisely, using the notation of Sec. 3.3.1, we have
discussed in Sec. 3.1.2 a bulk theory on the 〈2〉-manifold M which is dual to a CFT on
the 〈1〉-face ∂1M. As the 〈1〉-face ∂1M is AdSd and itself has a boundary given by the
〈0〉-face {p ∈ M| yp = zp = 0}, we may ask under which circumstances a second instance
of AdS/CFT can be applied. We come back to that specific question later and discuss a
more extreme case first. To push the line of thought leading to multi-layered AdS/CFT
to the extreme, we discuss a particular example of an 〈n〉-manifold which is conformally
〈n〉-compact with boundary. The interiors of the faces which are conformal boundaries are
given by AdS spaces of appropriate dimension, such that this setting allows – at least in
principle – for hierarchies of AdS/CFT dualities.

In the following we outline in detail the construction of the case n= 3 and comment on the
generalization afterwards. We start with AdS4 represented as R × B3, where Bn denotes
the open ball of radius π/2 in Rn. We choose global coordinates (τ, ρ,Ω2), Ω2 = (ζ, φ) with
line element (3.1), such that the boundary of the cylinder corresponds to ρ→∞. We then
transform coordinates to (τ, u, z̃, φ) by

ρ2 = csc2z̃
(u

4
+

1

u

)2 − 1 , ρ2 sin2ζ = cot2z̃
(u

4
+

1

u

)2
, (3.117)

compare (3.5) with u = 2e−R (we fix unit curvature radii). This yields the slicing by AdS3

surfaces coordinatized by (τ, z̃, φ) shown in Fig. 3.6. The boundary of B3 is S2 and splits into
the upper and lower hemispheres which are each a copy of AdS3, joined at the equator which
is their conformal boundary. The AdS3 surfaces smoothly interpolate between the equatorial
plane and half of the surface of B3. On the AdS3 slices we then transform coordinates to
(τ, y, z) by

cot2z̃ = csc2z
(y

4
+

1

y

)2 − 1 , cot2z̃ sin2φ = cot2z
(y

4
+

1

y

)2
, (3.118)
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such that it is itself sliced by AdS2. Fig. 3.3(a) shows a constant-time section of that slicing of
the AdS3 cylinder R×B2 by AdS2 surfaces, and the structure as 〈2〉-manifold is emphasized
in Fig. 3.5(c). Altogether we have a number of patches with coordinates (τ, u, y, z), which
coordinatize AdS4 sliced by AdS3 in coordinates (τ, y, z) such that it is itself sliced by AdS2

in coordinates (τ, z). The result is illustrated in Fig. 3.7, where the surfaces of constant u
are shown for various u. These slices of constant u are coordinatized by (y, z) and the lines
shown on the images of B2 in B3 are those of Fig. 3.3(a). The resulting line element for
AdS4 reads

ds2
AdS4

=
1

u2

[
du2 +

(
1 +

u2

4

)2
ds2

AdS3

]
, (3.119)

where the line element of AdS3 sliced by AdS2 is given by

ds2
AdS3

=
1

y2

[
dy2 +

(
1 +

y2

4

)2
ds2

AdS2

]
, ds2

AdS2
= csc2z(dz2 − dτ2) . (3.120)

The boundary of B3 now splits into the upper and lower hemispheres which are AdS3, the

y= 0 y= 0 y= 0z= 0 z= 0 z= 0

Figure 3.7: The constant-time section of AdS4 with the embedding of the AdS3 surfaces
shown for u ∈ {1.3, 0.5, 0.01} from left to right. The AdS3 surfaces are themselves
sliced by AdS2 as shown in Fig. 3.5(c).

two parts of the equator with the two points at z = 0 removed, which are each a copy of
AdS2, and the two points corresponding to z = 0. Note that this geometry does not have the
structure of a manifold with faces, as the points z = 0 correspond to 3 vanishing coordinates
but are only part of the closure of the two connectedness components of {p∈M| c(p) = 1}.
However, to obtain at each level a geometry with a single copy of AdS as conformal boundary
we have to take the quotient with respect to Z2×Z2 anyway. The first Z2 identifies the upper
and lower hemispheres of B3, such that the conformal boundary of AdS4 comprises only a
single copy of AdS3. The second factor identifies the two patches needed to cover AdS3 by
AdS2 slicings, compare again Fig. 3.3. It identifies the two hemispheres obtained by cutting
along the plane shown in Fig. 3.7. This yields one fourth of B3, which is one of the two parts
of the upper half shown in Fig. 3.7. That resulting geometry then is indeed a 〈3〉-manifold
with 〈2〉-faces given by a quarter of S2 and half of each of the two Z2-fixed surfaces, see
Fig. 3.8. The 〈1〉-faces are half of the equator and the intersection of the Z2-fixed surfaces.
Finally, the 〈0〉-faces are the two points corresponding to z = 0. On the interior of the
conformal boundary of this AdS4/(Z2 ×Z2) geometry, given by the conformal 〈2〉-face which
is part of S2, the metric of AdS3 as given in (3.120) is induced. That induced metric on the
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z= 0 z= 0 z= 0

Figure 3.8: Embedding of the AdS3/Z2 surfaces into AdS4/(Z2 × Z2) for u ∈ {1.3, 0.5, 0.01}
from left to right. The Z2 parities identify the upper with the lower half of B3

and the two halfs obtained by cutting along the hyperplane shown in Fig. 3.7.

conformal 〈2〉-face induces on its conformal 〈1〉-face at the equator of B3, where y = 0, the
metric of AdS2. With the chosen coordinates this metric again induces on the 〈0〉-faces a
metric, such that the manifold is conformally 〈3〉-compact with boundary in the sense of
Def. 3.3.5. It thus allows – at least in principle – for three instances of AdS/CFT dualities,
each relating the theory on AdSd to a theory on the conformal boundary for d = 2, 3, 4.

The construction outlined above can be carried out starting with AdSd+1 for arbitrary d > 2
and nesting the slicings by codimension-1 AdS hypersurfaces down to AdS2. The result will
then be R×Bd/(Z2)d−1 as 〈d〉-manifold which is conformally 〈d〉-compact with boundary for
AdSd+1. One may therefore ask, whether – by a suitable choice of boundary conditions – one
can obtain hierarchies of theories on the 〈n〉-faces corresponding to conformal boundaries,
which are related by hierarchies of AdS/CFT dualities. Ultimately, one could then relate a
gravitational theory on AdSd+1 to a theory on the boundary of AdS2 via nested AdS/CFT
dualities. In the usual setting of AdS/CFT this requires gravitational theories on AdS, since
sensible boundary theories supposedly have an energy-momentum tensor as observable, to
which AdS/CFT associates the bulk metric as dual field. Thus, one would need nested
Neumann or mixed boundary conditions on the various instances of AdS spaces to allow for
a dynamical boundary metric. However, extrapolating the results for a scalar field obtained
in Sec. 3.1 to the graviton13, this trivializes the theories in the sense that the normalizable
modes are so sparse that the theories effectively reduce to boundary theories in a trivial way.
This clearly is an obstruction to realizing non-trivial relations via such multiple iterations of
AdS/CFT. A possible cure for the normalizability issues may be the total boundary blow-up
[96], and employing a singleton formulation for gravity may be another possible route to
follow. Realizing gravity on the boundary is an interesting task in the first place, which will
be discussed in more detail in Sec. 4.

3.3.3 Outlook on a concrete realization

In this part we come back to the issue of double-layered dualities which is not affected by
the obstructions found in the previous section, and discuss prospects for a specific realization

13 The obstructions found there to renormalizing the bulk theory such that the full set of Neumann modes is
rendered normalizable did not rely on the field under consideration being scalar.
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within string theory. To keep the technical level assessable it would be desirable to have
an example where the involved theories are defined on spacetimes of rather low dimension.
A distinguished case is where the CFT on the lower-dimensional end of the dualities is a
two-dimensional one. Interestingly enough, multi-layered holography has been speculated to
play a role in such a setting, and our detailed discussion of the four-dimensional geometry
shown in Fig. 3.6 in the previous section turns out to be quite useful in that respect. The
concrete setting involves ABJM theory [97], an N=6 supersymmetric Chern-Simons theory
with gauge group U(N)×U(N) which is understood as the worldvolume theory of stacks of
M2-branes. In appropriate regimes it admits a dual description in terms of M-theory on
AdS4×S7/Zk (for N � k5) or type IIA string theory on AdS4 × CP3 (for larger Chern-
Simons level k). The theory has a ’t Hooft limit N, k → ∞ with fixed ’t Hooft coupling
λ = N/k � 1, and in that limit the geometry in the dual description becomes weakly curved
such that the supergravity approximation is valid. The dual gravity theories are understood
as usual with Dirichlet boundary conditions and the spectra have been obtained in [98].
Omitting the compact factor of the M-theory background we thus have an AdS/CFT duality
of a four-dimensional gravity theory and a three-dimensional CFT

M-theory on AdS4 ←→ ABJM = CFT3 .

The ABJM theory may now be coupled to conformal supergravity, see [99] where the result
was called topologically gauged ABJM theory. This theory in turn admits a Higgsing which
corresponds to a theory on D2-branes and has an AdS3 vacuum solution [99, 100]. As a
gravitational theory on AdS3 it may therefore be dual to a two-dimensional CFT on the
boundary, yielding a second duality

Higgsed top. gauged ABJM on AdS3 ←→ CFT2 .

Thus, there is a chance to realize nested AdS/CFT by combining these dualities, relating a
version of M-theory on AdS4 to the Higgsed topologically gauged ABJM, which itself is a
gravitational theory on AdS3 with a CFT2 dual, as speculated in [101]:

M-theory ←→ Higgsed top. gauged ABJM on AdS3 ←→ CFT2 .

This, however, requires a precise understanding of the coupling of ABJM theory to gravity
and the subsequent Higgsing in the holographic picture in M-theory/IIA supergravity.

The two steps which have to be understood from the M-theory perspective are the topological
gauging of ABJM in the first place, i.e. its coupling to conformal supergravity, and then the
subsequent Higgsing, resulting in a theory with AdS3 solution. The coupling to gravity is
naturally implemented by twisting the boundary conditions [52]. Restricting to the pure
metric part, the variation of the renormalized bulk action reads

δS = EOM +

∫

∂M
δg(0)
µνT

µν , (3.121)

with some finite Tµν which yields the expectation value of the CFT energy-momentum tensor
and g(0)

µν the leading coefficient of the on-shell asymptotic expansion of the metric

ds2 =
1

r2

(
dr2 + gµν(x, r)dxµdxν

)
, gµν(x, r) = g(0)

µν(x) +O(r2) . (3.122)
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Switching from the usual Dirichlet boundary condition fixing g(0)
µν to Neumann amounts to

fixing Tµν = 0. Explicitly adding to the bulk theory dynamics on the boundary described by
an action Sbndy then further modifies the boundary conditions resulting in

Tµν =
δSbndy

δgµν
, (3.123)

coupling the dual CFT to the explicit dynamics added on the boundary. The coupling of
ABJM theory to conformal supergravity can therefore be understood holographically by
coupling the M-theory/IIA reductions on global AdS4 to conformal supergravity on the
three-dimensional boundary. One can now speculate that the Higgsing procedure, resulting
in a theory with an AdS3 vacuum, should be reproduced by the change of coordinates to the
AdS3 slicing of AdS4 with the subsequent Z2-orbifolding. While the change of foliation does
not affect the amount of preserved symmetry, the orbifolding breaks the radial isometries
of AdS as they do not preserve the Z2-fixed surface, corresponding to R = 0 in Fig. 3.1(a).
These should be precisely the bulk transformations acting as conformal symmetries on the
boundary. The failure of the linearized boundary theory to be conformally invariant may
then be understood as the breaking of radial isometries by the orbifolding in the bulk theory,
yielding the desired reflection of the Higgsing on the boundary in the dual bulk description.
Likewise, only a subset of the AdS Killing spinors are invariant under the orbifolding and
it therefore also affects the amount of preserved supersymmetry. We expect that those of
the fermionic symmetries which correspond to the special conformal transformations are
broken.

Having discussed how the topological gauging and Higgsing procedures can be understood
from the M-theory perspective it still remains to sort out what a possible CFT2 dual of the
Higgsed topologically gauged ABJM theory could be. From this perspective the discussion
of the singleton theory in the previous chapter turns out to be of interest. Noting that
Chern-Simons theory can be formulated as a singleton theory [86], and an explicit CFT2

description has been discussed in [102], see also [103], it seems natural to expect a similar
possibility for the supersymmetrization. The same may even be possible for gravity [104]
and one can then attempt to formulate the whole topologically gauged ABJM theory as
a singleton theory to get a handle on a possible equivalent boundary theory. Whether a
singleton formulation provides the possibility for further nestings of dualities, since – as we
found for the scalar in Sec. 3.2.2 – it allows to formulate a unitary theory with Neumann-like
boundary conditions on AdS3 without the normalizability issues discussed in Sec. 3.1, may
be an interesting question way beyond the current discussion.

3.4 Discussion

In the first part of this section we have studied unitarity violations in CFTs defined on
the maximally symmetric dS and AdS spacetimes from a holographic perspective. For this
purpose we have considered a scalar field on AdSd+1 conformally compactified such that
the conformal boundary is (A)dSd. The mass and boundary conditions on the AdSd+1

conformal boundary were chosen such that the bulk theories provide a dual description of a
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CFT that contains an operator violating known unitarity bounds, i.e. m2 ≥ m2
BF + 1 and

Neumann(d+1).

Starting with the case of AdSd on the boundary, we have adapted the well-known procedure
of holographic renormalization to this setting and found that the qualitative features of the
bulk theory strongly depend on the choice of boundary conditions on the AdSd boundary.
While the Dirichletd boundary condition yields a full set of normalizable modes, choosing
Neumannd drastically reduces the spectrum. For Dirichletd we have found that for even and
odd Z2 parity the spectrum of the bulk theory contains ghosts for m2

BF + 1 < m2 < m2
BF + 2

combined with Neumannd+1. Thus, we have found that the non-unitarity of the dual CFT is
well reflected in the bulk theory for the Dirichletd cases. As argued in the main text, it is
also possible to extrapolate our results to higher values of the bulk mass even in the absence
of an explicit expression for the renormalized action and inner products. This has shown that
also for higher values of ν the boundary non-unitarity is recovered in the bulk theory. For
Neumannd on the other hand, we have also found ghosts in the spectrum for Neumannd+1

and m2
BF + 1 < m2 < m2

BF + 2, but extrapolating our results to higher values of the bulk
mass we have found that in certain cases Neumannd boundary conditions yield – contrary to
expectations based on the unitarity bound – a ghost-free spectrum. This can be traced back
to the special structure of the boundary theory, which lacks conformal invariance. Summing
up, we find that the boundary unitarity bound is well reflected in the bulk theories in the
cases where it is expected to hold.

It is interesting to compare these results in more detail to the expectations based on the
field theory reasoning. On the one hand, the presence of the boundary breaks the symmetry
group from SO(2, d) to SO(2, d− 1), such that one might expect the relevant unitarity bound
to be that of d− 1 dimensions. On the other hand, for observables localized away from
the boundary the relevant unitarity bound should still be the d-dimensional one. Thus, for
degrees of freedom that are not confined to the boundary we still expect the d-dimensional
unitarity bound to be relevant. Our results, which state that the relevant bound is the
d-dimensional one, are in good agreement with this picture, as we have not included degrees
of freedom that solely reside on the boundary of AdSd, which could however be done along
the lines of [52, 64].

For the case of dSd on the boundary the involved geometry is an open patch of global
AdSd+1, bounded by a causal horizon. Although the setup is similar to Poincaré AdS in
that respect, we found – in contrast to Poincaré AdS – a straightforward reflection of the
boundary non-unitarity since the spectrum of the bulk theory contains ghosts. The difference
in the two settings is that in our setup the dSd slices have compact spatial sections, which is
different from Poincaré AdS where the d-dimensional slices are Minkowski. This suggests
that the tricky manifestation of the boundary non-unitarity in the bulk found for Poincaré
AdS is related to the non-compactness of the boundary, rather than to the appearance of a
horizon in the bulk. To further investigate this point one could study the case with dS on
the boundary using an open slicing instead of global dSd coordinates.

We have also included the cases with Dirichlet boundary conditions on the conformal boundary
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of AdSd+1 for generic14 ν, and the fact that we found ghost-free spectra in that case shows
that the condition ∆ ≥ d/2− 1, derived in [35] as necessary condition for unitarity, is indeed
also sufficient for CFTs which have a holographic description in terms of the setups we
have considered. Likewise, we have included the cases with Neumann boundary conditions
on the conformal boundary of AdSd+1 and m2 = m2

BF + 1. This corresponds to a CFT
with an operator saturating the unitarity bound and we have shown that for the standard
Klein-Gordon field ghosts are present in the bulk.

We have then discussed the specific case where the unitarity bound in the dual CFT is
saturated in more detail in Sec. 3.2. As found in Sec. 3.1.2 and for global AdS in [69],
the standard Klein-Gordon field yields ghosts for mass and boundary condition such that
the dual operator saturates the unitarity bound, although a unitary representation of the
conformal group exists. We have derived the singleton field theory as a particular limit of
the Klein-Gordon field with standard renormalized inner product, which allows for a direct
AdS/CFT interpretation. It provides the dual description of a free field on the boundary,
as expected for an operator saturating the unitarity bound. This extends the thorough
discussion of unitarity from the holographic perspective for global AdS in [69] to the case
where the unitarity bound is saturated and resolves the tension between bulk and boundary
unitarity for that case. We have also formulated the singleton field theory on the geometry
with AdSd on the conformal boundary of AdSd+1, extending the discussion of unitarity in
Sec. 3.1.2 accordingly. Remarkably, the singleton field on the AdSd slicing of AdSd+1 does
not suffer from the normalizability issues found for Neumannd boundary conditions.

In Sec. 3.3 we have introduced an appropriate geometric framework for the setup with AdS
on the boundary and extended the usual definitions of conformal compactness to that setting
of 〈n〉-manifolds. This in particular allows to make sense of the notion of the boundary
of a boundary, as needed to implement nested AdS/CFT. The more general perspective
opened the discussion of an extreme geometry where subsequent slicings of AdS spacetimes
by codimension-1 hypersurfaces which are again AdS are used. This at least in principle
offers the possibility to impose hierarchies of Neumann boundary conditions, thus leading to
hierarchies of gravitational theories on AdS spaces possibly connected by nested AdS/CFT-
type dualities. From the result of the previous investigations, that choosing Neumannd
boundary conditions reduces the bulk theory to a boundary theory in a trivial way by leaving
only a very sparse set of normalizable solutions, we could draw first conclusions on the
prospects for such a construction. Namely, at least in the renormalization framework we
have set up before, nesting more than two instances of AdS/CFT dualities does not yield
non-trivial relations. However, the discussion of 〈n〉-manifolds also revealed a possible route
to curing that problem using the total boundary blow-up [96]. Also the singleton theory
offers interesting prospects as it was found to avoid the normalizability issues for nested
Neumann conditions. In the last part of Sec. 3.3 we have discussed prospects for a concrete
realization of a double-layered AdS/CFT duality within M-theory. In the language developed
in Sec. 3.3.1, this involves topologically gauged ABJM theory on the conformal 〈1〉-face
of a four-dimensional 〈2〉-manifold which is conformally 〈2〉-compact with boundary. The
〈1〉-face is AdS3 with a 〈0〉-face as boundary, where the expected dual two-dimensional CFT

14 The results for Dirichletd+1 are insensitive to the ν-dependent explicit form of the counterterms due to the
fast fall-off of the field.
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is defined. On the other hand, the specific version of M-theory in the four-dimensional bulk
of the 〈2〉-manifold, as discussed in Sec. 3.3.3, is expected to yield another dual description of
topologically gauged ABJM theory. With a more detailed understanding of the deformations
of the usual M-theory description of ABJM theory to arrive at the anticipated dual for the
Higgsed topologically gauged version, one could then establish a double-layered duality. The
discussions so far involved gravitational theories on the boundary already at several places
and we consider this issue in more detail in the next section.
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4 The Boundary unleashed – CFT Weyl
Anomaly and Gravity on the Boundary

We now want to extend the discussion of boundary CFTs defined on fixed curved spacetimes
towards dynamical gravity on the boundary, which is likewise expected to possess conformal
invariance. Perturbative treatments of conformal gravity are plagued by ghosts and unitarity
may be restored only by genuine strong-coupling effects [105], an issue on which a holographic
description – e.g. in terms of a ghost-free dual string theory – may provide useful insights.
An argument for the existence of a dual description of gravitational theories on the boundary
is that, beyond the strict decoupling limit discussed in Sec. 2.4, the worldvolume theory
of a stack of D-branes couples to the gravitational closed-string sector. Thus, if AdS/CFT
holds beyond the strict limits of large N and λ, an appropriate limit of string theory should
provide a dual description of e.g. N=4 SYM theory coupled to conformal supergravity, as
argued already in [106].

Coupling the boundary CFT to gravity can be achieved holographically by promoting the
otherwise fixed residue of the bulk metric on the boundary to a dynamical quantity. This
entails a generalization of the usual Dirichlet boundary conditions to Neumann or mixed
boundary conditions, which was discussed for metric perturbations around rigid AdS in [52].
As first step towards such a duality involving concrete string theories, we extend these results
to complete five-dimensional supergravities arising as low-energy limits of string theory.
More concretely, the near-horizon geometry of the p-brane solutions relevant for AdS/CFT is
typically given by a product of AdS space and a compact manifold, on which one can perform
a Kaluza-Klein expansion of the ten-dimensional supergravities arising from string theory.
Lower-dimensional gauged supergravities on the AdS spaces then describe the Kaluza-Klein
expanded ten-dimensional theory truncated to a finite number of Kaluza-Klein modes, and
consequently also the corresponding sector of the dual superconformal field theory (SCFT)
[107].

We consider five-dimensional N=4 and N=2 gauged supergravities whose solutions can be
lifted to specific brane configurations in string and M-theory in Sec. 4.1 and 4.2, respectively.
We first study the dual CFTs in generic backgrounds, for which we have to generalize the
setting of a fixed AdS background and instead only restrict the configuration space to generic
asymptotically-AdS geometries. We determine the asymptotic structure of the bulk theories
and carry out the holographic renormalization. In the usual AdS/CFT context the boundary
values of the bulk fields are fixed and provide the background in which the dual CFT is
defined. With the results on the asymptotic structure of the supergravities we calculate the
Weyl anomaly of the dual CFTs in generic backgrounds and compare to the expectation from
the field-theory side, providing a non-trivial test of the AdS/CFT conjecture. Building on
these results we then establish the availability of Neumann and mixed boundary conditions
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for the full supergravities in Sec. 4.3. This promotes the conformal supergravity multiplets
arising as boundary values of the bulk fields to dynamical quantities and we discuss the
features of the resulting boundary theories.

