Vacuum stability of models with

many scalars

José Eliel Camargo-Molina

Wiirzburg 2015






Julius-Maximilians-
UNIVERSITAT
WURZBURG

Vacuum stability of models with many
scalars

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades
der Julius-Maximilians-Universitat Wiirzburg

vorgelegt von

José Eliel Camargo-Molina

aus
San Cristébal (Venezuela)

Wiirzburg 2015



Eingereicht am: 7. Januar 2015
bei der Fakultét fiir Physik und Astronomie

1. Gutachter: Prof. Dr. Werner Porod
2. Gutachter: Prof. Dr. Friedrich Ropke
3. Gutachter:

der Dissertation

Vorsitzende(r) : Prof. Dr. Matthias Kadler
1. Priifer: Prof. Dr. Werner Porod

2. Priifer: Prof. Dr. Thorsten Ohl

3. Priifer: Prof. Dr. Raimund Stréhmer

im Promotionskolloquium

Tag des Promotionskolloquiums: 5. Mai 2015
Doktorurkunde ausgehéndigt am:

ii



LIST OF PUBLICATIONS

In connection to the present thesis, the following papers were published:

Peer-Reviewed publications

e J. E. Camargo-Molina, B. Garbrecht, B. O’Leary, W. Porod, and F. Staub, Constraining the
Natural MSSM through tunneling to color-breaking vacua at zero and non-zero temperature,
Phys.Lett. B737 (2014) 156-161, |arXiv:1405.7376|.

e J. E. Camargo-Molina, B. O’Leary, W. Porod, and F. Staub, Stability of the CMSSM
against sfermion VEVs, JHEP 1312 (2013) 103, |arXiv:1309.7212|.

e J. E. Camargo-Molina, B. O’Leary, W. Porod, and F. Staub, Vevacious: A Tool For Find-
ing The Global Minima Of One-Loop Effective Potentials With Many Scalars, Eur.Phys.J.
C73 (2013), no. 10 2588, [arXiv:1307.1477|.

e J. E. Camargo-Molina, B. O’Leary, W. Porod, and F. Staub, The Stability Of R-Parity In
Supersymmetric Models Extended By U(1)p—_r,, Phys.Rev. D88 (2013) 015033, [arXiv:1212.4146|.

Conference proceedings

e J. E. Camargo-Molina, B. O’Leary, W. Porod, and F. Staub, On the vacuum stability of
SUSY models, PoS EPS-HEP2013 (2014) 265, |arXiv:1310.1260].

iii


http://xxx.lanl.gov/abs/1405.7376
http://xxx.lanl.gov/abs/1309.7212
http://xxx.lanl.gov/abs/1307.1477
http://xxx.lanl.gov/abs/1212.4146
http://xxx.lanl.gov/abs/1310.1260




ACKNOWLEDGEMENTS

These three years have been a great experience, both professionally and personally. I would like
to thank all the people at the Institut fiir Physik und Astrophysik here in Wiirzburg. I always
felt at home when at the office and I surely will miss arriving at Hubland every morning.

I would like to thank Ben O’Leary, who besides one of my collaborators has become a good
friend. His constant disposition to discuss physics and answer my questions was always a good
source for interesting revelations and my personal growth as a particle physicist. In the same
way, I thank Lukas Mitzka, with whom I shared an office for these years. Not only did he always
have an answer to many of my physics questions, but he helped me in too many practical issues,
from transporting a bed through town to assisting me with the translation in german of the
abstract for this thesis. Thanks Lukas, it was great sharing an office with you. Our rap battles
were unforgettable. Thanks go to Florian Staub as well, his experience and advice was very
valuable and our discussions were always very fruitful.

I would also like to thank Brigitte Wehner, who was always ready to save me from bureaucracy
hell and with whom I had many interesting discussions regarding food, traveling and music. I
can not forget to mention all my colleagues at TP2, especially those participating in the daily
coffee breaks. They always brought entertainment and very interesting discussions regarding the
most absurd subjects.

I would especially like to acknowledge Werner Porod, my supervisor. I am deeply grateful for his
guidance, valuable career advice, patience and for always having time to sit down and discuss
our work. I am very glad I got to be part of his research group for these years. I would also like
to thank the DFG Graduiertenkolleg GRK1147 Theoretische Astrophysik und Teilchenphysik, for
accepting me as a member and for providing funding for last two years of my studies.

Last but not least I would like to thank my girlfriend Marie and my family, their unconditional
support was indispensable for making this happen.

In conclusion thanks to all of you, these years in Wiirzrbug will be a time I’ll always remember
fondly.







ZUSAMMENFASSUNG

Eine der populdrsten Erweiterungen des SM ist die Supersymmetrie (SUSY). Dies ist eine Sym-
metrie, die Bosonen und Fermionen in Beziehung setzt und auch die einzige machbare Er-
weiterung der Raumzeitsymmetrien. SUSY kann einige offene Fragen des SM erkldren und
eroffnet die Moglichkeit einer Vereinheitlichung der Eichwechselwirkungen bei einer hohen Skala.
Supersymmetrische Theorien erfordern das Hinzufiigen neuer Teilchen, insbesondere eines zusét-
zlichen Higgs-Dubletts und zumindest eines Skalars fiir jedes Fermion im SM. So wie im SM das
Higgs-Boson die SU(2)-Symmetrie bricht, kénnen diese neuen Skalare jede Symmetrie, deren
Ladung sie tragen, spontan brechen.

Angenommen, es gibt ein lokales Minimum des Potentials, das die korrekte Phinomenologie
fiir einen Parameterraumpunkt eines Modells erzeugt: Durch die Suche nach anderen tieferen
Minima mit Vakuumerwartungswerten, die gewilinschte Symmetrien wie SU(3) oder U(1)gnm
brechen, ist es moglich Parameterraumpunkte, in denen dies passiert, auszuschliessen. Das lokale
Minimum mit der korrekten Phénomenologie kann immernoch metastabil sein, weshalb es auch
notwendig ist, die Tunnelwahrscheinlichkeit zwischen zwei Minima zu berechnen.

In dieser Arbeit legen wir eine Prozedur vor und wenden sie an, um den Parameterraum von
Modellen mit vielen Skalaren durch die Minimierung des effektiven Ein-Schleifen-Potentials und
durch die Berechnung seiner Lebensdauer sowohl bei 7' = 0 und bei T' # 0 einzuschrédnken.
Nach einer kurzen Diskussion der Unzuldnglichkeiten des SM und Einfiihrung der Grundlagen
von SUSY erldutern wir die Theorie und die die nétigen numerischen Methoden fiir eine er-
folgreiche Analyse der Vakuumstabilitaet. Danach présentieren wir Vevacious, ein 6ffentliches
Programmpaket, in das wir unsere Prozedur implementiert haben.

Darauthin analysieren wir drei interessante Beispiele. Fiir das Constrained MSSM (CMSSM)
untersuchen wir die die Existenz von Minima, in denen die Farb- oder elektrische Ladung nicht
erhalten ist (CCB-Minima), und wie dessen phdnomenologisch relevante Region des Parameter-
raums dadurch bei T' = 0 eingeschrankt wird. Wir zeigen, dass die Regionen, die die korrekte
Higgsmasse und die richtige Relikt-Dichte fiir die Dunkle Materie reproduzieren, mit Regionen,
die tiefere CCB-Minima aufweisen, iiberlappen.

Inspiriert durch die Ergebnisse fiir das CMSSM betrachten wir dann das Natural MSSM und
priifen die Parameterraumregion mit der korrekten Higgsmasse auf CCB-Minima bei T' # 0.Wir
finden, dass die Region des Parameterraums mit CCB-Minima deutlich mit denen mit einer
korrekten Higgsmasse iiberlappt. Bei Beriicksichtigung von thermalen Effekten hat ein Grofsteil
der bei T' = 0 langlebigen Punkte ein gewiinschtes symmetriebrechendes Minimum mit einer
sehr geringen Uberlebenswahrscheinlichkeit bei 7' # 0. In beiden Studien finden wir, dass die
analytischen Bedingungen, die bisher in der Literatur prasentiert wurden, nicht ausreichen, um
Bereiche des Parameterraums mit CCB-Minima auszuweisen. Wir présentieren einen Weg, unsere
Prozedur fiir die Nutzung in Parameterraum-Fit-Studien zu beschleunigen. Zuletzt zeigen wir ein
weiteres Beispiel. Fiir das BLSSM untersuchen wir die Verletzung der R-Paritidt durch Sneutrino-
VEVs und in welchen Parameterraumbereichen dies geschieht. Wir stellen durch Vergleich mit
unserer kompletten numerischen Analyse heraus, dass frithere Analysen in der Literatur darin
fehlschlagen, diese Bereiche mit Erhaltung der R-Paritdt zu identifizieren.
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ABSTRACT

One of the most popular extensions of the SM is Supersymmetry (SUSY). It is a symmetry
relating fermions and bosons and also the only feasible extension to the symmetries of spacetime.
With SUSY it is then possible to explain some of the open questions left by the SM while at the
same time opening the possibility of gauge unification at a high scale. SUSY theories require the
addition of new particles, in particular an extra Higgs doublet and at least as many new scalars
as fermions in the SM. Much in the same way that the Higgs boson breaks SU(2); symmetry,
these new scalars can break any symmetry for which they carry a charge through spontaneous
symmetry breaking.

Let us assume there is a local minimum of the potential that reproduces the correct phenomenol-
ogy for a parameter point of a given model. By exploring whether there are other deeper minima
with VEVs that break symmetries we want to conserve, like SU(3)¢ or U(1)gas, it is possible
to exclude regions of parameter space where that happens. The local minimum with the correct
phenomenology might still be metastable, so it is also necessary to calculate the probability of
tunneling between minima.

In this work we propose and apply a framework to constrain the parameter space of models with
many scalars through the minimization of the one-loop effective potential and the calculation of
tunneling times at zero and non zero temperature. After a brief discussion about the shortcomings
of the SM and an introduction of the basics of SUSY, we introduce the theory and numerical
methods needed for a successful vacuum stability analysis. We then present Vevacious, a public
code where we have implemented our proposed framework. Afterwards we go on to analyze three
interesting examples.

For the constrained MSSM (CMSSM) we explore the existence of charge- and color- breaking
(CCB) minima and see how it constraints the phenomenological relevant region of its parameter
space at T' = 0. We show that the regions reproducing the correct Higgs mass and the correct
relic density for dark matter all overlap with regions suffering from deeper CCB minima.
Inspired by the results for the CMSSM, we then consider the natural MSSM and check the region
of parameter space consistent with the correct Higgs mass against CCB minima at T £ 0. We find
that regions of parameter space with CCB minima overlap significantly with that reproducing
the correct Higgs mass. When thermal effects are considered the majority of such points are
then found to have a desired symmetry breaking minimum with very low survival probability.
In both these studies we find that analytical conditions presented in the literature fail in dis-
criminating regions of parameter space with CCB minima. We also present a way of adapting
our framework so that it runs quickly enough for use with parameter fit studies.

Lastly we show a different example of using vacuum stability in a phenomenological study. For the
BLSSM we investigate the violation of R-parity through sneutrino VEVs and where in parameter
space does this happen. We find that previous analyses in literature fail to identify regions with
R-parity conservation by comparing their results to our full numerical analysis.
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CHAPTER ONE
INTRODUCTION

It is an exciting time for particle physics. The recent discovery of a scalar particle with the
properties of a Higgs boson at CERN has once again proved the incredible success of particle
theory and is in itself an amazing experimental achievement. Not only was this particle the last
missing piece of the puzzle but it also drives one of the most fundamental principles of particle
theory: spontaneous symmetry breaking (SSB).

Particle theorists have always relied on the fundamental symmetries both of nature and theo-
retical models. Understanding the underlying symmetries of a problem allows us to understand
many of its aspects with a great deal of simplification. Conserved quantities, one of the fun-
damental principles behind physical models, are also closely intertwined with the symmetries
of nature. Thus a big part of particle theory has to do with the interplay between symmetries
observed in experiments and models built with symmetry in mind. Sometimes experiments show
us the way to go by making symmetries obvious and some other times theoreticians come up
with successful models that relate disconnected pieces through not yet proven symmetries.

The process of SSB is driven by the fact that sometimes it costs less energy for particle fields
to have a non-zero values in the vacuum. This value is called the vacuum expectation value or
VEV. Although the theory describing the physics may have many symmetries built in, when one
of the fields charged under any of the symmetries takes a constant value, the invariance under
that symmetry breaks down. Sometimes it is useful to allow for symmetry breaking, as is the
case with SU(2)r, which does not allow for the standard model fermions to have masses.

Some other symmetries we have to keep in successful theories, as they are invariably seen to hold
in experiments. This is the case of the symmetry associated with the conservation of electric
charge, or the so-called color charge carried by quarks and gluons.

Although astonishingly successful the standard model has its shortcomings. It is rather certain
that we need to develop a successful theory that goes beyond the standard model and offers
explanations where the latter does not. We will go on in more detail about the open questions
unanswered by the SM, but it suffices to say that a rather good possibility for answering some
of these questions exists in supersymmetric models. By adding the only possible extra set of
symmetries of spacetime, we introduce many new particles and relations between parameters
that offer answers for some of these open questions. However, at the same time we also open the
door for many candidate models that may or may not eventually be realized in nature. So it is
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of great interest to find out whether a certain model can explain the universe we live in or if it
contradicts any experimental result or fundamental principle.

The main purpose of this work is to propose a systematic way of testing theoretical models
against the fact that there are symmetries we want to break and some other symmetries that a
successful model should respect. If we consider SSB, this in turn translates to looking for a way
of determining which fields will get VEVs.

Ideally we want scalar fields to get VEVs, as we definitely want to conserve the Lorentz invariance
of our theory !. Along this work we will focus on SUSY models as they are good candidates for
extensions of the SM and at the same time have many more scalar particles and therefore many
more possibilities for breaking symmetries through VEVs. Finding whether a field will have a
VEV or not has to do with minimizing the potential energy of the model. By finding where
the lowest point of the potential lies in field space, we can then tell where the universe would
like to be if such model was realized in nature. The problem becomes more interesting when we
consider the fact that the field configuration at which the vacuum of our universe lies has not to
be the lowest one. It is sufficient that it is a local minimum of the potential energy. The question
is then how long will the universe stay there before eventually reaching the lowest point through
tunneling, a process triggered by quantum and thermal effects in particle theories.

By answering these questions we can test whether a given model is compatible with the existence
of a long-lived minimum with VEVs for the fields breaking the desired symmetries. In the
following we will introduce a framework to perform such analyses and then apply it to three
interesting examples. Along the way we will dive into the specifics of the problem of minimizing
the potential and the technical details of how we achieve this practically.

In chapter [2| we will take a quick glimpse at the standard model, explain its shortcomings and
justify the need to look for models that go beyond it. Then in chapter [3] we will introduce the
basics of supersymmetric models, as well as the three specific models we will be treating along
this work. In chapter [4] we will go through the problem of minimizing the potential in SUSY
models both at zero and non-zero temperature and lay down the specifics on how to use vacuum
stability as a phenomenological constraint. Lastly in [5| we will present the results coming from
applying the proposed framework for three models: The CMSSM, the natural MSSM and the
CBLSSM.

Tt is also possible to let more complicated combinations of fields get VEVs, as long as they form a Lorentz
invariant quantity. Fermionic and gluon condensates are examples of this fact [I] |2].




CHAPTER TWO
BEYOND THE STANDARD MODEL

As a preface to our study about the phenomenology of beyond standard model physics, it is
important to understand why do we want to extend such a successful theory in the first place.
Physics, as any other science, is driven by the attempt to describe what we can observe in nature.
We want to find answers to questions posed by experiments through theoretical models that allow
us to predict future results. The standard model, although extremely accurate in explaining
what we have observed in collider experiments, fails to provide explanation for phenomena that
could be explained through particle physics. The interesting question to explore is whether
we can explain these observations by extending the SM. In this chapter we will first give a brief
introduction to the standard model and the motivations behind model building in particle physics
to then go through the open questions that can’t be answered by the standard model alone. We
will then explain why there is a necessity for theories that extend the SM and answer some of
these questions.

2.1. A quick flight over the standard model of particle physics

Before we embark ourselves in the study of physics beyond the standard model, let us first
discuss the basic pieces that make up the standard model itself. In this work we will be focusing
in the spontaneous breaking of symmetries in SUSY models and scenarios where some of these
symmetries might be broken or conserved. By laying down some of the basic principles behind
the standard model we will at the same time set the mindset behind the construction of models
that go beyond it, and we will familiarize ourselves with the mechanisms we will generalize in
our studies.

The spontaneous symmetry breaking that is present in the standard model is an example of the
more complicated processes we will be looking at when studying models with many scalar par-
ticles. This brief introduction will help us keep in mind that there are fundamental symmetries,
like color and electric charge, that we want to preserve in any extension of the SM.

Before we go forward, we should introduce the protagonists of the story. The standard model
contains all of the observed fundamental particles, there are three families of particles which
differ only in their mass. Besides that, they seem to be identical copies. A tool to understand
their properties lies in quantum numbers.
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First we have the leptons, which carry lepton number and come in three families. The electron
(e7), muon (x~) and tau (7) which all have electrical charge —1. Then we have the neutrinos,
which come as well in three families the electron neutrino v,, the muon neutrino v, and the tau
neutrino v,. As far as the standard model can tell they are massless, but experimentally they
seem to have some but very little mass. Their names are no accident as they are related to the
other leptons through flavor, another quantum number.

Then come the quarks, discovered later. They also come in three families but also in three
different colors, red blue and green. Each family has two members: The up and down, the charm
and strange with the last family comprised of the top and bottom quarks. They are the building
blocks of hadrons, mesons and baryons. They are all fermions, with spin 1/2 and carry flavor
and baryon quantum numbers.

Then we have the bosons. The gluon which mediates the strong force, the photon which mediates
the electromagnetic force and next the W and Z bosons mediating the weak interaction. Last
but not least we have the Higgs boson, which in contrast to all the other bosons that have spin
1, has spin 0. In the standard model it is the only of its kind and was the last particle to be
discovered in July 2012.

Since the beginning of particle physics, scientists have been smashing particles together, watching
closely nuclear decays and looking at the sky to understand better how all of this fundamental
pieces make up the universe we live in. We’ve answered many questions with a level of success
that amazes even experts that think about this stuff everyday.

2.1.1. Quantum Electrodynamics

A nice way to see the role symmetries play in particle physics and a remarkably simple theory is
that of the interaction between electrons and photons. At the same time it is one of the building
blocks of the standard model and a tool to understand some of the basic principles of quantum
field theories (QFT). A quick introduction is a good warm up but also will lay down some of
the main theoretical motivations for particle theorists in the search for new models. A more in
depth review of the standard model escapes the scope of this work, but can be found at varying
levels of detail in [3H5] among many others.

Simply enough, the Lagrangian of a free Dirac fermion (e.g. an electron) is

Lo = (@) Oup(x) — m(2)i(z). (2.1)

With a little bit of effort one can realize that this Lagrangian is invariant under phase transfor-
mations of the field 1 (z) — €4 (z). As in quantum mechanics, a phase transformation has no
physical meaning.

However as 9(x) is a field that depends on the space-time coordinates, there is no reason for a
phase rotation #(z) not do so. In this case our simple Lagrangian Ly is not invariant anymore
because 9,4 (x) — @) (9, 4+i9,0(x))(z). So as it stands Ly does not cut it. We need to come
up with a Lagrangian that is invariant under local (space dependent) phase transformations. The
easiest way to do this is by introducing some object transforming in such a way that it cancels
exactly the extra bits coming form the transformation of ¥ (x). It is straightforward to see that
the Lagrangian

£ = i@ dub(a) — mP(a)b(e) — eAu(z) Ba)"b(a) (2.2)




2.1. A QUICK FLIGHT OVER THE STANDARD MODEL OF PARTICLE PHYSICS

Is indeed invariant under local phase transformations if the newly added field A, transforms like

A() = Ay () — éaua. (2.3)

The notation here is no accident, as this is exactly how the vector potential transforms in classical
electrodynamics under a gauge transformation. Indeed, local transformations that leave the
Lagrangian invariant are precisely gauge transformations and the field A, represents the photon
field interacting with the Dirac fermion. Phase transformations are transformations under the
U(1) group and by looking at the way ¢ (x) and A, transform under U(1) we can see that they
are in the fundamental and adjoint representation respectively. Because of this U(1) is also the
gauge group of QED. It is both useful and standard to define D, = [0, + ieQA, ()] and rewrite
as

L = i@y Dup(z) — my(2)i(z). (2.4)

The newly introduced field A, does not describe yet a physical photon. For this to be the case
we have to give it the chance of propagating. For the field ) (x) this is described by the kinetic
term 1 (x)y"0,¢(x). However, as A, carries a pu index, we need to be more careful. The answer,
as one could expect, is to introduce the term

1
Liot = L — 4 Fu () F*(x)  with  Fl, = 0,4, — 0,4, (2:5)

This term is not only invariant under U(1) transformations but also makes it so the Lagrangian
reproduces Maxwell’s equations. The Lagrangian of gives rise to the theory of Quantum
Electrodynamics, a very successful theory and the first step towards describing the standard
model of particle physics.

We started out by looking for a Lagrangian with a specific local symmetry, this showed us the
necessity of including new objects with definite transformation rules that turned out to be a
fundamental part of the physics system at hand. This way of using symmetries as the guiding
principle for our theories is a very valuable tool in particle physics.

2.1.2. SU(?})(] & SU(Q)L ® U(l)y

We just looked at the Lagrangian of QED. We built it by requiring a local U(1) invariance and
introducing objects with specific transformation rules. The case of U(1) is quite simple as it is
an abelian group but it gives the general idea for constructing Lagrangians invariant under a
given gauge group.

If we want to describe all the interactions in the same fashion we have to include the weak and
strong forces into our framework with the same underlying spirit but with slight changes due to
the different behaviour of the gauge group.

Let’s start with the weak force. As it turns out one can define a quantum number that is conserved
in weak interactions. It is called weak isospin or 7" with all left-handed fermions having T' = 1/2
and it is possible to group left-handed fermions that behave equally under weak interactions in
doublets with T3 = +1/2. Right handed fermions have T' = 0 as they do not undergo weak
interaction. This hints at the fact that we will need a local SU(2);, gauge symmetry as it is the
simplest group with doublet representation so that we can pair left-handed fields with the same
weak interaction.

In order to have hadrons and baryons as bound states of quarks while satisfying Fermi-Bose
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statistics, we need to define a new quantum number: color. Quarks come in three different
colors ! and hadrons and baryons are then defined to be color singlet states. We can then think
color as the corresponding charge of an SU(3)¢ gauge group therefore giving rise to the strong
interaction. To write an invariant Lagrangian we will group quarks in triplet representations.
So to describe quarks, fermions and their interactions through mediators we have to write down
a Lagrangian that has the corresponding local symmetries. In other words we need to have a
theory with SU(3)c ® SU(2), ® U(1)y as the gauge group. In this sense, we need fields that are
singlets under some of these three groups but can also transform non-trivially under the others.
For this we have to introduce covariant derivatives and gauge bosons acting on the corresponding
fields accounting for each local symmetry that we want in our Lagrangian.

There are a lot of nuances and it is not the purpose of this work to explain them in detail. To
summarize, the main difference between including these forces and what we did in QED lies in
the fact that the gauge group is not abelian this time. This implies that the generators of the
symmetries are not simple phases and we have to introduce more complicated objects for SU(2)y,
and SU(3)¢.

This of course is very much in tune with the physics we observe, as in an abelian theory the gauge
bosons are forced to be massless and the way they interact through the covariant derivative is
much more simple. Let us however write down the result of this consideration and cast here the
complete standard model.

First we arrange the lepton and quark particle fields in the following way (for simplicity we have
suppressed family indexes so the reader has to think every particle comes threefold):

SU(2), space

PLI/ PLq
L:( i),PRl_7Q:< u>,Pun,Pqu

SU(3)¢ space (2.6)
0w qg
qg 9 qg 9 l_ ) Vl
a4 4

where Py, r are the chirality projection operators and the fields are written as Dirac spinors.
For simplicity let us start with the model including only the SU(2); ® U(1)y part of the gauge
group. As the reader might guess, we have to gauge bosons accounting for each group. For the
U(1)y part we’ll add the B, boson as we did in QED. For the SU(2), part we will have to add
the W gauge bosons V[N/#(x) = % Wi (z). The Pauli matrices o; ensure that it is a SU(2), field.
To introduce the Lagrangian and covariant derivatives it will be convenient to use the two
simplifying conventions:

2 ) = <P”“<x)>, @) = Prau@),  ¥s(@) = Praale)  (27)
Pr,qq(x)

o(et e — hadrons)

!The specific number of colors can be inferred by studying for example R 4 .- = o(eFe=onF )
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wg(.%') = PRVZ = O, 1ﬁ3(:€) = PRl_(x) (2.8)

b)) = ( ?/((2 ) ,

Our discussion from now on will be valid for any assignment a) or b). The invariant Lagrangian
will be:

3

— 1 P

L =Y iv;(@)v" Dypj(x) — 5 Bu B — 7 Wi W (2.9)
j=1

4
In the same fashion as with QED we introduce the covariant derivatives to ensure local invariance
and field strength tensors to include the kinetic terms for the introduced gauge bosons.
The corresponding field strength tensors in this case are somewhat more complicated. They are
explicitly:

B, = 9,B, —3,B,, (2.10)
Wi, = 0,W. - 0,W, — ge" Wi w}. (2.11)

The necessary covariant derivatives to satisfy local invariance are

Dutn(a) = |9 +igWle) +ig 1 Bul@)| on(a),
Dythos(z) = [0+ 19 y23 Bu(®)] vo3(z),

Note that the covariant derivatives act differently depending on the representation we have chosen
for the fields. This of course reflects the fact that the D, are built precisely so that we can have
local invariance under the gauge group. Fields in the singlet representation don’t need the extra
terms in the covariant derivative so they behave analogously to QED, whether ¢ does have an
extra term accounting for the SU(2), invariance.

