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3. Prüfer: Prof. Dr. J. Niemeyer

im Promotionskolloquium.

Tag des Promotionskolloquiums: 25.10.04
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Abstract

The four-dimensional Minkowski space is known to be a good description for space-time

down to the length scales probed by the latest high-energy experiments. Nevertheless,

there is the viable and exciting possibility that additional space-time structure will be

observable in the next generation of collider experiments. Hence, we discuss different

extensions of the standard model of particle physics with an extra dimension at the TeV-

scale. We assume that some of the gauge and Higgs bosons propagate in one additional

spatial dimension, while matter fields are confined to a four-dimensional subspace, the

usual Minkowski space. After compactification on an S1/Z2 orbifold, an effective four-

dimensional theory is obtained where towers of Kaluza-Klein (KK) modes, in addition

to the standard model fields, reflect the higher-dimensional structure of space-time. The

models are elaborated from the 5D Lagrangian to the Feynman rules of the KK modes.

Special attention is paid to an appropriate generalization of the Rξ-gauge and the interplay

between spontaneous symmetry breaking and compactification.

Confronting the observables in 5D standard model extensions with combined precision

measurements at the Z-boson pole and the latest data from LEP2, we constrain the possible

size R of the extra dimension experimentally. A multi-parameter fit of all relevant input

parameters leads to bounds for the compactification scale M = 1/R in the range 4-6 TeV

at the 2σ confidence level and shows how the mass of the Higgs boson is correlated with

the size of an extra dimension. Considering a future linear e+e− collider, we outline the

discovery potential for an extra dimension using the proposed TESLA specifications as an

example.

As a consistency check for the various models, we analyze Ward identities and the gauge

boson equivalence theorem inW -pair production and find that gauge symmetry is preserved

by a complex interplay of the Kaluza-Klein modes. In this context, we point out the close

analogy between the traditional Higgs mechanism and mass generation for gauge bosons

via compactification.

Beyond the tree-level, the higher-dimensional models studied extensively in the literature

and in the first part of this thesis have to be extended. We modify the models by the

inclusion of brane kinetic terms which are required as counter terms. Again, we derive the

corresponding 4D theory for the KK towers paying special attention to gauge fixing and

spontaneous symmetry breaking. Finally, the phenomenological implications of the new

brane kinetic terms are investigated in detail.





Zusammenfassung

Bis hin zu den kleinsten Längenskalen, die bisher in Hochenergieexperimenten getestet wer-

den konnten, lässt sich die Natur auf der Basis des vierdimensionalen Minkowski-Raums

beschreiben. Dennoch kann man die aufregende Möglichkeit nicht ausschließen, dass be-

reits die nächste Generation von Beschleunigerexperimenten eine zusätzliche Struktur der

Raumzeit aufdecken wird. Daher betrachten wir verschiedene Erweiterungen des Standard-

modells der Teilchenphysik mit einer zusätzlichen Dimension im TeV-Bereich. Wir nehmen

an, dass einige oder alle Higgs- und Eichbosonen in einer fünften, raumartigen Dimension

propagieren können, während die fermionische Materie auf den gewöhnlichen Minkowski-

Raum beschränkt bleibt. Durch Kompaktifizierung auf ein S1/Z2 Orbifold wird eine ef-

fektive vierdimensionale Theorie abgeleitet, in der sich die zusätzliche Raumzeitstruktur

durch ein Spektrum von Kaluza-Klein (KK) Moden widerspiegelt. Dabei werden die unter-

suchten Modelle, ausgehend von der 5D Lagrangedichte, bis hin zu den Feynmanregeln für

die KK Moden ausgearbeitet. Insbesondere zeigen wir die konsistente Verallgemeinerung

der Rξ-Eichung und untersuchen das Wechselspiel von spontaner Symmetriebrechung und

Kompaktifizierung.

Um den Radius R der fünften Dimension durch Messungen einzuschränken, benutzen wir

sowohl Daten aus Experimenten auf der Z-Boson-Resonanz als auch LEP2 Wirkunsquer-

schnitte. Bei 2σ Signifikanz finden wir für die verschiedenen Modelle als untere Schranke

für die Kompaktifizierungsskala M = 1/R etwa 4-6 TeV. Mit Hilfe eines Multiparameter-

fits werden auch Korrelationen zwischen der Kompaktifizierungsskala und der Masse des

Higgs-Bosons aufgezeigt. Darüber hinaus wird am Beispiel des TESLA-Projektes das Ent-

deckungspotential eines zukünftigen e+e− Linearbeschleunigers für zusätzliche Raumzeit-

struktur ausgelotet.

Als Konsistenztest für die verschiedenen Modelle untersuchen wir Ward-Identitäten und das

Eichboson-Äquivalenztheorem am Beispiel der W -Boson-Paarproduktion, in der ein kom-

plexes Zusammenspiel der KK Moden die Eichinvarianz sicherstellt. Des Weiteren wird die

enge Analogie zwischen dem traditionellen Higgs-Mechanismus und der Massenerzeugung

für Eichbosonen durch Kompaktifizierung herausgearbeitet.

Auf Einschleifen-Niveau zeigt sich schließlich, dass die einfachsten, im ersten Teil dieser

Arbeit sowie in der Literatur eingehend untersuchten Modelle erweitert werden müssen.

Daher beziehen wir lokalisierte kinetische Terme ein, die als Counterterme benötigt wer-

den. Für die so erweiterten Modelle leiten wir wiederum die effektive 4D Theorie für

die KK Moden ab und untersuchen insbesondere die Eichfixierung und spontane Symme-

triebrechung. Abschließend bestimmen wir den Einfluss der neuen kinetischen Terme auf

die Phänomenologie.





Contents

1 Introduction 1

2 5-Dimensional Abelian Models 7

3 5-Dimensional Extensions of the Standard Model 20

3.1 Higher-Dimensional Non-Abelian Theory . . . . . . . . . . . . . . . . . . . 20

3.2 SU(2)L⊗U(1)Y -Bulk Model . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 SU(2)L-Brane, U(1)Y -Bulk Model . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 SU(2)L-Bulk, U(1)Y -Brane Model . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Fermions on the Brane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Bounds on the Compactification Scale M = 1/R 32

4.1 Framework and Input Parameters . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.1 SU(2)L⊗U(1)Y -Bulk Model . . . . . . . . . . . . . . . . . . . . . . 34

4.1.2 SU(2)L-Brane, U(1)Y -Bulk Model . . . . . . . . . . . . . . . . . . . 35

4.1.3 SU(2)L-Bulk, U(1)Y -Brane Model . . . . . . . . . . . . . . . . . . . 36

4.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Bounds from Precision Observables . . . . . . . . . . . . . . . . . . . . . . 38

4.4 LEP2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.1 Fermion-Pair Production . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.2 W+W− Production . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Combined Bounds on M = 1/R . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



viii CONTENTS

5 Sensitivity at a Linear Collider 50

5.1 GigaZ Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Tests at
√
s = 800 GeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Ward Identities, the Goldstone Boson Equivalence Theorem, and Tree-

Level Unitarity in W -Pair Production 56

6.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 5D Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2.1 5D-QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2.2 Purely Geometric Symmetry Breaking . . . . . . . . . . . . . . . . 61

6.2.3 Bulk-Bulk Model with a Bulk Higgs . . . . . . . . . . . . . . . . . . 64

6.2.4 Bulk-Bulk Model with a Brane Higgs . . . . . . . . . . . . . . . . . 65

6.3 The Phenomenology of W -Pair Production . . . . . . . . . . . . . . . . . . 69

7 Brane Kinetic Terms 72

7.1 5D-QED with Brane Kinetic Terms . . . . . . . . . . . . . . . . . . . . . . 74

7.1.1 The Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.1.2 Gauge Fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.1.3 Brane Kinetic Terms for Both S1/Z2 Branes . . . . . . . . . . . . . 84

7.2 Spontaneous Symmetry Breaking . . . . . . . . . . . . . . . . . . . . . . . 85

7.3 Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3.1 Bulk-Bulk Model with a Brane Higgs . . . . . . . . . . . . . . . . . 89

7.3.2 Other Models with a Brane Higgs . . . . . . . . . . . . . . . . . . . 95

7.3.3 Bulk-Bulk Model with a Bulk Higgs . . . . . . . . . . . . . . . . . . 95

8 Conclusions 98

A Infinite Sums 101

B KK Masses and Couplings to Fermions on the Brane 104

C Observables, SM Predictions, and Input Parameters 108



CONTENTS ix

D Multi-Parameter Fits in the 5DSM 111

E The Unified Approach in Statistics 113

F ∆5DSM
O for Precision Observables 117

F.1 SU(2)L⊗U(1)Y -Bulk Model . . . . . . . . . . . . . . . . . . . . . . . . . . 117

F.2 SU(2)L-Brane, U(1)Y -Bulk Model . . . . . . . . . . . . . . . . . . . . . . . 118

F.3 SU(2)L-Bulk, U(1)Y -Brane Model . . . . . . . . . . . . . . . . . . . . . . . 119

G Kaluza-Klein W(0)W(0)Z(n) and W(0)W(0)γ(n) Couplings 121

H Kaluza-Klein H(0)Z(0)Z(n) Couplings 123

I Feynman Rules for W Bosons and the Associated Goldstone Modes 125

References 129



List of Figures

2.1 Propagators in 5D-QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Vertices in 5D-QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Total cross section for e+e− → µ+µ− in 5D-QED . . . . . . . . . . . . . . . 13

3.1 Feynman rules for the triple gauge-boson coupling . . . . . . . . . . . . . . 22

3.2 Feynman rules for the quartic gauge-boson coupling . . . . . . . . . . . . . 22

4.1 Bounds from precision observables . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 ∆χ2-contours for precision observables . . . . . . . . . . . . . . . . . . . . 43

4.3 Energy dependence of mixing effects and virtual KK exchange . . . . . . . 44

4.4 ∆χ2-contours for combined data . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Sensitivity at TESLA for different channels . . . . . . . . . . . . . . . . . . 52

5.2 Combined sensitivity at TESLA . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Sensitivity and luminosity at TESLA . . . . . . . . . . . . . . . . . . . . . 54

5.4 Sensitivity at TESLA in angular distributions . . . . . . . . . . . . . . . . 55

6.1 Feynman diagrams for W -pair production . . . . . . . . . . . . . . . . . . 59

6.2 Feynman diagrams for Goldstone production . . . . . . . . . . . . . . . . . 60

6.3 Cross section for W -pair production . . . . . . . . . . . . . . . . . . . . . . 70

7.1 Gauge-boson self-energy diagram . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 Gauge-boson self-energy diagram . . . . . . . . . . . . . . . . . . . . . . . 73

7.3 KK Masses as a function of rc/R . . . . . . . . . . . . . . . . . . . . . . . 77

7.4 KK Couplings as a function of rc/R . . . . . . . . . . . . . . . . . . . . . . 89

x



LIST OF FIGURES xi

B.1 KK gauge- and Goldstone-boson propagators . . . . . . . . . . . . . . . . . 105

B.2 Gauge-boson-fermion couplings . . . . . . . . . . . . . . . . . . . . . . . . 107

E.1 Comparison of statistical methods . . . . . . . . . . . . . . . . . . . . . . . 115

G.1 The W(0)W(0)Z(n) and W(0)W(0)γ(n) vertices . . . . . . . . . . . . . . . . . . 122

H.1 The H(0)Z(0)Z(n) vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

I.1 Coupling of photon modes to bulk scalars . . . . . . . . . . . . . . . . . . . 126

I.2 Coupling of Z-boson modes to bulk scalars . . . . . . . . . . . . . . . . . . 127

I.3 Coupling of photon and Z-boson modes to brane scalars . . . . . . . . . . 128



List of Tables

4.1 Bounds from precision observables . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Bounds for different significance levels . . . . . . . . . . . . . . . . . . . . . 41

4.3 Effect of correlations on the bounds . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Bounds from LEP2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Combined bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Sensitivity at GigaZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

C.1 SM predictions and measurements for precision observables . . . . . . . . . 110

F.1 Predictions for ∆5DSM
O /X in the SU(2)L⊗U(1)Y -bulk model . . . . . . . . . 118

F.2 Predictions for ∆5DSM
O /X in the SU(2)L-brane, U(1)Y -bulk model . . . . . 119

F.3 Predictions for ∆5DSM
O /X in the SU(2)L-bulk, U(1)Y -brane model . . . . . 120

xii







Chapter 1

Introduction

In how many dimensions do we live? There are at least two possible answers to this

fundamental question: So far, all phenomenologically successful physical theories can be

formulated within a space-time consisting of one time-like and three space-like dimensions.

That is, all our experience starting from our daily life and reaching out to experiments at

high-energy colliders or observations on the evolution of the universe is in agreement with

the statement that the world is four-dimensional. But on the other hand, will the world still

look four-dimensional if we probe nature at higher energy scales or shorter distances, e.g.

at CERN’s Large Hadron Collider (LHC), at a future e+e− linear collider, or in some other

ingenious experiment? The answer is simply: We do not know. To clarify this fundamental

question one should investigate characteristic features of higher-dimensional theories and

their phenomenological signatures as it is done in this thesis for particular model scenarios.

The question about the dimensionality of space-time is actually not new. Already at the

beginning of the 20th century Kaluza and Klein speculated [1,2] that the world may consist

of an additional, hidden dimension. They tried to utilize the fifth dimension to unify elec-

tromagnetism and general relativity. Their specific model is no longer of phenomenological

relevance. However, the idea to make use of the specific features of extra dimensions is still

present in today’s model building [3].

Theoretically, the existence of extra dimensions is most strongly supported by string theory.

String theories provide the only known theoretical framework within which gravity can be

quantized and so undeniably play a central role in our endeavors of unifying the funda-

mental forces of nature. Here, extra dimensions are not only a matter of model building.

A consistent quantum-mechanical formulation of string theories requires the existence of

additional dimensions beyond the four we already know.

These new dimensions must be sufficiently small in some appropriate sense, so as to have

escaped our detection so far. As we will see in detail, compactification, where additional

1
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dimensions are considered to be compact manifolds of a characteristic size R (e.g. an n

dimensional torus with common radius R), provides a mechanism which can successfully

hide them. In the original string-theoretical considerations [4] the inverse length 1/R

of the extra compact dimensions and the string scale Ms turned out to be closely tied

to the 4-dimensional Planck mass MP = 1.9 × 1019 GeV with the involved mass scales

being of the same order. That is why these extra dimensions have not been of immediate

phenomenological interest when string theory was born thirty years ago. There is simply

no hope to directly probe an extra dimension of Planck size by collider experiments.

More recent studies, however, have shown [5–12] that there could be conceivable scenarios

of stringy nature where 1/R and Ms may be lowered independently of MP by several or

many orders of magnitude. Taking such a realization to its natural extreme, the radical

scenario can be considered in whichMs is of order TeV and represents the only fundamental

scale in the universe at which unification of all forces of nature occurs [9–11].

Although we are not concerned with gravity in the main part of this thesis, let us try to

understand why n extra, flat dimensions with a large radius R can lower the gravitational

scale. After all, this observation [9–11] triggered most of the research on extra dimensions

over the past six years. At distances small compared to R the gravitational potential simply

changes according to the Gauss law in n+ 4 dimensions, i.e.

V (r) ∼ m1m2

M2+n
G

1

rn+1
, (1.1)

where r ¿ R and MG is the true gravitational scale to be distinguished from the Planck

scale MP. At r À R the potential again looks effectively four-dimensional, i.e.

V (r)
rÀR→ m1m2

M2+n
G

1

Rnr
=
m1m2

M2
P

1

r
. (1.2)

Hence, we find the important relation among the parameters MP, MG and R [9–11]:

M2
P = M2+n

G Rn . (1.3)

The apparent weakness of gravity is not due to the enormity of the Planck scale MP but

due to the presence of a large volume factor Rn. The above argument can also be more

stringently formulated in the language of effective field theory [13]. As a result, the true

fundamental gravity scale MG can be much smaller than MP. Thus, the so-called gauge

hierarchy problem is solved if MG is of the order of the electroweak scale. For example,

extra dimensions of size

R ∼ 1

MG

(

MP

MG

)2/n

∼
{

O(1mm), n = 2

O(10 fm), n = 6
(1.4)
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are needed for a gravitational scale —typically of the order of the string scale Ms— in

the TeV range. Therefore, Cavendish-type experiments may potentially test the model by

observing deviations from Newton’s law [9–11] at distances smaller than a mm. The most

recent bound on the size of two extra dimensions is found to be 130 µm [14]. Although

the original hierarchy problem disappears in this setup, the question arises why there is

another physical scale which is also pretty remote from the electroweak scale and set by

the compactification radius around a mm.

A large volume factor is not the only possibility to explain the observed hierarchy between

the electroweak and the Planck scale in an extra-dimensional way. A non-trivial back-

ground metric in a so-called warped extra dimension can also do the job in a quite distinct

way [15,16]. However, we will not go into details of gravitational physics here. A readable

introduction to the subject can be found in [13].

Let us now turn to the Standard Model (SM) of particle physics in the context of extra

dimensions. Obviously, a mm size extra dimension for the photon is excluded by experi-

ment. An electromagnetic potential in analogy to (1.1) is clearly falsified by atomic physics.

Nevertheless, there is a possibility to embed the SM in such an extra-dimensional setup

again provided by string theory. In string theory, there is the concept of branes which allow

to locate degrees of freedom in a subspace of the full space-time [7–12, 17]. Hence, it is

possible to have gravity propagating in large extra dimensions, while the standard model

is confined to a brane and hardly affected until gravity becomes strong in or beyond the

TeV region.

On the other hand there is an alternative setup nature could have chosen. As the afore

mentioned branes may be higher-dimensional as well, in addition to gravitons the SM fields

could also propagate within at least a single extra dimension. No matter if the gravitational

scale is not around the experimental corner at the TeV-scale nature could reveal an extra

dimension populated by SM fields already in the next generation of colliders. This would

lead to fascinating signatures for physics beyond the SM. As we will explicitly show in

Chapter 2, an extra dimension reflects itself in a tower of heavy copies of any bulk field,

i.e. any field propagating in the extra dimension. The masses of these so-called Kaluza-

Klein (KK) modes are found to be multiples of the compactification scale M = 1/R in

the simplest models. Consequently, the extra dimension becomes visible when the heavy

particles can be produced in high-energy experiments or at least leave their fingerprints in

observables.

In this thesis, we consider minimal extensions of the SM. We concentrate on a single extra

dimension to avoid problems in models with more than five dimensions. In six or more

dimensions, already tree-level amplitudes are generally not well-defined because the infinite

sums over diagrams, where towers off KK modes are exchanged, diverge. Thus, an explicit
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cut-off has to be introduced. Five-dimensional models are less UV sensitive.

As a brief summary of my diploma thesis [18], the simplest possible higher-dimensional

theory, QED in five dimensions, is explicitly elaborated in Chapter 2. The basic concepts

for a phenomenologically successful model are presented, in particular the notion of an

orbifold. We use the simplest orbifold S1/Z2 which possesses two branes where parts of

the SM spectrum can be localized. After compactifying the extra dimension on S1/Z2,

we obtain an effective 4-dimensional theory for the usual SM states and the corresponding

infinite towers of massive KK modes. In particular, we consider the question what is

an appropriate extension of the Rξ gauge for the higher-dimensional models. As we will

show, the introduced quantization procedure can be successfully applied to theories with

spontaneous symmetry breaking, no matter if they include Higgs bosons living in the bulk

or on the brane. Most of the technical details are omitted for brevity. A more detailed

construction can be found in my diploma thesis [18].

Concerning fermions in the SM, the situation is a little more intricate, because there are no

chiral fermions in 5D. However, orbifolds allow for the construction of models with chiral

fermions in the low-energy effective 4D theory [19,20] as pointed out in Chapter 2. For the

main part of this thesis, we chose a different setup. The fermionic matter content of the

SM is localized on a brane, i.e. fermions live in the usual Minkowski space.

At this point, we can rephrase the introductory question in more physical terms. How

large can a possible extra dimension in such a framework be so that it is not in conflict

with present experimental data? Localized fermions are shown to couple to each KK

mode of gauge fields in the bulk. Hence, KK excitations mediate interactions between

light SM fermions already at tree-level. These effective contact interactions imply that the

compactification scale M is constrained to lie in the TeV region. In contrast, for so-called

universal extra dimensions [5,12,20–29] where all SM degrees of freedom propagate in the

bulk, the bounds are reduced by almost one order of magnitude. Mainly from the KK loop

contributions to the ρ parameter [21] and the decay Z → bb̄ [28], one finds M >∼ 300 GeV.

Thus, the bounds are not much larger than the energy scale directly probed by the LEP

experiments. As introduced in Section 3, this is due to the fact that there is a remnant of

momentum conservation with respect to the extra dimension in interactions between bulk

fields which survives the orbifold compactification. Corresponding selection rules forbid

large tree-level contributions of KK modes to observables below the compactification scale.

In particular, there are no effective low-energy contact interactions between SM particles

which stem from the exchange of heavy KK modes.

Returning to the class of 5D models with brane fermions, there are different higher-

dimensional extensions of the SM [17, 30] because of its gauge group structure. In fact,

most of the derived phenomenological bounds in the literature were obtained by assuming
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that the SM gauge fields propagate all freely in a common higher-dimensional space [31–41].

In Chapter 3, we lift this limitation and also introduce and discuss models in which either

the SU(2)L or the U(1)Y gauge bosons are confined to the same brane as the fermions [42].

In Chapter 4, we turn our attention to phenomenological aspects. Model by model we

calculate the effects of the fifth dimension on a large number of electroweak observables

at the Z peak and LEP2 cross sections and derive bounds on the compactification scale.

Hence, we clarify the model dependence of the bounds for non-universal SM extensions.

For the first time, we carry out a global multi-parameter fit of the compactification scale

M simultaneously with the SM parameters [43]. This allows us to properly include the

correlations of the compactification scale with the SM parameters, in particular with the

Higgs-boson mass mH [38, 39]. Thus, we identify those models which favor a larger Higgs

mass than the best-fit Higgs mass in the SM.

In Chapter 5, we systematically investigate the sensitivity of future experiments at an

800 GeV linear e+e− collider such as TESLA. In this analysis we also study the improve-

ments which can be expected from the so-called GigaZ option of TESLA, where the machine

is operated at the Z pole with a luminosity 100 times larger than that of LEP.

Apart from experimental constraints and future discovery potential, the consistency of the

higher-dimensional models as quantum theories is investigated. Compactification provides

a mechanism for gauge bosons to acquire a mass. In contrast to spontaneous symmetry

breaking, the resulting massive gauge theory is non-renormalizable. However, as we will

already see in Chapter 2, the two mechanisms for mass generation work in close analogy

to each other. In particular, extra components of the gauge fields play the role of the

would-be Goldstone modes which are eaten up by the massive gauge bosons to form their

longitudinal degrees of freedom. After elaborating the analogy by an appropriate choice for

the gauge fixing, in Chapter 6 we proof the Goldstone boson equivalence theorem [44,45] in

the context of the 5D standard model [46] for tree-levelW -pair production. In this context,

we also consider Ward identities and tree-level unitarity in 5D models [47–50]. Here, we pay

special attention to models in which spontaneous symmetry breaking and compactification

cooperate to form the mass eigenstates of the gauge bosons.

For consistency beyond the tree-level, the simple setup of 5D models as considered in

the first six chapters has to be extended [51]. As we will show in Chapter 7, there are

additional counterterms needed to compensate divergences in the self energies of higher-

dimensional fields. Their origin can be traced back to the orbifold compactification. As a

consequence, these counterterms require so-called brane kinetic terms to be included in the

Lagrangian to start with. Their strength is an additional free parameter of the theory. We

therefore reconsider the derivation of the effective 4D theory in the presence of these new

terms. The spectrum of mass eigenstates and their coupling to brane fermions [52] as well
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as the quantization procedure with an appropriate gauge fixing is derived. Furthermore,

we analyze the phenomenological implications of the brane kinetic terms. This work is

particularly interesting for model building, e.g. for the construction of phenomenologically

viable Higgsless SM extensions [53].

Finally, we conclude with a brief summary in Chapter 8. Useful tools for the analysis of

higher-dimensional models, some interesting side remarks, tabulated results, and Feynman

rules are presented in the appendices.



Chapter 2

5-Dimensional Abelian Models

As a starting point, let us consider the gauge part of the Lagrangian of 5-dimensional

Quantum Electrodynamics (5D-QED) given by

L(x, y) = −1

4
FMN(x, y)F

MN(x, y) + LGF(x, y) , (2.1)

where

FMN(x, y) = ∂MAN(x, y)− ∂NAM(x, y) (2.2)

denotes the 5-dimensional field strength tensor, and LGF(x, y) is the gauge-fixing term. The

Faddeev-Popov ghost terms have been neglected, because the ghosts are non-interacting

in the Abelian case. Our notation for the Lorentz indices and space-time coordinates is:

M,N = 0, 1, 2, 3, 5; µ, ν = 0, 1, 2, 3; x = (x0, ~x); and y = x5 denotes the coordinate of the

additional dimension.

The structure of the conventional QED Lagrangian is simply carried over to the five-

dimensional case. The field content of the theory is given by a single gauge boson AM

transforming as a vector under the Lorentz group SO(4,1). In the absence of the gauge-

fixing and ghost terms, the 5D-QED Lagrangian is invariant under a U(1) gauge transfor-

mation

AM(x, y)→ AM(x, y) + ∂MΘ(x, y) . (2.3)

Hence, the defining features of conventional QED are present in 5D-QED as well. So far, we

have treated the spatial dimensions on the same footing. To hide the additional dimension

at low energies, we will now compactify the extra dimension, i.e., replace the infinitely

extended extra dimension by a compact object.

The simplest compact one dimensional manifold is a circle, denoted by S1, with radius R.

However, as we will see below, compactification on a circle would introduce a massless scalar

to QED. Hence, we require an additional internal reflection symmetry Z2 with respect to

7
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the origin y = 0. So, one is led to the so-called orbifold S1/Z2 which turns out to be

especially well suited for higher-dimensional physics. The extra dimensional coordinate y

runs only from 0 to 2πR where these two points are identified. Moreover, according to the

Z2 symmetry, y and −y = 2πR−y are identified in the following sense: knowing the field

content for the segment y ∈ [0, πR] implies the knowledge of the whole system. In other

words, each 5D field has a particular Z2 parity, i.e. it is even or odd with respect to the

extra dimension. The fixed points y = 0 and y = πR, which do not transform under Z2,

are also called boundaries of the orbifold.

Thus, the compactification on S1/Z2 is reflected in restrictions for the fields. The above

property of gauge symmetry leads to additional constraints. In order to meet all require-

ments, we demand the fields to satisfy the following equalities:

AM(x, y) = AM(x, y + 2πR) ,

Aµ(x, y) = Aµ(x,−y) ,
A5(x, y) = −A5(x,−y) ,
Θ(x, y) = Θ(x, y + 2πR) ,

Θ(x, y) = Θ(x,−y) .

(2.4)

The field Aµ(x, y) is taken to be even under Z2, so as to embed conventional QED with a

massless photon into our 5D-QED. Notice that the reflection properties of the field A5(x, y)

and the gauge parameter Θ(x, y) under Z2 in (2.4) follow automatically if the theory is to

remain gauge invariant after compactification.

Making the periodicity and reflection properties of Aµ and Θ in (2.4) explicit, we can

expand these quantities in Fourier series

Aµ(x, y) =
1√
2πR

Aµ
(0)(x) +

∞
∑

n=1

1√
πR

Aµ
(n)(x) cos

( ny

R

)

,

Θ(x, y) =
1√
2πR

Θ(0)(x) +
∞
∑

n=1

1√
πR

Θ(n)(x) cos
(ny

R

)

.

(2.5)

The Fourier coefficients Aµ
(n)(x) are the so-called Kaluza-Klein (KK) modes. The extra

component A5 of the gauge field is odd under the reflection symmetry and its expansion is

given by

A5(x, y) =
∞
∑

n=1

1√
πR

A5(n)(x) sin
( ny

R

)

. (2.6)

Note that there is no zero mode, a phenomenologically important fact, as we will see in a

moment.
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Using (2.5) and (2.6), we now derive an effective 4D field theory for the four-dimensional

fields, the KK modes. The dependence of the Lagrangian density on the extra coordinate

y is parameterized by simple Fourier functions so that it can be completely removed by

integrating out the extra dimension. From now on, the quantity of interest will be

L(x) =

∫ 2πR

0

dy L(x, y) . (2.7)

In L(x) the higher-dimensional physics is reflected by the infinite tower of KK modes for

each field component. A simple calculation yields

L(x) = − 1

4
F(0)µν F

µν
(0) +

∞
∑

n=1

[

−1

4
F(n)µν F

µν
(n)

+
1

2

( n

R
A(n)µ + ∂µA(n)5

)( n

R
Aµ
(n) + ∂µA(n)5

)

]

+ LGF(x) ,
(2.8)

where LGF(x) is defined in analogy to (2.7). The first term in (2.8) represents conventional

QED involving the massless field Aµ
(0). Note that the other vector excitations A

µ
(n) from the

infinite tower of KK modes come with mass terms, their mass being an integer multiple

of the inverse compactification radius. Therefore, a small radius leads to a large mass or

compactification scale M = 1/R. It is this large scale which is responsible for the fact that

an extra dimension, as it may exist, has not yet been discovered. The extra dimension is,

so to speak, hidden by its compactness.

Moreover, the absence of A5(0) due to the odd Z2 symmetry of A5(x, y) allows us to recover

conventional QED in the low-energy limit of the model. For n ≥ 1, the KK tower A5(n) for

the additional component of the five-dimensional vector field mixes with the vector modes.

The modes A5(n), being scalars with respect to the four-dimensional Lorentz group, play the

role of the would-be Goldstone modes in an Abelian Higgs model in which the correspond-

ing Higgs fields are taken to be infinitely massive. Thus, one is tempted to view the mass

generation for the heavy KK modes by compactification as a kind of geometric Higgs mech-

anism. The Lagrangian (2.8) is still manifestly gauge invariant under the transformation

(2.3) which in terms of the KK modes reads

A(n)µ(x) → A(n)µ(x) + ∂µΘ(n)(x) ,

A(n)5(x) → A(n)5(x)−
n

R
Θ(n)(x) .

(2.9)

The above observations motivate us to seek for a higher-dimensional generalization of ’t-

Hooft’s gauge-fixing condition, for which the mixing terms bilinear in Aµ
(n) and A5(n) are

eliminated from the effective 4-dimensional Lagrangian (2.8). Taking advantage of the fact
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that orbifold compactification generally breaks SO(4,1) invariance [51], one can abandon the

requirement of covariance of the gauge-fixing condition with respect to the extra dimension

and choose the following non-covariant generalized Rξ gauge [42,54]:

LGF(x, y) = − 1

2ξ
(∂µAµ − ξ ∂5A5)

2 . (2.10)

The gauge-fixing term (2.10) is still invariant under ordinary 4-dimensional Lorentz trans-

formations. For some calculation, e.g. radiative corrections to KK masses [55], it can be

convenient to stick to a covariant gauge fixing with respect to all five dimensions. In this

case, Feynman gauge ξ = 1 is the obvious choice.

Upon integration over the extra dimension, the mixing terms in (2.8) drop out apart from

irrelevant total derivatives. Thus, the gauge-fixed four-dimensional Lagrangian of 5D-QED

L(x) = − 1

4
F(0)µν F

µν
(0) −

1

2ξ
(∂µA(0)µ)

2

+
∞
∑

n=1

[

−1

4
F(n)µν F

µν
(n) +

1

2

( n

R

)2

Aµ
(n)A(n)µ −

1

2ξ
(∂µA(n)µ)

2

]

+
∞
∑

n=1

[

1

2
(∂µA(n)5) (∂µA(n)5) −

1

2
ξ
( n

R

)2

A(n)5
2

]

(2.11)

explicitly shows the different degrees of freedom in the model. Gauge-fixed QED is accom-

panied with a tower of its copies for massive gauge bosons. The scalars A(n)5 with gauge

dependent masses resemble the would-be Goldstone bosons of an ordinary 4-dimensional

Abelian Higgs model in the Rξ gauge. From this Lagrangian, it is obvious that the cor-

responding propagators take on their usual form given in Figure 2.1. Hereafter, we shall

refer to the A5(n) fields as Goldstone modes.

In the limit ξ →∞ we recover the usual unitary gauge from the Rξ gauge (2.10) in which

the Goldstone modes decouple from the theory [20,56]. Thus, for the case at hand, we have

seen how starting from a non-covariant higher-dimensional gauge-fixing condition, we can

arrive at the known covariant 4-dimensional Rξ gauge after compactification.
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Figure 2.1: Propagators for the gauge boson and Goldstone modes in 5D-QED.



