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To teach how to live without certainty,
and yet without being paralyzed by hesitation,

is perhaps the chief thing that philosophy,
in our age, can still do for those who study it.

Bertrand Russell: A History of Western Philosophy





5

Zusammenfassung

Trotz seiner präzisen Übereinstimmung mit dem Experiment ist die Gültigkeit
des Standardmodells (SM) der Elementarteilchenphysik bislang nur bis zu einer
Energieskala von einigen hundert GeV gesichert. Abgesehen davon erweist sich
schon das Einbinden der Gravitation in einer einheitlichen Beschreibung aller
fundamentalen Wechselwirkungen als ein durch gewöhnliche Quantenfeldtheo-
rie nicht zu lösendes Problem. Das Interesse an Quantenfeldtheorien auf einer
nichtkommutativen Raumzeit wurde durch deren Vorhersage als niederener-
getischer Limes von Stringtheorien erweckt. Unabhängig davon, kann die Nicht-
lokalität einer solchen Theorie den Rahmen zur Einbeziehung der Gravitation
in eine vereinheitlichende Theorie liefern. Die Hoffnung besteht, dass die En-
ergieskala ΛNC, ab der solche Effekte sichtbar werden können und für die es
keinerlei theoretischen Vorhersagen gibt, schon bei der nächsten Generation von
Beschleunigern erreicht wird. Auf dieser Annahme beruht auch die vorliegende
Arbeit, im Rahmen deren eine mögliche Realisierung von Quantenfeldtheorien
auf nichtkommutativer Raumzeit auf ihre phänomenologischen Konsequenzen
hin untersucht wurde.
Diese Arbeit ist durch fehlende LHC (Large Hadron Collider) Studien für
nichkommutative Quantenfeldtheorien motiviert. Im ersten Teil des Vorhabens
wurde der hadronische Prozess pp→ Zγ → `+`−γ am LHC sowie die Elektron-
Positron Paarvernichtung in ein Z-Boson und ein Photon am ILC (International
Linear Collider) auf nichtkommutative Signale hin untersucht.
Das dieser Arbeit zugrunde liegende Modell besteht in einer Erweiterung des SM
auf nichtkommutativer Raumzeit, welche auf zwei grundlegende Bausteine auf-
baut: die Einführung eines deformierten Produktes, dem sogenannten Moyal-
Weyl ?-Produkt und den Seiberg-Witten Abbildungen. Letztere bilden die
üblichen Eich- und Materiefelder sowie die Eichparameter auf die entsprechen-
den nichtkommutativen Größen ab. Die Seiberg-Witten Abbildungen werden
als Lösungen inhomogener Differentialgleichungen, der sogenannenten Eichäqui-
valenzbedingungen, Ordnung für Ordnung im nichtkommutativen Parameter θ
erhalten. Dadurch wird der Forderung Rechnung getragen, dass nichtkom-
mutative Eichtransformationen durch die entsprechenden kommutativen Eich-
transformationen induziert werden. Somit kann mit Hilfe des Moyal-Weyl
?-Produktes und der Seiberg-Witten Abbildungen eine Erweiterung des SM
auf nichtkommutative Raumzeit als effektive Theorie hinsichtlich des Entwick-
lungsparameters θ konstruiert werden. Die phänomenlogischen Untersuchungen
wurden im Rahmen dieses Modells in erster Ordnung des nichtkommutativen
Parameters θ durchgeführt.
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Eine nichtkommutative Raumzeit führt zur Brechung der Rotationsinvarianz
bezüglich der Strahlrichtung der einlaufenden Teilchen. Im differentiellen Wir-
kungsquerschnitt für Streuprozesse äußert sich dieses als eine azimuthale Ab-
hängigkeit, die weder im SM noch in anderen Modellen jenseits des SM auftritt.
Diese klare, für nichtkommutative Theorien typische Signatur kann benutzt
werden, um nichtkommutative Modelle von anderen Modellen, die neue Physik
beschreiben, zu unterscheiden. Auch hat es sich erwiesen, dass die azimuthale
Abhängigkeit des Wirkungsquerschnittes am besten dafür geeignet ist, um die
Sensitivität des LHC und des ILC auf der nichtkommutativen Skala ΛNC zu
bestimmen.
Im phänomenologischen Teil der Arbeit wurde herausgefunden, dass Messun-
gen am LHC für den Prozess pp→ Zγ → `+`−γ nur in bestimmten Fällen auf
nichtkommutative Effekte sensitiv sind. Für diese Fälle wurde für die nichtkom-
mutative Energieskala ΛNC eine Grenze von ΛNC & 1.2 TeV bestimmt. Diese
ist um eine Größenordnung höher als die Grenzen, die von bisherigen Beschle-
unigerexperimenten hergeleitet wurden. Bei einem zukünftigen Linearbeschle-
uniger, dem ILC, wird die Grenze auf ΛNC im Prozess e+e− → Zγ → `+`−γ
wesentlich erhöht (bis zu 6TeV). Abgesehen davon ist dem ILC gerade der für
den LHC kaum zugängliche Parameterbereich der nichtkommutativen Theorie
erschlossen, was die Komplementarität der beiden Beschleunigerexperimente
hinsichtlich der nichtkommutativen Parameter zeigt.
Der zweite Teil der Arbeit entwickelte sich aus der Notwendigkeit heraus, den
Gültigkeitsbereich der Theorie zu höheren Energien hin zu erweitern. Dafür
haben wir den neutralen Sektor des nichtkommutativen SM um die nächste Ord-
nung in θ ergänzt. Es stellte sich wider Erwarten heraus, dass die Theorie dabei
um einige freie Parameter erweitert werden muss. Die zusätzlichen Parameter
sind durch die homogenen Lösungen der Eichäquivalenzbedingungen gegeben,
welche Ambiguitäten der Seiberg-Witten Abbildungen darstellen. Die allge-
meine Erwartung war, dass die Ambiguitäten Feldredefinitionen entsprechen
und daher in den Streumatrixelementen verschwinden müssen. In dieser Arbeit
wurde jedoch gezeigt, dass dies ab der zweiten Ordnung in θ nicht der Fall ist
und dass die Nichteindeutigkeit der Seiberg-Witten Abbildungen sich durchaus
in Observablen niederschlägt. Die Vermutung besteht, dass jede neue Ordnung
in θ neue Parameter in die Theorie einführt.
Wie weit und in welche Richtung die Theorie auf nichtkommutativer Raumzeit
entwickelt werden muss, kann jedoch nur das Experiment entscheiden.
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Abstract

Despite its precise agreement with the experiment, the validity of the standard
model (SM) of elementary particle physics is ensured only up to a scale of sev-
eral hundred GeV so far. Even more, the inclusion of gravity into an unifying
theory poses a problem which cannot be solved by ordinary quantum field the-
ory (QFT). String theory, which is the most popular ansatz for a unified theory,
predicts QFT on noncommutative space-time as a low energy limit. Neverthe-
less, independently of the motivation given by string theory, the nonlocality
inherent to noncommutative QFT opens up the possibility for the inclusion of
gravity.
There are no theoretical predictions for the energy scale ΛNC at which noncom-
mutative effects arise and it can be assumed to lie in the TeV range, which is
the energy range probed by the next generation of colliders. Within this work
we study the phenomenological consequences of a possible realization of QFT
on noncommutative space-time relying on this assumption.
The motivation for this thesis was given by the gap in the range of phenomeno-
logical studies of noncommutative effects in collider experiments, due to the
absence in the literature of Large Hadron Collider (LHC) studies regarding
noncommutative QFTs. In the first part we thus performed a phenomenolog-
ical analysis of the hadronic process pp → Zγ → `+`−γ at the LHC and of
electron-positron pair annihilation into a Z boson and a photon at the Interna-
tional Linear Collider (ILC).
The noncommutative extension of the SM considered within this work relies
on two building blocks: the Moyal-Weyl ?-product of functions on ordinary
space-time and the Seiberg-Witten maps. The latter relate the ordinary fields
and parameters to their noncommutative counterparts such that ordinary gauge
transformations induce noncommutative gauge transformations. This require-
ment is expressed by a set of inhomogeneous differential equations (the gauge
equivalence equations) which are solved by the Seiberg-Witten maps order by
order in the noncommutative parameter θ. Thus, by means of the Moyal-Weyl
?-product and the Seiberg-Witten maps a noncommutative extension of the SM
as an effective theory as expansion in powers of θ can be achieved, providing
the framework of our phenomenological studies.
A consequence of the noncommutativity of space-time is the violation of rota-
tional invariance with respect to the beam axis. This effect shows up in the
azimuthal dependence of cross sections, which is absent in the SM as well as in
other models beyond the SM. Thus, the azimuthal dependence of the cross sec-
tion is a typical signature of noncommutativity and can be used in order to dis-
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criminate it against other new physics effects. We have found this dependence
to be best suited for deriving the sensitivity bounds on the noncommutative
scale ΛNC.
By studying pp→ Zγ → `+`−γ to first order in the noncommutative parameter
θ, we show in the first part of this work that measurements at the LHC are
sensitive to noncommutative effects only in certain cases, giving bounds on the
noncommutative scale of ΛNC & 1.2 TeV. Our result improved the bounds
present in the literature coming from past and present collider experiments by
one order of magnitude. In order to explore the whole parameter range of the
noncommutativity, ILC studies are required. By means of e+e− → Zγ → `+`−γ
to O(θ) we have shown that ILC measurements are complementary to LHC
measurements of the noncommutative parameters. In addition, the bounds on
ΛNC derived from the ILC are significantly higher and reach ΛNC & 6 TeV.
The second part of this work arose from the necessity to enlarge the range of
validity of our model towards higher energies. Thus, we expand the neutral
current sector of the noncommutative SM to second order in θ. We found
that, against the general expectation, the theory must be enlarged by addi-
tional parameters. The new parameters enter the theory as ambiguities of the
Seiberg-Witten maps. The latter are not uniquely determined and differ by
homogeneous solutions of the gauge equivalence equations. The expectation
was that the ambiguities correspond to field redefinitions and therefore should
vanish in scattering matrix elements. However, we proved that this is not the
case, and the ambiguities do affect physical observables. Our conjecture is, that
every order in θ will introduce new parameters to the theory. However, only
the experiment can decide to what extent efforts with still higher orders in θ
are reasonable and will also give directions for the development of theoretical
models of noncommutative QFTs.
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Chapter 1

Introduction

“It is possible that the usual four-dimensional continuous space-time does not
provide a suitable framework within which interacting fields and matter can
be described.” It was in 1947 when Snyder made this statement in the article
which is generally considered to mark the beginnings of Quantum Field Theories
(QFT) on noncommutative space-time [1, 2]. It was the result of an exchange
among Heisenberg, Pauli, Oppenheimer and Peierls [3, 4], initiated by the for-
mer already in 1930 and driven by the motivation to find a natural cut-off for the
divergencies which plagued quantum electrodynamics (QED). For this purpose,
Snyder, a student of Oppenheimer, constructed a Lorentz invariant noncommu-
tative structure of space-time introducing a minimal length-scale, which might
be used to regularize the infinities in QED, as it was hoped. Nevertheless, this
ansatz did not succeed whereas renormalization proved to be the right cure for
the UV divergencies in QFT. Thus, the idea of noncommutative space-time was
abandoned for the time being. On the other hand, noncommutativity was pur-
sued on the mathematical side, where especially the work of Alain Connes on
noncommutative geometry in the 1980’s stands out, providing the mathemati-
cal tools for further studies on noncommutative space-time. In particle physics
the interest in quantum field theories on noncommutative space-time declined,
though not entirely, and was renewed only in 1999 by the work of Seiberg and
Witten on string theory [5]. They showed that the dynamics of the endpoints
of an open string on a D-brane in the presence of a magnetic background field
can be described by a Yang Mills theory on noncommutative space-time. Since
string theory is nowadays the most popular ansatz for an ultimate theory cap-
turing all laws of nature up to the Planck scale, the impact of this result on the
particle physics community resulted in an outburst of publications on theories
on noncommutative space-time within the last decade.
Nevertheless, the motivation for studying physics on noncommutative space-
time can also be provided independently of string theory. Whatever the theory
describing physics at the Planck scale is, we know that it is certainly not the
Standard Model (SM) of particle physics, even though its predictive power has
been experimentally verified to astonishing accuracy within the past decades.
One of its major drawbacks is its incompatibility with general relativity. Thus,
QFT and the SM have to be altered on the road towards the Planck scale
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in order to incorporate gravity. Since gravity alters the geometry of ordinary
space-time, we expect that its quantization occurs at or before the Planck scale.
Doplicher et al. show that space-time noncommutativity prevents the gravita-
tional collapse allowing thus to incorporate space-time fluctuations into quan-
tum field theory [6] .
We can look at noncommutative quantum field theory from another point of
view, and take it as an intermediate regime between ordinary QFT and the
physics at the Planck scale, whatever this might be. The Planck scale of
1019 GeV will remain out of direct reach probably forever. Apart from the
glimpses due to the study of very energetic but rare cosmic rays, in a bottom-
up approach we can only infer on the physics at the Planck scale from physics at
experimentally accessible scales. The start of the Large Hadron Collider (LHC)
experiment in Geneva in 2008 will open a window towards the TeV range, al-
lowing for a (still) short range vista on the physics beyond the electroweak
scale. We hope that it will show us the next step towards the development of
a more satisfying model. This step might contain, amongst others, supersym-
metry, extra dimensions and/or noncommutative quantum field theory. All or
one of these might represent the right formalism describing the terra incognita
in between Planck scale physics and the SM. So much the better, that all of
them are predicted by string theory.
The aim of this work derives from the motivation presented in the previous
paragraph. We will perform a phenomenological analysis of the effects of a
noncommutative space-time employing observables at the upcoming LHC ex-
periment and subsequently derive bounds on the energy scale at which noncom-
mutativity of space-time might occur. In order to define the noncommutative
energy scale, we need to define noncommutative space-time first, by promoting
ordinary space-time coordinates to noncommuting operators:

[x̂µ, x̂ν ] = iθµν 6= 0 (1.1)

The object θµν has the dimension of a length squared and thus we can extract
the noncommutative energy scale 1/Λ2

