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Abstract

The observation of neutrino masses and lepton mixing has highlighted the incompleteness

of the Standard Model of particle physics. In conjunction with this discovery, new questions

arise: why are the neutrino masses so small, which form has their mass hierarchy, why is

the mixing in the quark and lepton sectors so different or what is the structure of the Higgs

sector. In order to address these issues and to predict future experimental results, different

approaches are considered. One particularly interesting possibility, are Grand Unified

Theories such as SU(5) or SO(10). GUTs are vertical symmetries since they unify the

SM particles into multiplets and usually predict new particles which can naturally explain

the smallness of the neutrino masses via the seesaw mechanism. On the other hand, also

horizontal symmetries, i.e., flavor symmetries, acting on the generation space of the SM

particles, are promising. They can serve as an explanation for the quark and lepton mass

hierarchies as well as for the different mixings in the quark and lepton sectors. In addition,

flavor symmetries are significantly involved in the Higgs sector and predict certain forms

of mass matrices. This high predictivity makes GUTs and flavor symmetries interesting

for both, theorists and experimentalists. These extensions of the SM can be also combined

with theories such as supersymmetry or extra dimensions. In addition, they usually have

implications on the observed matter-antimatter asymmetry of the universe or can provide a

dark matter candidate. In general, they also predict the lepton flavor violating rare decays

µ → eγ, τ → µγ, and τ → eγ which are strongly bounded by experiments but might be

observed in the future.

In this thesis, we combine all of these approaches, i.e., GUTs, the seesaw mechanism

and flavor symmetries. Moreover, our request is to develop and perform a systematic model

building approach with flavor symmetries and to search for phenomenological implications.

This provides a new perspective in model building since it allows us to screen models by

its predictions on the theoretical and phenomenological side, i.e., we can apply further

model constraints to single out a desired model. The results of our approach are, e.g.,

diverse lepton flavor and GUT models, a systematic scan of lepton flavor violation, new

mass matrices, a new understanding of lepton mixing angles, a general extension of the

idea of quark-lepton complementarity θ12 ≈ π/4 − ǫ/
√

2 and for the first time the QLC

relation in an SU(5) GUT.



Kurzzusammenfassung

Die Beobachtung von Neutrinomassen und Leptonenmischungen haben gezeigt, dass das

Standard-Modell unvollständig ist. Im Zuge dieser Entdeckung tauchen neue Fragestel-

lungen auf: warum sind die Neutrinomassen so klein, wie sieht ihre Massenhierarchie aus,

warum sind die Mischungen im Quark- und Leptonen-Sektor so unterschiedlich oder welche

Form hat der Higgs-Sektor. Um diese Fragen zu beantworten und um zukünftige experimen-

telle Daten vorherzusagen, werden verschiedene Ansätze betrachtet. Besonders interessant

sind Grand Unified Theories, wie SU(5) oder SO(10). GUTs sind vertikale Symmetrien,

da sie die SM-Teilchen in Multipletts vereinheitlichen und üblicherweise neue Elementar-

teilchen vorhersagen, die durch den Seesaw-Mechanismus, auf natürliche Weise die Klein-

heit der Neutrinomassen erklären. Darüberhinaus sind auch horizontale Symmetrien, d.h.

Flavor-Symmetrien, welche auf den Generationen-Raum der SM-Teilchen wirken, inter-

essant. Sie können die Quark- und Leptonen-Massenhierarchien, sowie die unterschiedlichen

Quark- und Leptonenmischungen, erklären. Ausserdem beeinflussen Flavor-Symmetrien

massgeblich den Higgs-Sektor und sagen bestimmte Formen von Massenmatrizen vorher.

Diese hohe Vorhersagekraft machen GUTs und Flavor-Symmetrien sowohl für Theoretiker,

als auch für Experimentalphysiker interessant. Solche Erweiterungen des SM können mit

weiteren Konzepten wie Supersymmetrie oder extra Dimensionen kombiniert werden. Hin-

zu kommt, dass sie für gewöhnlich Auswirkungen auf die beobachtete Materie-Antimaterie

Asymmetrie des Universums haben und einen dunkle Materie Kandidaten beinhalten kön-

nen. Im Allgemeinen sagen sie auch die seltene Leptonenzahl verletzenden Zerfälle µ→ eγ,

τ → µγ und τ → eγ vorher, die stark von Experimenten eingeschränkt sind, aber mögli-

cherweise in der Zukunft beobachtet werden.

In dieser Arbeit kombinieren wir all diese Zugänge, d.h. GUTs, den Seesaw-Mechanismus

und Flavor-Symmetrien. Drüber hinaus ist unser Anliegen einen systematischen Zugang

zum Modellbau zu entwickeln und durchzuführen, sowie die Suche nach phänomenologi-

schen Implikationen. Dies stellt eine neue Sichtweise im Modellbau dar, da es uns erlaubt

bestimmte Modelle durch ihre theoretischen und phänomenologischen Vorhersagen zu fil-

tern. D.h. wir können weitere Einschränkungen an Modelle fordern, um ein bestimmtes

auszuwählen. Die Ergebnisse unserer Herangehensweise sind zum Beispiel mannigfaltige

Leptonen-Flavor- und GUT-Modelle, ein systematischer Scan von Leptonenzahl verletzen-

den Prozessen, neue Massenmatrizen, eine neues Veständnis der Leptonenmischungswinkel,

eine Verallgemeinerung der Idee der Quark-Leptonen-Komplementarität θ12 ≈ π/4− ǫ/
√

2

und zum ersten Mal die QLC-Relation in einer SU(5) GUT.
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Chapter

1
Introduction

In the area of high energy physics, symmetries demonstrate to be the fundamental concept

to explain the behavior and properties of particles. This is consolidated in the Standard

Model of particle physics (SM) with its gauge group SU(3)C ×SU(2)L×U(1)Y . However,

some open questions remain such as: Why do we have three generations of particles with

such a strong mass hierarchy in the quark sector, why is the mixing in the quark and lepton

sectors so different, or what is the structure of the Higgs sector?

In order to address these open questions, different approaches are considered in litera-

ture as illustrated in Fig. 1.1. They lead to extensions of the SM such as supersymmetry

(SUSY), extra dimensions and Grand Unified Theories (GUTs). Nevertheless, the SM

Figure 1.1: Different roads to Grand Unification (taken from Ref. [1]).
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4 CHAPTER 1. INTRODUCTION

describes very well the world of known elementary particles. Only recently, solar [2], atmo-

spheric [3], reactor [4], and accelerator [5] neutrino oscillation experiments, have very well

established that neutrinos are massive. This astonishing result was the first clear evidence1

for physics beyond the SM, where neutrinos are predicted to be massless. Moreover, the

smallness of neutrino masses ∼ 10−2 . . . 10−1 eV can be naturally explained by GUTs [6–8]

via the seesaw mechanism [9–17]. Thereby, the absolute neutrino mass scale becomes

suppressed by the B-L breaking scale MB-L ≈ 1014 GeV which is close to the GUT scale

MGUT ≈ 2×1016 GeV [18–20]. This, on the other hand, means that the seesaw mechanism

connects high energy physics with low energy experiments.

However, these are not the only features making neutrinos unique and bringing them to

the focus of actual research. Current neutrino oscillation data shows that the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) lepton mixing matrix UPMNS [21,22] can be approximately

described by the Harrison-Perkins-Scott (HPS) tribimaximal mixing (TBM) matrix [23]

UPMNS ≈ UHPS =




√
2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2


 . (1.1)

In UHPS, the solar angle θ12 and the atmospheric angle θ23 are given by θ12 = arcsin(1/
√

3)

and θ23 = π/4, whereas the reactor angle θ13 vanishes. TBM in the lepton sector, might

be regarded as the limit of an underlying flavor symmetry. A flavor symmetry acts on the

particle generations and consequently, may be able to predict particle masses and mixings.

The actually observed low energy leptonic mixing angles in UPMNS may then be deviations

from TBM [24, 25] and called nearly tribimaximal lepton mixing [26]. These corrections

might stem for instance from higher-dimensional Higgs representations of the underlying

theory which generates tribimaximal mixing or by the fact that the theory does not exactly

reproduce the matrix of Eq. (1.1). In contrast, the Cabibbo-Kobayashi-Maskawa (CKM)

quark mixing matrix VCKM [27, 28] is nearly the unit matrix.

In the literature, many models with non-Abelian flavor symmetries have been proposed

in order to obtain TBM (e.g., for models based on D5 – the smallest group with two irre-

ducible two-dimensional representations – see [29,30], for early models on A4 – the simplest

group with a 3 dimensional representation – and examples using the double covering group

of A4, see Refs. [31–33] and [34–37]). However, these models generally have difficulties

1Meanwhile, the indirect observation of dark matter also confirmed the existence of physics beyond the
SM.
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to predict the observed fermion mass hierarchies, the CKM matrix, and have usually a

complicated scalar sector (for a discussion see Ref. [38]).

On the other hand, maybe the answer lies in the difference of quark and lepton mix-

ings. In GUTs, quarks and leptons are unified, i.e., they are accommodated in the same

multiplets, which was one of the reasons why small lepton mixings were expected in the

beginning. However, what if quarks and leptons do not act equal but complementary? This

connection between the quark and the lepton sector is implied by the idea of quark-lepton

complementarity (QLC) [39–41], which is motivated by the phenomenological observation

that the measured solar mixing angle satisfies the relation θ12 + θC ≈ π/4, where θC ≃ 0.2

is the Cabibbo angle.

We propose a generalization of QLC, called “extended quark-lepton complementarity”

(EQLC) and we systematically construct lepton mass matrices exhibiting nearly tribimaxi-

mal neutrino mixing and a small reactor angle θ13 ≈ 0. The neutrino masses become small

due to the type-I seesaw mechanism and large mixings can arise in the charged lepton

as well as in the neutrino sector, and in the neutrino sector from Dirac and Majorana

masses. The matrix elements of these textures2 are in the flavor basis expressed by powers

of ǫ, which serves as a single small expansion parameter of the matrices. This suggests a

model building interpretation of the textures in terms of flavor symmetries, e.g., via the

Froggatt-Nielsen mechanism (FN) [48].

We use direct products of cyclic groups to predict via the FN lepton flavor models that

provide an excellent fit to current neutrino data with a very small reactor angle. In addition,

the Higgs sector is very simple and no fine-tuning of vacuum expectation values (VEVs) is

necessary. We also include the quark sector within a SUSY SU(5) GUT scenario since this

is often a discriminator of viable models. Thereby, we present a geometrical interpretation

of flavor symmetries in an extra dimensional setup and extend the flavor symmetries to

non-Abelian ones.

This broad class of non-trivial lepton mass matrix textures are in perfect agreement

with neutrino data and we may wonder if there is a possibility to differentiate between

them experimentally. Therefore, we survey the lepton flavor violation (LFV) decay rates

Br(µ → eγ), Br(τ → µγ), and Br(τ → eγ) for the LHC relevant scenario SPS1a’ in

minimal supergravity at the Lagrangian level. Moreover, we study the branching ratios for

the most general CP violating forms of the textures.

This work is structured as follows: In Chap. 2 we give a brief overview of the experimen-

2A texture is a mass matrix with hierarchical entries [42–47].
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tal status and present some theoretical approaches aiming to explain the phenomenology.

Since flavor symmetries are promising candidates, we introduce them in Chap. 3. An exem-

plary lepton flavor model is discussed in Chap. 4, where also the notation used throughout

this thesis is introduced. Motivated by this model, we present in Chap. 5 our hypothesis

of extended quark-lepton complementarity and generate, based on it, systematically the

largest available list of viable CP conserving lepton mass matrices. For these textures we

develop in Chap. 6 a method to predict them by flavor symmetries and perform a sys-

tematic group space scan. A generalization to CP violating textures and a possible model

differentiation by lepton flavor violating rare decays will be analyzed in Chap. 7. The flavor

models will in Chap. 8 be extended to SUSY SU(5) GUTs and a geometrical interpretation

of the flavor symmetries in 5D will be given. In Chap. 9, we summarize and give a short

outlook.



Chapter

2
Status Quo – Experiments and

Theories

Experiments provide us with profound knowledge about elementary particles. Recently,

it has been discovered that neutrinos which are predicted to be massless in the SM, are

massive. The consequence is lepton mixing. However, the quark and lepton sectors are

quiet different and various theoretical approaches address these and further questions,

e.g., theories using texture zeros, flavor symmetries, SUSY, GUTs, or extra dimensions.

In this chapter, we give a brief overview of the experimental status and some theoretical

approaches.

2.1 Phenomenological Status

Lepton Sector

One of the most striking properties of elementary particles is their mass. However, the

origin of mass in the SM is supposed to be the Higgs mechanism predicting a Higgs boson

which is, so far, unobserved. Through spontaneous symmetry breaking of the Higgs field,

the elementary particles would acquire mass. The masses of the charged leptons at the

7
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mass scale µ = MZ , are very precisely known [49]

me = 0.48684727 ± 0.00000014 MeV ,

mµ = 102.75138 ± 0.00033 MeV ,

mτ = 1746.69+0.30
−0.27 MeV .

(2.1)

For neutrinos we measure only the mass-squared differences

∆m2
21 = (7.9 ± 0.3) · 10−5 eV2 ,

∣∣∆m2
31

∣∣ = (2.5+0.2
−0.25) · 10−3 eV2 , (2.2)

where ∆m2
ij = m2

i −m2
j . However, we do not know the absolute mass scale. This can be

written as

∆m2
⊙ : ∆m2

atm ∼ ǫ2 , (2.3)

where ǫ ≃ 0.2. Two scenarios are compatible with these data: The so-called normal

ordering (NO) and the inverted ordering (IO). There is the possibility that the lightest

neutrino is massless. In this limit, i.e., m1 = 0 for NO and m3 = 0 for IO these two

scenarios will be called normal (NH) and inverted hierarchy (IH).1 This is illustrated in

Fig. 2.1 (without LSND data [50]). If the neutrino masses are much larger than their

"Normal" "Inverted"

m2

3
∆m2

12

m2

2

m2

1

∆m2

23
< 0

νe νµ ντ

∆m2

23

m2

2

m2

1

m2

3

∆m2

23
> 0

∆m2

23

∆m2

12

Figure 2.1: Possible neutrino mass orderings.

mass squared difference ∆m2, they are called quasi-degenerate. By using Eq. (2.3) this

translates into

m1 : m2 : m3 = ǫ2 : ǫ : 1, m1 : m2 : m3 = 1 : 1 : ǫ, m1 : m2 : m3 = 1 : 1 : 1 . (2.4)

1Note, in literature, NH and IH is often used instead of NO and IO.
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The mixing of lepton mass and flavor eigenstates is described by the Pontecorvo-Maki-

Nakagawa-Sakata matrix

UPMNS =




1 0 0

0 c23 s23

0 −s23 c23




︸ ︷︷ ︸
atmospheric angle




c13 0 s13 e
−iδ

0 1 0

−s13 eiδ 0 c13




︸ ︷︷ ︸
reactor angle and Dirac CP phase




c12 s12 0

−s12 c12 0

0 0 1




︸ ︷︷ ︸
solar angle

diag(eiφ1 , eiφ2 , 1)︸ ︷︷ ︸
Majorana phases

=




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13




diag(eiφ1 , eiφ2 , 1) ,

(2.5)

where cij = cos θij, sij = sin θij, δ is the Dirac CP violation phase, φ1 and φ2 are two

possible Majorana CP violation phases with θij ∈ [0, π2 ], and δ, φ1, φ2 ∈ [0, π]. The values

of the currently known mixing parameters are at 3σ (see Ref. [51] for a global fit)

sin2 θ12 = 0.24 . . . 0.40 , |Ue3|2 = |s13e−iδ|2 ≤ 0.041 , sin2 θ23 = 0.34 . . . 0.68 . (2.6)

The Majorana phases are, up to now, unconstrained and are vanishing if neutrinos are not

their own anti-particles.

Quark Sector

The quark masses at the mass scale µ = MZ [52] are

mu = 1.7 ± 0.4 MeV, mc = 0.62 ± 0.03 GeV, mt = 171± 3 GeV,

md = 3 ± 0.6 MeV, ms = 54 ± 8 MeV, mb = 2.87 ± 0.03 GeV.
(2.7)

Equivalently, in the lepton sector, we have mixings between mass and flavor eigenstates in

the quark sector, described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix, where we

use the same parameterization as for the PMNS matrix in Eq. (2.5) but without Majorana

phases. The experimentally determined limits are

|VCKM| =




0.97360 . . . 0.97407 0.2262 . . . 0.2282 0.00387 . . . 0.00405

0.2261 . . . 0.2281 0.97272 . . . 0.97320 0.04141 . . . 0.04231

0.00750 . . . 0.00864 0.004083 . . . 0.04173 0.999996 . . . 0.999134


 , (2.8)
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this can be expressed in the Wolfenstein parameterization as

VCKM =




1 − 1
2ǫ

2 ǫ A(ρ− iη)ǫ3

−ǫ 1 − 1
2ǫ

2 Aǫ2

A(1 − ρ− iη)ǫ3 −Aǫ2 1


 , (2.9)

where ǫ is of the order the Cabibbo angle θC ≃ 0.2, and A, ρ, and η, are order one

parameters (for an update see Ref. [53]). This corresponds to the following three angles

and Dirac CP phase

s12 = 0.2243 ± 0.0016 ,

s23 = 0.0413 ± 0.0015 ,

s13 = 0.0037 ± 0.0005 ,

δ = 60 ◦ ± 14 ◦ ,

(2.10)

where θ12 is the so-called Cabibbo angle. These mixing angles are very small compared to

the leptonic mixings of Eq. (2.6), where two large mixing angles are present. To find an

explanation for this different behavior of quarks and leptons is one of the major challenges

theories have to accomplish.