Now we need to add the strong force to our model. Let us restrict ourselves to the assignment
a) in the following. As expected, we will need then a new set of gauge bosons. In order to be
able to promote a symmetry to be local we need as we have seen, the same number of gauge
bosons as parameters needed to describe a transformation under the group under study. For
SU(3) this number is 8 thus we need to add 8 so-called gluons G4(z). With the help of  A®
(a=1,2,...,8), the generators of the SU(3) algebra, we can write them as:

6@y = () G, (2.12)
af
The covariant derivative for this case has to be modified as:
Diapy = [au g GH(x) +igWu(z) +ig n Bu(:n)} 1 (2.13)
Dty = [8“ +igs G*"(x) +ig yo Bu(x)} o (2.14)

Finally the Lagrangian will be for the fields charged under SU(3) (remember we have taken the
a) assignment for this case):
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I (5 1 v va
Lsyz) = Z Vi (V"' Dy) i — ZGg G- (2.15)

with the corresponding field strength tensor

GE¥(z) =2 OMGY — 0VGlh — g, f* G} GY. (2.16)

Note that the SU(3) structure constants f¢ appear in the field strength tensor, bringing a new
set of possible interactions with respect to the U(1) case. It is the same for SU(2); where the
structure constants are easily written as the anti-symmetric tensor €7* in equation (2.11)).

2.1.3. SU(2), ®U(1)y and The Brout-Englert-Higgs mechanism

There is a very important step before we can describe the physics of our world in terms of
the standard model. Until now we have stated that our theory has a SU(2)r, symmetry. Such
symmetry forbids terms of the form ma) = mipip + h.c, as it clearly mixes right handed and
left handed particles.

But without masses for fermions a description of matter as we know is not possible. The proposal
of the Brout-Englert-Higgs [6][7] mechanism and then the electroweak model by Salam, Glashow
and Weinberg [8] offered an elegant solution to this problem.

In a revolutionary turn of events, it was shown that the electromagnetic and weak force were
closely related and that physics at the scales of our experiments where nothing but the remainder
of the SU(2)r, ® U(1)y symmetry breaking into U(1)gps.

The precise mechanism of this breaking is known as the Brout-Englert-Higgs mechanism, or BEH
for short, and it predicted the existence of the Higgs boson, a scalar particle responsible for the
breaking of the symmetry through a vacuum expectation value (VEV).

It is important to devote some time to discuss the spontaneous breaking of symmetries through
fields that attain VEVs, as it will be one of the main aspects of this work. Conceptually, what
happens is that certain fields are allowed to have a non-zero value at the vacuum of a QFT. If
the fields getting VEVs hold any quantum number associated with a symmetry, the fact that
their VEVs are just numbers implies that at the vacuum such symmetry would be broken.
Such is the case with the Higgs field, but it can also be the case in theories with more complicated
gauge groups that need to be broken. Conversely, the fact that we know certain symmetries
remain in the physics we observe in experiments can be a guiding principle to drift away from
models, or parameter points of such models, that would give VEVs to fields that hold quantum
numbers we want to conserve.

Such is the case in SUSY where, as we will see, we have scalar particles carrying color and electric
charge thus if we want to be realistic these fields should never get VEVs.

Let’s see how such symmetry breaking process works in some detail. The first ingredient is a

SU(2) 1, complex scalar doublet
_ [ eP()
o(x) = ( s ) (2.17)

For such a particle, the Lagrangian and the corresponding covariant derivative will be:




2.1. A QUICK FLIGHT OVER THE STANDARD MODEL OF PARTICLE PHYSICS

0

Im(¢©)

0

Re(¢”)

Figure 2.1.: Higgs potential. The circle of minimum potential where SU(2);, symmetry is broken is
shown in red. The Higgs field VEV is attained at the global minimum below 0 in field space.

Ls = (Duo)! Dro — m2gte — % (¢T¢)2 with A>0,m? <0, (2.18)

Dhg — [8“+igW“+ig’y¢B“] ¢ . (2.19)

By construction the Lagrangian is invariant under SU(2)r ® U(1)y transformations.

In order to see what happens next, it is very useful to cast the scalar field in a specific parametriza-
tion. We will take advantage of the local SU(2)y, invariance to add an irrelevant (at this stage)
SU(2)r, transformation and write the field like

o(z) = exp {i%ﬁi(x)} % < (;(Ox) ) , (2.20)

with real fields ¥*(z) and ¢(z). This parametrization shows explicitly that 9% (z) are not physical
as they can be absorbed by a gauge transformation. The potential of the theory becomes now

w2616+ 2 (616)" = m?d(@)” + So()* (221)

and is minimized by taking ((0] ¢ |0))% = _—71\12 = (\/ii)2 The clever thing about this parametriza-

tion is that the parameters of the SU(2), transformation 9¥(z) are precisely the would-be mass-
less Goldstone bosons associated with the broken symmetry. They will not get masses as they
do not appear in the scalar potential.

Fixing 9¥(z) is equivalent to choosing a gauge. We will go to the so-called physical gauge and
fix ¥/(x) = 0, in that case we have that the potential is minimized by the VEV
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0@ ) = (0> | (2.22)

By doing this we have chosen (0] ¢(?) |0) = %v to be real and set (0] o) [0) = 0. At this stage

the fact that ¢(© has a non-zero VEV means that the Lagrangian is not manifestly SU (2)r
invariant anymore and SU(2);, ® U(1)y symmetry gets spontaneously broken to U(1)g.
With SU(2); broken, we would like to identify the neutral gauge bosons with the Z and the
photon 7. The problem is that for example B, couples in the same way to electrons and neutrinos,
so this can not work. However we can now take a combination of B, and Wi’ :

Wﬁ’ _ cosby  sinfy Zy, (2.23)
B, B —sinfy  cos Oy A, ’ .

with the mixing angle defined by g sinfy = ¢’ cosfy = e.

Let us look at what happened to the gauge interaction part in (2.18). The covariant derivative
(2.19) couples then ¢ to the gauge bosons of SU(2); ® U(1)y, by parametrizing ¢ = H + v we
get:

. 2 2
(Do) DRy L0, % O, HO"H + (v + H)? {i wiw* + Mféimw ZMZ“} L (229)

We started this process to get masses for fermions, but even before understanding how this would

happen, the VEV has generated a quadratic term for the W* and the Z, in other words the

gauge bosons now have masses My cosOy = My = %v qg.

Now that the Higgs field has acquired a VEV, the Yukawa interaction terms, which have the

generic form Y; H1;1p; will generate mass terms for the fermions of our theory. Assuming we are

in the base where the Yukawa coupligns are diagonal, we get that

Lonass = —(H + \%)(Yu wii + Yydd + Y;10) (2.25)
=Y, Hui—Y;Hdd—Y,Hll — myut —mgdd —myll (2.26)

Where m; = %YZ' are the new mass terms generated by the process of electroweak symmetry
breaking (EWSB).

2.2. Unexplained phenomena and BSM physics

The standard model of particle physics has rightfully been called the biggest theoretical success
of our time. One of its most powerful features is the ability to predict experimental results to
incredible levels of accuracy.

However it still fails to provide an explanation to several phenomena that are supported with
hard experimental evidence. Baryon asymmetry, the nature of dark matter (which constitutes
almost 30% of the total mass-energy in our universe) and neutrino masses are some examples.
Although some of these facts arise from different areas of physics, it may be possible to explain
them through particle physics. It is therefore interesting to find theoretical models that answer
this open questions by going beyond the standard model (BSM).

10



2.2. UNEXPLAINED PHENOMENA AND BSM PHYSICS

2.2.1. Baryon asymmetry

As far as we have been able to observe, there is an obvious imbalance of baryonic matter and
antibaryonic matter in our universe. However there is no successful theoretical explanation for
the reason of this asymmetry. Even though the initial conditions for the Big Bang can allow
for some primordial baryon asymmetry, it would be diluted after inflation [9]. The idea that
this asymmetry could be explained by particle physics came from Sakharov in 1967 [10], there
it was stated that a model with baryon number and CP violating interactions could do the job.
However the standard model lacks the necessary pieces and can not be a candidate to explain
baryon asymmetry.

There are however different candidate mechanisms to explain this asymmetry though they all are
extensions of the SM. The two more popular mechanisms are known as electroweak baryogenesis
[11] and leptogenesis [12]. The first one cures the SM pitfalls by extending the scalar sector
and adding new CP violating interactions. The second one adds right-handed neutrinos to the
SM and is able to generate the asymmetry by converting the leptons coming form the decays of
right-handed neutrinos into baryons through sphaleron processes.

2.2.2. Dark matter

Dark matter is a hypothesized type of matter that would account for observed effects of mass
structures in astrophysical systems, with sizes ranging from galactic to cosmological scales, where
no ordinary matter can be observed. Experiments observe effects that can only be explained
either by a deviation from general relativity or by assuming the existence of a large amount of
dark matter. It is assumed dark matter does not emit nor absorb radiation and it is therefore
invisible to telescopes [13].

The latest measurements done by the Planck collaboration [14] put the fraction of dark matter
in our universe around 30%. There are several experimental efforts that are on the lookout for
direct [I5] or indirect [16] measurements of dark matter. Although dark matter could be made
of neutrinos, it would not explain the value for the relic density of dark matter measured from
the cosmic microwave background.

2.2.3. Neutrino masses

In the standard model neutrinos are described as massless particles. However the process of
neutrino oscillations, which mixes neutrino flavor states requires them to have mass [17].

Extending the SM to accommodate neutrino masses is rather straightforward. It can be achieved
by adding an extra particle, a right-handed neutrino, and give Dirac masses to neutrinos in the
same way the SM does to fermions. Because right-handed neutrinos would have to be singlets
under the SM gauge group, they can also be added as Majorana particles, so that by being their
own antiparticle, they can have their own a mass term. It is then possible to give masses to
neutrinos through the see-saw mechanism: If we add both Dirac masses and Majorana masses
(only for right-handed neutrinos), we can get very light left-handed neutrinos and a very heavy
right-handed ones. This is very convenient as it could explain the fact that only left-handed
neutrinos have been observed [18].

11
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2.2.4. On the lookout for BSM

After the discovery of the Higgs boson at CERN in 2012, all the pieces of the standard model
puzzle have been found. Its agreement with experiment continues to amaze and show us how
robust its predictions can be. However, it is clear from our previous discussion that if we would
like to explain the discussed phenomena with particle physics it is necessary to extend it.

A great deal of effort is put into finding ways of constraining models for new physics using new
data coming from experiments. With some luck it could be possible to find direct signals of
beyond standard model physics at the LHC as long as the scale of new physics is not too far
away.

Although we are looking for new physics at experiments, we are also faced with the fact that
after many years of searching for new particles, we have a plethora of interesting models that
arise as candidates to answer these open questions. Any way of constraining new models and
narrowing the possible alternatives is a big step forward.

In this sense, finding ways to systematically constraint either models or parameter ranges within
them is one of the top priorities in the lookout for BSM physics. These constraints can come from
different sources. They might come as tools to quickly match a model prediction to available
data or new theoretical insights that might disprove the consistency of a model.

As the computing power available to the typical scientist grows, new windows for such constraints
open. Calculations thought to be extremely complicated to do in vast parameter scans can be
done now in a typical laptop computer and can be automated to a great degree. It is the purpose
of this work to take advantage of these facts and present a systematic way for constraining the
parameter space of several BSM models through the minimization of their scalar potential.

We will focus on SUSY models as they are one of the most popular extensions which offer answers
to some of these open questions. As we will see, neutrino masses can be easily included in SUSY
models and the many new particles offer several possibilities for dark matter candidates. It also
offers the possibility for unification of all gauge forces at a high scale and it helps ameliorating
some of the theoretical issues in the SM, like the hierarchy problem [19]. Let us then introduce
in the following chapter how to include Supersymmetry in particle physics models.

12



CHAPTER THREE
SUPERSYMMETRY

One of the most popular extensions of the standard model is supersymmetry (SUSY). SUSY
adds the only allowed extra symmetry of spacetime resulting in a relation between bosonic and
fermionic particles. By including this extra symmetry new particles have to be introduced to
construct a theory invariant under SUSY transformations, much in the same spirit than in the
discussion about QED. Before we go into more detail, it will be convenient to lay down the
notation we will be using through this chapter.

3.1. Indexes, dots and Grassmann variables

It will prove useful to work in two-component Weyl fermion notation. This, as we will see has
to do with the fact that for SUSY the building blocks of matter can be written as multiplets
comprised of two-component Weyl fermions.

In this basis we can write a four component Dirac spinor as

U, = (;f:a> : (3.1)

Note that left (right) handed spinors will have dotted (undotted) indexes. Indexes might be
lowered or raised by using the epsilon tensor as

fo =apt® X% = EMXTB- (3.2)

The origin of this notation comes from the fact that for the Weyl representation the Lorentz
group SO(1, 3) is decomposed into SU(2), ® SU(2)g. The dot tracks to which SU(2) subspace
does the index belongs and the raising and lowering helps the tracking of invariants through the
corresponding SU(2) product. The fact that there is a dagger in the lower component is also a
convenient way of writing everything in terms of left-handed fields as for a left-handed field ¥,
x! behaves as a right handed one.

An important tool for laying down the superspace formalism and to understand SUSY transfor-
mations are Grassmann variables. These are just extra coordinates that anticommute with each

13
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other and commute with spacetime coordinates. Adding these new coordinates to spacetime
coordinates will span what is called superspace. They satisfy

0.0, = —0,0;,  0;z' =zt0;, 67 =0. (3.3)

7

A consequence of this is that the most general field with real coefficients in superspace with n
Grassmann coordinates can be written as

F(z,01,...,0,) = fO4 £10; + 90,0, + ... + f12"0105...0,. (3.4)

—_
We can also define differentiation and integration in superspace. The right derivative % is

defined to satisfy the following properties.

—

d

N —

i(@.g.) — _i(e-e-) =—0; fori#j (3.6)
dg; 1) = g, %) = Y g '

The left derivative can be defined in the same fashion, however which one to use is a matter of
convention. From now on when we write % (or % ), we will mean the right derivative.

Analogously, integration is defined as follows

[ @@+ g0 a0 = a [ g03a0:+ [ g(oiran, (3.7)
/ do; = 0, (3.8)
/ 6.d0; — 5.5, (3.9)

As with spacetime coordinates, we can also build spinor degrees of freedom with Grassmann
variables in the exact same way. This will be necessary when describing SUSY in the superfield
formalism. In this case we can build spinors with Grassmann variables in a straightforward way
and superspace will be labeled with the coordinates

at, 0%, 01 (3.10)

Now every Grassmann coordinate will have two components. This means that integration over
fermionic coordinates will have to be carried out for each component separately. In the following
we will use the integration metrics

1 1 Y
d?0 = —Zdeadeﬁeaﬁ and d*0" = —Zdedd%eaﬁ (3.11)
When writing Lagrangians in superspace we will also need to define a covariant derivative for
Grassmann variables. Requiring covariance under SUSY transformations, which we will introduce
later, we get the following covariant derivatives:

14
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0 0
= — — rot o« - ot =pyo
D, 500 i(0"0") a0y, D o0, +i(0'6")* 0, (3.12)
pta = 9 —i(5"0)%0 pt = 9 +i(Aot) a0
0! . @ opie e

3.2. SUSY transformations

In 1967 Sidney Coleman and Jeffrey Mandula [20] proved, in the context of symmetries of the
S-matrix, “ the impossibility of combining space-time and internal symmetries in any but a trivial
way”’. In other words, any symmetry Lie algebra for the S-matrix is always a direct product of
the Poincaré group and an internal group. This is commonly known as the Coleman-Mandula
no-go theorem. This means that besides the gauge symmetries and the Poincaré group, there
can not be any other local symmetries in a consistent theory.

However in 1975 Rudolf Haag, Jan Lopuszanski, and Martin Sohnius [21I] proved that by allowing
anti-commuting generators for the space-time symmetries it was possible to get around this and
include an extra symmetry of spacetime. This extra symmetry has the fundamental property
of creating an interplay between the internal symmetry and the spacetime symmetry of the
theory as the symmetry generators interchange fermions and bosons and the anticommutator of
two generators is a translation in spacetime. This extra symmetry is called a supersymmetry
transformation and its generators satisfy

{Qa, QL} = 20", P,
{Qu.Qs} = {QL.Q}} =0, (3.13)
[PMaQ] = [PquT] = 0

Q|Boson) = |Fermion),

Q|Fermion) = |Boson),

If we would like to explore the consequences of adding such symmetries to a physical model, the
next logical step would be to think of a theory which is symmetric under the gauge group of the
standard model, the Poincaré group and supersymmetry transformations coming from only one
generator.

The first obvious and most famous consequence of adding this symmetry is that every particle
in the SM would automatically have a SUSY partner, so that every Fermionic particle can be
transformed by SUSY to its Bosonic partner and viceversa.

The first step is to introduce a set of Grassmann (anti-commuting) coordinates, which together
with the spacetime coordinates will span what we will call superspace. This coordinates will
commute with spacetime coordinates but anticommute with themselves and will carry a spinor
index.

In the superspace formalism, where we work with Grassmann variables in addition to regular
space coordinates, we can write SUSY transformations easily with the help of the differential
operators:
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‘ Qa

1

A :L _ = (sMpT a:_;i 1

Qo = Gage ~ 77 0l Q T5a0. T 507 O (319)
Ata Li_i—u & AT—_LL i .
Q™ = V3001 ﬂ(a 0)“0,., Qs = 5 907 + \/5(90 )adu.  (3.15)

A SUSY transformation, for infinitesimal parameters € and €', can be then written as

6o = eQ + Q1. (3.16)

It is convenient to arrange single-particle states into irreducible representations of the super-
symmetry algebra. By definition this supermultiplets will contain fields that can be expressed
as linear combination of the SUSY generators acting on the others, so they will contain both
fermionic and bosonic states with spins differing by 1/2.

A general supermultiplet or representation of the SUSY algebra (with scalar coefficients), will
look like

F(x,0,0") = a+ 0 + 07" +00b 4 0707c + 00,070, + 670700 + 0007¢CT 4 00010Td.  (3.17)

It is interesting now to see how this superfield would transform under a general SUSY transfor-
mation. It will be useful to know this when constructing SUSY invariant Lagrangians, as we will
always try to look for terms that are invariant under such transformations. Explicitly, under a
transformation , the components of the most general superfield will transform as:

boa = e&+ely, (3.18)
0g&a = 2€ab— (UHGT)CY(UM +i0a), (3.19)
Sox'¢ = 2% 4 (€)% (v, — id,a), (3:20)
Sob = elct - %Jaﬂaﬂg, (3.21)
doc = en— %EUNaMXT, (3.22)
5@ UM = EUMCT - ETEMT’ - %60'”6“61/5 + %ETEVJMaVXTv (323)
Sona = 2eqd—i(c"e)adyuc — %(U”E“e)oﬁuv,,, (3.24)
SoCle = 2619 — i(Ge)a,b + %(5”0“5)@8#%, (3.25)
Sod = —%Jaﬂaw - %eaﬂaﬂd. (3.26)

Something that will come handy later is the fact that the coefficient d of #98T0" transforms to a
full derivative in the space coordinates.

However, as mentioned before, we are interested in irreducible representations that will help us
describe the fields necessary to build a SUSY theory. There are several ways of constructing
irreducible representations but we want to find those that can reproduce the physical fields of
the standard model and their respective superpartners.

The first one, a chiral supermultiplet is constructed by requiring
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Did =0 (3.27)
for the so-called left-chiral superfields and

Da®* =0 (3.28)

for right-chiral superfields. It can be shown that the result of constraining a general superfield

(3.17) by equations (3.27)) and (3.28)) leaves us with

® = ¢(x) +i00,010,6(x) + i@&@@@,ﬁ“gﬂ)(z) +V20¢(x)
— \%eemwaﬂw(:ﬁ) + 00F (z), (3.29)
* = ¢*(x) — i00,010,0" () + %999* 010,09 (x) + V20" (z)

- \%9*9* 000,16 () + 0101 F* (). (3.30)

It is sometimes convenient to do a superspace transformation to express chiral supermultiplets
in a simple form. By doing y* = a* + i0Ta0, y** = x* — ifT5*0, and working in the new
coordinates y*, 0,07 we can write (note that in this case 7 does not appear)

® = ¢(y) + V20u(y) + 00F (y), (3.31)
8" = ¢ (y") + V2O (57) + 0161 F* (7). (3.32)

Chiral fields have eight degrees of freedom: a complex scalar field, a complex scalar auxiliary field
and a left-handed spinor field. Now, to properly describe an interacting gauge theory we need
gauge bosons, i.e. we will need another representation of the SUSY symmetry. The answer lies
in another representation called vector superfields which we can construct through the constraint
V = V*. This adds the following constraints to the individual components of

a=a*, d=d", I =¢, vy =0, c=0b", ¢t =t (3.33)

In other words, vector superfields can be written as

V(x,0,0") = +0¢ + 0'¢" + 00b + 070T0* + 00,01 A, + 6T0TO(N — %aﬂaugf)

) 1 1
+000T(AT — %C_f“auf) +666'6 (5D + 50,0"a). (3.34)

Where we have redefined for convenience 1, = A, — %(a“@MST)a, v, =A, and d = %D—k i@uc{)“a.
It is clear from the previous equation that written this way, the vector superfield has a lot more
degrees of freedom than what we are looking for. However it is possible to “gauge away” some
of these fields by preforming a supergauge transformation. Explicitly we can do appropriate
transformations to eliminate a, £ and b and write the vector superfield as
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1
Vivz = 01610 A, + 0T0TONT + §909T 0'D. (3.35)

The superfield is now said to be in the Wes-Zumino gauge. In this form it is easy to see that
a vector superfield has a gauge boson field A, a spinor field A and a auxiliary real scalar D as
degrees of freedom.

3.3. Constructing a SUSY Lagrangian

Now that we have all the building blocks for our SUSY theory, we need to understand how to
write down the Lagrangian out of the superfields we have described. Fortunately even though
SUSY invariance introduces many new degrees of freedom, the extra symmetry also brings some
simplification of the theoretical framework.

In this sense, the information needed to construct a SUSY Lagrangian can be enconded in two
objects that will also come handy in constructing different SUSY models.

3.3.1. The Kihler potential

The first obvious object we can construct with superfields, which remains invariant under SUSY
transformations is the integration of a superfield over all of superspace. This comes from the fact
that as can be seen from equation , the component surviving the fermionic integration, the
one with 00076, transforms to a full derivative under SUSY transformations.

More generally any object that can be written as

S = /d‘*x/d?ed?eTS(x,e,eT), (3.36)

where § is a general superfield, is automatically invariant under SUSY transformations, therefore
making it a good candidate for a SUSY Lagrangian. What happens is that after a SUSY
transformation and the integration of the fermionic degrees of freedom the remaining integration
over space will make any total derivative vanish.

If we would like to eventually construct Lagrangian terms from this type of contributions, we
will need S to be a vector superfield, let’s call it V. This is due to the fact that we need the
action to be real. A SUSY invariant term can be constructed by taking (expressing V in the
Wess-Zumino gauge)

1
Vip = /d29d29TV(x,0,0T) =5D. (3.37)

The usual convention is to call this a D-term contribution. We need to construct SUSY invariant
Lagrangian terms out of D-terms. It turns out that exploiting the fact that ®*® is a vector
superfield and by using the notation in (3.29) and (3.30)) we find that

Lowg = [O*D|p = /d26d29T<I>*<I> = — 01" 0,0 + i G + F*F + ... (3.38)

Surprisingly enough these are the canonical kinetic terms for the fields in the supermultiplet .
The ... denote a total derivative part that as always will vanish upon integration over space.
This is the simplest possible construction of the Kéhler potential which is the object in which
we will encode the kinetic part of our SUSY Lagrangians.
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3.3.2. The superpotential

Another way of constructing SUSY invariant contributions arises from noticing that for a chiral
superfield, the term proportional to 86 also transforms to a total derivative. This is easy to see
by looking at equation (3.21) and noting that for chiral superfields ¢t = ﬁ&“@ﬂ/}(m).

In the same fashion as before, such terms will vanish under space integration. Using the notation
in (3.31)) we can construct a suitable SUSY invariant using

[B]p = /d29<1> +/d29T P
0t=0

The usual convention is to name such type of invariants as F-term contributions.