NC ∝ θµν . Even if noncommutativity of
space-time has not been observed yet, it can be allowed as long as the char-
acteristic length scale at which noncommutative effects set in is small enough
compared to the length scales of present experiments. There are no theoreti-
cal predictions on ΛNC, such that only experiments can determine or at least
constrain it. The bounds on ΛNC derived in the literature are very different,
ranging over many orders of magnitude, and depend on the model assumed.
The constraints coming from high energy scattering experiments were mostly
derived from QED processes within the simplest, but theoretically unsatisfac-
tory model of QED on noncommutative space-time. The experiment which will
dominate the phenomenological landscape of particle physics beginning with
2008 is the LHC, a proton-proton collider reaching center of mass energies of
14 TeV. For constraining the noncommutative scale, phenomenological studies
of the SM on noncommutative space-time at the LHC are indispensable. Apart
from partial results of this work, which have already been published [7] and
the recent thesis [8], no phenomenological studies for the LHC are present in
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the current literature. This work contributes to the completion of this gap by
studying the process pp→ Zγ → `+`−γ at the LHC.
We have worked within a θ expanded approach which gives a satisfactory de-
scription of the SM on noncommutative space-time. Nevertheless, since it is
an effective theory, during our phenomenological analysis, the need of going
towards higher orders in the expansion parameter θ has crystallized. This leads
us to the second part of this thesis, namely the development of the model up to
second order in the noncommutativity parameter θ. In doing so, we discovered
the surprising fact that some ambiguities, which occur when building the model
and which were previously believed to cancel in observables, as they did for the
O(θ) analysis, in fact survive. We demonstrate in an exemplary calculation the
dependency of the cross section on these ambiguities [9].
The thesis is structured as follows: First we will present the theoretical back-
ground of field theories on noncommutative space-time in chapter 2. The first
tool needed in doing so is a deformed product of functions, allowing us to work
on the ordinary space-time coordinates and still reproducing the noncommu-
tativity of space-time. We will show that models built only by means of this
product exhibit a series of problems which can be cured by the introduction of
the Seiberg-Witten maps. These can be obtained as power series in the non-
commutative parameter θ as solution to differential equations. These so called
gauge equivalence equations ensure that ordinary gauge transformations induce
noncommutative gauge transformations. We will present the solution to O(θ).
Some of the important problems of noncommutative quantum field theories are
reviewed with emphasis on the renormalizability of such theories, and in the
end, we give an overview on the current bounds on the noncommutative energy
scale ΛNC.
In chapter 3 we introduce one extension of the SM on noncommutative space-
time (NCSM) as an effective theory, that means as expansion in powers of
θ. We are concerned in the matter and the kinetic sector of the NCSM up
to O(θ). We will derive Feynman rules and calculate the cross section for
qq̄ → Zγ, showing by means of this process the most important consequences
of the noncommutativity on observables. These effects are then used in order
to derive sensitivity bounds on the noncommutative scales from Monte Carlo
simulations of pp → e+e−γ at the LHC and e+e− → Zγ at the ILC. We will
show the complementarity of these two collider experiments. We also calculate
the constraints coming from past and present collider experiments, like LEP
and Tevatron. During the phenomenological analysis we were confronted with
the limited range of validity of our model due to the expansion up to O(θ).
Thus, the need for going to higher orders in θ arises.
This will be the subject of chapter 4 where we solve the consistency and gauge
equivalence equations up to O(θ2) and give the full solution, i.e. the Seiberg-
Witten maps, up to this order. The Seiberg-Witten maps are not unique since
homogeneous solutions to the mentioned differential equations can always be
added. We will disprove the common belief that these ambiguities all correspond
to field redefinitions and thus should cancel in scattering matrix elements. For
this purpose, the neutral current sector of the NCSM at O(θ2) is studied. We
thus show, that the NCSM at O(θ2) exhibits more parameters than expected.
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We will end with a phenomenological outlook on the NCSM.
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Chapter 2

Noncommutative Quantum
Field Theory

This chapter is meant to provide the theoretical basis for the model we will study
in the remainder of this work. We will define noncommutative space-time and
see how QFT can be realized on such a deformed space-time. We will review
some problems of these theories and for some we will present a solution which
finally leads to a concrete realization of the SM on noncommutative space-time,
which is the subject of this work.
This chapter is not intended to give a complete overview of QFT on noncom-
mutative space-time. Nevertheless, some aspects are discussed which are not
directly connected to the main topic of this work, like UV/IR-Mixing and the
renormalizability of NCQFTs, which nevertheless constitute essential facets of
the theory and should not be left unmentioned.

2.1 Noncommutative Space-Time

Noncommutative space-time is a deformation of space-time that can be realized
by representing ordinary space-time coordinates xµ by Hermitian operators x̂µ

that do not commute:
[x̂µ, x̂ν ] = iθµν . (2.1)

In this work, we assume for simplicity that

[θµν , x̂ρ] = 0 . (2.2)

A priori θ has an arbitrary complicated dependency on x̂. Nevertheless, we can
assume a constant θ. In the literature two other cases have also been studied,
where θ depends linearly and quadratically on x̂. Thus, noncommutativity with
a Lie algebra structure

[x̂µ, x̂ν ] = iλµνρ x̂ρ (2.3)

and noncommutative space-time with quantum group structure

[x̂µ, x̂ν ] =
(

1
q
R̂µνκρ − δµρ δ

ν
κ

)
x̂κx̂ρ (2.4)
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can be defined. We assume that the canonical noncommutativity (2.1) is a
reasonable approximation and we will adopt it throughout this work. Thus, we
will introduce the following parametrization

[x̂µ, x̂ν ] = iθµν = i
1

Λ2
NC

Cµν = i
1

Λ2
NC


0 E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 , (2.5)

with the constant symmetric 4×4 matrix Cµν . In analogy to the electromagnetic
field strength tensor we have denoted the time-like components of Cµν by ~E
and the space-like components by ~B. As we will see, ~E and ~B will play different
rôles, theoretically as well as phenomenologically.
Building quantum field theories on the noncommutative space-time (2.1) start-
ing from the noncommuting operators x̂µ is a bold venture. The construction
of quantum field theories on noncommutative space-time can be done more
straightforwardly, if we take into account that experiments do not measure
space-time coordinates themselves, but particles and fields, and that in the cor-
responding mathematical framework providing the calculation of observables
we only encounter functions of the space-time coordinates and not the coordi-
nates themselves. Therefore, we may seek for a way to express the commutator
(2.1) of the noncommuting objects x̂µ by means of ordinary coordinates xµ

and a deformed product. Thus, we are looking for a homomorphism between
the associative algebra (Â, ·) generated by x̂µ which defines the noncommuta-
tive space-time and the algebra (A, ?) of functions of the ordinary space-time
coordinates and a deformed product ?, just like noncommutative geometry is
constructed in algebraic geometry.

2.2 Moyal-Weyl ?-Product

The framework of Weyl’s quantization procedure [10] provides a formalism for
associating with the algebra of noncommuting coordinates (Â, ·) an algebra
of functions of commuting variables with deformed product (A, ?). We define
a map W : A → Â by which an element from Â is assigned to a function
f(x0, . . . , xn−1) ≡ f(x) from A:

W (f) = f̂ =
1

(2π)
n
2

∫
dnk eikν x̂

ν
f̃(k), (2.6)

with f̃(k) the Fourier transform of f(x):

f̃(k) =
1

(2π)
n
2

∫
dnx e−ikνxνf(x). (2.7)

The multiplication of two operators W (f) and W (g) obtained from (2.6) yields
another operator W (f ? g):

W (f) ·W (g) = f̂ · ĝ = W (f ? g) , (2.8)
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with f ? g ∈ (A, ?), a classical function which is well defined, as we will now
show. Inserting (2.6) in (2.8) we obtain:

W (f ? g) = W (f)W (g) =
1

(2π)n

∫
dnk dnp eikµx̂µeipν x̂ν f̃(k)g̃(p). (2.9)

In the case of canonical noncommutativity (2.1), the product of the two expo-
nentials in the above formula will give an exponential of a linear combination
of the x̂µ after applying the Baker-Campbell-Hausdorff formula

e bAe bB = e
bA+ bB+ 1

2
[ bA, bB]+ 1

12([ bA,[ bA, bB]]+[[ bA, bB], bB])+... (2.10)

and considering the commutator relation (2.2), which thus makes all terms
including more than one commutator in (2.10) vanish:

eikµx̂µeipν x̂
ν

= ei(kν+pν)x̂ν− i
2
kµpνθµν . (2.11)

We obtain f ? g by comparing (2.9) with (2.6) and replacing the operator x̂µ

by the coordinate xµ:

(f ? g)(x) =
1

(2π)n

∫
dnk dnp ei(kν+pν)xν− i

2
kµθµνpν f̃(k)g̃(p). (2.12)

Thus, the Moyal-Weyl ? product [11] is obtained:

(f ? g)(x) = exp
(

i
2
θµν

∂

∂xµ
∂

∂yν

)
f(x)g(y)

∣∣∣∣
y→x

. (2.13)

Using this prescription for the ?-product, we now calculate the ?-commutator
of the ordinary coordinate functions [xµ ?, xν ] and obtain, remembering the
antisymmetry of θµν :

[xµ ?, xν ] = xµ ? xν − xν ? xµ = xµxν +
i
2
θµν − xνxµ − i

2
θνµ = iθµν . (2.14)

This reproduces exactly the commutator (2.1):

[xµ ?, xν ] = [x̂µ, x̂ν ] = iθµν , (2.15)

and shows how the noncommutativity encoded in the operators x̂µ is shifted
into the ?-product of functions on ordinary space-time. Thus, we are now able
to start the construction of QFT on noncommutative space-time still dealing
with ordinary space-time coordinates or more precisely, with functions on the
ordinary space-time, but with a deformed product instead of the ordinary one.
Before going on in doing so, we need to give some important properties of the
?-product. Under the integral the ?-product of two functions is equivalent to
the ordinary product∫

d4x (f ? g)(x) =
∫

d4x (g ? f)(x) =
∫

d4x f(x)g(x), (2.16)
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but this is not the case for the ?-product of three or more functions, where only
one ?-product can be replaced by the usual ·-product:∫

d4x (f ? g ? h)(x) =
∫

d4x ((f ? g) · h)(x) =

=
∫

d4x (f · (g ? h))(x) 6=
∫

d4x f(x)g(x)h(x) . (2.17)

Furthermore, we have invariance under cyclical permutation of the functions
under the integral:∫

d4x (f ? g ? h)(x) =
∫

dx ((f ? g) · h)(x) =

=
∫

d4x (h · (f ? g))(x) =
∫

d4x (h ? f ? g)(x) . (2.18)

2.3 U(N)-Theories on Noncommutative Space-Time

Equipped with the Moyal-Weyl ?-product, we are now able to make a first step
towards the construction of QFT on noncommutative space-time, starting with
QED.

2.3.1 NCQED

As suggested by equation (2.15), we will replace in the action all ordinary
products between the fields with the Moyal-Weyl ?-product defined in (2.13):

SNCQED =
∫

d4x

(
ψ̄ ? (i /D) ? ψ −mψ̄ ? ψ − 1

4e2
Fµν ? F

µν

)
(2.19)

with the covariant derivative

Dµ = ∂µ − iAµ (2.20)

and the field-strength tensor

Fµν = i[Dµ
?, Dν ] = ∂µAν − ∂νAµ − i[Aµ ?, Aν ] . (2.21)

We have absorbed the coupling constant e into the definition of the gauge field
for reasons of consistency with later notations. The NCQED-Lagrangian in
(2.19) is invariant under the noncommutative gauge transformations:

ψ → ψ′ = eiλ
? ψ , (2.22a)

ψ̄ → ψ̄′ = ψ̄e−iλ
? , (2.22b)

Aµ → A′µ = eiλ
? (Aµ − i∂µλ)e−iλ

? , (2.22c)

where the ? in the exponentials indicates a formal power series where in each
term the ordinary product is replaced by the ?-product.
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Due to the trace property (2.16), bilinear terms with the ?-product resemble
under the integral the ones with the ordinary product, such that propaga-
tors and mass terms remain the same in NCQED as in ordinary QED. The
novelty brought in by the ?-product manifests itself in the interaction terms
by means of modified SM vertices on the one hand and new, SM forbidden
ones, on the other. Translating the ?-product (2.13) into momentum space, the
term ψ̄ /A ? ψ in (2.19) acquires a momentum dependent phase factor eipθk, with
pθk ≡ pµθ

µνkν . From the definition of Fµν one of the striking features brought
in by noncommutativity becomes clear: the nonvanishing commutator [Aµ ?, Aν ]
gives rise to a SM-forbidden triple photon interaction. Thus, any abelian theory
on ordinary space-time gets a nonabelian character when formulated on non-
commutative space-time, having - as in QCD - the coupling constant fixed by
gauge invariance. This causes one of the problems which makes such “naive”
theories on noncommutative space-time fail as extensions of the SM.

2.3.2 Problems

Theories equipped only with the ?-product suffer from some major problems.
We will review two of them since their solution motivates the model which is
the subject of this work. As it was shown in [12, 13], NCQED as presented
above suffers from the quantization of the charge to {0,±1}. This is because
the matter fields have only three possibilities for the representation in which
they can live. These are the fundamental representation with the corresponding
charge Q = 1:

ψ → ψ′ = U ? ψ , (2.23)
Dµψ = ∂µψ − iAµ ? ψ , (2.24)

the antifundamental representation with Q = −1:

ψ → ψ′ = ψ ? U−1 , (2.25)
Dµψ = ∂µψ + iψ ? Aµ , (2.26)

and the adjoint representation with Q = 0:

χ → χ′ = U ? χ ? U−1 , (2.27)
Dµχ = ∂µχ− i[Aµ ?, χ] . (2.28)

Only these transformations are compatible with the transformation of the gauge
field

Aµ → A′µ = U ? A ? U−1 + iU ? ∂µU
−1 , (2.29)

which leaves the kinetic term

Lgauge = − 1
4g2

TrFµν ? Fµν (2.30)

invariant. The photon can not couple to matter fields carrying charges other
than {0,±1} since the corresponding minimal coupling

Dµψ
(n) = ∂µψ

(n) − iq(n)Aµ ? ψ
(n) (2.31)
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does not transform covariantly under ψ(n) → U (n) ? ψ(n) and (2.29), with
U (n) = eiq(n)λ. The gauge transformation of the photon field would have to
depend on the charge n, which would lead to a multitude of photon fields.
The charge quantization problem can be viewed in a more intuitive way [7].
Consider the pair annihilation of fermions. The Ward identity (and thereby
gauge invariance) demands the cancellation of the on shell amplitudes when one
of the photon polarization vectors is replaced by the corresponding momentum.
The situation is illustrated below:

g2 ·
kµ

+ g2 ·
kµ

+ g gγγγ ·
kµ

!= 0.