4.1 Boundary Multiplet of N=4 SU(2)⊗U(1)
Gauged Supergravity on Asymptotically-AdS5

and the Weyl Anomaly

In this section we consider five-dimensional half-maximally supersymmetric gauged super-
gravity. We determine the asymptotic structure and calculate the Weyl anomaly of the
dual N=2 SCFTs. The general gauged matter-coupled N=4 supergravities in five dimen-
sions were constructed in [108, 109], and it was noted in [108] that AdS ground states are
only possible if the gauge group is a product of a one-dimensional Abelian factor and a
semi-simple group. We focus on the N=4 SU(2)⊗U(1) gauged supergravity constructed
by Romans [110], the only gauging of the pure supergravity without additional matter
multiplets which admits an AdS vacuum. Solutions of this theory can be lifted to solutions
of the IIB supergravity [111] where they correspond to product geometries involving S5, and
also to warped-product solutions of IIA supergravity and the maximal d=11 supergravity
[112, 113]. We restrict the configuration space to generic asymptotically-AdS5 geometries
with an arbitrary four-dimensional boundary metric. By a near-boundary analysis we deter-
mine the boundary-dominant components of the bulk fields from their partially gauge-fixed
field equations. Subdominant components are projected out in the boundary limit and we
find a reduced set of boundary fields constituting an N=2 Weyl multiplet. The residual
bulk symmetries act on the boundary fields as four-dimensional diffeomorphisms, N=2
supersymmetry and (super-)Weyl transformations. Thus, the on-shell N=4 supergravity
multiplet yields the N=2 Weyl multiplet on the boundary with the appropriate local N=2
superconformal transformations. This limiting procedure does not rely on the choice of
boundary conditions, and similar calculations have previously been carried out for bulk
theories in d=3, 6, 7 dimensions and for N=2 supergravity in d=5 [114]. For the bosonic
sector of the bulk supergravity we then carry out the holographic renormalization [71, 72]
and calculate the Weyl anomaly of the dual four-dimensional SCFTs in a generic bosonic
N=2 conformal supergravity background. This extends the existing results for nontrivial
metric and dilaton backgrounds [71, 115, 116]1.

We review theN=4 SU(2)⊗U(1) gauged supergravity in Sec. 4.1.1 and construct the multiplet
of fields along with the symmetry transformations induced on the conformal boundary
of asymptotically-AdS spaces in Sec. 4.1.2. In Sec. 4.1.3 we carry out the holographic
renormalization and calculate the Weyl anomaly of the dual SCFTs in an external bosonic
N=2 conformal supergravity background. This work was published in collaboration with
Thorsten Ohl in [15].

1 For the maximally supersymmetric case a discussion of the SCFT effective action, the conformal anomaly
and the role of conformal supergravity in AdS/CFT can be found in [106]. Explicit constructions for the
boundary of AdS are given there for the metric-dilaton sector.
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4.1.1 Romans’ N=4 SU(2)⊗U(1) gauged supergravity

We briefly discuss the five-dimensional gauged supergravity [110] in order to fix notation.
The theory has N=4 supersymmetry (counted in terms of symplectic Majorana spinors) with
R-symmetry group USp(4), of which an SU(2)⊗U(1) subgroup is gauged. The symplectic
metric is denoted by Ω, and exploiting the isomorphism usp(4) ∼= so(5) the Lie algebra
generators are given by Γmn := 1

2 [Γm,Γn] with so(5) vector indices m,n, and Γm satisfying
the five-dimensional Euclidean Clifford algebra relation2 {Γm,Γn} = 2δmn1. With the
obvious embedding of su(2)⊕u(1) ∼= so(3)⊕so(2) into usp(4) ∼= so(5), the vector index m
decomposes into m = (I, α) with I = 1, 2, 3 and α = 4, 5. We consider the theory referred to
as N=4+ in [110], for which the SU(2) gauge coupling g2 is fixed in terms of the U(1) coupling
g1 by g2 = +

√
2g1 =: g. For this choice of couplings the theory admits an AdS solution. The

bosonic field content is given by the vielbein eaµ, two antisymmetric tensor fields Bα
µν , the

SU(2) and U(1) gauge fields AIµ and aµ, respectively, and a scalar ϕ. The four gravitinos

ψiµ and four spin-1
2 fermions χi comprising the fermionic field content are in the spinor 4 of

usp(4), which decomposes as 4→ 21/2 + 2−1/2. The vector and tensor fields originate from
the vector representation, decomposing as 5→ 30 + 11 + 1−1. With the charge conjugation
matrix C satisfying CγµC

−1 = γTµ , CT = C−1 = −C and C? = C the supercharges and hence

all the spinors satisfy the symplectic Majorana condition χ̄i =
(
χi
)T
C with the conjugate

χ̄i := (χi)
† γ0. The metric is of signature (+,−,−,−,−) and the γ-matrices are chosen such

that γabcde = εabcde with ε01234 = 1. From this point on we denote five-dimensional objects
with hat and four-dimensional ones without, e.g. five-dimensional spacetime indices µ̂ = (µ, r)
with µ = 0, 1, 2, 3. The Lagrangian as given up to four-fermion terms in [110] is

L =− 1

4
êR̂(ω̂)− 1

2
iê ˆ̄ψiµ̂γ̂

µ̂ν̂ρ̂D̂ν̂ψ̂ρ̂i +
3

2
iêTij

ˆ̄ψiµ̂γ̂
µ̂ν̂ψ̂jν̂ − iêAij ˆ̄ψiµ̂γ̂

µ̂χ̂j +
1

2
iê ˆ̄χiγ̂µ̂D̂µ̂χ̂i

+ iê
(1

2
Tij −

1√
3
Aij

)
ˆ̄χiχ̂j +

1

2
êD̂µ̂ϕ̂D̂µ̂ϕ̂+ êP (ϕ̂)− 1

4
ê ξ2B̂µ̂ν̂αB̂ α

µ̂ν̂

+
1

4g1
ε̂µ̂ν̂ρ̂σ̂τ̂ εαβB̂

α
µ̂ν̂D̂ρ̂B̂

β
σ̂τ̂ −

1

4
ê ξ−4f̂ µ̂ν̂ f̂µ̂ν̂ −

1

4
ê ξ2F̂ µ̂ν̂I F̂ I

µ̂ν̂ −
1

4
ε̂µ̂ν̂ρ̂σ̂τ̂ F̂ I

µ̂ν̂F̂
I
ρ̂σ̂âτ̂ (4.1)

+
1

4
√

2
iê
(
H ij
µ̂ν̂ +

1√
2
hijµ̂ν̂

)
ˆ̄ψρ̂i γ̂[ρ̂γ̂

µ̂ν̂ γ̂σ̂]ψ̂
σ̂
j +

1

2
√

6
iê
(
H ij
µ̂ν̂ −

√
2hijµ̂ν̂

)
ˆ̄ψρ̂i γ̂

µ̂ν̂ γ̂ρ̂χ̂j

− 1

12
√

2
iê
(
H ij
µ̂ν̂ −

5√
2
hijµ̂ν̂

)
ˆ̄χiγ̂

µ̂ν̂χ̂j +
1√
2
iê (∂ν̂ϕ̂) ˆ̄ψiµ̂γ̂

ν̂ γ̂µ̂χ̂i ,

with ξ := exp
√

2
3 ϕ̂ and the scalar potential P (ϕ̂) := 1

8g
2
(
ξ−2 + 2ξ

)
. Antisymmetrization of

indices is defined as X[µYν] := 1
2(XµYν −XνYµ). Furthermore,

T ij :=
g

12
√

2

(
2ξ−1 + ξ2

)
(Γ45)ij , Aij :=

g

2
√

6

(
ξ−1 − ξ2

)
(Γ45)ij ,

H ij
µ̂ν̂ := ξ

(
F̂ Iµ̂ν̂ (ΓI)

ij + B̂α
µ̂ν̂ (Γα)ij

)
, hijµ̂ν̂ := ξ−2Ωij f̂µ̂ν̂ .

(4.2)

2 The Γm can all be chosen hermitian, such that Γ†mn + Γmn = 0. With the charge conjugation matrix
CE satisfying CEΓmC

−1
E = ΓTm, we can identify Ω := CE and have ΩΓmn + ΓTmnΩ = 0, providing the

isomorphism usp(4) ∼= so(5).
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The covariant derivative on the spinor 4 of usp(4) is given by

D̂µ̂vi = ∇̂µ̂vi +
1

2
g1âµ̂ (Γ45) j

i vj +
1

2
g2Â

I
µ̂ (ΓI45) j

i vj , (4.3)

with the spacetime-covariant derivative ∇̂µ̂ and ΓIJ = −εIJKΓK45. Acting on a spinor

∇̂µ̂ = ∂µ̂ + 1
4 ω̂

âb̂
µ̂ γ̂âb̂, and the curvatures are defined by

[
D̂µ̂, D̂ν̂

]
ε̂i =:

1

4
R̂âb̂µ̂ν̂(ω̂) γ̂âb̂ ε̂i +

1

2
g1f̂µ̂ν̂ (Γ45) j

i ε̂j +
1

2
g2F̂

I
µ̂ν̂ (ΓI45) j

i ε̂j . (4.4)

On the vector 5 of usp(4) the covariant derivative is given by

D̂µ̂v
Iα = ∇̂µ̂vIα + g1âµ̂ε

αβvIβ + g2ε
IJKÂJµ̂v

Kα . (4.5)

The supersymmetry transformations to leading order in the fermionic terms are

δε̂ê
â
µ̂ = i ˆ̄ψiµ̂γ̂

âε̂i , δε̂Â
I
µ̂ = Θij

µ̂

(
ΓI
)
ij
, δε̂ϕ̂ =

1√
2
i ˆ̄χiε̂i ,

δε̂ψ̂µ̂i = D̂µ̂ε̂i + γ̂µ̂Tij ε̂
j − 1

6
√

2

(
γ̂ ν̂ρ̂
µ̂ − 4δ ν̂

µ̂ γ̂ρ̂
)(

Hν̂ρ̂ij +
1√
2
hν̂ρ̂ij

)
ε̂j ,

δε̂âµ̂ =
1

2
iξ2

(
ˆ̄ψiµ̂ε̂i +

2√
3

ˆ̄χiγ̂µ̂ε̂i

)
,

δε̂χ̂i =
1√
2
γ̂µ̂ (∂µ̂ϕ̂) ε̂i +Aij ε̂

j − 1

2
√

6
γ̂µ̂ν̂
(
Hµ̂ν̂ij −

√
2hµ̂ν̂ij

)
ε̂j ,

δε̂B̂
α
µ̂ν̂ = 2D̂[µ̂Θij

ν̂] (Γα)ij −
ig1√

2
εαβ (Γβ)ij ξ

(
ˆ̄ψi[µ̂γ̂ν̂]ε̂

j +
1

2
√

3
ˆ̄χiγ̂µ̂ν̂ ε̂

j

)
,

(4.6)

where Θij
µ̂ =

√
1
2 iξ
−1
(
− ˆ̄ψiµ̂ε̂

j +
√

1
3

ˆ̄χiγ̂µ̂ε̂
j
)

. The commutator of two supersymmetries is –

to leading order in the fermionic fields – given by

[δε̂2 , δε̂1 ] = δX̂ + δΣ̂ + δσ̂ + δτ̂I , (4.7)

where δX̂ denotes a diffeomorphism with X̂ µ̂ = −iˆ̄εi1γ̂µ̂ε̂2i , δΣ̂ is a local Lorentz transformation
with

Σ̂âb̂ = X̂ µ̂ω̂ âb̂
µ̂ + 2iˆ̄εi1

(
−γ̂âb̂Tij +

1

6
√

2

(
γ̂âb̂

ĉd̂
+ 4δâĉ δ

b̂
d̂

)(
H ĉd̂
ij +

1√
2
hĉd̂ij

))
ε̂j2 , (4.8)

and δσ̂ and δτ̂I denote U(1) and SU(2) gauge transformations, respectively, with

σ̂ = X̂ µ̂âµ̂ +
1

2
iξ2ˆ̄εi1ε̂2i , τ̂ I = X̂ µ̂ÂIµ̂ −

1√
2
iξ−1

(
ΓI
)
ij

ˆ̄εi1ε̂
j
2 . (4.9)

Summary of conventions: For easier reference we summarize the conventions for the usp(4)
generators and the index notation, which agree with those of [110]. The usp(4) symplectic
metric Ω and its inverse satisfy ΩijΩ

jk = δ k
i , Ωij = (Ωji)

∗ and spinor indices are raised
and lowered via εi = Ωijεj and εi = Ωijε

j . The so(5) Clifford algebra generators Γm
satisfy (Γm) k

i (Γn) j
k + (Γn) k

i (Γm) j
k = 2δmnδ

j
i , which yields canonical Clifford matrices

only for these specific index positions. With the charge conjugation matrix Ω we have
Ωik (Γm) j

k =: (Γm)ij = − (Γm)ji. The conjugate is denoted by (Γm)ij =
(

(Γm)ij
)∗

and the

so(5) generators satisfy (Γmn)ij = (Γmn)ji. Note also that ε45 = ε45 = 1. Fermionic fields
are by convention anticommuting and complex conjugation changes their order.
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4.1.2 Local N=2 superconformal symmetry on the boundary of
asymptotically-AdS configurations

We now restrict the configuration space of the theory discussed in the previous section to
geometries which are asymptotically AdS5, and discuss the fields and symmetries induced
on the conformal boundary. We give a brief discussion of asymptotically-AdS spaces in
the following, and refer to [92, 117] for more details. The metric signature and curvature
conventions are those of Sec. 4.1.1 and [110], i.e. AdS has positive curvature.

A metric ĝ on the interior of a compact manifold X with boundary ∂X is called conformally
compact if, for a defining function r of the boundary (meaning that r|∂X = 0, dr|∂X 6= 0
and r|intX > 0), the rescaled metric ḡ := r2ĝ extends to all of X as a metric. For such
a conformally compact metric ĝ the conformal structure [ḡ|T∂X ] induced on ∂X and the
boundary restriction of the function |dr|2ḡ := ḡ−1(dr, dr) are independent of the choice of
defining function. The curvature of the metric ĝ is given by3

R̂µ̂ν̂ρ̂σ̂ = −|dr|2ḡ
(
ĝµ̂ρ̂ĝν̂σ̂ − ĝµ̂σ̂ ĝν̂ρ̂

)
+O(r−3) , (4.10)

where we denote tangent-space indices on TX with hat, e.g. µ̂, ν̂, and tangent-space indices on
T∂X are denoted without hat. Asymptotically, ĝ thus has constant sectional curvature given
by −|dr|2ḡ, and we call a conformally compact metric ĝ an asymptotically-AdS metric if the
value of the sectional curvature is positive and constant on the boundary, i.e. |dr|2ḡ = −1/R2

on ∂X for some constant R. Note that we do not demand ĝ to be Einstein.

A representative metric g(0) of the boundary conformal structure uniquely determines a
defining function r such that g(0) = r2

R2 ĝ |T∂X and |dr|2ḡ = −1/R2 in a neighbourhood of ∂X.
Choosing this defining function as radial coordinate, the metric ĝ takes the Fefferman-Graham
form

ĝ =
R2

r2
(gµνdx

µ ⊗ dxν − dr ⊗ dr) , gµν(x, r) = g(0)
µν(x) +

r2

R2
g(2)
µν(x) + . . . (4.11)

with g of signature (+,−,−,−) and the limit r → 0 corresponding to the conformal boundary.
The expansion of g in powers of r is justified when ĝ satisfies vacuum Einstein equations,
which, however, we do not assume here. For the time being we will still use that expansion
and refer the discussion of its validity to Sec. 4.1.2.2. We note that the geometries with AdS
on the boundary discussed in Sec. 3.1.1, 3.3.2 – although they are not conformally compact
in the usual sense and are better understood as 〈n〉-manifolds – can also be described by
a metric of the form (4.11). Thus, the results we shall obtain here apply also to these
backgrounds.

According with the Fefferman-Graham form of the metric, we partially gauge-fix the local
Lorentz symmetry such that the vielbein is of the form

êaµ(x, r) =
R

r
eaµ(x, r) , êrµ = êar = 0 , êrr =

R

r
, (4.12)

3 With the usual Landau notation f
x→x0= O(g)⇐⇒ lim sup

x→x0
|f/g| <∞ and f

x→x0= o(g)⇐⇒ lim
x→x0

|f/g| = 0.
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with eaµ(x, r) = e(0)aµ (x) + re(1)aµ (x) + . . . . We denote Lorentz indices by â = (a, r) with an
underline below r to avoid confusion. For the gravitinos and the SU(2)⊗U(1) gauge fields
we employ axial gauges ψ̂ri ≡ ÂIr ≡ âr ≡ 0.

In this setting we construct the fields induced on the conformal boundary in Sec. 4.1.2.1. For
the discussion of the induced symmetry transformations we will be interested in the residual
bulk symmetries preserving the gauge-fixing conditions. These are determined as solutions
to

(
δX̂ + δΣ̂ + δε̂i + δU(1) + δSU(2)

)
{êrr, êar , êrµ, âr, ÂIr , ψ̂ri} = 0 , (4.13)

where δX̂ , δΣ̂, δε̂ denote diffeomorphisms, local Lorentz and supersymmetry transformations,
respectively. The solutions and their action on the boundary fields will be discussed in
Sec. 4.1.2.3.

The spin connection is treated in 1.5th-order formalism and fixed by its equation of motion
as derived from (4.1). We split ω̂µ̂âb̂ = ω̂µ̂âb̂(ê) + ω̂µ̂âb̂(ê, ψ̂, χ̂) where the torsion-free part

ω̂µ̂âb̂ (ê) calculated from (4.12) has the non-vanishing components

ω̂ ab
µ (ê) = ω ab

µ (e) , ω̂ ar
µ (ê) =

1

r
eaµ −

1

2
eρa∂rgµρ , ω̂ ab

r (ê) = eµ[a∂re
b]
µ , (4.14)

and for the remaining part involving fermions we find

ω̂µ̂âb̂(ê, ψ̂, χ̂) = −1

2
i
(

ˆ̄ψiâγ̂µ̂ψ̂b̂i + 2 ˆ̄ψiµ̂γ̂[âψ̂b̂]i

)
− 1

4
i ˆ̄ψi
λ̂
γ̂ λ̂τ̂
µ̂âb̂

ψ̂τ̂ i −
1

4
i ˆ̄χiγ̂µ̂âb̂χ̂i . (4.15)

Thus, the Lorentz-covariant derivative on spinor fields reads

∇̂µ = ∇(e)
µ +

1

2r
γµγr − Zµ +

1

4
ω̂ âb̂
µ (ê, ψ̂, χ̂)γ̂âb̂ =: ∇µ +

1

2r
γµγr ,

∇̂r = ∂r − Zr +
1

4
ω̂ âb̂
r (ê, ψ̂, χ̂)γ̂âb̂ ,

(4.16)

where γ̂µ̂ = êâµ̂γâ , γµ = eaµγa. For notational convenience we defined ∇(e)
µ := ∂µ + 1

4ω
ab
µ (e)γab

and Zµ := 1
4 (∂rgµρ) γ

ργr , Zr := 1
4(∂re

a
µ)γ µ

a .

4.1.2.1 Boundary fields

In this part we construct the fields induced on the conformal boundary. Similar to the
construction of the induced conformal structure on the boundary, we define the classical
boundary field as follows. For a bulk field φ̂ with asymptotic r-dependence φ̂(x, r) = O(f(r)),
we define the rescaled field φ(x, r) := f(r)−1φ̂(x, r). This rescaled field then admits a finite,
non-vanishing boundary limit, which is interpreted as the boundary field4.

Therefore, to determine the multiplet of boundary fields we have to fix the asymptotic scaling
of the various bulk fields. To this end we consider their equations of motion linearized in
all fields but the metric/vielbein and decomposed into boundary-irreducible components,

4 This is also the classical analog to the construction for the Wightman field in [118].
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e.g. into four-dimensional chiral components for a bulk spinor field. The leading order in
the boundary limit turns out to be an ordinary differential equation in r, and is solved by
fixing the scalings of the different boundary-irreducible bulk field components. The rescaled
field is defined by extracting the asymptotic r-dependence of the dominant field component,
thereby subdominant components are projected out in the definition of the boundary field.
The results obtained in this way on the basis of the linearized field equations are extended
to the nonlinear theory in Sec. 4.1.2.2.

We start with the vielbein, for which the asymptotic r-dependence is already fixed by (4.11),
(4.12) and the induced boundary field is given by eaµ(x, 0). As discussed in [110], Einstein’s
equations as derived from (4.1) in a pure metric-dilaton background read

R̂µ̂ν̂ −
1

2
ĝµ̂ν̂R̂+ 2ĝµ̂ν̂P (ϕ̂) = 0 , (4.17)

and the scalar potential P (ϕ̂), having exactly one extremum
(
ϕ̂, P (ϕ̂)

)
≡
(
0, 3

8g
2
)
, provides

a cosmological constant such that AdS5 is a vacuum solution. Here we do not restrict the
theory to the metric-dilaton sector and only demand (4.17) to be solved at leading order in
the boundary limit. From (4.10) we find that ĝ indeed solves the leading order provided that
the asymptotic curvature radius R is fixed in terms of the gauge coupling as R2 = 8/g2. In
Sec. 4.1.2.2 we show that – with the scalings obtained in this section – all other terms in the
complete Einstein equations contribute to the subleading orders only. In the following we fix
g = 2

√
2 such that R = 1.

For the gravitinos, which we consider next, the nonlinear equation of motion reads

γ̂µ̂ν̂ρ̂D̂ν̂ψ̂ρ̂i − 3Tij γ̂
µ̂ν̂ψ̂jν̂ =− 1

2
√

2

(
H ρ̂σ̂ j

i +
1√
2
hρ̂σ̂ j

i

)
γ̂[µ̂γ̂ρ̂σ̂γ̂

ν̂]ψ̂ν̂j −Aij γ̂µ̂χj

− 1

2
√

6

(
H j
ρ̂σ̂i −

√
2h j

ρ̂σ̂i

)
γ̂ρ̂σ̂γ̂µ̂χj +

1√
2

(∂ν̂ϕ̂) γ̂ν̂ γ̂µ̂χi .