Any holomorphic function of chiral fields is in turn a chiral field. This is quite handy as the F
term contribution of a product of chiral fields will contain all the combinations of the components
that conserve spin and are invariant under SUSY transformations. If I construct a holomorphic
function of the fields (the factors of % and % are just handy conventions)

= F + F*. (3.39)
6=0

W =L'®; + %Mﬁ'j@i@j + éyijkq)i@j@k (3.40)
in such a way that it respects the gauge invariance of the SM, then we’ve found a nice way of
encoding the interactions of a suitable SUSY Lagrangian. This function is called the superpo-
tential and it serves the purpose of encoding chiral field interactions. It is very popular with
seasoned SUSY theorists, as it can be used to get a very quick glimpse at the interactions of any
new model.

As W is a chiral field in itself we can construct SUSY invariant terms by taking its F-term
contributions. With a bit of gymnastics one can show explicitly

1 9*°W W

W]k = /d26W . +h.c. = — (28@ 5 ity — F + h. c) (3.41)

An interesting fact which we have to keep in mind when building a superpotential is that the
action of a QFT should be dimensionless. The terms coming to our action will be of the form

/ d*z / d2OwW

The integration measure over space d*z has mass dimension —4, so the terms of the form i d*ow
should have mass dimension 4. Now, the integration measure in the fermionic coordinates satisfies
[d?6] = 11, so there is no choice but [W] = 4 — [d?0] = 3.

+h.c. (3.42)
0t=0

3.3.3. Vector superfields

So now that we have the interactions between chiral fields and their kinetic terms we still need
to include the gauge vector multiplets . We can again use what we have learned to construct a
SUSY invariant term that will encode the necessary terms. First we have to make the Kéahler
potential explicitly supergauge invariant. This can achieved by writing the kdhler potential as

!This is easily seen by looking at a chiral superfield, which has mass dimension 1. This implies that [#0¥] = 1,
1

thus Grassmann coordinates should have mass dimension —5. As we defined Berezin integration to satisfy

[ d96 = 1, which is dimensionless, it follows [df] = % and then [d*0] = 1

2
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K = kij®; (2 T"V") g, (3.43)

where the V® are the vector supermultiplets of our theory in the form of and g,, T°
the corresponding gauge coupling and generators. This in turn includes the interactions between
gauge bosons, gauginos and matter. We only lack now the kinetic terms for our vector superfield.
To do that we define the chiral superfield

1 a a a a
Wa = —ZDTDTe_anT VD291V (3.44)
and with it we can construct (assuming Tr[T%T"] = k¢0ap)

1
4Kqg

STr[WOW,). (3.45)

The F term contributions coming from this chiral superfield will account for the kinetic terms of
gauge bosons and gauginos. We are now ready to write a SUSY invariant Lagrangian that will
have a chance at describing a physical theory including the standard model within it. So putting
all our pieces together we can write our SUSY Lagrangian as

(LW
s \ 200,09,
(3.46)

We refer the reader to [22] and [I9] for a more comprehensive treatment of these subjects.

ow

1
_ 2 le% e
L= /d 974Kagc2lTr[W Wa 50,

Yy —
D=0

F; +h.c> +/d29d29TK.
D=0

3.4. Supersymmetry breaking

If SUSY would be conserved, all the members of a supermultiplet would have the same mass.
This is certainly not the case as we have not observed any SUSY particles. So SUSY has to be
a broken symmetry, but how is it broken? As we will see there are several ways to approach
this problem and parametrize the breaking of SUSY without knowing the specifics of the SUSY
breaking mechanism.

Even though we are trying to parametrize our ignorance, we still have to be a bit careful. We want
to keep in mind the idea that the Lagrangian is SUSY invariant at high energies but somehow
this symmetry gets broken spontaneously, much in the same way as with the BEH mechanism.
If we add new SUSY breaking interactions to the Lagrangian we would like them to preserve
SUSY at higher scales, put simply we want them to be “ small ” compared to the SUSY part
of our Lagrangian. In practice what this means is that we want terms that do not introduce
divergences at high scales. This essentially means that we do not want to add terms with mass
dimension > 4, as their respective couplings will grow with positive powers of the scale.

This is not the only thing we have to be careful about. The fact that fermions have scalar
partners means that in a pure SUSY theory, quadratic divergences cancel and provide an elegant
solution to the hierarchy problem i.e. SUSY explains why the Higgs mass is not so much bigger
than the electroweak scale. Schematically, the quadratic divergent corrections to the Higgs mass
coming from top and stop are such that

Omi oc (A — |y} A?, (3.47)
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3.4. SUPERSYMMETRY BREAKING

where A is a cutoff scale and A the quartic coupling of two stops to two Higgses. As we have seen,
when adding Yukawa interactions in the superpotential, we are forced by SUSY to give quarks
and squarks the same Yukawa coupling, therefore making A\ = |y;|>. We would like to preserve
this type of cancellations in our SUSY theory, even at lower scales, by preserving the relations
between dimensionless couplings (like the Yukawa couplings). What this means is that we will
only add soft SUSY breaking terms with combinations of fields with mass dimension 0 < d < 4.
Luckily this means we can still introduce terms that will get rid of the degeneracy in masses and
push the SUSY masses high enough to have a phenomenologically consistent model.

A general soft SUSY breaking Lagrangian will then have the form

Cuopt = = (M AN+ 5000560+ 5090105 + 601+ he) (3.45)
o 1 .
- (s~ (el o0+ hc) (3.49)

It is worth noting several things at this point. First we have not added terms of the form p)
2 as they will induce quadratic divergences [23]. Also, the terms #* in the above equation are
only allowed for gauge singlets, as our Lagrangian has to be always gauge invariant. Moreover
the fact that excluding dimensionless couplings means we are free of quadratic divergences has
a extra loophole. In the case of a model with a chiral supermultiplet which is a singlet under
all gauge symmetries, the last term in (3.49)) can lead to quadratic divergences. However this
will not be an issue during this work as we will constrain ourselves to the MSSM and extensions
which do not suffer from this problem.

3.4.1. The origin of SUSY breaking

We have already shown that for phenomenology studies it is sufficient to introduce by hand terms
that break SUSY softly at the cost of introducing a large set of free parameters. we can try to
improve this by assuming some mechanism for SUSY breaking.
For the purpose of this study we will focus in SUSY breaking models inspired by supergravity.
Let us define what we mean by that. As we mentioned earlier, we would like to break SUSY
spontaneously. If SUSY is unbroken in the vacuum state of a theory it follows that H |0) = 0.
This comes from the fact that the Hamiltonian can be written as H = i(Q1QJ{ +QJ{Q1 + Qng +
Q;Qg). Now, in the vacuum of the theory (0| H |0) = (0| V' |0) where V is the scalar potential of
the theory

V=Vr+Vp (3.50)

with Vg and Vp defined in respectively. Then we can conclude that as long as Vg
or Vp acquire VEVs, we can be sure SUSY has been broken.

It turns out that the case where Vi gets a VEV is more attractive phenomenologically, as with
the SUSY breaking induced by Vp it becomes difficult to give masses to all the MSSM particles
(especially gauginos)[19]. We will therefore focus on what is called F-term SUSY breaking (where
Vi gets a VEV).

Let us assume that gravity is mediated by a spin-2 particle, the graviton. By promoting SUSY
to a local symmetry, thus making the ¢ parameters in equation space dependent, it is

2For singlet fermion fields gauge invariance would not forbid such terms.
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possible to unify the spacetime symmetries of general relativity with local SUSY transformations
in a formalism called supergravity [24-26]. The gauge field for the local SUSY transformations
will be the spin-3/2 superpartner of the graviton, the gravitino. Once SUSY is spontaneously
broken the associated goldstone boson, the goldstino, gives mass to the gravitino in the same
way the goldstone boson gives masses to the W and Z in the Higgs mechanism.

Because we need fields that are gauge singlets so that their F-term VEVs do not break gauge
symmetries, we can see how we are forced to extend the MSSM. SUSY breaking is therefore
thought to occur in a “hidden sector” of particles that have very small couplings to the visible
sector (the MSSM).

We would of course need some kind of interaction between this hidden sector and the MSSM
in order to generate the soft SUSY breaking terms through some kind of spontaneous breaking
mechanism. One of most popular assumptions, and the one we will follow in the models we
will try to constrain in this work, is that the interactions that mediate between both sectors are
gravitational and include them in our SUSY model through the supergravity formalism [27] 28].
If F' is the F-term contribution that breaks SUSY, then the generated soft terms should obey

(O] £10)

i, (3.51)

Msoft ~
where M,, denotes the Planck mass ~ 108 GeV. This form comes from the fact that the soft
masses should vanish when (0] F'|0) — 0 (if SUSY is restored) and should also vanish for M, — oo
(where gravitational interactions become negligible). Taking X to be the field whose F-term
contributions get a VEV, we have that the superpotential of the visible + hidden sector model
will look like:

1 1 v.s 1 -
W = Wassu — 71 <6yX”kX(I)Z"I)j(I)k + Q;LXZ]X(I),-(I)]-) + e, (3.52)
p
) 1 . ) . 1 . )
K=0"®;+ — (n!X + 0/ X*)0"®; — —5k/ XX PP, + ..., (3.53)
M, M,
Sab 2
_lb(y 2 x ) 3.54
fab gg ( Mpf(l + ( )

For the MSSM, by letting X get a VEV, we get that the soft terms can be written as (following
the notation in (3.49)))

F

Ma = ﬁfaa
p

ik Xiik | iopik o gopik k. pij

a = Mp(y + "+ nly? 4yt ),

b = ﬁp(# Iyt + nj ),

. |F|? . -
(m2); = 7Mp2 (kj +n,nt). (3.55)

Such prescription where we assume SUSY breaking is done through gravity mediation is known
as mSUGRA SUSY breaking.
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3.5. R-parity

In the SM baryon and lepton number (B and L respectively) are conserved through an accidental
symmetry. If we write all the possible Lagrangian terms that are gauge invariant and renormal-
izable, we find that none of them break either B nor L 3. Experimentally B and L violation
is severely constrained besides a very small contribution to L violation coming from neutrino
oscillations [17].

This conservation gets spoiled in SUSY as we have new particles, like squarks (sleptons), that
carry baryon number (lepton number) but are of mass dimension 1, therefore allowing us to write
gauge invariant and renormalizable terms that do not conserve B (L).

If we want conservation of B and L in a SUSY theory, we need a way of imposing it. By
introducing a new discrete symmetry called R-parity it is possible to forbid B and L breaking
terms in SUSY theories. It is a multiplicative symmetry defined by

Pr = (_1)3B+L—25. (3.56)

The rule for R-parity is that for any Lagrangian term, the total R-parity (the product of the
R-parity of the fields involved) has to be equal to +1. Enforcing this symmetry is analogous
to conservation of B and L. R-parity also has an interesting feature: it distinguishes the Higgs
bosons and SM particles (Pr = 1) from their superpartners or sparticles (Pr = —1). The reason
for this comes from the fact that in order to conserve B and L we need to have an even number
of SUSY particles.

Another consequence of R-parity, more a corollary of the previous statement, is that the lightest
SUSY particle or LS P, can not decay. The LS P being the lightest can only decay to SM particles
but this would violate the rule of even sparticles in every interaction vertex. Having a stable
light SUSY particle is phenomenologically attractive, as for example, such type of particle might
be a good candidate for explaining dark matter.

3.6. Minimal supersymmetric standard model

If we want to study SUSY models, the first question we may ask ourselves is which are the
minimum requirements to construct a model that is both supersymmetric and reduces itself to
the standard model at lower energies. We already know that we have to add at least as much
particles as there are in the standard model, however that is only part of the story. In this
section we will describe the Minimal SUSY standard model (MSSM) which, as guessed by its
name, extends the SM in the minimal way that is phenomenologically viable.

3.6.0.1. Particle content and superpotential

Before diving into the phenomenology of the MSSM and its extensions, let us describe it in some
detail using the tools we have just developed in the previous sections. The two most important
bits of information to understand a SUSY model are the particle content and the superpotential.
It comes as no surprise that for the MSSM the particle content is the minimal we need to
construct a consistent SUSY model. In table 3.1 you can find a list of fields coming into play
and their respective spin and charges under the gauge group.

3There is a possibility for B violation in the standard model through non perturbative Bell Jackiw anomalies
[29]. This is however not relevant for current experiments but interesting when considering baryogenesis.

23



Supersymmetry

As mentioned in section [3.3.2} the superpotential is required to be holomorphic. With one Higgs
doublet ¢ = (h°, H)T we can write Yukawa interactions for up-type quarks Yy, g u§ @Qj ¢ but we

can not do the same for the down-type quarks (Yd] d¢ Q;ioag’ ). The necessary superpotential
term Yd” dg Qj ioaH* is not holomorphic. For the same reason it would not be possible to include

a term ,uﬁ H* in the superpotential, but we need to include Higgs boson self-interactions if we
want to reproduce the standard model in some limit. The solution to this is to have two Higgs
doublets, one with Yukawa couplings with up-type quarks (H,) and another with down-type
quarks and leptons (Hy).

Having noted that, we are now ready to put all the pieces together and write the superpotential

of the MSSM:

w :Yij ﬂf Qj ﬁu — Ydij C?f Qj I:Id — ifeij élc f/j I:Id + /J/];:’u I:Id . (357)

As the reader might note, this superpotential is explicitly R-parity-conserving. However, there
is nothing stopping us from adding terms of the form

1

wk,, = §AWL Le§ + NRL,Q;dS + 4/ LiH, (3.58)
WI?PV = §5ijkufd§d2- (3.59)

In other words, we want the MSSM to conserve R-parity at this stage. One reason to impose
R-parity conservation is that interactions arising from terms of the form will induce pro-
ton decay, which we obviously would like to avoid. We would also like to be consistent with
observations regarding baryon and lepton number violation.

The new scalars and the extra Higgs doublet make the scalar sector much more complicated and
in turn much more interesting. One of the direct consequences is that the scalar potential, whose
minimization drives the spontaneous breaking of symmetries, is not trivial to minimize even
before adding quantum corrections. This is an issue that we will explore in detail throughout
this work.

The perceptive reader might notice that we are lacking the last piece to completely describe
the MSSM. We can not avoid to introduce a soft SUSY breaking Lagrangian in order to have a
realistic SUSY model. For the MSSM this will include the minimum amount of terms necessary
and therefore will look like:

Lssp = —% (Mggg + MyWW + M, BB + h.c)
— (Tffﬁf QjH, —THds QjHy — TUeS LiHy + h.c)
—QN (md)7 Q; — LI (m7)" Ly — i (mir)V ! — df (mp)” d5' — & (mp)" &'
—myy, HyHy — mi; HyHy — (ByHyHg + h.c) . (3.60)
The trilinear couplings T; are often also written as T; = A; X Y;.

We now have all the pieces necessary to put together the minimal SUSY standard model. It is a
model that offers the most simple way of including SUSY in a phenomenological theory and has
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Superfield | Spin 0 | Spin 1 | Generations | U(1l)y ® SU(2), @ SU(3)c

Q Q Q 3 (5.2,3,%)

I° d° d° 3 (3,1,3,-%)

ac ac ut 3 (-2,1,3,-3)

L L L 3 (-3,2,1,-3)

éc éc et 3 (1,1,1,1)

e e Ve 3 (0,1,1,3)

Hy Hy Hy 1 (—3,2,1,0)
H, H, H, 1 (3.2,1,0)

Table 3.1.: Chiral superfields and their quantum numbers in the MSSM.

served as a tool to understand many of the fundamental principles of SUSY in particle physics.

A lot of effort has been put into studying the phenomenological implications and possible ways
of finding SUSY. Recently a significant effort has been put towards direct detection and thus the
determination of the signals for different SUSY models in collider experiments like the LHC.

For the MSSM (and several of its extensions) we have a good idea of the ways it could show up at
ATLAS or CMS, provided that the masses of the sparticles are not so far away from 2 — 3 TeV*.

However by adding SUSY we have also introduced many new parameters that need to be either
determined form experiment or scanned in the lookout for viable points in parameter space.

This is not necessarily a bad thing. By construction, perturbative QF T models have free param-
eters that have to be fixed by experiment before the theory can become predictive. Experiments
have allowed us to determine the parameters of the standard model, but even for such successful
theory determining all of its parameters was not possible until as recently as August 2012.

To understand how to find any sign of SUSY it is important to set some constraints for the
parameters based on phenomenological reasons. As we parametrize SUSY breaking by the soft
SUSY Lagrangian, we have some freedom in deciding how the SUSY spectrum looks. There are
many ways of doing this. Some of them are motivated by assumptions for the specific SUSY
breaking mechanism. Some other approaches, like the so-called natural MSSM, rely on concepts
like naturalness and purely phenomenological motivations to guide us in the construction of a
SUSY mass spectrum.

As we will see in section [5] it is also possible to constrain the parameter space of SUSY models
through the analysis of their vacuum structure. This can also guide us in the search for viable
parameter points and complement constraints coming from direct experimental measurements.
In the following we will describe the models we will be treating along this work. They all build on
the MSSM by introducing different motivations for the values of the free parameters and in the
case of the BLSSM by extending the gauge group of the MSSM by an extra U(1)p_ symmetry
as well.

4The reader might think that the center of mass energy is the relevant quantity. However in a hadron collider,
the momentum gets distributed within the partons and the mass of produced particles is thus much lower
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3.7. The scalar potential

By calculating the Lagrangian contributions coming purely from scalar degrees of freedom one
can get the scalar potential of the theory.

The auxiliary fields F; are not physical and one can remove them by solving their equations of
motion F; = %bk:%. From equation (|3.46)) one sees that the pure scalar contributions coming
from F-terms can be written as

oW
9%,

Vi =

(3.61)

D=0k

The D-term contribution to the scalar potential coming from (3.43)) is given by

>N D¢ T 6)) + ZD“Da : (3.62)
a

Solving the equations of motion for D® one gets that D* = —g(¢*T*¢) and therefore:
Z Z (69T ;) (¢** T or) (3.63)

Where a runs over the gauge groups. The scalar potential will also get contributions from the
soft SUSY breaking terms in (3.60). This will be given by (For simplicity we have neglected
flavor violation):

Veott Zmz\@ (BuHyH, + H.c.)

+ Z (Aua Yoo HuQuis o + Ad, Yoo QuaHad5 o + A1 Yi, Lo Hy o + H.c.) . (3.64)
0%

The trilinear couplings A;Y; are often also written as T;. The scalar potential of the MSSM can
therefore be written as

YMSSM — Ve + VD 4+ Viost. (3.65)

It is important to point out, although obvious from equation , that the D-term contributions
are always positive quantities even for negative values of the fields. This will be important to
remember when analyzing the analytical conditions found in the literature for avoiding charge-
and color-breaking minima in section

3.8. Natural MSSM

Due to the fact that the soft SUSY breaking masses are free parameters of the theory, we
have some freedom to choose the MSSM spectrum. However, we have to keep in mind that we
need a phenomenologically viable model thus finding ways of restricting the possible spectra is
important. One such way relies on the concept of naturalness. The naturalness requirement can
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be understood by looking at the formula for the Z mass in the MSSM (valid for tan 3 > 8) °

1 m2, +3,)tan?
7M%:—u2+( 2y “)2 :
2 1 —tan“ g3

(3.66)

where Y4, ¥, are radiative corrections. From we see that getting the correct value for
My relies on the interplay between p, mg, and ¥,. The naturalness criterion [30] states that
these parameters should be in the order of the EWSB scale to avoid the need for substantial
cancellation between the free parameters of the SUSY theory or “finetunning”.

Moreover, the dominant contribution to 3, comes from stops. By noting that

3Z/t

Eu‘stop = 8 2

MSUSY) (3 67)

(i + it + |4 o (0

and imposing that the amount of finetunning is less than 1% [31](quantified by the Barbieri-
Giudice measure [32]), we can get a upper limit on the value of the stop masses and mixing:

u _
(M, +mir, + [A?) < (3700 GeV)* log < TSeU\jY) (3.68)
The gluino contribution to 3, [31]
2y? M
SulMy = —%as!Mgl2log2 < Tgﬁ‘“) (3.69)

can also be sizable and in the same way than for stops it provides an upper bound, this time to
the gluino mass:

Msy ™'
|M3] < 8500 GeV - log < TV ) . (3.70)
By the same requirement on finetunning we get that |u| < 645 GeV . All the other SUSY
particles can be very heavy. Although the amount of ﬁnetunnmg that is considered “natural”
varies among the literature, the naturalness requirement gives an idea about how the spectrum
of the natural MSSM looks like in broad terms. We have found that for the MSSM to be natural
we need relatively light stops, moderately light gluinos and a not so large u.

For the MSSM there is an extra fact to consider. In order to get the correct Higgs mass, loop
contributions play a big role as at tree level m? < mz|cos(2/3)| [19]. These contributions would
come mainly from stops and look like

3GF M3 X X2
om? 1 - =t 71
i = et (15 (35) + 3 (1~ ) @)

with Mg the average stop mass and X; = A; — pcot(f). Getting the correct Higgs mass requires
(in the case of Xy = \/Wiw where the contribution (3.71) is maximized) at least mtg ~ O(500 —
800GeV) [33]. So there is an interplay between the amount of finetunning allowed and the
prediction of the correct Higgs mass in the MSSM. This is an interesting fact that we will
explore in the context of vacuum stability in section

Ssimilar relations hold in the general case [30]. However this simplifies the discussion without loss of generality.
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3.9. Constrained Minimal supersymmetric standard model

One of the most popular SUSY models for phenomenological studies has been the so-called
constrained MSSM or CMSSM. For this model we take the MSSM as our basic framework and
add mSUGRA inspired unification of the soft SUSY breaking masses and trilinear couplings at
a certain GUT scale, where gauge couplings also unify.

Following we will assume that there is a common f, = f for the three gauginos, that
k!l = k¢&! and n] = né! are the same for all scalars (with & and n real) , and that the other

couplings are proportional to the corresponding superpotential parameters, so that yX“* = qg*
and pX% = Bu (with universal real dimensionless constants o and [3).This will give us

mé :m%ld =m}, (3.72)

m2l =m% = my = mé =m% =m2, (3.73)

Mo =My = My = M3 = Mp,. (3.74)

T, =A;Y; = AyYs, 1=e,d,u. (3.75)

Thus for this model each point in parameter space is characterized by only 5 parameters:
Mo, M3, Ao, tan 3, sign(u). (3.76)

After values for these parameters are set at the GUT scale, it is then possible to obtain the SUSY
spectrum at a lower scale through the MSSM renormalization group equations. This of course
is very convenient for scans over parameter space, which might be one of the reasons why it is
so popular. The CMSSM is a model with many assumptions but at the same time surprisingly
predictive and rich in its phenomenology. Although thought to be one of the best bets for SUSY
because of these reasons, it currently faces big challenges to accommodate present experimental
results [34], 35].

Throughout this work we will build on other phenomenological studies on the CMSSM by bring-
ing an extra source for constraints: Vacuum stability. It turns out that understanding when
sfermions with electric and color charge get VEVs can further constraint the available parameter
space for this model.

3.10. B-L extended Minimal supersymmetric standard model

The BLSSM is an extension of the MSSM by adding an extra U(1)p_ gauge group. It arises
from the idea of including B — L as conserved charge by promoting the associated U(1) global
symmetry to a local one.

There are several ways to extend the MSSM by U(1)p—_r. The BLSSM is the minimal extension
which allows for a spontaneously broken U(1)p_; without necessarily breaking R-parity. This
requires the addition of two SM gauge-singlet chiral superfields (#,7) carrying B — L which may
develop VEVs thus breaking U(1)p_1 without breaking R-parity. In order to have neutrino
masses it is also necessary to introduce three generations of superfields containing right-handed
neutrinos.

28
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Superfield | Spin 0 | Spin 1 | Generations | U(1l)y ® SU(2), ® SU(3)c ® U(1)p-1
0 o | @ 3 (5.2.3.3)
I d° d° 3 (3,1,3,-%)
e e u® 3 (—2,1,3,-3)
L L L 3 (-3.2,1,—3)
éc éc e 3 (1,1,1,1)
e 7 e 3 (0,1,1,3)
H, Hy Hy 1 (—3,2,1,0)
H, H, 9 1 (3.2,1,0)

] n 7 1 (0,1,1,-1)
n 7 n 1 (0,1,1,1)

Table 3.2.: Chiral superfields and their quantum numbers in the BLSSM. We include a factor of % in the
U(1)p—y, charge with respect to the usual definitions of baryon and lepton number so that the bilepton
fields have unit charges.

3.10.0.2. Particle content and superpotential

Although a straightforward extension of the MSSM, the BLSSM has a rich phenomenology. It
introduces a Z' boson (with prospects for the LHC discussed in [36]), neutrinos with masses

given through a type-I seesaw mechanism, several dark matter candidates with respect to the
MSSM [37], and a rich Higgs boson sector [38].

In many of the previous studies of this model it is assumed that R-parity is conserved. This is
just a consequence of the fact that it was constructed precisely so that even after breaking the
U(1)p—z symmetry spontaneously R-parity would be conserved.