The cancellation can only take place if the three photon coupling gγγγ in the
third diagram equals the fermion-photon coupling g. The situation is sim-
ilar to a non-abelian gauge theory, where gauge invariance fixes the three
and four gauge boson couplings. Yet, this becomes a problem for the non-
commutative version of an abelian gauge theory: fixing gγγγ to 1 · e as in
the case of e+e− annihilation is not compatible with the weak hypercharges
Y (Le, eR, νe,R, Lu,d, uR, dR) = (−1,−2, 0, 1/3, 4/3,−2/3) leading to the frac-
tional charge of quarks.
The next major drawback of the “naive” approach for constructing gauge the-
ories on noncommutative space-time is that is does not allow SU(N) gauge
theories on noncommutative space-time. The reason is obvious, when looking
at the ?-commutator between two gauge fields:

[AaµT
a ?, AbνT

b] =
1
2
{Aaµ ?, Abν}[T a, T b] +

1
2
[Aaµ ?, Abν ]{T a, T b} . (2.32)

The first term is proportional to the ordinary commutator of generators and
remains thus in the Lie algebra. This is not true for the second term which
contains an anti-commutator of generators. Its coefficient, zero in the commu-
tative case, is nonzero due to the ?-product. Thus, the commutation relation of
gauge fields (and analogously gauge parameters) closes only in the fundamental
representation of U(N) and it is not possible to describe SU(N) on noncom-
mutative space-time, and therefore the construction of the SM with the gauge
group U(1)Y × SU(2)L × SU(3)S is prohibited.
One way to solve the charge quantization problem was proposed in [14, 15]. A
U(1)×U(2)×U(3) gauge symmetry on noncommutative space-time is broken to
the symmetry of the SM by introducing two new scalars, the so called Higgsac’s.
The fractional charges of the quarks are explained automatically in this model.
In the next section we will present another solution to this problem, which at
the same time will cure the second problem.
The model proposed in [14, 15] solves also the problem related to the difficulty
of constructing noncommutative SU(N) gauge theories. They circumvent it
in the sense that the gauge group they start from has a U(1) × U(2) × U(3)
gauge symmetry. However, we will present another solution to these problems,
which allows the U(1)Y × SU(2)L × SU(3)S gauge group on noncommutative
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space-time and solves the charge quantization problem, without changing the
SM particle content.

2.4 Seiberg-Witten Maps and SU(N)

The way out of the trouble with the charge quantization and with the commu-
tator (2.32) not closing in the Lie algebra is to go to the corresponding universal
enveloping algebra, an associative algebra that can always be built and that is
spanned by products of generators. We take instead of the ordinary, Lie alge-
bra valued gauge fields and parameters A and λ corresponding objects from the
enveloping algebra Â and λ̂ and expand them

λ̂ = λaT
a + λ1

ab : T aT b : +λ2
abc : T aT bT c : . . . , (2.33)

Â = AaT
a +A1

ab : T aT b : +A2
abc : T aT bT c : . . . ,

in a basis of symmetrised products

: T a : = T a , (2.34)

: T aT b : =
1
2

{
T a, T b

}
=

1
2

(
T aT b + T bT a

)
, . . .

Of course, this introduces infinitely many degrees of freedom. But, in the
end, this will not be really the case, because, as we will immediately show,
the expansion coefficients can be made to depend on the ordinary gauge fields
and parameters. The map between the ordinary objects and the hatted ones is
provided in the same work of Seiberg and Witten [5], that proved the equivalence
of commutative and noncommutative gauge theories as a description of the low
energy limit for certain string theories and led to the sudden revival of the
interest in NCQFT after all.
In [5], the authors show that the dynamics of bosonic open string endpoints on
a D-brane in the presence of a magnetic field can be described by a noncommu-
tative Yang Mills theory. They find that the corresponding effective action can
be described by an ordinary Yang Mills theory as well as by a noncommutative
Yang Mills theory1. Thus, they must be related by a change of variables:(

A
λ

)
→
(
Â(A)
λ̂(λ,A)

)
. (2.35)

Note that we must allow the gauge parameter λ̂ to depend on the gauge field
A, because this would otherwise imply that an ordinary abelian gauge group is
isomorphic to its noncommutative counterpart, which is not abelian any more.
Yet, this is not possible, since an abelian and a nonabelian group can never be
isomorphic to each other. This means, that if two gauge fields Â(A) and Â′(A)
belonging to the same gauge orbit and connected by a noncommutative gauge
transformation λ̂, then the corresponding mapped gauge fields, A and A′, should

1They differ by the choice of the regularization: Pauli-Villars regularization for the com-
mutative and point-splitting regularization for the noncommutative theory.
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be connected by an ordinary gauge transformation λ. The mapping between
λ̂ and λ also depends on A, otherwise the commutative and noncommutative
gauge groups would be equivalent, which, as just mentioned, cannot be.
The task is now to find, including also matter fields,

Â = Â(A, θ) , (2.36a)
λ̂ = λ̂(λ,A, θ) , (2.36b)
ψ̂ = ψ̂(ψ,A, θ) , (2.36c)

such, that the so-called gauge equivalence conditions hold:

Â(A, θ) + δ̂λ̂Â(A, θ) = Â(A+ δλA, θ) , (2.37a)

ψ̂(ψ,A, θ) + δ̂λ̂ψ̂(ψ,A, θ) = ψ̂(ψ + δλψ,A+ δλA, θ) , (2.37b)

with the infinitesimal commutative gauge transformations

δλAµ = ∂µλ− i [Aµ, λ] , (2.38a)
δλψ = iλψ , (2.38b)

and the infinitesimal noncommutative gauge transformations

δ̂λ̂Âµ = ∂µλ̂(λ,A, θ)− i
[
Âµ(A, θ) ?, λ̂(λ,A, θ)

]
, (2.39a)

δ̂λ̂ψ̂(ψ,A, θ) = iλ̂(λ,A, θ) ? ψ̂(ψ,A, θ) . (2.39b)

We may also require that the commutator of two infinitesimal gauge transfor-
mations δ̂λψ̂ closes to another gauge transformation just as in the commutative
case: (

δ̂λ1 δ̂λ2 − δ̂λ2 δ̂λ1

)
ψ̂ = δ̂i[λ1,λ2]ψ̂ , (2.40)

where we have omitted the hat over the gauge parameter in the subscript of λ
and we will continue to do so (δ̂λ̂ ≡ δ̂λ), since also the noncommutative gauge
transformation actually depends on the commutative one trough the mapping
(2.36b). Equation (2.40) can be expanded to

δλ1 λ̂(λ2, A, θ)− δλ2 λ̂(λ1, A, θ)− i
[
λ̂(λ1, A, θ) ?, λ̂(λ2, A, θ)

]
= λ̂(λ3, A, θ) ,

(2.41)
where we have factorized the field ψ̂ and kept in mind that λ̂ also depends on A
and thus δλ′ λ̂(λ,A, θ) 6= 0. With λ3 ≡ −i[λ1, λ2] we abbreviate the commutative
gauge transformation resulting from the commutative consistency equation

(δλ1δλ2 − δλ2δλ1)ψ = [λ1, λ2]ψ ≡ δ−i[λ1,λ2] ≡ δλ3ψ . (2.42)

After first solving the consistency equation (2.40), the solution for λ̂ can be
plugged into (2.37), which can be then solved for Â and ψ̂.
The solution of the gauge equivalence and the consistency equation can be found
order by order in θ. For the Moyal-Weyl ?-product we take its Taylor expansion
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and expand the gauge and matter fields and the gauge parameter in powers of
θ:

λ̂(λ,A, θ) = λ+
∞∑
n=1

λn(λ,A, θ) , (2.43a)

Âµ(A, θ) = Aµ +
∞∑
n=1

Anµ(A, θ) , (2.43b)

ψ̂(ψ,A, θ) = ψ +
∞∑
n=1

ψn(ψ,A, θ) . (2.43c)

Note that the expansion in (2.43) is not to be understood as the expansion
in the basis of the enveloping algebra (2.33). We obtain for the consistency
equation at first order in θ an inhomogeneous linear equation:

δλ1λ
1(λ2, A, θ)− δλ2λ

1(λ1, A, θ)− i
[
λ1(λ1, A, θ), λ2

]
− i
[
λ1, λ

1(λ2, A, θ)
]

− λ1(λ3, A, θ) = −1
2
θµν
{
∂µλ1, ∂νλ2

}
, (2.44)

where all terms involving the unknown λ1 have been brought on one side and
the inhomogeneity on the other. For solving this equation, we make an ansatz
containing all possible terms involving one gauge parameter, gauge fields and
partial derivatives. We only have to account for the hermiticity of the non-
commutative gauge parameter. The special solution for the gauge parameter
at O(θ) obtained from (2.44) is thus:

λ1(λ,A, θ) =
1
4
θµν
{
∂µλ,Aν

}
. (2.45)

The gauge equivalence equations (2.37) can be written as follows:

δ̂λÂµ(A, θ) = δλÂµ(A, θ) , (2.46a)

δ̂λψ̂(ψ,A, θ) = δλψ̂(ψ,A, θ) , (2.46b)

where the commutative gauge transformation δλ acts on the arguments of
Âξ(A, θ) via the chain rule. Expanded in powers of θ, equations (2.46) read
in first order:

δλA
1
ξ − i[λ,A1

ξ ] = ∂ξλ
1(λ)− i[Aξ, λ1(λ)] +

1
2
θµν
{
∂µAξ, ∂νλ

}
, (2.47a)

δλψ
1 − iλψ1 = iλ1ψ − 1

2
θµν∂µλ∂νψ . (2.47b)

Inserting the solution (2.45) for λ1 and making the corresponding ansatz for A1
ξ

and ψ1, we obtain the special solutions in O(θ):

A1
ξ(A, θ) =

1
4
θµν
{
Fµξ + ∂µAξ, Aν

}
, (2.48a)

ψ1(ψ, θ) =
1
2
θµν

(
Aµ∂νψ +

i
2
AµAνψ

)
. (2.48b)
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These solutions together with the solution for the gauge parameter (2.45) repre-
sent the Seiberg-Witten maps up to first order in the noncommutative parame-
ter θ as found in [5] (for the gauge field and parameter) and in [16] (also for the
matter field). Nevertheless, these are not the full solutions of the corresponding
equations, they have to be completed by the solutions of the homogeneous part
of equations (2.44) and (2.47).
Again, accepting only Hermitian expressions for the gauge parameter, we find
one solution to the homogeneous consistency equation

δλ1λ
1(λ2, A, θ)− δλ2λ

1(λ1, A, θ)− i
[
λ1(λ1, A, θ), λ2

]
− i
[
λ1, λ

1(λ2, A, θ)
]

− λ1(λ3, A, θ) = 0 , (2.49)

which we parametrize by a real but otherwise arbitrary coefficient c1λ:

λ1
c1λ

(λ,A, θ) = i c1λθ
µν [∂µλ,Aν ] . (2.50)

The freedom of adding the homogeneous solution to the special solution (2.45) is
thus a freedom in the Seiberg-Witten map. Of course, we must consistently plug
the homogeneous solution for the gauge parameter into the gauge equivalence
equations (2.47) and seek for the emerging contributions to the solutions for A1

ξ

and ψ1. We thus obtain:

A1
ξ,c1λ

= ic1λ θ
µν [DξAµ, Aν ] , (2.51a)

ψ1
c1λ

= − c1λ θµνAµAνψ , (2.51b)

with the covariant derivative DξAµ = ∂ξAµ − i[Aξ, Aµ]. The gauge and the
matter field have also their own ambiguities. Independently of the freedom in
the Seiberg-Witten map of λ1 we find the homogeneous solutions to the gauge
equivalence equations (2.47):

A1
ξ,c1A

= −2i c1A θ
µνDσFµν , (2.52a)

ψ1
c1ψ

=
c1ψ
2
θµνFµνψ , (2.52b)

with Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] the ordinary field strength tensor and the
covariant derivative acting on it in the usual way:

DξFµν = ∂ξFµν − i[Aξ, Fµν ] . (2.53)

The detailed discussion of these ambiguities and their physical (and non-physical)
meaning is the subject of chapter 4. For now it suffices to acknowledge that
in first order in θ they correspond to field redefinitions, as it will be proven in
section 4.3. We summarize the full solution for the Seiberg-Witten maps for
the gauge parameter, gauge and matter fields to first order in θ including all
ambiguities:

λ1(λ,A, θ) = θµν
(1

4
{∂µλ,Aν}+ ic1λ [∂µλ,Aν ]

)
, (2.54a)
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A1
ξ(A, θ) = θµν

(1
4
{
Fµξ + ∂µAξ, Aν

}
(2.54b)

+i c1λ [DξAµ, Aν ]− 2i c1ADξFµν

)
,

ψ1(ψ,A, θ) = θµν
(1

2
Aµ∂νψ +

i
4
AµAνψ − c1λAµAνψ (2.54c)

+
c1ψ
2
Fµνψ

)
.

It can now be seen how the problems of the “naive” NCQED model in sec-
tion 2.3.2 are solved by means of the Seiberg-Witten maps. It is clear from
(2.54) that the fields and gauge parameter are enveloping algebra valued, and
a commutator like (2.32) closes only in the enveloping algebra.
Of course, in reproducing a version of the full SM on noncommutative space-
time the Higgs field φ and thus its Seiberg-Witten map φ̂ are also needed. It is
not trivially given by the corresponding Seiberg-Witten map for matter fields.
Yukawa terms which enter the noncommutative Lagrangian resemble the form
¯̂ΨL ? φ̂ ? ψ̂R, with Ψ̂L denoting a left-handed doublet and ψ̂R a right-handed
singlet. Since φ does not commute with the generators of U(1) and SU(3) in
the noncommutative case, the Higgs field must transform from both sides each
with the appropriate gauge group in order to preserve gauge invariance [16]:

δ̂λ,λ′ φ̂(φ,A,A′, θ) = iλ̂(λ,A, θ) ? φ̂− iφ̂ ? λ̂′(λ′, A′, θ) . (2.55)

The solution is given by a hybrid Seiberg-Witten map, reading to O(θ):

φ1(φ,A,A′, θ) =
1
2
θµνAν

(
∂µφ−

i
2
(Aµφ+ φA′µ)

)
(2.56)

−1
2
θµν
(
∂µφ−

i
2
(Aµφ+ φA′µ)

)
A′ν .

In this thesis we are only concerned with the matter and gauge field interactions
in the fermionic massless limit, thus we will not pursue the Higgs field, its
Seiberg-Witten map or finding the ambiguities therein.