(4.18)

To fix Tij (see (4.2)) we note that Γ45, since it squares to −1 and is traceless, has eigenvalues

±i, each with multiplicity 2. We choose a usp(4) basis where Γ45 is diagonal (Γ45) j
i = iκiδ

j
i

and split i = (i+, i−) such that κi± = ±1. Since {Ω,Γ45} = 0 we have Ωi+j+ = Ωi−j− = 0.
Defining four-dimensional chirality projectors PL/R := 1

2 (1± iγr), the L/R projections of
the linearized equation (4.18) for µ̂ = µ read

γµνρ∇(e)
ν ψ̂

R/L
ρi − (γµνρZν ± iγµρZr) ψ̂L/R

ρi + iγµρ
(
±∂r ∓

1

r
+

3κi
2r

)
ψ̂

L/R
ρi = 0 . (4.19)

Since the ψ̂
L/R
µi−

are related to the conjugates of ψ̂
R/L
µi+

by the symplectic Majorana condition,
it is sufficient to consider the i+-components. Solving (4.19) at leading order in r yields the
two independent solutions ψ̂µi+ = r−1/2ψL

µi+
+ o(r−1/2) and ψ̂µi+ = r5/2ψR

µi+
+ o(r5/2) with

limr→0 ψ
L/R
µi+

finite. Thus, the gravitinos lose half of their components in the boundary limit

and the rescaled field ψµi+ := r1/2ψ̂µi+ yields the two chiral gravitinos ψL
µi+
|r=0 as boundary

fields.
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Proceeding with the fermionic fields we now discuss the spin-1
2 fermions χ̂i. Their equation

of motion is given by

γ̂µ̂D̂µ̂χ̂i + Tijχ̂
j =

2√
3
Aijχ̂

j +Aij γ̂
µ̂ψ̂jµ̂ +

1

2
√

6

(
H j
µ̂ν̂i −

√
2h j

µ̂ν̂i

)
γ̂ρ̂γ̂µ̂ν̂ψ̂ρ̂j

− 1

6
√

2

(
H j
µ̂ν̂i −

5√
2
h j
µ̂ν̂i

)
γ̂µ̂ν̂χ̂j +

1√
2

(∂ν̂ϕ̂) γ̂µ̂γ̂ν̂ψ̂µ̂i .

(4.20)

Solving the linearized L/R projections, given by

γµ∇(e)
µ χ̂

R/L
i − (γµZµ ∓ iZr) χ̂L/R

i − i
(
±∂r +

κi ∓ 4

2r

)
χ̂

L/R
i = 0 , (4.21)

at leading order for i = i+ we find as dominant solution χ̂i+ = r3/2χL
i+

+ o(r3/2). Similarly to
the gravitinos, the χ̂i+ become chiral in the boundary limit and we have the two left handed

Weyl fermions χL
i+
|r=0 as boundary fields.

Coming to the tensor fields B̂α
µ̂ν̂ we define Ĉµ̂ν̂ := 1√

2
(B̂4

µ̂ν̂ − iB̂5
µ̂ν̂) and, with the four-

dimensional Hodge dual ? Ĉµν := 1
2e
−1ε ρσ

µν Ĉρσ, the (anti-)selfdual parts of Ĉµν are defined

as Ĉ±µν := 1
2(Ĉµν ± i ? Ĉµν). The equation of motion reads

i

g1
ε̂µ̂ν̂ρ̂σ̂τ̂ D̂ρ̂Ĉσ̂τ̂ − ê ξ2Ĉ µ̂ν̂ = −1

2
ê ξ
(1

2
J1
µ̂ν̂
ij +

1√
3
J2
µ̂ν̂
ij −

1

6
J3
µ̂ν̂
ij

)
(Γ4 − iΓ5)ij , (4.22)

with J1
µ̂ν̂
ij = i ˆ̄ψρ̂i γ̂[ρ̂γ̂

µ̂ν̂ γ̂σ̂]ψ̂
σ̂
j , J2

µ̂ν̂
ij = i ˆ̄ψρ̂i γ̂

µ̂ν̂ γ̂ρ̂χ̂j and J3
µ̂ν̂
ij = i ˆ̄χiγ̂

µ̂ν̂χ̂j . From the µr-

components of the linearized equation Ĉµr is fixed in terms of Ĉµν by Ĉµr = 1
2 ire

−1ε ρστ
µ ∂ρĈσ̂τ̂ ,

and is of higher order in r. The (anti-)selfdual parts of the linearized µν-components,

1

2
e−1ε ρσ

µν

(
∂rĈµν + 2∂ρĈσr

)
= − i

r
Ĉµν , (4.23)

then yield the solutions Ĉµν = r−1C−µν + o(r−1) and Ĉµν = r C+
µν + o(r). Thus, the anti-

selfdual part Ĉ− is dominant in the boundary limit and the selfdual part Ĉ+ is projected
out in the definition of the boundary field.

For the U(1) and SU(2) gauge fields the equations of motion are

∂ν̂

(
êξ−4f̂ µ̂ν̂

)
=

1

4
êg1 (Γ45) j

i J4
µ̂i
j −

1

4
ε̂µ̂ν̂ρ̂σ̂τ̂

(
B̂α
ν̂ρ̂B̂

α
σ̂τ̂ + F̂ Iν̂ρ̂F̂

I
σ̂τ̂

)

+ Ωij∂ν̂

(
êξ−2

(
1

4
J1
µ̂ν̂
ij −

1√
3
J2
µ̂ν̂
ij +

5

12
J3
µ̂ν̂
ij

))
,

(4.24)

D̂ν̂

(
êξ2F̂ Iµ̂ν̂

)
=

1

4
êg2 (ΓI45) j

i J4
µ̂i
j − ε̂µ̂ν̂ρ̂σ̂τ̂ D̂ν̂

(
F̂ Iρ̂σ̂âτ̂

)
+

1√
2
D̂ν̂

(
êξK µ̂ν̂

I

)
, (4.25)

with J4
µ̂i
j = i ˆ̄χiγ̂µ̂χ̂j − i ˆ̄ψiν̂ γ̂

ν̂µ̂ρ̂ψ̂ρ̂j and K µ̂ν̂
I = (ΓI)

ij
(

1
2J1

µ̂ν̂
ij + 1√

3
J2
µ̂ν̂
ij − 1

6J3
µ̂ν̂
ij

)
. For the

ansatz âµ = rαaµ the leading order of the linearized equation yields α ∈ {0, 2}, and similarly
for ÂIµ. Thus, âµ and Âµ are itself finite in the boundary limit and define boundary vector
fields without rescaling.
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It remains to analyze the scalar field ϕ̂ with equation of motion

�̂ĝϕ̂− P ′(ϕ̂) =− i√
2
Aij

ˆ̄ψiµ̂γ̂
µ̂ν̂ψ̂jν̂ − iA′ij ˆ̄ψiµ̂γ̂

µ̂χ̂j − i√
3

(
A′ij +

1√
6
Aij

)
ˆ̄χiχ̂j

−
√

2

3
ξ2Ĉ µ̂ν̂Ĉ

µ̂ν̂ +

√
2

3
ξ−4f̂µ̂ν̂ f̂

µ̂ν̂ − 1√
6
ξ2F̂ Iµ̂ν̂F̂

Iµ̂ν̂

+
1

4
√

3

(
H ij
µ̂ν̂ −

√
2hijµ̂ν̂

)
J1
µ̂ν̂
ij +

1

6

(
H ij
µ̂ν̂ + 2

√
2hijµ̂ν̂

)
J2
µ̂ν̂
ij

− 1

12
√

3

(
H ij
µ̂ν̂ + 5

√
2hijµ̂ν̂

)
J3
µ̂ν̂
ij −

1√
2
ê−1∂ν̂

(
iê ˆ̄ψiµ̂γ̂

ν̂ γ̂µ̂χ̂i

)
,

(4.26)

where A′ij := −1
6g
(
ξ−1 + 2ξ2

)
(Γ45)ij . The linearized equation is given by

r2�gϕ̂−
1

2
r2 (gµν∂rgµν) ∂rϕ̂−D2

r ϕ̂ = 0 , (4.27)

with Dr = r∂r − 2, and the leading-order part is solved by r2ϕ1(x, r) and r2 log(r)ϕ2(x, r)
with ϕ1/2|r=0 finite. The boundary scalar field is thus defined by extracting the dominant
scaling ϕ̂ =: r2 log(r)ϕ and restricting ϕ to the boundary. In summary, the multiplet of
boundary fields is given by (eaµ, ψ

L
µ i+

, C−µν , A
I
µ, aµ, χ

L
i+
, ϕ)|r=0.

4.1.2.2 Nonlinear theory and subdominant components

The splitting into dominant and subdominant components and the scaling of the dominant
parts as obtained above from the linearized equations of motion fixes the definition of the
boundary fields. It remains to be checked whether the obtained scaling behaviour is consistent
in the nonlinear theory. Furthermore, the subdominant components of some of the fields are
required for the symmetry transformations to be discussed in Sec. 4.1.2.3. These two points
are addressed in the following. Note that this discussion does not include the four-fermion
terms which are not spelled out in [110]. However, as we find quite some cancellations taking
place to ensure consistency of the previously obtained results at the leading orders in the
fermions, we expect that this consistency is not accidental and extends to the four-fermion
terms as well.

Since the analysis of Sec. 4.1.2.1 crucially relies on the form of the metric (4.11) in a
neighbourhood of the boundary, the first thing to be checked is the validity of the Fefferman-
Graham form. Considering the terms in the Lagrangian (4.1) with the scaling of the fields
as obtained in the previous section, êR̂(ω̂) and the cosmological constant êP (0) are O(r−5)
while the other terms are O(r−3). Thus, the leading order of Einstein’s equations reduces to
the form discussed in the previous section and the Fefferman-Graham form of the metric
(4.11) is justified. In particular, since there are no O(r−4) terms in the Lagrangian, there is
no O(r) contribution to gµν(x, r) and the expansion in (4.11) is justified. Next, we consider

the spin connection (4.14), (4.15). With the scaling as obtained before, ω̂µab(ê, ψ̂, χ̂) = O(r0)

and the other components of ω̂µ̂âb̂(ê, ψ̂, χ̂) are of O(r). Therefore, the fermionic terms do not

alter the O(r−1) part of the covariant derivative (4.16), which was relevant for the previous
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section. For the four-dimensional Lorentz-covariant derivative ∇µ defined in (4.16) we find
∇µ = ∂µ + 1

4ω
ab
µ γab with

ωµab
∣∣
r=0

= ωµab(e)−
1

2

(
iψ̄Li+
a γµψ

L
bi+ + 2iψ̄Li+

µ γ[aψ
L
b]i+

+ c.c.
)
. (4.28)

From (4.3) the four-dimensional gauge and Lorentz covariant derivative acting on a boundary
spinor is

Dµvi+ = ∇µvi+ +
1

2
ig1aµvi+ +

1

2
ig2A

I
µ (ΓI)

j+
i+

vj+ . (4.29)

For the remaining fields we study the interaction terms of (4.1) directly in the field equa-
tions. They turn out to be subdominant in the equations for the boundary-dominant field
components, such that their scaling is not affected. They do, however, alter the subdominant
components, some of which are in fact not subdominant but play the role of auxiliary fields
on the boundary. We start with the gravitinos, for which the scaling of ψ̂L

µi+
was determined

from the PL-projection of (4.18) at O(r3/2). One easily verifies that the interaction terms in
(4.18) are of O(r5/2) and thus the analysis of the previous section is not affected. To determine
the subdominant components we consider the PR projection of the µ̂=µ components. Noting
that (Γα)

j+
i+

= (Γα)
j−
i−

= 0 due to {Γα,Γ45} = 0, and B̂α
µ̂ν̂ (Γα)

j−
i+

=
√

2Ĉµ̂ν̂ (Γ4)
j−
i+

, we

find ψ̂µi+ = r−1/2ψL
µi+

+ r1/2ΦR
µi+

with

ΦR
µi+

∣∣∣
r=0

= −1

2
i
(
γ νρ
µ − 2

3
γµγ

νρ
)(
Dνψ

L
ρi+ −

1

4
γ · C−i+j+γνψ

Rj+
ρ

)
, (4.30)

where γ · C := γµνCµν and Cµ̂ν̂ i+j+ := Cµ̂ν̂ (Γ4)i+j+ . Note that ψ
Ri+
µ = C

(
ψ̄

Li+
µ

)T
by the

symplectic Majorana condition, and a possible C+-contribution drops out due to γ · C± =
γ · C±PR/L. For later convenience we define the quantity

Rµν i+(Q) := D[µψ
L
ν]i+
− iγ[µΦR

ν]i+
− 1

4
γ · C−i+j+γ[µψ

Rj+
ν] , (4.31)

and note that it is anti-selfdual i ? Rµν i+(Q) = −Rµν i+(Q) and satisfies γµRµν i+(Q) = 0.

We continue with the tensor field Ĉµ̂ν̂ . Using 1
2 (γµν ± i ? γµν) = γµνPR/L we find the

interaction terms subdominant in the anti-selfdual part of (4.22) with µ̂ν̂=µν, which was
used to determine the scaling Ĉ−µν = r−1C−µν . In the selfdual part the interaction terms are

not subdominant, but rather fix Ĉ+
µν = r−1C+

µν and

C+
µν

∣∣
r=0

=
1

4
i (Γ4)i+j+ ψ̄R

ρi+γ
[ργµνγ

σ]ψL
σj+ . (4.32)

Thus, Ĉ+
µν is in fact not subdominant with respect to Ĉ−µν . However, since its boundary value

is completely fixed in terms of the other boundary fields, it plays the role of an auxiliary field
on the boundary. From the µ̂ν̂=µr components we find for the subdominant Ĉµr = Cµr

Cµr
∣∣
r=0

=
1

2
ire−1ε νρσ

µ DνĈρσ + ψ̄R
ρi+

(
γ ρσ
µ ΦR

σj+ +
1√
3
γµγ

ρχL
j+

)
(Γ4)i+j+ . (4.33)
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For the spin-1
2 fermions χ̂L

i+
= r3/2χL

i+
was obtained from the PL projection of (4.20) at

O(r3/2). The only additional contribution at that order is ∝ γργ ·C+
i+j+

ψ
Rj+
ρ which is a three-

fermion term by (4.32) and we expect it to be cancelled by contributions of four-fermion terms
in (4.1). We conclude that – up to the four-fermion terms not considered here – the obtained
scaling for χ̂L

i+
is not affected by the interaction terms. The subdominant right handed part

is fixed from the PR-projection of (4.20) and we find χ̂i+ = r3/2χL
i+

+ r5/2 log(r)χR
i+

with

χR
i+

∣∣∣
r=0

= i /DχL
i+ −

1√
2
ϕγµψL

µi+ −
i

2
√

6
γργµν

(
F Iµν (ΓI)

j+
i+
−
√

2fµνδ
j+
i+

)
ψL
ρj+

+
i

2
√

3
γρ γ · C−i+j+Φj+L

ρ − 1√
3
γργµCµr i+j+ψ

j+R
ρ .

(4.34)

In the equations for the gauge fields (4.24), (4.25) the leading-order terms are those involving

J4
µ̂i
j (the gravitino part thereof) and J1

µν
ij , both of which are of O(r−3). However, since

(ΓI)
j−
i+

= (ΓI)
j+
i−

= 0 due to [ΓI ,Γ45] = 0, their leading-order parts cancel exactly in
both equations, such that the previous analysis of the linearized equations is not altered.
For the scalar field we have to check that the interaction terms are subdominant with
respect to the O(r2) and O(r2 log(r)) parts of (4.26). Similar to the case of the gauge
fields, there are cancellations between different terms at leading order. From (4.32) the

Jµν1ij term and the ĈµνĈ
µν term add up to zero at leading order, and also −iA′ij ˆ̄ψiµ̂γ̂

µ̂χ̂j

and − 1√
2
ê−1∂ν̂

(
iê ˆ̄ψiµ̂γ̂

ν̂ γ̂µ̂χ̂i

)
cancel. The remaining terms are subleading and thus the

cancellations justify the analysis of the linearized equations also for ϕ̂. We conclude that the
scaling behaviours obtained from the linearized equations of motion with the modifications
for the subdominant components discussed here are consistent in the nonlinear theory as
given by (4.1).

4.1.2.3 Induced boundary symmetries

Having obtained the multiplet of boundary fields in the previous section we now discuss
the symmetries on the boundary. To this end we determine the residual bulk symmetries
from the constraints (4.13) and examine their action on the boundary fields, which is defined
straightforwardly, e.g. δφ := limr→0 f(r)−1δ̂φ̂ for a boundary field φ = limr→0 f(r)−1φ̂.
Relevant to us are solutions to the constraints (4.13) which act non-trivially on the boundary
fields, and in the following we discuss certain special solutions which generate the general
symmetry transformation of the boundary fields.

The constraint that ê
r
r and êar be preserved yields that, for an arbitrary λ(x),

X̂r = rλ(x) , Σ̂a
r = −eaµ∂rX̂µ . (4.35)

We parametrize the U(1) and SU(2) gauge transformations by σ̂(x, r) and τ̂ I(x, r), respec-
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tively, and using (4.35) the remaining constraints are

∂rX̂
µ =gµρ

(
r∂ρλ(x) + i ˆ̄ψiργ̂

r ε̂i
)
, (4.36a)

∂rσ̂ =âµ∂rX̂
µ +

1√
3
iξ2 ˆ̄χiγ̂r ε̂i , (4.36b)

∂r τ̂
I =ÂIµ∂rX̂

µ +
1√
6
iξ−1 ˆ̄χiγ̂r ε̂

j
(
ΓI
)
ij
, (4.36c)

∇̂r ε̂i + γ̂rTij ε̂
j =−

(
∂rX̂

µ
)
ψ̂µi +

1

6
√

2

(
γ̂ ν̂ρ̂
r − 4δν̂r γ̂

ρ̂
)(
Hν̂ρ̂ij +

1√
2
hν̂ρ̂ij

)
ε̂j . (4.36d)

Thus, (4.13) is solved for ε̂ ≡ 0, λ ≡ 0 and X̂ µ̂ = (Xµ(x), 0), Σ̂â
ĉ = δâaδ

c
ĉ Σa

c(x), τ̂ I = τ I(x)
and σ̂ = σ(x). There are no fixed relations among the parameters such that this yields
four-dimensional diffeomorphisms δX , local Lorentz transformations δΣ and SU(2)⊗U(1)
gauge transformations δτI , δσ, respectively, on the boundary fields.

There is another bosonic symmetry transformation which acts non-trivially on the boundary
fields. Namely, we consider δ̂w:=δX̂w

+δε̂w+δΣ̂w
+δσ̂w+δτ̂Iw with nonzero X̂r = rλ. The

conditions (4.35), (4.36) can be solved by Σ̂a
w b = 0 and Σ̂a

w r = O(r) along with X̂µ
w, σ̂w, τ̂ Iw

of O(r2) and ε̂wi = O(r3/2). All transformations preserve the boundary fields, except for
δX̂w

which acts as a Weyl rescaling. The Weyl weights of the boundary fields are fixed by

the scaling of the bulk fields from which they are defined, e.g. for φ := limr→0 r
αφ̂ we have

δwφ := limr→0 r
αδ̂wφ̂ = −αλ(x)φ.

Finally, coming to the fermionic symmetries we set λ ≡ 0 and consider non-vanishing ε̂i
solving (4.36d). Similarly to the mass terms in the spinor field equations, the Tij-term in
(4.36d) affects a splitting of the chiral components when solving the leading order in r. We
find the two independent solutions ε̂i+ = r−1/2εLi+ + o(r1/2) and ε̂i+ = r1/2εRi+ + o(r1/2) with

ε
L/R
i+
|r=0 finite. X̂µ, σ̂ and τ̂ I of O(r2) and Σ̂a

r = O(r) are fixed by solving the remaining
constraints, such that δX̂, Σ̂, σ̂, τ̂I transform the subleading modes of the bulk fields only. On

the boundary fields we thus have a purely fermionic transformation δ̂ε̂.

We define ζi+ := εLi+(x, 0), ζi+ := εRi+(x, 0), such that ζi+ is related to ζi+ by the symplectic

Majorana condition, and similarly ηi+ := εRi+(x, 0), ηi+ := εLi+(x, 0). To leading order in the
fermionic fields the ζ-transformations of the boundary fields are

δζe
a
µ = iψ̄Li+

µ γaζi+ + c.c. , δζψ
L
µi+ = Dµζi+ −

1

4
γ · C−i+j+γµζ

j+ ,

δζA
I
µ =

1√
2
i
(

Φ̄Ri+
µ ζj+ −

1√
3
χ̄Li+γµζj+

) (
ΓI
) j+

i+
+ c.c. ,

δζaµ =
1

2
i
(

Φ̄Ri+
µ ζi+ +

2√
3
χ̄Li+γµζi+

)
+ c.c. , δζϕ =

1√
2
iχ̄Ri+ζi+ + c.c. ,

δζχ
L
i+ =

1

2
√

6
γµν

(
F Iµν (ΓI)

j+
i+
−
√

2fµνδ
j+
i+

)
ζj+ −

1√
3
iγµCµr i+j+ζ

j+ − 1√
2
iϕζi+ ,

δζC
−
ab = 2i (Γ4)i+j+

(
ζ̄i+R̂ab j+(Q) +

1

4
ηacψ̄

µR
i+
γ[νγbµγ

c]δζψ
L
νj+

)
,

(4.37)
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eaµ ψLµi+ aµ, AIµ χLi+ C−µν ϕ

w −1 −1
2 0 3

2 −1 2

s 2 3
2 1 1

2 1 0

n 5 −8 3 −4 6 1

c 0 1
2 0 1

2 1 0

Table 4.1: Boundary fields with Weyl weights w, spin s and n off-shell degrees of freedom.
The fermions are SU(2) doublets and c denotes the U(1) charges.

where R̂µν i+(Q) := Rµν i+(Q)− 1
2
√

3
iγµνχ

L
i+

. These correspond to N=2 (Q-)supersymmetry

transformations of the boundary fields. The η-transformations are given by

δηe
a
µ = 0 , δηψ

L
µi+ = −iγµηi+ , δηaµ =

1

2
iψ̄Li+
µ ηi+ + c.c. ,

δηC
−
ab =

1

2
i (Γ4)i+j+ ηacψ̄

µR
i+
γ[νγbµγ

c]δηψ
L
νj+ , δηϕ = 0 ,

δηχ
L
i+ = − 1

2
√

3
γ · C−i+j+ η

j+ , δηA
I
µ =

1√
2
iψ̄Li+
µ ηj+

(
ΓI
) j+

i+
+ c.c. ,

(4.38)

and correspond to special conformal (S-)supersymmetry or super-Weyl transformations. The
constrained field components ΦR

µi+
, C+

µν and Cµr are given by (4.30), (4.32) and (4.33), respec-

tively, and the covariant derivative by (4.29). With χR
i+

as given in (4.34) the transformation
of the scalar field may be rewritten as

δζϕ =
1√
2
ζ̄i+γµ

(
Dµ − δζ(ψµ)− δη(Φµ)

)
χL
i+ + c.c. , (4.39)

where δζ(ψµ) denotes a field-dependent ζ-supersymmetry transformation with parameter
ζi+ = ψL

µi+
, and analogously for δη(Φµ) with ηi+ = ΦR

µi+
.