11

Having established the five-dimensional gauge sector, we now introduce fermions. First, let

us briefly consider fermions living in the 5D bulk [21, 29]. Since γ5 is part of the Clifford

algebra, there are no Weyl spinors in 5D. In other words, the notion of chirality is not well

defined. In analogy to (2.4), transformation properties under the Z2 orbifold symmetry

have to be chosen for the fermion field Ψ, a four component spinor field. In analogy to the

gauge field, the naive choice is

Ψ(x, y) = ±Ψ(x,−y) . (2.12)

However, the Dirac equation for a massless fermion in five dimensions

γM∂MΨ(x, y) = 0 (2.13)

is not compatible with (2.12) because ∂5Ψ has the opposite Z2 symmetry with respect to

Ψ. A compatible Z2 transformation for the fermions is given by

Ψ(x, y) = ± γ5Ψ(x,−y) . (2.14)

Consequently, Ψ± = (1 ± γ5)Ψ has a well defined Z2 parity. In particular, only one of

the projections Ψ± is even and possesses a massless zero mode if expanded in KK modes.

Hence, the low-energy spectrum in the 4D effective theory contains only one projection,

i.e. it is chiral. This is good news for standard model extensions with fermions in the

bulk. Note that a mass term in (2.13) is forbidden if (2.14) is to be compatible with (2.13).

To obtain 5D-QED with a massive non-chiral low-energy spectrum, one has to include a

second fermion with opposite Z2 parity.

However, there is an even easier and phenomenologically challenging alternative to this

approach. The S1/Z2 orbifold, as noted above, has the feature that there are fixed points

y = 0 and y = π not transforming under the Z2 symmetry. As already mentioned in the

introduction, borrowing a concept from string theory, these special points can be considered

as branes. The branes can host localized fields which cannot penetrate the extra dimension.

Using this idea for the fermions, it can be easily formalized by introducing a δ-function in

the Lagrangian density

LF(x, y) = δ(y)Ψ(x) (i γµDµ − mf ) Ψ(x) , (2.15)

where the covariant derivative

Dµ = ∂µ + i e5Aµ(x, y) (2.16)

contains the bulk gauge field Aµ and e5 denotes the coupling constant of 5D-QED. The

obvious generalization for the usual gauge-transformation properties of fermion fields reads

Ψ(x)→ exp (−i e5Θ(x, 0))Ψ(x) . (2.17)
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Figure 2.2: Feynman rules for the vertices in 5D-QED

Again integrating out the fifth dimension, we are left with an effective four-dimensional

interaction Lagrangian

Lint(x) = − eΨ γµ Ψ

(

A(0)µ +
√
2
∞
∑

n=1

A(n)µ

)

, (2.18)

which couples all KK modes to the fermion field on the brane. The coupling constant

e = e5/
√
2πR is the QED coupling constant as measured by experiment. The factor

√
2

in (2.18) is a typical enhancement factor for the coupling of brane fields to heavy KK

modes (n ≥ 1) due to their wave-function normalization in (2.5). Note that the scalar

modes A5(n) do not couple to brane fermions even if Dµ is replaced by DM in (2.15) because

their wave functions vanish at y = 0 according to the odd Z2-symmetry. These interaction

terms together with completely standard kinetic terms for the fermion field complete 5D-

QED. The corresponding Feynman rules for the electron-photon vertex and the analogous

interaction of the heavy KK modes are shown in Fig. 2.2.

An exemplary experimental signature of 5D-QED in future experiments would be a series of

s-channel resonances in muon-pair production at an e+e−-collider as shown in Fig. 2.3. The

generic signatures of extra dimensions in the discussed setup are quite similar to Fig. 2.3

in more realistic theories.

The above quantization procedure can now be applied to more elaborate higher-dimensional

models. If we want to extend the standard model by an extra dimension we have to

understand spontaneous symmetry breaking in this context in order to explain the fermion

and gauge boson masses of the standard model particles. There are numerous attempts to

utilize the extra dimension itself for spontaneous symmetry breaking [57, 58]. In contrast

to these ideas, we will work in a scheme where the traditional Higgs mechanism is at work.

Hence, adding a Higgs scalar in the bulk to 5D-QED, the Lagrangian of the theory reads

L(x, y) = − 1

4
FMN FMN + (DMΦ)∗ (DMΦ) − V (Φ) + LGF(x, y) , (2.19)
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Figure 2.3: Total cross section for e+e− → µ+µ− as a function of center-of-

mass energy on a logarithmic scale. The width Γ of the KK modes is reasonably

approximated by Γ = 0.01n/R.

where DM again denotes the covariant derivative (2.16), e5 the 5-dimensional gauge cou-

pling,

Φ(x, y) =
1√
2
(h(x, y) + i χ(x, y) ) (2.20)

a 5-dimensional complex scalar field, and

V (Φ) = µ25 |Φ|2 + λ5 |Φ|4 (2.21)

(with λ5 > 0) the 5-dimensional Higgs potential. We consider Φ(x, y) to be even under Z2,

perform a corresponding Fourier decomposition, and integrate over y to obtain

LH(x)=
1

2

∞
∑

n=0

[

(∂µh(n)) (∂
µh(n)) −

n2

R2
h2(n) − µ2 h2(n) + (h↔ χ )

]

+ . . . , (2.22)

where the interactions terms are omitted for brevity. For µ2 = µ25 < 0, as in the usual

4-dimensional case, the zero KK Higgs mode acquires a non-vanishing vacuum expectation

value (VEV) which spontaneously breaks the U(1) symmetry. Moreover, as long as the

phenomenologically viable condition |µ| < 1/R is met, the higher KK modes h(n≥1) have

positive mass parameters and h(0) will be the only mode to receive a non-zero VEV

〈h(0)〉 = v =
√

2πR |µ5|2/λ5 . (2.23)

The VEV introduces an additional mass term for each KK mode of the gauge field. By

construction, the zero mode turns from a massless to a massive degree of freedom. The
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masses of the heavy KK modes are slightly shifted. In contrast to the photon-fermion

interaction in Fig. 2.2, the gauge and self interactions of the Higgs fields, omitted in (2.22),

only involve bulk fields. We postpone the discussion of interactions between bulk fields

until Section 3 where we investigate the gauge-boson self-couplings in non-Abelian models.

In the context of spontaneous symmetry breaking, it is instructive to introduce the fields

G(n) and a(n), where

G(n) =
( n2

R2
+ e2v2

)−1/2 ( n

R
A(n)5 + ev χ(n)

)

, (2.24)

and a(n) is the linear combination of A(n)5 and χ(n) which is orthogonal to G(n). In the

effective kinetic Lagrangian of the theory for the nth-KK mode (n ≥ 1)

L(n)kin(x) = − 1

4
F µν
(n) F(n)µν

+
1

2

(

mA(n)A(n)µ + ∂µG(n)
)

(

mA(n)A
µ
(n) + ∂µG(n)

)

+
1

2
(∂µa(n)) (∂

µa(n)) −
1

2
m2

a(n)a
2
(n) + . . . .

(2.25)

G(n) now plays the rôle of a Goldstone mode in an Abelian Higgs model. For n ≥ 1, both

compactification and the traditional Higgs mechanism cooperate to make the KK modes

massive. Consequently, the corresponding Goldstone mode (2.24) is a linear combination

of A(n)5 and χ(n). Since the mass contribution from spontaneous symmetry breaking is

expected to be small compared to the KK masses, the Goldstone modes G(n) are dominated

by the extra component of the gauge field for n ≥ 1. The pseudoscalar field a(n) describes

an additional physical KK excitation degenerate in mass with the KK gauge mode A(n)µ,

i.e.

m2
a(n) = m2

A(n) = (n2/R2) + e2v2 . (2.26)

The spectrum of the zero KK modes is simply identical to that of a conventional Abelian

Higgs model. This is an essential observation because we want to recover known physics in

the low-energy limit when we apply the introduced methods to SM extensions in Chapter 3.

From the above discussion, it is evident that the appropriate gauge-fixing Lagrangian in

(2.19) for a 5-dimensional generalized Rξ-gauge should be

LGF(x, y) = − 1

2ξ

[

∂µA
µ − ξ

(

∂5A5 + e5
v√
2πR

χ

)]2

. (2.27)

The mixing terms in (2.25) are removed and we again arrive at the standard kinetic La-
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grangian for massive gauge bosons and the corresponding would-be Goldstone modes

L(n)kin(x) = − 1

4
F µν
(n) F(n)µν +

1

2
m2

A(n)A(n)µA
µ
(n) −

1

2ξ
(∂µA

µ
(n))

2

+
1

2
(∂µG(n)) (∂

µG(n)) −
ξ

2
m2

A(n)G
2
(n)

+
1

2
(∂µa(n)) (∂

µa(n)) −
1

2
m2

a(n) a
2
(n)

+
1

2
(∂µh(n)) (∂

µh(n)) −
1

2
m2

h(n) h
2
(n) .

(2.28)

The CP-odd scalar modes a(n) and the Higgs KK modes h(n) with mass

mh(n) =
√

(n2/R2) + λ5v2/πR (2.29)

are not affected by the gauge-fixing procedure. Finally, we observe that the limit ξ → ∞
consistently corresponds to the unitary gauge.

As a qualitatively different way of implementing the Higgs sector in a higher-dimensional

Abelian model we can localize the Higgs field at the y = 0 boundary of the S1/Z2 orbifold,

following the example of the fermions in 5D-QED. Introducing the appropriate δ-function

in the 5-dimensional Lagrangian this amounts to

L(x, y) = − 1

4
FMN FMN + δ(y) [ (DµΦ)

∗ (DµΦ) − V (Φ) ] + LGF(x, y) , (2.30)

where the covariant derivative is given by (2.16) and the Higgs potential has its familiar 4-

dimensional form. Since the Higgs potential is effectively four-dimensional the Higgs field,

not having KK excitations as a brane field, acquires the usual VEV. Notice that the bulk

scalar field A5(x, y), as a result of its odd Z2-parity, does not couple to the Higgs sector on

a brane.

After compactification and integration over the y-dimension spontaneous symmetry break-

ing again generates masses for the KK gauge modes Aµ
(n). However, the mass matrix for

the simple Fourier modes in (2.5) is no longer diagonal because of the δ-function in (2.30).

Instead, it is given by

M2
A =













m2
√
2m2

√
2m2 · · ·√

2m2 2m2 + (1/R)2 2m2 · · ·√
2m2 2m2 2m2 + (2/R)2 · · ·
...

...
...

. . .













, (2.31)

where m = ev. Therefore, the Fourier modes are no longer mass eigenstates. In other

words, the Fourier modes are mixed by the equations of motion. One can search for the
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proper eigenmodes of the system before integrating out the extra dimension. This approach

is developed in Section 7.1 for a slightly more complicated model. Here, we will follow an

alternative approach using directly the result (2.31) in the Fourier-mode basis.

To find the mass eigenvalues, one has to calculate the zeros of the characteristic polynomial

det
(

M2
A − λ I

)

=

( ∞
∏

n=1

(

n2/R2 − λ
)

)(

m2 − λ − 2λm2

∞
∑

n=1

1

(n/R )2 − λ

)

(2.32)

of the the mass matrix (2.31). The infinite sum can be performed analytically using the

techniques introduced in Appendix A so that the masses m(n) =
√
λ of the KK mass

eigenstates are found to obey the transcendental equation

m(n) = πm2R cot
(

πm(n)R
)

. (2.33)

The zero-mode mass eigenvalues are slightly shifted from what we expect in a 4D model.

Expanding the right hand side of 2.33 in powers of m(0)R, an approximate calculation to

first order in m2/M2 yields

m2
(0) ≈ m2

(

1− π2

3

m2

M2

)

. (2.34)

The respective mass eigenstates can also be calculated analytically from (2.31) using

Cramer’s rule [59]. They are given by

Âµ
(n)=

(

1 + π2m2R2 +
m2
(n)

m2

)−1/2 ∞
∑

j=0

2m(n)m

m2
(n) − (j/R)2

(

1√
2

)δj,0

Aµ
(j) . (2.35)

In the following, we will distinguish the Fourier modes Aµ
(n) from the mass eigenstates Âµ

(n)

by a hat and by calling only the latter ones KK modes. The couplings of the KK modes

to fermions will also be slightly shifted with respect to the couplings of the Fourier modes

in (2.18). To be specific, the interaction Lagrangian can be parameterized by

Lint = −Ψ γµΨ
∞
∑

n=0

e(n) Â
µ
(n) , (2.36)

where the couplings e(n) of the different mass eigenstates are found by the basis rotation

from the Fourier modes to (2.35). They are given by

e(n) =
√
2 e

(

1 +
m2

m2
(n)

+ π2
m2

M2

m2

m2
(n)

)− 1
2

. (2.37)

For example, the shift in the zero mode coupling is approximately given by

e(0) ≈
(

1 − π2

3

m2

M2

)

e . (2.38)
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In the Abelian model, the shifts in masses and couplings may seem to be a mere matter of

redefinition of the measured masses and couplings in terms of the fundamental constants

of the 5D theory. However, they lead to important phenomenological implications in the

context of the higher-dimensional standard model, where the various couplings are affected

differently as we will see in Chapter 4.

To find the appropriate form of the gauge-fixing term LGF(x, y) in (2.30), we follow (2.27),

but restrict the scalar field χ to the brane y = 0, that is

LGF(x, y) = − 1

2ξ

[

∂µA
µ − ξ

(

∂5A5 + e5v χ δ(y)
)

]2

. (2.39)

Ignoring the square of the δ-function for a moment, the effective 4-dimensional gauge-fixing

Lagrangian LGF(x) is given by

LGF(x) = − 1

2ξ

(

∂µA
µ
(0)

)2 − 1

2ξ

∞
∑

n=1

(

∂µA
µ
(n) − ξ

n

R
A(n)5

)2

+ ev χ
(

∂µA
µ
(0)

)

+
√
2 ev χ

∞
∑

n=1

(

∂µA
µ
(n)

)

− ξ
√
2 ev χ

∞
∑

n=1

n

R
A(n)5 −

ξ

2
e25v

2χ2δ(0) .

(2.40)

Using this gauge-fixing Lagrangian in (2.30), the mixing terms indeed cancel up to total

derivatives. However, one has to understand the meaning of δ(0) in the last term of (2.40).

On the S1/Z2 orbifold, the δ-function may be represented by

δ(y) =
1

2πR
+

∞
∑

n=1

1

πR
cos
( ny

R

)

, (2.41)

which implies

δ(0) =
1

2πR
+

∞
∑

n=1

1

πR
. (2.42)

The last identity allows us to regularize δ(0) by considering only Fourier modes up to a

given mode number n and obtain the original model in the limit n→∞. Here, in contrast

to non-Abelian models (see Section 3.1), this regularization prescription is not in conflict

with gauge invariance as can be seen in (2.9). However, it should be used with great care.

After integration over the extra dimension, (2.39) leads to the generalized Rξ gauge

L(n)GF(x) = − 1

2ξ

[

∂µA
µ
(n) − ξ

( n

R
A(n)5 +

√
2
( 1−δn,0 )

ev χ
) ]2

, (2.43)

for each mode, where again e = e5/
√
2πR.
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The mass spectrum of the unphysical Goldstone modes may be determined by diagonalizing

the mass matrix

M2
ξ =













e2v2 ( 1 +
∑∞

n=1 2 )
√
2 ( 1/R ) ev

√
2 ( 2/R ) ev · · ·√

2 ( 1/R ) ev ( 1/R )2 0 · · ·√
2 ( 2/R ) ev 0 ( 2/R )2 · · ·

...
...

...
. . .













(2.44)

of the fields χ and A(n)5 in

Lξ
mass(x) = − ξ

2

(

χ, A(1)5, A(2)5, . . .
)

M2
ξ













χ

A(1)5

A(2)5
...













. (2.45)

It can be shown that the characteristic polynomial of M 2
ξ is formally identical to the one

of M2
A in (2.31) [18, 42]. Consequently, the mass eigenvalues of M 2

ξ are given by m(n)

in (2.33). Thus, as expected from usual Rξ gauges in spontaneously broken gauge theories,

we find a one-to-one correspondence of each physical vector mode of mass m(n) to an

unphysical Goldstone mode with gauge-dependent mass
√
ξ m(n). Moreover, the Goldstone

mass eigenstates are given by

Ĝ(n) =

(

1 + π2m2R2 +
m2
(n)

m2

)−1/2(√
2χ +

∞
∑

j=1

2 (j/R)m

m2
(n) − (j/R)2

A(j)5

)

. (2.46)

In the unitary gauge ξ → ∞, the fields Ĝ(n), or equivalently the fields A(n)5 and χ, are

absent from the theory. Therefore, as opposed to the previously described bulk-Higgs

model, the present brane-Higgs model does not predict other massive KK scalars apart

from the physical Higgs boson h.

At this point, we cannot decide which of the two possibilities for the Higgs sector, brane or

bulk Higgs fields, could be realized in nature. We have to be ready to analyze both of them

phenomenologically when we move on to SM extensions. Thus, it is interesting to consider

a model with two complex Higgs fields: one Higgs field Φ1(x, y) propagating in the bulk

and the other field Φ2(x) localized on a brane at y = 0. The 5-dimensional Lagrangian of

this Abelian 2-Higgs model is given by

L(x, y) = − 1

4
FMN FMN + (DM Φ1)

∗ (DM Φ1) + δ(y) (Dµ Φ2)
∗ (Dµ Φ2)

−V (Φ1,Φ2) + LGF(x, y) , (2.47)

where V can be the most general Higgs potential allowed by gauge invariance. The par-

ticular features of the Higgs potential will not be of phenomenological relevance in the
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following as long as it leads to VEVs for both complex scalar fields. Thus, we may linearly

expand Φ1 and Φ2 around their VEVs as follows:

Φ1(x, y) =
1√
2

(

v1√
2πR

+ h1(x, y) + i χ1(x, y)

)

, (2.48)

Φ2(x) =
1√
2

(

v2 + h2(x) + i χ2(x)
)

. (2.49)

Adopting the commonly used notation in 2-Higgs models, we define v1 = v cos β and

v2 = v sin β, i.e. tan β = v2/v1.

In this 5-dimensional Abelian 2-Higgs model, the effective mass matrix M 2
A of the Fourier

modes Aµ
(n) is given by a sum of two matrices:

M2
A = M2

brane + M2
bulk . (2.50)

The first matrix M 2
brane, which includes the geometric KK masses n2/R2, may be obtained

from (2.31) after replacing m2 = e2v2 with m2 = e2v2 sin2 β. The second matrix M 2
bulk is

proportional to unity, M 2
bulk = e2v2 cos2 β � . Due to the particular structure of M 2

A, the

mass eigenvalues of the KK gauge modes are given by

m2
A(n) = m2

(n) + ∆m2
(n) , (2.51)

where ∆m2
(n) = e2v2 cos2 β and m(n) are the roots of the transcendental equation (2.33).

The corresponding mass eigenstates Âµ
(n) are in turn given by (2.35), after m2

(n) has been

replaced with m2
A(n) −∆m2

(n).

Combining our knowledge about gauge fixing, we may eliminate the mixing terms between

Aµ
(n) and the fields A(n)5, χ1(n) and χ2 by choosing

LGF(x, y) = − 1

2ξ

[

∂µA
µ − ξ

(

∂5A5 + e5
v√
2πR

cos β χ1 + e5v sin β χ2 δ(y)

)]2

. (2.52)

Performing a quite lengthy calculation, we have shown in [18,42] that there are also proper

Goldstone modes Ĝ(n) with masses
√
ξmA(n) in this model.

We conclude this section by remarking that even for the most general Abelian case,

an appropriate higher-dimensional gauge-fixing condition analogous to (2.52) has to be

found which leads, after compactification, to the usual Rξ gauge known from ordinary 4-

dimensional theories. In the following, we shall see that the above gauge-fixing quantization

procedure can be extended to non-Abelian models (cf. Chapter 3) as well as to models

with radiatively induced kinetic terms on a brane (cf. Chapter 7).



Chapter 3

5-Dimensional Extensions of the

Standard Model

In this chapter we study minimal 5-dimensional extensions of the SM compactified on an

S1/Z2 orbifold, in which some or all of the SU(2)L and U(1)Y gauge bosons and the Higgs

doublets may propagate in the bulk. As before, we assume that the chiral fermions are

localized on a brane at the y = 0 fixed point of the S1/Z2 orbifold. Before we can start our

investigation, we have to understand how to formulate non-Abelian gauge theories in five

dimensions.

3.1 Higher-Dimensional Non-Abelian Theory

First, we consider a pure non-Abelian theory, such as 5-dimensional Quantum Chromody-

namics (5D-QCD), without interactions to matter. The 5D-QCD Lagrangian reads

L(x, y) = − 1

4
F a

MNF
aMN + LGF + LFP , (3.1)

where

F a
MN = ∂MA

a
N − ∂NA

a
M + g5f

abcAb
MA

c
N (3.2)

and fabc are the structure constants of the gauge group SU(N), with N = 3 for 5D-QCD.

The color indices a, b, c are summed over the generators of the gauge group. In (3.1) the

gauge-fixing term LGF and the induced Faddeev-Popov Lagrangian LFP will be determined

later in this section.

We compactify each of the N gauge fields Aa
M(x, y) separately on S1/Z2 using the con-

straints (2.4). Under an SU(N) gauge transformation Aa
M(x, y) transforms as

Aa
M(x, y) → Aa

M(x, y) + ∂MΘa(x, y)− g5fabcΘb(x, y)Ac
M(x, y) . (3.3)

20
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After a Fourier expansion of Aa
µ(x, y), A

a
5(x, y) and Θa(x, y) according to (2.5), one finds

that the local SU(N) transformation (3.3) amounts to [12]

Aa
(0)µ → Aa

(0)µ + ∂µΘ
a
(0) −

1

2

g5√
2πR

fabc

∞
∑

m=0

21−δm,0 Θb
(m) (1 + δm,0)A

c
(m)µ ,

Aa
(n)µ → Aa

(n)µ + ∂µΘ
a
(n)

− 1

2

g5√
2πR

fabc

∞
∑

m=0

√
2
1−δm,0

Θb
(m)

[√
2
−δm,n

(1 + δm,n)A
c
(|m−n|)µ + Ac

(m+n)µ

]

,

Aa
(n)5 → Aa

(n)5 −
n

R
Θa
(n)

− 1

2

g5√
2πR

fabc

∞
∑

m=0

√
2
1−δm,0

Θb
(m)

(

sgn(n−m)Ac
(|m−n|)5 + Ac

(m+n)5

)

, (3.4)

where n ≥ 1. As opposed to the Abelian case, the KK modes mix with each other under a

non-Abelian gauge transformation. As a result of this mixing, any attempt to truncate the

theory at a given KK mode n = ntrunc will explicitly break gauge invariance. To overcome

this difficulty, it has been suggested to “deconstruct” the extra dimension [29, 60, 61], i.e.

to put it on a lattice. Although we will not make further use of deconstruction, notice that

working on a lattice with a finite number of sites results in a model with only a finite number

of degrees of freedom. The lattice model can be formulated manifestly gauge invariant and

such that the spectrum and the couplings of the full theory are approximately matched up

to some KK number. However, the deconstructed model of course significantly differs if

probed at distances close to the lattice spacing. The full theory is recovered in the limit of

infinitely many lattice sites.

It is straightforward to generalize the gauge-fixing term of 5D-QED given in (2.10) to the

5D-QCD case. The gauge-fixing term in 5D-QCD is given by

LGF(x, y) = − 1

2ξ

(

F a(Aa)
)2
, (3.5)

with

F a(Aa) = ∂µAa
µ − ξ ∂5A

a
5 . (3.6)

In this generalized Rξ gauge the mixing terms Aa
(n)µ∂

µAa
(n)5 again disappear, so the Fourier

modes represent mass eigenstates. As in the Abelian case, the latter is spoiled by a Higgs

mechanism involving brane interactions. The mass eigenstates can then, independently for

each color index, be determined in close analogy to the Abelian model.

In non-Abelian theories the Rξ gauge induces an interacting ghost sector which is described

by the Faddeev-Popov Lagrangian

LFP(x, y) = c̄a
δF a(Aa)

δΘb
cb

= c̄a
[

∂µ
(

∂µδ
ab − g5f

abcAc
µ

)

− ξ ∂5
(

∂5δ
ab − g5f

abcAc
5

)

]

cb . (3.7)
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vertex with 2 scalars:
(k)

( l )

(m)

c, µ g
(

1√
2

)(δk,0+1)

δ̃l,k,m f
abc( p− k )µ

b

a

¡µp

@Rk
¾
q

vertex with 1 scalar:
(k)

( l )

(m)

c

− i g fabc gµν
[

(

m
R

)

(

1√
2

)(δl,0+1)

δ̃k,l,m

−
(

l
R

)

(

1√
2

)(δm,0+1)

δ̃k,m,l

]

b, ν

a, µ

¡µp

@Rk
¾
q

3-boson vertex:
(k)

( l )

(m)

c, ρ

g
(

1√
2

)(δk,0+δl,0+δm,0+1)

δk,l,m

fabc [gµν (k − p)ρ

+ gνρ (p− q)µ

+ gρµ (q − k)ν ]b, ν

a, µ

¡µp

@Rk
¾
q

Figure 3.1: Feynman rules for the triple gauge-boson coupling. δk,l,m and δ̃l,k,m are

defined in (3.8).

vertex with 2 scalars:
( l )

(m)

(k)

(n)

i g2
(

1√
2

)(δk,0+δn,0)

δ̃k,n,l,m

2 gµν
[

facef bde + fadef bce
]

b, ν

a, µ

d

c

4-boson vertex:
( l )

(m)

(k)

(n)

−ig2δk,l,m,n

(

1√
2

)(δk,0+δl,0+δm,0+δn,0+2)

[

facef bde ( gµνgρσ − gµσgνρ )

+ fabef cde ( gµρgνσ − gµσgνρ )

+ fadef bce ( gµνgρσ − gµρgνσ )
]

b, ν

a, µ

d, σ

c, ρ

Figure 3.2: Feynman rules for the quartic gauge-boson coupling. δk,l,m,n and δ̃k,n,l,m

are defined in (3.9).
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In the above, ca(x, y) denote the higher-dimensional ghost fields which are even under

Z2: ca(x, y) = ca(x,−y), i.e. they share the transformation properties with the group

parameters Θa(x, y).

Integrating out the extra dimension in the interaction terms we find the Feynman rules for

the self-interactions of the KK modes Aa
(n)µ and Aa

(n)5 in the effective 4-dimensional theory.

They are exhibited in Figs. 3.1 and 3.2 for the Rξ-gauge (3.5). In the unitary gauge, the

5D-QCD Feynman rules reduce to those presented in [56]. The factors

δk,l,m = δk+l+m,0 + δk+l−m,0 + δk−l+m,0 + δk−l−m,0 ,

δ̃k,l,m = −δk+l+m,0 + δk+l−m,0 − δk−l+m,0 + δk−l−m,0 ,
(3.8)

in the triple gauge boson interaction and

δk,l,m,n = +δk+l+m+n,0 + δk+l+m−n,0 + δk+l−m+n,0 + δk+l−m−n,0

+ δk−l+m+n,0 + δk−l+m−n,0 + δk−l−m+n,0 + δk−l−m−n,0 ,

δ̃k,l,m,n = −δk+l+m+n,0 + δk+l+m−n,0 + δk+l−m+n,0 − δk+l−m−n,0

− δk−l+m+n,0 + δk−l+m−n,0 + δk−l−m+n,0 − δk−l−m−n,0 ,

(3.9)

in the quartic gauge boson interaction imply selection rules for the KK modes Aa
(n)µ and

Aa
(n)5 being typical for the interactions between bulk fields. They are the analogue of

momentum conservation with respect to the extra dimension. On the orbifold, the wave

functions for the mass eigenstates are given by trigonometric functions being linear com-

binations of the momentum eigenfunctions of momenta with opposite sign. The notion of

incoming or outgoing KK number in analogy to incoming and outgoing momenta is thus

not well defined. As a consequence, we find KK number conservation up to a sign at each

vertex.

In particular, the selection rules imply, that no higher KK modes (n ≥ 1) can be exchanged

in tree-level amplitudes in which all external particles are zero modes. The production

of a single heavy KK mode is also forbidden at tree-level. Thus, in this respect, the

phenomenology of models with universal extra dimensions is similar to R-parity conserving

supersymmetry.

3.2 SU(2)L⊗U(1)Y -Bulk Model

Concerning the SM, we first consider the most frequently investigated bulk-bulk model [18,

31–41], where all electroweak gauge fields propagate in the bulk and couple to both a brane
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and a bulk Higgs doublet. The Lagrangian of the gauge-Higgs sector is given by

L(x, y) = − 1

4
BMN B

MN − 1

4
F a

MNF
aMN + (DM Φ1 )

† (DM Φ1
)

+ δ(y)(Dµ Φ2 )
† (Dµ Φ2 ) − V (Φ1,Φ2) + LGF(x, y) + LFP(x, y) , (3.10)

where BMN and F a
MN (a = 1, 2, 3 for SU(2)) are the field strength tensors of the U(1)Y and

SU(2)L gauge fields, respectively. As usual, we define the covariant derivative DM as

DM = ∂M − i g5A
a
M τa − i g

′
5

2
BM , (3.11)

where τ a = σa/2 are the SU(2) generators and g5, g
′
5 denote the 5D gauge couplings

for SU(2), U(1), respectively. Concerning the Higgs potential V (Φ1,Φ2) of this bulk-bulk

model, the only relevant point for phenomenology is that it leads to the correct pattern

of spontaneous symmetry breaking. Hence, the bulk Higgs doublet Φ1(x, y) and the brane

Higgs doublet Φ2(x) are linearly expanded around their VEVs, i.e.

Φ1(x, y) =





−iχ+1
1√
2

(

v1√
2πR

+ h1 + iχ1

)



 , Φ2(x) =

(

−iχ+2
1√
2
(v2 + h2 + iχ2)

)

,

(3.12)

where the phase convention in the charged sector is chosen differently from [18,42] because

it will be convenient in Chapter 6. We do not repeat the calculational steps for determining

the particle mass spectrum and the KK modes Âµ
(n), Ẑ

µ
(n) of the SU(2)L⊗U(1)Y -bulk model,

as they are analogous to those of the Abelian model discussed in Chapter 2. In fact, the

analogy becomes rather explicit if the bulk gauge fields are written in terms of the 5D

fields:

W±
M =

1√
2

(

A1M ∓ i A2M
)

,

ZM =
1

√

g25 + g′5
2

(

g5A
3
M − g′5BM

)

,

AM =
1

√

g25 + g′5
2

(

g′5A
3
M + g5BM

)

.

(3.13)

In Appendix B the analytic results for the mass eigenvalues are given for the SM model ex-

tensions under study. Notice that the photon field is not affected by spontaneous symmetry

breaking and, thus, the Fourier modes coincide with the KK modes.

Proceeding as in the Abelian case, we can determine the appropriate Rξ gauge-fixing func-
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tions for the SU(2)L and U(1)Y gauge bosons:

F a(Aa) = ∂µA
aµ − ξA

[

∂5A
a
5 − i

g5√
2πR

(

Φ†1τ
aΦ0 − Φ†0τ

aΦ1

)

cos β

− i g5
(

Φ†2τ
aΦ0 − Φ†0τ

aΦ2

)

sin β δ(y)
]

, (3.14)

F (B) = ∂µB
µ − ξB

[

∂5B5 − i
g′5

2
√
2πR

(

Φ†1Φ0 − Φ†0Φ1

)

cos β

− i g
′
5

2

(

Φ†2Φ0 − Φ†0Φ2

)

sin β δ(y)
]

, (3.15)

with

Φ0 =
1√
2

(

0

v

)

, v =
√

v21 + v22 ,
v2
v1

= tan β . (3.16)

To avoid gauge-dependent photon-Z-mixing terms at the tree-level, we assume in the fol-

lowing that ξA = ξB = ξ. Under this assumption, the gauge-fixing Lagrangian LGF(x, y)
in (3.10) can be expressed in terms of the real gauge-fixing functions F a(Aa) and F (B) as

follows:

LGF(x, y) = − 1

2ξ

(

F a(Aa)
)2 − 1

2ξ

(

F (B)
)2
. (3.17)

Furthermore, the Faddeev-Popov term LFP(x, y) in (3.10) is induced by the variations

of F a(Aa) and F (B) with respect to SU(2)L and U(1)Y gauge transformations. More

explicitly, LFP(x, y) may be computed in the standard way from

LFP(x, y) = c̄a
δF a(Aa)

δΘb
cb + c̄

δF (B)

δΘ
c , (3.18)

where ca(x, y) and c(x, y) are the 5-dimensional ghost fields associated with the SU(2)L

and U(1)Y gauge groups, respectively. As in 5D-QCD, the ghost fields are even under Z2.

