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Tag der mündlichen Prüfung: 20.02.2004

Doktorurkunde ausgehändigt am: . . . . . . . . . . . . . .



Contents

1 Introduction 5

2 Theoretical framework 7

2.1 Aspects of supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Minimal supersymmetric Standard Model . . . . . . . . . . . . . . . . . . . 9

2.3 SUSY seesaw model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Minimal supergravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Gauge mediation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Minimal anomaly mediation . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Minimal gaugino mediation . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Phenomenological implications 29

3.1 Lepton-flavor violating radiative decays . . . . . . . . . . . . . . . . . . . . 29

3.2 Magnetic and electric dipole moments of leptons . . . . . . . . . . . . . . . 34

3.3 Other rare lepton-flavor violating processes . . . . . . . . . . . . . . . . . . 38

3.4 Leptogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Numerical results 52

4.1 Input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1 Neutrino parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.2 SUSY parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Leptogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Leptonic processes at low energies . . . . . . . . . . . . . . . . . . . . . . . 57

5 Conclusions 79

A SM input values 81

B Feynman rules 83

C Masses and mixings 87

D Dirac algebra and Gordon identity 90

3



4 CONTENTS

E Formulae for calculation of loop integrals 92

F Calculation of lj → liγ at one-loop level 94

F.1 Neutralino part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
F.2 Chargino part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
F.3 Limiting behavior of loop functions . . . . . . . . . . . . . . . . . . . . . . 99

G Evaluation of other loop functions 101

H Renormalization group equations 104



Chapter 1

Introduction

During the last years there have been many fascinating new insights into the nature of
leptonic interactions. The evidence for neutrino oscillations in solar [1] and atmospheric
[2] neutrino experiments and the resulting neutrino mixing and mass squared difference
parameters [3] are now widely accepted. In the near future, the ongoing efforts of testing
neutrino properties will become precision measurements. The research in the neutrino sec-
tor is nicely complemented by precision experiments studying charged leptons [4]. Among
these are the searches for lepton-flavor violating rare decays, muon-electron conversion on
nuclei and electric and magnetic dipole moments. In order to give an overview of the
present results and the expected future sensitivities of these experiments, we summarize
them below:

• Br (µ→ eγ) < 1.2 · 10−11 (10−13 − 10−14) [5, 4] [6]

• Br (τ → eγ) < 3.7 · 10−7 (10−8) [7]

• Br (τ → µγ) < 3.1 · 10−7 (10−8 − 10−9) [8] [9, 7]

• Br (µ+ → e+e+e−) < 1.0 · 10−12 (10−16) [5] [10]

• R (µ−T i→ e−T i) < 6.1 · 10−13 (10−16) [5] [4, 11]

• de < 1.5 · 10−27 (10−33) ecm [12] [13]

• dµ < 1.5 · 10−18 (10−26) ecm [14] [10]

A natural framework for neutrino masses is provided by the seesaw mechanism [15] in
which the smallness of neutrino masses is explained by a very large mass scale of right-
handed neutrinos. These are Majorana fermions and singlets under the Standard Model
(SM) gauge symmetry. Their existence leads to a possible solution of the puzzle of baryo-
genesis, i. e. the matter-antimatter asymmetry of the universe in the framework of
leptogenesis [16], where an asymmetry in the lepton number L, generated by interactions
of the heavy Majorana neutrinos is eventually converted into the baryon asymmetry ob-
served in the present universe. The generation of a baryon asymmetry of the right order
of magnitude clearly restricts the parameter space of the seesaw model.
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6 CHAPTER 1. INTRODUCTION

The aforementioned lepton-flavor violating processes are strongly suppressed due to the
small neutrino masses if only right-handed neutrino singlets are added to the Standard
Model [17]. Therefore an observation of lepton-flavor violation (LFV) in rare decays is a
clear proof of physics beyond the SM. Well-motivated candidates for physics beyond the
SM are supersymmetric theories which can be constructed to be consistent with all ex-
perimental data. Apart from an elegant solution to the hierarchy problem, i. e. the large
discrepancy between the electroweak scale and the Plack scale, supersymmetric theories
generically lead to gauge coupling unification, thus allowing the construction of Grand
Unified Theories (GUTs) at ultra high energy scales. From a phenomenological point
of view, low-energy supersymmetry (SUSY) is expected to manifest itself at upcoming
collider projects, i. e. the Large Hadron Collider (LHC) and the future Linear Collider
(LC). Other possible indications of SUSY are the current deviation [18] of the measure-
ment of the muon anomalous magnetic moment [19] from the Standard Model prediction
[18]. The interpretation of the lightest supersymmetric particle (LSP) as the cosmological
dark matter candidate [20] is also an interesting phenomenological aspect of SUSY.
A challenging problem of supersymmetric theories is the mechanism of soft supersymme-
try breaking (SSB). At present, there are several theoretical suggestions in order to explain
phenomenologically interesting SSB masses in the TeV range. Among these scenarios of
SSB, the so-called minimal supergravity (mSUGRA) scenario [21] has gained much atten-
tion in studies of SUSY LFV, see e. g. [22]. In this work however, we also want to discuss
the SUSY seesaw model in the framework of anomaly mediated supersymmetry breaking
(AMSB) [23] and in the case of gaugino mediated supersymmetry breaking (G̃MSB) [24].
Moreover we study sizeable LFV effects in a scenario of gauge mediated SUSY breaking
(GMSB) [25] motivated by the recent analysis of [26], where a very high messenger scale
has been considered. It is demonstrated that in a large portion of the parameter space
of the SUSY seesaw model, one can expect decay rates for µ → eγ accessible by future
searches irrespective of the mechanism of SUSY breaking. We point out that relations
among different LFV rare processes are expected to probe the parameters of the SUSY
seesaw model, and furthermore to distinguish it from other SUSY approaches, such as
trilinear R-parity violation.
This work is organized as follows: In the second chapter, different supersymmetric models
are introduced and their basic features relevant for further phenomenological and numer-
ical study are outlined. We summarize the analytical results for leptonic processes at low
energies and leptogenesis in chapter 3. The fundamental parameters of the SUSY scenar-
ios under study as well as the neutrino data used in the numerical analysis are specified
in the fourth chapter. In this chapter we also present numerical predictions, so that we
can discuss consequences of the different scenarios and effects of various parameters in
detail. The most important results are presented in the conclusions. This work is com-
pleted by several appendices containing e. g. a complete one-loop calculation of SUSY
contributions to leptonic dipole operators relevant in the SUSY seesaw model.



Chapter 2

Theoretical framework

2.1 Aspects of supersymmetry

A supersymmetric transformation turns a fermionic state into a bosonic state and vice
versa. The generator of SUSY transformations is given by the anticommuting spinor
object Q [27, 28]. Moreover, Q commutes with P µ, i. e. the generator of space-time
translations. The SUSY algebra is completed by the anticommutator of Q and Q†, which
is related to P µ. We do not want to introduce the full index formalism for Weyl spinor
objects here, because we do not need it in the following parts of this work. For formal
presentations of the SUSY algebra see e. g. [27, 28]. The irreducible representations of
the SUSY algebra consisting of single particle states form supermultiplets. In an unbroken
supersymmetric theory, the bosonic and fermionic states of the same supermultiplet have
equal masses, since the (mass)2 operator P 2 commutes with Q, Q† and all space-time
rotation and translation operators. Moreover, Q and Q† commute with the generators of
gauge transformations. It follows that the states of the same supermultiplet are in the
same representation of the gauge group, i. e. they have the same SU(3)C×SU(2)L×U(1)Y
quantum numbers. The supermultiplets consist of bosonic and fermionic superpartners
with equal number of bosonic and fermionic degrees of freedom.

Each chiral supermultiplet is a combination of a left-handed, two-component Weyl-fermion
and a complex scalar field accompanied by an auxiliary field Faux. The complex scalar
field Faux is necessary in order for the SUSY algebra to close off-shell. Since Faux is
introduced through F ∗auxFaux in the Lagrangian, it has mass dimension 2 and no kinetic
term, so that it can be eliminated by using its equation of motion. Vector supermultiplets
consist of gauge bosons, the spin- 1

2
gauginos and auxiliary fields Da, where the index a

refers to the adjoint representation of the gauge group. Prior to spontaneous breaking
of electroweak symmetry, gauge bosons and gauginos are massless. The real bosonic
fields Da is introduced in the Lagrangian through Laux = 1

2
Da
auxD

a
aux, allowing the SUSY

algebra for vector supermultiplets to close also off-shell, a necessary condition for viable
SUSY calculations at the quantum level.

One of the main advantages of supersymmetric theories is that they provide a natural
solution to the hierarchy problem [28]: In the SM the quantum corrections to scalar

7



8 CHAPTER 2. THEORETICAL FRAMEWORK

masses squared diverge quadratically. This leads to Higgs (mass)2 contributions of the
order of the cut-off scale squared, so that an extreme amount of fine-tuning would be
necessary to obtain a Higgs mass at the electroweak scale.
Because of the experimental evidence that no mass-degenerate SUSY partners of the SM
particles exist, supersymmetry is a broken symmetry in the vacuum state. If broken super-
symmetry is required to provide a solution of the hierarchy problem at the quantum level,
the Lagrangian must contain only couplings with positive mass dimension, so-called soft
SUSY breaking terms [29]. In that work it has been shown that a generic renormalizable
SSB Lagrangian is given by

Lgensoft = −
1

2

(

M̃λaλaλa + h.c.
)

−m2
ijφ

∗
iφj −

(

1

2
bijφiφj +

1

6
aijkφiφjφk + h.c.

)

, (2.1)

specifying the structure of mass terms for gauginos λa, scalar fields φi, bilinear terms bij
and trilinear terms aijk. Hermitian conjugate of a term is abbreviated by “h.c.”.
In a renormalizable supersymmetric theory, the interactions of all particles are determined
by their gauge transformation properties and the superpotential. The superpotential is
an analytic function of the chiral superfields Φi of the generic form [27]

Wgen =
1

2
MijΦiΦj +

1

6
yijkΦiΦjΦk. (2.2)

If SUSY is broken spontaneously in the vacuum state, the vacuum state is not invariant
under a supersymmetric transformation. According to the Goldstone theorem, see e. g.
[30], the spontaneous breaking of a global symmetry leads to a massless Goldstone mode
having the same quantum numbers as the broken symmetry generator. Broken global
SUSY implies the breaking of the fermionic SUSY generator Q, leading to a massless
neutral Weyl-fermion, the goldstino.
The mechanism of SUSY breaking is often supposed to occur in a “hidden sector” having
only very small direct couplings to the “visible sector” of low-energy supersymmetry. If
the theory is locally supersymmetric, it is referred to as supergravity [21], unifying the
spacetime symmetries of General Relativity with local supersymmetry transformations.
The graviton is then accompanied by its spin- 3

2
partner, the gravitino. If SUSY is spon-

taneously broken, the gravitino acquires a mass m3/2 in the “super-Higgs mechanism”,
see e. g. [28] by absorbing the goldstino which becomes its spin- 1

2
component. It is im-

portant to mention that SUSY is spontaneously broken if and only if auxiliary fields have
non-vanishing vacuum expectation values (VEVs) [28]. For F -term breaking of SUSY,
the gravitino mass is roughly given by

m3/2 ∼
〈Faux〉
MPl

(2.3)

which becomes zero in the case of unbroken SUSY, i. e. 〈Faux〉 = 0 or by “switching off”
gravity, i. e. MPl → ∞. Gravitinos can have important effects in cosmology which will
be discussed later.
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2.2 Minimal supersymmetric Standard Model

The minimal supersymmetric Standard Model (MSSM) is a minimal supersymmetric
theory in the sense that one SUSY degree of freedom is introduced for every bosonic
or fermionic degree of freedom of the Standard Model. The MSSM shows the following
features [27]:

• The MSSM is gauge invariant under the groups SU(3)C × SU(2)L × U(1)Y .

• The MSSM possesses the minimal structure for the Higgs sector of an anomaly free
extension of the Standard Model with two hypercharge Y = ±1/2 doublets.

• The most general soft SUSY breaking terms are included.

• R-parity is conserved. This multiplicative quantum number is defined as R =
(−1)3(B−L)+2S (B: baryon number, L: lepton number, S: spin), yielding an even
value for SM particles and an odd number for their superpartners.

The conservation of R-parity is related to B − L invariance and implies important phe-
nomenological consequences:

• If the initial state for any process consists of SM particles (with even R-parity),
then SUSY particles can only be produced in even numbers.

• The lightest supersymmetric particle (LSP) has to be absolutely stable if R-parity
is exactly conserved.

• Every supersymmetric particle heavier than the LSP must finally decay into a state
with an odd number of LSPs.

From cosmological, experimental and theoretical considerations the LSP should neither
carry charge nor color [20]. Therefore a LSP having only electroweak interactions appears
as a promising candidate for dark matter.
In the MSSM the superpartners for quarks and leptons are shown in Tab. 2.1. The
(charge) conjugated fields of right-handed quarks, leptons and their superpartners appear
in this table, because it is standard convention that all chiral superfields are defined in
terms of left-handed Weyl spinors [27].
The MSSM superpotential is [31]

WMSSM = uc TR Yu q · h2 + dc TR Yd q · h1 + ec TR Ye l · h1 + µh1 · h2, (2.4)

where the fields are understood as chiral superfields. Here the dot-symbol denotes a
summation over SU(2)L indices, e. g. µh1 · h2 = µ (h1)

α (h2)
β εαβ, where εαβ is the

antisymmetric tensor with ε12 = 1. A summation over family indices and also SU(3)C
color indices for quarks is understood.
The MSSM contains two Higgs supermultiplets with hypercharges ± 1

2
. The Higgs chiral

supermultiplet with Y = +1/2 has the Yukawa couplings necessary to give masses to
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Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks q̃ =
(

ũL d̃L

)

q = (uL dL)
(

3,2, 1
6

)

(× 3 families) ũ∗R (uR)
c (

3,1,−2
3

)

d̃∗R (dR)
c (

3,1, 1
3

)

sleptons, leptons l̃ = (ν̃L ẽL) l = (νL eL)
(

1,2,−1
2

)

(× 3 families) ẽ∗R ecR (1,1, 1)

Higgs, higgsinos h2 =
(

h+2 h02
)

h̃2 =
(

h̃+2 h̃02

)

(

1,2, 1
2

)

h1 =
(

h01 h
−
1

)

h̃1 =
(

h̃01 h̃
−
1

)

(

1,2,−1
2

)

Table 2.1: Physical components of chiral supermultiplets in the MSSM; fields of the SUSY
partners are written with tildes on the SM counterpart.

Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

Gluino, gluon G̃ G (8,1, 0)

winos, W-bosons W̃± W̃ 0 W± W 0 (1,3, 0)

bino, B-boson B̃0 B0 (1,1, 0)

Table 2.2: Physical components of vector supermultiplets in the MSSM.

up-type quarks. On the other hand, the Y = −1/2 supermultiplet leads to masses of
down-type quarks and charged leptons after electroweak symmetry breaking. The VEV
v2 of the Y = +1/2 Higgs field and the VEV v1 of the Y = −1/2 Higgs field are connected
to the mass of the Z boson, the weak coupling constant g and the hypercharge coupling
constant g′ [27],

v21 + v22 = v2 =
2m2

Z

g2 + g′2
. (2.5)

The ratio of the Higgs vacuum expectation values defines tan β,

tan β =
v2
v1
. (2.6)

The gauge supermultiplets of the MSSM are shown in Tab. 2.2, see also [27]. The mixing
of the gauginos and higgsino states to the neutralinos and charginos as well as the mixing
of sfermion gauge eigenstates to the physical sfermions will be summarized in appendix
C.
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In the case of the MSSM one can write down the possible soft SUSY breaking terms in
the following way [31],

−LMSSM
soft =

1

2

(

M̃1B̃
0B̃0 + M̃2W̃

aW̃ a + M̃3G̃
aG̃a + h.c.

)

+
(

m2
Q̃

)

ij
q̃†Li q̃Lj +

(

m2
ũ

)

ij
ũ∗Ri ũRj +

(

m2
d̃

)

ij
d̃∗Ri d̃Rj +

(

m2
L̃

)

ij
l̃†Li l̃Lj

+
(

m2
ẽ

)

ij
ẽ∗Ri ẽRj +m2

h1
h†1h1 +m2

h2
h†2h2 + (Bµh1h2 + h.c.)

+
(

(Au)ij h2ũ
∗
Ri
q̃Lj + (Ad)ij h1d̃

∗
Ri
q̃Lj + (Ae)ij h1ẽ

∗
Ri
l̃Lj + h.c.

)

. (2.7)

The labels i and j are generation indices. Eq. (2.7) introduces SSB masses for gauginos,
squared mass terms for sfermions, SUSY breaking contributions to the Higgs potential
and trilinear couplings, respectively. The matrices A are complex matrices in generation
space with entries having dimension of mass.
Many unknown masses, phases and mixing angles arise with these soft SUSY breaking
terms. There are actually more than 100 new parameters in the MSSM Lagrangian
that cannot be rotated away by a redefinition of phases and the flavor basis for the
supermultiplets. As a result, some of these new phases and parameters can lead to
potentially large flavor-changing neutral currents (FCNCs) and CP -violating effects.
It has been noted that even if one takesm2

h1
,m2

h2
and µ2 positive at some high energy scale,

large top Yukawa couplings can drivem2
h2

negative at lower scales through renormalization
group (RG) running, see e. g. [28]. This mechanism is known as radiative electroweak
symmetry breaking (REWSB). The necessary conditions for REWSB to work are that
the Higgs potential is bounded from below and that the minimum of the Higgs potential
occurs at non-zero field configurations. These conditions can be expressed in terms of µ
and B at tree-level, see e. g. [32],

µ2 =
1

2

(

tan 2β
(

m2
h2
tan β −m2

h1
cot β

)

−m2
Z

)

(2.8)

B =
− sin 2β

2µ

(

m2
h1

+m2
h2

+ 2µ2
)

. (2.9)

The above equations have important consequences: If the Higgs mass parameters and
tan β are known at low energy, µ2 and B can be determined so that REWSB occurs.
Moreover, naturalness requires that |µ| as determined from eq. (2.8) should not be too
far away from the electroweak scale, typically |µ| <∼ 1 TeV. To be more precise about the
energy scale in eq. (2.8): It has been found that at the so-called SUSY-scale, defined
through the geometric mean of the stop masses,

MSUSY =
√
mt̃1mt̃2 , (2.10)

the scale dependence of the electroweak breaking conditions is smallest, see e. g. [33]
and references therein. This minimizes most SUSY-threshold effects, because below the
stop mass scale the RG running of SSB parameters is negligible. Therefore eqs. (2.8) and
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(2.9) should be understood at MSUSY . The µ-parameter enters in the mass matrices of
charginos and neutralinos, making them more scale independent at the SUSY-scale. It is
therefore convenient to define the SSB masses at MSUSY [34].

2.3 SUSY seesaw model

The seesaw mechanism is an elegant and natural way to generate very light neutrino
masses by the introduction of super heavy right-handed Majorana neutrinos, being sin-
glets under the SM gauge group. A non-supersymmetric version of the seesaw mechanism
would lead to a serious hierarchy problem [35]: The presence of very massive fermions, i. e.
the right-handed neutrinos coupled to the Higgs field generates radiative corrections to the
Higgs mass, which are proportional to the mass scale of right-handed neutrinos squared.
However, in the supersymmetric framework, this problem is automatically cured by con-
tributions of right-handed sneutrinos having similar mass as their fermionic partners.
The supersymmetric version of the seesaw mechanism is characterized by the superpoten-
tial [31]

W =WMSSM +
1

2
νc TR MνcR + νc TR Yν l · h2, (2.11)

where WMSSM is the superpotential of the MSSM. The Lagrangian for the SSB terms
gets modified according to [31]

−Lsoft = −LMSSM
soft +

(

m2
ν̃

)

ij
ν̃∗Ri ν̃Rj +

(

1

2
(Bν)ijMij ν̃

∗
Ri
ν̃∗Rj + h.c.

)

+
(

(Aν)ij h2ν̃
∗
Ri
l̃Lj + h.c

)

. (2.12)

Below the mass scale of the lightest right-handed Majorana neutrino, the effective super-
potential [35] is obtained by integrating out all heavy neutrino fields,

Weff =WMSSM +
1

2
(Yν l · h2)TM−1(Yν l · h2). (2.13)

After electroweak symmetry breaking, the effective superpotential [35] leads to a mass
term for the light neutrinos,

mν = m T
D M

−1mD = Y T
ν M

−1Yν〈h02〉2 ≡ κ〈h02〉2, (2.14)

where 〈h02〉2 = v22 ≡ v2 sin2 β and the neutrino Dirac mass terms are denoted by mD. It
is convenient to work in the flavor basis in which the charged lepton Yukawa matrix is
diagonal, so that the symmetric matrix κ is diagonalized by the MNS matrix U ,

UTκU = Diag(κ1, κ2, κ3) ≡ Dκ, (2.15)

being related to the light neutrino masses by

mi = v22κi, i = 1, 2, 3. (2.16)
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This unitary matrix U relates flavor to mass eigenstates,




νe
νµ
ντ



 = U





ν1
ν2
ν3



 . (2.17)

If one chooses κi ≥ 0, then U can be written in the form

U = V ·Diag(e−iφ/2, e−iφ
′/2, 1), (2.18)

where φ, φ′ are Majorana phases and V can be parametrized in the standard CKM form

V =





c13c12 c13s12 s13e
−iδ

−c23s12 − s23s13c12eiδ c23c12 − s23s13s12eiδ s23c13
s23s12 − c23s13c12eiδ −s23c12 − c23s13s12eiδ c23c13



 , (2.19)

where cij = cos θij and sij = sin θij. The symmetric mass matrixM of the heavy Majorana
neutrinos can be diagonalized by the unitary matrix UM , such that

U T
M MUM = Diag(M1,M2,M3) ≡ DM (2.20)

M−1 = UMD
−1
M U T

M . (2.21)

Diagonalization of the seesaw relation

mν = v22Y
T

ν UMD
−1
M U T

M Yν (2.22)

leads to the complex orthogonal matrix R defined as [35]

R =
√

D−1M U T
M YνU

√

D−1κ . (2.23)

The neutrino Yukawa couplings are then expressed as [35]

Yν = U ∗M
√

DMR
√

DκU
†. (2.24)

The renormalization group evolution of neutrino Yukawa couplings from mZ to the GUT-
scale MGUT for non-degenerate seesaw scales is summarized below, see also [36] for a
top-down approach:
Below M1, the heavy Majorana neutrinos are decoupled, so that Yν = 0 and only the
effective light neutrino mass matrix κ evolves, starting from the input value κ(mZ) =
U∗DκU

†. At the M1-threshold, the corresponding right-handed Majorana neutrino is
integrated in, according to the seesaw formula

(Yν)ij

∣

∣

∣

M1

→ δi1

(

√

DMR
√

DκU
†
)

ij

∣

∣

∣

M1

. (2.25)

The tree-level matching condition for κ at M1 is given by

(κ)ij

∣

∣

∣

M1

→ (κ)ij

∣

∣

∣

M1

−
(

Y T
ν

)

i1

1

M1

(Yν)1j

∣

∣

∣

M1

. (2.26)
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The masses of heavy neutrinos evolve above the respective mass thresholds. For the
evolution between M1 and M2, the input values are κ|M1

, Yν |M1
and M1(M1), evolving to

κ|M2
, Yν |M2

and M1(M2) at the M2-threshold. The matching at M2 is analogous to the
matching at M1, when replacing M1 by M2 and indices 1 by 2, respectively,

(Yν)ij

∣

∣

∣

M2

→ (Yν)ij

∣

∣

∣

M2

+ δi2

(

√

DMR
√

DκU
†
)

ij

∣

∣

∣

M2

(2.27)

(κ)ij

∣

∣

∣

M2

→ (κ)ij

∣

∣

∣

M2

−
(

Y T
ν

)

i2

1

M2

(Yν)2j

∣

∣

∣

M2

. (2.28)

Above the M2 threshold, the 2 × 2 submatrix of M obtains small off-diagonal elements,
so that at the M3 scale M has to be diagonalized by UM . The diagonalization of M leads
to the redefinition Yν → U∗MYν . As has been noted in [36], the renormalization group
equations (RGEs) are invariant under the transformations that diagonalize M . In the
corresponding RGEs, see appendix H, UM drops out in the combination Y †ν Yν . It can also
be checked that the RG equation (H.14) for M , where the combination YνY

†
ν enters, is

not modified under the transformations M → U ∗MDMU
†
M and Yν → U∗MYν . Therefore the

matching conditions at M3 are given by

(Yν)ij

∣

∣

∣

M3

→ (U ∗MYν)ij

∣

∣

∣

M3

+ δi3

(

U∗M
√

DMR
√

DκU
†
)

ij

∣

∣

∣

M3

(2.29)

(κ)ij

∣

∣

∣

M3

→ 0. (2.30)

BetweenM3 andMGUT , all right-handed neutrinos are active degrees of freedom, so that in
principle all matrix elements of Yν andM evolve in this regime. It turns out however, that
the off-diagonal elements of M are many orders of magnitude smaller than the diagonal
entries, in all cases considered in this study. Also the corrections to the diagonal mass
terms in M are at the percent level or below.

By inspection of the RGEs (H.16, H.19, H.25), one sees that the additional contributions
from right-handed neutrino singlets to the SSB terms m2

L̃
, m2

ẽ and Ae are given by

16π2
dm2

L̃

d lnµ
= m2

L̃
Y †ν Yν + Y †ν Yνm

2
L̃
+ 2

(

Y †νm
2
ν̃Yν +m2

h2
Y †ν Yν + A†νAν

)

(2.31)

16π2
dm2

ẽ

d lnµ
= 0 (2.32)

16π2
dAe

d lnµ
= 2YeY

†
ν Aν + AeY

†
ν Yν . (2.33)

These contributions induce lepton-flavor violating mass terms in the left-handed slepton
masses through diagrams depicted in Fig. 2.3 and also in the corresponding trilinear
couplings.
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l̃Li

νR

h̃2

l̃Lj l̃Li

ν̃R

h2

l̃Lj

Figure 2.1: Generation of LFV mass terms for left-handed sleptons; the right diagram is
the supersymmetric version of the left one and i, j are lepton flavor indices.

