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Kurzzusammenfassung

Dunkle Materie und nichtverschwindende Neutrinomassen sind nur zwei Hinweise auf das
mögliche Vorhandensein neuer Physik jenseits des Standardmodells der Teilchenphysik.
Solche möglichen Konsequenzen neuer Physik können modellunabhängig mit effektiven
Feldtheorien beschrieben werden. Beispielsweise aufgrund zusätzlicher Symmetrien ist
es möglich, dass Operatoren mit Dimension d > 5 den dominanten Beitrag zu den
Effekten neuer Physik bei niedrigen Energieskalen liefern. Da diese stärker unterdrückt
sind als die gewöhnlicherweise betrachteten Operatoren niedrigerer Dimension, können
sie zu äußerst schwachen Wechselwirkungen führen, selbst wenn neue Physik bereits
bei vergleichsweise niedrigen Energien auftritt. Dies ermöglicht unter anderem neue
Teilchen mit Massen im Bereich der TeV-Skala mit der Erzeugung der sehr geringen
Neutrinomassen in Verbindung zu bringen. Solche Teilchen sind besonders interessant,
da sie an Beschleunigerexperimenten wie dem Large Hadron Collider untersucht werden
können. Deswegen wird in dieser Arbeit zunächst die Erzeugung von Neutrinomassen
durch höherdimensionale effektive Operatoren in supersymmetrischen Modellen reka-
pituliert. Darüber hinaus sollen mögliche Prozesse zum Nachweis dieser Modelle am
Large Hadron Collider anhand eines Beispiels diskutiert werden. Da das Einführen
neuer Teilchen das Laufen der Kopplungskonstanten beeinflussen kann, wird ferner
betrachtet, inwiefern solche Szenarien vereinbar mit großen vereinheitlichten Theorien
(Grand Unified Theories) sind. Die entsprechende Erweiterung dieser Modelle kann
beispielsweise das Auftreten neuer schwerer Quarks zur Folge haben, die auf ihre Ver-
einbarkeit mit kosmologischen Beobachtungen untersucht werden. Höherdimensionale
Operatoren können jedoch nicht nur sehr kleine Neutrinomassen erzeugen, sondern
auch für Experimente zum Nachweis dunkler Materie relevant sein. Daher sollen die
zuvor angewandten Methoden zur systematischen Diskussion effektiver Operatoren, die
Wechselwirkungen dunkler Materie beschreiben, verwendet werden.
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Abstract

Dark matter and non-zero neutrino masses are possible hints for new physics beyond
the Standard Model of particle physics. Such potential consequences of new physics
can be described by effective field theories in a model independent way. It is possible
that the dominant contribution to low-energy effects of new physics is generated by
operators of dimension d > 5, e.g., due to an additional symmetry. Since these are more
suppressed than the usually discussed lower dimensional operators, they can lead to
extremly weak interactions even if new physics appears at comparatively low scales.
Thus neutrino mass models can be connected to TeV scale physics, for instance. The
possible existence of TeV scale particles is interesting, since they can be potentially
observed at collider experiments, such as the Large Hadron Collider. Hence, we first
recapitulate the generation of neutrino masses by higher dimensional effective operators
in a supersymmetric framework. In addition, we discuss processes that can be used
to test these models at the Large Hadron Collider. The introduction of new particles
can affect the running of gauge couplings. Hence, we study the compatibilty of these
models with Grand Unified Theories. The required extension of these models can imply
the existence of new heavy quarks, which requires the consideration of cosmological
constraints. Finally, higher dimensional effective operators can not only generate small
neutrino masses. They also can be used to discuss the interactions relevant for dark
matter detection experiments. Thus we apply the methods established for the study
of neutrino mass models to the systematic discussion of higher dimensional effective
operators generating dark matter interactions.
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1. Introduction

The discovery of a Higgs boson at the Large Hadron Collider (LHC) [1, 2] is the latest
success of the Standard Model of particle physics (SM). This was also honored by the
Nobel Prize of Physics 2013, which was awarded to François Englert and Peter Higgs
for their theoretical work on the mechanism that generates the masses of elementary
particles, and that predicts such a boson. Despite its success, the SM leaves many open
questions: Why is the mass of the Higgs at such a small scale? How can the even many
orders of magnitude smaller neutrino masses be understood? Why have the different
particle families so different masses? Can the fundamental forces be united? What is
the origin of dark matter? Such questions motivate the investigation of new physics
beyond the Standard Model (BSM). The most popular framework for BSM physics is
supersymmetry (SUSY). In SUSY fermions of the SM have bosonic partners and SM
scalars have fermionic ones. Introducing this symmetry between fermions and bosons is
not only aesthetically pleasing. SUSY stabilizes the Higgs mass at the electroweak scale,
avoiding the so-called hierarchy problem. Other than in the SM, the coupling constants
of the fundamental interactions can be united at a high energy scale. Furthermore, the
lightest supersymmetric particle is a good candidate for dark matter (DM). It is quite
astonishing that just by requiring the existence of this very fundamental theory, so many
open issues could be addressed. It is due to this fact that many physicists still believe
that SUSY may be realized in nature, although a several decades long hunt for any
evidence for SUSY has so far been unsuccessful. The results that a future run of the
LHC may produce are therefore highly expected. Since SUSY allows the unification of
the SM gauge couplings, it becomes interesting to think about a Grand Unified Theory
(GUT). In such a theory the forces of the SM are described by a single gauge group and
relations between quarks and leptons can be obtained.

Also in another field of particle physics have been interesting developments in the past.
While neutrinos where considered to be massless particles for a long time, the observation
of flavor oscillations of neutrinos has established the fact that they have tiny but non
vanishing masses. The smallness of these masses can be understood in the framework
of the so-called seesaw mechanism. It describes the effect that the introduction of new
very massive particles can lead to very small masses for the known neutrinos. These
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1. Introduction

new particles are usually required to be very heavy, far beyond the reach of any current
experiments. But new models that extend the generic seesaw mechanism, and which
have been recently discussed in literature, make it possible that the new physics scale is
of order TeV. Such scenarios are especially interesting since they have phenomenological
consequences for colliders, such as the LHC. Besides finite masses, the observation of
flavor oscillations requires that the mass eigenstates of neutrinos are a mixture of their
flavor eigenstates. For quite some time the paradigm of so-called tri-bimaximal mixing
has been very popular since it can be generated by simple symmetry groups such as A4

and was also in good agreement with experimentally measured parameters, until it was
discovered that the reactor mixing angle θ13 is significantly different from zero [3, 4].
This rules out pure tri-bimaximal mixing. Which underlying physics is responsible for
this behavior is an open issue, that currently is strongly debated. Also in the field of
neutrino physics, interesting experimental results are expected to be obtained in the not
so far future.
A third field that is currently expecting more input from experiments is the search

for dark matter. From cosmological observations, such as the measurement of the
Cosmic Microwave Background (CMB) [5, 6], we know that the visible matter is only
a small fraction (∼5%) of the total energy-density of the Universe. The largest part
is instead composed of dark matter (∼27%) and dark energy (∼69%) [7]. The results
from experiments trying to observe dark matter directly have so far been contradictory.
While some experiments such as CoGeNT [8] and CDMS [9, 10] have found hints
for the existence of DM, other experiments such as XENON100 [11] and recently the
LUX experiment [12, 13] have excluded this parameter region.

Usually specific high energy models are used to describe these observations. Alterna-
tively one can work with effective field theories (EFTs), which are parametrizations of
new physics effects at lower energies that are independent of the actual implementation
of BSM physics. They can be used to systematically study a wide field of different
physics scenarios. We will use this “technology” to study several questions related to
the topics discussed above.

This thesis is organized as follows: After an introduction to the basic concepts of SUSY
in chapter 2 and an overview of neutrino physics in chapter 3, we discuss effective field
theory in chapter 4. In this context we will show how neutrino mass can be generated
by an effective operator. The connection of neutrino masses to TeV scale physics has
been recently discussed in literature [14–30]. In the context of EFTs an interesting
scenario is the generation of neutrino masses by a higher dimensional operator [15, 31–42].
The study of higher-dimensional operators has been also applied to other fields, e.g.,
neutrinoless double beta decay [43] or anomalous Higgs couplings [44]. Here we will
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discuss higher dimensional operators that generate neutrino mass systematically within
the framework of SUSY models. We will illustrate this concept for a specific model that
gives rise to neutrino mass via an effective operator of dimension d = 7 in chapter 5, and
demonstrate how it could be potentially tested at the LHC. Since the UV completion of
these operators require new particles, the unification of gauge couplings that arises in
SUSY might be spoiled. Therefore we want to study how these neutrino mass models
can be embedded into a GUT inspired model. Also Dark matter interactions can be
studied using EFTs [45–56]. In chapter 7 we will therefore use the previously established
methods to study DM interactions via higher dimensional operators. Finally we will
summarize and give our conclusions.
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2. Supersymmetry

Supersymmetry (SUSY) has been one of the most popular models for physics beyond
the Standard Model (BSM) in the past decades. After its start in 2009, the LHC has
begun to test supersymmetric models. For the simplest SUSY models, new consraints
on the parameter space could already be obtained. After further data will have been
acquired, it will be possible to either strengthen these constraints or to detect first hints
of supersymmetric particles. In the following we present an introduction to the basic
concepts of SUSY and provide an overview on the current experimental status. A more
detailed introduction can be found in Refs. [57, 58].

2.1. One step back: The Standard Model
We assume that the reader is familiar with quantum field theories (QFT) and the basic
concepts of particle physics (see, e.g., Ref. [59]). In order to better understand the need
for BSM physics, we will, however, briefly recapitulate the main aspects of the Standard
Model.1 The basic building blocks of the SM are scalars, fermions and vector bosons:

Scalars
A non-interacting massive complex scalar field φ is described by the Klein-Gordon
equation

(∂µ∂µ +m2)φ = 0 , (2.1)

where m is its mass and ∂µ =
(
∂
∂t
,∇
)
. The scalar is invariant under Lorentz transfor-

mations Λµν according to φ(x)→ φ′(x) = φ(Λ−1x).

Fermions
Fermions instead are Dirac spinors, which are multicomponent fields that transform as
ψa →Mab(Λ)ψb(Λ−1x). Their equation of motion is given by the Dirac equation

(iγµ∂µ −m)ψ(x) ≡ (/∂ −m)ψ(x) = 0 , (2.2)
1 We will use this opportunity also to fix some notation conventions. We will use natural units (c = 1,
~ = 1) and the signature (+,−,−,−) for the metric gµν throughout this thesis.
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2. Supersymmetry

where γµ are the Dirac matrices.2

Vector bosons
While Eq. (2.1) and Eq. (2.2) are invariant under global symmetry transformations,
this is not the case for local gauge transformations. This can be compensated through
the interaction with gauge bosons Aµ, which transform as Lorentz vectors Aµ(x) →
(Aµ)′(x) = ΛµνAν(Λ−1x). Their equations of motion are the Maxwell equations

∂µFµν = 0 , (2.3)

where F a
µν = ∂µA

a
ν −∂νAaµ + gfabcAbµA

c
ν . The last term containing the structure constant

fabs induces a self interaction proportional to a coupling constant g. It is zero for
Abelian gauge fields.

Putting all these ingredients together, we can write down a simple gauge invariant
Lagrangian

L = (Dµφ)†(Dµφ) + ψ /Dψ − 1
4(F a)µν(F a)µν − ψmψ

− µφ†φ+ λ(φ†φ) + y (φψψ + h.c.) , (2.4)

where ψ = ψγ0 and Dµ = ∂µ + igAµ is the covariant derivative (for an Abelian gauge
group).

SM particles
The gauge group of the SM is SU(3)color × SU(2)L × U(1)Y.

• SU(3) is responsible for the strong interaction of colored particles. The correspond-
ing gauge bosons are the 8 gluons.

• The SU(2) group acts on left-handed particles and leads to weak interactions. It
includes three gauge bosons Wi.

• The hypercharge3 of U(1) has one associated boson B0.
2 We will work in the Weyl basis, i.e., the basis in which γ5 = iγ0γ1γ2γ3 is block diagonal. Thus

γ0 =
(

0 1

1 0

)
, ~γ =

(
0 ~σ

−~σ 0

)
, and γ5 =

(
1 0
0 −1

)
,

where ~σ = (σ1, σ2, σ3) are the Pauli matrices. Using the common convention σµ = (σ0, σ1, σ2, σ3),

σ̄µ = (σ0,−σ1,−σ2,−σ3) and σ0 = 1 we can also write γµ =
(

0 σµ

σ̄µ 0

)
.

3 We will use the convention Y = (Q − I3) for the hypercharge of a particle, where Q is its electric
charge and I3 its weak isospin, so that the right handed electron has Y = −1.
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2.1. One step back: The Standard Model

The fermions of the SM have the following transformation properties under these gauge
groups

• The quarks are the only particles that carry a color charge. They are therefore
triplets of SU(3). The left-handed particles form an SU(2) doublet

QL =
uL
dL

 with Y = +1
6 .

The right handed particles are uR and dR with hypercharge Y = +2
3 and Y = −1

3 .

• The leptons are color singlets. We have left-handed SU(2) doublet

L =
 ν
`−

 with Y = −1
2 ,

and a right-handed field eR with Y = −1.

We have three generations for each of these fields, the up-type quarks being the up, the
charm and the top quark. The down-type ones are the down, the strange and the bottom
quark. The charged leptons are the electron, the muon and the tau, and the neutrinos
are νe, νµ and ντ .

Electroweak symmetry breaking (EWSB)
Lorentz invariance implies that we can only write down mass terms for a combination
of right- and left-handed fields. With the matter content described above no such term
can be formed without violating gauge invariance. Also the gauge bosons cannot have
an explicit mass term for the same reason. We can circumvent this issue by introducing
a scalar field, the Higgs field

H =
H+

H0

 ,

which is an SU(2) doublet with Y = +1
2 . Its potential reads

V (H) = −µH†H + λ(H†H)2 . (2.5)

If one replaces H with a complex scalar field φ, the potential V (φ) can be plotted vs.
the real and imaginary component of φ and we obtain a surface which at its bottom has
the characteristic shape of a “Mexican hat”. Also the more complicated potential V (H)
has a global minimum different from zero. Due to the freedom of SU(2) we can rewrite
the corresponding vacuum expectation value (VEV) of the Higgs field as

〈H〉 =
0
v

 , (2.6)
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2. Supersymmetry

with v = 〈H0〉 =
√

µ
2λ = 174GeV.4 One can easily see that 〈H〉 is not invariant under

SU(2)L×U(1)Y transformations. As a consequence the electroweak part SU(2)L×U(1)Y
of the SM gauge group will be spontaneously broken down to an U(1)em which only
conserves electromagnetic charge, but not weak isospin and hypercharge. The masses
for the gauge bosons are obtained via the covariant derivative (DµH)†(DµH). This will
cause the mixing of the B0 and W 0 bosons. In the end we will obtain three massive
mass eigenstates W+, W− and Z0 as well as a massless photon γ. The masses of the
fermions will be obtained via Yukawa couplings

LYukawa = YeeRLH
† + YddRQLH

† + YuuRQLH + h.c. (2.7)

The structure of the Yukawa constants determines the mass hierarchy and mixing
behavior of the three fermion generations. Without the introduction of new fields the
neutrino is still massless in this picture. The addition of a right-handed neutrino would
in principle allow for a Yukawa coupling YNνRLH. This coupling, however, would have
to be extraordinarily small. We will discuss this issue in more detail in a later chapter.

So far, the Standard Model has been tested very successfully and with high precision.
With the observation of a Higgs boson, the last missing piece has been finally discovered.
As we will discuss in the next section, one has, however, reason to believe that this
picture of particle physics is not complete.

2.2. Basic concept and motivation of SUSY
The basic idea of SUSY is to relate bosons and fermions via a symmetry. This can be
schematically described as

Q|fermion〉 = |boson〉 and Q†|boson〉 = |fermion〉 , (2.8)

where the operator Q is a generator of SUSY. A pair of SUSY generators obeys the
following anticommutation relations

{Qa;Qb} = {Q†a;Q
†
b} = 0 , (2.9a)

{Qa;Q†b} = (σµ)abP̂ µ , (2.9b)

where P̂ µ is the 4-momentum operator and σµ represents the Pauli matrices. There are
several considerations that motivate this approach:

4 Note that also the convention 〈H0〉 = v√
2 with v = 246GeV is commonly used.
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2.2. Basic concept and motivation of SUSY

Symmetry considerations
As stated by the Coleman-Mandula theorem [60], there exist only two non-trivial types
of generators of the Poincaré group. With other words, in a four-dimensional space-time
the only non-scalar operators that generate Lorentz-invariant transformations are the
momentum operators P̂µ and the angular momentum operators M̂µν . If one extends
spacetime to a superspace, by allowing for additional fermionic degrees of freedom, the
complete set of non-trivial transformations includes also the operators from Eq. (2.9)
that transform as spinors [61].

The hierarchy problem
Assuming the SM is only valid up to a cut-off scale Λ, the Higgs mass will obtain next-to
leading order corrections, e.g.,

δmH ∝ λ

Λ∫
d4k

1
k2 −m2

H

∝ λΛ2 , (2.10)

where λ is the parameter of the quartic Higgs self-coupling (see Eq. (2.5)). Due to the
quadratic dependence on the cut-off scale, these corrections are huge. In order to obtain
a physical Higgs mass at the electro-weak scale the bare mass and the corrections δmH

must have very precisely agreeing values. Such a fine-tuning is considered unnatural.
In SUSY, however, this problem does not appear. The existence of SUSY partners
of the Higgs field leads to additional loop-corrections that cancel the corrections from
Eq. (2.10). As will be discussed later in this chapter, SUSY is not an exact symmetry.
Since SUSY breaking happens typically at the TeV scale, we still need some fine-tuning in
order to obtain a Higgs-mass at the EW scale. This is also known as the little hierarchy
problem and connected to the naturalness of SUSY (see discussion in section 2.4).

Gauge coupling unification
Grand unified theories (GUTs) assume that the SM gauge group
SU(3)c × SU(2)L × U(1)Y is a subgroup of a single larger gauge group. Typical exam-
ples of such groups are SU(5) and SO(10). The unification of the gauge groups implies
that also the corresponding gauge couplings must be unified at the GUT scale. If one
assumes that the SM is valid up to this scale and no new phyiscs appears, one can
convince oneself that the renormalization group running of the couplings does not lead
to the required unification. If, however, new SUSY particles appear at the TeV scale,
they will affect the running of the gauge couplings. As a consequence they will obtain
(nearly) the same value at a high scale [62–68].
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2. Supersymmetry

Higgs mass and electro-weak symmetry breaking
The discovery of a Higgs particle with a mass mH ∼ 126GeV at the LHC [1, 2] is in
accordance with SUSY, which predicts a light Higgs mass. For electro-weak symmetry
breaking to happen, the Higgs potential must have its famous Mexican-hat shape. This
means that the relative sign between the quadratic and quartic Higgs coupling µ and λ
must be negative. In SUSY a positive µ at the GUT scale will automatically become
negative at the EW scale due to renormalization group running.

Vacuum stability
The observed values for the masses of the Higgs and the top-quark imply that the SM
model ground state is most probably in a meta-stable vacuum [69]. This means that
the current vacuum is not the global minimum. The tunneling times to this vacuum are,
however, longer than the age of the universe. In SUSY models, on the other hand, a
stable vacuum can be more easily obtained.