2.2 Theoretical Approaches

In this section, we want to discuss some theoretical approaches trying to explain or re-

produce the lepton and quark masses as well as their mixings. This can be achieved by

various approaches. One ansatz are so-called texture zeros. Thereby, zero entries in the

mass matrices are assumed in order to reduce the number of free parameter and to en-

hance the predictivity of a texture. In addition, often a certain flavor basis is assumed

such as a diagonal charged lepton mass matrix and a diagonal Majorana neutrino mass

matrix which is a priori not motivated, for example, by a flavor symmetry. This, of course,

neglects a possible origin of mixings stemming from these sectors. A change of the basis

or the running of masses from high-scale to low-scale will usually not preserve these tex-

ture zeros. Nevertheless, such theories are extensively studied and some can even correlate

quark masses and their mixings [54–59] as

∣∣∣∣
Vub
Vcb

∣∣∣∣ =

√
mu

mc
and

∣∣∣∣
Vtd
Vts

∣∣∣∣ =

√
md

ms
. (2.11)
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This arbitrariness disappears as soon as a certain flavor basis is preferred such as in models

with flavor symmetries. One possibility are FN models (see Chap. 4) which have usually

a simple scalar sector than other flavor models. Such appealing approaches using flavor

symmetries will be discussed in more detail in the next chapters.

A further way to engross the thoughts is given by grand unification. Thereby, the

SM particles will be accommodated in multiplets of GUT gauge groups, thus having the

same properties under the GUT and flavor group. A prominent example is SU(5), where

all the SM fermion are accommodated in the multiplets 10, 5̄, usually supplemented by

a neutrino singlet. Another frequently discussed GUT is SO(10), where all particles are

accommodated in the 16-dimensional representation. The attractiveness of GUTs lies in

their restrictiveness, i.e., in their predictivity on particles and their properties. In SU(5),

for example, the Higgs representation 45 can explain the GUT relations [60]

mb = mτ , mµ = 3ms , and md = 3me . (2.12)

Moreover, the smallness of neutrino masses ∼ 10−2 . . . 10−1 eV can be naturally explained

by GUTs [6–8] via the seesaw mechanism [9–17]. In the type-I seesaw, the absolute neutrino

mass scale becomes suppressed by the mass scale of heavy SM singlets being at the B-L

breaking scale MB-L ≈ 1014 GeV which is close to the GUT scale MGUT ≈ 2 × 1016 GeV

[18–20]. These SM singlets, i.e., right-handed neutrinos, are predicted by most GUTs. The

type-I seesaw mechanism explains therefore not only the smallness of neutrino mass but

connects also high energy physics with low energy experiments. There also exist a type-II

and meanwhile also a type-III seesaw. These emerge by adding scalar SU(2)L triplets and

fermion triplets, respectively. GUTs have even a further benefit: gauge coupling unification.

However, a theory such as SUSY, which might be combined with a GUT, is also able to

produce gauge coupling unification and it has even further advantages, e.g., SUSY provides

a dark matter candidate. In the era of the large hadron collider (LHC), SUSY is a widely

discussed theory since it would be in the discovery range.

However, also more exotic extensions of the SM are possible, such as models with

spatial extra dimension. In such models the localization or the propagation profile of the

matter fields can explain the mass hierarchy among elementary particles and they can also

provide a dark matter candidate.
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2.3 Summary

The experimental effort has provided profound knowledge about the world of elementary

particles: quark and charged lepton masses as well as quark mixings are measured very

accurately. Recently, it has also been discovered that neutrinos are massive, and conse-

quently, that leptons can mix. Indeed, their mixings are even large unlike in the quark

sector. However, the absolute mass scale of the neutrinos remains unknown, as well as why

the quark and lepton sectors are so different.

Some theoretical approaches address these and further questions. One possibility is to

assumes texture zeros in mass matrices which are usually not stable and demanding for

justification. This can be done by flavor symmetries which are not only able to predict

hierarchies among matrix elements but also are able to relate them. This enables flavor

symmetries to predict particle masses and mixings.

The advantages of flavor symmetries can also be combined with the benefits of other

theories such as SUSY, GUTs and extra dimensions. Most GUTs for example, suggest

the type-I seesaw mechanism which naturally explains the smallness of neutrino mass

and connects also high energy physics with low energy experiments. This makes flavor

symmetries a powerful and flexible tool in model building.
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3
Flavor Symmetries

A flavor-, family-, generation- or horizontal-symmetry Gf is a symmetry which acts in

generation space and is usually broken at high energies. It commutes usually with the

gauge groups and therefore, the transformation properties of fermions under Gf are equal

under the gauge groups. Gauge bosons transform only trivial under Gf and a flavor

symmetry can therefore be assumed in addition to a GUT1, e.g., SU(5) × S(3). The

maximal possible flavor symmetry which is compatible with the SM gauge group, is U(3)5

and for the SM with right-handed neutrinos, it is U(3)6. Since gauge interactions are

flavor-blind, all particles are invariant under a flavor symmetry U(3). This invariance can

be interpreted as a permutation symmetry among the three SM families, i.e., invariance

under a S3 symmetry. First papers considering permutation symmetries are [61–68] or for

a review [42]. Extensions of the SM are more restrictive on flavor groups. In SO(10) GUTs,

for example, all particles are accommodated in a 16-dimensional representation, and hence

the maximal flavor symmetry is U(3).

In the SM, left- and right-handed particles as well as quark and lepton generations can

transform differently under Gf or in the same way, and can form a reducible or irreducible

representation. From the point of view of GUTs it would be desirable that all generations

are unified in one three dimensional representation. However, the top quark transforming

as a singlet under Gf and the doublet containing the up- and charm-quark can serve as

1Note, for theories which should be valid up to the Planck scale, the origin of the flavor symmetry
is assumed to be a continuous gauge symmetry, in order to avoid breaking by gravitational quantum
corrections.

13
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an explanation for the heavy top-quark mass. In SUSY models the partial unification of

the first two generations is used to suppress flavor changing neutral currents (FCNC) in

the sfermion sector of these generations. For a solution to the SUSY flavor problem by a

flavor symmetry see for example [69].

3.1 A Primer to Flavor Symmetries

In general, before we can think about the accommodation of particles we have to choose

a flavor symmetry. However, a flavor symmetry can be continuous or discrete, Abelian or

non-Abelian, global or local and can be broken in different ways. Therefore, we briefly

discuss these possibilities [70].

Continuous or Discrete Flavor Symmetries?

Flavor symmetries can be continuous such as the gauge groups in the SM or discrete such

as crystal symmetries. The advantage of a discrete flavor symmetry is that it has a finite

number of representations which dimensions are usually smaller than four. The reason is

that we expect to unify just three generations. In addition, no further Goldstone bosons

or gauge bosons arise contrary to continuous symmetries. So our choice here drops to

a discrete symmetry. However, the origin of the discrete flavor symmetry is assumed to

be a continuous gauge symmetry, in order to avoid breaking by gravitational quantum

corrections.

Abelian or non-Abelian Flavor Symmetries?

An advantage of discrete non-Abelian flavor symmetries is that most of them have several

two or three dimensional representations, what gives us more freedom for the particle

assignment and consequently to predict or fit experimental data, respectively. However,

Abelian flavor symmetries have generally the merit that they need only a very simple scalar

sector to achieve the necessary flavor symmetry breaking.

Local or Global Flavor Symmetries?

The question whether a flavor symmetry should be local or global is equivalent to the one

whether we should gauge Gf or not. In order to gauge a flavor symmetry we assume at a

high scale, such as the GUT scale, an anomaly-free continuous group which will be broken

spontaneously to our residual discrete flavor group. This continuous group can be gauged
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in the conventional way. The drawback might be that heavy particles have to be introduced

to cancel possible anomalies stemming from the known particles and their representations

respectively. For more details on gauged discrete symmetries see an example model based

on the double tetrahedral flavor symmetry T ′ in Ref. [35].

Breaking a Flavor Symmetry

In principle, a flavor symmetry can be broken spontaneously or explicitly. Spontaneous

symmetry breaking (SSB) is based on the existence of at least one Higgs boson transforming

non-trivially under Gf and acquiring a vacuum expectation value. Models using this

mechanism are usually multi-Higgs models and therefore plagued by associated problems

such as flavor changing neutral currents (FCNCs) and LFV. Both, FCNCs and LFV,

are strongly bounded by experiments, and after SSB, the Higgs potential obey often an

accidental symmetry which yields additional Goldstone bosons, which is in conflict with

experiments.

3.2 Discrete Flavor Symmetries

General Remarks on Discrete Groups

One of the main fields in which discrete groups are used is solid state physics. There, crys-

tallographic point groups describe symmetries of crystals, and in chemistry they describe

the symmetries of atoms and molecules. A point group is a symmetry group which leaves

at least one point unmoved. The requirement in crystallography, that this symmetry is

present on a lattice requires that only 1, 2, 3, 4, and 6-fold symmetry axes are possible. This

restriction is the explanation for the existence of just 32 crystallographic point groups. In

general, a discrete group is a group with a discrete topology. In practice, discrete groups

often arise as discrete subgroups of continuous Lie groups acting on a geometric space.

But they also appear naturally as symmetries of discrete structures (e.g., graphs, tilings,

lattices), fundamental groups of topological spaces and so on. In the following sections

we want to introduce some of the discrete groups which have already been used as flavor

symmetries as well as in other contexts.
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Example for Groups

Alternating Groups An

The alternating group An contains all even permutations of n elements, where even means

that the number of performed permutation is even.2 As an example we show an element

of A4, which is constructed through two permutation:




 1234

1234


 1→3−−−→


 1234

3214


 2→3−−−→





 1234

2314


 . (3.1)

Its group order, i.e., the number of group elements, is n!
2 . Therefore, it is a subgroup of

the symmetric group Sn.

Tetrahedral Group Td

The tetrahedral group Td is the symmetry group of the tetrahedron supplemented with

the inversion operation and has order 24. It is isomorphic to the group A4 × Z2 and is

therefore one of the 12 non-Abelian groups of order 24. The pure rotational subgroup of

Td is denoted as T , which is isomorphic to A4 and has order 12.

Cyclic Groups Zn

A cyclic group is denoted as Zn or Cn. It is generated by a single group generator and is

Abelian. The generator A satisfies the relation

An = 1 , (3.2)

where 1 is the identity. If we take the example


 12345678

23154768


 . (3.3a)

we see that 1 → 2, 2 → 3 and 3 goes again into 1, so they are forming a “cycle”. If we now

write this as (123) ≡ “(1 → 2 → 3 → 1)′′, we can rewrite Eq. (3.3a) as

(123)(45)(67)(8) . (3.3b)

2Since the product of two even (or odd) permutations is even, as well as the product of an even and an
odd one, the odd permutation of degree n cannot form a group.
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It consists of four cycles, whereas the cycle (8) is trivial because it only contains the

element 8. For every order n ≥ 2 exists a unique cyclic group. Therefore, cyclic groups

of the same order are always isomorphic. Furthermore, subgroups of cyclic groups and all

groups of prime order are again cyclic. The cyclic groups of order one or a prime are the

only simple Abelian groups. Every Abelian group can be written as a direct product of

cyclic subgroups, by computing the characteristic factors. In fact, based on this, we will

make use of the factorization of flavor symmetries in semi-direct products (⋉) of cyclic

groups (if applicable) such as

A4 ∼ Z3 ⋉ (Z2 × Z2) ,

T ′ ∼ Z2 ⋉Q ,

∆(3n2) ∼ Z3 ⋉ (Zn × Zn) ,

(3.4)

where Q is the quaternion group. An explicit example often considered in literature is

the µ-τ symmetry, i.e., the exchange symmetry of the 2nd and 3rd lepton generation and

assuming a diagonal charged lepton mass matrix. For the neutrinos we introduce the µ-τ

symmetric mass matrix form

Mν =




A B B

B C D

B D C


 , (3.5)

where A − D are primarily used to fit the observed masses. This is due to the fact that

diagonalization of Mν leads, independently of A −D, to a maximal θ23 and a vanashing

θ13 mixing angle of the PMNS matrix in agreement with experiments.

Double Groups

The double groups descend from the point groups by adding the operation R which has

the matrix representation ±1n×n for a n dimensional representation. Their elements are

called single-valued if the matrix representation of R is +1n×n otherwise double-valued.

The order of the double group is twice the one of the originale group and the groups are

denoted with a ’, e.g., the double group of Tn is T ′
n. Since the single-valued representations

are the same as for the single groups, the double-valued representations are new. For

Abelian single groups the corresponding double group can, but do not have to be, non-

Abelian. For the cyclic groups Zn the double groups are isomorphic to Z2n and thus they

are Abelian.
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3.3 Summary

Flavor symmetries Gf commute usually with the gauge groups, e.g., SU(5) × S(3) and

gauge bosons transform only trivially under Gf . Gauge interactions are flavor-blind what

translates into an invariance of a U(3) symmetry. In the SM, the maximal possible flavor

symmetry is U(3)5 and U(3)6 with right-handed neutrinos, respectively.

Abelian flavor symmetries have generally the merit that they need only a simple scalar

sector. However, as the origin of a discrete flavor symmetry, an anomaly-free continuous

gauge symmetry shall be assumed, which is broken spontaneously to the residual discrete

group. This avoids breaking by gravitational quantum corrections. The drawback can be

that heavy particles might have to be introduced to cancel possible anomalies stemming

from the known particles. Flavor models with SSB are usually multi-Higgs models and

therefore often show problems associated with FCNCs, LFV, and/or Goldstone bosons.

Every Abelian group can be written as a direct product of cyclic subgroups.

A4 ∼ Z3 ⋉ (Z2 × Z2) ,

T ′ ∼ Z2 ⋉Q ,

∆(3n2) ∼ Z3 ⋉ (Zn × Zn) .

Therefore, we can use isomorphisms among groups to express some discrete groups as

semi-direct products of cyclic groups.
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4
Flavored Models

In this chapter, we present the notation and flavor model setup we will use throughout this

thesis. For this we introduce the Froggatt-Nielsen mechanism leading to a simple scalar

sector and a single expansion parameter ǫ ≃ 0.2 which is of the order the Cabibbo angle.

For illustration, we present a Z5 × Z9 lepton flavor model and new sum rules.

4.1 Froggatt-Nielsen Mechanism

The idea that Higgs fields break a gauge symmetry such that quark and lepton masses

arise from higher-dimensional terms was proposed by Froggatt and Nielsen [48] and is

illustrated in Fig. 4.1. The left- and right-handed SM fermions ψL and ψR obtain masses

ψL ψR

bc+ + + + +

Figure 4.1: Froggatt-Nielsen mechanism generating effective SM fermion (ψL and ψR) masses
which are suppressed by a factor ǫn = (v/MF )n. Thereby, v is a universal flavon
VEV (crosses), MF the universal mass of superheavy fermions (solid lines), and the
SM Higgs VEV is denoted by a encircled cross.

via couplings to the SM Higgs and in addition to superheavy fermions with universal mass

MF transforming non-trivially under Gf , and charged SM singlet scalars breaking Gf by

19
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acquiring a universal VEV. This leads to effective SM fermion masses that are suppressed

by a factor ǫn = (v/MF )n, where n is determined by the flavor quantum numbers of ψL

and ψR. A model based on this mechanism will be presented and discussed in more detail

in the next section.

4.2 A Z5 × Z9 Lepton Flavor Model

In this section we present the notation which we will use throughout the following chapters

as well as a lepton flavor model based on Gf = Z5 × Z9. This particular group turns out

to be very fruitful for constructing lepton flavor models (cf., Fig. 6.1). All model building

tools used in this section will furthermore be important for the following chapters.

4.2.1 Notation and Model Outline

This model is based on the FN mechanism, i.e., the flavons have charge ±1 and the effective

mass terms are suppressed by a power n of the factor ǫ = (v/MF ) which is assumed to

be of the order the Cabibbo angle, i.e., ǫ ≃ 0.2. The power n of the suppression is solely

determined by the fermion quantum numbers.

We will use ǫ as a single expansion parameter. Therefore, we parameterize and express

also the fermion mass ratios and mixings by ǫ. Even though we present here a lepton

flavor model, we will give the equivalent relations for quarks since we will use them later

on in Chap. 8. Barring numerical factors, the fermion mass ratios we are using for charged

leptons1, effective neutrinos, up-type quarks and down-type quarks are

me : mµ : mτ = ǫ4 : ǫ2 : 1 ,

m1 : m2 : m3 = ǫ2 : ǫ : 1 ,

mu : mc : mt = ǫ6 : ǫ4 : 1 ,

md : ms : mb = ǫ4 : ǫ2 : 1 .

(4.1)

Note, these mass ratios have all to be understood as order of magnitude relations and

depend on the energy scale. In addition, we propose to write the mass eigenvalues of MD

and MR also as powers of ǫ. They read

mD
1 : mD

2 : mD
3 = ǫa : ǫb : ǫc and mR

1 : mR
2 : mR

3 = ǫa
′

: ǫb
′

: ǫc
′

, (4.2)

1The particular choice for the charged lepton mass ratios is motivated by an SU(5) GUT compatibility,
where Me = MT

d . However, a modification, e.g., the implementation of the Georgi-Jarlskog relation
mµ : mτ = 3ms : mb would not change any of our results for the textures.
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where a, b, c, a′, b′, and c′, are suitable non-negative integers, and we define the absolute

mass scales by mD
3 = mDǫ

c and mR
3 = MB−Lǫ

c′ . In addition, we use our freedom to order

the masses of MR strictly hierarchical and choose a′ ≤ b′ ≤ c′ (alternatively we could order

MD). For completeness, we want to parameterize here also the TBM form of the PMNS

matrix and the CKM mixings in terms of maximal mixing and powers of ǫ.2 Then, the

lepton mixing angles read

θ12 = π
4 − ǫ , θ13 = 0 , θ23 = π

4 , (4.3)

and the CKM mixings for quarks are

Vus = ǫ , Vcb = ǫ2 , Vub = ǫ3 . (4.4)

The relation for the leptonic mixing angle θ12 is called quark-lepton-complementarity

(QLC) since it relates quarks and leptons. We will discuss and extend this relation in

Sec. 5.1.1.