Parametrization of R

Requiring that the neutrino Yukawa couplings remain perturbative is equivalent to
∣

∣

∣(Yν)ij

∣

∣

∣

<∼ O(1). For UM = 1, this corresponds to the constraint

3
∑

l=1

∣

∣RilU
∗
jl

∣

∣

√

(Dκ)l <∼ O
(

1
√

(DM)i

)

, (2.34)

implying that either the heavy Majorana masses and/or the elements of R have to be
sufficiently small. The complex orthogonal matrix R can be parametrized [35] as

R =





ĉ2ĉ3 −ĉ1ŝ3 − ŝ1ŝ2ĉ3 ŝ1ŝ3 − ĉ1ŝ2ĉ3
ĉ2ŝ3 ĉ1ĉ3 − ŝ1ŝ2ŝ3 −ŝ1ĉ3 − ĉ1ŝ2ŝ3
ŝ2 ŝ1ĉ2 ĉ1ĉ2



 , (2.35)

where ĉi ≡ cos (xi + iyi) and ŝi ≡ sin (xi + iyi). In the case of imaginary angles one

obtains cos(iy) = cosh(y) and sin(iy) = i sinh(y), demonstrating that
∣

∣

∣(Yν)ij

∣

∣

∣ is expected

to be very sensitive to the imaginary parts of the angles if they are of order 1 or larger.
If only one angle in R is non-vanishing, one obtains the following matrices

R1 =





1 0 0
0 ĉ1 −ŝ1
0 ŝ1 ĉ1



 (2.36)

R2 =





ĉ2 0 −ŝ2
0 1 0
ŝ2 0 ĉ2



 (2.37)

R3 =





ĉ3 −ŝ3 0
ŝ3 ĉ3 0
0 0 1



 . (2.38)
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As we will show later, assuming relatively small values for the imaginary angles, yi ' 10−1,
and setting the real angles in R to zero, can lead to successful leptogenesis. Under these
assumptions, the R-matrix is approximately given by

R '





1 + 1
2
(y22 + y23) −iy3 + y1y2 −iy2 − y1y3
iy3 1 + 1

2
(y21 + y23) −iy1 + y2y3

iy2 iy1 1 + 1
2
(y21 + y22)



 . (2.39)

The form (2.35) of the complex orthogonal R-matrix can be obtained from the CKM
parametrization (2.19) by taking the transponent matrix, neglecting the Dirac phase and
using complex angles. This parametrization of R is particularly useful in the case of
dominant M3 and hierarchical κ, i. e. DM ' (0, 0,M3), Dκ ' (0, κ2, κ3) [35]. In this limit
the only non-vanishing Yν-elements are given by

(Yν)3j =
√

M3ĉ2

(

ŝ1

√

(Dκ)2U
∗
j2 + ĉ1

√

(Dκ)3U
∗
j3

)

. (2.40)

The authors of [35] have found that if one further assumes that the largest eigenvalue
of Y †ν Yν is fixed at MGUT , then the neutrino Yukawa coupling matrix only depends on
the phase of ĉ2 and the complex angle x1 + iy1 in this limit. Then the perturbativity of
neutrino Yukawa couplings leads to

|R32| <∼ (M3κ2)
− 1

2 , |R33| <∼ (M3κ3)
− 1

2 , (2.41)

using |U33| ' O(1) and |U22| ' O(1).
If both light and heavy neutrino states are quasi-degenerate, i. e. Mij ' MRδij and
κij ' κdδij, perturbativity requires

3
∑

l=1

∣

∣RilU
∗
jl

∣

∣ <∼
1√
κdMR

. (2.42)

2.4 Minimal supergravity

In gravity mediated SUSY breaking, the hidden sector is connected to the MSSM sector
through interactions of gravitational strength. One can assume that SUSY is broken in
the hidden sector by a vacuum expectation value 〈FX〉 of a complex scalar auxiliary field.
Then the very rough approximation

msoft ∼
〈FX〉
MPl

(2.43)

gives the order of the soft SUSY breaking mass terms [27]. In an effective field theory the
interactions between the two sectors are described by a supergravity Lagrangian with non-
renormalizable terms that are suppressed by powers of the Planck scale, because the grav-
itational coupling is proportional to 1/MPl. One might ask if this non-renormalizability
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is reasonable. However it is due to the fact that even a renormalizable model will lose
this property at least at the Planck scale where the non-renormalizable effects of gravity
are included. In practice one introduces a cutoff at the Planck scale.
The non-renormalizable part of a supergravity Lagrangian [27] includes the terms

−Lnr =
1

MPl

FX

(ca
2
λaλa + h.c.

)

+
1

M2
Pl

FXF
∗
Xkijφ

∗
iφj

+
1

MPl

FX

(

1

6
y′ijkφiφjφk +

1

2
µ′ijφiφj + h.c.

)

. (2.44)

Here φi stands for scalar fields in the MSSM and λa denotes the gaugino fields of the
MSSM. If one assumes that

√

〈FX〉 ∼ 1010 GeV, then Lnr yields a soft SUSY breaking
Lagrangian of the form (2.1) with dimensionless couplings ca, kij, y

′
ijk and mass dimension

coupling µ′ij.
In the special case of a “minimal” form for the normalization of kinetic terms and gauge
interactions in the full, non-renormalizable Lagrangian of supergravity there is a common
dimensionless ca = cλ for the three gauginos and the same kij = ckδij for all scalars.
Moreover the coupling characterized by y′ijk is proportional to the trilinear term aijk in
the Lagrangian eq. (2.1), y′ijk = cyaijk and the mass dimension coupling is proportional to
the bilinear coupling µij, µ

′
ij = cµµij with universal and dimensionless constants cy and

cµ. Then the soft terms of the MSSM can be written in terms of four parameters [27],

M̃1/2 = cλ
〈FX〉
MPl

, m2
0 = ck

|〈FX〉|2
M2

Pl

, A0 = cy
〈FX〉
MPl

, B0 = cµ
〈FX〉
MPl

. (2.45)

At the (reduced) Planck scale MPl = (8πGNewton)
−1/2 ≈ 2.4 · 1018 GeV the gaugino

masses are unified, [27],
M̃1/2 = M̃1 = M̃2 = M̃3 (2.46)

and the scalar masses in the minimal form are fixed by a common scale m0

m2
01 = m2

Q̃
= m2

ũ = m2
d̃
= m2

L̃
= m2

ẽ = m2
ν̃ (2.47)

m2
0 = m2

h1
= m2

h2
. (2.48)

Trilinear and bilinear parameters are given by

Au = A0Yu, Ad = A0Yd, Ae = A0Ye, Aν = A0Yν (2.49)

and B0, respectively.
In this framework both the scalar squared masses and the A-parameters are flavor diagonal
and universal. This kind of universality relations evades unwanted FCNCs and CP -
violating effects at high energy scales. The mentioned form of SSB parameters represents a
set of boundary conditions for the renormalization group equations at the Planck scale. In
practice, phenomenological studies often assume that the mSUGRA boundary conditions
are valid at the GUT-scale MGUT where gauge couplings and also gaugino masses are
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unified. The existence ofMGUT near 1016 GeV is a general prediction of the two-loop RGEs
in the MSSM [27]. The predictions of SUSY GUT theories betweenMGUT andMPl on the
other hand are highly model-dependent. The RG evolution of the soft parameters down to
the SUSY-scale leads to the mass spectrum of the MSSM in terms of five basic parameters,
namely M̃1/2,m

2
0, A0, B0, µ (plus the gauge and Yukawa couplings of the MSSM). The

model described above is called the minimal supergravity scenario for the soft SUSY
breaking terms.
For the mSUGRA scenarios considered in this work, we refer to the new parameters tan β
and sign(µ) instead of B0 and |µ|. From the conditions for REWSB, eqs. (2.8) and (2.9),
one can introduce these new parameters by removing |µ| and B0 in favor of mZ and tan β,
however the sign of µ is not fixed in that procedure.
The presence of the neutrino Yukawa couplings at high energies above the mass scales
of right-handed neutrinos modifies the RGEs of the slepton soft terms. In the leading
logarithmic (LL) approximation, this leads to the additional contributions

δm2
L̃
' − 1

8π2
(

3m2
0 + A2

0

)

Y †ν LYν (2.50)

δm2
ẽ ' 0 (2.51)

δAe ' − 3A0

16π2
YeY

†
ν LYν , (2.52)

assuming mSUGRA conditions at MGUT and

Lij = ln

(

MGUT

Mi

)

δij, (2.53)

see also [37], [38]. Note that in (2.50) to (2.52) the Yukawa couplings are evaluated at
MGUT and these terms are only the leading contributions originating from right-handed
neutrinos. Higher corrections of the form Y 4

l , i. e. quartic terms in the lepton Yukawa
couplings have been neglected, see also [38] for the discussion of further contributions.
In the SUSY seesaw model, the SSB terms for the right-handed sneutrinos, i. e. m2

ν̃ ,
and trilinear terms Aν can be neglected in the sneutrino (mass)2 matrix, because of the
dominance of the right-handed neutrino masses. The terms in eqs. (2.50) to (2.52) give
rise to LFV processes such as lj → liγ and µ-e conversion to be discussed later.
In general, the combination Y †ν LYν entering the RGEs of left-handed sleptons reads

(

Y †ν LYν
)

ij
=
(

U
√

DκR
†
√

DMU
T
M

)

ik
ln

(

MGUT

Mk

)

(

U∗M
√

DMR
√

DκU
†
)

kj
. (2.54)

In the following, we choose a basis in which M is diagonal, so that UM = 1. Assuming
degenerate right-handed neutrinos, i. e. Mi ≡ MR at a large scale, e. g. MGUT ,
and neglecting small radiative corrections to M and correspondingly to UM , one can
approximate

Y †ν LYν 'MR ln

(

MGUT

MR

)

U
√

DκR
†R
√

DκU
†. (2.55)

In this case it is obvious that if the orthogonal matrix R is real, it drops out in the
combination Y †ν LYν .
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2.5 Gauge mediation

The basic concept of gauge mediated SUSY breaking is that chiral supermultiplet fields,
so-called messengers couple both to the SUSY breaking sector and also indirectly to sparti-
cles through SU(3)C×SU(2)L×U(1)Y gauge and gaugino interactions [27]. Gravitational
strength interactions can then be neglected. The messenger fields are a set of new chiral
supermultiplets containing very heavy (s)quarks and (s)leptons which transform under
the SM gauge group as a real non-trivial representation. The messengers Φi couple at
tree-level to a chiral superfield Xm by the superpotential [25]

Wmess = (λm)ij Φ̄iXmΦj. (2.56)

The chiral supermultiplet Xm is assumed to overlap with the goldstino field thus being
in contact with the source of SUSY breaking which is left unspecified here. If the scalar
component of Xm and the auxiliary F -term component of Xm obtain VEVs denoted by
〈S〉 and FS, respectively, the masses of the scalar and fermionic messenger components are
split apart, provided that FS 6= 0 [25]. This effect of SUSY breaking is then communicated
to the visible sector fields by radiative quantum corrections involving loops of messenger
fields.
It is important to study whether GMSB spoils the unification of gauge couplings. It has
been shown that if the messengers have similar masses and are in complete multiplets
of SU(5) GUT symmetry, then gauge coupling unification can still occur at MGUT [25].
Therefore, one often assumes that messenger supermultiplets transform under SU(5) in
Nm copies of the fundamental representation. The unified value of gauge couplings is
shifted according to

δα−1GUT = −Nm

2π
ln
MGUT

Mm

, (2.57)

where Nm is the so-called messenger index. Requiring perturbativity of gauge couplings
up to the GUT-scale then restricts the messenger index [25]

Nm <∼ 150
1

ln MGUT

Mm

, (2.58)

so that Nm <∼ 5 or Nm <∼ 10 for Mm = 100 TeV or Mm = 1010 GeV, respectively. In this
work we consider only a messenger index Nm = 1.
Due to the gauge charges of the messenger fields under SU(3)C × SU(2)L × U(1)Y , the
messengers couple to gauge bosons and gauginos. Therefore gaugino masses arise at
the one-loop level, see Fig. 2.2, at the messenger scale Mm [25], which is approximately
Mm ∼ 〈S〉 for (λm)ij of order 1. Positive scalar (mass)2 terms are generated at the two-
loop level, because there are no direct couplings between scalars and messengers. At Mm,
the gaugino masses are given by [25],

M̃i (Mm) =
αi (Mm)

4π

FS
Mm

. (2.59)
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λ̃

Φ

Φ

λ̃ f̃ f̃

Φ

Figure 2.2: Generation of gaugino masses is shown in the left diagram; the right diagram
is an example of a two-loop diagram leading to scalar masses at Mm.

The gauge coupling constants are normalized such that they are all equal at the GUT-
scale, so that 5

3
α1 enters in eq. (2.59). This also implies that for very high messenger

scales close to the gauge coupling unification scale MGUT , as motivated in [26], the initial
value of M̃1 is approximately M̃1 (Mm) ' 5

3
M̃2 (Mm) ' 5

3
M̃3 (Mm), leading to a relatively

heavy bino at the SUSY-scale.
The scalar SSB masses are given by [25],

(

m2
s

)

ij
=

1

8π2
(

c1α
2
1 (Mm) + c2α

2
2 (Mm) + c3α

2
3 (Mm)

)

(

FS
Mm

)2

δij, (2.60)

where the ci denote the quadratic Casimir invariants which are given by cN = N2−1
2N

for SU(N) groups and by c1 = 3
5
Y 2 for the hypercharge U(1)Y in the normalization

Y = Qem − T3 making use of the electromagnetic charge Qem and the third component
of weak isospin T3. Due to the different couplings of scalar particles under SU(3)C ×
SU(2)L×U(1)Y at Mm, it is naturally expected that strongly interacting scalars become
heavier than only weakly interacting sparticles. Moreover, in order to obtain a SUSY-scale
near the TeV-scale, the ratio Λm = FS

Mm
, determining the size of the SSB mass terms, has

to be roughly 104 − 105 GeV [25]. MSSM gauge bosons cannot get a corresponding mass
shift, because they are protected by gauge invariance [27]. Moreover, the trilinear terms
Af arise at two-loop order at Mm, suppressed by an additional factor of αa

4π
compared to

the gaugino masses, so that they can be neglected at this scale. The bilinear B-parameter
may be taken to vanish at Mm; in practice it is determined by successful REWSB [27],
see eq. (2.9).
It is often claimed that for gauge mediated SUSY breaking [25] there are no new sources of
flavor violation. In this class of models the SSB terms are generated at the messenger scale
Mm which is a priori unrelated to the flavor scale ΛF above which the flavor symmetry is
broken.
In the case of the MSSM with flavor breaking at a very high scale ΛF À Mm, the flavor
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breaking is communicated to the soft terms only through Yukawa interactions. All other
sources of flavor violation at the messenger scale then correspond to operators of dimension
greater than 4, suppressed by powers of 1

ΛF
. The contribution of these operators to soft

masses is therefore suppressed by powers of Mm

ΛF
. In other words the flavor problem is

naturally decoupled if flavor breaking occurs at a very high scale compared to Mm.
In the SUSY seesaw model the ΛF -scale can be identified with the mass scale MR of
right-handed Majorana neutrinos. Below MR, the neutrino Yukawa couplings vanish, so
that for MR ÀMm only operators suppressed by Mm

MR
can contribute to the lepton-flavor

violating soft masses. One can obtain an upper bound on Mm if one requires that gravity
mediated contributions do not reintroduce large flavor violations [25]. Requiring that
gravity mediated contributions of the order of FS

MPl
are below the 0.1 percent level in the

GMSB soft squared masses, leads to

FS
MPl

<∼

(

10−3
( α

4π

)2
(

FS
Mm

)2
)1/2

, (2.61)

being equivalent to

Mm <∼ 10−3/2
α

4π
MPl. (2.62)

Inserting the numerical value MPl = 2.4 · 1018 GeV and a value for the unified coupling
constant parameter α ∼ 1

24
gives rise to an rough upper bound on the messenger scale,

Mm <∼ O (1014)−O (1015) GeV [25].
Recently, however, the authors of [26] have shown that high values of FS in the range
of 1017GeV2 <∼ FS <∼ 1019 GeV2 can be motivated in the SUSY seesaw model and it is
therefore possible to obtain sizeable rates for low-energy LFV. Such high values of FS lead
to gravitino masses up to m3/2 <∼ 1 GeV according to eq. (2.3), while e. g. for the GMSB
scenarios of [39], m3/2 is roughly in the eV-range. Therefore, the gravitino is the natural
LSP in GMSB models being stable if R-parity conservation is assumed. The analysis of
[40] provided a natural solution to the cosmological gravitino problem in GMSB: In the
case of a gravitino LSP, thermal relics of the gravitinos tend to overclose the universe
once they are thermalized in the early universe. Moreover the abundance of gravitinos is
roughly proportional to the reheating temperature of the universe after inflation. Note
that if the gravitino is very light, i. e. m3/2 <∼ 1 keV, there is no cosmological gravitino
problem, since in this case the gravitino does not overclose the energy density of the
universe even if it is thermalized [41]. The overproduction of gravitinos can be avoided
if there is a strong upper bound on the reheating temperature TR of inflation, e. g.
TR <∼ 109 GeV for m3/2=1 GeV, TR <∼ 106 GeV for m3/2=10 MeV or TR <∼ 103 GeV for
m3/2=100 keV [42]. For such low values of TR it is very difficult for thermal leptogenesis
to work, see section 3.4 for more details concerning a heavier i. e. unstable gravitino
and its implications. The authors of [40] have found a solution to this problem by taking
into account small mixings between the messenger supermultiplets and MSSM fields. As
a result, the late-time decays of the lightest messenger provide an amount of energy
sufficient to dilute the thermal relics of the gravitinos down to the observed mass density
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of dark matter in the universe. It is important to mention that in this case the mass
of the gravitino or the reheating temperature are not severely restricted, once gravitinos
and messenger particles are thermalized in the early universe. The analysis of [40] has
demonstrated that the gravitinos are indeed in thermal equilibrium at high temperatures
such as TR >∼ 1010 GeV for m3/2 <∼ 1 GeV. Therefore, in this class of GMSB models,
the severe upper bound on the reheating temperature is completely evaded and thermal
leptogenesis can naturally generate the baryon asymmetry of the universe.

It is a direct consequence of (2.60) that the SSB masses of singlet right-handed sneutrinos
vanish at the messenger mass scale and that the masses of left-handed sleptons are equal
to those of the SSB Higgs masses at Mm. Therefore the lepton-flavor violating terms are
given by

δm2
L̃
' − 1

4π2
(

m2
L̃
(Mm)Y

†
ν LYν

)

(2.63)

δm2
ẽ ' 0 (2.64)

δAe ' 0, (2.65)

in the leading logarithmic approximation, where the neutrino Yukawa couplings are eval-
uated at Mm. In this case, L denotes

Lij = ln

(

Mm

Mi

)

δij. (2.66)

Inserting the explicit form of m2
L̃
(Mm) yields

δm2
L̃
' − 1

2 (4π2)2

(

3

20
α2
1 (Mm) +

3

4
α2
2 (Mm)

)(

FS
Mm

)2

Y †ν LYν , (2.67)

provided that Mm is above the right-handed neutrino mass scales.

2.6 Minimal anomaly mediation

Anomaly mediated breaking of SUSY originates from the super-Weyl anomaly [23]. This
can be the dominant source of SSB in a higher dimensional framework, where one extra
dimension is assumed to be compactified roughly one to two orders of magnitude below
the four-dimensional Planck-scale. Assuming that the SUSY breaking and visible sectors
reside on different branes, and are “sufficiently separated” in the higher dimensional space
[23], the gravity contributions to scalar masses are strongly suppressed.

Unfortunately, however, the anomaly contribution turns out to be negative for sleptons.
From a phenomenological point of view, it suffices to add an universal contribution m2

0

in order to cure this problem [43]. In the framework of minimal anomaly mediation of
SUSY breaking, see [43] and [44], the SSB terms are determined by the parameters m3/2,
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m0, tan β and sign(µ) at the GUT-scale,

M̃i =
1

16π2
B

(1)
i g2im3/2 (2.68)

(Af )ij = −
(

βYf
)

ij
m3/2 (2.69)

(

m2
s

)

ij
=

1

2

d (γs)ij
d lnµ

m2
3/2 +m2

0δij, (2.70)

where the beta functions βP ≡ ∂P
∂ lnµ

for the RGEs in the MSSM are defined in appendix
H and the anomalous dimensions are denoted by γs. At MGUT the trilinear couplings are
multiplied by the corresponding Yukawa couplings. The coefficients for gaugino masses
are B(1) =

(

33
5
, 1,−3

)

in GUT normalization [43]. The pattern of the high scale values of
gaugino masses yields a characteristic spectrum [43] for them at low energy,

M̃1 : M̃2 :
∣

∣

∣M̃3

∣

∣

∣ ' 2.8 : 1 : 8.3. (2.71)

The mixing of gaugino and higgsino states leads to the neutralinos and charginos, as
explained in appendix C. The authors of [43] have found that in the case of AMSB,
successful REWSB is possible for M̃2 < M̃1 < |µ|. This implies that the lightest neutralino
and charginos consist mainly of wino states and the second lightest neutralino is bino-
like. Moreover, higgsino-type states form the heavier neutralinos and chargino [43]. In
much of the parameter space the triplet of winos is nearly degenerate. Note that m3/2 is
proportional to the VEV of an auxiliary field in the supergravity multiplet and is of the
order of the gravitino mass [43]. The anomalous dimensions of the MSSM are given by
[43] supplemented by those with additional right-handed neutrinos in [45],

γh2
=

1

16π2

(

3 (Y ∗u )ji (Yu)ji + (Y ∗ν )ji (Yν)ji −
3

2
g22 −

3

10
g21

)

(2.72)

γh1
=

1

16π2

(

3 (Y ∗d )ji (Yd)ji + (Y ∗e )ji (Ye)ji −
3

2
g22 −

3

10
g21

)

(2.73)

(

γQ̃
)

ij
=

1

16π2

(

(Y ∗u )ki (Yu)kj + (Y ∗d )ki (Yd)kj −
8

3
g23 −

3

2
g22 −

1

30
g21

)

(2.74)

(γũ)ij =
1

16π2

(

2 (Y ∗u )ik (Yu)jk −
8

3
g23 −

8

15
g21

)

(2.75)

(γd̃)ij =
1

16π2

(

2 (Y ∗d )ik (Yd)jk −
8

3
g23 −

2

15
g21

)

(2.76)

(γL̃)ij =
1

16π2

(

(Y ∗e )ki (Ye)kj + (Y ∗ν )ki (Yν)kj −
3

2
g22 −

3

10
g21

)

(2.77)

(γẽ)ij =
1

16π2

(

2 (Y ∗e )ik (Ye)jk −
6

5
g21

)

(2.78)

(γν̃)ij =
1

16π2

(

2 (Y ∗ν )ik (Yν)jk

)

. (2.79)
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This leads to the following SSB terms at the GUT-scale,

m2
h2

=
m2

3/2

32π2
(

6Re
(

Tr
(

Y †uβYu
))

+ 2Re
(

Tr
(

Y †ν βYν
))

− 3g2βg2

−3

5
g1βg1

)

+m2
0 (2.80)

m2
h1

=
m2

3/2

32π2

(

6Re
(

Tr
(

Y †d βYd

))

+ 2Re
(

Tr
(

Y †e βYe
))

− 3g2βg2

−3

5
g1βg1

)

+m2
0 (2.81)

m2
Q̃

=
m2

3/2

32π2

(

β†YuYu + Y †uβYu + β†YdYd + Y †d βYd −
16

3
g3βg3 − 3g2βg2

− 1

15
g1βg1

)

+m2
01 (2.82)

m2
ũ =

m2
3/2

16π2

(

β∗YuY
T
u +

(

β∗YuY
T
u

)† − 8

3
g3βg3 −

8

15
g1βg1

)

+m2
01 (2.83)

m2
d̃

=
m2

3/2

16π2

(

β∗YdY
T
d +

(

β∗YdY
T
d

)† − 8

3
g3βg3 −

2

15
g1βg1

)

+m2
01 (2.84)

m2
L̃

=
m2

3/2

32π2

(

β†YeYe + Y †e βYe + β†YνYν + Y †ν βYν − 3g2βg2 −
3

5
g1βg1

)

+m2
01 (2.85)

m2
ẽ =

m2
3/2

16π2

(

β∗YeY
T
e +

(

β∗YeY
T
e

)† − 6

5
g1βg1

)

+m2
01 (2.86)

m2
ν̃ =

m2
3/2

16π2

(

β∗YνY
T
ν +

(

β∗YνY
T
ν

)†
)

+m2
01. (2.87)

These values can be used to obtain the leading logarithmic corrections to the RGEs due
to the presence of right-handed neutrinos,

δm2
L̃
' − 1

8π2

(

3m2
0Y

†
ν LYν +m2

3/2β
†
Yν
LβYν

)

(2.88)

δm2
ẽ ' 0 (2.89)

δAe '
m3/2

16π2
(

2YeY
†
ν LβYν + βYeY

†
ν LYν

)

, (2.90)

where

Lij = ln

(

MGUT

Mi

)

δij. (2.91)

Note that these terms are only the leading contributions originating from right-handed
neutrinos. Higher corrections involving additional Yukawa or gauge couplings have been
neglected in eqs. (2.88) to (2.90). The lepton-flavor violating terms δm2

L̃
in eq. (2.88)
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consist of a part proportional to m2
0 analogous to the mSUGRA case, supplemented by a

new contribution proportional to m2
3/2. This additional term is proportional to the com-

bination β†YνβYν of neutrino RGE beta functions assuming degenerate Majorana masses,
Mi ≡MR. Making use of the explicit form of βYν given in eq. (H.9), and keeping only the
dominant terms involving Yukawa couplings of up-type quarks or neutrinos, one obtains

βYν '
1

16π2
Yν
(

3Tr
(

Y †uYu
)

1+ Tr
(

Y †ν Yν
)

1+ 3Y †ν Yν
)

. (2.92)

Assuming small neutrino Yukawa couplings as compared to the top Yukawa coupling Yt
leads to the approximation

m2
3/2β

†
Yν
βYν '

9m2
3/2

(16π2)2
|Yt|4 Y †ν Yν . (2.93)

If the neutrino Yukawa couplings are of similar size as the top Yukawa coupling, additional
terms in β†YνβYν involving more than two factors of Yν become important and may enhance
or weaken the effect of the m2

3/2 contribution in eq. (2.88). Inserting numerical values of
the AMSB scenario considered in section 4, i. e. m0 = 450 GeV and m3/2 = 60 TeV shows
that the contribution from m2

3/2 to δm2
L̃
is expected to be slightly smaller than the m2

0

contribution under the assumption of large top Yukawa coupling as compared to neutrino
Yukawa couplings.