2.3. SUSY models
It is not possible to combine any scalar and fermionic field into the same supermultiplet,
if both are SM fields. The same is true for fermions and gauge bosons of the SM. This
is due to the fact that the supermultiplets must not break the SM gauge group. The
superpartner of a SM particle must therefore have the same quantum numbers as the
particle itself. The construction of SUSY invariant multiplets requires the introduction
of additional particles.5

2.3.1. The MSSM

The most minimal supersymmetric extension of the SM is the so-called MSSM, the
Minimal Supersymmetric Standard Model. It adds exactly one SUSY partner for each
SM field. There is also a modification in the Higgs-sector. The MSSM is a type-II
Two Higgs Doublet Model (2HDM). This means a second Higgs supermultiplet of
opposite hypercharge is present. This is necessary in order to generate SUSY invariant
Yukawa couplings for up- as well as down-quarks. The full field content of the MSSM is
listed in Tab. 2.1. The MSSM is specified by the superpotential

WMSSM = ˆ̄uYuQ̂Ĥu − ˆ̄dYdQ̂Ĥd − ˆ̄eYeL̂Ĥd + µĤdĤu . (2.11)

5 If unfamiliar with the formalism used to describe SUSY models, we refer the reader to appendix A.

10



2.3. SUSY models

Chiral super-multiplets

Name Spin 0 Spin 1/2 SU(3)C SU(2)L U(1)Y

squarks, quarks Q̃ = (ũL, d̃L) Q = (uL, dL) 3 2 1
6˜̄uL ūL ∼ (uR)c 3̄ 1 −2
3˜̄

dL d̄L ∼ (dR)c 3̄ 1 1
3

sleptons, leptons L̃ = (ν̃, ẽL) L = (ν, eL) 1 2 −1
2˜̄eL ēL ∼ (eR)c 1 1 1

Higgs, Higgsinos Hu = (H+
u , H

0
u) H̃u = (H̃+

u , H̃
0
u) 1 2 1

2
Hd = (H0

d , H
−
d ) H̃d = (H̃0

d , H̃
−
d ) 1 2 −1

2

Vector super-multiplets

Name Spin 1/2 Spin 1 SU(3)C SU(2)L U(1)Y

gluino, gluon g̃ g 8 1 0
winos, W’s W̃±, W̃ 0 W±,W 0 1 3 0
bino, B B̃ B 1 1 0

Table 2.1. – The particle content of the MSSM. Besides the SM fermions and gauge
bosons, we also have their SUSY partners, the sfermions and gauginos. After EWSB
the physical states of the Higgs bosons are h0, H0, A and H±. Their counterparts, the
Higgsinos, mix together with the winos and binos resulting in 4 neutralinos χ̃0

i and 2
charginos χ̃±i . W 0 and B mix to Z and the photon, as usual.
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2. Supersymmetry

With the method described in the last section, a SUSY invariant Lagrangian can be
obtained from this superpotential. SUSY is, however, not an exact symmetry. This
becomes obvious by considering that no SUSY particles have been discovered so far. But
if SUSY were conserved, all particles would have the same mass as their superpartners.
There are different ways how SUSY breaking can occur. For our purposes, however,

it is sufficient to parametrize the SUSY breaking. One therefore can add so-called
soft-breaking terms to the Lagrangian. These terms have only couplings of positive
mass dimension and are therefore renormalizable. The possible terms that are invariant
under the SM gauge group are:

Gaugino mass terms

−1
2(M1B̃B̃ +M2W̃

aW̃ a +M3g̃
αg̃α + h.c.) , (2.12)

Sfermion mass terms

−m2
Q̃
Q̃†Q̃−m2˜̄u ˜̄u† ˜̄u−m2˜̄d ˜̄d†˜̄d−m2

L̃
L̃†L̃−m2˜̄e ˜̄e†˜̄e , (2.13)

where we have to sum over all families,

Higgs mass terms

−m2
HuH

†
uHu −m2

Hd
H†dHd − (BHHuHd + h.c.) , (2.14)

and

Trilinear terms

−Tu ˜̄uQ̃Hu − Td
˜̄
dQ̃Hd − Te˜̄eL̃Hd + h.c. (2.15)

While an unbroken SUSY would not require any more parameters than the SM, these
soft-breaking terms introduce over 100 new parameters. Therefore, one usually considers
models with an restricted parameter space. In the constrained MSSM (CMSSM) or
minimal supergravity (mSUGRA) framework [70–74] the masses of sfermions m0 and the
masses of the gauginos m 1

2
have a universal value at the GUT scale. Also the trilinear

couplings Ti are obtained from an unviersal value A0 multiplied by the corresponding
Yukawa coupling Yi at the GUT scale. The SUSY sector is then fully determined by the
following parameters

m0, m 1
2
, tan β, A0, and sgn(µ) , (2.16)

where tan β is the ratio of the vacuum expectation values vu
vd
, and µ the Higgs self

coupling as in Eq. (2.11).
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2.4. Current status

2.3.2. The NMSSM

The Next-to Minimal Supersymmetric Standard Model (NMSSM) is the most minimal
extension of the MSSM (for a review see, e.g., Ref. [75]). It requires the introduction of
an additional superfield Ŝ that is a singlet under the SM gauge group. It is defined by
the following superpotential.

WNMSSM = ˆ̄uYuQ̂Ĥu − ˆ̄dYdQ̂Ĥd − ˆ̄eYeL̂Ĥd + λŜĤdĤu + κŜ3 . (2.17)

The scalar component S of Ŝ will obtain a VEV vS. This will dynamically generate the
µ-term of the MSSM (c.f., Eq. (2.11)) with µ = λ〈S〉. This is in contrast to the MSSM,
where the µ parameter has to be given a value close to the electroweak scale manually,
which is a somewhat arbitrary choice.

The addition of the new superfield Ŝ will lead to a further neutral scalar and pseu-
doscalar field if compared to the MSSM, which alters the phenomenology of the Higgs
sector. Its fermionic component, instead, has an additional neutralino as consequence.
The necessity to include the term κŜ3 in the superpotential is due to the fact that

otherwise the NMSSM superpotential would be invariant under an U(1) symmetry the
so-called Peccei-Quinn symmetry. The breaking of this symmetry during EWSB
would generate a massless Goldstone boson. To avoid experimental exclusion bounds
for this so-called axion, significant fine-tuning would be required. Instead, this symmetry
is explicitly broken down to a discrete Z3 symmetry by the κ-term.
During EWSB also the Z3 will be broken spontaneously. The spontaneous breaking

of a discrete symmetry leads to the domain wall problem: The vacuum in neighboring
regions of the universe is in different degenerate minima of the NMSSM potential.
Between these regions is a so-called domain wall. This wall would contribute to the
energy-density of the universe and alter cosmic evolution in a way that is contradictory
to observations. To avoid this, one can assume that the discrete symmetry is broken by
a small amount, e.g., by Planck scale suppressed effective operators [76–79].

2.4. Current status
Recently, experimental data has put pressure on SUSY models (see, e.g. [81, 82] and
Refs. therein). Most prominently, the data the LHC has collected in the past years,
has by now already excluded large areas in the parameter space of the most simple
SUSY models. In Fig. 2.1 we show, for instance, some recent results of the Atlas
collaboration. For a recent review on the current status of SUSY searches and models
see, e.g., Ref. [83]. There are various ways in which SUSY can be tested:
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Figure 2.1. – Recent exclusion limits from the Atlas collaboration for 8 TeV analyses
in the m0 – m 1

2
plane in the CMSSM for different search channels, showing the strong

constraints for light squarks and gluinos [80].

• Collider searches for superpartners – As mentioned above, the most stringent
constraints from direct searches for SUSY partners of the SM particles come from
the LHC. Most colored superpartners are now required to have masses larger than
1TeV. But, as we will discuss below, in certain models these constraints can be
evaded. There exists a multitude of different search strategies for different SUSY
particles, depending on the assumed model properties. In general, SUSY particles,
if they are produced by proton-proton collisions, will decay in characteristic ways
and produce signatures in the detector that have to be distinguished from the SM
background in dedicated analyses. A typical signature is missing transverse energy.
This is due to the LSP, which is stable, if R-parity is conserved, and thus will not
decay inside the detector. The LHC has the highest sensitivity for squarks and
gluinos. The experimental details are beyond the scope of this thesis and will not
be discussed here.

• Higgs physics – The properties of the Higgs boson discovered at the LHC are
in agreement with a SM like Higgs. While this does not imply that there is no
physics beyond the Standard Model, it requires that new physics may not alter
the Higgs decays in a significant way and must predict the correct Higgs mass.
In models with additional scalars, such as the NMSSM, it is easier to obtain
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2.4. Current status

acceptable Higgs masses [84–89], although the MSSM can also accomadate a mass
of 126 GeV [90–96].

• Indirect Constraints – Generic SUSY models contain CP and flavor violating
currents. Low energy observables such as, e.g., µ→ eγ, put strict limits on flavor
breaking effects. Furthermore, if CP is broken, SUSY particles contribute to
the strongly constrained electric dipole moment of the electron and neutron via
penguin diagrams.

All these constraints indicate that superpartners are very heavy, at the TeV or multi-TeV
range. This, however, is in contradiction to naturalness: Higher-order-corrections to
the Higgs mass depend on the SUSY breaking scale. The higher this scale, the more
fine-tuning is required. How much fine-tuning can still be considered natural is of course
very subjective, but models with minimal fine-tuning, maximally at the percent level,
are generally preferred. Some, on the other hand, might object naturalness as criteria at
all. Another concern is obviously that too heavy superpartners cannot be detected at
the LHC. There are several classes of models that are currently discussed in literature,
that are not bound by these constraints. Here, we want to present two examples:

• Natural SUSY – In natural or effective SUSY, one assumes a SUSY spectrum,
where sbottoms, stops and gluinos are light, whereas the first and second generation
quarks are heavy. This scenario makes it possible to avoid experimental constraints,
which are strongest for the first and second generation. At the same time the
third-generation squarks, which couple strongest to the Higgs, have lighter masses
and thus reduce the necessary fine-tuning. Such a spectrum might be motivated
by an additional symmetry, e.g., an U(1) (see, e.g.,Refs. [97–99]).

• Compressed Spectra – If the masses of the SUSY particles are highly degenerate,
the gluino and squark cascade decays will produce less missing energy than the
corresponding decays in generic SUSY models. This feature makes it more difficult
to identify the corresponding signals in a detector. For this reason, compressed
SUSY models can avoid detection more easily resulting in weaker constraints on
the masses of the SUSY particles [100–107]. Those compressed spectra can also
be theoretically motivated. In Pati-Salam models, for example, a larger gauge
group is broken down to the SM symmetries in several steps. A subgroup of this
symmetry is thus conserved down to a rather low scale, which prevents a too large
splitting of the masses [108, 109].

If one of these models is realized in nature, might become clearer when the LHC will
deliver more data in the future.
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3. Neutrino Physics

Neutrinos have been first postulated in 1930 by Pauli, since they allow for a consistent
description of the kinematics of β-decay. Their first experimental observation was the
discovery of the electron anti-neutrino νe in 1956 by Cowan and Rines, which earned
them the 1995 Nobel prize. Later also the other neutrino flavors the µ and τ neutrino,
νµ and ντ have been found by experiments.
For a long time neutrinos have been considered massless. This changed, however,

when among other experimental indications, the solar neutrino anomaly [110] was finally
better understood: Knowing the nuclear processes that are the energy source of the
Sun [111], one can use solar models to predict the production rate of electron neutrinos
at its core. But when the Homestake experiment [112] started measuring the flux of
electron neutrinos originating at the Sun on Earth in the 1970s, only a fraction of the
expected flux was observed. As we know today, the solution is that neutrinos oscillate, as
will be discussed in the next section. This oscillation can be enhanced by matter effects.
As a consequence a sizable percentage of electron neutrinos is converted to other flavors
on their way from the core of the Sun to its surface. Later the SNO experiment, which
used flavor-blind neutral current interactions, could indeed observe a total neutrino flux
of all three neutrino species that was consistent with predictions [113]. One condition to
observe flavor oscillations is that neutrinos must have non-zero masses and their flavor
states are a mixture of distinct mass eigenstates. The smallness of these masses is an
indication of new physics.
In the following we will therefore first discuss the formalism of neutrino oscillations

and mixing. Later we will focus on the basic models that can generate small neutrino
masses, such as the default seesaw mechanism. See, e.g., Refs. [114–116] for more details.

3.1. Flavor oscillations of neutrinos
The relation between flavor states and mass eigenstates of neutrinos is given by a unitary
mixing matrix U , so that

|να〉 = Uαk|νk〉 and |νk〉 = U−1
kα |να〉 , (3.1)
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3. Neutrino Physics

where Greek indices denote flavor eigenstates (α = e, µ, τ) and Latin indices mass
eigenstates (i = 1, 2, 3). A similar matrix can be defined for the charged lepton sector.
In the following we will assume a basis for the charged leptons where their mass matrix
is flavor diagonal. The total mixing matrix in the lepton sector is also known as
Pontecorvo-Maki-Nakagawa-Sakata or PMNS matrix. The PMNS matrix is the
analogue to the CKM matrix of the quark sector. It is usually parametrized as

U =


1 0 0
0 c23 s23

0 −s23 c23




c13 0 s13eiδCP

0 1 0
−s13e−iδCP 0 c13



c12 s12 0
−s12 c12 0

0 0 1

 (3.2)

here sij = sin θij, cij = cos θij and δCP is a CP phase.
In nature neutrinos should be described by Quantum Field Theory. To understand

the basic principle of neutrino oscillations it is, however, sufficient to describe them as
plane waves. The time evolution of their mass eigenstates is then given by

|νk(t)〉 = exp(−iEkt)|νk〉 . (3.3)

We can now calculate the transition probability Pαβ that expresses with what probability
the time evolution να(t) of an initial state να will be observed as state νβ. First we
obtain the transition amplitude

Aα→β = 〈νβ|να(t)〉 = 〈νk|UkβU−1
αk |νk(t)〉 = U−1

αk Ukβ exp(−iEkt) . (3.4)

The probability reads then

Pαβ = |Aα→β|2 = U−1
αk UkβU

−1
αl Ulβ exp [−i(Ek − El)t] . (3.5)

Using the ultra-relativistic limit Ek =
√−→p 2 +m2

k ≈ E + m2
k

2E we obtain

Pαβ = δαβ − 4 Re
(
Jαβkl

)
sin2

(
∆m2

klL

2E

)
+ 2 Im

(
Jαβkl

)
sin2

(
∆m2

klL

2E

)
, (3.6)

where Jαβkl = U−1
αk UkβU

−1
αl Ulβ and ∆m2

kl = m2
k − m2

j . Its imaginary part leads to CP
violation. As can be seen from the formula, by observation of neutrino oscillations in
vacuum only information about the difference of the squared masses can be obtained.
So far, the ordering of the mass eigenstates has not been established. Two scenarios are
possible, the normal ordering (m1 < m2 < m3) and the inverted ordering (m3 < m1 <

m2). If all three masses are close to the upper bound their relative mass differences are
small and we therefore speak of a degenerate spectrum. If the lightest neutrino mass is
instead close to zero the spectrum is called hierarchical.
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3.1. Flavor oscillations of neutrinos

Parameter Best-fit value

∆m2
21/10−5 eV2 7.50+0.18

−0.19

∆m2
31/10−3 eV2 2.473+0.070

−0.067

sin2 θ12 0.302+0.013
−0.012

sin2 θ23 0.413+0.037
−0.025 ⊕ 0.594+0.021

−0.022

sin2 θ13 0.0227+0.0023
−0.0024

Table 3.1. – Values for neutrino oscillation parameters obtained from a global fit [117].
The presented errors are the 1σ range. In case of sin2 θ23 two intervalls around 0.5 are
possible. The lower limit for θ13 is 7.19◦ at 3σ.

Experimental results and current status
In Tab.3.1 we list the current experimental values for the neutrino oscillation parameters
and their uncertainties, which have been obtained from a global fit to the available
experimental data [117]. The assumption of a tri-bimaximal mixing pattern

U =


√

2
3

1√
3 0

− 1√
6

1√
3 −

1√
2

− 1√
6

1√
3

1√
2

 (3.7)

where U31 = 0 implies a vanishing reactor angle, is quite popular. This is due to the fact
that it can be elegently obtained from a flavor symmetry such as A4, the symmetry group
of a tetrahedron [118]. Tri-bimaximal mixing is also an approximation of experimental
results. Recently it was discoverd that θ13 is significantly different from zero [3, 4] and
that also θ12 might deviate from π

4 . As a consequence there is considerable tension
between experiment and theory in this case. Tri-bimaximal mixing might, however, still
be realized at leading order, while higher-order corrections give rise to a non-vanishing
reactor angle (see, e.g., Refs. [119, 120]). One possibility discussed in literature is
that corrections are obtained via contribtuions from the charged lepton mixing matrix,
see, e.g., Refs. [121, 122].
Data from current and future experiments will help to clarify further open issues,

for instance the determination of the octant of θ23. Experiements such as T2K [123]
and Noνa [124] will allow to further constrain the possible range of the oscillation
parameters, and can potentially provide information about the mass ordering. Even
more precise data could be obtained by accelerator based neutrino experiments, see, e.g.,
Refs. [125, 126]. One additional task is to measure the CP violating phase δCP from
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3. Neutrino Physics

Eq. (3.2) (see, e.g., Ref. [127]). Finally, it is expected to obtain information about the
absolute mass scale of neutrinos from experiments such as Katrin [128]. The potential
observation of neutrinoless double β-decay could provide further information on the
scale and the nature of neutrino masses (see, e.g., Ref. [129] for a recent review).

3.2. The concept of the seesaw mechanism
As discussed in the last section, the observed neutrino masses are orders of magnitude
smaller then the ones of all other known particles. This smallness is commonly explained
by the so-called seesaw mechanism, which we want to discuss in the following.

To generate masses for neutrinos we have to consider left- and right-handed neutrinos
νL and νR, in general. Then we can obtain a Dirac mass term

LDirac = mDνRνL + h.c. (3.8)

as well as the Majorana Mass terms

LMajorana = 1
2 (mLνcLνL +mRνcRνR) + h.c. (3.9)

Since mL explicitly breaks the SM symmetry group it must be zero. The Dirac mass
mD can be generated via a Yukawa coupling YNνRLH, where L = (νL, eL)T is the
left-handed SM lepton doublet. In the basis nL = (νL, νcR)T we obtain mass terms of the
form:

Lmass = LDirac + LMajorana = 1
2n

c
LMnL , (3.10)

so that

M =
 0 mD

mT
D mR

 . (3.11)

Assuming that mR � mD this matrix has the eigenvalues

m1 ≈
m2
D

mR

, and m2 ≈ mR . (3.12)

This means we obtain a heavy mass eigenstate at the new physics scale mR and a
light mass eigenstate that is suppressed by the heavy mass. Hence the name “seesaw”
mechanism: The heavier the right-handed neutrino, the lighter the left-handed neutrino.
If we make the assumption that the Dirac mass is of the order of the EWSB scale, the
Majorana mass of the right-handed neutrinos must be close to the GUT scale in order
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3.2. The concept of the seesaw mechanism

to obtain a mass m1 that is in agreement with the observational bounds on the light
neutrino masses. Since we have three generations of neutrinos in the SM, the mass
terms in the above equations have to be matrices in flavor space. In the most minimal
model agreeing with data we require at least two generations of right handed neutrinos.
In this scenario we obtain a strictly hierarchical spectrum for the three light neutrinos,
where ν1 is massless at leading order.
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4. Effective Field Theories

Since in the SM neutrinos are massless, the observation of neutrino oscillation is possible
hint for the existence of yet unknown new physics. To describe the low energy effects of
such new physics at a higher scale, it is common to use an effective field theory. In this
picture, non-renormalizable effective operators are added to the SM Lagrangian:

Leff = LSM + 1
ΛL

d=5 + 1
Λ2L

d=6 + 1
Λ3L

d=7 + · · · (4.1)

These operators have dimension n ≥ 5 and are suppressed by powers n− 4 of the new
physics scale Λ, since the Lagrangian has dimension d = 4.

4.1. Overview
The EFT can be obtained from a known fundamental theory by integrating out the
heavy fields of this theory. The principal idea is briefly described as follows (for technical
details please refer to Refs. [130–132]): The action S =

∫
d4xL of a specific model with

light fields φ and heavy fields Φ can be written as an effective action

eiSeff[φ] = eiS′[φ]
∫
DΦ eiS′′[φ,Φ] . (4.2)

In order to integrate out the heavy fields we have to compute the integral over Φ. At
energies much lower than the mass of the heavy field we can expand Φ0 around its
stationary configuration (defined by δS[Φ0] = 0) and obtain∫

DΦ eiS′′[φ,Φ] =
∫
DΦ ei(S′′[φ,Φ0]+δS′′[φ,Φ0]+δ2S′′[φ,Φ0]+··· ) ≈ eiS′′[φ,Φ0] . (4.3)

From this approximation we obtain an effective Lagrangian

Leff(φ) = L′(φ) + L′′(φ,Φ0) . (4.4)

We can determine Φ0 by using the equations of motions, which for the stationary field
are simply [

∂L
∂Φ − ∂

µ ∂L
∂(∂µΦ)

]
Φ=Φ0

=
[
∂L
∂Φ

]
Φ=Φ0

= 0 . (4.5)
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Figure 4.1. – Schematic illustration of the Fermi theory as EFT. After integrating out the
SM vector bosons, effective operators proportional to the Fermi constant GF are obtained.
(The according calculations for this example can be found in Ref. [131])

We can interpret this result in the way that at low energies the kinetic terms of a heavy
fields are negligible as compared to its mass. But how do we use this to obtain an
effective theory from a given model? The practical procedure is as follows

• We write down the complete Lagrangian of the fundamental theory.

• We identify the heavy field with the largest mass and solve Eq. (4.5). We will
obtain an expression for Φ0 in terms of other fields.

• We replace Φ with the expression for Φ0 in the original Lagrangian and take care
of all cancellations.

• We then have obtained a new Lagrangian that does not depend on Φ anymore,
but instead contains higher dimensional operators of the remaining fields.

• We repeat this procedure until all heavy fields have disappeared.

A well known example of an EFT is the Fermi theory. It describes weak interactions
by effective 4-vertices of fermions proportional to a coupling constant GF , the Fermi
constant. As mentioned above, such a theory is non-renormalizable and therefore only
valid up to a certain energy scale. To describe physics above this scale an UV completion
of the EFT is necessary. In the case of the Fermi theory the UV completion is the
electro-weak theory of the SM. On the other hand one can start with the SM and
then integrate out the vector bosons in order to obtain the Fermi interactions. This is
illustrated in Fig. 4.1.

4.2. The seesaw mechanism as EFT
Also the seesaw mechanism can be described as an EFT. The lowest-dimensional effective
operator that is invariant under the SM gauge group and contains only SM fields is the
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Figure 4.2. – The three types of the seesaw mechanism. νR is an SU(2) singlet fermion,
~∆ is a scalar SU(2) triplet and ~Σ is a fermionic triplet.

Weinberg operator [133]

Ld=5 = −1
2c

d=5
αβ (Lcαiτ2H)(HTiτ2Lβ) + h.c. . (4.6)

After EWSB it will lead to the Majorana mass term

meff
ν νcLνL = 1

2c
d=5
αβ v

2νcLνL + h.c. with cd=5
αβ ∝

1
Λ . (4.7)

Using Fierz identities one can rewrite Eq. (4.6) as

Ld=5
II = −1

2c
d=5
αβ (Lcαiτ2~τLβ)(HTiτ2~τH) + h.c. , and (4.8a)

Ld=5
III = −1

2c
d=5
αβ (Lcαiτ2~τH)(HTiτ2~τLβ) + h.c. (4.8b)

These three configurations correspond to the only possible three UV completions of
the Weinberg operator [14] as shown in Fig. 4.2. In general, there are always several
possible fundamental theories that after integrating out the heavy fields lead to the
same effective operator. We also speak of the decompositions of an effective operator.
The new physics fields that appear in the decompositions are referred to as mediators
(sometimes also as messengers). The parts of the Lagrangians of these models different
from the SM read as follows1:

Type I seesaw

LI ⊃ iνR/∂νR − LH̃Y †ν νR −
1
2νRMNν

c
R + h.c. , (4.9)

1 In Refs. [134, 135] the authors show, how the effective operator Eq. (4.6) can be obtained from these
Lagrangians.
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where νR is a right-handed fermion that is invariant under the SM gauge group. We
use the short-hand notation H̃ = iτ2H

∗ and L̃ = Lciτ2. The couplings and masses are
matrices in flavor space.