2.5 Other Problems

Theories on noncommutative space-time are still plagued with problems for
which satisfactory solutions haven’t been found yet, like unitarity. Neverthe-
less, other problems of great importance, like renormalization and the so called
UV/IR mixing phenomenon innate to QFT’s on noncommutative space-time
seem to have found at least some partial answers. Thus, we will close this
introductory chapter by shortly reviewing these problems and the proposed
solutions as far as available.

2.5.1 UV/IR Mixing and Renormalization

Already a simple theory, like the four dimensional Euclidean scalar field theory
φ4 appears to be nonrenormalizable in the noncommutative case. The interac-
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tion term in the φ4-action equipped with the Moyal-Weyl ?-product

S =
∫

d4x
(1

2
∂µφ ? ∂

µφ+
1
2
m2φ ? φ+

λ

4!
φ ? φ ? φ ? φ

)
(2.57)

enters the theory on noncommutative space-time accompanied by infinitely
many derivatives rendering the theory highly nonlocal. We will see that the
nonlocal behaviour is the cause for UV/IR mixing in the φ4 theory. The Feyn-
man rules derived from the action above will contain momentum dependent
phase factors and, due to the noncommutativity, the interaction is not totally
symmetric under the exchange of the momenta, but only under their cyclic
permutation [17]. This leads to the distinction between so called planar and
non-planar diagrams which does not exist for ordinary φ4 theory. As an exam-
ple, we take a look at the two tadpole diagrams

k

p
and

k

p
.

The quartic φ-interaction following from (2.57) receives a momentum dependent
phase factor:

V (p1, p2, p3, p4) = ei
P4
i<j=1(−1)i+j+1piθpj . (2.58)

The planar amplitude on the left side will equal the commutative one, since the
order of the momenta entering the the vertex is such, that the factors in the
phase of the vertex formula given by (2.58) will add up to zero:

Γ1,planar =
λ

3(2π)4

∫
d4k

k2 +m2
. (2.59)

This is similar to the one loop mass correction of the commutative theory and is
quadratically divergent at high energies. For the non-planar amplitude on the
right hand side, the lines enter the vertex in a different order and a momentum
dependent phase factor remains, yielding

Γ1,non-planar =
λ

6(2π)4

∫
d4k

k2 +m2
eikθp , (2.60)

where we recall the notation kθp ≡ kµθ
µνpν . This factor gives the expectation

that in the high energy limit, k →∞, the integral, which otherwise is quadrat-
ically divergent like the planar one, might be finite due to the damping effect
of the rapid oscillation of the phase factor. The quadratic divergence of the
commutative case is recovered in the limit θ → 0, as expected. Nevertheless,
the damping factor of the phase can be removed by letting p → 0, and then
we reobtain the quadratic divergence, but this time in the p → 0 limit. This
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UV/IR mixing was first noticed in [18], where, after introducing the Schwinger
parameter α

1
k2 +m2

=
∫ ∞

0
dα e−α(k2 +m2) , (2.61)

performing the k-integration and multiplying the integrands by the Pauli-Villars
regulator exp (− 1

Λ2α
) to regulate the α→ 0 divergence one obtains:

Γ1,planar =
λ

48π2

(
Λ2 −m2ln

(
Λ2

m2

)
+O(1)

)
, (2.62)

Γ1,non-planar =
λ

96π2

(
Λ2

eff −m2ln
(

Λ2
eff

m2

)
+O(1)

)
, (2.63)

with
Λ2

eff =
1

1
Λ2 + p ◦ p

and p ◦ p ≡ |pµθµνθνρpρ| . (2.64)

Thus, in the Λ → ∞ limit, the non-planar one loop graph remains finite
(regulated by the noncommutativity). But, in this limit, the effective cut-off
Λ2

eff = 1
p◦p goes to infinity when either θ → 0 or p→ 0. The total 1PI quadratic

effective action up to first order in the coupling λ is then given by [18]:

S1PI =
∫

d4p
1
2

(
p2 +M2 +

λ

96π2
Λ2

eff−
λ

96π2
M2ln

(
Λ2

eff

M2

))
φ(p)φ(−p) , (2.65)

where M2 = m2 = λ
48π2 Λ2 − λ

48π2m
2ln
(

Λ2

m2

)
is the renormalized mass coming

from the planar graph.
Although the original UV divergence of the non-planar one loop diagrams has
been regularized by the noncommutativity for generic external momenta, they
diverge for exceptional external momenta, i.e. p → 0, where the regulating
phase becomes inefficient. In the Λ → ∞ limit, the theory has a new IR
divergence, arising from the UV region of the momentum integration. This is
called UV/IR mixing. Inserting non-planar graphs as a subgraph into bigger
graphs, the external momenta becomes internal and the exceptional momentum
is realized by loop integration.
The break-through w.r.t. the UV/IR mixing problem arrived with the work
[19], where the authors prove the renormalizability of the real four dimensional
Euclidean scalar theory defined on the Moyal deformed space R4

θ to all orders
in perturbation theory. By adding a harmonic term to the Lagrangian the
propagator of the free theory is modified giving rise to an infrared cut-off which
allows to decouple the different scales of the theory. A detailed review of the
UV/IR mixing problem and the Grosse-Wulkenhaar solution to it for the scalar
field theory can be found in in [20].
In [21], an external gauge potential is minimally coupled to the scalar renormal-
izable φ4 theory. Thus, the Yang Mills action receives an additional term, which
can be identified as the gauge theory harmonic counter part of the oscillator
term, giving hope for renormalizability of such gauge models. Encouraged by
the results of [19], a promising candidate for renormalizable noncommutative
U(1) gauge theory was presented in [22, 23]. Here, the oscillator terms enters
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the theory as a gauge fixing term. Nevertheless, the transition from Euclidean
to Minkowski space-time remains problematic [24].

While the UV/IR mixing is the impediment to the renormalizability of θ-
unexpanded theories, θ-expanded noncommutative gauge theories, like the model
we consider, seem to be renormalizable order by order in perturbation theory,
albeit we must specify in which sense we understand renormalizability.

In [25] the renormalizability of the photon self-energy is proven to all orders
in perturbation theory in the Seiberg-Witten map approach. The authors in
[26, 27, 28] address the one loop renormalizability of noncommutative SU(N)
theories in the θ expanded approach using Seiberg-Witten maps. They demon-
strate that only for a special choice of a free parameter (a = 1, 3) originat-
ing from a higher order noncommutative gauge interaction, noncommutative
SU(N) theories are renormalizable [26]. We will refer to their work in section
3.1.2, where we explicitly point out where the parameter a comes into play.

Thus, it seems that pure Yang Mills theories on noncommutative space-time
pose no problems w.r.t. their renormalizability. However, this behaviour is
spoiled when adding fermions. Multiplicatively renormalization, meaning that
the renormalized theory is achieved by a redefinition of the appropriate quan-
tities, has not been proven yet for gauge theories including Dirac fermions.

In [29, 30] noncommutative QED with fermions is shown to be (multiplica-
tively) nonrenormalizable in the θ-expanded approach, due to divergencies in
the fermion four-point function. The counter-term which has to be added by
hand does not correspond to a redefinition of the Seiberg-Witten maps.

For the purpose of this work, we do not meet this obstruction. We are on the
safe side by considering tree level processes and making no use of four-fermion
operators. Anyway, even if we had such operators, within an effective theory,
at each order of the expansion parameter only a finite number of counter term
would have to be added.

2.5.2 Unitarity

Unitarity of noncommutative theories becomes a nontrivial problem when con-
sidering time-like (θ0i 6= 0) noncommutativity. It has been shown that such
theories are either gauge invariant but not unitary [31] or they are unitary but
not gauge invariant [32, 33].

NCQFT with Seiberg-Witten maps are gauge invariant by construction. In
order to check the unitarity of the theory, it must exist in all orders of θ. In [34],
where the Seiberg-Witten maps have been computed to all orders in θ (up to a
finite order in the gauge field), tree level unitarity for e+e− annihilation could
be proven to hold, even if a smearing of momenta is found to be indispensable.

In this thesis we consider an effective theory using the θ expansion of the ?-
product and of the Seiberg-Witten maps up to O(θ2), where unitarity is not an
issue, as long as |sθ| < 1.
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2.5.3 Lorentz Violation

In general, when speaking of Lorentz invariance, one must specify whether ob-
server or particle Lorentz transformations are meant. The first ones refer to
coordinate changes relating physical observations made in two inertial frames
characterized by different velocities and orientations. The latter ones designate
transformations relating physical properties of two particles with different mo-
menta within one specific inertial frame. In the presence of a background field,
these two approaches are not equivalent any more, since the background field
transforms as a tensor under observer Lorentz transformations and as a set of
scalars under particle Lorentz transformations.

In theories on noncommutative space-time defined by the relation (2.1), particle
Lorentz invariance is obviously lost, while θµν transforms like a Lorentz tensor.
The Lorentz violation originates from the constants θµν in (2.1). θ0i and εikjθjk
are fixed three-vectors that define preferred directions in a given Lorentz frame.
Thus, phenomena such as the diurnal variation of collider cross sections have to
be taken into account, or the position of the experiment on earth. Then, when
performing the same experiment in two different laboratories, the components of
θµν will differ depending of the local coordinate frame. Thus, the coordinates
of different experiments have to be translated to a common, slowly varying
astronomical frame, e.g. the cosmical microwave background [35].

Of course, so far it seems that Lorentz invariance is an unbroken symmetry of
nature. No experimental evidence for Lorentz violation is available, giving thus
very stringent bounds on noncommutative theories.

One point of view of dealing with the Lorentz violation inherent to the non-
commutativity of space-time is to simply ignore it, by considering that noncom-
mutativity becomes relevant only for very short distances, whereas the existing
precise tests of Lorentz invariance probe distances from the atomic scale to as-
tronomical scales. Thus, effective theories as expansion in θ are examined and
one can settle for reobtaining the Lorentz-symmetry conserving commutative
case in the limit θ → 0. From another point of view, one can try to build
Lorentz conserving noncommutative field theories ab initio. Thus, in [36] a
model is proposed, where a Lorentz invariant discrete space-time is achieved by
promoting θ to an operator living in the same algebra as the coordinates. The
appropriate algebra is interpreted as the contraction of the Lorentz invariant
algebra due to Snyder [1]. Another approach is to exploit quantum-group tech-
niques to reinterpret noncommutative field theory as a twist deformed quantum
field theory now invariant under the twist deformed Poincaré algebra [37].

We will adopt the first attitude being satisfied by considering an almost Lorentz
invariant noncommutative theory which is restored in the limit of a vanishing θ.

Even though Lorentz violation is an intrinsic feature of canonical noncommu-
tativity (2.1), the CPT symmetry seems to be accidentally realized [38, 39].
In contrast, all other combinations of the discrete symmetries C,P, T can be
broken in general noncommutative theories.
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2.6 Current Bounds on the Noncommutative Scale

One of the goals of this work is to derive bounds on the noncommutative scale
ΛNC from future colliders. Therefore, we will dedicate this section to the bounds
which can presently be found in the literature inlcuding estimates for some
planned experiments.
There are no theoretical predictions on the magnitude of ΛNC. A priori, the
natural scale where noncommutative effects arise in quantum gravity is given
by the Planck scale mp = 1019 GeV. If this were so, we can probably forget
about direct observations of noncommutativity for ever. Nevertheless, we can
imagine that this scale might be broken down to the TeV range (e.g. in scenarios
with large extra dimensions) and thus be reachable by the next generation of
colliders.
A quite comprehensive overview is given in [40], from which we will draw in the
remainder of this section with emphasis on bounds coming from high energy
scattering experiments.
Phenomenological studies subsequently giving bounds on the noncommutative
scale have been performed mainly within the framework of the simplest noncom-
mutative extension of the SM, the “naive” NCQED, and considering electrons
to avoid the charge quantization problem discussed in section 2.3.2. Thus,
the OPAL collaboration [41] finds ΛNC > 140 GeV. In [35] various NCQED
processes (Møller and Bhabha scattering, pair annihilation and γγ → γγ scat-
tering) are studied, revealing a complementary behaviour w.r.t. the noncom-
mutative parameter space. The estimated bounds for ΛNC at 95% confidence
level from a future linear collider with

√
s = 500 GeV and L = 500 fb−1 range

from ΛNC & 500 GeV − 1.7 TeV.
In [42] the C-violating decay of the neutral pion into three photons is studied.
In the SM the decay occurs via weak interactions and is too small to be exper-
imentally accessible, giving thus room for studying C-violating effects beyond
weak interactions, like QED. In NCQED, π0 → γγγ is possible and assuming
a noncommutative scale of order 1TeV, its branching ratio is much larger then
its SM counterpart. Nevertheless, it still is far below the current experimental
upper bound.
A completely new interaction channel is studied in [43]. The decay of an off-shell
photon into a neutrino-antineutrino pair in stellar clusters is calculated in the
Seiberg-Witten map approach of the NCSM. While in the SM the effective γνν̄-
vertex is induced by a penguin diagram, in the NCSM this process is allowed
at tree level. From demanding that the ratio of the noncommutative tree-level
and the SM one-loop γ → νν̄ decay rates ΓNC(γ → νν̄)/ΓSM(γ → νν̄) is less
than one in order to satisfy the requirement that any new energy loss mechanism
should not excessively exceed the standard neutrino losses, the rather low bound
ΛNC > 80 GeV is obtained.
Within the framework of the renormalizable model [26] already mentioned in
section 2.5.1, the authors derive bounds from the Zγγ decay, otherwise for-
bidden in the SM at tree level [44]. They find ΛNC > 110 GeV using existing
experimental values for the partial decay width obtained from e+e− → γγ anni-
hilation (see references in [44]). From LHC experimental expectations a bound
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of ΛNC & 1 TeV is found for ~E2 + ~B2 ' 1 and a value KZγγ = 0.5 for the
triple gauge boson coupling constant (see section 3.1.2 for details regarding the
model).
Electroweak precision measurements, like those of the anomalous muon mag-
netic moment aµ, can also constrain ΛNC. The noncommutative parameter
enters aµ by an additional diagram contributing to the fermion-photon vertex
at one-loop level containing the SM forbidden three photon vertex [45]. Never-
theless, this leads only to a contribution ∼ ~B to the magnetic moment of the
muon, which is independent of the muon spin. Experiments measuring aµ from
the precession of the muon spin in an external magnetic field are thus not sen-
sitive for this contribution. On the other hand, noncommutative effects enter
also the muon decay, which is used in order to measure the muon spin. In the
muon decay µ → νµe