2.7 Minimal gaugino mediation

In this model of SUSY breaking, the chiral supermultiplets of the observable sector reside
on a matter brane, whereas the SUSY breaking sector is confined to a different brane [24].
Gravity and gauge superfields propagate in the bulk, and hence, directly couple to fields
on both of the branes. As a result of their direct coupling to the SUSY breaking brane,
gauginos acquire a mass. However the SUSY breaking parameters for scalar masses,
trilinear couplings or the B-parameter only arise from their interactions with gauginos or
gravity. In minimal gaugino mediation [46] (see also [24]), the success of the unification
of gauge couplings is preserved by assuming that there is a SU(5) or SO(10) SUSY
GUT between MGUT and the compactification scale MC . At the compactification scale
MC the higher dimensional theory is matched to the effective four-dimensional theory.
In order to preserve the successful prediction of sin2 θW from gauge coupling unification
in the MSSM, MC is limited to MC > MGUT . On the other hand, the scale MC is
restricted to be MC <∼

MPl

10
, in order to suppress flavor violating soft masses. Otherwise

the flavor violating couplings of heavy bulk fields would lead to unwanted large FCNCs.
Note that in minimal gaugino mediation the RGEs of the soft terms mainly depend
on gauge couplings and gaugino masses, the dependence on other soft masses through
gauge/Yukawa couplings above MGUT is loop-suppressed. In its minimal form gaugino
mediation has basically two free parameters, the unified gaugino masses at MC and the
compactification scale, plus the sign of the µ-parameter. The Higgs masses are assumed
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to be zero at MC and tan β can be determined by requiring that B = 0 at MC , see [46].
The size of the µ-parameter is fixed by requiring correct electroweak symmetry breaking
at the weak scale. In the gaugino mediation framework [46], the SSB-terms vanish at the
compactification scale MC , MGUT ≤MC ≤ MPl

10
:

m2
0|MC

= A0|MC
= 0, (2.94)

whereas the common gaugino mass takes a value

M̃1/2|MC
= M̃0

1/2. (2.95)

Between the scales of MC and MGUT , the unified gauge coupling g2GUT and the common
gaugino mass M̃1/2 evolve in the same way [46],

d

dt

1

g2GUT
= −2bGUT (2.96)

d

dt

M̃1/2

g2GUT
= 0, (2.97)

where

t =
1

16π2
ln

(

µ

MGUT

)

. (2.98)

We will consider a SUSY SU(5) GUT with additional right-handed neutrino singlets, in
which case bGUT = −3. This model [37] has three families of matter multiplets Ti, Fi and
νcRi , which are 10, 5∗ and 1 dimension representations of SU(5), respectively. Ti contains
the quark doublet, the charged lepton singlet and the up-type quark singlet, while the
down-type quark singlet and the lepton doublet are embedded in Fi. Moreover the model
has 5 and 5∗ dimension representations of Higgs multiplets, H and H. H consists of the
MSSM Higgs multiplet h2 and a colored Higgs multiplet. The other MSSM Higgs multiplet
h1 and another colored Higgs multiplet constitute H. This model is characterized by the
superpotential [37]

WSU(5)RN =
1

4
(Yu)ij T

AB
i TCD

j HEεABCDE +
√
2 (Yd)ij T

AB
i FjAHB

+(Yν)ij ν
c
Ri
FjAH

A +
1

2
Mijν

c
Ri
νcRj , (2.99)

where SU(5) indices are in capital letters. GUT Higgs sector self-couplings as well as
GUT Higgs superpotential mass terms are neglected, see [47] for a general analysis of
SUSY SU(5) RGEs and [48] for a more general approach to SUSY SU(5) GUT with
additional right-handed neutrino singlets. The additional terms of the Higgs sector are
not relevant in the minimal gaugino mediation framework for the study of SSB masses.
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The Lagrangian for the soft terms is then given by [37]

−LSU(5)RNsoft =
(

m2
10

)

ij
T̃ †i T̃j +

(

m2
5̄

)

ij
F̃ †i F̃j +

(

m2
ν̃

)

ij
ν̃∗Ri ν̃Rj +m2

hh
†h+m2

h
h
†
h

+

(

1

4
(AuYu)ij T̃iT̃jh+

√
2 (AdYd)ij T̃iF̃jh+ (AνYν)ij ν̃

∗
Ri
F̃jh+ h.c.

)

+
1

2

(

M̃1/2λLλL + h.c.
)

, (2.100)

where SU(5) indices have been dropped. In accordance with the work [46] on G̃MSB,
we define the trilinear couplings such that they multiply the Yukawa couplings in the
Lagrangian. Moreover, we do not assume lepton-down quark Yukawa unification, see e.
g. [49] for more comments on this point. In the case of minimal G̃MSB, the RGEs of
non-gaugino soft terms read

dm2
10

dt
=

3

2

dm2
5

dt
=

3

2

dm2
5̄

dt
= −144

5
g2GUTM̃

2
1/21 (2.101)

dm2
ν̃

dt
= 0 (2.102)

3

2

dm2
h1

dt
=

3

2

dm2
h2

dt
= −144

5
g2GUTM̃

2
1/2 (2.103)

dAu

dt
=

8

7

dAd

dt
= 2

dAν

dt
=

192

5
g2GUTM̃1/21. (2.104)

Note that this convention [46] for the sign of the terms proportional to the gaugino masses
in the RGEs of trilinear A parameters is consistent with [50], however different from [37].
The analytic solutions to the RGEs in eqs. (2.101) to (2.104) are obtained by first calcu-
lating the scale dependence of gauge couplings above the GUT-scale from eq. (2.96),

g2(t) =
4παGUT

1− 8πbGUTαGUT t
. (2.105)

It follows from eq. (2.97) that

M̃1/2(t) =
M̃1/2 (MGUT )

g2 (MGUT )
g2(t). (2.106)

Then the scale dependence of gauge couplings and gaugino masses betweenMC andMGUT

is known and the solutions to the RGEs in eqs. (2.101) to (2.104) are obtained by analytic
integration from MC to MGUT , as has also been mentioned in [46].
Evolving the RGEs of SU(5) with additional right-handed neutrinos from MC to MGUT

yields the following values of the SSB-terms at MGUT

m2
10 =

3

2
m2

5̄ =
3

2
m2

5 =
144

5
M̃2

1/2S21 (2.107)

Au =
8

7
Ad = 2Aν = −

192

5
M̃1/2S11 (2.108)

m2
ν̃ = 0, (2.109)
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where from the RGE solution of gauge couplings and gaugino masses, the analytic solu-
tions

S1 =
αGUT
4π

ln
MC

MGUT

1

1− (2π)−1bGUTαGUT ln
MC

MGUT

(2.110)

S2 =
αGUT
4π

ln
MC

MGUT

1− (4π)−1bGUTαGUT ln
MC

MGUT
(

1− (2π)−1bGUTαGUT ln
MC

MGUT

)2 (2.111)

have been determined, as explained before.
In generation space, the following relations at the GUT-scale hold

m2
10 = m2

Q̃
=
(

m2
ẽ

)T
=
(

m2
ũ

)T
(2.112)

m2
5̄ = m2

L̃
=
(

m2
d̃

)

= m2
h1
1 = m2

h2
1 (2.113)

Ae = AT
d , (2.114)

see also [51]. The relevant leading logarithmic contributions from right-handed neutrinos
are then given by

δm2
L̃

= − 1

8π2
(

2m2
5̄Y

†
ν LYν + |Aν (MGUT )|2 Y †ν LYν

)

(2.115)

δm2
ẽ = 0 (2.116)

δAe = − 1

16π2
(

2YeY
†
ν LAν + AeY

†
ν LYν

)

, (2.117)

where

Lij = ln

(

MGUT

Mi

)

δij (2.118)

and the terms are evaluated at the MGUT scale. Eqs. (2.115) and (2.117) can be written
in terms of G̃MSB parameters, resulting in

δm2
L̃

= − 1

8π2
M̃2

1/2

(

576

15
S2 (tC) +

(

96

5

)2

S2
1 (tC)

)

Y †ν LYν (2.119)

δAe =
9

2π2
M̃1/2S1 (tC)YeY

†
ν LYν . (2.120)



Chapter 3

Phenomenological implications

In this chapter analytical results and useful approximations for both radiative leptonic
processes at low energies and the parameters of leptogenesis are discussed. The depen-
dence on the relevant parameters is analyzed and relations between observables in different
processes are outlined.

3.1 Lepton-flavor violating radiative decays lj → liγ

The effective Lagrangian for the decay l−j → l−i γ can be written in the form [38]

Leff = −e
2
mlj l̄iσ

αβFαβ
(

Aij
LPL + Aij

RPR
)

lj, (3.1)

where F αβ is the electromagnetic field strength tensor, σαβ = i
2
[γα, γβ], i and j are flavor

indices and PR,L = 1
2
(1 ± γ5) are the chiral projection operators. Eq. (3.1) has the

form of an electromagnetic dipole operator. The electric and magnetic dipole operators
couple left-handed and right-handed leptons, thus requiring a chirality flip which can be
diagrammatically depicted by a mass insertion [37].
The amplitude for the l−j → l−i γ transition can be written as [31]

Mij = emljui(p
′)iε∗ασ

αβqβ
(

Aij
LPL + Aij

RPR
)

uj(p). (3.2)

In the limit of a massless final lepton, mli = 0, the decay rate [31] is

Γij =
e2

16π
m5
lj

(

∣

∣Aij
L

∣

∣

2
+
∣

∣Aij
R

∣

∣

2
)

, (3.3)

whereas for non-vanishing lepton masses the decay rate is determined as [52]

Γij =
e2

16π

(

m2
lj
−m2

li

)3

mlj

(

∣

∣Aij
L

∣

∣

2
+
∣

∣Aij
R

∣

∣

2
)

. (3.4)

29
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We show exact analytical one-loop expressions for Aij
L and Aij

R in appendix F, taking into
account all leptonic masses, see eqs. (F.33) and (F.34). If the mass of the lighter lepton
is neglected and the mass of lj is neglected in the loop integrals, the well-known results
[31] for the coefficients Aij

L and Aij
R are obtained,

Aij
L =

1

32π2
1

m2
l̃x

(

N
L(l)
iax N

L(l)∗
jax

1− 6rNax + 3
(

rNax
)2

+ 2
(

rNax
)3 − 6

(

rNax
)2

ln rNax

6 (1− rNax)4

+
mχ̃0

a

mlj

N
L(l)
iax N

R(l)∗
jax

1−
(

rNax
)2

+ 2rNax ln r
N
ax

(1− rNax)3

)

− 1

32π2
1

m2
ν̃x

(

C
L(l)
iax C

L(l)∗
jax

2 + 3rCax − 6
(

rCax
)2

+
(

rCax
)3

+ 6rCax ln r
C
ax

6 (1− rCax)4

+
mχ̃−a

mlj

C
L(l)
iax C

R(l)∗
jax

−3 + 4rCax −
(

rCax
)2 − 2 ln rCax

(1− rCax)3

)

(3.5)

Aij
R = Aij

L

∣

∣

L↔R
(3.6)

rNax =
m2
χ̃0
a

m2
l̃x

, rCax =
m2
χ̃−a

m2
ν̃x

, (3.7)

where a summation over x and a indices is understood.
It should be noted that the decay rate for the charge conjugated mode, i. e. l+j → l+i γ
is exactly as eq. (3.4) at the one-loop level. More precisely, in the decay l+j → l+i γ the
coefficients AL,R are complex conjugated with respect to l−j → l−i γ. This can be seen if
one considers the effective Lagrangian for l+j → l+i γ [51],

L′eff = −e
2
mlj l̄jσ

αβFαβ
(

Aij
R
′PL + Aij

L
′PR
)

li. (3.8)

By comparing Leff with L′ †eff , one finds AL,R = A
′∗
L,R using Dirac algebra, see appendix

D. Eq. (3.3) or (3.4) then imply that at the one-loop level, there is no CP violation in
the decays Br

(

l±j → l±i γ
)

[51, 38].
The polarization Pli (−1 ≤ Pli ≤ 1) of the outgoing lepton with respect to the polarization
direction of the incoming lepton Plj depends on the relative magnitudes of the coefficients

Aij
L and Aij

R. The angular distribution shows a
(

1 + ALRPlj cos θi
)

dependence [53], see
also [51] and [35], where

ALR =

∣

∣Aij
L

∣

∣

2 −
∣

∣Aij
R

∣

∣

2

∣

∣Aij
L

∣

∣

2
+
∣

∣Aij
R

∣

∣

2 , (3.9)

and θi is defined as the angle between the momentum of the outgoing lepton and the spin
polarization direction of the incoming lepton. Neglecting the mass mli of the outgoing
lepton in the coefficients Aij

R in eq. (F.34) and Aij
L in eq. (F.33), one can see the dominance

of Aij
R over Aij

L as follows: The chargino vertex factors C
R(l)
iax eq. (B.7) and C

L(l)
iax eq. (B.8),
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lj l̃

γ

li

χ̃0

lj ν̃

γ

li

χ̃−

Figure 3.1: Diagrams for l−j → l−i γ in the MSSM

lj l̃j l̃i
×
(

m2
L̃

)

ji

γ

li

χ̃0

lj ν̃j ν̃i
×
(

m2
L̃

)

ji

γ

li

χ̃−

Figure 3.2: Dominant diagrams for l−j → l−i γ in the mass-insertion approximation.

where C
R(l)
iax À C

L(l)
iax appear mainly in Aij

R and Aij
L , respectively. Likewise, for neutralino

vertex factors in Aij
R and Aij

L one expects N
R(l)
iax À N

L(l)
iax , taking into account eqs. (B.13)

and (B.14) and the fact that lepton-flavor violating slepton mixing arises dominantly
in the left-handed slepton sector in the SUSY seesaw model. Therefore, in the SUSY
seesaw model the relation Aij

L ¿ Aij
R is predicted, implying a characteristic

(

1− Plj cos θi
)

distribution for li. It is interesting to note that this angular distribution is expected to
be different in SUSY SU(5) or SO(10) models [51]: In the SU(5) GUT model, lepton-
flavor violating terms arise in the right-handed slepton sector through the mixing of
quark doublets and lepton singlets in the 5 representation. In the case of a SO(10) GUT
symmetry, all matter multiplets are embedded in the 16 representation, so that quark
mixing and also lepton mixing induces lepton-flavor violating terms in the left-handed and
right-handed part of the charged slepton mass matrix. These different mixing patterns
provide a possibility to distinguish between the seesaw model and GUT based approaches
by measuring the angular distribution of li.

It should be emphasized that in the SM with additional massive neutrinos, the branching
ratios for Br (lj → liγ) are extremely small and cannot be expected to be observed, see
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[17] and [54]. For example, Br (µ→ eγ) would be many orders of magnitude below any
planned experimental sensitivity due to the tiny neutrino masses compared to the W -
boson mass and due to the very small admixture of heavy Majorana neutrinos in the light
neutrino eigenstates.
In the mass insertion approximation, the branching ratio Br (lj → liγ) is estimated [31],
[35] as

Br (lj → liγ) ∼
α3 tan2 β

m̃8

m5
lj

Γj

∣

∣

∣

(

δm2
L̃

)

ji

∣

∣

∣

2

, (3.10)

see also Fig. 3.2. This implies the following pattern for branching ratios,

Br (lj → liγ)

Br (lj′ → li′γ)
∼
m5
lj
Γj′

m5
l′j
Γj

∣

∣

∣

(

δm2
L̃

)

ji

∣

∣

∣

2

∣

∣

∣

∣

(

δm2
L̃

)

j′i′

∣

∣

∣

∣

2 . (3.11)

The mass m̃ in eq. (3.10) denotes the typical mass scale of the sleptons in the loop.
As the RG induced mass terms in the slepton mass matrices

(

δm2
L̃

)

ji
are proportional

to
(

Y †ν LYν
)

ji
, we show some approximate results for Y †ν LYν that will be useful for later

discussion:
Under the assumption of real R and degenerate Mi ≡ MR, i. e. Lij = ln MGUT

MR
δij, one

obtains
(

Y †ν LYν
)

ji
≈ MR

v2 sin2 β
ln
MGUT

MR

(m1Uj1U
∗
i1 +m2Uj2U

∗
i2 +m3Uj3U

∗
i3) . (3.12)

Assuming in addition hierarchical light neutrinos, i. e. m1 ¿ m2 ¿ m3, leads to [55]

(

Y †ν LYν
)

ji
≈ MR

v2 sin2 β
ln
MGUT

MR

(

√

∆m2
21Uj2U

∗
i2 +

√

∆m2
31Uj3U

∗
i3

)

. (3.13)

On the other hand, in the case of quasi-degenerate light neutrinos one has m1 À
√

∆m2
21,

√

∆m2
31 or, more specifically m2 ≈ m1 +

1
2m1

∆m2
21,m3 ≈ m1 +

1
2m1

∆m2
31, so that one can

derive [55]

(

Y †ν LYν
)

ji
≈ MR

v2 sin2 β
ln
MGUT

MR

(

m1δji +

(

∆m2
21

2m1

Uj2U
∗
i2 +

∆m2
31

2m1

Uj3U
∗
i3

))

. (3.14)

Assuming R = 1 and non-degenerate heavy neutrinos leads to

(

Y †ν LYν
)

ji
≈ 1

v2 sin2 β

3
∑

k=1

mkMk ln
MGUT

Mk

UjkU
∗
ik. (3.15)

In the limit of y1 = y2 = y3 ≡ y ¿ 1, degenerate Mi ≡ MR and κ1 = 0, xi = 0,
δ = ϕ1 = ϕ2 = 0 we obtain

(

Y †ν LYν
)

ji
' MR ln

MGUT

MR

(

κ2Uj2U
∗
i2

(

1 + 4y2
)

+
√
κ2κ3Uj2U

∗
i3

(

2y2 − 2iy
)

+
√
κ2κ3Uj3U

∗
i2

(

2y2 + 2iy
)

+ κ3Uj3U
∗
i3

(

1 + 4y2
))

. (3.16)



3.1. LEPTON-FLAVOR VIOLATING RADIATIVE DECAYS 33

The quantity relevant for the decay rates is
∣

∣

∣

(

Y †ν LYν
)

ji

∣

∣

∣

2

which in this case can be eval-

uated to be

∣

∣

∣

(

Y †ν LYν
)

ji

∣

∣

∣

2

' M2
R

(

ln
MGUT

MR

)2
(

|κ2Uj2U∗i2 + κ3Uj3U
∗
i3|2
(
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√
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∗
j3Ui2

)

y2
)

. (3.17)

Another interesting limit is given by non-degenerateMi and real R, so that the dependence
on the real mixing angles in R becomes important. For κ1 = 0 and yi = 0, we obtain

(

Y †ν LYν
)

ji
' κ2Uj2U

∗
i2

(

RTDMLR
)

22
+ κ3Uj3U

∗
i3

(

RTDMLR
)

33

+
√
κ2κ3

(

RTDMLR
)

23
(Uj2U

∗
i3 + Uj3U

∗
i2) . (3.18)

If only x1 is non-vanishing (cf. (2.36)), the relevant terms
(

RTDMLR
)

in eq. (3.18) are
given by

(

RTDMLR
)

22
= M2 ln

MGUT

M2

c21 +M3 ln
MGUT

M3

s21 (3.19)

(

RTDMLR
)

23
= −M2 ln

MGUT

M2

s1c1 +M3 ln
MGUT

M3

s1c1 (3.20)

(

RTDMLR
)

33
= M2 ln

MGUT

M2

s21 +M3 ln
MGUT

M3

c21. (3.21)

Assuming that only x2 is non-vanishing (cf. (2.37)) yields

(

RTDMLR
)

22
= M2 ln

MGUT

M2

(3.22)
(

RTDMLR
)

23
= 0 (3.23)

(

RTDMLR
)

33
= M1 ln

MGUT

M1

s22 +M3 ln
MGUT

M3

c22. (3.24)

For non-vanishing x3 (cf. (2.38)), the relevant combinations of
(

RTDMLR
)

in eq. (3.18)
are given by

(

RTDMLR
)

22
= M2 ln

MGUT

M2

c23 +M1 ln
MGUT

M1

s23 (3.25)
(

RTDMLR
)

23
= 0 (3.26)

(

RTDMLR
)

33
= M3 ln

MGUT

M3

. (3.27)

Here we use the abbreviation si ≡ sin xi and ci ≡ cos xi.
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3.2 Magnetic and electric dipole moments of leptons

Magnetic dipole moments The supersymmetric contribution to the leptonic (g− 2)i
arising from the diagrams of Fig. 3.1 with li = lj or the effective Lagrangian (3.1) is
defined by the amplitude [31]

Mi
MDM = eui(p

′)

(

1

4mi

(g − 2)i

)

iε∗ασ
αβqβui(p). (3.28)

In this work we will only consider the SUSY contribution and use the notation

δai ≡
(g − 2)i

2
. (3.29)

The definition of Aij
L,R in eq. (3.2) leads to the result

δai = m2
li

(

Aii
L + Aii

R

)

|mli
=mlj

, (3.30)

see also [56]. Making use of (3.3), the relation between |δak|2 and Br (lj → liγ) is as
follows

Br (lj → liγ)

|δak|2
=

1

Γj

α

4

m5
lj

m4
lk

∣

∣

∣

∣

∣

Aij
R

Akk
L + Akk

R

∣

∣

∣

∣

∣

2

, (3.31)

where the dominance of Aij
R over Aij

L in the SUSY seesaw model has been used. It is
therefore natural to expect that both |δak|2 and Br (lj → liγ) are related in a similar way
to the SUSY masses involved in the loops [57].

The natural mass scale for the mass insertion describing the necessary chirality flip in the
magnetic dipole moment (MDM) interaction is given by the lepton mass involved. Due
to the extra mli denominator in eq. (3.28) one therefore expects that the leptonic MDMs
scale as

δai
δaj
∼
(

mi

mj

)2

, (3.32)

which is also referred to as “naive scaling” [56].

The current discrepancy [18] between the measurement of (g− 2)µ [19] and the Standard
Model prediction [18] is

(22± 7.2± 3.5± 8.0) · 10−10 [e+e− based estimate] (3.33)

δaµ =

(7.4± 5.8± 3.5± 8.0) · 10−10 [τ based estimate]. (3.34)

In appendix F we derive a complete one-loop expression for the coefficients Aii
L and Aii

R,
see eqs. (F.33) and (F.34), taking also into account the lepton masses in the corresponding
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loop integrals. If the leptonic masses are neglected in the loop integrals, we obtain the
well-known result for δai [31],

δai = − 1

96π2
m2
li

m2
l̃x

1− 6rNax + 3
(

rNax
)2

+ 2
(

rNax
)3 − 6

(

rNax
)2

ln rNax

(1− rNax)4
(

∣

∣
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(
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(
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iax C
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iax
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. (3.35)

We want to approximate the deviations of the MSSM prediction for (g−2)µ if one includes
LFV. For simplicity and illustrative purposes, we approximate the loop integrals in the
limit of mχ̃−a

= mν̃x and mχ̃0
a
= ml̃x

. Assuming a real mixing matrix of charginos, see
appendix C, the contribution from the chargino-sneutrino diagram yields approximately

δacµ '
g2

284π2
m4
µ

m2
W cos2 β

2
∑

a=1

[(OL)a2]
2

3
∑

x=1

|(Uν̃)x2|
2

m2
ν̃x

+
g2m2

µ

192π2

2
∑

a=1

[(OR)a1]
2

3
∑
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|(Uν̃)x2|
2

m2
ν̃x
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24
√
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m2
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mW cos β

2
∑

a=1

(OL)a2 (OR)a1

3
∑

x=1

|(Uν̃)x2|
2

mν̃x

. (3.36)

The basic dependence on lepton-flavor violating parameters shall be illustrated in a simple
two generation model, where the relevant sneutrino (mass)2 matrix is

(

m2
ν̃

)

LFV
=

(

m2 δm2

δm2 m2 +∆m2

)

. (3.37)

The mass eigenvalues are chosen such that the lighter state is equal to ν̃µ in the non-LFV
case. The mass eigenvalues corresponding to eq. (3.37) are

(

m2
ν̃

)

1,2
=

1

2

(

2m2 +∆m2 ∓
√

(∆m2)2 + 4 (δm2)2
)

. (3.38)

In this approach, the sneutrino mixing matrix takes the form

Uν̃ =

(

cos θν̃ − sin θν̃

sin θν̃ cos θν̃

)

, (3.39)

where the mixing angle is given by

θν̃ =
1

2
arctan

2δm2

∆m2
. (3.40)
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The contribution of sneutrino-chargino loops to the magnetic dipole moment of the muon
can then be expressed as follows,

δacµ '
g2

284π2
m4
µ

m2
W cos2 β

2
∑

a=1

[(OL)a2]
2 sν̃1

+
g2

192π2
m2
µ

2
∑
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[(OR)a1]
2 sν̃1

− g2

24
√
2π2

m2
µ

mW cos β

2
∑

a=1

(OL)a2 (OR)a1 s
ν̃
2. (3.41)

The terms sν̃1 and sν̃2 result from the sum over sneutrinos and can be given approximately,

sν̃1 '
1

m2



1−

√

(∆m2)2 + 4 (δm2)2

2m2

(

1− 2 sin2 θν̃
)



 (3.42)

sν̃2 '
1

m



1−

√

(∆m2)2 + 4 (δm2)2

m2

(

1− 2 sin2 θν̃
)



 , (3.43)

where the assumptions ∆m2 ¿ m2 and δm2 ¿ m2 are made. This shows that in this
case the relative shift due to LFV is determined by the terms in brackets. In particular,
this shift vanishes for maximal mixing, i. e. θν̃ = π

4
. In the case of δm2 = 0, i. e. Uν̃ = 1,

the sum over sneutrino states breaks down to the state of ν̃µ.
Keeping only the dominant terms of the neutralino charged slepton contribution to δaµ
and assuming for simplicity that the lepton-flavor violating 2 × 2 sub-matrix in the left-
handed sector of m2

l̃
is

(

m2
l̃

)

LFV
'
(

m2 δm2

δm2 m2 +∆m2

)

, (3.44)

we obtain

δanµ ' −
g2m2

µ

96π2

(

tan2 θW
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4
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((ON)a1)
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2

mW cos βmµ̃R

4
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a=1

(ON)a1 (ON)a3

)

−
g2m2
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284π2

4
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a=1

((ON)a2 + (ON)a1 tan θW )2 sν̃1

+
g2m2

µ

96π2
1

mW cos β

4
∑

a=1

(ON)a3 ((ON)a2 + (ON)a1 tan θW ) sν̃2. (3.45)

The first line in eq. (3.45) corresponds to lepton-flavor conserving contributions from the
right-handed smuon sector. The modifications in eqs. (3.42) and (3.43) due to lepton-
flavor violating mixing turn out to be rather small, e. g. they are of the order of 10−2 if
the terms δm2 or ∆m2 are roughly one percent of m2 in eq. (3.37).



3.2. MAGNETIC AND ELECTRIC DIPOLE MOMENTS OF LEPTONS 37

Electric dipole moments Electric dipole moments (EDMs) di of charged leptons are
defined by the Lagrangian [38]

LEDM = − i
2
diliσ

αβFαβγ5li, (3.46)

corresponding to an amplitude of the form

Mi
EDM = ui(p

′)iε∗ασ
αβqβ (diγ5) ui(p). (3.47)

By comparison to eq. (3.2), this type of leptonic dipole operator can also be directly
related to Aij

L,R,

di =
e

2
mli

(

Aii
R − Aii

L

)

|mli
=mlj

. (3.48)

From the results of appendix F, see eqs. (F.33), (F.34), one obtains a complete one-loop
expression for the SUSY contribution to leptonic EDMs. Neglecting the leptonic masses
in the loop integrals yields the well-known result,

di = − e

32π2
Im
(

C
L(l)
iax C

R(l)∗
iax

) mχ̃−a

m2
ν̃x

3− 4rCax +
(

rCax
)2

+ 2 ln rCax

(1− rCax)3

− e

32π2
Im
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N
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iax N
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iax
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m2
l̃x

1−
(

rNax
)2

+ 2rNax ln r
N
ax

(1− rNax)3
, (3.49)

see e. g. [38]. This clearly demonstrates that EDMs are a measure for complex, or more
specifically CP -violating parts of the slepton mixing matrices.
The natural mass scale for the mass insertion describing the chirality flip in the EDM
interaction is given by the lepton mass involved. One therefore expects that the leptonic
EDMs are proportional to the corresponding lepton masses, leading to the the so-called
naive scaling relation [58]

di ∼
mli

mlj

dj. (3.50)

The authors of [58] have pointed out that in general LFV terms lead to a violation of naive
scaling. In this case new contributions arise, e. g. mτ

mµ
enhanced contributions to dµ in the

mass insertion approximation, see [58]. Due to the smallness of me, contributions from
mµ and/or mτ are even more important for the electron EDM, so that large deviations
from naive EDM scaling are possible [56].
If no other sources of SUSY phases exist, leptonic EDMs are generated through RGE
effects from complex parts in Y †ν Yν in the SUSY seesaw model. In this context, it has
been noted in [38] that leptonic EDMs can be strongly enhanced if there is a large hierarchy
among theMi. For strongly hierarchical right-handed Majorana neutrino masses, electron
and muon EDMs can be in the range of future experimental searches, because dµ '
10−26 ecm or de ' 10−31 ecm are possible, as has been shown in [38]. In that analysis it
has been pointed out that a step-function-like enhancement of EDMs is expected when
going from the degenerate to the non-degenerate Mi case. Effects from non-degenerate
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Figure 3.3: Generic diagrams for l−j → l−i l
+
i l
−
i in the MSSM with LFV; the blob indicates

a ljliγ-vertex as in Fig. 3.1 or a ljliZ-vertex where the Z-boson is external.