However, this fact relies on the strong assumption that it is only the new added gauge-singlet
scalars 7,7 (with Pr = 1) which get VEVs. This does not necessarily need to be the case, and
it is this fact on which we will focus in our following considerations. We will be interested in
the cases when the scalar partners of right-handed neutrinos get VEVs instead. If the sneutrinos
develop VEVs, R-parity is automatically broken and the introduction of n and # is not justified
anymore. Several aspects of the phenomenology of the spontaneous breaking of R-parity are
discussed in [39, [40].

The issue of finding when sneutrinos break R-parity through VEVs will be explored in detail in
chapter where we will study how frequently and where in parameter space this happens.
The model consists of three generations of matter particles including right-handed neutrinos
which can be embedded in SO(10) 16-plets [4I]. For convenience, we will refer to their scalar
components as R-sneutrinos. Moreover, below the GUT scale the usual MSSM Higgs doublets
are present, as well as the two fields 17 and 7.

Furthermore, the presence of 7 allows us to write terms that generate Majorana masses for the
right-handed neutrinos when 1 gets a VEV. In order to write those terms 7 must carry twice the
lepton number of (anti-)neutrinos. This leads us to interpret the B — L charge of this field as
its lepton number (likewise for 77), and call these fields bileptons. in Tab. we summarize the
quantum numbers of the chiral superfields under U(1)y x SU(2)r, x SU(3)c x U(1)B—L.
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Supersymmetry

The superpotential for the BLSSM is given by
W=Y7a5Q; H, — Y, d¢Q; Hy — Y7Ly Hy + pH, Hy
VY 08 By Hu — W i + Y9 05055, (3.77)

where we show in bold the terms not present in the MSSM, and we have the additional soft
SUSY-breaking terms:

Lsp =Lassy —min|* —ma|i|* — mpe ;. (55) 5

. - . 1
+ (T;JHquLj + T niivi — AgAg Mpp — §AB,AB,MB, —nnBy + c.c) ;o (3.78)

with 4,7 being the generation indices. The extended gauge group breaks to SU(3)c @ U(1)pnm
when the Higgs fields and bileptons receive vacuum expectation values (VEVs):

HY = \}5 (vg + 04+ idq) HY = \}5 (Vy + 0w + i), (3.79)
n= \}5 (vy + o +idy), = \2 (vg + o5 + i) . (3.80)

We define tan 3’ = v, /vy as we do for the ratio of the MSSM VEVs (tan f = v, /vq).

As we will explore later in detail, for certain parameter combinations a spontaneous breakdown
of R-parity can also occur as sneutrinos can obtain non-vanishing VEVs [42]. We will denote
the VEVs for the sneutrinos of the SU(2), doublets L; by v i and those of the SU(2)y, singlet
sneutrinos o5 by vg;, with i = 1,2, 3.

3.10.0.3. GUT unification for the BLSSM

As we did for the MSSM, we will consider minimal supergravity inspired breaking of SUSY with
GUT unification. Explicitly we implement the following unification prescription:

mé :m%{d = quu = m,27 = m%, (3.81)
mil =m% = m} = m2Q =m% =m3 =m2, (3.82)
M1/2 :Ml = M2 - M3 - MB, (383)

In the same way we assume the ordinary mSUGRA-inspired conditions for the trilinear soft
SUSY-breaking couplings

T, = ApY;, i=e,d,u,x,V . (3.84)

We also assume that there are no off-diagonal gauge couplings or gaugino mass parameters at
the GUT scale, allowing for the possibility of both U(1)p_r and U(1)y to be a remnant of a
larger product group broken at that scale [43].

We will also consider the mass of the Z’, tan 3’ and the sign of i’ as inputs and use the following
set of parameters to describe the constrained BLSSM:

MO) Ml/27 AO: ta‘nﬂa ta‘n/@/u Sign(/”’)? sign(u'), mzr, Yx and YV‘ (385)
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3.10. B-L EXTENDED MINIMAL SUPERSYMMETRIC STANDARD MODEL

Y, is constrained by neutrino data and has to be very small in comparison to the other couplings
in this model (as required by the embedded seesaw mechanism) so we will take Y,/ = 107°6% as
its precise structure will not affect our results in section 5.4 As Y, can always be taken diagonal
and we effectively have a total of 9 free parameters and 2 signs. In the following we will refer to
this constrained version of the BLSSM as the CBLSSM. A complete review of its mass spectrum
can be found in [43].

In general, picking a set of GUT-scale parameters is very unlikely to result in a potential with
a phenomenologically acceptable minimum. The usual strategy adopted in spectrum generators
like SPheno [44] 45] (and others, such as ISAJET [46], SOFTSUSY [47] and SUSPECT [48]) is to fix
some for example y, By, i, B,y by demanding that the minimization conditions are satisfied for
the VEVs given as input (they are given indirectly, by specifying my, tan 3, mz, tan 3').
Unfortunately, this procedure only ensures that the input VEVs are an extremum of the scalar
potential. There is no reason for these VEVs to be the global minimum and one should find
all the possible solutions to the minimization conditions to be able to find it. This will be the
starting point of our analysis in [5.4]
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CHAPTER FOUR

VACUUM STABILITY OF SUSY MODELS

For SUSY models the main efforts for discovery have been centered around collider physics, where
direct detection has been a realistic possibility since LEP II. In this sense most studies focus in
the prediction of different signals emerging from the presence of SUSY particles in production
and decay processes and in constraining the parameter space of different theories using the latest
experimental results.

It is the main focus of this work to study a set of phenomenological constraints that aim to
complement constraints coming from this type of studies. The vacuum structure of the potential
for SUSY theories can provide complementary constraints by requiring a global minimum (or
metastable local minimum) of the scalar potential in agreement with experimental facts.

A big part of the phenomenological success of the standard model relies on the spontaneous
symmetry breaking mechanism triggered by the vacuum expectation value (VEV) of the scalar
field of the theory, the Higgs boson. As we saw in section [2.1.3] this symmetry breaking works as
the Higgs boson generates new SU (2), breaking interactions by getting a VEV. In this particular
case we want this symmetry to be broken in order to be able to write mass terms for particles we
know from experiment are massive. However, let us consider for a moment that the Higgs Boson
is not the only scalar of a theory. In this case, there is nothing forbidding these scalar particles
to get VEVs and for any gauge group under which these particles are charged the corresponding
symmetry will be broken. We know very well from experiments that we want to maintain certain
gauge symmetries which to the best of our knowledge are unbroken. In this sense any theory that
would make phenomenological sense will conserve U(1)gas (charge) and SU(3)¢c (color) gauge
symmetries, so if we would like to add any scalar particles we have to be sure that this is the case
and the fields allowed non zero VEVs are singlets under the gauge groups we want to conserve.

This is specially true with SUSY theories. As we saw in the section[3.6]even for the minimal SUSY
theory we can think of we need to introduce not only an extra Higgs SU(2); doublet (giving
rise to charged Higgs scalar particles) but also a plethora of scalar fields, the partners of all the
observed fermionic particles. This partners will be charged under U(1)gps or U(1) gy @ SU(3) ¢
and are not exempt of getting VEVs.
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Vacuum stability of SUSY models

4.1. Previous attempts at avoiding color- and charge- breaking
minima

The issue of short-lived DSB minima in SUSY models has been known for some time [49-56].
One of the main challenges of vacuum stability lies in the fact that beyond tree level, the problem
becomes computationally expensive. Given the nature of the effective potential and the tunneling
time calculation it is also very difficult to find general analytical rules to exclude a parameter
point safely. However, thumb rules and analytical equations attacking the problem at tree level
are simple enough that even when inaccurate they can be very convenient and gain some traction
as a way of handling the vacuum stability problem.

In the following we will present a short overview of what we consider are the most popular ways
of addressing vacuum stability in phenomenological studies and how some of these thumb rules
and analytical conditions are derived. Later in this work we will put the conditions to test by
comparing them to the numerical results of our framework in sections and [5.2]

The scalar potential for the MSSM is given by equation . Let us assume for the moment
that only a subset of the scalar particles can get VEVs. Then using the previous expression for
Vtee and allowing only Hy = ’Ud/\/i, Hy, =v,/V2,7 = UL3/\/§, TR = UE3/\/§ to get VEVs we
can explicitly write the tree level potential after setting all the other fields to zero as:

L 9,90 o9, 9 2\2, 2,2 .2 2.2
Vit =3 (91(vg — v + viz — 2vE3)" + g3 (v] — v, — v13)7)
¢i=0

Y

1o/ 99 2 9 2 9
+ZYT (vgvEs + vivEs + vigvis) + \/§UL3'UE3 (Arvg — pov,,)
1
—Byvgv, + B (\M\Q(vfl + ’Ui) + m%{dvfl + quuvﬁ + mgLv%g + m%Rv%s()&l)

Previous studies relied in manipulating the tree level potential and finding analytical conditions
involving free parameters that would try to avoid dangerous directions, i.e parameter combina-
tions that would give a potential with minima with unwanted VEVs. These conditions work in
extreme cases as best, but at least offer some hindsight.

The most popular condition relies on assumptions made about the ratios of VEVs at color- and
charge- breaking (CCB) minima. If one keeps the ratios of scalar fields constant to each other,
it is possible to find specific directions in field configuration space that are at danger of CCB
minima. Then that strong assumption will allow us to simplify the scalar potential and write it
as a function of composite variables, which would thus be much more treatable.

Consider as an example that we take the stau and stop fields to be equal to the down-type Higgs
so that Hy = 71, = Tg, and all other fields taken to be zero.

Along such directions we can write the potential as depending on a single variable, like the
normalized magnitude of the VEVs.

D-term contributions to the potential can be thought to have a “stabilizing” effect which we
can understand by noting as we did in section [3.7] that they are always positive. So if we are
able to find certain directions in field space, where these D-term contributions vanish, we can
try to avoid them and hope to also avoid potential unwanted minima. One can then solve the
one-dimensional problem of minimizing the potential along these directions and compare it to
the DSB minimum.

Let us write the potential projected along one of these directions:
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4.1. PREVIOUS ATTEMPTS AT AVOIDING COLOR- AND CHARGE- BREAKING
MINIMA

yiree — — -y + v (4.2)
where v is the (scaled) length of the vector of field values. This is minimized either when v =0

and V' = 0 or when !

A+ VA2 —4m?
2Y
We know that for the DSB minimum the tree level potential is < 0. Then if we can find a way of
ensuring that at the CCB minimum the potential is always positive, we can find conditions on
the parameters that would avoid that particular CCB vacuum from being the global minumum
of Vtree.
Plugging vcep into Vigee and demanding a positive value independent of the sign of A and noting
that the dependence on Y comes as an overall factor we get that

(4.3)

U= VccB =

2

m? > §A2. (4.4)
This method for finding conditions gives rise to several particular cases, depending on which
relations between the VEVs are assumed. Let us see some of the special cases.
One of the simplest directions along which the D-terms of eq. (4.1]) vanish is the direction where
H, is taken to be 0, and Hy = 7, = 7 = 3~ Y4v, where the factor of 371/4 keeps the quartic term
correctly normalized when casting the potential in the form of eq. (4.2). This in turn implies
that in eq. (4.4) m? = (m%;, + |pf* + m2, +m2,)/V3 and A =271/231/44
This particular case has been widely used in the literature as a safeguard against CCB minima
[49-52] [54]. The condition for stau VEVs looks like

and conversely the analogous condition for stop VEVs

A7 < 3(myy, + |ul* + mtgL + m?R) . (4.6)
In [53] a slightly improved set of conditions were given. For the first generation they take a
similar form as above:

2 2 2 2

As in this case there are no large Yukawa couplings involved, we can exchange the masses for
the GUT scale parameters of the CMSSM [57]

(Ag — 0.5My )% < IMG + 2.67M7 5. (4.8)

The only case where this condition might have a hope of working is when only VEVs for the
first two generation sfermions are allowed. In this case the Yukawa couplings are much smaller
than the gauge couplings and then the approximation made above makes sense. The moment we
allow VEVs for the stops or staus when tan § is large the validity of the condition is not so sure
anymore. However, it is worth examining how well such conditions do for the third generation,
as in that case the expressions are considerably more complicated and a numerical approach is
usually necessary to get reasonable results.

A—+/A2—4am?2

'The case voop = 5y

is a maximum of the potential.
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Vacuum stability of SUSY models

So when we refer to condition (4.7)), we will assume it is valid for the the stops, explicitly written
as

A7 < 3(mi, + m?L + mth). (4.9)

An algorithm to isolate CCB minima of the tree level potential assuming vanishing (color) D-
terms and either only stau or only stop VEVs was presented in [53]. The authors assumed that
tan 8 = Z—Z > 1 holds even at the CCB minimum, while we will show in the next chapters that
this is not always the case. In fact we will see often that tan 3 < 1 holds at the global minimum
for points with stop VEVs.

Another different algorithm was presented in [58] for tan 5 — co. The algorithm only provides
a conservative upper bound on |A;| so that there is no minimum of the tree level potential when
H,, tr, and tg are allowed to have VEVs.

However, as we will see when we apply our framework, the limit of large tan 8 is characterized
by stau VEVs without stop VEVs for the CMSSM, so we can already guess that the condition
does not perform so well.

For simplicity, rather than implement the full numerical algorithm, we will study the condition

A7 < (0.65 — 0.85)*(3(m7 +m? +2m7)) (4.10)

where we have chosen 0.65 from the point where the CCB condition diverges from the tachyonic
stop line in figure 1 of [58] to 0.85 as being close to the maximal allowed value from the optimal
bound considered by them.

It is no surprise that these conditions do not perform well and are neither necessary nor sufficient
to guarantee the absence of panic vacua, even before considering the one-loop effective potential
[59, [60].

For conditions like it is true that if satisfied, there will not be any deeper undesired minimum
along that particular direction in field space. At the same time the fact that we are able to exclude
minima along particular directions, does not exclude the fact that other deeper minima might
appear in any other direction not protected by such type of conditions. Similarly there could
be an undesired minimum along this direction that has a negative tree level potential value but
not quite as negative as that of the DSB vacuum, thus forbidden by the condition but actually
allowed.

The temporary hints for an enhanced di-photon decay rate of the Higgs Boson in 2012 revived
the interest in charge-breaking minima. This was the case since in the MSSM the only way to
explain such enhancement without affecting the other decay channels relies on very light staus
[61] [62]. In this context, new checks for charge-breaking minima due to stau VEVs were either
derived or revived [55], 56].

As an example of the new checks implemented around this time we have

ptan B < 213.5/mz mz, — 17.0(mz, + msz,) +4.52 x 1072 GeV Y (mz, — ms,)?
—1.30 x 10* GeV (4.11)
|(Yevuu)/(V2m,)| < 56.9\/mz, mz, +57.1(mz, + 1.03msz,) — 1.28 x 10* GeV

1.67 x 10 GeV? 1 0.983
. 641 x 10° GeV3(—5 + —0) (4.12)
mszp + mzp mﬂ"L TR

where m; is the tau mass. The condition given by (4.11)) was obtained by a numerical fit of the
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result of a scan to an ansatz in [55]. In the same way, condition also comes from a fit of
the results of a scan to an ansatz in [56]. The former presentation of the conditions comes from
combining the definition of tan Beg from eq. (4) in [56] with their condition (10).

Its worth noting that and were derived for the case that A, = 0. As it is known
that in the CMSSM one needs large, negative Ay to get the correct Higgs mass through stop
loops, we can also foresee that these conditions won’t be very successful for that model.

It is one of the purposes of this work to test analytic conditions against our proposed framework,
so we will be plotting in section [] the lines between points which satisfy these conditions on top
of the results coming from our framework.

4.2. Vacuum Stability as a phenomenological constraint

The question arises as to how to determine in a more complete way which fields get VEVs. From
our experience with the standard model we know that this means we have to minimize the scalar
potential of our theory. Even in the standard model, where the problem is trivial at tree level, the
issue of minimizing the potential gets trickier when we include quantum corrections. The desired
vacuum of the SM (with desired we refer to the minimum reproducing the correct masses and
broken symmetries) is at best metastable as the Higgs quartic coupling A can become negative
at higher energies [63].

But in the case of SUSY models, the issue is more complex. Although it is possible to find
parameter points that include the desired vacuum as one of the vacua of the scalar potential,
one needs to find all the other minima to be sure the desired one is the deepest. Even at tree
level, the minimization of the scalar potential is not a trivial task if we include extra scalar fields.
Although at first glance the problem of finding the minima might seem a very basic mathematical
challenge, it is certainly not. The minimization conditions or tadpole equations are in general
degree three polynomials, and there is no analytical way to solve a general set of n coupled
polynomial equations (where n is the number of scalars in out theory) of degree bigger than two.
Once the effective potential is considered the issue becomes much more involved and finding the
global minimum of a theory is a very difficult task. Add to that the fact that even if our desired
minimum is not the global one it can still be metastable and we are in front of a very interesting
challenge.

One of the main purposes of this work is to present the framework necessary to tackle this issue
and use the vacuum structure of a model as a complementary phenomenological constraint. For
this we will need to find all the minima of the tree level potential, study the effect of quantum
corrections and calculate tunneling times between the candidate vacua, at zero and non-zero
temperature.

We will summon several mathematical and numerical techniques, which working together will
provide us with the necessary tools to approach this issue consistently. The resulting framework
has been implemented in the code Vevacious, which we will discuss further in this chapter.

4.3. Vacuum stability analysis framework

Let us assume first that the model we intend to work with always has at least one minimum
that reproduces the correct physical picture. We will call this minimum the desired symmetry
breaking minimum or DSB for short.
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Other minima which break symmetries we want to conserve, e.g. charge or color, might appear
with the situation becoming dangerous if one of them is situated at a lower point in the potential.
We will call these type of minima panic vacua.

The main idea is already clear: We want to first determine whether panic vacua exist and if they
do we would like to know the tunneling probability between the deepest panic vacua and the
DSB. An unstable DSB would lead to the exclusion of that particular parameter point. But how
would we do this practically? We will assume that there is a model with many scalars that we
want to constrain, and we know how to write the tree level and effective potential at one-loop. In
addition, we will also assume that through a spectrum calculator a set of parameter points has
been found such that the DSB minimum is one of the solutions to the minimization conditions.
Then to assess the stability of the DSB vacuum we will:

e Find all the solutions to the tree level minimization conditions, i.e the minima of the tree
level scalar potential.

e Assess in a first step whether panic vacua exist i.e. undesired symmetry breaking minima
deeper than the DSB minimum.

e Use the tree level minima as starting points for a numerical minimization of the one-loop
effective potential.

e Calculate the tunneling probability at zero temperature between the DSB minimum and
the most likely panic vacuum by a straight path between them.

o If the DSB is still stable, recalculate the tunneling probability at non zero temperature
assuming a straight path between them.

o [f the DSB is still stable, recalculate the tunneling probability at zero temperature through
the optimal tunneling path between vacua.

o [f the DSB is still stable, perform the above step but at non zero temperature.

o (lassify the parameter point according to the stability of the DSB minimum.

The main idea of the previous procedure is to exclude a parameter point with the least amount
of work possible. In this sense, computationally expensive procedures like non zero temperature
calculations and finding the optimal path for tunneling are left for cases where simpler procedures
have not been able to find a short-lived DSB minimum.

In the following we will lay down the specifics of each step and the tools used to carry it out. We
will talk about the subtleties involved and the most interesting technical details. Let us start
first with the solution to the problem of finding the minima of the tree level potential.

4.3.1. The Homotopy continuation method

As mentioned above, the first issue we encounter when studying the vacuum structure of a model
is the minimization of its scalar potential at tree level. One could approach this problem with
numerical minimization routines or reducing the problem by allowing some free parameters to
be varied in order to achieve the desired vacuum. Neither of this techniques guarantees that
we will know all the other minima of our theory or whether these will be deeper than our
phenomenological choice.
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It is always possible to study the phenomenology of a model for which a desired vacuum is one of
the solutions of the tadpole equations, but the relevance of the results gets lost if that engineered
vacuum is not the global one and has an unacceptably short tunneling time to an unphysical
minimum.

In conclusion, if we want to proceed further we need a way of finding all the solutions of the
tadpole equations for a given model and parameter point.

The homotopy continuation method [64) [65] has found use in several areas of physics [66H68],
in particular to find string theory vacua [69, [70] and extrema of extended Higgs sectors [T1],
where the authors investigated a system of two Higgs doublets with up to five singlet scalars in
a general tree level potential.

A computational implementation of this method, the numerical polyhedral homotopy continu-
ation, is a powerful way to find all the roots of a system of polynomial equations quickly [72].
While the method is described in detail in [64, [65] here we present a rather crude introduction
as it is one of the main tools used in our subsequent phenomenological analysis of the vacuum
structure of SUSY models.

Given two functions f(z),g(x) € Y with x € X, a homotopy is defined as a continuous function

Hom : X ®[0,1] - Y (4.13)

with [0,1] € R, which satisfies Hom (z,0) = f(z) and Hom (z,1) = g(x). Which is to say
that there is a continuous function which can parametrize the deformation of f into g with a
parameter that goes from 0 to 1.

The usefulness of this type of functions relies in the mathematical fact that under a Homo-
topy transformation between polynomials P(zy,...,x,) and Q(z1,...,zy), the roots of P move
smoothly to the roots of @, provided that both polynomials have the same Bézout bound (upper
bound on the number of roots). As the reader might already note, this process is not injective.
However, provided that P has the maximum number of different roots, it is guaranteed that we
will find all the roots of Q.

Let’s be more precise. Suppose we have a system of polynomial equations

pl(xl) cee ,IEn)
P(z1,...,zp) = : =0 (4.14)
pm(xlv IR xn)
which we know how to solve and has the same number of roots as its Bézout bound. Now suppose

we have another set of polynomial equations

q(z1,. .., %)
Q(z1,...,xn) = : =0 (4.15)
gm(T1,. .., Zn)
for which we have no solution, so we know none of its roots. Then we can construct a homotopy
between both systems
Hom (z1,...,2n,t) = P(x1,...,2,)(1 — t) + vt Q(21,. .., Tn), (4.16)

where v can be in general a complex number. This is the simplest homotopy possible, a
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linear homotopy. By construction it satisfies that Hom (0, x1,...,2,) = P(x1,...,2,) and
Hom (1,z1,...,2n) = Q(z1,...,2p) .
Then it is guaranteed that the solutions of H(¢,z1,...,zy,) = 0 will construct continuous paths

in C connecting the known roots of P with the unknown roots of (). The starting system P can
be chosen for example as

P(zy,...,zp) = : =0 (4.17)

with 7; the degree of ¢;. This guarantees that we have ) ;" r; discrete solutions. Finding
the roots of () means tracing the paths, which can be done numerically with any reasonable
path tracing algorithm like the Euler predictor or Newton corrector methods. In this way it is
guaranteed as well that we will find all the roots of ), without explicitly solving the system
of equations: In a sense we have gotten the solution without solving the problem. This is a
very robust method and its efficacy relies in the properties of the homotopy transformation. A
detailed proof of the method can be found in [64]. It is important to note that the method works
on the assumption that () has a finite number of solutions. If we want to use this method to
find the extrema of the tree level potential, we have to be sure that all gauge degrees of freedom
have been taken away and only a discrete number of solutions remain.

4.3.2. One-loop effective potential

Now that we have a tool to find all the minima of the tree level potential, we have to understand
the role played by higher order effects. The usual approach when trying to understand symmetry
breaking mechanisms and the minimization of the potential often avoid going beyond the tree
level potential of the given theory. This is a good pedagogical approximation and it shares many
analogies with more familiar problems. However, quantum effects do play an important role in
modifying the potential of the theory and it is necessary to understand how to account for these
effects.

A good way of understanding the role of higher order effects is through the effective potential.
In short, the effective potential is what we get when higher order contributions are allowed for
the couplings between the scalar particles of the theory. Schematically and at one-loop it is what
results from including diagrams of the form

In order to calculate the effective potential at one-loop it is convenient to think in the path
integral representation. For simplicity let’s think about a scalar field theory. In that case the
partition function (the generating functional of correlation functions) can be written as
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Z ="l = / DS O+ with J¢ = / iz (x)o(x). (4.18)

This equation defines W (J) which in turn yields all the connected green functions by the deriva-
tion with respect to J(x) following

0 )
G(z1, = ———iW(J
(G(21,22)) 57(21) 57 (za). (/)
We are interested in the vacuum of our theory. Let us first use the generating functional to get
(0| ¢ |0) in the presence of the source J (not setting it yet to 0)

(4.19)

J=0

(0] 610) = do = ‘55(%) -~ / D@+ 4(z). (4.20)

We would like to find the effective potential of our theory i.e. a quantity that is minimized at
the vacuum of our theory. To do this we can now define a new functional I'(¢g) by a Legendre
transformation

T(d0) = W(J) — / 442 (2) o (), (4.21)

where it is implied that J can be expressed as a function of ¢y through equation (4.20)). From
(4.21)) follows quite nicely that (this is the purpose of the Legendre transformation)

L (¢o) / 4 0J(x) OW(J) / 4 0J(x)
=/ - dw olx) = J(y) = —J(y). 4.22
560 (y) 590(y) 37 (x) Soo(y) 0@ — W) = ~J©) (4.22)
This leaves us with the “dual” relations ggg‘é’;; = —J(y) and 5;5((;)) — $o. Now we are close to

finding the explicit form of the effective potential. Without loss of generality we can parametrize
I as

I'(¢o) = / a2~ P(d0) + Q(d0)(90)? + R(o)(90)* + ... (4.23)

A very reasonable assumption is for ¢y to not depend on x. This would make our vacuum
translation invariant which is something we want. In this particular case we can write (4.21]) and

(4.23) in the following form

Ton) = [atel-Pl — gggf;;

as in the path integral representation the sources J are mathematical tools and non-physical, we
always want to set them to zero at the end. Doing this we find the familiar equation

= —P'(¢o) = —J (1), (4.24)

— P'(¢o) =0, (4.25)

with ¢g now being the VEV of ¢ in the absence of the source. So the vacuum of our theory is
determined by finding the minima of P, much in the same way that for our classical theory we
find the vacuum by minimizing the potential V. So P is nothing else than the effective potential
and we will therefore call it V¢, from now on.