In the above Rξ-gauge-fixing prescription, the complete kinetic Lagrangian of the gauge

sector, written in terms of the gauge fields defined in (3.13) and the corresponding scalar

modes, is rather analogous to the corresponding one of the Abelian model investigated in

Chapter 2. Therefore, we do not repeat the derivation here but give the propagators of the

KK gauge and Goldstone modes in the Rξ gauge in Appendix B, where we also list the

exact analytic results for the couplings of the gauge bosons to fermions, to be discussed in

Section 3.5.

The self-couplings for the SU(2) gauge-boson Fourier modes are given in Section 3.1. The

couplings between the scalar and the gauge Fourier modes can also be computed in a

straight forward way. The corresponding Feynman rules being important for the analysis

in Chapter 6 are displayed in Appendix I. The Feynman rules for the mass eigenstates are

of course harder to calculate if a brane Higgs induces mixing. Some specific, phenomeno-

logically important examples are given in Appendices G and H.
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3.3 SU(2)L-Brane, U(1)Y -Bulk Model

Let us now consider a different minimal 5-dimensional extension to the SM in which only

the U(1)Y gauge boson propagates in the bulk, while the SU(2)L gauge field is confined to

the y = 0 boundary of the S1/Z2 orbifold. The Lagrangian of this brane-bulk model reads

L(x, y) = − 1

4
BMN B

MN + δ(y)
[

− 1

4
F a

µνF
aµν + (Dµ Φ )† (Dµ Φ ) − V (Φ)

]

+LGF(x, y) + LFP(x, y) (3.19)

with Dµ = ∂µ − i g5A
a
µ(x) τ

a − i g′

2
Bµ(x, 0). Observe that only a brane Higgs doublet

Φ(x) =

(

−iχ+
1√
2
(v + h + iχ)

)

(3.20)

can be added in this model because a bulk Higgs doublet would destroy the gauge invariance

in the bulk. The gauge fields restricted to the brane y = 0 are missing in the bulk to form

an appropriate covariant derivative. Generally, if a gauge group is confined to a brane, only

matter fields which are not charged with respect to the group (e.g. sterile neutrinos) can

propagate in the bulk. As a consequence, the Higgs potential of this model has the known

SM form: V (Φ) = µ2|Φ|2 + λ|Φ|4.
In the SU(2)L-brane, U(1)Y -bulk model, only the Bµ(x, y) boson has to be expanded in

Fourier modes. While the W -boson sector is completely 4-dimensional, the neutral gauge

sector gets complicated by the brane-bulk mixing of Bµ(x, y) with A
3
µ(x) through the VEV

of the brane Higgs field Φ(x). To be more precise, considering only the mass terms, we find

for the neutral gauge sector

LN
mass(x) =

1

2

(

A3µ, Bµ
(0), B

µ
(1), . . .

)

M2
N













A3µ
B(0)µ

B(1)µ
...













(3.21)

with

M2
N =













m2 g2

g′2
−m2 g

g′
−
√
2m2 g

g′
· · ·

−m2 g
g′

m2
√
2m2 · · ·

−
√
2m2 g

g′

√
2m2 2m2 + (1/R)2 · · ·

...
...

...
. . .













(3.22)

and g′ = g′5/
√
2πR, m2 = g′2v2/4. The mass matrix M 2

N contains a single zero eigenvalue

which corresponds to a massless photon field

Âµ = sW A3µ + cW B(0)µ , (3.23)
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where sW =
√

1− c2W = g′/
√

g2 + g′2 is the sine of the weak mixing angle. The other

non-zero mass eigenvalues mZ(n) of M
2
N are determined as the roots of the transcendental

equation

mZ(n) = πm2R cot
(

πmZ(n)R
)

+
g2

g′2
m2

mZ(n)

. (3.24)

The respective mass eigenstates are given by

Ẑµ
(n) =

1

N

[

mZ

mZ(n)

cW A3µ −
∞
∑

j=0

√
2mZ(n)mZ

m2
Z(n) − (j/R)2

(

1√
2

)δj,0

sW Bµ
(j)

]

, (3.25)

where mZ =
√

g2 + g′2 v/2 and

N2 =
1

2

[

c2W
s2W

(

m2
Z

m2
Z(n)

− 2

)

+ s2W π2m2
ZR

2 +
m2

Z(n)

m2
Zs

2
W

+ 1

]

. (3.26)

Notice that the KK mass eigenmode Ẑ(0) has to be identified with the observable Z boson.

Although the higher KK modes will be denoted by Ẑ(n), one has to keep in mind that they

are almost pure B(n) states. There are no KK excitations for the photon in this model.

In analogy to the bulk-bulk model in Section 3.2, the appropriate Rξ gauge-fixing functions

for this brane-bulk model are written

F a(Aa) = ∂µA
aµ + ξ ig

(

Φ†τaΦ0 − Φ†0τ
aΦ
)

, (3.27)

F (B) = ∂µB
µ − ξ

[

∂5B5 − i
g′5
2

(

Φ†Φ0 − Φ†0Φ
)

δ(y)
]

, (3.28)

where Φ0 is given in 3.16. Due to the specific brane-bulk structure of the higher-dimensional

model, the corresponding gauge-fixing Lagrangian has the form

LGF(x, y) = − 1

2ξ

(

F a(Aa)
)2

δ(y) − 1

2ξ

(

F (B)
)2
. (3.29)

The charged scalar sector, just as the charged gauge sector, is completely standard in this

model. The neutral scalar sector, however, has a structure very similar to the one of the

Abelian model discussed in Chapter 2. Again, one can show the existence of a one-to-one

correspondence between the KK gauge modes with massmZ(n) and their associate would-be

Goldstone modes with mass
√
ξmZ(n). The latter KK modes are given by

Ĝ0(n) =
1

N

(

χ − g′v√
2

∞
∑

j=1

j/R

m2
Z(n) − (j/R)2

B(j)5

)

, (3.30)

where the normalization factor N is defined in (3.26).

The Faddeev-Popov Lagrangian LFP can also be obtained in the standard fashion. Taking

the brane-bulk structure of the model into account, we may determine LFP by

LFP(x, y) = c̄a(x)
δF a(Aa(x))

δΘb(x)
cb(x) δ(y) + c̄(x, y)

δF (B(x, y))

δΘ(x, y)
c(x, y) , (3.31)

where the (x, y)-dependence of the different fields is explicitly indicated.
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3.4 SU(2)L-Bulk, U(1)Y -Brane Model

A third minimal 5-dimensional extension of the SM, complementary to the one discussed

in Section 3.3, emerges if the SU(2)L gauge boson is the only field that feels the presence

of the fifth compact dimension. The Lagrangian of this bulk-brane model reads

L(x, y) = − 1

4
F a

MNF
aMN + δ(y)

[

− 1

4
Bµν B

µν + (Dµ Φ )† (Dµ Φ ) − V (Φ)
]

+LGF(x, y) + LFP(x, y) , (3.32)

with Dµ = ∂µ − i g5A
a
µ(x, 0) τ

a − i g′

2
Bµ(x). As in the brane-bulk model there is only one

Higgs field on the brane y = 0 and the Higgs potential is of the SM form. Since only the

SU(2)L gauge boson lives in the bulk, the charged gauge sector of this higher-dimensional

standard model is equivalent to the one in the bulk-bulk model discussed in Section 3.2 with

sin β = 1. Thus, the bulk-brane model predicts a KK tower of W -boson excitations, while

the neutral gauge sector is quite analogous to the one discussed in the previous section.

Specifically, instead of (3.21) we find

LN
mass(x) =

1

2

(

Bµ, A3µ(0), A
3µ
(1), . . .

)

M2
N













Bµ

A3(0)µ
A3(1)µ
...













, (3.33)

with

M2
N =













m2 g′2

g2
−m2 g′

g
−
√
2m2 g′

g
· · ·

−m2 g′

g
m2

√
2m2 · · ·

−
√
2m2 g′

g

√
2m2 2m2 + (1/R)2 · · ·

...
...

...
. . .













, (3.34)

g = g5/
√
2πR and m2 = g2v2/4. Again, there is a massless KK mode, the photon, given

by the linear combination Âµ = sWA
3
(0)µ + cWBµ. The other KK modes are massive and

their masses may be obtained as the solutions of the transcendental equation

mZ(n) = πm2R cot
(

πmZ(n)R
)

+
g′2

g2
m2

mZ(n)

. (3.35)

The Z boson, denoted as Z(0), and its heavier KK mass eigenmodes may be conveniently

expressed in terms of the gauge eigenstates as

Ẑµ
(n) =

1

N

[ ∞
∑

j=0

√
2mZ(n)mZ

m2
Z(n) − (j/R)2

(

1√
2

)δj,0

cW A3µ(j) −
mZ

mZ(n)

sW Bµ

]

, (3.36)
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where

N2 =
1

2

[

s2W
c2W

(

m2
Z

m2
Z(n)

− 2

)

+ c2W π2m2
ZR

2 +
m2

Z(n)

m2
Zc
2
W

+ 1

]

. (3.37)

Contrary to the model in Section 3.3, here the Ẑ(n) are almost pure A3(n) states.

In close analogy to the previous section, the higher-dimensional gauge-fixing functions

leading to the generalized Rξ-gauge are given by

F a(Aa) = ∂µA
aµ − ξ

[

∂5A
a
5 − ig5

(

Φ†τaΦ0 − Φ†0τ
aΦ
)

δ(y)
]

, (3.38)

F (B) = ∂µB
µ + ξ i

g′

2

(

Φ†Φ0 − Φ†0Φ
)

. (3.39)

They give rise to the gauge-fixing Lagrangian

LGF(x, y) = − 1

2ξ

(

F a(Aa)
)2 − 1

2ξ

(

F (B)
)2
δ(y) . (3.40)

The charged scalar sector of this model is identical to the one in the bulk-bulk model

without the presence of a Higgs field in the bulk. On the other hand, the neutral scalar

sector predicts a KK tower of would-be Goldstone modes associated with the longitudinal

polarization degrees of the massive KK gauge modes Ẑ(n). The would-be Goldstone KK

modes are determined by

Ĝ0(n) =
1

N

(

χ +
gv√
2

∞
∑

j=1

j/R

m2
Z(n) − (j/R)2

A3(j)5

)

, (3.41)

with N as defined in (3.37). The Faddeev-Popov Lagrangian can be calculated as in the

brane-bulk model (cf. (3.31)) by considering the obvious modifications which account for

the complementary bulk-brane structure of the model.

Concerning the self-couplings and the gauge couplings of the scalars, the comments at

the end of Section 3.2 apply for both the brane-bulk and the bulk-brane model with only

obvious modifications. For example, in the brane-bulk model, the SU(2) self couplings are,

of course, completely SM-like.

3.5 Fermions on the Brane

For all introduced SM extensions, we assume that the SM fermions are localized at the y = 0

fixed point of the S1/Z2 orbifold. Therefore, upon integrating out the y dimension, the

kinetic terms of fermions trivially have the usual 4-dimensional SM structure. For a Higgs

boson on the brane, the Yukawa sector is also given by its 4D counterpart. Even a Higgs

boson in the bulk induces the same mass terms, however, there are additional Yukawa
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couplings of the brane fermion to the KK tower of scalars. Clearly, the SM fermions

themselves do not have KK modes in this setup. In this thesis we will mostly work in

the approximative framework of massless fermions, so the Yukawa sector will not be of

special interest for our further investigations of higher-dimensional physics. A more detailed

analysis can be found in my diploma thesis [18].

Under a gauge transformation, the left- and right-handed fermions transform according to

ΨL(x) → exp
(

ig5Θ
a(x, 0) τ a + ig′5 Y

L Θ(x, 0)
)

ΨL(x) ,

ΨR(x) → exp
(

ig′5 Y
R Θ(x, 0)

)

ΨR(x) ,
(3.42)

where Θa(x, 0) or Θ(x, 0) stand for 4D functions if the respective gauge group is restricted

to the brane. The corresponding covariant derivatives that couple the chiral fermions to

the gauge fields are given by

DL
µ = ∂µ − i g5A

a
µ τ

a − i g′5 Y
LBµ ,

DR
µ = ∂µ − i g′5 Y

RBµ ,
(3.43)

where Y L,R denote the U(1)Y hypercharges.

Hence, after compactification, the couplings of the KK modes of the gauge bosons to the

SM brane fermions are determined by their SM quantum numbers. In the Fourier basis,

these couplings are generically given by

Lint(x) = gΨ γµ
(

gV − gAγ5
)

Ψ
(

A(0)µ +
√
2
∞
∑

n=1

A(n)µ

)

, (3.44)

where gV and gA are the usual SM vector and axial vector coupling constants, and A(n)µ

denotes the nth Fourier mode of a given gauge field. To summarize our notation for the SM,

the basic couplings g5 and g′5 in five dimensions are related to the effective 4D couplings

via

g = g5/
√
2πR = e/ sin θW = e/sW , g′ = g′5/

√
2πR = e/ cos θW = e/cW , (3.45)

where we have define the electromagnetic coupling e. In the presence of a nonzero VEV

of a brane Higgs field, the Fourier modes A(n)µ mix to form KK mass eigenstates Â(n)µ, as

explicitly shown in the preceding sections. The couplings of these physical fields can then

be parameterized as follows:

Lint(x) =
∞
∑

n=0

g(n)Ψ γµ
(

gV (n) − gA(n)γ5
)

Ψ Â(n)µ . (3.46)

The specific interaction Lagrangian for the higher-dimensional SM is presented in detail

in Appendix B. The precise values of the couplings g(n), gV (n), and gA(n) are found by
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the corresponding basis rotation and, thus, are specific for each gauge-boson mode. They

will be very important for our phenomenological discussion in the next chapter and will be

introduced there for the different models. The Feynman rules for the interactions of the

mass eigenmodes of the KK gauge bosons to fermions are exhibited in Appendix B. The

effective coupling of a fermion to a gauge boson restricted to the same y = 0 brane has of

course its SM value.



Chapter 4

Bounds on the Compactification

Scale M = 1/R

In this chapter, we evaluate the present bounds on the compactification scale M = 1/R of

minimal five-dimensional extensions of the standard model (5DSM) by analyzing a large

number of high precision electroweak observables both at the Z pole and at LEP2 energies.

Observables are affected by the extra dimension in various ways. As we have shown in

the previous chapter, electroweak symmetry breaking by a VEV of a Higgs field on the

brane leads to mixing between different Fourier modes (cf. (2.35)). This mixing shifts the

accurately measured masses and couplings to fermions of the SM zero modes (cf. (2.34) and

(2.38)). These shifts are especially important for observables at the Z pole where effects

from the exchange of heavier KK modes are negligible. However, even in the absence of a

brane Higgs field, the contribution from higher KK modes to the Fermi constant leads to a

modification in the definition of the weak mixing angle and, thus, potentially measurable

differences between the predictions of the 5DSM as we will see below. At energies well

above the Z pole, the virtual exchange of the heavy KK gauge bosons dominates the

higher-dimensional corrections.

4.1 Framework and Input Parameters

In our phenomenological analysis, we proceed as follows. The prediction of the 5DSM for

a given observable O5DSM is related to the SM prediction OSM by

O5DSM = OSM
(

1 + ∆5DSM
O

)

, (4.1)

where ∆5DSM
O is the tree-level effect due to the compactified extra dimension. The SM

radiative corrections are included in OSM. However, SM loop effects on ∆5DSM
O as well as

32
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KK loop effects are neglected. For compactification scales in the TeV range this is well

justified. The tree-level calculation of ∆5DSM
O is performed in terms of the compactification

scaleM and the usual SM input parameters, the electromagnetic fine-structure constant α,

the Fermi constant GF , and the Z-boson mass mZ(0). The index (0) indicates that the

observed Z boson is to be identified with the lightest mode of the corresponding KK tower.

The remaining relevant SM parameters mt, mH , and the strong coupling constant αs(mZ)

enter in OSM, but do not influence the calculation of ∆5DSM
O in this approximation.

In all 5-dimensional models, spontaneous symmetry breaking by a brane Higgs boson yields

deviations of the tree-level Z-boson mass mZ(0) from its SM form mZ =
√

g2 + g′2 v/2 (cf.

(2.33), (3.24), and (3.35)). Therefore, we write

m2
Z(0) = m2

Z ( 1 + ∆ZX ) , (4.2)

where

X =
π2

3

m2
Z(0)

M2
(4.3)

represents the typical scale quantifying the higher-dimensional effect and ∆Z is a model-

dependent parameter of order unity to be calculated model by model. The massless photon

is not affected by symmetry breaking. Hence, it retains its SM properties through the entire

process of compactification as shown for 5D-QED in Chapter 2 and the electromagnetic

fine-structure constant is still given by its SM value

α =
e2

4π
. (4.4)

In contrast, the Fermi constant GF as determined by the muon lifetime is sensitive to the

extra dimension. On the one hand, in the presence of a Higgs boson on the brane, again

shifts of the couplings of the W boson and the masses of the gauge bosons influence the

determination of GF . On the other hand, if there are W boson KK modes the virtual

exchange of the heavy KK tower also mediates muon decay. We may account for this

modification of GF by writing

GF =
πα√

2s2W c2W m2
Z(0)

( 1 + ∆GX ) . (4.5)

In the computation of the electroweak precision observables, it is necessary to express the

weak mixing angle θW in terms of the input parameters α, m2
Z(0), and GF by means of (4.5).

It is therefore useful to define an effective weak mixing angle θ̂W using the tree-level SM

relation

GF =
πα√

2ŝ2W ĉ2W m2
Z(0)

. (4.6)
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With (4.5) and (4.6), we find

ŝ2W = s2W ( 1 + ∆θX ) , (4.7)

where ∆θ = c2W/(s
2
W − c2W )∆G. Notice that ∆θ is a key parameter in the computation of

many precision observables, in particular where it enters through the vector coupling of the

Z boson (see also Section 5.1).

The parameters of the model like g, g′, e, v, or sW , being suitable for bookkeeping in

the tree-level calculations, can now be easily expressed in terms of the input parameters

by using SM relations like (3.45) and inverting (4.2), (4.4), (4.5), and (4.7). Before we

can present predictions for the observables under study according to (4.1), we have to be

specific about the shifts of the input parameters as well as the couplings and masses which

are important for the computation of ∆5DSM
O .

4.1.1 SU(2)L⊗U(1)Y -Bulk Model

For the bulk-bulk model, the higher-dimensional modifications of the Z- and W -boson

masses read

∆Z = − s4β ,
∆W = − s4β ĉ2W ,

(4.8)

where ∆W is defined in analogy to (4.2). The dependence on sβ, defined in (3.16), signals

that these shift are exclusively due to the mixing of Fourier modes. The gauge couplings

of the physical W and Z bosons to fermions on the brane, as they appear in the Feynman

rules (see Figure B.2), are given by

gZ(0) = g
(

1 − s2β X
)

,

gW (0) = g
(

1 − s2β ĉ
2
W X

)
(4.9)

for the SM modes. For the heavy KK modes we have

gZ(n≥1) =
√
2 g

(

1 − 3

2π2n2
s2β X

)

,

gW (n≥1) =
√
2 g

(

1 − 3

2π2n2
s2β ĉ

2
W X

)

.

(4.10)

These relations are approximate, i.e. they are obtained by expanding the exact analytic re-

sults for the masses and couplings, stated in Appendix B, to leading order in the parameter

X. The vector and axial vector couplings of the Z boson are not affected in the bulk-bulk

model, because each Z boson state possesses the same U(1) and SU(2) content as in the



4.1. FRAMEWORK AND INPUT PARAMETERS 35

SM (cf. (3.13)). Thus, we have gV (n) = gV and gA(n) = gA. The photon and its higher KK

modes are not affected by mixing and couple to fermions as in 5D-QED (cf. Fig. 2.2).

Finally, from the above, the KK tree-level shift ∆G of the Fermi constant GF is

∆G = ĉ2W

(

1 − 2s2β −
ŝ2W
ĉ2W

s4β

)

, (4.11)

which implies

∆θ = − ĉ4W
ĉ2W

(

1 − 2s2β −
ŝ2W
ĉ2W

s4β

)

. (4.12)

The terms involving sβ stem again from mixing while the remaining term is due to the

afore mentioned virtual exchange of heavy KK modes mediating muon decay.

4.1.2 SU(2)L-Brane, U(1)Y -Bulk Model

For the brane-bulk model we have

∆Z = − ŝ2W ,

∆W = 0 .
(4.13)

Obviously, the W -boson mass does not change by KK effects since the W boson is a brane

field without KK modes. Also its coupling to fermions is completely SM-like. In contrast,

the modification of the Z boson coupling to fermions becomes more involved in this model.

Specifically, KK effects induce non-factorizable shifts both in the vector and axial vector

part of the Ẑ(n)f̄f -coupling for the Z-boson mass eigenstates. Writing

gV (n) = T3f(n) − 2Qf(n)s
2
W and gA(n) = T3f(n) (4.14)

as a generalization of the corresponding SM relations, we can absorb these new non-

factorizable modifications by defining the Ẑ(n)f̄f -coupling in terms of an effective electric

charge Qf(n) and an effective third component of the weak isospin T3(n). For the Z-boson

zero-mode, we find

Qf(0) = Qf ( 1 − X ) ,

T3f(0) = T3f
(

1 − ŝ2W X
)

,
(4.15)

where the weak isospin T3f and the electromagnetic charge Qf = T3f + Yf denote the

usual SM quantum numbers for a given fermion. Notice that (4.15) is a parameterization

with gZ(n) = g. In principle, it would be more natural to absorb the shifts again in the

gauge coupling and the weak mixing angle. By our different choice, we want to avoid the

notational mess of too many differently defined mixing angles. Remember that the heavy
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KK modes are almost pure U(1) states. However, for simplicity, we will still use the above

notation to parameterize their couplings. We find

Qf(n≥0) =

√
2

sW
Qf

(

1 − ŝ2W
3

2π2n2
X

)

,

T3f(n≥0) =
√
2 sW T3f

(

1 + (ĉ2W −
1

2
ŝ2W )

3

π2n2
X

)

,

(4.16)

where the appearance of sW indicates the U(1) nature of the Ẑ(n). The exact relations

between Qf(n) and Qf as well as between T3f(n) and T3f are given in Appendix B. The

photon couples completely SM-like and there are no higher photon KK modes, as shown

in Section 3.3.

Taking the above results into account, we find

∆G = − ŝ2W (4.17)

and, thereby,

∆θ =
ŝ2W ĉ2W
ĉ22W

. (4.18)

The above results are so simple because the charged gauge sector lives on the brane and,

hence, is not affected by KK effects. Only the shift in the Z mass proliferates into (4.17)

and (4.18).

4.1.3 SU(2)L-Bulk, U(1)Y -Brane Model

Let us finally consider the complementary scenario. For the bulk-brane model the KK mass

shifts for the Z and W± bosons are given by

∆Z = ∆W = − ĉ2W . (4.19)

The KK effects on the Ẑ(0)f̄f -coupling can again be taken into account by introducing an

effective third component of the weak isospin

T3f(0) = T3f
(

1 − ĉ2W X
)

. (4.20)

In contrast to the brane-bulk model in the previous section, the electric-charge term in the

Ẑ(0)f̄f -coupling remains unaffected by KK effects, i.e. Qf(0) = Qf . For the heavy KK

modes which are almost pure SU(2) fields, we find

Qf(n≥0) =
√
2 ĉW Qf

3

π2n2
X ,

T3f(n≥0) =
√
2 cW T3f

(

1 + (ŝ2W −
1

2
ĉ2W )

3

π2n2
X

)

.
(4.21)
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The couplings of the W boson and its KK modes can be found from the bulk-bulk model

results in Section 4.1.1 for sβ = 1. Thus, from muon decay, we calculate

∆G = − ĉ2W , (4.22)

which leads to

∆θ =
ĉ4W
ĉ22W

. (4.23)

Here, several contributions from virtual KK exchange and mixing effects compensate to

yield the simple result (4.22).

For a moment, let us postpone the explicit determination of the higher-dimensional shifts

∆5DSM
O for the observables and turn to the statistics of deriving bounds on the model

parameters.

4.2 Statistics

In order to extract bounds on the compactification scale M from the available data, one

can proceed in two ways. For a given set of observables, one may fix the SM parameters at

their current best fit values and calculate the 5DSM predictions O5DSM using (4.1). Here,

the SM expectations OSM can be taken from the literature, e.g. [62] (see also Appendix C).

Then, one can perform a one-parameter χ2-analysis for M or equivalently for X. The

χ2-function is given by

χ2(X) =
∑

i,j

(

Oexpi − O5DSMi

)

V −1ij

(

Oexpj − O5DSMj

)

(4.24)

with the covariance matrix Vij = ∆Oi ρij ∆Oj, ∆Oi being the measurement error of a

given observable Oexpi and ρij being the matrix of correlation coefficients. This approach

is simple and easy to apply. However, possible correlations between the SM parameters

and the size of the extra dimension are ignored and, hence, the bounds on M may be

overestimated. Therefore, it is interesting to follow a more general approach in which

X is fitted simultaneously with the SM parameters αem(mZ), GF , mZ , αs(mZ), mt, mH

to the data. The radiatively corrected SM predictions OSMi in (4.1) are obtained from

ZFITTER [63–66] and in general depend on αs(mZ), mt, and mH via loop contributions.

The 5D corrections ∆5DSM
O are still calculated at tree-level. Being able to calculate (4.24)

for any given set of input parameters, the multi-parameter minimization of χ2 for finding

the best fit values is performed with the program MINUIT [67]. Appendix D explains in

more detail, how the different Fortran programs are combined for the outlined task.
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The computation of the bounds is slightly different from the standard analysis [68] because

there is an unphysical region in parameter space, that is, there is no physical meaning for

X < 0. The problem is well known from neutrino mass searches or fits to the Higgs mass,

where the direct search result excludes masses up to a given limit. One method to derive

bounds on X from (4.24) is Bayesian statistics [68]. For example, in Bayesian statistics

with a flat prior in the physical region X ≥ 0 and a zero prior in the unphysical region,

the 95% (1.96 σ) confidence level (CL) bound X95 is given by

0.95 =

∫ X95

0

dX P (X)

/∫ ∞

0

dX P (X) , (4.25)

where P (X) = exp[−(χ2(X) − χ2min)/2]. In a widely used and simpler approach, one

requires

∆χ2 = χ2(X)− χ2min < n2 (4.26)

for X not to be excluded at the nσ confidence level. In the above, χ2(X) is the minimum

for a given X with respect to the other fit parameters requiring mH ≥ 114 GeV, while

χ2min is the overall minimum of the χ2-function in the physically allowed region X ≥ 0,

mH ≥ 114 GeV. If the best fit value of X is not too far in the unphysical region both

methods lead to similar results and approximate well the results of the unified approach [69],

as is illustrated in Appendix E. In the following sections, we present the bounds as obtained

from (4.26).

4.3 Bounds from Precision Observables

Having described the methods, we now discuss the bounds on the compactification scale

M resulting from electroweak precision observables. For low-energy observables, we can

consistently use mZ(n) ≈ mW (n) ≈ n/R for n ≥ 1 in the calculations of O5DSM to leading

order in X. Furthermore, for the heavy modes it is sufficient to use the couplings without

higher-dimensional corrections because their propagators are already of order X. At the Z

pole, heavy KK exchange is completely suppressed.

Within this approximative framework we compute the following high precision observables:

the W -boson mass mW , the Z-boson invisible width ΓZ(νν), Z-boson leptonic widths

ΓZ(l
+l−), the Z-boson hadronic width ΓZ(had), the weak charge of cesium QW measuring

atomic parity violation, various ratios Rl and Rq involving partial Z-boson widths and the

Z-boson hadronic width, fermionic asymmetries Af at the Z pole, and various fermionic

forward-backward asymmetries A
(0,f)
FB at vanishing polarization. A complete list of the

considered observables along with the SM predictions and their experimental values is given
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Figure 4.1: Lower bounds on the compactification scale M = 1/R at the 3σ CL

from different precision observables and a global χ2-analysis in the bulk-bulk model.

in Appendix C. The higher-dimensional corrections ∆5DSM
O for the different observables are

given model by model in Appendix F.

We also take into account the error correlations between different observables [70]. The

error correlations have only a small effect, shifting the resulting bounds by no more than

0.2 TeV. Compared to the bounds [42] which we have obtained from the data published in

2000 [71], the bounds are altered by as much as almost 1 TeV. This is mainly due to the

large shift of the experimental value for the forward-backward asymmetry A
(0,b)
FB which is

now found to be more than 3σ below the SM expectation. As can be seen from the results

in Appendix F, only the bulk-bulk model with a bulk Higgs predicts a smaller value of A
(0,b)
FB

than the SM. Correspondingly, the bound for this model is lowered while the constraints

on the other models become stronger.

Let us first concentrate on the simple one-parameter fit introduced in Section 4.2. For the

bulk-bulk model, Figure 4.1 shows lower bounds on the compactification scale M coming

from different types of observables as functions of sin2 β, where we take into account only

one observable at a time. For a model dominated by a brane Higgs field (sin β = 1), the

most stringent bound on M is set by the forward-backward asymmetry involving b-quarks.

Although A
(0,b)
FB is not particularly sensitive to an extra dimension, the afore mentioned

large deviation from the SM expectation results in a large bound as the deviation increases
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Observable U(1)Y in bulk SU(2)L in bulk

MW 1.2 1.2

ΓZ(had) 0.8 2.3

QW (Cs) 0.5 0.9

A
(0,b)
FB 3.9 2.2

Aτ 2.3 1.3

Rτ 1.0 0.5

global analysis 3.8 2.7

Table 4.1: Lower bounds (in TeV) on the compactification scale 1/R at the 3σ CL

in models where either only the U(1)Y or only the SU(2)L gauge boson propagates

in the higher-dimensional space.

in 5D for sin β = 1.∗ In contrast, for a model dominated by a bulk-Higgs (sin β = 0), the

disparity between the experimental result and the SM prediction for A
(0,b)
FB is reduced in 5D.

Here, M is most severely constrained by the hadronic Z-boson width. In addition, Fig. 4.1

displays the result obtained by the global χ2-fit according to (4.26). At the 3σ confidence

level, a lower bound on M between 3 and 4 TeV is implied. The smallest bound on M

arises for a mixed brane-bulk Higgs scenario with sin2 β ∼ 0.5 because the different higher-

dimensional shifts compensate each other for almost all the observables but the various

Z-boson widths.

For the SU(2)L-brane, U(1)Y -bulk model, Table 4.1 lists the lower limits on M for each

observable separately, together with the limit found by the global analysis. The most

restrictive bound is again obtained by the b-quark forward-backward asymmetry giving

rise to a lower limit on M of ∼ 3.9 TeV at the 3σ CL. However, the best fit value is again

far in the unphysical region. Our global-fit analysis leads to the slightly less restrictive

lower bound: M >∼ 3.8 TeV.

In Table 4.1, we also present the lower bounds on M for the SU(2)L-bulk, U(1)Y -brane

∗Note, that the bound from A
(0,b)
FB stated in [42] is even more stringent because, for single observables,

χmin has not been restricted to the physical region X > 0 there.
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model 2σ 3σ 5σ

SU(2)L-brane, U(1)Y -bulk 4.9 3.8 2.8

SU(2)L-bulk, U(1)Y -brane 3.2 2.7 2.1

SU(2)L-bulk, U(1)Y -bulk

(brane Higgs)
5.5 4.4 3.3

SU(2)L-bulk, U(1)Y -bulk

(bulk Higgs)
4.2 3.6 2.9

Table 4.2: Lower bounds (in TeV) on the compactification scale 1/R at 2σ, 3σ and

5σ CLs.

model. Here, the hadronic Z width offers the most stringent lower bound M >∼ 2.3 TeV

on the compactification scale at the 3σ CL. Most interestingly, we observe that this lower

bound on M is much more relaxed than the one found in the previous models. The same

observation applies to the global analysis, where the compactification scaleM is constrained

to be larger than about 2.7 TeV at the 3σ CL.

In Table 4.2, we summarize the lower bounds on M obtained from our global fits for the

four minimal higher-dimensional extensions of the SM. We find that the lower bounds on

M at higher confidence levels scale as expected from an approximately quadratic χ2(X)-

function. The weakest bound on the compactification scale is found for the SU(2)L-bulk,

U(1)Y -brane model.