−ν̄e the fermion-W -boson vertices receive noncommuta-
tive corrections at one loop level, which alter the electron angular distribution
[46]. Noncommutativity of order ΛNC ' 1 TeV may account for the discrepancy
between the experimental value and the theoretical prediction aexpµ − aSMµ of
the anomalous magnetic moment.
In [47] it is shown how noncommutativity of the order of ΛNC ' 2 TeV can
account for the CP violating observable εK in the K0-meson system, while [48]
discusses inclusive b→ sγ decay.
Recently, W+W− production at the LHC was studied within the same frame-
work of the θ-expanded NCSM as it is used in this work [8]. It was shown
that if noncommutative effects occur at a scale of ΛNC ' 700 GeV they can be
measured at the LHC by means of pp→W+W− with subsequent semileptonic
decay.
The noncommutative parameter ΛNC also receives constraints from measure-
ments coming from entirely different experimental corners. We mention that
the bounds from high precision atomic experiments vary from ΛNC & 200 TeV
(Lamb shift in the hydrogen atom) [49] to ΛNC & 1012 − 1014 GeV (clock com-
parison experiments)[50]. Astrophysical and cosmological bounds were derived
to range from ΛNC & 1 TeV− 108 TeV. For further details regarding bounds on
ΛNC we refer to the overview in [40] and references therein.
We have highlighted only some of the bounds on ΛNC derived in the literature.
Concluding, we note that the bounds are very different in magnitude. However,
since the models considered by the various authors are different and since also
the experimental setups probe different energy and length scales, this is not
surprising.
We remark that apart from the already published parts of this work [7] and [8]
no bounds coming from hadronic scattering experiments are currently present
in the literature. This is the sector where the present work comes in: the first
part is dedicated to deriving bounds on ΛNC from proton-proton scattering into
a Z and a photon at the LHC.
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Chapter 3

The NCSM at O(θ)

This chapter presents a realization of the U(1)Y × SU(2)L × SU(3)S-SM on
noncommutative space-time as an effective theory (as an expansion in powers
of θ), as it was proposed in [16]. The theoretical part discusses the model up to
first order in θ, providing the tools for phenomenological studies. In the second
part of this chapter we analyze the phenomenological consequences of space-
time noncommutativity of mainly one process, ff̄ → Zγ, up to first order in
θ. Thus, at the LHC we will look for noncommutative signals in pp → `+`−γ
scattering, with qq̄ → Zγ as a subprocess, and at the ILC we will investigate
e+e− → Zγ → `+`−γ.

3.1 The model

The previous chapter showed that the restriction to U(N)-gauge theories on
noncommutative space-time can be circumvented by extending the fields and
gauge parameters to the enveloping algebra. SU(N) gauge theories and there-
fore the U(1)Y ×SU(2)L×SU(3)S-SM can now be realized on noncommutative
space-time. The crucial components are the Moyal-Weyl-? product carrying
information about the underlying noncommutative manifold (reproducing the
noncommutative algebra (2.1) on the commutative four dimensional manifold)
on the one hand, and the Seiberg-Witten maps (2.54), on the other hand, ac-
counting for the noncommutative gauge structure to be induced by ordinary
gauge transformations.
In order to build the noncommutative SM as described above, we also need to
deal with the tensor product of gauge groups for the noncommutative case. The
most general expression for the noncommutative gauge parameter for the tensor
product of two gauge groups G×G′ has to satisfy the corresponding consistency
equation (2.40) for each gauge group as well as new mixed consistency relations
(for a detailed computation see the appendix of [39]). The freedom in the
choice of the Seiberg Witten map can then be used to take the simplest and
most natural approach. Therefore, in order to account for the structure group
U(1)Y × SU(2)L × SU(3)S of the standard model, we take the tensor product
and consider the “master” gauge potential:

Aµ = g′AµY + gBνaT
a
L + gsGνbT

b
S (3.1)
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with Y , T aL, T bS the generators of the groups U(1)Y , SU(2)L and SU(3)S re-
spectively. The corresponding gauge parameter is given by

λ = g′αY + gαLaT
a
L + gsα

S
b T

b
S (3.2)

and the Seiberg-Witten map for the gauge parameter by1:

λ̂ = λ+
1
4
θµν{∂µα,Aν}+O(θ2) . (3.3)

Due to the anticommutator, this is not a naive sum of the noncommutative
gauge parameter corresponding to each factor in U(1)Y × SU(2)L × SU(3)S
and thus the gauge groups mix in higher order in θ.
The parts of the noncommutative action which are relevant to this work are
the fermionic and the kinetic sector:

Sfermion =
∫

d4x
(̂̄ψiL ? i /̂Dψ̂iL + ̂̄ψiu,R ? i /̂Dψ̂iu,R + ̂̄ψid,R ? i /̂Dψ̂id,R

)
(3.4)

Sgauge = − 1
2g2

∫
d4x Tr(F̂µν ? F̂µν) (3.5)

where in the first equation we implicitly sum over the three families i. We note
that in the second equation there is a trace over generators with values in the
enveloping algebra. Thus, the trace is not unique, as it is in the SM, where the
fields are Lie algebra valued. This will lead to inequivalent realizations of the
NCSM, as we will see in the next sections. For now we just remark that we
can have a minimal extension of the SM (minimal NCSM), in the sense that it
stays as close as possible to the SM, and within this framework no interactions
among triple gauge bosons appear in the kinetic sector. On the other hand, by
choosing another representation of the fields, SM forbidden interactions among
neutral gauge bosons can be added. We have anticipated the results of section
3.1.2, in order to give the context for the following brief remark regarding the
other parts of the Lagrangian, the Higgs and the Yukawa sector. A detailed
discussion will only be dedicated to the fermionic and gauge Lagrangian.
Due to the Seiberg-Witten mapping, the Higgs part introduces gauge boson
interactions proportional to their mass, such that even in the minimal NCSM,
where triple neutral gauge boson interaction are absent as in the SM, we still
obtain a mass dependent contribution to the ZZZ-coupling. On the other hand,
the Yukawa part gives rise to mass dependent interactions among gauge bosons
while the SM interactions proportional to masses always include the interaction
with the Higgs field.
When deriving the Feynman rules for the interactions needed in this work, we
will take the massless limit for fermions2, omitting thus the mass dependent
terms in the fermionic interactions. We also will not need the ZZZ-coupling,

1We omit the ambiguity for λ̂ at O(θ), since it occurs neither in the Feynman rules nor in
physical observables.

2The energies at which the processes under consideration take place are so high that it
allows for this approximation. Also, in the processes considered in this work, the top quark
does not appear.
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therefore we will discuss neither the Higgs nor the Yukawa Lagrangian in de-
tail. One more feature specific to the NCSM should be mentioned: QCD and
electroweak interactions are mixed giving rise to couplings like qq̄γg, qqW±g
etc.
The Feynman rules at O(θ) for the neutral current and the kinetic neutral gauge
boson sector have first been derived in [51] as well as in [52], though without
accounting for the ambiguities in the Seiberg-Witten maps. In the meantime
the full Lagrangian and the complete set of Feynman rules for the electroweak
and strong interactions (again, without the ambiguities) has been computed
and is available in [53, 54]. In the next sections we will give the Feynman rules
for the interactions relevant to this work with all ambiguities included.

3.1.1 Matter Sector (Neutral Currents)

The fermionic part of the action can be calculated starting from

Sfermionic =
∫

dx ¯̂
ψ ? i /̂Dψ̂ =

∫
dx

( ¯̂
ψ ? i/∂ψ̂ + ¯̂

ψ ? /̂Aψ̂
)
, (3.6)

where we have already used the property (2.17) to eliminate one of the ?-products.
The chiral structure of the fermionic Lagrangian is not affected by the Seiberg-
Witten maps. Thus, in the above Lagrangian, we consider the fermions as pure
vector currents. The necessary substitutions γµ → gV γµ − gAγµγ5 depending
on the fermion flavor and the vector boson contracted with to γµ can be made
when it is required for the calculation of scattering matrix elements.
Inserting the Seiberg Witten map (2.54) for Aµ and expanding the ?-product
up to first order in θ the fermionic action can be computed to O(θ). This
calculation has already been done in [16] and the resulting Feynman rules have
been constructed in [7, 51] as well as in [52, 53, 54]. Yet, the calculations in
the literature do not include the ambiguities of the Seiberg Witten maps. The
results presented in [7, 51, 52, 53, 54] use only one particular inhomogeneous
solutions to the gauge equivalence and consistency equations (2.47) and (2.44)
while the Feynman Rules presented below use the full solution of (2.44) and
(2.47), including all ambiguities:

εµ(k)

u(p)

ū(p′)

=

−
g

2
[
kθµ/p(1− 4ξ1Ψ) + 2 kθµ/k(ξ1A − ξ1Ψ)

− pθµ/k − (kθp)γµ] ,
(3.7)

εµ(k1)

εν(k2)

u(p)

ū(p′)

=

−
g2

2
[
k2θ

µγν − k1θ
µγν(1− 4ξ1Ψ)− θµν/k1

+ (µ↔ ν, k1 ↔ k2)] ,
(3.8)

with all momenta incoming. The energy scale at which the processes considered
in the next section take place is large in comparison to the u- and d-quark
masses, respectively. Therefore, mass term contributions are not considered
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here. For the complete Feynman rules with mass terms, although without
ambiguities see [53, 54].
Before turning to the gauge sector we consider the amplitude for pair annihi-
lation using the Feynman rules from above and verify the Ward identity. The
Ward identity must hold since it is the quantum field theoretical expression
of local gauge symmetry, which of course must also be preserved in the non-
commutative case. The mathematical expression for the Ward identity is given
by

∂

∂xµ
〈0 TAµ(x)Φ1(x1)Φ2(x2) · · ·Φn(xn) 0〉amputated, on-shell = 0 , (3.9)

with the considered gauge field Aµ and the other matter or gauge fields Φi with
physical polarizations. Its translation into momentum space can be pictured as
follows:

kµ


ενi

εν1


= 0 . (3.10)

We now consider the Ward identity for ff̄ → V V . The diagrams which con-
tribute to this process in the Seiberg-Witten map approach differ from the
ones considered in the “naive” model by a contact diagram induced by the new
ff̄V V interaction. After replacing one polarization vector with the correspond-
ing momentum we find for on-shell particles:

kµ

+

kµ

+

kµ

+

kµ

= −
kµ

.

Unlike the case of “naive” QED, an s-channel diagram is not required by gauge
invariance. Therefore there are no constraints on the three photon couplings. In
fact, as it will be immediately shown, the γγγ coupling and the triple neutral
gauge boson (TGB) couplings are in general not uniquely determined in the
nonminimal NCSM (see section 3.1.2).

3.1.2 Gauge Sector

The noncommutative generalization of the kinetic term is given by:

S = − 1
2g2

∫
d4x Tr(F̂µν ? F̂µν) , (3.11)

where the coupling constant has been explicitly extracted from the field strength
Fµν . The noncommutative field strength is:

F̂µν = ∂µÂν − ∂νÂµ − i[Âµ ?, Âν ] . (3.12)
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Starting from the Seiberg-Witten map for the gauge field (2.54b), the field
strength to O(θ) is given by:

F 1
ρσ =

1
2
θµν{Fρµ, Fσν} −

1
4
θµν{Aµ, (∂ν +Dν)Fρσ} (3.13)

+ c1λθ
µν [AµAν , Fρσ] +

c1A
2
θµν [Fρσ, Fµν ] ,

with
DνFρσ = ∂νFρσ − i[Aν , Fρσ] . (3.14)

Under the trace we can perform cyclical permutations of the fields. Partial
integration, the antisymmetry of θ and the fact that surface terms vanish leads
to

S1 = −θ
µν

g2

∫
d4x

(
Tr(F ρσFρµFσν)−

1
4
Tr(F ρσFρσFµν)

)
. (3.15)

It is clear from (3.13) that the ambiguities cannot contribute to the kinetic
term at O(θ). They enter the Seiberg-Witten map for the field strength only
with commutators of the form [Xµν , Fρσ] and vanish under the trace, since
Tr([A,B]B) = 0.
We will rewrite (3.15). The first term can be written as follows:

θµνTr(F ρσFρµFσν) ≡ θµνF ρσ,aF bρµF
c
σνTr(T aT bT c) =

=
θµν

2
F ρσ,aF bρµF

c
σνTr(T a{T b, T c}) +

θµν

2
F ρσ,aF bρµF

c
σνTr(T a[T b, T c]) . (3.16)

θµν and F ρσ are antisymmetric, therefore θµνF ρσ,aF bρµF
c
σν is symmetric under

b ↔ c. The expression under the trace in the second term is antisymmetric
under b↔ c and thus the last term in (3.16) vanishes. A similar manipulation
can be performed on the other term in (3.15) and we obtain:

S1 = −θ
µν

g2

∫
d4x

(
1
2
Tr(F ρσ{Fρµ, Fσν})−

1
8
Tr(Fµν{F ρσ, Fρσ})

)
. (3.17)

So far no choice for the representation of the generators ρ(T a) was made. In
the kinetic term of the standard model, where all the fields are Lie algebra val-
ued, one always has the trace over two generators Tr(T aT b) which is uniquely
determined (∼ δab) up to a normalization constant, independently of the rep-
resentation ρ(T a). The θ expanded fields are enveloping algebra valued, which
leads to the trace over three generators Tr(T aT bT c) in (3.15). At this point,
the model depends on the choice of the representation according to which the
fields transform. Note that even if products ρ(T a)ρ(T b)ρ(T c) or anticommuta-
tors {ρ(T a), ρ(T b)} are enveloping algebra valued, the generators ρ(T a) are still
matrices from Lie algebra representations and remain thus traceless, a property
which will become important below.
In order to account for the dependence on the representation, we write the
gauge action in a more general form:

Sgauge = −1
2

∫
d4x

∑
ρ

cρTr
(
ρ(F̂µν) ? ρ(F̂µν)

)
, (3.18)
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where cρ are weighting coefficients and the sum is over all unitary irreducible
and nonequivalent representations of the group. Using (3.17) we obtain:

S1 =
1
4
(
∑
ρ

cρD
abc
ρ )θµν

∫
d4x F ρσ,a

(
1
4
F bµνF

c
ρσ − F bρµF

c
σν

)
, (3.19)

with
1
2
Dabc
ρ ≡ Tr

(
ρ(T a){ρ(T b), ρ(T c)}

)
, (3.20)

a completely symmetric tensor in the representation ρ, which is proportional
to the completely symmetric tensor dabc in the adjoint representation: Dabc