Type II seesaw

LII ⊃∆†a(Dµ)2
ab∆b +

(
L̃Y∆(τa∆a)L+ µ∆H̃

†(∆†aτa)H + h.c.
)

−
[
∆†aM∆

2δab∆b + λ3
(
H†H

) (
∆†aδab∆b

)
+ λ5

(
∆†aT iab∆b

)
H†τ iH

]
, (4.10)

where ~∆ is a scalar SU(2) triplet.

Type III seesaw

LIII ⊃ i ~ΣR /D ~ΣR −
[1
2
~ΣRMΣ~Σc

R + ~ΣRYΣ(H̃†~τL) + h.c.
]
, (4.11)

where ~Σ is a fermionic triplet.

4.3. TeV scale neutrino mass models
As discussed in section 3.2 the default seesaw mechanism hints to new physics close to
the GUT scale. Recently, however, models where neutrino mass is generated by new
physics at the TeV scale have been discussed in literature. They can be categorized as
follows:

Radiative mass generation
In this scenario, neutrino mass is not generated at tree-level. Instead, an effective mass
term is generated via a loop diagram. The loop factors provide then an additional
suppression so that the new physics scale can be lower (Examples can be found in
Refs. [14–19]). Models where neutrino mass first appears at higher orders have been
recently studied up to 3-loop level (see, e.g., Ref. [136]).

Minimal lepton number violation
The small size of a parameter is considered t’Hooft natural, if a symmetry of the
model is restored in the limit where this parameter becomes zero. In certain models the
suppression of neutrino mass is then a consequence of the smallness of such a parameter.
Well known examples are, e.g., the inverse seesaw mechanism [20] or SUSY with R-parity
violation[21–30].

Higher dimensional operators
In these models one assumes that the Weinberg operator is forbidden, e.g., by an
additional symmetry. Neutrino mass is then generated by higher dimensional oper-
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ators [15, 31–42, 137]. In the following we want to discuss this option further and
recapitulate how this approach allows for new physics at the TeV scale [138].

As already mentioned in section 4.2 the Weinberg operator is the lowest dimensional
operator with d > 4 that is in agreement with the SM symmetries. If one goes to higher
dimensions there are, however, more possible operators that contribute to neutrino
masses. In models with an SM-like scalar sector they have the generic form

Od=2n+4 = 1
Λ2n+1LLHH(H†H)n , n ∈ {1, 2, 3, . . . } . (4.12)

After EWSB they generate an effective neutrino mass

md=2n+4
eff ∝ v2(n+1)

Λ2n+1 . (4.13)

From this equation one can immediatly see that the higher-dimensional operators will
generate only subdominant contributions to neutrino mass, since they are suppressed by
higher powers of the new physics scale Λ . This means the next-to leading operator would
be suppressed by v2/Λ2 compared to the Weinberg operator. In the standard seesaw
scenario with new physics around 1014 GeV this would be a suppression of 24 orders of
magnitude, which clearly renders any higher-dimensional contribution to neutrino mass
absolutely negligible.

This picture changes, however, if we assume that the Weinberg operator is not allowed
for some reason in a specific model and hence one of the higher-dimensional operators
becomes the leading contribution to neutrino mass [36, 137]. If this is, e.g., the d = 7
operator, neutrino mass becomes

meff
ν ∝

v4

Λ3 +O
(
v6

Λ5

)
. (4.14)

As a consequence, a much smaller Λ will be sufficient to obtain the necessary suppression
for neutrino masses.

In a model with only SM content in the scalar sector, i.e., a model with only a single
Higgs-doublet, we face, however, a substantial problem: As discussed in Ref. [36], an
operator such as in Eq. (4.12) will induce a lower dimensional operator with a loop
suppression factor:

1
Λ2n+1LLHH(H†H)n → 1

16π2
1

Λ2n−1LLHH(H†H)n−1 (4.15)

So, again, we have a (substantial) contribution to neutrino mass from a lower dimensional
operator, which in turn might even induce again a lower dimensional operator by closing
(H†H) in a loop.
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Figure 4.3. – Higher-dimensional effective operators contributing to neutrino mass in
models with two Higgs-doublets and an additional scalar.

How can this issue be avoided? If the lower dimensional operator is genuinely
forbidden by a symmetry, it will not be reintroduced at any order of perturbation. We
can immediatly see that if the operator LLHH is forbidden by such a symmetry, also any
operators of the type LLHH(H†H)n will be forbidden, since H†H is always invariant
under the according symmetry transformations. But this is not the case in models with
an enlarged scalar sector. The most minimal extension would be the introduction of an
additional scalar singlet S. Many new physics models, however, require the introduction
of an additional SU(2) doublet, as is the case in SUSY. We therefore want to consider
operators of the type

Od=2k+l+4 = 1
Λ2k+l+1LLHuHu(HuHd)kSl , k, l ∈ {0, 1, 2, 3, . . . } . (4.16)

where S is a scalar singlet and Hu and Hd are Higgs-like SU(2) doublets with hypercharge
Y = +1

2 and Y = −1
2 respectively. All these operators can be present in the NMSSM.

The subset with l = 0 can be generated in the framework of the MSSM. In principle
we also have to consider operators where the conjugates of S∗, H†u and H†d can appear.
As is the case in a generic (type II) Two Higgs Doublet Model (2HDM), for example.
This has been studied in detail in Ref. [36]. Here we want to restrict ourselves to
SUSY scenarios [137]. In this case only operators of the type shown in Eq. (4.16) are
allowed, due to the requirement of invariance under supersymmetric transformations.
The operators realized in the MSSM up to d = 9 are depicted in Fig. 4.3. The ones that
are additionally possible in the NMSSM are shown in Fig. 4.4.

These operators are also listed in Tab. 4.1 for the NMSSM case. If we want to charge
the fields under a discrete symmetry now, we have to make sure that the NMSSM terms
λSHuHd and κS3 are still allowed. This means that their charges have to fulfill the
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4.3. TeV scale neutrino mass models

Op.# Effective interaction Charge Same as

d = 5 1 LLHuHu 2qL + 2qHu
d = 6 2 LLHuHuS 2qL + qHu − qHd
d = 7 3 LLHuHuHdHu 2qL + 3qHu + qHd

4 LLHuHuSS 2qL − 2qHd
d = 8 5 LLHuHuHdHuS 2qL + 2qHu #1

6 LLHuHuSSS 2qL + 2qHu #1

d = 9 7 LLHuHuHdHuHdHu 2qL + 4qHu + 2qHd
8 LLHuHuHdHuSS 2qL + qHu − qHd #2
9 LLHuHuSSSS 2qL + qHu − qHd #2

Table 4.1. – Effective operators generating neutrino mass in the NMSSM up to d = 9.
In the column “charge” we show the total charge of the according effective operator in
terms of the charges of its component fields. Here we take the conditions from Eq. (4.17)
into account. In the column “same as” we indicate if the total charge of the operator is
identical to the charge of a lower dimensional one. Taken from Ref. [137].
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d = 6 d = 7 d = 8 . . .

�L L

Hu
S

Hu

�L L

Hu
S S

Hu

�L L

Hu
Hu

Hd S Hu

1
Λ2 〈Hu〉2〈S〉 1

Λ3 〈Hu〉2〈S〉2 1
Λ4 〈Hu〉2 〈Hu〉〈Hd〉〈S〉

Figure 4.4. – Higher-dimensional effective operators contributing to neutrino mass in
models with two Higgs-doublets and an additional scalar.

conditions

qS + qHu + qHd = 0 , and 3qS = 0 . (4.17)

In the column “Charge” of Tab. 4.1 we show the total charge of each operator, taking
above equations into account. As indicated in the column “Same as” the total charge of
two different operators can be the same. Operator #5, for example, has the same total
charge as the d = 5 operator #1. This means that we never can forbid operator #1 and
allow operator #5 at the same time by a discrete symmetry. Therefore, operator #5 can
never be a leading contribution to neutrino mass. The same applies to operators #6, #8
and #9. Since all operators of the type LLHuHu(HdHu)nSk contain always products of
fields such as HuHdS or S3 for n ≥ 1, k ≥ 1 or n = 0, k ≥ 3, and Eq. (4.17) implies
that these terms are invariant under the discrete symmetry, they will always have the
same charge as a lower-dimensional operator. For operators with d > 9 this can only be
avoided if no scalars are part of the operators (k = 0). Operators with only leptons and
Higgs doublets, instead, can also be the leading contributions at even higher dimensions.

The operators in Tab. 4.1 that are not affected by this are #2, #3, #4 and #7. Some
of these have already been studied elsewhere [42]. In the following we want to discuss
the operator #3 in more detail. The smallest discrete symmetry group we can use is Z3.
We choose the following charges for the fields

qHu = 0, qHd = 1, qL = 1, (qS = 2) . (4.18)

Note that in the case of the MSSM, this charge assignment implies that the term µHuHd

of the MSSM superpotential explicitly breaks the discrete symmetry (see also Ref. [36]
for a related discussion in a 2HDM). In the case of the NMSSM, instead, the whole
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4.3. TeV scale neutrino mass models

superpotential is invariant under the discrete symmetry and the µ term is reproduced,
after S obtains a VEV.
In the same way that the Weinberg operator can be decomposed into the type-I,

type-II and type-III seesaw, also the d = 7 operator has several possible decompositions.
Some of these have already been studied in Ref. [138] in the context of SUSY. One
important conclusion for the following discussion was that operators that contain a
scalar singlet are potentially problematic. The reason is, that they can obtain a VEV
which induces an operator of lower dimension (see also Refs. [137, 139, 140]). In the
next chapter we therefore want to discuss an example of a decomposition of the d = 7
operator (LLHuHu)(HuHd) where only fermionic mediators appear.
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5. A d=7 Example and its
Phenomenology at the LHC

The generation of neutrino masses via higher dimesnional effective operators implies
the existence of new physics at energy scales that are accesible by collider experiments.
In the following we therefore want to discuss an example for the decomposition of the
d = 7 operator (LLHuHu)(HuHd) and the phenomenological implications of this model
at the LHC. The following discussion is based on Ref. [137]. Some early results1 have
also been discussed in Ref. [138].

5.1. The Model
The model we want to discuss is a decompositon of (LLHuHu)(HuHd) that contains
only fermionic mediators, due to the problems that scalar mediators introduce, as we
discussed in the previous chapter. The corresponding Feynman diagram is shown in
Fig. 5.1. This scenario is an extension of the (N)MSSM, where two SM singlet superfields
N̂ and N̂ ′ and a vector like pair of SU(2) doublets ξ̂ and ξ̂′ are added. The doublets
carry the hypercharges Y (ξ̂) = +1

2 and Y (ξ̂′) = −1
2 . The model is then specified by the

superpotential

W = Wquarks + Yeê
cL̂ · Ĥd − YNN̂L̂ · Ĥu + κ1N̂

′ξ̂ · Ĥd − κ2N̂
′ξ̂′ · Ĥu +mNN̂N̂

′

+mξ ξ̂
′ · ξ̂ + µĤu · Ĥd . (5.1)

For now we will ignore the flavor structure of these fields, for reason of simplicity. Since
we want to generate Majorana masses, lepton number is broken in our model. In the
1 In Ref. [138] we discussed the same example as in this chapter and already described how to obtain
the mass matrix and corresponding eigenstates and also implemented the same flavor structure. With
an earlier version of the software implementation used here (see appendix E) we obtained the decay
width of the mass eigenstates and studied the production of the new particles for a different set of
parameters. Furthermore the process pp → W+νW±`∓ was studied. Here we present numerical
results for two not yet studied processes obtained by a revised software implementation and another
choice of parameters (most notably a larger mass for the heaviest particles).
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Figure 5.1. – Decomposition of the d = 7 operator (LLHuHu)(HuHd) that is studied in
this section. Taken from Ref. [137].

limit where κ1 or κ2 become zero, or where mξ becomes infinite, lepton number is
restored as an accidental symmetry. In the limit of vanishing κ2 we obtain the following
lepton numbers

L(N̂) = −1 , L(N̂ ′) = +1 , L(ξ̂) = −1 , L(ξ̂′) = +1 , (5.2)

so that the lepton number is broken at the κ2 term. A different assignment obtained in
the other limits is also possible, but does not change the following discussion. For the
superpotential we can derive the Lagrangian of this model. The part for the fermions
carrying lepton number that is relevant for us reads using Weyl-spinors

Lfermionic =
− Ye(ecL ·Hd + ẽ∗RL · H̃d + ecL̃ · H̃d) + YN(NL ·Hu + ÑL · H̃u +NL̃H̃u)
− κ1(N ′ξ ·Hd + Ñ ′ξ · H̃d +N ′ξ̃ · H̃d) + κ2(N ′ξ′ ·Hu + Ñ ′ξ′ · H̃u +N ′ξ̃′ · H̃u)

−mNN
′N −mξξ

′ · ξ + h.c. . (5.3)

After electroweak symmetry breaking, when the Higgs fields obtain a VEV, we will
generate masses for the mediator fields, in the same way as the SM fermions become
massive via their Yukawa coupling. If we now define a basis f 0 = (ν,N,N ′, ξ0, ξ′0) for
the neutral fermions, we can write down their mass terms as a matrix

M0
f =



0 YNvu 0 0 0
Y T
N vu 0 mT

N 0 0
0 mN 0 κ1vd κ2vu

0 0 κT
1 vd 0 −mξ

0 0 κT
2 vu −mξ 0


. (5.4)
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5.2. Integrating out the heavy fields

We can diagonalize this matrix, so that we will obtain several mass eigenstates. The
lightest eigenstates correspond to the observed neutrinos, as is the case with the usual
seesaw, but we will have additional heavy states. We will denote these mass eigenstates
with ni ordered by their masses, with n1 being the lightest one. Accordingly we can also
obtain the mass terms for the charged fermions, which are

−vdecYeeL −mξξ
+ξ′− . (5.5)

5.2. Integrating out the heavy fields

To obtain the low energy effects of this model, i.e., the neutrino masses via the effective
d = 7 operator, we have to integrate out the heavy fields. Depending on the spectrum
of those, we can in principal distinguish two scenarios:

Inverse seesaw scenario (mξ > mN)
If the doublets are heavier then the singlet mediators, we can integrate out the former
as a first step and obtain a mass matrix

M0
f
′ =


0 YN vu 0

YN vu 0 mN

0 mN µ̂

 (5.6)

in the basis (ν,N,N ′) of the remaining neutral fermions. The structure of this matrix
corresponds to an inverse seesaw [20]. In the generic inverse seesaw the lightness of the
neutrino masses is attributed to the smallness of a lepton number violating coupling. In
our scenario, where the inverse seesaw is induced by a d = 7 operator as an intermediate
step, we have an effective coupling µ̂ = vuvd (2κ1κ2)/mξ, which is small (O(10−7)), even
for comparatively large couplings κ1/2 (≥ O(10−3)). At the scale where the ξ fields
appear, our model will be phenomenologically distinguishable from the inverse seesaw.
Both scenarios, however – our model and the usual inverse seesaw – have the same
implications for low energy observables. Such implications include, e.g., non-unitarity
and its CP violation, which can be tested at possible long-baseline neutrino oscillation
experiments (see, e.g., Refs. [141, 142]). Another possibility is the observation of flavor
violating processes. Effects of the new physics on the observation of lepton number
violating processes at low energies, such as neutrinoless double β-decay, will be small,
since the heavy Majorana neutrinos form pseudo-Dirac pairs, hiding their Majorana
nature (see, e.g., Ref. [143]).
In a final step, we now have to integrate out the remaining heavy fields N and N ′.
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We then obtain an effective mass for the light neutrinos

mν = v3
uvdY

2
N

κ1κ2

mξm2
N

. (5.7)

As expected from the general discussion of effective operators, we see that the effective
mass is proportional to ≈ v4/Λ3, where the new physics scale Λ is the mass scale of
the mediators. For neutrino masses mν ≈ 1 eV and mediator masses of about 1TeV we
require the couplings YN and κ1/2 to be of the order 10−3, which is in the range of the
SM Yukawa couplings, and therefore not unreasonably small.

Linear seesaw scenario (mN > mξ)
If, instead, the singlets are heavier than the doublets, we obtain the mass matrix

M0
f
′′ =


0 κ̃1 vd κ̃2 vu

κ̃1 vd 0 −mξ

κ̃2 vu −mξ 0

 , (5.8)

in the basis (ν, ξ0, ξ′0) and with the effective couplings κ̃1/2 = κ1/2 Y
2
N/mN . This structure

of the mass matrix is identical to a linear seesaw [144]. After integrating out all fields,
we of course arrive again at the effective neutrino mass term of Eq. (5.7).

5.3. The flavor structure of our model

From the discussion in section 3.1 in chapter 3 we know that the light neutrinos must
have three distinct masses. Our decomposition should reproduce this mass hierarchy
and also the correct mixing between flavor and mass eigenstates. Therefore, we must
implement a flavor structure in our model. There are several possible approaches to
accomplish this. The most simple idea is to require three generations of each mediator.
This ansatz, however, introduces a large number of new parameters, which can not
all be constrained by neutrino observables. To reduce this number one can assume a
strictly hierarchical neutrino mass spectrum, where the lightest mass m1 is zero. One
way to generate the remaining two masses is to have two different mechanisms leading
to m2 and m3. One is generated via a tree level effective operator, such as the inverse
seesaw or the model discussed above, the other one radiatively at one-loop level [145].
Another way, which we will adopt in the following, is based on the minimal inverse
seesaw scenario [146]: The lightest neutrino is again (almost) massless and the other
two masses are generated via an effective operator with a flavor structure. Since only
two masses need to be considered, the number of free parameters can be reduced.
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The latter approach can be applied to our framework if we require two generations
for the singlet mediators N and N ′. This implies in total nine neutral fermion mass
eigenstates, which we will denote n1 to n9, with n1 being the lightest one. For the
doublet mediators one generation is sufficient. As a consequence, we have to promote
the couplings to matrices in flavor space. In analogy to Eq. (5.7) we obtain then an
effective mass matrix for the light neutrinos, which reads

(mν)αβ = v3
uvd(YN)αi(m−1

N )ijµjk(m−1,T
N )kl(Y T

N )lβ , (5.9)

where

µjk = 1
mξ

((κ1)j(κ2)k + (κ2)j(κ1)k) . (5.10)

We can choose an arbitrary basis for the singlet fields, without loss of generality. For
reasons of simplicity, we choose one where MN is flavor diagonal. (Which implies also
M−1

N being diagonal.)
We still have more parameters than observables. Necessarily there is no unique way

to implement a flavor structure here. We will use the following parametrization:

YN = yN


1√
3 0

1√
3 −

1√
2

1√
3

1√
2

 , κ1 = k1

−1
1

 , κ2 = k2

1
1

 , MN = mN

1 0
0 ρ

 ,

(5.11)

where

ρ =
√
m2/m3 , 2v3

uvdy
2
Nk1k2/(m2

Nmξ) != m2 . (5.12)

The numerical factors of the couplings can be chosen as yN = 1
3 · 10−3, k1 = k2 = 10−2,

mN = 1070 GeV, and mξ = 200 GeV. Exemplarily we will use tan β = 10. As this
parameters are not fixed by observations we can also adopt different values by changing
the couplings accordingly. This choice of parameters will lead to a mass matrix, that
implies tri-bimaximal mixing. Due to the observation of a non-zero θ13 this scenario is
obviously ruled out. Tri-bimaximal mixing can still be seen as an approximation to the
data, where non-zero θ13 can be introduced by additional corrections. We will, indeed,
discuss such an approach in the next chapter. Another possibility is that corrections are
obtained due to the mixing matrix of the charged leptons. In general we have also the
possibility to chose different parameters in Eq. (5.11) that allow us to obtain non-zero
θ13 directly, although this option might be considered less attractive if one assumes the
structure of the coupling constants is the consequence of a possible flavor symmetry. In
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summary, there are options to obtain a more realistic mixing behaviour but for the sake
of simplicity we will keep the tri-bimaximal structure for now.
This parametrization will generate the normal hierarchy for neutrino masses. An

inverted hierarchy can be achieved by using the parametrization

YN = yN


√

2
3

1√
3

− 1√
6

1√
3

− 1√
6

1√
3

 , κ1 = k1

−1
1

 , κ2 = k2

1
1

 , MN = mN

1 0
0 ρ

 ,

(5.13)

where ρ =
√
m1/m2 and 2v3

uvdy
2
Nk1k2/(m2

Nmξ) != m1 . In the following we will, however,
restrict the discussion to the normal hierarchy scenario.

5.4. LHC phenomenology
One of the motivations to study higher-dimensional operators in the context of neutrino
physics, was the possibility for mechanisms generating neutrino masses that imply new
physics at the TeV scale. New particles appearing at this scale can then potentially be
observed in experiments, such as the LHC. Therefore we are interested, how the model
we discussed in this section can be tested at the LHC. Other studies discussing the
collider phenomenology of supersymmetric neutrino mass models are presented, e.g.,
in Refs. [109, 147–158]. Observing the decays of the new particles of our model might
also help to reduce the number of free-parameters. As pointed out before, low energy-
observables extracted from neutrino oscillation experiments are insufficient to constrain
all the parameters of our model.

The relevant couplings and masses are YN , κi, mN and mξ. Assuming a flavor diagonal
mass matrix for the charged leptons and CP conservation, we have 13 real parameters
in our model. Taking the low-energy data into account we are left with 7 (18 in the
case of non-zero CP phases). There are 18 possible decays of the six heavy neutral
states into the three charged leptons of the SM. Their observation would be principally
sufficient to determine all remaining particles. For a numerical studies of these processes
we have used the software tools Whizard [159] and Sarah [160, 161] (see appendix B
for details).