The commutators of Q- and S-supersymmetries can be derived from (4.7) and we find

[δζ2 , δζ1 ] = δXζ + δΣ

(
Xµ
ζ ω

ab
µ

)
+ δΣ

(
2iζ̄

i+
1 ζ

j+
2 C− ab i+j+ + c.c.

)
+ δσζ + δτIζ

, (4.40a)

[δη, δζ ] = δWeyl

(
ζ̄i+ηi+ + c.c.

)
+ δΣ

(
− ζ̄i+γabηi+ + c.c.

)
+ δσηζ + δτIηζ

, (4.40b)

[δη2 , δη1 ] = 0 , (4.40c)

where in (4.40a) the diffeomorphism is Xµ
ζ = −iζ̄i+1 γµζ2i++c.c. and the gauge transformations

are σζ = Xµ
ζ aµ, τ Iζ = Xµ

ζ A
I
µ. The gauge transformations in (4.40b) are σηζ = 1

2 iζ̄
i+ηi+ + c.c.

and τ Iηζ = 1√
2
i (ΓI)

j+
i+

ζ̄i+ηj+ + c.c..

Altogether, we find the boundary degrees of freedom with properties as given in Tab. 4.1
and with the fermionic symmetry transformations (4.37), (4.38). The off-shell degrees
of freedom are given as the difference of field components and gauge degrees of freedom,
e.g. for the chiral gravitino we count 16 components from which 2 · 4 degrees of freedom are
removed for the chiral ζ and η supersymmetry transformations. Likewise, of the 16 vielbein
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components 4 degrees of freedom are subtracted for diffeomorphisms, 6 for local Lorentz
and 1 for Weyl transformations. As seen from Tab. 4.1, the total numbers of bosonic and
fermionic degrees of freedom, both being 24, match nicely, and the boundary fields fill the
N=2 Weyl multiplet, see [119, 38]. The bulk SU(2)⊗U(1) gauge symmetry has become
the chiral U(2) transformations contained in SU(2, 2|2) to close the commutator of Q- and
S-supersymmetries.

4.1.3 Holographic Weyl anomaly

Building on the previous results we use in this section AdS/CFT to study holographically the
dual CFT in external supergravity backgrounds. As noted in the introduction, solutions of
Romans’ theory can be lifted to the ten-dimensional IIA/B supergravities and to the maximal
d=11 supergravity. In particular, the AdS5 vacuum lifts to AdS5×S5 in IIB supergravity
[111] and to a solution describing the near-horizon limit of a semi-localized system of two
sets of M5-branes in M-theory [112]. The latter solution can be understood as uplift of a
solution in the IIA theory describing an elliptic brane system with D4 and NS5 branes [120].
Thus, the fluctuations around AdS are understood as a dual description of a subsector of
N=4 SYM theory via the lift to IIB supergravity, and as dual to the N=2 SCFTs on the
M5-brane intersection and on the D4-branes via the lifts to M-theory and IIA supergravity,
respectively.

An important result in AdS/CFT is that the appearance of a Weyl anomaly in the SCFT in an
external supergravity background can be understood holographically as follows [71, 72, 121,
73]. In the limit where string theory is appropriately described by supergravity, the generating
functional of the SCFT correlation functions in the conformal supergravity background
gµν , . . . with sources δgµν , . . . is related to the path integral of the dual supergravity as a
functional of the boundary conditions by [122]

∫

[t−,t+]

Dĝ
∣∣∣
r2ĝ|∂X=g+δg

eiSsugra[ĝ] 〈β̂|ĝ, t+〉〈ĝ, t−|α̂〉 = 〈β|Tei
∫
∂X

1
2
δgµνTµν |α〉SCFT . (4.41)

The remaining supergravity fields and boundary conditions on the left hand side and the
remaining SCFT operators and sources on the right hand side are implicit. In the limit
where the bulk supergravity becomes classical, the path integral reduces to the integrand
evaluated on the solution of the classical field equations5.

The on-shell supergravity action, however, is divergent and has to be regularized, e.g.
by introducing an IR cutoff on the radial coordinate r ≥ ε. This reflects the need for
regularization of UV divergences on the CFT side. The renormalized supergravity action

Sren
sugra = lim

ε→0

(
Ssugra,ε + SGHY + Sct + Slog

ct

)
, Ssugra,ε =

∫

r≥ε
d5xLsugra , (4.42)

is then constructed from the regularized action Ssugra,ε, the Gibbons-Hawking-York term
SGHY for a well-defined variational principle and the counterterm action to render the limit

5 Which involve also boundary conditions at t±. However, for the calculation of the anomaly only the
boundary conditions on ∂X are relevant, since it does not depend on the choice of SCFT state.
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ε → 0 finite. It turns out that the 1/εk divergences can be removed by adding (bulk-)covariant
boundary terms Sct, constructed e.g. from the induced metric. In odd dimensions, however,
there is also a log ε divergence, the counterterm for which explicitly depends on (the coordinate
of) the cutoff ε. Due to this explicit cutoff dependence the renormalization breaks invariance
under those bulk diffeomorphisms that act as Weyl rescalings on the boundary. Applying such
a diffeomorphism inducing a Weyl transformation on the boundary, as discussed in Sec. 4.1.2.3,
yields the anomalous boundary Ward identity corresponding to Weyl invariance.

The anomalous trace of the energy-momentum tensor in pure-metric backgrounds has been
calculated in [71] from pure gravity in the bulk. The extension to dilaton gravity can be
found in [115] and higher-order curvature terms in the bulk arising from higher orders in the
effective string-theory action are discussed in [116]. We now study the Weyl anomaly of the
SCFTs dual to Romans’ theory in generic bosonic N=2 conformal supergravity backgrounds.
To this end we truncate the five-dimensional N=4 supergravity to its bosonic sector, which
is consistent because the fermionic field equations are solved trivially by ψ̂µ̂i ≡ χ̂i ≡ 0.

The bosonic part of the N=2 Weyl multiplet of boundary fields as determined in the previous
section is given by

(
eaµ, A

I
µ, aµ, C

−
µν , ϕ

)
, and we label the bosonic part of the dual multiplet of

SCFT currents by
(
T aµ , J

I
µ, jµ, Lµν , φ

)
. T aµ , JIµ and jµ are the classically conserved currents6

and Lµν , φ complete the bosonic part of the supermultiplet. Equation (4.41) then yields

δSren
sugra =

∫

r=0
d4x e

(
δeµa 〈T aµ 〉+ δaµ 〈jµ〉+ δAIµ 〈JµI〉+ δC−µν 〈Lµν〉+ δϕ 〈φ〉

)
. (4.43)

We choose the variations of the boundary conditions such that they correspond to a Weyl
transformation, δeaµ = −λeaµ and likewise for the remaining fields. Extending them into the
bulk to a diffeomorphism as discussed in Sec. 4.1.2.3, generated by the vector field (Xµ, λr)
with ∂rX

µ = rgµρ∂ρλ and Xµ|r=0 = 0, yields the anomalous Ward identity

〈T µ
µ 〉 − C−µν〈Lµν〉+ 2ϕ〈φ〉 = A , A := lim

ε→0

1

e

δ

δλ
Slog

ct . (4.44)

In the remaining part of this section we will determine A. To this end we have to solve
the nonlinear field equations of the various fields as asymptotic series in a vicinity of the
boundary, which then allows us to determine the divergences of the on-shell action and the
required counterterms.

4.1.3.1 On-shell bulk fields as asymptotic series

We now determine the required subleading modes of the bulk fields from their field equations.
For the matter fields the equations have been given in Sec. 4.1.2.1 and Einstein’s equations
for the bosonic sector read7

R̂µ̂ν̂(ω̂) =
4

3
P (ϕ̂)ĝµ̂ν̂ + 2D̂µ̂ϕ̂D̂ν̂ϕ̂− ξ−4

(
2f̂µ̂ρ̂f̂

ρ̂
ν̂ −

1

3
ĝµ̂ν̂ f̂

ρ̂σ̂f̂ρ̂σ̂
)

− ξ2
(

2B̂ α
µ̂ρ̂B̂

ρ̂α
ν̂ + 2F̂ I

µ̂ρ̂F̂
ρ̂I

ν̂ − 1

3
ĝµ̂ν̂
(
B̂ρ̂σ̂αB̂ α

ρ̂σ̂ + F̂ ρ̂σ̂I F̂ I
ρ̂σ̂

))
.

(4.45)

6 The dual theory has SU(2)⊗U(1) R-symmetry.
7 Our conventions are R̂ â

µ̂ (ω̂) = êν̂
b̂
R̂ âb̂
µ̂ν̂ (ω̂) and R̂µ̂ν̂(ω̂) = êν̂b̂R̂

â
µ̂ (ω̂).
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The coupled system of equations can be solved order by order in an expansion around the
asymptotic boundary. The leading order has been discussed in Sec. 4.1.2.1 and 4.1.2.2. To
consistently solve the Dirichlet problem log r terms have to be included in the expansions,
which yields the asymptotic forms

gµν = g(0)
µν + r2g(2)

µν + r3g(3)
µν + r4(log r)2h(0)

µν + r4 log r h(1)
µν + r4g̃(4)

µν + o(r4) ,

âµ = a(0)
µ + o(r) ,

ÂIµ = AI(0)µ + o(r) ,

Ĉµν = r−1C−(0)
µν + r log r C+(1)

µν + r C̃(2)
µν + o(r) , Ĉµr = C(0)

µr +O(r2 log r) ,

ϕ̂ = r2 log r ϕ(0) + r2ϕ̃(1) + o(r2) .

(4.46)

The leading mode C−(0)
µν of the tensor field is anti-selfdual and the r log r term C+(1)

µν selfdual.
Note the additional r4(log r)2 term in the metric expansion as compared to the pure-gravity
case. This is necessary due to the ϕ̂2 term in (4.45). As result of the additional log-terms
and the fact that h(1)

µν is not traceless, as will be seen below, the bulk-covariant counterterms
canceling the 1/εk-divergences do contribute additional log-divergences, in contrast to the
pure-gravity case, and we have to determine them first. The 2nd-order field equations fix the
bulk fields in terms of two sets of boundary data. Namely, the bulk metric ĝ is fixed from
the boundary metric g(0) and the traceless and divergence-free part of g̃(4), the two-form field
Ĉ is determined by specifying the anti-selfdual boundary field C−(0) and the selfdual part of
C̃(2), and the boundary data for ϕ̂ is given by ϕ(0) and ϕ̃(1). Thus, only the leading modes of
the on-shell bulk fields are fixed in terms of the boundary fields alone. The second set of
boundary data is linked to the choice of SCFT states in (4.41).

To determine g(2)
µν we need the µν-components of the Ricci tensor for the metric (4.11). With

a prime denoting differentiation with respect to r and Rµν(ω) being the curvature of the
four-dimensional spin connection ωµab they read

R̂µν(ω̂) =Rµν(ω) +
4

r2
gµν −

3

2r
g′µν +

tr g−1g′

4

(
g′µν −

2

r
gµν

)
+

1

2
g′′µν −

1

2
g′µρg

ρσg′σν . (4.47)

Solving the µν-components of (4.45) at O(r−1) shows that there is no contribution to gµν(x, r)
linear in r. Solving at O(r0) shows

g(2)
µν =

1

2

(
R(0)
µν(ω)− 1

6
R(0)(ω)g(0)

µν + 4C−(0)
µρ C−(0) ρ

ν

)
. (4.48)

Note that the last term is real due to the anti-selfduality of C−(0)
µν . For the gauge fields we

find from (4.24) and (4.25) that the first subleading modes are o(r). Equation (4.22) yields

C(0)
µr =

1

2
ie(0)−1ε ρστ

µ DρC
−(0)
στ , C+(1)

µν =
(
1+ i ?(0)

)(
g(2) ρ

[µ C−(0)

ν]ρ −D[µC
(0)

ν]r

)
. (4.49)

For the on-shell action we also need the expansion of the vielbein determinant

e = e(0)
[
1+

r2

2
t(2) +

r4

2
(log r)2u(0) +

r4

2
log r u(1) +

r4

2

(
t(4) +

1

4
(t(2))2− 1

2
t(2,2)

)]
+o(r4) , (4.50)
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where t(n) := tr g(0)−1g(n), u(n) := tr g(0)−1h(n) and t(2,2) := tr g(0)−1g(2)g(0)−1g(2). These traces
can be determined from the rr-components of (4.45) with

R̂rr(ω̂) = − 4

r2
+

1

2r
tr g−1g′ − 1

2
tr g−1g′′ +

1

4
tr g−1g′g−1g′ . (4.51)

For notational convenience we define ĈρσĈ
ρσ =: r4 log r c(0) + r4c(1) + o(r4). The leading

term, which would be O(r2), vanishes due to the anti-selfduality of C−(0)
ρσ . With b(0) :=

r−2B̂ α
rρ B̂

ρα
r |r=0 we find t(3) = 0 and

u(0) = −4

3
ϕ(0)2 , u(1) = −8

3
ϕ(0)ϕ̃(1) +

1

6
c(0) ,

t(2,2) − 4t(4) =
16

3
ϕ̃(1)2 − 1

2
u(0) − 1

3
F (0)ρσIF (0)I

ρσ −
1

3
f (0)ρσf (0)

ρσ −
4

3
b(0) − 2

3
c(1) +

1

2
c(0) .

(4.52)

Note the dependences on c(1) and ϕ̃(1) which are not fixed by the near-boundary analysis.

4.1.3.2 Holographic renormalization

Having calculated the necessary terms in the asymptotic expansions of the bulk fields we
now determine the divergences of the on-shell action and the necessary counterterms. Using
(4.45) and (4.22) the Lagrangian (4.1) truncated to the bosonic sector reads

Lon-shell = −2ê− 4

3
êϕ̂2 +

1

12
êξ2B̂µ̂ν̂αB̂ α

µ̂ν̂ −
1

6
ê
(
F̂ µ̂ν̂I F̂ I

µ̂ν̂ + f̂ µ̂ν̂ f̂µ̂ν̂
)

+O(r0) . (4.53)

Näıvely, one may expect terms of order r−1(log r)2 and r−1 log r in Lon-shell, e.g. due to the
scalar and tensor field terms. This potentially leads to (log ε)3 and (log ε)2 divergences in
the on-shell action. However, it turns out that the contributions from ê to these terms
cancel the others, such that only terms proportional to r−n with n = 5, 3, 1 and O(r0) are
non-vanishing in Lon-shell. As may be verified with the expansions of the previous section,
Ssugra,ε + SGHY + Sct with

SGHY =
1

2

∫

r=ε

d4x ê∗K̂ , Sct =

∫

r=ε

d4x ê∗
(
− 3

2
+

1

8
R∗(ω)− ϕ̂2 + α Ĉ∗µνĈ∗µν

)
, (4.54)

only has a logarithmic divergence in the limit ε→ 0, i.e. all 1/εk divergences are cancelled.
The ∗ denotes induced quantities on the boundary, e.g. the pullback of the vielbein and
the two-form field Ĉ, and indices are contracted with the induced vielbein and metric.
K̂ := êµ̂âK̂

â
µ̂ is the trace of the extrinsic curvature of the boundary8, K̂ â

µ̂ = ω̂
âr
µ̂ . We note

that also SGHY and Sct separately only have power-law and log ε divergences, e.g. the ϕ̂2

term in Sct cancels the (log ε)2 divergence in the cosmological-constant term −3
2 ê
∗. Thus,

the only remaining divergence is log ε, which is consistent with the expectation that the
Weyl anomaly of the dual theory is exhausted at one-loop9. A slight subtlety arises for the

8 The extrinsic curvature K̂µ̂ν̂ is defined below (2.9) in Sec. 2.2. With the outward-pointing unit normal
vector field n̂µ̂ = êµ̂r and the vielbein postulate this yields K̂ â

µ̂ = ω̂
âr
µ̂ .

9 It shares a multiplet with the chiral anomaly which receives no contributions beyond one-loop order.
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ê∗Ĉ∗µνĈ∗µν term in Sct. Since the leading term vanishes on-shell thanks to the anti-selfduality

of C−(0)
µν , it only contributes a logarithmic divergence. However, as it does not explicitly

depend on the cutoff and therefore does not contribute to the Weyl anomaly we include it in
Sct with a for now arbitrary numerical coefficient α.

The remaining counterterm required to cancel the log ε divergence depends on α and is given
by

Slog
ct =

∫

r=ε
d4x ê∗

(
1

16

(
RµνR

µν − 1

3
R2
)

log ε− 1

4

(
F̂ ∗Iµν F̂

∗µνI + f̂∗µν f̂
∗µν) log ε

− 1

2
ϕ̂2(log ε)−1 −

(
DaĈ

∗ a
b

)(
DcĈ

∗bc) log ε+ (1− 4α)B log ε

)
,

(4.55)

where we defined the modified curvature Rµν := R∗µν(ω)+4 Ĉ ∗µρ Ĉ
∗ ρ
ν and Da is the covariant

derivative with the four-dimensional spin connection ωµab. The dependence on α is seen in
the last term, where

B =
(
DaĈ

∗ a
b

)(
DcĈ

∗bc)− 1

2
Rµν Ĉ ∗µρ Ĉ

∗ ρ
ν −

1

2
DaDb

(
Ĉ∗acĈ∗bc

)
. (4.56)

Clearly, the choice of α will affect the Weyl anomaly, so it has to be fixed. As the renormalized
bulk action should yield finite correlation functions for the boundary theory, we calculate the
one-point function of the energy-momentum tensor of the dual Yang-Mills theory. According
to (4.43) it is given by

〈T aµ 〉 =
1

e(0)
δSren

sugra

δeµ(0)a

= lim
ε→0

ε−3 1

ê∗
δSren

sugra,ε

δê∗µa
=: lim

ε→0
ε−3 T aµ , (4.57)

where Sren
sugra,ε is the action defined in (4.42) before taking the limit ε→ 0. T aµ is the Brown-

York quasilocal energy-momentum tensor [123] of the bulk supergravity with regularization
r ≥ ε and supplemented by the counterterms. We find

T aµ =
1

2

(
K̂ a
µ − ê∗aµ K̂

)
+

3

2
ê∗aµ +

1

4

(
R∗aµ (ω)− 1

2
ê∗aµR∗(ω)

)

+ 2α
(
Ĉ∗µνĈ

∗aν + c.c.
)
− αê∗aµ Ĉ ∗νρĈ∗νρ +

1

e∗
δSlog

ct

δê∗µa
.

(4.58)

Inserting the on-shell expansion of the fields as obtained in Sec. 4.1.3.1, the leading part

of Ĉ ∗µνĈ
∗aν does not vanish and contributes at O(ε). Demanding a finite limit in (4.57)

then fixes α = 1
4 . Similarly, finiteness of 〈Lµν〉 also requires this choice of α. The reason

why finiteness of the one-point functions requires a fixed α while finiteness of the on-shell
action does not can be seen as follows. The vanishing of the leading order of the counterterm

Ĉ∗µνĈ∗µν due to the anti-selfduality of C−(0)
µν relies on the contraction of the two-form fields

with the metric. Therefore, finiteness of the action evaluated on solutions of the classical
field equations does not guarantee finiteness of the variations with respect to the metric or
the two-form field evaluated on classical solutions.
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Finally, we obtain the anomalous contribution to the Ward identity (4.44) from the variation

of (4.55) for α = 1
4 and find, with R(0)

µν = R(0)
µν(ω) + 4C−(0)

µρ C−(0) ρ
ν ,

A = − 1

16

(
R(0)
µνR

(0)µν − 1

3
R(0)2

)
+ DaC

−(0) a
b DcC

−(0)bc

− 1

2
ϕ(0)2 +

1

4

(
F (0)I
µν F (0)µνI + f (0)

µν f
(0)µν

)
.

(4.59)

The curvature-squared part of the first term yields the difference of the squared Weyl tensor
and the four-dimensional Euler density, and the mixed terms complete the kinetic term of the
two-form field to its Weyl-invariant form, compare (2.15). Note that the anomaly depends
on the boundary fields only, i.e. the dependences on ϕ̃(1) and c(1), which are not fixed by the
near-boundary analysis, have dropped out. This is to be expected as the anomaly is a UV
effect in the dual theory. From the dual Yang-Mills theory point of view, the Weyl anomaly
of N=4 SYM theory should be given by the Lagrangian of N=4 conformal supergravity
[106]. As noted before, the bulk theory discussed here provides a holographic description of
a subsector of that theory and thus the Weyl anomaly should correspond to a subsector of
the N=4 conformal supergravity Lagrangian. Comparing the holographic Weyl anomaly
(4.59) to the construction of four-dimensional extended conformal supergravity in [124], it
indeed matches the bosonic part of the N=2 conformal supergravity Lagrangian (5.18) of
[124]. Thus, our result gives further support to the AdS/CFT conjecture.

4.2 N=2 Gauged Supergravity and the Weyl Anomaly
of N=1 SCFT

In the previous section we have determined the asymptotic structure of N=4 gauged
supergravity and calculated the Weyl anomaly of the dual N=2 SCFTs in bosonic conformal
supergravity backgrounds. It was sufficient for that purpose to carry out the holographic
renormalization for the bosonic sector only. Having in mind that the counterterms will be
crucial to render the Neumann modes normalizable we now extend this result to also include
the fermionic parts. To keep the calculations at a reasonable level we discuss in detail a
subsector of the theory which is N=2 U(1) gauged supergravity, and calculate the full Weyl
anomaly of the dual N=1 SCFTs in generic, possibly fermionic backgrounds. The truncation
to that subsector is consistent in the sense that any solution to the field equations of the
truncated theory can be lifted to a solution of the full theory. In particular, solutions lift
to the previously discussed string-theory/M-theory backgrounds via the lift to the N=4
theory. On the other hand, more general classes of compactifications yield pure N=2 gauged
supergravity as a consistent reduction, see e.g. [125].