ρ =
C(ρ)dabc. For U(1) and SU(2), dabc and therefore Dabc

ρ vanishes, but it is
nonzero for all SU(N) with N ≥ 3.
There are various natural choices for the representation: the matter field rep-
resentations and the adjoint representation. The latter is rather suited for pure
gauge interactions and it represents a minimal extension of the SM on non-
commutative space-time, in the sense that it remains closest to the SM. In the
adjoint representation with the field strength given by

Fµν = g′FY µνY + gF aLµνT
a
L + gSF

b
SµνT

b
S (3.21)

and using dabc = 0 for U(1) and SU(2), the gauge action at O(θ) will contain
only gluon interactions

S1 = θµν
∫

d4x
1
4
Tr(FSρσFSµνFSρσ)− Tr(FSρσFSρµFSσν) . (3.22)

In particular, for this choice of the representation, no triple neutral gauge bo-
son interactions appear. However, the inclusion of matter fields suggests the
presence of other representations of U(1)Y × SU(2)L × SU(3)S , and the gauge
action (3.19) is not uniquely determined. The ambiguity lies in the choice of
the real numbers cρ.
Any irreducible representation of the U(1)Y × SU(2)L × SU(3)S is a product
of irreducible representations of U(1)Y , SU(2)L and SU(3)S . The generators
of the U(1)Y × SU(2)L × SU(3)S are denoted by TA, with A = 1, . . . , 12:

{ρ(TA)} = {ρ1(Y )⊗ 1ρ2 ⊗ 1ρ3 , 1⊗ ρ2(T aL)⊗ 1ρ3 , 1⊗ 1ρ2 ⊗ ρ3(T lS)} , (3.23)

with a = 1, 2, 3 and l = 1, . . . , 8. From (3.18), using ρ ≡ ρ1 ⊗ ρ2 ⊗ ρ3 and

Fµν ≡ FAµνT
A = fµνY + F aLµνT

a
L + F lSµνT

l
S (3.24)

we obtain for the θ independent part of the action:

Sθ→0
gauge = −1

2

∫
d4x

( ∑
ρ1,ρ2,ρ3

cρd(ρ2)d(ρ3)ρ1(Y )2
)
fµνf

µν (3.25)

+
( ∑

ρ1,ρ2,ρ3

cρd(ρ3)Tr
(
ρ2(T aL)ρ2(T bL)

))
F aLµνF

b
Lµν

+
( ∑

ρ1,ρ2,ρ3

cρd(ρ2)Tr
(
ρ3(T lS)ρ3(T kS )

))
F aSµνF

b
Sµν .
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We have used that

Tr(ρ(T 1)ρ(T i))i=2,3,4 = Tr
(
ρ1(Y )⊗ 1ρ2 ⊗ 1ρ3 · 1⊗ ρ2(T aL)⊗ 1ρ3

)
= Tr

(
ρ1(Y )⊗ ρ2(T aL)⊗ 1ρ3

)
= Tr

(
ρ1(Y )

)
Tr
(
ρ2(T aL)

)
d(ρ3) = 0 , (3.26)

with Tr(1ρ) = d(ρ) the dimension of the representation and

Tr(A⊗B) = Tr(A)Tr(B). (3.27)

Similarly
Tr(ρ(T i)ρ(T j))i=1,2,3;j=5,..,12 = 0 . (3.28)

The expression (3.25) of course has to match the SM action

SSMgauge = −
∫

d4x
( 1

4g′2
fµνf

µν +
1

4g2
F aLµνF

aµν
L +

1
4g2
S

F lSµνF
lµν
S

)
, (3.29)

from which we obtain constraints on the otherwise free coefficients cρ:∑
ρ1,ρ2,ρ3

cρd(ρ2)d(ρ3)ρ1(Y )2 =
1

2g′2
, (3.30a)

∑
ρ1,ρ2,ρ3

cρd(ρ3)Tr
(
ρ2(T aL)ρ2(T bL)

)
=

1
2g2

δab , (3.30b)

∑
ρ1,ρ2,ρ3

cρd(ρ2)Tr
(
ρ3(T lS)ρ3(T kS )

)
=

1
2g2
S

δlk . (3.30c)

The part of the action linear in θ is given by:

S1
gauge =

∫
d4x κ1θ

µν

(
1
4
fµνfρσf

ρσ − fρµfσνf
ρσ

)
(3.31)

+ κ2θ
µν

(
1
4
fµνF

a
LρσF

aρσ
L − fρµF

a
LσνF

aρσ
L + c.p.

)
+ κ3θ

µν

(
1
4
fµνF

l
SρσF

lρσ
S − fρµF

l
SσνF

lρσ
S + c.p.

)
,

where c.p. denotes cyclical permutations of the fields preserving the position of
the indices, and the coefficients κi encode the dependency on the cρ ≡ cρ1⊗ρ2⊗ρ3
and the irreducible representations ρ1, ρ2 and ρ3:

κ1 =
∑

ρ1,ρ2,ρ3

cρd(ρ2)d(ρ3)ρ1(Y )3 , (3.32a)

κ2δ
ab =

∑
ρ1,ρ2,ρ3

cρd(ρ3)ρ1(Y )Tr
(
ρ2(T aL)ρ2(T bL)

)
, (3.32b)

κ3δ
lk =

∑
ρ1,ρ2,ρ3

cρd(ρ2)ρ1(Y )Tr
(
ρ3(T lS)ρ3(T kS )

)
. (3.32c)

Of course, other combinations of the generators appear in the trace when cal-
culating products of three field strengths given by (3.24), but they all give no
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contributions. Traces over three generators each one belonging to different rep-
resentations ρi vanish trivially, since the trace over a tensor product equals the
product of traces over the individual components of the tensor product (see
(3.27)) and the generators are traceless in every SU(N) representation. There
are still two combinations which have to be discussed separately (the indices of
the field strength and θ are suppressed, the structure of the field products is
the same as in (3.31)):∑

ρ1,ρ2,ρ3

cρd(ρ3)Tr
(
ρ2(T aL){ρ2(T bL), ρ2(T cL)}

)
(θF aLF

b
LF

c
L) , (3.33)∑

ρ1,ρ2,ρ3

cρd(ρ2)Tr
(
ρ3(T kS ){ρ3(T lS), ρ3(TmS )}

)
(θF aLF

b
LF

c
L) . (3.34)

The first one is proportional to the completely symmetric tensor dabc, which van-
ishes for SU(2), as already mentioned. In the second term, we have to account
for the fact that any irreducible representation ρ3 of SU(3) should appear with
its conjugate irreducible representation ρ̄3 and with the same weighting factor
cρ1⊗ρ2⊗ρ∗3 = cρ1⊗ρ2⊗ρ3 , thus preserving the invariance under charge conjugation
of the Lagrangian, also for the noncommutative case. The complex conjugate
representation ρ̄3(T a) of a generator T a is given by the negative complex conju-
gate of the representation −(ρ3(T a))∗, the minus sign ensuring the Lie algebra
structure: [

ρ̄3(T a), ρ̄3(T b)
]

= ifabcρ̄3(T c) . (3.35)

The trace in (3.34) is proportional to the completely symmetric tensor dklm3 .
The trace over the corresponding generators in the complex conjugate repre-
sentation is proportional to dklm

3̄
. Since the generators TA are Hermitian, it

can be shown easily that
dklm3̄ = −dklm3

and hence, (3.34) also vanishes.
From equation (3.31) we see that, for this choice of the representation, com-
pletely new interactions appear (forbidden in the SM), representing one of the
most striking features of the nonminimal NCSM. Yet, the coupling constants
of these interactions are not determined uniquely. The only constraint on the
κi comes from demanding that the NCSM in the limit of the vanishing non-
commutative parameter θ → 0 matches the SM, i.e. (3.30). To see how these
constraints affect κi, we need to discuss the dependence of the κi on the repre-
sentations of the matter fields. Considering the first generation of the standard
model and the Higgs, we have six representations, summarized in table 3.1.2
which will generate six constants c1, . . . , c6.
In terms of these coefficients we can rewrite (3.30):

c1 +
c2
2

+
4c3
3

+
c4
3

+
c5
6

+
c6
2

=
1

2g′2
, (3.36a)

c2
2

+
3c5
2

+
c6
2

=
1

2g2
, (3.36b)

c3
2

+
c4
2

+ c5 =
1

2g2
S

, (3.36c)
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SU(3)C SU(2)L U(1)Y U(1)Q T3

c1 eR 1 1 −1 −1 0

c2 LL =
(
νL
eL

)
1 2 −1/2

(
0
−1

) (
1/2
−1/2

)
c3 uR 3 1 2/3 2/3 0

c4 dR 3 1 −1/3 −1/3 0

c5 QL =
(
uL
dL

)
3 2 1/6

(
2/3
−1/3

) (
1/2
−1/2

)

c6 Φ =
(
φ+

φ0

)
1 2 1/2

(
1
0

) (
1/2
−1/2

)

Table 3.1: Matter fields of the first generation and the corresponding coefficients ci

and also (3.32):

κ1 = −c1 −
c2
4

+
8c3
9
− c4

9
+
c5
36

+
c6
4
, (3.37a)

κ2 = −c2
4

+
c5
4

+
c6
4
, (3.37b)

κ3 =
c3
3
− c4

6
+
c5
6
. (3.37c)

Equation (3.31) is not in terms of the physical fields and we have to make a
change of basis to obtain the physical mass eigenstates Aµ, Zµ from the isospin
eigenstates AY µ, AaLµ:(

Aµ
Zµ

)
=
(

sin θW cos θW
cos θW − sin θW

)(
AY µ
A3
Lµ

)
, (3.38)

with the weak mixing angle θW :

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

. (3.39)

In the definition of the field strength the corresponding coupling constant was
absorbed in the gauge field, therefore, if we make the above change of basis, we
actually have to write:

AY µ
g′

= cos θWAµ − sin θWZµ , (3.40a)

A3
Lµ

g
= sin θWAµ + cos θWZµ . (3.40b)

To obtain the action for the three photon interaction we have to consider the
first two terms in (3.31) and make the replacements (3.40):

S1
γγγ =

∫
d4x

e

4
sin 2θwKγγγ (AµνAρσAρσ − 4AρµAσνAρσ) , (3.41)



3.1 The model 41

K1K2

K3

K5

K6

K4

−0.1 0 0.1 0.2

−0.4

−0.3

−0.2

−0.1

0

0.1

KZZγ

KZγγ

Figure 3.1: Allowed region for the values of the couplings KZγγ and KZZγ

K0 K1 K2 K3 K4 K5 K6

KZγγ 0.0 -0.333 -0.340 -0.254 -0.133 0.095 0.010

KZZγ 0.0 0.035 -0.021 -0.068 0.162 0.155 0.202

Table 3.2: Some allowed values for the TGB coupling constants corresponding to the corners
of the polygon in figure 3.1

with Aµν = ∂µAν − ∂νAµ, e = gg′/
√
g2 + g′2 and Kγγγ = gg′(κ1 + 3κ2)/2.

In the same way one can obtain the interaction terms for Zγγ, ZZγ etc. and
the corresponding couplings, see [55, 56]. The constraints (3.36) can now be
translated into constraints on the couplings Kγγγ , KZγγ etc. since they de-
pend on the coefficients ci through the κj . Equations (3.36) together with the
condition3 ci > 0 will define an allowed region for the otherwise undetermined
coupling constants. The three dimensional simplex corresponding to the condi-
tions (3.36) was calculated in [55, 56]. The allowed region for the values which
can be taken by e.g. KZγγ and KZZγ is depicted in figure 3.1. It is remarkable
that both couplings cannot vanish simultaneously, a feature which distinguishes
the nonminimal version of the NCSM from the minimal one, where these in-
teractions are forbidden. In table 3.2 the values of TGB coupling constants
corresponding to the corners of the polygon are assigned.
The Feynman rules for the three photon interaction can be derived from (3.41)
and are given in appendix B.
Before closing the model building part of this chapter and moving on to the
phenomenological analysis, we shortly discuss the renormalizability of the gauge
sector of the NCSM, since new results on this question were recently published.
After the calculations presented in this thesis were completed, it was shown

3The Hamiltonian must be bounded from below, therefore the coefficients ci must be
positive.
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in [26] that the nonminimal NCSM is also renormalizable4 if an appropriate
finite term is added to (3.15). The counter term was shown to originate from a
Lagrangian generalized to higher orders in the noncommutative field strength:

S? = Tr
∫

d4x

[
−1

2
F̂ρσ ? F̂

ρσ + bθµνF̂ ρσ ? F̂ρσ ? F̂µν + cθµνF̂ ρσ ? F̂ρµ ? F̂σν

]
.

(3.42)
This is the most general form of the action to third order in Fµν . One is free
to choose c = 0 and thus the following action linear in θ is obtained:

S1
? = − θµνTr

∫
d4x

(
F ρσFρµFσν −

a

4
F ρσFρσFµν

)
, (3.43)

where the redefinition a = 1 + 4b was used. a is a free parameter which can be
determined from renormalizability requirements. This was done in [26], where
two solutions for a could thus be found: a = 1 and a = 3. For a = 1 only
the first term in (3.42) remains and thus reproduces the action (3.15), which
we have used for our calculations and which was shown to be renormalizable at
one-loop [28] for the minimal NCSM. For the nonminimal NCSM, the solution
a = 3 is required, in order to make the theory one-loop renormalizable. Hence,
we must add the counter term F ρσFρσFµν/2 to our action (3.15), stemming
from the second term in (3.42), in order to ensure renormalizability.
Thus, it was proven that the gauge sector of noncommutative SU(N) gauge
theories are one-loop renormalizable. Nevertheless, the question regarding the
renormalizability of theories including Dirac fermions remains still unanswered.
For our calculations and subsequent phenomenological studies we have started
from the action (3.15) which is renormalizable only for the minimal NCSM.
For a renormalizable nonminimal NCSM the action (3.43) should be used. The
parameter a alters the TGB vertex and it would be worthwhile to repeat our
phenomenological analysis for the nonminimal NCSM with a = 3.
In any case, our calculations are consistent also in the nonminimal NCSM with
a = 1 since our cross sections were calculated at tree-level. Neither do the
processes under consideration require four fermion counter terms.

3.2 Phenomenology

For the phenomenological studies at O(θ) we have concentrated on the process
qq̄ → Zγ. A process involving two neutral gauge bosons offers the possibility
to study the neutral gauge boson couplings presented in the previous chapter
otherwise forbidden in the standard model or in the mNCSM. On the other
hand, processes containing photons or Z-bosons in the final state are particu-
larly appealing because they will provide a rather clean signature at the LHC.
At the LHC the polarization of particles in the final state will not be observed,
therefore we are interested in noncommutative signatures in unpolarized cross
sections. As it was presented in [52], processes with a symmetric final state
(e.g. γγ) will have only minute observable noncommutative effects after sum-
ming all polarization states. It will be shown in the next section that due to

4The renormalizability of the minimal NCSM had already been proven earlier [28].
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the axial coupling of the Z, the situation is different if the final state particles
are a Z-boson and a photon.

