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Abstract

The Standard Model (SM) of elementary particle physics provides a uniform frame-
work for the description of three fundamental forces, the electromagnetic and weak
forces, describing interactions between quarks and leptons, and the strong force, de-
scribing a much stronger interaction between the coloured quarks. Numerous experi-
mental tests have been performed in the last thirty years, showing a spectacular agree-
ment with the theoretical predictions of the Standard Model, even at the per mille
level, therefore validating the model at the quantum level. An important cornerstone
of the Standard Model is the Higgs mechanism, which provides a possible explanation
of electroweak symmetry breaking, responsible for the masses of elementary fermions
and the W and Z bosons, the carriers of the weak force. This mechanism predicts a
scalar boson, the Higgs boson, which has escaped its discovery so far. If the Higgs
mechanism is indeed realised in nature, the upcoming Large Hadron Collider (LHC)
at CERN will be able to find the associated Higgs boson. The discovery of a Higgs
boson by itself is not sufficient to establish the Higgs mechanism, the basic ingredient
being the Higgs potential which predicts trilinear and quartic couplings. These have
to be confirmed experimentally by the study of multi-Higgs production.

We therefore present a calculation of the loop-induced processes gg → HH and
gg → HHH, and investigate the observability of multi-Higgs boson production at the
LHC in the Standard Model and beyond. While the SM cross sections are too small to
allow observation at the LHC, we demonstrate that physics beyond the SM can lead
to amplified, observable cross sections. Furthermore, the applicability of the heavy
top quark approximation in two- and three-Higgs boson production is investigated.
We conclude that multi-Higgs boson production at the SuperLHC is an interesting
probe of Higgs sectors beyond the SM and warrants further study.

Despite the great success of the SM, it is widely believed that this model cannot be
valid for arbitrarily high energies. The LHC will probe the TeV scale and theoretical
arguments indicate the appearance of physics beyond the SM at this scale. The
search for new physics requires a precise understanding of the SM. Precise theoretical
predictions are needed which match the accuracy of the experiments. For the LHC,
most analyses require next-to-leading order (NLO) precision. Only then will we be able
to reliably verify or falsify different models. At the LHC, many interesting signatures
involve more than two particles in the final state. Precise theoretical predictions for
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such multi-leg processes are a highly nontrivial task and new efficient methods have
to be applied.

The calculation of the process PP → V V+jet at NLO is an important background
process to Higgs production in association with a jet at the LHC. We compute the vir-
tual corrections to this process which form the “bottleneck” for obtaining a complete
NLO prediction. The resulting analytic expressions are generated with highly auto-
mated computer routines and translated into a flexible Fortran code, which can be
employed in the computation of differential cross sections of phenomenological inter-
est. The obtained results for the virtual corrections indicate that the QCD corrections
are sizable and should be taken into account in experimental studies for the LHC.
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Zusammenfassung

Das Standardmodell der Teilchenphysik bietet einen einheitlichen Rahmen zur Be-
schreibung dreier fundamentaler Kräfte. Die elektromagnetische und schwache Kraft
beschreibt die Wechselwirkung zwischen Quarks und Leptonen, während die weit stär-
kere starke Kraft nur auf die farbgeladenen Quarks wirkt. Die zahlreichen experimen-
tellen Tests, die in den vergangenen 30 Jahren durchgeführt wurden, sind in spektaku-
lärer Übereinstimmung mit den theoretischen Vorhersagen des Standardmodells, sogar
auf dem pro mille Niveau und bestätigen damit das Modell auf dem Quantenniveau.
Ein Grundpfeiler des Standardmodells ist der Higgsmechanismus, der eine mögliche
Erklärung für die elektro-schwache Symmetriebrechung liefert, die verantwortlich ist
für die beobachteten Massen elementarer Fermionen und der W und Z Bosonen, den
Trägern der schwachen Kraft. Dieser Mechanismus sagt ein skalares Boson, das Higgs
Boson, voraus, das bisher noch nicht entdeckt wurde. Falls dieser Mechanismus wirk-
lich in der Natur realisiert ist, wird der Large Hadron Collider (LHC) am CERN in der
Lage sein, das zugehörige Higgs Boson zu entdecken. Die Entdeckung des Higgs Bo-
sons für sich alleine gestellt reicht nicht aus, um den Higgsmechanismus zu etablieren,
dessen zentraler Bestandteil das Higgspotential ist, welches trilineare und quartische
Selbstkopplungen vorhersagt. Diese müssen im Experiment durch die Analyse von
multipler Higgsproduktion bestätigt werden.

Wir präsentieren daher die Berechnung der schleifen-induzierten Prozesse gg → HH
und gg → HHH und untersuchen die Observierbarkeit von multipler Higgspro-
duktion am LHC im Rahmen des Standardmodells und darüber hinaus. Da die
Standardmodell-Wirkungsquerschnitte zu klein sind, um die Produktion von drei
Higgs Bosonen am LHC zu beobachten, zeigen wir, dass Physik jenseits des Standard-
modells zu verstärkten und damit beobachtbaren Wirkungsquerschnitten führen kann.
Darüber hinaus wird die Anwendbarkeit der Näherung eines schweren top Quarks auf
die Produktion von zwei und drei Higgs Bosonen untersucht. Wir kommen zu dem
Schluss, dass multiple Higgsproduktion am Super-LHC eine interessante Sonde des
Higgs Sektors ist und weitere Untersuchungen rechtfertigt.

Trotz des großartigen Erfolgs des Standardmodells wird weithin vermutet, dass
dieses Modell seine Gültigkeit nicht bis zu beliebig hohen Energieskalen behält. Theo-
retische Argumente deuten auf Anzeichen neuer Physik jenseits des Standardmodells
auf der TeV Skala hin, die der LHC untersuchen wird. Die Suche nach neuer Phy-
sik erfordert ein detailliertes Verständnis des Standardmodells. Präzise theoretische
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Vorhersagen sind nötig, die der experimentellen Genauigkeit der Experimente entspre-
chen. Für den LHC sind die meisten Analysen in nächst-führender Ordnung (NLO)
erforderlich. Nur dann werden wir verlässlich erweiterte Modelle bestätigen oder fal-
sifizieren können. Am LHC sind viele interessante Signaturen verknüpft mit Endzu-
ständen, die mehr als zwei Teilchen beinhalten. Präzise theoretische Vorhersagen für
solche Multiple-Teilchen-Prozesse stellen eine sehr große Herausforderung dar, für die
neue und effiziente Methoden verwendet werden müssen.

Die Berechnung des Prozesses PP → V V+jet in nächst-führender Ordnung ist ein
wichtiger Hintergrundprozess für die Higgsproduktion in Assoziation mit einem Jet
am LHC. Wir berechnen die virtuellen Korrekturen zu diesem Prozess, welche die
größte Schwierigkeit darstellt, eine Vorhersage mit NLO Präzision zu erhalten. Die
resultierenden analytischen Ausdrücke wurden weitgehend automatisiert erzeugt und
in einen flexiblen Fortran Code übersetzt, der für die Berechnung von totalen und
differentiellen Wirkungsquerschnitten von phänomenologischem Interesse verwendet
werden kann. Die erzielten Ergebnisse für die virtuellen Korrekturen deuten auf große
QCD Korrekturen hin, die in experimentellen Studien für den LHC berücksichtigt
werden sollten.
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Introduction 1
The quest for discovering the fundamental laws of nature and a deeper understanding
of the world surrounding us has always been a strong motivation of mankind. Already
more than 2500 years ago, Democritos, an ancient greek philosopher, expressed the
idea that nature consists of tiny indivisible constituents, the so-called atoms. Only
“recently”, in the nineteenth century, has this idea found its revival and has been put
into a modern scientific context.

Scientific research has taken us from chemical atoms to electrons and protons, and
even smaller substructures, the quarks, which are confined in the proton. Quarks and
electrons have a radius smaller than 10−18m and are described as pointlike, indivisible
particles. The quest for a deeper understanding of the laws of nature so far has found
its culmination in the formulation of the so-called Standard Model of elementary
particle physics (SM). According to this model, matter consists of twelve elementary
particles, six different quarks and six leptons, like the electron or the electron-neutrino.
Their interactions are mediated by three fundamental forces: the electromagnetic
force is carried by the exchange of photons, the strong force by gluons, which is
responsible for the adhesiveness of the quarks inside the proton, and finally the weak
force, mediated by the massive vector bosons W+, W− and Z, e.g. responsible for the
fusion of hydrogen atoms to helium atoms in the sun. The much weaker gravitational
force is not included, but its effect on elementary particles is negligible. A final
ingredient of the Standard Model is the Higgs boson. The associated mechanism, the
Higgs mechanism, allows for a consistent treatment of the question why elementary
particles have mass in terms of a quantum field theoretical approach. Almost all
elementary particles of the Standard Model have been discovered, and all experiments
performed in the last thirty years are in excellent agreement with the predictions of
the Standard Model. Only one particle has escaped its discovery until now: the Higgs
boson. This is one of the main motivations for the construction of the Large Hadron
Collider (LHC), a circular particle collider with a circumference of 27 km and a center-
of-mass energy of 14 TeV of the colliding protons. The scheduled start of operation
is July 2008. If the Higgs boson, responsible for the observed particle masses, is not
only a theoretical prejudice, but really exists in nature, the LHC will be able to find
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1 Introduction

it.
The discovery of a Higgs boson alone is not sufficient to establish the mechanism

of mass generation, the so-called Higgs mechanism. All interactions to the other
particles of the SM have to be confirmed experimentally, including the trilinear and
quartic Higgs self-interactions. The SM prediction for the self-interactions is studied
in this thesis and allows in principle to reconstruct the Higgs potential, the basic
ingredient of the Higgs mechanism.

Despite the great success of the SM, there are serious doubts that this model is
valid for arbitrarily high energies. The gravitational force is not included and cannot
be neglected for sufficiently high energies. Astrophysical observations tell us that the
largest part of matter is not visible. In the SM, there is no suitable candidate for
this “dark matter”. Another open question is the fact that fermions can be grouped
in three families, the second and third families being just heavier copies of the first.
Since they are unstable, the members of the heavy copies can decay into members of
the lightest family. The reason for the existence of these copies is unknown. The most
obvious problem of the SM is the asymmetry between anti-matter and matter. Our
universe consists only of matter, but in the SM anti-matter and matter are treated on
the same footing, up to small effects. It is not clear if these are sufficient to explain
the observed asymmetry. These and further problems indicate that the SM is only
an intermediate step towards a more fundamental theory, and there is no lack of
speculative models beyond the SM. Experimental data so far do not give conclusive
hints of how such a theory should look like. The LHC will hopefully improve this
situation.

The search for new physics requires a precise understanding of the SM. Precise
theoretical predictions are needed which match the accuracy of the experiments. For
the LHC, most analyses require next-to-leading order (NLO) precision. Only then will
we be able to reliably verify or falsify different models. At the LHC, many interesting
signatures involve more than two particles in the final state. Theoretical predictions
at NLO for such processes is a highly nontrivial task. Divergences from tree Feynman
diagrams with an additional massless particle and from loop diagrams appear and only
the merging of these divergences leads to a finite result. Complicated self-interactions,
a factorial growth of Feynman diagrams and more kinematic invariants for a higher
number of final particles lead to arbitrarily complicated expressions. In addition,
spurious numerical instabilities appear in the calculation of loop diagrams which can
spoil the convergence of a Monte-Carlo integration. New methods have to be applied
to overcome these problems.

This thesis is organised as follows: In chapter 2, we review the Higgs mechanism of
the SM. We discuss theoretical and experimental constraints on the mass of the Higgs
boson, indicating that its discovery is in the reach of the LHC. We briefly review the
production and the decay modes of the Higgs boson at the LHC.

Chapter 3 deals with the calculation of hadronic cross sections. The underlying
theory, the parton model is briefly introduced. The modifications needed for comput-
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ing cross sections at NLO precision are discussed and explicit formulae are given. The
parametrisation of the two- and three-particle phase space integrals is shown, as it is
used for the scattering processes considered in this thesis.

In chapter 4 we introduce in detail the techniques used for the calculation of one-
loop matrix elements. The spinor helicity formalism and the colour decomposition,
applicable also at leading order, allow for an efficient decomposition of the transi-
tion amplitude into simpler, gauge-invariant pieces, which helps to keep the size of
intermediate expressions under control. At the loop level, a conceptual and technical
difficulty appears. Loop diagrams are in general divergent. These divergences have
to be regularised, e.g. by dimensional regularisation. Subsequently, a redefinition of
the original parameters, a renormalisation, is needed. Different prescriptions within
dimensional regularisation are described. The last two sections introduce a reduction
formalism for one-loop multi-leg integrals, which has the potential to circumvent the
deficiencies of standard reduction algorithms.

In chapter 5 we apply this new reduction technique to the loop-induced process gg →
HH and gg → HHH. We investigate the observability of multi-Higgs production at
the LHC in the Standard Model and beyond. These processes probe the trilinear and
quartic Higgs self-couplings which are needed to establish the Higgs mechanism and
to confirm the Higgs sector of the Standard Model. Furthermore, the applicability of
the heavy-top approximation is studied for multi-Higgs production. The results have
been published in [1, 2].

In chapter 6 we present first results for the production of a pair of electroweak vector
bosons in association with a jet in hadron-hadron collisions at NLO precision, which
is a background process to Higgs boson production in association with a jet and a
further decay of the Higgs boson into a pair of vector bosons. It is considered as one of
the most important processes for LHC phenomenology and is part of the experimental
“NLO wishlist”of processes, shown in Table 1.1, for which QCD corrections are desired
and feasible. A process at NLO is made of two parts: real emission of an additional
unobserved parton and virtual corrections, which in our case involves the evaluation
of one-loop integrals with up to five propagators in the loop (pentagon integrals). The
high complexity of the latter is the bottleneck for obtaining NLO predictions. The first
section explains the setup of the calculation of the one-loop matrix elements, using the
techniques introduced in chapter 4. The impact of calculated virtual contributions is
shown for several differential distributions which are often used in phenomenological
studies.

Chapter 7 finally concludes this thesis with a brief summary. The calculation of
a scalar box integral, needed for the process considered in chapter 6, and Feynman
diagrams for qq̄ → ZZg are presented in the appendices.

3



1 Introduction

process
(V ∈ {Z,W, γ})
1. PP → V V jet
2. PP → tt̄ bb̄
3. PP → tt̄+ 2 jets
4. PP → WWW
5. PP → V V bb̄
6. PP → V V + 2 jets
7. PP → V + 3 jets
8. PP → bb̄bb̄
9. PP → 4 jets
10. gg → W ∗W ∗(NLO,2 loops)
11. NNLO for tt̄
11. NNLO for Zγ+jet

Table 1.1: The Les Houches wishlist 2007 of processes for which a NLO calculation is
both desired and feasible in the near future
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Higgs Physics at the LHC 2
Although remarkable progress has been made in recent years to formulate possible
explanations for unresolved fundamental problems like the weakness of gravity re-
lative to other forces, the nature of dark matter and dark energy, the smallness of
neutrino masses or a possible unification of all gauge forces, we still have not discov-
ered the mechanism of electroweak symmetry breaking (EWSB). What exactly is the
mechanism which gives mass to the weak gauge bosons and known fermions? This is
one of the most important questions of particle physics today and it is possible that
the understanding of this mechanism sheds light also on some of the open questions
mentioned above.

In this chapter we will introduce the mechanism of spontaneous symmetry breaking
known as the Higgs mechanism [3], which is a possible explanation of EWSB. This
has become part of the Standard Model (SM) of particle physics, which is in excellent
agreement with numerous experimental measurements. A doublet of complex scalar
fields is introduced, and a single neutral scalar particle, the Higgs boson remains after
symmetry breaking. We will describe how Higgs bosons can be produced and detected
at the Large Hadron Collider (LHC) at CERN, where proton proton collisions will
be studied at a center of mass energy

√
s = 14 TeV. The discovery of one or more

Higgs bosons is indeed among the most important goals of this collider. Since the
methods of detecting the Higgs boson depend crucially on the decay channels which
are available for a given mass, these will be discussed in some detail. Furthermore, we
discuss the theoretical and experimental constraints on the mass of the Higgs boson.

2.1 Higgs mechanism

The gauge invariance in Yang-Mills theories forbids to have explicit mass terms for
the gauge vector bosons in the Lagrangian. This is acceptable for theories like Quan-
tum Electrodynamics (QED) and Quantum Chromodynamics (QCD), where both the
photon and the gluons are massless. However, the gauge bosons of the gauge theory
of electroweak interactions, the charged W± and the neutral Z boson, are massive
(MW ≈ 80 GeV,MZ ≈ 91 GeV), and therefore in conflict with gauge invariance.

5



2 Higgs Physics at the LHC

A possible solution to this problem is the Higgs mechanism. The Standard Elec-
troweak Model is a spontaneously broken Yang-Mills theory based on the non-abelian
SU(2)L×U(1)Y symmetry group. The Higgs mechanism is implemented by introduc-
ing a complex scalar field φ, which transforms as a doublet under SU(2) which has
hypercharge Yφ = 1,

φ =

(

φ+

φ0

)

. (2.1)

The upper and lower components will later be identified as having electric charge (Q)
one and zero respectively. For the moment, the superscripts only distinguish the two
fields. The Lagrangian of the electroweak SM initially contains three massless bosons
W i, associated to the group SU(2) and one massless boson B, associated to U(1) and
is written as

LV = −1

4
W i,µνW i

µν −
1

4
BµνBµν , (2.2)

where the field strength tensors are

W i
µν = ∂µW

i
ν − ∂νW i

µ − gW εijkW j
µW

k
ν (2.3)

Bµν = ∂µBν − ∂νBµ, (2.4)

gW being the SU(2) coupling. The scalar field φ is added via the Lagrangian

Lφ = (Dµφ)†Dµφ− V (φ), V (φ) = µ2φ†φ+ λ(φ†φ)2 (2.5)

with λ > 0 for the scalar potential to be bounded from below and the covariant
derivative, which minimally couples matter fields to the gauge fields,

Dµ = δij∂
µ + igW (τaijW

a,µ) + ig′W
Yφ
2
δijB

µ, (2.6)

and g′W being the U(1) coupling. The matrices τ a, a = 1, 2, 3 are representations
of the SU(2) weak isospin algebra and satisfy the commutation relation [τ a, τ b] =
iεabc τ c, ε123 = 1. The full Lagrangian

L = LV + Lφ (2.7)

is invariant under the SU(2)× U(1) gauge transformation of the form:

φi(x)→ (1 + iαa(x)τ a)ij φj(x) + iβ φi(x), (2.8)

W a
µ (x)→ W a

µ (x) +
1

gW
∂µα

a(x) + εabcW b
µ(x)α

c(x), (2.9)

Bµ(x)→ Bµ(x) +
1

g′W
∂µβ(x). (2.10)
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2.1 Higgs mechanism

If we now add explicit mass terms, 1
2
M2

VW
µWµ, for the gauge bosons in the above

Lagrangian, this will violate local SU(2) × U(1) gauge invariance. This can be seen
by taking the example of QED where the photon is massless due to the local U(1)Q
local symmetry,

1

2
M2

AAµA
µ → 1

2
M2

A(Aµ +
1

e
∂µα)(A

µ +
1

e
∂µα) 6= 1

2
M2

AAµA
µ. (2.11)

The incorporation of mass terms by brute force for gauge bosons therefore leads to a
manifest breakdown of the local SU(2)× U(1)Y gauge invariance of the SM1.

The conclusion is, that we have to give up the idea of exact or unbroken gauge
symmetry. But as has been shown in [3], there is an elegant way how to generate
gauge boson and fermion masses without completely breaking local gauge invariance.
Consider the potential term in (2.5): if the mass term µ2 is positive, the potential V (φ)
is also positive and the minimum of the potential is obtained for 〈0|φ|0〉 ≡ φ0 = 0.
Eq. (2.5) is simply the description of a Lagrangian of spin-zero particles with mass µ.

If µ2 < 0, the potential V (φ) has a minimum when ∂V/∂φ = µ2φ + λφ3 = 0, i.e.
when

〈0|φ2|0〉 ≡ −µ
2

2λ
≡ v2

2
(2.12)

and not at φ2
0 = 0, as shown in Fig. 2.1. The quantity v ∼ 〈0|φ|0〉 is called the

vacuum expectation value (vev) of the scalar field φ. Transitions between the field
configurations on the circle of degenerate minima cost no energy and correspond to
massless excitations. The particle interpretation of a Lagrangian with a negative mass

Figure 2.1: Scalar potential V (φ) which gives rise to spontaneous symmetry breaking
in the Standard Model [4].

1this is also true for fermions in the SM, since only the left-handed fermion fields are grouped in
weak isospin doublets and their mass term contain a product of left- and righthanded fermion
fields.
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2 Higgs Physics at the LHC

term is no longer clear. In order to correctly interpret the Lagrangian, we have to
expand around one of the minima v. Since we want to preserve U(1)Q, we choose the
neutral component of the doublet field φ to develop a vev. We make the particular
choice in the internal SU(2) space for the minimum of φ,

〈0|φ|0〉 = 1√
2

(

0
v

)

. (2.13)

This choice leaves the vev invariant under transformations generated by τ 3 + 1
2
Y , i.e.

(

τ 3 +
1

2
Y

)

〈0|φ|0〉 = 0. (2.14)

This combination is the single unbroken generator which is identified with the electric
charge,

Q = τ 3 +
1

2
Y =

(

1 0
0 0

)

. (2.15)

The choice of a specific ground state in (2.13) breaks the SU(2) × U(1) symmetry,
since it identifies a particular direction in the internal group space. As we will see
below, this transforms the Lagrangian in such a way that the original gauge symmetry
is now hidden or spontaneously broken. We need to consider the fluctuations around
this new minimum, so we introduce a reparametrisation of the Higgs field in terms of
the four fields θ1,2,3(x) and H(x) at first order,

φ(x) =

(

θ2 + iθ1
1√
2
(v +H)− iθ3

)

= eiθaτa(x)/v

(

0
1√
2
(v +H(x))

)

. (2.16)

Note that we still have four real degrees of freedom, equivalent to the two complex
fields. We now make a specific local gauge transformation with α(x) = −θ(x)/v in
(2.8), and the scalar field transforms as

φ(x)→ e−iθaτa(x)/vφ(x) =
1√
2

(

0
v +H(x)

)

. (2.17)

The θ degrees of freedom no longer appear in the Higgs Lagrangian (2.5)2. As we
will see below, these modes reappear as the longitudinal modes of the massive gauge
bosons. This gauge, where the unphysical degrees of freedom are “gauged away”, is
called unitary gauge, since in it, the unitarity of the S-matrix is evident. The Higgs

2In a global (continuous) gauge theory, this choice is not possible and these degrees of freedom do not
disappear. This is the famous Goldstone theorem [5] which states that for every spontaneously
broken continuous symmetry, massless scalar spin-0 particles emerge, the so-called Goldstone
bosons. The number of Goldstone bosons is equal to the number of broken generators.
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2.1 Higgs mechanism

boson H is the only dynamical remaining field. The Higgs Lagrangian now becomes

L =
1

2
∂µH∂

µH − V
(

(v +H)2

2

)

+
(v +H)2

8

(

0 1
)

(2 gW τ ·Wµ + g′WBµ)(2 gW τ ·W µ + g′WB
µ)

(

0
1

)

. (2.18)

We therefore have three generators of the SU(2)×U(1) symmetry, which are sponta-
neously broken. Only the symmetry generated by the combination τ 3 + 1

2
Y remains

unbroken. According to Goldstone’s theorem, we would expect three massless scalar
bosons. However, these Goldstone modes are unphysical degrees of freedom which
decouple from the physical S-matrix.3 They provide the extra longitudinal degree of
freedom necessary to change the quanta of the vector fields from massless to massive
vector bosons. The transmutation of Goldstone modes into longitudinal polarisation
states of massive vector bosons in known as the Higgs mechanism.