In Sec. 4.2.1 we construct the N=2 U(1) gauged supergravity as a consistent truncation. We
discuss the asymptotic structure in Sec. 4.2.2 and calculate the Weyl anomaly of the dual
SCFTs in generic, possibly fermionic conformal supergravity backgrounds.
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4.2.1 Consistent truncation of N=4 SU(2)⊗U(1) gauged supergravity

We derive the minimal gauged supergravity as consistent truncation of the N=4 gauged
supergravity discussed in Sec. 4.1.1. Choosing a usp(4) basis where Γ1 is diagonal10, we split
i = (i+, i−) such that (Γ1) ji = λiδ

j
i with λi± = ±1. The symplectic metric Ω commutes with

Γ1 such that Ωi+j− = 0. Thus, the symplectic Majorana condition relates the i+ components
of a spinor ε̂i to each other and likewise the i− components. Of the N=4 supergravity

multiplet we keep only êâµ̂, ψ̂µ̂i+ and Âµ̂ :=
√

3
8

(
Â1
µ̂ +
√

2âµ̂
)
, i.e. we set

ψ̂µ̂i− ≡ 0, χ̂i ≡ 0, Â1
µ̂ −
√

2âµ̂ ≡ Â2
µ̂ ≡ Â3

µ̂ ≡ Ĉµ̂ν̂ ≡ ϕ̂ ≡ 0 . (4.60)

This ansatz solves the gravitino field equation (4.18) for i = i−, and similarly the equations
(4.20) for the spin-1

2 fields χ̂i, (4.22) for the tensor field Ĉµ̂ν̂ and (4.26) for the scalar ϕ̂. Of
the equations for the gauge fields, (4.24) and (4.25), the ansatz (4.60) solves (4.25)|I=2,3 and
the combination (4.25)|I=1 −

√
2(4.24). The remaining equations are the field equations for

êâµ̂, ψ̂µ̂i+ and Âµ̂. Thus, the reduction (4.60) is consistent and solutions of the reduced theory
can be lifted to the N=4 theory. Setting ε̂i− ≡ 0 in the supersymmetry transformations
(4.6), the remaining transformations parametrized by ε̂i+ close on êâµ̂, ψ̂µ̂i+ and Âµ̂, and they
preserve (4.60). The reduced theory therefore has N=2 supersymmetry.

We use the redefined gauge coupling g′ :=
√

3
8g and derive the Lagrangian and transformation

rules from (4.1) and (4.6). Dropping the superscript + on indices i+ and the prime on g′ we
find the following N=2 gauged supergravity. The covariant derivative reads

D̂µ̂ψ̂ν̂i = ∇̂µ̂ψ̂ν̂i + gÂµ̂(Γ45) ji ψ̂ν̂i , (4.61)

where ∇̂µ̂ = ∂µ̂ + 1
4 ω̂

âb̂
µ̂ γ̂âb̂, and the curvatures are defined by

[
D̂µ̂, D̂ν̂

]
ε̂i =:

1

4
R̂ âb̂
µ̂ν̂ (ω̂) γ̂âb̂ ε̂i + g F̂µ̂ν̂ (Γ45) ji ε̂j . (4.62)

The Lagrangian obtained from the N=4 theory reads

L =− 1

4
êR̂(ω̂) + g2ê− 1

2
iê ˆ̄ψiµ̂γ̂

µ̂ν̂ρ̂D̂ν̂ψ̂ρ̂i +
3

2
iê Tij

ˆ̄ψiµ̂γ̂
µ̂ν̂ψ̂jν̂ −

1

4
ê F̂ µ̂ν̂F̂µ̂ν̂

− 1

6
√

3
ε̂µ̂ν̂ρ̂σ̂τ̂ F̂µ̂ν̂F̂ρ̂σ̂Âτ̂ −

√
3

8
iêF̂ µ̂ν̂ ˆ̄ψiρ̂γ̂

[ρ̂γ̂µ̂ν̂ γ̂
σ̂]ψ̂σ̂i ,

(4.63)

with T ij = g

2
√

3
(Γ45)ij . The supersymmetry transformations are

δε̂ê
â
µ̂ = i ˆ̄ψiµ̂γ̂

âε̂i , δε̂Âµ̂ =
1

2

√
3 i ˆ̄ψiµ̂ε̂i ,

δε̂ψ̂µ̂i = D̂µ̂ε̂i + γ̂µ̂Tij ε̂
j +

1

4
√

3

(
γ̂ ν̂ρ̂
µ̂ − 4δ ν̂

µ̂ γ̂ρ̂
)
F̂ν̂ρ̂ ε̂i .

(4.64)

10 Since Γ1 and Γ45 can be diagonalized simultaneously, [ΓI ,Γ45] = 0, this is compatible with the choice made
in Sec. 4.1.2. Furthermore, since Γ1 is hermitian, traceless and squares to the identity it has eigenvalues
±1 each with multiplicity 2.
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For notational convenience we introduce the supercovariant gravitino and U(1) curvatures

R̂µ̂ν̂i(ψ̂) = 2D̂[µ̂ψ̂ν̂]i + 2Tij γ̂[µ̂ψ̂
j
ν̂] +

1

2
√

3
Fσ̂τ̂

(
γ̂ σ̂τ̂

[µ̂ − 4δ σ̂
[µ̂ γ̂ τ̂

)
ψ̂ν̂]i ,

R̂µ̂ν̂(Â) = F̂µ̂ν̂ +
1

2

√
3i ˆ̄ψiµ̂ψ̂ν̂i .

(4.65)

The Lagrangian then reads

L =− 1

4
êR̂(ω̂) + g2ê− 1

4
iê ˆ̄ψiµ̂γ̂

µ̂ν̂ρ̂R̂ν̂ρ̂i(ψ̂)− 1

4
ê F̂ µ̂ν̂F̂µ̂ν̂ −

1

6
√

3
ε̂µ̂ν̂ρ̂σ̂τ̂ F̂µ̂ν̂F̂ρ̂σ̂Âτ̂ . (4.66)

The field equations derived from (4.63) comprise Einstein’s equations and the gravitino and
U(1) gauge field equations and they read

R̂âµ̂(ω̂)− 1

2
R̂(ω̂)êâµ̂ = iê−1êâσ̂ ε̂

ν̂ρ̂σ̂λ̂τ̂ ˆ̄ψi
λ̂

(
γ̂µ̂τ̂ D̂ν̂ψ̂ρ̂i −

3

2
Tij γ̂ρ̂µ̂τ̂ ψ̂

j
ν̂ +

√
3

4
F̂ρ̂τ̂ γ̂µ̂ψ̂ν̂i

)

− 2g2êâµ̂ +
1

2
R̂ν̂ρ̂(Â)R̂ν̂ρ̂(Â)êâµ̂ − 2R̂âν̂(Â)R̂µ̂ν̂(Â) ,

(4.67)

γ̂µ̂ν̂ρ̂R̂ν̂ρ̂i(ψ̂) = 0 , (4.68)

∂ν̂ êR̂µ̂ν̂(Â) = −
√

3 iê T j
i

ˆ̄ψiν̂ γ̂
ν̂µ̂ρ̂ψ̂ρ̂j −

√
3

6
ε̂µ̂ν̂ρ̂σ̂τ̂

(
F̂ν̂ρ̂F̂σ̂τ̂ +

3

2
i∂ν̂

ˆ̄ψiρ̂γ̂τ̂ ψ̂σ̂i
)
. (4.69)

For later convenience we give the traced Einstein equation (4.67), simplified using (4.68).

With L̂ψ := iTij
ˆ̄ψiµγ̂

µνψ̂jν , L̂Fψψ := iF̂µ̂ν̂ ˆ̄ψiργ̂
ρµ̂ν̂σψ̂σi and L̂FFψ,α := F̂ ν̂ρ̂

(
F̂ν̂ρ̂ − α

√
3i ˆ̄ψiν̂ψ̂ρ̂i

)

it reads

R̂(ω̂) =
20

3
g2 + 2L̂ψ −

1

3
L̂FFψ,1 +

1

2
√

3
L̂Fψψ . (4.70)

The spin connection is fixed to its on-shell value as usual in 1.5th-order formalism. Splitting
off the torsion-free part which for asymptotically-AdS backgrounds as described by (4.12)
has the non-vanishing components given in (4.14), we have ω̂µ̂âb̂ = ω̂µ̂âb̂(ê) + ω̂µ̂âb̂(ψ̂) with
the remaining part

ω̂µ̂âb̂(ψ̂) = −1

2
i
(

ˆ̄ψiâγ̂µ̂ψ̂b̂i + 2 ˆ̄ψiµ̂γ̂[âψ̂b̂]i

)
− 1

4
i ˆ̄ψi
λ̂
γ̂ λ̂τ̂
µ̂âb̂

ψ̂τ̂ i . (4.71)

4.2.2 Holographic renormalization: Weyl anomaly of N=1 SCFT

We restrict the configuration space of the theory to asymptotically-AdS geometries as
discussed in Sec. 4.1.2 and use the local symmetries to fix (4.12) and

ψ̂r ≡ 0 , Ar ≡ 0 . (4.72)

As derived in Sec. 4.1.2, one of the symmetries remaining after the gauge fixings is generated

by Lorentz transformations δΣ̂ with Σ̂âb̂(x, r) = δâaδ
b̂
bΣ

ab(x, r). To solve Einstein’s equations
for the first few orders of the vielbein in terms of its boundary value, we fix a gauge such
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that only the boundary Lorentz symmetry Σ̂âb̂(x, r) = δâaδ
b̂
bΣ

ab(x) remains. As we discuss
below, there exists a Lorentz transformation to set

ω̂ ab
r ≡ 0 , (4.73)

which we choose as the additional gauge fixing condition. In the discussion of the residual
symmetries in Sec. 4.1.2 we now have the additional constraint (δX̂ + δΣ̂ + δε̂)ω̂rab = 0, which
indeed leaves only the boundary Lorentz transformations as an independent symmetry.

We now discuss the existence of the finite Lorentz transformation yielding ω̂ ab
r ≡ 0 in the

class of residual gauge transformations. More concretely, we want to find a finite Lorentz

transformation Λ̂ ∈ SO(1, 4), generated by a Σ̂ ∈ so(1, 4) of the form Σ̂âb̂(x, r) = δâaδ
b̂
bΣ

ab(x, r),

such that ω̂rab is transformed to zero. Thus, we have to find a Λ̂âb̂ = δâaδ
b̂
bΛ

ab + δâr δ
b̂
r such

that

ω ab
r → ω′ abr = ΛacΛ

b
dω

cd
r + Λ

[a
d∂rΛ

b]d !
= 0 . (4.74)

The transformation follows e.g. from (4.14), (4.71). Using that Λ̂ ∈ SO(1, 4) this can be
recast as

−ω̂ c
ra ΛT b

c = ∂rΛ
T b
a . (4.75)

Following [126], a solution for this kind of differential equation of the form A(r)Y (r) = Y ′(r)
with Y (0) = Y0 can be given as exponential Y (r) = eΩ(r)Y0, with Ω given as a series
Ω(r) =

∑
n Ω(n)(r). Each term in this series is calculated from integrals of sums of nested

commutators of A(r), and there is an r0 > 0 such that this series converges for r ∈ [0, r0).
For the case that A is in some Lie algebra and Y0 in the corresponding Lie group, one notes
that – since the operations by which the Ω(n) are obtained from A, i.e. sums, commutators
and integrations, all close in the Lie algebra – Ω also is an element of the Lie algebra and
Y = eΩ thus is in the corresponding Lie group. In the case at hand, we have ω ab

r ∈ so(1, 4)
and we set Λ b

a |r=0 = δ b
a ∈ SO(1, 4) such that from the results quoted above there indeed is

a finite Lorentz transformation setting ω̂ ab
r to zero.

On-shell fields as asymptotic series

To determine the divergent part of the on-shell action we now solve the field equations in an
asymptotic expansion in a vicinity of the conformal boundary at r = 0. Henceforth, we set
the curvature radius of the asymptotic AdS5 geometry to R = 1. From Sec. 4.1.2 we already
know that

ψ̂L
µi+ = r−1/2ψL

µi+ , ψ̂R
µi+ = r1/2ψR

µi+ , Âµ = Aµ , (4.76)

and we find the non-vanishing terms in the asymptotic series

eaµ = eaµ + r2e(2)aµ + r4(log r)2ẽ(2)aµ + r4 log rẽ(3)aµ + r4e(4)aµ + . . . ,

Âµ = Aµ + r2 log rÃ(1)
µ + r2A(2)

µ + . . . , ψL
µi+ = Ψµi+ + r2ψL(2)

µi+
+ . . . ,

ψR
µi+ = Φµi+ + r2(log r)2ψ̃R(0)

µi+
+ r2 log rψ̃R(1)

µi+
+ r2ψR(2)

µi+
+ . . . .

(4.77)
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Note that e(4)aµ , A(2)
µ and ψR(2)

µi+
can not be determined by a near-boundary analysis alone.

However, the trace of e(4)aµ can be determined. Note also that for notational convenience
the leading-order terms are indicated by a different font, rather than using a superscript.
Likewise, we use gµ = γ(0)

µ and Fµν = F (0)
µν .

For the gauge field we need the expression for the subleading term only to leading order in
the fermions and we find Ã(1)µ = −1

2DνF µν . The components of the gravitino are

Φµi+ = −1

2
i
(
g
νρ
µ − 2

3
gµg

νρ
)
DνΨρi+ , (4.78a)

g
µρψL(2)

ρi+
=

1

2
igµνρ

(
DνΦρi+ −

i

2
g(2)
νσg

σΨρi+

)
+

√
3

8
iF ρσ

g
[µ
gρσg

ν]Ψνi+ , (4.78b)

ψ̃R(0)

µi+
= 2
√

3
(
g
νρ
µ − 2

3
gµγ

νρ
)
Ã(1)
ν Ψρi+ , (4.78c)

g
µρψ̃R(1)

ρi+
=

2

3
igµνρDνψ

L(2)

ρi+
+

1

6
igµνργλτ

(
Dτg

(2)

νλ

)
Ψρi+ +

2

3
iγ(2)µνρDνΨρi+

+
1

2
√

3
i
(
2F µρ + Fστgµρστ

)
Φρi+ .

(4.78d)

The expansion of the vielbein determinant is given by the expression analogous to (4.50)
and for L̂ψ, L̂Fψψ, L̂FFψ,α defined above (4.70) we find

L̂Fψψ = r4(log rL̃(0)

Fψψ + L(0)

Fψψ + . . . ) , L̂FFψ,α = r4L(0)

FFψ,α + . . . ,

L̂ψ = r2(L(0)

ψ + r2(log r)2L̃(0)

ψ + r2 log rL̃(1)

ψ + r2L(2)

ψ + . . . ) .
(4.79)

Moreover, for L̂Fr := iF̂µr ˆ̄ψiτ γ̂
µrτνψ̂νi and L̂ψDψ := i ˆ̄ψiµγ̂

µrρD̂rψ̂ρi we find

L̂Fr = r4(log rL̃(0)

Fr + L(0)

Fr + . . . ) ,

L̂ψDψ = r2(L(0)

ψDψ + r2(log r)2L̃(0)

ψDψ + r2 log rL̃(1)

ψDψ + r2L(2)

ψDψ + . . . ) .
(4.80)

The leading terms are L̃(0)

ψDψ = 3L̃(0)

ψ , L̃(1)

ψDψ = 3L̃(1)

ψ + 2L̃(0)

ψ and

L(0)

ψ = L(0)

ψDψ = Ψ̄i+
µ g

µνΦνi+ + c.c. , L̃(0)

ψ = Ψ̄i+
µ g

µνψ̃R(0)

νi+
+ c.c. ,

L̃(1)

ψ = Ψ̄i+
µ g

µνψ̃R(1)

νi+
+ c.c. , L(0)

FFψ,α = F µν
(

Fµν − 2α
√

3
(
iΨ̄i+

µ Φνi+ + c.c.
))

.
(4.81)

Supercovariant quantities / group curvatures

The various pieces in the log-divergent part of the Lagrangian are most conveniently expressed
in terms of quantities defined from the boundary fields which are covariant with respect to
the boundary superconformal symmetry. The right handed part of the gravitinos corresponds
to the gauge field of S-supersymmetry transformations in the group manifold construction
of conformal supergravity. It is fixed in this approach by a constraint on the gravitino
curvature (see (2.2b) of [127]). Here it is fixed by solving the gravitino field equation as
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asymptotic series, which yields (4.78a), see also (4.30). The group curvature corresponding
to Q-supersymmetry Rµν i+(Q) is then defined as (note the factor 2 compared to (4.31))

Rµν i+(Q) := 2D[µΨν]i+ − 2ig[µΦν]i+
. (4.82)

It vanishes upon contraction with g
µ, which is the constraint used in [127], and it is anti-

selfdual,

g
µRµν i+(Q) = 0 , i ? Rµν i+(Q) = −Rµν i+(Q) . (4.83)

The supercovariant curvature of the U(1) gauge field is

Rµν(A) = 2∂[µAν] +
√

3
(
iΨ

i+
[µΦν]i+ + c.c.

)
. (4.84)

In addition we define the group curvature corresponding to Lorentz transformations11

R̂ ab
µν (M) = R ab

µν (ω(0))− 2
(
Ψ̄
i+
[µ γ

abΦν]i+ + c.c.
)
, (4.85)

and the supercovariantized version (compare (2.8) of [127])

Rcov
µνab(M) = R̂µνab(M)−

(
2iΨ̄

i+
[µ gν]Rabi+(Q) + c.c.

)
. (4.86)

Ricci tensor and vielbein expansion

To solve Einstein’s equations we need explicit expressions for the Ricci curvature of the
metric in Fefferman-Graham form, which we provide in this paragraph. The curvature of

the spin connection is R̂ âb̂
µ̂ν̂ (ω̂) = 2∂[µ̂ω̂

âb̂
ν̂] + 2ω̂ âĉ

[µ̂ ω̂ b̂
ν̂]ĉ , and the Ricci tensor is defined as

R̂âµ̂(ω̂) = êb̂ν̂R̂ âb̂
µ̂ν̂ (ω̂). With the splitting of the spin connection into the torsion-free and the

gravitino part, the Ricci tensor also splits and (up to 4-fermion terms) we have

R̂âµ̂(ω̂) = R̂âµ̂(ω̂(ê)) + 2êν̂
b̂
D̂

(e)
[µ̂ ω̂

âb̂
ν̂] (ψ̂) . (4.87)

For the scaling of the torsion part of the spin connection we find that ω̂rab(ψ̂), ω̂µar(ψ̂) are

O(r1), ω̂rar(ψ̂) = 0 and ω̂µab(ψ̂) = O(r0) with

ω̂µab(ψ̂) = −1

2
i
(

ˆ̄ψiaγ̂µψ̂bi + 2 ˆ̄ψiµγ̂[aψ̂b]i

)
. (4.88)

Furthermore, we find 2êν̂
b̂
D̂

(e)
[r ω̂

rb̂
ν̂] (ψ̂) = 0 and

2êν̂
b̂
D̂

(e)
[µ ω̂

ab̂
ν̂] (ψ̂) = r

(
2eνbD

(e)
[µ ω

ab
ν] (ψ)− 4eνb ω̂

[a
[µ r(ê)ω̂

b]r
ν] (ψ̂)− 2D̂[rω̂

ar
µ] (ψ̂)

)
. (4.89)

11 More precisely, it is the group curvature with the gauge field of proper conformal transformations faµ set
to zero, see Tab. II of [128].
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Thus, with Raµ(ω) = Raµ(ω(e)) + 2eνbD
(e)
[µ ω

ab
ν] (ψ), we get

R̂aµ(ω̂) = r
(
Raµ(ω) +

d

r2
eaµ −

d− 1

2r
eρag′ρµ −

1

2
tr g−1g′(

1

r
eaµ −

1

2
eρag′ρµ)

− 1

2
eρag′ρνg

νσg′σµ +
1

2
eρag′′ρµ − 4eνb ω̂

[a
[µ r(ê)ω̂

b]r
ν] (ψ̂)− 2D̂[rω̂

ar
µ] (ψ̂)

)
,

(4.90a)

R̂rr(ω̂) = r
( d
r2
− 1

2r
tr g−1g′ +

1

2
tr g−1g′′ − 1

4
tr g−1g′g−1g′

)
, (4.90b)

R̂(ω̂) = r2
(
R(ω) +

d(d+ 1)

r2
− d

r
tr g−1g′ +

1

4
(tr g−1g′)2 − 3

4
tr g−1g′g−1g′

+ tr g−1g′′ − 4eµae
ν
b ω̂

[a
[µ r(ê)ω̂

b]r
ν] (ψ̂)

)
.

(4.90c)

With these expressions we can actually evaluate the asymptotic expansion of Einstein’s
equations. From the first two orders we find g2 = 3/R2 and g(1)

µν = 0. From the traced
Einstein equation (4.70) we find for the traces t(n) := tr g(0)−1g(n), t̃(n) := tr g(0)−1g̃(n) and
t(2,2) := tr g(0)−1g(2)g(0)−1g(2)

t(2) =
1

2(d− 1)
Rcov(M) , t̃(2) =

1

4

(
L̃(0)

ψ − L̃
(0)

ψDψ

)
,

t̃(3) =
1

4

(
L̃(1)

ψ − L̃
(1)

ψDψ +
1

4
√

3
L̃(0)

Fψψ −
√

3

2
L̃(0)

Fr − 6t̃(2)
)
,

(
4t(4) − t(2,2)

)
= L(2)

ψ − L
(2)

ψDψ +
1

4
√

3
L(0)

Fψψ −
√

3

2
L(0)

Fr +
1

3
L(0)

FFψ,− 1
2

− t̃(2) − 3t(3) .