Mi induce additional imaginary contributions being proportional to diagonal elements of
trilinear A-terms. This also implies that in the SUSY seesaw model with non-degenerate
Mi, the leptonic EDMs depend strongly on the magnitude of A-terms.

3.3 Other rare lepton-flavor violating processes

Processes of the type lj → lil̄ili are generated by photon penguin diagrams, Z-penguin
diagrams and box diagrams (see Fig. 3.3). The photon penguin diagrams to lj → lil̄ili
give rise to the amplitude [31]

Mγ = ui (p1)
(

q2γα
(

AL
1PL + AR

1 PR
)

+mlj iσαβq
β
(

AL
2PL + AR

2 PR
))

uj(p)

×e
2

q2
ui (p2) γ

αvi (p3)− (p1 ↔ p2) . (3.51)

The term proportional to mlj corresponds to on-shell photon penguin diagrams, whereas
the terms involving A1 correspond to off-shell photon contributions. The minus sign
indicates an antisymmetrization due to the exchange of identical external fermions in
lj → lil̄ili. Analogously, the Z-penguin diagrams for lj → lil̄ili lead to an amplitude of
the form [31]

MZ =
g2Z
m2
Z

ui (p1) γα (FLPL + FRPR)uj(p)

×ui (p2) γα
(

Z l
LPL + Z l

RPR
)

vi (p3)− (p1 ↔ p2) . (3.52)
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Figure 3.4: Generic diagrams for µ − e conversion processes on nuclei at the quark level
in the MSSM with LFV; the blob indicates a ljliγ-vertex as in Fig. 3.1 or a ljliZ-vertex
where the Z-boson is external.

The coefficients of the couplings of the Z-boson to left(right)-handed fermions are

Zf
L(R) = T f

3L(R) −Qf
em sin2 θW , (3.53)

where T f
3L(R) and Q

f
em represent weak isospin and electric charge, respectively. The am-

plitude for the box-type Feynman diagrams can be written in the form [31]

Mbox = BL
1 e

2ui (p1) γ
αPLuj(p)ui (p2) γαPLvi (p3) + (L↔ R)

+BL
2 e

2 (ui (p1) γ
αPLuj(p)ui (p2) γαPRvi (p3)− (p1 ↔ p2)) + (L↔ R)

+BL
3 e

2 (ui (p1)PLuj(p)ui (p2)PLvi (p3)− (p1 ↔ p2)) + (L↔ R)

+BL
4 e

2
(

ui (p1)σαβPLuj(p)ui (p2)σ
αβPLvi (p3)− (p1 ↔ p2)

)

+ (L↔ R) .

(3.54)

The abbreviation “+ (L↔ R)” indicates a term that is equal to the preceding term when
any index L is substituted by R and vice versa. For the complete form of the resulting
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decay rate we refer to [31] and to the additional formulae given in appendix G,
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Here the following coefficients involving Z-penguin contributions appear,

FLL =
FLZ

l
L

m2
Z sin2 θW cos2 θW

FRR = FLL|L↔R

FLR =
FLZ

l
R

m2
Z sin2 θW cos2 θW

FRL = FLR|L↔R. (3.56)

As in the case of Br
(

l±j → l±i γ
)

, the decay rates for Br
(

l−j → l−i l
+
i l
−
i

)

and its charge
conjugated decay mode are the same which can be checked by inspection of the effective
Lagrangian [51] of both processes.
The process of µ-e conversion in nuclei, i. e. the process µ+(A,Z)→ e+(A,Z) where A
and Z denote the atomic and proton numbers in a nucleus, arises from diagrams depicted
in Fig. 3.4. The effective Lagrangian relevant for this process at the quark level consists of
penguin-type contributions and box-type contributions. The penguin-type contributions
read as

Lpengeff = −e
2

q2
e
(

q2γα
(
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∑
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Zq
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R

2
qγαqeγ

α (FLPL + FRPR)µ, (3.57)
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where the first term comes from photon penguin diagrams and the second from penguin
diagrams with Z-boson exchange. For box-type contributions, one obtains

Lboxeff = e2
∑

q=u,d

qγαqeγ
α
(

DL
q PL +DR

q PR
)

µ. (3.58)

Normalizing to the total muon capture rate Γcap, the following rate for µ-e conversion on
a nucleus C, can be obtained [31]

R(µ−C → e−C) =
4α5m5
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2

+ (L↔ R)

)

, (3.59)

where N denotes the neutron number of the nucleus, Zeff is the effective charge of the
nucleus and F (q2) the nuclear form factor. For Ti4822, these quantities are given by Zeff =
17.6 [59], Γcap = 2.59 · 106 s−1 ≈ 1.7 · 10−18 GeV [60] and F

(

q2 ' m2
µ

)

' 0.54 [59]. In

the above equation (3.59) the terms D
L,R

u,d contain Z-boson penguin contributions and the
box-type contributions, specified in [31],
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(3.60)

D
R

q = D
L

q

∣

∣

L↔R
(q = u, d). (3.61)

A few comments are in order: The evaluation of the nuclear effects in µ-e conversion
is based on the Weinberg-Feinberg approximation [61], i. e. relativistic effects and the
Coulomb distortion have been ignored. It should also be mentioned that recently there
has been a more detailed approach to the evaluation of µ-e conversion taking into account
relativistic overlap integrals of protons and neutrons in nuclei [62]. In the case of Titanium
nuclei, the difference of the conversion rates in the two methods of calculation amounts
to approximately 15%, leading to a slight reduction of the µ-e conversion rate calculated
in the Weinberg-Feinberg approximation.
If R-parity is conserved, the main contribution to leptonic three-body decays is given by
the on-shell photon penguin terms (see [63] and [51]),
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4

)

. (3.62)

Therefore one obtains the following ratios of branching ratios in the R-parity conserving
case,

Br(τ → 3µ)

Br(τ → µγ)
' α

3π

(

ln
m2
τ

m2
µ

− 11

4

)

≈ 1

444

Br(τ → 3e)

Br(τ → eγ)
' α

3π

(

ln
m2
τ

m2
e

− 11

4

)

≈ 1

95

Br(µ→ 3e)

Br(µ→ eγ)
' α

3π

(

ln
m2
µ

m2
e

− 11

4

)

≈ 1

143
. (3.63)
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Figure 3.5: Examples of diagrams for LFV at low energies in the MSSM with trilinear
R-parity violation; trilinear R-parity violating couplings are explicitly shown.

Analogously, the dominance of on-shell photon penguin contributions leads to

R(µ−C → e−C)

Br(µ→ eγ)
≈ Γµ

Γcap
16α4Z4

effZ|F (q2)|2 (3.64)

≈ 6 · 10−3 for Titanium. (3.65)

These predictions are SUSY model-independent if R-parity conservation is assumed. Ef-
fects due to Higgs mediated LFV in these three-body decays have been extensively studied
in [64]. It turns out that the Higgs mediated contributions to these decays are subleading
compared to the photonic penguin ones, in particular for low or medium values of tan β.
It should be mentioned that our numerical results on Br

(

li → lil̄ili
)

and µ-e conversion
were obtained according to the results of [31] with the additional calculations summarized
in appendix G.

LFV at low energies and

trilinear R-parity violation It has been demonstrated in [65] that in models with

trilinear R-parity violation (/R), Br(µ→3e)
Br(µ→eγ)

can be in the range from 1 to 104, in contrast

to the predictions of the SUSY seesaw model shown before, see eq. (3.63). Similarly the
rate for µ-e conversion on nuclei can be strongly enhanced.
The R-parity violating superpotential with MSSM chiral superfields is given by [65]

W/R =
λijk
2
liljek + λ′ijkliqjdk + λ′′ijkuidjdk + µ′ilih2. (3.66)

For the study of LFV the λ′′-couplings are not relevant at the one-loop level and we also
assume that the bilinear µ′i-couplings vanish. As the λ-couplings are antisymmetric in
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the first two indices, this model has 9 couplings of λ type and 27 of λ′ type. Under these
assumptions, W/R leads to the following SSB Lagrangian [65],

L/R = λijk
(

νcLieLj ẽ
∗
Rk

+ eRkνLi ẽLj + eRkeLj ν̃Li
)

+λ′ijkV
jα
KM

(

νcLidLα d̃
∗
Rk

+ dRkνLi d̃Lα + dRkdLα ν̃Li

)

−λ′ijk
(

ucLjeLi d̃
∗
Rk

+ dRkeLi ũLj + dRkuLj ẽLi

)

+ h.c. (3.67)

In the above equation, the Kobayashi-Maskawa quark mixing matrix is denoted by VKM .
It is assumed that there is no left-right mixing in the squark and slepton sectors which
is a good approximation for studying generic predictions for ratios of rates for rare LFV
processes. If R-parity is violated, tree-level contributions in rare leptonic three-body
decays and µ-e conversion on nuclei arise [65], see also Fig. 3.5. Therefore the relation
between Br (lj → liγ) and Br

(

lj → lil̄ili
)

is expected to be essentially different in models
with generic trilinear /R couplings, as compared to the seesaw predictions in eq. (3.63).

Note that the ratios of Br(µ→3e)
Br(µ→eγ)

and R(µ−T i→e−T i)
Br(µ→3e)

in /R depend only on the SUSY spectrum,
not on the values of the R-parity violating couplings, if one assumes that the processes are
mediated by only two non-vanishing /R couplings [65], see also the diagrams for µ→ eγ and
µ→ 3e in Fig. 3.5. It should be emphasized that in addition to rare muon decays studied
in [65], there is also the possibility to distinguish LFV in R-parity conserving/violating
models by comparing predictions for τ three-body decays to the respective two-body
decays, as illustrated in Fig. 3.5.
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3.4 Leptogenesis

The asymmetry in the numbers of baryons as compared to those of antibaryons in the
universe has been confirmed e. g. by a the WMAP collaboration. They have measured
the ratio of baryon number density to photon number density at the recombination time
of photons [66],

ηB =
(

6.1+0.3
−0.2
)

× 10−10. (3.68)

The three Sakharov conditions [67], necessary for the generation of a baryon asymmetry
are:

1. Violation of baryon number B: B-violating interactions are necessary to generate
an asymmetry in baryons over antibaryons.

2. Violation of C and CP : If CP was conserved, every reaction producing a particle
would be accompanied by a process which produces its antiparticle at exactly the
same rate. To generate a baryon asymmetry, CP and C have to be violated.

3. Departure from thermal equilibrium: Moreover, if B-violating interactions are in
equilibrium, then the thermal average 〈B〉 vanishes. The B- and CP -violating pro-
cesses should have interaction rates smaller than the expansion rate of the universe,
so that 〈B〉 is not washed out by the inverse processes. In other words, the interac-
tions must have an arrow of time.

According to the standard theory of cosmology in the early universe [68], a particle re-
mains in thermal equilibrium, if the interaction rate Γ per particle is greater or at least
comparable to the expansion rate H of the universe, Γ ≥ H, where the Hubble constant
is H = Ṙ

R
and R denotes the scale factor of the universe.

In theories with heavy right-handed Majorana neutrinos, one can understand the genera-
tion of the baryon asymmetry of the universe (BAU) through the mechanism of leptogene-
sis [16]. In thermal leptogenesis the heavy right-handed Majorana neutrinos are produced
thermally after inflation and they induce L-violating interactions at temperatures above
their mass scales.

At lower temperatures, the generated (B−L) asymmetry NB−L is converted into a baryon
asymmetry by sphaleron processes [69] being related to the non-trivial vacuum configu-
rations of the electroweak theory. The vacuum structure of the SU(2)L theory leads to
an anomalous non-conservation of (B + L), so that transitions between different vacua
are accompanied by a change in (B +L). Since this process is non-perturbative, the rate
for (B + L) violation is proportional to exp (−1/g2). Because 1/g2 À 1, such quantum
tunneling is completely negligible today. At finite temperatures however, the transitions
between different vacua can be driven by thermal effects. The analysis of Kuzmin et al.
[69] has demonstrated that the barriers between different vacua can be surmounted at
temperatures above the electroweak phase transition near 100 GeV. The sphaleron solu-
tion corresponds to the lowest barrier between two electroweak vacua states. Moreover
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these transitions conserve (B − L), so that an initial L asymmetry induces a B asymme-
try through (B + L) violating sphaleron processes which are in thermal equilibrium for
temperatures between 100 GeV and 1012 GeV.
A necessary condition for successful thermal leptogenesis is that the masses of the heavy
neutrinos are non-degenerate, see e. g. [70]; otherwise one could choose a basis where the
mass matrix M and the Yukawa matrix Yν are both diagonal, so that no CP asymmetry
would be generated, see also eq. (3.75) below. Therefore one often assumes hierarchical
masses, i. e. M3 ÀM2 ÀM1 or at least M3−M2 ' O(M2), M2−M1 ' O(M1). In this
case the (B − L) asymmetries produced by the heavier neutrinos will be washed out by
processes involving the lightest right-handed neutrino which are in thermal equilibrium
for temperatures above theM1-threshold [71]. The authors of [71] have also demonstrated
that the final (B−L) asymmetry is independent of initial conditions, e. g. a large initial
asymmetry if the effective neutrino mass is m̃1 >∼ 5 · 10−3 eV. The latter is defined as

m̃1 =
(mDm

†
D)11

M1
, see also discussion on p. 48.

The Boltzmann equations [71] specify the time evolution of the numbers NN1
and NB−L

for the lightest singlet Majorana neutrino N1 and the B −L asymmetry in the comoving
volume element. Taking the effects of the interactions of the lightest right-handed Ma-
jorana neutrino into account, they can formally be given in a compact form [71]. The
notation Ni corresponds to the three heavy Majorana neutrinos [70]

Ni = νRi + νcRi . (3.69)

Then the Boltzmann equations are given by

dNN1

dz
= −(D + S)

(

NN1
−N eq

N1

)

dNB−L

dz
= −ε1D

(

NN1
−N eq

N1

)

−WNB−L. (3.70)

It is convenient to express the time dependence through the variable z = M1

T
in eq. (3.70).

The Boltzmann equations above show explicitly that a difference
(

NN1
−N eq

N1

)

in the
numbers of lightest right-handed Majorana neutrinos NN1

and their numbers in thermal
equilibrium N eq

N1
is necessary to generate an asymmetry in (B − L). Four classes of

processes contribute to the Boltzmann equations [71]:

• Decays of N1 into leptons and Higgs bosons N1 → lh2 and into antileptons and
anti-Higgs bosons N1 → l̄h†2

• Inverse decays of N1, i. e. h2l→ N1 and h†2l̄ → N1

• ∆L = 1 processes mediated by Higgs particles, i. e. N1l(l̄)↔ t̄(t)q(q̄) and N1t(t̄)↔
l̄(l)q(q̄)

• ∆L = 2 scatterings with intermediate singlet Majorana neutrinos, i. e. lh2 ↔ l̄h†2,
ll ↔ h†2h

†
2 and l̄ l̄↔ h2h2
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In the above Boltzmann equations (3.70), the thermally averaged ∆L = 1 reaction rate
per particle ΓS enters through the quantity S = ΓS

Hz
. The rescaled quantity D = ΓD

Hz

accounts for decays and inverse decays of N1 and the rescaled washout rate W = ΓW
Hz

gets
contributions from inverse decays, ∆L = 1 and ∆L = 2 scatterings.
A formal solution to the asymmetry NB−L in the Boltzmann equations (3.70) is given by
[71]

NB−L(z) = NB−L (zin) exp

(

−
∫ z

zin

dz′W (z′)

)

− 3

4
ε1κf (z), (3.71)

where the efficiency factor κf is given by

κf (z) =
4

3

∫ z

zin

dz′D(z′)
(

NN1
(z′)−N eq

N1
(z′)
)

exp

(

−
∫ z

z′
dz′′W (z′′)

)

, (3.72)

and initial values are defined at zin. We assume that the initial (B − L) asymmetry is
zero, so that NB−L(z) is proportional to the CP asymmetry and the efficiency factor,

NB−L = −3

4
ε1κf . (3.73)

The efficiency factor κf takes into account the effects of the washout rate W on an initial
(B−L) asymmetry by inverse decays, ∆L = 1 and ∆L = 2 processes. Thus the washout of
the (B−L) asymmetry does not depend on the decay rate of N1 or on the CP asymmetry
ε1 in N1 decays. The latter is defined as [70]

ε1 =
Γ (N1 → h2 + l)− Γ(N1 → h†2 + l̄)

Γ (N1 → h2 + l) + Γ(N1 → h†2 + l̄)
. (3.74)

Note that the aforementioned scattering and decay processes are shown for illustrative
purposes. In the SUSY seesaw model one also has to consider supersymmetric versions
of these interactions involving e. g. heavy right-handed sneutrinos, see for e. g. [70] for
a detailed analysis. The CP -violation in the decays of Ni is given by [72],

εi ' − 1

8π

1
(

YνY
†
ν

)

ii

∑

j 6=i
Im
(

(

YνY
†
ν

)

ij

(

YνY
†
ν

)

ij

)

f

(

M2
j

M2
i

)

, (3.75)

f(x) =
√
x

(

2

x− 1
+ ln

1 + x

x

)

. (3.76)

The CP asymmetry εi arises from the interference of the tree-level decay diagrams with
vertex and self-energy corrections, see Fig. 3.6, where the diagrams are shown generically.
A quantitative analysis, see e. g. the reviews in [73] and [72], taking into account the
chemical potentials of all particle species in the high-temperature phase, shows that the
sphaleron conversion factor aSph for an initial (B − L) asymmetry is

NB = aSphNB−L =
8nF + 4nH

22nF + 13nH
NB−L. (3.77)
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For three generations of fermions (nF = 3) and two Higgs doublets (nH = 2), this leads
to a conversion factor

aSph =
8

23
(3.78)

in the case of the MSSM. Note that this factor of roughly one third also arises in the SM
with one Higgs doublet.
For the measured baryon asymmetry ηB one also has to take into account the dilution of
the asymmetry due to standard photon production from the onset of leptogenesis until
the recombination of photons [71]. This is done by the dilution factor

fdil =
Nγ(T 'M1)

Nγ(T0)
' g∗s(T0)

g∗s(T 'M1)
∼ 0.017, (3.79)

where T0 is the recombination temperature of the universe. This dilution factor can be
understood as follows [68]: The number of effectively massless degrees of freedom, i. e. of
those species with mass mi ¿ T that are relevant for the entropy density of the universe,
is given by

g∗s =
∑

i=bosons

gi

(

Ti
Tγ

)3

+
7

8

∑

i=fermions

gi

(

Ti
Tγ

)3

, (3.80)

where the factor 7
8
is due to the difference in Bose and Fermi statistics and gi represents the

internal degrees of freedom of a particle. Moreover the temperature Ti takes into account
that a particle imay have a thermal distribution different from the photon temperature Tγ .
The conservation of the entropy per comoving volume in thermal equilibrium implies that
g∗sT

3R3 remains constant during the expansion of the universe. At temperatures below
1 MeV, the interaction rates for electron-neutrino processes, ν̄eνe ↔ e+e− and νee↔ νee
fall below the expansion rate and neutrino interactions are too weak to keep them in
equilibrium, so that the light neutrino species decouple from the plasma. Shortly after
neutrino decoupling the temperature drops below the mass of the electron, and entropy
in e± pairs is transferred to the photons, but not to the neutrinos. As mentioned above,
for particles in thermal equilibrium, g∗s(RT )

3 remains constant. Therefore the value of
Tγ after electron decoupling must be larger than Tν before e± annihilation, leading to

Tγ
Tν

=

(

11

4

)1/3

≈ 1.4. (3.81)

This in turn yields

g∗s(T0) = 2 +
7

8
× 2× 3× 4

11
≈ 3.91. (3.82)

On the other hand, at the time of decoupling of the lightest right-handed (s)neutrinos,
all lighter MSSM particles are active degrees of freedom (g∗s = 228.75 in the MSSM, see
[70]), so that at T 'M1

g∗s(M1) = 228.75 + 2 +
7

8
× 2 = 232.5. (3.83)
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Figure 3.6: Tree-level diagram, self-energy diagram and vertex correction for the decay of
singlet Majorana neutrinos.

Taking into account the sphaleron conversion factor eq. (3.78) and the dilution factor
eq. (3.79) finally yields the following form for the observed baryon asymmetry,

ηB ≈ −0.0044ε1κf . (3.84)

For hierarchical heavy Majorana neutrinos
M2
j

M2
1
À 1, one obtains f

(

M2
j

M2
1

)

' 3M1

Mj
, leading

to [72, 74]

ε1 ' − 3

8π

1
(

YνY
†
ν

)

11

∑

j 6=1

Im
(

(

YνY
†
ν

)

1j

(

YνY
†
ν

)

1j

)M1

Mj

.

Summarizing, extensive studies of thermal leptogenesis [71] have revealed that the gener-
ated (B − L) asymmetry depends on the following quantities:

1. The CP asymmetry ε1 in decays of N1

2. The mass M1 of N1

3. The effective neutrino mass m̃1 =
(mDm

†
D)11

M1
, which is constrained to bem1 ≤ m̃1 <∼ m3

4. The sum of all neutrino masses squared, m2 = m2
1 + m2

2 + m2
3, which controls an

important class of washout processes.

In the limit of hierarchical light neutrinos, i. e. κ1 = 0, one can express the effective
neutrino mass m̃1 in terms of R-matrix elements and κ2,3 as follows,

κ2 |R12|2 + κ3 |R13|2 =
m̃1

v2 sin2 β
. (3.86)

For quasi-degenerate light neutrinos of mass scale m1, the analogous equation is given by

|R11|2 + |R12|2 + |R13|2 =
m̃1

m1

. (3.87)
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This relation can be interpreted as a sphere of radius
√

m̃1

m1
in |R11|, |R12|, |R13| space.

A numerical fit for κf for hierarchical light neutrinos and M1 < 1014 GeV is given by [71]

κf (m̃1) ' 0.24
(

x−e
−x− + x+e

−x+
)

, x± =

(

m̃1

m̃±

)∓1−α
, (3.88)

where m̃− = 3.5 · 10−4 eV, m̃+ = 8.3 · 10−4 eV and α = 0.1. Note that this fit has
been obtained in the non-supersymmetric seesaw model. However it is expected that
in the case of thermal leptogenesis in the SUSY seesaw model, the efficiency factor is
approximately as in eq. (3.88), see also [70] and [75]. The efficiency factor eq. (3.88)
increases for m̃1 <∼ 1 meV roughly as m̃1 due to the first term in (3.88). Since m̃1 is
a measure of the coupling of right-handed neutrinos to the thermal bath, the efficiency
factor grows in the region of small m̃1 ¿ m̃−, where out of equilibrium decays lead to
a strong dependence on the number of N1 [76]. The decrease of κf , κf ∝ 1

m̃1
, for large

m̃1 >∼ 1 meV is controlled by the second term. For large m̃1 À 1 meV, the lightest
right-handed neutrinos are rapidly produced and their number approaches the thermal
equilibrium value. Then the washout processes dominate over the production processes,
diluting a generated asymmetry more effectively [76].
For hierarchical right-handed Majorana neutrinos, the CP asymmetry in the decays of
N1 is given by

ε1 = − 3

8πv22

M1
(

YνY
†
ν

)

11

Im
[(

Yνm
†
νY

T
ν

)

11

]

(3.89)

= − 3

8π

M1
(

YνY
†
ν

)

11

Im

[(

YνY
†
ν

1

M
Y ∗ν Y

T
ν

)

11

]

(3.90)

= − 3

8π

M1
(

YνY
†
ν

)

11

Im
[(

D√MRDκ2RTD√M
)

11

]

. (3.91)

Note that the approximation (3.85) for ε1 is obtained by inserting the seesaw formula
mν = v22Y

T
ν

1
M
Yν in (3.89). From the above equation (3.91), one can also conclude that

[74]

ε1 ' −
3

8π

M1

v22

∑

im
2
i Im (R2

1i)
∑

imi |R1i|2
. (3.92)

Using the orthogonality condition
∑

iR
2
1i = 1, the authors of [74] have shown that

|ε1| <∼
3

8π

M1

v22
(m3 −m1) . (3.93)

Assuming a hierarchical spectrum of light neutrinos, this corresponds to an upper bound
on the CP asymmetry ε1. On the other hand this also implies a lower bound on the
M1-scale, e. g. if ε1 < 10−6, then M1 > 4 · 109 GeV, see also the discussion in [74].
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Writing the terms contributing to eq. (3.90) explicitly, the expression for the CP asym-
metry becomes

ε1 = − 3

8π

M1
(

YνY
†
ν

)

11

Im

(

3
∑

k,l=1

(Yν)1k (Y
∗
ν )2k

1

M2

(Y ∗ν )2l (Yν)1l

+
3
∑

k,l=1

(Yν)1k (Y
∗
ν )3k

1

M3

(Y ∗ν )3l (Yν)1l

)

. (3.94)

In the above equation, the terms involving M2 are from interference processes in the
decays of νR1

involving νR2
, while those involving M3 are from interference processes in

the decays of νR1
involving νR3

. For numerical results, these terms are evaluated at the
scales of M2 and M3 [77], respectively. On the other hand,

(

YνY
†
ν

)

11
being relevant for

the effective neutrino mass m̃1 is evaluated at the scale of M1 in eq. (3.94).
As the MNS matrix U drops out in ε1, it is clear from eq. (3.91) that non-zero imaginary
parts of the R-matrix elements are necessary to generate a CP asymmetry. We will study
a minimal model, where the real parts of the angles in the R matrix are vanishing, i. e.
x1,2,3 = 0. For small imaginary parts, i. e. y1,2,3 ' 10−2, the form of the R-matrix has
been derived in eq. (2.39). In this limit one obtains the following approximate results:

m̃1

v22
'

(

κ1
(

1 + y22 + y23
)

+ κ2y
2
3 + κ3y

2
2

)

(3.95)

Im
(

((

YνY
†
ν

)

12

)2
)

' −2M1M2 (κ1 + κ2) (κ2 + κ3) y1y2y3 (3.96)

Im
(

((

YνY
†
ν

)

13

)2
)

' 2M1M3 (κ1 + κ3) (κ2 + κ3) y1y2y3 (3.97)

In the above equations, terms of higher order in yi have been neglected. This shows
that successful leptogenesis is possible if y1y2y3 6= 0. Therefore the minimal choice is
y1 = y2 = y3 ≡ y. If one further assumes hierarchical light neutrinos, i. e. κ1 = 0, the
baryon asymmetry is determined through eq. (3.84) by the parameters

ε1 ' −3M1

4π
(−κ2 + κ3) y (3.98)

κf ' 0.24 x−e
−x−

' 0.24

(

v22
m̃−

(κ2 + κ3)

)0.9

y1.8

(

1−
(

v22
m̃−

(κ2 + κ3)

)0.9

y1.8

)

. (3.99)

Summarizing, in this model the sign of y1y2y3 is fixed to be positive, and the baryon
asymmetry depends on a common y ≡ yi <∼ 10−2 as ηB ∝ y2.8, in the limit of hierarchical
light neutrino masses and m̃1 ¿ m̃−.
It has been noted that an overabundance of gravitinos can cause serious cosmological
problems [78]. For example, the abundances of light elements as explained by big-bang
nucleosynthesis (BBN) may be modified by gravitino decays: Since the couplings of the
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gravitino to ordinary matter are strongly suppressed by the gravitational scale, it has a
very long lifetime. However, if it is heavier than the LSP, it can decay e. g. radiatively
into a photon and photino. These decays will occur after the big-bang nucleosynthesis,
unless the gravitino is heavier than ∼ 10 GeV [41]. Among the gravitino decay products
are energetic photons which induce electromagnetic cascade processes, thereby spoiling
successful BBN. Since the number of gravitinos produced during the reheating epoch
is approximately proportional to the reheating temperature TR, one can obtain upper
bounds on TR depending on the gravitino mass m3/2. According to the analysis [79], the
upper bounds corresponding to a heavy, i.e unstable gravitino are given by TR <∼ 107, 109

and 1012 GeV for m3/2 = 100 GeV, 1 TeV and 3 TeV, respectively. Assuming that the
right-handed neutrinos are produced thermally after inflation results in a constraint on
M1, i. e. M1 < TR. This potential problem of thermal leptogenesis can be overcome
e. g. in AMSB, as has been realized in [44]. In anomaly mediated SUSY-breaking,
m3/2 is typically of the order of 10-100 TeV, so that bounds obtained from m3/2 are less
severe. This is due to the fact that for m3/2 >∼ 60 TeV, the gravitinos decay well before
the start of nucleosynthesis, see also [44] for details. Another way to solve the gravitino
problem has been proposed recently by the authors of [80]. It has been noticed that
in gaugino mediated supersymmetry breaking, gauge couplings decrease above a critical
temperature T∗ which depends on the SUSY breaking mass scale. In this scenario, the
gravitino is the LSP and therefore the dark matter candidate. The decrease of the gauge
couplings crucially affects the production of gravitinos after inflation. The authors of [80]
have shown that this mechanism leads to a relic gravitino density which is compatible
with the WMAP results and which becomes independent of the reheating temperature
for TR > T∗.
Since an analysis of the gravitino problem is beyond the scope of this work, we will not
consider the related constraints which are also model dependent in the following.
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Numerical results

4.1 Input parameters

4.1.1 Neutrino parameters

For numerical results we use the global fits in a three neutrino framework performed
in [3] including data from KamLAND, CHOOZ, MACRO and Super-Kamiokande, and
also the recently improved measurement of the neutral currents at SNO as well as the
first spectral data from the K2K long baseline accelerator experiment, see references in
[3]. The neutrino oscillation parameters corresponding to the highly-favored large mixing
angle solution of the solar neutrino problem are summarized in Tab. 4.1.