We will be interested in the first order quantum fluctuations of the potential, in other words we
would like to work with the one-loop effective potential. The first step is to explicitly evaluate
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W{J]. In general this is a very difficult task, but if we look at (4.18) but this time explicitly

writing h,

7 — W) _ / Deet S 2L+ @)é(@)] (4.26)

it is easy to see that due to the smallness of & the exponential is dominated by small values of
the integrand, so we can use the steepest descent approximation safely. First we expand around
the minimum of the integrand, let’s call it ¢g, so that ¢ = ¢ + ¢~> This minimum ¢, is easy to
find, as it is the solution to the Euler-Lagrange equations with an additional term for J(x), that
is

Pos(x) + V'ps(x)] = J(2). (4.27)
Using ¢ = ¢s + ¢ and expanding W (J) we get
W(J) = S(¢s) + / d*z[J(z)ps(2)] + %TT log(9% + V" (¢5s)) + O(R?). (4.28)

The trace goes over the space of scalar fields on which the differential operator (9% + V" (¢)) acts.
From we can note that at leading order ¢g = ¢, which is not really a big surprise as this
is in fact how we define it when thinking in terms of the classical potential. Now assuming again
that ¢g does not depend on x, we can write

log[—k* + V" ($5)]- (4.29)

4
Triog(@? + V" (60) = [[ate [ 25

Putting all the pieces together we can write now the effective potential as:

i 4 2 _ s
Vo) =vio) - 3 [ata [ b == o) (4.30)

We have added an unphysical constant to make the logarithm dimensionless. As the attentive
reader might notice, the spacetime integral in diverges quadratically. This of course a sign
that we have not renormalized the effective potential yet. The final result will depend of course
on the specific theory at play and the renormalization conditions imposed. This expression is
commonly referred as the Coleman-Weinberg potential [73] as it was first derived by the authors
for the special case of QED with a ¢* interaction. We show the explicit formulas for the MSSM
and the BLSSM in the DR scheme in appendix

4.4. Tunneling out of the DSB vacuum at T'=0

In QFT the fact that we are in a local minimum of the potential does not guarantee its stability as
in the classical case. If there are other minima that lie deeper along the potential, the possibility
of tunneling due to quantum fluctuations opens. When treating the issue of undesired minima
in the potential of theories with many scalars, this will play a big role.

While a local minimum reproducing the physics we observe might exist, it could be that a very
high tunneling probability makes it unviable. Conversely, even if there are deeper unphysical
minima, if the desired local minimum has a sufficiently long lifetime it can still be phenomeno-
logically viable. So we need to answer the question as to how to determine the specifics of such
process.
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Figure 4.1.: A potential with two minima, a DSB with the wanted symmetry breaking and a deeper
panic vacuum which we want to avoid.

Let us think first about the one-dimensional problem of a single scalar field with Lagrangian
density

L= %auaﬂ ~V(6). (4.31)

The explicit form of V' is not relevant but let us assume it has two minima, a DSB minimum
with the correct phenomenology and a deeper panic vacuum to which tunneling from the DSB
is possible.

In the classical problem both minima are stable equilibrium points of the theory. However
quantum effects can induce a tunneling making the transition possible. A schematic picture of
how V looks is found in figure 4.1]

The way such tunneling would happen is in close analogy with the boiling of superheated fluids
from which much of the jargon is usually borrowed [74,[75]. In this case the role of thermodynamic
fluctuations will be played by quantum ones, but the picture is essentially the same. These
fluctuations will cause bubbles of panic vacuum to appear, however once in a while a bubble will
form with enough size so that it is energetically favorable for it to keep growing. Eventually this
bubble would replace everything until the system has transitioned to the panic vacuum.

As the underlying process is essentially the same, we can very quickly understand that what we
want to calculate is the probability of such bubble appearing per unit volume I'/V. In this case
I' stands for the vacuum decay width. The question is now how to calculate such expression.
The complete problem is extremely complicated, however it is possible to get an answer in a
semiclassical approach. Following closely the work in [74] [75] we have that

T/V = AeB/M (1 4+ O(h)) = Ae™1, (4.32)

where B is the bounce action which we will define in the following and A is a quantity of energy
dimension four, which is related to the ratio of eigenfunctions of the determinants of the action’s
second functional derivative.

The A factor is typically estimated on dimensional grounds as it is extremely difficult to compute.
However the estimation is sufficient in most cases provided we have calculated the bounce action
accurately. This is because changes in B have a stronger effect due to it being inside the
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exponential. In practice one could take for example A ~ Q* where @ is the renormalization
scale.

4.4.0.1. The bounce action: A semiclassical approximation

In the semiclassical approximation of a particle with a potential V' with position vector ¢ and

Lagrangian
L. o
L=5q-4-V(a) (4.33)

one can see the tunneling as the particle penetrating the potential barrier and materializing at
a scape point & (shown in figure for the one dimensional case) with zero kinetic energy, after
which it just propagates classically. The width of this process will be in the form of and
B in this case will be expressed as [76]

B = 2/ dsv2V, (4.34)
DSB

where (ds)? = dg - dq. Usually there is a whole region of possible scape points & thus we

will perform the above integral along the path of minimum resistance (the one minimizing B)

satisfying

o dsv2V = 0. (4.35)
DSB

We can cast the problem in a more familiar way by noting that the variational problem (4.35) is
solved by the equations

27 oV

— = = 4.36

dr?2  9q (4.36)
. ldg 1df .,

We can then see that the problem is analogous to that of the solving the Euler Lagrange equation

of the imaginary-time (7 = it) version of Hamilton’s principle applied to the ¢ Euclidean ”
Lagrangian
1dq dq
Lgp=-— —+V. 4.38
E=9dar dr + ( )

Using equation (4.37) and noting that the DSB minimum can only be reached asymptotically as
T — —00, one can then arrive at the equation

o 0
/ dsv/2V = / drLlp. (4.39)
DSB —00

Moreover, noting the fact that the problem is symmetric under time reversal, we could also write
the previous equation as

B :2/ dS\/QV:/ drLp. (4.40)
DSB —00
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7

So schematically we can think B to be a “ bounce ” as in this casting it is analogous to the
particle going from the DSB to ¢ and back in the Euclidean problem.

4.4.0.2. Tunneling in QFT

It does not take a lot of effort to translate this procedure to the analogous problem in field theory.
The equation of motion for the Euclidean Lagrangian in this case is given by

oV 0?
a;‘f’) _ <672 + v2> é (4.41)
with the boundary conditions
| L 96, .
TEIEOO ¢(r,%) = DSB, E(O’ z) =0, (4.42)

and the bounce action is given by

1 (0¢ 1 /= \2
B_ 3,12 (99) 1 < ) _ 4.4
/dex[2(8T>+2 Vo +V] (4.43)
If we are to follow the analogy with thermodynamics, then we can guess that the solutions will be
expanding bubbles and therefore will exhibit O(4) symmetry. If we assume that ¢ only depends

on the radial coordinate p with p? = |Z|? + 72 then we can rewrite the Euler-Lagrange equations
as:

24  3d¢ .

— + —— = VV (o). 4.44
It has been proven that any solution with ¢ # ¢(p) will always lead to a higher bounce action
[77] so we can see how our guess is well founded. Assuming we have found a candidate path in
field space parametrized by ¢ = ¢(t), these equations can be split in two parts, one parallel and
one perpendicular to the path:

d*t 3dt 5 -
e R P AC0) (4.45)
¢ (dt\? -

The first of these equations can be solved by the so called overshoot undershoot method. There it
is easier to think of the problem as that of a particle moving with potential —V" (along the path)
and an extra particular friction term if we see ¢ as the spatial coordinate. Then the solution of
the problem will be to find how to place the particle close from the panic vacuum so that it rolls
down the potential and stops precisely at the DSB minimum (see figure .

We can then start by trying certain position close to the panic vacuum and see what happens. If
the particle goes over the DSB minimum then we place the particle a bit below along the inverted
potential. If the particle does not quite reach the DSB minimum we place it some distance above
along the potential. Iterating this process we can then find the point where the particle will stop
at the DSB minimum at p = co to an arbitrary precision.
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panic vacuum

DSB

Figure 4.2.: The equations parallel to a chosen path in field space can be thought of as the classical
equations of a particle rolling on the inverted potential when taking x as time and ¢ as the spatial
variable. The solution will be the point from which the particle will roll and stop exactly at the DSB
minimum.

Once we found the initial condition that satisfies this, by integrating we can find ¢(t(p)),
i.e. the field ¢ as a function of p. This will describe the candidate solution of the equations of
motion for the critical bubble triggering the vacuum decay from the DSB minimum to the panic
vacuum. If we have selected the appropriate path ¢(t) for this, then ¢(p) will also satisfy .
Of course this is not the case for any arbitrary path chosen. The trick clearly is to find the right
path. Continuing with the particle analogy, we can think the first equation as determining the
forces parallel to chosen path and the second one as the one determining the normal force that the

-,

path exerts on the particle so that the particle moves along it, N = ‘;%f (%)2 —V_1V(¢). Then
given an initial path that solves but not we can always deform it in the direction
of N so that eventually the path with N = 0 is found. It is easier to start with a straight line
and implement the previous procedure to find the path that solves the equations of motion, and
therefore the path that minimizes the tunneling time between the minima. A schematic drawing
of how such deformations will look like is shown in figure 4.3

Unfortunately, this means that to calculate the tunneling time from the DSB to the panic vacuum,
one needs to evaluate the potential along a continuous path through the field configuration space,
and even though the extrema of the potential are gauge-invariant, the paths between them are
not. However, it has been proved that at zero temperature, the gauge dependence at one-loop
order cancels out [78§].

At finite temperature, the situation is not so clear, though the Landau gauge may be most
appropriate [79]. We will then perform finite temperature calculations in that gauge. Some
studies have shown that for “reasonable” choices of gauge, the differences in finite-temperature
tunneling times are small [80)], it is however still possible to choose poor gauges that can even
obscure the possibility of tunneling [81].

4.5. When the temperature is not zero

Usually when thinking about the physics around us we think about a Universe with temperature
close to zero. This has not always been the case and to study the thermal history of the Universe
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&1

vacuum

DSB,

¢2

Figure 4.3.: The initial guess for a path in field space is just a straight line between vacua (green). The
optimal path for tunneling (red curved) is found by deforming the first guess by the normal force applied
on a particle moving under the inverted potential.

we have to obviously part from that assumption.

During the cooling of the Universe after the Big Bang, thermal effects played a big role. Tun-
neling could have been triggered not only by quantum fluctuations, but thermodynamic ones
as well. The potential itself depends on temperature thus finding the optimal temperature at
which tunneling might be triggered (with higher probability than at 7' = 0), has to do with the
interplay between the modifications to the potential and the increase of thermodynamic fluctua-
tions. Schematically the probability of tunneling between vacua can be reduced as walls between
different minima get smaller at higher temperature and the relative depth between them also
changes.

4.5.0.3. A glimpse at thermal QFT

As we just mentioned, finite temperature tunneling will not only be triggered by quantum fluctu-
ations as when T' # 0 thermodynamic effects start playing a role. In order to study the tunneling
probability in such scenario one has to describe the process through thermal QFT.

First of all, the idea of including temperature in our analysis means that the expectation value
of an operator in a thermal ensemble

T [exp(—(H)A]
) = T foxp(—pH)] °

(4.47)

can be written as a calculation in an Euclidean QFT with periodicity in the imaginary time
coordinate with period g = %

Let us see this explicitly in the case of field theory. Consider the two point correlation function
of a field ¢ at non-zero temperature
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(65, 0,0))5 = el 6(2,1) 0(3,0) (1.45)
= TG e gy, 0)e ) (1.49)
= S Tlo e 6y, —ip) (1.50)
= ST 6y, ~iB)ola, 1) (1.51)
= (6l i) ol )5, (1.52)

where we used the cyclic permutation invariance of the trace. One can see there that if we rewrite
the above result in euclidean QFT with imaginary time 7 = it we get

(0(x,7) ¢(y,0)) 5 = (d(y, B) P2, 7)) - (4.53)

This is called the Kubo-Martin-Schwinger relation (KMS for short). This relation imposes then
that the fields obey the periodic condition

¢($70) = i¢($7/8)7 (4'54)

with the sign depending on whether the fields correspond to fermionic or bosonic degrees of
freedom.

At T = 0 we calculate the tunneling time assuming that the four-dimensional bounce action
Sy from equation is the dominant contribution to the decay width of the false vacuum.
However, for sufficiently high temperatures, the dominant contribution may come from solitons
that are O(3) cylindrical in Euclidean space rather than O(4) spherical [82].

To see this consider the following: At T—=0 the solution to is manifestly O(4) symmetric
as p? = |Z|? + 72. If we now allow the temperature to be non-zero the solution will be forced to
satisfy the periodicity condition in the 7 direction. If r is the radius of the bubble solution at
T =0, for T < 1/r the bubbles become a series of bubbles at a distance  from each other in
the 7 direction. If the temperature increases to 7' ~ 1/r then the bubbles start to overlap. For
temperatures T > 1/r the bubbles merge into a O(3) symmetric solution and the action Sy has
to be replaced with the action corresponding to the O(3) symmetric solutions %Sg as shown in
figure [£.4] This comes from the fact that the new equation to solve at non zero temperature will
be

2¢  2dg .
&5 a5 VV () (4.55)

with p = |7)2.

4.5.0.4. Estimating survival probability of the DSB vacuum at T # 0

As we have seen, if the thermal contribution dominates, the expression for the decay width per
unit volume I'/V at a temperature 7' changes. For non-zero temperature we have to calculate
now

L/V = Ae™% — D(T)/V(T) = A(T)e~53MI/T (4.56)
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-3

Figure 4.4.: I : Regions of non-vanishing solution for . IT, I1I, and IV show regions of non-vanishing
solution for at T < 1/r, T ~ 1/r and T > 1/r respectively. The periodicity condition in the 7
direction at non-zero temperature brings the O(4) symmetric solutions to O(3) symmetric ones. The
x-axis represents the spacial components.

where S3(T") is now the bounce action integrated over three dimensions rather than four, with
the integration over time simply replaced by division by temperature because of the constant
value along the Euclidean time direction. The leading thermal corrections to the potential are
at one loop, and given by [83]

AV(T) = T*Je(m?/T?)/(27%) (4.57)

where the sum is over all the degrees of freedom (i.e particles): bosons as sets of real scalars,
fermions as sets of Weyl fermions, and

Ji(r) = :I:/ dz 2°In (1 Fe Vv $2+T) (4.58)
0

with J4 for a real bosonic degree of freedom and J_ for a Weyl fermion (We will use a slightly
different convention as the one used in [83], for simplicity we will incorporate the negative sign
into the definition of J_ ). The thermal corrections will always lower the potential, although to
a different degree depending on the value of m?/T2. This can be seen in figure where we
show the typical shape of J, (m?/T?) (the behavior of J_(m?/T?) is qualitatively similar).

The interesting quantity to look at in this case is the so-called survival probability, or the proba-
bility P(T;,T) of NOT tunneling between the time when the Universe is at temperature T; and
when it is at temperature Ty < T;. We can write it explicitly as:

P(T;,Ty) = exp (— / _Tf EV(T)A(T)e_S?’(T)/TdT) . (4.59)

If we want to perform this calculation for a vast amount of parameter points we need to find
a prescription to do so quickly. For these type of objects, even the numerical evaluation of
the action is computationally expensive. While one could attempt the numerical integration of
equation , it quickly becomes impractical for more than a handful of parameter points.
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m?%/T?

Figure 4.5.: Typical shape of J, (m?/T?). It shows that it asymptotically approaches zero as m?/T? —
oo and also lowers the effective potential.

A solution we propose is to exclude parameter points based on an upper bound on the survival
probability under some approximations in such way that S3(7") is to be evaluated only once.
This is reasonable as the points we exclude will be definitely excluded, so the unwanted case of
“false positives” (i.e falsely excluded points) is out of the question.

To achieve this let us first take the factor A(T) to be T, as the evaluation of the eigenfunctions
of the determinant is usually estimated on dimensional grounds due to its complication (the
reasoning goes in the same direction as in the 7" = 0 case, however we use in this case 7" instead
of Q). Any deviation would effectively contribute In(AT~%) to S3(T)/T, and as S3(T)/T is
~ 240 for survival probabilities that are not extremely close to zero or one, we can apply the
same logic as in section [£.4]

The second set of assumptions we will make is that the Universe is radiation dominated during
the evolution from T; to Ty and that entropy is approximately conserved between T; and today.
Entropy conservation implies that V(1y)/V(T') = s(T")/s(Tp), where s is the entropy density
and Ty = 2.73 K is the temperature of the Universe in the present. Moreover, during radiation
domination we have [84]

a 1 72g.(T)

H=2_
a  Mpianck 90

72, (4.60)

with Mpianck as the reduced Planck mass and g¢.(T') is the effective number of relativistic de-
grees of freedom at temperature T', H is the Hubble parameter and a is the scale factor of the
FriedmannDLemaitreDRobertsonbDWalker metric. Using the fact that in that regime we have
a o t'/? leading to H = 1/2t we then get

1 90
2= — = MPlaan

7 WT_Q' (4.61)

Taking then % and ignoring the T' dependence of g, (the effective degrees of freedom change
slowly with temperature), we are left with

90

dt/dT = _MPlanck 5
/ 72g.(T)

T3, (4.62)
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Using this result in (4.59) we get:

s(Th)

—V(T) = —Mplanac\/90/ (729, (T))T3V(Tp) S«T)

(4.63)

To further simplify our expression we then use the fact that for a Universe with 68.3% Dark
Energy and 31.7% non-relativistic matter, the volume of the observable Universe using the co-
moving horizon as boundary is

V(Ty) = 141.4(H (Tp)) ™2 = (3.597 x 10%2/ GeV)?, (4.64)

where H(Tp) = 0.68 x 100 km(s Mpc)~!. By noting that the present value of relativistic degrees
of freedom is g(7p) = 43/11, we can also use the relationship

(To)T3 43 TP

s(Tp)/s(T) = gg*(<79))Tg = ﬁWO)T‘?' (4.65)
The question now is what value to take for g.(T"). The tunneling is assumed to be dominated
at a temperature where all degrees of freedom of the SM are taken to be relativistic, while
non-SM particles are assumed to be still non-relativistic. This is a reasonable assumption as for
temperatures above the SUSY scale, where the SUSY degrees of freedom become relativistic, the
thermal contributions are likely to make the tunneling less probable. As thermal contributions
to the masses are proportional to the temperature and always positive [83], if T~ Mgygy then
the thermal contribution to the masses at the panic vacuum will be positive and O(Mgysy)
therefore diminishing the CCB minimum depth and making tunneling less likely. In this sense
we would like to consider tunneling at T' < Mgysy, and in that case it would be sufficient to
take the approximation that the only relevant relativistic degrees of freedom are coming from
SM particles making ¢.(T") = g«sm (1) = 106.75.

Putting it all together, we find that

Ty
/ ﬁV(T)A(T)e*SﬂT)/TdT
r, dT

T;
~ 1.581 x 10'% GeV / T2 5BM/Tqr. (4.66)
Ty

As we pointed out, the evaluation of S3(T") is computationally expensive. One way of avoiding
a continuous evaluation of the action is to make the reasonable assumption that it is a mono-
tonically increasing function of 7. As the magnitudes of the field values increase along the
path from the DSB to the CCB vacuum, the field dependent masses that enter the effective
potential increase (ignoring occasional cancellations). Thus thermal contributions will lower the
effective potential less near the panic vacuum than near the DSB vacuum, hence increasing T
leads to the absolute height of the energy barrier decreasing but the barrier height relative to
the false vacuum, which is the important quantity, increases, and thus S3(T') increases. Using
this assumption we get

51



Vacuum stability of SUSY models

T; T;
/ T2~ 53D)/Tqr ~ / T—2=5(T)/T g
Tj Ty

_ (6—53(Ti)/Ti — 6_53(Ti)/Tf)/SS(E)

(4.67)
T;
/ T2 3M/TAT > = 3(T)/Ti /5o (T;). (4.68)
0
Given this,
P(T; =T,T; = 0) < exp ( — 1.581 x 10'% GeV
5 6—53(T)/T/53(T))
= exp (—exp[244.53 — S3(T") /T — In(S3(T")/ GeV)])
(4.69)

and all that remains is to find the optimal 7' = Top (the one that maximizes this quantity)
to find an upper bound on the survival probability P(T; = Tope, Ty = 0) for the DSB vacuum.
Hence if we can choose Top before attempting to calculate S3(Topt), we only need to make one
evaluation of Sg(Topt).

The evaluation of the three-dimensional bounce action along a straight path in “field space” from
the false vacuum to the true vacuum, denoted S;tralght(T ), is much quicker to calculate than
searching for the optimal path, so for each parameter point S;traight(T) can instead be calculated
for a set of temperatures between the temperature at which the DSB vacuum evaporates and
the critical temperature Tt at which tunneling to the CCB minimum becomes impossible.
SN () can then fitted as (Tes — T')~2 times a polynomial in T, since the action should
diverge as (Terit — 1) ~2 as T approaches Ty [85,86]. This fitted function can then be numerically
minimized to estimate the value of T' = Ti,,; which minimizes P(T; = Topt, Ty = 0). This can
then be used to evaluate the right-hand side of eq. , taken as the upper bound on the
survival probability of the false vacuum.

The estimated optimal Top can be used to evaluate S3(7T,pt) properly, along the correct tunneling
path (by the procedure described in between the CCB vacuum at temperature Ty (which
can be found by gradient-based minimization of the full one-loop thermal potential starting from
the minimum at 7" = 0) and the “DSB vacuum at Tj,p:” (where gradient-based minimization
starting from the position of the DSB vacuum at 7" = 0 will end up). Above the evaporation
temperature, this should be the field origin, and indeed we will see this was the case for each
parameter point in our analysis.

4.6. Vevacious

The software package Vevacious was developed to address the vacuum stability issue. It imple-
ments the framework we laid down in the previous sections by interfacing several tools with the
specifics of our prescription. It requires a model file and a parameter point as inputs. It is written
in C ++ and Python and it uses several available tools. The Homotopy continuation method is
implemented using HOM4PS2 [87], the numerical minimization uses the Python implementation of
the MINUIT algorithm and the tunneling calculation at zero and non-zero temperature uses code
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written originally for CosmoTransitions [8§].

A careful description of Vevacious code escapes the purpose of this work. However the reader
might consult the published manual [89] and access http://vevacious.hepforge.org/ where
the latest version and a quick start guide might be downloaded. Nevertheless, we will lay down
Vevacious’s procedure and explain some of the details about the specific implementation of our
prescription.

4.6.1. Objectives

The typical use would be as an extra phenomenological constraint in a parameter scan for a
single model. The main effort has to be put in creating the model file, although it is possible
to do it automatically with SARAH relatively straightforwardly. A set of popular model files is
provided and the number of available ready-to-use models will increase with time.

Once the model file is given, the user can provide parameter points in the form of files in the
SUSY Les Houches Accord (SLHA) format 1 [90] or 2 [91]. Even though the SLHA is used as the
format, the model itself does not need to be supersymmetric, as long as the SLHA file contains
appropriate BLOCKs.

Depending on the options, accuracy of the tunneling time and complication of the model, each
point should be evaluated within a matter of seconds.

Once the model file and parameter point are provided, Vevacious determines the deepest panic
vacuum in field space and gives a verdict on whether the input minimum is absolutely stable,
or metastable. The user decides where to put the threshold for judging whether metastability is
rated as long-lived or short-lived.

The main idea is to exclude a point as soon as we are able, so the path deformation and non-zero
temperature procedures are considered after faster methods of exclusion have already been tried.
So if a point is found by the first estimations to decay faster than the user given threshold the
point is excluded and Vevacious finishes.

4.6.2. Outline

Here we lay down the steps taken by Vevacious, which are schematically shown in figure [4.6]

(1) An input file in the SLHA format is read to obtain the Lagrangian parameters defining the
parameter point, required to evaluate the potential.

(2) All the extrema of the tree level potential are found using the homotopy continuation
method to solve the tree level minimization conditions. The publicly available program
HOM4PS2 [72] is used for this.

(3) The tree level extrema are used as starting points for gradient-based minimization of the
one-loop effective potential. The MINUIT algorithms [92] are used here through PyMinuit
[93], its Python incarnation. By default, PyMinuit is restricted to field configurations
where each field is only allowed to get VEVs less than or equal to one hundred times the
renormalization scale specified in the SLHA file. This can be modified as it was considered
better to allow the user to decide whether the results of Vevacious are within a trustworthy
region or not.