The lepton Yukawa couplings and mass terms implementing the type-I seesaw mecha-

nism read

LY = −(Yℓ)ijH
∗ℓie

c
j − (YD)ij iσ

2Hℓiν
c
j −

1

2
(MR)ijν

c
i ν
c
j + H.c., (4.5)

where ℓi, e
c
i , and νci , are the left-handed leptons, the right-handed charged leptons, and the

right-handed neutrinos, and i = 1, 2, 3 is the generation index. H is the SM Higgs doublet,

Yℓ and YD are the Dirac Yukawa coupling matrices of the charged leptons and neutrinos,

and MR is the Majorana mass matrix of the right-handed neutrinos with entries of the

order the B −L breaking scale MB−L ∼ 1014 GeV. After electroweak symmetry breaking,

H develops a vacuum expectation value 〈H〉 ∼ 102 GeV, and the mass terms of the leptons

become

Lmass = −(Mℓ)ijeie
c
j − (MD)ijνiν

c
j −

1

2
(MR)ijν

c
i ν
c
j + H.c., (4.6)

where Mℓ = 〈H〉Yℓ is the charged lepton and MD = 〈H〉YD ∼ 102 GeV the Dirac neutrino

mass matrix. After integrating out the right-handed neutrinos, the seesaw mechanism

leads to an effective Majorana neutrino mass matrix

Meff = −MDM
−1
R MT

D , (4.7)

2However note that our Z5 × Z9 lepton model actually predicts explicit PMNS mixing angles.
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with entries of the order 10−2 eV in good agreement with observation.

The leptonic Dirac mass matrices Mℓ and MD, and the Majorana mass matrices MR

and Meff can be diagonalized by

Mℓ = UℓM
diag
ℓ U †

ℓ′ , Meff = UνM
diag
eff UTν ,

MD = UDM
diag
D U †

D′ , MR = URM
diag
R UTR ,

(4.8)

where Uℓ, Uℓ′ , UD, UD′ , UR, and Uν , are unitary mixing matrices, whereas Mdiag
ℓ , Mdiag

D ,

Mdiag
R , and Mdiag

eff are diagonal mass matrices with positive entries. The mass eigenval-

ues of the charged leptons and neutrinos are given by Mdiag
ℓ = diag(me,mµ,mτ ) and

Mdiag
eff = diag(m1,m2,m3).

A unitary mixing matrix Ux can always be written as a product of the form

Ux = DxÛxKx, (4.9)

where Ûx is a CKM-like matrix parameterized according to Eq. (2.5). Here, we follow

the conventions and definitions given in Ref. [71]. Dx = diag(eiϕ
x
1 , eiϕ

x
2 , eiϕ

x
3 ) and Kx =

diag(eiα
x
1 , eiα

x
2 , 1) are diagonal phase matrices, where the index x ∈ {ℓ, ℓ′,D,D′, R, ν}. The

phases in Dx and Kx are all in the range [0, π]. The PMNS matrix, by taking rephasing

invariance into account, can be written as

UPMNS = U †
ℓUν = ÛPMNSKMaj, (4.10)

where KMaj = diag(eiφ1, eiφ2, 1) contains the Majorana phases φ1 and φ2, and Uℓ and Uν

are in general of the form of Eq. (4.9). The effective neutrino mass matrix of Eq. (4.7) is

therefore

M th
eff = −DDÛDK̃M

diag
D Û †

D′D̃Û
∗
R(K∗

R)2(Mdiag
R )−1Û †

RD̃Û
∗
D′M

diag
D K̃ÛTDDD , (4.11)

where we have merged K̃ = K∗
DKD′ and D̃ = D∗

D′D∗
R.3 Note, we have introduced an

extra superscript “th” for “theoretical”, since none of the mass and mixing parameters on

the right-hand side of Eq. (4.11) are directly measurable in neutrino oscillations. There-

fore, we introduce also M exp
eff , which involves the matrices Mdiag

eff and UPMNS containing

the experimentally accessible mass and mixing parameters. For this purpose, we insert

3In the CP conserving case, the matrix (K∗
R)2 drops out of the expression for Meff in Eq. (4.11).
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Eq. (4.10) in the expression for Meff in Eq. (4.8) and obtain

M exp
eff = DℓÛℓKℓÛPMNSK

2
MajM

diag
eff ÛTPMNSKℓÛ

T
ℓ Dℓ . (4.12)

Note that (KMaj)
2 drops out in the CP conserving case, and that M th

eff ≃ M exp
eff ≃ Meff,

since M th
eff and M exp

eff are just different parameterizations of Meff.

4.2.2 Lepton Masses and Mixings

In our model, we assume the following flavor charges4 for the right-handed leptons eci , for

the left-handed lepton doublets ℓi, and for the right-handed neutrinos νci ,

ec1, e
c
2, e

c
3 ∼ (3, 8), (4, 3), (0, 3) ,

ℓ1, ℓ2, ℓ3 ∼ (0, 4), (3, 7), (4, 6) ,

νc1, ν
c
2, ν

c
3 ∼ (0, 8), (2, 4), (1, 0) .

(4.13)

Here, the first entry in each bracket refers to the quantum number associated with Z5 and

the second one to Z9, respectively. This simple setup already determines the mass matrix

textures for the leptons and exhibits a very simple scalar sector. Up to an undetermined

overall mass scale, the resulting mass matrix textures are

Mℓ ∼ ǫ




ǫ4 ǫ2 ǫ

ǫ3 ǫ2 ǫ2

ǫ5 ǫ 1


 , MD ∼ ǫ2




ǫ ǫ ǫ3

ǫ3 1 ǫ

ǫ3 1 ǫ


 , MR ∼ ǫ2




1 ǫ3 1

ǫ3 1 ǫ4

1 ǫ4 1


 . (4.14)

These mass matrix textures predict the relative order of magnitude of each matrix element.

However, order one couplings are undetermined and have to be fitted. Supplemented with

4Remember that this is equivalent to an embedding into representations of flavor symmetries.
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these Yukawa couplings and using ǫ = 0.2 we find

Mℓ ∼




−0.00153685 0.0397748 0.194647

0.00795287 0.0461743 0.0306293

−6.5 × 10−6 0.192955 0.960086


 ,

MD ∼




−0.201901 −0.134642 0.00729065

−0.00108898 −0.782587 0.173945

0.00159886 −0.603486 −0.118982


 ,

MR ∼




0.6 0 −0.4

0 1 0

−0.4 0 0.6


 .

(4.15)

Note, in Chap. 6, we explain the origin and values of order one couplings (the model is

#5 of Table 6.1). Here, we have neglected the overall ǫ suppression factor for each matrix.

However, for a better comparison, we have not normalized the textures to the maximal

absolute value of each matrix. In Eq. (4.15), we have used only Yukawa couplings which

are naturally of order one, i.e., they are in the range of ǫ and 1/ǫ, in order not to blur the

texture entry predicted by the model. Diagonalization of the mass matrices of Eq. (4.15)

leads, besides the lepton mass ratios of Eq. (4.1) to the following Dirac and Majorana

masses

Mdiag
D ∼ diag(ǫ, 1, ǫ) and Mdiag

R ∼ diag(ǫ, 1, 1) , (4.16)

and mixings (mixing angles and phases are given according to the notation of Sec. 4.2.1)

(θℓ12, θ
ℓ
13, θ

ℓ
23, δ

ℓ, αℓ1, α
ℓ
2) ∼ (0, ǫ, ǫ2, 0, π, 0) ,

(θℓ
′

12, θ
ℓ′
13, θ

ℓ′
23, δ

ℓ′ , αℓ
′

1 , α
ℓ′
2 ) ∼ (ǫ, 0, ǫ, 0, 0, 0) ,

(θD12, θ
D
13, θ

D
23, δ

D, ϕD1 , ϕ
D
2 , ϕ

D
3 ) ∼ (ǫ, π4 ,

π
4 , π, 0, 0, π) ,

(θD
′

12 , θ
D′

13 , θ
D′

23 , δ
D′
, αD

′

1 , αD
′

2 ) ∼ (ǫ2, π4 , ǫ
2, 0, π, π) ,

(θR12, θ
R
13, θ

R
23, δ

R, ϕR1 , ϕ
R
2 , ϕ

R
3 ) ∼ (0, π4 , 0, 0, 0, 0, π) .

(4.17)

This means that we have large mixings only in the neutrino sector. However, in the neutrino

sector we have maximal mixings in both sectors, in the Dirac as well as in the Majorana

sector, and nontrivial charged lepton mixing. The fact that all mixing angles of Uℓ, UD,

UD′ , and UR, are powers of ǫ and π/4 looks somehow like a “miracle”, but is, in fact, an

outcome of our approach which we will introduce in Chap. 5. This method provides also
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the Yukawa couplings used in Eq. (4.15).

4.2.3 New Sum Rules

So far, we have not discussed the PMNS mixings of our model. An expansion in ǫ up to

O(ǫ3) for UPMNS leads to the following new sum rules

θ12 = π
4 − ǫ√

2
− ǫ2

4 , θ13 = O(ǫ3) , θ23 = π
4 + ǫ√

2
− 3

4ǫ
2 . (4.18)

Note that the predicted mixing angels deviate from exact TBM shown in Eq. (4.3) as well

as from QLC. This nearly tribimaximal mixing makes the model testable in future neutrino

oscillation experiments. Especially, the deviation from maximal atmospheric mixing can

be established at the 3σ confidence level (CL) by the T2K and NOνA experiments [72]

and the sign of the deviation from maximal mixing (the octant) with a neutrino factory at

the 3σ CL for sin22θ13 & 10−2.5 or at 90% CL otherwise [73].

However, the sum rules of Eq. (4.18) could, in principle, be the result of an accidental

fine-tuning of Yukawa couplings. Therefore, we have varied the order one couplings of Mℓ,

MD, and MR independently within 1% range. The results for the lepton mixings are shown

in Fig. 4.2. There we can see that a 1% variation of Yukawa couplings results in a 1%
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Figure 4.2: Effect of a 1% variation of Yukawa couplings in all mass matrices on the PMNS mixing
angles.

variation of the mixing angles. This is expected when no fine-tuning is present. We can

also see the limit of 45◦ for θ12 and θ23 in the case of vanishing ǫ, as well as the exponential

behavior of degree three of θ13, which is thus not due to an accidental cancellation of large

mixings (for an anlytical discussion of sum rules from textures, see [74]).
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4.3 Summary

In this chapter, we have presented our setup for model building with flavor symmetries.

The neutrino masses become small due to the type-I seesaw mechanism and we achieve a

simple scalar sector via the Froggatt-Nielsen mechanism. Thereby, we are using a single

expansion parameter ǫ ≃ θC ≃ 0.2, which is of the order the Cabibbo angle.

This was done for a lepton flavor model based on the flavor symmetry Z5 × Z9. On

this basis, we have introduced our notation and setup which we will use throughout the

following chapters. In addition, we have discussed aspects such as new sum rules predicted

by our model. These sum rules make the model testable in future experiments such as

T2K, NOνA, and neutrino factories.



Chapter

5
Textures – A Bottom-Up Approach

In this chapter, we introduce our hypothesis of extended quark-lepton complementarity.

Based on it, we generate the largest list of type-I seesaw realizations and textures available

in literature [75–77].1 We show that special cases often considered, such as having a

symmetric Dirac mass matrix or small mixing among charged leptons, constitute only a

tiny fraction of our possibilities. An exemplary list of 72 realizations with corresponding

textures is shown. This list represents a broad class of CP conserving realizations in

the sense that large mixings can arise in the charged lepton and the neutrino sector.

Moreover, in the neutrino sector maximal mixing can occur in the Dirac or in the Majorana

sectors. The mass spectrum of MD and MR can be hierarchical or semi-hierarchical. All of

these mass matrices lead to nearly tribimaximal mixing, i.e., to a very small reactor angle

θ13 . 1◦ and a deviation from the atmospheric mixing angle testable in future experiments.

5.1 Textures with Extended Quark-Lepton Complementarity

5.1.1 Extended Quark-Lepton Complementarity

In Sec. 4.2.1, we already became acquainted with the quark-lepton complementarity

θ12 ≈ π

4
− ǫ , θ23 + θcb ≈

π

4
. (5.1)

1We discuss IH and DG neutrinos in Ref. [75]. In Ref. [71], we covered realizations and textures based
on Majorana neutrinos and the type-II seesaw, respectively.
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QLC can serve as explanation for the deviation of θ12 from maximal mixing and has been

studied from many different points of view: as a correction to bimaximal mixing [78–

80], together with sum rules [81, 82], with stress on phenomenological aspects [83, 84],

in conjunction with parameterizations of UPMNS in terms of θC [85–89], with respect to

statistical arguments [90], by including renormalization group effects [91,92], and in model

building realizations [93–97]. We are now going to extend this idea of connecting the

quark and the lepton sector to explain the mixings. In Ref. [71, 75], we have suggested a

generalization of QLC called “extended QLC” (EQLC). Thereby, the mixing angles of all

left- and right-handed fermions Uℓ, UD, UD′ , and UR, can take any of the values π
4 , ǫ, ǫ

2, ..., 0.

However, unless otherwise noted, we will identify all terms of order ǫn with n ≥ 3 simply

by “0” since the current 1σ error on the leptonic mixings is at most of the order ǫ2 (see,

e.g., Ref. [51]). A further motivation to express the mixings in this way is given, besides

the observed quark mixing angles given in Eq. (4.4), by a µ-τ flavor symmetry, which

naturally leads to maximal mixing, cf., Sec. 3.2. This applies not only to the mixings but

also to the unmeasured mass ratios of MD and MR in Eq. (4.2), i.e., a, b, c, a′, b′, and c′,

are assumed to be 0, 1, or 2. In combination with the fermion mass ratios parameterized

by ǫ, cf., Eq. (4.1), this allows us to express all masses and mixings.

However, note that the mixings of Dirac and Majorana neutrinos are present at high

energies and the PMNS mixings are measured at low energies. Consequently, EQLC might

be realized but is a challenge for experiments. We discuss this in more detail in the next

section.

5.1.2 Mass Matrix Production

In Sec. 4.2, we have seen that textures can be predicted by flavor symmetries. However,

we will follow a bottom-up approach: we will “search” for viable mass matrix textures

without motivation – for the moment – by flavor symmetries. Chaps. 6 and 8 are devoted

to the systematic search for flavor symmetries. Nevertheless, we do not stick to a certain

flavor basis or use invariants since we would lose information about high energy physics. In

oscillation experiments, we measure the lepton mixing matrix UPMNS, which is a product

of the charged lepton and neutrino mixing matrix U †
ℓ and Uν . Therefore, it would not be

meaningful at all to search for one “viable” mass matrix texture but instead we have to

look for a whole texture-set consisting of Mℓ, MD, and MR (in case of the type-I seesaw).

This approach is illustrated in Fig. 5.1.

In order to ensure the viability of our texture sets, we use the experimental values
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such as masses and mixings within their experimental errors. For this we generate all

possibilities for the neutrino mass matrix M exp
eff in Eq. (4.12), where we use the current

best-fit values2 [51] of UPMNS, i.e.,

θ12 = π/4 − ǫ, θ13 = 0, θ23 = π/4 .

Note that these values correspond also to TBM as well as to an interesting symmetry

limit in certain neutrino mass models [38]. In addition, we assume the normal hierarchical

neutrino spectrum of Eq. (4.1) and the hypothesis of EQLC, i.e.,

θxij ∈ {π/4, ǫ, ǫ2, 0}, (5.2)

with x ∈ {ℓ, ℓ′,D,D′, R, ν}. The phases δx, ϕx1 , ϕ
x
2 , ϕ

x
3 , α

x
1 , α

x
2 ∈ {0, π} are here assumed

to be CP conserving. This ambiguity of Uℓ now leads to various neutrino mass matrices

M exp
eff , which reproduce the experimental mass and mixing parameters, by construction.

However, so far, we have only a set of viable effective mass matrices M exp
eff but not the

desired sets of textures Mℓ, MD, and MR, valid at high energies. Therefore, we generate,

in analogy with M exp
eff , all theoretically possible effective neutrino mass matrices M th

eff of

Eq. (4.11). Thereby, we again assume our hypothesis of EQLC, i.e., all mixings of UD,

UD′ , and UR, are taken from the set shown in Eq. (5.2), the phases are assumed to be CP

conserving, and the mass ratios3 of Mdiag
D and Mdiag

R can be expressed as powers of ǫ up

to order two, since this corresponds to the experimental errors in the neutrino sector, cf.,

Eq. (4.2). Note, in the case of CP violation, some textures may change due to cancellations,

so the number of textures will increase. Nevertheless, a systematic analysis with phases

between 0 and 2π is up to now not possible due to the lack of computing power but this

might change in some years (for textures with type-II seesaw mechanism, see Ref. [105]).

Next, we have to confront theory with experiment, i.e., we match all possibilities (pa-

rameter combinations) of M th
eff with all possibilities of M exp

eff for ǫ = 0.2, since this are

just different parameterizations for the same neutrino mass matrix. In total, our proce-

dure requires that we systematically scan more than 20 trillion different possibilities. The

2These values could be experimentally confirmed or rejected in the coming years. See, e.g., Refs. [72,98]
for long-baseline experiments on a scale of the coming ten years, Refs. [99,100] for an up-scale reactor θ12

measurement, Ref. [101] for the potential of various different superbeam upgrades, and Ref. [102–104] for
a neutrino factory measurement. A different choice for the parameters can be equally well applied, but it
will change the final results, e.g., if θ13 is indeed found to be non zero.