Parameter best fit error (3σ)

sin2 θ23 0.52 +0.20
−0.21

sin2 θ13 0.006 +0.048
−0.006

sin2 θ12 0.30 +0.09
−0.07

∆m2
21/10

−5 eV2 6.9 +2.6
−1.5

∆m2
31/10

−3 eV2 2.6 +1.1
−1.2

Table 4.1: Best-fit values and 3σ confidence level (CL) intervals for the present uncer-
tainties of neutrino oscillation parameters corresponding to [3].

For the Dirac phase δ of (2.19) and the two Majorana phases φ and φ′ introduced in
(2.18), no experimental limits exist.
Upper bounds on the absolute mass scale of neutrinos can be obtained from tritium beta
decay experiments, neutrinoless double beta decay searches and the neutrino hot dark
matter contribution to the cosmological large scale structure and the cosmic microwave
background, see [81] for details. Assuming that thermal leptogenesis in the decays of N1

provides the solution to the BAU yields a very strong constraint on the mass scale of the
lightest neutrino [71],

m1 < 0.11 eV. (4.1)

52
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SPS 1a

m0/GeV M̃1/2/GeV A0/GeV tan β sign(µ)
100 250 -100 10 1

m0 = −A0 = 0.4 M̃1/2, M̃1/2 varies

Table 4.2: Input parameters and parameter line of the SPS 1a mSUGRA scenario.

SPS 9
m0/GeV m3/2/TeV tan β sign(µ)

450 60 10 1
m0 = 0.0075 m3/2, m3/2 varies

Table 4.3: Input parameters and parameter line of the SPS 9 AMSB scenario.

Note also that a positive signal at the final sensitivity of the tritium beta decay experiment
KATRIN would imply m1 = 0.3± 0.1 eV [82].

4.1.2 SUSY parameters

The fundamental SUSY input parameters should be chosen such that they are consistent
with all experimental and cosmological constraints. These include

• direct sparticle searches;

• b→ sγ;

• cosmological relic density, with the lightest neutralino as LSP and dark matter
candidate;

• Higgs searches.

In the following, we specify the numerical values of the fundamental input parameters of
the SUSY models and also show the resulting sparticle spectra in Tab. 4.6.

mSUGRA There have been several proposals for mSUGRA benchmark scenarios, e.
g. [39] and [83]. The so-called Snowmass Points and Slopes (SPS) benchmark scenarios
[39] propose single points in mSUGRA parameter space, including parameter lines along
which dimensionfull input parameters are varied. The mSUGRA scenario SPS 1a studied
in this work is specified in Tab. 4.2. Note that SPS 1a is similar to scenario B of [83].

AMSB parameters For the input parameters in the AMSB scenario we refer to SPS
9 of [39], see Tab. 4.3.
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G̃MSB

M̃1/2/GeV MC

MGUT
tan β sign(µ)

500 2 12 1

Table 4.4: Parameters of the G̃MSB scenario.

GMSB
FS/GeV2 Mm/GeV Nm tan β sign(µ)

1019 1014 1 15 1

Table 4.5: Parameters of the GMSB scenario.

G̃MSB parameters We choose the parameters of the G̃MSB model according to the
so-called “heavy MGM” scenario of [46], specified in Tab. 4.4, for simplicity referred to
as “G̃MSB” in the following.

GMSB parameters The fundamental input parameters of the GMSB scenario consid-
ered here are specified in Tab. 4.5. As mentioned earlier, for sizeable LFV effects in the
SUSY seesaw model, the messenger mass scale has to be larger than the Majorana mass
scales. The other parameters, in particular FS are chosen such that they lead to sparticle
masses comparable to the other scenarios.

4.2 Leptogenesis

Effective neutrino mass m̃1 as a function of elements of R The effective neutrino
mass m̃1 is displayed in Fig. 4.1 as a function of a common y ≡ yi and vanishing xi,
showing an increase proportional to y2, as expected from eq. (3.95) for y ¿ 1 in the
limit κ1 = 0. In order to demonstrate effects when this restriction is relaxed, we show
in Fig. 4.5 m̃1 when yi are non-equal and xi are small. It turns out that in this case
m̃1 is approximately proportional to (y1y2y3)

2/3 although the correlation is weaker in
comparison to the previous case.
For definiteness, we choose tan β = 10 and a SUSY-scale of MSUSY = 467 GeV, corre-
sponding to the scenario SPS 1a. Note, however, that the results concerning leptogenesis
are virtually independent of the choice of a low-energy SUSY-scale. This also implies that
the results for the leptogenesis parameters would be almost identical in the other models
of SSB considered here.

Efficiency factor κf as a function of elements of R As mentioned in section 3.4 on
p. 49, for hierarchical light and heavy neutrinos withM1 < 1014 GeV, the efficiency factor
κf for the generated (B−L) asymmetry is to a good approximation only a function of m̃1.
Using the numerical fit of eq. (3.88) for the efficiency factor, we plot in Figs. 4.2 and 4.6
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Parameter SPS 1a G̃MSB SPS 9 GMSB
mχ̃0

1
/GeV 96 211 164 207

mχ̃0
2
/GeV 177 406 551 221

mχ̃0
3
/GeV 359 739 986 428

mχ̃0
4
/GeV 378 750 991 444

mχ̃−1
/GeV 176 406 164 213

mχ̃−2
/GeV 378 750 990 444

mẽR/GeV 143 235 383 310
mτ̃1/GeV 133 224 355 298
mν̃e/GeV 186 364 382 393
mẽL/GeV 202 373 390 401
mτ̃2/GeV 206 375 400 400
mν̃τ/GeV 185 364 377 390
mb̃1

/GeV 492 1121 1087 668
mt̃1/GeV 379 906 906 533
mb̃2

/GeV 525 1195 1251 701
mt̃2/GeV 575 1117 1118 721

Table 4.6: Sparticle masses in the scenarios under consideration; in an obvious notation,
the slepton masses of the first two generations are displayed with an “e” index, i. e.
mµ̃R = mẽR etc.

κf as a function of y and 3
√
y1y2y3, where the relevant parameters are as in Figs. 4.1 and

4.5, respectively. As discussed before, the efficiency factor scales roughly as m̃1 or 1/m̃1

for m̃1 ¿ 0.1 meV or m̃1 À 0.1 meV, respectively. Therefore a maximal κf near 0.1 meV
can be expected in Fig. 4.2. Moreover, the increase of the efficiency factor proportional
to y1.8 for y ¿ 1 is explained in eq. (3.99). The scattering of κf in Fig. 4.6 follows from
the variation of m̃1 for different yi and small xi.

CP asymmetry ε1 as a function of elements of R The CP asymmetry ε1 generated
in the decays of N1 also depends onM1 in the case of hierarchical right-handed neutrinos.
We present ε1 as a function of y in Fig. 4.3 whenM1 is varied in the range 1010−1012 GeV.
As expected from eq. (3.98), in the case of small yi ≡ y and y > 0, real mixing angles set
to zero and scattering of M1 around 1011 GeV, the resulting CP asymmetry is negative
resulting in a correct sign of ηB. The fact that −ε1 scales linear with both M1 and y for
y ¿ 1 is explained in eq. (3.98). We also show results for the “less constrained” choices
of R in Fig. 4.7. Note, however that in this case some choices of xi and yi, especially
for large 3

√
y1y2y3, yield the wrong sign of ε1, in which case the points do not appear in

Fig. 4.7.
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Figure 4.1: Effective neutrino mass pa-
rameter m̃1 as a function of yi ≡ y > 0,
real mixing angles xi set to zero.
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Figure 4.2: Efficiency factor κf as a func-
tion of yi ≡ y > 0, real mixing angles xi
set to zero.
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Figure 4.3: CP asymmetry −ε1 as a func-
tion of yi ≡ y > 0, real mixing angles
xi set to zero; scattering of M1 around
1011 GeV (inner line) between 1010 GeV
and 1012 GeV, M2(3) = 10(100)M1.
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Figure 4.4: Baryon asymmetry ηB as
a function of yi ≡ y > 0, real mix-
ing angles xi set to zero; scattering of
M1 around 1011 GeV (inner line) be-
tween 1010 GeV and 1012 GeV, M2(3) =
10(100)M1; straight line corresponds to
eq. (3.68).

Baryon asymmetry ηB as a function of elements of R The predictions for the final
baryon asymmetry ηB in the case of a variation of y or yi and xi are shown in Figs. 4.4
and 4.8, respectively. As ηB is proportional to −ε1, it is clear that it also scales linearly
with the mass scale M1 corresponding to the spread of points in Fig. 4.4 for a variation
of M1 in the interval 1010 − 1012 GeV. As expected from eqs. (3.84), (3.99) and (3.98),
ηB strongly increases proportional to y2.8 in the range y ¿ 10−1. The maximal baryon
asymmetry is reached near the maximal efficiency factor, i. e. for y ' 0.1 corresponding to
m̃1 ' 0.1 meV. Comparing the values of maximal baryon asymmetry to the measured one,
see eq. (3.68), we conclude that for this “minimal” choice of the R-matrix, M1 should be
roughly 1011 GeV or larger. Fig. 4.8 shows that ηB is only weakly dependent on 3

√
y1y2y3
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Figure 4.5: Correlation of m̃1 and
3
√
y1y2y3 > 0, random variation of y1,

y2 = [0.1; 10]y1, y3 = [0.1; 10]y1, xi scat-
tered between 10−4 and 10−2.
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Figure 4.6: Correlation of κf and
3
√
y1y2y3 > 0, random variation of y1,

y2 = [0.1; 10]y1, y3 = [0.1; 10]y1, xi scat-
tered between 10−4 and 10−2.
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Figure 4.7: Correlation of −ε1 and
3
√
y1y2y3 > 0, random variation of y1, y2 =

[0.1; 10]y1, y3 = [0.1; 10]y1, xi scattered
between 10−4 and 10−2; M1 = 1011 GeV.
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Figure 4.8: Correlation of ηB and
3
√
y1y2y3 > 0, random variation of y1, y2 =

[0.1; 10]y1, y3 = [0.1; 10]y1, xi scattered
between 10−4 and 10−2; M1 = 1011 GeV;
straight line corresponds to eq. (3.68).

when considering the “less constrained” form of the R-matrix. This is a consequence of
the weaker correlation of ε1 and 3

√
y1y2y3, see Fig. 4.3.

4.3 Leptonic processes at low energies

In this section we discuss effects of various parameters on Br (lj → liγ) and also on electric
and magnetic dipole moments. In order to illustrate the results, they are displayed for each
of the different SSB scenarios, performing the full one-loop RGE evolution numerically,
see also appendix H.

Earlier works Before discussing the numerical results on Br (lj → liγ) of this analysis
in detail, we want to summarize some of our results obtained in former studies on LFV in
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low-energy and high-energy processes in the SUSY seesaw model with mSUGRA univer-
sality conditions: In [55] we have analyzed the possibility to probe the scale MR of degen-
erate heavy Majorana neutrinos under the assumption of a real R-matrix. To this end,
we have studied Br (µ→ eγ) and Br (τ → µγ) in various mSUGRA benchmark scenar-
ios proposed in [83]. Varying simultaneously over all neutrino oscillation parameters, we
have derived upper bounds on MR in these scenarios, if the rare decay Br (µ→ eγ) is not
observed by future experiments. Moreover we have obtained intervals for the sensitivity
on MR provided that future measurements of Br (µ→ eγ) and/or Br (τ → µγ) are suc-
cessful. It turned out that for very light neutrino masses corresponding to m1 < 0.03 eV,
the measurement of Br (µ→ eγ) ≈ 10−14 would probe MR in the range 5 · 1012 GeV to
5 · 1014 GeV, depending on the mSUGRA scenario. On the other hand, a future measure-
ment of Br (τ → µγ) at a level of 10−9 will determine MR in the range above 5 ·1013 GeV
with an accuracy of a factor of 2 for a specific scenario. In the case of quasi-degenerate
light neutrinos, i. e. m1 ' 0.3 eV, the upper bound from Br (µ→ eγ) < 10−14 is shifted
to (1− 3) · 1014 GeV, independently of the mSUGRA scenario.
Another interesting possibility is to search for LFV at a future e+e− linear collider, see
references in [84]. We have studied in [84] possible signal cross-sections for lepton-flavor
violating slepton production and decay e±e− → ∑

i,j l̃
±
j l̃
−
i → l±β l

−
α χ̃

0
1χ̃

0
1, α 6= β. The nu-

merical results have been obtained in the context of the SUSY seesaw model under the
assumptions explained before, i. e. real R-matrix and degenerate right-handed Majo-
rana masses. We have considered those scenarios proposed in [83] leading to left-handed
sleptons that can be pair-produced in the cms energy range (500-800) GeV. The cross-
sections can in principle be as large as (1-10) fb, although they depend strongly on the
SUSY parameters and on neutrino masses and mixings. On the other hand, the correla-
tions between high-energy cross-sections and the branching ratios for the corresponding
rare radiative decays are less influenced by experimental uncertainties in the neutrino
parameters. It turns out that present bounds on µ→ eγ and τ → µγ still allow sizeable
signal rates at a LC. If the result from the PSI experiment would be Br (µ→ eγ) <∼ 10−14,
the cross-sections are constrained to be below 10−1 fb in these mSUGRA scenarios thus
making it very challenging to search for such a signal. For more details of these works,
the reader is referred to [55] and [84].

Br (lj → liγ) as a function ofMR According to the leading logarithmic approximations
eqs. (2.50), (2.63), (2.88), (2.115) and the mass insertion approximation eq. (3.10), we
expect that Br (lj → liγ) should be proportional to M 2

R in the case of degenerate heavy
Majorana masses, because of the form of Y †ν LYν in eq. (2.55). Figs. 4.9 to 4.12 show
that this approximation is valid for a wide range of values of MR assuming hierarchical
light neutrino masses, vanishing phases and real R. As can be seen from eq. (3.11), the
ratios of branching ratios are expected to remain approximately constant in the various
scenarios if onlyMR is varied. Numerically, this expectation is fulfilled in SPS 1a, G̃MSB,
GMSB and also for MR ≤ 1013 GeV in SPS 9 which can be seen in Figs. 4.9 to 4.12. In
Tab. 4.7 the detailed ranges of the branching ratios resulting from a variation of MR are
shown, together with results based on the LL approximations where the parameters are
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Figure 4.9: Br (τ → µγ) (upper curve),
Br (µ→ eγ) (middle curve), Br (τ → eγ)
(lower curve) as a function of Mi ≡ MR,
κ1 = 0, scenario SPS 1a.
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Figure 4.10: Br (τ → µγ) (upper curve),
Br (µ→ eγ) (middle curve), Br (τ → eγ)
(lower curve) as a function of Mi ≡ MR,
κ1 = 0, scenario SPS 9.
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Figure 4.11: Br (τ → µγ) (upper curve),
Br (µ→ eγ) (middle curve), Br (τ → eγ)
(lower curve) as a function of Mi ≡ MR,
κ1 = 0, G̃MSB scenario.
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Figure 4.12: Br (τ → µγ) (upper curve),
Br (µ→ eγ) (middle curve), Br (τ → eγ)
(lower curve) as a function of Mi ≡ MR,
κ1 = 0, GMSB scenario.

evaluated at the GUT-scale for SPS 1a, SPS 9 and G̃MSB or at the messenger scale in
the case of the GMSB scenario, respectively.
For hierarchical light neutrinos, vanishing phases, real R matrix and best-fit neutrino
oscillation parameters according to Tab. 4.1 one obtains the generic results

Br (τ → µγ)

Br (µ→ eγ)
≈ 3 (4.2)

Br (µ→ eγ)

Br (τ → eγ)
≈ 8 · 103. (4.3)

For these ratios, RGE evolution effects are not important, i. e. inserting the input values
for the seesaw parameters would lead to the same approximate ratios as in eqs. (4.2) and
(4.3). However as mentioned below eq. (2.93), for large values of neutrino Yukawa cou-
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plings corresponding to MR > 1013 GeV, effects from additional contributions of neutrino
Yukawa couplings become important in AMSB, leading to the deviations from the simple
M2

R dependence in Fig. 4.10 for large MR.

Non-degeneracy of Mi In order to demonstrate effects of non-degenerate heavy Ma-
jorana masses, we compare predictions for rare decays for degenerate Majorana masses, i.
e. Mi ≡MR and non-degenerate mass spectra in Tab. 4.8. Inserting the best-fit neutrino
oscillation parameters and assuming a real R-matrix, κ1 = 0 and vanishing phases, Y †ν LYν
at tan β = 10 becomes

(

Y †ν LYν
)

21
≈ 8 · 10−17 M2

GeV
ln
MGUT

M2

+ 9 · 10−17 M3

GeV
ln
MGUT

M3

(

Y †ν LYν
)

31
≈ −1 · 10−16 M2

GeV
ln
MGUT

M2

+ 9 · 10−17 M3

GeV
ln
MGUT

M3

(

Y †ν LYν
)

32
≈ −1 · 10−16 M2

GeV
ln
MGUT

M2

+ 8 · 10−16 M3

GeV
ln
MGUT

M3

. (4.4)

The form of eq. (4.4) shows that Br(τ → eγ) is strongly suppressed in the case of
degenerate Mi due to the approximate cancellation of the terms involving M2 and M3 in
(

Y †ν LYν
)

31
. For Br(µ→ eγ) the contributions fromM2 andM3 in

(

Y †ν LYν
)

21
are roughly

of the same size, whereas for Br(τ → µγ) the term proportional to M3 is dominant. By
increasing M3 with respect to M2 one therefore expects that particularly Br(τ → eγ) is
strongly enhanced, whereas Br(µ → eγ) is suppressed compared to the other two decay
modes. Moreover Br(τ → µγ) is only weakly affected by a different hierarchy among M2

and M3. Numerically, a spectrum of M1 : M2 : M3 = 1 : 2 : 3 leads to typical ratios such
as

Br (τ → µγ)

Br (µ→ eγ)
≈ 5

Br (µ→ eγ)

Br (τ → eγ)
≈ 2 · 102. (4.5)

These ratios are roughly as expected from eq. (3.11), when eq. (4.4) is inserted in the LL
approximations.
A hierarchical spectrum of right-handed neutrinos, i. e. M1 : M2 : M3 = 1 : 10 : 100,
leads to the numerical results

Br (τ → µγ)

Br (µ→ eγ)
≈ 11

Br (µ→ eγ)

Br (τ → eγ)
≈ 10, (4.6)

which is also expected from eq. (4.4). It should be noted that the values given in eqs. (4.5)
and (4.6) should be understood as typical values of these ratios for the parameter space
considered. There are however some exceptional regions, to be discussed below, especially
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SPS 1a
MR yi ≡ y m1

Br (τ → µγ) 9 · 10−16; 3 · 10−8 7.5 · 10−11; 5.4 · 10−10 8 · 10−13; 8 · 10−11
∣

∣

∣(δm2
L̃
)
32

∣

∣

∣

2

min
∣

∣

∣(δm2
L̃
)
32

∣

∣

∣

2

max

1 · 10−8 0.14 0.01

Br (µ→ eγ) 3 · 10−16; 8 · 10−9 2.0 · 10−11; 3.1 · 10−11 7 · 10−14; 2 · 10−11
∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2

min
∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2

max

2 · 10−8 0.64 0.004

SPS 9
MR yi ≡ y m1

Br (τ → µγ) 2 · 10−16; 1 · 10−6 1.3 · 10−10; 6.0 · 10−10 9 · 10−14; 1 · 10−10
∣

∣

∣(δm2
L̃
)
32

∣

∣

∣

2

min
∣

∣

∣(δm2
L̃
)
32

∣

∣

∣

2

max

6 · 10−10 0.14 0.02

Br (µ→ eγ) 5 · 10−17; 2 · 10−7 3.7 · 10−11; 5.5 · 10−11 1 · 10−14; 4 · 10−11
∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2

min
∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2

max

2 · 10−9 0.64 0.006

G̃MSB
MR yi ≡ y m1

Br (τ → µγ) 1 · 10−17; 3 · 10−10 1.3 · 10−12; 8.4 · 10−12 1 · 10−14; 1 · 10−12
∣

∣

∣(δm2
L̃
)
32

∣

∣

∣

2

min
∣

∣

∣(δm2
L̃
)
32

∣

∣

∣

2

max

9 · 10−9 0.15 0.01

Br (µ→ eγ) 4 · 10−18; 8 · 10−11 3.4 · 10−13; 5.1 · 10−13 1 · 10−15; 4 · 10−13
∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2

min
∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2

max

1 · 10−8 0.66 0.004

GMSB
MR yi ≡ y m1

Br (τ → µγ) 5 · 10−17; 1 · 10−11 3.9 · 10−12; 2.4 · 10−11 4 · 10−14; 4 · 10−12
∣

∣

∣(δm2
L̃
)
32

∣

∣

∣

2

min
∣

∣

∣(δm2
L̃
)
32

∣

∣

∣

2

max

6 · 10−6 0.16 0.01

Br (µ→ eγ) 2 · 10−17; 3 · 10−12 1.1 · 10−12; 1.7 · 10−12 4 · 10−15; 1 · 10−12
∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2

min
∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2

max

6 · 10−6 0.65 0.004

Table 4.7: Ranges of Br (lj → liγ) that correspond to the variation of the corresponding
parameter in the case of SPS 1a, SPS 9, G̃MSB and GMSB. Additional rows show the
estimate of the effects of these variations based on the LL approximations eqs. (2.50),
(2.63), (2.88) and (2.115).
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SPS 1a
Mi ≡MR M1Diag(1, 2, 3) M1Diag(1, 10, 100)

Br(τ→µγ)
Br(µ→eγ)

3.36; 3.37 4.7; 5.0 11.0; 11.9

m5
τΓµ

m5
µΓτ

∣

∣

∣(δm2
L̃
)
32

∣

∣

∣

2

∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2 3.2 4.7 11.0

Br(µ→eγ)
Br(τ→eγ)

7.3 · 103; 7.5 · 103 191; 302 9.4; 11.3

m5
µΓτ

m5
τΓµ

∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2

∣

∣

∣(δm2
L̃
)
31

∣

∣

∣

2 1 · 104 216 10.3

SPS 9
Mi ≡MR M1Diag(1, 2, 3) M1Diag(1, 10, 100)

Br(τ→µγ)
Br(µ→eγ)

0.16; 27 2.6; 938 9.6; 16.6

m5
τΓµ

m5
µΓτ

∣

∣

∣(δm2
L̃
)
32

∣

∣

∣

2

∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2 4.3 4.8 11.1

Br(µ→eγ)
Br(τ→eγ)

2.2; 7.7 · 103 0.02; 9 · 103 4.9; 14.1

m5
µΓτ

m5
τΓµ

∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2

∣

∣

∣(δm2
L̃
)
31

∣

∣

∣

2 3.2 · 103 227 10.2

G̃MSB
Mi ≡MR M1Diag(1, 2, 3) M1Diag(1, 10, 100)

Br(τ→µγ)
Br(µ→eγ)

3.37; 3.38 4.5; 5.0 10.4; 11.8

m5
τΓµ

m5
µΓτ

∣

∣

∣(δm2
L̃
)
32

∣

∣

∣

2

∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2 3.2 4.7 11.0

Br(µ→eγ)
Br(τ→eγ)

7.4 · 103; 8.1 · 103 204; 475 9.8; 13.0

m5
µΓτ

m5
τΓµ

∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2

∣

∣

∣(δm2
L̃
)
31

∣

∣

∣

2 2 · 104 216 10.4

GMSB
Mi ≡MR M1Diag(1, 2, 3) M1Diag(1, 10, 100)

Br(τ→µγ)
Br(µ→eγ)

3.268; 3.271 2.8; 4.8 5.0; 11.1

m5
τΓµ

m5
µΓτ

∣

∣

∣(δm2
L̃
)
32

∣

∣

∣

2

∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2 3.16 4.3 9.0

Br(µ→eγ)
Br(τ→eγ)

7.7 · 103; 7.9 · 103 2 · 102; 8 · 103 10.5; 163

m5
µΓτ

m5
τΓµ

∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2

∣

∣

∣(δm2
L̃
)
31

∣

∣

∣

2 8 · 103 1 · 103 30

Table 4.8: Minimal (maximal) ratios of Br (lj → liγ) that correspond to a variation of
the Majorana mass scales in different Mi mass spectra. Also the averaged estimates for
these variations based on the LL eqs. (2.50), (2.63), (2.88) and (2.115) are shown.
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Figure 4.13: Curves of Br (lj → liγ) as in
Fig. 4.9 and δa2µ (dashed) as a function

of M̃1/2, Mi ≡ MR = 1013 GeV, κ1 = 0,
scenario SPS 1a.
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Figure 4.14: Curves of Br (lj → liγ) as in
Fig. 4.10 and δa2µ (dashed) as a function
of m3/2, Mi ≡ MR = 1013 GeV, κ1 = 0,
scenario SPS 9.
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Figure 4.15: Curves of Br (lj → liγ) as in
Fig. 4.11 and δa2µ (dashed) as a function

of M̃1/2, Mi ≡ MR = 1013 GeV, κ1 = 0,

G̃MSB scenario.
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Figure 4.16: Curves of Br (lj → liγ) as in
Fig. 4.12 and δa2µ (dashed) as a function
of Λm, Mi ≡ MR = 1013 GeV, κ1 = 0,
GMSB scenario.

in SPS 9 and GMSB scenarios, where large deviations from eqs. (4.5) and (4.6) arise which
are included in the ranges of Tab. 4.7. In the AMSB scenario SPS 9 the predictions from
eqs. (4.5) and (4.6) hold well for MR < 1013 GeV, before effects from additional contri-
butions of neutrino Yukawa couplings become important. In the case of GMSB, sizeable
LFV rates are only possible if the messenger scale Mm is larger than the corresponding
heavy Majorana neutrino scale. IfMm <∼Mi, the different LFV rates are damped and the
ratios based on the leading logarithmic approximations eqs. (4.5) and (4.6) differ from
the numerical results.