To see how this works in practice, we examine the quadratic terms in the vector
boson fields. Defining

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ), T± = T 1 ± iT 2, (2.19)

we have Wµ · τ = W 3
µT3 +

1√
2
(W+

µ T
+ +W−

µ T
−). The usual commutation relations for

the weak isospin raising and lowering operators T+ and T− read

[T+, T−] = 2T 3, [T 3, T±] = ±T±. (2.20)

The quadratic terms in the vector boson fields are therefore given by

LM =
v2

8

[

(gWW
3
µ − g′WBµ)(gWW

3µ − g′WBµ) + 2g2
WW

−
µ W

+µ
]

. (2.21)

To diagonalise the propagator for the B and theW 3 field, we further define electrically
neutral fields A and Z which propagate independently,

(

W 3
µ

Bµ

)

=

(

cos θw sin θW
− sin θW cos θW

)(

Zµ
Aµ

)

, (2.22)

where the electroweak mixing angle θW is given by the relative strengths of the cou-

3According to the so-called quartet mechanism [6] unphysical states appear always as quartets
and only zero norm states can appear in the physical space. The Goldstone mode in a local
gauge theory, the so-called would-be Goldstone boson, is one member of this quartet. The other
three modes, the ghost, the antighost and the B-mode arise during the quantisation procedure
of Yang-Mills theories. For an elegant canonical treatment, we refer to [7].
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pling constants,

sin2 θW =
g′W

2

g2
W + g′2W

. (2.23)

After this rotation, (2.21) becomes

LM =
g2
Wv

2

4
W+

µ W
−µ +

(g2
W + g′2W )v2

8
ZµZ

µ + 0 · AµA
µ. (2.24)

The W and the Z bosons have acquired masses, while the photon remains massless,

MW =
1

2
gWv, MZ =

1

2
(g2

W + g′
2
W )v, MA = 0. (2.25)

We summarise the important points of the concept of spontaneous symmetry break-
ing. The Lagrangian (2.7) is gauge invariant. Only the necessity of choosing one of
the physically equivalent ground states as basis for the perturbation theory hides the
gauge invariance. Spontaneous symmetry breaking introduces mass terms for gauge
bosons, the necessary extra degree of freedom is obtained by “eating” the degree of
freedom of the unphysical Goldstone boson. In the SM, only one neutral scalar parti-
cle remains as a physical particle, the Higgs boson, and the electroweak gauge bosons
W+, W−, and the electrically neutral Z-boson become massive.

The mass and the self-couplings of the Higgs boson are derived by inserting (2.17)
in (2.5),

Lφ =
1

2
∂µH∂

µH − µ2H2 − λvH3 − 1

4
λH4. (2.26)

Its mass MH and self-couplings are given by

MH =
√
2λv, gHHH = 3i

M2
H

v
, gHHHH = 3i

M2
H

v2
. (2.27)

One combination of the parameters in the Higgs potential in (2.5), µ2/λ = v2 is related
to the measured parameter GF , the Fermi constant and therefore fixed. The other
parameter, related to the Higgs mass, is essentially arbitrary. The existence of the
Higgs boson has to be proven in collider experiments and its properties have to be
measured in order to confirm the mechanism of spontaneous symmetry breaking.

2.2 Higgs mass constraints

Higgs boson phenomenology is the study of how the particle can be detected experi-
mentally in various ways. One of the main difficulties is the arbitrariness of the Higgs
mass, which leads to many different production and decay scenarios. However, there
are experimental and theoretical constraints on the Higgs mass.
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W+

W−

W−

W+

γ, Z

H

γ, Z

H

Figure 2.2: Feynman diagrams for W+ +W− →W+ +W−

2.2.1 Perturbative Unitarity

The underlying gauge theory structure of the SM leads to strong cancellations in
the high-energy behaviour of amplitudes for the scattering of gauge bosons. Here we
consider the scattering of W -bosons. The contributing Feynman diagrams are shown
in Fig. 2.2. The vector bosons can have longitudinal or transverse polarisations. In the
high energy limit (i.e. for energies s À M 2

W ) the scattering amplitude is dominated
by the scattering of the longitudinal bosons. It can be easily calculated by using the
electroweak equivalence theorem [4], which states that the scattering amplitudes for
longitudinal gauge bosons V i

L are expressible in terms of scattering amplitudes for the
corresponding would-be Goldstone bosons ωi. For instance, the scattering amplitude
for W+

LW
−
L → W+

LW
−
L satisfies

M(W+
LW

−
L → W+

LW
−
L ) =M(ω+ω− → ω+ω−) +O

(

M2
W

s

)

(2.28)

where

M(ω+ω− → ω+ω−) = −M
2
H

v2

(

s

s−M2
H

+
t

t−M 2
H

)

. (2.29)

Although the leading-orderWW scattering amplitude does not diverge at high energy,
it still could be too large to be consistent with the bound imposed by the unitarity of
the scattering matrix. To see this explicitly, we perform a partial wave expansion,

M = 16π
∞
∑

l=0

(2l + 1)Pl(cos θ) al, (2.30)

11
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where the Pl are the Legendre polynomials for a given orbital angular momentum l,
and θ being the scattering angle. The differential cross section, neglecting particle
masses, is given by dσ/dΩ = |M|2/(64π2s). Inserting (2.30) and using the orthogo-

nality property of the Legendre polynomials,
∫ 1

−1
dxPl(x)Pl′(x) = δll′

2
2l+1

, we find for
the total cross section

σ =
16π

s

∞
∑

l=0

(2l + 1)|al|2. (2.31)

The optical theorem relates the total cross section with the imaginary part of the
scattering amplitude in the forward direction,

σ =
1

s
=[M(θ = 0)]. (2.32)

This leads to the unitarity condition for the partial waves

|al|2 = =[al] −→ |<[al]| ≤
1

2
. (2.33)

This relation provides constraints on MH . From (2.29), we find that the result for the
l = 0 partial wave amplitude is

a0 = − M2
H

16πv2

[

2 +
M2

H

s−M2
H

− M2
H

s
log

(

1 +
s

M2
H

)]

sÀM2
H−→ − M2

H

8πv2
. (2.34)

From the requirement of the unitarity condition (2.33) and the numerical value for
the vacuum expectation value, v = 246 GeV, we obtain the upper bound

MH . 870 GeV (2.35)

This analysis can be done also for different scattering channels [8], and the upper
bound can be lowered to

MH . 710 GeV. (2.36)

We therefore find that if the Higgs boson mass is larger than O(1 TeV), the weak
interactions should become strong. The tree-level analysis no longer adequately de-
scribes the high-energy scattering. Radiative corrections can be very large and indicate
the breakdown of perturbation theory4. In order to use the unitarity argument as a
bound on the Higgs mass, one has to assume that the SM remains perturbative and
radiative corrections are not large. It is therefore a perturbative unitarity argument.
By investigating the scattering of longitudinal vector bosons at a high-energy collider

4 A more sophisticated analysis including one- and two-loop corrections [9] and a comparison with
non-perturbative calculations on the lattice [10] also shows that perturbation theory is lost for
Higgs boson masses above MH & 700 GeV which is very close to the bound derived from the
tree-level analysis.
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which can probe the TeV-scale, we will either discover the Higgs boson or see strong
interactions of electroweak bosons.

2.2.2 Triviality and vacuum stability

Another limit on MH comes from the variation of the energy scale Q of the quartic
Higgs boson self-coupling λ, which appears in the Higgs potential (2.5). This variation
is governed by the Renormalisation Group Equation (RGE), and an explicit one-loop
calculation, including fermion and gauge boson contributions, gives

dλ

d logQ2
=

1

16π2

[

12λ2 + 6λλt − 3λ4
t −

3

2
λ(3g2

W + g′
2
W ) +

3

16

(

2g4
W + (g2

W + g′
2
W )2

)

]

,

(2.37)
where the top quark Yukawa coupling is given by λt =

√
2mt/v. For large MH ,

the first term in (2.37) dominates, since M 2
H = 2λv2. The solution of the evolution

equation for λ, choosing the electroweak symmetry breaking scale Q0 = v as a natural
reference energy point, can be easily solved and reads

λ(Q2) =
λ(v2)

1− 3
4π2λ(v2) log Q2

v2

. (2.38)

The quartic coupling varies logarithmically with the squared energy Q2. For energies
much greater than the weak scale, Q2 À v2, the coupling grows, and eventually
reaches a singularity, the Landau pole. If one wants to avoid this singularity before
some new physics scale Q0 = Λ (for example, the Planck scale or the grand unification
scale), then the coupling at low energy (λ(v)) cannot be too large, which translates
into an upper bound on the Higgs mass,

M2
H <

8πv2

2 log Λ2

v2

. (2.39)

For small values of the quartic coupling, corresponding to a light Higgs boson, the top
quark contribution can change the sign of (2.38) and its solution in this limit is

λ(Q2) = λ(v2) +
1

16π2

[

−3λ4
t +

3

16

(

2g4
W + (g2

W + g′
2
W )2

)

]

. (2.40)

If the top Yukawa coupling λt is sufficiently large, the quartic Higgs coupling λ gets
negative. If this happens, the potential in (2.5) is no longer bounded from below
and has no minimum. The Higgs vacuum becomes unstable. This can be avoided by
setting a lower limit on the Higgs mass, depending on the numerical value of the top
quark mass mt.
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More accurate analyses include higher order corrections and details can be found
in [11]. Fig. 2.3 shows the limits on MH from the triviality and vacuum stability con-
straints as a function of the new physics scale Λ. The width of the bands corresponds
to theoretical and experimental uncertainties. As can be read off, if the new physics

Figure 2.3: The triviality (upper) bound and the vacuum stability (lower) bound on
the SM Higgs boson mass MH as a function of the new physics scale Λ. The allowed
region lies between the bands [11].

scale Λ is at the TeV scale, the Higgs boson mass is allowed to be in the range

50 GeV . MH . 800 GeV. (2.41)

Requiring the SM to be valid up to the Grand Unification scale, ΛGUT ≈ 1016 GeV,
the Higgs boson mass should lie in the range

130 GeV . MH . 180 GeV. (2.42)

2.2.3 Experimental constraints

The Higgs boson has been searched for at the e+e− collider LEP with a center-of-mass
energy up to

√
s = 209 GeV. In this energy regime, the dominant production process

is Higgs-strahlung, where the e+e− pair goes into an off-shell Z boson which splits
into a real Z boson, which decays further, and a Higgs boson, see Fig. 2.4. Also other
channels have been investigated by the LEP collaboration, and no significant excess
above the expected SM background has been seen. The exclusion limit [12]

MH > 114.4 GeV (2.43)
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Figure 2.4: The production mechanism for SM Higgs bosons in e+e− collisions

has been established at the 95% confidence level [12]. This value is obtained by per-
forming a likelihood ratio test of the hypothetical scenario, where one assumes that the
data receives contributions from background processes and additional contributions
from a SM Higgs boson of a given mass MH .

The lower limit has been expected to be MH > 115.3 GeV, where the data for the
statistical test has been replaced by a large number of simulated event configurations.
The reason for this discrepancy has been explained with an excess of 1.7 standard (σ)5

of events for a Higgs boson mass aroundMH = 116 GeV. The production cross section
at MH = 115 GeV is of the order of 100 fb, which corresponds to ten produced events
for a collected integrated luminosity of

∫

L ∼ 0.1 fb−1. At 117 GeV the production
cross section drops to zero. This value is essentially the available collision energy
minus the Z boson mass minus a few extra GeV to account for the finite width of the
Z boson, which might be produced slightly off-shell with a non-zero rate. Therefore,
a few signal events might have been observed, however this excess is not sufficient
enough to claim the discovery of a Higgs boson. At least a 5σ signal is needed for
this.

A second experimental constraint comes from indirect bounds from electroweak
measurements. The Higgs particle contributes to the radiative corrections of high-
precision electroweak observables, like the mass of the W boson, the electroweak
mixing angle or various leptonic and hadronic asymmetries. Since the Higgs boson
mass is the only free parameter of the Standard Model which is not yet determined
experimentally, one can extract it indirectly from precision fits from all the measured
electroweak observables, within the fit uncertainty. All available studies can be found
on the LEP Electroweak Working Group webpage [13] and in their publications [14,
15]. The result is summarised in the famous “blue band plot”, Fig. 2.5. It shows the
∆χ2 of the fit to all high-precision measurements as a function of the Higgs mass,
with included theoretical uncertainties from missing higher order corrections, shown
as a blue band. The preferred value for the SM Higgs boson mass, corresponding to
the minimum of the curve, is

MH = 76+33
−24 GeV (2.44)

5compare with a reported value of 2.9σ at the end of 2000
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where the upper and lower limit is the experimental uncertainty at 68 % confidence
level derived from ∆χ2 = 1 for the solid line, thus not taking the theoretical un-
certainty into account. This plot leads also to a 95% confidence level upper limit
(corresponding to a ∆χ2 = 2.7) of

MH < 144 GeV. (2.45)

The top mass value for this fit is given by mt = 170.9±1.8 GeV. We note that already

0

1

2

3

4

5

6

10030 300

mH [GeV]

∆χ
2

Excluded Preliminary

∆αhad =∆α(5)

0.02758±0.00035

0.02749±0.00012

incl. low Q2 data

Theory uncertainty

mLimit = 144 GeV

Figure 2.5: The ∆χ2 = χ2 − χ2
min of the fit to the electroweak precision data as

a function of MH . The solid line results when all data are included, the blue band
represents an estimate of the theoretical error due to missing higher order corrections.
The effect of including low Q2 data and the use of different values for ∆αhad is also
shown [13].

a large region of the ∆χ2 band, in particular the region at the minimum is already
excluded and values of MH very close to the experimental lower bound seem to be
favoured. However this fit is open to controversies, since it depends strongly on the
fit input parameters. For instance, the minimum of ∆χ2 shifts significantly, if a top
quark mass of 178.5± 3.9 GeV is used, as was done in winter 2005 [16]. The best fit
value for the Higgs mass was

MH = 129+74
−49 GeV. (2.46)

It is therefore fair to say that no clear statement on the bounds of the Higgs mass,
derived from electroweak precision fits, is possible.
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2.3 Higgs Bosons at Hadron Colliders

The Tevatron at Fermilab near Chicago, USA, is a proton antiproton (PP ) collider
where in Run II the operating energy was upgraded from 1.8 TeV to 1.96 TeV. The
machine will stop operating at the end of this decade and a dataset, corresponding to
5 − 10 fb−1 of integrated luminosity will be collected. The hope for finding a Higgs
boson was high [17], but no clear evidence has been found so far.

The Large Hadron Collider (LHC), in the final construction phase at CERN in
Geneva, Switzerland is a PP collider designed to run at an energy of 14 TeV in the pp
center of mass. There are two general purpose experiments under construction, AT-
LAS and CMS. These detectors have been optimised to detect Higgs boson signatures
and possible signatures of supersymmetry. For each experiment, it is hoped to collect
at least 300 fb−1 of data. The larger dataset together with larger cross sections at the
higher operating energy will allow the LHC to find the Higgs bosons and potentially
new physics beyond the Standard Model.

2.3.1 Higgs boson production

Light quarks have a too small mass, and therefore Yukawa coupling to produce a Higgs
boson with a usable rate. Quarks however may annihilate to the massive electroweak
gauge bosons, which have a large coupling to the Higgs. Incoming quarks can also
emit a pair of electroweak gauge bosons, which fuse to a Higgs boson. At high energy,
the gluon content in hadrons is large, and gluons have a loop-induced coupling to
Higgs bosons. Therefore, there are four relevant production mechanisms, all of them
use the preference of the Higgs boson to couple to heavy particles:

• gluon fusion: gg → H,

• vector boson fusion (VBF): qq → Hqq via W+W−, ZZ → H,

• associated production with massive vector bosons: qq̄ → WH,ZH,

• associated production with heavy top quarks: gg, qq̄ → tt̄H.

The Feynman diagrams for the four main production channels are displayed in Fig. 2.6.
The lowest order cross sections for these processes are shown in Fig. 2.7 for the LHC
collider as a function of the Higgs mass. The dominant mode is the gluon fusion
process, followed by the vector boson fusion which amounts to about 20 % of the
gluon fusion cross section in the low Higgs mass region. The propagator suppressed
WH- and ZH production modes, as well as the tt̄H production mode are only relevant
for the search of a light SM Higgs boson, with a mass close to the LEP exclusion limit.

For all the relevant production processes higher order QCD corrections have been
calculated. Already more than ten years ago, the next-to-leading order (NLO) QCD
corrections to gluon fusion have been calculated. They have been found to be large
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Figure 2.6: Feynman diagrams of the four dominant Higgs production channels

and increase the predicted LO cross section by about 50-100%. This motivated the
calculation of next-to-next-to leading order (NNLO) corrections and has been com-
pleted in the heavy top-quark limit mt → ∞, which effectively reduces the one-loop
amplitude in Fig. 2.6a to a tree-level amplitude. The correctness of this approxima-
tion can be tested at NLO by applying a rescaling factor which is obtained from the
LO cross section with a finite top mass, divided by the cross section in the mt → ∞
limit. The agreement is within 5% with the full NLO calculation up to mH = 2mt.
At high Higgs boson masses, mH = 1 TeV, the deviation from the exact result is
about 10%, which is surprisingly small. Therefore, it is reasonable to apply this ap-
proximation for the NNLO calculation, and the results are shown in Fig. 2.8. The
increase for the total cross section between NLO and NNLO of 10-20% is modest,
which indicates a good convergence of the perturbation series. Also the reduction of
the uncertainty due to unknown higher order corrections is visible, which is based on
the cross section dependence on the renormalisation scale µR and the factorisation
scale µF . By varying the scales around a “natural scale” (which is expected to absorb
large logarithmic corrections), one obtains an uncertainty band, and the narrower the
band is, the smaller the higher order corrections are expected to be. Including higher
orders should in principle reduce these uncertainty bands, and this is indeed observed
for the gluon fusion process. The residual scale dependence at NNLO is 25% at the
LHC.

Another example, where the inclusion of the NLO QCD correction significantly
reduces the scale uncertainty is shown in Fig. 2.9. It shows the predicted LO and NLO
production cross section for a Higgs boson in association with top quarks, as a function
of the renormalisation and factorisation scale µ. For the choice µ = mt +MH/2, for
example, a modest increase of the order of 20% is found for the LHC.

However, one should be careful with the interpretation of the scale variation as an
uncertainty estimate for unknown higher order corrections. The scale dependence is
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Figure 2.7: LO production cross sections for a SM Higgs boson as a function of the
Higgs boson mass at the LHC [18].

unphysical, it is only a reflection of the truncation of the perturbation series. Cross
sections to all orders do not depend on the scales. The scale variation is therefore
no rigorous way to estimate the theoretical uncertainty. This can also be seen at the
gluon fusion process, where the NLO and LO uncertainty bands do not overlap.

NLO calculations are also available for the two remaining production cross sections.
For vector boson fusion, the NLO corrections are moderate, of the order of 10% [22, 23].
The NLO QCD corrections to Higgs production in association with a massive vector
boson increase the LO cross sections by 30% [24].

The production cross sections for the four relevant channels including the NLO
corrections are shown in Fig. 2.10.

2.3.2 Higgs boson decay

Once the SM Higgs boson mass is fixed, the decay profile is uniquely determined.
The Higgs couplings to fermions (gauge bosons) are proportional to the mass (mass
squared) of the particles, therefore the Higgs boson tends to decay into heaviest ones
allowed by phase space. Since the masses of the gauge bosons, leptons and quarks are
all known, all partial decay widths can be predicted.

The tree-level decay width for a Higgs boson decaying into fermion pairs is given
by

ΓBorn(H → f f̄) =
GFNc

4
√
2π
MHm

2
fβ

2
f , (2.47)
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Figure 2.8: Gluon fusion production cross section for a SM Higgs boson at the LHC
with higher order QCD corrections. The upper and lower curve is obtained by varying
the renormalisation µR and factorisation scale µF (µ ≡ µR = µF ) within mH/2 < µ <
2mH [19].

where βf =
√

1− 4m2
f/M

2
H is the velocity of the fermions in the final state, Nc = 3(1)

is the colour factor for quarks (leptons), and GF is the Fermi decay constant. Note
that the decay width to fermions is linear in MH , modulo the fermion velocity. The
partial width for a Higgs boson decaying into two real massive gauge bosons, H →
V V, V = W,Z, is given by

ΓBorn(H → V V ) =
GFM

3
H

16
√
2π
δV
√
1− 4x(1− 4x+ 12x2), x =

M2
V

M2
H

, δW = 2, δZ = 1.

(2.48)
The partial width is mainly cubic in the Higgs mass, and always dominates over the top
quark decays. This cubic dependence originates from the scattering of longitudinally
polarised vector bosons. Their wave functions in the high energy limit are linear in
the energy which leads to an extra factor of M 2

H in the decay widths.

Gluons and photons are massless particles, therefore they do not couple directly
to the Higgs boson. Nevertheless, these couplings are generated at the one-loop level
via a heavy fermion loop (for H → gg) and an additional massive gauge boson loop
(for H → γγ, γZ). These loop decays are suppressed by additional electroweak or
strong coupling constants and thus only important in the light Higgs mass regime
below ∼ 130 GeV, where the total Higgs width is still small. Fig. 2.11 shows all the
decay branching ratios of the SM Higgs boson as functions of its mass MH , including
all important EW and QCD higher order corrections. The total width, the sum of
all partial widths Γ(H → XX) is shown if Fig. 2.12. It is useful to consider three
distinct mass ranges:
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Figure 2.9: Variation of the tt̄H production cross section at the LHC with renormalisa-
tion and factorisation scale µ = µR = µF varied around the central scale µ0 = mt+mH/2
[20, 21].

1. the “low mass” range 110 GeV . MH . 130 GeV,

2. the “intermediate mass” range 130 GeV . MH . 180 GeV,

3. the “high mass” range 180 GeV . MH . 1 TeV.

In the “low mass” range, the Higgs boson decays mainly into a bottom quark pair
(bb̄), followed hierarchically by the decays into τ+τ− and a charm quark pair (cc̄).
Significant is also the loop-induced decay H → gg. Although the γγ decay is tiny, it
is phenomenologically very important, since it provides a very clean signal, which can
be seen over the very large hadronic backgrounds. The Higgs decays into V V ∗, with
one gauge boson being off-shell, is at the percent level forMH = 100 GeV but increases
dramatically with increasing MH . The branching ratio for H → WW ∗ reaches ∼30%
at MH ∼ 130 GeV, still 30 GeV below the W pair threshold. The decay into ZZ∗

still occurs at the percent level for this mass value.
In the “intermediate mass” range, the decay into the heavy gauge bosons become

dominant, with one virtual gauge boson below the 2MV threshold. The only other
relevant decay mode is the bb̄ decay, which drops from ∼ 50% at MH = 130 GeV to
the level of two percent at MH ∼ 2MW . In the region 2MW . MH . 2MZ both W
bosons are real, while one Z boson is still virtual and therefore suppressed, leading to
a WW branching ratio of almost 100%.

In the “high mass” range the Higgs boson decay almost exclusively into massive
gauge bosons with a branching ratio of ∼ 2/3 for WW and ∼ 1/3 for ZZ final states.
The tt̄ channel opens at MH & 350 GeV and reaches a branching ratio of 20% slightly
above the 2mt threshold. It starts decreasing at MH ∼ 500 GeV and is below 10% at
MH ∼ 800 GeV.
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Figure 2.10: NLO production cross sections for a SM Higgs boson as a function of the
Higgs boson mass at the LHC [18].