(4) The minima are then sorted and depending on the settings it calculates the tunneling time
from the DSB vacuum to the panic vacuum. The bounce action is then calculated with
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Vevacious.exe (from Vevacious.cpp)

Vevacious: :VevaciousRunner

constructor

Input parameters
in SLHA format

Prepare Python code for
the specific parameter point

’ Run Python code ‘

et} —— |

Tree level extrema are found ———|

/—{ Input model file

|

Initialization parameters are read

—>’ change directory to location of HOM4PS2 ‘
T
’vvrite input file and run HOM4PS2 ‘

|

parse output of HOM4PS2,
discard invalid and duplicate solutions

I

’ return to original directorN

‘ VevaciousTreelLevelExtrema.py ‘

/ VevaciousParameterDependent . py

|

\

g{ run Vevacious.py, ensuring it exists: ‘

Vevacious.py

p)

’ create PyMinuit object for effective potential function ‘

’ run PyMinuit for each tree level extremum

’ sort minima and compare to input minimum ‘

(at T=0o0r T #0)

if required, get “direct path” tunneling time upper bound with CosmoTransitions

(at T=0o0rT #0)

if required, get “deformed path” tunneling time with CosmoTransitions

] Results are appended to SLHA file

|

‘>‘ Results are written to a file

Figure 4.6.: Simplified Vevacious flow diagram. A complete version can be found in [89] for T = 0.
The member functions of VevaciousRunner are shown from top to bottom in the order in which they
are called by Vevacious.exe, as can be seen by looking into the Vevacious.cpp source file.
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the code CosmoTransitions [88|]. To save time, CosmoTransitions routines are called to
calculate the bounce action with a straight path in field space from the DSB vacuum to
the panic vacuum to get an upper bound on the tunneling time. If this upper bound is
below the user-given threshold no refinement is pursued. If, however, the upper bound is
above the threshold, the bounce action is calculated again allowing CosmoTransitions to
deform the path in field configuration space. If the point is still reported to be long-lived,
then the same procedure is carried out for the T # 0 case.

(5) The results are then given in a result file and also appended to the SLHA input file.

4.6.3. Features

Finds all tree level extrema. As discussed in section [£.13] the homotopy continuation method
is guaranteed to find all the solutions of the system of minimization conditions up to the precision
of the machine used to carry out the calculation [64]. One does not have to worry that there
may be solutions just beyond the range of a scan looking for the solutions.

Rolls to one-loop minima. Vevacious rolls from the tree level extrema to the minima of
the one-loop effective potential before comparing them, because in general the VEVs get shifted.
In addition, the way the numerical minimization works allows us to catch extrema that change
their nature at the one-loop level, such as the minimum with zero VEVs in the famous Coleman—
Weinberg model of radiative spontaneous symmetry breaking [73|, which is a minimum of the
tree level potential but a local maximum of the one-loop effective potential.

Speed. An important aspect of the framework we propose, and therefore Vevacious, is that
it is fast enough to be implemented as a systematic phenomenological constraint in parameter
scans of interesting models. As an example, on a laptop with a 2.4 GHz processor, a parameter
point for the MSSM allowing non-zero VEVs for both Higgs, two stau and two stop, it can report
within 3.2 seconds that no deeper vacuum than the DSB vacuum was found. For a different
parameter point it reports an upper bound on the tunneling time in 18 seconds. Although this
is the case for typical parameter points, borderline cases which require a full calculation of the
minimal bounce action can take up to 500 seconds. Reducing the number of degrees of freedom
to four can improve the speed dramatically.

Flexible. Vevacious has been written in a way that should allow useful customizations with
small changes to the source code. For example, one can change a single line in the code so that
the tree level potential is used for the analysis rather than the one-loop effective potential and
no further changes are necessary. The implementation allows non-trivial changes without forcing
the user to go very deep into the code, though it does rely on the user learning some Python to
be able to do so.

4.6.4. Limitations

Vevacious relies heavily in numerical procedures and their convergence. At the same time it does
take a significant amount of assumptions to simplify the problem at hand. It is then important
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to have a clear understanding of its limitations and what it does and does not do. In this section
we discuss some of these issues and how to approach them.

May be excessively optimistic about the region of validity. By default, Vevacious allows
VEVs to have values up to a hundred times the renormalization scale, and it is up to the user
to decide whether any given set of results is meaningful and within the region of validity of the
one-loop effective potential used. However, it is straightforward to change the allowed region to
a smaller multiple of the renormalization scale.

Not guaranteed to find minima induced purely by radiative effects. While Vevacious
does find all the extrema of the tree level effective potential, there is no guarantee that these
correspond to all the minima of the effective potential at the one-loop level. The strategy adopted
by Vevacious will find all the minima of the one-loop effective potential that are reachable
with numerical minimization by rolling of the tree level minima. However any minima that
develop which can’t be reached in the same fashion will not be found. Although not typical,
such potentials are not impossible. In the same example of the Coleman-Weinberg [73], if the
quadratic coefficient of the potential is small but positive, the single tree level minimum can
remain a minimum at the one-loop level while deeper minima induced by radiative corrections
alone might appear.

Extreme slow-down with too many degrees of freedom. The running time for Vevacious
increases worse than linearly with the number of fields that are allowed to have non-zero VEVs.
Some typical running times for the HOMAPS2 part on the same 2.4 GHz core mentioned before
are:

3 fields allowed non zero VEVs: 0.03 seconds

5 fields allowed non zero VEVs: 0.28 seconds

7 fields allowed non zero VEVs: 5.1 seconds

10 fields allowed non zero VEVs: 20 minutes

15 fields allowed non zero VEVs: 10 days.

The PyMinuit minimization takes usually several seconds. The CosmoTransitions part is
strongly dependent on the details of a particular potential and the path deformation proce-
dure. Models with the same amount of allowed non-zero VEVs can vary wildly depending on the
particular properties of the potential.

Homotopy continuation method: Discrete extrema and path tracking resolution.
Although very powerful, the homotopy continuation method relies on tracking paths connecting
discrete solutions. There is no guarantee that the method will work in systems with a continuous
set of solutions. Vevacious does not check if there are redundant degrees of freedom, like for
example the ones related to gauge transformations. The user is trusted to pick the appropriate
degrees of freedom. There is also the danger that a finite-precision path-tracking algorithm will
accidentally start following a path very close to the one it is following and get to a different
solution. This might lead to one or more solutions not being found in extreme cases [64].
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CHAPTER FIVE
RESULTS

We will now apply the developed framework through the use of Vevacious for three examples.
We will first explore the vacuum structure of the CMSSM and see whether the existence of charge-
and color- breaking minima might help constrain its parameter space. We will then explore what
happens when thermal fluctuations come into play for the natural MSSM and learn from the
trends observed in the CMSSM where to look for regions where vacuum stability can complement
existing constraints. Lastly we will study the case of R-parity violation in the CBLSSM through
sneutrinos getting VEVs. Along the way, we will compare our results with previous attempts at
tackling the issue of deeper unphysical vacua and put them to test against our full numerical
approach.

5.1. Charge- and color-breaking minima in the CMSSM at 7'=0

As a first look onto the capabilities of vacuum stability as a phenomenological constraint, we will
present the results of such analysis for a large parameter scan in the CMSSM. We will showcase
our results in a twofold way, in a first step we will see what type of constraints in parameter
space can be deduced when imposing stability constraints on the DSB minimum. Then we will
compare how well previous attempts at including this type of constraints agree with our results.

5.1.1. Getting a feeling of the CMSSM parameter space

As we explained in section the assumptions made regarding SUSY breaking for this model
allow us to work with only a handful of parameters. This does not come for free and the
unification of soft masses at the GUT scale induces relationships among the parameters at the
SUSY scale (chosen as ,/mz mg, ).

The GUT scale constraints of the CMSSM broadly lead to fixed ratios of the gaugino masses at
the SUSY scale, and groupings of the squark masses and slepton masses together respectively.
The relationships between these masses and their groupings are controlled by M, for the
gauginos and My for the sfermions. We still have some freedom to change the spectrum through
the tuning of Ag and tan 3 which can allow us to separate out the third-generation sfermions
from the other generations.
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Surprisingly enough, the interplay between these few parameters is enough to explain a great
deal of observations. The CMSSM offers several possibilities for dark matter and if we require
that their relic density is within the uncertainties of the observed value, the viable CMSSM
parameter space is significantly constrained [94]. However, by fixing one or two of the CMSSM
parameters, there is always the possibility to find ranges of the other parameters which are
consistent with the observations regarding this aspect [95]. For the so-called “stau coannihilation
region” of parameter space, the stau is a little heavier than the lightest neutralino (the dark
matter candidate) and freezes out only slightly earlier, making a fair amount of annihilation into
SM particles before the neutralino freeze-out possible. This is convenient as in the CMSSM the
relic density of the LSP tends to be higher than experimental results.

Another important phenomenological constraint is the consistency with the measured Higgs mass
of ~ 125 GeV. In the MSSM it is possible to be consistent with that value, although it certainly
requires some degree of finetunning. In order to get the correct Higgs mass, we need at least
one stop with a mass in the multi-TeV range [96HI0OI]. An obvious way to force the CMSSM
to comply with both constraints is through a sufficiently high My (to get heavy enough stops)
and a sufficiently high M, /5 (to bring the mass of the lightest neutralino up to just below the
lightest stau mass). This is of course not a bulletproof argument, as for sufficiently high masses,
the stau coannihilation mechanism cannot reduce the relic density to the observed value, even
for the case of degenerate stau and lightest neutralino masses [95, 102].

Although for high My and M/, we can accommodate some of the experimental results, that
specific region of parameter space has a pretty bleak prospect for the discovery of SUSY particles
at present experiments. The only other way that this can be achieved in the CMSSM is through
large Ag. This induces a large splitting between the mass eigenstates of staus and stops. With
this specific spectrum, the loop corrections to the Higgs mass can get large enough through the
existence of a heavy stop and the large splitting between the stop mass eigenstates. Luckily such
parameter points allow at least some potentially LHC-accessible sparticles [103].

As we have discussed along this work, the presence of many additional scalar partners for the
SM fermions raises the question of whether they too could develop VEVs. We are interested in
studying the specific case of stops and staus with non-zero VEVs. The existence of such vacuum
will break spontaneously SU(3). and U(1) g, and therefore color and electric charge.

Using SPheno [44] 45] as the spectrum generator and Vevacious as our tool to apply our proposed
prescription we will show in the following how well the CMSSM does against charge- and color-
breaking (CCB) minima. We will take the input values for the SM parameters to be used in
SPheno as

a ' (Mz) =127.93, Gp =1.166370-107°GeV 2, ag = 0.1187, mz = 91.1887 GeV,
my(mp) = 4.18 GeV, my = 173.5 GeV, m, = 1.7769 GeV (5.1)

5.1.1.1. Dependence on which scalars are allowed non-zero VEVs

Most checks in literature for CCB minima allow for either stau or stop VEVs, but not both
simultaneously. One of the first results coming from Vevacious is that it is not possible to treat
them separately. In figure we show the distribution of stable, long- and short-lived points in
the (My, Ap)-plane for three cases: Only stau VEVs are allowed, only stop VEVs are allowed and
both stop and stau VEVs are allowed. It is then very clear that overlaying cases with stop or stau
VEVs does not reproduce the results of allowing both fields to get vacuum expectation values.
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5.1. CHARGE- AND COLOR-BREAKING MINIMA IN THE CMSSM AT T'=0

4000 4000
— 2000 — 2000
> >
[ (]
O o 9,
o (=]
< <

—-2000 —2000

—4000 4 —4000

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
My [GeV] M, [GeV] My [GeV]

Figure 5.1.: Vacuum stability in the (Mo, Ag)-plane for input values of tan 8 = 10, M, /5 = 1 TeV and
> 0. (Here and in the other figures, tan § is taken to mean the input parameter for the DSB vacuum.)
On the left, we allow only for stau VEVs, in the middle only for stop VEVs and on the right for both stau
and stop VEVs. Green indicates that no CCB minimum deeper than the DSB minimum was found, while
blue and red indicate that the DSB minimum is only metastable, as there is at least one deeper CCB
minimum. The red points are short-lived, while the blue points are long-lived, compared to a threshold
of three gigayears. The lack of a smooth boundary between red and blue is a numerical artifact and is
discussed in the text.

However, considering only the case with both stop and stau VEVs is not sufficient. Due to the
fact that the path deformation step of our analysis depends strongly on the convergence of the
deforming algorithm (which in turn depends on the structure of the potential), the optimal path
calculated for the simpler single VEV cases produces shorter lifetimes for the DSB in some cases.
In our particular analysis this is evident in the case of stop VEVs only, where more short-lived
points are found than for the mixed case. Therefore in the CMSSM it is especially necessary to
check carefully for all possible combinations for stau and stop VEVs. Just in the limit of large
or small tan # checks for pure stau or stop VEV scenarios might be sufficient.

5.1.1.2. Scale and loop order dependence

Parameters like masses or cross-sections usually have a significant dependence on the scale when
they are calculated at tree level. The dependence on the renormalization scale () diminishes when
higher order corrections are taken into account. As mentioned earlier, in our studies we will be
taking ,/m; m;, as the renormalization scale. For vacuum stability analyses, @ dependence is
also an important factor at tree level. We show this explicitly in the left column of figure [5.2]
where we show results for () = m/l Q = /mymyg,, and Q = 2,/m; my,. If one then
goes to the full one-loop effective potential, the sensitivity on the scale is significantly reduced
as expected. In the same way, we show this explicitly in the right column of figure In both
cases we perform a scan in the (Mo, Ag) plane for fixed M; 5 =1 TeV, u > 0 and tan 3 = 40.
We would like to note that this particular example shows that scale dependence would affect
our conclusions significantly if we restrict ourselves to a tree level study. This result undermines
arguments that radiative effects do not change tree level conclusions on the absolute stability of
vacua such as in [T104].

5.1.2. Constraining A, and tan 3

Let us get a closer look at the relationship between vacuum stability, Ay and tan 8. We start
with a check for regions in the CMSSM parameter space which don’t have any CCB vacuum
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Figure 5.2.: Vacuum stability in the (M, Ag)-plane for fixed M; /5 =1 TeV, > 0 and tan 3 = 40. On
the left, only the tree level potential was considered. On the right, the full one-loop effective potential was
taken into account. The renormalization scale was @ = /mz mz, /2 (first row), Q = /Mg, Mz, (second
row), and Q = 2, /m; My, (last row). The color code is the same as in figure
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deeper than the DSB minimum. For this regions we have a stable DSB and can be thought as
“safe”. Regions where this is not the case and we have deeper CCB minima will require that we
look into the probability of tunneling to the CCB minimum from the DSB one.

We look first for the maximal value of |Ag| with a stable DSB vacuum for a given combination
of Mo, Mo, tan 8 and sign(u). We will concentrate on points for which Ay < 0 as it has been
showed to lead to better predictions for the Higgs mass [105]. The result is shown in figure
In this way it is easy to visualize not only the fact that for a large enough Ag we will always be
in the danger of CCB global minima but a quantitative estimation of how this happens.

We note that this will also restrict the allowed minimum mass for the lighter stau and stop. This
condition gets even more unforgiving for large tan 3. The reason for this is that as tan 3 grows
we get smaller m%R for the rest of parameters fixed.

Let us now investigate the problem of CCB minima with more detail. In the following we take
a relatively conservative threshold of 0.217 times the observed life time of the known Universe
(corresponding to a one per-cent survival probability) to categorize parameter points as long-
lived or short-lived. In other words, if the DSB minimum has less than 1% probability of having
survived quantum tunneling since the Big Bang we will call it short-lived and long-lived otherwise.
In figure we show the distribution of stable (no deeper CCB), long-lived and short-lived DSB
minima in the (tan 3, Ag) plane for fixed values of Mo = M; ;5 =1 TeV and p > 0. Here we will
also start to compare our results with the regions excluded by the condition of section by
drawing lines for conditions (4.8)) to (4.12]).

The tan 8 dependence of vacuum stability is also a feature of the analytical limits, but their
accuracy is not enough to treat them seriously. Note also that such conditions will of course not
discriminate between long- and short-lived DSB minima, thus one has to compare them with the
division between the stable (green) areas and the metastable (blue and red) areas. It is pretty
clear then that even a combination of all the analytical conditions would fail to exclude about
half the points of our scans with deeper CCB vacua.

It is worth mentioning that the CMSSM best-fit point after including my = 126 GeV of [103],

My o = 1167470730 GeV, My = 1163.27 5% GeV, tan 3 = 39.37307, Ay = —2969.1795775,

is rather close in parameter space to the values My /5 = Mo = 1TeV that we have chosen in our
study. If we look at the central values of (tan3) and Ay for this point in figure we will
find ourselves in the long-lived region. Upon further consideration we find that this seems to be
characteristic for models that relate the stau and stop masses, as required by the need to fit both
the dark matter relic density (requiring light staus) and the correct Higgs mass (requiring heavy
stops). This will force the allowed parameter region to have large Ay and therefore move on the
CCB minima “danger zone”. This is also the case for models where the Higgs-masses are not
unified at the GUT scale, as for example the so-called NUHM1“low” best-fit point of [I06] also
results in a CCB deeper vacuum. It is therefore interesting to perform a more detailed study of
the light stau parameter space.

5.1.3. Constraining the light stau parameter space

As we mentioned in the previous section, one possibility to explain the observed dark matter relic
density relies on light enough staus so that their mass is sufficiently close to that of a neutralino
LSP. When this happens, both particles can co-annihilate and it is then possible to explain the
measured value of the relic density [I07HI09]. The most recent measurement in the 30 range of
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Figure 5.3.: Minimal value allowed for Ag in the (tan 3, My) plane to have a stable DSB vacuum. We
used > 0 and M, /5 = 500 GeV (upper left), M; /o = 1000 GeV (upper right), M,/ = 1500 GeV (lower
left) and M, /5 = 2000 GeV (lower right).
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Figure 5.4.: Vacuum stability in the (Ag,tan 3)-plane for fixed values of My = M;;, = 1 TeV and
i > 0. The color coding of parameter points is as in figure In this and the following plots the solid

colored lines correspond to the dividing lines between parameter points that satisfy or fail the conditions
discussed in section [I.1] represented as:

e Condition by purple,

e Condition by orange,
Condition by dark red,
Condition by brown,
Condition by dark blue
Condition by pink,

e And condition by gray.

Points on the other side of the solid lines from the Ay = 0 axis fail the corresponding conditions and so
would be identified as having CCB minima deeper than the DSB minima We do not plot any of these
lines in white regions in our figures, where no spectra could be calculated for the DSB minimum anyway,
due to the presence of negative squared masses. The left-most of the blue lines corresponds to taking
0.852 in condition , and the other to 0.652. The single orange square corresponds to a projection
of the best-fit point of [I03] for reference. Points below the dotted line have the lightest neutralino as
the LSP.
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the Planck collaboration is Qh? = 0.1199 & 0.081 [14]. This translates into a requirement for
the masses of the lightest stau and neutralino to be at most a few GeV apart. For the CMSSM
such spectra can be obtained for large values of Ay and tan 8 which are precisely the parameter
regions where we have shown vacuum stability constraints to be important.

To assess this in a more quantitative matter we will do the following: Taking the results shown
in figure where we see the maximal |Ag| ! consistent with a stable DSB we can then get
a lower limit on the lightest stau mass for given parameter point. This is shown in figure [5.5]
By looking at the results it is clear that for M/, > 500 GeV and stau masses below 500 GeV,
deeper CCB vacua appear.

Now, CCB minima deeper than the DSB one are not necessarily a problem phenomenologically
speaking. If the tunneling time is sufficiently long it is possible to allow a metastable DSB. We
exemplify this in figure . There we plot (for the same parameter region studied in [109]) stable,
short- and long-lived DSB vacua in the (M /9, Mp) plane with tan 3 = 40 and Ay = 3000 GeV.
On the right-hand side of figure we zoom into the area consistent with dark matter relic
density constraints. For this we used MicrOmegas 2.4.5 [110], I11] together with the SUSY
Toolbox [I12] to calculate the relic density. It is somewhat reassuring for advocates of the stau
coannihilation mechanism that in this region the survival probability of the DSB vacua against
tunneling to deeper CCB minima is reasonably high.

However, for the most conservative, the area is still in danger because of the existence of deeper
CCB minima. Due to the limitations of any numerical analysis there still exists the chance that
with better computers and more computing time, it could be possible to find a better optimal
path with shorter tunneling time.

To complement this, in figure we provide a similar example showcasing the fact that vacuum
stability in the context of the stau coannihilation mechanism is a severe issue. Again in the
(My, Ag)-plane, we show the region around the best-fit point found in [103]. In this region, the
main part of the so-called stau coannihilation strip has deeper CCB vacua. However it would be
allowed if one considers points for which Vevacious reports a lifetime of at least three gigayears
stable.

The analytical conditions again perform poorly, with only condition excluding some of the
points with CCB minima while excluding a fair share of stable parameter points as well. It is
curious to note that this particular condition is being applied to parameters where the assumption
Y; < 1 for its derivation is invalid (see section .

To finish our considerations regarding the light stau parameter space we would like to discuss an-
other comparison between the results coming from Vevacious and the analytical approximations
in section In figure we show vacuum stability and stau masses in the (Mg, Ap)-plane for
M5 = 1TeV with tan 8 = 40 and 50. When tan 3 = 40 is used, the analytical conditions fail
completely with the exception of which performs quite poorly. The rest of the conditions
will lie in the white region which is excluded at the spectrum generator level (it shows tachyonic
states for the DSB vacuum).

For tan 8 = 50 the situation is slightly better with some regions within small M, areas being
in conflict with condition (4.11). However, the main part of the region showing deeper CCB
minima would also survive after applying the analytical constraints (with performing less
well).

This comparison shows that for large tan 5 and reasonable SUSY spectra above the current LHC

exclusion limits, one can not rely at all on conditions (4.5)), (4.6), (4.8), (4.11) or (4.12).

1As Ag < 0 this also means its minimal value
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Figure 5.5.: Minimal stau mass in the (tan 3, Mj) plane to have a stable DSB vacuum for Ay < 0. We

used > 0 and M, /5 = 500 GeV (upper left), M;/, = 1000 GeV (upper right), M,/ = 1500 GeV (lower
left) and M, /5 = 2000 GeV (lower right).
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Figure 5.6.: Dark matter and vacuum stability in the (M, /9, Mo) plane with Ag = 3 TeV, . > 0 and
tan 8 = 40. On the left, the dashed black line shows the transition between a neutralino and stau LSP
(stau LSP beneath the line); on the right we zoom in on the interesting range for dark matter: the yellow
bands show the region where Qh? = 0.1199 4+ 0.081. The constraints from vacuum stability allowing for
stop and stau VEVs are indicated. The color coding is as in figure [5.4] : points to the left of the solid
lines fail the corresponding conditions. Here and in subsequent figures, physical quantities such as the
dark matter relic density and particles masses are taken to be evaluated at the DSB vacuum regardless
of its stability.
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Figure 5.7.: Mass of the light stau and vacuum stability in the (My, Ag) plane with M; o = 1167.4 GeV,
@ > 0 and tan B = 39.3. In the yellow region, the abundance of the LSP is in agreement with dark
matter constraints, and the dashed line shows the transition to a charged LSP. The color coding is as in
figure points below the solid lines fail the corresponding conditions. The lower blue line corresponds
to condition (4.10) taking 0.852, the upper, which is almost exactly degenerate with the dark red line of
condition 1) corresponds to taking 0.652. The star indicates the best-fit point according to [103].
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Figure 5.8.: Vacuum stability and stau masses in the (Mg, Ag) plane for fixed My, =1TeV, u>0
and tan 8 = 40 (left) or tan 8 = 50 (right). The dashed black line shows the transition to a charged LSP
(neutralino LSP to the right of the line). The color coding is as in figure points to the left of the
solid lines fail the corresponding conditions. As in figure the blue line for condition with 0.652
is almost degenerate with the dark red line of condition (4.7) and the line for 0.852 only excludes points
with even more negative Ay (and is not visible on the right).

5.1.4. Constraining the light stop parameter space

As we discussed in the introduction, if we would like to be consistent with the measurements of
the SM Higgs boson mass (corresponding to the light Higgs in the MSSM), we need the correct
stop masses to push it to about 125 GeV via radiative corrections [96-I100].

Achieving this requires rather heavy stops [98] [I13], or conversely large enough |A| to trigger
the so-called maximal mixing scenario [96, [114) IT5]. A very rough estimate is given by A; ~
0.2Ag — 2M, ;5 [116] by which we justify the observed preference for negative Ag in our studies.
Another estimate suggests that |Ag| ~ 2Mj [115] which following the conclusions of our previous
observations clearly puts us in the dangerous region in the light of vacuum stability.

The information of figure 5.3 can be translated into a lower limit on the stop mass by demanding
a stable DSB vacuum. We show the result in figure We see that for small My, this
condition excludes light stop masses in nice agreement with the results coming from direct
searches (mj 2 600 GeV [I17]). For larger values of M; /5 though, the lower mass limit is in the
TeV range. Furthermore, our limits are independent of the mass splitting between the stop and
the lightest neutralino or chargino.