In the multi-parameter fit, the correlations between M and the SM parameters reduce the

bounds as expected. As can be seen in Table 4.3, the size of the effect varies from model

to model. In the brane-bulk model the effect is biggest lowering the bound by almost 40%.

Here, the best fit value is relatively far in the unphysical region. Thus, as a cross-check, we

also performed a Bayesian analysis which yields the same bound as (4.26) up to 0.1 TeV.

Most interesting is the correlation between the compactification scale and the mass of the

Higgs boson. This correlation is illustrated in Fig. 4.2. The data set used for our analysis
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brane-bulk bulk-brane
bulk-bulk

(brane Higgs)

bulk-bulk

(bulk Higgs)

one-parameter fit 4.9 3.2 5.5 4.2

multi-parameter fit 3.1 3.1 4.2 3.7

Table 4.3: 2σ bounds on M in TeV derived from electroweak precision measure-

ments [62].

differs from the one used for the familiar blue-band plot [70]. Within the SM (X = 0

in Fig. 4.2) it leads to a best fit value of mH = 100+70−40 GeV and to the 2σ upper bound

mH < 280 GeV. As can be seen in Fig. 4.2, in the models with the Higgs field localized on

the brane, the existence of an extra dimension favors a heavier Higgs boson. This confirms

the observation for the bulk-bulk model in [38, 39]. The effect is most pronounced in the

bulk-bulk model with a brane Higgs and in the brane-bulk model. Quantitatively, for

M = 5 TeV, the best fit values increase to mH = 170+105−60 GeV and mH = 155+105−60 GeV,

respectively. If the compactification scale is included in the multi-parameter fit, the 2σ

upper bound on mH is relaxed to 330 and 400 GeV, respectively.

4.4 LEP2 Constraints

At energies
√
s above the Z pole, the virtual exchange of KK excitations (n ≥ 1) of the

SM gauge bosons becomes dominant for the higher-dimensional corrections of observables.

As long as s ¿ M 2, the KK exchange is an effective contact interaction and the main

corrections come from the interference of zero with higher KK modes. They scale like

s/M2 in contrast to the energy-independent modifications of masses and couplings. This

is illustrated in Fig. 4.3 for an exemplary observable, the total cross section for muon-pair

production. The residual energy dependence of the impact of the latter on the cross section

(dashed curves in Fig. 4.3) is due to the transition from dominant Z exchange to dominant

photon exchange.

Focusing on LEP2, we have investigated the total cross sections for lepton-pair production,

hadron production, and Bhabha scattering (see Appendix C). Forward-backward asym-

metries for muon and tau production as well as the heavy quark observables A
(0,b)
FB , A

(0,c)
FB ,

Rb = σ(bb)/σ(had), and Rc = σ(cc)/σ(had) are included in the fits, although they do not

contribute noticeably to the bounds. For completeness, we have also investigated W +W−
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Figure 4.2: Contours of ∆χ2 = 1, 4, 9 (cf. (4.26)) derived from multi-parameter

fits to electroweak precision data. The shaded regions of the parameter space cor-

respond to mH < 114 GeV and/or M 2 < 0.
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Figure 4.3: The shift ∆5DSM
µ+µ− of the total cross section for muon-pair production

in the bulk-bulk model with a brane Higgs for M = 5 (a), 10 (b), and 20 (c) TeV.

The dashed curves show the effects from the mixing of masses and couplings only.

production. In this section, we do not explicitly state ∆5DSM
O for the different observables

because the expressions are quite messy. Instead, we give the tree-level 5DSM prediction

O5DSM in terms of the couplings and masses defined in Section 4.1. From the latter, the

numerical value of ∆5DSM
O can be easily obtained.

4.4.1 Fermion-Pair Production

The differential cross section for fermion-pair production is given by

d σ(e+e− → f f)

d cosϑ
=

Nfs

128π

[

(1 + cosϑ)2 (|M ef
LL(s)|2 + |M ef

RR(s)|2) +

(1− cosϑ)2 (|M ef
LR(s)|2 + |M ef

RL(s)|2)
]

,

(4.27)

where ϑ is the scattering angle between the incoming electron and the negatively charged

outgoing fermion, and Nf = 1(3) for leptons (quarks) in the final state. For the matrix

elements entering (4.27) one finds

M ef
αβ(s) =

∞
∑

n=0

(

e2(n)
QeQf

s−m2
γ(n)

+
geα(n)g

f
β(n)

cos2 θW

1

s−m2
Z(n)

)

(4.28)

with the couplings

gfL,R(n) =
gZ(n)
2

(

gV (n) ± gA(n)
)

(4.29)
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brane-bulk bulk-brane
bulk-bulk

(brane Higgs)

bulk-bulk

(bulk Higgs)

µ+µ− 2.0 1.5 2.5 2.5

τ+τ− 2.0 1.5 2.5 2.5

hadrons 2.6 4.7 5.4 5.8

e+e− 3.0 2.0 3.6 3.5

W+W− 1.1 2.0 2.1 2.2

LEP2 combined 3.5 4.6 5.6 5.9

Electroweak

and LEP2 data

combined

5.4 4.8 6.9 6.0

Table 4.4: 2σ bounds on M in TeV from a one-parameter fit derived from LEP2

data alone and from LEP2 and electroweak precision data combined.

calculated from Sections 4.1.1-4.1.3. The differential cross section (4.27) has also been used

in [41]. There, however, the mixing effects in the couplings and masses included in (4.28)

and (4.29) have been neglected as a reasonable approximation (see Figure 4.3).

The data taken by the LEP experiments for muon, tau, and hadron production is properly

combined for energies between
√
s = 130GeV and

√
s = 207GeV [70]. In the hadronic

channel it is very important to take into account the large correlations between the data

at different energies. If they are ignored, the bounds on the compactification scale are

overestimated by as much as 3 TeV. In contrast, the correlations in the muon and tau

channels are extremely small and have little effect.

The bounds from a simple one-parameter analysis are summarized in Table 4.4, where we

concentrate on models with only a single Higgs doublet. In the muon and tau channel, the

bulk-brane model is least restricted because essentially only left-handed fermions interact

with the heavy KK modes. The best fit values turn out to lie always in the physical region
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X ≥ 0. Hadron production puts more stringent bounds on the 5D models because of the

larger cross section. In this case, the brane-bulk model is least restricted, since the hadronic

cross section is dominated by left-handed quarks whose small hypercharges suppress the

interference effects with the heavy U(1)Y KK modes. In this case, the best fit values lie in

the unphysical region X < 0.

The differential cross section for Bhabha scattering may conveniently be expressed as

d σ(e+e− → e+e−)

d cosϑ
=

s

128π

[

(1 + cosϑ)2 (|M ee
LL(s) +M ee

LL(t)|2 + |M ee
RR(s) +M ee

RR(t)|2) +

(1− cosϑ)2 (|M ee
LR(s)|2 + |M ee

RL(s)|2) + 4 (|M ee
LR(t)|2 + |M ee

RL(t)|2)
]

,

(4.30)

where t = −s(1 − cosϑ)/2 and M ee
αβ(s or t) can be read off from (4.28). The total cross

section is calculated by integrating (4.30) over ϑ in the experimental ranges. Since the

Bhabha data of the four LEP experiments [72–85] has not yet been combined, possible

correlations of the different experiments cannot be accounted for, at least for the time

being.

As can be seen from Table 4.4, the bounds onM from Bhabha scattering are approximately

1 TeV stronger than those from the other leptonic channels. This is due to the large Bhabha

cross section. On the other hand, the dominance of the t-channel photon exchange, which

is not affected by the presence of an extra dimension, reduces the sensitivity of Bhabha

scattering compared to hadron production in almost all 5D models.

4.4.2 W+W− Production

The differential cross section for W+W− production reads [86]

d σ(e+e− → W+W−)

d cosϑ
=

1

32πs
β

×
{

β2
[

M2
L(s) +M 2

R(s)
]

s2

[

s

m2
W (0)

+ sin2 ϑ

(

3

4
− s

4m2
W (0)

+
s2

16m4
W (0)

)]

+M2
L(t)t

2

[

s

4m2
W (0)

+ β2 sin2 ϑ

(

s2

16t2
+

s2

64m4
W (0)

)]

+ML(t)ML(s) st

[

2 + 2
m2

W (0)

t
+ β2

s

m2
W (0)

− β2 sin2 ϑ
(

s

4t
+

s

8m2
W (0)

− s2

16m4
W (0)

)]}

,

(4.31)
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where β =
√

1− 4m2
W (0)/s, t = m2

W (0) − s (1 −
√
1− β cosϑ)/2 and ϑ is the scattering

angle between the electron and the negatively charged W boson. Note that mW (0) =

mSM
W

(

1 + ∆5DSM
mW

X
)

with ∆5DSM
mW

as given in Appendix F. Furthermore,ML,R(s) andML(t)

read

Mα(s) =
∞
∑

n=0

(

Qe e(n) g
γ
3(n)

s−m2
γ(n)

+
geα(n)g

Z
3(n)

cos θW

1

s−m2
Z(n)

)

,

ML(t) =
g2W (0)

t
,

(4.32)

while MR(t) = 0 as in the SM. A novel feature are the triple gauge-boson couplings gγ3(n)
and gZ3(n) of the photon, the Z boson, and their respective heavy KK modes to the W zero

modes. They are given in Appendix G along with the corresponding Feynman rules.

As can be seen from Table 4.4,W -pair production at LEP2 provides relatively weak bounds

on M . This can be understood by realizing that the effects of heavy KK exchange are

almost negligible due to the suppression of the interference of SM and KK exchange by an

additional factor X. For the brane-bulk model, this is due to the fact that all KK modes

are almost pure U(1) states. For the other models, it is a direct consequence of the selection

rules introduced in Section 3.1. The selection rules do not hold exactly due to mixing in

models with a brane Higgs but still govern the low-energy cross section (see Section 6.3 for

details).

4.5 Combined Bounds on M = 1/R

The 2σ bounds on M found from a one-parameter fit to the combined LEP2 data are listed

in Table 4.4. The bounds range from 3.5 TeV for the brane-bulk model to 5.9 TeV for the

bulk-bulk model with a bulk Higgs. Furthermore, including also the electroweak precision

measurements, the bounds range from 4.8 TeV for the bulk-brane model to 6.9 TeV for the

bulk-bulk model with a brane Higgs. Our results are in good agreement with the results

of [41] for the bulk-bulk models which have been already discussed there. The best fit

values always lie in the unphysical region X < 0.

For muon-pair, tau-pair and hadron production (including asymmetries and heavy-quark

data), where ZFITTER can be used to calculate the SM predictions, we have also performed

a multi-parameter fit. Here, it is inescapable to concentrate on the models with a single

Higgs field to reduce the computational effort. The resulting ∆χ2-contours are shown in

Fig. 4.4. The slight distortions from smooth contours are due to a bug in ZFITTER not

being noticed before (see Appendix D). The corresponding 2σ bounds on M are listed in
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Figure 4.4: Contours of ∆χ2 = 1, 4, 9 (cf. (4.26)) derived from the combined

analysis of LEP2 data and electroweak precision measurements. The shaded regions

of the parameter space correspond to mH < 114 GeV and/or M 2 < 0.
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brane-bulk bulk-brane
bulk-bulk

(brane Higgs)

bulk-bulk

(bulk Higgs)

one-parameter fit 5.0 4.5 6.4 5.5

multi-parameter fit 3.6 4.3 5.4 5.2

Table 4.5: 2σ bounds on M in TeV derived from the muon, tau, and hadron

production at LEP2 combined with electroweak precision measurements.

Table 4.5 along with the bounds from the corresponding one-parameter fit. The correlations

between mH , mt, and M are similar to what has been found from the precision observables

alone in Section 4.3. They are weak in the bulk-brane model and most sizable in the

brane-bulk model.

A comparison of Table 4.4 and 4.5 shows that in the one-parameter fit Bhabha scattering

andW+W− production increase the combined bounds by about 0.5 TeV. Thus, the bounds

from a multi-parameter fit to all data including Bhabha scattering and W +W− production

can be estimated to lie between 4 TeV for the brane-bulk model and 6 TeV for the bulk-bulk

model with a brane Higgs.



Chapter 5

Sensitivity at a Linear Collider

Having extracted the bounds on the compactification scale M from available data, we now

estimate the reach at a future linear collider such as TESLA [87]. For illustration, we

investigate both the potential of the GigaZ option as well as the sensitivity at high energy

and luminosity.

5.1 GigaZ Option

At the Z pole, the luminosity goal at TESLA is L = 5× 1033 cm−2 s−1 which is sufficient

to produce 109 Z bosons in only 50-100 days of running [87]. This will increase the LEP

statistics by more than one order of magnitude. The most relevant improvement in testing

the compactification scale will come from the precise measurement of the left-right (LR)

asymmetry ALR with polarized e+e− beams. Since photon exchange and the exchange of

higher KK modes can be neglected at the Z peak, the LR asymmetry at tree level can be

approximated by

ALR =
2 gV (0) gA(0)
g2V (0) + g2A(0)

, (5.1)

where gV (0) and gA(0) are the vector and axial vector couplings of the electron to the Z

boson given in (4.14). This asymmetry is very sensitive to shifts of the weak mixing angle

with respect to the SM value because of the small ratio gV /gA = (1 − 4 sin2 θW ). Using

(4.7), (4.9), (4.15), and (4.20) in order to express (5.1) in terms of the input parameters, one

obtains the 5DSM corrections ∆ALR = ∆Ae given in Appendix F. With the GigaZ option

it will be possible to measure ALR with an absolute error of about 10−4 [87]. However, the

uncertainties in the fine-structure constant and the Z mass will each induce an additional

error of about 10−4 which has to be added in quadrature. Coincidence of the measured value

of ALR with the SM expectation would then imply the bounds on M shown in Table 5.1.

50
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brane-bulk bulk-brane
bulk-bulk

(brane Higgs)

bulk-bulk

(bulk Higgs)

ALR 12.4 6.8 14.2 12.4

mW 5.6 5.6 7.8 5.6

Table 5.1: 2σ bound on the compactification scaleM in TeV which can be obtained

with the GigaZ option at TESLA if the measured values of ALR, mW coincide with

the SM expectation.

Another low-energy observable at TESLA is the mass of the W boson mW . In contrast

to the usual kinematical methods for the mass determination, a threshold scan around

160 GeV using 100 fb−1 is proposed leading to a reduction of the experimental error down

to 6 MeV [87]. Close to the threshold, a relative shift in mW leads to a relative shift in

the cross section which is enhanced by more than an order of magnitude. Hence, as a first

approximation, we consider only the higher-dimensional shifts in mW and neglect possible

further corrections of the cross sections due to shifts in couplings, etc. Otherwise, a full

four-fermion calculation is necessary which lies beyond our current analysis. The theoretical

error in mW is expected to be smaller than the experimental one if the top-mass error is

reduced to less than a GeV by then [87]. The bounds on the compactification scale from

the W mass are also shown in Table 5.1. Since the sensitivity of mW to higher-dimensional

extensions of the standard model, as given in Appendix F, is not large (∆mW
< 0.5 for all

models) the bounds are not as tight as those from ALR.

With excellent b-tagging it will also be possible to considerably improve the measurement

of the final state coupling Ab and the cross-section ratio Rb. However, the sensitivity of

these observables toM is small and will not allow to explore compactification scales beyond

the bounds already known from available data. As can be seen from Table 5.1, except for

the bulk-brane model, the GigaZ option should improve the existing bounds by at least a

factor of two, mainly driven by the measurement of ALR.

5.2 Tests at
√

s = 800 GeV

At high energies, the interference effects from the exchange of SM and heavy KK modes

completely dominate the mixing effects as already illustrated in Fig. 4.3. We consider the

same processes as in Section 4.4, except for W -pair production which is not very sensitive
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Figure 5.1: Expected sensitivity limit for M as a function of relative systematic

error at
√
s = 800 GeV and for an integrated luminosity of 1000 fb−1: (a) bulk-bulk

model with brane Higgs, (b) bulk-bulk model with bulk Higgs, (c) brane-bulk model,

and (d) bulk-brane model.

to an extra dimension since the couplings of the W bosons to higher KK modes in the

s-channel are either forbidden or suppressed. For Bhabha scattering, an acceptance cut,

| cosϑ| < 0.9, is included. Furthermore, we assume an integrated luminosity of 1000 fb−1.

In addition, we also study Higgsstrahlung, the differential cross section of which is given

by

d σ(e+e− → Z H)

d cosϑ
=

s

512π
λ1/2(s)

[

8
m2

Z(0)

s
+ λ(s)

(

1− cos2 ϑ
)

]

[

M2
L(s) +M 2

R(s)
]

.

(5.2)

Here, λ(s) =
(

1−
(

mH +mZ(0)

)2
/s
)(

1−
(

mH −mZ(0)

)2
/s
)

is the familiar two-particle

phase-space function, ϑ is the scattering angle between the electron and the outgoing Z,

and

Mα(s) =
∞
∑

n=0

(

geα(n) g
ZH
(n)

cos2 θW

1

s−m2
Z(n)

)

. (5.3)

The couplings geα(n) are defined in (4.29) and gZH
(n) is the effective coupling of the Z modes



5.2. TESTS AT
√
S = 800 GEV 53

� ���
���
�

�
	���
�������
�	�����
0.0001 0.001 0.01

10

20

30

40

50

60

Figure 5.2: Combined sensitivity limit for the compactification scale M as a func-

tion of relative systematic error at
√
s = 800 GeV and for an integrated luminosity

of 1000 fb−1 in the models bulk-bulk with brane Higgs (short dashed), bulk-bulk

with bulk Higgs (solid), brane-bulk (dashed), and bulk-brane (long dashed).

to the Higgs boson given in Appendix H. The integrated cross section following from (5.2)

in the SM limit can be found, for example, in [88].

The Higgsstrahlung process is certainly not a primary search channel for an extra dimension

because of the limited experimental accuracy. For
∫

L dt = 103 fb−1 and at
√
s = 800 GeV,

the error of the total cross section is expected to be 5% for mH ' 115 GeV [87]. Never-

theless, this channel is interesting for distinguishing between a brane and a bulk Higgs in

the bulk-bulk model. If the produced Higgs boson is the zero mode of a bulk field, the

KK selection rules forbid the coupling H(0)Z(0)Z(n) for n ≥ 1. Thus, the absence of heavy

KK modes in the s-channel is a clear signal for a bulk Higgs. In this case, the process is

rather SM-like in contrast to a Higgs boson localized on the brane. The phenomenology of

2-Higgs-doublet models with one bulk and one brane Higgs has been investigated in [89].

In the following, the sensitivity to the presence of an extra dimension is estimated by

requiring

χ2 =
∑

i

(

OSMi − O5DSMi

)2

(∆Oi)2
≤ 4 . (5.4)

The statistical errors will be so small that the systematic errors become decisive [90, 91].

Since the latter are not known reliably at the present time, we show, in Fig. 5.1, the

sensitivity limit of the compactification scale M as a function of the relative systematic

error. At ∆Osys <∼ 0.001 the statistical uncertainty begins to dominate and the sensitivity
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Figure 5.3: Sensitivity limit for M as a function of the integrated luminosity

at
√
s = 800 GeV assuming a systematic error of 1.0% (left) and 0.1% (right).

Combination of channels and models as in Fig. 5.2.

to the compactification scale saturates.

The combined sensitivity of the search channels of Fig. 5.1 is presented in Fig. 5.2. For

bulk/brane (bulk/bulk) models, the sensitivity limit increases from 15 (20) TeV for sys-

tematic errors at the 1% level to 35 (50) TeV for negligible systematic errors. The role

played by the statistics is illustrated in Fig. 5.3, where the combined sensitivity is plotted

as a function of integrated luminosity.

In addition to integrated cross sections, it is also interesting to study the effects of an extra

dimension on angular distributions. This may provide further handles to discriminate

between different models. For the muon and tau channel, the angular distribution in the

bulk-bulk model is almost completely SM-like. However, the brane-bulk and the bulk-brane

models lead to significant distortions of the angular distribution because of the almost pure

U(1)Y and SU(2)L nature of the heavy KK modes. In Bhabha scattering, the s- and the

t-channel are affected differently such that the angular distribution is also affected in the

bulk-bulk models. For illustration, Fig. 5.4 shows the shift ∆5DSM
ϑ of (dσ/d cosϑ)/σtot from

the SM prediction as defined in (4.1). If the angular distributions in the muon channel can

be measured with a precision better than 1% per bin (using ten bins), one can probe the

compactification scale M beyond 10 TeV for the brane-bulk and the bulk-brane model. In

Bhabha scattering, one can reach a similar scale also for the bulk-bulk models, while the

bulk-brane model is difficult to probe in this channel.
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Chapter 6

Ward Identities, the Goldstone Boson

Equivalence Theorem, and Tree-Level

Unitarity in W -Pair Production

In Chapter 2, we have noted that the mass generation for the massive KK gauge bosons

by compactification works in close analogy to the well known Higgs mechanism in the

SM. There are scalar modes A5(n) being eaten by the gauge modes Aµ
(n) to provide the

longitudinal degrees of freedom for the massive gauge bosons. Hence, we have identified

the scalar modes of the gauge field as the would-be Goldstone modes of the model.

The concept that a scalar disappears from the theory as a physical degree of freedom

to become the longitudinal polarization states of a massive vector boson is formalized in

the famous gauge boson equivalence theorem (ET) [44, 45]: In the high-energy limit of a

spontaneously broken gauge theory, the tree-level amplitude for emission or absorption of

longitudinal massive vector bosons equals, up to a phase, the amplitude for emission or

absorption of the associated unphysical would-be Goldstone modes, i.e.

M(VL(i1), . . . VL(in), A→ VL(f1), . . . VL(fm), B) =

in (−i)mM(φ(i1), . . . φ(in), A→ φ(f1), . . .φ(fm), B)× (1 +O(mV /E)) ,
(6.1)

where VL are the longitudinal vector bosons, φ the corresponding would-be Goldstone

modes, A and B denote any set of initial and final state particles other than longitudinal

bosons, mV is the mass of the boson, and E the energy of the process. Note that the phases

depend on the conventions used to parameterize the fields. Here, the theorem (6.1) corre-

sponds to the Higgs doublet as introduced in (3.12). Concerning radiative corrections, the

theorem (6.1) still holds if, due to renormalization effects, an energy-independent constant

on the right hand side is included.

56



EQUIVALENCE THEOREM 57

In this chapter, we check if the ET also holds for the Goldstone modes in higher-dimensional,

compactified models. In this context, the equivalence theorem has already been concerned

on a rather formal level in [46], where the Goldstone modes of various models have been

determined following the calculations in Chapters 2 and 3 [42]. In contrast, we show that

the equivalence theorem, even in its generalized form introduced below, holds for a specific

non-trivial process, W -pair production.

For some of the higher-dimensional models this is highly astonishing at first sight: The

amplitude for emission of longitudinal vector bosons potentially includes terms which grow

with the energy of the process because, in contrast to transverse polarization, the longitu-

dinal polarization vector

εµL(p) =
pµ

mV

+O
(mV

E

)

(6.2)

is enhanced for energies above the gauge boson mass. If the amplitude for emission of

longitudinal gauge bosons indeed grew with energy the ET could not be satisfied. The

right hand side of (6.1) simply does not include energy enhanced terms. Moreover, an

amplitude growing with energy would necessarily violate tree-level unitarity. In the SM,

governed by Ward identities, the dangerous terms cancel and tree-level unitarity violation

is avoided as long as the Higgs-boson mass is less than roughly one TeV [92]. In some of

the higher-dimensional extensions of the standard model, introduced in Chapter 3, these

cancellations are far from obvious. Whenever a Higgs field on a brane is present the self-

couplings of the gauge bosons and their couplings to fermions are subject to the shifts

discussed in Chapter 4. It is no longer the same gauge coupling appearing in the different

vertices. The simple gauge structure of the SM is lost. Hence, calculating the SM Feynman

graphs with the shifted 5DSM vertices, it is no surprise that the ET and tree-level unitarity

do not hold. Only the intricate interplay of the zero-mode exchange with the exchange of

the complete tower of additional heavy KK modes can restore Ward identities, the ET

and (at least at energy scales close to the compactification scale) tree-level unitarity. In

particular, it is interesting to study what happens if a bulk gauge fields eats up a Goldstone

mode on the brane as we will see in Section 6.2.4.

The ET can be proven using Ward identities arising from the BRST invariance of the

gauge-fixed Lagrangian. The review [93] gives a readable and instructive introduction to

the subject in the context of the SM. For one massive vector boson in the final state, the

relevant SM Ward identity reads

〈 out |F (V )| in〉 = 0 (6.3)

where F (V ) = ∂µV
µ− ξmV φ is the gauge-fixing function and | in, out〉 denote any physical

state. To proof the ET at tree-level, it is crucial to realize that (6.3) implies the tree-level
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identity

i
pµ

mV

Mµ(A→ B, V (p)) =M(A→ B, φ(p)) , (6.4)

where M(A → B, V (p)) = Mµ(A → B, V (p))ε∗µ and ε is the polarization of the vector

boson. For W -pair production, we need the corresponding identities for two vector bosons

in the final state:

(−ipµ1Mµν +mV1M4ν) ε
ν(p2) = 0 , (6.5)

(−ipν2Mµν +mV2Mµ4) ε
µ(p1) = 0 , (6.6)

−pµ1pν2Mµν − ipµ1mV2Mµ4 − ipν2mV1M4ν +mV1mV2M44 = 0 , (6.7)

where the truncated amplitudesMµν ,Mµ4,M4ν , andM44 being used in the rest of this

chapter are defined by

M(A→ B, V1(p1), V2(p2)) =Mµν ε
∗µ(p1)ε

∗ν(p2) ,

M(A→ B, V1(p1), φ2(p2)) =Mµ4 ε
∗µ(p1) ,

M(A→ B, φ1(p1), V2(p2)) =M4ν ε
∗ν(p2) ,

M(A→ B, φ1(p1), φ2(p2)) =M44 .

(6.8)

Equations (6.5), (6.6), and (6.7) are equivalent to the generalized equivalence theorem

(GET) [94] for two external gauge bosons. Given the GET holds, the equivalence theorem

(6.1) can be easily proven using (6.2) for the longitudinal polarization vector [93].

Coming back to the different higher-dimensional models, we show in the following sections,

that the GET (6.5)-(6.7) holds for the specific example of W -pair production. Hence, the

consistency of the the gauge-fixing procedure in Chapter 3 is tested successfully. For simple

higher-dimensional models without additional symmetry breaking by Higgs fields, the un-

derlying BRST symmetry has been already demonstrated [47]. The exemplary calculations

in the following sections are a strong indication that such a proof is indeed possible even

in the more complicated models.

6.1 The Standard Model

As an introduction to the explicit calculations, let us first investigate theW -pair production

amplitude M(e+, e− → W+(k+),W−(k−)) in the SM. For simplicity, we work with a

massless fermion anti-fermion pair in the initial state. Hence, the Higgs decouples from the

calculation. The relevant Feynman rules can be derived from Appendix I by taking the SM

limit of the 5DSM rules presented there. The Feynman diagrams are generically displayed
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Figure 6.1: Generic Feynman diagrams for W -pair production. The KK modes

which are exchanged depend on the specific model.

in Figure 6.1. For left-handed electrons in the initial state, we have

Mµν = −e2vLγλuL

[

1

q2
+
1
2
− s2W
s2W

1

q2 −m2
Z

]

×
[

gµν(k
− − k+)λ + gνλ(−q − k−)µ + gλµ(k+ + q)ν

]

− e2

2s2W
vLγµ

(l − k−)ργρ
(l − k−)2 γνuL ,

(6.9)

where u and v denote the spinors of the incoming electron and positron, k+ and k− are the

momenta of the W+ and W− boson, respectively, q = k+ + k−, and l is the momentum

of the electron. The first two lines stem from the s-channel exchange, while the third line

describes the t-channel contribution. To contractMµν with momenta, we need the identity

[

gµν(k
− − k+)λ + gνλ(−q − k−)µ + gλµ(k+ + q)ν

]

k+µk−ν =

q2

2
(k+ − k−)λ+m

2
− −m2

+

2
(k+ + k−)λ .

(6.10)

For polarization vectors fulfilling ε±µk±µ = 0, we furthermore have

[

gµν(k
− − k+)λ + gνλ(−q − k−)µ + gλµ(k+ + q)ν

]

ε+µk−ν = ε+λ
(

q2 −m2
+

)

,

[

gµν(k
− − k+)λ + gνλ(−q − k−)µ + gλµ(k+ + q)ν

]

k+µε−ν = ε−λ
(

−q2 +m2
−
)

.
(6.11)

Using in addition overall momentum conservation and the Dirac equation for a massless

fermion in momentum space, one finds

ε+µk−νMµν = −e2vLγλuLε
+
λ

[

1

2s2W
− m2

W

q2
+

1
2
− s2W
s2W

m2
Z −m2

W

q2 −m2
Z

− 1

2s2W

]

. (6.12)

Hence, the potentially unitarity violating terms which grow with energy, one coming from

the s-channel and the other one from the t-channel, cancel. To extract these terms, we

have used q2/(q2 −m2) = 1 +m2/(q2 −m2). The cancellation also takes place for the two
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Ĝ+(n)
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Figure 6.2: Generic Feynman diagrams for the production of one or two Goldstone

modes. The KK modes which are exchanged in the s-channel depend on the specific

model.

remaining relevant expressions

k+µε−νMµν = e2vLγ
λuLε

−
λ

[

−m
2
W

q2
+

1
2
− s2W
s2W

m2
Z −m2

W

q2 −m2
Z

]

, (6.13)

k+µk−νMµν = −e2vLγλuL
1

2
(k+ − k−)λ

[ 1
2
− s2W
s2W

m2
Z

q2 −m2
Z

]

. (6.14)

To relate (6.12)-(6.14) to the amplitudes in which one or both W bosons are replaced

by the corresponding would-be Goldstone modes (see Figure 6.2 for the generic Feynman

diagrams), a straightforward calculation yields

Mµ4 = ie2vLγµuLmW

[

1

q2
−

1
2
− s2W
c2W

1

q2 −m2
Z

]

, (6.15)

M4ν = −ie2vLγνuLmW

[

1

q2
−

1
2
− s2W
c2W

1

q2 −m2
Z

]

, (6.16)

M44 = −e2vLγλuL(k
+ − k−)λ

[

1

q2
+

(

1
2
− s2W

)2

s2W c
2
W

1

q2 −m2
Z

]

. (6.17)

Using the tree-level relation m2
W = m2

Zc
2
W , one finds that (6.5) and (6.6) hold. With

vLγµuLk
+µ = −vLγµuLk

−µ, one can also prove (6.7).

For right-handed electrons as initial state particles, the analogous calculation is even easier

because the t-channel is absent. The GET holds as for left-handed e−.

6.2 5D Models

Before we start to analyze the questionable models with shifted couplings, let us investigate

the GET for gauge bosons with masses from geometric symmetry breaking only.
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6.2.1 5D-QED

In 4D-QED, there is no massive vector boson. Thus, the GET does not apply. There is

neither a longitudinal photon polarization nor a Goldstone mode. However, in 5D, the

geometric symmetry breaking leads to massive KK modes Aµ
(n) for n ≥ 1. Investigating the

process e+e− → Aµ
(n)A

ν
(m), we add the t- and u-channel to find

M = −e2v
[

γµ
(l − k(n))ργρ
(l − k(n))2

γν + γν
(l − k(m))ργρ
(l − k(m))2

γµ

]

u ε∗µ(n)ε
∗ν
(m) , (6.18)

where l is again the momentum of the electron and k(n,m) the momentum of Aµ
(n,m). With

momentum conservation and the Dirac equation for massless fermions, a simple calculation

yields

kµ(n)Mµν = 0 and kν(m)Mµν = 0 . (6.19)

No terms with bad high-energy behavior are present. Concerning the corresponding would-

be Goldstone modes, A5(n) and A5(m) do not couple to fermions because of their odd Z2

parity, i.e. Mµ4 =M4ν =M44 = 0. Thus, the GET holds. In contrast, the ET as stated in

(6.1) breaks down because the right hand side is zero while the amplitude for gauge-boson

production (6.18) does not identically vanish. However, the real meaning of the equivalence

theorem is still valid because (6.18) tends to zero for large energies, i.e. it becomes equal

to the vanishing amplitude for the corresponding Goldstone-boson productionM44.