3Note that we will always set the heaviest mass eigenvalue equal to the absolute neutrino mass scale.
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matching

M th
eff |ǫ=0.2 ≃M exp

eff |ǫ=0.2 (5.3)

will be done in accordance with the experimental errors O(ǫ3). The overall neutrino mass

scale, i.e., mν = m2
D/MR will thereby automatically factored out. This leads to 1981 sets

of parameters generating viable mass matrices {MD,MR,Mℓ}, which we will call a (seesaw)

realization.4 These realizations contain all relevant parameters (mass ratios, mixings, and

phases) to reconstruct the mass matrices {MD,MR,Mℓ} which we can analytically expand

in powers of ǫ. By taking the leading order term of each matrix element, we obtain

the texture entries with their Yukawa couplings. In other words, by expanding the mass

matrices in ǫ and by neglecting all but the leading order we obtain the corresponding mass

matrix textures.

4Note that we choose Uℓ′ = 1 since it does not affect any phenomenology. However, in models, Uℓ′ is
predicted and therefore, we are going to consider it in the next chapter.
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5.2 Essence of EQLC-Mass Matrices

5.2.1 Seesaw Realizations

The 1981 viable sets of seesaw realizations obtained in Sec. 5.1.2 is, of course, too huge to be

presented here. Therefore, we show an exemplary list of 72 texture sets with corresponding

realizations in Tables 5.1 and A.1 and introduce a parameter ξ ∈ {0, ǫ2} which nicely

demonstrates the influence of the mixing angles on certain texture entries. The “quality”

of these seesaw realizations and their properties such as Yukawa couplings are discussed in

the next section.

# Mℓ MD MR
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(θℓ
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23)
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Table 5.1: Complete set of selected seesaw textures/realizations, where ξ ∈ {0, ǫ2}.

As an outcome of our systematic and model independent bottom-up approach we have

found new textures, e.g., the texture of MR for #72 in Table 5.1, which we call a “diamond

texture” due to the enclosing of a diamond shape of the four “1” entries in the corners.

Note again, all texture entries with powers of ǫ ≥ 3 are approximated by 0 since this

corresponds to the experimental error of oscillation experiments. Thereby, we can see that

we obtain a broad class of realizations: For example, hierarchical and semi-hierarchical

mass spectra for MD and MR, shown in Fig. 5.2, and large mixings in the charged lepton

and/or neutrino sector. Moreover, maximal mixing can occur for Dirac as well as for

Majorana neutrinos as illustrated in Fig. 5.3. All distributions are obtained by simply

counting the number of realizations with a certain mass spectrum or mixings. Note that



40 CHAPTER 5. TEXTURES – A BOTTOM-UP APPROACH

Hierarchies in MD

8Ε, 1, Ε<

8Ε, Ε, 1<

Other

Hierarchies in MR

8Ε, 1, 1< 9Ε2 , Ε, 1=

Figure 5.2: Distributions of mass hierarchies in MD (left) and MR (right) for all valid seesaw
realizations.
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Figure 5.3: Distributions of mixings in UD, UD′ , UR, and Uℓ, for all valid seesaw realizations. The
different pie labels refer to the number of maximal mixing angles, where “All small”
corresponds to all mixing angles ≤ ǫ.

for MD more mass hierarchies than the dominant (ǫ, ǫ, 1) and (ǫ, 1, ǫ) are realized. These

are denoted as “Others” in Fig. 5.2. The number of maximal mixing angles in UD, UD′ ,

UR, and Uℓ, respectively, is shown in Fig. 5.3, where “All small” refers to mixing matrices

with mixing angles smaller than ǫ. In Fig. 5.4 we show the distribution of special cases of

all allowed seesaw realizations (not texture sets) such as symmetric MD (i.e., UD ≃ UD′),

diagonal MR (i.e., UR ≃ 1), and Uℓ ≃ 1, where “≃” is valid within our precision of ǫ2.

Thus, we obtain cases often considered in literature such as small mixings in the charged

lepton and Majorana sector but also completely new realizations such as three maximal

mixings in Uℓ. Nevertheless, one may conclude from our results that there exist many

possibilities to implement the seesaw mechanism without such restrictions on the mass

matrices.

The mass spectra of MR shown in Fig. 5.2 may have immediate relevance for leptoge-

nesis (by taking CP phases into account as we will do in Chap. 7). In more than 80% of

the cases, the right-handed neutrino mass spectrum has the semi-hierarchical form (ǫ, 1, 1).

In these cases, successful leptogenesis might be achieved via resonant leptogenesis or by

taking flavor effects into account (for a connection with low energy CP violation see, e.g.,
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Figure 5.4: Fraction of special cases such as symmetric MD, diagonal MR, and Uℓ ≃ 1, of all valid
realizations (not texture sets) up to ǫ2 precision.

Ref. [106]). This may lead to testable collider implications if mR
3 is in the resonant limit of

TeV range. However, in the literature, usually strongly hierarchical right-handed neutrino

masses are considered for leptogenesis. In our analysis, such scenarios are present but

found to be by a factor of about 5 less abundant than for mild hierarchy. Nota bene, the

strict hierarchical mass spectra of MR, i.e., (ǫ2, ǫ, 1), can in some cases be amplified to

(ǫn, ǫ, 1), where n ≥ 2, without the need for other modifications. A sufficiently large n,

e.g., n = 8, can allow a seesaw scale of mR
3 ∼ 1014 GeV for the strongly hierarchical case

and could generate sufficient baryon asymmetry through flavored leptogenesis.

5.2.2 Performance

In this section, we would like to discuss the performance of the seesaw realizations shown in

Tables 5.1 and A.1. All have in common that they resist an increased experimental pressure

if θ13 will not be measured. Consequently, θ13 is not a restrictive selection criterion (this

may change for mass matrix textures constructed with other PMNS values than given in

Eq. (4.3)). For this we introduce a performance indicator χ2 corresponding to a Gaussian

χ2 approximation in sin2 θ12 and sin2 θ23 with the current best-fit values, which is defined

as

χ2 ≡
(

sin2 θ12 − 0.3

0.3 × σ12

)2

+

(
sin2 θ23 − 0.5

0.5 × σ23

)2

. (5.4)

This reflects the accordance of a realization with current experimental data, e.g., χ2 =

11.83 corresponds to a 3σ CL exclusion for 2 degrees of freedom (d.o.f.).5 In Fig. 5.5, we

show the distribution of all valid seesaw realizations as a function of χ2 defined in Eq. (5.4).

Obviously, our approach presented in Sec. 5.1.2 already ensures the compatibility of each

5We use σ12 ≃ 9% (for sin2 θ12) and σ23 ≃ 16% (for sin2 θ23) for the relative 1σ errors [51]. Note, we
only find sin2 θ13 ≪ 0.04 which is below the current bound, i.e., we do not have to impose an additional
selection criterion for θ13.
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Figure 5.5: Distribution of valid seesaw realizations as a function of χ2 as defined in Eq. (5.4). The
values of θ13 are all in agreement with current data.

realization with current experimental bounds. Moreover, in all valid cases θ13 ≪ 1◦ and

only 6.5% of the realizations lead to 11.83 . χ2 . 17 (corresponding to a CL between 3

and 4σ for 2 d.o.f.). In other words, all presented realizations are in perfect agreement

with current data and lead to nearly tribimaximal mixing, i.e., very small θ13. This

might naively be expected since for our matching in M exp
eff we have used the best-fit values.

However, we find realizations with small θ13 ≃ 0◦ but in almost all cases we obtain θ23 ≃ 50◦

despite of the best-fit input value of 45◦. This deviation from maximal atmospheric mixing

can be tested at 3σ CL by the T2K and NOνA experiments [72] and the sign of the deviation

from maximal mixing with a neutrino factory at 3σ CL for sin22θ13 & 10−2.5, or at the

90% CL otherwise [73].

Above, we have discussed the “quality” of the realizations with respect to experimental

data. In the following, we concentrate on the naturalness of the Yukawa couplings. Since

our approach to obtain the mass matrix sets did not involve any constraints on the Yukawas

they are rather an outcome of our hypothesis of EQLC. Therefore, we check whether they

are unnaturally small or large. A proper coupling should for us be of order one, i.e.,

between ǫ and 1/ǫ, since the identification of the leading term of the expansion in ǫ (thus

the texture entry) would otherwise not be meaningful. In Fig. 5.6, we show the distribution

of the absolute values of the Yukawa couplings for Mℓ, MD, and MR, respectively. For

this, we have analytically expanded each mass matrix element in ǫ up to order two and

have considered the factors for each order and not only the leading one. In Fig. 5.6, we

can see that in 99.9% of all cases the factors are of order one. Therefore, the name “order

one factor” (“order one coupling” for the leading term) is justified. Note, although the first

bin corresponds to factors smaller than ǫ the texture extraction is unambiguous since in
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Figure 5.6: Distribution of the Yukawa couplings of Mℓ (left), MD (center), and MR (right) for all
valid seesaw realizations (of all orders and for all matrix elements). The gray-shaded
region marks the area for couplings smaller than ǫ.

such cases all other factors become also very small and not only the leading one.

Now, we discuss the stability of our results with respect to RG running from high-scale

to ∼ 1GeV. All obtained seesaw realizations are based on our hypothesis of extended QLC

holding at high energies and are compared in our method with low energy data. This

may cause problems. First of all, we take a look at θC. The Cabibbo angle exhibits no

running [107] and Vcb ∼ ǫ2 typically changes only by a factor smaller than 2 when running

from ∼ 1GeV up to the Planck scale ∼ 1019 GeV [107,108]. Next, note that also the running

of a possibly maximal atmospheric mixing angle θ23 is negligible (due to the smallness of

the charged lepton Yukawa couplings), unless we work in the MSSM with large tan β [72].

For the running of Meff from the GUT scale down to low energies, the corrections to the

leptonic mixing angle θij are smaller than ∼ |mi + mj|2(|mi|2 − |mj |2)−1 × 10−2, where

mi and mj are the eigenvalues of the ith and jth neutrino mass eigenstates of Meff at the

GUT scale [109]. For NH neutrinos, the corrections are thus . 1◦, i.e., negligible. This

may change for IH or the degenerate case. However, note that independent of the neutrino

mass hierarchies, it is always possible to switch off RG effects on neutrino mixing angles by

tuning the phases [109]. In addition, while the absolute neutrino mass scale is affected by

RG running, the neutrino mass ratios are hardly changed. Summarizing, since our results

are very stable under RG running for NH neutrinos we (rightly) neglect it (for a more

detailed discussion and references see Ref. [75]).



44 CHAPTER 5. TEXTURES – A BOTTOM-UP APPROACH

Step 3

Step 2 Step 1

Florian Plentinger

M
exp
eff ≃ M

th
eff?

Ul MR

Seesaw

M
th
effM

exp
eff

Ml

Reduction

lepton

UPMNS

E
x
te

n
d
e
d

Q
L
C

Textures

Observation: Model: symmetry,
GUT, ...

Seesaw realizations: Ml, MD, MR

MD

Flavor
ν oscillation and mass

Mass
Charged

scheme

experiments, ...

masses

Figure 5.7: Procedure for obtaining seesaw realizations and texture sets in EQLC.

5.3 Summary

In this chapter, we have introduced our hypothesis of extended quark-lepton complemen-

tarity, i.e., all mass ratios and mixings can be expressed in powers of a small expansion

parameter ǫ ≃ 0.2 being of the order the Cabibbo angle, where we identify the zeroth

order of ǫ with π/4 for mixing angles. By using this hypothesis, we have generated all

possibilities for the effective neutrino mass matrix M th
eff , which is a product of MD and MR

as well as all possibilities for M exp
eff , which contains the experimental best-fit values for the

PMNS matrix as well as the normal hierarchical neutrino mass spectrum. In the last step,

we matched M th
eff |ǫ=0.2 ≃M exp

eff |ǫ=0.2 up to a precision of ǫ2, which corresponds to the error

in oscillation experiments, cf. Fig. 5.7.

Our result was a list of 1981 valid seesaw realizations for which we presented an ex-

emplary list of 72 with corresponding textures [75–77]. We have shown that special cases

often considered in literature, such as having a symmetric Dirac mass matrix or small

mixing among charged leptons, constitute only a tiny fraction of our possibilities. Our

list represents a broad class of CP conserving realizations in the sense that large mixings

can arise in the charged lepton and the neutrino sector. Moreover, in the neutrino sector,

maximal mixing can occur for Dirac and Majorana neutrinos. The mass spectrum of MD

and MR can be hierarchical or semi-hierarchical which might have direct implications for
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leptogenesis. All of these mass matrices lead to nearly tribimaximal mixing, i.e., to a very

small reactor angle θ13 . 1◦ and a deviation from the atmospheric mixing angle testable

in future experiments. The seesaw realizations and predictions are very stable under RG

effects which can therefore be neglected.





Chapter

6
Lepton Flavor Models

In this chapter, we construct lepton flavor models by direct products of cyclic flavor groups

and the Froggatt-Nielsen mechanism as we have done for the Z5 × Z9 flavor model of

Chap. 4. A machine aided method to predict the seesaw textures of Sec. 5.2.1 is presented.

As result, we obtain a list of 22 exemplary flavor models including their seesaw realizations

and perform a group space scan [110].

6.1 Flavor Structure

The setup of the models that we want to construct is analogous to the Z5×Z9 flavor model

of Chap. 4, i.e., we assume the flavor symmetries to be a direct product of cyclic groups1

GF = Zn1
× Zn2

× · · · × Znm, (6.1)

where m is the number of Zn factors and nk with k = 1, 2, . . . ,m may be different from

each other. This is motivated by isomorphisms of groups that can be written as semi-direct

products of cyclic groups (see Sec. 3.2), such as A4 ∼ Z3 ⋉ (Z2 × Z2). The extension to

non-Abelian flavor symmetries by semi-direct products will be discussed in Chap. 8. All

models are based on the FN mechanism (Chap. 4), which has a simple scalar sector and the

neutrino masses become naturally small due to the type-I seesaw mechanism. Under the

1Note, although the flavor symmetries are global, it might be necessary to gauge them in order to
survive quantum gravity corrections [111]. The cancellation of anomalies could be achieved by considering
extra matter fields.

47
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flavor symmetry GF , we assign the following lepton charges for the right-handed charged

leptons, the left-handed leptons and the right-handed neutrinos

eci ∼ (pi1, p
i
2, . . . , p

i
m) = pi, ℓi ∼ (qi1, q

i
2, . . . , q

i
m) = qi, νci ∼ (ri1, r

i
2, . . . , r

i
m) = ri, (6.2)

where the jth entry in each row vector denotes the Znj
charge of the particle and i is

the generation index. As a convention, we choose the charges for each group Znk
to be

non-negative and lie in the range

pik, q
i
k, r

i
k ∈ {0, 1, 2, . . . , nk − 1}. (6.3)

For each Znk
, we assume a flavon that carries charge −1 under Znk

and is a singlet under

all other Znj
with j 6= k as well as the SM.

6.2 Textures Becoming Models – A Group Space Scan

So far, we have determined the setup of the flavor models, cf., Ref. [110,112]. However, with

an arbitrary choice of flavor charges it would be a bonanza to generate a texture set leading

to valid particle masses and mixings. Therefore, we propose a different approach: Since we

have constructed in Chap. 5 the largest available set of valid mass matrix textures, we will

use this set as our reference set and try to reproduce these textures by flavor symmetries.

However, the mass matrices generated in Chap. 5 have no mixings of right-handed charged

leptons, i.e., Uℓ′ is the identity matrix. This was not important at that stage, since Uℓ′ has

no influence on experimental data. However, a flavor symmetry predicts a mass matrix

and this usually leads to a non-trivial Uℓ′ . Therefore, we extend our reference set in the

following way: we generate the product MℓU
†
ℓ′ for each realization of Mℓ in Chap. 5 by

using all possibilities for Uℓ′ compatible with EQLC, i.e., all mixings are π/4, ǫ, ǫ2, or 0, and

the phases are assumed to be CP conserving. This does not change the phenomenology of

the realizations but leads, through introduction of a non-trivial Uℓ′ , to new mass matrices

Mℓ and consequently to a bunch of new realizations. In addition, we allow for Mℓ a

precision of O(ǫ5) in order to account for experimental errors in this sector. This becomes

now our new reference set. However, in what follows, we neglect cases of (for this survey)

minor interest, e.g., anarchic mass matrices (matrices having only order one entries); see

Ref. [110] for more details.

Now, we can systematically scan flavor charges for various flavor symmetries and gener-
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ate mass matrix textures, which can be compared with the textures in our reference list. If

a set is contained in the list, we immediately know that it leads to a viable phenomenology.

Contrary, if a matrix set is not contained in our list it does not necessarily mean that the

mass matrices are not valid. Only an explicit diagonalization of the mass matrices could

check the viability of the model. This shows the advantage of our method being already

at the edge of what is nowadays possible with available computer power. As a result, we

present in Table 6.1 22 lepton flavor models, i.e., flavor charges with corresponding flavor

symmetries and textures. In Table A.2, the corresponding seesaw realizations are shown.

These allow a complete reconstruction of the mass matrices including Yukawa couplings.