5.4.1. Production of the new particles

First we are interested in how the particles of our model can be produced at the LHC.
Since we work in a SUSY scenario, we in principal also have to take the superpartners
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of the mediators into account. But since the fermionic components of the mediator
superfields are the ones connected to the low-energy neutrino phenomenology we will
focus on those. Hence, we will assume at this point that their scalar partners have
much larger masses. If we now look at the mass matrix in Eq. (5.4), we conclude that
the heavy mass eigenstates n4 to n9 are composed mainly of either the SU(2) doublet
states ξ and ξ′ or the two generations of N and N ′. The admixture of doublets with
singlets is suppressed since the corresponding entries in the mass matrix, proportional
to a coupling times the Higgs VEV, are small compared to the mediator masses. The
mass eigenstates of the neutral doublet components are then approximately

n4,5 ' (ξ0 ± ξ0′)/
√

2 , (5.14a)

where we assume the “linear seesaw hierarchy” mξ < mN (see section 5.2).
The smallness of the couplings also has as a consequence that the singlet fields can

only be produced in rare cascade decays. For the doublets, however, the situation is
quite different: Since they are multiplets of SU(2), they couple to the corresponding
gauge bosons, the W and Z particles. Thus, they can be produced directly in Drell-Yan
processes. (This is similar to the production of certain MSSM particles, such as sleptons
or neutralinos and charginos [162].) The numerical cross section is shown in Fig. 5.2, for
a center of mass energy of

√
s = 7TeV and

√
s = 14TeV. Note that 7TeV is the center

of mass energy used for the initial physics run of the LHC, which was later upgraded
to 8TeV. In 2014 the next run of the LHC is planned with 13TeV, which might later
be upgraded to the maximal design energy of 14TeV. For the following discussion, we
will use the parameter point specified in Eq. (5.11). We will further assume a mass of
200 GeV for the ξ fields. The total production cross section for the ξ particles is then

σ(pp→ ξ±ξ0) = 122 fb at
√
s = 7TeV (5.15a)

and σ(pp→ ξ±ξ0) = 417 fb at
√
s = 14TeV . (5.15b)

5.4.2. Decay modes

Since R-parity is conserved in our model and the ξ fields are the lightest BSM particles
with R = +1 their principal decay modes are into SM particles or the fields of the
enlarged SUSY Higgs sector. They can decay into the following final states

• Charged and neutral leptons `j = e, µ, τ and να = νe, νµ, ντ , which are composed
of ν1, ν2, ν3 ≡ n1, n2, n3.

• Higgs bosons h0, H0, H±, A0.
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Figure 5.2. – Total cross section σ(pp→ ξ±ξ0) as a function of the mass mξ. The cross
sections are shown for 7 and 14 TeV, corresponding to the initial and maximal design
center of mass energies of the LHC. Taken from Ref. [137].

• Vector bosons W±, Z.

Since they do not carry color or baryon number, they cannot decay into quarks or gluons.
Since the charged heavy states do not mix with the charged leptons there will also be
no decays into Z or h0 (at tree-level). The neutral mediator components, instead, mix
with the SM neutrinos due to the off-diagonal elements in the mass matrix in Eq. (5.4).
Hence the most important decay modes are

ξ+ → W+νk , H
+νk (5.16)

for ξ+, which is the Dirac fermion composed of the charged components of ξ and ξ′. We
obtain for its total decay width

Γ(ξ+) = 1.42 · 10−5 keV . (5.17)

The smallness of this value implies a long lifetime of the heavy states. The reason for
this, is that the mixing of the light and heavy states is protected by the SM gauge group
in combination with the discrete symmetry. Only after EWSB mixing occurs via the
Yukawa couplings, which are small. In other words, the symmetry that guarantees the
smallness of neutrino masses stabilizes the heavy states to a certain extent. This is
no surprise, since a larger mixing of heavy and light states would automatically imply
larger neutrino masses due to the nature of the seesaw mechanism. In analogy also the
neutral mediator states ni will have suppressed decay rates. Their decay channels are

ni → W±l∓j , H
±l∓j (5.18a)

ni → Zνk , h
0νk , H

0νk , A
0νk . (5.18b)
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Particle Γ[keV] BR(W±e∓) BR(W±µ∓) BR(W±τ∓) BR(Zν) BR(h0ν)

n4 2.3 · 10−5 6.6 · 10−3 7.0 · 10−2 0.18 0.36 0.38
n5 1.9 · 10−5 1.2 · 10−2 0.41 · 10−2 0.18 0.42 0.34
n6 1.2 1.2 · 10−11 0.21 0.21 0.21 0.37
n7 1.2 1.2 · 10−11 0.21 0.21 0.21 0.37
n8 2.9 0.14 0.14 0.14 0.20 0.38
n9 2.9 0.14 0.14 0.14 0.20 0.38

Table 5.1. – Total decay widths of the neutral mass eigenstates and branching ratios into
the possible final states (where ν is the sum over the three light neutrino mass eigenstates).
Taken from Ref. [137].

The corresponding decay width are listed in Tab. 5.1.
A consequence of the resulting long life-times is very interesting from an experimental

point of view: The observation of displaced vertices. The lifetime in the rest frame of a
particle is the inverse of its decay width τ = Γ−1. This is why small width lead to long
life-times. Since the particles produced in the detector move with relativistic velocities,
their life-times will be even larger in the detector reference frame. The expected decay
length at the LHC are therefore between 100 µm and several mm. This displaced
vertex is a distinguishing feature of our model that helps suppress the background
from SM particle decays or cascade decays of SUSY particles. We will discuss possible
backgrounds for a specific process in the next section.

The smallness of the Yukawa-like interactions, including the lepton number violating
κ2, as compared to the masses mN and mξ amounts to another characteristic of our
model: Pairs of heavy fields will form pseudo-Dirac particles. These are pairs of 2-
component Majorana particles that almost behave like a 4-component Dirac spinor.
This behavior becomes also apparent in Tab. 5.1. If one compares the branching ratios
of n6 and n7 one finds that they are almost identical. The same can be said about n8

and n9 and to a lesser extend about n4 and n5. In the latter case the difference between
the two states is due to the parameter ρ in the mass matrix. The different branching
ratios for the decays into charged leptons can be attributed to the matrix structure of
the coupling YN . We also note that these are lepton flavor violating (LFV) processes,
meaning they are different for each lepton generation. This similarity makes it difficult
to distinguish the branching ratios of the various states, so that we can use maximally
nine of them to establish a connection to neutrino physics.
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Figure 5.3. – Dominant contribution to the LNV processes ud̄ → W−e+e+ and qq̄ →
W−W−e+e+. Taken from Ref. [137].

5.4.3. Possible Observation of lepton number violating processes

Another way to make this connection, is via lepton number violating (LNV) processes.
Observing lepton number violation by two units can be attributed to the Majorana
nature of neutrinos. In our case we can use the decay of the heavy particles into charged
leptons plus vector bosons to observe LNV. Therefore we want to consider the following
processes

quq̄d → l+l′+W− (5.19a)
quq̄d → l+l′+W−Z (5.19b)
qq̄ → l+l′+W−W−, l−l′−W+W+ , (5.19c)

where in each case all three generations of quarks are meant (accordingly u and d signify
all three up- and down-like quarks). These quarks are partons of the protons colliding
in the detector. The final states violate lepton number and also flavor. The dominant
processes that lead to these decays are shown in Fig. 5.3 for the example of W−e+e+

and W−W−e+e+ as final state. To understand these decays we must first understand
the coupling structure of the particles. For the calculation of the Feynman amplitude we
must of course use the mass eigenstates and sum over all possible intermediate particles.
The couplings of the ni with the W boson

L ⊃ − g√
2
n̄iγ

µ(aijPL + bijPR)ljW+
µ −

g√
2
l̄jγ

µ(a∗ijPL + b∗ijPR)niW−
µ (5.20)

are therefore proportional to the mixing matrix elements

aij = Uij , bij = 0 j = e, µ, τ . (5.21)
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These coefficients can be understood in the following way: The left handed couplings
originate from the gauge couplings of the SM leptons. The term − g√

2 ν̄jγ
µPLljW

+
µ

for example becomes − g√
2 n̄iγ

µPLUijljW
+
µ since ν̄i = n̄jUij is a mixture of the mass

eigenstates. Right handed couplings, however, arise in our model only from the gauge
interaction of ξ−. But since the charged heavy fields do not mix with the SM leptons,
bij is zero. From these interactions we obtain instead the couplings

L ⊃ − g√
2
n̄iγ

µ(ciPL + diPR)ξ−W+
µ −

g√
2
ξ̄−γµ(c∗iPL + d∗iPR)njW−

µ . (5.22)

where

ci = Uiξ′ , di = −U∗iξ . (5.23)

The process quq̄d → l+l′+W−

Do these right handed couplings indeed lead to the observation of lepton number
violation? Therefore we have first computed the cross-sections of the processes quq̄d →
l+l′+W−. The results are presented in Tab. 5.2. This processes are mainly the result of
the production of a charged lepton and a neutral fermion

ud̄→ l+n∗i (i = 1, . . . 5) (5.24)

The absence of the heaviest states n6−9 is due to the mass hierarchy we have chosen. Their
large mass has the consequence that they only can be produced off-shell and therefore
are suppressed. The states n4 and n5, instead, can have off-shell contributions. They
are only suppressed to a certain extend since the relevant coupling aij is proportional of
the small mixing between ξ0 and ξ0′ to the light neutrinos. The ni will then decay into
a lepton and W boson, again via the coupling aij . Since this coupling is proportional to
the mixing matrix, which can have large off-diagonal entries in the lepton sector, we
obtain sizable cross sections of the order of 1 fb. Such cross-sections are in principle
observable at the LHC for sufficiently high luminosity. The LNV processes, however, are
strongly suppressed. The main source for LNV would be the mixing between leptons
and the ξ fields. This is because the lepton number violating coupling κ2 appears in the
mixing matrix. But here we have to consider that we have to sum over all intermediate
states. Since n4 and n5 form a pseudo-Dirac pair as noted before. Due to the projectors
at the W couplings we obtain an amplitude that is proportional to the masses of the
intermediate states. The reason is that we will obtain terms in the amplitude that
have, e.g., the structure PL(/p−m)PL = mPL. After summing over the mass states we
will then obtain a cross-section proportional to m2

n5 −m2
n4 so that both contributions of
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Process σ [fb] (7 TeV) σ [fb] (14 TeV)

pp→ W+e+e− (1.651± 0.024) · 102 (4.161± 0.023) · 102

pp→ W−e+e− (9.240± 0.033) · 10 (2.671± 0.042) · 102

pp→ W+e+µ− (1.068± 0.099) (2.848± 0.011)
pp→ W+e−µ+ (1.057± 0.013) (2.871± 0.012)
pp→ W−e+µ− (5.748± 0.015) · 10−1 (1.742± 0.015)
pp→ W−e−µ+ (5.755± 0.015) · 10−1 (1.753± 0.017)
pp→ W+e+τ− (1.058± 0.096) (2.861± 0.011)
pp→ W+e−τ+ (1.056± 0.095) (2.854± 0.011)
pp→ W−e+τ− (5.714± 0.015) · 10−1 (1.754± 0.015)
pp→ W−e−τ+ (5.750± 0.015) · 10−1 (1.744± 0.019)
pp→ W+µ+µ− (1.676± 0.014) · 102 (4.116± 0.023) · 102

pp→ W−µ+µ− (9.242± 0.033) · 10 (2.677± 0.035) · 102

pp→ W+µ+τ− (2.668± 0.024) · 10−1 (7.092± 0.028) · 10−1

pp→ W+µ−τ+ (2.652± 0.026) · 10−1 (7.187± 0.029) · 10−1

pp→ W−µ+τ− (1.432± 0.006) · 10−1 (4.424± 0.038) · 10−1

pp→ W−µ−τ+ (1.439± 0.004) · 10−1 (4.433± 0.037) · 10−1

pp→ W+τ+τ− (1.665± 0.023) · 102 (4.138± 0.063) · 102

pp→ W−τ+τ− (9.265± 0.034) · 10 (2.652± 0.035) · 102

pp→ W−e+e+ (4.711± 0.069) · 10−12 (4.847± 0.030) · 10−11

pp→ W+e−e− (1.423± 0.008) · 10−12 (1.818± 0.071) · 10−11

pp→ W−e+µ+ (1.017± 0.014) · 10−11 (9.869± 0.054) · 10−11

pp→ W+e−µ− (3.184± 0.015) · 10−12 (3.22± 0.15) · 10−11

pp→ W−e+τ+ (1.169± 0.015) · 10−11 (1.050± 0.054) · 10−10

pp→ W+e−τ− (4.173± 0.020) · 10−12 (4.12± 0.28) · 10−11

pp→ W−µ+µ+ (5.861± 0.082) · 10−9 (2.278± 0.013) · 10−8

pp→ W+µ−µ− (2.377± 0.010) · 10−9 (1.153± 0.017) · 10−8

pp→ W−µ+τ+ (1.184± 0.013) · 10−8 (4.584± 0.023) · 10−8

pp→ W+µ−τ− (4.788± 0.018) · 10−9 (2.363± 0.039) · 10−8

pp→ W−τ+τ+ (5.956± 0.080) · 10−9 (2.292± 0.031) · 10−8

pp→ W+τ−τ− (2.383± 0.010) · 10−9 (1.120± 0.014) · 10−8

Table 5.2. – Cross-sections for the processes with W±`±`± as final states (lepton number
violating processes in lower section). A cut on the invariant lepton mass of 10 GeV has
been assumed. Taken from Ref. [137].
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the pair will cancel each other almost exactly. The only remaining effect is due to the
small mass difference between the two states. This mass difference is an artifact of the
mixing with the light neutrinos and therefore of the order of mν , which is extremely
small.

For experimental reasons we have to include some additional considerations. First, we
require a cut of 10 GeV on the invariant mass of the leptons. If we would not apply this
cut, another diagram with a nearly on-shell photon becomes dominant in the case of
e+e− final states leading to several orders of magnitude larger cross-sections. Second, we
have to take into account that the emitted W boson will decay further in the detector
into leptons and quarks. In the former case it would be more difficult to identify the
LFV of the primary leptons. This will reduce the effective cross-section by a factor
proportional to the branching ratio of W into quarks. Since LFV does not occur in
the SM it will be easy to suppress the background for these signals. In the case of
flavor conserving final states the main background comes from multi W -production in
association with a Z-boson or off-shell photon. This background can be reduced by cuts
on the invariant mass of the leptons.

The process qq̄ → l+l′+W−W−, l−l′−W+W+

We will now consider the 2→ 4 processes. We do not consider the ones with a Z boson
in the final state. These can in principle be obtained by attaching a Z at any line in the
diagram of Fig. 5.3. Instead we focus on the ones with two final state W bosons. In
this case we obtain for the lepton number conserving processes a similar picture as in
the 2→ 3 case, with cross-sections roughly two orders of magnitude smaller. We again
observe sizable LFV. It might be unexpected that also the cross-sections of the LNV
processes are quite large. One might anticipate a similar suppression as in the case of
the 2→ 3 process, since we again have pseudo-Dirac particles as intermediate states.
But this time we do not only have contributions proportional to the masses. We can
also obtain terms in the amplitude such as PR(/p −m)PL = /pPL. The cancellation of
the squared mass differences of the pseudo-Dirac pairs does not affect this part of the
cross-section. These contributions are proportional to products of LNV couplings |cidi|2

(see Eq. (5.22)). We remember that di was the only source of right handed couplings to
the W bosons. This combination of couplings can be approximated as (see appendix C)

(aiκ1 + biκ2)4

M4
Nm

4
ξ

. (5.25)

We observe that contrary to the 2→ 3 case, the source for the lepton number violation
is not proportional to the light neutrino mass. It is only vanishing if the mediator
masses become infinite or one of the couplings goes to zero. This is a consequence of the
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Process σ [fb] (7 TeV) σ [fb] (14 TeV)

pp→ W+e−W−e+ (3.447± 0.87) · 10−1 (1.277± 0.66)
pp→ W+e−W−µ+ (7.06± 0.15) · 10−3 (3.141± 0.027) · 10−2

pp→ W+e+W−µ− (6.99± 0.16) · 10−3 (3.206± 0.027) · 10−2

pp→ W+e−W−τ+ (1.037± 0.020) · 10−2 (4.293± 0.036) · 10−2

pp→ W+e+W−τ− (1.015± 0.021) · 10−2 (4.411± 0.036) · 10−2

pp→ W+µ−W−µ+ (3.74± 0.10) · 10−1 (1.279± 0.017)
pp→ W+µ−W−τ+ (2.913± 0.048) · 10−3 (1.096± 0.007) · 10−1

pp→ W+µ+W−τ− (2.990± 0.042) · 10−2 (1.139± 0.007) · 10−1

pp→ W+τ−W−τ+ (4.27± 0.10) · 10−1 (1.606± 0.017)

pp→ W+e−W+e− (1.112± 0.013) · 10−4 (4.261± 0.028) · 10−4

pp→ W+e−W+µ− (1.537± 0.023) · 10−3 (5.810± 0.050) · 10−3

pp→ W+e−W+τ− (4.721± 0.055) · 10−3 (1.761± 0.016) · 10−2

pp→ W+µ−W+µ− (4.099± 0.052) · 10−3 (1.514± 0.013) · 10−2

pp→ W+µ−W+τ− (2.704± 0.036) · 10−2 (1.062± 0.093) · 10−1

pp→ W+τ−W+τ− (4.614± 0.065) · 10−2 (1.729± 0.016) · 10−1

Table 5.3. – Cross-sections for the processes with W+`−W±`∓ as final states (lepton
number violating processes in lower section). A cut on the invariant lepton mass of 10
GeV has been assumed. Taken from Ref. [137].

vector-like SU(2) nature of the ξ doublets: In our model we have a mass term for the
two doublets ξ and ξ′. This leads to the right-handed couplings of the corresponding
spinors with the W bosons, which as discussed above induces the LNV processes. If we
want to observe those states at the LHC we would require luminosities of O(ab−1).
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6. GUT Inspired Extension of the
Model

The introduction of new particles in the model discussed in the previous chapter, as
well as in other potential UV completions of effective operators, modifies the running
of gauge couplings and therefore spoils unification. Hence we want to discuss in the
following how this model can be embedded in the framework of SUSY GUTs.

6.1. Introduction to GUT theories

A detailed introduction to the vast field of GUT physics is far beyond the scope of this
thesis. We will, however, present a short overview of the basic concepts relevant for the
following discussion. For more details see, e.g., Ref. [163].
In the past, physicists were successful in uniting forces into a common framework

that previously were considered distinct phenomena. A well known example from
electrodynamics is the unification of the electric and magnetic force as described by
the Maxwell equations. Another one is the unification of the electromagnetic and
the weak sector in the SM. How the electroweak and strong force as well as gravity
can be described in a common framework is so far unknown, although these issues are
addressed in the fields of string theory or quantum loop gravity. GUT theories, instead,
can give a coherent description of all three forces of the SM. This is done by introducing
a new gauge group for instance SU(5) or SO(10), which contains the SM gauge group
SU(3)× SU(2)× U(1) as subgroup. The GUT group is assumed to be broken down to
the SM group by a spontaneous symmetry breaking mechanism. The unification of the
SM forces requires that the according gauge coupling constants meet all at the same
scale. As pointed out in chapter 2, this is the case in SUSY models.
In the following we want to focus on GUT models with an SU(5) gauge group, or

a gauge group that contains an SU(5) subgroup. The fundamental representation of
SU(5) is a 5-plet. The matter content of the SM is usually described by a 5̄ and 10
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representation of SU(5) in the following way:

5̄M =



dc1
dc2
dc3
e−

−νe


, and 10 =



0 uc3 −uc2 −u1 −d1

−uc3 0 uc1 −u2 −d2

uc2 −uc1 0 −u3 −d3

u1 u2 u3 0 −e+

d1 d2 d3 e+ 0


(6.1)

The Higgs doublets Hu and Hd are the two lower components of a 5 and 5̄ representation.
The upper components of these 5-plets are so called colored Higgs fields, which are
assumed to be heavy and therefore have negligible effects at scales much smaller than
the GUT scale. The gauge fields are part of the adjoint representation of SU(5), which
is a 24-plet. This 24-plet can be decomposed in the following way

Âµ = 1
2

24∑
a=1

Aaµλ̃a = 1
2

[ 8∑
a=1

Gµ
a λ̃a +

20∑
a=9

Aaµλ̃a +
23∑

a=21
Aaµλ̃a +Bµλ̃24

]
. (6.2)

The first sum in the equation above corresponds to the 8 gluons of SU(3). The last two
terms represent the W and B gauge fields of SU(2) and U(1) that become the W , Z
and γ bosons after EWSB. The second term contains so called leptoquarks that mediate
interactions between quarks and leptons – as implied by the name.
Such minimal GUT models as presented here face several problems. Leptoquark

interactions, e.g., imply the decay of the proton, which has an experimentally confirmed
lifetime of at least 1033 years [164], so that these leptoquarks must be extremely heavy.
Furthermore, it is particularly difficult to obtain the so-called doublet triplet splitting
between the heavy colored Higgs components and the SM Higgs components, with
masses at the electroweak scale. To achieve this, one usually has to accept a large
amount of fine-tuning. The breaking of the GUT group also requires the presence of
additional fields. A more general issue is the lack of unification of gauge interactions
with gravity and the difference between the GUT and the Planck scale. Models that
provide solutions to at least some of these problems are discussed in literature, see, e.g.,
Ref. [165]. How this is done in detail cannot be discussed at this place and is not relevant
for the following discussion.