2.3.3 Search strategies and backgrounds

The SM Higgs boson will be searched for at the LHC in various decay channels.
The discovery potential of a given channel depends on the signal rates and signal-to-
background ratios. In the following, only the most important Higgs discovery channels
are discussed, for a more detailed discussion, we refer to [18, 26] and the references
therein.

The leading production mode for Higgs bosons is gluon fusion, gg → H. Although
the cross section for this process is very large, it has to compete against the enormous
hadronic background, since the Higgs boson mainly decays into bb̄ in the light and
intermediate mass region. There is also no other non-hadronic particle involved, which
could help to distinguish this mode from the overall hadronic activity, which makes
this channel useless for the Higgs boson discovery. The main hope for discovering the
Higgs boson lies in the investigation of decay channels with leptonic final states.

The rare decay mode H → γγ can be used for the Higgs search if the Higgs boson
mass is below 150 GeV, where both the production cross section and decay branching
ratio are sufficiently large. A huge reducible QCD background originates from jets
faking photons. The Higgs signal shows as a peak in the two-photon invariant mass
distribution dσ/dMγγ . The background can be normalised very precisely from the
sidebands of this distribution, where we know that there is no Higgs signal. Fig 2.13
shows the results of an ATLAS study.

Since the decay is rare, a large amount of data has to be collected. This mode is
especially important for measuring the Higgs mass at low MH . Since the decay into
two photons is loop-induced, it is also very sensitive to new physics.
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Figure 2.11: SM Higgs decay branching ratios as a function of MH [25].
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Figure 2.12: Decay widths of the SM Higgs boson [26].

The decay channel H → ZZ(∗) → 4` is the “gold-plated” mode in the high mass
region. It allows the detection of the Higgs boson up to O(1) TeV. The main back-
ground is the continuum production of Z pairs and is known theoretically rather
precisely, but it can be also interpolated experimentally from the sidebands of the
four-lepton invariant mass distribution. The discovery reach can be extended down to
Higgs massesMH ≈ 120 GeV, when allowing one of the Z bosons to be virtual, except
in the narrow mass range MH ≈ 2MW to MH ≈ 2MZ where the branching ratio is
suppressed due to the opening of the WW decay mode. In this range, one can use
the H → WW (∗) → `ν`ν decay. The neutrinos cannot be detected, therefore it is not
possible to reconstruct the Higgs boson mass peak. The Higgs signal is observed as
an excess of events above the background, originating mainly from WW , tt̄ and single
top production processes. The signal significance depends strongly on their precise
knowledge.
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Analyses: H → γγ

10000

12500

15000

17500

20000

105 120 135

mγγ (GeV)

E
v

en
ts

 /
 2

 G
eV

0

500

1000

1500

105 120 135

mγγ (GeV)

S
ig

n
al

-b
ac

k
g

ro
u

n
d

, 
ev

en
ts

 /
 2

 G
eV

Figure 2.13: ATLAS simulation of gg → H → γγ at LHC for MH = 120 GeV
and 30 fb−1 of data [27]. The right plot shows the mass distribution after background
subtraction, normalised from sidebands.

The discovery potential is significantly increased by studying the Higgs production
in the VBF mode. Although the production cross section only amounts to about 20%
of the total production cross section in the intermediate mass range, the additional
event characteristics can be used to suppress the large backgrounds in all Higgs de-
cay channels. The initial quarks that emit the vector bosons scatter with significant
transverse momentum and will show up as forward and backward jets in the hadronic
calorimeter. The Higgs boson, however, is produced centrally and so are its decay
products, independently of the decay mode. A central jet activity of the initial quarks
is suppressed due to the lack of colour exchange. This is in contrast to most back-
ground processes, where the colour flow appears in the t-channel. The differences are
visualised in Fig. 2.14, where the pseudorapidity (η) distribution and the separation
∆η between the two tag jets is shown for signal events with MH = 160 GeV and tt̄
events. See chapter 3 for the definition of the kinematic variables occurring in the
distributions. Therefore, the tagging of the forward and backward jet together with a
veto of jet activity in the central region drastically reduce the large backgrounds and
enhance the signal-to-background ratio. After applying suitable cuts, approximately
30% of the Higgs signal events in the Higgs mass range of 100 to 200 GeV are left
over from the initial data sample, which is still large, at the order of a few picobarns.
Since higher order QCD corrections and uncertainties from scale variations are rather
small, VBF will play a key role when properties of the Higgs boson will be studied.

The discovery potential of the decay qq̄H → qq̄WW in VBF, for instance, is
larger than in the inclusive H → WW (∗) channel, since the signal sensitivity is less
affected by systematic uncertainties on the predictions of the (suppressed) background.
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Figure 2.14: Tagging jet rapidity (left) and separation (right) for VBF Higgs produc-
tion vs. tt̄ background events [28].

Fig. 2.15 shows the large suppression of backgrounds for the transverse mass distri-
bution in the VBF case in comparison to the gluon fusion mode.

Early studies of the Higgs production in association with top-quarks and a sub-
sequent decay of the Higgs boson into a b-quark pair considered this channel very
important for Higgs discovery in the low mass range [27]. These studies greatly un-
derestimated the large QCD background from tt̄+ 2jet production. The problem lies
in the uncertainty on the exact shape of the QCD background, due to missing higher
order corrections. The calculation of the QCD corrections to this 2 → 4 process is
a very challenging task and considered very important, see Table 1.1 in chapter 1.
More recent ATLAS studies show that the Higgs boson discovery with a significance
of more than 5σ is no longer possible.

The combined signal significance over the full Higgs mass range, 100 GeV < MH <
1000 GeV, is shown in Fig. 2.16, assuming an integrated luminosity of 30 fb−1. The
signal significance is always larger than 5σ, and several discovery channels are available
at the same time. Note that higher order QCD corrections have not been taken into
account (no K-factors). However, this would allow for more precise predictions and
stabilises the scale dependence. They can also change the kinematical properties of
the processes under study. This is particularly true for the gg → H signal, where
large QCD corrections occur. The chapters 3, 4 and 6 discuss the impact and need of
higher order corrections in more detail.
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Figure 2.15: ATLAS simulations of H → WW events for MH = 170 GeV (left,
from [27]) and qq̄H → qq̄WW for MH = 160 GeV (right, from [28]).

2.4 Summary

The Higgs boson is the key for one of the most important problems in particle physics:
understanding the origin of particle masses. From direct searches at LEP we already
found a lower bound for the SM Higgs boson, MH > 114.4 GeV. The LHC will find it
if its mass is less than O(1) TeV. If the Higgs boson doesn’t exist, we can expect to
discover new physics, which sheds light onto the mechanism of electroweak symmetry
breaking.

Although the Higgs mechanism is an elegant solution of this problem, it is not
without difficulties. There is a severe fine-tuning (“naturalness”) problem of the Higgs
mass. Unlike the gauge bosons and fermions, the scalar SM Higgs boson is not pro-
tected by a symmetry of acquiring large contributions to the physical mass from
radiative corrections, which would drive the Higgs mass up to some ‘new-physics’ or
grand unification scale. One can of course write down a counterterm during the pro-
cess of renormalisation, which exactly cancels these radiative corrections. The value
of its coefficient however has to be severely fine-tuned if the new-physics scale is larger
than O(1) TeV, which is regarded as unnatural.

One of the most popular extensions of the SM, which circumvent the naturalness
problem is supersymmetry (SUSY). It extends the two fundamental groups of the
SM, the Poincaré group and the SU(3)× SU(2)L × U(1)Y gauge group of the strong
and electroweak interactions, and induces an equal number of bosonic and fermionic
states. The Higgs sector of the minimal supersymmetric standard model (MSSM),
contains two complex Higgs doublets. The masses of the resulting five Higgs bosons
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Figure 2.16: ATLAS sensitivity for the discovery of a SM Higgs boson for an integrated
luminosity of 30fb−1 [28].

are expressible (at tree level) by just two parameters, the ratio of the two non-zero
vevs, tan β = v2/v1, and the mass of the CP-odd scalar boson, MA. The key feature
of the MSSM is the existence of an upper bound of the lightest SUSY Higgs boson
at the order of 140 GeV. It has a similar behaviour as the SM Higgs boson and
the calculations and search strategies described in this chapter again apply. There
are many studies which show that the LHC will be sensitive to almost the entire
(MA, tan β) parameter space.
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sections 3
The Standard Model contains quarks and gluons as fundamental particles. The lead-
ing interaction between these particles is the strong interaction, which is well des-
cribed by Quantum Chromodynamics (QCD), a non-abelian gauge theory based on
the group SU(3). This theory has two important properties: asymptotic freedom and
confinement1. Asymptotic freedom tells us why the methods of perturbation theory
are useful at high energy, or equivalently, at small distances. The strength of the
strong interaction is governed by αs, the strong coupling constant. Unlike QED, the
coupling constant decreases with growing energy, which is a direct consequence of the
non-abelian nature of QCD. The variation of the coupling constant with the energy
scale Q is given by the Renormalisation Group and can be calculated with perturba-
tive methods. The absolute value however has to be obtained from experiment, where
Q is large enough to be in the perturbative domain. A one-loop calculation gives
the relation between αs(Q

2) and αs(µ
2) for two arbitrary scales in the perturbative

regime,

αs(Q
2) =

αs(µ
2)

1 + bαs(µ2) log Q2

µ2

, b =
33− 2nf

12π
. (3.1)

From measurements, one obtains αs(M
2
Z) = 0.118 as numerical value for the coupling

constant. It is crucial that the sign of b is positive, since nf , the number of active
flavours is smaller than 17. Evidently as Q gets large, the running coupling αs(Q

2)
decreases to zero. This is the property of asymptotic freedom. From eq. (3.1) one can
also deduce where the coupling becomes strong. Depending on the precise definition
and including higher order corrections, a value of Q = ΛQCD ≈ 200 MeV is obtained.
This point, where the denominator of (3.1) vanishes, is called the Landau pole. Thus,
perturbation theory breaks down for scales comparable to the masses of light hadrons,
i.e. Q ≈ 1 GeV. The confinement of quarks and gluons inside the hadron, which can-
not be observed as free particles, but only as constituents of hadrons, could therefore
be a consequence of the decrease at high scales that leads to asymptotic freedom.

1It turns out that among the renormalisable quantum field theories in four space-time dimensions,
only the non-abelian gauge theories are asymptotically free [29].
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At the LHC, the colliding particles are protons and it is necessary to relate the
interactions at the parton level to the interactions of the hadron level to make theo-
retical predictions. The basis for doing this is the parton model, which is described
in the next section.

3.1 Parton model

The parton model describes the interactions of hadrons in high-energy collisions. In
this model, a scattering process of two hadrons results from pointlike constituents of
the incoming hadrons, the so-called partons, which are identified as quarks and gluons.
To derive a first approximation to the cross section for hadron-hadron scattering,
we consider the reaction in the hadronic center-of-mass system where the hadrons
move rapidly towards each other. We also assume that the center-of-mass energy is
large enough to neglect the proton mass. Then the proton has an almost lightlike
momentum P µ along the collision axis. The constituents of the proton also have
momenta pµ which are almost collinear with the proton momentum. They can only
acquire a large transverse momentum through the exchange of a hard gluon2 , which
is suppressed by the smallness of αs at large momentum scales, and can therefore be
neglected at LO QCD perturbation theory. Thus, at LO, we can write

P µ = xpµ, (3.2)

where x is a number between 0 and 1, called the longitudinal fraction of the parton.
At LO, we also ignore gluon emission during the hard scattering process. The cross
section for a hard scattering process initiated by two hadrons with momenta P µ

1 , P
µ
2 is

then given by the cross section σ̂ for parton-parton scattering with given momentum
fractions x1, x2, multiplied by the probabilities fi(x) that the hadrons contain partons
at these values of x1, x2, integrated over x1, x2:

σ(P1, P2) =
∑

i,j

∫ 1

0

dx1

∫ 1

0

dx2 fi(x1) fj(x2) σ̂ij(p1, p2). (3.3)

This is visualised in Fig. 3.1. After the hard scattering process, the struck partons
interact softly with the remainder of the hadrons, so that the pieces materialise as jets
of hadrons, approximately collinear to the direction of the original final state partons.

The functions fi(x) are called the parton distribution functions (pdf), and cannot
be computed using QCD perturbation theory, since they depend on the soft processes

2The parton model can be also formulated in a field theoretical way, using the operator-product
expansion together with the renormalisation group. This essentially confirms the more intu-
itive picture of the parton model. The more rigorous treatment leads to so-called ‘higher-twist’
contributions, which are power suppressed by the inverse of the hard scattering scale Q.
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Figure 3.1: The parton model description of a hard scattering process

(where αs is large) that determine the structure of the proton as a bound state of
quarks and gluons. They have to be determined from experiment. The short-distance
cross section for the scattering of partons of types i and j is denoted by σ̂ij. It is
independent of interactions between partons of the same hadron, since the interaction
time of the two incoming partons is very short in comparison to the soft interaction
time in the hadron. Effectively, a static hadron is seen, and the short-distance cross
section can be calculated as a perturbation series in the strong coupling constant αs,
since the coupling is small at high energy. Note that (3.3) is not the complete QCD
prediction, but only the first term of an expansion in αs. This approximation is called
the parton model [30, 31] and is justified by the property of asymptotic freedom. This
naive model predicts that the pdfs are independent of the momentum transfer Q of
the interacting partons, which is known as Bjorken scaling. This is essentially the
statement that the structure of the hadron looks the same to the incoming parton of
the other hadron, no matter how hard the hadron is struck.

However, the strict Bjorken scaling is violated by logarithms of Q2, if higher order
QCD corrections are taken into account. Even in an asymptotically free quantum
field theory, the coupling constant is still nonzero for any finite momentum transfer.
In fact, the decrease is very slow, logarithmic in momentum. Therefore, we will find
small corrections to Bjorken scaling due to the exchange or emission of high transverse
momentum gluons. The simplification of lightlike hadronic momenta is also only ap-
proximate, when corrections from gluon exchange and emission are considered. These
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corrections contain mass singularities, i.e. singularities associated with collinear or
soft emission in the limit of zero mass. They result not only from virtual particles in
the loop integral. The real emissions of soft or collinear massless particles gives rise to
similar singularities, when integrating over the phase space of the emitted particles.
The Kinoshita-Lee-Nauenberg theorem [32, 33] states that all mass singularities from
final states cancel in scattering amplitudes order by order in perturbation theory. In
hadronic scattering processes, where quarks and gluons appear in the initial state of a
partonic subprocess, collinear singularities remain. The pdfs are not directly measur-
able quantities, since the partons are not free particles, but confined in the hadron.
On this level, we cannot expect a cancellation. The collinear singularity (pT → 0) cor-
responds to a long-range (“soft”) part of the strong interaction, which is not calculable
in perturbation theory. It can be absorbed process-independently into the bare pdf
at a factorisation scale µF , in analogy to the renormalisation procedure which deals
with the ultraviolet divergences, see section 4.2. The ability to factorise the long- and
short-distance contributions to the physical cross sections is a fundamental property
of the theory and holds to all orders in perturbation theory [34]. The evolution of
the pdfs as a function of the factorisation scale is obtained with perturbative methods
and given by the Altarelli-Parisi equations [35].

Factorisation tells us how to deal with the collinear singularities, but there is an
arbitrariness in how the finite contributions are treated. This has to be defined in a
factorisation scheme. A widely used choice is the MS scheme where only the divergence
(and a ubiquitous factor log(4π)−γE) is absorbed into the pdfs. The factorisation scale
µF is an arbitrary parameter, which can be thought of as the scale which separates the
long- and short-distance physics. Simplifying, a parton with transverse momentum
below µF is considered as a part of the hadron structure and is absorbed into the
definition of the pdf. Partons emitted with a transverse momentum above µF are
part of the hard scattering cross section σ̂. The scale µF is usually chosen to be at the
order of the hard scale Q, where parton-parton interaction takes place. Including more
terms in the perturbative expansion will soften the dependence of the cross section
on µF . The same is true for a variation of the renormalisation scale µR. The cross
section to all orders is independent of the scales,

∂σ

∂µF
=

∂σ

∂µR
= 0. (3.4)

The simplifying assumption µ ≡ µF = µR is often made, with the standard choice
µ = Q.

In summary, a NLO QCD cross section with two initial-state hadrons with momenta
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P1 and P2 and n partons in the final state is given by

σ(P1, P2) =
∑

i,j

∫ 1

0

dx1

∫ 1

0

dx2 fi(x1, µ
2
F ) fj(x2, µ

2
F )
[

σ̂LO
ij (p1, p2) + σ̂NLO

ij (p1, p2, µ
2
F , µ

2
R)
]

,

(3.5)
with

σ̂LO
ij (p1, p2) =

∫

n

dσ̂B
ij(p1, p2), (3.6)

σ̂NLO
ij (p1, p2, µ

2
F , µ

2
R) =

∫

n+1

dσ̂R
ij(p1, p2, µ

2
R) +

∫

n

dσ̂V
ij(p1, p2, µ

2
R) +

∫

n

dσ̂C
ij(p1, p2, µ

2
F ),

(3.7)

where the collinear counterterm dσ̂C
ij for the pdfs can be found in [36], for instance.

dσ̂B
ij, dσ̂

R
ij and dσ̂V

ij denote the fully exclusive cross sections in the Born approximation
and to one-loop order (R: real emission; V: virtual correction), respectively. They are
integrated over the corresponding parton phase space, denoted by

∫

n+1
,
∫

n
. Only the

sum of the three terms in (3.7) is free of singularities and can be integrated numerically.

Fig. 3.2 shows the quark and gluon distributions in the proton, resulting from a
global NLO QCD fit to deep-inelastic scattering data [37]. The proton consists of three
valence quarks (uud) which carry its electric charge and baryon quantum numbers,
and an infinite sea of qq̄ pairs and gluons. The total amount of the momentum of the
proton is the sum of the parton momenta, which implies

∫ 1

0

dxx
[

∑

i=u,d,s,c,b

fi(x) + fı̄(x) + fg(x)
]

= 1. (3.8)

Note that a significant fraction of the energy-momentum is carried by the gluons.

3.2 Phase space integration

The differential cross section for the scattering of two partons with momenta p1 and
p2 and masses m1 and m2 into n partons with momenta p3, . . . pn+2 is given by the
squared invariant matrix elementM, multiplied with the flux of the incoming partons
and the phase space density dΦn of the outgoing partons,

dσ̂ =
1

4
√

(p1 · p2)2 −m2
1m

2
2

∑

∣

∣

∣

∣

M(p1, p2 → {pf})
∣

∣

∣

∣

2

× dΦn, (3.9)

where
∑

denotes the average and sum over the initial and final state spins and colours
respectively. The total cross section is obtained by integrating over the phase space
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3 Hadron collider cross sections

Figure 3.2: Quark and gluon distribution functions xfi(x,Q
2) of the proton, at Q2 =

100 GeV2 [38].

of the final state. For any set of n identical particles in the final state, a symmetry
factor 1/n! has to be included in this inclusive quantity.

The parametrisation of the phase space for 2 → 2 and 2 → 3 processes, as it was
used for the calculations in this thesis, is shown now. The two incoming (massless)
particles define the beam axis and carry a center-of-mass energy of

√
ŝ/2. For each

final state particle an integral over its three-momentum ~p occurs in the calculation of
integrated cross sections. The energy p0 of the particle is fixed by the on-shell condition
p0 =

√

|~p|2 +m2, where m denotes the mass of the particle. Four of the momentum
integrals can be eliminated by energy-momentum conservation. The Lorentz-invariant
phase space element for an n-particle final state is given by

dΦn = (2π)4 δ(4)

(

p1 + p2 −
n+2
∑

f=3

pf

)

n+2
∏

f=3

d3pf
(2π)3

1

2Ef

. (3.10)
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3.2 Phase space integration

3.2.1 Two-particle phase space

For a two-particle final state with the momenta p3, p4 respectively, the integral can be
written in terms of the azimuth angle φ and the polar angle θ with respect to the beam
axis. Due to the rotational invariance around the beam axis, the integration over φ
can be trivially performed and contributes a factor 2π. The phase space element is
given by

dΦ2 =
1

(2π)2
δ(4) (p1 + p2 − p3 − p4)

d3p3

(2π)3

1

2E3

d3p4

(2π)3

1

2E4

(3.11)

=
1

(4π)2

|~pcm3 |√
ŝ
dΩ3 =

1

(4π)2

|~pcm3 |√
ŝ

d cos θ3 dφ3. (3.12)

In the center-of-mass frame, we have

|~pcm3 | = |~pcm4 | =
λ1/2(ŝ, m2

3,m
2
4)

2
√
ŝ

, Ecm
3 =

ŝ+m2
3 −m2

4

2
√
ŝ

, Ecm
4 =

ŝ+m2
4 −m2

3

2
√
ŝ

,

(3.13)
where the Källen function λ(x, y, z), is defined as

λ(x, y, z) = (x− y − z)2 − 4yz = x2 + y2 + z2 − 2xy − 2xz − 2yz. (3.14)

For the double Higgs production cross section, the initial particles are gluons with
p2

1,2 = 0 and the final state consists of two identical Higgs particles with p2
3,4 = m2

H .

The following parametrisation with |~pcm3 | =
√

ŝ/4−m2
H of the four vectors was used:

pµ1,2 = (
√
ŝ/2, 0, 0, ±

√
ŝ/2),

pµ3,4 = (
√
ŝ/2, ±|~pcm3 | sin θ cosφ, ±|~pcm3 | sin θ sinφ, ±|~pcm3 | cos θ). (3.15)

3.2.2 Three-particle phase space

For the three-particle phase space, where the outgoing particles are labeled by the
indices 3, 4 and 5, five independent integration variables remain after applying the
delta-constraints from the energy-momentum conservation. The choice of integration
variables is not unique. In this work, two different parametrisations were used.

Decay chain

In the case of the production and decay of an intermediate massive particle with mass
M it is often advantageous to generate the phase space recursively by observing that

dΦn(p; p1, . . . , pn) = dΦn−j−1(p; q, pj+1, . . . , pn)
dq2

2π
dΦj(q; p1, . . . pj) (3.16)
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3 Hadron collider cross sections

with the invariant mass

q2 =

(

j
∑

i=1

Ei

)2

−
∣

∣

∣

∣

∣

j
∑

i=1

~pi

∣

∣

∣

∣

∣

2

(3.17)

of decay products. For the three-particle phase space, we therefore need two different
two-particle phase spaces. After boosting into the center-of-mass frame of the decaying
particle, and (3.12) can be used. Finally, the 4-momenta are boosted back to the lab
frame.

The propagator contribution of an unstable particle of mass M and total width Γ
is written as

R(q2) =
1

(q2 −M2)2 + (MΓ)2
, (3.18)

which is the Breit-Wigner resonance. For narrow resonances, i.e. when Γ ¿ M ,
this peak will significantly delay or even jeopardise the convergence of the numerical
integration. In order to avoid this, one employs a transformation for every Breit-
Wigner-type resonance in the cross section:

q2 = M2 +MΓ tan z,

dq2 = dz
(q2 −M2)2 + (MΓ)2

MΓ
. (3.19)

Therefore, the Jacobian of this transformation cancels the resonant propagator and
the convergence of the numerical integration is ensured.

Parametrisation with hadron collider variables

The scattering of two hadrons provides two beams of incoming partons and the spec-
trum of the longitudinal momenta of these beams is determined by the parton distri-
bution functions. The center of mass system of the parton system is usually boosted
with respect to the two incoming hadrons. It is therefore useful to classify the final
state in terms of variables which transform simply under longitudinal boosts. For this
purpose we introduce the transverse momentum pT =

√

p2
x + p2

y and the rapidity y,
and a parametrisation of the three-particle phase space in terms of these variables will
be shown. The rapidity is defined as

y = artanh
pz
p0

≡ 1

2
ln
p0 + pz
p0 − pz

, (3.20)

where pz = |~p| cos θ denotes the fraction of the particle’s three-momentum that goes in
the direction of the beam axis. Using the rapidity instead of directly taking the angle
θ has the advantage that the shape of the rapidity distribution dσ/dy stays invariant
under a boost in the beam direction. Under this boost, the rapidity is additive and
transforms as y → y − artanh β. The sum of two rapidities when the momenta
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3.2 Phase space integration

point into the same direction is given by the rapidity of the sum of the momenta,

via the formula for the addition of relativistic velocities3: y(p1) + y(p2) = y
(

p1+p2

1+p1p2

)

.