# Mℓ/〈H〉 MD/〈H〉 MR/MB−L

p1, p2, p3

q1, q2, q3

r1, r2, r3

GF

1




ǫ4 ǫ5 ǫ2

ǫ2 ǫ2 ǫ2

ǫ2 ǫ4 1


 ǫ




ǫ ǫ2 ǫ2

ǫ 1 ǫ

ǫ 1 ǫ


 ǫ3




1 ǫ2 1

ǫ2 1 ǫ2

1 ǫ2 1




(2, 0), (0, 0), (2, 5)

(2, 3), (4, 1), (3, 2)

(1, 4), (2, 6), (0, 5)

Z5 × Z7

2 ǫ




ǫ4 ǫ4 ǫ2

ǫ3 ǫ2 1

ǫ3 ǫ4 1


 ǫ




ǫ ǫ3 ǫ

ǫ 1 ǫ3

ǫ ǫ2 ǫ


 ǫ2




ǫ ǫ ǫ

ǫ 1 ǫ2

ǫ ǫ2 1




(2, 2), (3, 2), (2, 5)

(0, 1), (2, 2), (4, 2)

(2, 6), (3, 4), (1, 0)

Z5 × Z7

3 ǫ




ǫ4 ǫ3 ǫ5

ǫ3 ǫ2 ǫ2

ǫ ǫ2 1


 ǫ2




ǫ ǫ ǫ3

ǫ 1 1

ǫ 1 1


 ǫ




ǫ ǫ ǫ5

ǫ 1 ǫ4

ǫ5 ǫ4 1




(3, 7), (3, 0), (2, 7)

(1, 5), (3, 6), (3, 2)

(1, 4), (2, 4), (2, 0)

Z5 × Z8

4 ǫ




ǫ3 ǫ3 ǫ

ǫ2 ǫ2 ǫ2

ǫ2 ǫ4 1


 ǫ3




ǫ ǫ ǫ

ǫ 1 1

ǫ 1 1


 ǫ




ǫ ǫ5 ǫ

ǫ5 1 ǫ4

ǫ ǫ4 1




(3, 0), (0, 1), (2, 5)

(4, 2), (3, 6), (3, 2)

(4, 0), (3, 4), (3, 0)

Z5 × Z8

5 ǫ




ǫ4 ǫ2 ǫ

ǫ3 ǫ2 ǫ2

ǫ5 ǫ 1


 ǫ2




ǫ ǫ ǫ3

ǫ3 1 ǫ

ǫ3 1 ǫ


 ǫ2




1 ǫ3 1

ǫ3 1 ǫ4

1 ǫ4 1




(3, 8), (4, 3), (0, 3)

(0, 4), (3, 7), (4, 6)

(0, 8), (2, 4), (1, 0)

Z5 × Z9

6 ǫ




ǫ4 ǫ2 ǫ

ǫ3 ǫ2 ǫ2

ǫ5 ǫ 1


 ǫ2




ǫ2 ǫ3 ǫ

ǫ 1 1

ǫ 1 1


 ǫ2




ǫ2 ǫ ǫ

ǫ 1 1

ǫ 1 1




(3, 6), (2, 1), (1, 1)

(4, 6), (1, 0), (0, 8)

(1, 8), (0, 8), (1, 0)

Z5 × Z9



50 CHAPTER 6. LEPTON FLAVOR MODELS

7 ǫ




ǫ4 ǫ4 ǫ2

ǫ3 ǫ2 1

ǫ3 ǫ4 1


 ǫ4




ǫ2 ǫ ǫ2

ǫ ǫ ǫ

1 ǫ 1


 ǫ




1 ǫ2 1

ǫ2 ǫ ǫ2

1 ǫ2 1




(2, 8), (1, 8), (1, 4)

(1, 4), (4, 4), (3, 5)

(2, 0), (0, 1), (2, 0)

Z5 × Z9

8 ǫ




ǫ3 ǫ4 ǫ

ǫ3 ǫ2 ǫ2

ǫ2 ǫ4 1


 ǫ2




ǫ2 ǫ ǫ3

ǫ2 1 1

ǫ2 1 1


 ǫ2




ǫ2 ǫ2 ǫ2

ǫ2 1 1

ǫ2 1 1




(2, 1), (1, 6), (4, 1)

(1, 6), (0, 1), (1, 0)

(3, 6), (0, 1), (1, 0)

Z5 × Z9

9




ǫ4 ǫ3 ǫ5

ǫ3 ǫ2 ǫ2

ǫ ǫ4 1


 ǫ3




ǫ2 ǫ ǫ

1 1 ǫ2

1 1 ǫ


 ǫ2




1 1 ǫ

1 1 ǫ

ǫ ǫ 1




(0, 2), (2, 5), (1, 2)

(2, 3), (4, 4), (5, 5)

(2, 0), (3, 1), (0, 6)

Z6 × Z7

10




ǫ4 ǫ6 ǫ2

ǫ2 ǫ2 ǫ2

ǫ2 ǫ4 1


 ǫ2




ǫ2 ǫ ǫ2

ǫ2 ǫ 1

ǫ2 ǫ 1


 ǫ




ǫ2 ǫ2 ǫ2

ǫ2 ǫ ǫ4

ǫ2 ǫ4 1




(2, 1), (2, 3), (0, 1)

(1, 0), (5, 5), (0, 6)

(4, 3), (2, 0), (0, 3)

Z6 × Z7

11




ǫ3 ǫ3 ǫ2

ǫ2 ǫ2 ǫ2

ǫ4 ǫ2 1


 ǫ2




ǫ ǫ ǫ

ǫ 1 ǫ

ǫ 1 ǫ


 ǫ




ǫ ǫ ǫ2

ǫ 1 ǫ3

ǫ2 ǫ3 1




(0, 0, 0), (1, 0, 2), (1, 1, 3)

(1, 1, 1), (0, 0, 2), (1, 2, 2)

(1, 0, 1), (1, 0, 2), (0, 1, 0)

Z2 × Z3 × Z5

12




ǫ4 ǫ5 ǫ

ǫ3 ǫ2 ǫ2

ǫ5 ǫ4 1


 ǫ2




ǫ ǫ ǫ2

ǫ2 1 ǫ2

ǫ2 1 ǫ


 ǫ2




1 ǫ 1

ǫ 1 ǫ

1 ǫ 1




(1, 2, 4), (1, 1, 4), (0, 0, 2)

(0, 1, 3), (1, 0, 2), (0, 0, 3)

(0, 2, 4), (1, 0, 1), (0, 1, 0)

Z2 × Z4 × Z5

13




ǫ4 ǫ4 ǫ2

ǫ3 ǫ2 ǫ2

ǫ5 ǫ4 1


 ǫ2




ǫ3 ǫ ǫ2

ǫ2 ǫ 1

ǫ2 ǫ 1







ǫ2 ǫ3 ǫ2

ǫ3 ǫ ǫ2

ǫ2 ǫ2 1




(1, 1, 1), (1, 1, 0), (0, 3, 4)

(0, 2, 2), (0, 3, 1), (0, 1, 1)

(1, 0, 1), (0, 0, 2), (0, 0, 0)

Z2 × Z4 × Z5

14 ǫ




ǫ4 ǫ5 ǫ2

ǫ3 ǫ2 1

ǫ3 ǫ4 1


 ǫ




ǫ2 ǫ ǫ2

ǫ2 ǫ ǫ2

1 ǫ3 1


 ǫ3




1 ǫ 1

ǫ ǫ ǫ

1 ǫ 1




(0, 3), (3, 3), (0, 6)

(3, 1), (1, 3), (3, 3)

(1, 5), (3, 8), (1, 5)

Z4 × Z9

15 ǫ




ǫ4 ǫ4 ǫ2

ǫ3 ǫ4 1

ǫ3 ǫ2 1


 ǫ2




ǫ2 ǫ ǫ3

ǫ2 ǫ ǫ2

ǫ ǫ2 1


 ǫ




ǫ2 ǫ2 ǫ

ǫ2 ǫ ǫ2

ǫ ǫ2 1




(4, 2), (0, 2), (4, 5)

(3, 1), (2, 2), (0, 2)

(1, 3), (2, 3), (0, 3)

Z5 × Z7
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16 ǫ2




ǫ4 ǫ3 ǫ2

ǫ3 ǫ2 1

ǫ3 ǫ4 1


 ǫ2




ǫ3 ǫ ǫ

1 1 ǫ3

ǫ2 ǫ ǫ


 ǫ2




1 1 ǫ3

1 1 ǫ3

ǫ3 ǫ3 1




(1, 6), (0, 5), (1, 0)

(2, 7), (0, 8), (3, 8)

(0, 8), (4, 0), (2, 4)

Z5 × Z9

17 ǫ




ǫ4 ǫ4 ǫ2

ǫ3 ǫ4 1

ǫ3 ǫ2 1


 ǫ




ǫ2 ǫ ǫ3

ǫ2 ǫ ǫ2

ǫ3 ǫ2 1


 ǫ2




ǫ2 ǫ2 ǫ3

ǫ2 ǫ ǫ2

ǫ3 ǫ2 1




(4, 3), (0, 3), (4, 0)

(3, 1), (2, 0), (0, 0)

(2, 2), (2, 1), (0, 1)

Z5 × Z7

18




ǫ4 ǫ4 ǫ2

ǫ3 ǫ2 ǫ2

ǫ5 ǫ2 1


 ǫ2




ǫ4 ǫ ǫ2

ǫ2 ǫ 1

ǫ2 ǫ 1


 ǫ




ǫ2 ǫ3 ǫ2

ǫ3 ǫ ǫ5

ǫ2 ǫ5 1




(4, 4), (1, 2), (0, 1)

(1, 0), (1, 5), (0, 6)

(2, 3), (3, 1), (0, 3)

Z6 × Z7

19




ǫ4 ǫ4 ǫ2

ǫ2 ǫ2 ǫ2

ǫ4 ǫ2 1


 ǫ2




ǫ ǫ2 ǫ

ǫ 1 ǫ

ǫ 1 ǫ







ǫ ǫ2 ǫ5

ǫ2 1 ǫ3

ǫ5 ǫ3 1




(0, 1), (0, 3), (4, 4)

(2, 1), (1, 4), (1, 2)

(2, 3), (0, 3), (0, 0)

Z5 × Z6

20




ǫ4 ǫ5 ǫ2

ǫ2 ǫ2 ǫ2

ǫ4 ǫ4 1


 ǫ




ǫ2 ǫ ǫ2

ǫ2 ǫ 1

ǫ2 ǫ 1


 ǫ




ǫ2 ǫ2 ǫ2

ǫ2 ǫ ǫ2

ǫ2 ǫ2 1




(2, 0), (3, 5), (1, 3)

(0, 4), (3, 2), (4, 3)

(2, 1), (0, 4), (2, 3)

Z5 × Z6

21




ǫ4 ǫ5 ǫ2

ǫ2 ǫ2 ǫ2

ǫ4 ǫ4 1


 ǫ




ǫ ǫ2 ǫ

ǫ 1 ǫ

ǫ3 1 ǫ


 ǫ2




ǫ ǫ2 ǫ

ǫ2 1 ǫ3

ǫ ǫ3 1




(3, 4), (4, 4), (1, 2)

(3, 5), (4, 2), (4, 4)

(2, 5), (1, 3), (1, 0)

Z5 × Z6

22




ǫ4 ǫ3 ǫ2

ǫ2 ǫ2 ǫ3

ǫ5 ǫ 1


 ǫ2




ǫ2 ǫ ǫ2

1 ǫ 1

1 ǫ3 1


 ǫ




1 ǫ3 1

ǫ3 ǫ ǫ3

1 ǫ3 1




(2, 6), (0, 0), (0, 1)

(0, 6), (1, 1), (0, 8)

(1, 0), (2, 5), (1, 0)

Z3 × Z9

Table 6.1: List of 22 valid lepton flavor models for nearly tribimaximal mixing with their explicit

flavor charges pi,qi, and ri, under the flavor symmetry Gf and the resulting textures.

All 22 models of Tables 6.1 and A.2 lead to the following PMNS mixing angles

34◦ . θ12 . 39◦, θ13 . 1◦, θ23 ≈ 52◦, (6.4)

which are in agreement with neutrino oscillation data (at 3σ CL). Moreover, the significant
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Figure 6.1: Number of flavor models leading to nearly tribimaximal lepton mixing as a function
of the flavor group GF for increasing group order. In the left (right) panel we have
10 ≤ |GF | ≤ 24 (24 ≤ |GF | ≤ 45).

deviation of the atmospheric mixing angle from maximal makes the models testable at

future experiments. Note, one seesaw realization can, in principle, be generated by more

than one flavor symmetry. In Fig. 6.1, we show the full extent of our group space scan,

namely 6021 lepton flavor models leading to 2093 distinct texture sets.2

In Fig. 6.1, we can see the trend, up to periodic fluctuations, that an increasing group

order leads to more lepton flavor models, as expected. Therefore, we give a rough estimate

of the group order which might be needed in order to predict any given texture set. Our

CP conserving mass matrices have entries up to ǫ2 for MD and MR, and ǫ4 for Mℓ (higher

orders are approximated by 0). This leads to 46+9 ·69 possible texture sets including phases

0 and π. These should be producable by products of cyclic groups with 9 different charges

2We restrict ourselves for simplicity to groups up to order 40 consisting of one Zn, 45 for a direct
product of two Zn, 30 for three factors, and 24 for four factors, with n ≤ 9 for more than one factor.
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per factor, i.e., we have |Gf |9 possible charge assignments. In order to possibly produce

some random texture set, the number of charge assignments should exceed the number

possible texture sets, i.e., |Gf | & 4
15

9 · 6 ⋍ 60. This means that, for example, the group

Z2 × Z3 × Z4 × Z5 should be able to produce any of our texture sets.

6.3 Summary

In this chapter, we have presented a model setup based on flavor symmetries of direct

products of cyclic groups Zn and the Froggatt-Nielsen mechanism. A method how the

seesaw textures obtained in Sec. 5.2.1 can be generated by these flavor groups was intro-

duced. We have systematically scanned all possible flavor charge assignments for leptons

in order to compare the resulting mass matrices with our textures. If they match, we

immediately know, without the need for diagonalization, that the model leads to viable

masses and mixings. As a result, we have found a list of 22 example models including their

seesaw realizations, as well as an overview of 6 021 lepton flavor models for varying flavor

groups [110]





Chapter

7
Lepton Flavor Violation

In this chapter, we survey the lepton flavor violation (LFV) decay rates Br(µ → eγ),

Br(τ → µγ), and Br(τ → eγ) for the LHC relevant scenario SPS1a’ in minimal supergravity

(mSUGRA) for a broad class of non-trivial lepton mass matrix textures shown in Tables 5.1

and A.1 (see Ref. [113]). This is done for the most general CP violating forms of the

textures. Moreover, the correlation between LFV rates and low energy lepton mixing

parameters is investigated.

7.1 Charged LFV in SUSY

In the SM, no LFV is present. Even if the SM is amended by heavy right-handed neutrinos

νc the LFV rates are tiny due to the suppression of their mass scale. This may change

completely in SUSY seesaw models considered here. The reason is that the νc influence the

mixing of the sleptons and the trilinear coupling in the Minimal Supersymmetric Standard

Model (MSSM) via radiative corrections. This occurs mainly via intermediate left-handed

slepton flavor transitions. The most important low energy processes are the rare decays

li → ljγ, where i 6= j ∈ e, µ, τ . The current bounds on these processes, which provide

by now the most stringent bounds on LFV in the SUSY seesaw models, as well as the

expected future sensitivities, are shown in Table 7.1.

55
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Br(µ→ eγ) Br(τ → µγ) Br(τ → eγ)

Present 1.2 × 10−11 [114] 6.8 × 10−8 [115] 1.1 × 10−7

Expected 10−13 ≈ 10−8 ≈ 10−8

Table 7.1: Current bounds and expected future sensitivities of direct experimental LFV searches.

We denote the superpotential as

W = −(Yℓ)ije
c
iℓjH1 − (YD)ijν

c
i ℓjH2 +

1

2
(MR)ijν

c
i ν
c
j , (7.1)

where ℓi, e
c
i , and νci , are the matter superfields, and H1 and H2 the usual Higgs superfield

doublets generating the down- (H1) and up-type masses (H2). Yℓ, YD, and MR are the

charged lepton and Dirac Yukawa coupling matrix and the Majorana mass matrix, respec-

tively. After electroweak symmetry breaking, the Higgs doublets develop the VEVs 〈H0
i 〉,

where 〈H0
2 〉 = v sin β, with v = 174GeV and tan β = 〈H0

2 〉/〈H0
1 〉.

In the SUSY-breaking scenario mSUGRA, the 6 × 6 slepton mass matrix does not

contain flavor mixing terms and may be written as

m2
l̃

=


 m2

L m2†
LR

m2
LR m2

R




MSSM

+


 δm2

L δm2†
LR

δm2
LR δm2

R




νc

, (7.2)

where the first summand is the usual MSSM mass matrix without right-handed neutrinos

and the second one parameterizes the corrections by νc and can, to leading logarithmic

approximation, be written as [116],

δm2
L = − 1

8π2 (3m2
0 +A2

0)Y
†
DLYD,

δm2
R = 0,

δm2
LR = − 3

16π2A0v cos βYlY
†
DLYD,

(7.3)

where Lij = ln(MX/m
R
i )δij , Yℓ and YD are the Yukawa coupling matrices of Eq. (7.1), mR

i

are the heavy neutrino masses, and m0 and A0 are the universal scalar mass and trilinear

coupling, respectively, all at the GUT scale MX . These flavor off-diagonal virtual effects

lead to charged LFV (see Ref. [117] and references therein for more details) and suppress a

given process relative to the flavor conserving one by a small factor |(δm2
L)ij/m̃

2|2 (i 6= j),

where (δm2
L)ij are the off-diagonal elements of Eq. (7.3) and m̃2 is of the order the relevant

sparticle masses in the loops involved in the process. To leading order in the LFV couplings
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[116], the branching ratios (BR) for the rare decays are

Br(li → ljγ) ∝ α3m5
li

|(δm2
L)ij |2
m̃8

tan2 β. (7.4)

Note that this expression serves only as an illustration. For the numerical calculations, we

use the full one loop result for Br(li → ljγ), as outlined in [117]. As a reference point, we

take the LHC relevant mSUGRA benchmark scenario SPS1a’, i.e., the parameters used to

calculate the LFV rates are MX = 2.5×1016 GeV for the GUT scale, mν = 5×10−2 GeV for

the effective neutrino mass scale with normal ordering, a universal gaugino mass m1/2 =

250GeV and a universal scalar mass m0 = 70GeV at the GUT scale, tanβ = 10, a

positive sign of the Higgs mixing parameter µ, and a universal trilinear coupling parameter

A0 = −300.