Differences between different SUSY breaking models The branching ratios
Br (lj → liγ) generically depend on the mass scales of the sleptons, neutralinos and
charginos in the loops and are enhanced by tan2 β. From eq. (3.10) it is also obvious
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that the size of the off-diagonal mass terms δm2
L̃
is very important. By comparison of the

approximate form of
∣

∣δm2
L̃

∣

∣

2
in eqs. (2.50), (2.63), (2.88), (2.115), one can deduce that

these terms are expected to be largest in the case of mSUGRA and AMSB. Assuming
similar size of the high-energy SSB terms and neglecting trilinear terms, we expect from
these LL approximations that the branching ratios in G̃MSB and GMSB models should
be suppressed by roughly a factor of 0.5. In principle one also has to consider effects from
trilinear terms and also terms involving m2

3/2 in AMSB that modify this naive estimate.

For a rough understanding of the quantitative differences in Br (lj → liγ) of the models,
the effects of sparticle masses in the loop and tan β have also to be taken into account.

In order to illustrate the ranges of slepton and gaugino masses that correspond to a
variation of the SUSY-scale, we show the mass of heaviest slepton and of the wino for
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light and heavy SUSY-scales in the different scenarios:

• SPS 1a: ml̃6
= (206; 779) GeV, M̃2 = (188; 765) GeV

M̃1/2 = (0.25; 1) TeV, m0 = −A0 = 0.4 M̃1/2 (4.7)

• SPS 9: ml̃6
= (400; 651) GeV, M̃2 = (167; 274) GeV

m3/2 = (60; 100) TeV (4.8)

• G̃MSB: ml̃6
= (375; 700) GeV, M̃2 = (386; 782) GeV

M̃1/2 = (0.5; 1) TeV (4.9)

• GMSB: ml̃6
= (306; 590) GeV, M̃2 = (170; 337) GeV

Λm = (80; 140) TeV, Mm = (0.66; 1.33) · 1014 GeV (4.10)

The mass ml̃6
is a measure of the masses of left-handed sleptons and the wino mass is a

typical mass scale for gaugino masses in both diagrams of Fig. 3.1. Increasing the scale
of SUSY breaking typically leads to a reduction of leptonic dipole moments, because for
heavier slepton and gaugino masses, the loop contributions are more suppressed. In order
to demonstrate this behavior, we show in Figs. 4.13 to 4.16 both branching ratios and
δa2µ when the SUSY-scale is increased. This is done along the model lines in the case of

SPS 1a and SPS 9, whereas for G̃MSB we varied M̃1/2 within a factor of 2, as specified in
eqs. (4.7) to (4.9). In the case of GMSB, the SSB masses increase with Λm which is varied
in the interval (80-140) TeV. It can be seen that for a variation of the SUSY-scale, δa2µ
scales in the same way as the branching ratios, as expected from eq. (3.31). In Figs. 4.17
to 4.20 we show the correlation of Br (µ→ eγ) to the RG-induced slepton mass terms
∣

∣

∣

(

δm2
L̃

)

21

∣

∣

∣

2

. From the mass-insertion approximation eq. (3.10), we expect Br (µ→ eγ)

to scale as
∣

∣

∣

(

δm2
L̃

)

21

∣

∣

∣

2

which can also be seen in Figs. 4.17 to 4.20, apart from scattering

effects. In these figures, we have scattered simultaneously over the following parameters:

• Neutrino oscillation parameters are varied in their 3σ CL interval, phases are scat-
tered in the interval [0; 2π].

• The real parts xi of the mixing angles of the R-matrix are also varied in [0; 2π].

• The imaginary parts yi of the mixing angles of the R-matrix are scattered in the
range [0.0001; 1].

• M1 is in the interval [1010 − 1013] GeV, the other heavy Majorana masses are ran-
domly chosen in the ranges M2 = [1; 10]M1, M3 = [1; 10]M2.
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• m1 varies in the interval [0.0001; 0.3] eV.

• The SUSY-scales are varied in the ranges corresponding to eqs. (4.7) to (4.10).

Note that these ranges of variation are referred to as “scattering over all parameters”
in the following. The different ranges of scattering around an ideal correlation stems
from the different variation of the SUSY-scales and therefore different ranges for the mass
scales in the loops. The largest range of scattering is thus understandable in SPS 1a,
where slepton masses and gaugino masses increase by roughly a factor of 4 through the
variation of the SUSY-scale along the model line, see eq. (4.7). In order to make this point
clear we also show in Fig. 4.17 the corresponding correlation when all seesaw parameters
are simultaneously varied and the SUSY-scale is kept fixed in SPS 1a. This leads to the
narrow line in Fig. 4.17, demonstrating that the variation of the SUSY-scale is indeed the
reason for the spread in the correlation of Figs. 4.17 to 4.20 which also implies that the

scaling of Br (lj → liγ) with
∣

∣

∣

(

δm2
L̃

)

21

∣

∣

∣

2

holds even for the most general choices of seesaw

parameters. If all lepton-flavor conserving masses are fixed, results on Br (µ→ eγ) lead

to bounds on
(

δm2
L̃

)

21
, e. g. Br (µ→ eγ) < 10−11 implies

∣

∣

∣

(

δm2
L̃

)

21

∣

∣

∣

2

< (a few) GeV2 in

SPS 1a.

Effects of m1 on Br (lj → liγ) We show the dependence on the mass scale m1 of
the lightest neutrino in Figs. 4.21 to 4.24 in the case of SPS 1a, SPS 9, G̃MSB and
GMSB, respectively. These results have been obtained assuming degenerate Mi ≡MR =
1013 GeV, real R-matrix and vanishing phases. It can be seen that there is a strong
suppression of all branching ratios if m1 >∼

√

m2
31. A suppression of Br (lj → liγ) with

increasing m1 is expected by comparing eqs. (3.13) and (3.14): In the limit of quasi-
degenerate light neutrinos, the branching ratios Br (lj → liγ) are then suppressed by√

∆m2
21

2m1
and

√
∆m2

31

2m1
as compared to the hierarchical case. The ranges of the branching

ratios resulting from a variation of m1 can be seen in Tab. 4.7, together with results based
on the LL approximations. In order to demonstrate the effect of a varying m1-scale, we
show its effect in Y †ν LYν explicitly,

(

Y †ν LYν
)

21
≈ 10−14

MR

GeV

m1

eV
ln
MGUT

MR

(

−1 +
√

1 +
∆m2

21

m2
1

+ 0.2

√

1 +
∆m2

31

m2
1

)

(4.11)

(

Y †ν LYν
)

31
≈ 10−14

MR

GeV

m1

eV
ln
MGUT

MR

(

1−
√

1 +
∆m2

21

m2
1

+ 0.2

√

1 +
∆m2

31

m2
1

)

(4.12)

(

Y †ν LYν
)

32
≈ 10−14

MR

GeV

m1

eV
ln
MGUT

MR

(

−0.5−
√

1 +
∆m2

21

m2
1

+ 2

√

1 +
∆m2

31

m2
1

)

. (4.13)

Evaluating eq. (4.12) we see that
(

Y †ν LYν
)

31
increases up to m1 ≈ 0.01 eV, before the

decrease for quasi-degenerate light neutrinos sets in. Note also that suppression factors of
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Figure 4.21: Curves of Br (lj → liγ) as a
function of m1, Mi ≡ MR = 1013 GeV,
scenario SPS 1a.
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Figure 4.22: Curves of Br (lj → liγ) as a
function of m1, Mi ≡ MR = 1013 GeV,
scenario SPS 9.
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Figure 4.23: Curves of Br (lj → liγ) as a
function of m1, Mi ≡ MR = 1013 GeV,
G̃MSB scenario.
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Figure 4.24: Curves of Br (lj → liγ) as a
function of m1, Mi ≡ MR = 1013 GeV,
GMSB scenario.

roughly 3 ·10−3 and 9 ·10−3 are obtained from eqs. (4.11) and (4.13), when m1 is increased

from 0 to 0.3 eV in
∣

∣

(

Y †ν LYν
)

21

∣

∣

2
and

∣

∣

(

Y †ν LYν
)

32

∣

∣

2
, respectively. On the other hand,

∣

∣

(

Y †ν LYν
)

31

∣

∣

2
is enhanced by a factor of 2. The different m1-dependence of

∣

∣

(

Y †ν LYν
)

32

∣

∣

2

or
∣

∣

(

Y †ν LYν
)

21

∣

∣

2
as compared to

∣

∣

(

Y †ν LYν
)

31

∣

∣

2
for m1 ¿

√

∆m2
31 can be understood as

follows: In the region of small m1, the effect of m1 mainly comes from the “interference”
of terms proportional to m1 ×

√

∆m2
31. This term obtains a negative sign in eqs. (4.11)

and (4.13), as opposed to eq. (4.12). The order of magnitude of the suppression factor
can also be seen in Fig. 4.21 or in Tab. 4.7. For accurate numerical predictions one has
to include the full one-loop RG running.

The authors of [85] have analyzed the RG running of neutrino masses, mixing angles and
phases. It has been demonstrated that the RGE effects are generically enhanced in the
case of very large tan β or in the case of quasi-degenerate light neutrinos. More specifically,
the enhancement of RGE effects of τ Yukawa couplings for neutrino parameters scales as
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Figure 4.25: Br (lj → liγ) as a function of
yi ≡ y, Mi ≡ MR = 1013 GeV, κ1 = 0,
scenario SPS 1a.
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Figure 4.26: Br (lj → lγ) as a function of
yi ≡ y, Mi ≡ MR = 1013 GeV, κ1 = 0,
scenario SPS 9.
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Figure 4.27: Br (lj → lγ) as a function of
yi ≡ y, Mi ≡ MR = 1013 GeV, κ1 = 0,
G̃MSB scenario.
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Figure 4.28: Br (lj → liγ) as a function of
yi ≡ y, Mi ≡ MR = 1013 GeV, κ1 = 0,
GMSB scenario.

tan2 β and the RGE effects of neutrino Yukawa couplings increase for quasi-degenerate
light neutrino states. Apart from the effects of quasi-degenerate neutrinos discussed here,
we work in the limit of hierarchical light neutrinos and small or moderate values of tan β,
so that RG effects for the neutrino masses and mixings are less pronounced, though we
include them in our numerical predictions.

Effects of y on Br (lj → liγ) The effect of a variation of the imaginary part y ≡ yi in the
R-matrix is shown in Figs. 4.25, 4.26, 4.27 and 4.28 assuming degenerate Mi = 1013 GeV,
hierarchical light neutrinos, vanishing xi and phases. The detailed ranges of the branching
ratios resulting from a variation of y can be seen in Tab. 4.7, together with results based
on the LL approximations eqs. (2.50), (2.63), (2.88), (2.115). The basic y-dependence
for small y is estimated in eq. (3.17). Using the input values of the neutrino parameters
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according to Figs. 4.25 to 4.28 in this approximation yields
∣

∣

(

Y †ν LYν
)

21

∣

∣

2 ≈ 2 · 10−4 + 4 · 10−3y2
∣

∣

(

Y †ν LYν
)

31

∣

∣

2 ≈ 1 · 10−7 + 2 · 10−3y2
∣

∣

(

Y †ν LYν
)

32

∣

∣

2 ≈ 3 · 10−3 + 3 · 10−2y2, (4.14)

where higher powers of y have been neglected. Eq. (4.14) clearly shows that we expect
a strong increase of Br (τ → eγ) with increasing y. In Figs. 4.25, 4.26, 4.27 and 4.28 we
actually see the increase of Br (τ → eγ) over roughly two orders of magnitude. As has
been mentioned before, we cannot consider arbitrarily large y-values, because Yν has to
stay perturbative. For MR = 1013 GeV, this corresponds approximately to y <∼ 0.4.
From eqs. (4.14) one expects a much smaller y-dependence in the decay modesBr (τ → µγ)
and Br (µ→ eγ). This behavior is confirmed in Figs. 4.25 to 4.28. Moreover, numerically
it turns out that Br (τ → µγ) has a stronger y-dependence than Br (µ→ eγ), a conclu-
sion that could not be drawn from the simple approximations in eqs. (4.14). It should
be emphasized that for a lower MR scale, perturbativity allows larger values of y, e. g.
y <∼ 1 for MR ' 1011 GeV. Then the effects of y can be strongly enhanced, as compared
to a Majorana mass scale of 1013 GeV.

Effects of xi on Br (µ→ eγ) We study effects of the real mixing angles xi of the R-
matrix for vanishing imaginary angles yi = 0 and phases, hierarchical light and heavy
neutrinos in the case of Br (µ→ eγ). The corresponding Figures 4.29 to 4.32 show the
dependence of Br (µ→ eγ) on a single xi, assuming M1 = 1011 GeV and M1 :M2 :M3 =
1 : 10 : 100, also referred to as “spectrum I” for the heavy Majorana masses. In this case
the approximations based on eq. (3.18) are relevant, leading to
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Figure 4.29: Br (µ→ eγ) as a function of
x1(full curve), x2 (long-dashed curve), x3
(short-dashed curve), y = 0, spectrum I,
κ1 = 0, scenario SPS 1a.
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Figure 4.30: Br (µ→ eγ) as a function of
x1(full curve), x2 (long-dashed curve), x3
(short-dashed curve), y = 0, spectrum I,
κ1 = 0, scenario SPS 9.
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Figure 4.31: Br (µ→ eγ) as a function of
x1(full curve), x2 (long-dashed curve), x3
(short-dashed curve), y = 0, spectrum I,
κ1 = 0, G̃MSB scenario.
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Figure 4.32: Br (µ→ eγ) as a function of
x1(full curve), x2 (long-dashed curve), x3
(short-dashed curve), y = 0, spectrum I,
κ1 = 0, GMSB scenario.

in the case where only x1, x2 or x3 are non-vanishing. In the above equations, the
abbreviation si(ci) ≡ sinxi(cos xi), i = 1, 2, 3 is used.

From eq. (4.15) we see that cancellations in terms proportional to M3 are possible if

tanx1 = −
√

κ3
κ2

U23

U22

, x1 ≈ −1.3 (4.18)

tanx1 = −
√

κ3
κ2

U∗13
U∗12

, x1 ≈ −0.3, (4.19)

as has also been discussed in [35]. It is clear from the above that in the limit of θ13 = 0,
the cancellation corresponding to eq. (4.18) occurs at x1 = 0, whereas the best fit value for
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eq. (2.50) as a function of x1. Full (short-
dashed) curve corresponds to sin2 θ13 =
0.006 (0), y = 0, spectrum I, κ1 = 0, sce-
nario SPS 1a.

θ13 = 0 moves this kink towards negative x1. Due to the periodicity of the trigonometric
functions this corresponds to a kink near x1 = 2.8. The other cancellation then occurs
near x1 = 1.9. For the precise values of these cancellations one has to take into account
the RG evolution of the neutrino parameters, as has been done numerically. The different

cancellations already occur in the LL terms
∣

∣

∣

(

δm2
L̃

)

21

∣

∣

∣

2

, as can be seen from Fig. 4.33. In

order to demonstrate the large impact of θ13, we show curves for its best-fit value and also
for vanishing θ13. Notice that the kinks in both curves are shifted and that for θ13 = 0 the
rate Br (µ→ eγ) is suppressed near x1 = 0, as is obvious from eq. (4.19), see also [35].
From eq. (4.15) it follows that cancellations arise for cos x1 = 0, i. e. x1 = π

2
≈ 1.6.

Moreover, cancellations in terms proportional to M2 are possible for

tanx1 =

√

κ2
κ3

U22

U23

, x1 ≈ 0.3, (4.20)

and also between contributions involving M2 and M3.
In the case of non-vanishing x2 and the best-fit values for neutrino parameters, it turns
out that the the coefficient of c22 is the dominant term, so that for Br (µ→ eγ) we expect
a dependence similar to c42, i. e. being minimal around x2 =

π
2
.

If only x3 is non-vanishing, the term proportional to κ3M3 is clearly dominating and
independent of x3, so that there is virtually no x3-dependence in Br (µ→ eγ).

Effects on δaµ and EDMs Recently, there has been a work on magnetic and electric
dipole moments in the SPS 1a scenario [56]. The authors have taken into account all
possible SUSY phases and generic LFV mass terms and have shown that in the most
general case SUSY phases can be large and still be consistent with experimental bounds.
Moreover a variation of δaµ by a factor of up to 3 has been reported together with EDMs
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Figure 4.34: Correlation of |dµ|/ecm and
Br (µ→ eγ), scattering over all parame-
ters, scenario SPS 1a.
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Figure 4.35: Correlation of |dµ|/ecm and
Br (µ→ eγ), scattering over all parame-
ters, scenario SPS 9.
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Figure 4.36: Correlation of |dµ|/ecm and
Br (µ→ eγ), scattering over all parame-
ters, G̃MSB scenario.
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Figure 4.37: Correlation of |dµ|/ecm and
Br (µ→ eγ), scattering over all parame-
ters, GMSB scenario.

that can be expected to be measured. In [86] the authors have analyzed the impact of
a large mixing of smuons and staus on the muon anomalous magnetic moment in the
decoupling solution, i. e. sfermion masses of the third generation are assumed to be
below 1 TeV, while those of the first two generations should be a heavier, e. g. 10 TeV. In
this case it has been demonstrated that LFV mixings between relatively light sleptons of
the third generation and heavy second generation sleptons can significantly enhance δaµ.

We have studied effects on δaµ and EDMs in the SUSY seesaw model and have found
that, even in for the most general cases of seesaw parameters the effects on the muon
magnetic dipole moment are tiny. This can be expected from the approximate results in
section 3.2 implying that relatively small off-diagonal slepton mass terms, i. e. relatively
small mixing angles only correspond to tiny shifts in δaµ.

Imaginary parts in the combination Y †ν Yν of neutrino Yukawa couplings generate leptonic
EDMs in the SUSY seesaw model, so that for the most general choices of Yν and allowing
complex entries, an increase in the magnitude and/or the imaginary parts in Yν leads
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to larger EDMs. This also implies that leptonic EDMs and lepton-flavor violating decay
rates should be approximately correlated when the seesaw parameters are varied simul-
taneously. The correlation between |dµ|/ecm and Br (µ→ eγ) is shown in Figs. 4.34 to
4.37 for the different scenarios, demonstrating that this correlation is rather weak for a
simultaneous variation of all parameters. In principle constraints from a measurement
of Br (µ→ eγ) on the muon electric dipole moment are possible. However the maximal
values of |dµ|/ecm are below the sensitivities of future experiments for the parameters
considered here. Nevertheless the work of [38] has shown that leptonic EDMs strongly
increase for large hierarchies among Mi masses and also specific textures in Yν or larger
values of trilinear terms Ae can enhance EDMs to a level that can be tested in future
experiments. As has been also pointed out in [38], particularly for non-degenerate Mi,
no strong correlation is expected between dµ and de, because of additional contributions
to Ae that violate naive scaling of the form eq. (3.50). We show the correlation between
|dµ|/ecm and |de|/ecm for a simultaneous variation of all parameters in Figs. 4.38 to 4.41.
Both leptonic EDMs are typically far below future experimental sensitivities, however as
mentioned above, a strong enhancement is possible. As expected, |dµ| and |de| are only
weakly correlated for the simultaneous variation of all parameters considered.

Effects of non-vanishing lepton masses in loop integrals The difference between
the results for branching ratios using exact one-loop results presented in appendix F and
the well-known results from [31] for Br (lj → liγ) are mainly due to the phase space factor
in eq. (3.4). Taking into account the non-vanishing lepton masses in the two-body decay

phase space corresponds to a factor of

(

m2
lj
−m2

li

)3

mlj
, as compared to m5

lj
in the standard

approximation. This factor yields a reduction of the exact one-loop result by a factor of
0.989 in Br (τ → µγ), while for Br (τ → µγ) and Br (τ → eγ), small relative deviations
at a level of 10−5 and 10−7 are obtained from non-vanishing lepton masses in the decay
phase space. Scattering over the whole parameter space, we find that these predictions
for Br (lj → liγ) are accurately fulfilled in SPS 1a, i. e. the relative changes with respect
to the standard formulae are at the level of one percent, 10−5 and 10−6 in the above
cases. This also implies that the modifications for the MDMs and EDMs in SPS 1a are
tiny, because then only the corrections in the loop integrals enter, leading to a relative
modification of δaµ at a level of 10−7 and for the EDMs of e and µ at the level of 10−4,
respectively.
We emphasize that the relative shifts in leptonic electric dipole moments below the level
of 0.1 percent when taking into account all lepton masses are generic for slepton masses
and gaugino masses of the order of 100 GeV. Such tiny effects from mli masses are ex-
pected from the exact denominators eqs. (F.17) and (F.32) of the loop integrals, see
eqs. (F.14), (F.15), (F.16), (F.29), (F.30) and (F.31), where lepton and sparticle masses
enter quadratically.
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Figure 4.38: Correlation of |dµ|/ecm and
|de|/ecm, scattering over all parameters,
scenario SPS 1a.
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Figure 4.39: Correlation of |dµ|/ecm and
|de|/ecm, scattering over all parameters,
scenario SPS 9.
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Figure 4.40: Correlation of |dµ|/ecm and
|de|/ecm, scattering over all parameters,
G̃MSB scenario.
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Figure 4.41: Correlation of |dµ|/ecm and
|de|/ecm, scattering over all parameters,
GMSB scenario.

Relations of Br (lj → liγ) to Br
(

lj → lil̄ili
)

and µ-e conversion We have examined
the approximations eqs. (3.63) and (3.65) obtained under the assumption of dominance of
on-shell photon penguin diagrams numerically by varying over the whole parameter space
of the models. Using complete analytic expressions as specified in [31] and appendix G,
we have found the results of Tab. 4.9. It can be seen that in the models considered, the
approximations eqs. (3.63) hold with good accuracy, even for a simultaneous variation
of all parameters. Therefore these correlations among different lepton-flavor violating
processes provide predictions that can probe the SUSY seesaw model in the future. One
can e. g. conclude that a measurement of Br (µ→ eγ) ' 1.5·10−13 corresponds roughly to
a value of 1 ·10−15 for R (µ−T i→ e−T i) or Br (µ→ 3e). Taking into account the different
future sensitivities for these processes mentioned in the introduction, a measurement of
R (µ−T i→ e−T i) at a level of 10−16 would correspond to a sensitivity of 1.7 · 10−14 in
Br (µ→ eγ).
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Ratio SPS 1a SPS 9 G̃MSB GMSB
Br(µ→3e)
Br(µ→eγ)

/10−3 6.2 6.2 6.2 6.1
Br(τ→3µ)
Br(τ→µγ)

/10−3 2.3 2.3 2.3 2.3
Br(τ→3e)
Br(τ→eγ)

/10−2 1.05 1.05 1.05 1.05
R(µ−T i→e−T i)

Br(µ→eγ)
/10−3 (4.3− 4.7) (7.1− 7.2) (4.3− 4.4) (5.0− 5.1)

Table 4.9: Ranges obtained by scattering over the whole parameter space of the models.
We display only one value if the variation is less than one percent.

Effects of oscillation parameters and phases on Br (lj → liγ) The detailed ranges
of the branching ratios resulting from a variation of a single neutrino oscillation parameter
including the Dirac phase δ can be seen in Tab. 4.10, together with results based on the
LL approximations. Comparing the predictions for the variations based on the LL ap-
proximations eqs. (2.50), (2.63), (2.88), (2.115) evaluated at the GUT-scale or messenger
scale and the numerical ranges of Br (lj → liγ), one sees that the LL approximations are
rather accurate for an estimate of the effect of a single parameter.

In the following we will briefly discuss these effects, keeping in mind that they can be
approximately understood by inserting numerical values in eq. (3.13). It turns out that
variations in the parameters θ12, θ23 and ∆m2

21 within their 3σ CL intervals have a small
impact on Br (µ→ eγ) and Br (τ → µγ), while a variation of θ13 and δ causes significant
changes in Br (µ→ eγ). The effects of the neutrino oscillation parameters on Br (τ → eγ)
will be discussed separately below.

Considering only the effect of a variation of θ12 on the rare decays, a numerical estimate
based on eq. (3.13) shows that Br (µ→ eγ) and Br (τ → µγ) both increase with θ12,
although the dependence on θ12 is rather weak corresponding to an increase of roughly
11% and 6%, respectively.

The angle θ13 has quite a large impact on Br (µ→ eγ), i. e. increasing θ13 from 0 to its
maximal value at 3σ CL leads to a rise in Br (µ→ eγ) by approximately a factor of 15.
On the other hand Br (τ → µγ) slightly decreases by less than 10%, if θ13 is increased in
its 3σ CL range.

Varying only θ23, it turns out that Br (µ→ eγ) and Br (τ → µγ) are both maximal for
θ23 ≈ 0.8 with a stronger θ23 dependence of Br (τ → µγ).

If the neutrino mass parameter ∆m2
21 is increased within the 3σ CL range, the rate of

µ → eγ also increases by roughly 23%, because (Y †ν Yν)21 scales linearly with
√

∆m2
21,

as can be seen from eq. (3.13). In (Y †ν Yν)32 there is a relative minus sign between the
subdominant contribution from ∆m2

21 and the dominant term involving ∆m2
31, so that

Br (τ → µγ) decreases by about 7% for increasing ∆m2
21.