6.2. GUT completion for the decomposition of a d=7
neutrino mass operator.

If additional fields are present that are charged under at least one of the SM symmetry
groups, the running of the coupling constants will be modified. As a consequence, one
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can spoil the unification of the coupling constants. This is for example the case for
the type II and type III seesaw models [152, 154, 156, 166–172]. Another example is
the addition of the SU(2) doublets ξ and ξ′ in the model discussed in chapter 5. To
avoid these problems one can embed these doublets into complete representations of
SU(5) [139]. The field content of our GUT extended model is then, besides the matter
fields from Eq. (6.1),

5̄ξ′ =
 d′c

ξ′

 , 5ξ =
 d′′

ξ

 , H5 =
 Hcol

Hu

 , H5̄ =
 H ′col

Hd

 , (6.3)

where the upper component corresponds to three colored states and the lower one to
the SU(2) doublets. Furthermore we have the SM-singlet fields N and N ′, which are
also singlets under SU(5). As mentioned above, additional fields are usually required in
these SUSY GUT models but are not relevant for this study.

The group properties of SU(5) now tell us, in which way these fields can be combined.
The possible SU(5) invariant terms are

• Terms from 5̄⊗ 5(⊗1)

N
(
5ξH5̄ + 5̄ξ′ H5 + 5̄M H5

)
+ (N ↔ N ′) (6.4a)

mξ′ 5̄M 5ξ (6.4b)
mξ 5̄ξ′ 5ξ (6.4c)

• Terms from 5̄⊗ 10⊗ 5̄

5̄M 10H5̄ (6.5a)
and 5̄ξ′ 10H5̄ (6.5b)

• Terms from 10⊗ 10⊗ 5

10 10H5 (6.6)

With these terms we can now construct the most general superpotential that is invariant
under SU(5) and has the same field content as our model:

W = y1N 5ξH5 + y2N 5ξ′ H5 + y3N 5M H5 +
y′1, N

′ 5ξH5 + y′2N
′ 5ξ′ H5 + y′3N

′ 5M H5 +
mξ′ 5M 5ξ +mξ 5ξ′ 5ξ +mNN

′N +
mNNNN +mN ′N ′N

′N ′ + yd 5M 10H5 +
y′d 5ξ′ 10H5 + yu 10 10H5 − µH5̄H5 . (6.7)
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Multiplet 5̄M H5 H5̄ N N ′ 5ξ 5̄ξ′ 10

Z3 charge 1 1 1 1 2 0 0 1

Table 6.1. – Possible Z3 assignments to forbid the Weinberg operator. Taken from
Ref. [139].

This superpotential, however, leads not to a d = 7 operator as leading contribution to
neutrino mass. If one integrates out the fields N and N ′ one obtains a d = 5 operator,
generating an effective Majorana neutrino mass mν ∝ v2

uy3y
′
3/mN . This means that

one has to forbid one of the couplings y3 or y′3 to avoid the Weinberg operator. This
aim can be accomplished with the same method we used in the previous chapter: We
will assume that the fields are charged under an additional discrete symmetry. This
symmetry will forbid the d = 5 operator, if, e.g., the coupling proportional to y′3 is not
invariant under this symmetry. One possible realization is an additional Z3 symmetry
under which the fields are charged as listed in Tab. 6.1. The most general superpotential
that is invariant under SU(5) as well as the Z3 reads then

W = y3N 5̄M H5 + y′1N
′ 5ξH5̄ + y′2N

′ 5̄ξ′ H5 +
mξ 5̄ξ′ 5ξ +mNN

′N

yd 5̄M 10H5̄ + yu 10 10H5 − µH5̄H5 . (6.8)

If we replace y3 with YN and y′1/2 with κ1/2, we now can reproduce the superpotential
from Eq. (5.1), but obtain additional terms for d′ and d′′. In the superpotential shown
above we also see that the term µH5̄H5 explicitly breaks the discrete symmetry.

6.3. The model as an extension of the NMSSM

As discussed in subsection 2.3.2 of chapter 2 the value of the µ term at the electroweak
scale seems somewhat unnatural in a GUT theory, with a typical mass scale several
orders of magnitude higher. In the NMSSM this issue is avoided since instead of the
µ-term one has the coupling λSHuHd that dynamically generates µ = λ 〈S〉. A straight
forward implementation of our model as a GUT extension of the NMSSM could then
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read

W = y3N 5̄M H5 + y′1, N
′ 5ξH5̄ + y′2N

′ 5̄ξ′ H5 +
mξ 5̄ξ′ 5ξ +mNN

′N

yd 5̄M 10H5̄ + yu 10 10H5 − λSH5̄H5 + κS3 . (6.9)

With the same charges as before, but q(S) = 1. We can also avoid the explicit breaking
of the discrete symmetry, this way. This scenario is, however, not distinct from the one
discussed in the previous section after S obtains a VEV. The only differences are the
ones that usually appear by promoting the MSSM to the NMSSM.

A further issue has to be considered with respect to the model of Eq. (6.8). Also the
masses of the mediators could be considered more natural, if they were of the order of
the GUT scale. Here, instead, they have to be set manually to the TeV scale. We will
therefore consider an NMSSM based model where all masses are generated dynamically.
The most general superpotential that fulfills these assumption and is SU(5) invariant
reads

W = y1N 5ξH5 + y2N 5ξ′ H5 + y3N 5M H5 +
y′1, N

′ 5ξH5 + y′2N
′ 5ξ′ H5 + y′3N

′ 5M H5 +
λξ′ S 5M 5ξ + λξ S 5ξ′ 5ξ + λNS N

′N +
λNNS NN + λN ′N ′S N

′N ′ +
yd 5M 10H5 + y′d 5ξ′ 10H5 + yu 10 10H5 . (6.10)

If we want to derive the operators that generate neutrino masses from this potential
now, we observe that they become

1
〈S〉

LLHuHu,
1
〈S〉3

(LLHuHd)(HuHd) .

Since 〈S〉 breaks any discrete symmetry under which it is charged, we have to be more
careful in order to find a discrete symmetry that leads to neutrino masses generated by
a higher-dimensional operator. This symmetry and the according charges of the fields
have to be chosen in a way that fulfills the following criteria:

• All terms that are necessary to reproduce the generic NMSSM sector of our model
must be allowed.

• Terms that lead to the Weinberg operator must be forbidden.

• A higher-dimensional operator generating neutrino masses must be allowed.
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Multiplet 5̄M H5 H5̄ N N ′ 5ξ 5̄ξ′ 10 S S ′

Z3 charge 1 1 1 1 2 0 0 1 1 0

Table 6.2. – Charges for the fields of the model defined in Eq. (6.12). Taken from Ref. [139].

As we show in appendix D it is not possible to fulfill all these requirements simultaneously.
Instead the existence of any higher dimensional operator of the type

Od = 1
〈S〉1+2k+l (LLHuHu)(HuHd)kSl (6.11)

also implies unavoidably the existence of the d = 5 operator. We conclude therefore
that in order to obtain an NMSSM-like model that generates all masses dynamically
and produces neutrino masses by a higher dimensional operator we have to think of a
further extension. The most simplistic strategy, is to add just another singlet S ′, which
also must obtain a VEV. One can convince oneself that this is not possible without
introducing new symmetry breaking terms. But if we break the symmetry, it is again
not possible to forbid the d = 5 operator. We can, however, assume that the symmetry
breaking couplings are very small and in this sense can be considered t’Hooft natural.
If they are sufficiently small, the symmetry breaking d = 5 operator will be only a
subdominat contribution to neutrino mass. We will now present a model that exemplifies
these arguments by introducing a singlet S ′ and implying the charges as specified in
Tab. 6.2. The according superpotential is then

W = y3N 5M H5 + y′1, N
′ 5ξH5 + y′2N

′ 5ξ′ H5+
λξ S

′ 5ξ′ 5ξ + λNS
′N ′N + yd 5M 10H5+

yu 10 10H5 + λSSH5H5 + κS3 + κ′S ′
3+

λ′SS
′H5H5 + y′3N

′ 5M H5 + y′d 5ξ 10H5 + · · · , (6.12)

The terms that break the symmetry are the ones in the last line. S ′ can obtain a VEV
via the therm λ′SS

′H5H5. Even if λ′S is very small, it is possible to obtain a VEV of the
order of the TeV scale. Due to the term y′3N

′ 5M H5 we will obtain via a d = 5 operator
an effective neutrino mass term that reads

md=5
ν = y3y

′
3v

2
u

〈S ′〉
. (6.13)

Since we want that this mass is only a subdominant contribution to neutrino mass we
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require

md=5
ν � md=7

ν = y1y2y
2
3v

3
uvd

〈S ′〉3
, (6.14)

If we assume that the symmetry conserving couplings are of the order 10−2 as used in
the previous chapter and 〈S ′〉 is of order TeV, we find that this condition is fulfilled if
all symmetry breaking couplings, including y′3 are smaller than 10−8.

6.4. A possible origin of θ13 > 0

It is interesting to observe that in the scenario described in the previous section we have
two contributions to neutrino mass. The leading one is induced by a d = 7 operator
and conserves a discrete symmetry. The second contribution is introduced by a d = 5
operator, that is additionally suppressed, since it is generated by symmetry breaking
couplings. If the size of these couplings is close to the upper limit of 10−8 derived above,
also this second contribution will be significant for the effective neutrino mass. It is
possible that the discrete symmetry we use here might be the remnant of a larger flavor
symmetry. If this is the case, one can think of a scenario where the leading d = 7
operator leads to a tri-bimaximal mass matrix, whereas the d = 5 contribution of the
symmetry breaking introduces corrections that lead to a non-zero θ13. We will now
discuss a parametrization of our model, where this behavior is indeed realized. This is
similar to the parametrization shown in Eq. (5.11), but here we require three generations
of the singlet fields N and N ′. The flavor structure of the coupling constants is given by

y′1 = ỹ′1


0
1
ρ

 , y′2 = ỹ′2


0
−1
ρ

 ,

y3 = ỹ3


√

2/3 1/
√

3 0
−1/
√

6 1/
√

3 −1/
√

2
−1/
√

6 1/
√

3 1/
√

2

 , (6.15)

where ỹ1, ỹ2 and ỹ3 are numerical parameters, ρ =
√
m3/m2 and the mass matrices for

N and N ′ are diagonal. One can now convince oneself that the d = 7 operator generates
indeed a tri-bimaximal mass matrix

md=7
ν = v3

uvd

〈S〉3
· y3

[
y′1(y′2)T + y′2(y′1)T

]
yT

3

= UTB · diag(0,m2,−m3) · UT
TB , (6.16)
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where UTB is the tri-bimaximal mixing matrix. As we now from experiments, the
actual mixing matrix UPMNS deviates from the tri-bimaximal structure. This can be
parametrized as [173]

UPMNS =


√

2
3(1− 1

2s)
1√
3(1 + s) 1√

2r

− 1√
6(1 + s− a− r) 1√

3(1− 1
2s− a+ r) −1

2(1 + a)
− 1√

6(1 + s+ a+ r) 1√
3(1− 1

2s+ a− r) 1
2(1− a)

 , (6.17)

where a, r and s are small linear deviations from the tri-bimaximal structure, with
sin θ13 = r/

√
2, sin θ12 = 1/

√
3(1 + s), and sin θ23 = 1/

√
2(1 + a). In our case the total

neutrino mass is given by

mν = md=7
ν +md=5

ν , (6.18)

which implies

UPMNS · diag(0,m2,−m3) · UT
PMNS (6.19)

= UTB · diag(0,m2,−m3) · UT
TB + v2

u

〈S〉
(y3(y′3)T + y′3(y3)T) . (6.20)

For simplicity, let us assume only corrections to θ13. From Eq. (6.19) we obtain then a
condition on the symmetry breaking coupling

y′3 ' ỹ′3 r




0 0 − 1√
2

1√
6

1
2
√

3 0
− 1√

6 −
1

2
√

3 0

 ρ2 −


0 0 1

3
√

2
0 1

2
√

3
1

3
√

2
0 1

2
√

3
1

3
√

2


 (6.21)

With this exemplary parametrization, we now indeed achieved that the total neutrino
mass matrix is tri-bimaximal with deviations leading to a sizable θ13. The structure of
y′3 that is shown above may be caused by a subgroup of the original flavor symmetry
that is still unbroken.

6.5. Phenomenology of the additional d-quarks
The extension of our original model to a GUT theory, required the introduction of
additional d-quarks (see Eq. (6.3) and the following discussion). These colored states are
part of the same 5-plet as ξ and ξ′, respectively. Their according mass eigenstates D′,
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composed of dc′ and d′′, and L′, composed of ξ and ξ′, therefore have a common mass
mξ,GUT at the unification scale. Renormalization group effects, however, will lead to a
splitting between the masses of the colored and the doublet states. As a consequence
we will have different masses mL′ and mD′ at lower energies. The RGEs leading to this
splitting are at one-loop order expressed by

d

dt
mk =

∑
i

cki αi(t)
4π mk (k = L′, D′) (6.22)

where the index i runs over the different gauge groups, t = ln(Q2/M2
GUT ), cD′i =

(−4/15, 0,−16/3) and cξi = (−3/5,−3, 0) for i = U(1)Y , SU(2)L, SU(3)C and the
Yukawa couplings are assumed to be negligible compared to the gauge interactions. The
solution of the RGEs yields

mk(t) =
∏
i

(
αi(t)
αGUT

) ck
i
bi

mξ,GUT (6.23)

with bi = (38/5, 2,−2). Assuming that no further particles are present between the
electroweak an the GUT scale we obtain mD′/mξ ' 5 at Q = 1 TeV. As discussed in
chapter 5, these leptons can be observed for masses of up to 800 GeV at the LHC,
implying that the D′ can be as heavy as 4 TeV. They can be potentially observed for
masses of maximal 3 TeV [174].

6.5.1. Stability of the heavy d-quarks

One could now assume that the heavy d-quarks – due to their large mass – can easily
decay. This is, however, not the case (if we, for now, ignore the symmetry breaking
NMSSM scenario). This might be unexpected since d′ and d′′ are part of the same 5-plet
as ξ and ξ′ and the latter decay to SM particles. As we can read of Eq. (6.12), the
only coupling of the heavy d-quarks to other particles is via the terms y′1N ′5ξH5̄ and
y′2N

′5̄ξ′H5. If we expand these terms now in their SU(5) components we can see that
the colored components of the 5ξ and 5̄ξ′ interact only with the colored components of
the Higgs multiplets, as is required by SU(5) invariance. These interactions therefore
are negligible after integrating out the colored Higgs components. Any other possible
interactions in the superpotential including the heavy d-quarks are prohibited by exactly
the symmetry that we need to forbid the Weinberg operator. We conclude that
the additional d-quarks are stabilized by the discrete symmetry of our model. The
presence of heavy stable quarks, however, is in conflict with cosmological constraints. To
understand this better, we will discuss shortly the thermal evolution of these particles
in the early universe.
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Figure 6.1. – Annihilation of D′ via strong interaction. Left: SM quarks as end-states.
Right: gluon end-states. (There is a further contribution from t-channel diagram).

6.5.2. Thermal evolution of heavy d-quarks in the early universe

As discussed above, the superpotential of our model does not allow for interactions of
the heavy quarks with lighter particles. But since they are colored states, they have
gauge interactions leading to the annihilation processes depicted in Fig. 6.1. Despite
their heavier mass, the additional d-quarks behave like their SM counterparts in these
processes. Therefore one can use the standard QCD cross-sections of SM quarks. For
D
′
D′ → qq̄ we have

dσ

dt̂
(D′D′ → qq̄) = 4πα2

s

9ŝ2

(
t̂2 + û2

ŝ2

)
(6.24)

and for gluon end-states

dσ

dt̂
(D′D′ → gg) = 32πα2

s

27ŝ2

(
û

t̂
+ t̂

û
− 9

4
t̂2 + û2

ŝ2

)
, (6.25)

where t̂, û and ŝ are Mandelstam variables. We assume now the following scenarios:
The D′ quarks will be present in the quark-gluon plasma and in thermal equilibrium
with the SM quarks. At some point (Γ < Ṙ/R) they will freeze-out, i.e. leave thermal
equilibrium. (The cosmology parameters we use here are described in appendix E.) The
number density in thermal equilibrium is given by a Fermi distribution

n0(T ) = 2
(2π)3

∫ ∞
0

4πp2dp

exp

√
m2
D′ + p2

kT

 (6.26)

and their evolution by the Boltzmann equation

dn

dt
= −3Ṙ

R
n− 〈σn〉n2 + 〈σn〉n2

0 (6.27)
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Later, after chiral symmetry breaking, the quarks will be confined. Using the particle
yield Y = n/s the Boltzmann equation can be rewritten as

dY

dx
= −xs 〈σ|v|〉

H(mD′)
(Y 2 − Y 2

0 ) (6.28)

with

Y0(x) = 45
2π4

(
π

8

)
g

g∗S
x3/2e−x (6.29)

in the non relativistic limit (x� 3). For Cold Relics (xf & 3) we can use an approximate
formula to calculate particle yield and freeze-out point (see Ref. [175] for more details).

xf = ln[0.038(n+ 1)(g/√g∗)mPlmD′σ0]

−
(
n+ 1

2

)
ln [ln[0.038(n+ 1)(g/√g∗)mPlmD′σ0]] (6.30)

Y∞ =
3.79(n+ 1)xn+1

f

g∗S/
√
g∗

(6.31)

where n = 0 for s-wave annihilation and

〈σ|v|〉 ≡ σ0x
−n (6.32)

For one heavy down-type quark of m = 1TeV and neglecting the mass of the light
quarks we find that freeze out takes place at

xf = 26 , Tf = 38GeV . (6.33)

Since this is long before BBN we have

Y (TBBN) ≈ Y∞ = 10−14 (6.34)

and the corresponding number density is

n(TBBN) ≈ Y∞s = 10−26 GeV3 (= 1021 m−3) . (6.35)

As we will discuss in the next section, such number densities imply that we must consider
cosmological consraints.

6.5.3. Cosmological constraints

Effects due to the presence of heavy particles (mX � me) during BBN have been
discussed in the literature. This is motivated by the possible presence of dark matter
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during BBN or (charged) parent particles thereof. (See Sec. 9 of Ref. [176].) In this
context DM has no gravitational effect since we are in the radiation dominated period
of the universe. But massive particles at the EW scale can be easily produced in the
thermal bath and are often stable due to additional symmetries introduced in DM
scenarios (for instance SUSY with R-parity protecting the LSP from decaying). Whereas
any DM candidate should be uncharged and weakly interacting, their parent particles
can have different properties, such that nuclear processes during BBN can be influenced.
The following two scenarios have been discussed in literature:

Neutral Particles (Cascade Nucleosynthesis)
Neutral massive particles will have different effects depending on possible end-states
(electroweak or hadronic). The nuclear reaction chain during nucleosynthesis can be
quite complicated. But some general possible effects are a change in the initial n/p ratio,
to which BBN is quite sensitive. Another effect is, that by inelastic scattering of heavy
nucleons a large number of lighter nuclei can be produced, altering the abundances of
light isotopes (2H, 3H, 3He,...).

Charged Particles (Catalyzed Nucleosynthesis)
In this scenario, heavy strongly interacting particles which carry charge can bind to
baryons. These new states will alter the reaction chains of BBN and thus affect the
yield of light elements.

Also the D′ quarks have to build bound states as heavy hadrons, such as dominantly
heavy protons (p′ = uuD′) and heavy pions (π′ = uD̄′, dD̄′, ...). These heavy neutral
(X0) and charged particles (X±) can be identified with the heavy particles for which
the BBN constraints are studied in Literature.

Thus their presence during Big Bang Nucleosynthesis (BBN) would alter the observed
abundances of the light elements in the universe (see, e.g., Ref. [176] for a review).
Further bounds come, e.g., from direct heavy element searches in water [177]. More
detailed studies [178, 179] taking also effects due to confinement into account, have
found that the annihilation rate for these quarks is not sufficient to lower the yield below
the experimental limits [178, 179] if their masses are below 2.5 TeV, i.e., the range
interesting for the LHC. We conclude therefore that a stable D′ can not accomadate
cosmological requirements.

6.5.4. A way out

From the discussion above we know that heavy stable d-quarks must have life-times
much smaller than the age of the universe to avoid constraints from direct searches,
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and annihilation processes that are efficient enough to lower their abundance below
the bounds from BBN. These bounds do not affect particles that decay before BBN
(τ � 1 s).

As discussed before, the model specified in Eq. (6.12) has symmetry violating couplings.
This symmetry breaking is a potential way to avoid the stability of the D′. Indeed we
have symmmetry breaking couplings in this scenario that lead to the two-body decays

D′ → H−u , H0d . (6.36)

If we assume that the symmetry violation is of the same order for all couplings, the
upper bound of 10−8, obtained from the neutrino interactions, restricts also the decay
rates of above processes. Due to these considerations, we can obtain lifetimes for the
D′ as small as 10−10 s to 10−13 s, depending on mD′ . This is sufficiently short to make
decays before BBN possible. If these decays happen at the LHC, one will also observe
displaced vertices.

6.6. Systematic review of the decompositions of the
d=7 operator in an SU(5) GUT

As already discussed in the previous sections, the d = 7 operator can be decomposed in
different ways. In Tab.6.3 we list these possibilities and show how these mediators can be
embedded into SU(5) multiplets. How they are embedded depends on the SM quantum
numbers of these operators. Operators that are singlets under the SM gauge group
remain also singlets under the GUT group. SU(2) triplets 30 with zero hypercharge
become 24-plets under SU(5). This can be understood since a coupling of the external
fields Huiτ2~τL to the triplet mediator, becomes the SU(5) invariant coupling H55̄M24. If
SU(2) singlet and triplet mediators are present at the same time, it may be possible to
combine them in a single 24-plet. SU(2) triplets with hypercharge +1 (−1) are embedded
into a 15 (1̄5) representation. The coupling Lciτ2~τL to 3+1, e.g., becomes 5̄M 5̄M15 in the
GUT superpotential. Finally, doublets with hypercharge 3

2 are embedded into 40-plets
(with couplings, such as 155̄M40 to one external field and another mediator).