7.2 LFV for CP Conserving and CP Violating Textures

In this section, we investigate the LFV rates for the seesaw realizations1 in Tables 5.1 and

A.1 for the mSUGRA benchmark scenario SPS1a’ given in Sec. 7.1. For a unified picture,

we will go to the basis where the charged leptons and heavy right-handed neutrinos are

diagonal, i.e., the PMNS matrix now diagonalizes the effective neutrino mass matrix. This

amounts just to a rotation of the flavor basis and has therefore no influence on observables.

By using the notation of Sec. 4.2.1, MD reads

MD = K∗
RÛ

†
RD̃Û

∗
D′M

diag
D K̃ÛTDDDU

∗
ℓ . (7.5)

A normalization of the heaviest eigenvalue of Meff and MR to one, i.e., m3 and mR
3 are

factored out of the mass matrices, also changes MD →
√

mν

m3

MB−L

mR
3

MD = 〈H0
2 〉YD in order

to keep the seesaw formula invariant. This leads to

YD =
1

〈H0
2 〉

√
mν

m3
ν

MB−L
mR

3

K∗
RÛ

†
RD̃Û

∗
D′M

diag
D K̃ÛTDDDU

∗
ℓ . (7.6)

Usually one parameterizes YD [118] as2

YD =
1

v sin β

√
Mdiag
R ·R ·

√
Mdiag

eff · UTPMNS , (7.7)

1Note, in Chap. 6 we have demonstrated that each texture set/realization can, in principal, be obtained
from a flavor symmetry.

2The definition of UPMNS in [118] differs from our definition by a complex conjugation.
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where, R is a complex orthogonal matrix, which can be written in terms of 3 complex

angles θi = xi + iyi as

R =




c2c3 −c1s3 − s1s2c3 s1s3 − c1s2c3

c2s3 c1c3 − s1s2s3 −s1c3 − c1s2s3

s2 s1c2 c1c2


 , (7.8)

with (ci, si) = (cos θi, sin θi) = (cos xi cosh yi− i sinxi sinh yi, sinxi cosh yi+ i cos xi sinh yi).

The parameters can take the values xi ∈ [0, 2π[ and yi ∈] − ∞,∞[. However, in a per-

turbative theory, the yi are constrained to values |yi| . O(1). The parameterization of

Eq. (7.7) has the advantage that by inserting the experimental values for neutrino masses

and mixings, a scan of YD yields always a valid low energy phenomenology. However, the

exact connection to models, e.g., flavor models, has been lost after rotating to the special

basis where Mℓ and MR are diagonal.

Therefore, we use, in what follows, the parameterization of Eq. (7.5) to calculate the

LFV rates of Eq. (7.4) for the seesaw realizations in Tables 5.1 and A.1. Albeit these

realizations exhibit a perfect fit to experimental data, they are CP conserving by construc-

tion. Therefore, we generalize our realizations to cases with CP violation. For this we

provide each Yukawa coupling of Mℓ, MD, and MR with an a priori unconstrained phase

factor. This leads to a complexification of the seesaw realizations with free phases. These

phases certainly have influence on the mass and mixing parameters of the mass matrices.

Therefore, we demand the PMNS mixing angles θ12 and θ23 to be within their current 1σ

bound (see Sec. 5.2.2), θ13 < 5◦, and the mass eigenvalues of each realization should not

vary by a factor larger than 1.5. In addition, to ensure the perturbativity of the Higgs

sector, we require |YD3|2/(4π) < 0.3, where YD3 is the largest eigenvalue of Y †
DYD. In this

way, we have assured the phenomenological viability of each complexified texture set. The

results of our analysis will be presented in the next section.

7.3 Results for LFV-Rates

In this section, we present the actual results of our LFV analysis of the 72 seesaw realiza-

tions in Tables 5.1 and A.1. For the CP conserving case, the rare decay rates Br(µ→ eγ),

Br(τ → µγ), and Br(τ → eγ), as functions of the heaviest right-handed Majorana neutrino

mass mR
3 are plotted in Fig. 7.1. The poles in the graphs for Br(τ → eγ) are due to an

accidental cancellation of the chargino and neutralino amplitude. For the 72 real textures,
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Figure 7.1: Br(µ → eγ) (top left), Br(τ → eγ) (top right), and Br(τ → µγ) (bottom), for the
reference list of 72 CP conserving seesaw realizations for the mSUGRA scenario SPS1a’.
The solid (dashed) line represents the current (future) experimental bound.

Br(τ → µγ) varies hardly for a fixed value of mR
3 compared to Br(µ → eγ), which shows

a variation of at least two orders of magnitude and Br(τ → eγ), with at least three or-

ders of magnitude. This would allow a differentiation between the realizations and mR
3 ,

respectively. For τ → µγ, a future non-observation would imply mR
3 to be less than about

4 × 1013GeV. The rates for τ → eγ are practically not touched even by the upcoming

PSI experiment. However, the most restrictive bound is given by Br(µ → eγ), i.e., for all

realizations to be valid, mR
3 has to be smaller than about 1013GeV, implying the current

experimental bound of 10−11. For the expected future sensitivity of 10−13, the upper limit

of mR
3 , valid for all realizations, would be 1012GeV which would let the seesaw mechanism

be disputable in this scenario.

For the complexified texture sets, the situation changes even though they are gener-

alizations of the CP conserving textures we analyzed before. As an example, we show in

Fig. 7.2 Br(µ → eγ) as a function of mR
3 for the first seesaw realization of Table 5.1.3

3The electric dipole moments for the complex texture sets are several orders of magnitude below the
current experimental bound as general expected in seesaw models.
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Figure 7.2: Br(µ → eγ) as a function of mR
3

for the mSUGRA scenario SPS1a’ and the CP conserv-
ing seesaw realization #1 (left) of Table 5.1 and 60 random complexifications (right)
of the same texture set. The solid (dashed) line represents the current (future) exper-
imental bound.

The left plot refers to the CP conserving mass matrix set while the right plot illustrates

the repercussion of 60 complexifications of the same texture set #1. This means, the

complexification erodes the significance of the branching ratio, compared to the CP con-

serving case, since, for a fixed mR
3 , it is spread by a factor of typically about 10. This

(mainly) increasing of Br(µ → eγ) by the presence of phases is a general feature for all

72 considered realizations, which means that we cannot differentiate anymore between the

underlying texture sets while uncontrolled phases are present. For CP conserving seesaw

models it is known that a huge dependence of Br(µ→ eγ) on the PMNS mixing angle θ13

exists. This is due to the accidental cancellation of the chargino and neutralino amplitude.

Therefore, in Fig. 7.3 we show for 500 complexifications of the texture set #1 of Table 5.1

the correlation of Br(µ → eγ) with the PMNS mixing angles θ12, θ13, and θ23 and the

Dirac CP phase.4 However, Fig. 7.3 do not show any dependence of Br(µ → eγ) from low

energy observables at the presence of CP violation. This means, as long as a model does

not control the phases, a differentiation by low energy observables seems to be impossible.

7.4 Summary

In this chapter, we have studied the branching ratios Br(µ → eγ), Br(τ → µγ), and

Br(τ → eγ), in mSUGRA at the Lagrangian level for the broad class of non-trivial lepton

mass matrix textures in Tables 5.1 and A.1 (see Ref. [113]). This has been done for the

most general CP violating forms of the textures. For these, we have demonstrated that the

4For Majorana phases no dependencies are expected.
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Figure 7.3: Br(µ→ eγ) as function of the PMNS mixing angles θ12, θ13, and θ23 and the Dirac CP

phase for 500 complexifications of the seesaw realization #1 in the mSUGRA scenario
SPS1a’. The solid (dashed) lines represent the current (future) experimental bounds
at MR = 2.5 × 1012GeV.

branching ratios are enhanced by typically an order of magnitude as compared to the CP

conserving case. Moreover, the branching ratios exhibit a strong dependence on the choice

of the phases in the Lagrangian, i.e., the LFV rates appear to be essentially uncorrelated

with the possible high- and low energy lepton mixing parameters as long as the model does

not control the phases.





Chapter

8
5D SUSY SU(5) GUTS with

Non-Abelian Flavor Symmetries

In this chapter, we extend the procedure of Chap. 6 in various ways to obtain 5D SUSY

SU(5) GUTS with non-Abelian flavor symmetries [112]. For this, we complete each seesaw

representation with the corresponding SU(5) compatible quark mass matrices. As a result,

we obtain 437 SU(5) GUTs with Abelian flavor symmetries. Each yields an excellent fit to

all fermion masses, the CKM matrix and nearly tribimaximal lepton mixing. We give an

explicit model example how the Abelian flavor symmetries can be extended to non-Abelian

groups, demonstrate the impact of the non-Abelian nature of the flavor symmetry on the

atmospheric mixing angle, and present an embedding into a 5D scenario.

8.1 4D SUSY SU(5) GUTs with Abelian Flavor Symmetries

The approach to construct 4D SUSY SU(5) GUTs with Abelian flavor symmetries is anal-

ogous to Chap. 6. The models are defined by flavor symmetries which are direct products

of cyclic groups Zn. However, this time the fields are supposed to be supermultiplets of a

63
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SU(5) GUT, i.e., the particles will be embedded in the following SU(5) representations

10 = (3,1)− 2

3

+ (3,2) 1

6

+ (1,1)1 (uc, q, ec),

5 = (3,1) 1

3

+ (1,2)− 1

2

(dc, ℓ),

1 = (1,1)0 (νc).

(8.1)

The Yukawa coupling Langrangian takes then the form

LSU(5)
Y =

∫
d2θ

[
Y u
ij10i10j5

H + Y d
ij10i5j5

H
+ Y D

ij 5i1j5
H +MRY

R
ij 1i1j + H.c.

]
, (8.2)

where 5H and 5
H

are the Higgs multiplets. This means, due to unification, Md = MT
ℓ .

Thus, not only the mass ratios are equal but also the absolute mass scales, i.e.,

mb = mτ , ms = mµ , md = me . (8.3)

Moreover, the mass matrices in the general parameterization

Mu = VuM
diag
u V †

u′ , Md = VdM
diag
d V †

d′ ,

MD = UDM
diag
D U †

D′ , MR = URM
diag
R UTR ,

(8.4)

can in SU(5) GUTs, by using our notation of Sec. 4.2.1 as well as Vd = U∗
ℓ′ , Vd′ = U∗

ℓ , and

VCKM = V †
d Vu, be rewritten as

Mu = U∗
ℓ′VCKMM

diag
u V †

CKMU
T
ℓ′ , Md = MT

ℓ ,

MD = UDM
diag
D U †

D′ , MR = URM
diag
R UTR .

(8.5)

Using this setup we can now follow the guideline of Chap. 6. We assign under a flavor

symmetry GA, which is a direct product of cyclic groups, the following charges:

10i ∼ (pi1, p
i
2, . . . , p

i
m) = pi,

5i ∼ (qi1, q
i
2, . . . , q

i
m) = qi, (8.6)

1i ∼ (ri1, r
i
2, . . . , r

i
m) = ri,

where i is the generation index and m denotes the number of Zn factors of GA.

As an explicit example, we consider the group GA = Z3 ×Z8 × Z9 with charge assign-
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ments

101 ∼ (1, 1, 6), 102 ∼ (0, 3, 1), 103 ∼ (0, 0, 0) ,

51 ∼ (1, 4, 2), 52 ∼ (0, 7, 0), 53 ∼ (0, 0, 1) ,

11 ∼ (2, 0, 6), 12 ∼ (2, 6, 0), 13 ∼ (2, 0, 6) .

(8.7)

These flavor charges generate via the FN mechanism, cf. Chap. 6, the mass matrix textures

Y u
ij ∼




ǫ6 ǫ7 ǫ5

ǫ7 ǫ4 ǫ4

ǫ5 ǫ4 1


 , Y d

ij ∼ ǫ




ǫ4 ǫ3 ǫ3

ǫ4 ǫ2 ǫ4

ǫ6 1 1


 , (8.8a)

Y D
ij ∼ ǫ3




ǫ2 ǫ ǫ2

ǫ2 ǫ ǫ2

1 ǫ 1


 , Y R

ij ∼ ǫ4




1 ǫ2 1

ǫ2 ǫ ǫ2

1 ǫ2 1


 . (8.8b)

Since this set of lepton textures is contained in the seesaw realizations, constructed in

Sec. 6.2 and because the quark matrices obey Eq. (8.5), we do not only know that these

textures lead to viable lepton masses and mixings but we can also reconstruct the corre-

sponding Yukawa couplings. This is also true for the quarks by using the mass ratios of

Eq. (4.1) and the CKM mixings of Eq. (4.4) for Eq. (8.5). The reconstructed mass matrices

including their Yukawa couplings are

Y u ∼




ǫ6 0 − ǫ5

3

0 ǫ4 − ǫ4

2 + ǫ6

8

− ǫ5

3 − ǫ4

2 + ǫ6

8 1


 , Y d ∼




−ǫ4 ǫ3√
2

− ǫ3√
2

ǫ4
√

2ǫ2 − ǫ4

2
√

2
ǫ4

2
√

2

0 1√
2
− 3ǫ4

2
√

2
1√
2

+ ǫ4

2
√

2


 ,

(8.9a)

Y D ∼




(−1
2 − 1√

2
)ǫ2 ǫ√

2
(1
2 −

√
2)ǫ2

(1
2 + 1√

2
)ǫ2 ǫ√

2
− ǫ2

2

− 1√
2

− ǫ√
2

− 1√
2

+ ǫ2

2
√

2


 , Y R ∼




1
2 + ǫ2

2
ǫ2

2
1
2 − ǫ2

2

ǫ2

2 ǫ ǫ2

2

1
2 − ǫ2

2
ǫ2

2
1
2 + ǫ2

2


 . (8.9b)

This leads to a hierarchical mass spectrum for Mdiag
D ∼ diag(ǫ2, ǫ, 1), Mdiag

R ∼ diag(ǫ2, ǫ, 1),

and for the effective neutrino masses Mdiag
ν ∼ diag(ǫ2, ǫ, 1), as well as to the mixings and

phases

(θℓ12, θ
ℓ
13, θ

ℓ
23, δ

ℓ, αℓ1, α
ℓ
2) = (ǫ2, 0, π4 , 0, π, π) ,

(θℓ
′

12, θ
ℓ′
13, θ

ℓ′
23, δ

ℓ′ , αℓ
′

1 , α
ℓ′
2 ) = (ǫ, 0, ǫ2, 0, 0, π) ,

(θD12, θ
D
13, θ

D
23, δ

D, ϕD1 , ϕ
D
2 , ϕ

D
3 ) = (π4 , ǫ

2, ǫ2, π, 0, 0, π) ,

(θD
′

12 , θ
D′

13 , θ
D′

23 , δ
D′
, αD

′

1 , αD
′

2 ) = (ǫ2, π4 , ǫ, 0, π, 0) ,

(θR12, θ
R
13, θ

R
23, δ

R, ϕR1 , ϕ
R
2 , ϕ

R
3 ) = (ǫ2, π4 , ǫ

2, π, 0, π, π) ,

(8.10)
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and we choose ϕℓi = ϕℓ
′

i = ϕD
′

i = αDj = 0 for i = 1, 2, 3 and j = 1, 2 since these phases

appear only in combination with other phases (cf., Sec. 4.2.1). Furthermore, our model

has tan β ∼ 10 and a realistic mass ratio between the first two charged fermion generations

may be achieved by the Georgi-Jarlskog mechanism [60]. The PMNS mixings θ12 ≈ 34◦,

θ13 ≈ 0.2◦, and θ23 ≈ 52◦, exhibit nearly tribimaximal lepton mixing. Note that the quark

mixings are a priori in perfect agreement with experiment since we used them in Eq. (8.5)

for the mass matrix construction. Although the flavor symmetry is supposed to be broken

at some high scale, we can neglect modifications by RG effects within our precision (see

Sec. 5.2.2).

8.2 Scanning SUSY SU(5) GUTs with Abelian Flavor Symme-

tries

The SU(5) model presented in Sec. 8.1 illustrates the method as well as the goal that we

want to reach in this section: a systematic scan of SU(5) models with Abelian flavor sym-

metries, analogous to the lepton flavor model scan of Sec. 6.2. As a starting point, we take

again advantage of the reference list (of seesaw realizations) described in Sec. 6.2. How-

ever, we amend each realization by its SU(5) compatible up- and down-quark mass matrix

according to Eq. (8.5). In this way, we obtain a SU(5) compatible set of textures Mu, Md,

Mℓ, MD, and MR, which we will take as our new reference list modulo trivial realizations

containing, e.g., anarchic textures. Again, we generate all possible flavor charges for each

considered flavor symmetry GA being a direct-product of cyclic groups. The resulting scan

with 437 viable SUSY SU(5) GUTs is shown in Fig. 8.1. Each model yields an excellent fit

to quark and lepton masses, VCKM, and nearly tribimaximal lepton mixing, i.e., θ13 ≪ 1◦

and a normal neutrino mass spectrum. Note that the number of models for a certain flavor

symmetry increases, up to some modulation, with its group order. The simplest flavor

group in our scan, i.e., Z3 ×Z13, generates two SU(5) GUTs and has group order 39. The

most “efficient” group is the second largest one, i.e., Z5 × Z6 × Z7. It provides 55 models

and has group order 210.