In experimental analyses often a slightly different measure, the pseudo-rapidity η is
used. It is derived from the standard rapidity by taking the limit of a vanishing mass
of the particle and is defined as

η =
1

2
ln

1 + cos θ

1− cos θ
. (3.21)

It is more convenient experimentally, since the angle θ from the beam direction is
measured directly at the detector. The transverse mass MT =

√

m2 + p2
T rather

than pT is also used, since it is the former quantity which is measured in a hadron
calorimeter. Rapidity and pseudorapidity are related via the simple transformation

y = artanh

(
√

1− m2

~p2 +m2
tanh η

)

. (3.22)

For hadronic cross sections, the partonic cross section has to be convoluted with the
parton distribution functions, therefore two additional integrations over the Bjorken
variables x1 and x2 of the incoming partons occur. For convenience, we include this
integration into the phase space integral and therefore compute dx1 dx2 dΦ3.

We use the following parametrisation for the five momenta:

p1 = x1E/2 (1, 0, 0, 1),

p2 = x2E/2 (1, 0, 0, −1),
p3 = (MT 3 cosh(y3), pT 3 cos(φ3), pT 3 sin(φ3), MT 3 sinh(y3)),

p4 = (MT 4 cosh(y4), pT 4 cos(φ4), pT 4 sin(φ4), MT 4 sinh(y4)),

p5 = (MT 5 cosh(y5), pT 5 cos(φ5), pT 5 sin(φ5), MT 5 sinh(y5)),

with the azimuthal angles φi and the center of mass energy E of the hadrons. Another
important variable is the distance ∆R, which is used in the cone-algorithm of a jet
definition. In this algorithm, a jet is a concentration of transverse mass MT in a cone
of radius R, where

∆R =
√

(∆η)2 + (∆φ)2. (3.23)

This definition of a jet measure is invariant under longitudinal boosts.

The phase space measure dp3/2E in terms of the hadron collider variables y, pT
reads

dp3

2E
=

1

2
pT dpT dφ dy =

1

2
d2~pT dy,

3This can be easily seen with the help of the identity tanh(y1 + y2) =
tanh y1+tanh y2

1+tanh y1 tanh y2
.
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3 Hadron collider cross sections

and the four constraints from the energy-momentum conservation are given by

δ((x1 + x2)E/2−
5
∑

j=3

MT j cosh yj),

δ(2)(~pT3 + ~pT4 + ~pT5),

δ((x1 − x2)E/2−
5
∑

j=3

MT j sinh yj). (3.24)

By adding the arguments of the first and last constraint and using δ(ax) = 1
|a|δ(x),

they can be rewritten as

δ((x1 +x2)E/2− Ê) δ((x1−x2)E/2− p̂) =
2

E2
δ(x1−

Ê

E
− p̂

E
) δ(x2−

Ê

E
+
p̂

E
). (3.25)

The integration over ~pT5, x1 and x2 is therefore trivial, and we obtain with a factor 2π
for the φ3 integration the following compact three-particle phase space parametrisation
in terms of six integration variables:

dx1 dx2 dΦ3 =
1

(2π)4

1

4E2
pT 3 pT 4 dφ4 dpT 3 dpT 4 dy3 dy4 dy5. (3.26)
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Calculation of multi-leg

one-loop amplitudes 4
Efficient techniques for computing tree level amplitudes have been available for se-
veral years, for a recent review, see for example [39]. One-loop calculations are con-
siderably more involved, and they form the “bottleneck” to obtaining new results at
next-to-leading order (NLO). In principal, it is straightforward to compute tree and
loop amplitudes by drawing all Feynman diagrams and evaluating the correspond-
ing analytical expressions. Standard reduction techniques could be applied to the
encountered loop integrals. In practice, this will become extremely tedious and inef-
ficient as the number of external legs grows. The complexity of a calculation based
on Feynman diagrams grows factorially with the number of external particles. As
an example, Table 4.1 shows the number of Feynman diagrams contributing to the
process gg → n g at tree level, and many of them are related by gauge invariance.
Additionally, complicated self-interactions of nonabelian gauge bosons blow up the ex-
pressions even further. Going to higher n also leads to a higher number of kinematic
invariants, which allows the construction of arbitrarily complicated expressions. At
the loop level, the algebra gets considerably more complicated, since there are more
diagrams, more off-shell lines and nonabelian vertices. Furthermore, reducing the loop
integrals often requires the inversion of matrices which produces spurious kinematic
singularities, and leads to very large intermediate expressions, but should cancel in
the final result.

4.1 Quantum number management

Due to the long intermediate expressions, computer algebra like MAPLE, MATH-
EMATICA or FORM [40] has become an essential tool. However, a brute force

n 2 3 4 5 6 7 8
diagrams 4 25 220 2485 34300 559405 10525900

Table 4.1: Number of tree-level Feynman diagrams contributing to gg → n g.

39



4 Calculation of multi-leg one-loop amplitudes

application alone will still produce lengthy expressions, which are slow and poten-
tially unstable, when evaluated numerically. Therefore, techniques are needed which
keep the size of the intermediate expressions under control. It is useful to decompose
the quantity to be calculated into simpler pieces and calculate these separately. The
organisational framework is called “quantum number management”. First, it is not
necessary to square the transition amplitude and sum over the spins and helicities
analytically, in order to obtain unpolarised cross sections. It is sufficient to do this
numerically at the very end of the calculation. This avoids obtaining O(N 2) terms
from an expression with O(N) terms. Individual amplitudes have to be calculated in
a helicity or spin basis, which is discussed in section 4.1.1. Furthermore, individual
helicity amplitudes can be divided into smaller gauge-invariant pieces, called partial
amplitudes, which is discussed in section 4.1.2.

4.1.1 Spinor Helicity formalism

The spinor helicity formalism [41, 42, 43] has proven to be a very useful tool for
calculations within the framework of massless QCD, since it is largely responsible for
extremely compact expressions for tree and loop amplitudes. We begin with fermions,
their equations of motion are given by the Dirac equation

(/p−m)u(p) = (/p+m) v(p) = 0 and (4.1)

ū(p) (/p−m) = v̄(p) (/p+m). (4.2)

In the massless limit, positive and negative energy solutions are identical. Therefore,
the solutions of definite helicity

u±(p) = Π±u(p) and (4.3)

v∓(p) = Π±v(p) (4.4)

can be identified, where the helicity projection operator is given by

Π± =
1

2
(1± γ5). (4.5)

We use the common bra-ket notation [42]

|p±〉 ≡ u±(p) = v∓(p), 〈p±| ≡ ū±(p) = v̄∓(p) (4.6)

and define spinor products by

〈pq〉 ≡ 〈p−|q+〉, [pq] ≡ 〈p+|q−〉 (4.7)
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4.1 Quantum number management

which take value in the complex numbers. The orthogonality of the projectors Π±
leads to the vanishing of products like 〈p+|q+〉. The completeness relation reads

|p+〉 〈p+|+ |p−〉 〈p−| = /p, (4.8)

and therefore
|p±〉 〈p±| = Π±/p. (4.9)

By computing

〈pq〉 [pq] = ū(p)Π+Π+/qΠ−u(p) = tr(/pΠ+Π+/qΠ−) = 2 p · q (4.10)

we observe that the spinor products are, up to a phase, square roots of Lorentz
products. A numerical evaluation is possible after choosing a specific representation
of Dirac matrices. In the Dirac representation, the spinor products are given by [44]

〈pq〉 =
√

|spq|eiφpq ,

[pq] =
√

|spq|e−i(φpq+π), (4.11)

where spq = (p+ q)2 = 2 p · q and

cosφpq =
p1q+ − q1p+
√

|spq|p+q+

,
p2q+ − q2p+
√

|spq|p+q+
, p+ = p0 + p3. (4.12)

We can also express polarisation vectors for massless gauge bosons with definite he-
licity ±1 by

εµ+(k, q) =
〈q−| γµ |k−〉√

2 〈qk〉
, (4.13)

εµ−(k, q) =
〈q+| γµ |k+〉√

2[kq]
, (4.14)

where k is the momentum of the vector boson and q is an arbitrary light-like reference
momentum. The dependence on the reference momentum q will drop out in gauge
invariant quantities. The completeness relation for these polarisation vectors is that
of an light-like axial gauge:

∑

λ=±
εµλ(k, q)(ε

ν
λ(k, q))

∗ = −gµν + kµqν + kνqµ

k · q . (4.15)
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4 Calculation of multi-leg one-loop amplitudes

In order to prove that (4.13) is a valid definition of a polarisation vector, some auxiliary
properties are needed. The Gordon identity

〈p±| γµ |p±〉 = 2 pµ (4.16)

is used to express light-like vectors by spinor strings. The application of the Fierz
rearrangement theorem yields the identity

〈p+| γµ |q+〉 〈r+| γµ |s+〉 = 2 [pr] 〈sq〉 . (4.17)

This identity is derived from the from the expansion of the (4-dim) matrix |q+〉 〈p+|
into a linear combination of 1, γµ, γ5, γµγ5 and γµγν . It reads

2 |q+〉 〈p+| = 〈p+| γµ |q+〉 γµΠ−. (4.18)

Multiplying (4.18) with 〈r+| from the left and |s+〉 from the right leaves us with (4.17).
The charge conjugation relation for vector currents reads

〈q∓| γµ |k∓〉 = 〈k±| γµ |q±〉 . (4.19)

By using (4.16) and (4.17), we can prove the orthogonality condition of the polarisation
vectors

ε±(k, q) · k ∝ 〈q∓| γµ |k∓〉 〈k∓| γµ |k∓〉 = −2 [qk] 〈kk〉 = 0. (4.20)

Similarly, one shows
ε+ · ε− = 0, ε± · ε± = −1. (4.21)

Now we can also prove (4.15). Complex conjugation reverses the helicity of the polari-
sation vector, (εµ±)

∗ = εµ∓, therefore the first term in the sum of (4.15) can be rewritten
as traces, yielding

εµ+(k, q)ε
ν
−(k, q) =

1

2

(

−gµν + kµqν + kνqµ

k · q

)

− i

2
ερµσνkρqσ. (4.22)

Adding the second term with µ and ν exchanged leads to (4.15). Finally, changing
the reference momentum q gives a term proportional to the momentum of the gauge
boson,

εµ+(k, q1)− εµ+(k, q2) =
√
2
〈q1q2〉

〈q1k〉 〈kq2〉
× kµ (4.23)

which amounts to an on-shell gauge transformation.

Extension to the massive case

Although the treatment of massive fermions is not part of this thesis, I briefly mention
how to extend the formalism. For massive fermions, the spinors u(p) and v(p) have to
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4.1 Quantum number management

be distinguished. The key idea is that any massive vector p can always be decomposed
into a sum of two light-like vectors p̂ and q :

p = p̂+
p2

2p · q q. (4.24)

Note that 2kq = 2k̂q. Using eq. (4.24) we may associate to any four-vector p a
massless four-vector p̂. q again denotes an arbitrary light-like reference momentum
and is related to the quantisation axis of the spin for the massive fermion. In contrast
to the massless gauge bosons, amplitudes with the label + or − will depend on the
choice of the reference momentum. The following choice for the spinors of massive
fermions satisfies the Dirac equation [39]:

u± =
1

〈p̂∓|q±〉
(/p+m) |q±〉, ū± =

1

〈q∓|p̂±〉
〈q∓| (/p+m) ,

v∓ =
1

〈p̂∓|q±〉
(/p−m) |q±〉, v̄∓ =

1

〈q∓|p̂±〉
〈q∓| (/p−m) . (4.25)

One can also verify the orthogonality condition

ū(λ̄)u(−λ) = 2mδλ̄λ, (4.26)

and the completeness relation

∑

λ=+/−
u(−λ)ū(λ) = /p+m. (4.27)

The extension of the spinor helicity formalism to massive gauge bosons is analogous
to the previous case. Again, the momentum of the massive gauge boson is split into
two light-like momenta, kµ = kµ1 + kµ2 with k2 = m2, k2

1 = k2
2 = 0. The polarisation

vectors εµ±(k1, k2) of the massive gauge boson are given by (4.13), and the longitudinal
polarisation vector is given by

εµ0 (k1, k2) =
1

2m
(〈k1+| γµ |k1+〉 − 〈k2+| γµ |k2+〉) . (4.28)

By direct computation, one shows that the above definitions satisfy the requirements
of a polarisation vector:

ε±,0 · k = 0, ε± · ε∓ = ε0 · ε0 = −1, ε0 · ε± = 0. (4.29)
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4 Calculation of multi-leg one-loop amplitudes

Similarly, one shows the completeness relation for massive vector bosons:

∑

λ=−,0,+
εµλ(ε

ν
λ)
∗ = −gµν + kµkν

m2
. (4.30)

4.1.2 Colour decomposition

QCD amplitudes contain group theoretical factors, like the generator T a
ij of the gauge

group SU(Nc) from gluon-quark-antiquark vertices or structure constants f abc (defined
by [T a, T b] = ifabcT c) from three-gluon or four-gluon vertices. Gluon- and quark
propagators contract many of these indices together with δab, δij factors. These colour
amplitudes can be organised by projecting on a colour basis which separates the
amplitude in gauge-invariant sub-amplitudes or partial amplitudes [44, 45, 46]. In the
pure gluonic case, the colour decomposition of tree level amplitudes with n external
gluons reads

An(1, 2, . . . , n) = gn−2
∑

σ∈Sn/Zn

tr (T aσ(1) · · ·T aσ(n))An(σ(1), . . . , σ(n)), (4.31)

where the sum is over all non-cyclic permutations of the external gluon legs. The quan-
tities An(σ(1), . . . , σ(n)) contain the kinematic information and are colour-ordered,
that is, only diagrams with a particular cyclic ordering contribute and are therefore
simpler than the complete amplitude. Usually, the number of independent partial
amplitudes is reduced by applying symmetries like charge conjugation, which allows
one to exchange a quark with a antiquark, or parity, which simultaneously reverses
all helicities in an amplitude.

This decomposition is obtained by replacing the structure constants f abc by

ifabc = 2
[

tr(T aT bT c)− tr(T bT aT c)
]

, (4.32)

using the normalisation tr(T aT b) = 1/2δab. Strings and traces of colour matrices can
be simplified with the help of the Fierz identity,

T a
ijT

a
kl =

1

2

(

δilδik −
1

Nc

δijδkl

)

, (4.33)

if external quarks are present. The colour factors for QCD amplitudes containing also
quarks in the external states are combinations of open

(T a1 . . . T an)iqjq̄ (4.34)

and closed strings
tr(T b1 . . . T bk) (4.35)
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4.2 Dimensional regularisation and Renormalisation

of colour matrices. These strings are the building blocks for a basis in colour space
and the choice of the basis is not unique.

A second basis is the colour-flow basis [47]. This decomposition is based on treating
the gluon field as an N × N matrix (Aµ)

i
j, (i, j = 1, . . . , n) rather than a one-index

field Aa
µ, (a = 1, . . . , N 2 − 1). The colour basis in this case consists of products of

Kronecker deltas δij. This choice is especially useful for QCD amplitudes involving
many external quarks.

4.2 Dimensional regularisation and Renormalisation

Higher-order corrections to Green functions and S-matrix elements result from Feyn-
man graphs containing loops. This is a conceptual and technical complication because
divergences occur in the evaluation of loop diagrams. A simple example is the scalar
2-point diagram (Fig. 4.1), which involves the integral

Figure 4.1: Scalar self-energy

B0(p,m1,m2) =
1

iπ2

∫

d4k
1

[(k − p)2 −m2
1]

1

k2 −m2
2

. (4.36)

The integral over the loop momentum k extends to infinity and therefore develops an
ultraviolet (UV) divergence. Simple power counting shows that the integral is loga-
rithmically divergent in four dimensions. The singularities occurring in loop integrals
therefore have to be systematically removed by a renormalisation procedure. A consis-
tent Lorentz- and gauge-invariant prescription for regularising divergent loop integrals
is known as conventional dimensional regularisation, which simultaneously regularises
ultraviolet [48, 49] and soft and collinear divergences [50]. In this scheme, calculations
are performed in n = 4 − 2ε instead of four dimensions. The analytic structure of
these integrals allows for an analytic continuation to arbitrary complex n. The UV
divergences manifest themselves as poles in ε. Changing the dimension of the integral
changes also the dimension of B0(p,m1,m2). We compensate this by multiplying with
µ2ε, where µ has the dimension of a mass. So, we replace

∫

d4k

(2π)4
−→ µ(2ε)

∫

dnk

(2π)n
(4.37)

45



4 Calculation of multi-leg one-loop amplitudes

in the loop integrals. Additionally, all particle momenta are also set to n dimensions.
An explicit calculation of (4.36) in n dimensions for massless internal lines leads to

B0(p, 0, 0) =

(

4πµ2

−p2

)ε

Γ(ε)
Γ2(1− ε)
Γ2(2− 2ε)

=
1

ε
− γE + log(4π)− log

(−p2

µ2

)

+ 2. (4.38)

The dependence of the unphysical scale µ can now be removed via renormalisation:
The Lagrangian of a model contains free parameters, which are not determined by
the theory, but have to be taken from experiment. At leading order, these parameters
can be identified with physical observables like masses or coupling constants. Higher
order corrections from Feynman graphs containing loops change the relations among
the parameters of the Lagrangian. As a result, the bare parameters are no longer
directly related to physical quantities, they can even become divergent.

These divergent quantities have to be regularised, e.g. by dimensional regularisa-
tion. This amounts to a modification of the theory so that the possibly divergent
expressions become well-defined, and that in a suitable limit the original (divergent)
theory is recovered. Consequently, a redefinition of the original (bare) parameters, a
renormalisation of the theory is needed. In this process, also the fields have to be
renormalised.

The requirement that divergences are compensated does not determine the finite
parts of the renormalisation constants. As a consequence, calculations in finite orders
of perturbation theory performed in different renormalisation schemes may differ by
higher-order contributions. In an all-order calculation all different schemes would lead
to equivalent relations among physical quantities. The dependence of the choice of the
renormalisation scheme and consequences are studied with the help of renormalisation
group equations.

The most popular renormalisation approach is multiplicative renormalisation with
counterterms. The divergences are absorbed by a simple rescaling of the original
(bare) parameters g and fields Ψ, denoted by the subscript 0. They are defined as

Ψ0 =
√

ZΨΨ =

(

1 +
1

2
δZ

(1)
Ψ −

1

8
δZ

(1)
Ψ

2
+

1

2
δZ

(2)
Ψ + . . .

)

Ψ (4.39a)

g0 = Zgg =
(

1 + δZ(1)
g + δZ(2)

g + . . .
)

g. (4.39b)

The right-hand side of (4.39) is written as an expansion in orders of perturbation

theory. At NLO, only δZ
(1)
g and δZ

(1)
Ψ need to be considered. This multiplicative

renormalisation does not change the functional dependence of the Lagrangian L(Ψ, g)
on Ψ and g. It leads to the same Feynman rules for the renormalised and parameters
as the Lagrangian with the bare quantities. Inserting (4.39), we have

L(g0,Ψ0) = L(g,Ψ) + Lct(g,Ψ, Zg, ZΨ), (4.40)
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4.2 Dimensional regularisation and Renormalisation

where the counterterm Lagrangian Lct summarises all terms containing the renor-
malisation constants and generates counterterm Feynman rules. The renormali-
sation constants will absorb the divergences, up to finite parts. In the mass-
independent modified minimal-subtraction scheme MS only the divergences of the
form ∆ = 1/ε− γE + log 4π get subtracted, which is especially convenient for higher-
order calculations and best suited for dimensional regularisation.

There are different regularisation prescriptions within dimensional regularisation.
All of them have the analytic continuation of the loop momenta into n 6= 4 dimen-
sions in common. There is however some freedom for choosing the dimensionality
of the momenta of the external particles as well as the number of polarisations of
both external and internal particles. Conventional regularisation (CDR) [51] consid-
ers n − 2 helicity states for massless vector bosons and 2 helicity states for fermions
and no distinction is made between virtual and real particles, therefore also the ex-
ternal momenta are defined in n dimensions. This scheme however does not preserve
supersymmetry, since the number of bosonic degrees of freedom no longer equals the
number of fermionic degrees of freedom, which is a crucial requirement of supersym-
metry. In the dimensional reduction scheme (DR) [52], the polarisation of internal and
external fields is kept four-dimensional , such that the number of helicity states for
both quarks and gluons is 2. This avoids explicit supersymmetry breaking. The num-
ber of internal and external dimensions is still n. In a practical one-loop calculation,
this prescription works almost like CDR, except that one has to distinguish between
four-dimensional metric tensors coming from the Lorentz algebra and n-dimensional
metric tensors originating from momentum integrals with more than one loop mo-
mentum in the numerator. A modification of DR is the four-dimensional helicity
scheme (FDH) [53], also called modern dimensional reduction [54], where the number
of external dimensions is no longer n, but 4. A fourth variant is the original choice
of ’t Hooft and Veltman [48] (HV-scheme), which continues particle momenta and
helicities of vector particles inside loops into n 6= 4 dimensions, while keeping the
momenta and helicities of external particles, as well as fermion helicities inside loops,
in four dimensions. The regularisation of infrared divergences, resulting from external
particles which are soft or collinear to other external particles is also possible within
dimensional regularisation. Like virtual particles, these are not observed, therefore
these two classes are grouped as unobserved particles. Unitarity requires a uniform
treatment of unobserved particles, independent of whether they are internal or exter-
nal. Table 4.2 summarises the definitions of the various regularisation prescriptions
within dimensional regularisation.

The conventional scheme (CDR) is conceptually simpler, as all quantities are con-
tinued uniformly to n = 4 − 2ε dimensions. The HV- and the FDH scheme however
have practical advantages when using the spinor helicity formalism, which is naturally
defined in four dimensions. These schemes do not require the unnecessary work of
computing additional ε-helicity amplitudes.

The treatment of the Dirac matrix γ5, which appears in parity-violating processes,
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4 Calculation of multi-leg one-loop amplitudes

CDR DR FDH HV

# of internal dimensions d d d d
# of external dimensions d d 4 4
# of unobserved vector bosons d− 2 2 2 d− 2
# of observed vector bosons d− 2 2 2 2
# of unobserved fermions 2 2 2 2
# of observed fermions 2 2 2 2

Table 4.2: Definitions of regularisation prescriptions in dimensional regularisation

is not well defined within dimensional regularisation. It is well known [51] that the
gamma-algebra in n dimensions,

{γµ, γν} = 2gµν · 1, gµµ = n, {γµ, γ(n)
5 } = 0 (4.41)

is inconsistent with
tr(γµγνγργσγ

(4)
5 ) 6= 0. (4.42)

This condition is necessary, since we need

tr(γµγνγργσγ
(4)
5 ) = 4iεµνρσ. (4.43)

Therefore, the matrix γ5 cannot be analytically continued to n dimensions and simul-
taneously requiring the anticommutation with γµ.