An increase of ∆m2
31 in its 3σ CL interval leads to a rise in both Br (µ→ eγ) and

Br (τ → µγ). The term proportional to ∆m2
31 is numerically dominant in (Y †ν Yν)32. The

increase in Br (τ → µγ) can be roughly approximated by
max(∆m2

31)
min(∆m2

31)
≈ 2.6. On the other
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Figure 4.42: Br (lj → liγ) as a function of
the Dirac phase δ, Mi ≡MR = 1013 GeV,
real R, κ1 = 0, scenario SPS 1a.
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Figure 4.43: Br (lj → liγ) as a function of
the Dirac phase δ, Mi ≡MR = 1013 GeV,
real R, κ1 = 0, scenario SPS 9.
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Figure 4.44: Br (lj → liγ) as a function of
the Dirac phase δ, Mi ≡MR = 1013 GeV,
real R, κ1 = 0, G̃MSB scenario.
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Figure 4.45: Br (lj → liγ) as a function of
the Dirac phase δ, Mi ≡MR = 1013 GeV,
real R, κ1 = 0, GMSB scenario.

hand, in (Y †ν Yν)21 the terms involving ∆m2
31 and ∆m2

21 have a relative plus sign and are
of similar magnitude, leading to a variation of Br (µ→ eγ) by 40%.
The variation of a single parameter within its 3σ CL range can induce a large suppression
in Br (τ → eγ), implying cancellations in (Y †ν Yν)31. From eq. (3.13) it follows that

(Y †ν Yν)31 '
MR

v2 sin2 β
ln
MGUT

MR

(

√

∆m2
31 sin θ13 cos θ23 cos θ13

−
√

∆m2
21 cos θ13 sin θ12 (cos θ12 sin θ23 + cos θ23 sin θ13 sin θ12)

)

.(4.21)
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Different cancellations can occur in the aforementioned equation (4.21). More specifically,
inserting numerically the best-fit values from Tab. 4.1 where necessary, these cancellations
are approximately at:

• θ12 ≈ 0.53

• θ13 ≈ 0.08

• θ23 ≈ 0.78

•
√

∆m2
21 ≈ 7.9 meV

•
√

∆m2
31 ≈ 54 meV

It is interesting to notice that the best-fit value for θ13 ≈ 0.0775 is very close to the
cancellation value shown before, implying a large suppression for Br (τ → eγ). Eq. (3.13)
also implies that an increase of Br (τ → eγ) by three orders of magnitude is possible if
θ13 ≈ 0 or θ13 ≈ 0.2.
The Dirac phase δ can have a large impact on Br (τ → eγ) and Br (µ→ eγ), as can be
seen in Figs. 4.42 to 4.45. For the choice of parameters in these Figures, the effect of δ
on the decay rates can be approximated using eq. (3.13) and inserting the best-fit values
according to Tab. 4.1 numerically, leading to

(

Y †ν LYν
)

21
≈ 1 · 10−17 MR

GeV
ln
MGUT

MR

(

9 + 9eiδ
)

(

Y †ν LYν
)

31
≈ 1 · 10−17 MR

GeV
ln
MGUT

MR

(

−9 + 9eiδ
)

(

Y †ν LYν
)

32
≈ 1 · 10−16 MR

GeV
ln
MGUT

MR

(

8 + 0.05e−iδ − 0.05eiδ
)

, (4.22)

where a value of tan β = 10 is assumed. Eq. (4.22) shows that Br (µ→ eγ) is expected
to be maximal for δ = 0 and minimal for δ = π where the dominant terms cancel
in
(

Y †ν LYν
)

21
. For Br (τ → eγ) on the other hand, the situation is reversed: Maximal

(minimal) values are expected for δ = π(0) due to the different sign in front of the real
term in

(

Y †ν LYν
)

31
. Moreover, it is clear from eq. (4.22) that Br (τ → µγ) is virtually

unaffected by a variation of the Dirac phase in the case considered here, which can also
be seen in Figs. 4.42 to 4.45.
On the other hand, there is no effect of the two Majorana phases in the case of degenerate
Mi and real R-matrix, as can be seen from eqs. (2.55) or (3.12). Then the Majorana
phases φ and φ′ drop out in the combination UjkU

∗
ik which is also true for non-degenerate

Mi and R = 1, see eq. (3.15).
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SPS 1a
θ23 θ13 θ12 ∆m2

21 ∆m2
31 δ

Br (τ → µγ) /10−11 6.2; 7.6 6.9; 7.7 7.4; 7.8 7.2; 7.8 3.7; 11 7.2; 7.6
∣

∣

∣(δm2
L̃
)
32

∣

∣

∣

2

min
∣

∣

∣(δm2
L̃
)
32

∣

∣

∣

2

max

0.82 0.90 0.94 0.93 0.33 0.95

Br (µ→ eγ) /10−11 2.1; 2.2 0.6; 8 2.1; 2.4 2.0; 2.6 1.7; 2.7 4 · 10−4; 2
∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2

min
∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2

max

0.95 0.07 0.89 0.77 0.60 2 · 10−4

SPS 9
θ23 θ13 θ12 ∆m2

21 ∆m2
31 δ

Br (τ → µγ) /10−10 1.0; 1.3 1.2; 1.3 1.2; 1.3 1.2; 1.3 0.7; 1.8 1.2; 1.3
∣

∣

∣(δm2
L̃
)
32

∣

∣

∣

2

min
∣

∣

∣(δm2
L̃
)
32

∣

∣

∣

2

max

0.82 0.90 0.94 0.93 0.34 0.95

Br (µ→ eγ) /10−11 3.9; 4.2 1.1; 15 3.9; 4.4 3.8; 4.9 3.2; 5.0 1 · 10−3; 4
∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2

min
∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2

max

0.94 0.07 0.89 0.77 0.61 6 · 10−5

G̃MSB
θ23 θ13 θ12 ∆m2

21 ∆m2
31 δ

Br (τ → µγ) /10−12 1.0; 1.3 1.2; 1.3 1.2; 1.3 1.2; 1.3 0.6; 1.8 1.2; 1.3
∣

∣

∣(δm2
L̃
)
32

∣

∣

∣

2

min
∣

∣

∣(δm2
L̃
)
32

∣

∣

∣

2

max

0.82 0.90 0.94 0.93 0.33 0.95

Br (µ→ eγ) /10−13 3.6; 3.8 0.9; 13 3.5; 3.9 3.4; 4.4 2.8; 4.6 7 · 10−4; 4
∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2

min
∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2

max

0.95 0.07 0.89 0.77 0.60 2 · 10−4

GMSB
θ23 θ13 θ12 ∆m2

21 ∆m2
31 δ

Br (τ → µγ) /10−12 3.2; 3.9 3.6; 4.0 3.8; 4.1 3.8; 4.1 1.9; 5.8 3.7;3.9
∣

∣

∣(δm2
L̃
)
32

∣

∣

∣

2

min
∣

∣

∣(δm2
L̃
)
32

∣

∣

∣

2

max

0.82 0.91 0.94 0.93 0.33 0.95

Br (µ→ eγ) /10−12 1.1; 1.2 0.3; 3.9 1.1; 1.3 1.1; 1.4 0.9; 1.5 2 · 10−4;1
∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2

min
∣

∣

∣(δm2
L̃
)
21

∣

∣

∣

2

max

0.95 0.08 0.89 0.77 0.60 2 · 10−4

Table 4.10: Ranges of Br (li → ljγ) that correspond to the variation of the corresponding
parameter in the 3σ CL intervals according to Tab. 4.1 in the case of SPS 1a, SPS 9,
G̃MSB and GMSB. Additional rows show the estimate of the effects of these variations
based on the LL approximations eqs. (2.50), (2.63), (2.88), (2.115).
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Conclusions

In this work the SUSY seesaw model and its effects on low-energy leptonic observables
and thermal leptogenesis have been systematically investigated. Precision measurements
will increase the sensitivity on lepton-flavor violating decays, particularly on Br (lj → liγ)
and also on electric and magnetic diplole moments in the near future. In order to improve
also the accuracy of theoretical predictions for these processes, we have performed a full
one-loop calculation of the underlying supersymmetric processes taking into account the
lepton masses.

By the introduction of very heavy Majorana neutrinos, the supersymmetric seesaw model
naturally leads to small neutrino masses. On the other hand it provides definite predic-
tions for SSB mass terms, where in flavor space, non-diagonal elements of the slepton
mass matrices induce LFV. The scale dependence of these SUSY mass parameters is de-
termined by the RGEs. In order to obtain reliable and precise results for the mass terms,
the complete set of one-loop RGEs between the electroweak scale and the unification scale
has been solved numerically.

Since the mechanism of SSB is completely unknown, a novel analysis beyond the often
studied mSUGRA models has been performed. This includes the formulation of the
SUSY seesaw model in the “minimal” framework of gauge mediation, anomaly mediation
and gaugino mediation. For the numerical results in mSUGRA and AMSB, we have
referred to the benchmark scenarios SPS 1a and SPS 9 proposed in [39]. In the case of
GMSB and G̃MSB, the fundamental parameters have been chosen such that the sparticle
masses are in the range from 200 GeV to roughly 1 TeV, being also the mass range in
the aforementioned benchmark scenarios. This way it has been demonstrated that in all
of these models of SUSY breaking, the ongoing search for Br(µ → eγ) can constrain
fundamental SSB parameters and/or the seesaw parameters. In this context it should be
mentioned that in GMSB lepton-flavor violating effects can be strongly suppressed, if the
messenger scale is below the mass scales of right-handed neutrinos.

We have studied many useful relations for rare leptonic processes that are valid in all of
these SSB scenarios, e. g. Br

(

lj → lil̄ili
)

∝ Br (lj → liγ) and Br (lj → liγ) ∝ |δaµ|2.
These correlations between different LFV decays will allow for many predictions for lep-
tonic observables at low energies once charged LFV is observed. In each of the SSB

79
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mechanisms considered, we have also demonstrated numerically that the decay rates for
lj → liγ generically scale with the “leading logarithmic” approximations for the RGE
effects in the slepton sector. This might be useful for model building. Finally, because
many SUSY flavor effects can also be studied in supersymmetric models that violate tri-
linear R-parity, we have pointed out correlations in lepton-flavor violating processes that
are essentially different in R-parity conserving or violating approaches.
This analysis shows that for slepton and gaugino masses below roughly 700 GeV and a
right-handed Majorana mass scale of at least 1 · 1013 GeV, one can expect an observable
signal for µ → eγ in the PSI experiment in a large portion of the seesaw parameter
space. If the light neutrinos are quasi-degenerate, the rates for Br (µ→ eγ) are reduced
by more than two orders of magnitude. The CP -violating neutrino Dirac phase also has
a great impact on Br (µ→ eγ) and Br (τ → eγ): For the specific case of a real R-matrix,
degenerate right-handed Majorana masses and hierarchical light neutrino masses, large
cancellations occur in Br (µ→ eγ) for δ = π and in Br (τ → eγ) for δ = 0, respectively.
If the masses of the right-handed neutrinos are non-degenerate, the ratios of Br (lj → liγ)
for different decays can probe the mass spectrum of the heavy Majorana masses Mi.
For non-degenerate Mi, the real mixing angles xi in the unknown complex orthogonal
R-matrix are important for Br (lj → liγ). It has been shown that Br (µ→ eγ) may
be suppressed in some regions of x1 by more than four orders of magnitude, while the
suppression for x2 =

π
2
can be more than three orders of magnitude.

Finally the predictions for the baryon asymmetry of the universe generated through ther-
mal leptogenesis have been analyzed in the context of the seesaw model. Thermal lepto-
genesis is only possible for non-degenerate heavy neutrinos. Assuming both hierarchical
light and heavy neutrinos, the low-energy rare processes are dependent mainly on the
mass of the heaviest right-handed neutrino M3, whereas in thermal leptogenesis a lower
bound on M1 can be obtained. The baryon asymmetry generated in thermal leptogenesis
is essentially independent of the mechanism of SUSY breaking and also on the neutrino
MNS mixing matrix. The basic parameters of leptogenesis, such as the CP asymmetry
ε1 in the decays of N1, provide probes of the unknown complex orthogonal R-matrix. We
have shown that for a minimal model, i. e. parameterizing R in terms of one common
imaginary angle, yi ≡ y and vanishing real mixing angles, successful thermal leptogenesis
is possible provided M1 >∼ 1011 GeV.
The results of this work show that further information on Br (µ→ eγ) in the near future
in connection with constraints from thermal leptogenesis will be an excellent probe of
the parameters of the SUSY seesaw model and will allow for more precise predictions for
other lepton-flavor violating processes.



Appendix A

SM input values

The input parameters of the SM have been taken from the Particle Data Group Collab-
oration [5] and the program package SOFTSUSY [33]. For the numerical analysis of the
RG evolution we refer to the input values at mZ listed in Tab. A.1 specifying the running
masses at mZ , see also [33], where accurate RG studies have been carried out. An addi-
tional fundamental parameter is the GUT scale, MGUT = 1.5 · 1016 GeV corresponding to
an unification of gauge couplings in the scenarios considered.
It should also be mentioned that we do not include quark mixing in this analysis which is
appropriate for the purpose of this study, where we concentrate on lepton mixing rather
than on the small quark mixing. Due to the dominance of top and bottom quark masses,
the corresponding Yukawa couplings are strongly dominating among the quarks.
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Variable value description
α, α (mZ) 1/137.036, 7.82 · 10−3 fine-structure constant
αs (mZ) 1.17 · 10−1 strong coupling constant

sin2 θW (mZ) 0.2311 weak-mixing angle
v 174.19 VEV of Higgs field
mZ 91.188 Z-boson mass
mW 80.423 W-boson mass

me (me), me (mZ) 5.11 · 10−4, 5.01 · 10−4 electron mass
mµ (mµ), mµ (mZ) 1.057 · 10−1, 1.039 · 10−1 µ mass
mτ (mτ ), mτ (mZ) 1.777, 1.752 τ mass

Γµ 2.996 · 10−19 full width of µ
Γτ 2.2649 · 10−12 full width of τ

mu (mZ) 1.72 · 10−3 u-quark mass
md (mZ) 3.89 · 10−3 d-quark mass
ms (mZ) 6.76 · 10−2 s-quark mass
mc (mZ) 0.576 c-quark mass
mb (mZ) 2.91 b-quark mass
mt (mZ) 174.3 t-quark mass

Table A.1: SM input parameters, all masses and widths are in units of GeV.



Appendix B

Feynman rules

In this appendix we show the relevant vertices for sparticles arising from the interaction
Lagrangians specified below.

Interaction Lagrangians Charged lepton-sneutrino-chargino [31]:

Lν̃c = li

(

C
R(l)
iax PR + C

L(l)
iax PL

)

χ̃−a ν̃x + ν̃∗xχ̃
−
a

(

C
R(l)∗
iax PL + C

L(l)∗
iax PR

)

li (B.1)

Quark-squark-chargino [31]:

Lq̃c = di

(

C
R(d)
iax PR + C

L(d)
iax PL

)

χ̃−a ũx + ũ∗xχ̃
−
a

(

C
R(d)∗
iax PL + C

L(d)∗
iax PR

)

di

+ui

(

C
R(u)
iax PR + C

L(u)
iax PL

)

χ̃+
a d̃x + d̃∗xχ̃

+
a

(

C
R(u)∗
iax PL + C

L(u)∗
iax PR

)

ui

(B.2)

Charged lepton-charged slepton-neutralino [31]:

Ll̃n = li

(

N
R(l)
iax PR +N

L(l)
iax PL

)

χ̃0
al̃x + l̃∗xχ̃

0
a

(

N
R(l)∗
iax PL +N

L(l)∗
iax PR

)

li (B.3)

Quark-squark-neutralino [31]:

Lq̃n = di

(

N
R(d)
iax PR +N

L(d)
iax PL

)

χ̃0
ad̃x + d̃∗xχ̃

0
a

(

N
R(d)∗
iax PL +N

L(d)∗
iax PR

)

di

+ui

(

N
R(u)
iax PR +N

L(u)
iax PL

)

χ̃0
aũx + ũ∗xχ̃

0
a

(

N
R(u)∗
iax PL +N

L(u)∗
iax PR

)

ui

(B.4)

Photon-chargino-chargino [87]:

Lχ̃± = −eAµχ̃
+
i γ

µχ̃+
i (B.5)

Photon-charged slepton-charged slepton [87]:

Ll̃± = ieAµl̃
∗
x

↔
∂µ l̃x (B.6)
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The coefficients of the vertex factors involving charginos are given by

C
R(l)
iax = −g (OR)a1 (Uν̃)xi (B.7)

C
L(l)
iax = g

mli√
2mW cos β

(OL)a2 (Uν̃)xi (B.8)

C
R(d)
iax = g

(

− (OR)a1 (Uũ)xi +
mui√

2mW sin β
(OR)a2 (Uũ)x(i+3)

)

(B.9)

C
L(d)
iax = g

mdi√
2mW cos β

(OL)a2 (Uũ)xi (B.10)

C
R(u)
iax = g

(

− (OL)a1 (Ud̃)xi +
mdi√

2mW cos β
(OL)a2 (Ud̃)x(i+3)

)

(B.11)

C
L(u)
iax = g

mui√
2mW sin β

(OR)a2 (Ud̃)xi . (B.12)

The vertex factors involving neutralinos have the following coefficients

N
R(l)
iax = − g√

2

(

(− (ON)a2 − (ON)a1 tan θW ) (Ul̃)xi

+
mli

mW cos β
(ON)a3 (Ul̃)x(i+3)

)

(B.13)

N
L(l)
iax = − g√

2

(

mli

mW cos β
(ON)a3 (Ul̃)xi

+2 (ON)a1 tan θW (Ul̃)x(i+3)

)

(B.14)

N
R(d)
iax = − g√

2

((

− (ON)a2 +
1

3
(ON)a1 tan θW

)

(Ud̃)xi

+
mdi

mW cos β
(ON)a3 (Ud̃)x(i+3)

)

(B.15)

N
L(d)
iax = − g√

2

(

mdi

mW cos β
(ON)a3 (Ud̃)xi

+
2

3
(ON)a1 tan θW (Ud̃)x(i+3)

)

(B.16)

N
R(u)
iax = − g√

2

((

− (ON)a2 +
1

3
(ON)a1 tan θW

)

(Uũ)xi

+
mui

mW sin β
(ON)a4 (Uũ)x(i+3)

)

(B.17)

N
L(u)
iax = − g√

2

(

mui

mW sin β
(ON)a4 (Uũ)xi

−4

3
(ON)a1 tan θW (Uũ)x(i+3)

)

. (B.18)
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Vertices From the above interaction Lagrangians the vertex factor for diagrams in-
volving one scalar and two fermions when all arrows are reversed, is obtained from the
“original” one as follows: If the vertex factor is of the form cLPL + cRPR, then reversing
all arrows yields the vertex factor cR∗PL+ cL∗PR, see also [87]. The arrows on scalar lines
denote the flow of the corresponding lepton number or baryon number.

C
R(l)
iax PR + C

L(l)
iax PL

l−i

χ̃−a

ν̃x

C
R(d)
iax PR + C

L(d)
iax PL

d−i

χ̃−a

ũ+x

C
R(u)
iax PR + C

L(u)
iax PL

u+i

χ̃+
a

d̃−x

N
R(l)
iax PR +N

L(l)
iax PL

l−i

χ̃0
a

l̃−x
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N
R(d)
iax PR +N

L(d)
iax PL

d−i

χ̃0
a

d̃−x

N
R(u)
iax PR +N

L(u)
iax PL

u+i

χ̃0
a

ũ+x

ieγµ
γ

χ̃−a

χ̃−a

ie(p1 + p2)
µ

γ

l̃−x

p1

l̃−x

p2



Appendix C

Masses and mixings

Neutralinos The symmetric neutralino mass matrix Mχ̃0 is introduced by [31]

−Lχ̃0 =
1

2
ψχ̃0Mχ̃0ψTχ̃0 + h.c., (C.1)

in the neutralino basis
ψχ̃0 =

(

B̃0
L, W̃

0
L, h̃

0
1L
, h̃02L

)

, (C.2)

as

Mχ̃0 =









M̃1 0 −mZsθW cβ mZsθW sβ
0 M̃2 mZcθW cβ −mZcθW sβ

−mZsθW cβ mZcθW cβ 0 −µ
mZsθW sβ −mZcθW sβ −µ 0









, (C.3)

where sα ≡ sinα and cα ≡ cosα.
The gauge eigenstates are the bino, the neutral wino and two higgsino states where each
component is a two-component Majorana fermion field. The real matrix Mχ̃0 is diagonal-
ized by the orthogonal matrix ON ,

ONMχ̃0OT
N = Diag

(

mχ̃0
1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4

)

, (C.4)

leading to four left-handed neutralino mass eigenstates which are defined by

χ̃0
iL

= (ON)ij (ψχ̃0)
j
, i, j : 1, . . . , 4. (C.5)

Four-component Majorana spinors χ̃0
i of mass mχ̃0

i
are obtained as χ̃0

i = χ̃0
iL
+ χ̃0

iR
[31].

Charginos The mass matrix of charginos Lχ̃− is given by [31]

−Lχ̃− =
(

W̃−
R , h̃

−
2R

)

Mχ̃−

(

W̃−
L

h̃−1L

)

+ h.c., (C.6)

as

Mχ̃− =

(

M̃2

√
2mW cos β√

2mW sin β µ

)

. (C.7)
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A real Mχ̃− matrix is diagonalized by two orthogonal matrices OR and OL such that

ORMχ̃−O
T
L = Diag

(

Mχ̃−1
,Mχ̃−2

)

. (C.8)

Defining
(

χ̃−1L
χ̃−2L

)

= OL

(

W̃−
L

h̃−1L

)

,

(

χ̃−1R
χ̃−2R

)

= OR

(

W̃−
R

h̃−2R

)

, (C.9)

leads to two chargino Dirac states

χ̃−a = χ̃−aL + χ̃−aR , a = 1, 2 (C.10)

with masses mχ̃−1
and mχ̃−2

[31].

Sfermions The charged slepton (mass)2 matrix has the form

m2
l̃
=

(

m2
l̃L

(m2
l̃LR

)†

m2
l̃LR

m2
l̃R

)

, (C.11)

where m2
l̃L
, m2

l̃R
and m2

l̃LR
are 3× 3 matrices, m2

l̃L
and m2

l̃R
being hermitian, see [31] and

[51]. The matrix elements are given by

(m2
l̃L
)ij = (m2

L̃
)ij + δij

(

m2
li
+m2

Z cos(2β)

(

−1

2
+ sin2 θW

))

(C.12)

(m2
l̃R
)ij = (m2

ẽ)ij + δij(m
2
li
−m2

Z cos(2β) sin2 θW ) (C.13)

(m2
l̃LR

)ij = (Ae)ij v cos β − δijmliµ tan β. (C.14)

From eq. (C.11) the mass eigenvalues of m2
l̃
are found through diagonalization by a 6× 6

unitary matrix Ul̃,

Ul̃m
2
l̃
U †
l̃
= Diag(m2

l̃1
, ...,m2

l̃j
, ...,m2

l̃6
), (C.15)

where the masses increase from m2
l̃1
to m2

l̃6
. The slepton mass eigenstates are expressed

in terms of the gauge eigenstates by

l̃j = (Ul̃)jαl̃Lα + (Ul̃)j(α+3)l̃Rα , j = 1, ..., 6; α = e, µ, τ. (C.16)

The (mass)2 matrix of the SUSY partners of the left-handed neutrinos is given by

(m2
ν̃)ij = (m2

L̃
)ij +

1

2
δijm

2
Z cos 2β, i, j = 1, 2, 3. (C.17)

In the SUSY seesaw model, the partners of the right-handed neutrinos are very heavy
and their admixture to the left-handed sneutrino mass matrix can therefore be disre-
garded in m2

ν̃ at energy scales much below the heavy Majorana neutrino masses. After
diagonalization with the unitary 3× 3 matrix Uν̃ ,

Uν̃m
2
ν̃U

†
ν̃ = Diag(m2

ν̃1
,m2

ν̃2
,m2

ν̃3
), (C.18)
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the mass eigenstates ν̃i are related to the gauge eigenstates by

ν̃j = (Uν̃)jαν̃Lα , j = 1, 2, 3; α = e, µ, τ. (C.19)

The (mass)2 matrices for up- and down-squarks have a form analogous to that of the
charged sleptons. For down-squarks it is given by

m2
D̃
=

(

m2
D̃L

(m2
D̃LR

)†

m2
D̃LR

m2
D̃R

)

, (C.20)

where m2
D̃L

, m2
D̃R

and m2
D̃LR

are 3 × 3 matrices, m2
D̃L

and m2
D̃R

being hermitian. The

matrix elements are given by

(m2
D̃L

)ij = (m2
Q̃
)ij + δij

(

m2
di
+m2

Z cos(2β)

(

−1

2
+

sin2 θW
3

))

(C.21)

(m2
D̃R

)ij = (m2
d̃
)ij + δij(m

2
di
− 1

3
m2
Z cos(2β) sin2 θW ) (C.22)

(m2
D̃LR

)ij = (Ad)ij v cos β − δijmdiµ tan β. (C.23)

From eq. (C.20) the mass eigenvalues of m2
D̃
are obtained by diagonalization with a 6× 6

unitary matrix Ud̃,

Ud̃m
2
D̃
U †
d̃
= Diag(m2

d̃1
, ...,m2

d̃j
, ...,m2

d̃6
). (C.24)

The down-squark mass eigenstates are expressed in terms of the gauge eigenstates by

d̃j = (Ud̃)jαd̃Lα + (Ud̃)j(α+3)d̃Rα , j = 1, ..., 6; α = d, s, b. (C.25)

For up-squarks the (mass)2 matrix reads

m2
Ũ
=

(

m2
ŨL

(m2
ŨLR

)†

m2
ŨLR

m2
ŨR

)

, (C.26)

where m2
ŨL

, m2
ŨR

and m2
ŨLR

are 3×3 matrices, m2
ŨL

and m2
ŨR

being hermitian. The matrix

elements are given by

(m2
ŨL

)ij = (m2
Q̃
)ij + δij

(

m2
ui
+m2

Z cos(2β)

(

1

2
− 2 sin2 θW

3

))

(C.27)

(m2
ŨR

)ij = (m2
ũ)ij + δij(m

2
ui
+

2

3
m2
Z cos(2β) sin2 θW ) (C.28)

(m2
ŨLR

)ij = (Au)ij v sin β − δijmuiµ cot β. (C.29)

From eq. (C.20) the mass eigenvalues of m2
Ũ
are found through diagonalization by a 6× 6

unitary matrix Uũ,
Uũm

2
Ũ
U †ũ = Diag(m2

ũ1
, ...,m2

ũj
, ...,m2

ũ6
). (C.30)

The up-squark mass eigenstates are expressed in terms of the gauge eigenstates by

ũj = (Uũ)jαũLα + (Uũ)j(α+3)ũRα , j = 1, ..., 6; α = u, c, t. (C.31)



Appendix D

Dirac algebra and Gordon identity

The Dirac equation for spinors uj and ūi ≡ u†iγ
0 is given by

ui (p
′) ( /p′ −mi) = ( /p−mj) uj(p) = 0, (D.1)

where
/p ≡ pµγ

µ ≡ p · γ. (D.2)

Dirac matrices fulfill anticommutation relations,

{γµ, γν} = 2gµν , {γµ, γ5} = 0. (D.3)

Useful relations of Dirac matrices are [52]

γν = γ0γν†γ0 (D.4)

γ0† = γ0, γ0γ0 = 1 (D.5)

γµγ
νγµ = −2γν (D.6)

γ5† = γ5 (D.7)

Using
[γµ, γν ] = −2iσµν , (D.8)

one can show that
/a /b = a · b− iaµbνσµν . (D.9)

Then one can derive the following Gordon identity, see e. g. [88] and [54],

ui (p
′) γαuj(p) =

1

mi +mj

ui (p
′)
[

(p′α + pα) + iσαβ
(

p′β − pβ
)]

uj(p)

ui (p
′) γ · ε∗uj(p) =

1

mi +mj

ui (p
′)
[

2p · ε∗ − iε∗ασαβqβ
]

uj(p), (D.10)

where the four-momentum q is defined as qµ = pµ − p′µ and for an on-shell photon ε · q =
ε∗ · q = 0. Making use of eq. (D.3) and

[

γ5, σµν
]

= 0, (D.11)
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one can show that

ui (p
′) γαγ5uj(p) =

1

mi −mj

ui (p
′)
[

(p′α + pα) + iσαβ
(

p′β − pβ
)]

γ5uj(p)

ui (p
′) γ · ε∗γ5uj(p) =

1

mi −mj

ui (p
′)
[

2p · ε∗ − iε∗ασαβqβ
]

γ5uj(p). (D.12)

Only helicity-changing terms contribute to leptonic dipole operators at the one-loop level,
so that helicity conserving terms, i. e. γ · ε∗ = 0 can be neglected [54]. Therefore, for an
on-shell photon q2 = 0, the helicity-changing part of the penguin-type diagrams can be
written as

ui (p
′) 2p · ε∗ PL(R)uj(p) = ui (p

′) iε∗ασ
αβqβPL(R)uj(p). (D.13)



Appendix E

Formulae for calculation of loop

integrals

The following identity is used to combine denominator factors [54],

1

a1a2 · · · an
= (n− 1)!