8.3 5D SUSY SU(5) GUTs with Non-Abelian Flavor Symmetries

In this section, we want to extend our choice of Abelian flavor symmetries GA to non-

Abelian ones Gf = GA ⋉ GB , where GA are the flavor symmetries shown in Fig. 8.1 and

GB = GB1
× GB2

× GB3
× ... can also be products of cyclic groups. For this upgraded
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Figure 8.1: Overview of SU(5) ×GA models for varying flavor group GA. The graph summarizes
437 realistic GUTs.

model setup, we want to give a geometrical interpretation in 5D. However, note that

the 5D setup serves “just” as a interpretation of flavor symmetry breaking, it is not a

necessary ingredient for the models. The geometry consists of two 5D throats in the flat

limit [119,120] of length πR1 and πR2, with 1/R1,2 & MGUT ≃ 1016 GeV, which are glued

together at a common point, the ultraviolet (UV) brane. The endpoints at y1 = πR1 and

y2 = πR2 are called infrared (IR) branes. This setup is shown in Fig. 8.2. The matter

field zero modes 10i,5i, and 1i, are symmetrically localized at y1 = πR1 and y2 = πR2 by

introducing suitable bulk fermion masses [119,121] and boundary conditions. This allows

a description of the fermion superfield zero modes in usual 4D N = 1 SUSY assuming

that some 4D N = 2 SUSY (which is equivalent to minimal 5D SUSY) is locally broken

to 4D N = 1 SUSY at the UV/IR branes. Contrary to this localization, the SU(5)

gauge supermultiplet and the Higgs hypermultiplets 5H and 5
H

are freely propagating

in the two throats. Thereby, the 24H bulk Higgs hypermultiplet acquires a VEV in the
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Figure 8.2: 5D SUSY SU(5) GUTs on two 5D throats. The matter field zero modes 10i,5i, and
1i, are symmetrically located at y1 = πR1 and y2 = πR2. The Higgs hypermultiplets

5H ,5
H
,24H , and the gauge supermultiplet, can propagate freely within the two throat

setup.

hypercharge direction 〈24H〉 ∝ diag(−1
2 ,−1

2 ,
1
3 ,

1
3 ,

1
3 ). This breaks1 SU(5) down to the

SM gauge group and we obtain an explanation for the SM quantum numbers and charge

quantization. Summarizing this, we can introduce the 5D Lagrangian for the SUSY SU(5)

Yukawa couplings of the zero mode fermions as

LSU(5)
5D =

∫
d2θ

[
δ(y1 − πR1)

(
Ỹ u
ij,R1

10i10j5
H + Ỹ d

ij,R1
10i5j5

H
+ Ỹ D

ij,R1
5i1j5

H

+MRỸ
R
ij,R1

1i1j
)

+ δ(y2 − πR2)
(
Ỹ u
ij,R2

10i10j5
H + Ỹ d

ij,R2
10i5j5

H

+Ỹ D
ij,R2

5i1j5
H +MRỸ

R
ij,R2

1i1j
)

+ H.c.
]
,

(8.11)

where Ỹ x
ij,R1

and Ỹ x
ij,R2

(x = u, d,D,R) are the Yukawa matrices (with mass dimension

−1/2) and MR ≃ 1014 GeV is the B−L breaking scale. This leads to the dimensionless low

energy Yukawa coupling matrices Y x
ij = (M∗πR)−1/2(Ỹ x

ij,R1
+ Ỹ x

ij,R2
) of Eq. (8.11), where

M∗ ⋍ (M2
PlR

−1
1,2)

1/3 and MPl is the usual 4D Planck mass.

Now that we have fixed the setup, we want to apply this to our example of Sec. 8.1. Note

that the top Yukawa coupling is unsuppressed by the flavor symmetry and can be large

without requiring strong coupling as long as M∗R1,2 . 16π2 [123]. The flavor symmetry

in this model is GA = Z3 × Z8 × Z9. This flavor symmetry will now be extended to

Gf = GA ⋉GB = GA ⋉ (GB1
×GB2

×GB3
) , (8.12)

where GBi
are supposed to be the following discrete symmetries

GB1
: 52 ↔ 53, GB2

: 11 ↔ 13, GB3
: 103 → −103 . (8.13)

The result is that GA controls the order of magnitude of the mass matrices, i.e., it leads

to the textures presented in Sec. 8.1, while GB induces for the Yukawa couplings the exact

1In usual 5D GUT models, SU(5) is broken by boundary conditions [122].
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relations

Y d
32 = Y d

33, Y D
21 = Y D

23 , Y D
31 = Y D

33 , Y R
11 = Y R

33 . (8.14)

GA is spontaneously broken by singly charged flavon fields located at the IR branes (for a

4+3 dimensional model with flavor symmetry breaking by Wilson lines see Ref. [124]). The

breaking of GB in order to obtain the right predictions for the Yukawa couplings can be

done at both ends of the throats since the 4D Yukawa couplings receive contributions from

both, see Eq. (8.11). Therefore, we can break GB at y1 = πR1 to GB1
and at y2 = πR2 to

GB2
×GB3

. This symmetry breaking is illustrated in Fig. 8.3.

GB1

GB2
×GB3

GA GA

GB2
×GB3

GB1

πR1
y1 0 y2 πR2

Figure 8.3: Local breaking of the flavor symmetry Gf = GA ⋉ (GB1
× GB2

×GB3
) to GA at the

IR branes.

In Sec. 8.1, we have already presented the resulting PMNS mixing angles for Gf = GA.

However, GA predicts only the texture, while Gf = GA ⋉ GB also controls the Yukawa

couplings. This allows us to see the effects of the transition from Abelian flavor symmetries

to non-Abelian ones. For this, we have plotted the distribution of θ23 in Fig. 8.4 for

a random variation of all Yukawa couplings in Eqs. (8.9a) and (8.9b) up to 10% with

Gf = GA (left) and Gf = GA ⋉ GB (right). In Fig. 8.4, we can see the effect of the

non-Abelian nature of the flavor symmetry on θ23. The leading order term of the sum rule

for the atmospheric mixing angle, i.e., θ23 ≈ π/4 + ǫ/
√

2 is exactly predicted by the flavor

symmetry. In addition, we obtain for the first time the QLC relation θ12 ≈ π/4− ǫ/
√

2 in

an SU(5) GUT.

Since SU(5) is broken by a bulk Higgs field, the bosons of the broken gauge symmetries

acquire GUT scale masses and consequently, all fermion zero modes can be localized at

the IR branes without introducing rapid proton decay through d = 6 operators. Doublet-

triplet splitting and suppressing d = 5 proton decay may, e.g., be achieved by resorting

to suitable extensions of the Higgs sector [125, 126]. Again, since our flavor symmetry is

global, quantum gravity effects might require it to be gauged [111]. Anomalies can then

be canceled via Chern-Simons terms in the 5D bulk.
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Figure 8.4: Effect of the non-Abelian flavor symmetry GA ⋉ GB (right) on θ23 compared to the
Abelian flavor symmetry GA (left) for a 10% variation of all Yukawa couplings. The
right plot illustrates the exact prediction of the zeroth order term π/4 in the sum rule
θ23 = π/4 + ǫ/

√
2 due to the non-Abelian nature of the flavor symmetry.

8.4 Summary

In this chapter, we have extended our approach of Chap. 6 in various ways. First, we

have considered additionally the quark sector within a SU(5) GUT scenario and added to

each seesaw representation the corresponding quark mass matrices, which we have used

as our new reference list. Second, we have followed the method of Chap. 6 and generated

systematically all flavor charge combinations for numerous flavor symmetries that are direct

products of cyclic groups. As a result we obtained 437 SU(5) GUTs with Abelian flavor

symmetries [112]. Each model yields an excellent fit to fermion masses, quark mixing

and nearly tribimaximal lepton mixing. We have presented an explicit example how the

Abelian flavor symmetries can be extended to non-Abelian groups and an embedding of the

model into a 5D scenario, which allows a geometrical interpretation of the flavor symmetry

breaking. For this example, we have shown the impact of the non-Abelian nature of the

flavor symmetry on the atmospheric mixing angle as compared to the Abelian group. In

addition, we have obtained, for the first time, the QLC relation θ12 ≈ π/4 − ǫ/
√

2 in an

explicit SU(5) GUT.



Chapter

9
Summary and Outlook

In physics, symmetries are a fundamental concept to explain the properties and behavior

of particles. This is formulated in the SM of particle physics. But it leaves still some

open questions such as why do we have three generations of particles with such a strong

hierarchy in the quark sector, why are the quark and lepton mixings so different or what

is the structure of the Higgs sector. In order to address these open questions of the

SM and to predict future experimental results, different approaches are considered. One

possibility are GUTS such as SU(5) or SO(10). GUTs are vertical symmetries since they

accommodate the SM particles into multiplets. A convincing, complementary way is to

introduce a horizontal symmetry, i.e., a flavor symmetry which can serve as an explanation

for the strong mass hierarchy among quarks and charged leptons, the different mixings in

the quark and lepton sectors. In combination with the seesaw mechanism, predicted by

some GUTs, also the smallness of neutrino masses can be understood and physics near

the GUT scale can be probed by neutrinos. In this thesis, we have combined of all three

elements, i.e., GUTs, seesaw mechanism, and flavor symmetries.

An appealing approach is to use discrete non-Abelian flavor symmetries such as A4 or

T ′ since they are very predictive. However, in general, such models especially in combina-

tion with GUTs, usually have a very complicated Higgs sector and need fine-tuning. An

alternative is provided by the Froggatt-Nielsen mechanism having a comparatively simple

scalar sector. In addition, discrete flavor symmetries such as ∆(27), A4,... are isomorphic

to semi-direct products of cyclic groups. For example, A4 is isomorphic to the semi-direct

71
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product Z3 ⋉ (Z2 × Z2). Therefore, we have used the FN mechanism for products of

cyclic groups to construct lepton flavor models. All of these lepton models lead to nearly

tribimaximal mixing, have a simple scalar sector, and use the type-I seesaw without fine-

tuning. The so called tribimaximal mixing scenario, which predicts sin2 θ12 = 1/3, zero

Ue3 and maximal θ23, perfectly fit current experimental data. Small breaking terms in

the mass matrices generates deviations from the tribimaximal scheme and lead to testable

correlations between the parameters.

All models exhibit our hypothesis of extended quark-lepton complementarity stating

that all masses and mixing are some powers of the Cabibbo angle, where the zeroth order

for the mixings is interpreted as maximal mixing. This is motivated by the observed quark

mixing matrix as well as µ-τ -symmetry. The models include special cases, often discussed

in literature, such as diagonal charged lepton and right-handed neutrino mass matrices,

respectively. But we also obtain models with maximal mixing among charged leptons as

well as neutrinos, where the mixing in the neutrino sector can stem form both, the Dirac

and the Majorana neutrino mass matrix. In addition, this general approach reveals new

features such as new mass matrix textures and new sum rules.

In an approach similar to the one described above, we have constructed SUSY SU(5)

GUTs with products of cyclic flavor symmetries. All of these GUT models predict the

CKM matrix and not the unit matrix as often stated in literature, a nearly tribimaximal

PMNS matrix as well as all quark and lepton mass hierarchies. Also the extension to

non-Abelian semi-direct products of Zn symmetries was done. Thereby, we could show the

effect of non-Abelian flavor symmetries on the mixing angles as compared to the Abelian

case. In order to obtain a geometrical interpretation of the symmetry breaking, the model

has been extended to a simple 5D SUSY SU(5) GUT on two throats.

The lepton models and the SUSY SU(5) GUTs are based on the type-I seesaw mech-

anism. Therefore, interesting phenomenological implications arise in addition to neutrino

oscillation experiments and 0νββ experiments. Lepton flavor violating processes for exam-

ple. These were investigated for the LHC relevant benchmark scenario SPS1a’ in mSUGRA.

For this purpose, we have complexified the textures by introducing random CP phases at

the Lagrangian level and analyzed the resulting LFV decay rates. This leads to an en-

hancement of the LFV rates of typically an order of magnitude as compared to the CP

conserving case. Moreover, the branching ratios exhibit a strong dependence on the choice

of the phases in the Lagrangian, i.e., the LFV rates appear to be essentially uncorrelated

with the possible high- and low energy lepton mixing parameters.



73

Apart from the work done so far, further phenomenological investigations would be

interesting in order to select the most promising models and to extend the existing frame-

work. One phenomenological possibility is to include leptogenesis. Also from the model

building perspective, different approaches could be considered. One possibility would be

to consider embedding of discrete flavor symmetries into continuous ones and gauge them

in order to avoid potentially harmful quantum gravity effects. This could also be combined

with GUT scenarios which are more predictive than SU(5). Another approach could arise

from the group theoretical side. There, a more detailed analysis of flavor symmetries and

their isomorphisms would bring a greater insight into (systematic) model building. These

three direction, phenomenology, GUTs, and group theory, are only a selection. Also inter-

esting are other topics such as a more detailed analysis of our obtained textures, model

building implications of flavor symmetries and for our models in particular, astrophysical

and LHC/ILC phenomenology as well as adjoined topics, where we can gain new insights.
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A
Appendix

A.1 Supplementary Information for Seesaw Realizations

Here, we give supplementary information to Table 5.1 in order to be able to reproduce the

mass matrix textures and realizations. These contain, besides the phases of Uℓ, UD, UD′ ,

and UR, the PMNS mixing angles θij, the performance indicator χ2 defined in Eq. (5.4),

and in the last column the number of realizations leading to this specific texture set. Note

that we choose ϕD
′

1,2,3 = αD1,2 = 0, since these phases appear in M th
eff only in combination

with other phases and can thus be absorbed (see Sec. 4.2.1).

# (δl, αl
1
, αl

2
) (δD, ϕD

1
, ϕD

2
, ϕD

3
) (δD′

, αD′

1
, αD′

2
) (δR, ϕR

1
, ϕR

2
, ϕR

3
) (θ12, θ13, θ23) χ2 Cases

1 (0, π, 0) (π, 0, 0, π) (π, π, π) (0, 0, 0, π) (34.0◦, 0.2◦, 52.2◦) 7.12 18

2 (π, 0, π) (π, 0, 0, π) (0, 0, π) (π, 0, π, π) (33.6◦, 0.2◦, 51.5◦) 5.29 38

3 (π, 0, 0) (0, 0, π, 0) (0, 0, 0) (π, 0, π, 0) (33.5◦, 0.2◦, 51.3◦) 4.9 26

4 (0, 0, π) (0, 0, 0, π) (π, 0, π) (π, 0, π, π) (33.5◦, 0.1◦, 51.2◦) 4.71 17

5 (0, 0, 0) (0, 0, 0, 0) (0, π, 0) (0, 0, 0, π) (33.0◦, 0.4◦, 51.2◦) 4.7 17

6 (π, π, 0) (π, 0, 0, 0) (π, π, π) (0, 0, 0, 0) (33.3◦, 0.4◦, 51.2◦) 4.7 177

7 (π, π, 0) (π, 0, 0, 0) (0, 0, 0) (π, 0, 0, 0) (33.3◦, 0.4◦, 51.2◦) 4.7 63

8 (0, 0, π) (0, 0, 0, π) (0, π, 0) (0, 0, π, π) (33.5◦, 0.1◦, 51.2◦) 4.71 17

9 (π, π, π) (0, 0, π, 0) (π, 0, 0) (0, 0, π, 0) (32.9◦, 0.2◦, 51.2◦) 4.76 23

10 (π, 0, 0) (π, 0, 0, π) (0, 0, 0) (0, 0, 0, π) (33.2◦, 0.2◦, 51.3◦) 4.78 597

11 (π, 0, 0) (π, 0, 0, π) (0, 0, 0) (0, 0, 0, π) (33.2◦, 0.2◦, 51.3◦) 4.78 835

75
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12 (0, π, π) (0, 0, 0, 0) (0, π, 0) (π, 0, 0, π) (33.4◦, 0.0◦, 51.3◦) 4.81 475