A scheme which allows for a consistent treatment of γ5 is for example the HV-
scheme. Here, the four-dimensional γ5 is also used in n dimensions, by splitting the
n-dimensional space into an ordinary four-dimensional physical space (denoted by a
hat) and an orthogonal (n− 4)-dimensional space (denoted by a tilde) [55],

gµν = ĝµν + g̃µν , k = k̂ + k̃, γµ = γ̂µ + γ̃µ. (4.44)

The ’t Hooft-Veltman algebra is given by

{γµ, γ5} =
{

0, µ ∈ {0, 1, 2, 3}
2γ̃µγ5, otherwise,

(4.45)

with γ5 = i
4
εµνρσγ̂

µγ̂ν γ̂ργ̂σ. Eq.( 4.45) can also be read as

[γ5, γ̃
µ] = 0, (4.46)

making the trivial behaviour of γ5 in the non-physical space manifest. These rules are
sufficient to perform the n-dimensional Dirac traces involving γ5 in the numerators
of loop-integrals. Note that external momenta p are defined in four dimensions only,
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4.3 Reduction method for scalar integrals

and therefore pµγµ = pµγ̂µ holds.

Care has to be taken in the presence of gauge anomalies [56], where the treatment
of γ5 in the HV-scheme violates certain Ward identities. In fact, the non-existence of
a chirally invariant regularisation scheme is the formal origin of these anomalies1.

4.3 Reduction method for scalar integrals

In this section we will derive a reduction formula for one-loop, scalar N -point func-
tions. If N ≥ 4 and all legs are off-shell, the integral is finite and can be treated in four
dimensions [58]. If at least one external leg is massless, it is infrared divergent and
needs a regulator. In the framework of dimensional regularisation four-dimensional
methods are not applicable anymore. We work in n = 4 − 2ε dimensions in the
following with the external momenta kept in four dimensions.

With the momentum flow as indicated in Fig. 4.2, we define the propagator mo-
menta as ql = k − rl with rl = pl + rl−1 for l from 1 to N and r0 = rN . Momentum
conservation allows to choose rN = 0.

p1

p2

p3

p4

p5
pN

q1

q2

q3

q4 qN

Figure 4.2: N -point graph

1If a classical symmetry is broken by quantum fluctuations, this is called an anomaly. If they
appear in the Noether currents of local gauge theories, they destroy the validity of classical Ward
identities which are crucial for the proof of renormalisability. Unitarity and gauge invariance is
no longer guaranteed. Theories invariant under charge conjugation or space reflection, like pure
Yang-Mills theories, QED and QCD, are free of anomalies related to gauge invariance [57]. The
SM is anomaly free due to remarkable fact that the sum of the fermion electric charges in one
family (e.g. νe, e, u, d) adds up to zero (0− 1 +Nc(2/3− 1/3) = 0).
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4 Calculation of multi-leg one-loop amplitudes

The corresponding analytic expression in momentum and Feynman parameter space
reads

InN(R) =

∫

dnk

iπn/2

1
∏N

l=1(q
2
l −m2

l + iδ)
= (−1)NΓ(N−n

2
)

∫ ∞

0

dNz
δ(1−∑N

l=1 zl)

(−1
2
z · S · z − iδ)N−n/2

(4.47)
where R is the ordered set containing the propagator labels (R = (1, . . . , N) in
Fig. 4.2). This formula is obtained by introducing integrals over Feynman para-
meters zl

1

A1A2 · · ·AN

=

∫ 1

0

dNz δ(1−
N
∑

l=1

zl)
Γ(N)

[z1A1 + · · ·+ zNAN ]N
(4.48)

and performing the integration over the loop momentum k with the help of

∫

dnk

iπn/2

1

(k2 −∆+ iδ)N
=

Γ(N − n/2)
Γ(N)

(−1)N
(∆− iδ)N−n/2

. (4.49)

The kinematic information (IR divergences, thresholds) is contained in the matrix S
which is related to the Gram matrix G by

Sij = (ri − rj))2 −m2
i −m2

j = Gij − vi − vj
Gij = 2ri · rj, vi = ri · ri −m2

i . (4.50)

In general, a one-loop N -point amplitude will contain N -point integrals as well as
(N − 1), (N − 2), . . . , (N −M)-point integrals with tree graphs attached to some of
the external legs of the loop integral. The latter are characterised by the omission
of some propagators (say j1, . . . , jm) of the “maximal” one loop N -point graph. They
consist ofN external particles andM < N internal lines, whereM denotes the number
of elements in the set R\{j1, . . . , jm}. We give two examples for pinched graphs, which
appear in the reduction of pentagon integrals in Fig. 4.3. The corresponding kinematic
matrix is denoted by

S{j1···jm} ≡ S(R \ {j1, . . . , jm}) . (4.51)

It is obtained from S by replacing the entries of the rows and columns j1, . . . , jm by
zero. In this way one can keep track of the pinching of propagators in the iterative
application of reduction formulae without changing the labels of the rows and columns
of reduced matrices S{j1···jm} with respect to the maximal set R.
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p1 p2

p3

p3

p5

25

1

4
p5

p4

5

2

p1

p2

p4

Figure 4.3: Graphical representation of pinch integrals. Each topology defines an
ordered set R. The two diagrams correspond to N = 5, M = 4, R = {1, 2, 4, 5} (left),
and N = 5, M = 2, R = {2, 5} (right).

For example, for R = {1, 2, 3, 4} one has, with sj = p2
j and sij = (pi + pj)

2:

S =









−2m2
1 s2 −m2

1 −m2
2 s23 −m2

1 −m2
3 s1 −m2

1 −m2
4

s2 −m2
1 −m2

2 −2m2
2 s3 −m2

2 −m2
3 s12 −m2

2 −m2
4

s23 −m2
1 −m2

3 s3 −m2
2 −m2

3 −2m2
3 s4 −m2

3 −m2
4

s1 −m2
1 −m2

4 s12 −m2
2 −m2

4 s4 −m2
3 −m2

4 −2m2
4









(4.52)

The symmetric (4×4) matrix S{3,4}, which corresponds to the pinching of propagators
3 and 4, is now defined by

S{3,4} =









−2m2
1 s2 −m2

1 −m2
2 0 0

s2 −m2
1 − 2m2

2 −2m2
2 0 0

0 0 0 0
0 0 0 0









. (4.53)

Inverse matrices are labelled analogously. To construct the inverse one simply has
to invert the sub-matrix of S{j1···jm} with the zero rows and columns omitted and
promote the result back to anN×N matrix by inserting zeros for the rows and columns
{j1, . . . , jm}. In our example one finds, with λ(x, y, z) = x2+y2+z2−2xy−2yz−2xz:

S{3,4}−1 =
1

λ(s2,m2
1,m

2
2)









2m2
2 s2 −m2

1 −m2
2 0 0

s2 −m2
1 −m2

2 2m2
1 0 0

0 0 0 0
0 0 0 0









. (4.54)

In the following, S−1(R \ {j1, . . . , jm}) = S{j1,...,jm}−1 has to be understood in this
sense.

The aim of the reduction is to split the integral into an infrared safe part and a
remainder that contains all possible sources for infrared singularities. As an ansatz
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4 Calculation of multi-leg one-loop amplitudes

we write (4.47) as a sum of (one-propagator) reduced diagrams and a remainder,

InN = Idiv + Ifin =

∫

dnk

iπn/2

∑N
l=1 blDl
∏N

l=1 Dl

+

∫

dnk

iπn/2

[

1−∑N
l=1 blDl

]

∏N
l=1 Dl

(4.55)

where Dl = q2
l −m2

l + iδ is the l’th propagator. The first term in (4.55) is a sum of
pinched integrals, where one of the propagators in the loop integral is omitted.

Idiv(R) =
N
∑

l∈R
bl(R)I

n
N−1(R \ {l}) (4.56)

In the second term of (4.55), we again introduce Feynman parameters by applying
(4.48) and shifting the origin of the integration momentum by k → k − Q; Q =
∑

l∈R zlrl. The denominator can be written, as usual, in the quadratic form k2 −
1/2 z · S · z, while the numerator becomes

N = 1−
∑

l

bl (k
2 − 2k · rl + rl · rl + 2k ·Q+Q2 − 2Q · rl −m2

l ). (4.57)

Terms linear in the integration momentum vanish under symmetric integration, and
after a bit of algebra, we obtain

N = −
(

∑

l

bl

)

(k2 +
1

2
z · S · z) +

∑

l

xl (1 + (S · b)l) . (4.58)

Now we can choose the bl(R), which are still undetermined, such that the second term
in (4.58) vanishes. The bl, l ∈ {1, . . . , N} therefore satisfy the condition

(S · b)l = −1, l = 1, . . . N. (4.59)

By defining the shorthand notation B(R) =
∑

l∈R bl(R) we have

Ifin(R) = −B(R) Γ(N)

∫

dNz δ(1−
N
∑

l=1

zl)

∫

dnk

iπn/2

(k2 − 1
2
z · S · z)

[k2 + 1
2
z · S · z + iδ]N

. (4.60)

Carrying out the momentum integration by using (4.49) and (4.49) with N → N + 1
leaves us with the final expression

Ifin(R) = −B(R)(N − n− 1) In+2
N (R). (4.61)

The (6− 2ε)-dimensional is infrared finite, as can be seen by a power-counting argu-
ment in the corresponding momentum integral.
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4.3 Reduction method for scalar integrals

It remains to solve (4.59). In the case of 2 → N scattering with N ≤ 6 and a
non-singular matrix S, the solution is simply given by

bi(R) = −
∑

k∈R
(S−1)ki. (4.62)

If the bi belong to a reduced kinematic matrix S{j} where the jth row and column is
zero, associated with the set R\{j}, one has bi(R\{j}) =

∑

k∈R\{j}(S
{j})−1

ki . For sim-

plicity of notation, we introduce the shorthand bi(R\{j}) = b
{j}
i , and correspondingly

B{j} is defined as
B{j} =

∑

i∈R\{j}
b
{j}
i . (4.63)

Note that in the case of N = 5, Ifin contains a factor (N − 1− n) which is O(ε). As
is well known, pentagon integrals are just a sum of box integrals up to a remainder
which drops out in phenomenological applications, since In+2

5 (R) is both infrared and
ultraviolet finite. In the case N > 6, (4.59) does not have a unique solution. The
most general solution in this case can be constructed by means of pseudo-inverse
matrices. These also called ”Moore-Penrose” inverse matrices [59] define the inversion
of a general m× n matrix.

A pseudo inverse H to G is defined by the conditions H GH = H and GH G = G.
Solutions to the linear equation G · x = y can be found in the form of x = H · y, even
if G is not an invertible matrix. Since this formalism is not needed for the scattering
processes considered in this thesis, I refer to the literature for details [60].

For N ≤ 6 and detS 6= 0 the following relation [60, 61] holds

N
∑

l=1

bl = −
detG

detS
, (4.64)

which shows that the vanishing of the finite remainder terms in (4.61) is related to
the vanishing of the Gram determinant.

To conclude this section, let us briefly review what we have gained. The reduction
algorithm for scalar N -point integrals splits the integrals into a infrared finite, higher
dimensional part and a sum of simpler, N − 1-point integrals carrying the infrared
divergences:

InN(R) =
N
∑

l∈R
bl(R) I

n
N−1(R \ {l})−B(R)(N − n− 1) In+2

N (R). (4.65)

By iteration of (4.65) arbitrary N -point integrals can be reduced to n-dimensional
triangle functions and (n + 2) dimensional box functions. The determinant relation
(4.64) shows that the application of (4.65) introduces inverse Gram determinants
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4 Calculation of multi-leg one-loop amplitudes

through the 1/B terms.

4.4 Reduction method for tensor integrals

4.4.1 Form factor representation for tensor integrals

Before discussing the reduction of tensor integrals I introduce the form factor repre-
sentation A rank r, N -point tensor integral is defined by

Iµ1···µr
N (R) =

∫

dnk

iπn/2

kµ1 . . . kµr
∏N

j=1 Dj

(4.66)

The Lorentz structure of the integrals will be carried by the metric tensor gµν and
the rµi -vectors, which are sums of the external momenta pµi . Tensor integrals are
expressible by linear combinations of such Lorentz tensors and form factors denoted
by TN,r

00 , TN,r
j1

, TN,r
00j1j2

, etc. TN,r
00 is the coefficient of the Lorentz structure containing

only the metric tensor, an index j in the other form factors indicates the appearance
an r-vector. We illustrate the notation for pentagon tensor integrals, N = 5.

Iµ1

5 =
∑

T 5,1
j1

rµ1

j1

Iµ1µ2

5 = T 5,2
00 gµ1µ2

∑

T 5,2
j1j2

rµ1

j1
rµ2

j2

Iµ1µ2µ3

5 =
∑

T 5,3
00j3

(gµ1µ2rµ3

j3
+ 2 perm.)

+
∑

T 5,3
j1j2j3

rµ1

j1
rµ2

j2
rµ3

j3

Iµ1µ2µ1µ3µ4

5 = T 5,4
0000 (gµ1µ2gµ3µ4 + 2 perm.)

+
∑

T 5,4
00j3j4

(gµ1µ2rµ3

j3
rµ4

j4
+ 2 perm.)

+
∑

T 5,4
j1j2j3j4

(rµ1

j1
rµ2

j2
rµ3

j3
rµ4

j4
) (4.67)

4.4.2 Tensor reduction through recursion relations

In this section, we show that any rank r, N -point integral can be expressed in terms
of scalar box, triangle and two-point integrals by using scalar reduction and recursion
relations. A generalisation of (4.49) reads

∫

dnk

iπn/2

kµ1 . . . kµ2m

(k2 −∆)N
= (−1)N

[

g··(m)

]{µ1...µ2m}
(

−1

2

)m
Γ(N − (n+ 2m)/2)

Γ(N)
(∆)−N+

(n+2m)
2 ,

(4.68)
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which can be obtained by replacing and even number of the loop momenta in the
numerator by replacement rules of the form

kµ1kµ2 → 1

n
k2gµ1µ2

kµ1kµ2kµ3kµ4 → 1

n(n+ 2)
(k2)2(gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3). (4.69)

Odd powers of the loop momentum can be dropped due to symmetric integration.
After introducing Feynman parameters, shifting the loop momentum as before and
performing the loop momentum integration, the formula for tensor integrals reads

Iµ1...µr
N =

[r/2]
∑

m=0

(

−1

2

)m N−1
∑

j1,...,jr−2m=1

[

g··(m)r
·
j1
. . . r·jr−2m

]{µ1...µr} In+2m
N (j1, . . . , jr−2m).

(4.70)

[r/2] is the nearest integer less or equal to r/2 and
[

g··(m)r
·
j1
. . . r·jr−2m

]{µ1...µr}
stands for

the sum over all different combinations of r Lorentz indices distributed to m metric
tensors and (r− 2m) r-vectors. These are

(

r
2m

)
∏m

k=1(2k− 1) terms. A dot appearing
as an index at objects inside a square bracket stands for one index out of the set
specified in curly brackets at the outside of the square bracket. X (m) or X(m) denotes
the product of m terms of X with adequate indices2. For example, a tensor object

like
[

X ··(2)Y
·
]{µ1µ2µ3µ4µ5}

with X a symmetric tensor of rank 2 and Y a vector means

[

X ··(2)Y
·]{µ1µ2µ3µ4µ5} = (Xµ1µ2Xµ3µ4 +Xµ1µ3Xµ2µ4 +Xµ1µ4Xµ2µ3)Y µ5 +5 permutations.

Two examples for pentagon integrals will illustrate the procedure. But first, we have
to deal with InN(j1, . . . , jr), which are scalar integrals with Feynman parameters in the
numerator, defined by

InN(j1, . . . , jr) = (−1)NΓ(N − n/2)
∫ ∞

0

dNz δ(1−
N
∑

l=1

zl)
zj1 . . . zjr

(z · S · z)N−n/2
(4.71)

Recursion relations for these kind of integrals are derived in [60] and only the result
is presented:

InN(j1, . . . jr;R) =
r
∑

k=2

S−1
j1jk

In+2
N (j2, . . . , jk−1, jk+1, . . . , jr;R)

2The “power” (m) may appear as a lower index for convenience of notation if it would interfere with
the dots standing for upper indices. Hence we write X ··

(m) instead of (X ··)(m).
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− bj1(N − n− r) In+2
N (j2, . . . jr;R)−

N
∑

j=1

S−1
j1j
InN−1(j2, . . . jr;R \ {j}). (4.72)

This equation shows that all Feynman parameter integrals with nontrivial numerators
can be reduced to ordinary scalar integrals by iteration. In each reduction step the
highest dimension that appears in an integral is increased by 2. These integrals then
can be brought back to the standard basis by reverse application of (4.65). Notice
that the reduction involving the inverse of (4.65) is the only source for 1/B terms, i.e.
for inverse Gram determinants.

Two examples

We illustrate the presented reduction method of one-loop integrals by two examples.
In the scattering processes considered in this thesis, pentagon integrals with one or
two loop momenta appear, therefore the tensor coefficients T 5,1

j1
, T 5,2

00 and T 5,2
j1j2

have
to be known for N = 5. For the rank 1 pentagon integral, we apply (4.70) and (4.72)
and obtain

Iµ5 (R) =
∑

j∈R
In5 (j;R) r

µ
j =

∑

k∈R
S−1
jk In4 (R \ {k}). (4.73)

Now we can express the n-dimensional box integral via (4.65) by a n+ 2-dimensional
box integral and a sum of four triangle integrals. The tensor coefficient therefore reads

T 5,1
j (R) = In5 (j;R) = −

∑

k∈R
S−1
jk B

{k} In+2
4 (R \ {k})−

∑

k∈R

∑

l∈R\{k}
S−1
jk b

{k}
l In3 (R \ {k, l}).

(4.74)

For the rank 2 tensor coefficients we apply the same algorithm and additionally use
the fact that for general N -point kinematics with N ≥ 5, the metric tensor gµν in
4 dimensions is expressible by a tensor product of (4-dimensional) external momenta,
which span a basis of the Minkowski space. With (4.70) and (4.72), the integral
decomposes into

Iµν5 (R) = −1

2
gµν In+2

5 (R) +
∑

j1j2

In5 (j1, j2;R) r
µ
j1
rµj2 . (4.75)

The integral In5 (j1, j2;R) with two Feynman parameters is now reduced to inte-
grals with trivial numerators via twice application of (4.72), the appearing (n + 4)-
dimensional scalar integral In+4

5 is reduced to a sum of lower-dimensional integrals by
(4.65),

(2− n) In+4
5 (R) = − 1

B
In+2

5 (R)−
∑

l

blI
n+2
4 (R \ {l}). (4.76)
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Collecting only the pentagon integrals In+2
5 , we get

Iµν5 = In+2
5

{

−1

2
gµν +

∑

j1j2

(

S−1
j1j2

+
bj1bj2
B

)

rµj1r
µ
j2

}

+ IN<5-integrals. (4.77)

The proof of the vanishing of the curly brackets in (4.77) with a four-dimensional
metric tensor gµν[4] is straightforward: One has to contract the tensor with 4 rµ,k rν,l,

use the relation Gij = Sij − SNj − SNi + SNN and (4.59). In n dimensions, a tensor
structure of O(ε) occurs, which is defined as the difference of two tensors in n and
4 dimensions. Contracting such differences with kinematical objects like external
momenta, polarisation vectors or fermion currents will always lead finally to scalar
quantities of O(ε), which can be neglected in phenomenological applications at one
loop.

The tensor coefficient T 5,2
00 is therefore given by the pinched box integrals in (4.76),

T 5,2
00 = −1

2

∑

j∈R
bj I

n+2
4 (R \ {j}) +O(ε). (4.78)

Computing the rank 2 tensor coefficients containing the r-vectors is now straightfor-
ward. They are obtained by repeated application of (4.72) on In5 (j1, j2). The result is
given by a combination of 5 box integrals and 20 triangle integrals and reads

T 5,2
j1j2

(R) = −
∑

l∈R

(

S−1
l j1
bj2 + S−1

l j2
bj1 − 2S−1

j1 j2
bl + bl S

{l}−1
j1 j2

)

In+2
4 (R \ {l})

+
1

2

∑

l∈R

∑

k∈S\{l}

(

S−1
l j2
S
{l}−1
k j1

+ S−1
l j1
S
{l}−1
k j2

)

In3 (R \ {l, k}), (4.79)

where the additional relation C.101 in [62] was used. Although not needed in this
work, it is interesting to mention that for N -point integrals with N ≥ 5, higher than
n = 4− 2ε dimensional integrals can be avoided under the condition that the external
kinematics is defined in 4 dimensions. This allows to write the metric tensor as a
linear combination of four linearly independent external vectors, which is the case for
N ≥ 5. As is shown in [62], tensor integrals with N ≥ 6 can be iteratively reduced
to 5-point integrals, and therefore form factors with N ≥ 5 are not needed. The case
N = 5 is, in a sense, the most complicated one. Therefore, arbitrary N -point tensor
integrals can be reduced to scalar integrals, and the endpoints of the reduction can
be chosen as I = {In2 (R), In3 (R), In+2

4 (R)}, which are known algebraically.

As it is clear from the above reduction formulae, tensor integrals are written as a
linear combination of many tensor coefficients, which are themselves a complicated
combination of the basis integrals. This leads to very large expressions in the interme-
diate steps of the amplitude reduction. Even after applying simplification algorithms,
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4 Calculation of multi-leg one-loop amplitudes

the final result can still be too complicated for a numerically fast evaluation of the
algebraic expressions. Also the vanishing of inverse Gram determinants in certain
regions of phase space can lead to numerical instabilities when integrating over the
phase space. Cancellations of Gram determinants among gauge invariant subsets of
Feynman diagrams potentially soften the numerical instabilities. Nevertheless, this
doesn’t guarantee numerical stability. A possible solution is to stop the tensor reduc-
tion at the point where inverse Gram determinants, the 1/B-terms, are introduced.
This leads to basis functions which now also include the above integrals with up to
three Feynman parameters in the numerators, which have to be evaluated numeri-
cally. The prize to pay for the increased numerical stability is a significant slow-down
of the evaluation of the amplitude. Details on this method, which is not used for the
processes considered in this thesis, can be found in [62].
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Gluon induced multi-

Higgs production 5
5.1 Introduction

In order to establish the Higgs mechanism and confirm the Higgs sector of the SM, the
discovery of a Higgs-like boson is not sufficient. In addition, the predicted couplings
of fermions and gauge bosons to the Higgs boson, as well as the trilinear and quartic
Higgs self-couplings need to be confirmed experimentally. While Higgs-fermion and
Higgs-gauge boson couplings are measurable with accuracies of 10–40% at the LHC
[63] and in many channels considerably better at the International Linear Collider
(ILC) [64], the measurement of the trilinear and quartic Higgs self-couplings, which
are probed in double and triple Higgs boson production, respectively, are more cha-
llenging. For low Higgs masses not too much above the LEP limit (mH . 140 GeV),
the largest rates are obtained with the decay channel H → bb̄ dominating in this
mass regime. Unfortunately, at the LHC this search channel is not viable, because
of an overwhelming QCD background. The ILC, however, would allow the measure-
ment of the trilinear Higgs self-coupling to a precision of 20-30% in the low Higgs
mass regime [64, 65, 66, 67]. We note that in this regime a photon collider promises
an even better determination of the trilinear Higgs coupling [68, 69, 70]. For higher
Higgs masses, the ILC production cross section decreases due to the reduced phase
space. However, in this mass region, the vector boson pair decay channels open up
and allow for leptonic signatures that can be separated from the backgrounds at the
LHC [64, 71, 72, 73, 74, 75].

The dominant production mechanism for Higgs boson pairs at the LHC is gluon
fusion. We note that Higgs production in hadronic collisions can also proceed through
bottom quark fusion, bb̄→ nH, but in the SM the corresponding LO as well as NLO
[76] cross sections are negligible. In the MSSM, however, enhanced Yukawa couplings
can lead to comparable cross sections for gluon and bottom quark fusion [77].