∫ 1

0

dz1dz2 · · · dzn
(a1z1 + a2z2 + · · ·+ anzn)

n δ

(

1−
n
∑

i=1

zi

)

, (E.1)

where the zi’s are called Feynman parameters. In the case of three denominator factors,
which arises in the calculation of penguin-type diagrams, the above formula yields

1

a1a2a3
= 2

∫ 1

0

dz1

∫ 1−z1

0

dz2
1

(z1a1 + z2a2 + (1− z1 − z2)a3)3
. (E.2)

The subsequent relations can be derived by the technique of dimensional regularization
in d-dimensions [54],

I0(α, n) =

∫

dnk

(2π)n
1

(k2 + 2p · k +M 2 + iε)α
(E.3)

= i
(−π)n/2
(2π)n

Γ(α− n/2)
Γ(α)

1

(M2 − p2 + iε)α−(n/2)
(E.4)

Iµ(α, n) =

∫

dnk

(2π)n
kµ

(k2 + 2p · k +M 2 + iε)α
= −pµI0(α, n) (E.5)

Iµν(α, n) =

∫

dnk

(2π)n
kµkν

(k2 + 2p · k +M 2 + iε)α
(E.6)

= I0(α, n)

(

pµpν +
1

2
gµν

M2 − p2
α− n

2
− 1

)

. (E.7)
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Here k denotes the loop four-momentum. These formulae lead to

∫

d4k

(2π)4
1

(k2 + 2p · k −M 2 + iε)3
= − i

32π2
1

p2 +M2 + iε
(E.8)

∫

d4k

(2π)4
kµ

(k2 + 2p · k −M 2 + iε)3
=

i

32π2
pµ

p2 +M2 + iε
(E.9)

(∫

d4k

(2π)4
kµkν

(k2 + 2p · k −M 2 + iε)3

)

fin

= − i

32π2
pµpν

p2 +M2 + iε
. (E.10)

In expression eq. (E.10) we show only the finite part of the integral. The infinite part
proportional to gµν does not contribute to leptonic dipole moments in the leading order
of the perturbative calculation, because it cannot be absorbed by counter-terms at this
order. As we only consider one-loop integrals, i. e. the amplitudes at leading order, we
can safely ignore the infinite part [54]. Due to the same reason the anomalous magnetic
moment (g − 2)e of the electron must be finite at the one-loop level in QED [54].



Appendix F

Calculation of lj → liγ at one-loop

level

F.1 Neutralino part

For the analytical calculation of the amplitudeMn for the neutralino-charged slepton dia-
gram in Fig. 3.1, we choose x and a as indices for slepton and neutralino mass eigenstates,
respectively. Using the definition of momenta in Fig. F.1, the amplitude is

−iMn = ui(p
′)
∑

x,a

∫

d4k

(2π)4

[

N
R(l)
iax PR +N

L(l)
iax PL

] −i
/k +mχ̃0

a

[

N
R(l)∗
jax PL +N

L(l)∗
jax PR

]

× i

(p+ k)2 −m2
l̃x

ie(2p+ 2k − q)µεµ∗
i

(p+ k − q)2 −m2
l̃x

uj(p) (F.1)

= −eεµ∗ui(p′)
∑

x,a

∫

d4k

(2π)4
1

denn

[

N
R(l)
iax PR +N

L(l)
iax PL

]

(

/k −mχ̃0
a

)

×
[

N
R(l)∗
jax PL +N

L(l)∗
jax PR

]

(2p+ 2k − q)µuj(p), (F.2)

where the denominator factors can be written as

1

denn
=

1
(

k2 −m2
χ̃0
a

) [

(p+ k)2 −m2
l̃x

] [

(p+ k − q)2 −m2
l̃x

] (F.3)

= 2

∫ 1

0

dz1

∫ 1−z1

0

dz2
1

A3
n

, (F.4)

An = z1

(

k2 −m2
χ̃0
a

)

+ z2

[

(p+ k)2 −m2
l̃x

]

+(1− z1 − z2)
[

(p+ k − q)2 −m2
l̃x

]

(F.5)

= k2 + 2k [(1− z1) p+ (−1 + z1 + z2) q]−m2
l̃x
(1− z1)−m2

χ̃0
a
z1

+m2
lj
(1− z1) + 2p · q (−1 + z1 + z2) . (F.6)
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p

p+ k

p+ k − q

q

p′

k

p p+ k

q

p′

k k + q

Figure F.1: Definition of the momenta for the neutralino-charged slepton diagram (left)
and the chargino-sneutrino diagram (right) corresponding to Fig. 3.1.

In the last expression we have used the fact that the incoming lepton lj and the outgoing
photon are on-shell, i. e. p2 = m2

lj
and q2 = 0. From the kinematics of two-body decays

[52], it follows that

p · q = 1

2

(

m2
lj
−m2

li

)

, (F.7)

so that the factor An in the denominator of eq. (F.2) can be written in the compact form

An = k2 + 2k [(1− z1) p+ (−1 + z1 + z2) q]− b2n − c2n, (F.8)

b2n = m2
l̃x
(1− z1) +m2

χ̃0
a
z1, (F.9)

c2n = −m2
lj
z2 −m2

li
(1− z1 − z2) . (F.10)

We use ε∗ · q = 0 and write the Dirac index structure explicitly,

−iMn = −eεµ∗ui(p′)
∑

x,a

2

∫ 1

0

dz1

∫ 1−z1

0

dz2

∫

d4k

(2π)4
1

A3
n

×
([

N
R(l)
iax N

R(l)∗
jax PR +N

L(l)
iax N

L(l)∗
jax PL

]

(2pµkνγ
ν + 2kµkνγ

ν)

−mχ̃0
a

[

N
R(l)
iax N

L(l)∗
jax PR +N

L(l)
iax N

R(l)∗
jax PL

]

(2pµ + 2kµ)
)

uj(p). (F.11)

Using eqs. (E.8) to (E.10) for the calculation of
∫

d4k
(2π)4

integrals in dimensional regular-
ization, and taking the finite part from the integral over kµkν yields

Mn =
e

16π2
ui(p

′)

×
∑

x,a

∫

dz1
∫

dz2

b2n + c2n + (1− z1)2m2
lj
+ (1− z1) (−1 + z1 + z2)

(

m2
lj
−m2

li

)

×
([

N
R(l)
iax N

R(l)∗
jax PR +N

L(l)
iax N

L(l)∗
jax PL

]

2p · ε∗z1 [(1− z1) /p+ (−1 + z1 + z2) /q ]

+mχ̃0
a

[

N
R(l)
iax N

L(l)∗
jax PR +N

L(l)
iax N

R(l)∗
jax PL

]

2p · ε∗z1
)

uj(p). (F.12)
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Writing /q = /p− /p′ and using the Dirac equation (D.1) for incoming and outgoing lepton
leads to

Mn =
e

16π2
ui(p

′)2p · ε∗
∑

x,a

(

mli

[

N
R(l)
iax N

R(l)∗
jax PL +N

L(l)
iax N

L(l)∗
jax PR

]

Ini

+mlj

[

N
R(l)
iax N

R(l)∗
jax PR +N

L(l)
iax N

L(l)∗
jax PL

]

Inj

+mχ̃0
a

[

N
R(l)
iax N

L(l)∗
jax PR +N

L(l)
iax N

R(l)∗
jax PL

]

Ina

)

uj(p). (F.13)

In the terms proportional to the lepton masses, the helicity flip takes place in the external
lepton lines, whereas in the term proportional to the neutralino mass, the helicity is
flipped in the neutralino propagator, see also [37], where the mass-insertion technique in
the calculation of Br (l→liγ) is discussed. The loop integrals are given as follows

Ini =

∫

dz
z1 (1− z1 − z2)

dn
(F.14)

Inj =

∫

dz
z1z2
dn

(F.15)

Ina =

∫

dz
z1
dn
, (F.16)

where integration over Feynman parameters is abbreviated,

∫

dz ≡
∫ 1

0

dz1

∫ 1−z1

0

dz2, (F.17)

and the common denominator is

dn = m2
l̃x
(1− z1) +m2

χ̃0
a
z1 −m2

lj
z1z2 −m2

li
z1 (1− z1 − z2) . (F.18)

F.2 Chargino part

For the analytical calculation of the amplitude Mc for the chargino-sneutrino diagram
in Fig. 3.1, we choose x and a as indices for sneutrino and chargino mass eigenstates,
respectively. The momenta for this diagram are defined in Fig. F.1, so that the amplitude
is given by

−iMc = ui(p
′)
∑

x,a

∫

d4k

(2π)4

[

C
R(l)
iax PR + C

L(l)
iax PL

] −i
/k + /q +mχ̃−a

ieγµε∗µ

× −i
/k +mχ̃−a

[

C
R(l)∗
jax PL + C

L(l)∗
jax PR

] i

(p+ k)2 −m2
ν̃x

uj(p). (F.19)
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The denominator factors can be written as

1

denc
=

1
[

(k + q)2 −m2
χ̃−a

] [

k2 −m2
χ̃−a

]

[

(p+ k)2 −m2
ν̃x

]

(F.20)

= 2

∫ 1

0

dz1

∫ 1−z1

0

dz2
1

A3
c

, (F.21)

Ac = z1

[

k2 + 2k · q −m2
χ̃−a

]

+ z2

[

k2 −m2
χ̃−a

]

+(1− z1 − z2)
[

(p+ k)2 −m2
ν̃x

]

(F.22)

= k2 + 2k · [(1− z1 − z2) p+ z1q]− b2c − c2c , (F.23)

where

b2c = m2
χ̃−a

(z1 + z2) +m2
ν̃x (1− z1 − z2)

c2c = m2
lj
(−1 + z1 + z2) . (F.24)

Making use of
ε∗ · q = 0, ui (p

′) /p′ = ui (p
′)mli , (F.25)

and specifying the Dirac index structure of the terms, the amplitude of the chargino part
becomes

−iMc = eui(p
′)
∑

x,a

2

∫

dz

∫

d4k

(2π)4
1

denc

([

−gµνkµkν/ε∗ +m2
χ̃−a
/ε∗ − 2pνkν/ε

∗

+2ε∗µkµkνγ
ν + /ε∗kνγ

ν/p−mli/ε
∗kνγ

ν + 2p · ε∗kνγν ]
×
[

C
R(l)
iax C

R(l)∗
jax PL + C

L(l)
iax C

L(l)∗
jax PR

]

−mχ̃−a
[−mli/ε

∗ − /ε∗/p+ 2ε∗νkν + 2p · ε∗]

×
[

C
R(l)
iax C

L(l)∗
jax PR + C

L(l)
iax C

R(l)∗
jax PL

])

uj(p). (F.26)

Using eqs. (E.8) to (E.10) for the calculation of
∫

d4k
(2π)4

integrals in dimensional regular-
ization, and taking the finite part from the integral over kµkν leads to

−Mc = ui(p
′)

e

16π2

×
∑

x,a

∫

dz

b2c + c2c + (1− z1 − z2)2m2
lj
+ (1− z1 − z2) z1

(

m2
lj
−m2

li

)

×
(

(−2 (1− z1 − z2) p · ε∗ [(1− z1 − z2) /p+ z1/q ] + z1/ε
∗/q /p

−mli (1− z1 − z2) /ε∗/p−mliz1/ε
∗ /q + 2p · ε∗ (1− z1 − z2) /p

+2p · ε∗z1/q)
[

C
R(l)
iax C

R(l)∗
jax PL + C

L(l)
iax C

L(l)∗
jax PR

]

+mχ̃−a
[2p · ε∗ (z1 + z2)]

[

C
R(l)
iax C

L(l)∗
jax PR + C

L(l)
iax C

R(l)∗
jax PL

] )

uj(p). (F.27)
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To derive the last expression, we use p · q = 1
2

(

m2
lj
−m2

li

)

and also that a term of the

form const/ε∗ does not lead to dipole-type amplitudes and thus can be disregarded. After
some Dirac algebra, in particular using eq. (D.1), the amplitude of the chargino part is
given by

Mc = − e

16π2
ui(p

′)2p · ε∗
∑

x,a

(

mli

[

C
R(l)
iax C

R(l)∗
jax PL + C

L(l)
iax C

L(l)∗
jax PR

]

Ici

+mlj

[

C
R(l)
iax C

R(l)∗
jax PR + C

L(l)
iax C

L(l)∗
jax PL

]

Icj

+mχ̃−a

[

C
R(l)
iax C

L(l)∗
jax PR + C

L(l)
iax C

R(l)∗
jax PL

]

Ica

)

uj(p). (F.28)

In analogy to the neutralino part, the helicity flip takes place in the external lepton lines in
those terms of eq. (F.28) proportional to lepton masses, whereas in the term proportional
to the chargino mass, the helicity is flipped in the chargino propagator. The loop integrals
are given as follows

Ici =

∫

dz
z1 (1− z1 − z2)

dc
(F.29)

Icj =

∫

dz
z2 (1− z1 − z2)

dc
(F.30)

Ica =

∫

dz
z1 + z2
dc

, (F.31)

where

dc = m2
ν̃x (1− z1 − z2) +m2

χ̃−a
(z1 + z2) +m2

lj
z2 (−1 + z1 + z2)

+m2
li
z1 (−1 + z1 + z2) . (F.32)

Exchanging the indices i ↔ j and the integration variables z1 ↔ z2 simultaneously
transforms Ici into Icj and vice versa.

In summary, the coefficients for the one-loop leptonic dipole factors are given by

16π2Aij
Lmlj = mliI

n
i N

R(l)
iax N

R(l)∗
jax +mljI

n
j N

L(l)
iax N

L(l)∗
jax +mχ̃0

a
InaN

L(l)
iax N

R(l)∗
jax

−mliI
c
iC

R(l)
iax C

R(l)∗
jax −mljI

c
jC

L(l)
iax C

L(l)∗
jax −mχ̃−a

IcaC
L(l)
iax C

R(l)∗
jax (F.33)

16π2Aij
Rmlj = mliI

n
i N

L(l)
iax N

L(l)∗
jax +mljI

n
j N

R(l)
iax N

R(l)∗
jax +mχ̃0

a
InaN

R(l)
iax N

L(l)∗
jax

−mliI
c
iC

L(l)
iax C

L(l)∗
jax −mljI

c
jC

R(l)
iax C

R(l)∗
jax −mχ̃−a

IcaC
R(l)
iax C

L(l)∗
jax . (F.34)
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F.3 Limiting behavior of loop functions

Neglecting the leptonic masses in the loop integration, the loop functions including the
sparticle masses are given by [89]:

F c
i =

1

2m2
ν̃x

2 + 3r − 6r2 + r3 + 6r ln r

6(1− r)4 ≡ Icj,i

(

m2
li
,m2

lj
→ 0

)

(F.35)

F c
a =

mχ̃−a

2m2
ν̃x

−3 + 4r − r2 − 2 ln r

(1− r)3 ≡ mχ̃−a
Ica

(

m2
li
,m2

lj
→ 0

)

(F.36)

F n
i =

1

2m2
l̃x

1− 6r + 3r2 + 2r3 − 6r2 ln r

6(1− r)4 ≡ Inj,i

(

m2
li
,m2

lj
→ 0

)

(F.37)

F n
a =

mχ̃0
a

2m2
l̃x

1− r2 + 2r ln r

(1− r)3 ≡ mχ̃0
a
Ica

(

m2
li
,m2

lj
→ 0

)

, (F.38)

where in the loop functions of the chargino diagram (superscript c) r denotes
m2

χ̃−a

m2
ν̃x

and in

those corresponding to the neutralino diagram (superscript n)
m2

χ̃0
a

m2
l̃x

, respectively.

In the limit of r = 1, i. e. mν̃x = mχ̃−a
or ml̃x

= mχ̃0
a
, these fuctions obtain the following

values,

F c
i (r = 1) =

1

24m2
ν̃x

(F.39)

F c
a(r = 1) =

mχ̃−a

3m2
ν̃x

=
1

3mν̃x

(F.40)

F n
i (r = 1) =

1

24m2
l̃x

(F.41)

F n
a (r = 1) =

mχ̃0
a

6m2
l̃x

=
1

6ml̃x

. (F.42)

For r À 1, these functions behave as

F c
i (r À 1) =

1

12m2
χ̃−a

(F.43)

F c
a(r À 1) =

1

2mχ̃−a

(F.44)

F n
i (r À 1) =

1

6m2
χ̃0
a

(F.45)

F n
a (r À 1) =

1

2mχ̃0
a

. (F.46)
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For r ¿ 1, these functions are approximated by

F c
i (r ¿ 1) =

1

6m2
ν̃x

(F.47)

F c
a(r ¿ 1) = −

mχ̃−a

m2
ν̃x

ln
m2
χ̃−a

m2
ν̃x

(F.48)

F n
i (r ¿ 1) =

1

12m2
l̃x

(F.49)

F n
a (r ¿ 1) =

mχ̃0
a

2m2
l̃x

. (F.50)



Appendix G

Evaluation of loop functions for

other leptonic low-energy processes

The calculation of the decay rates for lepton-flavor violating decays l−j → l−i l
+
i l
−
i and µ-e

conversion on nuclei can be found in [31]. As we follow the conventions and the calculation
for these processes, we do not repeat their full results here.
In the calculation of box diagrams to the process l−j → l−i l

+
i l
−
j , the following types of loop

integrals occur:

I03 =

∫

d4k

(k2 −m2
1) (k

2 −m2
2) (k

2 −m2
3)

(G.1)

I04 =
−i

(2π)4

∫

d4k

(k2 −m2
1) (k

2 −m2
2) (k

2 −m2
3) (k

2 −m2
4)

(G.2)

J0
4 =

−i
(2π)4

∫

d4kk2

(k2 −m2
1) (k

2 −m2
2) (k

2 −m2
3) (k

2 −m2
4)
. (G.3)

Obviously, the functions I03 , I
0
4 and J0

4 are functions of the squared masses m2
1, m

2
2, m

2
3

and for the latter two also of m2
4. Making use of Feynman parameters, see eq. (E.2), and

performing the loop-momentum integration in Euclidean space, one obtains

I03 = −iπ2
∫ 1

0

dz1dz2dz3δ (1− z1 − z2 − z3)
z1m2

1 + z2m2
2 + z3m2

3

, (G.4)

which can be evaluated to be

I03 = −iπ2
[

m2
1 lnm

2
1

(m2
1 −m2

2) (m
2
1 −m2

3)
+

m2
2 lnm

2
2

(m2
2 −m2

1) (m
2
2 −m2

3)
+

m2
3 lnm

2
3

(m2
3 −m2

1) (m
2
3 −m2

2)

]

.

(G.5)

The loop function I04 can be written in terms of I03 ,

I04
(

m2
1,m

2
2,m

2
3,m

2
4

)

=
−i

(2π)4
1

m2
1 −m2

2

(

I03
(

m2
1,m

2
3,m

2
4

)

− I03
(

m2
2,m

2
3,m

2
4

))

, (G.6)
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leading to

I04 = − 1

16π2

[

m2
1 lnm

2
1

(m2
1 −m2

2) (m
2
1 −m2

3) (m
2
1 −m2

4)
+

m2
2 lnm

2
2

(m2
2 −m2

1) (m
2
2 −m2

3) (m
2
2 −m2

4)

+
m2

3 lnm
2
3

(m2
3 −m2

1) (m
2
3 −m2

2) (m
2
3 −m2

4)
+

m2
4 lnm

2
4

(m2
4 −m2

1) (m
2
4 −m2

2) (m
2
4 −m2

3)

]

.

(G.7)

Then the loop function J0
4 can be expressed through I03 and I04 ,

J0
4

(

m2
1,m

2
2,m

2
3,m

2
4

)

= m2
4I

0
4

(

m2
1,m

2
2,m

2
3,m

2
4

)

− i

(2π)4
I03
(

m2
1,m

2
2,m

2
3

)

. (G.8)

If some of the masses appearing in the loops are equal, the following limits of I 03 occur

I03
(

m2
1,m

2
2,m

2
2

)

= − iπ2

m2
2 −m2

1

[

1 +
m2

1

m2
2 −m2

1

ln
m2

1

m2
2

]

(G.9)

I03
(

m2
1,m

2
1,m

2
2

)

= − iπ2

m2
1 −m2

2

[

1 +
m2

2

m2
1 −m2

2

ln
m2

2

m2
1

]

. (G.10)

In order to derive these results for equal masses, some interesting calculations have to be
performed, as shall be demonstrated in the case of I03 (m

2
1,m

2
1,m

2
2):

We express the difference between m2
1 and m2

2 through the infinitesimal quantity ε,

m2
2 = (1 + ε)m2

1, m2
1 −m2

2 = −εm2
1. (G.11)

In the limit ε → 0 we obtain for the terms involving lnm2
1 and lnm2

2 in I03 (m
2
1,m

2
2,m

2
3),

see eq. (G.5),

−iπ2 lim
ε→0

[

lnm2
1

(m2
1 −m2

3) (−ε)
+

(1 + ε) (lnm2
1 + ln(1 + ε))

ε ((1 + ε)m2
1 −m2

3)

]

= −iπ2 lim
ε→0





lnm2
1

m2
1 −m2

3



−1

ε
+

1 + ε

ε
(

1 +
εm2

1

m2
1−m2

3

)



+
(1 + ε) ln(1 + ε)

(m2
1 −m2

3) ε
(

1 +
m2

1ε

m2
1−m2

3

)





= −iπ2
[

− m2
3 lnm

2
1

(m2
1 −m2

3)
2 +

1

m2
1 −m2

3

]

. (G.12)

In deriving this limit we have used

ln(1 + ε) ' ε− ε2

2
(G.13)

for small |ε| ¿ 1, so that

(1 + ε) ln(1 + ε) ' ε(1 + ε) ' ε. (G.14)
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The third term in I03 (m
2
1,m

2
2,m

2
3), see eq. (G.5), proportional to lnm2

3 is simply given by
m2

3 lnm
2
3

(m2
3−m2

1)
2 , so that the above limit eq. (G.10) is verified.

It should be mentioned that the other limits of I03 and I04 for equal masses can be derived
in an analogous way,

I04
(

m2
1,m

2
1,m

2
2,m

2
3

)

= − 1

16π2
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+
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]

(G.15)
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(
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)
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]

(G.16)

I04
(

m2
1,m

2
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2
2,m

2
2

)

= − 1

16π2
1
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2
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2

ln
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2
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]

. (G.17)

For definiteness, we also show the functions arising from Z-boson penguin-type diagrams
[31] and present relevant limits with equal masses,
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G
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. (G.21)

It should also be mentioned that we have corrected equation (25) in [31] according to
[90], in such a way that the term in brackets now reads FX,A,B + GX,A,B instead of
FX,A,B+2GX,A,B. Moreover, the logarithmically enhanced contribution of photon penguin

diagrams in Γ
(

l−j → l−i l
+
i l
−
i

)

is taken to be

(

8
3
ln

m2
lj

m2
li

− 22
3

)

instead of
(

16
3
ln

mlj

2mli
− 14

9

)

in equation (52) of [31].



Appendix H

Renormalization group equations

In the following RGEs, the renormalization scale is denoted by µ. At first, we list the
one-loop RGEs for the Yukawa couplings, gauge couplings and the effective neutrino mass
matrix, valid in the SM extended by right-handed neutrino singlets, see [91] and [92],

16π2µ
dYu
dµ

= Yu

((

−17

20
g21 −

9

4
g22 − 8g23 + Tr

(

3Y †uYu + 3Y †d Yd + Y †e Ye

)

)

1

+
3

2

(

Y †uYu − Y †d Yd
)

)

(H.1)

16π2µ
dYd
dµ

= Yd

((

−1

4
g21 −

9

4
g22 − 8g23 + Tr

(

3Y †uYu + 3Y †d Yd + Y †e Ye

)

)

1

+
3

2

(

Y †d Yd − Y †uYu
)

)

(H.2)

16π2µ
dYe
dµ

= Ye

((

−9

4
g21 −

9

4
g22 + Tr

(

3Y †uYu + 3Y †d Yd + Y †e Ye

)

)

1

+
3

2
Y †e Ye

)

(H.3)

16π2µ
dga
dµ

= bSMa g3a (H.4)

16π2µ
dκ

dµ
= −3

2

(

Y †e Ye
)T
κ− 3

2
κ
(

Y †e Ye
)

+ 2Tr
(

Y †e Ye
)

1κ

+
(

6Tr
(

Y †uYu + Y †d Yd

)

1− 3g221+ λh1
)

κ, (H.5)

where in GUT normalization for U(1)Y , b
SM
a =

(

41
10
,−19

6
,−7

)

and we have used that Yν
vanishes below the mass scales of the right-handed neutrino singlets which are assumed
to be many orders of magnitudes above the SUSY-scale in the SUSY seesaw model.
Due to the underlying supersymmetric theory, the Higgs self-coupling λh is given by
λh = 1

4
(g21 + g22), see also [34]. Note that the top Yukawa couplings are integrated in

above their running mass threshold mt (mZ).
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The one-loop RGEs for Yukawa coupling matrices in the SUSY seesaw model are given
by

16π2µ
dYu
dµ

= Yu

((

−13

15
g21 − 3g22 −

16

3
g23 + Tr

(

3Y †uYu + Y †ν Yν
)

)

1
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(H.6)
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= Yd

((

− 7

15
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3
g23 + Tr
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3Y †d Yd + Y †e Ye
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+3Y †d Yd + Y †uYu
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(H.7)
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(H.8)
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((
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5
g21 − 3g22 + Tr

(

3Y †uYu + Y †ν Yν
)

)

1

+3Y †ν Yν + Y †e Ye
)

, (H.9)

see also [31], [35] and [45]. For the RGEs of supersymmetric gauge couplings and gaugino
masses we also take into account important two-loop effects, see also [34],

16π2µ
dga
dµ

= g3aB
(1)
a +

g3a
16π2

(

3
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B
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(H.10)
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(

M̃a + M̃b
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. (H.11)

Here the coefficients are B(1) =
(

33
5
, 1,−3

)

for U(1)Y in GUT normalization, SU(2)L and
SU(3)C , respectively, and

B(2) =







199
25

27
5

88
5

9
5

25 24

11
5

9 14






. (H.12)

In GUT normalization for U(1)Y , the one-loop RGEs for the effective neutrino mass
matrix and the right-handed Majorana mass matrix in the SUSY seesaw model are as
follows [36],

16π2µ
dκ

dµ
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(

Y †e Ye
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κ+ κ

(

Y †e Ye
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+
(
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κ (H.13)

16π2µ
dM

dµ
= 2

(

YνY
†
ν

)

M + 2M
(

YνY
†
ν

)T
. (H.14)
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The one-loop RGEs for soft-breaking terms in the MSSM [50], extended to the SUSY
seesaw model read [34]

16π2µ
dm2

Q̃

dµ
= m2

Q̃
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ũ +m2

h2
1
)

Yu + A†uAu

)

+2Tr
(

m2
L̃
Y †ν Yν + Y †ν

(

m2
ν̃ +m2

h2
1
)

Yν + A†νAν

)

−6

5
g21|M̃1|2 − 6g22|M̃2|2 +

3

5
g21S (H.22)



107
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where

S = Tr
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+m2
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− 2m2

ũ −m2
L̃
+m2

ẽ

)

−m2
h1

+m2
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We have adopted the convention of S. P. Martin and M. T. Vaughn [50] for the sign of
terms proportional to the gaugino masses in the RGEs of trilinear A parameters. As
the right-handed neutrinos are no active degrees of freedom below the Mi-thresholds,
the corresponding trilinear terms Aν are also integrated out below the respective Mi-
thresholds, see also [34].
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