13 (0, 0, 0) (π, 0, 0, π) (0, 0, 0) (π, 0, 0, 0) (33.4◦, 0.2◦, 51.3◦) 4.84 104

14 (π, 0, 0) (π, 0, π, 0) (π, π, 0) (0, 0, 0, π) (33.5◦, 0.6◦, 51.3◦) 4.89 14

15 (π, 0, 0) (0, 0, π, 0) (0, 0, 0) (π, 0, π, 0) (33.5◦, 0.2◦, 51.3◦) 4.9 17

16 (π, 0, 0) (π, 0, π, 0) (0, π, 0) (0, 0, 0, π) (33.5◦, 0.6◦, 51.3◦) 4.9 120

17 (π, 0, 0) (π, 0, 0, 0) (0, 0, π) (π, 0, 0, π) (33.3◦, 0.0◦, 51.4◦) 4.96 1138

18 (0, π, π) (0, 0, π, π) (0, π, π) (0, 0, π, π) (33.5◦, 0.2◦, 51.4◦) 4.97 9

19 (0, π, π) (0, 0, 0, 0) (0, 0, 0) (0, 0, 0, 0) (33.4◦, 0.0◦, 51.4◦) 4.99 387

20 (π, 0, π) (π, 0, 0, 0) (0, π, 0) (0, 0, π, π) (33.7◦, 0.2◦, 51.2◦) 5.02 26

21 (π, 0, 0) (0, 0, 0, π) (0, 0, 0) (0, 0, 0, π) (33.4◦, 0.1◦, 51.5◦) 5.03 776

22 (π, 0, 0) (0, 0, 0, π) (0, 0, π) (π, 0, π, π) (33.2◦, 0.1◦, 51.5◦) 5.03 876

23 (π, 0, 0) (0, 0, 0, π) (π, π, 0) (0, 0, π, π) (33.2◦, 0.1◦, 51.5◦) 5.03 1351

24 (π, π, π) (0, 0, π, 0) (0, π, π) (π, 0, π, π) (33.5◦, 0.3◦, 51.4◦) 5.05 27

25 (π, 0, 0) (0, 0, π, 0) (π, π, 0) (0, 0, 0, π) (33.5◦, 0.1◦, 51.4◦) 5.06 392

26 (π, 0, 0) (0, 0, 0, π) (0, 0, 0) (0, 0, 0, π) (33.4◦, 0.1◦, 51.5◦) 5.09 307

27 (0, 0, π) (0, 0, 0, π) (0, π, 0) (0, 0, π, 0) (33.5◦, 0.2◦, 51.4◦) 5.09 26

28 (π, 0, 0) (0, 0, π, 0) (π, 0, 0) (π, 0, π, 0) (33.7◦, 0.2◦, 51.3◦) 5.11 296

29 (π, 0, π) (π, 0, 0, π) (π, π, π) (0, 0, 0, π) (33.6◦, 0.2◦, 51.4◦) 5.16 5

30 (π, 0, π) (π, 0, 0, π) (π, π, π) (0, 0, 0, π) (33.6◦, 0.2◦, 51.4◦) 5.16 5

31 (π, 0, π) (π, 0, 0, π) (0, 0, π) (π, 0, π, π) (33.6◦, 0.2◦, 51.5◦) 5.29 38

32 (π, 0, 0) (0, 0, π, 0) (0, π, π) (π, 0, 0, π) (33.3◦, 0.2◦, 51.7◦) 5.31 343

33 (π, π, π) (π, 0, 0, 0) (0, 0, 0) (0, 0, π, 0) (33.6◦, 0.1◦, 51.5◦) 5.31 83

34 (π, π, π) (π, 0, 0, 0) (0, 0, 0) (0, 0, π, 0) (33.6◦, 0.1◦, 51.5◦) 5.31 81

35 (0, π, 0) (π, 0, 0, π) (0, π, 0) (π, 0, π, 0) (33.7◦, 0.1◦, 51.5◦) 5.32 143

36 (π, 0, π) (π, 0, 0, π) (π, 0, 0) (0, 0, 0, π) (32.9◦, 0.2◦, 51.6◦) 5.33 17

37 (π, 0, π) (π, 0, 0, π) (0, π, π) (0, 0, 0, 0) (32.9◦, 0.2◦, 51.6◦) 5.33 17

38 (π, 0, 0) (0, 0, 0, π) (π, 0, 0) (0, 0, 0, π) (33.2◦, 0.1◦, 51.7◦) 5.33 17

39 (π, 0, 0) (0, 0, 0, π) (π, 0, 0) (0, 0, 0, π) (33.2◦, 0.1◦, 51.7◦) 5.33 33

40 (π, 0, 0) (0, 0, 0, 0) (0, 0, π) (π, 0, 0, π) (33.2◦, 0.1◦, 51.7◦) 5.37 17

41 (π, 0, π) (π, 0, 0, π) (π, 0, 0) (0, 0, π, π) (33.1◦, 0.0◦, 51.8◦) 5.47 26

42 (π, 0, π) (π, 0, 0, π) (0, π, π) (0, 0, 0, π) (33.1◦, 0.0◦, 51.8◦) 5.47 17

43 (0, 0, π) (π, 0, π, 0) (π, 0, 0) (0, 0, 0, π) (33.3◦, 0.2◦, 51.8◦) 5.48 5

44 (0, 0, π) (π, 0, π, 0) (π, 0, 0) (0, 0, 0, π) (33.3◦, 0.2◦, 51.8◦) 5.48 14

45 (π, 0, π) (π, 0, 0, π) (0, π, π) (π, 0, π, π) (34.0◦, 0.3◦, 51.3◦) 5.66 18

46 (0, 0, 0) (π, 0, 0, π) (0, 0, 0) (π, 0, 0, π) (33.9◦, 0.7◦, 51.5◦) 5.84 5

47 (0, 0, 0) (π, 0, 0, π) (π, 0, 0) (0, 0, 0, 0) (34.0◦, 0.7◦, 51.5◦) 5.96 5

48 (π, π, π) (0, 0, 0, π) (0, π, π) (0, 0, 0, 0) (33.7◦, 0.1◦, 51.9◦) 5.98 9
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49 (π, 0, π) (π, 0, 0, 0) (π, π, π) (0, 0, 0, π) (33.5◦, 0.4◦, 52.0◦) 6.02 34

50 (π, 0, π) (π, 0, 0, 0) (0, 0, 0) (π, 0, π, 0) (33.5◦, 0.4◦, 52.0◦) 6.02 26

51 (π, 0, π) (0, 0, 0, 0) (π, 0, 0) (0, 0, 0, π) (33.8◦, 0.3◦, 51.9◦) 6.19 86

52 (π, 0, π) (0, 0, 0, 0) (π, 0, 0) (0, 0, 0, π) (33.8◦, 0.3◦, 51.9◦) 6.19 87

53 (π, 0, π) (0, 0, 0, 0) (0, π, π) (0, 0, π, π) (33.8◦, 0.3◦, 51.9◦) 6.19 108

54 (0, 0, 0) (0, 0, π, π) (0, π, π) (0, 0, π, π) (34.4◦, 0.1◦, 51.1◦) 6.26 14

55 (π, π, π) (π, 0, π, π) (0, 0, 0) (0, 0, π, π) (34.4◦, 0.1◦, 51.1◦) 6.26 14

56 (0, 0, 0) (π, 0, 0, π) (π, π, 0) (π, 0, 0, π) (32.5◦, 0.2◦, 52.0◦) 6.44 79

57 (0, 0, 0) (π, 0, 0, π) (π, π, 0) (π, 0, 0, π) (32.5◦, 0.2◦, 52.0◦) 6.44 34

58 (0, π, π) (π, 0, 0, π) (0, 0, 0) (0, 0, π, 0) (34.2◦, 0.7◦, 51.5◦) 6.46 5

59 (0, π, 0) (0, 0, π, 0) (0, 0, π) (0, 0, 0, π) (34.0◦, 0.2◦, 52.0◦) 6.59 5

60 (0, 0, 0) (π, 0, 0, π) (π, 0, π) (0, 0, 0, π) (34.0◦, 0.4◦, 52.0◦) 6.77 5

61 (0, π, 0) (π, 0, 0, π) (0, 0, 0) (0, 0, π, 0) (34.0◦, 0.2◦, 52.2◦) 7.12 18

62 (0, π, 0) (π, 0, 0, π) (π, π, π) (0, 0, 0, π) (34.0◦, 0.2◦, 52.2◦) 7.12 18

63 (0, π, 0) (π, 0, 0, π) (0, 0, 0) (0, 0, π, 0) (34.0◦, 0.2◦, 52.2◦) 7.12 18

64 (π, π, π) (π, 0, 0, 0) (0, 0, π) (0, 0, π, π) (34.1◦, 0.2◦, 52.2◦) 7.25 17

65 (π, 0, π) (0, 0, π, π) (0, 0, π) (0, 0, 0, 0) (34.5◦, 0.3◦, 51.8◦) 7.84 9

66 (0, π, 0) (π, 0, π, π) (0, π, 0) (0, 0, 0, 0) (34.5◦, 0.3◦, 51.8◦) 7.84 9

67 (π, π, π) (0, 0, 0, 0) (0, π, π) (0, 0, π, π) (34.9◦, 0.4◦, 51.8◦) 9.31 26

68 (π, π, π) (0, 0, 0, 0) (π, 0, 0) (0, 0, 0, 0) (34.9◦, 0.4◦, 51.8◦) 9.31 31

69 (0, 0, 0) (π, 0, 0, 0) (0, 0, 0) (0, 0, π, π) (34.9◦, 0.4◦, 51.8◦) 9.31 26

70 (0, 0, 0) (π, 0, 0, 0) (π, π, π) (0, 0, 0, 0) (34.9◦, 0.4◦, 51.8◦) 9.31 31

71 (0, 0, 0) (π, 0, 0, 0) (0, π, 0) (0, 0, π, 0) (35.3◦, 0.3◦, 51.3◦) 10.73 17

72 (0, 0, 0) (π, 0, 0, 0) (0, π, 0) (0, 0, π, 0) (35.3◦, 0.3◦, 51.3◦) 10.73 17

Table A.1: Supplementary information for seesaw realizations of Table 5.1 (ϕD′

1,2,3 = αD
1,2 = 0).

A.2 Supplementary Information for Lepton Flavor Models

Here, we give supplementary information to the models in Table 6.1. By using the data

in Table A.2, a full reconstruction of the mass matrices of the 22 models following the

notation of Sec. 6.1 is possible (for further detailed examples on such reconstructions, see

also Ref. [75]). Note that we choose ϕℓi = ϕℓ
′

i = ϕD
′

i = αDj = 0 for i = 1, 2, 3 and j = 1, 2,

since these phases appear in M th
eff only in combination with other phases and can thus be

absorbed (see Sec. 4.2.1).
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mD
i /mD

mR
i /MB−L

(θℓ12, θ
ℓ
13, θ

ℓ
23)

(δℓ, αℓ1, α
ℓ
2)

(θℓ
′

12, θ
ℓ′
13, θ

ℓ′
23)

(δℓ
′
, αℓ

′

1 , α
ℓ′
2 )

(θD12, θ
D
13, θ

D
23)

(δD, ϕD1 , ϕ
D
2 , ϕ

D
3 )

(θD
′

12 , θ
D′

13 , θ
D′

23 )

(δD
′
, αD

′

1 , αD
′

2 )

(θR12, θ
R
13, θ

R
23)

(δR, ϕR1 , ϕ
R
2 , ϕ

R
3 )

1
(ǫ, 1, ǫ)

(ǫ, 1, 1)

(ǫ2, ǫ2, ǫ2)

(π, π, π)

(π4 , ǫ
2, 0)

(0, 0, 0)

(0, ǫ2, π4 )

(0, 0, 0, 0)

(ǫ, ǫ, ǫ2)

(0, 0, 0)

(ǫ2, π4 , ǫ
2)

(π, 0, π, 0)

2
(ǫ, 1, ǫ)

(ǫ, 1, 1)

(ǫ2, ǫ2, π4 )

(0, 0, 0)

(ǫ, 0, ǫ2)

(0, 0, 0)

(ǫ2, π4 , ǫ
2)

(0, 0, 0, 0)

(ǫ, ǫ2, 0)

(0, π, π)

(ǫ, 0, π4 )

(0, 0, 0, 0)

3
(ǫ, 1, ǫ)

(ǫ, 1, 1)

(ǫ, 0, ǫ2)

(0, 0, 0)

(ǫ, ǫ, ǫ2)

(0, 0, 0)

(ǫ, π4 ,
π
4 )

(π, 0, 0, π)

(ǫ, ǫ, π4 )

(0, π, π)

(ǫ, ǫ, π4 )

(0, 0, 0, π)

4
(ǫ, ǫ, 1)

(ǫ, 1, 1)

(ǫ, ǫ, ǫ2)

(0, π, π)

(π4 , ǫ
2, 0)

(0, 0, 0)

(π4 , ǫ
2, π4 )

(0, 0, π, 0)

(0, ǫ2, π4 )

(0, 0, 0)

(0, ǫ, ǫ2)

(0, 0, π, 0)

5
(ǫ, 1, ǫ)

(ǫ, 1, 1)

(0, ǫ, ǫ2)

(0, π, 0)

(ǫ, 0, ǫ)

(0, 0, 0)

(ǫ, π4 ,
π
4 )

(π, 0, 0, π)

(ǫ2, π4 , ǫ
2)

(0, π, π)

(0, π4 , 0)

(0, 0, 0, π)

6
(ǫ2, 1, ǫ)

(ǫ2, ǫ, 1)

(0, ǫ, ǫ2)

(0, π, 0)

(ǫ, 0, ǫ)

(0, 0, 0)

(ǫ, π4 ,
π
4 )

(π, 0, 0, π)

(ǫ, ǫ, π4 )

(π, 0, 0)

(ǫ, ǫ, π4 )

(π, 0, π, 0)

7
(ǫ2, ǫ, 1)

(ǫ2, ǫ, 1)

(0, ǫ2, π4 )

(0, π, π)

(ǫ, 0, ǫ2)

(0, 0, π)

(π4 , ǫ
2, ǫ)

(0, 0, 0, π)

(0, π4 , ǫ)

(0, 0, π)

(ǫ2, π4 , ǫ
2)

(π, 0, π, π)

8
(ǫ2, 1, ǫ)

(ǫ2, ǫ, 1)

(ǫ2, ǫ, ǫ2)

(0, π, 0)

(ǫ, ǫ2, 0)

(0, 0, 0)

(ǫ, π4 ,
π
4 )

(π, 0, 0, π)

(0, ǫ2, π4 )

(0, 0, π)

(ǫ2, ǫ2, π4 )

(π, 0, π, 0)

9
(ǫ, 1, ǫ)

(ǫ, 1, 1)

(ǫ, 0, ǫ2)

(0, 0, 0)

(ǫ, ǫ, 0)

(0, 0, 0)

(ǫ, π4 ,
π
4 )

(π, 0, 0, π)

(π4 , ǫ, ǫ
2)

(π, 0, π)

(π4 , ǫ, 0)

(0, 0, 0, π)

10
(ǫ2, ǫ, 1)

(ǫ2, ǫ, 1)

(ǫ2, ǫ2, ǫ2)

(π, π, π)

(π4 , ǫ
2, 0)

(0, 0, 0)

(π4 , ǫ
2, π4 )

(0, 0, 0, π)

(ǫ2, 0, ǫ2)

(0, 0, 0)

(ǫ, ǫ2, 0)

(0, 0, 0, 0)

11
(ǫ, 1, ǫ)

(ǫ, 1, 1)

(ǫ, ǫ2, ǫ2)

(π, 0, 0)

(π4 , 0, ǫ
2)

(0, 0, 0)

(ǫ, π4 ,
π
4 )

(π, 0, 0, π)

(ǫ, ǫ2, ǫ)

(π, 0, 0)

(ǫ, ǫ2, ǫ)

(π, 0, 0, 0)

12
(ǫ, 1, ǫ)

(ǫ, 1, 1)

(0, ǫ, ǫ2)

(0, π, 0)

(ǫ, 0, 0)

(0, 0, 0)

(ǫ, π4 ,
π
4 )

(π, 0, 0, π)

(ǫ2, π4 , ǫ)

(0, π, 0)

(ǫ, π4 , ǫ
2)

(π, 0, π, 0)

13
(ǫ2, ǫ, 1)

(ǫ2, ǫ, 1)

(ǫ2, ǫ2, ǫ2)

(π, 0, π)

(ǫ, 0, 0)

(0, 0, 0)

(π4 , ǫ
2, π4 )

(π, 0, π, 0)

(ǫ, ǫ2, 0)

(0, π, 0)

(0, ǫ2, ǫ2)

(0, 0, π, π)
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14
(ǫ2, ǫ, 1)

(ǫ2, ǫ, 1)

(ǫ2, ǫ2, π4 )

(π, π, π)

(ǫ, 0, ǫ2)

(0, 0, π)

(π4 , ǫ
2, 0)

(0, 0, 0, 0)

(ǫ2, π4 , 0)

(0, 0, π)

(ǫ2, π4 , ǫ)

(0, 0, π, 0)

15
(ǫ2, ǫ, 1)

(ǫ2, ǫ, 1)

(ǫ2, ǫ2, π4 )

(π, π, π)

(ǫ, 0, ǫ2)

(0, 0, 0)

(π4 , 0, ǫ
2)

(0, 0, 0, π)

(ǫ2, ǫ, ǫ2)

(0, 0, 0)

(ǫ, ǫ, ǫ2)

(π, 0, 0, π)

16
(ǫ, 1, ǫ)

(ǫ, 1, 1)

(ǫ, ǫ2, π4 )

(π, 0, 0)

(ǫ, 0, ǫ2)

(0, 0, 0)

(ǫ, π4 , ǫ
2)

(π, 0, 0, π)

(π4 , 0, 0)

(0, 0, π)

(π4 , ǫ
2, ǫ2)

(0, 0, 0, 0)

17
(ǫ2, ǫ, 1)

(ǫ2, ǫ, 1)

(ǫ2, ǫ2, π4 )

(π, π, π)

(ǫ, 0, ǫ2)

(0, 0, 0)

(π4 , 0, ǫ
2)

(0, 0, 0, π)

(ǫ2, 0, ǫ2)

(0, 0, 0)

(ǫ, 0, ǫ2)

(0, 0, 0, π)

18
(ǫ2, ǫ, 1)

(ǫ2, ǫ, 1)

(ǫ2, ǫ2, ǫ2)

(π, 0, π)

(ǫ, 0, ǫ2)

(0, 0, 0)

(π4 , ǫ
2, π4 )

(π, 0, π, 0)

(ǫ, ǫ2, ǫ2)

(π, 0, π)

(0, ǫ2, 0)

(0, 0, 0, 0)

19
(ǫ, 1, ǫ)

(ǫ, 1, 1)

(ǫ2, ǫ2, ǫ2)

(π, π, π)

(π4 , 0, ǫ
2)

(0, 0, 0)

(ǫ2, π4 ,
π
4 )

(π, 0, 0, 0)

(0, ǫ, ǫ)

(0, 0, π)

(ǫ2, ǫ2, π4 )

(0, 0, 0, 0)

20
(ǫ2, ǫ, 1)

(ǫ2, ǫ, 1)

(ǫ2, ǫ2, ǫ2)

(0, π, π)

(π4 , 0, 0)

(0, 0, 0)

(π4 , ǫ
2, π4 )

(π, 0, 0, π)

(ǫ2, ǫ2, ǫ2)

(0, 0, 0)

(ǫ, ǫ2, ǫ2)

(π, 0, 0, π)

21
(ǫ, 1, ǫ)

(ǫ, 1, 1)

(ǫ2, ǫ2, ǫ2)

(π, π, π)

(π4 , 0, 0)

(0, 0, 0)

(0, ǫ2, π4 )

(0, 0, 0, 0)

(ǫ, π4 , ǫ)

(0, 0, 0)

(ǫ2, ǫ, ǫ2)

(π, 0, π, 0)

22
(ǫ2, ǫ, 1)

(ǫ2, ǫ, 1)

(ǫ2, ǫ2, 0)

(0, 0, 0)

(π4 , 0, ǫ)

(0, 0, 0)

(π4 , ǫ
2, π4 )

(π, 0, 0, 0)

(ǫ2, π4 , ǫ)

(0, π, 0)

(ǫ2, π4 , 0)

(0, 0, π, 0)

Table A.2: Supplementary information for the reconstruction of the mass matrices of the models

in Table 6.1 (ϕℓ
i = ϕℓ′

i = ϕD′

i = αD
j = 0 for i = 1, 2, 3 and j = 1, 2).
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