3.2.1 Amplitudes

Within the standard model, only the t- and u-channel contribute to the ampli-
tude for qq̄ → Zγ:

ASM
t =

k1

k2

p1

p2

, ASM
u =

k1

k2

p1

p2

, (3.44)

leading to

ASM = ASM
t +ASM

u = −iCACZ v̄(p2)Γ5

(
/ε2

1
/qt
/ε1 + /ε1

1
/qu
/ε2

)
u(p1) . (3.45)

In the NCSM the above diagrams will receive O(θ) corrections:

ANC
t,1 = , ANC

t,2 = , (3.46a)

ANC
u,1 = , ANC

u,2 = , (3.46b)

where the open box marks the first order correction to the vertices. Analytically,
their sum reads:

ANC
t+u =

∑
i=1,2

(ANC
t,i +ANC

u,i )

=
1
2
CACZ v̄(p2)Γ5

[
(p1θp2 + k1θk2)/ε2

1
/qt
/ε1 + (p1θp2 − k1θk2)/ε1

1
/qu
/ε2

− (k1 + k2)θε1/ε2 − (k1 + k2)θε2/ε1

+ 4c1ψk1θε1/ε2 + 4c1ψk2θε2/ε1

]
u(p1) , (3.46c)

where all particles are on-shell and the equations of motion in the massless limit

/p1u(p1) = 0 and v̄(p2)/p2 = 0 (3.46d)

have already been used.
The ambiguity c1ψ of the matter field enters the formula for the summed t- and
u-channel amplitude. As it will be discussed in detail in chapter 4, we expect
that the ambiguities of the Seiberg-Witten maps have no physical consequences
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since they correspond to reparametrizations of the fields. Therefore, at this
point, before even testing the Ward identity, the need for another diagram in
order to cancel the terms proportional to c1ψ arises. And indeed, the four point
amplitude

ANC
c = , (3.46e)

which has no tree-level pendant in the SM, will lead to the desired cancellation.
Adding this amplitude

ANC
c =

1
2
CACZ v̄(p2)Γ5

[
(k1 − k2)θε1/ε2 + (k2 − k1)θε2/ε1 + 2ε1θε2/k1

− 4c1ψk1θε1/ε2 − 4c1ψk2θε2/ε1

]
u(p1) (3.46f)

to (3.46c) we obtain a c1ψ independent expression:

ANC
t+u+c =

∑
i=1,2

(ANC
t,i +ANC

u,i ) +ANC
c

=
1
2
CACZ v̄(p2)Γ5

[
(p1θp2 + k1θk2)/ε2

1
/qt
/ε1 + (p1θp2 − k1θk2)/ε1

1
/qu
/ε2

− 2k2θε1/ε2 − 2k1θε2/ε1 + 2ε1θε2/k1

]
u(p1) . (3.46g)

We used the reparametrization invariance as a second cross check for the cor-
rectness of the calculations. The first cross check is of course the test of the
Ward Identity. As already mentioned, the summed amplitude must vanish if
one of the polarization vectors is replaced by the corresponding momentum.
Doing such for the amplitudes under discussion, we see that the contact ampli-
tude will cancel the other four: The contact amplitude is therefore requested
by gauge invariance. There is no such requirement for the s-channel diagrams

ANC
s,γ = , ANC

s,Z = , (3.46h)

which are allowed in the nonminimal NCSM and have to be taken into con-
sideration. They satisfy the Ward identity separately. Therefore, there is no
restriction on the coupling constants KZγγ and KZZγ . Unlike the SM QCD,
where gauge invariance fixes the triple and quartic gauge boson couplings, the
TGB couplings are free parameters of the theory, restricted only by (3.36).
Squaring the total amplitude and performing the traces which usually enter the
formula for the squared amplitude, it can now be seen why the axial coupling of
the Z-Boson plays an important rôle for noncommutative effects to survive after
summing over the polarizations. Consider for example the process qq̄ → γγ and
ignore for a moment the s-channel diagrams: the contributing amplitudes are
similar to those for the process with a Z and a photon in the final state, the
only (crucial, as we will see) difference is the factor Γ5 = (gV + γ5gA) instead
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of Qe in the vertex containing the Z-boson. The squared amplitude to O(θ) is
given by:

|A|2 = |ASM +ANC|2 = |ASM|2 + 2Re
(
A∗ SMANC

)
+O(θ2) (3.47)

For a process with two photons in the final state, the noncommutative part is
real, which makes the interference term with the SM amplitude purely imagi-
nary. Therefore Re

(
A∗ SMANC

)
= 0 and noncommutative effects drop out in

the unpolarized cross section. The only noncommutative signal which survives
the sum over polarizations can only come from the Z-exchange diagram. There
the width of the intermediate Z boson is the only source for a imaginary part,
such that the interference term with the SM becomes real. Nevertheless, the
energy scales at which the processes take place are very large compared to the
Z-mass

√
ŝ� mZ and the width of the intermediate Z boson is negligible. The

only other possibility to study noncommutative effects for qq̄ → γγ at O(θ) is
to consider polarized cross sections. Unfortunately, we do not have the luxury
to study polarization effects at the LHC, the machine at our disposal for the
next 10 years, and we must therefore look for processes which provide non-
commutative signals in the unpolarized cross section. As already mentioned,
the axial coupling of the Z makes the process qq̄ → Zγ interesting for LHC-
studies w. r. t. noncommutativity of space-time, since the trace over γ-matrices
and a γ5 matrix will yield terms proportional to iεµνρσ making thus parts of the
noncommutative amplitude imaginary and giving therefore contributions to the
squared amplitude even after summing over polarizations.

3.2.2 Partonic Cross Section

The most striking effect of the space-time noncommutativity reveals itself in
the azimuthal distribution of the cross section. This is not surprising since θµν

can be viewed as a fixed background field with “magnetic”( ~B) and “electric”
( ~E) components which break rotational invariance with respect to the beam
axis. This effect is depicted in figures 3.2, 3.3 and 3.4 where the differential
cross section is plotted against the azimuthal angle φ.
Figure 3.2 shows the dependency on the TGB couplings for uū scattering into a
Z and a photon. The values chosen for the coupling constants are taken within
the allowed region shown in figure 3.1. We concentrated on the dependency of
the sets (KZγγ ,KZZγ) corresponding to the corner of the polygon and denoted
by Ki, with i = 1, . . . , 6, since due to the linear dependency on the TGB cou-
plings, we expect maximal (or minimal) effects for these values. For illustration
we have selected two corners of the polygon which – for uū scattering5 – give
the maximal and minimal deviation from the standard model. In particular,
we can see that for values of the TGB couplings lying in the lower region of the
polygon, the noncommutative effects almost vanish. Therefore, little sensitivity
of the LHC for this region of TGB couplings values can be expected. We have
also plotted the special case of vanishing TGB couplings corresponding to the
minimal NCSM.

5As it will be shown later, for particles with opposite sign of the charge, other sets of the
TGB couplings become important.
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φ

SM

cosϑ = 0.8

~E = (1, 0, 0), ~B = ~0
√

s = 1 TeV

ΛNC = 1 TeV

0 2 4 6

0.05

0.06

0.07

0.08

0.09

0.1

0.11

dσ
dΩ

/pb

Figure 3.2: Azimuthal dependence of the cross section for different values for the TGB
couplings: K1 = (−0.333, 0.035) (dotted) , K5 = (0.095, 0.155) (solid) and K0 = (0.0, 0.0)
(dashed).

It is very important to note, that in the nonminimal version of the NCSM, the
(differential) cross section depends not only on the absolute value of the charge
of the scattered particles, as in the SM or in the minimal NCSM, but also on
its sign. For illustration, we split the differential cross section as

dσ
dΩ

=
dσ
dΩSM

+
dσ′

dΩ NC
(θ,Q4

f )+
dσ′′

dΩ NC
(θ, |Qf |3, sign(Qf ),KZγγ ,KZZγ) , (3.48)

where the third term stems from the interference of the s channel (∝ Qf )
with the SM (∝ Q2

f ) diagrams, leading to a contribution ∝ Q3
f . Therefore,

cancellations or enhancement of the deviation w. r. t. the SM cross section can
occur depending on sign(Qf ) of the scattered particles. We only discussed the
case of uū scattering, because this will give the important contribution for pp
scattering at the LHC, since the up-quark counts twice on the one hand, and on
the other, due to |Qu| = 2/3, its cross section is larger than the dd̄→ Zγ cross
section. In section 3.2.6 we will present the dependency on the TGB couplings
for e+e− scattering, where we will see, that this process will beautifully probe
the region of the polygon exactly opposite to the one probed by the LHC.
As has been shown previously [52], the γγ → ff̄ amplitude in the NCSM
depends only on E1 and E2. In contrast, the ff̄ → Zγ amplitude depends also
on B1 and B2, due to the axial Zff̄ couplings. We observe a sine- or cosine-
like dependency (or a superposition of both) on the azimuthal angle φ for the
entries in the matrix Cµν corresponding to E1, E2, B1 and B2, stemming from
contractions of the particle momenta

p1 =
√
s

2
(1, 0, 0,−1) (3.49a)

k1 = ω

(
EZ
ω
, − sinϑ cosφ, − sinϑ sinφ, − cosϑ

)
(3.49b)
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Figure 3.3: Azimuthal dependence of the cross section, with K5 = (0.095, 0.155) (the lower
right corner of the polygon in figure 3.1), showing the antisymmetry in the partonic scattering
angle cos ϑ.

k2 = ω (1, sinϑ cosφ, sinϑ sinφ, cosϑ) (3.49c)

with Cµν . EZ =
√
s − ω is the Z boson energy while ω = (s − m2

Z)/(2
√
s)

denotes the photon energy.
We do not obtain an azimuthal dependence on the components which are aligned
with the beam axis, i.e. E3 and B3. Kinematics dictate the total independence
of the cross section on the B3 component. It does not appear in any of the
combinations p1θk1/2 or k1θk2, since ~pi|| ~B3, with i = 1, 2 and ~B3 = (0, 0, B3),
and ~k1||~k2 (back to back scattering). A dependence on E3 appears because the
vector bosons are not aligned with the beam axis x3. E3 enters the formula
for the differential cross section without a factor sinφ or cosφ, therefore the
azimuthal distribution for nonvanishing E3 shows only a constant shift w. r. t.
to the SM cross section.
One important feature of the azimuthal dependence of the NCSM when at
least one of the components E1 or E2 is nonzero is its antisymmetry w. r. t. the
partonic scattering angle ϑ, see figure 3.3. Integration over the entire allowed
range of the scattering angle will lead to an almost total cancellation of the
noncommutative effects. This must be taken into account in the Monte Carlo
simulation, by integrating only over one hemisphere 0 < cosϑZ/γ < (1− ε) or
−(1− ε) < cosϑZ/γ < 0 respectively.
This is not the case for the B components. For nonvanishing ~B the azimuthal
dependency is symmetric in cosϑ. Nevertheless, the cross sections show a much
weaker dependence on the components of ~B than on those of ~E, as exemplified
in figure 3.4. To be precise, this is true everywhere except sufficiently close
to the polar angle ϑ = π/2, where the dependence on ~E vanishes due to the
antisymmetry of the O(θ) contribution to dσ/dΩ in cosϑ.
Before going on with the next section, another important remark has to be
made. We are treating the NCSM as an effective theory, that means as a the-
ory which is expanded in powers of s/Λ2

NC. Therefore, the validity of the theory
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Figure 3.4: Azimuthal dependence of the cross section, with K5 = (0.095, 0.155) (the lower
right corner of the polygon in figure 3.1), showing the different dependency of the E and B
components of the noncommutative parameter θ on the partonic scattering angle cos ϑ.
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Figure 3.5: Azimuthal dependence of the cross section, with K5 = (0.095, 0.155). The validity
of the NCSM at O(θ) can be trusted as long as

√
s/ΛNC . 1 (dotted). If

√
s/ΛNC > 1

(dashed) we get unphysical (negative) cross sections.

is ensured up to scales ΛNC .
√
s. Figure 3.5 shows the behaviour of the cross

section for two different values of the ratio
√
s/ΛNC. When

√
s/ΛNC > 1 the

interference between the noncommutative and the SM amplitude (A∗ SMANC)
dominates the purely SM contribution and the cross section can become neg-
ative, leading to unphysical results. We have to keep this in mind in the next
section by demanding an upper cut on the partonic CMS scattering energy

√
s∗.

3.2.3 Hadronic Cross Section

The phenomenological interest of this work is dedicated mainly to the LHC,
the experimental endeavor that will hopefully point out new directions that
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elementary particle physics will take in the next years. The LHC is a proton
proton collider which will run at center of mass energies of 14 TeV beginning
with the year 2008. In this section we will concentrate on the process pp →
Zγ → e+e−γ in the NCSM up to O(θ), which has qq̄ → Zγ considered in the
previous section as a subprocess.
The model we will use in order to connect the partonic to the hadronic cross
section is the QCD Parton Model and its powerful tool, the QCD factorization
theorem. It essentially states that at high energies the hadronic cross section
σ(P1, P2) is obtained from the partonic cross sections σ̂ij(p1, p2) by convoluting
them with the Parton Distribution Functions (PDF) fi, with i labelling the
corresponding parton (u, d, ū, ...):

σ(P1, P2) =
∑
i,j

∫
dx1dx2fi(x1, µ

2)fj(x2, µ
2)σ̂ij(p1, p2, αS(µ2), Q2/µ2) .