In order to conserve gauge coupling unification all component fields of these multiplets
must have similar masses, which are at the TeV scale. While we can avoid to spoil
the unification of the gauge couplings this way, their running will still be modified.
The contribution of the additional particles to the MSSM beta functions, calculated
using Ref. [180], are listed in Tab. 6.4. The unmodified MSSM beta functions are
bi = (33/5, 1,−3) for U(1)Y , SU(2)L and SU(3)C . If we compare these values to the
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# Operator Mediators SU(5) multiplets

1 (Huiτ2Lc)(Huiτ2L)(Hdiτ2Hu) 1R0 , 1L0 , 1s0 1,1,1
2 (Huiτ2~τLc)(Huiτ2L)(Hdiτ2~τHu) 3R0 , 3L0 1R0 , 1L0 , 3s0 24,24, (1), (1),24
3 (Huiτ2~τLc)(Huiτ2~τL)(Hdiτ2Hu) 3R0 , 3L0 , 1s0 24,24,1
4 (−iεabc)(Huiτ2τaLc)(Huiτ2τbL)(Hdiτ2τcHu) 3R0 , 3L0 , 3s0 24,24,24
5 (Lciτ2~τL)(Hdiτ2Hu)(Huiτ2~τHu) 3s+1, 3s+1, 1s0 15,15,1

6 (−iεabc)(Lciτ2τaL)(Hdiτ2τbHu)(Huiτ2τcHu) 3s+1, 3s+1, 3s0 15,15,24
7 (Huiτ2Lc)(Liτ2~τHd)(Huiτ2~τHu) 1R0 , 1L0 , 3R−1, 3L−1, 3s+1 1,1,15,15,15
8 (−iεabc)(Huiτ2τaLc)(Liτ2τbHd)(Huiτ2τcHu) 3R0 , 3L0 , 3R−1, 3L−1, 3s+1 24,24,15,15,15
9 (Huiτ2Lc)(iτ2Hu)(L)(Hdiτ2Hu) 1R0 , 1L0 , 2R−1/2, 2L−1/2, 1s0 1,1,5,5,1
10 (Huiτ2~τLc)(iτ2~τHu)(L)(Hdiτ2Hu) 3R0 , 3L0 , 2R−1/2, 2L−1/2, 1s0 24,24,5,5,1

11 (Huiτ2Lc)(iτ2Hu)(~τL)(Hdiτ2~τHu) 1R0 , 1L0 , 2R−1/2, 2L−1/2, 3s0 1,1,5, 5̄,24
12 (Huiτ2τaLc)(iτ2τaHu)(τbL)(Hdiτ2τbHu) 3R0 , 3L0 , 2R−1/2, 2L−1/2, 3s0 24,24,5, 5̄,24
13 (Huiτ2Lc)(L)(iτ2Hu)(Hdiτ2Hu) 1R0 , 1L0 , 2s+1/2, 1s0 1,1,5,1
14 (Huiτ2~τLc)(~τL)(iτ2Hu)(Hdiτ2Hu) 3R0 , 3L0 , 2s+1/2, 1s0 24,24,5,1
15 (Huiτ2Lc)(L)(iτ2~τHu)(Hdiτ2~τHu) 1R0 , 1L0 , 2s+1/2, 3s0 1,1,5,24

16 (Huiτ2τaLc)(τaL)(iτ2τbHu)(Hdiτ2τbHu) 3R0 , 3L0 , 2s+1/2, 3s0 24,24,5,24
17 (Huiτ2Lc)(Hd)(iτ2Hu)(Huiτ2L) 1R0 , 1L0 , 2R−1/2, 2L−1/2 1,1,5, 5̄
18 (Huiτ2~τLc)(~τHd)(iτ2Hu)(Huiτ2L) 3R0 , 3L0 , 2R−1/2, 2L−1/2, 1R0 , 1L0 24,24,5, 5̄, (1), (1)
19 (Huiτ2Lc)(Hd)(iτ2~τHu)(Huiτ2~τL) 1R0 , 1L0 , 2R−1/2, 2L−1/2, 3R0 , 3L0 (1), (1),5, 5̄,24,24
20 (Huiτ2τaLc)(τaHd)(iτ2τbHu)(Huiτ2τbL) 3R0 , 3L0 , 2R−1/2, 2L−1/2, 24,24,5, 5̄

21 (Lciτ2τaL)(Huiτ2τa)(τbHd)(Huiτ2τbHu) 3s+1, 2s+1/2 , 3s+1 15,5,15
22 (Lciτ2τaL)(Hdiτ2τa)(τbHu)(Huiτ2τbHu) 3s+1, 2s+3/2, 3s+1 15,40,15
23 (Lciτ2~τL)(Huiτ2~τ)(Hu)(Hdiτ2Hu) 3s+1, 2s+1/2, 1s0 15,5,1
24 (Lciτ2τaL)(Huiτ2τa)(τbHu)(Hdiτ2τbHu) 3s+1, 2s+1/2, 3s0 15,5,24
25 (Hdiτ2Hu)(Lciτ2)(~τL)(Huiτ2~τHu) 1s0, 2L+1/2, 2R+1/2, 3s+1 1,5, 5̄,15

26 (Hdiτ2τaHu)(Lciτ2τa)(τbL)(Huiτ2τbHu) 3s0, 2L+1/2, 2R+1/2, 3s+1 24,5, 5̄,15
27 (Huiτ2Lc)(iτ2Hd)(~τL)(Huiτ2~τHu) 1R0 , 1L0 , 2R+1/2, 2L+1/2, 3s+1 1,1,5, 5̄,15
28 (Huiτ2τaLc)(iτ2τaHd)(τbL)(Huiτ2τbHu) 3R0 , 3L0 , 2R+1/2, 2L+1/2, 3s+1 24,24,5, 5̄,15
29 (Huiτ2Lc)(L)(iτ2~τHd)(Huiτ2~τHu) 1R0 , 1L0 , 2s+1/2, 3s+1 1,1,5,15
30 (Huiτ2τaLc)(τaL)(iτ2τbHd)(Huiτ2τbHu) 3R0 , 3L0 , 2s+1/2, 3s+1 24,24,5,15

31 (Lciτ2τaHd)(iτ2τaHu)(τbL)(Huiτ2τbHu) 3L+1, 3R+1, 2L+1/2, 2R+1/2, 3s+1 15,15,5, 5̄,15
32 (Lciτ2τaHd)(τaL)(iτ2τbHu)(Huiτ2τbHu) 3L+1, 3R+1, 2s+3/2, 3s+1 15,15,40,15
33 (Lciτ2~τHd(iτ2~τHu)(Hu)(Huiτ2L) 3L+1, 3R+1, 2L+1/2, 2R+1/2, 1L0 , 1R0 15,15,5, 5̄,1,1
34 (Lciτ2τaHd)(iτ2τaHu)(τbHu)(Huiτ2τbL) 3L+1, 3R+1, 2L+1/2, 2R+1/2, 3L0 , 3R0 15,15,5, 5̄,24,24

Table 6.3. – Decompositions of the d = 7 operator LLHuHuHdHu at tree level. We
use the following notation for the mediators: XL

Y. The X describes the SU(2) nature,
i.e., singlet (1), doublet (2), or triplet (3). The superscript L denotes a left- (L) or
right- (R) handed fermion, or a scalar (s). The subscript Y represents the hypercharge
Y ≡ Q − IW3 . The SU(5) singlets in parentheses can be already contained in the 24-
plets. The operators in the shaded rows guarantee perturbativity up to the GUT scale,
operator #17 addtionaly allows for the d = 7 operator to be the leading contribution to
neutrino mass. Taken from Ref. [139].
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Multiplet 5 15 24 40

∆bi 1/2 7/2 5 11

Table 6.4. – Contributions of the various SU(5) multiplets to the MSSM beta functions.
Taken from Ref. [139].

ones in Tab. 6.4, we find that these additional contributions are large, except for 5-plets.
The running of the gauge couplings up to the GUT scale is at one-loop order given by

αGUT = αi(Q)
1− bi

4παi(Q) ln M2
GUT
Q2

, (6.37)

where Q is the scale at which the additional particles are included and αGUT is the
value of the gauge couplings at the GUT scale MGUT. If we require that our theory is
perturbative up to the GUT scale, we conclude that we αG will become larger than one
if we add more than five 5, 5̄ pairs or one 24-plet. For αG ≤ 1/2 we are limited to four
5, 5̄ pairs, not considering additional higher-order effects. The only operators in Tab. 6.3
that fullfill thes requirement are operators #1, #9, #13 and #17.

Considering the similar discussion in previous chapters, we note that the presence of
a scalar singlet mediator is dangerous, if this scalar obtains a VEV. Of the remaining
decompositions #1, #9, and #13 and #17 only the latter can avoid this effect. Thus
of all possible decompositions of the d = 7 operator, only the example we have chosen
before is realizable in a GUT theory, if it is the dominant contribution to neutrino mass
and perturbativity is guaranteed up to the GUT scale.
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7. Effective operators and Dark
Matter interactions

In the previous chapters we have used higher dimensional operators that appear in
EFTs to generate neutrino masses. The generality of EFTs allows for their use not
only in neutrino physics, but also in a wide array of other subjects. Model independent
studies of DM interactions with the help of EFT [45–53] and the discussion of their UV
completions [54–56] can be found in literature. These studies focus, however, on the
lowest dimensional leading operators for such interactions. In the following we want
to apply the methods for studying higher dimensional operators, as established in the
previous chapters, to DM interactions [140] (but not in a SUSY context).

7.1. Current status of Dark matter searches

There is a variety of experimental setups that are used as detectors for direct interactions
of Dark Matter. It is of course beyond the scope of this thesis to give a detailed overview.
Instead, we want to briefly illustrate the principal of direct detection of dark matter
at the example of XENON100 [181], which is a two-phase liquid-gas time projection
chamber (TPC). The basic layout of a TPC is the following: The detector contains
a volume of liquid Xenon. The reaction of dark matter with one of the nucleons in
this volume leads to a nuclear recoil, which in turn produces scintillation photons and
ionization electrons, when the affected nucleus is de-exciting. The scintillation photons
will be directly detected by photo-multiplier tubes (PMTs) at the top and the bottom
of the volume. The electron, instead, is accelerated by an electric field in the detector.
When these electrons reach the interface of liquid and gaseous Xenon at the top of the
detector, they produce a secondary scintillation signal, which is also recorded by the
PMTs. This is schematically illustrated in Fig. 7.1. The delayed signal of the drifting
electrons is used to reconstruct the z-coordinate of the initial DM interaction, hence
the designation TPC. The other two coordinates are obtained from the signal location
within the PMT array. The ratio of the two measured signals can be used to suppress
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Figure 7.1. – Principal of a two-phase liquid-gas time projection chamber such as
XENON100.

background. To further improve the signal, only a fiducial volume is used, i.e., signals
from the outer detector regions are not considered. This way the detector volume itself
can be used as shield against external radiation. The LUX experiment [12] works in a
similar way. One-phase detectors instead work without an applied electric field and only
observe the primary photons. To resolve the interaction spatially, they usually have a
spherical geometry with PMTs covering the whole surface.
Earlier direct detection experiments working on a different principle, such as Co-

GeNT [8] and CDMS [9, 10], have reported the observation of an potential DM signal in
the mass region of 6 to 10 GeV. XENON100 [11] and its predecessor XENON10 [182],
however, could not observe such a signal and have instead constrained the corresponding
signal region. Most recently also the LUX experiment [13] has published results giving
even stronger constraints for light DM. How can this tension be understood? A recent
re-evaluation of the XENON10 data [183, 184] came to the conclusion that the ob-
tained bounds are less significant then originally reported. The limits from XENON100,
however, can not so easily be avoided, but models have been proposed that avoid these
constraints [183, 185, 186]. Besides experimental problems, such as uncertainties about
the sensitivity of the XENON100 experiment [187], these models assume that DM
interactions are xenophobic. This means that interactions with Xenon are suppressed.
An example for this scenario is isospin violating DM [188–193]. The other experiments,
instead, that are not Xenon based, are not affected by this suppression.
More data on dark matter can also be obtained from collider experiments. At the

LHC the strongest bounds come from mono-jet and mono-photon searches [194–198].
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Further input stems from indirect searches for DM. These are experiments looking for
signals from DM annihilation in the universe. Potential DM signals have been reported
by Pamela [199], AMS [200], and Fermi-LAT [201]. If these signals really originate
from DM, or are instead caused by systematic uncertainties or astrophysical sources is
not yet clear. For more details on DM searches in general see, e.g., Ref. [202].

7.2. Effective dark matter interactions at leading order
We will now discuss, how the interactions of DM relevant for the direct searches presented
above can be described by an EFT. We will discuss first the leading order operators, i.e.,
the ones with the lowest mass dimension. These are well known in literature and have
already been systematically discussed, e.g., in Ref. [54].

7.2.1. Overview

We assume that the dark matter particle χ is a fermionic gauge singlet. Hence interactions
with the SM gauge bosons are not induced at tree-level, whereas the interaction with
SM fermions and the Higgs field is possible. All leading order interactions of DM with
SM particles can therefore be described by the following two types of operators

O1 = 1
Λ2χχ ff , (7.1)

OH = 1
ΛχχH

†H . (7.2)

Operator O1 is a dimension six operator describing the interactions among DM fermions
and SM fermions directly. Operator OH is a dimension five operator describing inter-
actions among DM fermions and the SM Higgs. Both operators are shown in Fig. 7.2.
The latter one induces an interaction between SM fermions and χ after EWSB. This
mechanism is illustrated in Fig. 7.3. This so called Higgs portal [203–220] interaction
can be expressed as

O2 = 1
Λm2

H

χχff〈H〉 . (7.3)

The size of this operator depends on the effective coupling λhff of OH . Therefore, direct
detection experiments, such as XENON100, can constrain this coupling [216, 221, 222]:

λhff
Λ . 1 · 10−3 GeV−1 . (7.4)

Since O2 is of d = 6 and O1 of d = 5 one might naively assume that the former is
sub-leading. This is, however, not always the chase, since the additional suppression of
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�
χ χ

f f
O1

�
χ χ

H H
OH

Figure 7.2. – Lowest order dark matter interactions considered in this study. Taken from
Ref. [140].

O2 is only by the Higgs mass and not by the mass of a very heavy mediator. Another
complication is, that the interactions relevant for direct detection experiments are of
course with partons of nucleons. So we parametrize the two operators in terms of their
form functions fN that are effective coefficients for interactions with partons in nucleons.
They read then

λN,effO1 χχff , with λN,effO1 = fO1
N

1
Λ2 , (7.5)

and

λN,effO2 χχff , with λN,effO2 = fHN
〈H〉

Λm2
H

. (7.6)

The form factor of the Higgs to a nucleon is theoretically known [212], since it depends
on the quark Yukawa couplings and parton distribution function. It is defined as

fHN =
∑
q

fTq + 2
9fTG , (7.7)

where mN is the nucleon mass and fTq and fTG are the form-factors for the quarks and
gluons respectively that constitute the nucleon. In the case of the operator O2, we do
not know the flavor structure of the operator, since it depends on the specifics of its UV
completion. We will, for now, assume that all relevant couplings are flavor blind and
order one. The form factor is then (c.f., Ref. [223] for the corresponding form factors
for neutralino DM, which can be adopted to our more general scenario)

fO1
N = mN

 ∑
q=u,d,s

fTq
mq

+ 2
27fTG

∑
q=c,b,t

1
mq

 . (7.8)
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H H
OH
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χ

〈H〉
χ

f f

O2

Figure 7.3. – Leading order interactions of fermionic DM with SM particles: Direct
detection interaction O2 = 1/(Λm2

H)χχff〈H〉 (r.h.s) generated from the Higgs portal
effective operator OH = 1/ΛχχH†H (l.h.s) from the SM Yukawa interaction. Taken from
Ref. [140].

We find that both of these form factors are roughly order one. This means that also
the Higgs-portal and the direct interaction operator are of similar order, but O1 is
suppressed by a factor mH/Λ compared to O2. What does this mean for us? If we want
to suppress the DM interaction to fermions by assuming it is generated by a higher
dimensional operator, both of the above contributions must be avoided. How can this
be accomplished? We know from the discussion in the earlier chapters that in the case
of neutrino mass generation the introduction of a discrete symmetry can achieve this
aim. As we will show in the next section this will not be sufficient in the case of DM
interactions. We will demonstrate that some realizations of the leading order operator
will always be invariant under such a symmetry. It is, however, possible, that in a
specific model those operators might be avoided. We will therefore systematically discuss
all possible decompositions of the leading and next-to leading order effective operators.
Comparing the particle content and the interactions of these decompositions, we will
then see in which model a higher-dimensional operator can be the leading contribution
to neutrino mass, meaning that in such a model O1 and OH (and therefore also O2) are
not present.

7.2.2. Decomposition of the operator χχff

We assume to have a DM particle that is a neutral fermion in this discussion. In analogy
to the charge-less neutrino, it can therefore be also either of Majorana or Dirac nature.
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Dirac particle
In this case, the DM field has 4 independent degrees of freedom which can be expressed
either as one Dirac spinor or two Weyl spinors X = (χR,χL). Using the notation
XR/L = (1± γ5)X we can rewrite its mass term as

mDirac
χ XRXL = mDirac

χ χcRχL . (7.9)

While we are not working in a SUSY framework in this chapter, we will adopt the
convention from chapter 2 of using only left-handed fields for reasons of consistency.
We will use the same short-hand notation where the product of two left-handed Weyl
spinors is assumed to be the Lorentz invariant combination of the two fields. Note that
χcR transforms as left-handed field.

Majorana particle
For Majorana DM we obtain the mass term

mMaj
χ χχ . (7.10)

Chiral structure of the operator
We can now rewrite the operator χχff or XXff , respectively, in terms of its chiral
nature using Fierz identities:

(XLfR) (XR(fR)c) = 1
2(XLγ

µ(fR)c)(XRγµfR) (7.11a)

XL(fL)c XRfL = 1
2(XLγ

µfL)(XRγµ(fL)c) (7.11b)

XLfR fRXL = 1
2(XLγ

µXL)(fRγµfR) (7.11c)

XRfL fLXR = 1
2(XRγ

µXR)(fLγµfL) (7.11d)

(XLγ
µfL)(fLγµXL) = −(XLγ

µXL)(fLγµfL) (7.11e)
(XRγ

µfR)(fRγµXR) = −(XRγ
µXR)(fRγµfR) (7.11f)

Here fR/L represents SM model fermions. Due to their behavior under gauge trans-
formations (see section 2.1 of chapter 2), we know that operators such as XRXLfRfL

are not possible. At this point we can clearly see, why the introduction of a discrete
symmetry fails to forbid the operator χχff : The terms of Eq. (7.11c-f) are neutral
under any charge assignment. In the case of Majorana DM this is also true for the
operators (7.11a) and (7.11b).

Decompositions
Since we cannot avoid the presence of this operator by an additional symmetry, we
have to make sure that none of its decompositions is realized in a model that demands

68



7.2. Effective dark matter interactions at leading order

�φ

fR

χL

fR

χL

�
φ

fR χL

χL fR �
V

χL χL

fR fR
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Figure 7.4. – Decompositions of the operator (XLfR) (fRXL) = 1
2(XLγ

µXL)(fRγµfR)
from Eq. (7.11). Taken from Ref. [140].

only higher dimensional interactions. We therefore have to study how the operator
χχff can be deconstructed. For the operator (XLfR) (fRXL) this is shown in Fig. 7.4.
(See also Tab. I of Ref. [54]) The decompositions of the other operators have a similar
structure. The decomposition with a vector boson as mediator is not realized in our
scenario, since χ is assumed to be a gauge singlet. To avoid the other decompositions
we must, however, explicitly forbid the presence of scalars with the following charges
under (SU(3)c, SU(2)L, U(1)Y ;Z2):

(3, ∗, ∗;−) , (7.12a)(
1, 2,−1

2;−
)
, (7.12b)

(1, 1,−1;−) , (7.12c)

or their charge conjugates; the ∗ refers to any possible charge. The Z2 symmetry here is
necessary to obtain a stable DM particle. Hence χ is odd under this parity and the SM
particles are even. The possible quantum numbers of the mediators can be deduced by
inserting all possible combinations of SM fermions as external fields in Fig. 7.4.

7.2.3. Decomposition of the operator χχH†H

We now have also to discuss the decompositions of the effective operator χχH†H. In
this case the only possible chiral combinations are χLχLH†H and χcRχcRH†H for Dirac
and χχH†H for Majorana DM. The two possible decompositions are shown in Fig. 7.5.
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Figure 7.5. – Decompositions of the effective operator χχH†H. Taken from Ref. [140].

The corresponding scalars are (
1, 2,±1

2 ,−
)

and (7.13a)

(1, 1, 0; +) , (7.13b)

in the notation specified in the previous subsection.

7.3. Higher dimensional operators
In analogy to the discussion of neutrino mass models, we can now systematically study
higher-dimensional operators leading to the same interactions of DM with SM fermions
as the leading order operators after EWSB.
At next-to leading order we have the d = 7 operator 1

Λ3χχffH, which will induce
the direct interaction v

Λ3χχffH. The resulting effective interaction is suppressed by a
factor v

Λ in comparison to the leading order operator 1
Λ2χχff . In a minimal extension

of the SM, where an additional scalar singlet S, which can obtain a VEV vS, is present,
we have to consider also the operator 1

Λ3χχffS. Note that for an appropriate choice of
SM fermions, ffH as well as ffS are SU(2) invariant.
If we regard only DM interactions induced via the Higgs portal, the next-to leading

operator is χχH†HS. If only SM particles are considered as external fields it is
χχ(H†H)2, instead. All these operators are listed in Tab. 7.1. For the reason of
completeness we also included the d = 7 operator χχH†HS2, which we will not discuss
in detail.

It might seem more economical to just consider SM particles as external fields of the
effective operator. As we will see later, however, in many decompositions of operators,
such as χχH†HH†H, the presence of an additional scalar singlet is required as a
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(a) (b)

d = 5 — χχH†H

d = 6 χχff χχH†HS

d = 7 χχffS χχ(H†H)2

χχffH χχH†HS2

Table 7.1. – Higher dimensional operators generating dark matter interactions (a) by
direct interactions and (b) via the Higgs portal. Taken from Ref. [140].