(4.91)

The subleading term in the metric expansion as obtained from (4.67) reads

g(2)
µν =

1

2

(
Rcov
{µν}(M)− 1

6
Rcov(M)g(0)

µν

)
. (4.92)

For the remaining combination of traces to be determined this yields

t(2,2) − (t(2))2 =
1

4

(
Rcov{µν}(M)Rcov

{µν}(M)− 1

3
Rcov(M)2

)
. (4.93)

Holographic counterterms and the Weyl anomaly

With the asymptotic expansions of the fields as obtained in the previous discussion we can
now carry out the holographic renormalization of the N=2 supergravity on asymptotically-
AdS spaces. Using the gravitino field equation (4.68) and the traced Einstein equation (4.70)
we obtain from (4.63) the on-shell Lagrangian

Lon-shell = − 2

3
g2ê− 1

2
êL̂ψ −

1

6
L̂FFψ,− 1

2
− 1

8
√

3
êL̂Fψψ −

1

6
√

3
ε̂µ̂ν̂ρ̂σ̂τ̂ F̂µ̂ν̂F̂ρ̂σ̂Âτ̂ . (4.94)

As discussed already in Sec. 4.1.3, the on-shell action is divergent due to this non-vanishing
on-shell Lagrangian and the infinite volume of asymptotically-AdS spaces, and this is a
long-distance IR divergence in the bulk corresponding to a UV divergence in the dual CFT.
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The divergence is regularized by cutting off spacetime at r = ε and adding the Gibbons-
Hawking-York boundary term for a well-defined variational problem, along with appropriate
counterterms. The pure-metric counterterms consisting of the boundary cosmological constant
and Einstein-Hilbert term have been calculated already in Sec. 4.1.3 and are also added
here

Sε =

∫

r≥ε
dr d4xL+

∫

r=εR
d4x ê?

(1

2
K̂ − 3

2
+

1

8
R∗(ω)

)
, (4.95)

with L as given in (4.63). In fact, this turns out to be sufficient to cancel all power-law
divergences. This may be somewhat unexpected – while the gravitino part of the action
vanishes on shell, it still contributes to the asymptotic expansion of the vielbein resulting in
power divergences. However, these are also cancelled by the counterterms given in (4.95).
The asymptotic expansion of this partly renormalized action then reads

Sε =

∫

r=ε

d4xe
1

4

[(
L̃(1)

ψ − 3t̃(2) + 2t̃(3) +

√
3

4
L̃(0)

Fψψ

)
log ε+ 2L(2)

ψ + t(2)L(0)

ψ − 2t̃(2) − 3t̃(3)

+ (t(2))2 + t(4) − 2t(2,2) +
1

2
√

3
L(0)

Fψψ +
2

3
L(0)

FFψ,− 1
2

]
log ε+O(ε0) .

(4.96)

To cancel the (log ε)2 divergence without reintroducing power-law divergences we have to
employ the combination of boundary terms

Sct =

∫

r=ε
d4x ê∗

1

4

(
i ˆ̄ψLi+
µ γ̂µνρD?

νψ̂
L
ρi+ − 2 ˆ̄ψLi+

µ γ̂µρψ̂R
ρi+ + c.c.

)
. (4.97)

Interestingly, taking into account the full non-linear structure of the theory therefore fixes
the coefficients which had to be left arbitrary in studies of the linearized gravitino [129, 130].
Note also that the split into left and right handed components using the projectors PL/R =
1
2(1± i(n̂ · γ̂)) is perfectly covariant on the boundary. The counterterm (4.97) contributes

another set of log-divergences (due to Âµ in the first term and Ψ̂R
µi+

in the second) and the
total renormalized action is then given by

Sren = Sε + Sct −
∫

r=ε
d4xe∗ log εA , (4.98)

with the part yielding the Weyl anomaly given by

A = − 1

16

(
Rcovµν(M)Rcov

µν (M)− 1

3
Rcov(M)2

)
+

1

4
Rµν(A)Rµν(A)

+
1

2
iΦ̄i+

µ g
µνρDνΦρi+ +

√
3

2
(?F )µνΨ̄i+

µ Φνi+ + c.c.

− 1

16
Rcovµρ(M)

(
Ψ̄i+
µ g

ν
ρ Φνi+ + Ψ̄i+

ν g
ν
ρΦµi+ −

2

3
gµρΨ̄

i+
ν g

νλΦλi+

)
+ c.c. ,

(4.99)

where the ‘+ c.c.’ applies to the complete line that it appears in. Rcov
µν (M) was defined in

(4.86), Rµν(A) in (4.84) and Φµi+ in (4.78a). Similarly to (4.44) the anomalous Ward identity
for Weyl invariance reads

〈T aµ 〉eµa −
1

2
Ψ̄µi+〈Sµi+〉 = A . (4.100)
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In the anomaly A in (4.99) all dependences on the subdominant components which are
not determined by the near-boundary analysis have dropped out, as expected and seen
also in Sec. 4.1.3. We have thus obtained holographically the full trace anomaly in generic
backgrounds for the N=1 SCFTs which admit a dual description in terms of the N=2
gauged supergravity, allowing again for a test of the AdS/CFT conjecture. Comparing to
[38] the anomaly A corresponds to the action of N=1 conformal supergravity up to sign and
normalization conventions and four-fermion terms. This confirms the expectation that the
anomaly is given by the supersymmetrization of the squared Weyl tensor.

4.3 Dynamical Gravity on the Boundary

Employing the results of Sec. 4.1, 4.2 we now promote the boundary gravity multiplets arising
as boundary values of the bulk fields to dynamical quantities. To this end we show that
Neumann and mixed boundary conditions can be imposed on the full supergravity theories,
extending the results of [52] for pure gravity (see also [131] for an earlier study) and [130] for
a four-dimensional supergravity. Deviating from the standard Dirichlet boundary conditions
usually results in only non-normalizable solutions and thus in trivial theories. However,
with the discussion of the holographic renormalization in the previous sections we are in a
position to refine this discussion for the N=2 and N=4 gauged supergravities, by taking
into account the counterterm contributions. These are crucial not only for a well-defined
AdS/CFT prescription and to obtain the correct anomalies, but also for the discussion of
normalizability [52]. We find that the bulk excitations with Neumann boundary conditions are
indeed rendered finite by the counterterm contributions, such that the boundary conformal
supergravity multiplets can be dynamical.

Once the more abstract formulation for deriving the conserved current as outlined in Sec. 2.4
is given and used to obtain the general results discussed there, one may reformulate it in a
way more directly suited for applications and in terms of the one-form current j := ?u as
follows. Given an action functional S =

∫
L[φ], where φ denotes a collection of fields, the

variation yields δL = EOM +Dµθ
µ[φ, δφ]. The one-form current is now defined by

jµ[φ, δ1φ, δ2φ] := δ1θ[φ, δ2φ]− δ2θ[φ, δ1φ] . (4.101)

The inner product of fluctuations δ1φ, δ2φ around a background φ is then given by 〈δ1φ, δ2φ〉 =∫
Σ nµj

µ[φ, δ1φ, δ2φ], where n = nµ∂µ denotes the unit-normal vector field to the spacelike
hypersurface Σ. Here we are dealing with an action S = S0 + Sct consisting of a bare part
and counterterms on the boundary. The procedure just discussed yields the two currents jµ̂0
and jµct for the bulk and boundary actions, respectively, with our standard use of Fefferman-
Graham coordinates and the hat to distinguish bulk from boundary quantities. Choosing Σ
constant along the radial direction, such that the normal vector field has vanishing radial
component, n̂ = n̂µ∂µ, we find the inner product

〈φ̂1, φ̂2〉ren = 〈φ̂1, φ̂2〉0 + 〈φ̂1, φ̂2〉ct , 〈φ̂1, φ̂2〉0/ct =

∫

Σ/∂Σ
n̂µ̂j

µ̂
0/ct[φ̂1, φ̂2] , (4.102)
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where ∂Σ = Σ|r=ε. In the following Sec. 4.3.1 we discuss the inner products for the N=2 and
N=4 supergravities using that notation, and turn to the dual boundary dynamics resulting
from non-Dirichlet boundary conditions in Sec. 4.3.2.

4.3.1 Neumann boundary conditions for the N=2, 4 supergravities

That the holographic counterterms indeed render the Neumann modes normalizable has been
shown for the metric in [52] for a number of dimensions, including the five-dimensional case.
The pure-metric part of our counterterms agrees with the standard results, so that discussion
applies here and we focus on the remaining fields. For the N=2 gauged supergravity discussed
in Sec. 4.2 it thus remains to consider the gravitinos and the U(1) gauge field. A discussion
of the boundary conditions allowed by the bare inner product for the U(1) gauge field can
be found in [132]. The current corresponding to the bulk action is

jµ0 [Â1, Â2] = Â1ν

(
∂µÂν2 − ∂νÂµ2

)
− (1↔ 2) , (4.103)

and the associated bare symplectic product after performing the radial integration reads

〈Â1, Â2〉0 = −
∫

∂Σ
d3x e∗nµ

[
A1ν

(
∂µAν

2 − ∂νAµ
2

)
− (1↔ 2)

]
log ε+O(ε0) . (4.104)

We used n̂µ = rnµ such that n = nµ∂µ is normalized with respect to gµν . The counterterms
(4.98), (4.99) yield jµct[A1,A2] = A1ν

(
∂µAν

2 − ∂νAµ
2

)
log ε− (1 ↔ 2) such that the divergent

part is exactly cancelled by the counterterm contribution. In contrast to the bare inner
product, which on AdS5 allows to impose Neumann boundary conditions only on certain
components of the gauge field [132], this renormalized inner product thus yields a complete
space of normalizable solutions also for Neumann boundary conditions on the entire gauge
field.

To establish finiteness of the inner product for the gravitinos we fix a rigid AdS background
geometry with the other fields vanishing. Although this is not the most general case it
is certainly a particularly relevant one and suggests that finiteness also holds for more
generic asymptotically-AdS spaces. The currents jµ̂0 associated to the bulk action, jµct to the
counterterm action (4.97) and jµct,log to the logarithmic counterterms (4.98) are

jµ̂0 [ ˆ̄ψ1, ψ̂2] =
1

2
i ˆ̄ψ

i+
ν̂ γ̂

ν̂µ̂ρ̂ψ̂ρ̂i+ , jµct[
ˆ̄ψ1, ψ̂2] = −1

4
i ˆ̄ψLi+
ν γ̂νµρψ̂L

ρi+ ,

jµct,log[ ˆ̄ψ1, ψ̂2] =
1

2

(
i ˆ̄ψRi+
ν γ̂νµρψ̂R

ρi+ + ˆ̄ψLi+
τ

(
γτµν −

2

3
γτµγν

)
γναβDαψ

R
βi+

)
log ε .

(4.105)

The contribution jµct[
ˆ̄ψ1, ψ̂2] to the inner product constructed according to (4.102) cancels the

ε−2-divergence of the bare inner product without contributing a logarithmic divergence. It
thus remains to show that the logarithmic divergence of the bare inner product constructed

from jµ̂0 is cancelled by the contribution from jµct,log[ ˆ̄ψ1, ψ̂2]. From (4.105) we find

〈ψ̂1, ψ̂2〉ren

∣∣∣
O(log ε)

=

∫

∂Σ

1

2
nµ

(
Ψ̄τi+

(
g
τµ
ν −

2

3
g
τµγν

)
g
ναβDαΦβi+

− iΨ̄i+
ν g

νµρψL(2)

ρi+
− iψ̄L(2)i+

ν g
νµρΨρi+

)
log ε .

(4.106)
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To further evaluate that expression we split off the g-traceless part of Ψµi+ by defining

Ψµi+ = ΨT
µi+ + gµλi+ , g ·ΨT

i+ = 0 . (4.107)

Starting from g
ρ

µν ΨT
ρi+

and extracting g
µ and g

ν to the left in the two possible orders we

find gµΨT
νi+

= −gνΨT
µi+

. Furthermore, with D ·Ψi+ := DµΨµi+ we have

Φµi+ =
2

3
igµD ·Ψi+ + iDµλi+ , ψL(2)

µi+
= −2

3
DµD ·Ψi+ . (4.108)

Using g
ρ

µν ΨT
ρi+

= −2gµΨT
νi+

and integration by parts, (4.106) then evaluates to

〈ψ̂1, ψ̂2〉ren

∣∣∣
O(log ε)

=

∫

∂Σ

2

3
i nµ

(
λ̄i+gαµDαD ·ΨT

i+ +
(
DαD · Ψ̄T

i+

)
g
αµλi+

)
log ε . (4.109)

Extracting from g
σ

µνρ ΨT
σi+

the g-matrices to the left in the orders (µνρ) and (µρν), one

finds gµνΨT
ρi+

= −gµρΨT
νi+

. This in particular implies g
µαDαD ·ΨT

i+
= 0 on rigid AdS. The

logarithmic divergence therefore vanishes and the inner product is indeed finite in the sense
that the asymptotic expansion in ε does not yield poles. This extends the results of [130] to
the five-dimensional case where only a symplectic Majorana condition is available. We have
thus established the availability of Neumann and mixed boundary conditions for the fields of
the N=2 supergravity, which allows to impose Neumann boundary conditions and to couple
the theory to explicit gravitational dynamics on the boundary.

Extension to N=4 gauged supergravity

We now discuss theN=4 theory, starting with the bosonic sector for which we have determined
the counterterms in Sec. 4.1.3. The calculation for the gauge fields is fully analogous to that
for the U(1) field of the N=2 theory, so finiteness of the inner product as discussed there
applies here just as well and it remains to consider the scalar and the two-form fields B̂α

µ̂ν̂ .
The scalar has a mass saturating the Breitenlohner-Freedman bound and thus both of the
solution sets corresponding to Dirichlet and Neumann boundary conditions are normalizable
[22]. Indeed, the counterterms (4.54), (4.55) do not give an additional contribution to the
bare inner product which is finite already. It remains to consider the two-form field for which
we find

jµ̂0 [B̂1, B̂2] =
i

2g1
ê−1εµ̂ν̂ρ̂σ̂τ̂ Ĉ1ν̂ρ̂Ĉ2σ̂τ̂ + c.c. ,

jµct[B̂1, B̂2] = Ĉρµ1 DλĈ
λ

2ρ log ε+ c.c.− (1↔ 2) .

(4.110)

The divergence of the bare part is only a logarithmic one since one of the components of
Ĉ1/2 necessarily is in the radial direction. It is cancelled by the counterterm contribution
arising from (4.55) due to (4.33).

We now turn to the fermionic part. Although we have not obtained the counterterms
explicitly, we note that the discussion of the gravitino inner product is fully analogous to the
N=2 theory, as the derivative terms contributing to the inner product are the same up to
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the fact that we have twice as many gravitinos. It remains to discuss the spin-1
2 fermions.

The bare inner product is

〈χ1, χ2〉0 = −1

2

∫

Σ
i ˆ̄χ
i+
1 (n̂ · γ̂)χ̂2i+ , (4.111)

which is logarithmically divergent. We can infer the derivative term in the full counterterm
action (4.55) from the supersymmetry transformations derived in Sec. 4.1.2.3 as follows.
The full Weyl anomaly of which we have derived the bosonic part in (4.59) arises upon
variation of the CFT generating functional with respect to a Weyl transformation. Thus, it
is expected to be invariant under the non-anomalous Q-supersymmetry transformations. The
full expression contains the fermionic parts in addition to (4.59), and for the inner product
of the spin-1

2 fermions we are particularly interested in the terms which are quadratic in
the fields and involve derivatives. The only possible term which can contribute to the inner
product is χ̄i+L /DχL

i+
, and to fix the coefficient we consider a supersymmetry variation of the

full anomaly Afull. Since the full variation has to vanish, this in particular applies to the
restriction to just the terms involving each of φ and χ along with a derivative. Due to the
structure of the supersymmetry transformations derived in Sec. 4.1.2.3 only the terms in
Afull which are ∝ φ2 or ∝ χ̄i+L /DχL

i+
can contribute to these terms. We thus find

0
!

= δζAfull
∣∣
φDχ

= δζ

[
iαχ̄i+L /DχL

i+ + c.c.− 1

2
ϕ2
]

= − 1√
2

(1 + 2α)ϕζ̄i+ /DχL
i+ + c.c. , (4.112)

where the last equality holds up to total-derivative terms. This fixes α = −1
2 and the bosonic

counterterm action discussed in Sec. 4.1.3.2 therefore has to be augmented by

Slog
ct,χ =

∫

r=ε
d4x

1

2
ê∗
(
i ˆ̄χi+L /D

∗
χ̂L
i+ + c.c.

)
log ε , (4.113)

to reproduce that term in the holographic Weyl anomaly. The associated contribution to
the inner product exactly cancels the logarithmic divergence in (4.111). This completes the
discussion also for the N=4 gauged supergravity, showing that the inner products are again
finite also for Neumann and mixed boundary conditions.

4.3.2 The gravity dynamics on the boundary

We have shown that for the N=2, 4 gauged supergravity fields the Neumann modes are
rendered normalizable by the counterterm contributions, such that Neumann or arbitrary
mixed boundary conditions can be imposed as long as they lead to a conserved symplectic
structure. In this section we discuss in some more detail the corresponding dual boundary
theory. Switching to Neumann or mixed boundary conditions can be understood as a
deformation of the original AdS/CFT duality with Dirichlet boundary conditions, such
that one still expects a holographic duality to hold [52]. For the argument one considers a
Euclidean bulk gravity with partition function ZDir[g

(0)] :=
∫

(Dĝ)g(0)e
−Sren , where (Dĝ)g(0)

is the measure for integration over metrics with fixed boundary value g(0) and Sren denotes
the renormalized bulk action. The AdS/CFT correspondence relates ZDir[g

(0)] to the CFT
partition function in the background metric g(0) via ZCFT[g(0)] = ZDir[g

(0)]. For the induced
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gravity [133] obtained by integrating out the CFT fields, Zinduced :=
∫
Dg(0)ZCFT[g(0)], one

then finds

Zinduced =

∫
Dg(0)ZDir[g

(0)] =

∫
Dg(0)(Dĝ)g(0)e

−Sren =

∫
Dĝ e−Sren =: ZNeu . (4.114)

This bulk partition function ZNeu is interpreted by passing to the semi-classical limit. The
variation of Sren yields

δSren = EOM +
1

2

∫

∂M
Tµνδg(0)

µν , (4.115)

with a finite Tµν . Due to the integration over g(0) stationarity of the action implies the
Neumann boundary condition Tµν = 0. Thus, the bulk theory with that Neumann boundary
condition is expected to be dual to the induced gravity theory on the boundary.

Among other Weyl-invariant contributions the induced gravity contains the non-local effective
action necessary to reproduce the Weyl anomaly, which we have calculated in Sec. 4.1.3 and
4.2.2. For the explicit form of the pure-gravity part of this non-local action see e.g. (4.21) of
[134]. Moreover, as shown in [135] at least a subsector of the theory describing the dynamics
of the conformal factor does not yield ghosts on the Einstein cylinder R × S3, despite its
higher-derivative nature. Direct calculations e.g. in [106] suggest that the dynamics for the
non-anomalous degrees of freedom, which are present already classically, is described by
conformal supergravity. An analysis of pure Neumann boundary conditions for perturbative
gravity on the Poincaré patch of AdS in [52] revealed tachyons and ghosts in the spectrum.
More precisely, while for odd boundary dimensions the boundary theory is free of ghosts and
the Weyl transformations are gauge transformations, for even boundary dimensions, where
Weyl invariance is spoiled by the conformal anomaly, there are ghosts and tachyons.

Two interesting issues are raised by these results. For one thing, one would certainly like
to formulate dualities with variants of conformal gravity on the boundary which are free of
pathologies to begin with. The other line of research is to take the perturbative ghosts on
Minkowski space seriously – they are in fact expected due to the higher-derivative character
of conformal supergravity – and study e.g. their role beyond perturbation theory. We discuss
approaches to these topics suggested by our previous investigations below.

On a technical level, the appearance of tachyons and ghosts can be traced back to the
logarithmic terms in the asymptotic expansion of the bulk metric for even boundary dimension.
In that sense the situation is very similar to the scalar field saturating the unitarity bound
discussed in Sec. 3.2. As found in Sec. 3.1 and for global AdS in [69], such scalar fields
similarly exhibit tachyons and ghosts due to the log-terms. However, in Sec. 3.2 we have
shown how to obtain the singleton theory as a particular limit of the Klein-Gordon field
with renormalized inner product, and that this allows for the formulation of a unitary theory.
Speculations on a possible singleton theory for gravity can be found in [104], but to our
knowledge there has been no formulation of a gravity singleton theory yet. Let us consider
for metric perturbations on AdS a construction similar to the one discussed in Sec. 3.2 for
the scalar field, which led to the singleton theory. This involved a field rescaling by the
coefficient of a particular finite combination of boundary terms and the subsequent limit
where this parameter is sent to infinity. The counterterms for gravity in the bulk have an
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analogous structure, as seen e.g. by replacing in (4.55) log ε→ log ε+ κ. Drawing from the
discussion of the scalar field we would similarly expect for gravity that bulk interaction terms
become irrelevant in this limit, while on the boundary only a particular term quadratic in
the field survives. We therefore expect to obtain a free spin-2 field with boundary conditions
suppressing the logarithmic term, as found in Sec. 3.2 for the scalar field. Thus, we expect
a unitary theory without tachyons. Interactions could be reintroduced by adding explicit
κ-dependent terms, but to preserve unitarity they would have to be of a very specific form,
see also [104]. Since the logarithmic terms appear in the asymptotic expansions of all the
fields of the bulk supergravities discussed here, we expect the possibility to formulate a
unitary singleton field theory for the full supergravity multiplets. The construction of the
appropriate supersingleton representations can be found in [136].

Another route to formulating a duality with ghost-free boundary gravity is suggested by
the recent observation that conformal gravity on AdS can be truncated to Einstein gravity
by a suitable choice of boundary conditions [137]. A similar mechanism allows to render
certain critical gravities ghost-free [138], where the Lagrangians are constructed from the
cosmological Einstein-Hilbert part augmented by higher-order curvature terms with specific
coefficients. Like conformal gravity alone, for suitable parameter choices the spectrum on
AdS contains only the benign tachyons familiar for AdS spaces and it can be truncated to
positive-norm states by appropriately choosing the boundary conditions. It may therefore
also be possible to render the boundary gravities arising from our bulk supergravities with
Neumann boundary conditions ghost-free by considering perturbations around AdS on the
boundary instead of perturbations around Minkowski space. It would be interesting to study
the truncations of [137, 138] holographically by basically repeating the analysis of [52] for
the geometry with AdS on the boundary, as discussed in Sec. 3.1.1. To this end one certainly
should improve on the renormalization prescription to cope with the normalizability issues
discussed in Sec. 3.1.2.4.