The gluon fusion loop amplitude was first presented in [78]. For neutral Higgs boson
pairs in the Minimal Supersymmetric Standard Model (MSSM) the top/bottom-loop
contribution was evaluated in [79, 80]. Charged Higgs boson pairs including squark
effects were studied in [81]. Although the SM cross section for triple Higgs boson
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5 Gluon induced multi-Higgs production

production at the LHC can be expected to be small [65, 66], this expectation has to
be verified through explicit calculation. Only recently, a full calculation of the process
gg → HHH appeared in the literature [82] and confirmed that SM cross sections are
indeed too small to be observable at the LHC. However, it has to be stressed that
multi-Higgs boson production rates are very sensitive to physics beyond the Standard
Model (BSM) and should be scrutinised carefully in high energy experiments, as they
might point to new physics at high energy scales that are not directly accessible at
the given collider [83, 84]. A non-standard heavy quark that receives its mass via
the Higgs mechanism does not decouple [85], and therefore leads to a nonvanishing
contribution in heavy quark loop-induced processes. Furthermore, contributions of
higher dimensional operators might alter the SM cross section considerably [86]. Also,
in certain Little Higgs Models the Higgs pair production cross section is significantly
different from the SM cross section [87].

In this chapter, we present our calculation of double and triple Higgs boson produc-
tion via gluon fusion. This provides an independent check of the recent calculation
in [82], which employed different computational methods and tools. To go beyond
the findings of [82], we study higher dimensional operator effects on production rates
relative to the SM. The corresponding couplings are in principle only restricted by
unitarity constraints [88]. We also analyse amplification effects in supersymmetric
(SUSY) two-Higgs-doublet models (2HDMs).

5.2 Higgs boson properties

The SM Higgs mechanism provides fundamental mass terms for massive vector bosons
and fermions. The coupling strength of the Higgs boson is proportional to the mass
(squared) of the interacting fermion (gauge boson). The SM Higgs boson self interac-
tions, induced by the scalar potential

V =
m2

H

2 v2

(

Φ†Φ− v2

2

)2

, (5.1)

are also proportional to the Higgs mass squared. In unitary gauge one has

V =
m2

H

2
H2 +

λ3

3!
H3 +

λ4

4!
H4 (5.2)

with

λ4 = λ3/v =
3m2

H

v2
. (5.3)

Relation (5.3) between the trilinear and quartic Higgs self couplings is a genuine SM
prediction. To establish the SM Higgs mechanism, it has to be verified experimentally.
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5.2 Higgs boson properties

As already pointed out, the discovery of the Higgs boson and the measurement of its
couplings to fermions and gauge bosons by itself are not sufficient.

In general, the Higgs self-couplings change in extensions of the SM. By allowing for
higher dimensional operators of the type

∞
∑

k=1

gk
Λ2k

(

Φ†Φ− v2

2

)2+k

, (5.4)

the constraint (5.3) is relaxed. Magnitude and sign of λ3 and λ4 can be arbitrary up
to constraints imposed by unitarity. In order to guarantee the stability of the vacuum,
only the sign of the highest power of the Higgs field has to be positive. We note that
the addition of singlet Higgs fields preserves relation (5.3), but may lead to invisible
Higgs boson decays and diluted Higgs signals [89].

The ability to measure the Higgs self-couplings depends on the size of multi-Higgs
boson cross sections. As will be discussed below, SM rates are very small at the LHC
(see also [82]). It is thus interesting to consider extensions of the SM that allow for
amplified event rates. For Higgs pair production in gluon fusion this has been studied
in [79] in the context of the MSSM. Two amplification sources have been identified.
Firstly, the top and bottom Yukawa couplings are altered due to the mixing of the
Higgs fields. In the MSSM one has, at tree level,

λhtt̄ =
mt

v

cosα

sin β
,

λhbb̄ = −mb

v

sinα

cos β
, (5.5)

where

tan β =
v2

v1

and α =
1

2
arctan

(

M2
A +M2

Z

M2
A −M2

Z

tan 2β

)

, −π
2
≤ α ≤ 0 . (5.6)

Here, v1 (v2) is the vacuum expectation value of the Higgs doublet with weak hyper-
charge −1

2
(+1

2
). For sufficiently large tan β, the bottom-loop contribution to the

cross section becomes sizable in comparison to the top-loop contribution, leading to
a larger production rate. Secondly, internal Higgs propagators can become resonant
thereby enhancing the production rate. Both effects generally play a role in 2HDMs,
as will be discussed and quantified for triple Higgs boson production below.

We will now briefly review the features of 2HDMs that are important for our pur-
poses. The general potential of the 2HDM is given by [90, 91]

V (Φ1,Φ2) = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 + h.c.)

+
λ1

2
(Φ†1Φ1)

2 +
λ2

2
(Φ†2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)
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+

{

λ5

2
(Φ†1Φ2)

2 + [λ6(Φ
†
1Φ1) + λ7(Φ

†
2Φ2)](Φ

†
1Φ2) + h.c.

}

, (5.7)

with the complex Higgs-doublet fields acquiring the vacuum expectation values v1

and v2. After diagonalising the mass matrix one obtains the physical Higgs fields
h,H,A,H± and the Goldstone bosons G±, G. We are interested in the Higgs self-
couplings, which can be written in terms of the dimensionless parameters λi, i =
1, . . . , 7, appearing in (5.7). For the quartic couplings, one has

λhhhh = 3 cos4 αλ2 + 3 sin4 αλ1 + 6 cos2 α sin2 α (λ3 + λ4 + λ5)

− 12 cos3 α sinαλ7 − 12 sin3 α cosαλ6 ,

λHhhh = −3 cosα sin3 αλ1 + 3 cos3 α sinαλ2 −
3

2
cos 2α sin 2α (λ3 + λ4 + λ5)

+ 3(3 cos2 α sin2 α− sin4 α)λ6 + 3(cos4 α− 3 cos2 α sin2 α)λ7 ,

to be multiplied by M 2
Z/v

2. In the MSSM, the Higgs sector is constrained such that
only two of the seven input parameters are free. Choosing tan β and MA = λ6v

2 as
basic input, one recovers the MSSM values

λhhhh = 3 cos2 2α ,

λHhhh = 3 cos 2α sin 2α . (5.8)

As is well known, radiative corrections in the Higgs sector are large. The largest
ubiquitous correction is given by 3GFm

4
t/(
√
2π2 sin2 β) · ln(m2

t̃
/m2

t ). In our numerical
analysis for the MSSM all one-loop and leading two-loop corrections to Higgs masses
and couplings are included [25, 92]. For a discussion about reconstructing the Higgs
potential in the SUSY case, see [93].

5.3 Calculation

From a computational point of view loop amplitudes with five or more external legs
are challenging due to their combinatorial complexity. We employ the reduction tech-
niques introduced in chapter 4 which leads to a numerically stable algebraic represen-
tation of the amplitude.

5.3.1 Structure of the amplitude

The production processes pp → hh and pp → hhh proceed at the parton level via
gluon fusion in combination with a quark loop. Here h stands for the Higgs boson of
the SM or the light CP-even Higgs boson of the MSSM. Squarks in the loop have been
neglected. Their contributions vanish for large squark masses, due to their decoupling
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5.3 Calculation

property. In the SM, only the top quark loop leads to a non-negligible cross section
at the LHC. For triple Higgs boson production,

g(p1, λ1) + g(p2, λ2)→ h(p3) + h(p4) + h(p5) , (5.9)

with pi defining the 4-momenta and λ1,2 specifying the gluon helicities, the Feynman
diagrams are classified in Fig. 5.1. On the diagrammatic level 3-, 4- and 5-point
topologies can be distinguished. Each topology involves a different combination of

P : B:

T1: T2:

Figure 5.1: Illustration of different topologies to the process gg → HHH.

coupling constants. Here, we only discuss the structure of the SM amplitude. In
2HDMs one has additional tree structures from the heavy Higgs boson H attached
to the quark loop. The pentagon topology P contains no Higgs self-coupling. The
box topologies B are proportional to λ3, whereas the triangle topologies T1 and T2 are
proportional to λ4 and λ2

3, respectively. Subsequently, the amplitude can be expressed
as

Γ(gg → hhh) = δab TR
αs
4π

ε1,µε2,ν Mµν , (5.10)

Mµν = λ3
tthMµν

P + λ3 λ
2
tthMµν

B + λ4 λtthMµν
T,1 + λ2

3 λtthMµν
T,2 . (5.11)

The scattering tensor Mµν can be decomposed in terms of metric tensors and
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external momenta and, using momentum conservation, be expressed as

Mµν = Â gµν +
∑

j,l=1,4

B̂jl p
µ
j p

ν
l . (5.12)

By solving the Ward identitiesMε1p2 = 0,Mp1ε2 = 0, leading to five linear relations
among the tensor coefficients, or equivalently using axial gauge conditions (e.g. ε1 ·p2,
ε2 · p1), one can achieve a manifestly gauge invariant representation of the amplitude.
Introducing the abelian part of the gluon field strength tensor Fµν

j = εµj p
ν
j − pµj ε

ν
j it

reads

Mε1ε2 = A tr(F1F2) +
∑

j,l=3,4

Bjl p2 · F1 · pj p1 · F2 · pl . (5.13)

The amplitude coefficients A, Bjl are equal to Â, B̂jl, up to trivial factors. Bose
symmetry of the gluons and Higgs bosons leads to additional relations among them,
e.g.

B43(1, 2) = B34(2, 1)

B44(3, 4) = B33(4, 3). (5.14)

After determining all amplitude coefficients, verifying the Ward identities and Bose
symmetry served as a powerful check of our calculation.

It is useful to decompose the amplitude further into helicity components. Due to
parity invariance only two helicity amplitudes have to be known:

M−− =M++ ,

M−+ =M+− . (5.15)

Applying spinor helicity methods [42, 94], the polarisation vectors for ± helicities are
given by

ε+ µ
1 ε+ ν

2 = − [21]

〈12〉
tr−(1ν2µ)

2 s12

,

ε+ µ
1 ε− ν

2 =
〈2−|µ|1−〉√

2〈21〉
〈2−|ν|1−〉√

2[12]
, (5.16)

with tr−(1ν . . . ) ≡ [tr(p1/γ
ν . . . )−tr(γ5p1/γ

ν . . . )]/2 and the spinor inner products 〈ij〉 ≡
〈p−i |p+

j 〉, [ij] ≡ 〈p+
i |p−j 〉, where |p±i 〉 is the Weyl spinor for a massless particle with

momentum pi.
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This implies

M++ =
[21]

〈12〉
(

A− tr−(1323)

2s12

B33 −
tr−(1423)

2s12

B34

−tr−(1324)

2s12

B43 −
tr−(1424)

2s12

B44

)

(5.17)

and

M+− =
〈2−|3|1−〉
〈1−|3|2−〉

( tr−(1323)

2s12

B33 +
tr−(1324)

2s12

B34

)

+
〈2−|4|1−〉
〈1−|4|2−〉

( tr−(1423)

2s12

B43 +
tr−(1424)

2s12

B44

)

. (5.18)

Contrary to the ++ case, it is not possible to factor out a global spinorial phase in
the +− case without introducing denominators that in general aggravate numerical
problems.

5.3.2 Evaluation of the amplitude coefficients

Our goal was the analytical reduction of all diagrams, to allow for algebraic cancel-
lations of numerically dangerous denominators in the amplitude. These denominators
are so-called Gram determinants which are induced by reduction algorithms of Lorentz
tensor integrals. After generating all diagrams, using the QGRAF [95] program, we
used FORM 3.1 [40] to perform the gamma matrix algebra and to project the dia-
grams on the helicity components and amplitude coefficients. Further, by applying
the reduction algorithms for scalar and tensor integrals described in [62, 96], we ex-
pressed all amplitude coefficients as a linear combination of scalar integrals. As scalar
integral basis we chose 2-, 3- and 4-point functions (sij = (pi + pj)

2):

Id=n
2 (sij,m

2
q,m

2
q) ,

Id=4
3 (sij, skl, spr,m

2
q,m

2
q,m

2
q) ,

Id=6
4 (sij, skl, spr,m

2
q,m

2
q,m

2
q,m

2
q) ,

which were evaluated using LoopTools-2.2 [97]. The spurious UV pole of the 2-point
integral cancels when adding all diagrams. The full amplitude is composed out of 12,
24 and 31 different 2-, 3-, and 4-point functions. The complexity of the expressions is
induced by the number of independent scales, which is seven here. One may chose s12,
s23, s34, s45, s15, m

2
q, m

2
h. The coefficient of each function was exported to MAPLE

to apply simplification algorithms. Schematically,

Mλ1λ2 =
∑

k

simplify[Cλ1λ2
k ] Ik , Ik ∈ {In2 , I4

3 , I
6
4} . (5.19)
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In this way, we could achieve expressions with a simple denominator structure allowing
for a stable numerical evaluation. In the equal helicity case, λ1 = λ2, all Gram
determinants cancel. In the opposite helicity case, λ1 = −λ2, one Gram determinant
survives. The simplified expressions were then exported to Fortran code. Each of
these steps was completely automatised.

5.3.3 Numerical implementation

In order to compute numerical results for hadron colliders, the differential partonic
cross section has to be convoluted with parton distribution functions (PDFs) and
integrated over the 2→ 3-particle phase space. We employed the gluon density of the
MRST2002nlo PDF set [37], as implemented in LHAPDF [98], which also provides
the strong coupling constant as function of the renormalisation scale. In the MSSM
case, where the heavy CP-even Higgs boson H can be resonant, we used multichannel
Monte Carlo (MC) integration techniques [99, 100] with phase space mappings based
on [101, 102] and the adaptive MC integration package BASES [103].

The relevant quartic Higgs couplings were implemented in the program HDECAY
[25], which incorporates the routine FeynHiggsFast [104], in order to evaluate the
radiatively corrected Yukawa- and Higgs couplings and also the Higgs widths, as
discussed above.

5.4 Results

In this section we present and discuss the LHC cross sections for 2- and 3-Higgs boson
production. We use the following parameters throughout:

αs(MZ) = 0.120

α(0) = 1/137.036

mt = 178 GeV

mb = 4.7 GeV

mW = 80.41 GeV

mZ = 91.1875 GeV (5.20)

For 2-Higgs (3-Higgs) boson production, the factorisation scale µF and renormali-
sation scale µR were set to µF = µR = 2mH (3mH). The strong coupling constant αs
was taken at µR, but for the fine structure constant we used α(0). All results have
been calculated with a MC error of 0.5% or less.

In the following subsections we present SM cross sections for 2- and 3-Higgs boson
production and describe how BSM scenarios allow for observable enhancements of the
SM rates.
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5.4 Results

5.4.1 Multi-Higgs boson production in the SM

We begin with the gluon-fusion production cross section for 2 and 3 Higgs bosons.
Note that in both cases large next-to-leading order corrections are expected, leading
to K-factors as large as 2 like in the case of single Higgs boson production [105, 106],
since the infrared structure of these processes is identical (with a large contribution
from soft gluon effects).

B±∓

T±±

B±±

all
σ[fb]

mH [GeV]

200180160140120100

100

10

1

0.1

Figure 5.2: Total Higgs pair production cross section vs.mH at the LHC, as well as the
individual cross sections for box (B) and triangle (T) topologies with equal (++ /−−)
and opposite (+− /−+) helicity components.

In Fig. 5.2, we display the Higgs pair production cross section vs. mH at
√
s =

14 TeV. Our results show good agreement with [79] when PDF, scale and parameter
uncertainties are taken into account. The total cross section falls from about 30 to 6
fb in the Higgs mass range from 100 to 200 GeV. In addition to the total cross section,
the equal + + /−− and opposite +− /−+ helicity components of the cross section
are also shown. The triangle topologies only allow for a L = S = 0 interaction, i.e.
the +− /−+ helicity component is zero. Overall, the opposite helicity component is
more than an order of magnitude suppressed. Furthermore, a destructive interference
effect is visible between the box and triangle topologies.

In Fig. 5.3, the total cross section for triple Higgs boson production at the LHC is
plotted vs.mH . Our results agree with the recent calculation of [82] within MC errors.
Again one finds that the opposite helicity components of the cross section are more
than an order of magnitude suppressed. In the figure, the pentagon, box, and triangle
contributions are also shown separately. The latter, being proportional to λ2

3 and
λ4, are suppressed relative to the box and pentagon topologies. Due to interference
effects the contribution of the quartic Higgs self-coupling to the total cross section
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B±∓

P±∓
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Figure 5.3: The total 3-Higgs boson production cross section vs. mH at the LHC.
Equal and opposite helicity components of contributions from various topologies are
shown.

mH [GeV] 120 150 180

LHC σ [fb] 0.0623 0.0267 0.0126
VLHC σ [fb] 9.55 4.89 2.98

Table 5.1: Typical cross sections for triple Higgs boson production at the LHC and a
200 TeV VLHC.

is not negligible: it varies between +1% (mH = 100 GeV) and –57.5% (mH = 200
GeV). The destructive interference pattern between triangle, box and respectively box
and pentagon contributions is well-known. It can be understood from the fact that
the effective two-gluon n-Higgs boson operators contain a factor (−1)n [78]. As the
self-couplings increase with increasing Higgs mass, the box and triangle topologies
become more and more important relative to the pentagon contribution.

In Table 5.1 we give predictions for different values of the Higgs mass for the LHC
and a 200 TeV Very Large Hadron Collider (VLHC). We also note that a change in
the top mass best fit value from mt = 178 GeV to 172.5 GeV leads to a 15% decrease
of the cross section.

In Table 5.2, we compare the relative importance of the different topologies and
helicities at the VLHC.

Furthermore, the gluon fusion cross section is proportional to α2
s and thus very

sensitive to renormalisation scale variations, as exemplified in Fig. 5.4 for µ = µR =
µF . Here, the scale µ is varied around the central choice µ0 = 2mH and µ0 = 3mH for
2- and 3-Higgs boson production, respectively, by a factor µ/µ0 ∈ [1/3, 3]. From this
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σ [fb] all P±± B±± T±±1 T±±2 P±∓ B±∓

mH = 120 GeV 9.55 21.82 10.04 0.111 0.189 0.589 0.169
mH = 200 GeV 1.93 3.97 4.76 0.129 0.262 0.125 0.163

Table 5.2: Contributions of different topologies to triple Higgs boson production at a
200 TeV VLHC.

σ(µ)/σ(µ0)

µ/µ0

311/3

1.6

1.4
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1
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σ(µ)/σ(µ0)

µ/µ0
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1.2

1

0.8
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Figure 5.4: Renormalisation and factorisation scale dependence (µ = µR = µF ) of the
2-Higgs (left, µ0 = 2mH) and 3-Higgs (right, µ0 = 3mH) cross sections at the LHC.

we estimate a scale uncertainty of about 50%. Thus, large K-factors due to higher
order effects can be expected. In Table 5.3 we study the scale dependence of the cross
section for 3-Higgs boson production by varying the renormalisation and factorisation
scales independently for mH = 120 GeV. Note that the gluon luminosity decreases
with increasing scale µF , because in 3-Higgs boson production the momentum of the
gluons has to be relatively high. Hence, the cross section shrinks with increasing µF
and µR. The table demonstrates that varying µR and µF in the same direction yields
a conservative estimate of the scale uncertainty.

σ[10−2fb] µF = mH 3mH 9mH

µR = mH 9.71 8.61 7.66
3mH 7.21 6.38 5.68
9mH 5.57 4.93 4.39

Table 5.3: Renormalisation and factorisation scale dependence of the gg → HHH
cross section for mH = 120 GeV at the LHC.
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5.4.2 Quality of the heavy-top approximation

Many years ago multi-Higgs boson production via gluon fusion was studied in [108]
in the heavy top limit. In the limit mt À mH , the fermion loop effectively becomes a
point interaction, and gg → nH couplings can be derived from the effective Lagrangian

Leff =
αs
12π

F a,µνF a
µν log

(

1 +
H

v

)

, (5.21)

where F a,µν is the field strength tensor of the gluon. Expanding the logarithm leads
to the Feynman rules for the Higgs self-couplings

ggH : i
αs
3π
δab(k1 · k2g

µν − kµ1kν2) ·
1

v
, (5.22a)

ggHH : i
αs
3π
δab(k1 · k2g

µν − kµ1kν2) ·
−1
v2
, (5.22b)

ggHHH : i
αs
3π
δab(k1 · k2g

µν − kµ1kν2) ·
2

v3
, (5.22c)

where k1 and k2 are the gluon momenta. The calculation of matrix elements is there-
fore reduced to a much simpler tree-level calculation.

For single Higgs boson production via gluon fusion this limit is well known to be
a good approximation [107]. In the context of multi-Higgs boson production, the
heavy top limit has been applied at the leading [108] and next-to-leading level [109].
In [72], the quality of the heavy top approximation has been studied for Higgs pair
production, and agreement at the O(10%)-level for the total cross section, but large
discrepancies for kinematic distributions have been observed when comparing results
for mt → ∞ and physical mt. In Fig. 5.5 we compare our physical-mt results with
results in the heavy top limit. While there is reasonable agreement in the 2-Higgs
case for small Higgs masses, the heavy top limit fails completely in the 3-Higgs case.
To better understand this observation, we study the variation of the cross sections
with the internal quark mass mq for a fixed value of mH = 120 GeV in Fig. 5.6. We
see that in the 2-Higgs case the heavy top limit accidentally agrees with the result
for mq = mt (indicated by the vertical line). However, asymptotically the result for
finite mq approaches the mq → ∞ limit only for masses around 3 TeV. The same
holds for the 3-Higgs case, but here the result for mq = mt is an order of magnitude
smaller than the heavy top limit. In both cases the dominant contribution to the cross
section comes from the kinematic regime close to the top pair threshold sij ∼ 4m2

t .
We conclude that the heavy top limit is not applicable when calculating multi-Higgs
boson production cross sections and should not be used in experimental studies.
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Figure 5.5: Comparison of the total cross section for 2-Higgs (left) and 3-Higgs (right)
boson production vs. mH at the LHC, calculated for the physical value of mt and in the
mt →∞ limit.
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Figure 5.6: The total cross section for 2-Higgs (left) and 3-Higgs (right) production
vs. mq. The mq → ∞ limit is shown as horizontal line. The vertical line indicates the
actual value of the top quark mass.

5.4.3 Multi-Higgs boson production beyond the SM

If one allows for higher dimensional operators in the Higgs sector the trilinear and
quartic Higgs self-couplings are no longer directly related to the Higgs mass. This has
motivated us to study the variation of the cross section with respect to λ3, λ4 and mH .
In Fig. 5.7 we illustrate the variation of the cross section for 3-Higgs boson production
with λ3 and λ4 (mH is fixed), and in Fig. 5.8 the variation with λ3 and mH (λ4 is
fixed). Fig. 5.9 shows the variation with λ3 and mH for the 2-Higgs boson production.
The variation of the cross section with λ3, λ4 and mH is mainly due to phase space
and interference effects. When mH increases, the phase space is reduced and the PDF
and αs are to be taken at a higher value of x and a larger scale. All effects conspire and
lead to a smaller cross section. The dependence on λ3 is mainly due to the interference
pattern. In Fig. 5.10 a slice of the contour plot Fig. 5.8 is shown for mH = 160 GeV.
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Figure 5.7: Contour plot showing the variation of the cross section for 3-Higgs boson
production with λ3 and λ4 for mH = 120 GeV at the LHC. The numbers denote the
cross section normalised to σSM(mH = 120 GeV) = 0.0623 fb.

When the trilinear coupling λ3 becomes negative, the destructive interference between
box and pentagon topologies turns into a constructive one, which explains the rise of
the cross section in this regime. Increasing the coupling to positive values beyond
the SM value first enhances the destructive interference effect, but finally the box
topologies win and the full cross section grows again. The minimum moves to lower
values of λ3 when the Higgs mass gets larger, due to the growth of the Higgs self-
couplings. We note that the same effect happens in the 2-Higgs case. It implies that
even a precise measurement of the cross section by itself would not lead to a unique
determination of the trilinear coupling.