�
S

H H

H
χ χ

H

−→ �
〈S〉

H
χ χ

H

Figure 7.6. – Schematic illustration how decompositions of the type χχH†HH†H with a
scalar singlet mediator S will induce operators of the type χχH†HS if S obtains a VEV.
Taken from Ref. [140].

mediator. This mediator usually couples to a pair of Higgs fields. Similar to operators
generating neutrino masses (as discussed in the previous chapters) one therefore cannot
avoid a non-zero VEV for S, which will induce a lower dimensional operator of the type
χχH†HS. This is schematically illustrated in Fig. 7.6. Due to this reason it is a more
consistent approach to include these types of operators from the beginning.

As discussed before, the additional suppression of these higher dimensional operators
reduces the direct interaction cross-section and can help to avoid experimental constraints.
A reduced cross-section has, however, also cosmological implications. This can be
understood as follows: Somewhat similar to the heavy stable quarks discussed in
section 6.5 of chapter 6, also the dark matter particles are in thermal equilibrium
in the early universe, until their number density becomes too small for annihilation
processes to happen and they will freeze-out. The time of this freeze-out determines
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the DM abundance in the universe. If the interactions are too much suppressed, the
resulting abundance will be below experimental bounds. Studies of the leading Higgs
portal operator [222] have shown that already current bounds on the DM interaction
cross-sections are in conflict with these limits, except for certain parameter points such
as mχ = mH/2, which leads to resonance enhanced annihilation processes. It is, however,
possible that the interactions in the early universe are different from those relevant for
direct detection. We will discuss this later for a specific example. Another option would
be non-thermal DM production.
We want to discuss now systematically the various possible next-to leading order

operators of Tab. 7.1.

7.3.1. The operator χχffS

All decompositions of this operator that are possible with SM fermions are depicted in
Fig. 7.7. One can convince oneself that any of these decompositions requires at least
one mediator with the same quantum numbers as specified in Eq. (7.12). We exemplify
this for operator #S1: The Lagrangian of a model generating this diagram, must at
least contain the terms

L#S1 = LSM + λχfφ χf · φ+ λSφφ S
†φ · φ+mφ φ

†φ+mχ χχ+ · · ·+ h.c. (7.14)

From this Lagrangian, however, also an effective operator χχff can be constructed via
the diagrams #A1 and #A2 of Fig. 7.4, since all necessary fields and couplings are
present. A similar argument can be made for #S2 and #S3. Therefore, we conclude that
none of these decompositions is realizable without introducing the leading order operator.
Therefore we must disregard the option of having χχffS as dominant contribution
to DM interactions. More intuitively this can be understood by the fact that the
decompositions #S1-#S3 can be obtained from the diagrams #A1/#A2 by connecting
an external S field to any line. Since this scalar does not carry any charge, the quantum
numbers of the original fields do not have to be modified, and therefore also the original
mediators are present in the new diagram.

7.3.2. The operator χχffH

The decompositions of the operator χχ ffH are shown in Fig. 7.8. We can make the
following observations:

• Operators #B2, #B4 and #B5 suffer from the same problem as #S1-#S3: They
also include the mediators of Eq. (7.12).
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Figure 7.7. – Different decompositions for the operator χχffS. φ is a scalar and X a
fermion that has the quantum numbers of the external fermions f . φ corresponds to the
mediators in Fig. 7.4. Taken from Ref. [140].

• Operators #B1 and #B5 contain a mediator 2s1
2
. We can identify this mediator as

the Higgs doublet due to its quantum numbers. By cutting one of these diagrams
at the corresponding line we obtain one of the operators from Fig. 7.5.

We conclude that also the operator χχ ffH is not a valid possibility as dominant
contribution to DM interactions. In the following we want to discuss now the higher
dimensional extensions of the Higgs portal operator OH

7.3.3. The operator χχH†HS

In a simple model with an additional scalar S we cannot avoid the operator #H2 of
Fig. 7.5, since S can assume the role of the scalar mediator. We will therefore require an
additional Z3 symmetry under which S is charged as ω = ei 2π

3 . The operator χχHHS
is then only invariant under this symmetry if also the DM field χ is charged. Hence for
Dirac DM we have q(χL) = q(S) = ω and q(χR) = ω2, and for Majorana DM we obtain
q(χ) = ω. Obviously, this charge assignment forbids an explicit mass term for the χ
field. Instead, the (Majorana or Dirac) mass of the DM particle is generated by a term
λSSχχ after S obtains a VEV. If all other fields are not charged under the Z3 symmetry,
we have now accomplished to forbid the operator χχHH. The possible topologies of
the decompositions of the invariant operator χχHHS are shown in Fig. 7.9 and the
decompositions themselves are shown in Fig. 7.10 and also listed in Tab. 7.2.

The operator χχff is not forbidden by the Z3 symmetry for the reasons discussed in
subsection 7.2.2. This is, however, no problem, since none of the mediators of Eq. (7.12)
are present. (Note that some of the mediators have indeed the SM quantum numbers as
in Eq. (7.12) but are even under the Z2 parity.)
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Figure 7.8. – Different decompositions for the operator χχffH. φ is a scalar and X a
fermion that has the quantum numbers of the external fermions f . φ(′) corresponds to the
mediators in Fig. 7.4. Taken from Ref. [140].
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Figure 7.9. – Different topologies for the decomposition of the effective operator χχHHS.
Taken from Ref. [140].

Top. ext. Fields Mediators

#C1 c1 1s0,+
#C2 c2 a = S, b = H, c = H 1s0,+, 1s0,+
#C3 c2 a = H, b = S, c = H 1s0,+, 2s1

2 ,+

#C4 c3 a = S, b = H, c = H 1f0,−, 1s0,+
#C5 c3 a = H, b = S, c = H 2f1

2 ,−
, 2s1

2 ,+

#C6 c4 a = H, b = S, c = H 2f1
2 ,−

, 2f− 1
2 ,−

#C7 c4 a = S, b = H, c = H 1f0,−, 2f1
2 ,−

Table 7.2. – Decompositions of the operator χχHHS. The numbers in the first column
correspond to the decompositions shown in Fig. 7.10. The topologies (Top.) correspond
to to Fig. 7.9 where a, b and c are replaced accordingly. The last column lists the new
mediator fields that have to be present in a model which generates this specific operator.
The second subscript denotes the charge under the Z2 parity. Taken from Ref. [140].
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Figure 7.10. – Different decompositions for the operator χχHHS. Taken from Ref. [140].
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The requirements for having χχHHS as dominant contribution to DM interactions
are therefore

• A symmetry that stabilizes the DM, in our case a Z2.

• An additional symmetry under which the Higgs portal operator OH is not invariant.

• No new particles with the quantum numbers specified in Eq. (7.12) are present.

We make the following additional observations:

• Interestingly, the dominant contribution to direct detection interactions can still
be generated by a higher dimensional operator, even if some of the mediators
generating #A1 and #A2 are present. This is the case if these mediators do not
carry color charge and therefore lead only to interactions with leptons, which
are irrelevant for nuclear recoil experiments. The resulting leptonic interactions,
however, could accommodate the annihilation cross sections that are required in
order to obtain the correct DM relic abundance. Examples for such models can be
found, e.g., in Ref. [224, 225].

• For generating the DM mass we need the term λχ χχS. Furthermore, in general
we cannot avoid the terms mSS

†S and λHS†SH†H whenever a scalar singlet is
present. This has the consequence that operator #C1 will be unavoidable. It may,
however, not be the only contribution. It is connected to the mass of χ and S in
the following way

Od=6
#C1 = λχλH

vS
m2
S

H†Hχχ = λH
mχ

m2
S

H†Hχχ . (7.15)

• Decomposition #C4 is potentially problematic: The mediator 1f0,ω2 could become
an additional DM component χ′. The reason is that the coupling Sχχ′ induces a
mass term m′χχχ

′ after S obtains a VEV. This means we have a mixing between
the states χ and χ′. We then can obtain DM interactions via a d = 5 operator
χχ′H†H.

7.3.4. The operator χχH†HH†H

Finally we want to discuss the operator χχH†HH†H. The possible topologies are
presented in Fig. 7.11. None of these topologies can become a dominant contribution to
DM interactions, due to the following reasons
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• If we have a vertex, where a mediator is connected to two external Higgs fields, it
can be a scalar singlet or a triplet. In the former case the mechanism illustrated
in Fig. 7.6 automatically induces an effective operator of lower dimension. The
same is true for the neutral component of a triplet, which also obtains a VEV via
its coupling to the Higgs bosons. Interestingly this triplet would also generate
neutrino mass via a type-II seesaw diagram. Therefore it must be either very
heavy, or its VEV and couplings must be very small. This argumentation disfavors
topologies e2, e3 and e4a-e4d.

• In case of topology e1 the quartic Higgs coupling implies that one of the mediators
is also a Higgs field. By cutting the diagram at the corresponding line we obtain
then the leading order Higgs-portal operator.

• The topology e4e, which requires only fermionic operators is not affected by those
considerations. Here, instead, the coupling of χ and H to one of the mediators
implies that this mediator is exactly the one that generates the Higgs-portal
operator #H1. The usual ansatz of introducing an additional symmetry is not
viable in this case becauseH†H is invariant under any such symmetry and therefore
if χχH†H is forbidden, also χχH†HH†H will not appear.

We conclude from the discussion in this section that the only attractive option for
heaving DM interactions generated by a higher dimensional operator is χχH†HS. In
the following we want to discuss the phenomenology of one particular decomposition of
this operator at the LHC.

7.4. LHC phenomenology

The model we exemplarily want to study in this section is the operator #C6. We have
listed the fields in Tab. 7.3. The according decomposition is shown in Fig. 7.12 and the
corresponding Lagrangian reads

L#C6 =LSM +
[
λξu H · (ξu,R)c χ+ λξd H

† (ξd,R)c χ+ λξξS S ξu,L · ξd,L
+ λ′ξξS S

∗ (ξu,R)c · (ξd,R)c +mu ξu,L · (ξu,R)c +md (ξd,R)c · ξd,L
+λSχχSχχ+ κSS

3 + h.c.
]

+ λSSHH(S∗S)(H†H) +mSS
∗S + λS(S∗S)2 , (7.16)
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Figure 7.11. – Different topologies for the decomposition of the effective operator
χχHHHH. Taken from Ref. [140].
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Figure 7.12. – Decomposition of the effective d = 6 operator #C6. Taken from Ref. [140].

Fields: SM Fermions Scalars

ξd,L ξu,L (ξu,R)c (ξd,R)c χ S

SU(2) 2 2 2 2 1 1
U(1)Y −1

2 +1
2 −1

2 +1
2 0 0

Z3 1 ω ω ω2 ω2 ω ω

Z2 + - - - - - +

Table 7.3. – Field charges, with ω = eiπ3 under Z3, whereas “+” signifies a phase of 1 and
“-” signifies a phase of eiπ under the Z2. Taken from Ref. [140].

where all couplings are assumed to be real, for reasons of simplicity, and the doublet
fields can be explicitly expressed as

ξd,L =
ξ0

d,L

ξ−d,L

 ξu,L =
ξ+

u,L

ξ0
u,L

 ξu,R
c =

 ξ0
u,R

c

(ξu,Rc)−

 ξd,R
c =

(ξd,Rc)+

ξ0
d,R

c

 . (7.17)

As already discussed in chapter 5 for the neutrino mass model, it is necessary to know
the mass eigenstates of the fields that are relevant for LHC phenomenology. We have
introduced two additional charged fermions. In the basis (ξu, ξcd) their mass matrix reads
(using the same convention for v and vS as in the earlier chapters)

M+ =
 mξu −λ′ξξS vS
λξξS vS mξd

 . (7.18)

Furthermore five new neutral fermions (ξ0
u,L, ξ

0
u,R

c, ξ0
d,R

c, ξ0
d,L, χ) appear, which have
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Majorana nature. The corresponding mass matrix is then

M0 =



0 −mξu 0 −λξξS vS 0
−mξu 0 λ′ξξS vS 0 −λξu v

0 λ′ξξS vS 0 −mξd λξd v

−λξξS vS 0 −mξd 0 0
0 −λξu v λξd v 0 λSχχ vS


. (7.19)

Here we will use the notation ξ+
1/2 for the mass eigenstates of the charged fermions. For

the neutral mass eigenstates we will again use the notation ni with i = 1, . . . , 5. The
additional scalar S has couplings to the SM Higgs field H. This has consequences for the
phenomenology of the Higgs sector. First of all we have one massive pseudoscalar P 0.
The assumption of real couplings implies that it is purely singlet-like. The pseudoscalar
and charged components of the Higgs field are absorbed by the gauge bosons, as usual.
The two remaining scalar degrees of freedom, however, will mix. Their mass matrix
reads

M2
H =

 4λv2 2λSSHHvvS
2λSSHHvvS 4λSv2

S + 3κvS

 =
 4λv2 2λSSHHvvS

2λSSHHvvS 4λSv2
S − 1

3m
2
P

 . (7.20)

The corresponding mass eigenstates are h1/2. The structure of this mass matrix implies
m2
P ≤ 6λSv2

S. Since the Higgs boson found at the LHC has the characteristics of a
SM Higgs, the mixing between the two states must be small. So besides the Higgs-like
state we have a second mostly singlet-like state, which is difficult to produce directly.
The decay of the pseudoscalar P depends on the mass hierarchy of the new particles.
One scenario is that it decays into a pair of the new fermions. Alternatively it can
decay into two photons via a loop of ξ+ fields, where the relevant couplings are λξξS
and λ′ξξS. In the latter case its life time must be short enough in order to avoid conflicts
with the prediction of Big Bang Nucleosynthesis. The relevant partial decay widht is
approximately

Γ(P → γγ) ≈ (λξξS + λ′ξξS)2 ×O(keV) , (7.21)

for mX+ = 500 GeV.
Also here, the LHC phenomenology depends on the mass hierarchy of the BSM

states. The lightest neutral fermion state should mostly correspond to χ in order to
obtain a singlet-like DM particle. So, in order to avoid admixtures of the neutral
doublet components, we need the off-diagonal entries λξu and λξd in Eq. (7.19) to be
comparatively small. The mass of the singlet-like state is then roughly equivalent to

81



7. Effective operators and Dark Matter interactions

λSχχ which must be small if this is the lightest mass eigenstate. We distinguish now the
following scenarios:

Scenario I (mξd,ξu ' λξξSvS ' λ′ξξSvS)
In this scenario, the mass terms mξd,ξu and the ones induced by vS are of almost equal
size. The charged lepton mass matrix Eq. (7.18) would therefor have one heavy and one
rather light eigenstate. Such a light fermion, however, is experimentally excluded [177].

Scenario II (mξd,ξu � λξξS
vS√

2 , λ
′
ξξS

vS√
2)

If the Dirac mass terms of the doublets mξd,ξu are significantly larger then their Majorana
mass terms induced by vS, we obtain two pseudo-Dirac fermions. These pseudo-Dirac
states, as well as the charged fermions, then have masses close to mξd and mξu . It is
reasonable to assume mξd ' mξu . We then observe the following dominant decay modes.

ξ+
i → W+n0

1 (i = 1, 2) (7.22a)
n0
j → Zn0

1 , hin
0
1 , Pn

0
1 (j = 2, 3, 4, 5) (7.22b)

where n0
1 is the singlet like state, i.e., the DM particle. If, however, the masses mξd,ξu

are very different, we obtain also the decays

ξ+
2 → Zξ+

1 , hiξ
+
1 , P ξ+

1 , W+n0
j (j = 2, 3) (7.22c)

n0
j → Zn0

k , hin
0
k , Pn

0
k , W

±ξ∓1 (j = 4, 5 and k = 2, 3) . (7.22d)

The nature of these decays is similar to the ones of charginos and neutralinos in SUSY.
The production of this heavy SU(2) doublets is very similar to the one of those discussed
in chapter 5. For sufficiently small couplings we can in principal also observe displaced
vertices.

Scenario III (mξd,ξu � λξξSvS, λ
′
ξξSvS)

This scenario is similar to Scenario II, with two charged fermions and two neutral
quasi-Dirac fermions. In this case, however, their masses will be mostly determined by
λξξSvS. The corresponding decays are the same as above for degenerate masses.

82



8. Summary and Conclusion

In this thesis we demonstrated that supersymmetric neutrino mass models can be studied
with the help of effective field theories. Having neutrino masses generated by higher
dimensional effective operators is one possibility to connect neutrino physics to the
appearance of new particles at the TeV scale. We discussed these effective operators and
their decompositions systematically in the context of the MSSM and NMSSM up to d = 9.
We illustrated how, due to a discrete symmetry, these higher dimensional operators can
become the leading contribution to neutrino mass. It is interesting to note that not all
of these operators can become a dominant contribution, due to symmetry considerations.
Even if all lower dimensional operators are forbidden at the level of effective operators,
they can be re-introduced in specific decompositions with scalars, which obtain a VEV
that breaks the discrete symmetry. Therefore only certain decompositions allow for
neutrino mass to be generated by a generic higher dimensional operator. If one assumes
that such models are embedded in a GUT framework, the requirement of perturbativity
up to the unification scale limits the possible implementations even further. For the
decompositions of the d = 7 operator it is particular interesting that only one possibility
remains. If this is only accidental or indeed points to the realization of this specific model
in nature has to be seen in the future when new experimental data will be available.

Since the remaining model requires the introduction of new SU(2) singlet and doublet
fermions, we studied their possible phenomenology at the LHC. Depending on the
hierarchy of these mediators, we will generate the linear or the inverse seesaw mechanism
at an intermediate scale. Their decay processes can lead to several characteristic
signatures in the detector, such as displaced vertices and lepton flavor and lepton
number violating processes. In this case we chose a specific set of parameters, and
implemented an approximately tri-bimaximal flavor structure. Prospective new results
of neutrino and LHC experiments will show, if this particular choice is indeed the most
attractive one. The study of another point in parameter space might be interesting.
Further studies can also investigate if the proposed structure of the coupling constants
can arise from a flavor symmetry.
We could also illustrate in the framework of the NMSSM with an additonal broken

symmetry that a combination of contributions from operators with different dimension
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can give rise to sizeable corrections from tri-bimaximal mixing leading to a non-zero
θ13. It is of course possible to obtain these corrections in other ways, such as from the
charged lepton sector. It is, however, an interesting option to study if a mechanism such
as described here may be the consequence of a more fundamental theory.
The GUT completion of the doublet fields comes with new heavy d-quarks. Due to

the symmetry that protectets the SM neutrino masses, these new quarks are stable.
This leads to conflicts with the search for heavy elements and Big Bang Nucleosynthesis.
We could demonstrate that in the above mentioned NMSSM implementation of our
model, the small symmetry breaking couplings can be sufficient to allow a fast enough
decay of these quarks to avoid these cosmological constraints.

Higher dimensional effective operators are not only relevant for neutrino physics. Here
we have demonstrated that they can be used to study DM interactions. In order for these
operators to become the leading contribution for the interaction of DM with nucleons, it
is necessary to avoid the lowest dimensional operators that lead to interactions between
DM and SM fermions. This can happen either directly or via the Higgs-portal. Therefore
a discrete symmetry and the absence of certain fields in a specific model is required.
We have shown that such models fullfilling both conditions are indeed possible if the
effective interaction is generated by the extension χχH†HS of the Higgs portal operator.
We have further shown that such models also have a phenomenology that is interesting
for the LHC.
The methods presented in this thesis for studying higher dimensional operators are

not only a useful tool in the particular fields mentioned here, but could also be adopted
to other areas of phyiscs. Since the properties of the newly discoverd Higgs boson at
the LHC will be even more precisely determined in the future, one particular interesting
possibility is to study the possible influence of new physics with the help of EFT in
this particular case. Also low-energy observables such as neutrinoless double β-decay
or flavor physics and CP violation can be potentially studied with these methods. It
may be interesting to automatize this type of analyses with the help of programs in the
future. As the discussion in this thesis shows, specific models adressing fundamental
issues such as the origin of neutrino masses or dark matter usually concern various fields
of phyiscs and experiments, here for instance cosmology, dark matter detection, neutrino
and collider experiments. It will be interesting to further study the interconnection
of these fields in the light of a multitude of current and planned experiments, which
presumably will provide unexpected new results.
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A. SUSY Formalism

In the following we want to set-up the formalism we use to describe SUSY models and
introduce some additional notation.

Chiral supermultiplets
First we want to discuss chiral supermultiplets, which contain the SM fermions and
their scalar partners.

Weyl spinors
Since SUSY transforms fermions into bosons and vice versa, one should use representa-
tions of scalar and fermionic fields that have both the same (on-shell) degrees of freedom.
Scalar particles are therefore complex fields φ whereas fermions are represented by Weyl
spinors ψ and χ, which are the left- and right-handed components of a Dirac spinor

Ψ =
ψ
χ

 , (A.1)

so that

ΨR ≡ PRΨ ≡ 1
2(1 + γ5)Ψ =

ψ
0

 , (A.2a)

ΨL ≡ PLΨ ≡ 1
2(1− γ5)Ψ =

0
χ

 . (A.2b)

The equations of motion for Weyl spinors read

σµpµψ = mχ (A.3a)
σ̄µpµχ = mψ , (A.3b)

where σµ = (σ0, σ1, σ2, σ3) and σ̄µ = (σ0,−σ1,−σ2,−σ3), see footnote 2. They can be
obtained from the corresponding Lorentz-invariant Lagrangian

L = ψ†iσµ∂µψ + χ†iσ̄µ∂µχ−m(ψ†χ+ χ†ψ) . (A.4)
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Remarks on notation
One can construct a spinor that transforms as right-handed field ψ from a left handed-
field χ

ψχ ≡ iσ2χ
∗ . (A.5)

In the following we will use the simplified notation χχ ≡ ψ†χχ, implying that all products
of Weyl spinors are to be understood as Lorentz invariants.1

We will furthermore introduce the SU(2) invariant product χA · χB ≡ χA iτ2χB ≡
ψ†χA iτ2χB. Since all right-handed fields can be represented as charge conjugates of
left-handed fields and vice versa, we will use only left-handed fields in the following.
The right-handed electron eR, for example, is represented as left-handed positron
(eR)c = (ec)L.