As for studying the boundary theory directly on Minkowski space, we note that the results
of [52] discussed above suggest that the appearance of the tachyons and ghosts is tied to the
anomalous Weyl invariance12. As discussed in [41] for supersymmetric Yang-Mills theory
coupled to conformal supergravity, demanding the conformal anomaly to cancel restricts the
gauge group of the SYM sector to one of those with a four-dimensional Lie algebra. Thus, to
establish a duality of gravity theories without pathologies for a four-dimensional boundary
one would like to study the holographic dual of e.g. SU(2)⊗U(1) SYM theory coupled to
conformal supergravity. Coupling the boundary CFT to explicit gravitational dynamics
is achieved by adding to the bulk action gravitational boundary terms Sbndy, resulting in
the boundary condition Tµν = δSbndy/δg

µν as described already in Sec. 3.3.3. Choosing an
appropriate Sbndy should result in preservation of the radial diffeomorphisms/boundary Weyl
transformations as follows. The failure of invariance under radial diffeomorphisms for the
pure Neumann boundary condition can be seen from the fact that the transformation of Tµν
defined in (4.115) receives an anomalous contribution due to the log-terms in the asymptotic
expansion of the metric. Thus, the condition Tµν = 0 is not invariant. For an appropriate
Sbndy one then recovers the cancellation of the conformal anomaly from the holographic
perspective as the fact that the boundary condition δSbndy/δg

µν = Tµν becomes invariant

12 The appearance of ghosts due to a symmetry being anomalous is also familiar e.g. from the axial anomaly.
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under radial diffeomorphisms/boundary Weyl transformations since both sides produce the
same anomalous contribution. However, studying our specific setup requires the Yang-Mills
theory at finite N and hence quantization of the bulk theory, to be discussed in Sec. 5.

Employing the dual description in terms of string theory one could also investigate possible
effects restoring unitarity and whether the instability signaled by the tachyons is eliminated
by supersymmetry or a mechanism like tachyon condensation (see e.g. [139]). As mentioned
before, the SYM multiplet is coupled to gravity in AdS/CFT beyond the strict large-N
and large-λ limits [106]. To study the gravitational boundary theory in string theory one
has to uplift the configurations we have studied to the corresponding brane configurations,
e.g. to the elliptic brane configuration in IIA string theory discussed in Sec. 4.1.3, and
then study the brane dynamics within string theory. As string theory is expected to be
ghost-free and the brane configurations being BPS states are stable, this should shed light on
possible mechanisms curing the pathologies. It might be helpful here to better understand
the switch from Dirichlet to Neumann boundary conditions directly in the dual string theory.
For Abelian vector fields on AdS4 switching the boundary conditions can be understood
as follows [59]: Studying an Abelian vector field on AdS4 is equivalent to studying it on
R1,2 × R+, where it corresponds to the worldvolume theory of a D3-brane ending on a
5-brane. Dirichlet/Neumann boundary conditions now correspond to the D3-brane ending
on a D5-brane/an NS5-brane, and the setups are related by an S-duality transformation. A
step towards a similar string-theory description of the change of boundary conditions for the
metric may be provided by the duality transformations discussed in [140].

4.4 Discussion and Outlook

In Sec. 4.1 we have studied the asymptotic structure of SU(2)⊗U(1) gauged N=4 supergravity
on asymptotically-AdS5 backgrounds. We have shown that theN=2 Weyl multiplet is induced
on the conformal boundary with the complete local N=2 superconformal transformations,
see Tab. 4.1 and (4.37), (4.38). The gauge fixings we have employed for the bulk symmetries
were chosen such that they do not cause a fixing of the symmetries induced on the boundary.
Furthermore, the rescaled boundary limit of the bulk fields agrees with their rescaled pullback
to the boundary. Different gauge fixings are expected to yield the same boundary fields and
symmetries, possibly gauge fixed and/or with additional gauge degrees of freedom. We have
then studied the four-dimensional N=2 SCFTs dual to Romans’ theory, e.g. the worldvolume
theory on the D4-branes of the elliptic brane configuration discussed in [120], and carried
out the holographic renormalization of the bosonic sector of the bulk theory. The boundary
terms (4.54), (4.55) ensure finiteness of the action evaluated on solutions of the classical
field equations, and for α = 1

4 also of the variations of the action evaluated on the classical
solutions. In particular, we found a finite SCFT energy-momentum tensor which is obtained
as the rescaled boundary limit of the Brown York energy-momentum tensor of the bulk
theory (4.58). The boundary terms (4.55) break part of the bulk diffeomorphism invariance,
which leads to the anomalous contribution (4.59) to the boundary Ward identity for Weyl
invariance (4.44). Thus, we have obtained the Weyl anomaly for the dual SCFTs in a generic
bosonic N=2 conformal supergravity background, including the matter-field contributions.
The renormalized action and Brown-York energy-momentum tensor (4.58) may also be useful
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for characterizing solutions of Romans’ theory involving matter fields, e.g. for the solutions
with non-Abelian gauge fields discussed in [141].

The discussion of holographic renormalization and the calculation of the Weyl anomaly of
the dual theories in Sec. 4.1 was restricted to the bosonic sector of the bulk theory, as the
natural backgrounds to consider the dual SCFTs in are the bosonic ones. With regard to
establishing the availability of Neumann boundary conditions for the bulk theory we have
extended these calculations in Sec. 4.2 to also include the fermionic sector of a truncation of
the bulk theory to N=2 gauged supergravity. We have calculated the full expression for the
Weyl anomaly of the dual N=1 SCFTs in generic, possibly fermionic conformal supergravity
backgrounds, and the result confirms the expectations from the field-theory side.

The discussion of the anomalies also offers an interesting perspective on the results of [142].
As found there, for lower-dimensional theories the holographic counterterms coincide with
the boundary terms required to preserve half of the supersymmetry in the presence of
a boundary. The interesting question is whether this is a general pattern, i.e. whether
demanding supersymmetry is sufficient to reproduce the holographic counterterms also
in higher dimensions. The effect of the counterterms is to render the variations of the
action finite, i.e. δSren =

∫
∂MXIδφI is finite on shell, where I is a multi-index labeling the

various bulk fields φI of different spins. As discussed in Sec. 4.1.2 the bulk supersymmetry
transformations split into two sets corresponding to Q- and S-supersymmetries on the
boundary. Choosing the bulk variations such that they correspond to a Q-supersymmetry
on the boundary yields for the boundary theory the corresponding Ward identity. Since the
boundary Q-supersymmetry does not suffer from anomalies this variation should vanish, and
if AdS/CFT holds the holographic counterterms therefore ensure the preservation of half of
the supersymmetries. By this argument we expect that the holographic counterterms include
a minimal set of boundary terms to preserve supersymmetry, but they may still contain an
additional set of separately supersymmetry-invariant boundary terms.

Building on the previously obtained results on the asymptotic structure and the holographic
renormalization, we have then established in Sec. 4.3 the existence of the bulk N=2, 4 gauged
supergravities with Neumann or mixed boundary conditions in the sense that the respective
solutions are normalizable. This offers the possibility to investigate a duality of the specific
supergravities arising from string theory to gravitational theories on the boundary, extending
the results of [130] to the physically interesting case of five-dimensional bulk theories with
four-dimensional boundary. The gravitational boundary theory contains pathologies like
ghosts and tachyons found already before for the pure-gravity case. We have discussed
possible approaches to formulating dualities with ghost-free gravity on the boundary, e.g.
employing the geometries discussed in Sec. 3.1 or the singleton representation discussed
in Sec. 3.2, and to studying the pathologies directly via the uplifts of the supergravity
configurations to string theory.

A promising route available specifically for the case of a four-dimensional boundary is to
study the boundary theory using twistor string theory [143]. The basic idea is that, as the
descriptions of different asymptotic regimes of a single theory may well differ drastically,
the type IIB string theory on AdS5×S5 may also look vastly different in the limit of small
g2
sN . The proposal of [143] is that this limit may be described by the topological B-model

on CP3|4. The spectrum of open strings indeed reproduces the N=4 SYM multiplet, and
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SYM scattering amplitudes at small coupling can be calculated from that theory. However,
from the closed-string sector the theory inevitably includes also conformal supergravity, the
contributions of which can not be removed by a straightforward scaling limit [144]. This
result, although not welcome in the first place, nicely fits into our discussion of AdS/CFT
generalized by allowing also for Neumann-like boundary conditions and may even be given a
deeper meaning in that context. One can then attempt to study the gravity sector of the
boundary theory using twistor string theory. As discussed in [144] also from the twistor-string
perspective, demanding the conformal anomaly to cancel restricts the gauge group of the SYM
sector to one of those with a four-dimensional Lie algebra. The holographic description then
requires AdS/CFT beyond the N→∞ limit. As 1/N corrections on the boundary correspond
to quantum corrections in the bulk this entails a well-defined quantization prescription for
supergravity in the first place, which is also called for on much more general grounds. We
study that issue in the next section.
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5 AdS/CFT beyond N→∞: Gravitino
Quantization on Curved Spacetimes

The AdS/CFT prescription relates CFTs in the limit of infinite rank N of the gauge group
to classical bulk supergravities. These inevitably contain as superpartner for the graviton
a number of gravitinos, which are spin 3/2 Rarita-Schwinger fields. Corrections to the
large-N limit in the boundary theory are related to quantum corrections in the bulk, such
that a consistent quantization prescription for the bulk supergravities is crucial. This is
required not only on AdS but also on generic non-Einstein spaces like the Klebanov-Strassler
background, employed for the holographic description of non-conformal field theories with
chiral symmetry breaking and confinement [145], or Lifshitz geometries for the description of
quantum critical points [146]. On the other hand, supergravity as an extension of Einstein’s
general relativity may also play a role for a direct description of nature with interesting
consequences for cosmology and particle physics. Specific issues like production mechanisms
and properties of gravitino dark matter or the analysis of scattering experiments are best
addressed in terms of effective QFT for the fluctuations around appropriate solutions of
classical supergravity. While this means Minkowski space for collider physics, the less
symmetric Friedmann-Robertson-Walker (FRW) backgrounds are of particular interest for
studies of the early universe. A consistent QFT for the gravitino linearized around such
non-Einstein solutions is therefore of great importance for both, the holographic description of
strongly-coupled field theories and also for direct physical applications. Interestingly enough,
the two fields are joined by the proposal to understand the cosmological FRW spacetimes
from a holographic perspective [147]. The basic idea is to to understand the physics of an
open FRW universe, where the constant-time slices are three-dimensional hyperbolic spaces,
as encoded holographically in a two-dimensional Euclidean CFT on the conformal boundary
of the hyperbolic slices1, see Fig. 5.1.

The gravitino field equation is not of a form where the existence of a consistent quantization
prescription is guaranteed by general results like [149]. The quantization on generic curved
spacetimes has been discussed in detail recently [150], arriving at the conclusion that a
consistent quantization is only possible on Einstein spaces, i.e. when the Einstein tensor is
proportional to the metric. This statement is based on the non-conservation of the specific
gravitino current proposed there, which would lead to inconsistencies when imposing canonical
anticommutation relations (CAR). In this section we show that a consistent quantization
of the gravitino on FRW spacetimes is indeed possible, raising this conclusion to question.
This work was done in collaboration with Alexander Schenkel and published in [16]. In the
sequel [150] has been revised and partial results have been obtained towards a treatment of
N=1 supergravity [151].

1 A similar codimension-2 holography is discussed in [148] for asymptotically flat spaces.
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Σ
ζ→∞-

Figure 5.1: Penrose diagram of a four-dimensional open FRW universe with metric ds2 =
−dt2 + a(t)2dH2

3, where dH2
3 = dζ2 + sinh2ζdΩ2

2. The Ω2 part is suppressed. The
red and blue curves correspond to constant t and ζ, respectively. The conformal
boundary of the hyperbolic slices H3 corresponds to spacelike infinity Σ.

We consider the Rarita-Schwinger field in d dimensions without assuming a specific model,
but with properties general enough to capture the relevant supergravity cases. In particular,
we allow for a spacetime-dependent mass as it arises in linearizations of supergravity around
FRW [152], but do not fix the dependence a priori. We construct a canonical conserved
current, and specializing to the case of d-dimensional spatially flat FRW spacetimes we prove
that the associated inner product is positive definite on solutions of the Rarita-Schwinger
equation in Sec. 5.1. In particular, it satisfies non-negativity, the necessary condition for a
consistent implementation of CAR emphasized in [150], and we carry out the quantization
in terms of a CAR-algebra. In Sec. 5.2 we discuss causality and the role of supergravity in
that respect. We find that the propagation is in general non-standard, yet completely causal
on a wide class of FRW spacetimes. Specifically, for the trace part of the Rarita-Schwinger
field the domains of dependence on these spacetimes are in general more narrow than näıvely
expected. Time-variations of the mass stretch these domains, eventually arriving at the
standard light cones in the supergravity model of [152]. Examples of cosmological spacetimes
allowing for a causal propagation are then studied in Sec. 5.3.

5.1 Consistent Quantization

We consider a Dirac Rarita-Schwinger field ψµ on a spacetime of dimension d ≥ 3 with metric
signature mostly minus. The action reads

S =

∫
ddx e ψµRµ[ψ] , (5.1)

with the Rarita-Schwinger operator

Rµ[ψ] := iγµνρDνψρ +mγµνψν . (5.2)

The covariant derivative is Dµψν := ∂µψν + 1
4ωµabγ

abψν−Γρµνψρ and we assume a torsion-free
background configuration. The mass m may be spacetime-dependent, but is assumed to be
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real and positive. This action with d=4 is the quadratic gravitino part of the matter-coupled
N=1 supergravity discussed in [152], up to metric conventions and the Majorana condition.
The mass m in [152] is related to the Kähler and superpotential via m = eK/2W/M2

P. The
action (5.1) is real up to a boundary term and the Rarita-Schwinger operator (5.2) is formally
self-adjoint with respect to

(
ψ1, ψ2

)
:=
∫
ddx e ψµ1ψ2µ. That is, for all ψ1 and ψ2 with

supports of compact overlap we have

(
ψ1,R[ψ2]

)
=
(
R[ψ1], ψ2

)
. (5.3)

Note that due to the vielbein postulate we have Dµγν1...νn = 0. Contracting the equation of
motion Rµ[ψ] = 0 with γµ leads to the on-shell constraint

i /D γ · ψ − iDµψµ +
d− 1

d− 2
m γ · ψ = 0 , (5.4a)

where γ · ψ := γµ ψµ. Acting with Dµ on Rµ[ψ] = 0 and using (5.4a) yields the second
constraint

i

2
Gµνγµψν + (∂µm) γµνψν +

d− 1

d− 2
im2 γ · ψ = 0 , (5.4b)

where Gµν := Rµν − 1
2g
µν R is the Einstein tensor. Using (5.4a), the Rarita-Schwinger

equation Rµ[ψ] = 0 can be written as

(
i /D −m

)
ψµ −

(
iDµ +

m

d− 2
γµ
)
γ · ψ = 0 . (5.5)

Due to the derivative in the second term, (5.5) is not of Dirac-type [149] and the causal
propagation of the Rarita-Schwinger field on a generic spacetime is not guaranteed a priori.
We will discuss this point further in Sec. 5.2 and 5.3.

5.1.1 Conserved current

We construct Zuckerman’s universal conserved current [53, 54, 55] for the Rarita-Schwinger
field using the variational bicomplex reviewed in Sec. 2.4. We will verify its conservation
explicitly, so the reader may also pass directly to (5.11).

The basic idea of the variational bicomplex is to consider functions and differential forms on
the product space M×S, with M being spacetime and S the space of field configurations.
The differential forms on M×S can be decomposed into subspaces of a definite horizontal
(i.e. spacetime) and vertical (i.e. field space) degree. Likewise, the exterior differential on
M× S splits into a horizontal differential d and a vertical differential δ, increasing the
horizontal/vertical degree by one.

The starting point of the construction is a Lagrangian described by a (d, 0)-form, i.e. of
maximal horizontal degree, on M×S. The Lagrangian form corresponding to the Dirac
Rarita-Schwinger action (5.1) reads

L = i ψ ∧ ?V 3 ∧ Dψ + (−1)dmψ ∧ ?V 2 ∧ ψ , (5.6)
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where ψ := ψµdx
µ, Dψ := Dµψν dxµ ∧ dxν and ? denotes the Hodge operator defined by

?(dxµ1 ∧ · · · ∧ dxµr) = e
(d−r)!ε

µ1...µr
νr+1...νddx

νr+1 ∧ · · · ∧ dxνd . Furthermore, V := γµdx
µ

and the normalized n-fold product is denoted by V n := 1
n!V ∧ .. ∧ V . The vertical exterior

derivative of the Lagrangian admits a decomposition

δL = E + dΘ , (5.7)

with a unique source form E of degree (d, 1) yielding the equations of motion and Θ of degree
(d−1, 1), which is unique up to horizontally exact parts. For the Lagrangian (5.6) we find

Θ = −i ψ ∧ ?V 3 ∧ δψ . (5.8)

Zuckerman’s universal current is defined as the contraction of the (d−1, 2)-form u := δΘ
with two Jacobi fields, i.e. solutions of the linearized equations of motion. Since we are
considering a linear theory, the Jacobi fields coincide with solutions of the Rarita-Schwinger
equation Rµ[ψ] = 0. From (5.8) we find

u = −iδψ ∧ ?V 3 ∧ δψ , (5.9)

and contracting with the two Jacobi fields ψ1 and ψ2 we obtain the (d−1, 0)-form current

u[ψ1, ψ2] = i(−1)d ψ1 ∧ ?V 3 ∧ ψ2 . (5.10)

Note that (5.10) does not depend on the field space coordinates. We pull back (5.10) to M
to obtain a d−1-form current denoted by the same symbol on spacetime. From that current
on M we define the more familiar one-form current j[ψ1, ψ2] := i ? u[ψ1, ψ2], which reads

jµ[ψ1, ψ2] = −ψν1γνµρψρ2 . (5.11)

Conservation of the d−1-form current u[ψ1, ψ2], i.e. du[ψ1, ψ2] = 0, is equivalent to the
condition ∇µjµ[ψ1, ψ2] = 0, with ∇µ being the covariant derivative on vector fields. We
obtain

−∇µjµ[ψ1, ψ2] = Dµψ1νγ
νµρψ2ρ + ψ1νDµ

(
γνµρψ2ρ

)

= γρµνDµψ1νψ2ρ + ψ1νγ
νµρDµψ2ρ

= iRρ[ψ1]ψ2ρ − i ψ1νRν [ψ2] . (5.12)

In the first line we have used the Leibniz rule for the covariant derivative and Dµψν = Dµψν ,
and in line two that due to the vielbein postulate Dµγνµρ = 0. Thus, the current is conserved
when evaluated on solutions.

5.1.2 Positivity of the inner product

As noted in [150], non-negativity of the inner product constructed from the current (5.11) is
a necessary condition for a consistent implementation of CAR. This is due to the anticom-
mutator of the smeared quantum fields Ψµ(f̄µ) and Ψµ(fµ) being an expression of the form
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A†A+AA†, which has a non-negative expectation value in any normalized state, see also
Sec. 5.1.3 for more details.

We define the inner product associated to (5.11) by

〈ψ1, ψ2〉 :=

∫

Σ
nµjµ[ψ1, ψ2] , (5.13)

where Σ is a Cauchy surface with future-directed unit normal vector field nµ. Splitting
µ = (0,m) we choose coordinates such that ds2 = g00dτ

2 + gmndx
mdxn and likewise fix

ea0 =
√
g00δ

a
0 . With a choice of Σ such that n =

√
g00∂τ the integrand evaluates to

nµjµ[ψ1, ψ2] = −
(
ψ†1mψ

m
2 +

(
γmψ1m

)† (
γnψ2n

))
. (5.14)

We verify non-negativity of the inner product (5.13) evaluated on solutions of the Rarita-
Schwinger equation for d-dimensional FRW spacetimes, eaµ = a(τ)δaµ. For compatibility with
the FRW symmetries we assume that the mass depends on time only, m = m(τ). The spin
connection is given by ωµab = 2a′a−1eµ[ae

0
b], where prime denotes the derivative with respect

to τ . The constraints (5.4) read for the FRW background

iγµν∂µψν +
[ i

2
(d− 2)

a′

a
γ0 +

d− 1

d− 2
m
]
γ · ψ − i

(
d− 3

2

)a′
a
ψ0 = 0 , (5.15a)

γ0ψ0 =
p− 2m2 d−1

d−2 + 2im′ γ0

ρ+ 2m2 d−1
d−2

γmψm =: A γmψm , (5.15b)

where for the second equation we have used Friedmann’s equations G0
0 = ρ and Gnm = −p δnm

(in units MP = 1). These expressions in d=4 have been obtained in [152], up to metric
conventions. Combining the µ = 0 component of (5.5) with (5.15a) yields

iγmn∂mψn = −
(
m+

i

2
(d− 2)

a′

a
γ0
)
γmψm =: −B γmψm . (5.16)

Due to the constraints (5.16), (5.15b), only (d− 2) · 2bd/2c of the d · 2bd/2c complex degrees
of freedom of the Rarita-Schwinger field are independent. It is convenient to transform to
spatial Fourier space via ψm(τ, x) = (2π)1−d ∫ dd−1k eiknx

n
ψ̃m(τ, k). As in [129, 152] we

separate the spatial part of the Rarita-Schwinger field ψ̃m into the γm and km traceless part
ψ̃T
m and the traces

χ̃ := γnψ̃n , ζ̃ := knψ̃n . (5.17)

With k̂m := km/|k|, |k| :=
√
−knkn and /̂k := k̂mγ

m we find

ψ̃m = ψ̃T
m +

γm + k̂m /̂k

d− 2
χ̃+

γm/̂k − (d− 1)k̂m
(d− 2)|k| ζ̃ . (5.18)

The constraint (5.16) in k-space yields the following relation between the traces

ζ̃ =
(
/k − B

)
χ̃ . (5.19)
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With (5.19) the decomposition (5.18) becomes

ψ̃m = ψ̃T
m −

(
k̂m/̂k −

(d− 1)k̂m − γm/̂k
(d− 2)|k| B

)
χ̃ . (5.20)

The traceless part ΨT
m comprises (d− 3) · 2bd/2c degrees of freedom and the trace part γnΨn

the remaining 2bd/2c. Using this on-shell decomposition, the inner product in Fourier space
evaluates to

〈ψ1, ψ2〉 =

∫
dd−1k

(2π)d−1
ad−1

(
−ψ̃T †

1m ψ̃
Tm
2 + C χ̃ †1 χ̃2

)
, (5.21)

where

C =
d− 1

(d− 2) |k|2
(
m2 +

1

4
(d− 2)2 a

′2

a4

)
(5.22)

is positive. The integrand is pointwise (in k-space) non-negative, since in our conventions
the spatial metric is negative definite. Thus, for any nonzero solution ψ 6≡ 0 the norm is
positive, 〈ψ,ψ〉 > 0.