This reasoning allows now to understand the variation of the cross section with
λ4 in Fig. 5.7. For negative values of λ3 the box and pentagon topologies interfere
constructively and the relative importance of the triangle contribution proportional to
λ4, λ

2
3 is further reduced, resulting in an almost flat dependence on λ4. For positive λ3

the contribution of the triangle topologies is pronounced by destructive interferences
between the various topologies leading to a slight variation with λ4. As can be seen
from Fig. 5.7, for λ3/λ

SM
3 in the range 0.5 to 1.5 and λ4/λ

SM
4 in the range -3 to 3 the

cross section varies from 0.03 to 0.1 fb.

In principle the couplings are restricted only by unitarity bounds. To illustrate
the effects of large couplings that approach the nonperturbative regime, we list in
Table 5.4 cross sections for values |λ3/v|, |λ4| ∼ 4π. We see that nonperturbative
effects in the Higgs sector may well lead to sizable triple Higgs cross sections of up to
30 fb at the LHC.

As already pointed out in section 5.2, in 2HDMs one finds two amplification ef-
fects for multi-Higgs boson production. These are illustrated in Fig. 5.11 (3-Higgs
production) and in Fig. 5.12 (2-Higgs production) for the MSSM. The amplification
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Figure 5.8: Contour plot showing the variation of the cross section for 3-Higgs boson
production with λ3 and mH for λ4 = λSM4 at the LHC, normalised to σSM(mH =
120 GeV) = 0.0623 fb.
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Figure 5.9: Contour plot showing the variation of the cross section for 2-Higgs boson
production with λ3 and mH at the LHC, normalised to σSM(mH = 120 GeV) = 20.7 fb.

effects for 2-Higgs production have already been observed in [71]. Fig. 5.12 shows a
comparison with the calculation in this thesis. They are in good agreement up to
unknown input parameters like mt, αs and pdf choices. The authors of [71] also in-
cluded a K-factor of 1.9. Since the qualitative behaviour for the 2-Higgs production
is the same as for 3-Higgs production, this case is not separately discussed. For
small tan β = 3 the heavy CP even Higgs boson may become resonant in some of
the topologies sketched in Fig. 5.1. This is illustrated in Figs. 5.11a, 5.12a. With
the given choice of parameters one sees for the 3-Higgs production that for mh > 109
GeV the H → hh channel opens up inducing a resonant amplification of the box and
triangle topologies, B and T2. For mh > 111 GeV also the H → hhh channel opens
up leading to an enhancement of the triangle topology T1 proportional to the quartic
coupling λHhhh. Since this triangle contribution is suppressed relative to the other
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Figure 5.10: Variation of the cross section for 3-Higgs boson production with λ3 for
mH = 160 GeV and fixed λ4 = λSM

4 at the LHC, normalised to σSM(mH = 120 GeV) =
0.0623 fb.

σ[fb] λ4 = −4π 0 4π

λ3/v = −4π 28.0 30.7 33.4
0 0.169 0.0271 0.0428
4π 12.2 14.0 15.8

Table 5.4: 3-Higgs boson production cross sections for extreme choices of the Higgs
couplings for mH = 150 GeV at the LHC.

topologies the effect is hardly visible in the plot (tiny peak next to the right vertical
line). We see that in BSM scenarios resonant amplification may lead to triple Higgs
production reaching a few fb (not taking into account the expected K-factor of 2),
which would be observable at the SuperLHC or even at the LHC.

For large tan β = 50 the top contribution is largely suppressed and the bottom
loops become dominant due to the enhanced Yukawa couplings. Resonance effects
on the other hand are now negligible, because the Higgs width ΓH is a factor 50
larger than at small tan β = 3. Based on the double Higgs production results in
[77], we expect therefore that the LO triple Higgs production cross section in bottom
quark fusion is smaller than in gluon fusion. As the pentagon contribution to the
cross section is proportional to λ6

hbb̄
, all other topologies are much less relevant. For

mA → ∞, mh approaches its maximal value. In this limit one obtains the SM value
for the cross section as shown in Fig. 5.11b. The minimum around mh ∼ 115 GeV
arises due to the interplay of the Yukawa- and Higgs self-coupling, see Figs. 5.13c,d.
Although the cross section rises for decreasing mh, it is always well below 1 fb in the
range considered. Note that in the 2-Higgs boson production case the bottom loops
are more pronounced than in the 3-Higgs case, because the scalar loop integrals are
probed in different kinematical regions.
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Figure 5.11: Cross section for 3-Higgs boson production vs. mh at the LHC in the
MSSM for tanβ = 3 (left) and tanβ = 50 (right) including mixing effects (At = 1TeV,
µ/TeV = −1 (+1) for tanβ = 3 (50)). The vertical lines in the left plot indicate the 2-
and 3-Higgs boson thresholds (H → hh and H → hhh).

In principle, also squark loops have to be considered to obtain a complete prediction
for hhh-production in the MSSM. In the heavy squark limit this contribution decouples
and approaches zero in contrast to the quark contribution. For the present illustration
of amplification effects we have neglected squark effects.

5.5 Summary

We presented our calculation of the loop-induced processes gg → HH and gg →
HHH, and discussed the resulting cross sections and their experimental accessibility
at the LHC in the SM and beyond. The contributions from pentagon, box and trian-
gle topologies exhibit strong interference patterns and large differences in the equal
and opposite gluon helicity components. Generally, the opposite helicity component,
which corresponds to a gluon pair with helicity 2, is suppressed by more than an order
of magnitude. Furthermore, the triangle topologies are suppressed relative to the box
and pentagon topologies. This results in a complex dependence of the cross sections
on the trilinear and quartic Higgs self-couplings. The cross section for 3-Higgs boson
production varies strongly with the quartic Higgs self-coupling. For mH = 100 GeV
and 200 GeV it affects the cross section by +1% and −57.5%, respectively. This
effect is due to the fact that the Higgs self-coupling contributions are enhanced for
higher Higgs masses and that there is a strong destructive interference between box
and pentagon contributions. The estimated renormalisation and factorisation scale
uncertainty of about 50% (variation by a factor 3) is typical for leading-order QCD
cross sections. We also investigated the applicability of the heavy top quark approx-
imation for 2- and 3-Higgs boson production and demonstrated that the heavy top
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Figure 5.12: Cross section for 2-Higgs boson production vs. mh at the LHC in the
MSSM for tanβ = 3 (left) and tanβ = 50 (right) including mixing effects (At = 1TeV,
µ/TeV = −1 (+1) for tanβ = 3 (50)) and a K-factor of 1.9. A top-quark mass of
mt = 175 GeV and µF = µR = MH have been used. A comparison is shown with the
results of [71] (dashed curve).

limit is not applicable when calculating multi-Higgs boson production cross sections.
In summary, we find that the SM cross sections for 3-Higgs boson production are
too small for observation at the LHC. The measurement of the SM trilinear Higgs
self-coupling in 2-Higgs boson production, on the other hand, may be feasible at a
luminosity-upgraded LHC, termed SuperLHC, collecting 6000 fb−1 of data, as long as
QCD backgrounds are not prohibitively large [64, 110].

The experimental prospects improve if favourable extensions of the SM are realised
in nature. We have demonstrated that cross sections for triple Higgs boson production
can be as large as O(10) fb if one allows for higher dimensional operators or considers
2-Higgs-doublet models, e.g. the MSSM. Here, two amplification effects have been
analysed. First, we studied Yukawa coupling enhancements through mixing that lead
to important bottom-loop contributions. For the 3-Higgs case the cross section re-
mains below 1 fb for the parameters considered and tan β = 50. Secondly, we demon-
strated that resonance effects due to an internal heavy Higgs boson decaying into 2
or 3 light Higgs bosons can enhance the 3-Higgs cross section into the potentially ob-
servable O(fb) region. Higher dimensional operators lead to essentially unconstrained
trilinear and quartic couplings. Strong coupling of the order |λ3/v|, |λ4| ∼ 4π leads
to cross sections of up to 30 fb. This implies that already the LHC should be able
to restrict the λ3-λ4 plane. Although these bounds will not be very restrictive, they
may still exclude parameter regions that exhibit nonperturbative effects, which would
be an important qualitative finding. A more stringent bound on λ3 alone will be ob-
tained from Higgs pair production. We conclude that multi-Higgs boson production
at the luminosity-upgraded LHC is an interesting probe of Higgs sectors beyond the
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SM and warrants further study. A 200 TeV VLHC would of course further improve
the sensitivity.
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Figure 5.13: Normalised Higgs- and Yukawa-couplings of the CP-even MSSM neutral
Higgs bosons as a function of mh for tanβ = 3 (top) and tanβ = 50 (bottom) including
the same mixing effects as in Fig. 5.11.
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NLO QCD Cross section

for PP → V V + jet 6
6.1 Introduction

The search and interpretation of new physics at the LHC requires a precise under-
standing of the Standard Model. The quality of phenomenological analyses strongly
depends on accurate QCD predictions and reliable error estimates. At the LHC, most
analyses require perturbative calculations to at least NLO. Theoretical predictions for
QCD processes at LO are usually affected by a large renormalisation and factorisa-
tion scale dependence. This uncertainty is significantly reduced, if NLO corrections
are taken into account and getting comparable to the experimental systematic un-
certainty. The scale uncertainty of background processes can be very sensitive on
experimental cuts, which are employed in order to increase the signal-to-background
ratio, and therefore higher order calculations are mandatory for reliable phenomeno-
logical analyses. Furthermore, additional partonic channels can contribute for a given
scattering process at NLO, which are absent at LO. This can have a significant impact
on differential distributions, which are used in phenomenological analyses. The need
for higher order calculations at the LHC is summarised in an experimental“NLO wish-
list” of processes for which QCD corrections are desired, see Table 1.1 in chapter 1,
which has been recently updated at the Les Houches workshop in summer 2007.

A NLO calculation contains two primary components: virtual corrections, where
internal lines are added to the LO Feynman diagrams, and real corrections, where an
additional parton is radiated. Each contribution is separately divergent. Only the
combination of the two components leads to a finite result. Singularities originating
from collinear initial states do not cancel in the amplitude, they have to be absorbed
into the definitions of the parton distribution functions. Well-developed techniques
exist for the computation of the real emission matrix elements (recurrence relations,
Feynman diagrammatic approaches) and the extraction of the singularities which oc-
cur when integrating over the phase space of the additional unresolved parton (e.g.
dipole subtraction formalism, phase space slicing). Standard reduction algorithms
such as the Passarino-Veltman method can be applied to one-loop virtual amplitudes
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which involve maximally four particles. Therefore, many NLO predictions are avail-
able for 2→ 2 scattering processes.

At the LHC, however, many interesting signatures lead to multi-particle (2 →
3, 4) final states and the computation of the virtual corrections is the bottleneck for
obtaining NLO predictions for the processes in Table 1.1, which are considered most
important for LHC phenomenology. The difficulties one has to face in the evaluation
of multi-particle process at NLO has already been explained in chapter 4.

In this chapter, we investigate the first process in Table 1.1, the production of a
pair of electroweak vector bosons in association with a hard jet and show first results
for the computation of the virtual corrections.

The decay of the Higgs boson to EW vector bosons is one of the promising chan-
nels for Higgs production in the low mass range. Therefore, background processes
involving a pair of EW vector bosons have to be known with high precision. The case
where the Higgs boson is produced in association with a jet is also relevant, since
a significant fraction of produced Higgs bosons are associated with at least one high
transverse momentum hadronic jet. The additional jet activity leads to a more distinc-
tive kinematics which could significantly improve the Higgs boson search strategies,
as has been pointed out in a recent study, using LO matrix elements [111].

The calculation of PP → V V+jet at NLO will be especially important in under-
standing the background to this signal process. Its contribution typically reaches 10
to 30% [112] of the V V production cross section and therefore is an important source
of gauge bosons pairs at the LHC. The existence of a high pT jet in the final state
allows us to choose suitable cuts which can suppress the large QCD background. The
calculation of the virtual QCD corrections to qq̄ → V V g is also an important com-
ponent for a complete NNLO QCD calculation for the production of a pair of EW
vector bosons, which consists of three components: the real emissions with up to two
unresolved partons at tree-level, the one-loop diagrams with one unresolved parton
leading to both virtual and real contributions, and the computation of the two-loop
virtual contribution. The latter is currently also in progress [113].

6.2 Amplitude organisation

The computation of the hadronic V V + jet production cross section receives contri-
butions from the partonic processes qq̄ → V V g, qg → V V q, and q̄g → V V q̄. These
three channels are related by crossing relations to the amplitude qq̄V V g → 0, thus
only one matrix element has to be computed. The Feynman rule for the interaction
of a vector boson Vµ with a antifermion-fermion pair F̄1F2 is given by
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Vµ

F̄1

F2

= ieγµ
(

CR
1+γ5

2
+ CL

1−γ5

2

)

(6.1)

with the values of V , F̄1, F2, CR and CL

V F̄1F2 Zf̄ifj W+ūidj W−d̄jui
CL g−f δij

1√
2 sin θw

Vij
1√

2 sin θw
V †ji

CR g−f δij 0 0

where

g+
f = − sin θW

cos θW
Qf , g−f =

τ 3
f − sin2 θWQf

sin θW cos θW
. (6.2)

Qf is the electric charge of the quark f (f = u, d, c, s, t, b) in units of the proton
charge, τ 3

f is the third component of the weak isospin, θW is the weak mixing angle,
and V is the CKM quark mixing matrix [114], which describes the transformation
from the mass eigenstates to the weak-interaction eigenstates of the quarks.

In our calculation we only consider amplitudes containing a pair of Z bosons. Ex-
tending the calculation to a pair of W bosons does not pose a calculational problem,
only the couplings of the vector boson to the fermions have to be adjusted and a few
box diagrams due to the ZWW -vertex have to be included. We also set all appearing
quark masses to zero and therefore use V = 1.

The production of a pair of vector bosons in association with a large transverse
momentum jet is studied in lowest order QCD in [112, 115]. At tree level, there are
six Feynman diagrams contributing to the process, shown in Fig. 6.1. The virtual

g

q̄

q

Z

Z

Figure 6.1: Leading order Feynman diagrams for qq̄ → ZZg. Additional diagrams
result from the exchange of the momenta of the vector bosons.

corrections modify the LO partonic processes. At NLO, these corrections are induced
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by self-energy, vertex, box and pentagon corrections, one Feynman diagram for each
of these corrections is shown in Fig. 6.2. The whole set of diagrams can be found in
appendix B. The ‘t Hooft-Veltman regularisation scheme, see section 4.2, has been
used, providing a consistent treatment of the Dirac matrix γ5 in n-dimensional traces
of gamma-matrices. The Feynman diagrams have been generated with QGRAF [95],

Figure 6.2: Generic Feynman diagrams contributing to the virtual corrections for
qq̄ → ZZg. One example for a self-energy, vertex, box and pentagon correction is
shown. The whole set of diagrams can be found in appendix B.

and are further manipulated with Form [40] and MAPLE.
To set the notation, we consider the process

q(p1, λ1) + q̄(p2, λ2) + V (p3, λ3) + V̄ (p4, λ4) + g(p5, λ5)→ 0. (6.3)

For massless quarks the allowed helicities are λ1 = λ2, λ5 ∈ {−,+}, λ3, λ4 ∈ {−, 0,+}
which leads in general to 36 different helicity amplitudes. For the W case, only 18
helicity amplitudes have to be evaluated, since the W boson couples only to left-
handed fermions. In the spinor formalism, the amplitude can be written as (|pλi 〉 ≡
|iλ〉)

Mλ1λ2λ3λ4λ5 = ελ3
3,µ3

ελ4
4,µ4

ελ5
5,µ5
〈2λ2 |Γµ3µ4µ5 |1λ1〉. (6.4)

Before turning to helicity methods we want to discuss the discrete symmetries which
relate different helicity amplitudes with each other. Let us first discuss the ZZ case.
Bose symmetry (B) between the two Z bosons and the parity transformation (P) act
in the following way on the amplitude:

BMλ1λ2λ3λ4λ5
ZZ (1, 2, 3, 4, 5; g+

Z , g
−
Z ) =Mλ1λ2λ4λ3λ5

ZZ (1, 2, 4, 3, 5; g+
Z , g

−
Z )

PMλ1λ2λ3λ4λ5
ZZ (1, 2, 3, 4, 5; g+

Z , g
−
Z ) =M−λ1−λ2−λ3−λ4−λ5

ZZ (1, 2, 3, 4, 5; g−Z , g
+
Z )
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BPMλ1λ2λ3λ4λ5
ZZ (1, 2, 3, 4, 5; g+

Z , g
−
Z ) =M−λ1−λ2−λ4−λ3−λ5

ZZ (1, 2, 4, 3, 5; g−Z , g
+
Z )

Of course only Bose symmetry is a true symmetry of the amplitude. Parity is broken,
as g+

Z 6= g−Z , but the parity transformation can be used to map amplitude represen-
tations onto each other. With these relations it is easy to see that only 12 helicity
amplitudes are independent:

M−−−−±
ZZ , M−−00±

ZZ , M−−++±
ZZ ,

M−−−+±
ZZ , M−−−0±

ZZ , M−−+0±
ZZ (6.5)

The others are obtained by applying B to the second row and then P to the resulting 18
amplitudes. For charged vector boson pairs the charge (C) and parity transformation
lead to:

CMλ1λ2λ3λ4λ5
WW (1, 2, 3, 4, 5) =M−λ1−λ2−λ4−λ3−λ5

WW (1, 2, 4, 3, 5)

PMλ1λ2λ3λ4λ5
WW (1, 2, 3, 4, 5) =M−λ1−λ2−λ3−λ4−λ5

WW (1, 2, 3, 4, 5)

CPMλ1λ2λ3λ4λ5
WW (1, 2, 3, 4, 5) =Mλ1λ2λ4λ3λ5

WW (1, 2, 4, 3, 5) (6.6)

Now we derive explicit expressions for the polarisation vectors for the gauge bosons.
For the massive Z bosons, we introduce two light-like auxiliary vectors k3, k4 such
that p3 + p4 = k3 + k4 [116]. One finds:

p3 =
1

2
[(1 + β) k3 + (1− β) k4]

p4 =
1

2
[(1 + β) k4 + (1− β) k3]

⇔

k3 =
1

2β
[(1 + β) p3 − (1− β) p4]

k4 =
1

2β
[(1 + β) p4 − (1− β) p3] (6.7)

where β =
√

1− 4M2
V

s34
. The polarisation vectors for the different helicities/spins of the

massive vector bosons can now be written as

ε+
3µ =

1√
2

〈4−|µ|3−〉
〈43〉

ε−3µ =
1√
2

〈3−|µ|4−〉
[34]

ε0
3µ =

1

2MV

[(1 + β)k3µ − (1− β)k4µ]
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ε+
4µ =

1√
2

〈3−|µ|4−〉
〈34〉

ε−4µ =
1√
2

〈4−|µ|3−〉
[43]

ε0
4µ =

1

2MV

[(1 + β)k4 µ − (1− β)k3 µ]. (6.8)

The two helicity states of the gluon are given as usual by

ε+
5µ =

1√
2

〈j−|µ|5−〉
〈j5〉

ε−5µ =
1√
2

〈5−|µ|j−〉
[5j]

, (6.9)

where j is a reference vector to be chosen in a convenient way.

If λ1 = λ2 = −, a convenient choice forM−−λ3λ4− is j = 2 and forM−−λ3λ4+ j = 1.
In this way the spinor expression from the gluon can be attached to the spin chain.
The product of the polarisation vectors of the vector bosons define projectors on the
corresponding helicity states. We need

ε+µ
3 ε+ ν

4 =
[34]

〈34〉
1

4 s34

tr−(3ν4µ)

ε−µ3 ε− ν4 =
〈34〉
[34]

1

4 s34

tr−(3µ4ν)

ε0µ
3 ε0 ν

4 =
1

4M2
V

[(1 + β)kµ3 − (1− β)kµ4 ][(1 + β)kν4 − (1− β)kν3 ]

ε−µ3 ε+ ν
4 = −〈35〉[45]

[35]〈45〉
1

32 s34 k3 · p5 k4 · p5

tr−(453µ) tr−(453ν)

ε−µ3 ε0 ν
4 =

1

2
√
8MV

tr−(453ν)

[34]〈45〉[53] [(1 + β)kν4 − (1− β)kν3 ]

ε+µ
3 ε0 ν

4 =
1

2
√
8MV

tr−(354µ)

〈35〉[54]〈43〉 [(1 + β)kν4 − (1− β)kν3 ] (6.10)

with

tr−(3ν4µ) = tr((1− γ5)(3ν4µ)) = 4 [kµ3k
ν
4 + kν3k

µ
4 − k3 · k4g

µν − εFORM (3ν4µ)].

By multiplying M−−λ3λ4+ with 〈5−|1|2−〉/〈5−|1|2−〉 and M−−λ3λ4− with
〈1−|2|5−〉/〈1−|2|5−〉 one can close the spinor string to a trace:

M−−λ3λ4− = − ελ3 µ3

3 ελ4 µ4

4

2
√
2〈12〉[25]2

tr−(125µ52Γ
µ3µ4µ5)
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M−−λ3λ4+ = − ελ3 µ3

3 ελ4 µ4

4

2
√
2[12]〈15〉2

tr−(1µ5512Γ
µ3µ4µ5). (6.11)

In this representation it is easy to extract a global spinorial phase for each helicity
amplitude such that the remaining polynomial terms can be processed efficiently with
standard computer algebra.

The colour structure of the amplitude is trivial, since it simply proportional to the
SU(3) generator T a, a being the colour index of the gluon. Three independent colour
structures can be identified, being proportional to the group theoretical invariants CF

and CA, while the third structure, proportional to Nf , the number of quark flavors,
originates from box diagrams containing a fermion loop.

The scalar integral basis for the helicity amplitudes consists of 11, 25 and 26 two-,
three- and four-point functions with massless internal lines. Analytical formulae can
be found, for instance in [117]. Care has to be taken with these formulae, since the
analytic continuation of certain dilogarithms is not trivial [60]. We evaluate the most
complicated scalar box function in appendix A.

6.3 Checks of the calculation

We have applied several checks to our calculation. All Bose and Parity relations have
been verified for the LO matrix elements. We numerically compared both LO cross
sections and squared amplitudes (summed over all helicities) with Madgraph [118]
and found complete agreement. The Ward identity of the amplitude, Mε3ε4p5 = 0,
obtained by replacing the momentum of the gluon, pµ5 , with its polarisation vector,
εµ5 , has been verified. Finally, we compared Born and loop amplitudes with a second,
completely independent implementation of a collaborating group. Agreement has been
found for all helicity amplitudes with at least eight digits.

6.4 Results from the virtual contribution

In this section, we show numerical results for the virtual corrections for the scattering
process qq̄ → ZZg, which is the bottleneck for analysis of this process at NLO. The
real corrections, which ensure the cancellation of the soft and collinear singularities,
but also contribute to the finite part, are not yet implemented. In order to obtain
a finite answer when integrating over the phase space, all coefficients of divergent
basis integrals ( two-point and singular three-point functions) have been set to zero.
The fermionic contributions ∝ Nf are numerically small and are not included in
the results shown below. The CTEQ6M parton distribution functions from the Les
Houches Accord (LHAPDF) [98] for the initial quarks (q = u, d, c, s, b) have been
used. The strong coupling αs has been evaluated at the Z boson mass scale, via the
LHAPDF routines. As electroweak input the Fermi coupling constant GF = 1.16639 ·
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6 NLO QCD Cross section for PP → V V + jet

10−5 GeV−2, the W mass mW = 80.419 GeV and the Z boson mass mZ = 91.188
GeV have been used. From this, the electroweak mixing angle sin2 θW = 0.222 and
the fine structure constant α = 1/132.507 are derived.