6.2.2 Purely Geometric Symmetry Breaking

We consider another model with geometric symmetry breaking only, the 5DSM with all

gauge fields in the bulk in the limit of vanishing VEV of the Higgs field. As we will see,

the interplay of the KK gauge-boson self-couplings ensures the GET for heavy W -pair

production. The relevant Feynman rules follow from the general considerations for self-

couplings in non-Abelian models. They are displayed in Figures I.1 and I.2 of Appendix I.

For simplicity, let us investigate e+e− → W+µ
(n)W

−ν
(m) for n,m ≥ 1, n > m. Concentrating on

heavy KK modes with different KK number in the final state removes additional factors in

the Feynman rules being present otherwise. We comment on the general case at the end of

the section. As a direct generalization of the SM, the truncated amplitude Mµν is given
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by

Mµν = −e2vLγλuL

[

1

q2 −m2
(n−m)γ

+
1
2
− s2W
s2W

1

q2 −m2
(n−m)Z

+ (n−m)→ (n+m)

]

×
[

gµν(k
− − k+)λ + gνλ(−q − k−)µ + gλµ(k+ + q)ν

]

−2 e2

2s2W
vLγµ

(l − k−)ργρ
(l − k−)2 γνuL ,

(6.20)

where mγ,Z(k) are the masses for the photon and Z-boson KK modes. As dictated by the

selection rules introduced in Section 3.1, there are only two KK modes of the photon and

two KK modes of the Z boson in the s-channel. Compared to the SM result (6.9), the

additional factor of two in the t-channel of (6.20) is due to the enhanced coupling of fermions

to heavy KK modes (cf. Fig. 2.2). This factor of two is essential for the cancellation of the

terms growing with energy. The enhancement factor of
√
2 in the s-channel is canceled by a

factor of 1/
√
2 in the Feynman rule for the three gauge-boson vertex. A simple calculation,

using again (6.11), results in

ε+µk−νMµν = −e2vLγλuLε
+
λ

[

m2
γ(n−m) −m2

W (n)

q2 −m2
γ(n−m)

+
1
2
− s2W
s2W

m2
Z(n−m) −m2

W (n)

q2 −m2
Z(n−m)

+ (n−m)→ (n+m)

]

.

(6.21)

On the other hand, we find

k+µε−νMµν = e2vLγ
λuLε

−
λ

[

m2
γ(n−m) −m2

W (m)

q2 −m2
γ(n−m)

+
1
2
− s2W
s2W

m2
Z(n−m) −m2

W (m)

q2 −m2
Z(n−m)

+ (n−m)→ (n+m)

]

,

(6.22)

k+µk−νMµν = −e2vLγλuL
1

2
(k+ − k−)λ

[

m2
γ(n−m)

q2 −m2
γ(n−m)

+
1
2
− s2W
s2W

m2
Z(n−m)

q2 −m2
Z(n−m)

+ (n−m)→ (n+m)

]

.

(6.23)

These results have to be compared with the amplitudes for the production of one or two

would-be Goldstone modes, i.e. the scalar KK modes W5(m,n). From the diagrams in
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Fig. 6.2 and the corresponding Feynman rules in Appendix I, we find

Mµ4 = ie2vLγµuL

[(

1

q2 −m2
γ(n−m)

+
1
2
− s2W
s2W

1

q2 −m2
Z(n−m)

)

×
(

( n

R

)

δ̃m,n−m,n −
(

n−m
R

)

δ̃m,n,n−m

)

+ (n−m)→ (n+m)

]

.

(6.24)

The definition of δ̃k,l,m in (3.8) implies that δ̃k,l,m = 1 if l is not the largest of the KK

numbers (k, l,m) involved in the amplitude. Otherwise, one has δ̃k,l,m = −1. Thus, (6.24)
simplifies to

Mµ4 = ie2vLγµuL

[(

1

q2 −m2
γ(n−m)

+
1
2
− s2W
s2W

1

q2 −m2
Z(n−m)

)

2n−m
R

+

(

1

q2 −m2
γ(n+m)

+
1
2
− s2W
s2W

1

q2 −m2
Z(n+m)

)

−2n−m
R

]

.

(6.25)

An analogous calculation yields

M4ν = −ie2vLγνuL

[(

1

q2 −m2
γ(n−m)

+
1
2
− s2W
s2W

1

q2 −m2
Z(n−m)

)

2m− n
R

+

(

1

q2 −m2
γ(n+m)

+
1
2
− s2W
s2W

1

q2 −m2
Z(n+m)

)

−2m− n
R

]

.

(6.26)

Using the relationmγ,Z,W (n) = n/R between KK number and mass in this simple 5D model,

one calculates according to (6.6)
(

−ik−νMµν +mW (m)Mµ4

)

ε+µ =

ie2vLγνuLε
+µ

[

1

R2
(n−m)2 − n2 + 2mn−m2

q2 −m2
γ(n−m)

+ . . .

]

= 0 ,

(6.27)

where the dots represent terms adding up to zero in the same way as the given term.

Equation (6.5) holds in analogy. Finally, one has to calculate

M44 = −e2vLγλuL(k
+ − k−)λ

×
[

1

q2 −m2
γ(n−m)

+
1
2
− s2W
s2W

1

q2 −m2
Z(n−m)

− (n−m)→ (n+m)

]

,

(6.28)

where the extra minus sign in the amplitude for the (n+m) KK exchange is again due to

the definition of δ̃k,l,m. Using (6.23), (6.25), and (6.26) one can show that (6.7) also holds.

That is, the GET is valid.
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For n = m, there are diagrams with zero-mode exchange in the s-channel. Thus, the

enhancement factor
√
2 from the fermion coupling is missing. However, the Feynman

rules for the self couplings in these diagrams do not carry a factor of 1/
√
2 either such

that the above results are recovered. Another special case arises for m = 0. Since one

of the final-state gauge bosons is massless, the GET is even easier to check because the

corresponding Goldstone mode is absent. There is only one Z boson and one photon KK

mode being exchanged in the s-channel. Here, the t-channel for gauge-boson production is

only enhanced by a factor of
√
2. The s-channel of the relevant amplitudes is also enhanced

by
√
2 to ensure the cancellation of terms growing with energy and (6.5)-(6.7). Testing the

GET does not provide any hint for the inconsistency of this simple model. Moreover,

as a byproduct, it provides a non-trivial test for the Feynman rules describing the self-

interaction of gauge bosons and their associated would-be Goldstone modes presented in

Section 3.1.

6.2.3 Bulk-Bulk Model with a Bulk Higgs

Following the phase convention of (3.12), the Goldstone modes of this model are given by

G±(n) = m−1W (n)

( n

R
W±
(n)5 +

gv

2
χ±(n)

)

, (6.29)

where m2
W (n) = n2/R2 + g2v2/4. Geometrical symmetry breaking and symmetry breaking

by a VEV play together as reflected in the structure of the Goldstone modes.

In order to prove (6.5) to (6.7), we can make use of the results from the preceding sections.

The Feynman rules for the truncated amplitudes Mµν do not change. Thus, the results

in Section 6.2.2 are correct for the bulk-bulk model with a bulk Higgs if one inserts the

correct masses m2
W (n) and m2

Z(n) = n2/R2 + (g2 + g′2)v2/4. Consequently, there are two

classes of numerators, one being proportional to the geometric masses n2/R2 and the other

one to the VEV of the Higgs field.

According to this observation, the other amplitudes are most easily calculated using the

Feynman rules (cf. Appendix I) for the two scalar fields which are combined in (6.29) to

form the Goldstone mode. This is particularly easy, because there is no diagram for the

production of a χ±(n) mode together with a W±
(n) mode contributing toM44. Moreover, in

(6.5) to (6.7), any amplitude with a Goldstone mode in the final state is multiplied by the

corresponding vector boson mass. Hence, the factor m−1W (n) from (6.29) is canceled every-

where. Amplitudes with W±
5(n) in the final state have to be multiplied by n/R according

to (6.29). They combine with the terms inMµν being proportional to geometric masses,

exactly as in Section (6.2.2). The terms being proportional to the Higgs VEV combine

with the amplitudes for χ±(n) production as in the SM calculation of Section 6.1, such that
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the GET is satisfied. Here, there is no cross-talk between the two mechanisms for symme-

try breaking. For production of two equal higher KK modes (n = m) or one zero mode

(m = 0), the same considerations as in Section (6.2.2) apply.

6.2.4 Bulk-Bulk Model with a Brane Higgs

We now concentrate on pair production of the W -boson zero modes Ŵ±
(0). In the preceding

sections, this case has been of no particular interest, because zero-mode production was

completely standard model like. This is no longer true in the bulk-bulk model with a

brane Higgs. Also the interplay between geometrical symmetry breaking and the VEV of

the brane Higgs field is more involved. First, mixing between Fourier modes induces the

exchange of all heavy KK modes of the photon and the Z boson in the s-channel, originally

forbidden by selection rules. However, the couplings of the final state W bosons to heavy

KK modes are suppressed by a factor X. The Goldstone modes of the model are given by

Ĝ±(n) =

(

1 + π2 (gv/2)2R2 +
m2

W (n)

(gv/2)2

)−1/2(√
2χ± +

∞
∑

j=1

2 (j/R) (gv/2)

m2
W (n) − (j/R)2

W±
(j)5

)

,

(6.30)

in analogy to (2.46). Thus, the would-be Goldstone that corresponds to the zero mode

of the W boson is, up to small admixtures, a brane field. Consequently, it couples to

the heavy KK modes without suppression. Nevertheless, as dictated by the ET (6.1),

the amplitudes for the production of the zero-mode Goldstone and gauge boson should

become equal at large energies. Moreover, the couplings in the different Feynman rules are

subject to shifts of different size. Thus, the cancellation between the s- and t-channel is

questionable. Having indicated possible problems, we now outline the calculation.

The truncated amplitudeMµν for Ŵ+
(0)Ŵ

−
(0) production is given by

Mµν = −vLγλuL

∞
∑

n=0

[

e(n)g
γ
3(n)

q2 −m2
γ(n)

+
1
2
− s2W
cW

gZ(n)g
Z
3(n)

q2 −m2
Z(n)

]

×
[

gµν(k
− − k+)λ + gνλ(−q − k−)µ + gλµ(k+ + q)ν

]

−
g2W (0)

2
vLγµ

(l − k−)ργρ
(l − k−)2 γνuL ,

(6.31)

where the couplings are defined in Appendices B and G. Contracting with external mo-
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menta, the truncated s- and t-channel amplitudes combine to

k+µk−µMµν = −vLγλuL
1

2

(

k+ − k−
)

λ

×
∞
∑

n=0

[

e(n)g
γ
3(n) +

1
2
− s2W
cW

gZ(n)g
Z
3(n) −

g2W (0)

2
δn,0

+m2
γ(n)

e(n)g
γ
3(n)

q2 −m2
γ(n)

+m2
Z(n)

1
2
− s2W
cW

gZ(n)g
Z
3(n)

q2 −m2
Z(n)

]

.

(6.32)

The terms in the second line of (6.32) grow with energy and cannot be present in the

Goldstone channels. Hence, they better should cancel. It is hard to exactly calculate the

couplings, but it is already very instructive to work to first order in X as in Chapter 4.

The relevant couplings are then given by the following list:

e(0) = e

gZ(0) = g(1−X)

gW (0) = g(1− c2WX)

gγ3(0) = e

gZ3(0) = g cW

gγ3(n≥1) = −
√
2 e c2W

6

n2π2
X

gZ3(n≥1) =
√
2 g cW

(

s2W − c2W
) 3

n2π2
X

(6.33)

Furthermore, we can use e(n) =
√
2e and gZ(n) =

√
2g for n ≥ 1 because these couplings

appear only in terms being already of order X. The crucial cancellation in (6.32) indeed

takes place using
∑∞

1 1/n2 = π2/6. The complete KK tower is involved in this intricate

cancellation which is expected from the gauge structure of the untruncated 5DSM. Trun-

cating the model at a given KK number destroys the cancellation, as it destroys gauge

invariance.

For n ≥ 1 the terms in the third line of (6.32) can be manipulated according to

m2
γ(n)

e(n)g
γ
3(n)

q2 −m2
γ(n)

=− n2M2 2e2

q2 −m2
γ(n)

c2W
6

n2π2
X + O(X2)

=−m2
Z(0)

4e2

q2 −m2
γ(n)

c2W + O(X2) .

(6.34)

Hence, despite the order X suppression in the couplings, the terms from the exchange of

higher KK modes are enhanced to O(1). The appearance of the factor m2
γ(n) in (6.34)
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can be traced back to the additional q2 term in the numerator of the amplitude due to the

longitudinal polarization vectors. There is no such enhancement for transverse polarization.

The light longitudinal W bosons mainly originate from eating up the Goldstone mode χ

in (6.30) which is restricted to the brane y = 0. As suggested by the equivalence theorem,

we find that they indeed behave like a brane field and couple with full gauge strength to

the heavy KK modes, in spite of the selection rules for bulk fields. At high energies, the

longitudinal Ŵ±µ
(0) cannot conceal their origin. To further quantify this observation, we

return to the GET. Since the amplitude includes terms of order X which are enhanced to

O(1), we can only reliably calculate the leading order ofMµν , given by

k+µk−µMµν = −e2vLγλuL
1

2

(

k+ − k−
)

λ

[

1
2
− s2W
s2W

m2
Z(0)

q2 −m2
Z(0)

−4c2W
∞
∑

n=1

(

m2
Z(0)

q2 −m2
γ(n)

+

(

1
2
− s2W

)2

c2W s
2
W

m2
Z(0)

q2 −m2
Z(n)

)]

.

(6.35)

For the other two important amplitudes, we find

ε+µk−µMµν = −e2vLγλuLε
+
λ

[

−m2
W (0)

q2
+

1
2
− s2W
s2W

m2
Z(0) −m2

W (0)

q2 −m2
Z(0)

−4c2W
∞
∑

n=1

(

m2
Z(0)

q2 −m2
γ(n)

+

(

1
2
− s2W

)2

c2W s
2
W

m2
Z(0)

q2 −m2
Z(n)

)]

,

(6.36)

ε−µk+µMµν = e2vLγ
λuLε

−
λ

[

−m2
W (0)

q2
+

1
2
− s2W
s2W

m2
Z(0) −m2

W (0)

q2 −m2
Z(0)

−4c2W
∞
∑

n=1

(

m2
Z(0)

q2 −m2
γ(n)

+

(

1
2
− s2W

)2

c2W s
2
W

m2
Z(0)

q2 −m2
Z(n)

)]

.

(6.37)

The contributions from the exchange of heavy modes are unchanged at leading order com-

pared to (6.35).

For the modes χ±, the Feynman rules to leading order can be calculated as for any field

restricted to a brane: For the coupling to the zero modes, there is the SM vertex. For the

higher modes, apart from the enhancement factor
√
2, the vertex function is identical (see

Fig. I.3 in Appendix I). Besides the χ± field, the Goldstone mode G±(0) consists only of

small admixtures of W±
5(n) modes being of order R/n. Nevertheless, even in a leading order

calculation these admixtures cannot be ignored because the relevantW+
(n)5Ŵ

−
(0)Ẑ(n) vertex is

enhanced by a KK mass n/R as shown in Fig. I.1 and I.2. The otherW+
(m)5Ŵ

−
(0)Ẑ(n) vertices

for m 6= n, being originally forbidden by selection rules, can be ignored at leading order
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because of an additional suppression factor X. Thus, we find for the truncated amplitude

Mµ4

Mµ4 = ie2vLγµuL
gv

2

[

1

q2
−

1
2
− s2W
c2W

1

q2 −m2
Z(0)

+2
∞
∑

n=1

(

1

q2 −m2
γ(n)

−
1
2
− s2W
c2W

1

q2 −m2
Z(n)

)

+2
∞
∑

n=1

(

1

q2 +m2
γ(n)

+
1
2
− s2W
s2W

1

q2 −m2
Z(n)

)]

,

(6.38)

leading to

Mµ4 = ie2vLγµuL
gv

2

[

1

q2
−

1
2
− s2W
c2W

1

q2 −m2
Z(0)

+4
∞
∑

n=1

(

1

q2 −m2
γ(n)

+
(1
2
− s2W )2

s2W c
2
W

1

q2 −m2
Z(n)

)]

(6.39)

and M4ν = −gνµMµ4. For the amplitudeM44, no contribution from the heavy scalar KK

modes W±
5(n) in (6.30) arises at leading order. One obtains

M44 = −e2vLγλuL(k
+ − k−)λ

[

1

q2
+

(

1
2
− s2W

)2

s2W c
2
W

1

q2 −m2
Z(0)

+2
∞
∑

n=1

1

q2 −m2
γ(n)

+

(

1
2
− s2W

)2

s2W c
2
W

1

q2 −m2
Z(n)

]

.

(6.40)

Combining the final results for the different amplitudes and using the SM relationsmW (0) =

gv/2, m2
W (0) = m2

Zc
2
W , being valid at zeroth order in X, it is easy to show that the GET

does hold. Considering right-handed electrons in the initial state, a similar calculation leads

to the same conclusion. The terms growing with energy arise as a different combination of

coupling shifts which also vanishes. The GET and the equivalence theorem in its original

formulation (6.1) also hold. There is no indication that Ward identities and in turn gauge

invariance are violated.

Moreover, the cancellation of the terms growing with energy provides a highly non-trivial

test for a large number of Feynman rules, in particular for the size of the couplings in (6.33).

This test can also be successfully performed for the other two models with brane Higgs fields

and, hence, shifted couplings.
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6.3 The Phenomenology of W -Pair Production

The analysis in the preceding section can also help us to understand the cross section for

W -pair production as a function of energy, displayed in Figure 6.3 for the bulk-bulk model

with a brane Higgs. For illustration, we have chosen X = 0.01. As a rough estimate for the

width of the heavy modes, we take Γ = 0.01mW (n), where mW (n) ∼ n/R. Let us now try to

understand the resonances. Naively, on resonance, one could expect that the cross section

is enhanced by a factor Γ2 ∼ 104 compared to the SM cross section due to the exchange

of the on-shell KK mode. However, if both W bosons in the final state are transversely

polarized the coupling to the on-shell KK mode is suppressed by a factor X diminishing

the squared amplitude by a factor of X2 ∼ 10−4. As a result, the resonant contribution

from the transversely polarized W bosons in the final state is only of the order of the SM

cross section and does not lead to a pronounced resonance peak. From (6.34) we know that

the longitudinal W bosons couple to the heavy KK modes in the s-channel like a brane

field, i.e. in an unsuppressed way. Thus, on resonance the cross section is indeed enhanced

as can be seen in Fig. 6.3 and completely dominated by W pairs containing at least one

longitudinal W boson.

At energies smaller than the compactification scale, the production of longitudinal W

bosons only contributes a small fraction to the unpolarized cross section [95]. Thus, the

5DSM shift in the cross section is almost negligible because the sizable negative interference

for the production of longitudinally polarized W bosons from heavy KK exchange is only

a small effect on top of a large background of transverse W bosons. For this reason, the

bounds from W -pair production in Section 4.4.2 are found to be weak.

Finally, let us briefly comment on the issue of unitarity in the context ofW +W− production

in the 5D models. Fig. 6.3 also shows the cross section for W -pair production for the bulk-

bulk model with a brane Higgs in which the amplitudes from virtual heavy KK exchange

are set to zero by hand. As we have seen in Section 6.2.4, the terms growing with energy

do not cancel without KK contributions and the amplitude violates unitarity at some

energy scale. As expected, the cross section does no longer decrease with energy above the

compactification scale.

In the full higher-dimensional model, disregarding the resonances, the cross section is better

behaved because of the intricate interplay of the KK modes. Nevertheless, at higher center-

of-mass energies, the cross section also does not decrease as 1/s signaling that the amplitude

rises with energy. This may be surprising at first sight because we have shown in the last

section that there is no single term in amplitudes like (6.35) which is growing with energy.

However, due to the infinite tower of KK modes, each amplitude consists of an infinite
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Figure 6.3: Cross section for W -pair production in the SM and the 5DSM in a

bulk-bulk model with a brane Higgs. The cross section for the 5DSM where the

contributions from the heavy KK modes are ignored is also shown (no KK).

number of termsM(n). For each of these terms, one finds

M(n) ∝
s

s−m2
γ,Z(n)

→ 1 (6.41)

as soon as
√
s À mγ,Z(n). With growing

√
s, this condition is fulfilled for more and more

modes. Thus, at center-of-mass energies much larger than the compactification scale, the

amplitude is roughly proportional to
√
s. As a consequence, unitarity is violated at some

high energy scale.

This kind of unitarity violation is a generic feature of any model in which the couplings

to an infinite number of exchange modes is not suppressed at least linearly with the mode

number. In particular, it is not tied to the production of longitudinal vector bosons.

Moreover, let us stress that unitarity violation does not follow from a breakdown of the

equivalence theorem (6.1).

There is another source of unitarity violation in 5D models. With growing energy, the

production of more and more heavy KK modes becomes kinematically allowed. In a coupled

channel analysis, the increase in possible final states can also be shown to violate unitarity.

In the electroweak sector of the SM, one finds a breakdown of tree-level unitarity at roughly√
s ∼ 10 M [48–50]. Here, unitarity violation arises even in models in which selection rules
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forbid all but a finite set of Feynman diagrams. At any rate, the 5D models have to be

considered as effective field theories valid only up to a certain energy scale.



Chapter 7

Brane Kinetic Terms

In the preceding chapter, we have performed a consistency check for the 5D extensions

of the SM at the tree-level. Here, we question if the models under study are consistent

effective field theories concerning radiative correction. Indeed, it has been shown that there

are certain gauge invariant operators, missing in naive higher-dimensional extension of 4D

models like (2.1), which are induced by loops [51].

It is again instructive to work in 5D-QED as introduced in Chapter 2. We consider the

one-loop self-energy diagrams of the photon KK modes Πµν
(m,n) displayed in Fig. 7.1. For

m = n = 0, the diagram leads to the well known photon self-energy Πµν
(0,0)(q

2) = Πµν(q2)

in QED. As we have seen in Chapter 2, a fermion living on the brane y = 0 completely

destroys momentum conservation in the direction of the extra compact dimension. Thus,

as expressed by the Feynman rules in Fig. 2.2, the fermion loop in Fig. 7.1 couples photon

KK modes of any KK number, i.e.

Πµν
(m,n)(q

2) =
√
2
2−δm,0−δn,0

Πµν(q2) , (7.1)

where the factor
√
2 is again the typical enhancement for the coupling of a brane field

to higher KK modes. The self-energies Πµν
(m,n) are UV-divergent quantities and have to

Πµν
(m,n) =

(m) (n)

Figure 7.1: Self-energy diagram for the photon KK modes in 5D-QED.
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(m) (n)

(k)

(l)

Figure 7.2: Self-energy diagram for the gauge boson KK modes in a non-Abelian

5D model.

be renormalized. Due to the mixing between different KK modes, bulk terms as in (2.1)

cannot provide suitable counter terms. However, a gauge-boson kinetic term

L(x, y) ⊃ −rc δ(y)
1

4
FMN(x, y)F

MN(x, y) , (7.2)

being confined to the y = 0 brane where the fermion lives, can remove all one-loop diver-

gences implied by Figure 7.1. As before, FMN(x, y) denotes the usual field strength ten-

sor (2.2) in five dimensions. The parameter rc is a natural extension of the wave-function

renormalization constant in 4D-QED. The resulting mixing between Fourier modes is ob-

vious from the δ-function in (7.2). The factors
√
2 in (7.1) are also correctly provided.

As a counter term, the constant rc can be chosen such that the self-energy contribution

from Fig. 7.1 and the corresponding mixing of Fourier modes is compensated at one energy

scale. At this energy scale, one could forget about the one-loop correction in Fig. 7.1 as

well as about the additional brane kinetic terms (7.2). However, the renormalization group

running of rc reintroduces the mixing at other energy scales. Hence, from the point of view

of an effective field theory, a constant like rc has to be considered as a free parameter of

the theory. Note that (7.2) is a perfectly gauge invariant dimension five operator where rc

has mass dimension −1. In 4D theories, such terms never arise because a δ-function in the

Lagrangian density violates translational invariance.

Let us now investigate the self-energy contribution from a bulk field in the loop. As a

natural setup, we can work in a non-Abelian model as introduced in Section 3.1, where

the gauge-boson self-interactions provide bulk-modes in self-energy loops as exemplified in

Fig. 7.2. As we have seen in Section 3.1, the modes k and l propagating in the gauge-boson

loop are subject to selection rules. In particular, if m is even k and l have to be either

both even or both odd. In consequence, n will also be even if the loop is not to vanish

by selection rules. In analogy, n has to be odd if m is odd. Apart from this restriction, a

combination of k and l can be found for any pair of even or odd m and n such that the

two modes mix. The same considerations apply for the exchanged Goldstone and ghost

modes. The corresponding counter terms, again identified as brane kinetic terms, have to
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reproduce this structure. Here, it is important to remember that the S1/Z2 orbifold has

a second fixed point at y = πR. At y = πR the wave functions of the odd Fourier modes

come with a minus sign compared to their value at y = 0. Hence, the brane kinetic terms

L(x, y) ⊃ −rc [δ(y) + δ(y − πR)] 1
4
F a

MN(x, y)F
aMN(x, y) , (7.3)

only mix even with even and odd with odd modes. It turns out [51], that (7.3) exactly

provides the correct factors to serve as a counter term for the self-energy from bulk fields.

As before, the constant rc has to be considered as a free parameter. The brane kinetic

terms (7.3) also contain the self-interactions of the gauge bosons as enforced by gauge

invariance. Concerning vertex corrections to gauge-boson self-interactions, these terms are

also needed as counter terms as has been shown in specific models [55].

Combining the above results, in a model containing bulk and brane couplings, we are forced

to add the terms

L(x, y) ⊃ − [r0 δ(y) + rπ δ(y − πR)]
1

4
F a

MN(x, y)F
aMN(x, y) (7.4)

to the original Lagrangian for any gauge group in the bulk. Thus, there is a new free

parameter for each of the two branes of the orbifold which ultimately has to be measured by

experiment if large extra dimensions are realized in nature. In this chapter, we investigate

the phenomenological effects of brane kinetic terms after we have analyzed the KK mass

spectrum, the eigenmodes and gauge fixing.

7.1 5D-QED with Brane Kinetic Terms

For simplicity, we demonstrate the generic consequences of the brane kinetic terms (BKT)

again in the simplest setup. Concentrating on a brane kinetic term for the brane at y = 0

only, the Lagrangian of 5D-QED is now given by

L(x, y) = −1

4
FMN(x, y)F

MN(x, y)− rc δ(y)
1

4
FMN(x, y)F

MN(x, y) . (7.5)

The gauge-fixing and ghost terms are omitted for brevity. The former are considered in

Section 7.1.2, the latter elsewhere [96]. Making the scalar components of the gauge fields

explicit, one finds

L(x, y) =
[

−1

4
Fµν F

µν +
1

2
(∂5Aµ)(∂5A

µ) +
1

2
(∂µA5)(∂

µA5)− (∂µA5)(∂5A
µ)
][

1 + rc δ(y)
]

,

(7.6)
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where the dependence of the fields on the space-time coordinates is suppressed. Using the

usual transformation properties (2.4) for the gauge fields under the Z2 symmetry of the

orbifold, the Lagrangian (7.7) can be equally well expressed by

L(x, y) = −1

4
Fµν F

µν
[

1+rc δ(y)
]

+
1

2
(∂5Aµ)(∂5A

µ)+
1

2
(∂µA5)(∂

µA5)−(∂µA5)(∂5Aµ) . (7.7)

The terms being odd with respect to Z2 do not feel the presence of the brane term. To derive

the effective 4D Lagrangian the gauge fields have to be expanded in modes. Obviously, the

Fourier modes do not form an orthonormal set of functions when 7.7 is integrated over the

extra dimension because of the δ-function. Hence, they are not proper KK wave functions.

7.1.1 The Spectrum

In contrast to Chapter 2, we do not stick to the Fourier modes before integrating out the

extra dimension. Instead, we now parameterize the vector field Aµ(x, y) by

Aµ(x, y) =
∞
∑

n=0

Âµ
(n)(x) f(n)(y) (7.8)

and show how to derive the proper KK wave functions f(n)(y) for the KK mass eigenstates

Âµ
(n)(x) by solving a differential equation following directly from the 5D Lagrangian. Insert-

ing (7.8) into the first two terms of (7.7) and integrating over the compact extra dimension,

one obtains

L(x, y) ⊃
∞
∑

n,m=0

−1

4
F̂(n)µν(x) F̂

µν
(m)(x)

∫ 2πR

0

dy f(n)(y) f(m)(y)
[

1 + rc δ(y)
]

+
∞
∑

n,m=0

1

2
Â(n)µ(x)Â

µ
(m)(x)

∫ 2πR

0

dy (∂5f(n)(y)) (∂5f(m)(y)) .

(7.9)

Partial integration in the second term yields

∫ 2πR

0

dy (∂5f(n)) (∂5f(m)) =
[

f(n) ∂5f(m)
]2πR

0
−
∫ 2πR

0

dy f(n) ∂
2
5f(m) . (7.10)

Assuming that the surface term vanishes by means of (2.4), one obtains

L(x, y) ⊃
∞
∑

n,m=0

−1

4
F̂(n)µν(x) F̂

µν
(m)(x)

∫ 2πR

0

dy f(n)(y) f(m)(y)
[

1 + rc δ(y)
]

−
∞
∑

n,m=0

1

2
Â(n)µ(x)Â

µ
(m)(x)

∫ 2πR

0

dy f(n)(y) ∂
2
5f(m)(y) .

(7.11)
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Hence, the wave functions of the physical mass eigenstates of the effective 4D theory with

mass m(n) are the normalized mode functions f(n)(y) solving the differential equation

∂25f(n)(y) = −m2
(n)f(n)(y)

[

1 + rc δ(y)
]

(7.12)

with periodic boundary conditions

f(n)(y) = f(n)(y + 2πR) ,

∂5f(n)(y) = ∂5f(n)(y + 2πR) .
(7.13)

To proof this, note that (7.12) and (7.13) form a Sturm-Liouville problem [97] such that the

solutions are guaranteed to be orthogonal with respect to the weight function
[

1+ rc δ(y)
]

,

i.e.
∫ 2πR

0

dy f(n)(y) f(m)(y)
[

1 + rc δ(y)
]

= δn,m . (7.14)

The above differential equation can equivalently be derived by investigating the equations

of motions of the gauge field Aµ(x, y) in the free theory and demanding that the KK modes

Âµ
(n)(x) obey the usual equation of motion for massive vector fields.

Solving (7.12) in the interval [−πR, πR], we find for y <
> 0,

f
(n)

<
>
(y) = A<

>
sinm(n)y +B<

>
cosm(n)y . (7.15)

The eigenvalues m2
(n) and the four constants can be determined by the Z2 symmetry of the

wave function, i.e. f(n)(y) = f(n)(−y), limε→0[∂yf(n)(y)]
ε
−ε = −m2

(n)rcf(n)(0), the boundary

conditions (7.13), and normalization. The KK masses m(n) are given by the transcendental

equation
m(n) rc

2
= − tan

(

m(n)πR
)

. (7.16)

Hence, m(0) = 0 is a solution and the corresponding KK mode is to be identified with the

photon. The masses of the heavy KK modes are reduced with growing rc and approach half

integer multiples of 1/R as shown in Fig. 7.3. For y <
> 0, the corresponding wave functions

are given by

f(n)(y) = N(n)

[

cos
(

m(n)y
)

± m(n) rc
2

sin
(

m(n)y
)

]

(7.17)

with the normalization constant

N(n) =

[

2δn,0 πR

(

1 +
r2cm

2
(n)

4
+

rc
2πR

)]−1/2

. (7.18)

Note that the derivative of the wave functions at y = 0 is not well defined. Only if the δ-

function is replaced by the limit of a suitable series of functions, one finds that the derivative

vanishes. In this sense, the steps from (7.6) to (7.7) and the omission of the surface term

in (7.10) can be justified.
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Figure 7.3: Masses m(n) for the first 4 heavy KK modes as a function of rc/R.