5.1.3 Quantization

Using the inner product (5.13), we can quantize the Dirac Rarita-Schwinger field on d-
dimensional FRW spacetimes analogously to the spin 1/2 Dirac field [153]. We briefly
outline the construction of the CAR-algebra and refer for details on fermionic quantization
to [153, 154, 149] and references therein. We denote by Sol the space of spinor solutions of
the Rarita-Schwinger equation which are of compact support when restricted to any Cauchy
surface. The space Sol of cospinor solutions is defined as the image of Sol under the map
Sol 3 fµ 7→ fµ. To the spinor/cospinor solutions we associate smeared field operators via
C-linear maps fµ 7→ Ψµ(fµ) and fµ 7→ Ψµ(fµ). The CAR-algebra is defined as the ∗-algebra
with unit 1 generated by these operators, subject to the relations

Ψµ(fµ)† = Ψµ(fµ) , (5.23a)
{

Ψµ(fµ),Ψν(hν)
}

= 〈f, h〉 1 , (5.23b)
{

Ψµ(fµ),Ψν(hν)
}

=
{

Ψµ(fµ),Ψν(hν)
}

= 0 , (5.23c)

with † denoting the involution in the algebra. As pointed out in [150], non-negativity of
the inner product is essential for the CAR (5.23): Assume any Hilbert space representation
of the algebra above. Let fµ ∈ Sol be arbitrary and define A := Ψµ(fµ), then (5.23a) and
(5.23b) imply

A†A+AA† = 〈f, f〉 1 . (5.24)

From the expectation value in any normalized Hilbert space state |ϕ〉 one concludes

〈f, f〉 = 〈Aϕ|Aϕ〉+ 〈A†ϕ|A†ϕ〉 ≥ 0 , (5.25)

104



5.2 Causality and the Role of Supergravity

completing the argument. As we have shown in Sec. 5.1.2, for d-dimensional FRW spacetimes
the inner product (5.13) indeed satisfies this necessary condition for a consistent quantization
of the Rarita-Schwinger field.

The Dirac Rarita-Schwinger field as discussed above amounts to the generic case in d
dimensions without imposing restrictions on d. However, if a Majorana condition ψµ = ψT

µC
is available and used to reduce the Dirac spinor (e.g. in d=4 minimal supergravity), the
quantization proceeds in a similar way: We restrict Sol to Majorana solutions Solmaj satisfying
fµ = fTµ C. The inner product (5.13) for Majorana solutions fµ, hµ ∈ Solmaj reads

〈f, h〉 = −
∫

Σ
nµfνTC γνµρ h

ρ . (5.26)

It is symmetric since Cγνµρ is anti-symmetric in the cases where a Majorana condition is
available [155], such that

hνTC γνµρ f
ρ = fρT

(
Cγνµρ

)T
hν = fρTC γρµνh

ν , (5.27)

and it is also real

〈f, h〉∗ = 〈h, f〉 = 〈f, h〉 . (5.28)

We quantize the Majorana Rarita-Schwinger field in terms of a self-dual CAR-algebra
[156, 149]: We associate to the Majorana solutions hermitian smeared field operators via the
R-linear map fµ 7→ Ψµ

maj(fµ). The self-dual CAR-algebra is defined as the ∗-algebra with
unit 1 generated by these operators, subject to the relations

{
Ψµ

maj(fµ),Ψν
maj(hν)

}
= 〈f, h〉 1 . (5.29)

5.2 Causality and the Role of Supergravity

In this section we discuss the propagation of the transversal and longitudinal parts of the
Rarita-Schwinger field on d-dimensional FRW spacetimes2. The relevant equations are the
constraints (5.15) and the equation of motion (5.5), or equivalently (5.5), (5.15b) and (5.16).
The non-dynamical ψ0 can be eliminated by solving (5.15b), ψ0 = γ0Aχ, and (5.16) is
manifestly implemented in the decomposition (5.20). It thus remains to solve (5.5). The
µ= 0 component yields the equation of motion for χ

i
(
γ0∂0 + γmA ∂m

)
χ+

2B −m
d− 2

χ+
d− 1

d− 2
B †Aχ = 0 . (5.30)

The spatial components of (5.5) give – after using (5.30) – the equation for the transversal
polarizations

iγν∂νψ
T
m +

(
i a′

2a
(d− 3)γ0 −m

)
ψT
m = 0 . (5.31)

2 We focus on the transversal and trace parts, ψT
m and χ, which are the degrees of freedom entering the

inner product (5.21). The explicit reconstruction of ψm via (5.20) might be problematic due to the inverse
powers of k. We thank Thomas-Paul Hack for useful discussions on this issue.
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5 AdS/CFT beyond N→∞: Gravitino Quantization on Curved Spacetimes

Thus, the transversal and longitudinal parts decouple.

Note that (5.31) is a Dirac-type operator and therefore ψT
m propagates causally, see e.g. [149].

In order to understand the causal properties of the longitudinal part χ, we define the ‘effective
gamma matrices’

γ0
eff := γ0 , γmeff := γmA . (5.32)

They form a Clifford algebra {γµeff , γ
ν
eff} = 2 gµνeff with an ‘effective metric’ geff with components

g0µ
eff = g0µ = a−2δ0µ and

gmneff =
(
A2

1 + a−2A2
2

)
gmn =: c2

eff(τ) gmn . (5.33)

The numerical coefficients A1 and A2 are defined by A =: A1 + iA2 γ
0, see (5.15b). Thus,

(5.30) is a Dirac-type operator on the spacetime with ‘effective metric’ gµνeff and χ propagates
causally with respect to gµνeff . Interpreted with respect to the original metric it propagates
with a time-dependent speed of light c2

eff(τ), as can be seen from (5.33). The propagation
is therefore causal with respect to gµν as long as c2

eff(τ) ≤ 1 for all times τ . Note that any
time-dependence of the mass leads to a positive contribution to the effective speed of light
since A2

2 ∝ (m′)2 while A1 does not depend on m′. Thus, time-variations in the mass can
never reconcile an otherwise acausal propagation of the longitudinal part with causality.

It is remarkable that the supergravity model discussed in [152] leads to c2
eff(τ) ≡ 1 for all

d=4 FRW solutions. This ensures causal propagation of the gravitino on the one hand, but
on the other hand also means that the time-varying mass m = eK/2W exactly compensates
the deficit in the effective speed of light from being one, thus leading to standard causal
properties. As we will discuss in the next section, also for the Rarita-Schwinger field alone,
without the restrictions imposed by the supergravity model, a causal propagation is possible
on a variety of FRW spacetimes. This, however, generically involves a time-dependent speed
of light c2

eff(τ) ≤ 1.

5.3 Cosmological Spacetimes

Within the class of matter models described by the equation of state p = ωρ, ω ∈ R,
we identify the d=4 FRW spacetimes on which the Rarita-Schwinger field can propagate
causally, and study the time-dependence of the effective speed of light. For a clearer physical
interpretation we work in cosmological time t defined by dt = a(τ)dτ , such that the FRW
metric reads ds2 = dt2 − a(t)2 d~x 2. As discussed in the previous section, time-variations of
the mass give a positive contribution to the effective speed of light and thus can only tighten
the restrictions on the background spacetime. We therefore focus on a constant mass m > 0
and identify the spacetimes for which c2

eff(t) ≤ 1 for all t.

Solving Friedmann’s equations for the Hubble rate H yields

H(t) :=
ȧ(t)

a(t)
=

2

3t(ω + 1) + 2α
, (5.34)
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with constant of integration α = H(0)−1. The energy density is given by ρ = 3H2 and the
effective speed of light (5.33) for the longitudinal part becomes

c2
eff(t) =

(
m2 − ωH(t)2

m2 +H(t)2

)2

. (5.35)

For the special case ω = −1, i.e. de Sitter space, we find c2
eff(t) ≡ 1 such that the Rarita-

Schwinger field propagates with the standard speed of light, as expected. Consider now the
case ω 6= −1, where we set α = 0 such that the cosmological singularity is at t = 0. For
t→ ±∞ the Hubble rate vanishes and the speed of light c2

eff approaches 1. Thus, we find
standard causal properties at late times. On the other hand, for t → 0 the Hubble rate
diverges, such that c2

eff → ω2. For a causal propagation at times close to t = 0 we have to
require ω ∈ [−1, 1]. In fact, from (5.35) this condition is necessary and sufficient for causal
propagation

c2
eff(t) ≤ 1 for all t ⇐⇒ ω ∈ [−1, 1] . (5.36)

Interestingly, the matter models used in standard cosmology satisfy ω ∈ [−1, 1] and hence
allow for a causal propagation of the Rarita-Schwinger field. We plot the effective speed of
light for the cases ω = −1 (cosmological constant), ω = 0 (dust) and ω = 1/3 (radiation) in
Fig. 5.2. Note that for ω > 0 the effective speed of light vanishes at t = ±2

√
ω/(3m |ω + 1|).

log(1 + t)

c2eff

1
2

1

0

ω = −1

ω = 0

ω = 1
3

Figure 5.2: Cosmological-time dependence of the effective speed of light for the longitudinal
gravitino components. The plot shows with increasing dash length ω ∈ {−1, 0, 1

3},
corresponding to a cosmological constant, dust and radiation dominated FRW
universe, respectively.

This means that the longitudinal part of the Rarita-Schwinger field effectively does not
propagate over extended spatial distances around these times.
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5.4 Discussion

We have investigated the massive spin 3/2 Rarita-Schwinger field focusing on the properties
relevant for quantization to show that a consistent quantization is possible also on non-
Einstein spaces. Using the variational bicomplex we have constructed for generic spacetimes
of dimension d ≥ 3 a current which is conserved on solutions of the equation of motion. For
d-dimensional FRW spacetimes we have also shown that the associated inner product is
positive definite and therefore allows for a consistent quantization of the Rarita-Schwinger
field in terms of a CAR-algebra. We then have studied the propagation of the transversal
and longitudinal parts of the Rarita-Schwinger field and found that, while the transversal
polarizations propagate causally on all FRW spacetimes, the propagation of the longitudinal
part has quite distinct features. Its propagation is characterized by a time-dependent effective
speed of light, and demanding causality imposes restrictions on the background spacetime
and on time-variations of the mass. This discussion offered an interesting perspective on the
role of the time-dependent mass in the supergravity model [152]. For a constant mass we have
found that the propagation is causal for d=4 FRW spacetimes with a matter model described
by the equation of state p = ω ρ, if and only if ω ∈ [−1, 1]. This in particular includes
cosmological constant, dust and radiation dominated universes. Comparing this result to
the weak-field condition found for the electromagnetic background in [157] which singles out
preferred frames, we note that our condition is invariant under the FRW isometries.

The positive results of this detailed investigation of the gravitino on FRW spacetimes have
allayed the fear that a consistent quantization could be generally impossible on non-Einstein
spaces, which would otherwise challenge applications of supergravity in AdS/CFT or particle
physics and cosmology. Moreover, the distinct features of the propagation of the longitudinal
modes with time-dependent speed of light may also be relevant for models with explicit
supersymmetry breaking, e.g. the MSSM. Interesting physical consequences may therefore
be expected e.g. for bounds on gravitino dark matter.
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We have focussed in this work on generalizations of the celebrated AdS/CFT dualities,
which started off as a correspondence between certain supersymmetric conformal quantum
field theories on the one hand and certain supersymmetric gravitational theories on specific
string-theory backgrounds on the other. These dualities have been generalized in numerous
ways to describe holographically phenomena like chiral symmetry breaking or confinement,
the spectrum of mesons or QFTs at finite temperature. Moreover, there are even applications
to solid-state physics to describe superconductors or quantum phase transitions. The
generalizations we were after here involve on the lower-dimensional side of the duality, which
corresponds to the conformal boundary of the asymptotically-AdS spaces, QFTs defined on
curved spacetimes and as a further generalization also gravity. Attempting to holographically
study these subjects is well motivated. QFT on curved spacetimes is non-trivial already
for free theories with interesting effects like particle production due to spacetime curvature.
Thus, alternative descriptions are even more called for than in the case of flat-space QFT.
The properties of gravity as a quantum theory on the other hand are a ubiquitous subject
and strong-coupling effects may specifically be relevant for restoring unitarity of conformal
supergravities, which would then be valid candidates for renormalizable quantum theories of
gravity.

Geometries where the conformal boundary is identified with the maximally symmetric
dS or AdS spaces, rather than Minkowski space, have been considered in the literature.
They can be employed for a dual description of CFTs defined on these spacetimes. This
may in particular be used to shed light on the dynamics of strongly-coupled field theories
on inflating cosmological spacetimes, see e.g. [61] where possibilities for phase transitions
during cosmological evolution were explored. Also CFTs on manifolds with boundary are
of particular interest, e.g. in the context of string-theory configurations with branes ending
on branes. See e.g. [60] for a recent discussion of D3-branes ending on 5-branes and the
connection to N=4 SYM theory on AdS4. As global/Poincaré AdS is conformal to half of the
Einstein static universe/Minkowski space, such BCFTs can be studied equivalently on AdS in
a fully covariant way, as pointed out in [62]. The geometries with AdS on the boundary thus
allow for a holographic study of BCFTs. In the first part we have set up the framework of
holographic renormalization for the geometries with dS and AdS on the boundary. We have
then discussed the unitarity properties of the dual CFTs from the holographic perspective.
Although this revealed subtleties in the renormalization for the setup with AdS on the
boundary, a careful discussion has shown that generically the properties of the bulk theory
are consistent with the expectations from the CFT perspective for both, dS and AdS on
the boundary. The only exception is the specific case where the unitarity bound on the
scaling dimension for gauge-invariant operators is saturated by an operator on the CFT side,
corresponding to a specific choice of mass in the bulk theory. We have resolved the tension
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found for this specific case by employing the singleton representation, which allows for the
formulation of a gauge theory for scalar fields on AdS. This has also shown that the singleton
avoids some of the subtleties mentioned above for the AdS boundary.

The setup with AdS on the boundary in particular offers the possibility of implementing
multi-layered AdS/CFT-type dualities, a logical possibility which was speculated to play
a role for appropriate boundary geometries already in [52]. We have studied 〈n〉-manifolds
as an appropriate geometric setting, where the boundary of a boundary is a well-defined
concept, and discussed extensions of the notion of conformal compactness to that setting.
The geometry with AdS on the boundary is recovered as a 〈2〉-manifold. We have then
discussed specific 〈n〉-manifolds which are conformally 〈n〉-compact with boundary, meaning
that they in principle allow for n-fold nestings of AdS/CFT dualities. However, building on
our previous results we could conclude that nesting more than two instances of AdS/CFT
does – at least in the framework we have discussed – not lead to non-trivial relations. An
interesting concrete realization of double-layered AdS/CFT has been speculated to exist
for M-theory setups involving M2-branes [101]. It is built around ABJM theory [97], the
worldvolume theory of a stack of M2-branes which also provides a realization of three-algebras
[158]. A version of that theory is expected to be dual to a two-dimensional CFT on the
one hand and to a four-dimensional gravitational theory on the other hand, and we have
discussed in some detail the particular 〈2〉-manifold which is appropriate in that context and
the role of its isometries.

This discussion of multi-layered dualities already involved gravitational theories on the
boundary of AdS, an issue to which we turned in more detail in the second part. Boundary
conditions are known to play a crucial role for (quantum) field theory on AdS already since the
early work [21] and the studies of gauged supergravities in [22]. Generalizations of Neumann
and Dirichlet boundary conditions and also certain mixtures turn out to be appropriate, but
e.g. for a scalar only Dirichlet boundary conditions are admissible for the full range of allowed
masses. In a window above the Breitenlohner-Freedman stability bound also more general
boundary conditions are possible and play a dedicated role in AdS/CFT [68]. Likewise, the
discussion of allowed boundary conditions for vector fields reveals an intricate dependence on
the spacetime dimension [132]. For the metric a similar analysis reveals that generically only
Dirichlet boundary conditions are available, thus fixing the boundary geometry. However,
the refined discussion in [52], taking into account the holographic-counterterm contributions
to the symplectic structure, has shown that Neumann or mixed boundary conditions can in
fact also be imposed on metric fluctuations, such that the boundary theory can be coupled
to gravity. Actually, the possibility of a string-theory description of the N=4 SYM theory
coupled to conformal supergravity has been discussed already in [106]. The second part of
this thesis was aimed at a concrete realization of such a duality within string theory. We
considered five-dimensional gauged supergravities whose solutions can be lifted to describe
actual string-theory setups. Restricting the configuration space to asymptotically-AdS
geometries we have constructed the asymptotic multiplets of fields induced on the conformal
boundary along with the symmetry transformations induced from the bulk symmetries.
Building on these results we performed the holographic renormalization and calculated the
Weyl anomaly of the dual CFTs in generic conformal supergravity backgrounds, providing
a non-trivial test of the AdS/CFT conjecture. Employing the holographic counterterms
we could then proceed to establish that Neumann and mixed boundary conditions can be
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imposed on the full five-dimensional supergravities, generalizing the results of [52] and [130]
appropriately. We have thus established a dual description of a gravitational theory on the
boundary in terms of a bulk theory which can be directly connected to string-theory setups.
However, the boundary theory obtained this way possesses pathologies like perturbative
ghosts and tachyons, as already known from [52]. These features do not come as a surprise
for conformal gravity, and in fact their possible resolution e.g. by strong-coupling effects is
a long-standing issue. We have discussed for instance how a singleton-type formulation of
the bulk theory can lead to a unitary boundary theory. On the other hand, possible effects
restoring unitarity directly for the boundary conformal gravity may be studied by means of a
dual string-theory description. A promising route is the description in terms of twistor string
theory, and a first investigation led back to the anomaly-free combinations of conformal
supergravity with matter considered already in [41]. This in particular involves the N=4
SYM theory with a gauge group of finite rank, and therefore calls for AdS/CFT beyond the
limit of large N where the bulk theory is classical.

A consistent quantization of supergravity is certainly needed for holographic applications,
as 1/N corrections to the large-N limit in the boundary theory of AdS/CFT are related to
quantum corrections in the bulk. In particular, the quantization prescription is required not
only on AdS but also on generic, possibly non-Einstein backgrounds. Moreover, it is also
crucial for direct physical applications in particle physics or cosmology, e.g. to describe the
dynamics in the early universe. Supergravities inevitably contain a number of spin 3/2 fields,
the gravitinos, as superpartners for the graviton. In linearizations of supergravity around
backgrounds like dS or FRW these gravitinos yield massive spin 3/2 fields, which should be
describable in the framework of effective QFT. However, the field equations for such massive
Rarita-Schwinger fields are not of the type where general results like [149] guarantee the
existence of a consistent quantization prescription on all globally hyperbolic spacetimes. In
the third part we have explicitly carried out the quantization of massive Rarita-Schwinger
fields on FRW spacetimes and studied the causality properties of the resulting theories.
We indeed obtained a consistent and causal quantization on a wide class of these FRW
spacetimes as examples of non-Einstein spaces which are of interest for cosmology. Thus, we
have shown that – in contrast to claims in the literature – a consistent quantization is possible
at least on certain classes of non-Einstein spacetimes. This also revealed interesting causal
features of the trace part. On dust or radiation dominated FRW universes, for example, it
propagates in regions which are actually more narrow than the standard light cones. The
propagation in particular is causal, and in the supergravity model [152] these regions are
stretched to the standard light cones by a specific time dependence of the mass arising there.
The non-standard features may still be of interest for particle physics models with explicit
supersymmetry breaking like the MSSM.

In summary, we have on the one hand expanded on the holographic description of CFTs
defined on curved spacetimes. In concrete applications we found results which – although
partly in a somewhat intricate way – confirm the expectation that a duality also holds in
that more general setting. We have also resolved a unitarity puzzle present already in the
more common AdS/CFT setup involving global or Poincaré AdS and performed geometric
constructions towards realizing multi-layered dualities. On the other hand, we have also
expanded on the holographic description of gravity on the boundary. As an intermediate step
we have calculated from concrete low-energy string theories the Weyl anomaly of the dual
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CFTs in generic but fixed conformal supergravity backgrounds, and then promoted these
gravitational background fields to actual dynamical supergravities. Both of these points offer
interesting prospects for future research.

The discussion of the geometries with AdS on the boundary offered the possibility of multi-
layered dualities. An interesting point is to study in more detail the concrete realization in
M-theory. Specifically, the steps outlined in Sec. 3.3.3 for understanding from the M-theory
perspective the coupling of ABJM theory to conformal supergravity with the subsequent
Higgsing should be worked out in detail, to obtain a bulk description of the ABJM-type
boundary theory on AdS3. This boundary theory is itself supposed to have a dual description
in terms of a two-dimensional CFT, and the construction would therefore provide a major step
towards establishing double-layered holography in a concrete setting. For the implementation
of further nestings of AdS/CFT-type dualities we found an obstruction as pointed out in
Sec. 3.3.2. However, these renormalizability issues for nested Neumann boundary conditions
discussed in Sec. 3.1.2 apparently are rather technical in nature and not so much of conceptual
type. It would be interesting to see whether they can be resolved e.g. by employing the total
boundary blow-up mentioned in the context of 〈n〉-manifolds in Sec. 3.3. Regarding the
gravitational boundary theories the main point deserving further investigation is the fate of
the ghosts discussed in Sec. 4.3.2. The truncation of conformal supergravity on AdS to a
unitary subsector by imposing suitable boundary conditions [137, 138] provides an interesting
starting point. It would certainly be worthwhile to study whether this mechanism can be
applied to the concrete boundary theories arising from the bulk supergravities of Sec. 4
with Neumann boundary conditions, which in particular also contain the non-local action to
reproduce the Weyl anomaly. To this end one would like to study the Neumann bulk theory
perturbatively on the geometry with AdS on the boundary, which was discussed in Sec. 3.
Mechanisms to restore unitarity directly on Minkowski space could be investigated by means
of a possible ghost-free dual string theory, as discussed in Sec. 4.4. In particular, for the
four-dimensional boundary it would be interesting to study the relation of the conformal
boundary gravity to twistor string theory, which not only yields a description of N=4 SYM
theory but inevitably also contains conformal supergravity.
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