6.4.1 Total cross sections

Table 6.1 shows numerical results for the LO cross sections and additionally included
virtual corrections for the helicity configuration − − + + +. Three different cuts on
the scattering amplitude have been applied. Cut 1 requires the transverse momen-
tum of the gluon to be larger than 20 GeV which is necessary for the observation of
the jet in the detector. It turned out that this cut was not sufficient for obtaining
a numerical stable result when evaluating the virtual amplitudes. Therefore, we ad-
ditionally restricted the angles of the 3-momenta of the final particles to the beam
axis and among each other. We required the angles to be larger than 1.5◦(4.5◦) in
the lab frame for cut 2(3). We also required the volume calculated in the lab frame
via (pi × pj) · pk)/(|pi||pj||pk|) of the 3-vectors to be larger than 0.0003 (0.0009) for
cut 2(3). These two technical cuts provided a numerically stable total and differential
cross section. The technical cuts 2 and 3 reduce the LO cross section by 13 (41)%.

σLO[fb] σLO+virt[fb] σLO+virt/σLO
cut1 329
cut2 287 475 1.65
cut3 194 319 1.64

Table 6.1: Total cross sections for qq̄ → ZZg for the helicity configuration −−+++
with technical cuts

The calculated virtual contributions are sizable and increase the LO cross section by
65%, fairly independently of the two technical cuts. A further improvement of the an-
alytical representation of the helicity amplitudes will potentially allow us to reduce or
eventually discard the technical cuts completely. A direct cut of numerically unstable
points in the Lorentz-invariant amplitude would also strongly reduce the effect of the
technical cut.

6.4.2 Distributions

Figs. 6.3 to 6.14 show several differential cross sections of parameters which are often
used in phenomenological studies of hadronic processes (see section 3.2 for the def-
initions). The red/solid curve always shows the LO contribution, the green/dashed
curve includes the virtual corrections. The statistical error bars from the Monte-Carlo
integration are also shown. The insets show the ratio of these two curves. Results are
shown for cut 2 (see sec. 6.4.1). The distributions for cut 3 are not shown, but the
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6.4 Results from the virtual contribution

shape and the ratio do not change significantly. The results indicate that the NLO
QCD corrections are sizable, for a decisive statement the contributions of the real
emissions to the distributions have to be included.

A precise prediction at NLO for such distributions allows to reliably devise ex-
perimental cuts which help to distinguish the signal process PP → H+jet from the
background. This potentially enhances the signal-to-background ratio and leads to
a more precise extraction of model parameters from data. The signal process for in-
stance would be visible as a peak in the invariant mass distribution dσ/dMZZj, its
width depending on the decay width of the Higgs boson which increases with its mass.
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Figure 6.3: The gluon transverse momentum distribution for qq̄ → ZZg at the LHC
for the helicity configuration −−+++. Technical cuts have been applied. The red/solid
line shows the LO contribution, the green/dashed line additionally includes virtual
corrections. See the main text for more detailed information. The inset shows the
ratio of the LO+virtual to the LO distribution.
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Figure 6.4: Transverse momentum distribution for a Z boson. Details as in Fig. 6.3.
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Figure 6.5: Pseudo-rapidity distribution for the gluon. Details as in Fig. 6.3.
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Figure 6.6: Pseudo-rapidity distribution for a Z boson. Details as in Fig. 6.3.
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Figure 6.7: Invariant mass distribution for the sum of the three final states, ZZg.
Details as in Fig. 6.3.

89



6 NLO QCD Cross section for PP → V V + jet

dσLO+virt

dσLO

400300200

2
1.6
1.2
0.8
0.4

0

LO+virt

LO

MZZ [GeV]

d
σ
/d

M
Z

Z
[f
b
/G

eV
]

400350300250200150

16

14

12

10

8

6

4

2

0

Figure 6.8: Invariant mass distribution for the Z boson pair. Details as in Fig. 6.3.
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Figure 6.9: Invariant mass distribution for a Zg pair. Details as in Fig. 6.3.
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Figure 6.10: Distribution of the distance ∆RZZ of the Z boson pair. Details as in
Fig. 6.3.
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Figure 6.11: Distribution of the distance ∆RZg of a Z boson and the gluon. Details
as in Fig. 6.3.
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Figure 6.12: Distribution of difference of the azimuthal angles φ of a Z boson and a
gluon. Details as in Fig. 6.3.
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Figure 6.13: Distribution of the polar angle θ of the gluon. Details as in Fig. 6.3.
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Figure 6.14: Distribution of the polar angle θ of a Z boson. Details as in Fig. 6.3.
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Summary 7
In this thesis, production processes related to Higgs physics at the upcoming Large
Hadron Collider at CERN were considered. The discussion of these processes requires
a thorough introduction of the underlying theoretical aspects of Higgs physics in a
quantum field theoretical framework and a description of Higgs phenomenology at
the LHC. First, the Higgs mechanism and constraints on the mass of the SM Higgs
boson were explained in detail. Moreover, production modes and decay channels of
the Higgs boson, relevant at the LHC were presented. Subsequently, we described
the framework for perturbative calculations of cross sections involving hadrons, the
proton being an example and used as a projectile at the LHC. This is necessary since
hadrons are bound states of quarks and gluons and not directly accessible with pertur-
bative methods. Due to the property of asymptotic freedom of the underlying theory,
high energy collisions of hadrons can be divided into a soft part and a hard scattering
process, described by the parton model. The soft part is perturbatively inaccessible,
but can be parameterised in terms of universal and measurable parton distribution
functions. Contrary to the soft part, reliable theoretical predictions with perturbation
theory can be obtained for the hard scattering process involving quarks and gluons.
The conceptual complications appearing at higher orders were qualitatively discussed.
Finally, special emphasis has been placed on the presentation of efficient methods of
multi-leg one-loop amplitudes which are crucial for precise predictions of scattering
processes at the LHC. The spinor helicity formalism and colour decomposition en-
ables us to decompose scattering amplitudes into simpler pieces. At the loop level,
these are usually divergent. Details have been given on the regularisation of these
divergences and the required renormalisation of the theory. A detailed introduction
into a new reduction algorithm for multi-leg one-loop integrals avoiding the deficien-
cies of standard algorithms finished the description of the theoretical framework and
calculational methods needed in this thesis.

Two classes of scattering processes which involve multi-leg one-loop integrals were
calculated and analysed in the phenomenological part of this work. The study of
multi-Higgs boson production via gluon fusion principally enables us to reconstruct
the SM Higgs potential, the basic ingredient of the Higgs mechanism which sheds light
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on the question where elementary particles get their mass from. The SM Higgs poten-
tial implies trilinear and quartic self-interactions of the Higgs boson which have to be
confirmed experimentally. The production of two or three Higgs bosons via gluon fu-
sion is loop-induced, leading to complicated loop integrals. These were calculated with
the application of new reduction methods. We studied the experimental accessibility
at the LHC in the SM and beyond. We found that the contributions from pentagon,
box and triangle topologies show a strong interference pattern, only the latter being
sensitive to the quartic Higgs coupling for 3-Higgs production. The cross section for
3-Higgs production can be very sensitive to the variation of the quartic Higgs cou-
pling. For a Higgs mass of mH = 200 GeV for instance, it affects the cross section
by -57.5%. We also studied the dependence of the cross sections on the unphysical
renormalisation scale µR and factorisation scale µF . Setting µR = µF , a variation
by a factor of 3 exhibited an uncertainty of about 50%, typical for LO QCD cross
sections. The application of the heavy top approximation, important for single Higgs
production, would allow for a NLO calculation, thereby reducing the scale uncertain-
ties. However, a comparison of total cross sections for 2- and 3-Higgs production,
computed with exact matrix elements and in the limit mt →∞, proved that this ap-
proximation is not applicable for multi-Higgs production. In summary, the SM cross
sections for 3-Higgs production are too small to be observed at the LHC, making the
quartic coupling experimentally inaccessible. The experimental situation improves in
certain extensions of the SM. Magnitude and sign of the trilinear and quartic coupling
can be arbitrary, if one includes higher dimensional operators in the Higgs potential
in the framework of an effective theory. This potentially leads to strongly enhanced
cross sections. In 2-Higgs-doublet models, like the MSSM, two amplification effects
were observed. Contributions to the cross sections from bottom quark loops, negligi-
ble in the SM, are strongly enhanced for large tan β. Nevertheless, this amplification
effect doesn’t increase the 3-Higgs production cross section above 1 fb at the LHC.
However, resonance effects due to an internal heavy Higgs boson decaying into two
or three light Higgs bosons can enhance the 3-Higgs cross section into the O(10) fb
region, which is potentially observable. Multi-Higgs boson production therefore is an
interesting probe of Higgs sectors beyond the SM.

The second class of processes considers the hadronic production of a pair of elec-
troweak vector bosons in association with a jet at NLO. This level of accuracy is
mandatory for reliable theoretical predictions at the LHC. In fact, this process is of
high phenomenological relevance. The decay of the Higgs boson to a pair of vector
bosons is a promising channel for the Higgs search at the LHC in the low mass range,
and a significant fraction of Higgs bosons is produced in association with a hard jet.
The calculation of PP → V V+jet is important for understanding the background to
this process. The virtual QCD corrections qq̄ → V V g are also needed for a complete
NNLO QCD calculation for the production of a pair of electroweak vector bosons.

The calculation of PP → V V+jet is of considerable complexity. The most serious
challenge is the computation of the virtual corrections, which has been solved in this
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work by applying efficient reduction techniques for complicated one-loop (pentagon)
diagrams. The resulting analytic expressions are generated with highly automated
computer routines and translated into a flexible Fortran code, which can be employed
in the computation of differential cross sections of phenomenological interest. The
impact of these corrections has been shown for several differential distributions which
are typically used in phenomenological studies. The results indicate that the QCD
corrections are sizable and should be taken into account in experimental studies for the
LHC. The inclusion of the real corrections, necessary for a complete NLO prediction,
can be achieved with standard techniques and will be added in the near future.
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Analytical evaluation of a

one-loop scalar integral A
In this appendix, we evaluate the 3-mass box function In4 (s, t, s1, s2, s3, 0) with massless
propagators. The external momenta are denoted by pi, i = 1 . . . 4, and the Mandelstam
invariants by si = p2

i = −Si, s = (p1 + p2)
2 = −S, t = (p1 + p3)

2 = −T . p4 is chosen
to be lightlike, s4 = 0.

p2

p1

p3

1

2

3

4

z1z4(−p
2

1
)

−z2z4(p1 + p2)
2

p4

Figure A.1: Scalar box integral

After Feynman parametrisation and integration over the loop momentum, we obtain

In4 = Γ(4− n

2
)

∫

dz1dz2dz3dz4 δ(1−
4
∑

i=1

zi)
1

F4−n
2

F = S1z1z4 + S2z1z2 + S3z2z3 + z2z4S + z1z3T − iδ, (A.1)

where F can be also obtained from the single- and double-cuts of the box diagram,
as indicated in Fig. A.1. We apply the following parametrisation of the Feynman
variables (z1z2z3z4) → (uvxz), where the Jacobian of transformation is denoted by
detJ , and we use the notation x̄ = (1− x):

z1 = ux z
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A Analytical evaluation of a one-loop scalar integral

z2 = ū x z

z3 = v x̄ z

z4 = v̄ x̄ z

detJ = x x̄

The delta function transforms into δ(1− z), therefore we can substitute z = 1 and are
left with three integrations. The above choice leads to a simple starting point which
allows us to easily integrate over v. Performing the transformation, we obtain

F = xF̂
F̂ = uv̄x̄S1 + uūxS2 + ūvx̄S3 + ūv̄x̄S + uvx̄T − iδ . (A.2)

With n = 4− 2ε, we get

∂

∂v
F̂−1−ε = (−1− ε) F̂−2−ε · x̄ (−uS1 + ūS3 − ūS + uT ). (A.3)

Using Γ(4− n
2
) = Γ(2 + ε) = (1 + ε) Γ(1 + ε), we obtain

In4 = −Γ(1 + ε)

1
∫

0

du dv dx
x̄x−1−ε

x̄β

(

∂

∂v
F̂−1−ε

)

= −Γ(1 + ε)

1
∫

0

du dx
x−1−ε

β

(

F̂−1−ε(v = 1)− F̂−1−ε(v = 0)
)

,

where we introduced the shorthand notation

β = −uS1 + ūS3 − ūS + uT = u(S2 − U)− S + S3.

In the next step, we perform the x-integration.

F̂(v = 1) = uūxS2 + ūx̄S3 + ux̄T − iδ (A.4)

F̂(v = 0) = ux̄S1 + uūxS2 + ūx̄S − iδ (A.5)

Both terms in the integral are not regular in the limit x → 0, therefore we subtract
(and add) F̂−1−ε(v = 1, 0)|x=0. For (F̂−1−ε(v = 1, 0) − F̂−1−ε(v = 1, 0)|x=0) we can
safely set ε = 0. For the terms

F̂(v = 1)|x=0 = ūS3 + uT − iδ = A− iδ (A.6)

F̂(v = 0)|x=0 = uS1 + ūS − iδ = B − iδ (A.7)
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the x integration is trivial, we only need

1
∫

0

dxx−1−ε =

1
∫

0

dx
−1
ε

d

dx

(

x−ε
)

(A.8)

ε<0
= −1

ε

(

1|ε| − 0|ε|
)

= −1

ε
.

Now, we have

In4 = −
1
∫

0

du dx
1

x

1

β

[

(uūxS2 − ūxS3 + ūS3 − uxT + uT − iδ)−1 − (ūS3 + uT − iδ)−1
]

−
[

(−uxS1 + uS1 + uūxS2 − ūxS + ūS − iδ)−1 − (uS1 + ūS − iδ)−1
]

+ Γ(ε)

1
∫

0

du
1

β

[

(ūS3 + uT − iδ)−1−ε − (uS1 + ūS − iδ)−1−ε] . (A.9)

In the first two lines of A.9, the 1/x cancels by construction. We use (ax+b)−1−b−1 =
−ax · [(ax + b)b]−1, the Taylor expansion y−1−ε = 1/y − ε log(y)/y and the trivial
integral

1
∫

0

dx
a

ax+ b− iδ = log

(

a+ b− iδ
b− iδ

)

to get

In4 =

1
∫

0

du
1

β

[

1

A
log

(

uūS2 − iδ
A− iδ

)

− 1

B
log

(

uūS2 − iδ
B − iδ

)]

+ Γ(ε)





1
∫

0

du
1

β

(

1

A
− 1

B
− ε 1

A
log(A− iδ) + ε

1

B
log(B − iδ)

)



 . (A.10)

The term εΓ(ε) = Γ(1 + ε) = 1 +O(ε) contributes to the finite part. We can remove
β by using

1

β
(
1

A
− 1

B
) = − 1

AB
(A.11)

Furthermore, we use partial fractioning and obtain

1

AB
=

1

ST − S1S3

(

T − S3

S3 + u(T − S3)
− S1 − S
S + u(S1 − S

)
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1

β A
=

1

ST − S1S3

(

S + T − S1− S3
β

− T − S3

A

)

1

β B
=

1

ST − S1S3

(

S + T − S1− S3
β

− S1 − S
B

)

.

The divergent part of In4 is therefore given by

In4,div = −Γ(ε)
1

ST − S1S3

(

log

(

T − iδ
S3 − iδ

)

− log

(

S1 − iδ
S − iδ

))

. (A.12)

The finite part is given by

In4,fin =
1

ST − S1S3

1
∫

0

du

[

(

T − S3

A
− S1 − S

B

)

· (− log(uū)− log(S2 − iδ))

+ 2 (T − S3)
log(A− iδ)

A
− 2 (S1 − S)

log(B − iδ)
B

− 2
S + T − S1− S3

β
(log(A− iδ)− log(B − iδ))

]

. (A.13)

With the definition of the dilogarithm,

Li2(z) = −
z
∫

0

dt
log(1− t)

t
, (A.14)

and the identity

Li2(z) + Li2(z̄) = Li2(1)− log(z) log(z̄), (A.15)

one shows

1
∫

0

du
a log(u)

au+ b
= Li2

(

−a
b

)

,

1
∫

0

du
a log(ū)

au+ b
= −Li2

(

a

a+ b

)

.

With the use of another dilog identity,

Li2(1− x) + Li2

(

1− 1

x

)

= −1

2
log2 (x) , (A.16)
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we get

I1 = −
1
∫

0

du

(

T − S3

A
− S1 − S

B

)

(log(u) + log(ū)) (A.17)

=
1

2
log2

(

T

S3

)

+ 2Li2

(

1− S3

T

)

+
1

2
log2

(

S1

S

)

+ 2Li2

(

1− S1

S

)

.

The elementary integral

∫

da
log(a)

a
=

1

2
log2 (a)

leads to

I2 = 2

1
∫

0

du

(

(T − S3)
log(A− iδ)

A
− (S1 − S)

log(B − iδ)
B

)

= log2(T − iδ)− log2(S3 − iδ)− log2(S1 − iδ) + log2(S − iδ). (A.18)

For the remaining terms, we introduce the R function [119], which is defined by

R(y0, ẑ) =

1
∫

0

dy
log(y − ẑ)− log(y0 − ẑ)

y − y0

=Li2(z1)− Li2(z2) + η1 log(z1)− η2 log(z2), (A.19)

where

z1 =
y0

y0 − ẑ
z2 =

y0 − 1

y0 − ẑ
η1 = η(−ẑ, 1/(y0 − ẑ) )
η2 = η(1− ẑ, 1/(y0 − ẑ) )

η(x, y) = log(xy)− log(x)− log(y). (A.20)

The η function is nonzero, if one crosses the branch cut on the Riemann-sheet of the
logarithm along the negative real axis when multiplying complex numbers. In the
R function, y0 is supposed to be real valued but ẑ needs to have a non-vanishing
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imaginary part. For the integral

1
∫

0

du
1

u− u0

(

log(A− iδ)
u− u0

− log(B − iδ)
u− u0

)

with

a1 = T − S3, b1 = S3,

a2 = S1 − S, b2 = S, u0 =
S − S3

T + S − S1 − S3

we can add a convenient log 1 = log((a1u0 + b1− iδ)/(a2u0 + b2− iδ)) and use log x−
log y = log(x/y) to obtain

1
∫

0

du
1

u− u0

(

log(a1u+ b1 − iδ)− log(a1u0 + b1 − iδ)

− log(a2u+ b2 − iδ) + log(a2u0 + b2 − iδ)
)

=

1
∫

0

du
1

u− u0

(

log

(

u+
b1 − iδ
a1

)

− log

(

u0 +
b1 − iδ
a1

)

− log

(

u+
b2 − iδ
a2

)

+ log

(

u0 +
b2 − iδ
a2

)

)

= R(u0,−
b1 − iδ
a1

)−R(u0,−
b2 − iδ
a2

). (A.21)

Combinining all results, we arrive at

In4,fin =
1

ST − S1S3

[

3

2
log2(T − iδ)+ 3

2
log2(S− iδ)− 1

2
log2(S1− iδ)−

1

2
log2(S3− iδ)

−log(T−iδ) log(S3−iδ)−log(S1−iδ) log(S−iδ)−log(S2−iδ)
(

log

(

T − iδ
S3 − iδ

)

− log

(

S1 − iδ
S − iδ

))

+2Li2

(

1− S3 − iδ
T − iδ

)

+2Li2

(

1− S1 − iδ
S − iδ

)

−2R
(

u0,−
S3 − iδ
T − S3

)

+2R

(

u0,−
S − iδ
S1 − S

)

]

.

(A.22)

A comparison with [117] shows that the first two lines of A.22 agree with the re-
sults in [117], only the last line is written as sum of three dilogs: (replacement rule:
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(−s,−t,−m2
1,2,3,4)→ (T, S, S4,1,2,3))

− 2 Li2

(

1− S1

T

)

− 2 Li2

(

1− S3

S

)

+ 2Li2

(

1− S1

T

S3

S

)

(A.23)

This is strictly only correct in the Euclidean region, where all Mandelstam invariants
are negative. The analytic continuation to positive values for most terms is simply
given by the replacement s → s + iδ. No cut will be hit by logarithms, dilogarithms
and exponentials of the form (−s − iδ)−ε. For dilogarithms of a product of ratios,
more care has to be taken. The replacement rule in [60] reads:

Li2

(

1− s1s2

s3s4

)

→ Li2

(

1− s1 + iδ

s3 + iδ

s2 + iδ

s4 + iδ

)

+ η

(

s1 + iδ

s3 + iδ
,
s2 + iδ

s4 + iδ

)

log

(

1− s1 + iδ

s3 + iδ

s2 + iδ

s4 + iδ

)

. (A.24)

The final result A.22 agrees with the formulae in [117], if (A.24) is taken into account.

105





Feynman diagrams for

qq̄ → ZZg B
For each diagram shown below, one has to add a diagram with the exchange of the
momenta of the vector bosons.

Z(p3)

Z(p4)

MB1 MB2 MB3

M1 M2 M3

M4 M5 M6
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B Feynman diagrams for qq̄ → ZZg

M7 M8 M9

M10 M11 M12

M13 M14 M15

M16 M17 M18
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M19 M20 M21

M22 M23 M24

M25 M26 M27

M28 M29 M30
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B Feynman diagrams for qq̄ → ZZg

M31 M32 M33

M34 M35 M36

M37 M38 M39

M40
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wissenschaftlichen Horizont zu erweitern.

Brigitte Wehner danke ich für die kompetente Unterstützung in allerlei Verwal-
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anderen als die angegebenen Hilfsmittel verwendet habe.

Würzburg, den 28.08.2007

Stefan Karg





Lebenslauf

Persönliche Daten

Vor- und Zuname: Stefan Karg

Geburtsdatum: 16.10.1977

Geburtsort: Neumarkt i. d. OPf

Familienstand: ledig

Staatsangehörigkeit: deutsch

Ausbildung

08/1984 - 07/1988 Grundschule Neumarkt

08/1988 - 06/1997 Willibald-Gluck Gymnasium, Neumarkt

06/1997 Allgemeine Hochschulreife

07/1997 - 08/1998 Zivildienst

10/1998 - 07/2004 Diplomstudium der Physik an der Universität Würzburg

08/2001 - 08/2002 Studium der Physik an der Rutgers State University of New Jersey,
USA

08/2002 Master of Science

07/2004 Diplom im Fach Physik

08/2004 - 09/2007 Promotionsstudium im Fach Physik an der Universität Würzburg


	Introduction
	Higgs Physics at the LHC
	Higgs mechanism
	Higgs mass constraints
	Perturbative Unitarity
	Triviality and vacuum stability
	Experimental constraints

	Higgs Bosons at Hadron Colliders
	Higgs boson production
	Higgs boson decay
	Search strategies and backgrounds

	Summary

	Hadron collider cross sections
	Parton model
	Phase space integration
	Two-particle phase space
	Three-particle phase space


	Calculation of multi-leg one-loop amplitudes
	Quantum number management
	Spinor Helicity formalism
	Colour decomposition

	Dimensional regularisation and Renormalisation
	Reduction method for scalar integrals
	Reduction method for tensor integrals
	Form factor representation for tensor integrals
	Tensor reduction through recursion relations


	Gluon induced multi-Higgs production
	Introduction
	Higgs boson properties
	Calculation
	Structure of the amplitude
	Evaluation of the amplitude coefficients
	Numerical implementation

	Results
	Multi-Higgs boson production in the SM
	Quality of the heavy-top approximation
	Multi-Higgs boson production beyond the SM

	Summary

	NLO QCD Cross section for qq to ZZg
	Introduction
	Amplitude organisation
	Checks of the calculation
	Results from the virtual contribution
	Total cross sections
	Distributions


	Summary
	Analytical evaluation of a one-loop scalar integral
	Feynman diagrams for qq to ZZg
	Bibliography