As an alternative mechanism for the explanation of the dark matter relic density, a stop NLSP
(next lightest SUSY particle) could also give the correct neutralino abundance through coanni-
hilation much in the same way as the staus. The stop could then be accessible to the LHC, a
fact also motivated by naturalness arguments (see [118, 119] and section . The mechanism of
stop coannihilation usually works more efficiently for a larger mass splitting between the NSLP
and LSP compared to the case for staus. However the stops still have to be sufficiently light
[120]. Recent benchmark points for this scenario have been proposed in [121].

In this context, a scan around their benchmark point 5.1 (Mo = 2667 GeV, My /5 = 933 GeV,
tan 8 = 8.52, u < 0, Ag = —6444 GeV) in the (M9, Mp) plane is shown in figure where
we give the contour lines of the stop mass as well as the vacuum stability. In the figure we
show that the stop coannihilation region lies completely in the region suffering from CCB vacua.
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Figure 5.9.: Minimal stop mass in the (tan 3, M) plane to have a stable DSB vacuum for Ag < 0. We
used > 0 and M, /5 = 500 GeV (upper left), M; /o = 1000 GeV (upper right), M,/ = 1500 GeV (lower

left) and M, /5 = 2000 GeV (lower right).
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Figure 5.10.: Mass of the light stop and vacuum stability in the (M, 5, M) plane with A9 = —6444 GeV,
@ < 0 and tan § = 8.52. The dashed line shows the transition to a charged LSP (neutralino LSP to the
right of the line). The color coding is as in figure points below the solid lines fail the corresponding
conditions. In the yellow region, Qh? is in agreement with dark matter constraints (as in figure . The
star indicates the benchmark point 5.1 of [I2I]. The reason that this point is not in the strip with the
correct dark matter abundance is that different SM input parameters were used in [I2I] in comparison to
eq. : my = 174.3 GeV, ag = 0.1172 and my(my) = 4.25 GeV. The line showing the division between
passing and failing condition using 0.652 does not appear on this plot, but over-zealously would
exclude the entire region shown, while taking 0.652 would only exclude every point with My < 2900 GeV.

Furthermore, at least half of the points exhibit very short lifetimes for the DSB, therefore being
short-lived. We note that this can be a severe issue not only for stop coannihilation in the
CMSSM, but also for natural MSSM benchmark scenarios such as those discussed in [122].
There is however one way to resurrect stop coannihilation: we need to consider much larger mass
spectra. For this case we find that the BP 5.2 of [12I] with mgo =1 TeV seems to be stable
against tunneling to CCB minima.

We conclude this section with another comparison between the results coming from our proposed
framework and the thumb rules given in the literature. In figure [5.11] we show the mass of the
light stop and the vacuum stability in the (Mjy, Ag)-plane for M;,, = 1 TeV and tan 3 = 2, 10.
By looking at the figure, it is clear that the conditions offer no help, except for the misused
conditions and which have a limited success.

In conclusion, if we consider phenomenological constraints coming from deeper CCB minima
(even when allowing long-lived DSB vacua) we can get strong limits on the mass of the light stop
for the case of small tan 3 and negative Ag. Moreover we can safely say that vacuum stability
can rule out light stops in the CMSSM depending on the values one takes for M /5.

5.1.5. Constraining the parameter space with m; ~ 125 GeV

The Higgs boson mass has been an important fact we kept in mind during our previous analysis.
However we have not yet approached it directly. The measurement of my, ~ 125.5 GeV [123] [124]
offers a powerful way to constrain the parameter space of SUSY models, in particular for the
MSSM. To get loop contributions which are large enough to increase the tree level Higgs mass of
m,(lTL) < mgz up to 125 GeV without very heavy stops, a large mass splitting in the stop sector
is necessary (see [3.8). This translates to the fact that |Ap| must be large in comparison to My
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Figure 5.11.: Stop mass and vacuum stability in the (Mg, Ag) plane. We used My, =1TeV, >0
and tan 8 = 2 (left) or tan 8 = 10 (right). The color coding is as in figure points to the left of the
solid lines fail the corresponding conditions. Again, there is a degeneracy between the more exclusive
blue line of condition with the dark red line of condition . Points to the left of the dashed line
also have charged LSPs.
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(for a detailed take on the subject we point the reader to [114} 125-128] and references therein).

At one-loop level, the corrections are maximal for X; = A; — ju/ tan 3 ~ /6 Mg where Mg is the
average stop mass. If two-loop corrections are taken into account, the condition gets modified to
X; ~ 2Mg [115].

As we have shown in the last sections, these are precisely the regions typically suffering from a
CCB minimum deeper than the DSB minimum for the CMSSM. We would like to show this
fact more explicitly. For this we take the same parameter planes discussed previously and
calculate the result for the predicted Higgs mass along parameter space using SPheno. These
Higgs masses are based on a full diagrammatic one-loop calculation including the effects of the
external momenta [129] together with the known two-loop corrections following the results of
[130-134]. For completeness we will also show the result including only one-loop corrections.

One might wonder about whether two-loop effects are important for the analysis of the vacuum
structure of SUSY models, given that they are critical for obtaining the experimental value of
the Higgs mass in the CMSSM. However, given that the two-loop corrections to the Higgs mass-
squared are small (~ 10% of the one-loop value) compared to the one-loop corrections (~ 100%
of the tree level value), along with the indications from figure that loop corrections play a
sub-dominant role, it is reasonable to guess that the loop expansion converges well and the higher
orders should not affect the results substantially.
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tan 3

tan (3
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Figure 5.12.: Vacuum stability and the Higgs mass in the (Ao, tan ) plane for fixed Mo = M;/, = 1 TeV

and g > 0. In the top picture, the leading two-loop corrections at the DSB minimum to mj have been

taken into account, while in the bottom picture only corrections at one-loop order are considered. The
color code is the same as in figure

To show the result of combining the Higgs mass constraint and vacuum stability, we will consider
first moderate SUSY masses (Mo = M,/ = 1 TeV). The Higgs mass and the vacuum stability
in the (A, tan 3) plane is shown in figure Quite remarkably we see that the entire region
where mj; = 125 GeV lies in the area with charge- or color-breaking minima deeper than the
DSB minima.

The question is now whether we can relax this tension when considering heavier SUSY spectra.
To show this we consider in figure the (My, Ag) plane with My up to 2.5 TeV. The rest of
parameters is set to My, =1 TeV, u > 0 and tan 3 = 10,40. As expected, for both values of
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tan 0, the correct Higgs mass can only be reached for large negative values of Ag. In the case of
small My, the ratio |Ag/My| is forced to be very large to allow the correct value for the Higgs
mass. As the reader might already guess, this means that all points with m; > 124 GeV are in
an area with CCB minima deeper than the DSB minima for My < 900 GeV (tan 5 = 10) and
My < 1200 GeV (tan B = 40). Only for larger My we find points with the Higgs mass in the
correct range and a completely stable DSB. The lower bound on Mj increases by about 300 GeV
when taking mj > 125 GeV. The results of this study have been reported in [I35].
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Figure 5.13.: Vacuum stability and the Higgs mass in the (Mo, Ag) plane for fixed M, /5 = 1 TeV, u >0
and tan 8 = 10 (upper) or tan 8 = 40 (lower). On the left, the leading two-loop corrections to the mass
of the lighter Higgs boson have been taken into account, on the right, only the mass at one-loop order is
shown. The color coding is the same as in figure @

5.2. Charge- and color- breaking minima in the natural MSSM at
T #0

After our exploration of vacuum stability in the CMSSM, we were able to understand how
constraints coming from the existence of deeper CCB vacua affect its parameter space. One of
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the most interesting results was that the parameter space regions consistent with a lighter Higgs
mass of 125 GeV is in strong tension with charge- and color- breaking minima.

It is then interesting to explore how this result would be modified when considering tunneling at
non zero temperature. Although we showed the existence of deeper CCB vacua in these regions,
it was still possible at zero temperature to find parameter points where the lifetime was reported
by Vevacious to be much longer than the observed age of the universe. Under the effect of
thermodynamic fluctuations, the lifetime of the DSB minimum might be significantly reduced,
so the question remains as of what will happen with long-lived (at 7' = 0) points in the correct
Higgs mass region.

Now that we have an idea about the interesting parameters to focus on in this type of analyses,
it will also be interesting to depart from the CMSSM and study a more pragmatic version of the
MSSM, the natural MSSM. We described this model in section [3.8]

As we will show in the following, if we consider the possibility of tunneling at non zero tem-
perature a large proportion of the parameter space where the Higgs boson mass is even slightly
compatible with the experimental measurement is ruled out. We performed a five-dimensional
scan which then we projected onto a two-dimensional plane with the axes being the mass of the
lightest Higgs scalar mj, and the ratio X;/Mg, where X; = A; — pcot 3, and Mg is again the
square root of the product of the tree level ¢ masses evaluated at the DSB minimum as this
choice of scale keeps higher order corrections small [136].

As in the previous section, we calculate the Higgs mass through SPheno in a full diagrammatic
one-loop approach including the effects of the external momenta [129] and the known two-loop
corrections [I30-134].

5.2.1. Range of validity

One should not trust a fixed-order loop expansion for VEVs very much larger than the renor-
malization scale ) as we run in the danger of leaving the convergent region of the perturbative
expansion. In the same way thermal tunneling dominated at temperatures 7' > @) might not be
very accurate. One way of ameliorating this issue relies on a potential where the parameters are
not calculated at a fixed scale but at the scale of the field values considered [83]. The implemen-
tation of such prescription is planned for new versions of Vevacious, thus the results presented
here are based on the one-loop effective potential with parameters evaluated at a fixed Q). Given
that for every single one of our parameter points, the VEVs of the CCB minima were within a
factor of a few of @ and the thermal tunneling was dominated by 7" < @, we consider this to be
a reasonable approach.

It is also important to note that any conclusion made by considering thermal effects in tunneling
probabilities depends on the thermal history of the Universe. Given a parameter point, if we
consider a model where the optimal 7" for tunneling is never reached, such parameter point will
still be valid. Our results are nonetheless important since in the most commonly hypothesized
cosmologies, T ~ 10° GeV is already considered very low [I37-142].

Finally, we do not address the question of additional CCB minima at large VEVs > 106 GeV.
This case can only be reliably calculated with current methods using running parameters and

under very restricted circumstances [143]. We do not consider the effects of inflation and re-
heating either [137].
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5.2.2. Parameter scan

In the familiar case of the SM, spontaneous symmetry breaking is triggered by a negative Higgs
mass-squared term in the Lagrangian®. However this is neither a necessary nor sufficient condition
for any scalar fields to develop a non-zero VEV in general. In particular, a positive mass-squared
for the stop fields does not imply that a parameter point will have a stable DSB minimum,
especially if the trilinear couplings T3 = Y; A; and Yy for H,t Lf"& and de*Lf R respectively are

large compared to the square roots of the soft SUSY-breaking mass-squareds mtgL and mth

We refer the reader to section 2.1 of [145] or section B of [I46] for the explicit form of the
relevant part of the tree level scalar potential

We will be restricting ourselves to the possibility of tunneling to minima with ¢ VEVs. Because of
this and our previous discussion we will explore in detail the region in parameter space described
by table [5.1 We would like to also restrict ourselves to the so-called decoupling limit, i.e. where
the standard model can be thought of an effective theory once we decouple the MSSM particles.
The chosen value of the pseudoscalar Higgs mass places the scan firmly in this limit [127]. To
ensure that scalar SUSY particles other than the stops are not relevant to the analysis, we then
choose large masses-squared for them and zero soft SUSY-breaking trilinear interactions. The
gluino can have a non-negligible contribution to the mass of the lightest scalar Higgs, so we
chose to keep it at 1000 GeV while taking masses for the other gauginos according to a typical
hierarchy inspired in models with unification of the gauge forces at a GUT scale [19]. This choice
largely overlaps with that of reference [146].

In order to study how well the Higgs mass constraint does together with vacuum stability, we
run Vevacious in all of the points of our scan.

Parameter Range
tan 3 5 - 60
mZ 5002 GeV?  — 15002 GeV?
m? 5002 GeV? — 15002 GeV?
m 100 GeV  — 500 GeV
T33 -3000 GeV — 3000 GeV

u

Table 5.1.: Parameter ranges used in the scan. All mass-squared matrices for the scalar partners of
SM fermions were diagonal. All diagonal entries for SUSY particles but those shown above were set to
15002 GeV2. The soft SUSY-breaking mass terms for the U(1)y, SU(2)r, and SU(3). gauginos were
100 GeV, 300 GeV, and 1000 GeV, respectively. Besides T3, all other soft SUSY-breaking trilinear
terms were set to zero. Finally, the mass of the pseudoscalar Higgs boson was set to 1000 GeV. The
renormalization scale for each parameter point was the mean of the physical ¢ masses at the DSB vacuum.

2The possibility that it is due to a massless Coleman-Weinberg model has been ruled out by measurements of
the top mass, for example [144].
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5.2.3. Natural MSSM, m,;, and thermal effects

Now that we have laid out the specifics of the study performed for the natural MSSM, we can take
a closer look at the results. In figure we present the vacuum stability when considering stop
VEVs in the natural MSSM for the (X;/Mg, my) plane. As found previously for the CMSSM, we
find that the region in agreement with my ~ 125 GeV overlaps significantly with the region that
has deeper CCB minima. At T'= 0 we again find that a significant portion of the points with
deeper CCB minima also have long-lived DSB minima, making them still viable if we do not
consider thermal effects. The interesting result is that when allowing for thermal fluctuations at
T # 0 (by using Vevacious with the implementation of the framework developed in section ,
most of the parameter points for which the DSB was long-lived at T = 0 will have very short
lifetimes. This means that in the natural MSSM, a big amount of the parameter combinations
providing a reasonable value for the Higgs mass, would have decayed long ago into minima that
break charge and color thus excluding them from the allowed phenomenological region. It is
clear from figure [5.14] that the constraint of correct Higgs mass is already quite stringent. By
looking for deeper CCB minima and calculating tunneling times at T' # 0 we find that vacuum
stability constraints the parameter space even more. This is a clear sign that for any realistic
phenomenological study of the natural MSSM vacuum stability has to be included.

5.2.4. Comparison to previous works on vacuum stability

As we did in our previous analyses we would like to compare the existing analytical conditions
meant as safeguards against CCB minima. Even though it was derived under the assumption
that the Yukawa coupling are much smaller than the gauge couplings and it has been known to
be neither necessary nor sufficient [59, [147], the condition has been used in place of a proper
analysis as a check that parameter points have stable DSB vacua. As we showed in section [5.]
this is not meaningfully correlated with long-/short-lived metastable vacua, but for completeness
we show how our results are if we exclude points which fail the condition in figure [5.15
Curiously from all the conditions we investigated, this particular one happens to exclude all
the points with DSB vacua that are short-lived at zero temperature, but it both unnecessarily
excludes stable and long-lived metastable points at larger | X;| and it does not to exclude most
of the points which we find decay quickly by thermal tunneling and show mj > 123 GeV.

Let us compare our results with similar analyses of CCB minima. If we restrict ourselves to
the case of T = 0, our results qualitatively agree with [145] and [146]. For [145] the regions
of parameter space under study overlap poorly. However comparing both results we find an
agreement with the ratios of X; to Mg where the CCB minima become deeper than the DSB
minima and where the tunneling time becomes unacceptably short.

From these results we can conclude that stability against thermal tunneling is a relevant con-
straint, especially in the parameter space of the MSSM where the mass of the lightest Higgs boson
is consistent with experiments. While we also showed that exclusion based on zero-temperature
tunneling can bring some insight into which regions of the parameter space are under danger of
CCB minima, it is also true that points that have long-lived DSB at T' = 0 might not be able to
avoid tunneling to CCB minima at higher temperatures. Another important conclusion we can
derive from our investigation is that due to the complicated dependence on the Lagrangian pa-
rameters, a full analysis of any given parameter point seems unavoidable, though straightforward
given the framework we propose through Vevacious.

We have also showed that results on metastability based on previous tree level analyses can
qualitatively agree with the zero temperature one-loop analysis, but are in disagreement with
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Figure 5.14.: Categorization of parameter points as to whether they are allowed or excluded by tunneling
out of the DSB vacuum. Green (top left): no CCB minimum deeper than the DSB minimum was found.
Blue (bottom left): the DSB minimum is a false vacuum, but the probability of surviving 13.8 Gy
at zero temperature and surviving thermal fluctuations are both above one per-cent. Purple (bottom
right): the probability of surviving tunneling out of the DSB false vacuum at non-zero temperature is
less than one per-cent. Red (top right): the probability of the DSB false vacuum surviving 13.8 Gy at
zero temperature is less than one per-cent. Below we zoom in on the region with X;/Mg € [1.5,3.5] and
my, € [116,128] GeV.

the results once we include finite-temperature effects. The results from this study have been
reported in [I51].

5.3. Vacuum Stability in parameter fit studies

We have seen that the implemented framework in Vevacious can report results rather quickly.
A great place to put this speed into test is by including it in fit studies. A parameter fit study
relies on a wide set of observables to find the regions of parameter space in a model where the
x? parameter estimating the prediction accuracy for those observables is minimized. For this
minimization a very large scan in parameter space (O(10%) points) is needed.

Including vacuum stability constraints into such type of studies requires the evaluation of such
amount of points in a reasonable amount of time (O(seconds/point)). In particular the Fittino
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my, |GeV|
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Figure 5.15.: Results without displaying those points which would be excluded by condition .
The color coding is the same as in figure [5.14] with green points contrasted against the others on the
left, purple in the middle, and blue on the right. We note that this condition excludes all points with
short-lived DSB vacua at zero temperature.

collaboration [103] performs such studies using the Fittino code [I52] for the CMSSM. We es-
timated Vevacious performance for different levels of accuracy and determined how to include
vacuum stability in a future Fittino study.

It is possible to adapt our framework for such applications by running Vevacious for a large
amount of points and storing Mo, My, Ao, tanf, and, sign(p) together with the result
reported by Vevacious. Then a request can be made for each parameter point considered in
the fit to obtain the vacuum stability of the closest parameter point in the vacuum stability
analysis. As for our previous CMSSM analysis we observed grouping of regions with different
stability results, this justifies our simplification as long as the initial scan for Vevacious analysis
is sufficiently dense.

We note that this is a very conservative implementation of vacuum stability but it can give a
clear hint to the regions in the fit that need to be looked at closely with a more stringent analysis.
In order to incorporate such prescription in a future Fittino study, we performed a large scan
in the parameter space of the CMSSM as shown in table 5.2 As time constraints are always
important, we chose to limit Vevacious to straight paths between the DSB and panic vacua and
allowed stop and stau VEVs. Even with these restrictions the scan took around 1 month using
seven 3.4 GHz cores. A C++ class called CheckVacuum was written to use the data coming from
the scan into parameter fit studies.

The results from the scan where parsed and stored so that the CheckVacuum class functions,
given Mo, My, Ao, tanf3, and, sign(u) as input, would output the stability of the closest
parameter point in the Vevacious scan. By closest we mean the parameter point in the scan
with the smallest normalized distance in parameter space to the input point. In this way it was
easily implemented within the Fittino framework, where if necessary more detailed studies could
be performed for dangerous regions of parameter space. The code used can be found in appendix
The results of this are to be reported in an upcoming publication of the author and the Fittino

collaboration [153].

5.4. Spontaneous R-Parity violation in the CBLSSM

Undesired minima do not always have to be those breaking electric charge or color. As we saw
in section the BLSSM is a model constructed with R-parity conservation in mind. The
introduction of the bilepton fields gives us particles that can break U(1)p_r (a symmetry we
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Parameter Range Step size
mg 0 GeV — 3000 GeV 100 GeV
M o 0 GeV — 3000 GeV 100 GeV
Ao —5000 GeV — 5000 GeV 100 GeV

tan 3 2 - 60 2

Table 5.2.: Parameter range for the scan performed to implement vacuum stability for parameter fit
studies of the CMSSM. Vevacious was then run in all the resulting spectra for stop and stau VEVs and
straight path between minima. The sign of p was fixed to +1.

want to break) but without breaking R-parity (a symmetry we might want to conserve).

A great deal of the phenomenology of a SUSY model relies on the conservation or violation of
R-parity. Thus it is very important to be certain about the state of this symmetry for a given
parameter point.

Although the bilepton fields get VEVs and might take the responsibility of breaking U(1)p_r,
sneutrinos are not exempt of doing so as well. However, sneutrino VEVs would generate R-parity-
violating terms in the Lagrangian. It is therefore interesting to explore under which conditions
this is possible.

So the question to answer will be what portion of the parameter points which have a phenomeno-
logically acceptable, R-parity-conserving DSB minimum will have deeper minima and whether
those will break R-parity or any other symmetry when allowing the possibility of sneutrino VEVs.
In this case DSB minima will be those which only have expectation values for the Higgs doublet
fields Hy, H,, and the bilepton fields 1,77 (leading to the correct values for my, and myz).

To answer this question we performed a random scan over a range of input parameters constrained
to having phenomenologically acceptable, R-parity-conserving DSB minima at expectation values
for Hy, H,, n, 1 given as input. We then applied our framework allowing non-zero sneutrino
VEVs and calculating tunneling times at zero temperature.

5.4.1. Generation of parameter points

We used SARAH to create a SPheno executable specific to the CBLSSM, which was used with the
SSP package [112] to perform random scans over two different parameter regions.

The first scan, in the following referred as the “democratic” scan, took random values for each
diagonal entry of the R-sneutrino — bilepton Yukawa coupling Y, independently over its range.
The other scan, which we will refer to as the “hierarchical” scan, kept the (1,1) and (2, 2) entries
as 1073 and 1072 respectively. It was motivated by the hierarchy of the quark and charged lepton
Yukawa couplings. We show the parameter ranges of each scan in Tab.

We chose mass parameter ranges consistent with the lack of observed SUSY particles at LEP and
LHC by requiring squarks and gluinos to be above one TeV. 34 but still in ranges where effects

3In [36] the bounds on my are shown to be about 300 GeéV lower than claimed by the LHC experiments when
gauge kinetic mixing is accounted for properly.

4The results reported here are a product of work done before updated bounds on SUSY searches were published.
The latest relevant results by the ATLAS collaboration can be found in [I54] where a lower limit of 1650 GeV
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Parameter Common to both
M, 5 250 — 1000
M, 100 — 3000
Ag -3000 — 3000
tan 3 345
my 1500 — 3000
tan 3 1.0-15
Parameter | Democratic | Hierarchical
yH 0.05-0.6 | fixed 1073
Y22 0.05 0.6 | fixed 1072
Y33 0.05 - 0.6 0.1-0.6

Table 5.3.: Ranges of parameters used in generating the samples. All dimensionful quantities are to
be read as in units of GeV. The signs of p and p' were fixed to both be positive. The democratic scan
consisted of 2330 points, the hierarchical of 1640 points.

Category Description
“RPC” SU(2)r, U(1)p—r, both broken, R-parity conserved.
“RPV” SU(2), U(1)p_r, both broken, R-parity broken.
“unbroken” | Either SU(2)r or U(1)p_1, broken but not both, R-parity conserved.

Table 5.4.: Categorization of parameter points according to the symmetries broken by their global
minima in the BLSSM.

from the model might be observed in the close future. The couplings were chosen to cover the
perturbative range. Using SPheno we then generated SUSY spectra for parameter points over
the full described region where R-parity is possibly conserved.

As expected, each parameter point had several minima that both conserved and violated R-
parity. We categorized the points by the nature of the lowest of their minima as shown in
Tab. The result of this categorization is shown in Tab. Each parameter point of our
scan fell into only one of the categories. In other words, there were no points which had a global
minimum with no unbroken symmetries, and there were no points which broke R-parity without
breaking both SU(2), and U(1)p—_r. The points we label “RPC” did not have R-parity-violating
vacua deeper than the DSB one and most of the “RPV” points broke R-parity by having deeper
minima with sneutrino VEVs. There were six points in the hierarchical scan with panic vacua
showing negative stop mass-squared. As we did not allow the possibility of stop VEVs for this
study, we assume this is a sign of a direction along which stop VEVs will develop. We plot them
together with other “RPV” points, as stop VEVs also imply R-parity violation (together with
SU(3)c and U(1)ey, breaking).

The third category, “unbroken”, appears when considering the one-loop effective potential. For
specially pathological parameter points, it has been shown that the one-loop effective potential

for equal mass light-flavour squarks and gluinos is found for the scenario with a massless %9.
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Category Hierarchical scan Democratic scan
total 1640 2330
tree level | one-loop level | tree level | one-loop level
“RPC” 1422 1275 2236 2167
“RPV” 218 212 94 86
“unbroken” 0 153 0 7

Table 5.5.: Number of parameter points in the various categories. All of the parameter points from both
scans categorized as “unbroken” broke SU(2), without breaking U(1)p—_r. Not all parameter points that
are “RPC” at the one-loop level were “RPC” at tree level, and likewise for the “RPV” category.

might restore symmetries that are broken at tree level [I55]. This is the case for such “unbroken”
parameter points, where at the one-loop level there is a deeper minimum conserving either
U(1)p—r or SU(2)r. We note that all such points we found had zero sneutrino VEVs.