SUSY invariant Lagrangian
Infinitesimal SUSY transformations can be described as follows

δξφ = ξχ , (A.6a)
δξχ = −iσµiσ2ξ

∗∂µφ
∗ + ξF , (A.6b)

δξF = −iξ†σ̄µ∂µχ , (A.6c)

where ξ is an infinitesimal spinor. F is a so-called auxiliary Field which is necessary to
close the SUSY algebra off-shell. With other words the relation

(δηδξ)X = (η†σ̄µξ − ξ†σ̄µη)i∂µX (A.7)

is true for X = φ, χ, F . One can say that F compensates the two-additional degrees of
freedom that a Weyl spinor has off-shell. We can now write down a Lagrangian that is
invariant under SUSY transformations:

L = ∂µφ
†∂µφ+ χ†iσ̄µ∂µχ+ F †F . (A.8)

Vector multiplets
So far, we have only considered supermultiplets with a scalar and a fermionic part. A
theory that contains the SM must of course also allow the description of vector bosons.
We start with a generic gauge boson W a with the field strength tensor

F a
µν = ∂µW

a
ν − ∂νW a

µ − gfabcW b
µW

c
ν (A.9)

1 A more detailed overview on the properties of Weyl-spinors can be found in section 2 of Ref. [57].
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and the covariant derivative

Dµ = ∂µ + igT aW a
µ , (A.10)

where the T a are the generators of the gauge symmetry. The infinitesimal SUSY
transformations of the vector multiplets are

δξW
a = ξ†σ̄µλ

a + h.c. , (A.11a)

δξλ
a = 1

2σ
µσ̄νξF a

µν + ξDa , (A.11b)

δξD
a = −iξ†σ̄µ(Dµλ)a + h.c. , (A.11c)

The λa are the so-called gauginos, the spin 1
2 SUSY partners of the spin-1 gauge bosons.

The Da are again auxiliary fields similar to the F fields of chiral multiplets.
We can now construct a Lagrangian which is invariant under the transformations

from Eq. (A.11):

Lgauge = −1
4F

a
µνF

µν
a + iλa†σ̄µ(Dµλ)a + 1

2D
aDa . (A.12)

A SUSY invariant Lagrangian that contains chiral as well as vector multiplets reads

L = ∂µφ
†∂µφ+ χ†iσ̄µ∂µχ+ F †F − 1

4F
a
µνF

µν
a + iλa†σ̄µ(Dµλ)a + 1

2D
aDa

−
√

2g(φ†T aχλa + h.c.)− gφ†T aφDa (A.13)

The Lagrangian in Eq. (A.13) is invariant under the SUSY transformations (A.6) and
(A.11) if Eq. (A.6c) is replaced by:

δξF = −iξ†σ̄µ∂µχ −
√

2qλ†ξ†φ . (A.14)

In a specific model the auxiliary fields can be expressed in terms of the physical fields,
by solving their equations of motion.

Superfield formalism
One can describe chiral supermultiplets with so called superfields, which depend on
spatial coordinates x and fermionic degrees of freedom. The latter can be expressed
using Grassman numbers θ which are anticommuting, i.e., {θi; θj} = 0. It follows
immediatly that θ2

i = 0, and the highest non-vanishing product of a two component
Grassmann number is θ · θ ≡ θiσ2θ = −2θ1θ2.
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A superfield is then defined in terms of its component fields φ, χ and F by

Φ̂(x, θ) = φ(x) + θχ(x) + 1
2θ · θF (x) , (A.15)

and transforms as

δΦ̂ = (−iξQ+ iξ∗Q†)Φ̂ , (A.16)

with

Qa = i ∂
∂θa

. (A.17)

One can easily convince oneself that Eq. (A.16) implies the correct transformation of
the component fields given in the previous subsections. The following product rules for
superfields will be very useful in the following:

Product of two superfields

Φ̂iΦ̂j = φij + θχij + 1
2θθFij , (A.18)

with

φij = φiφj , (A.19a)
χij = χiφj + φiχj , (A.19b)
Fij = φiFj + φjFi − χiχj . (A.19c)

Product of three superfields

Φ̂iΦ̂jΦ̂k = φijk + θχijk + 1
2θθFijk , (A.20)

with

φijk = φiφjφk , (A.21a)
χijk = χiφjφk + φiχjφk + φiφjχk , (A.21b)
Fijk = φiφjFk + φjφkFi + φkφiFj − χiχjφk − χjχkφi − χkχiφj . (A.21c)

The superpotential
A SUSY model is usually described by a so-called superpotential. An example of a
simple SUSY invariant model is the Wess-Zumino model [226]. It can be specified by
the superpotential

WWZ = 1
2MijΦ̂iΦ̂j + 1

6YijkΦ̂iΦ̂jΦ̂k . (A.22)
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To obtain the according Lagrangian, one has to project out the fermionic degrees of
freedom by executing the integral

∫
d2θW . Using the integration rules for Grass-

man numbers will give us the F -terms of the superfields and their products. So for
practical use we can compute the products of superfields and obtain SUSY invariant
interactions from the F-component of the resulting expression. Applying this procedure
to Eq. (A.22) gives us the following SUSY invariant Lagrangian

LintWZ = 1
2Mij(φiFj + φjFi − χiχj) + 1

6Yijk(φiφjFk + φjφkFi + φkφiFj

− χiχjφk − χjχkφi − χkχiφj) + h.c. (A.23)

For the auxiliary fields we obtain

Fi = 1
2M

†
ijφ
†
j + 1

6Y
†
ijk(φjφk)† . (A.24)

Similarly the D terms become

Da = gφ†T aφ . (A.25)

With the methods presented in this section it is now possible to consistently describe
supersymmetric theories. After establishing the formalism, we therefore are now able to
discuss its application to more realistic physics models.

89





B. Programs Used for the Calculation
of Cross-Sections

Here we want to outline the principle steps that were necessary to obtain the numerical
results for the model discussed in chapter 5. The software we used was Whizard [159]
and Sarah [160, 161]. The intend of this appendix is not to given a detailed technical
description but rather to provide an overview of the relevant features.

An early implementation of the model in Whizard 1 was used to obtain the results
presented in Ref. [138]. We enlarged and improved the corresponding source code
further in order to produce the data presented in Ref. [137] and in this thesis. This data
was also cross-checked with an independent implementation in Whizard 2 that was
automatically generated by Sarah.

More information about Whizard as well as download and installation instructions
can be found at the URL

http://whizard.hepforge.org/

There it is described as follows:

WHIZARD is a program system designed for the efficient calculation of
multi-particle scattering cross sections and simulated event samples.

In principal it has two core components:

• The matrix element generator O’Mega, which according to an implemented set
of fields and interactions (“Feynmanrules”) produces tree-level matrix elements
for specified initial and final states.

• The other component is Monte-Carlo phase space integrator, which comes with
advanced functionality such as the option to use parton distribution functions.

Whizard comes pre-bundled with some model files for instance ones for the SM, MSSM
and NMSSM. It can, however, also be flexibly used with a large range of uncommon
models. We made use of this property in order to realize our TeV scale neutrino mass
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model. If only a certain number of processes has to be studied it is sufficient to implement
only the relevant particles and interactions and not the full model, which would be a
much more challenging task. The corresponding code that defines our scenario has not
to be build up from scratch. Instead one can build up on pre-existing models such as the
SM. (Since we where not interested in the phenomenology of the superpartners of the new
physics fields we could avoid the unnecessary overhead of a full SUSY implementation.)
The most important file for our implementation is the models file models.ml which

is located at omega-src/bundle/src within the Whizard file-tree. It is written in
the functional programming language OCaml. In this file we have to define the new
particles besides the SM fields:

type matter_field = L of int | U of int | D of int | Xp of int | N1 | N2 | N3 | N4 | N5 | N6 | N7 | N8 |
N9

type gauge_boson = Ga | Wp | Wm | Z | Gl
type other = Phip | Phim | Phi0 | H
type flavor = M of matter_field | G of gauge_boson | O of other

Here Xp of int corresponds to the two generations of charged Dirac Fermions and
N1-N9 to the nine neutral Majorana fermions. The program has also to be told how the
new fields behave under charge conjugation and Lorentz transformations. This can be
done in analogy to the SM fields. Some rather technical aspect is the specification of
how the names and parameters of the particles have to be translated into Fortran
code and further aspects regarding the communication between O’Mega and the main
program, which is later automatically produced. The physically more relevant aspect is
the definition of the interactions. We will illustrate this for the charged fields and N1 as
example for a neutral state. The interactions of the other neutral states are equivalent.
The neutral currents are, e.g., implemented as

((N1, Z, N1), FBF (1, Chibar, VLR, Chi), G_Z99);
((N1, Z, N2), FBF (1, Chibar, VLR, Chi), G_Z98);
((N1, Z, N3), FBF (1, Chibar, VLR, Chi), G_Z97);
((N1, Z, N4), FBF (1, Chibar, VLR, Chi), G_Z96);
((N1, Z, N5), FBF (1, Chibar, VLR, Chi), G_Z95);
((N1, Z, N6), FBF (1, Chibar, VLR, Chi), G_Z94);
((N1, Z, N7), FBF (1, Chibar, VLR, Chi), G_Z93);
((N1, Z, N8), FBF (1, Chibar, VLR, Chi), G_Z92);
((N1, Z, N9), FBF (1, Chibar, VLR, Chi), G_Z91);

and so on. The first part specifies the participating fields, the middle one the chiral
structure and the last one the according coupling which has to be provided as input.
The charged currents are in part:
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((Xp (-1), Wp, N1), FBF (1, Psibar, VLR, Chi), G_U98);
((Xp (-1), Wp, N1), FBF (1, Psibar, VLR, Chi), G_U98);
((Xp (-1), Wp, N1), FBF (1, Psibar, VLR, Chi), G_U98);
((N1, Wm, Xp 1), FBF (1, Chibar, VLR, Psi), CG_U98);
((Xp (-1), Wp, N2), FBF (1, Psibar, VLR, Chi), G_U88);
((N1, Wp, L 1), FBF (1, Chibar, VL, Psi), G_U91);
((L (-1), Wm, N1), FBF (1, Psibar, VL, Chi), CG_U91);
((N1, Wp, L 2), FBF (1, Chibar, VL, Psi), G_U92);
((L (-2), Wm, N1), FBF (1, Psibar, VL, Chi), CG_U92);
((N1, Wp, L 3), FBF (1, Chibar, VL, Psi), G_U93);
((L (-3), Wm, N1), FBF (1, Psibar, VL, Chi), CG_U93);
((N1, Wm, Xp 1), FBF (1, Chibar, VLR, Psi), CG_U98);
((L (-1), Wm, N1), FBF (1, Psibar, VL, Chi), CG_U91);
((N1, Wp, L 2), FBF (1, Chibar, VL, Psi), G_U92);
((L (-2), Wm, N1), FBF (1, Psibar, VL, Chi), CG_U92);
((N1, Wp, L 3), FBF (1, Chibar, VL, Psi), G_U93);
((L (-3), Wm, N1), FBF (1, Psibar, VL, Chi), CG_U93);

Similarly we net the Yukawa-like interactions to the neutral Higgs component:

((M N1, O H, M N1), FBF (1, Chibar, SLR, Chi), G_H99);
((M N1, O H, M N2), FBF (1, Chibar, SLR, Chi), G_H98);
((M N1, O H, M N3), FBF (1, Chibar, SLR, Chi), G_H97);
((M N1, O H, M N4), FBF (1, Chibar, SLR, Chi), G_H96);
((M N1, O H, M N5), FBF (1, Chibar, SLR, Chi), G_H95);
((M N1, O H, M N6), FBF (1, Chibar, SLR, Chi), G_H94);
((M N1, O H, M N7), FBF (1, Chibar, SLR, Chi), G_H93);
((M N1, O H, M N8), FBF (1, Chibar, SLR, Chi), G_H92);
((M N1, O H, M N9), FBF (1, Chibar, SLR, Chi), G_H91);

In the file conf/models/whizard.mdl we have to define all constants (including the
mixing matrix elements) the particles and their properties and also their vertices, for
instance

parameter u11 = -0.000102195
parameter u12 = -0.000102195
parameter u13 = -0.000102195
...
particle NEUTRINO_ONE 28
spin 1/2, isospin 1/2
name nu_1, omega:n1, tex:\nu_1
mass mn1
...
particle XI_PLUS 27
spin 1/2, isospin 1/2, charge 1
name xp, chep:xp1, tex:\xi^+
anti mad:omega:xpbar, chep:Xp1, tex:\bar\xi^-
mass mxp, width wxp
...
particle N_FIVE 32
spin 1/2
name n5, tex:n_5
mass mn5, width wn5
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...
vertex n1 W- xp1
vertex Xp1 W+ n1

For technical reasons we also have to change the files that in our model correspond to
conf/models/parameters.SM.omega.f90 to declare the according Fortran functions
and omega-src/bundle/src/f90_SM.mdl to enable Majorana particles. The mixing
matrix elements are calculated independently and provided as input. The decay width
of the particles where first computed with Whizard itself and then added to the
parameters.

Sarah is available under

http://sarah.hepforge.org/

and is described as

. . . a Mathematica package for building and analyzing SUSY and non-SUSY
models. SARAH just needs the gauge structure, particle content and (su-
per)potential to produce all information about the gauge eigenstates of a
model.

It was possible to generate the above described Model files automatically with Sarah.
Therefore one has essentially just to define the fields

Fields[[1]] = {{uL, dL}, 3, q, 1/6, 2, 3};
Fields[[2]] = {{vL, eL}, 3, l, -1/2, 2, 1};
Fields[[3]] = {{Hd0, Hdm}, 1, Hd, -1/2, 2, 1};
Fields[[4]] = {{Hup, Hu0}, 1, Hu, 1/2, 2, 1};

Fields[[5]] = {conj[dR], 3, d, 1/3, 1, -3};
Fields[[6]] = {conj[uR], 3, u, -2/3, 1, -3};
Fields[[7]] = {conj[eR], 3, e, 1, 1, 1};

Fields[[8]] = {N1, 2, n1, 0, 1, 1};
Fields[[9]] = {N2, 2, n2, 0, 1, 1};
Fields[[10]] = {{x10, x1m}, 1, xi1, -1/2, 2, 1};
Fields[[11]] = {{x2p, x20}, 1, xi2, 1/2, 2, 1};

and their superpotential

SuperPotential = { {{1, Yu},{u,q,Hu}}, {{-1,Yd},{d,q,Hd}},
{{-1,Ye},{e,l,Hd}}, {{1,\[Mu]},{Hu,Hd}},
{{1,Yn},{n1,l,Hu}}, {{-1,kappa1}, {n2,xi2,Hd}},
{{1,kappa2},{n2,xi1,Hu}}, {{1,mN},{n1,n2}},
{{1,mX},{xi2,xi1}}

};
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We have cross-checked both independent implementations by comparing the generated
source code itself to the manually edited files as well as by recalculating some of the
previously obtained cross-sections with the automatic code.
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C. Approximate Diagonalization of the
Neutral Fermion Mass Matrix

Here we want to show how the mass matrix of the model that we studied in chapter 5
can be approximately diagonalized (from appendix B of Ref. [137]):

In our model the complete mass matrix including the flavor structure is given by



0 0 0 vuYN,11 vuYN,12 0 0 0 0
0 0 0 vuYN,21 vuYN,22 0 0 0 0
0 0 0 vuYN,31 vuYN,32 0 0 0 0

vuYN,11 vuYN,21 vuYN,31 0 0 MN 0 0 0
vuYN,12 vuYN,22 vuYN,32 0 0 0 MNρ 0 0

0 0 0 MN 0 0 0 −k1vd k2vu

0 0 0 0 MNρ 0 0 k1vd k2vu

0 0 0 0 0 −k1vd k1vd 0 −mξ

0 0 0 0 0 k2vu k2vu −mξ 0



Using the fact, the the left-handed neutrinos are essentially massless compared to the
heavy states we can exploit the usual seesaw formulas to obtain approximate formulas
for the entries responsible for the mixing of the light states with the heavy states. The
mass matrix of the heavy states is given by

MH =



0 0 MN 0 0 0
0 0 0 MNρ 0 0
MN 0 0 0 −k1vd k2vu

0 MNρ 0 0 k1vd k2vu

0 0 −k1vd k1vd 0 −mξ

0 0 k2vu k2vu −mξ 0
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Neglecting the elements proportional to ki (i = 1, 2) this matrix is diagonalized by

RH =



1√
2 0 1√

2 0 0 0
0 1√

2 0 1√
2 0 0

1√
2 0 − 1√

2 0 0 0
0 1√

2 0 − 1√
2 0 0

0 0 0 0 1√
2

1√
2

0 0 0 0 1√
2 −

1√
2


The part of the mixing matrix connecting the heavy states with the light states is given
by

U ′ = mM−1
H RH

=


D1YN,11 D2YN,12 D′2YN,11 D′1YN,12

vuvd(k′2YN,12−k′1ρYN,11)√
2MNmξρ

vuvd(k′2ρYN,11−k′1YN,12)√
2MNmξρ

D1YN,21 D2YN,22 D′2YN,21 D′1YN,22
vuvd(k′2YN,22−k′1ρYN,21)√

2MNmξρ

vuvd(k′2ρYN,21−k′1YN,22)√
2MNmξρ

D1YN,31 D2YN,32 D′2YN,31 D′1YN,32
vuvd(k′2YN,32−k′1ρYN,31)√

2MNmξρ

vuvd(k′2ρYN,31−k′1YN,32)√
2MNmξρ



with

m =


vuYN,11 vuYN,12 0 0 0 0
vuYN,21 vuYN,22 0 0 0 0
vuYN,31 vuYN,32 0 0 0 0


D1 = vu(MNmξ + 2k1k2vdvu)√

2M2
Nmξ

D2 = vu(ρMNmξ − 2k1k2vdvu)√
2ρ2M2

Nmξ

D′1 = −vu(ρMNmξ + 2k1k2vdvu)√
2ρ2M2

Nmξ

D′2 = −vu(MNmξ − 2k1k2vdvu)√
2M2

Nmξ

k′1 = k1 − k2 tan β
k′2 = k1 + k2 tan β

Here we have the following correspondence to the couplings in chapter 5, Eq. (5.22):

ci = U ′i5 , di = (U ′i6)∗

which are the dominating ones for the lepton number violating processes.
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D. Charge of Effective Operators in
the NMSSM GUT Scenario

We will demonstrate here, that the NMSSM GUT model specified in Eq. (6.12) will
always imply the existence of the Weinberg operator. For the convenience of the
reader we reprint the according superpotential also at this place:

W = y3N 5M H5 + y′1, N
′ 5ξH5 + y′2N

′ 5ξ′ H5+
λξ S

′ 5ξ′ 5ξ + λNS
′N ′N + yd 5M 10H5+

yu 10 10H5 + λSSH5H5 + κS3 + κ′S ′
3+

λ′SS
′H5H5 + y′3N

′ 5M H5 + y′d 5ξ 10H5 + · · · , (D.1)

The problematic term here is λξ′ S 5M 5ξ, which leads to a mixing between the light
and heavy mediators and thus induces a d = 5 operator. We will prove now that one
cannot forbid this term by a discrete symmetry that fulfills the required conditions (from
Ref. [139]):

For this we start with three (yet) unconstrained charges as parameters

qS ≡ s , qH5 ≡ 2h′ , qN = n . (D.2)

From the absolutely necessary terms in the superpotential we derive

(SH5H5̄) ⇒ qH5̄ = −s− 2h′ (D.3a)
(SNN ′) ⇒ qN ′ = −s− n (D.3b)
(N 5̄MH5) ⇒ qM = −2h′ − n (D.3c)
(5̄M10H̄5̄) ⇒ q10 = 4h′ + n+ s . (D.3d)

From the term (1010H5) we obtain

n = −s− 5h′ . (D.4)

which leads to the following set of equations

qH5̄ = −s− 2h′ , qN ′ = 5h′ , qM = 3h′ + s , q10 = −h′ . (D.5)
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D. Charge of Effective Operators in the NMSSM GUT Scenario

As a consequence we derive for the charges of the doublets

(N ′H5̄5ξ) ⇒ qξ = −3h′ + s (D.6)
(N ′5̄ξ′H5) ⇒ qξ′ = −7h′ (D.7)

leading to

q(S5̄M5ξ) = 3s , (D.8)

but we know that 3s = 0 since we need a term S3 in the NMSSM. This implies that
one cannot forbid this unwanted term. Note, that this holds for every Abelian discrete
symmetry group. As a consequence one can show along the same lines that every higher
dimension operator for neutrino masses

Od = 1
〈S〉1+2k+l (LLHuHu)(HuHd)kSl (D.9)

has to have the same charge as the Weinberg operator. We have also checked that
similar problems appear if the Abelian symmetry is chosen as a product of two different
cyclic groups ZN ⊗ ZN ′ .
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E. Definition of Cosmology
Parameters

For the discussion of the evolution of stable heavy d-quarks we use the following
parameters and definitions [175]:

• R is the scale factor of the universe.

• s is the entropy density. Since s is conserved in a comoving volume (sR3 = const)
we have

sẎ = ṅ+ 3Hn .

• The entropy density in the radiation dominated universe is:

s = 4ργ/(3T ) = 4π2/45T 3 = 4π2/45(m/x)3 .

• The Hubble parameter:

H =
√

8π3g∗/90T 2/m2
Pl =

√
8π3g∗/90 (m/mPl)2x−2 .

• The relativistic degrees of freedom at the relevant temperatures are only those of
the SM particles so that g∗ ≈ g∗S = 106.75 .

• The photon number density in the radiation dominated epoch is given by nγ =
ζ(3)/π2gT 3 with g = 2 the internal d. o. f.
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