This kind of problems does not appear using Fourier modes. Hence, as a consistency check

of the above analysis, we return to the alternative method for calculating the effective 4D

theory already introduced in Chapter 2. Using the usual Fourier expansion for the fields

in (7.6) according to (2.4), integration over the fifth dimension yields

L(x) =− 1

4

∞
∑

n=0

F(n)µν F
µν
(n) −

r̃c
4

∞
∑

n,m=0

√
2
(2−δn,0−δm,0)

F(n)µν F
µν
(m) +

1

2

∞
∑

n=0

n2

R2
A(n)µA

µ
(n)

+
1

2

∞
∑

n=1

(∂µA(n)5)
2 +

∞
∑

n=1

n

R
Aµ
(n) ∂µA(n)5 ,

(7.19)

where r̃c = rc/2πR. Focusing on the vector modes in the first line, this can be recast into

L(x) ⊃ −1

4

∞
∑

m,n=0

F(n)µν Knm F
µν
(m) +

1

2

∞
∑

m,n=0

A(n)µ (M
2
A)nmA

µ
(m) , (7.20)

where the vector-boson mass matrix M 2
A is diagonal with (M 2

A)nn = n2/R2. In contrast to

the mixing introduced by a Higgs boson VEV on the brane, the mixing between Fourier

modes is found in the kinetic matrix

K =













1 + r̃c
√
2 r̃c

√
2 r̃c · · ·√

2 r̃c 1 + 2r̃c 2 r̃c · · ·√
2 r̃c 2 r̃c 1 + 2r̃c · · ·
...

...
...

. . .













. (7.21)

To diagonalize the complete Lagrangian, it is extremely useful to define the rescaled fields

Ãµ
(n) = nAµ

(n) for (n ≥ 1). For the zero mode we introduce an infinitesimal mass ε2/R2
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and take the limit ε → 0 in the end. Thus, we can define Ãµ
(0) = εAµ

(0) and obtain a mass

matrix M̃2
A = � /R2 being proportional to the unit matrix � . Hence, any basis rotation is

trivial for the mass terms. Furthermore, the rescaling allows for diagonalizing the kinetic

part because the zeros of the characteristic polynomial of the rescaled kinetic matrix

K̃ =













(1 + r̃c)/ε
2
√
2 r̃c/ε

√
2 r̃c/(2ε) · · ·√

2 r̃c/ε (1 + 2r̃c) 2 r̃c/2 · · ·√
2 r̃c/(2ε) 2 r̃c/2 (1 + 2r̃c)/4 · · ·

...
...

...
. . .













(7.22)

become calculable. Hence, we find the eigenvalue equation

det(K − λ � ) =
∞
∏

n=1

(

1

n2
− λ
)

1

ε2

[

r̃c +

(

1 + 2r̃c

∞
∑

n=1

1/n2

1/n2 − λ

)

(

1− ε2λ
)

]

= 0 . (7.23)

In the limit ε→ 0, the eigenvalues are given by

r̃c√
λ
π = − tan

(

π√
λ

)

, (7.24)

where we have again analytically performed the infinite sum (cf. Appendix A). Working

in the basis where the rescaled kinetic matrix is diagonal, the masses of the KK modes

are found by rescaling the fields such that K = � . Note that the mass matrix will still be

diagonal. Hence, the masses are given by m(n) = 1/(
√
λR). Expressing (7.24) in terms of

m(n) and rc, one indeed recovers (7.16).

The eigenvectors Eλ can be found from an ansatz Eλ = ( 1, Eλ
j ) for each eigenvalue λ.

Using (7.23) and Cramer’s rule to solve the system of equations for the components of Eλ,

one finds

Ẽλ
j = −

√
2

ε

r̃c/j

1/j2 − λ and Ẽλ
j =

√
2

ε

1/j

1/j2 − λ , (7.25)

for the zero and higher mass eigenstates, respectively. Note that for the zero mass eigen-

state the terms quadratic in ε in (7.23) are important because λ ∝ 1/ε2. Thus, the mass

eigenstates Âµ
(n) are given by

Âµ
(n) =

N

Rm(n)

[

Ãµ
(0) +

∞
∑

j=1

√
2

ε

(−r̃c)δn,0/j
1/j2 − 1/(R2m2

(n))
Ãµ
(j)

]

=
N

Rm(n)

[

εAµ
(0) +

∞
∑

j=1

√
2

ε

(−r̃c)δn,0
1/j2 − 1/(R2m2

(n))
Aµ
(j)

]

,

(7.26)

where N−2 = (Eλ)2. The overall factor 1/Rm(n) stems from the final rescaling of the mass

eigenstates. In the limit ε→ 0, one finds for the massless mode m(0) → ε/(
√
1 + r̃cR) and
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N → 1. For the massive modes we have N ∝ ε. Consequently, the mass eigenstates are

given by

Âµ
(0) =

√

1 + r̃cA
µ
(0) +

∞
∑

j=1

√
2r̃c√

1 + r̃c
Aµ
(j) ,

Âµ
(n) = −

[

1

4r̃c
+
π2

4
m2
(n)R

2 +
1

4r̃2c

]−1/2 ∞
∑

j=1

j2

m2
(n)R

2 − j2A
µ
(j) ,

(7.27)

where we have included a global minus sign in the definition for the heavy mass eigenstates

(n ≥ 1) in order to recover Âµ
(n) = Aµ

(n) in the limit r̃c → 0. To express interactions in

terms of the mass eigenstates the inverse transformation is needed. Due to the rescalings,

the two basis sets are not related by an orthogonal basis transformation and we explicitly

give the gauge eigenbasis

Aµ
(0) =

1√
1 + r̃c

Âµ
(0) −

∞
∑

n=1

1√
2

[

1

4r̃c
+
π2

4
m2
(n)R

2 +
1

4r̃2c

]−1/2
Âµ
(n) ,

Aµ
(j) = −

∞
∑

n=1

[

1

4r̃c
+
π2

4
m2
(n)R

2 +
1

4r̃2c

]−1/2 m2
(n)R

2

m2
(n)R

2 − j2 Â
µ
(n)

(7.28)

in terms of the mass eigenstates. To compare (7.28) to our previous result for the mass-

eigenstate wave function (7.17), one has to project the wave functions (7.17) onto the

normalized Fourier modes, i.e.

T̂mn =

∫ πR

−πR
dy f(n)(y)

√
2
1−δm,0
√
2πR

cos
(m

R
y
)

. (7.29)

A simple calculation shows that the coefficients T̂mn in (7.29) are indeed identical to those in

Aµ
(m) = T̂mnÂ

µ
(n) to be read off from (7.28). Equivalently, one can check that the coefficients

Tmn =

∫ πR

−πR
dy (1 + rc δ(y)) f(m)(y)

√
2
1−δn,0
√
2πR

cos
( n

R
y
)

(7.30)

are the same as in in Âµ
(m) = TmnA

µ
(n) given by (7.27). Note that T T 6= T̂ due to the

different scalar products to be used for the projections. As a final result, the two methods

applied for calculating the spectrum and the mass eigenstates are compatible.

7.1.2 Gauge Fixing

Knowing the spectrum and the eigenstates of the vector bosons let us investigate the gauge

fixing which is also affected by the brane kinetic terms in a non-trivial way. In terms of
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Fourier modes, the mixing terms in (7.19) are given by

L ⊃
∞
∑

n=1

n

R
Aµ
(n) ∂µA(n)5 (7.31)

as in (2.8). To express the mixing in terms of the mass eigenstates it is convenient to make

the rescalings explicit, i.e.

Aµ
(n) =

∞
∑

m=0

T̂nmÂ(m) =
∞
∑

m=0

(S−1DŜ)nmÂ
µ
(m), (7.32)

where S = diag(ε, 1, 2, . . .), Ŝ = diag(Rm(n)), and D denotes the orthogonal transformation

calculated from the eigenvectors (7.25). Thus, we find

L ⊃
∞
∑

m,n=1

m(m)Â
µ
(m)Dnm ∂µA(n)5 , (7.33)

where we have used that the m = 0 term in (7.32) does not contribute for n ≥ 1 (see

(7.28)). Hence, the gauge-fixing for KK mode m should have the form

L(m)GF = − 1

2ξ

(

∂µÂ
µ
(m) − ξm(m)

∞
∑

n=1

DT
mnA(n)5

)2

, (7.34)

in order to remove the mixing terms. Consequently, the Lagrangian LGB for the scalar

would-be Goldstone modes is given by

LGB =
1

2

∞
∑

n=1

(∂µA(n)5)
2 − ξ

2

∞
∑

k,m,n=1

A(k)5Dkmm
2
(m)D

T
mnA(n)5 . (7.35)

At this point, it is trivial to determine the Goldstone-boson mass eigenstates Ĝ(n) with

gauge dependent masses
√
ξm(n), where m(n) is the corresponding vector-boson mass. The

transformation matrix D is not only orthogonal but in the limit ε→ 0 also block diagonal

such that the submatrix of D acting on the higher KK modes (n ≥ 1) is also orthogonal.

Thus, we find

LGB =
1

2

∞
∑

n=1

(∂µĜ(n))
2 − ξ

2

∞
∑

n=1

m2
(n)Ĝ

2
(n) , (7.36)

where Ĝ(n) =
∑∞

j=1D
T
njA5(j), i.e.

Ĝ(n) = −
∞
∑

j=1

[

1

4r̃c
+
π2

4
m2
(n)R

2 +
1

4r̃2c

]−1/2 j m(n)R

m2
(n)R

2 − j2 A5(j) . (7.37)

At this point the mass eigenstates and corresponding Goldstone modes are identified in the

effective 4D theory. Their interactions (e.g. self-interactions in a non-Abelian model, or

couplings to fermions) can be worked out by means of the basis transformations.
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Additionally, we now show that the above gauge fixing can also be formulated in the 5D

model before integrating out the extra dimension. Since the brane kinetic terms in the

Lagrangian lead to a non-homogeneous weight function for the field strength of the vector

bosons with respect to the extra dimension, this inhomogeneity forces us to choose a y-

dependent gauge-fixing parameter

1

ξ(y)
=

1

ξ′
(1 + rcδ(y)) , (7.38)

where ξ′ is y-independent. With the choice (7.38), in analogy to (2.10), the gauge-fixing

Lagrangian reads

LGF = −
∫ 2πR

0

dy
1

2ξ(y)
(∂µA

µ(y)− ξ(y)∂5A5(y))2

= − 1

2ξ′

∫ 2πR

0

dy (1 + rcδ(y)) (∂µA
µ(y))2

+

∫ 2πR

0

dy (∂µA
µ(y)) (∂5A5(y))

− ξ′

2

∫ 2πR

0

dy
1

1 + rc δ(y)
(∂5A5(y))

2 .

(7.39)

Expanding the vector boson field according to (7.8), the first line in (7.39) simply adds

the typical gauge-fixing terms for each gauge-boson mode to the first line in (7.9). Thus,

the calculation of the spectrum is not modified by the above gauge fixing. In particular,

unwanted gauge-dependent mixing between mass eigenstates is avoided. The second line is

equivalent to the simple 5D-QED case in Chapter 2 and removes the mixing between the

vector modes and the scalars. No new mixing terms are generated. The third line provides

the correct mass term for the Goldstone modes. However, this is far from obvious because

of the δ-function in the denominator.

As we have already seen in (7.37), the would-be Goldstone modes in 5D-QED with brane

kinetic terms are no longer the simple Fourier modes of the scalar gauge-field component

A5. Thus, in analogy to (7.8), we expand the scalar field according to

A5 =
∞
∑

n=1

Ĝ(n)(x) g(n)(y) , (7.40)

where g(n)(y) denote the proper wave functions for the would-be Goldstone mass eigenstates

Ĝ(n). In terms of (7.40) the Goldstone Lagrangian reads

L =
1

2

(

∂µĜ(n)

)(

∂µĜ(m)

)

∫ 2πR

0

dy g(n) g(m)

− ξ′

2
Ĝ(n)Ĝ(m)

∫ 2πR

0

dy
1

1 + rc δ(y)

(

∂5 g(n)
) (

∂5 g(m)
)

.

(7.41)
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In analogy to (7.10), one would like to partially integrate the second line. However, the

δ-function complicates the calculation. Hence, we instead partially integrate the first term

in (7.41) and find

L = −1

2

(

∂µĜ(n)

)(

∂µĜ(m)

)

∫ 2πR

0

dy
(

∂5 g(n)
)

g̃(m)

− ξ′

2
Ĝ(n)Ĝ(m)

∫ 2πR

0

dy
1

1 + rc δ(y)

(

∂5 g(n)
) (

∂5 g(m)
)

,

(7.42)

where g̃ is the primitive of g and the surface terms are again assumed to vanish. Thus, the

wave functions should obey
∂5 g(m)

1 + rc δ(y)
= −m2

(m) g̃(m) (7.43)

or equivalently

∂25 g̃(m) = −m2
(m) [1 + rc δ(y)] g̃(m) . (7.44)

Hence, the primitive of the wave function has to obey the same differential equation with

the same boundary conditions as the wave function for the gauge modes (cf. (7.12) and

(7.13)). In particular, g̃ is even because g has to be odd due to the odd Z2 parity of

the scalar gauge field component. Also note that g is discontinuous at y = 0. The mass

eigenvalues are of course given by (7.16). Using (7.44) in (7.42), we indeed find

L =

(

1

2

(

∂µĜ(n)

)(

∂µĜ(m)

)

− ξ′

2
m2
(m) Ĝ(n)Ĝ(m)

)∫ 2πR

0

dy m2
(m) [1 + rc δ(y)] g̃(n) g̃(m) .

(7.45)

Hence, using the orthogonality of the functions g̃(n) and normalizing them such that the

overall factor m2
(m) vanishes, i.e.

g̃(n) = −
1

m(n)

f(n) , (7.46)

we again arrive at the Lagrangian (7.36). As a consistency check, we have to show that the

wave function g(n) coincide with the Fourier decomposition already found in (7.37). Hence,

we project the wave function onto Fourier modes, i.e.

Tmn =

∫ 2πR

0

dy [1 + rc δ(y)] g(n)
sin
(

m
R
y
)

√
2πR

=

∫ 2πR

0

dy g(n)
sin
(

m
R
y
)

√
2πR

=
m/R

m(n)

∫ 2πR

0

dy f(n)
cos
(

m
R
y
)

√
2πR

.

(7.47)

The first equality is due to the antisymmetry of the wave functions and assures that there

is an orthogonal transformation between the Goldstone and the Fourier modes. In contrast

to the vector-boson sector, there are no rescalings involved, i.e. T = T̂ T . In the second
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step we have used partial integration and (7.46). Taking into account the factor in front of

the integral, one finds exactly the result Tmn = DT
mn as in (7.34).

Finally, we show how to recover the Goldstone Lagrangian in the effective 4D theory using

a Fourier decomposition of the scalar field. To deal with the δ-function in the denominator,

it is convenient to rewrite the last line in (7.39) according to

L ⊃ −ξ
′

2

∫ 2πR

0

dy
1

1 + rc δ(y)
(∂5A5(y))

2 = −ξ
′

2

∫ 2πR

0

dy

(

1− rc δ(y)

1 + rc δ(y)

)

(∂5A5(y))
2 .

(7.48)

Integrating out the extra dimension, the mass matrix reads

M2
5 kl = ξ′

(

k2

R2
δk,l −

rc
πR

1

1 + δ(0)rc

k l

R2

)

, (7.49)

where k, l refer to the Fourier mode numbers. At this point, it is instructive to regularize

the δ-function by using its representation (2.41) and analyzing a model which is truncated

at a given mode number n. In the end, we consider the limit n → ∞. The regularized

mass matrix is given by

M2
5kl = ξ′

(

k2

R2
δk,l −

rc
πR

1

1 +
(

1
2πR

+
∑n

1
1
πR

)

rc

k l

R2

)

= ξ′
(

k2

R2
δk,l −

2r̃c
1 + (2n+ 1) r̃c

k l

R2

)

(7.50)

and has to be compared to the Fourier-mode mass matrix in (7.35) for the truncated model.

For a limited number of modes, it is hard to perform analytic calculations because we

cannot use the techniques for calculating infinite sums. However, a truncated model is well

suited for numerical computations. Such a computation shows that the two mass matrices

indeed agree for any n < 50 where the matrices can be easily handled. Note that the

underlying one-to-one correspondence between the masses of the gauge-boson modes and

the Goldstone modes is still exact in the truncated model because the truncated Abelian

model is still a gauge theory.

Taking the limit n → ∞, the off-diagonal elements of the mass matrix (7.50) converge to

zero for any k and l. Hence, in contrast to what we have found before, one could think that

the Fourier modes are still mass eigenstates and the gauge-fixing procedure is inconsistent.

However, there is no uniform convergence to a diagonal matrix because of the factors k and

l in the numerator of (7.50). Thus, the basis rotation to the mass eigenstates does not have

to converge to the unit matrix either. In Appendix A, we explicitly show how to perform

the infinite sum over m in (7.35) [98]. We also show that the basis rotation D indeed

transforms the diagonal matrix of KK masses m2
(n) into the diagonal matrix recovered

from (7.50) in the naive limit n→∞ and vice versa. In a finite dimensional vector space,

this is not possible. Here, as expected from our earlier calculations, the orthogonal basis
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transformation D turns out to be the correct n → ∞ limit of basis transformations from

the Fourier basis to the mass basis. However, the same transformation in the vector-boson

sector is completely unphysical. Hence, basis rotations in an infinitely dimensional vector

space have to be handled with great care and should be questioned by a suitable limit from

a truncated model, as introduced above.

7.1.3 Brane Kinetic Terms for Both S1/Z2 Branes

For simplicity, we have ignored brane kinetic terms on the second brane of the S1/Z2

orbifold, so far. In the general case, the Lagrangian of 5D-QED reads

L(x, y) = −1

4
FMN(x, y)F

MN(x, y)− (r0 δ(y) + rπ δ(y − πR))
1

4
FMN(x, y)F

MN(x, y) ,

(7.51)

Repeating the arguments from the beginning of Section 7.1.1, one obtains the differential

equation

∂25f(n)(y) = −m2
(n)f(n)(y)

[

1 + r0 δ(y) + rπ δ(y − πR)
]

(7.52)

for the wave functions of the gauge-boson mass eigenstates. As already shown in [52], the

corresponding transcendental equation for the KK masses is given by

m(n) (r0 + rπ)

2
=

(

m2
(n)r0rπ

4
− 1

)

tan
(

m(n)πR
)

, (7.53)

while (7.17) still holds for the wave functions with the different normalization

N(n) =
1

√
2

δn,0

[

πR + r0 +
π

4
Rm2

(n)r
2
0 + rπ cos

2(m(n)πR) +

(

rπ
m2
(n)r

2
0

4
− r0

)

sin2(m(n)πR)

+

(

1

m(n)

− 1

4
m(n)r

2
0 +m(n)r0rπ

)

cos(m(n)πR) sin(m(n)πR)

]−1/2
.

(7.54)

In (7.54), the transcendental eigenvalue equation (7.53) cannot be used to substantially

simplify N as it is possible for rπ = 0. The same is true if the mass eigenstates are

expressed in terms of Fourier modes and vice versa in analogy to (7.27) and (7.28). Thus,

we do not state them explicitly although they can be easily computed using (7.29) and

(7.30). Expanding in Fourier modes and diagonalizing the kinetic matrix is even more

tedious. For kinetic terms on both branes, a detailed analysis on non-Abelian models

without spontaneous symmetry breaking in unitary gauge can be found in [52]. To put

forward the necessary generalizations of 5D-QED to the standard model case, we return to

the simpler setup rπ = 0.
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7.2 Spontaneous Symmetry Breaking

We now turn our attention to spontaneous symmetry breaking in the presence of brane

kinetic terms at y = 0. Breaking the symmetry by a VEV of a Higgs field localized on the

same brane introduces an additional mass term for the gauge field. The gauge part of the

corresponding Lagrangian is then given by

L(x, y) = −1

4
FMN F

MN − rc δ(y)
1

4
FMN F

MN +
(ve5)

2

2
δ(y)AµAµ . (7.55)

In analogy to (7.12), the differential equation for the gauge-boson wave functions reads

∂25f(n)(y)− 2πR δ(y) e2v2f(n)(y) = −m2
(n)f(n)(y)

[

1 + rc δ(y)
]

, (7.56)

where again e = e5/
√
2πR has been used. It can be solved along the lines presented in

Section 7.1.1 and leads to the eigenvalue equation

m(n) rc
2

(

1− e2v2

r̃cm2
(n)

)

= − tan
(

m(n)πR
)

(7.57)

and the wave functions

f(n)(y) =
N(n)√
2πR

[

cos
(

m(n)y
)

± m(n) rc
2

(

1− e2v2

r̃cm2
(n)

)

sin
(

m(n)y
)

]

, (7.58)

where

N(n) =
√
2



1 + π2R2 r̃2c m
2
(n)

(

1− e2v2

r̃cm2
(n)

)2

+ r̃c +
e2v2

m2
(n)





−1/2

. (7.59)

Since we need the Fourier modes in terms of the mass eigenstates for the investigation of

the Goldstone-boson sector, we state explicitly

Aµ
(0) = T̂0nÂ

µ
(n) = −

∞
∑

n=0

N(n)
r̃cm

2
(n) − e2v2

m2
(n)

Âµ
(n) ,

Aµ
(j) = T̂jnÂ

µ
(n) = −

∞
∑

n=0

√
2N(n)

r̃cm
2
(n) − e2v2

m2
(n) − j2/R2

Âµ
(n) ,

(7.60)

where (7.29) has been used. Calculating the mass eigenstates from a Fourier-mode expan-

sion is difficult because there are mixing effects in the kinetic as well as in the mass matrix.

There is no simple rescaling that transforms the mass matrix into a multiple of the unit

matrix. Consequently, two successive diagonalizations would have to be performed.
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Let us identify the Goldstone modes of this model. As in Chapter 2, there are additional

mixing terms because the scalar brane mode also mixes with the gauge fields, i.e.

L ⊃
∞
∑

n=0

√
2
1−δn,0

ev Aµ
(n) ∂µχ +

∞
∑

n=1

n

R
Aµ
(n) ∂µA(n)5 . (7.61)

With the help of (7.60), the Goldstone modes Ĝ(n) can be identified by their mixing with

the mass eigenstates, that is

L ⊃
∞
∑

m=0

Âµ
(m)∂µ

[

(

T̂0m +
∞
∑

n=1

√
2T̂nm

)

ev χ +
∞
∑

n=1

n

R
T̂nmA(n)5

]

. (7.62)

Calculating the infinite sum in the coefficient of χ, the Goldstone modes are given by

Ĝ(m) =
1

m(n)

[

ev N(m) χ +
∞
∑

n=1

n

R
T̂nmA(n)5

]

. (7.63)

Following the steps of Section 7.1.2, the orthonormality of the transformation (7.63) can

be shown in a quite tedious calculation. Consequently, gauge fixing mode by mode in the

effective 4D model leads to the usual one-to-one correspondence between the Goldstone

KK masses and the masses of the KK gauge bosons.

If brane kinetic terms of a bulk Higgs field Φ(x, y) are ignored spontaneous symmetry

breaking in the bulk does not induce any additional mixing effects in the gauge sector.

However, this is an arbitrary assumption and one should also allow BKTs for the scalar

field. The corresponding Lagrangian is then given by

L(x, y) = (DMΦ)∗ (DMΦ) + rΦ δ(y) (DMΦ)∗ (DMΦ) − V (Φ) . (7.64)

For a non-mode VEV v5 of the scalar, there is not only a bulk mass term for the gauge

boson but also a brane mass term due to the brane kinetic term. Thus, the gauge sector

reads

L(x, y) = −1

4
FMN F

MN − rc δ(y)
1

4
FMN F

MN +
(v5e5)

2

2
(1 + rΦ δ(y)) A

µAµ , (7.65)

and the corresponding differential equation for the wave functions of the mass eigenstates

is given by

∂25f(n)(y)− rΦ δ(y) e2v2f(n)(y)− e2v2f(n)(y) = −m2
(n)f(n)(y)

[

1 + rc δ(y)
]

, (7.66)

where we have used e5v5 = ev. Consequently, we find the eigenvalue equation

m2
(n) rc

2(m2
(n) − e2v2)1/2

(

1− r̃Φ
r̃c

e2v2

m2
(n)

)

= − tan
(

(m2
(n) − e2v2)1/2πR

)

, (7.67)
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and the wave functions

f(n)(y) =
N(n)√
2πR

[

cos
(

(m2
(n) − e2v2)1/2y

)

±
m2
(n) rc

2(m2
(n) − e2v2)1/2

(

1− r̃Φ
r̃c

e2v2

m2
(n)

)

sin
(

(m2
(n) − e2v2)1/2y

)

]

,

(7.68)

where

N(n) =
√
2



1 + 2r̃c + π2R2 r̃2c
m4
(n)

m2
(n) − e2v2

(

1− r̃Φ
r̃c

e2v2

m2
(n)

)2

−r̃c
m2
(n)

m2
(n) − e2v2

(

1− r̃Φ
r̃c

e2v2

m2
(n)

)]−1/2

.

(7.69)

Let us now turn to the scalar sector of the model. In addition to the would-be Goldstone

modes, there are massive physical CP-odd scalars. It is essential for the interpretation of

the model to prove that the scalar sector can still be divided into its physical part with

massive scalars and the would-be Goldstone modes being massless before gauge fixing. To

show this, notice that the CP-odd part of the Higgs field χ(x, y) is affected by its brane

kinetic term in complete analogy to the gauge fields. In terms of the Fourier modes, the

states diagonalizing the kinetic matrix are given by

χ̂(n) = TΦnmχ(m) , (7.70)

where TΦnm is given by (7.27) or (7.30) with rc replaced by rΦ. Thus, the bilinear terms of

the scalar sector can be given in the following compact notation:

L(n) = 1

2

(

∂µχ̂(n)
)2

+
1

2

(

∂µA5(n)
)2

+
1

2





A5(n)

χ(n)









e2v2 −ev n
R

−ev n
R

(

n
R

)2









A5(n)

χ(n)



 . (7.71)

Using χ(n) = TΦ−1nm χ̂(m) = T̂Φnmχ̂(m) and T̂
Φ
nm = (S−1DΦŜ)nm as given in (7.32), one finds

L(n) = 1

2

(

∂µχ̂(n)
)2

+
1

2

(

∂µÂ5(n)

)2

+
1

2





Â5(n)

χ̂(n)









e2v2 −ev mΦ(n)

−ev mΦ(n) m2
Φ(n)









Â5(n)

χ̂(n)



 ,

(7.72)

where we have defined Â5(n) = DΦT
nmA5(m). The massesmΦ(n) are given by the transcendental

equation (7.16) with rc replaced by rΦ. By construction, also for the hatted modes only

those with the same KK number mix. Thus, in analogy to (2.24), we can now define

G(n) =
(

m2
Φ(n) + e2v2

)−1/2 (
mΦ(n) Â(n)5 + ev χ̂(n)

)

,

a(n) =
(

m2
Φ(n) + e2v2

)−1/2 (
ev Â(n)5 − mΦ(n) χ̂(n)

)

.

(7.73)
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The modes G(n) (n ≥ 0) are massless before gauge fixing and the would-be Goldstone mass

eigenstates have to be linear combinations of these modes. The modes a(n) (n ≥ 1) have

physical mass terms and have to be interpreted as physical massive scalar particles. The

mixing terms between the scalar and the gauge boson sector are given by

L ⊃
∞
∑

n=0

ev Aµ
(n) ∂µχ(n) + r̃Φ

∞
∑

m,n=0

√
2
2−δn,0−δm,0

ev Aµ
(n) ∂µχ(m) +

∞
∑

n=1

n

R
Aµ
(n) ∂µA(n)5 . (7.74)

Expressing χ(n) and A5(n) by the hatted modes and using (7.73), one can show that there is

indeed no mixing of the gauge bosons with the physical modes a(n), as expected. The modes

G(n) mix to form the would-be Goldstone mass eigenstates Ĝ(n). It is straight-forward to

calculate TG
nm in Ĝ(n) = TG

nmG(m). In a final step, one should again proof that TG
nm is an

orthonormal transformation. However, this is not an easy task because TG
nm is a function of

mΦ(m) andm(n), i.e. of the masses of the physical scalars and the gauge bosons, respectively.

We set this calculation aside and turn again to more phenomenological aspects.

7.3 Phenomenology

As a toy model, we first investigate the spontaneously broken Abelian U(1) model (7.55)

coupled to a fermion on the brane y = 0. For simplicity, we again concentrate on a single

BKT. The mass of the vector-boson zero mode, given by the transcendental equation (7.57),

can be approximately calculated to first order in Xe =
π2

3
e2v2

M2 by expanding the right hand

side to third order in m(0)R. One finds

m2
(0) =

e2v2

1 + r̃c

(

1− 1

(1 + r̃c)2
Xe

)

. (7.75)

Note that, in addition to the shift of order Xe, the brane kinetic term suppresses the zero

mode mass. In the limit r̃c = 0, we recover (2.33). It is, of course, a generic feature of the

following calculations that we recover the results of the preceding chapters for vanishing

brane kinetic terms. Spontaneous symmetry breaking by the Higgs field on the brane only

leads to minor corrections for the masses of the heavy KK modes. Up to O(Xe) corrections,

the masses are still given by Figure 7.3. Using the mode expansion (7.8), the coupling of a

KK mode to the brane fermion is directly determined by its wave function at y = 0, i.e.

e(n) = eN(n) , (7.76)

where N(n) is given in (7.59). Working to first order in Xe and using (7.75), one finds for

the zero mode coupling

e(0) =
e√

1 + r̃c

(

1− 1

(1 + r̃c)2
Xe

)

. (7.77)
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Figure 7.4: Coupling strength (normalized to the zero mode coupling) to a brane

fermion for the first 4 heavy KK modes as a function of rc/R.

In the low-energy limit of the model, the shifts in the mass and the coupling are unob-

servable. Measuring m(0) and e(0), there is no way to infer the basic parameters e and

v. Nevertheless, the above results will be valuable in the following investigation of the

SM. As can be seen from (7.76) in combination with (7.59), the brane kinetic terms lead

to a suppression of the couplings of the heavy KK modes as displayed in Figure 7.4. At

energy scales, where one is sensitive to the higher KK modes, this suppression as well as

the reduced KK masses according to Figure 7.3 distinguishes this model from the special

case with vanishing brane kinetic terms. Let us finally turn to the phenomenology of the

SM extensions of Chapter 3 including brane kinetic terms.

7.3.1 Bulk-Bulk Model with a Brane Higgs

As a direct extension of (3.10), the bulk-bulk model with a brane Higgs is given by the

Lagrangian

L(x, y) = − 1

4
BMN B

MN − r1 δ(y)
1

4
BMN B

MN

− 1

4
F a

MNF
aMN − r2 δ(y)

1

4
F a

MNF
aMN (7.78)

+ δ(y)(Dµ Φ )† (Dµ Φ ) + LGF(x, y) + LFP(x, y) ,

where r1 and r2 are the BKTs for the two gauge groups.

As outlined in Section 3.2, the charged and the neutral gauge boson sector can be inves-

tigated separately. Concerning the W -boson zero modes, their masses and couplings to
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left-handed fermion doublets on the brane are only affected by r2. They can be approxi-

mately calculated in complete analogy to the Abelian model and read

m2
W (0) =

1

1 + r̃2

g2v2

4

(

1− 1

(1 + r̃2)2
π2

3

g2v2

4M2

)

=
g̃2v2

4

(

1− 1

1 + r̃2
Xg̃

)

, (7.79)

gW (0) =
g√

1 + r̃2

(

1− 1

(1 + r̃2)2
π2

3

g2v2

4M2

)

= g̃

(

1− 1

1 + r̃2
Xg̃

)

, (7.80)

where r̃2 = r2/(2πR) and g̃ = g/
√
1 + r̃2. Moreover, we have defined

Xg̃ =
π2

3

g̃2v2

4M2
. (7.81)

We will see below in (7.98), how Xg̃ is related to X as defined in (4.3). In terms of the

coupling g̃, it is quite striking that the shifts of order X for r̃2 = 0 are suppressed. Such

a suppression is a generic feature of brane kinetic terms in models with a Higgs boson on

the brane.

Let us now consider the photon and Z-boson sector of the standard model. For r1 = r2, it

is convenient to change basis according to (3.13). In this case, considering only the bilinear

terms, the photon sector looks like 5D-QED with a BKT as discussed in Section 7.1. The

Z-boson sector looks like the spontaneously broken model in Section 7.2. For r1 6= r2, the

model is complicated by the fact that the usual basis rotation (3.13) leads to mixing of

the gauge fields within the brane kinetic terms. Thus, there is no field combination in 5D

which can be associated with the Z boson or the photon. Hence, there is no obvious way to

directly derive the mass eigenstates by an expansion like (7.8). Here, we have to combine

the calculational tools introduced before.