By looking at Figs. .19 it is clear that R-parity-violating points are scattered almost all
over parameter space. If we restrict ourselves to a tree level analysis, it is easy to find regions of
parameter space for which no deeper R-parity-violating minima exist. In tune with our developed
intuition these regions lie where the R-sneutrino-bilepton Yukawa coupling Y, is not so large,
and the trilinear soft SUSY-breaking parameter Ag is small compared to My. Analogously to
the stop case discussed in the CMSSM, large Ag can lead to large negative contributions to the
potential energy but in this case for large values of vg and v, /5. Conversely, high values of My
induce high values for ml%c which, if positive have a tendency to avoid minima with vg values.
This pattern is evident in both sets of scans as visible again in Figs. [5.16}/5.19

One of the main conclusions from our previous analyses is the fact that loop corrections to the
potential are important for vacuum stability. In the case of the CBLSSM the regions where R-
parity appears to be safe at tree level have SU(2), and U(1)p_p, breaking that does not survive
loop corrections. Although parameter points often preserved R-parity at tree level, for many
points all over parameter space, panic R-parity-violating vacua happened to lie lower than the
DSB once one-loop effects where included.

For the CBLSSM it turns out that the additional new particles of the B — L sector also play an
important role in vacuum stability. Experimental bounds require the mass of the Z’ boson to
be in the multi-TeV range. This implies that the bilepton VEVs v, v; have to also be in this
range due to their contribution the the Z’ mass. For tan 3’ # 1 these VEVs give SUSY-breaking
D-term contributions to the masses and, as they are much larger than the MSSM sector, the
corresponding loop contributions to the potential are thus important. These contributions are
also responsible for the observed restoration of U(1)p_1, at the one-loop level for some parameter
points as they lift the potential considerably for minima with bilepton VEVs.

This complements the discussions in [42, [43] where it is shown that at least one entry of Y, has
to be large to achieve the breaking of U(1)p_r. From our results we conclude that one-loop
contributions from the additional B — L sector are more important for points in the hierarchical
scan as in that case they drive a larger set of points from the global tree level R-parity-conserving
minimum to the deeper R-parity-violating minimum at one-loop level. This is no surprise as for
those points a single Y, entry gives the most contribution to Tr[Y;] and thus is correspondingly
larger than the average of the democratic scan.
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5.4. SPONTANEOUS R-PARITY VIOLATION IN THE CBLSSM

5.4.2. Comparison with previous results in the literature

The issue of R-parity breaking in the BLSSM parameter space has been previously studied in [42].
There the authors, following a close analogy with the Higgs sector, conclude that the condition
of positive squared Soft SUSY breaking masses for the R-sneutrinos is a necessary and sufficient
condition for no spontaneous breaking of R-parity.

By looking at Figs.[5.17]and [5.19]it is evident that although there is a general tendency, positive
m%c is not a necessary nor sufficient condition for R-parity conservation. By looking at these
plots, one can see that there are points with negative m,%c that conserve R-parity and conversely
points with positive m%c that break R-parity spontaneously through sneutrino VEVs.

To understand R-parity conservation for m,%c < 0, one has to remember that the relevant pa-
rameters to consider are the eigenvalues of the mass matrix. They can be all positive due to
contributions of the F-terms, D-terms and other soft SUSY-breaking terms coming from non-zero
bilepton VEVs despite negative ml%c entries. For example, in the case of only the third generation
sneutrinos getting VEVs, the (75, §) element of the tree level scalar mass-squared matrix is given
by (we have suppressed the generation index for simplicity):

1
m?ﬁg,ﬁ{;) = mpe + B (v +v3) Y |* — V20, R (Yen™) + V20, R (Ty) + (211,27 +3v,) [Vl
1
Jrg (?]gBL (UZ — US — U%) + 9]25’L (2 (U% — U%) + 31}% — v%) ) (5.2)

The case of R-parity violation with positive m%c is easier to understand, as the presence of

trilinear terms can lower the potential significantly for reasonably large values of sneutrino and
bilepton VEVs. The full set of mass matrices for the BLSSM is given in appendix

In Ref. [42] starting by the fact that R-parity violation is driven by the sign of m2., the authors
conclude that a hierarchical Y, would lead always to spontaneous R-parity breaking. They argue
that because of the way Y, enters the RGEs, hierarchical values would always drive m%c
before the bilepton mass-squared parameters. Both our previous discussion on m?;c and the
subsequent large fraction of “RPC” points in our hierarchical scan refutes this claim. However,
such points are harder to find (as shown by the smaller number of valid points found for the
hierarchical scan compared to the democratic scan), and are in some sense finely tuned, as is
evident from the large fraction of “unbroken” points. Nevertheless, around half of the hierarchical

points conserve R-parity even at the one-loop level.

negative

There is a subtle difference between our analysis and the one in Ref. [42]: We generated points
that were naively R-parity-conserving, i.e. they were engineered to have a local minimum with
the correct set of R-parity-conserving VEVs and explored whether they had deeper panic vacuum
elsewhere. In contrast Ref. [42] explored various GUT-scale parameter configurations in the
Yukawa sector for two points in the soft SUSY-breaking parameters to see whether RGE running
would lead to a negative mgc. Since we started with a set of parameters engineered to have
an R-parity-conserving local minimum it is no surprise that our results show a low tendency for
R-parity violation. However, our conclusions are still valid in that they show that the statements
about R-parity violation depending on the sign of m?,c are not valid even in a mostly R-parity-
conserving region of the parameter space.

Finally, we examined whether the “RPC” minima of the “RPV” points were long-lived with
respect to the age of the Universe. As can be deduced from looking at the difference between
Figs. and there is no clear pattern to differentiate short and long-lived regions. This is

again a sign that a full numerical study is unavoidable if one wants to get a definite answer about
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spontaneous R-parity breaking in the BLSSM. The results of this study have been reported in

[156].
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Figure 5.16.: Projections into various parameter planes of the 1640 hierarchical scan parameter points,
categorized by the nature of their global minima (see Tab. at tree level. “RPC” points are plotted in
green, and “RPV” points are plotted in red. In the plots on the left, the “RPC” points are plotted on top
of the “RPV” points, which are faded, while in the plots on the right the “RPV” points are plotted on top
of the “RPC” points, which are faded. m2. is the lowest or most negative of the three soft SUSY-breaking
mass-squared parameters for the R-sneutrinos, evaluated at the SUSY scale.
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Figure 5.18.: Projections into various parameter planes of the 2330 democratic scan parameter points,
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CHAPTER SIX
CONCLUSIONS

We have proposed a way to study the vacuum structure of a given model by combining the
power of the Homotopy continuation method for finding the minima of the tree level potential,
the minuit algorithm for numerical minimization of the one-loop effective potential and numerical
methods to solve the problem of calculating the tunneling time between minima at zero and non-
zero temperature.

The implementation of this framework resulted in the code Vevacious. Given a model and a
parameter point with a reasonable candidate for a DSB minimum, it is then possible to use
Vevacious to determine whether there exists a deeper panic vacuum at the one-loop level with
VEVs that break symmetries we want to conserve and calculate the tunneling time from the
DSB vacuum. With this information it is possible to exclude parameter points by requiring a
stable or long-lived DSB minimum.

In general we found that a numerical study is inevitable in any serious phenomenological study.
Previous attempts at including vacuum stability constraints through simple analytical rules do
not hold well against any of our numerical studies. In most cases such naive analytical conditions
fail to meaningfully discriminate regions of parameter space with dangers of color-, charge- and
R-parity breaking minima.

Specifically for the CMSSM we found that when stau and stop VEVs are allowed, regions oth-
erwise favored by experiment are in direct conflict with vacuum stability constraints. By per-
forming a conservative analysis at zero temperature we were able to pinpoint dangerous regions
of parameter space.

In particular, regions consistent with the measured Higgs mass showed a high prevalence of deeper
color- and charge- breaking minima with a fraction of such points having a short-lived DSB
vacuum. We also showed there is an important overlap between the stop and stau coannihilation
regions i.e. the regions that allow for the correct relic dark matter density, and regions with deeper
CCB vacua. This puts the CMSSM parameter space in even more tension with experiments as
demanding the correct relic density for dark matter is a very stringent constraint in itself.
However we stress that our framework always finds an upper bound on the lifetime of the DSB and
it is possible that for points reported as long-lived the lifetime is much shorter. This will depend
on the ability of the path deformation routine to find the optimal tunneling path. Nevertheless,
reported short-lived DSB vacua are definitely so, and their existence shows the importance of
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taking vacuum stability seriously.

We then studied the vacuum stability of the natural MSSM when allowing for stop VEVs. In-
spired by the results found for the CMSSM we explored the region allowing the correct Higgs
mass for this pragmatic incarnation of the MSSM. By accounting for thermal effects, the prob-
ability of tunneling out of the DSB minimum increases and therefore exploring the dangerous
region found to be long-lived in the CMSSM was a natural next step.

We found that when thermal fluctuations come into play, the region consistent with a Higgs mass
around 125 GeV overlaps quite significantly with regions suffering from short-lived CCB minima.
As a third example we applied our framework to explore spontaneous breaking of R-parity in
the BLSSM. This model was proposed as an extension of the MSSM with an extra U(1)p_r,
gauge group with the possibility of breaking it without inducing R-parity violation. We explored
whether this was the case by studying where in parameter space deeper minima with R-parity-
violating sneutrino VEVs would arise. Our results showed that R-parity is broken for regions
thought to be R-parity-conserving in previous analyses. In particular, the assumption of negative
m2. for sneutrinos as a definite discriminator for R-parity violation was shown not to hold.

We also adapted our proposed framework for use in parameter fit studies by limiting ourselves
to stop and stau VEVs with straight tunneling paths. We performed a very large scan over
the CMSSM parameter space and constructed a database together with a C++ class to check
parameter points against vacuum stability. It is then possible to use it in CMSSM parameter fit
studies and include vacuum stability together with fitting other experimental data.

In conclusion, our proposed framework implements vacuum stability as a useful constraint and
shows the importance of such type of studies. We can get information about a particular model
and its parameter space by using Vevacious and significant constraints can be extracted from
the results.
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APPENDIX ONE

EXPLICIT FORMULAS FOR ONE-LOOP EFFECTIVE POTENTTALS

We present explicit formulas for the One-loop effective potential of the models studied in this
work. In both cases we start by the expression and by following closely the results in [157]
we can cast the effective potential in the DR scheme for the models at hand.

A.1l. The one-loop effective potential of the MSSM

For the case of the MSSM the one-loop effective potential is given by

3 4 2 3 4 2
i (§(0 b)) S (5 3))
i=1 i=1
2 "2 ) 2 "2 ) 2
miy, mé,\ 3] my m%\ 3
(z{l”(m)*z]w{l"(@z)‘z])

)5 (e (%))

2 m? m?
1 HE H* 3
— + E — |1 - - = . Al
) — 2 4 " Q? 2 (A1)

We have included formally in the sums the would-be Goldstone-bosons to account for the fact
that potentially the gauge group is broken only partially. This does not result in a double-
counting because, in the Landau gauge, would-be Goldstone-bosons are massless and thus give
a zero contribution to the one-loop effective potential.
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Explicit formulas for One-loop effective potentials

The first two lines are the contributions from quarks and squarks. In the third line the loops
including the gauge bosons are counted. The fourth line contains the contributions due to the
chargino, lepton as well as neutralino states. The fifth and sixth lines show the contributions
from charged slepton and Higgs states. As the gluino mass does not depend on the field values
it can be thought as a constant shift and does not need to be taken into account.

A.2. The one-loop effective potential of the BLSSM

For the case of the BLSSM we have to extend the previous expression to accommodate the new
particles added in this case. Explicitly we get:

3 4 2
2 B myg, my, 3
o= (S () -5
_l’_

mi In mi 3
4 Q) 2

13 mgil mZ\ 3 Ao
e 2)) o

The first two lines are the contributions from quarks and squarks which are the same as for
the MSSM. In the third line the loops including the three gauge bosons in the given model are
counted. The fourth line contains the contributions due to the charged lepton-chargino as well as
neutrino-neutralino mixed states. The fifth and sixth lines show the contributions from charged
slepton-charged Higgs states as well as sneutrino-Higgs states. The tree-level mass matrices where
R-parity violation induces a mixing between SM and SUSY particles are listed in appendix [B]
For completeness we note that in addition the sneutrino VEVs give contributions to the mass
matrices of vector bosons and squarks.
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APPENDIX TWO

MASS MATRICES OF THE BLSSM

Here we give the tree-level masses suppressing the generation indices of (s)neutrinos and (s)leptons.

e Neutrino-Neutralino states
The mass matrix me

by

M,y
0

1
591Uy

0

0

0
Mpp

e Charged lepton-Charginos

1
—329104

1
—3291VL

0
My
39204
— 1920y
39201
0

0
0
0

is given, in the basis

(Aéa WO’ ﬁg? ﬁgv VL, V}k%a 77]77:77 AB”) )

1
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%gzvd
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The mass matrix is given, in the basis
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Mass matrices of the BLSSM

by

%dee %92% _%URYV
mé, = 0 Mo %92%
—%ULYe %QZUd Iz

e CP even sneutrino-Higgs
In the basis

(Uda Ou,0L,0OR, JY], Uﬁ) )

the entries of the mass matrix read:

Meoyoy4

Mooy =

Moo

Moyor, =

Moo =

Mooy,

Moyor =

Moyop

Morog

Moror

Meoyo, =

Mooy,
Moo,

Mo poy

1
8

1 _
~Bu -7 (gf +3° + 93) VgV
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1 _ 2
Mooy = QU%Yf + —gBL (g(v?l — vi + v%) + 9BL (61}% — 21),27 — v% + ’U%)) + m% + ,u'

4
(B.17)
1_
Mogon = _iggBLUde] (B18)
1
Moo = iggBLvuvﬁ (Blg)
1
Mooy = ~59BL <§ + gBL)'ULUﬁ (B.20)
1
Mopoy = §Q%LURU17 - \/i}ulvRYx (B21>
Mooy = —Bur — g%Lvnvﬁ (B.22)

1 _ 2
Mgy = — 3981 (( = 02+ 03 + 03 ) + gp1 (202 — 602 — vk +0}) )+ md + 1* (B.23)

e CP odd sneutrino-Higgs
In the basis (¢q, Pu, b1, PR, O, ¢) and using Landau gauge, the nonzero entries of the
mass matrix read:

1/_ _
Mpapg = g(ggBL(2<U% —U%) - U?ﬁ—v%) + (g% +92 +g§> (1)3 —vi +v%)) +m%{d +u2

(B.24)

Mgy = By (B.25)
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+ %(v% + v%) Y72+ p? (B.26)
Mgy, = _\}évRYuM (B.27)
My, = —%vR (20,727, + V2T, (B.28)
mge, =mh + 5 (98 + 9+ 8) (18— o2+ 02) + agmr (2(0F 23— 02) — vk =3+ 03)

+Q%L<2<—U72—7+UT2]) —v%%—v%)) +%(v%+v3)YV2 (B.29)
Mepybp = _\}QULYVH (B.30)
M = vL<\}§Ty 0, Y,Y,) (B.31)
M, bp = %UUTV + Y,,( — \}ivdu — vuvan> (B.32)
Mppop = Mae + %93L< — g( — 02 403+ U%) +gBL(2v?7 — 7 — v} + v%))

+ %( = 2V20,T, + 2%, ((202 + v} ) Vo + V2u'vg) + (v} + 02 ) V) (B.33)
Mg, ¢, = VLVRYz Yy (B.34)
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Mass matrices of the BLSSM

Mgy, = VRULYzYy (B.35)
Mgy = V20RT, + vLv, Y2 Y, (B.36)
M pdy = V2i'vRY, (B.37)
1
My = QU%YCE + ZgBL <g(v§ — vz + v%) + 9BL (2(0,27 — v%) — 012% + v%)) + m% + //2
(B.38)
1
My = ZgBL( — g( — vﬁ + v?l + v%) + gBL(Qv% — 21)727 — v% + v}%{)) + m% + ,1/2
(B.39)

Charged slepton - charged Higgs
In the basis
(Hd_7 HJ‘,*’ éLa éR) )

the entries of the mass matrix read:

1 n —
Mgy :m?‘ldJr*(ggBL(z(_”%JF“%) —U?ﬁv%) + (9f+92)(—v3+v§+v%)

8
1
+ gg( —v? + v+ vﬁ)) - iv%Yf + u? (B.40)
1
My by = Zg%’udvu + By, (B.41)

1
Mo = mh, + 5 (=92 = 02) (= vl + o3 +03) + ggmr (202 - 202 — of + o)

8
1
+ g5 (vﬁ +vi + vi)) + 51)]2%1/3 + u? (B.42)
1 1 1
My = —§UdeYe2 + Zggvde - EURYV:U‘ (B.43)
1 1, 1
Myt = —§Yl, (2vRvan + vauY,,> + 192VLVu — EURTV (B.44)
1 1
Me &5 = m% + 3 ((g% + §2> (vﬁ - vg + v%) + g% (v% — vﬁ + vi) + B (vﬁYf + U%YE)
b agmn(~ 202 +2(uh +02) = o =02 08) + gy (2( — 24 02) — i+ 02))
(B.45)
1 1
My er, = —§URUuYeYu - ﬁvLTe (B.46)
1
Mpptege = —iye(\f?’ULM + ’UdURYu> (B.47)
1
Meney = 75 <’UdTe - vuYeM) (B.48)
1
Mepes, = m + g(— (2§+gBL> (g(—vi + 02 —1—1),2;) —i—gBL( — 21}% 4—21),27 —v%+v%))
1
=203 (= v+ o+ 0} )) + 5 (v + 0} )12 (B.49)

We write only independent entries as the matrix is Hermitian thus m?j = (m2,)*.
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APPENDIX THREE

C++ CODE FOR IMPLEMENTING VEVACIOUS IN PARAMETER FIT
STUDIES

The following code was written in order to implement results coming from Vevacious into a
C++ class that can be easily added to any existing code. It is assumed that a large parameter
space scan and Vevacious analysis has been performed and the results have been parsed and
written to a file where each line has the format

mo, M1/2, tanﬁ: szgn(u), A07 s, 1 (Cl)

where s € {—1,0,1} is the stability result with a threshold of 1% survival probability (1 for
stable, 0 for long-lived and —1 for short-lived points) and [ is —1 for stable points, 10° for long-

lived points and the lifetime of the DSB minimum in universe ages for short-lived points. In this

way the user can always implement more stringent thresholds regarding the survival probability.

The data file has to be read only once which speeds up the process considerably. A large scan

for the CMSSM has already been performed by the author as referred in section [5-3

The code then uses that information and provides two functions, Check.Lifetime and Check.Stability.
Given input values for a CMSSM point, both functions calculate the closest point in parameter

space that is in the scan. Check.Lifetime will then report [ and Check.Stability will report

s.

C.1. CheckVacuum C++ class

/* file CheckVacuum.h

* Header containing class CheckVacuum. This class reads in a data file

* containing vacuum stability information from Vevacious and gives

* a result for a given parameter point.

* In essence it takes the data file and given the 5 parameters m_0 m_1/2
* tan(beta) sign(mu) and A_O it gives you the lifetime/stability of the
* desired phenomenological minimum.

*

*

*

Author: Jose Eliel Camargo-Molina (Elielx AT gmail.com)
Copyright 2014 J. E. Camargo-Molina
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C++ code for implementing Vevacious in parameter fit studies

*/

#include <cstdio>
#include <cstdlib>
#include <stdexcept>
#include <vector>
#include <iostream>
#include <fstream>
#include <cmath>
#include <algorithm>

class CheckVacuum

{

//Matrix containing data from grid.

std::vector < std::vector < double > > DataMatrix;

//Ranges of parameters in the grid, determined automatically from data.

double mzeroRange, mhalfRange, TanBRange, AzeroRange;

double Entry (double mzero_in, double mhalf_in, double TanB_in, double SignMu_in

, double Azero_in, int index );

public:
// Constructor where the filename of the data file is given.
CheckVacuum (std::string);
//function that outputs lifetime data for given parameter point
double Lifetime (double mzero_in, double mhalf_in, double TanB_in, double

SignMu_in
, double Azero_in)
{ return Entry( mzero_in, mhalf_in, TanB_in, SignMu_in , Azero_in, 6); }
//function that outputs stability data for given parameter point
int Stability (double mzero_in, double mhalf_in, double TanB_in, double SignMu_in
, double Azero_in)
{ return Entry( mzero_in, mhalf_in, TanB_in, SignMu_in , Azero_in, 5); }
};

inline CheckVacuum::CheckVacuum (std::string Datafile)

{

std::ifstream StabilityDataFile(Datafile.c_str());// Opening and reading data file
from grid.

if (!StabilityDataFile) // Check if file is opened.
{

std::cout<<"Error opening stability data file"<<std::endl;
exit (EXIT_FAILURE); //abort program
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C.1. CHECKVACUUM C++ CLASS

while( StabilityDataFile.good() )

{
std: :vector<double> Parpoint; // Vector to hold MINPAR + Stability + lifetime

double mzero, mhalf, TanB, SignMu, Azero, StableQ, Lifetime; // MINPAR
parameters, Stability and lifetime
// Reading from data file into variables

StabilityDataFile >> mzero >> mhalf >> TanB >> SignMu >> Azero >> StableQ >>
Lifetime;

Parpoint.push_back(mzero); // saving variables into vector Parpoint

Parpoint.push_back(mhalf);

Parpoint.push_back(TanB) ;

Parpoint.push_back(SignMu) ;

Parpoint.push_back(Azero) ;

Parpoint.push_back(StableQ) ;

Parpoint.push_back(Lifetime) ;

DataMatrix.push_back(Parpoint); // Storing Vector into DataMatrix

//Finding range of parameters from data for weighted distance.
std: :vector<double> mzeroData, mhalfData, TanBData, AzeroData;

for(int k=0;k< DataMatrix.size() ;k++)
{
mzeroData.push_back(DataMatrix[k] [0]);
mhalfData.push_back(DataMatrix[k] [1]);
TanBData.push_back(DataMatrix[k] [2]) ;
AzeroData.push_back(DataMatrix[k] [4]);

mzeroRange = *max_element (mzeroData.begin() ,mzeroData.end());
mhalfRange *max_element (mhalfData.begin() ,mhalfData.end());
TanBRange = *max_element (TanBData.begin() ,TanBData.end());

AzeroRange = *max_element (AzeroData.begin() ,AzeroData.end());

inline double CheckVacuum::Entry (double mzero_in, double mhalf_in, double
TanB_in, double SignMu_in , double Azero_in, int index)
// Finding the closest points in the .dat file to the input point to check

{
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C++ code for implementing Vevacious in parameter fit studies

std: :vector<double> Distances;

for (int j=0;j< DataMatrix.size();j++)

{

double Distance=0;

double SignMuCondition=DataMatrix[j][3]- SignMu_in;

//Checks if input point and data have the same sign(mu)

if (SignMuCondition == 0) // if they do, calculate normalized distance.
{

Distance = std::pow(DataMatrix[j] [0]-mzero_in,2)/mzeroRange +
std: :pow(DataMatrix[j] [1]-mhalf_in,2)/std::pow(mhalfRange,2) +
std: :pow(DataMatrix[j] [2]-TanB_in,2)/std: :pow(TanBRange,2) +
std: :pow(DataMatrix[j] [4]- Azero_in,2)/std::pow(AzeroRange,2);
¥

else

{

Distance= 130000000;

}

Distances.push_back(Distance) ;

}

int minDistance = std::distance( Distances.begin(), std::min_element(
Distances.begin(), Distances.end() ) );

return DataMatrix[minDistance] [index];// Outputs the lifetime for the closest point
in the grid.

C.2. Example use of CheckVacuum class

/* file main.cpp

* Example use of CheckVacuum class. This class reads in a data file
containing vacuum stability information from Vevacious and gives
a result for a given parameter point.

Author: Jose Eliel Camargo-Molina (Elielx AT gmail.com)

*
*
*
*
* Copyright 2014 J. E. Camargo-Molina

*/

#include "CheckVacuum.h"
#include <ctime>

int main()

{
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C.2. EXAMPLE USE OF CHECKVACUUM CLASS

//First read in data file with information from grid. This has to be done once
only as it
// is an expensive task. No need to call it again.

CheckVacuum Check ("../CMSSM(TEST) .dat");
clock_t startTime = std::clock(); // Timing

// The Stability function takes in m_0, m_1/2, Tan(beta), sign(mu) and A_O.
// It outputs 1 , 0 or -1 for stable, long-lived and short-lived

std: :cout<< Check.Stability(0, 1000, 10, 1, -4000)<<std::endl;

// The Lifetime function takes in m_0O, m_1/2, Tan(beta), sign(mu) and A_O.

// If the input point is short-lived it outputs the lifetime in universe ages
// If the input point is long-lived it outputs le+6

// If the input point is stable it outputs -1

std::cout<< Check.Lifetime(0, 1000, 10, 1, -4000)<<std::endl;

std::cout << double( std::clock() - startTime ) / (double)CLOCKS_PER_SEC<< "
seconds." << std::endl; // Timing
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