In the weak A3µ, Bµ basis, before integration over the extra dimension the mass matrix is

given by

M2
A3B = δ(y)

v2

4

(

g25 −g5 g′5
−g5 g′5 g′25

)

, (7.82)

in analogy to the SM. To determine the masses and mass eigenstates we first make use

of the results for the Abelian model. For the moment, we ignore the off-diagonal terms

in the mass matrix and expand the fields using the wave functions (7.58), where rc and

e are replaced by r2 and g for the field A3µ and by r1 and g′ for the field Bµ, respec-

tively. Thus, after integration over the extra dimension the mass matrix for the KK modes

(Â3(0)µ, Â
3
(1)µ, . . . , B̂(0)µ, B̂(1)µ, . . .) is given by

M2
A3B =

(

Diag(m2
SU(2)(n)) M2

kl

M2
lk Diag(m2

U(1)(n))

)

, (7.83)
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where Diag(m2
SU(2)(n)) and Diag(m2

U(1)(n)) denote the diagonal matrices of the mass eigen-

values given by (7.57), again with the corresponding replacements for the SU(2) and U(1)

couplings and BKTs. Using (7.59), the off-diagonal block matrices can be written as

M2
kl = − gg′v2

4
N

SU(2)
(k) N

U(1)
(l) . (7.84)

At this point of the calculation, the kinetic matrix of the modes is equal to the unit matrix

such that we can start to diagonalize the mass matrix. Neglecting any corrections of order

m2
Z/M

2, the mass matrix of the zero modes Â3(0)µ and B̂(0)µ reads

M2
A3B =

v2

4

(

g̃25 −g̃5 g̃′5
−g̃5 g̃′5 g̃′25

)

, (7.85)

where g̃ = g/
√
1 + r̃2 and g̃′ = g′/

√
1 + r̃2. This mass matrix is diagonalized by a basis

rotation with the mixing angle

c̃2W = c2W
1 + r̃1

1 + c2W r̃1 + s2W r̃2
, (7.86)

where cW is defined in (3.45). Using the mixing angle (7.86) to rotate the Â3(0)µ and B̂(0)µ

modes into the new basis denoted by Z̃(0)µ and Ã(0)µ, we find from (7.83) to first order in

X̃ =
π2

3

(g̃2 + g̃′2)v2

4M2
=

π2

3

m̃2
Z

M2
(7.87)

the mass matrix elements

M2
Z̃(0)Z̃(0)

= m̃2
Z

[

1−
(

c̃6W
1 + r̃2

+ 2
c̃4W s̃

2
W

1 + r̃2
+ 2

c̃2W s̃
4
W

1 + r̃1
+

s̃6W
1 + r̃1

)

X̃

]

,

M2
Z̃(0)Ã(0)

= −m̃2
Z

(

c̃3W s̃
3
W

1 + r̃2
− c̃3W s̃

3
W

1 + r̃1

)

X̃ ,

M2
Ã(0)Ã(0)

= m̃2
Z

(

c̃4W s̃
2
W

1 + r̃2
+
c̃2W s̃

4
W

1 + r̃1

)

X̃ .

(7.88)

In the (Z̃(0)µ, Â
3
(1)µ, . . . , Ã(0)µ, B̂(1)µ, . . .) basis, the complete mass matrix is approximately



92 CHAPTER 7. BRANE KINETIC TERMS

given by

M2 =





































M2
Z̃(0)Z̃(0)

· · · s̃2W c̃WM2
r̃2(n)

· · · M 2
Z̃(0)Ã(0)

· · · − s̃W c̃2WM2
r̃1(l)
· · ·

...
...

s̃2W c̃WM
2
r̃2(n)

Diag(m2
SU(2)(n≥1)) −s̃W c̃2WM2

r̃2(k)
M2

kl
...

...

M2
Z̃(0)Ã(0)

−s̃W c̃2WM2
r̃2(k)

M2
Ã(0)Ã(0)

−s̃2W c̃WM2
r̃1(n)

...
...

−s̃W c̃2WM2
r̃1(l)

M2
lk −s̃2W c̃WM2

r̃1(n)
Diag(m2

U(1)(n≥1))
...

...





































,

(7.89)

where

M2
r̃2(n)

=
√
2 m̃2

Z

(

1 + π2R2
(

m
SU(2)
(n)

)2 r̃22
1 + r̃2

)−1/2
,

M2
r̃1(n)

=
√
2 m̃2

Z

(

1 + π2R2
(

m
U(1)
(n)

)2 r̃21
1 + r̃1

)−1/2
.

(7.90)

In (7.89), only the terms which are important to determine the zero-mode masses and

eigenstates to first order in X̃ are kept. The exact diagonalization of (7.89) is more tedious

and complicated. Instead, using the hierarchy of the matrix elements, we approximately

determine the eigenvector of the Z-boson mass eigenstate to first order in X̃ and find

Ẑ(0)µ = Z̃(0)µ

−
∞
∑

n=1

√
2 s̃2W c̃W

(

1 + π2R2
(

m
SU(2)
(n)

)2 r̃22
1 + r̃2

)−1/2
m̃2

Z
(

m
SU(2)
(n)

)2 Â
3
(n)

+
∞
∑

n=1

√
2 s̃W c̃

2
W

(

1 + π2R2
(

m
U(1)
(n)

)2 r̃21
1 + r̃1

)−1/2
m̃2

Z
(

m
U(1)
(n)

)2 B̂(n) .

(7.91)

Here, an order X̃ admixture of the Ã(0)µ state cannot be excluded but does not affect the

calculation of the Z-boson mass. The admixture is found to be zero below. The mass is

calculated by multiplying the first row of the mass matrix (7.89) with the eigenstate (7.91).
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As an intermediate result, we state

m2
Z(0) =

(g̃2 + g̃′2)v2

4

[

1−
(

c̃6W
1 + r̃2

+ 2
c̃4W s̃

2
W

1 + r̃2
+ 2

c̃2W s̃
4
W

1 + r̃1
+

s̃6W
1 + r̃1

)

X̃

− 2
∞
∑

n=1

s̃4W c̃
2
W

m̃2
Z

(

m
SU(2)
(n)

)2

(

1 + π2R2
(

m
SU(2)
(n)

)2 r̃22
1 + r̃2

)−1

−2
∞
∑

n=1

s̃2W c̃
4
W

m̃2
Z

(

m
U(1)
(n)

)2

(

1 + π2R2
(

m
U(1)
(n)

)2 r̃21
1 + r̃1

)−1





.

(7.92)

If r̃1 = r̃2, (7.92) has to simplify to (7.79) known from theW -boson sector. By comparison,

this observation implies

2
∞
∑

n=1

1
(

m
SU(2)
(n)

)2

(

1 + π2R2
(

m
SU(2)
(n)

)2 r̃22
1 + r̃2

)−1
=
π2

3

R2

1 + r̃2
(7.93)

and the analogous result for the sum over the U(1) masses. The simple result (7.93) can

also be proven directly by the summation technique introduced in Appendix A. Thus, we

finally find

m2
Z(0) = m̃2

Z

[

1−
(

c̃2W
1 + r̃2

+
s̃2W

1 + r̃1

)

X̃

]

. (7.94)

Again, the shift due to the extra dimension is suppressed if one allows for the presence of

brane kinetic terms. In analogy, one finds the eigenstate of the physical photon

Â(0)µ = Ã(0)µ

+
∞
∑

n=1

√
2 s̃W c̃

2
W

(

1 + π2R2
(

m
SU(2)
(n)

)2 r̃22
1 + r̃2

)−1/2
m̃2

Z
(

m
SU(2)
(n)

)2 Â
3
(n)

+
∞
∑

n=1

√
2 s̃2W c̃W

(

1 + π2R2
(

m
U(1)
(n)

)2 r̃21
1 + r̃1

)−1/2
m̃2

Z
(

m
U(1)
(n)

)2 B̂(n) ,

(7.95)

which is massless as it has to be. The masslessness implies that there is no admixture of

Z̃(0)µ. In turn, orthogonality between the photon and the Z boson demands the absence

of an admixture of Ã(0)µ to the physical Z-boson state as stated above. Concerning the

couplings to fermions on the brane y = 0, for the Z boson one finds

T3(0) = T3

(

1−
[

c̃2W
1 + r̃2

+
s̃2W

1 + r̃1

]

X̃

)

,

Q(0) = Q

(

1− 1

1 + r̃1
X̃

)

,

(7.96)
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where the notation of Section 4.1 is used. In addition to this shift, one has to replace sW

by s̃W and g by g̃ in the usual Feynman rules (see Appendix B). Note that for r̃1 = r̃2 the

shifts in (7.96) are equal and the Z coupling can equally well be parameterized by a shift

for g̃ only. The photon gauge coupling is shifted from e to ẽ with no order X̃ correction.

The quantities ẽ, g̃, and s̃W turn out to play the role of the usual SM parameters. They

also obey the usual SM tree-level relations. For large BKTs, they substantially differ from

the initial parameters in the Lagrangian e, g and sW which are only bookkeeping devices.

To quantify this statement, we derive the input parameters in terms of ẽ, g̃, and s̃W . One

obtains

α =
ẽ2

4π
, (7.97)

and mZ(0) is already given in (7.94). At this point, we can identify

X̃ = X =
π2

3

m2
Z(0)

M2
and Xg̃ = c̃2WX (7.98)

because one can usem2
Z(0) = m̃2

Z in terms which are already of orderX. The Fermi constant

GF has to be again calculated from muon decay including the exchange of the heavy KK

modes. Using (7.79), (7.80), (7.94), and (7.76) to find the leading order couplings of the

heavy KK modes, the Fermi constant reads

GF =
πα√

2s̃2W c̃
2
Wm

2
Z(0)

(

1− 2c̃2W
1 + r̃2

X − s̃2W
1 + r̃1

X + 2
∞
∑

n=1

m̃2
W

m2
W (n)

(

1 + π2R2m2
W (n)

r̃22
1 + r̃2

)

)

.

(7.99)

The infinite sum is performed according to (7.93) and we finally find

GF =
πα√

2s̃2W c̃
2
Wm

2
Z(0)

(

1−
[

c̃2W
1 + r̃2

+
s̃2W

1 + r̃1

]

X

)

. (7.100)

With the help of (7.100), one defines an effective mixing angle ŝW which is shifted to

first order in X with respect to s̃W as in Chapter 4. All shifts in masses and couplings are

suppressed if both r̃1 and r̃2 become large. This is extremely important for the investigation

of precision observables at the Z pole. The bounds on the compactification scale are

substantially reduced, if all brane kinetic terms are large.

In addition, the masses of the heavy KK modes are reduced by brane kinetic terms. Their

couplings to brane fermions also decrease. As discussed at the beginning of Section 4.4, at

energies above the Z pole 4-fermion contact interactions begin to dominate the deviations

from SM predictions. In the presence of brane kinetic terms, they scale like s/(1+ r̃1,2)M
2

as can be found in analogy to the above calculation of the Fermi constant. Hence, the

strength of the contact interactions is also reduced.
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In combination, brane kinetic terms effectively decouple the extra dimension from obser-

vation, as long as the energy is still small compared to the compactification scale. The

model becomes more and more four-dimensional. If only r̃1 or r̃2 become large, only the

shifts due to the gauge group with small brane kinetic term survive. The model tends to

the brane-bulk or the bulk-brane model (cf. Section 7.3.2).

To check the correctness of the analytically calculated shifts, it has been valuable to numer-

ically investigate a truncated model. For a finite number of Fourier modes, the kinetic and

the mass matrix can be diagonalized numerically to find the spectrum and the couplings.

Already for a model with 20 modes, the masses and couplings for the zero mode are in

good agreement with the analytical results.

7.3.2 Other Models with a Brane Higgs

The results for the W sector are either trivial (for SU(2) on the brane) or can be directly

obtained from the last section. The neutral boson sector can also be handled in analogy

to the calculations already presented. It is even simpler because there are no KK modes

for the gauge group confined to the brane. Consequently, the mass matrices M 2
kl in (7.83)

degenerate to a single row or column. Following the steps of the calculation, one finds for

mZ(0), Q(0), T(0) and GF the results of the previous section in the limit r̃1 → ∞, r̃2 → ∞
for the bulk-brane, brane-bulk model, respectively. If the remaining brane kinetic term

becomes larger, the extra-dimensional effects are suppressed and the model becomes more

and more SM-like at energies below the compactification scale.

7.3.3 Bulk-Bulk Model with a Bulk Higgs

The investigation of the bulk-bulk model with a bulk Higgs is more involved. First of

all, there is the additional brane kinetic term rΦ of the scalar Higgs field in the bulk, as

introduced in (7.65). Using the transcendental eigenvalue equation (7.67), we find for the

mass and the coupling of the light W boson

m2
W (0) =

1 + r̃Φ
1 + r̃2

g2v2

4

(

1− (r̃Φ − r̃2)2
(1 + r̃2)2(1 + r̃Φ)

π2

3

g2v2

4M2

)

=
g̃2ṽ2

4

(

1− (r̃Φ − r̃2)2
(1 + r̃2)(1 + r̃Φ)2

c̃2WX

)

, (7.101)

gW (0) =
g√

1 + r̃2

(

1− (r̃Φ − r̃2)
(1 + r̃2)2

π2

3

g2v2

4M2

)

= g̃

(

1− (r̃Φ − r̃2)
(1 + r̃2)(1 + r̃Φ)

c̃2WX

)

, (7.102)
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where, as before, g̃ = g/
√
1 + r̃2 and, additionally, we define ṽ = v

√
1 + r̃Φ. Moreover, we

have anticipated (7.98) for this model in which we find m̃2
Z = (g̃2 + g̃′2)ṽ2/4. The weak

mixing angle c̃W is still given by (7.86). Compared to the models with a brane Higgs boson,

we find a qualitatively new behavior. With growing r̃2, the order X correction for the W -

boson mass increase. Thus, these models are in conflict with the data if the brane kinetic

term of the gauge field is large at a given compactification scale. On the other hand, for

r̃Φ = r̃2 the corrections vanish, no matter how large each brane kinetic term is. If only r̃Φ

is large, the model essentially looks as if the symmetry is broken by a brane Higgs. For

r̃Φ ∼ r̃1 ∼ r̃2, the shift scales as in models with a brane Higgs. These results are quite

generic for the order X corrections in this model.

Concerning the neutral gauge bosons, Diag(m2
SU(2)(n)) and Diag(m2

U(1)(n)) in the mass ma-

trix (7.83) can be calculated using the eigenvalue equation (7.67). The off-diagonal blocks

are less simple than (7.84) because there is no overall δ-function simplifying the integration

over the wave functions of the mass eigenstates. As a result, we find

M2
kl = − gg′v2

4
N

SU(2)
(k) N

U(1)
(l)






r̃Φ −

(

m
SU(2)
(k)

)2

r̃2 −
(

m
U(1)
(l)

)2

r̃1 +
(g′2−g2)v2

4
r̃Φ

(

m
SU(2)
(k)

)2

−
(

m
U(1)
(l)

)2

+ (g′2−g2)v2
4






. (7.103)

To approximately diagonalize the mass matrix as in Section 7.3.1 we have to calculateM 2
k0,

M2
0l to leading order. This is easily done because the factor in brackets reduces to (r̃Φ− r̃2)

or (r̃Φ − r̃1), respectively. No corrections of order X are needed. However, M 2
00 has to be

analyzed to first order in X leading to a more lengthy calculation. After the determination

of the shift, the remaining calculation proceeds as in the previous section. Again, one has

to use (7.93) to calculate the infinite sums. We finally find

m2
Z(0) = m̃2

Z

(

1−
[

c̃2W
1 + r̃2

(r̃Φ − r̃2)2
(1 + r̃Φ)2

+
s̃2W

1 + r̃1

(r̃Φ − r̃1)2
(1 + r̃Φ)2

]

X̃

)

(7.104)

for the mass of the Z boson. Concerning its coupling to brane fermions, g̃ and s̃W again

replace g and sW in the Feynman rules in Appendix B. The order X corrections are given

by

T3f(0) = T3f

(

1−
[

c̃2W
r̃Φ − r̃2

(1 + r̃Φ)(1 + r̃2)
+ s̃2W

r̃Φ − r̃1
(1 + r̃Φ)(1 + r̃1)

]

X̃

)

, (7.105)

Qf(0) = Qf

(

1− r̃Φ − r̃1
(1 + r̃Φ)(1 + r̃1)

X̃

)

, (7.106)

while the photon coupling Qf ẽ is not shifted. Without brane kinetic terms, corrections of

the Fermi constant arise only from heavy KK exchange in muon decay. With brane kinetic
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terms, the additional shifts in couplings and masses yield

GF =
πα√

2s̃2W c̃
2
Wm

2
Z(0)

(

1− 1 + c̃2W r̃1 + s̃2W r̃2
(1 + r̃1)(1 + r̃2)

X +
2

1 + r̃Φ
X − s̃2W

1 + r̃1
(1 + r̃Φ)2

X

)

, (7.107)

where the KK exchange has been summed as in (7.99). Together with (7.104) and the

unaltered fine-structure constant α, (7.107) completes the list of input parameters.

The afore mentioned generic behavior of the corrections is reproduced. In certain limits of

the brane kinetic terms, the model is in conflict with experimental precision data from the

Z pole because the order X corrections grow. This contrasts the results for models with

a brane Higgs bosons which become more SM-like for large brane kinetic terms. However,

if all brane kinetic terms for the gauge and the scalar fields are of the same order, the

camouflage of the extra dimension by brane kinetic terms is recovered. In particular, the

contact interactions, being dominant for the discovery of extra dimensions at high energies,

are as diminished by brane kinetic terms as in the other models investigated before.



Chapter 8

Conclusions

We have studied a specific class of 5-dimensional standard model extensions. In this class,

some or all of the SU(2)L and U(1)Y gauge fields and Higgs bosons propagate in the fifth

dimension, compactified on an S1/Z2 orbifold. The other degrees of freedom, including the

fermions, are confined to one of the two boundaries of the S1/Z2 orbifold. Starting from the

5D Lagrangian, we have worked out the corresponding 4D effective theory for the towers of

KK modes which reflect the higher-dimensional origin of the model. In particular, we have

paid special attention to a consistent gauge-fixing procedure for the higher-dimensional

models leading to the generalized Rξ gauges. Applying the appropriate higher-dimensional

gauge-fixing conditions, the known Rξ gauge is recovered for each KK mass eigenstate after

the fifth dimension has been integrated out. We do not only explicitly identify the physical

particle spectrum as in the widely used unitary gauge but also the would-be Goldstone

modes which are eaten up by the massive gauge bosons. This enables us to establish a

close analogy between the traditional Higgs mechanism in the SM and the geometric mass

generation for the KK modes by compactification. To further elaborate the analogy, we

have proven the Goldstone boson equivalence theorem for W -pair production at tree-level,

no matter if a vector boson acquires its mass by the Higgs mechanism, by compactification,

or by a combination of both mechanisms. By proving the Ward identities underlying the

Goldstone theorem in the W -pair channel we have also checked the consistency of the

higher-dimensional models as gauge theories.

Based on the effective Lagrangians, we have derived analytic expressions for the KK mass

spectrum of the gauge bosons and for their interactions to the fermionic matter. All the

relevant Feynman rules are given. The afore mentioned proof of Ward identities provides

an excellent tool for their verification.

We have also calculated a large number of precision observables, cross sections and asym-

metries. Using these results, we have confronted the higher-dimensional SM extensions

98
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with an extensive set of high precision data from measurements at and above the Z pole.

In addition to simple one-parameter fits for the compactification scale M , we performed

multi-parameter fits forM along with the SM input parameters to take possible correlations

into account. No indication for extra-dimensional physics has been found up to LEP2 ener-

gies. From that, we derived bounds on the compactification scale in the different models in

the range of 4-6 TeV at the 2σ confidence level. Depending on the model the correlations

reduce the bounds up to 1 TeV with respect to the one-parameter fit. Furthermore, we

have shown that the presence of an extra compact dimension relaxes the 2σ upper bound

on the Higgs mass from 280 GeV in the SM to 400 GeV and 330 GeV in the brane-bulk

and the bulk-bulk model with a brane Higgs, respectively. Note that the data set used in

Section 4.3 is not identical to the one for the blue-band plot [70] and that the latest results

for the top mass [99] have not been taken into account, yet.

In addition, we have estimated the sensitivity to the compactification scale M at a future

e+e− collider such as TESLA. The GigaZ option should allow to increase the sensitivity

to M by a factor two in almost all 5D models. At
√
s = 800 GeV and for an integrated

luminosity of 1000 fb−1 the discovery potential depends crucially on the control of system-

atic errors. For a systematic uncertainty of 1% in each search channel, one will be able to

explore compactification scales up to 15-20 TeV. If systematic uncertainties were smaller

than the statistical uncertainties the sensitivity limit would be estimated to be in the range

M = 35-50 TeV. For a sufficiently low compactification scale, M <∼ 10 TeV, Higgsstrahlung

and angular distributions of 2-fermion final states can be used to discriminate between

different 5D models. In particular, Higgsstrahlung can be used to distinguish a brane from

a bulk Higgs boson.

Furthermore, we have investigated models with brane kinetic terms which are required at

the one-loop level for each bulk field. Including brane kinetic terms with their strength

as a free parameter in the 5D Lagrangian, the gauge-fixing procedure has been identified

beyond unitary gauge. Special attention has again been paid to the interplay of compacti-

fication and spontaneous symmetry breaking. In the corresponding effective 4D models the

spectrum of KK modes as well as their couplings to fermions are calculated either exactly

or at least approximately to first order in m2
Z/M

2.

We have shown that the appearance of brane kinetic terms tends to hide the extra dimension

from observation. In particular, not only the heavy KK modes decouple for large brane

kinetic terms [52] but also the shifts in masses and couplings are diminished. The afore

mentioned bounds on M roughly reduce by a factor
√
1 + r̃c if the dimensionless constant

r̃c sets the typical size of all brane kinetic terms. Only for a bulk-bulk model with a

bulk Higgs in which r̃c for the gauge bosons is much larger than r̃c for the Higgs boson,

the bounds can become more stringent. From an effective field theory point of view,
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dimensionful parameters usually scale with the cut-off Λ of the theory. Here, we have

r̃c = rc/(2πR) = M/(2πΛ). Consequently, brane kinetic terms are expected to be small

if the cut-off is a few times the compactification scale M as usually assumed. Regardless,

recently large brane kinetic terms have been invoked for model building, e.g. for Higgsless

SM extensions [53]. The consistency and predictivity of the non-renormalizable higher-

dimensional models will be subject of further investigation. For example, questions of tree-

level unitarity can be analyzed in the extended setup including brane kinetic terms [96].

Moreover, it is interesting to study the models in more detail as quantum theories at the

loop-level.

On the experimental side, the LHC will explore a new energy regime. Resonant production

of heavy KK states with a mass of 6-7 TeV [17,38,39] may be in reach at the LHC. Thus,

the lower limits on the compactification scale indicate that the first KK excitation can be

produced. However, direct production of the second or third heavy state differentiating

higher-dimensional physics from alternatives is excluded within the presented setup, unless

the brane kinetic terms are large. Hence, other methods to distinguish higher-dimensional

models from other models with extra gauge bosons are essential [100]. If only gravity lives

in extra dimensions or in case of universal extra dimensions the LHC phenomenology is

of course rather different. At any rate, with the advent of the next generation of high-

energy colliders, the question if more than four dimensions are visible in the TeV region

will become even more exciting.



Appendix A

Infinite Sums

It is a special feature of higher-dimensional models, that the corresponding 4D theory

includes an infinite number of degrees of freedom. Hence, we often have to calculate infinite

sums to find amplitudes or basis rotations. Complex analysis provides an extremely helpful

tool in this context. To be precise, we make use of the residue theorem

1

2πi

∫

C

f(z) dz =
∑

n

Resf(z)|z=zn . (A.1)

On the left hand side, one integrates counter clockwise along a closed contour C enclosing a

simply connected region of the complex plane. On the right hand side, the sum is taken over

the residues Resf(z)|z=zn at the poles of f(z) inside the contour C. The residue theorem

holds as long as f(z) is analytic everywhere inside C except for the isolated singularities

at z = zn.

Let us first concentrate on infinite sums over simple functions of integers g(n) [101]. Given

a function f(z) with a pole at each integer n, (A.1) tells us how to express the infinite

sum by an integral in the complex plane. The function of choice is f(z) = π cot(πn)g(z),

where Res π cot(πz)|z=n = 1. Consequently, as long as g(z) is analytic at all integers, we

can write

1

2πi

∫

CN

π cot(πz) g(z) dz =
N
∑

n=−N
g(n) + S, (A.2)

where the contour CN encloses the poles at z = n on the real axis for |n| ≤ N and S is

given by the sum of the residues of π cot(πz) g(z) at the poles of g(z) inside CN . A good

choice for the contour Cn is a circle centered at the origin with radius N + 1/2. With this

definition, we can easily take the limit N → ∞. It can be shown [101] that | cot(πn)| is
bounded along this contour such that the complex integral vanishes in the limit N → ∞
as long as |g(z)| ≤ c/|z|k with k > 1 and c, k = const. Hence, in the limit N → ∞, (A.2)
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implies
∞
∑

n=−∞
g(n) = −{sum of the residues of π cot(πz) g(z) at the poles of g(z)} . (A.3)

The calculation of the infinite sum is reduced to the evaluation of a few residues. The

above assumptions (|g(z)| ≤ c/|z|k with k > 1; g(z) has no poles at integers) are not very

restrictive because the sum usually does not converge if they do not hold. As an example,

let us calculate the sum over s-channel propagators in 5D-QED, i.e.
∞
∑

n=1

1

s− n2/R2 = − 1

2s
+

1

2

∞
∑

n=−∞

1

s− n2/R2 = − 1

2s
+

πR

2
√
s
cot(πR

√
s) . (A.4)

In the second step, we have used that g(z) = 1/(s − z2/R2) has two simple poles at

z = ±√sR. If s approaches n/R, the s-channel poles are recovered.

We now generalize the above analysis to sums over functions g(m(n)) of KK masses m(n),

given by transcendental equations like (7.16) [102]. While it is impossible to analytically

calculate a single mass eigenvalue, it turns out that one can indeed calculate certain infinite

sums. As a consequence of the transcendental equation (7.16), 1/(z+ 2
rc
tan(πRz)) has poles

at each mass eigenvalue and

Res
1

z + 2
rc
tan(πRz)

∣

∣

∣

∣

∣

z=m(n)

=

(

1 +
2πR

rc cos2(πRz)

)−1
= r̃c

(

1 + r̃c + r̃2cπ
2m2

(n)R
2
)−1

,

(A.5)

where we have used r̃c = rc/(2πR). Thus, we immediately find
∞
∑

n=−∞
g(m(n)) =

1

2πi

∫

C

1

r̃c

1 + r̃c + r̃2cπ
2m2

(n)R
2

z + 2
rc
tan(πRz)

g(z) dz − S , (A.6)

where

S = sum of the residues of the integrand in (A.6) at the poles of g(z) . (A.7)

In many cases, the integral again vanishes. However, this is not necessarily the case, as we

can see in the following explicit example.

To demonstrate the full power of the complex integration method, let us calculate the sum
∞
∑

n=1

Dknm
2
(n)Dln =

∞
∑

n=1

(

1 + r̃c + r̃2cπ
2m2

(n)R
2
)−1 4r̃2cR

2klm4
(n)

(k2 −m2
(n)R

2)(l2 −m2
(n)R

2)
(A.8)

in (7.35) which is important in the context of gauge fixing. We straightforwardly find
∞
∑

n=1

Dknm
2
(n)Dln =

1

2

∞
∑

n=−∞
Dknm

2
(n)Dln

=
1

2πi

∫

C

1

z + 2
rc
tan(πRz)

2r̃cR
2klz4

(k2 − z2R2)(l2 − z2R2) dz − S ,
(A.9)
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where, for k 6= l, S is given by the residues of the 4 simple poles at z = ±k/R and z = ±l/R
which add up to S = 2r̃ckl/R

2. For k = l, we have two double poles at z = ±k/R and their

residues yield S = (2r̃c − 1)k2/R2. For the contour C in (A.9), we take the limit N → ∞
of CN , which is a circle around the origin with radius N +1/4. The constant 1/4 is chosen

to avoid any poles from the mass eigenvalues on the contour CN . In the limit N → ∞,

we only have to keep terms in the integrand which are not suppressed by more than one

power of z, i.e.

∞
∑

n=1

Dknm
2
(n)Dln = −(2r̃c − δk,l)

kl

R2
+ lim

N→∞

1

2πi

∫

CN

1

z + 2
rc
tan(πRz)

2r̃ckl

R2
dz . (A.10)

Along the circle CN , | tan(πRz)| is bounded by a constant independent of N . Thus, defining

zN = (N + 1/4) exp(iθ), we have

lim
N→∞

∫

CN

1

z + 2
rc
tan(πRz)

dz = lim
N→∞

∫ 2π

0

izN
zN + 2

rc
tan(πRzN)

dθ

= 2πi+ lim
N→∞

∫ 2π

0

−i 2
rc
tan(πRzN)

zN + 2
rc
tan(πRzN)

dθ

= 2πi ,

(A.11)

and we finally find

∞
∑

n=1

Dknm
2
(n)Dln = −(2r̃c − δk,l)

kl

R2
+ 2r̃c

kl

R2
= δk,l

k2

R2
. (A.12)

Many similar sums can be calculated in close analogy to this explicit example.



Appendix B

KK Masses and Couplings to

Fermions on the Brane

Here, we present exact analytic results for the masses and the couplings of the KK gauge

modes to fermions in the minimal 5-dimensional extensions of the SM discussed in Chap-

ter 3. No brane kinetic terms are considered.

In Fig. B.1, we display the propagators for the KK gauge and Goldstone modes in the Rξ

gauge. In addition, the masses of the KK gauge bosons can be determined as follows:

SU(2)L⊗U(1)Y -Bulk Model:

mγ(n) =
n

R
, (B.1)

√

m2
W (n) −m2

W cos2 β = πm2
W sin2β R cot

(

πR
√

m2
W (n) −m2

W cos2 β
)

, (B.2)
√

m2
Z(n) −m2

Z cos2 β = πm2
Z sin2β R cot

(

πR
√

m2
Z(n) −m2

Z cos2 β
)

, (B.3)

where n = 0, 1, 2, . . ., mW = gv/2 and mZ =
√

g2 + g′2 v/2.

SU(2)L-Brane, U(1)Y -Bulk Model:

mZ(n) = πm2
Z sin2 θW R cot

(

πRmZ(n)

)

+
m2

Z

mZ(n)

cos2 θW . (B.4)

Note that there are no heavy KK excitations for the photon and W boson in this model.

SU(2)L-Bulk, U(1)Y -Brane Model:

mW (n) = πm2
W R cot

(

πRmW (n)

)

, (B.5)

mZ(n) = πm2
Z cos2 θW R cot

(

πRmZ(n)

)

+
m2

Z

mZ(n)

sin2 θW . (B.6)
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Ĝ±(n) propagator: µ
(n)

ν = i
k2− ξ m2

W (n)

Ĝ0(n) propagator: µ
(n)

ν = i
k2− ξ m2

Z(n)

A(n)5 propagator: µ
(n)

ν = i
k2− ξ m2

γ(n)

Ẑ(n)-boson propagator: µ
(n)

ν = i
k2−m2

Z(n)

(

−gµν + (1−ξ)kµ kν

k2− ξ m2
Z(n)

)

Ŵ±
(n)-boson propagator: µ

(n)
ν = i

k2−m2
W (n)

(

−gµν + (1−ξ)kµ kν

k2− ξ m2
W (n)

)

γ(n) propagator: µ
(n)

ν = i
k2−m2

γ(n)

(

−gµν + (1−ξ)kµ kν

k2− ξ m2
γ(n)

)

Figure B.1: KK gauge- and Goldstone-boson propagators in the 5-dimensional

extensions of the SM in the generalized Rξ-gauge.

There are no heavy KK excitations for the photon field in this model.

In the following, we give the exact analytic expressions for the couplings of KK gauge bosons

to fermions. In order to do so, we first introduce the following interaction Lagrangian:

Lint =
∑

n

gW (n)

(

Ŵ+
(n)µ J

+µ
W + Ŵ−

(n)µ J
−µ
W

)

+
∑

n

gZ(n) Ẑ(n)µ J
µ
Z +

∑

n

e(n) Â(n)µ J
µ
EM ,

(B.7)

with

J+µ
W =

1

2
√
2

[

νi γ
µ
(

1− γ5
)

ei + ui γ
µ
(

1− γ5
)

dj Vij

]

,

Jµ
Z =

1

4 cos θW
f γµ

[ (

2T3f(n) − 4Qf(n) sin
2 θW

)

− 2T3f(n) γ
5
]

f ,

Jµ
EM = f Qf γ

µ f ,

(B.8)

and νi = (νe, νµ, ντ ), ei = (e, µ, τ), ui = (u, c, t) and di = (d, s, b). In addition, f denotes

the 12 SM fermions. After a basis transformation from the weak to the mass eigenstates, we

obtain the following effective gauge couplings and quantum numbers for the three different

higher-dimensional models (n = 0, 1, 2, . . .):
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SU(2)L⊗U(1)Y -Bulk Model:

e(0) = e , e(n≥1) =
√
2 e ,

gZ(n) =
√
2 g

(

1 +
m2

Z sin2 β

m2
Z(n) −m2

Z cos2 β
+

π2m4
Z sin4 β

M2 (m2
Z(n) −m2

Z cos2 β)

)−1/2
,

gW (n) =
√
2 g

(

1 +
m2

W sin2 β

m2
W (n) −m2

W cos2 β
+

π2m4
W sin4 β

M2 (m2
W (n) −m2

W cos2 β)

)−1/2
,

T3f(n) = T3f , Qf(n) = Qf ,

(B.9)

with M = 1/R.

SU(2)L-Brane, U(1)Y -Bulk Model:

gZ(n) = g ,

T3f(n) =
T3f
cW

m2
Z(n)

m2
Z

[

1

s2W

(

1

2
−
m2

Z(n)

m2
Z

)

+
s2W
2c2W

(

π2
m2

Z(n)

M2
+

m2
Z(n)

m2
Zs

2
W

+
m4

Z(n)

m4
Zs

4
W

)]−1/2
,

Qf(n) =
Qf

cW

(

m2
Z(n)

m2
Zs

2
W

− c2W
s2W

)[

1

s2W

(

1

2
−
m2

Z(n)

m2
Z

)

+
s2W
2c2W

(

π2
m2

Z(n)

M2
+

m2
Z(n)

m2
Zs

2
W

+
m4

Z(n)

m4
Zs

4
W

)]−1/2
.

(B.10)

SU(2)L-Bulk, U(1)Y -Brane Model:

gZ(n) = g , gW (n) =
√
2 g

(

1 +
m2

W

m2
W (n)

+
π2m4

W

M2m2
W (n)

)−1/2
,

T3f(n) =
T3f
sW

m2
Z(n)

m2
Z

[

1

c2W

(

1

2
−
m2

Z(n)

m2
Z

)

+
c2W
2s2W

(

π2
m2

Z(n)

M2
+
m2

Z(n)

m2
Zc
2
W

+
m4

Z(n)

m4
Zc
4
W

)]−1/2
,

Qf(n) =
Qf

sW

[

1

c2W

(

1

2
−
m2

Z(n)

m2
Z

)

+
c2W
2s2W

(

π2
m2

Z(n)

M2
+
m2

Z(n)

m2
Zc
2
W

+
m4

Z(n)

m4
Zc
4
W

)]−1/2
.

(B.11)

In Fig. B.2 we display the Feynman rules for the couplings of the KK gauge bosons to

fermions that pertain to the above minimal 5-dimensional extensions of the SM.
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Figure B.2: Feynman rules for couplings of the KK gauge bosons to fermions in

the minimal 5-dimensional extensions of the SM.



Appendix C

Observables, SM Predictions, and

Input Parameters

This Appendix specifies the data and the SM predictions for the one-parameter fits in

Chapter 4. Moreover, we state the input variables for the multi-parameter fits.

In Figure C.1 we list the numerical values of the electroweak observables along with their

SM predictions, used for the one-parameter fits in Section 4.3. Their correlations are

taken from [70]. The data for fermion-pair production can be found in Table 8.2, the

correlations for hadron production in Table 8.3 of [70]. The heavy flavor data is given in

Table 8.7 and the W -pair production data in Table 9.1 of the same reference. For Bhabha

scattering, combined data for the different experiments has not been available. The data

of the different experiments is collected from [72–85]. The theoretical SM predictions are

obtained by assuming a light SM Higgs boson.

For the multi-parameter fits using ZFITTER, one has to specify the input parameters

of the SM. All input parameters are already restricted by independent experiments, e.g.

the Fermi constant from muon decay, the Z mass from the direct LEP measurement, etc.

This information has to be included in the fits (see Appendix D). We use the same input

parameters as used for the Higgs-mass blue-band plot in the year 2002 [70, 103]. To be

specific, we have

GF = 1.16637(1) × 10−5 GeV−2 ,

α(mZ) = 1/128.936(49) ,

mZ = 91.1875(21) GeV ,

mt = 174.3(5.1) GeV ,

αs(mZ) = 0.118(2) ,

(C.1)

108



109

where the numbers in parentheses indicate the 1σ uncertainties. A Higgs mass mH <

114 GeV is excluded by the direct search results from LEP. The fine-structure constant at

the Z pole α(mZ), the Z mass mZ , and the Fermi constant GF are already needed at tree-

level. The top mass mt, the strong coupling constant at the Z pole αs(mZ), and the Higgs

mass mH enter in the SM loop corrections calculated by ZFITTER (see Appendix D).

As discussed in Section 4.1, we introduce an effective weak mixing angle θ̂W by enforcing

the tree-level SM relation

GF =
πα(mZ)√

2 sin2 θ̂W cos2 θ̂W m2
Z

. (C.2)

Consequently, we use

sin2 θ̂W = 0.231 , (C.3)

for the weak mixing angle which appears in ∆5DSM
O for many observables.



110 APPENDIX B. OBSERVABLES, SM PREDICTIONS, INPUT PARAMETERS

Observable Exp. Value (OEXP) SM Prediction (OSM)

MW 80.451(61) GeV 80.391(19) GeV

ΓZ(had) 1.7444(20) GeV 1.7429(15) GeV

ΓZ(l
+l−) 83.984(86) MeV 84.019(27) MeV

ΓZ(νν) 499.0(1.5) MeV 501.76(14) MeV

QW (Cs) - 72.65(44) -73.10(3)

Re 20.804(50) 20.744(18)

Rµ 20.785(33) 20.744(18)

Rτ 20.764(45) 20.790(18)

Rb 0.21664(68) 0.21569(16)

Rc 0.1729(32) 0.17230(7)

Ae 0.15138(216) 0.1478(12)

Aµ 0.142(15) 0.1478(12)

Aτ 0.1439(41) 0.1478(12)

Ab 0.921(20) 0.9347(1)

Ac 0.667(26) 0.6681(5)

As 0.895(91) 0.9357(1)

A
(0,e)
FB 0.0145(25) 0.01637(26)

A
(0,µ)
FB 0.0169(13) 0.01637(26)

A
(0,τ)
FB 0.0188(17) 0.01637(26)

A
(0,b)
FB 0.0982(17) 0.1036(8)

A
(0,c)
FB 0.0689(35) 0.0740(6)

A
(0,s)
FB 0.0976(114) 0.1037(8)

Table C.1: Precision measurements and the corresponding SM predictions for the

observables under study [62].



Appendix D

Multi-Parameter Fits in the 5DSM

Here, we give a brief outline how to perform multi-parameter fits in the context of the

5DSM. The predictions for any observable are still calculated according to (4.1). However,

in the context of a multi-parameter fit, it is necessary to find the radiatively corrected

SM prediction OSM for any set of values for the SM input parameters αem(mZ), GF , mZ ,

αs(mZ), mt, and mH . Given the precision of the considered measurements, a tree-level

analysis within the SM is far from adequate.

The Fortran program ZFITTER [63–66] is designed to provide the SM predictions except

for Bhabha scattering and W -pair production. These channels are not analyzed in our

multi-parameter fits. For the other observables, we have used ZFITTER version ZF6 36.

After ZFITTER is appropriately initialized, the radiatively corrected SM predictions are

accessible by calls to various ZFITTER routines. For cross sections and asymmetries cuts

can be implemented according to the experimental data. As input parameters, the ZFIT-

TER routines expect mZ , αs(mZ), mt, and mH . Additionally, the electromagnetic coupling

constant has to be parameterized by hadronic contributions to the running from low ener-

gies to the Z pole. Our fits are directly performed with respect to αem(mZ) using routines

which translate between αem(mZ) and the corresponding hadronic contributions. The Fermi

constant GF cannot be fitted within ZFITTER because it is not a variable but fixed at its

SM best fit value. It is so precisely known from muon decay that a fit would not make

much sense anyway.

ZFITTER is well tested and works reliably. However, performing our fits we noted a

bug in ZFITTER version ZF6 36. Calculating the total hadronic cross section at center-

of-mass energies
√
s around the top mass, we found a discontinuity at

√
s = mt. The

discontinuity is roughly a 0.3% effect. It turned out, that this is due to a discontinuity in

the parameterization of the strong coupling constant αs(s) (a solution of the corresponding

renormalization group equation). This bug will be fixed in future ZFITTER versions [104].
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The discontinuity itself is not harmful for any of the presented results in Chapter 4 because

it can only affect a single hadronic cross-section measurement at an energy near the top

mass. However, the discontinuity is recovered in the χ2-function and leads to problems for

the MINUIT routines to be discussed below. The slight distortions in Figure 4.4 arise from

the discontinuity if the best fit value of mt crosses one of the LEP2 energies. The small

size of these distortions shows that the overall effect on the calculation of bounds is tiny.

To find the higher-dimensional predictions O5DSM as a function of X from Fortran routines,

we have implemented the correction factors ∆5DSM
O within a Fortran code. The minimiza-

tion of χ2, needed in (4.26), is performed by the Fortran program MINUIT [67] which

is specifically designed for the minimization of functions depending on many parameters.

Calling the appropriate MINUIT routine, one has to specify the initial values for the fit

parameters and another Fortran routine calculating the χ2-function. The χ2-function is

called from the internal MINUIT routines for specific sets of fit parameters and has to

return a value for χ2. If the minimization converges, MINUIT provides the minimal value

of χ2 along with the corresponding input parameters. To plot the χ2 curves or contours as

in Figs. 4.2 and 4.4, one can fix some of the parameters on an appropriate grid and fit the

remaining parameters for each grid point. Either these plots or internal MINUIT routines

can be used to determine the bounds according to (4.26).

The afore mentioned discontinuity in the χ2-function leads to a second artificial minimum

where the MINUIT routines can be trapped. Thus, one has to carefully check the results

provided by MINUIT. If the routines got trapped, it is easiest to rerun MINUIT choosing

a different set of initial values for the parameters to avoid the artificial minimum.

Of course, the χ2-function depends on the observables and their correlations that are con-

sidered in a specific fit. It is important that the experimental information on the input

parameters as stated in Appendix C is taken into account. A measurement of an input

parameter, being independent of the other observables in the fit, is simply included as one

of the observables. For deriving bounds, we moreover require mH > 114 GeV.

The Fortran interface between ZFITTER and MINUIT, as used for SM fits, has been kindly

provided by Prof. G. Quast. We have added the necessary extensions for fits in the 5DSM.

This is also the case for the convenient user interface reading fit parameters and observables

from an input file and providing the fit information in output files.



Appendix E

The Unified Approach in Statistics

In Section 4.2, we have introduced different statistical methods to derive bounds on pa-

rameters which can have unphysical values. We briefly explain the unified approach [69]

and how it compares to (4.25) and (4.26).

To introduce the notation, we first consider a set of observables, in our case the precision

observables or the LEP2 cross sections and asymmetries, which are assumed to be measured

(at least approximately) with a Gaussian distribution around their true values. These true

values are assumed to be (at least approximately) a linear function of a model parameter

Θ, in our case X. The model parameter Θ is not a priori known but has to be estimated

from the data set. The estimator Θ is usually found by minimizing the appropriate χ2-

function (4.24). It can be shown [68] that the estimator Θ also obeys a Gaussian distribution

around the true model parameter Θ, i.e. its likelihood is given by

P (Θ|Θ) ∼ exp

(

−1

2

(

Θ−Θ
)2

σ2

)

, (E.1)

where σ is a function of the uncertainties of the different observables and their sensitivities

with respect to Θ.

If the parameter space for Θ is unrestricted confidence intervals are easily constructed. In

the first step, for a given Θ, we can determine a lower and an upper bound Θl and Θu on

the estimators such that

P (Θl < Θ < Θu|Θ) =

∫ Θu

Θl

C exp

(

−1

2

(

Θ−Θ
)2

σ2

)

dΘ = α , (E.2)

where α is the confidence level, e.g. α = 0.95, and C is an appropriate constant to normalize

the probability distribution. By definition, only (1 − α) experiments yield an estimator

outside the interval [Θl,Θu]Θ. However, Θl and Θu are not uniquely determined. The
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remaining ambiguity can be removed by requiring an ordering principle for the inclusion of

different values of Θ. The simplest ordering principle, i.e. including values of Θ according

to the size of their likelihood, leads to symmetric intervals with

Θl = Θ− nσ and Θu = Θ+ nσ (E.3)

at the nσ confidence level.

Finally, to estimate a confidence interval [Θl,Θu] for the model parameter Θ, one includes

Θ if Θ ∈ [Θl,Θu]Θ. Thus, in a fraction α of the experiments the true parameter Θ lies

inside the estimated interval, as it should. This is Neyman’s construction [69] for confidence

intervals in the simple case where the observables are distributed according to a Gaussian

and the parameter dependence is linear. Practically, the interval for Θ is most easily

constructed by determining the χ2-function. For a given set of data, according to the

assumptions, one finds

χ2(Θ) = χ2min +∆χ2(Θ) = χ2(Θ) +

(

Θ−Θ
)2

σ2
. (E.4)

Using (E.3), one recovers the well known fact that finding Θl and Θu amounts to finding

the two roots of ∆χ2(Θ) = n2, i.e. Θl = Θ− nσ and Θu = Θ+ nσ.

The problem becomes more complex if some part of the parameter space has no physical

meaning, in our case X < 0. With the above construction, it is possible that the resulting

confidence interval completely lies within the unphysical region. There are several possibil-

ities to circumvent this problem. Here, we introduce the unified approach [69] which does

not use Bayesian techniques and yields correct intervals in the sense of the frequentist’s

approach.

In the unified approach, only the afore mentioned ordering principle is altered. Here, one

does not use the likelihood (E.1) as an ordering principle. Instead, one uses the likelihood

ratio

R ∼ P (Θ|Θ)/P (Θ|Θbest) , (E.5)

where Θbest denotes the value of Θ in the physical region which leads to the largest likelihood

P (Θ|Θ). As long as Θ lies in the physical region, the denominator is simply a constant

and R coincides with the simple likelihood if it is properly normalized. However, for an Θ

in the unphysical region R is larger than the simple likelihood. As a result, the confidence

intervals for values of Θ close to the unphysical region become more and more asymmetric

and are deformed into the unphysical region. An empty set for the confidence interval for

Θ is thus avoided.



115

upper bounds on X/σ
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4

Figure E.1: 2σ upper bounds on X/σ as a function of X/σ. Solid: X < 0 is also

a physical value. Dashed: Bayesian approach according to (4.25). Short dashed:

bounds according to (4.26). Long Dashed: unified approach. For X > 0, only the

Bayesian approach gives a different result.

To be specific, we concentrate on the case of the compactification scale parameterized by

X which has a physical meaning only for X ≥ 0. For X < 0, we find

R(X < 0|X) ∼ exp

(

−1

2

(

X −X
)2

σ2

)

/ exp

(

−1

2

X
2

σ2

)

. (E.6)

For X > 0, we trivially have

R(X > 0|X) ∼ exp

(

−1

2

(

X −X
)2

σ2

)

. (E.7)

The problem of determining confidence intervals in the unified approach is now reduced to

solving (E.2), where Θl = X l and Θu = Xu are related by

R(X l|X) = R(Xu|X) . (E.8)

For the interesting case X l < 0, equation (E.8) leads to the relation

Xu = X

(

1 +

√

1− 2X l/X

)

. (E.9)

Equation (E.2) can now be solved numerically for any given X and any confidence level.

Finally, we search for a confidence interval for X given some experimentally determined

X. For X < 0, the interval contains parts of the unphysical parameter space and one only

states the largest X in the confidence interval as the bound on X. To calculate this bound,

we search for the value of X which solves (E.2) with X l = X and Xu given by (E.9).
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Figure E.1 visualizes how the unified approach compares to (4.26) and the Bayesian ap-

proach (4.25). The 2σ bounds are shown as a function ofX, where both axes are normalized

to σ. For X/σ < 0, the Bayesian bound is least stringent. For X/σ < −2, as expected

the confidence interval is empty in the physical region if the simple likelihood is used as

an ordering tool. Equation (4.26) yields a good approximation for the bounds from the

unified approach unless X lies far in the unphysical region.

The unified approach is well motivated and correct in the statistical sense. However, if

the parameter dependence of the observables cannot be approximated as linear, bounds

from (4.26) are still easily calculated while the unified approach becomes more and more

complicated. Therefore, the bounds in Chapter (E.3) are calculated according to (4.26).



Appendix F

∆5DSM
O for Precision Observables

In this appendix we explicitly state the shifts ∆5DSM
O in the predictions for electroweak

precision observables in (4.1). The shifts are model dependent and we therefore present

them one model at a time. For a few exemplary observables, explicit calculations for the

shifts can be found in [18].

F.1 SU(2)L⊗U(1)Y -Bulk Model

In Table F.1, we present predictions for ∆5DSM
O /X in the bulk-bulk model, where ∆5DSM

O
and X are defined by (4.1) and (4.3), respectively. The auxiliary parameters in Table F.1

are given by

∆V =
4Qf ŝ

2
W

2T3f − 4Qf ŝ2W
∆θ ,

∆f =
8 ŝ2W Qf (2T3f − 4Qf ŝ

2
W )

(2T3f − 4Qf ŝ2W )2 + (2T3f )2
∆θ ,

∆h =
8 ŝ2W

∑

q Qq ( 2T3q − 4Qqŝ
2
W )

∑

q [ (2T3q − 4Qqŝ2W )2 + (2T3q)2 ]
∆θ ,

QSMW = (Z −N ) − 4Z ŝ2W ,

(F.1)

where Qf and T3f are the electric charge and the third component of the weak isospin of

a fermion f , q = u, d, c, s, b, N = 78 is the number of neutrons, and Z = 55 the number of

protons in the cesium nucleus. In (F.1), the parameters ∆V , ∆f and ∆h are proportional

to ∆θ defined in (4.12), since they arise from substituting s2W by ŝ2W into the different

electroweak observables. In detail, ∆V parameterizes the higher-dimensional shift in the
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Observable ∆5DSM
O /X

MW
1
2

(

s4β ŝ
2
W +

ŝ2W
ĉ2
W

∆θ

)

ΓZ(νν) ŝ2W
(

s2β − 1
)2 − 1

ΓZ(l
+l−) ŝ2W

(

s2β − 1
)2 − 1 + ∆l

ΓZ(had) ŝ2W
(

s2β − 1
)2 − 1 + ∆h

QW (Cs)
[

(

1− s2β
)2

+ 4Z
(

QSMW
)−1

∆θ

]

ŝ2W

Rl −∆l + ∆h

Rq ∆q − ∆h

Af ∆V − ∆f

A
(0,f)
FB ∆V − ∆f + f ↔ e

Table F.1: Predictions for ∆5DSM
O /X in the SU(2)L⊗U(1)Y -bulk model. The aux-

iliary parameters ∆V , ∆f and ∆h are defined in (F.1).

vector coupling of the Z boson to fermions. ∆f results from an analogous KK shift in the

sum of the squared vector and axial vector couplings for a given fermion f . Similarly, ∆h

gives the corresponding KK shift in the total hadronic width of the Z boson.

F.2 SU(2)L-Brane, U(1)Y -Bulk Model

With the help of some new auxiliary parameters, we exhibit in Table F.2 the tree-level shifts

∆5DSM
O to the different electroweak observables for the brane-bulk model. The parameters

δV and δA give the higher-dimensional modifications in the vector and axial-vector part of

the Zf̄f coupling except of the modifications which are due to the difference between θW

and θ̂W . We have

δV =
−2T3f ŝ2W + 4Qf ŝ

2
W

2T3f − 4Qf ŝ2W
,

δA = −ŝ2W .

(F.2)
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Observable ∆5DSM
O /X

MW
1
2
( ŝ2W ĉ

2
W/ĉ2W )

ΓZ(νν) −ŝ2W

ΓZ(l
+l−) ŝ2W + ∆l + δl

ΓZ(had) ŝ2W + ∆h + δh

QW (Cs) 4Z
(

QSMW
)−1

ŝ2W ∆θ

Rl −∆l + ∆h − δl + δh

Rq ∆q − ∆h + δq − δh

Af ∆V − ∆f − δf + δV + δA

A
(0,f)
FB ∆V − ∆f − δf + δV + δA + f ↔ e

Table F.2: Predictions for ∆5DSM
O /X in the SU(2)L-brane, U(1)Y -bulk model. See

text for the definition of the auxiliary parameters.

The parameter

δf =

(

−16T 23f + 16T3fQf

)

ŝ2W +
(

16T3fQf − 32Q2f
)

ŝ4W
(2T3f − 4Qf ŝ2W )2 + (2T3f )2

(F.3)

quantifies the shift in the sum of the squared vector and axial vector couplings of a given

fermion f to the Z boson. In analogy to ∆h, we finally define (q = u, d, c, s, b)

δh =

∑

q

[(

−16T 23f + 16T3fQf

)

ŝ2W +
(

16T3fQf − 32Q2f
)

ŝ4W
]

∑

q [(2T3f − 4Qf ŝ2W )2 + (2T3f )2]
. (F.4)

The parameters ∆V , ∆f and ∆h, used in Table F.2, are defined in (F.1) with ∆θ given

by (4.18).

F.3 SU(2)L-Bulk, U(1)Y -Brane Model

As in the previous section, we introduce the auxiliary parameters ∆V , ∆f , ∆h, δV , δA,

δf , and δh to state the tree-level shifts ∆5DSM
O for the bulk-brane model in Table F.3.
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Observable ∆5DSM
O /X

MW
1
2
( ŝ2W ĉ

2
W/ĉ2W )

ΓZ(νν) − ĉ2W

ΓZ(l
+l−) ĉ2W + ∆l + δl

ΓZ(had) ĉ2W + ∆h + δh

QW (Cs) 4Z
(

QSMW
)−1

ŝ2W ∆θ

Rl −∆l + ∆h − δl + δh

Rq ∆q − ∆h + δq − δh

Af ∆V − ∆f − δf + δV + δA

A
(0,f)
FB ∆V − ∆f − δf + δV + δA + f ↔ e

Table F.3: Predictions for ∆5DSM
O /X in the SU(2)L-bulk, U(1)Y -brane model. See

text for the definition of the auxiliary parameters.

∆V , ∆f , ∆h are given by (F.1), with ∆θ defined in (4.23), while δV , δA, δf , and δh read

(q = u, d, c, s, b)

δV = − 2T3f ĉ
2
W

2T3f − 4Qf ŝ2W
,

δA = − ĉ2W ,

δf =

(

−16T 23f + 16T3fQf ŝ
2
W

)

ĉ2W
(2T3f − 4Qf ŝ2W )2 + (2T3f )2

,

δh =

∑

q

(

−16T 23f + 16T3fQf ŝ
2
W

)

ĉ2W
∑

q [(2T3f − 4Qf ŝ2W )2 + (2T3f )2]
.

(F.5)



Appendix G

Kaluza-Klein W(0)W(0)Z(n) and

W(0)W(0)γ(n) Couplings

For models with a brane Higgs boson, we present the Feynman rules for the triple gauge

boson vertices shown in Fig. G.1. In the gauge basis, only theW+
(0)W

−
(0)Z(0) andW

+
(0)W

−
(0)γ(0)

vertices exist while the vertices W+
(0)W

−
(0)Z(n) and W

+
(0)W

−
(0)γ(n) with n ≥ 1 are forbidden by

KK selection rules [42, 56]. However, in the mass eigenstate basis, couplings to heavy KK

states are induced by the diagonalization of the gauge-boson mass matrix. Below, we give

these couplings to first order in X. To this order the zero-mode couplings are unaffected,

that is

gZ3(0) = g cos θW , gγ3(0) = e (G.1)

with g from (3.45). For the higher modes (n ≥ 1), one gets

gZ3(n) =
√
2 e

ĉW
ŝW

(

ŝ2W − ĉ2W
)

s2β
3

n2π2
X , (G.2)

gγ3(n) = −
√
2 e ĉ2W s2β

6

n2π2
X (G.3)

in the bulk-bulk model with a brane Higgs,

gZ3(n) =
√
2 e ĉW

3

n2π2
X (G.4)

in the brane-bulk model, and

gZ3(n) = −
√
2 e

ĉ2W
ŝW

3

n2π2
X (G.5)

in the bulk-brane model. In the latter two models, the γ(n) modes for n ≥ 1 are absent.

121



122 APPENDIX G. KALUZA-KLEIN W(0)W(0)Z(N) AND W(0)W(0)γ(N) COUPLINGS

����� � ��	���
��
���
���� �

��
��
�������� � ������! #"%$'& � �	� � � �)( � � � �* � � � � � ( � � � �* � � � � � � ( � � �	+

����� , �� ���
��
 ��
���� �

��
��
 ������� � ���.-�! #"%$ & � �	� � � �)( � � � �* � � � � � ( � � � �* � � � � � � ( � � �	+

Figure G.1: Triple gauge boson couplings. The numbers in parenthesis denote the

KK mode numbers.



Appendix H

Kaluza-Klein H(0)Z(0)Z(n) Couplings

In the bulk-bulk model with a bulk Higgs field, the KK selection rules forbid the couplings

of two zero modes to higher modes. Moreover, the gauge eigenstates coincide with the

mass eigenstates. Thus, for zero-mode final states, Higgsstrahlung is described by the

same H(0)Z(0)Z(0) vertex as in the SM. In the bulk-bulk model with a brane Higgs only, the

HZZ coupling can be derived in the gauge basis from

LHZZ(x) =
1

4

g2v

c2W
h

(

Zµ
(0) +

∞
∑

n=1

√
2Zµ

(n)

)2

=
g

2

mZ(0)

cW

(

1− ∆Z

2
X

)

h

(

Zµ
(0) +

∞
∑

n=1

√
2Zµ

(n)

)2

,

(H.1)

where h denotes the Higgs field on the brane and v its VEV. The second relation follows

from (4.2). In the brane-bulk or bulk-brane model, the Zµ
(n) tower coincides with the U(1)Y

or SU(2)L KK modes for n ≥ 1, respectively. Since a brane Higgs field breaks momentum

conservation in the extra dimension, there are no selection rules.

In the mass eigenstate basis, the Lagrangian (H.1) leads to the vertex shown in Fig. H.1.

In summary, the effective couplings are given by

gZH(0) = g and gZH(n≥1) = 0 (H.2)

in the bulk-bulk model with a bulk Higgs,

gZH(0) = g

[

1 −
(

2 +
∆Z

2

)

X

]

,

gZH(n≥1) =
√
2 g

[

1 −
(

1 +
3

2n2π2
+

∆Z

2

)

X

]

(H.3)
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Figure H.1: The HZZ vertex. The numbers in parenthesis specify the KK modes.

in the bulk-bulk model with a brane Higgs,

gZH(0) = g

[

1 −
(

2 ŝ2W +
∆Z

2

)

X

]

,

gZH(n≥1) =
√
2 sW g

[

1 −
(

ŝ2W +
(

3 ŝ2W − 2
) 3

2n2π2
+

∆Z

2

)

X

]

(H.4)

in the brane-bulk model, and

gZH(0) = g

[

1 −
(

2 ĉ2W +
∆Z

2

)

X

]

,

gZH(n≥1) =
√
2 cW g

[

1 −
(

ĉ2W +
(

3 ĉ2W − 2
) 3

2n2π2
+

∆Z

2

)

X

]

(H.5)

in the bulk-brane model. The factor
√
2 in gZH(n≥1) is the usual enhancement of couplings

between higher KK modes and brane fields. The factors sW and cW reflect the fact that

for n ≥ 1 Zµ
(n) is mainly Bµ

(n) or A
3µ
(n), respectively.



Appendix I

Feynman Rules for W Bosons and the

Associated Goldstone Modes

Figures I.1, I.2, and I.3 list the relevant Feynman rules for W -pair production and the

production of the associated Goldstone modes in the bulk-bulk model, as discussed in

Chapter 6. The scalar modes χ± are defined in (3.12). The Feynman rules are given in

the weak basis, not in the basis of mass eigenstates. For the W -boson zero modes, the

couplings to the Z-boson and photon KK modes in the mass eigenbasis are explicitly given

in Appendix G.

Where it is important, arrows indicate if the particles are incoming or outgoing. One has

to be aware of additional minus signs for complex fields, e.g. the second Feynman rule in

Fig. I.2 can be also formulated as follows:

Z(l)ν = i e
1
2
−s2W

cW sW

(

1√
2

)(δk,0+δl,0+δm,0+1)

δk,l,m (k+ − k−)µ .

χ+(m)

χ−(k)

¡ªk
+

@Ik−

Z(l)ν = i e
1
2
−s2W

cW sW

(

1√
2

)(δk,0+δl,0+δm,0+1)

δk,l,m (−k−′ − k−)µ ,

χ−(m)

χ−(k)

¡µk−

@Ik−′
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A(l)ν = i e
(

1√
2

)(δl,0+1)

δ̃k,l,m (k+ − k−)µ

W−
(m)5

W+
(k)5

¡µk
−

@Rk+

A(l)ν = ± e gµν
[

(

m
R

)

(

1√
2

)(δl,0+1)

δ̃k,l,m −
(

l
R

)

(

1√
2

)(δm,0+1)

δ̃k,m,l

]

W∓
(m)µ

W±
(k)5

¡µ

@R

A(n)λ=
i e
(

1√
2

)(δk,0+δl,0+δm,0+1)

δk,l,m

[gµν (k
− − k+)λ + gνλ (−q − k−)µ + gλµ (k

+ + q)ν ]

W−
(l)ν

W+
(m)µ

¡ªk
−

@Ik+

¾
q

A(l)ν = i e
(

1√
2

)(δk,0+δl,0+δm,0+1)

δk,l,m (k+ − k−)µ

χ−(m)5

χ+(k)5

¡µk
−

@Rk+

A(l)ν = ± e gv
2
gµν

(

1√
2

)(δk,0+δl,0+δm,0+1)

δk,l,m

W∓
(m)µ

χ±(k)5

¡µ

@R

Figure I.1: Vertices for the coupling of the photon KK modes to W -boson and

scalar modes living in the bulk in the weak eigenbasis.
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Z(l)ν = i e cW
sW

(

1√
2

)(δl,0+1)

δ̃k,l,m (k+ − k−)µ

W−
(m)5

W+
(k)5

¡µk
−

@Rk+

Z(l)ν = ± e cW
sW

gµν

[

(

m
R

)

(

1√
2

)(δl,0+1)

δ̃k,l,m −
(

l
R

)

(

1√
2

)(δm,0+1)

δ̃k,m,l

]

W∓
(m)µ

W±
(k)5

¡µ

@R

Z(n)λ=
i e cW

sW

(

1√
2

)(δk,0+δl,0+δm,0+1)

δk,l,m

[gµν (k
− − k+)λ + gνλ (−q − k−)µ + gλµ (k

+ + q)ν ]

W−
(l)ν

W+
(m)µ

¡ªk
−

@Ik+

¾
q

Z(l)ν = i e
1
2
−s2W

cW sW

(

1√
2

)(δk,0+δl,0+δm,0+1)

δk,l,m (k+ − k−)µ

χ−(m)

χ+(k)

¡µk
−

@Rk+

Z(l)ν = ∓ e sW
cW

gv
2
gµν

(

1√
2

)(δk,0+δl,0+δm,0+1)

δk,l,m

W∓
(m)µ

χ±(k)

¡µ

@R

Figure I.2: Vertices for the coupling of the Z-boson KK modes to W -boson and

scalar modes living in the bulk in the weak eigenbasis.
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Z(l)ν = i e
1
2
−s2W

cW sW

√
2
(1−δl,0)

(k+ − k−)µ

χ−

χ+

¡µk
−

@Rk+

Z(l)ν = ∓ e sW
cW

gv
2
gµν
√
2
(2−δl,0+δm,0)

W∓
(m)µ

χ±

¡µ

@R

A(l)ν = i e
√
2
(1−δl,0)

(k+ − k−)µ

χ−

χ+

¡µk
−

@Rk+

A(l)ν = ± e gv
2
gµν
√
2
(2−δl,0+δm,0)

W∓
(m)µ

χ±

¡µ

@R

Figure I.3: Vertices for the coupling of the Z-boson and photon modes to charged

scalar modes being restricted to the brane y = 0 in the weak eigenbasis.
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