(3.50)

P1 and P2 are the proton momenta, of which the partons carry a fraction x:
p1 = x1P1 and p2 = x2P2 respectively. The PDF are universal and can be
determined experimentally. They are defined at the factorization scale µ. This
is the scale w. r. t. which interactions either belong to the hadronic structure
(if their transversal momentum pT < µ) and are therefore absorbed in the PDF
or have to be assigned to the partonic cross section (if pT > µ). In other
words, µ separates the scales at which the computable and the not computable
(but experimental measurable and universal) interactions of the hadronic cross
section take place. In general the factorization scale is taken to be equal to
the hard scale Q2 at which the partonic scattering takes place. For the analysis
performed in this work we will use µ2 = Q2 = m2

Z . Furthermore, in all hadronic
simulations we have used for the (anti)quark-PDF the CTEQ4M series in the
standard MS factorization scheme of the CTEQ collaboration [57].
The hadronic cross section is given by

σ(p(P1)p̄(P2) → Zγ) =

=
∑
q

∫ 1

0

∫ 1

0
dx1dx2fq(x1,m

2
Z)fq̄(x2,m

2
Z) σ̂(q(p1)q̄(p2) → Zγ) (3.51)

and can be pictured as in figure 3.6.
We will calculate the partonic cross section within the framework of the NCSM
discussed in the previous section and will convolute the result with the PDF
mentioned above. In fact, for the sake of consistency and a proper analysis we
should of course consider noncommutative effects also in PDF. Nevertheless,
the use of the usual PDF within the SM is justified by the fact that the physics
in the proton takes place at low energy scales compared to the one of the hard
scattering process considered. This is ensured by the factorization theorem ac-
cording to which high energy processes encoded in the hard cross section are
separated from the low energy processes absorbed in the PDF. Thus, for the
value of the noncommutative scale ΛNC assumed in our calculations, noncom-
mutative effects are important for the hard processes but play a negligible rôle
for the physics beyond the partonic scattering process we are interested in.
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Figure 3.6: Illustration of the factorization theorem, as described by equation (3.51).

Observing the noncommutative effects of the partonic cross section analyzed
in the previous section after the convolution with the PDF is not straightfor-
ward. The convolution with the parton distribution functions essentially means
a boost of the partonic cross section in the direction of the beam axis on the
one hand, and a variable partonic CMS energy

√
ŝ on the other hand.

Usually, new physics effects attract attention to themselves and therefore are
sought-after in the pT distribution. This holds of course also for the NCSM
and we have done the corresponding simulations. Nevertheless, the deviation
from the SM pT distribution is not significant, even after applying cuts on the
azimuthal angle φ. These cuts are indeed necessary as can be seen in figures
3.2 - 3.4, integration over the full range of φ would lead to cancellation of the
effects in the pT distribution.
Nevertheless, in the case of the NCSM we have a much better observable, which
can also be used in order to discriminate our model against other new physics
models. From now on we will concentrate on the azimuthal dependence of the
cross section.
We are interested in the hadronic process pp → Zγ at the LHC and pp̄ → Zγ
at the Tevatron with subsequent decays of the Z into e+e− and µ+µ−. We will
focus our analysis on the LHC, a short discussion regarding a similar Tevatron
analysis will follow this section.
We calculated the hard qq̄ → `+`−γ cross sections as in the previous section
and implemented the noncommutative corrections in the source code of the
matrix element generator O’Mega [58, 59, 60]. The phase space generation and
parton distribution functions were provided by WHiZard [61, 62] for Monte
Carlo simulation.
An important issue which has to be discussed are the cuts which have to be
applied on the process under study. We demand the following acceptance cuts
on leptons and photons:

E(`±), E(γ) ≥ 10 GeV , (3.52a)
θ(`±), θ(γ) ≥ 5◦ , (3.52b)
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θ(`±), θ(γ) ≤ 175◦ , (3.52c)
pT (`±), pT (γ) ≥ 10 GeV , (3.52d)

which are typical for the detector geometry and performance. Besides these,
we have to address the irreducible background for pp̄ → `+`−γ, which can
be suppressed by applying corresponding cuts. The hard scattering process
qq̄ → Zγ with subsequent decays Z → `+`− has the Drell-Yan process qq̄ →
`+`− with photon radiation and qq̄ → γ∗γ with γ∗ → `+`− as irreducible
backgrounds. Both have been taken into account in our calculation.
As discussed in section 3.2.1, the unpolarized azimuthal distribution in qq̄ → γγ
is flat. By off-shell extrapolation this will hold also approximatelly for qq̄ → γ∗γ.
We suppress this background by requiring

|M(`+`−)−MZ | ≤ ΓZ . (3.53)

In order to also reduce the radiative Drell-Yan events, we apply an angular
separation cut of

∆R`±γ =
√

∆η2 + ∆φ2 > 0.7 (3.54)

(cf. [64, 65]).
An additional cut specific to the NCSM and discussed in section 3.2.2 has to
be imposed. Since we are interested in the azimuthal distribution, the polar
angle ϑ∗ is integrated out. But we have seen that this implies the complete
cancellation of the noncommutative effects, if only “electric” noncommutativity
is allowed. Therefore we have to account for the antisymmetry w. r. t. the
partonic scattering angle ϑ∗ and integrate only over one hemisphere by requiring

0 < cosϑ∗γ < 0.9 . (3.55)

Of course this is not necessary if only “magnetic” noncommutativity is regarded.
In fact, integration over the entire sphere doubles the magnitude the noncom-
mutative effects, since in the case ~E = 0, ~B 6= 0 the cross section is symmetric
w. r. t. cosϑ∗. Yet, as we have seen in the previous chapter, the effects for
nonvanishing “magnetic” components are so small, that we can not hope to get
measurable effects in the hadronic observables. Therefore, we will always use
(3.55) in the simulations.
Nevertheless, with all these cuts, a first Monte Carlo simulation of the azimuthal
dependence of the cross section in the NCSM will not lead to any observable
noncommutative effects, even for unreasonably small values of the noncommu-
tative scale ΛNC

6. The partonic CMS energy
√
ŝ is estimated to be 1/10 of

the hadronic CMS energy for most of the processes. We therefore expect to see
signs of noncommutativity for ΛNC ∼

√
ŝ '

√
s/10 = 1.4 TeV. However, this is

not the case. The reason is found to lie in the symmetric hadronic initial state
of the process under study.
At the LHC, qq̄- and q̄q-collisions will occur with identical rates. The dominant
E1 and E2 contributions to the deviation of the parton cross sections from the

6By “unreasonable” we mean values of ΛNC lying very much below the partonic CMS
energy.
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Figure 3.7: Parton Distribution Functions (plot obtained from www-h1.desy.de). The main
part of the proton momentum is carried by the valence quarks.

SM prediction are antisymmetric in cosϑ∗ and will therefore cancel for pp initial
states unless additional cuts are applied that separate events originating from
qq̄ and q̄q.
However, in the proton, the average momentum fraction of the light valence
quarks is much higher than that of the anti-quarks which exist only in the
sea, see figure 3.7. As a result, all qq̄-events will be boosted strongly in the
direction of the quark. The situation is illustrated in figure 3.8. The events
which correspond to back-to-back scattering in the quark and antiquark center
of mass system are boosted in the laboratory system.
Therefore, we can enrich our samples of signal events by requiring a minimal
boost in the appropriate direction. Demanding the momenta of both the photon
and the lepton pair to lie in the same hemisphere in the laboratory frame, that
is

cosϑγ · cosϑ`+`− > 0 , (3.56)

will separate qq̄ and q̄q events, the cut on the partonic scattering angle cosϑ∗

now becomes effective and the expected signal is indeed produced, as displayed
in figure 3.9. In the figure, we have chosen a rather low value of ΛNC = 0.6 TeV
for illustration.
We also must not forget that we have calculated the cross section up to O(θ)
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Figure 3.8: Events in the quark-antiquark center of mass system (upper figure) are boosted
in the laboratory frame (lower figure).

and we consistently had to neglect O(θ2) contributions. Therefore, in this
approximation, the deviations from the SM only come from the interference
of ASM with ANC in (3.47). As a consequence, the O(θ) cross section can
become negative (see figure 3.5) in some regions of phase space for sufficiently
large absolute values and appropriate signs of components of θµν , such that
the NC/SM interference dominates over the SM contribution. The relative
size of the interference term is determined by ŝ/Λ2

NC,
√
ŝ being the partonic

CMS energy. There is a wide range of possible values of
√
ŝ in high energy

hadron collisions, but the most statistics will be collected at moderate values
of
√
ŝ. Thus in O(θ), values of ΛNC that cause observable deviations at such

moderate values of
√
ŝ can lead to unphysical cross sections at the highest

√
ŝ

available. This problem is not specific to simulations in the NCSM, but common
to all studies of new physics that can be parametrized by anomalous couplings.
A pragmatic solution is to unitarize the contributions from new physics by
applying appropriate form factors that cut off the unphysical effects. Since there
are very few events to be expected at the highest CMS energies, the conclusions
should not depend on the details of such form factors. Therefore, we have simply
replaced dσ/dΩ∗ by max(dσ/dΩ∗, 0) everywhere in our simulations.
This solution is also legitimized by the expectation that higher orders in θµν

will damp the large negative interference contributions. As we will see in the
next chapter, results to second order in θµν support this expectation.
Therefore, we finally require a minimum and maximum total energy in the
partonic CMS:

200 GeV ≤ |M(`+`−γ)| ≤ 1 TeV . (3.57)

The lower cut enhaces the signal, while the upper cut reduces the influence of
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Figure 3.9: Monte Carlo simulation for the azimuthal dependence of the process pp→ e+e−γ
at the LHC.

the elimination of the unphysical parton cross sections discussed above.
The values K5 for KZγγ and KZZγ used for the illustration in figure 3.9 and in
the simulations of the next chapter correspond to one of the upper corners of the
polygon in figure 3.1. The scattering amplitude for up quarks shows maximal
noncommutative effects for this choice, whereas in the corresponding amplitude
for the down-quarks the noncommutative contribution almost cancels out due
to the opposite sign of the down-quarks charge. Therefore, summing up twice
the up-quark amplitude and once the down-quark amplitude and considering
that the absolute value of the deviations from the SM amplitude of the latter is
anyway smaller than the corresponding deviation for the up-quark the result is
dominated by the up-quark dependence. We have seen in the previous section,
that for values of the TGB couplings lying in the lower part of the polygon of
figure 3.1, the cross section for the up-quark shows no significative dependence
on the noncommutative parameters. The down-quark noncommutative contri-
bution, which is maximal for this choice of the TGB couplings, is not sufficiently
large in order to give observable deviations from the SM in the cross section
for pp-scattering. Therefore, if nature has chosen noncommutativity with TGB
couplings lying in the lower region of the polygon 3.1, it cannot be detected
with the LHC in pp→ Zγ.

3.2.4 Likelihood Analysis

The previous section showed that the azimuthal distribution of the cross section
is best suited to deriving sensitivity bounds on the noncommutative parameter.
In doing such, the least-squares method gives the desired results [63].
The parameters of interest are ~E and ~B (and by these implicitly the noncommu-
tative energy scale ΛNC) as well as the neutral gauge boson coupling constants
(two for the process pp→ Zγ). The main interest nevertheless lies in determin-
ing sensitivity bounds for the noncommutative scale ΛNC. Instead of making a
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fit for the joint parameter set (KZγγ ,KZZγ , ~E, ~B) we will perform the analy-
sis for the parameter set ( ~E, ~B) for different values of the coupling constants.
We disregard the small contribution from E3, since, by symmetry, it has no
influence on the azimuthal distribution.
Usually, the aim of a likelihood analysis is to determine the best estimates X0 of
the parameters X which describe the model and a measure of their reliabilities.
In our case, the NCSM is parametrized by the components of the θ-Matrix
X = (E1, E2, B1, B2), of which we already know the best estimates in the
absence of noncommutative effects: X0 = (0, 0, 0, 0). For these values of the
parameters, the probability density P that the NCSM is true given the data
and its logarithm L reach the maximum:

∂L

∂Xi

∣∣∣∣
{X0j}

= 0, (i = 1, . . . , 4) . (3.58)

The quantity which we are interested in, and which we are left to determine, is
the covariance matrix.
By expanding the multidimensional L in a Taylor series about the point X =
(E01, E02, B01, B02) we can obtain a measure of the reliability of the best esti-
mates:

L = L(X0) +
1
2

4∑
i=1

4∑
j=1

∂2L

∂Xi∂Xj

∣∣∣∣
X0

(Xi −X0i)(Xj −X0j) + . . . (3.59)

Ignoring higher order terms in the expansion, the exponential of the above
expression gives a good approximation to the probability density P :

P ∝ exp
[
1
2
(X−X0)T∇∇L(X−X0)

]
, (3.60)

where ∇∇L is a 4 × 4 symmetric matrix: [∇∇L]ij = ∂2L/∂Xi∂Xj . P repre-
sents a multivariate Gaussian with its maximum given by X0. It can be shown
[63] that the covariance matrix σ2 is given by:

[σ2]ij = 〈(Xi −X0i)(Xj −X0j)〉 = −[(∇∇L)−1]ij . (3.61)

The diagonal elements (σ2
ii) give the (marginal) error-bars of the associated

parameters, while the off-diagonal elements (σ2
ij , i 6= j) encode the correlations

between the inferred values of Xi and Xj .
On the other hand, due to Bayes’ theorem, the probability P that the NCSM
is true given the data is directly related to the probability that we obtain a
set of data assuming that the NCSM is true – the so called likelihood function.
Assuming that the data are independent and that the noise associated with
the experimental measurements can be represented as a Gaussian process, the
logarithm of the likelihood function, and therefore L, can be written as:

L = constant− χ2

2
, with χ2 =

∑
k bins

(NSM,k −NNC,k)2

NSM,k
=
∑
k bins

fk , (3.62)
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where NSM,k represents the data and NNC,k gives the functional relationship
between the parameters X and the ideal data, i.e. σNCL.
The maximum of L will occur when χ2 is smallest, therefore the best estimates
of the parameters X are referred to as least-squares estimates. In general, in
the denominator of (3.62) is given by the error-bars σ2

k, but, in the limit of large
counts N , these can be replaced by NSM,k, making thus the denominator inde-
pendent of the parameters X. From (3.62) it can be seen that χ2 is minimized,
when NNC → NSM , which happens when ~E, ~B → 0. The 1 σ confidence level
then sets the bounds on the noncommutative parameters:

[σ2]ij = (2)[M−1]ij ,

where M is the coefficient matrix if we write χ2 as

χ2 = ~XTM ~X. (3.63)

There is no analytical expression for NNC,k, since in calculating the hadronic
cross section we must perform the convolution with the Parton Distribution
Functions. NNC,k can only be obtained numerically from Monte Carlo sim-
ulations, as described in the previous section. But we can use the fact that
the cross section and hence N , the event number, is linear in ~E and ~B. From
(3.62) it is clear that χ2 is quadratic in these parameters and (3.62) describes
a paraboloid.
The idea is now to simulate the “χ2-data” and fit it to a paraboloid which has
its minimum centered at ~0. We proceed as follows: We generate histograms
NNC for the azimuthal dependence of the cross section for a set of values of
( ~E, ~B) ≡ Xl. For each histogram we calculate the corresponding χ2

l by means of
(3.62). The set of {χ2

l } obtained in this way will then be fitted to the paraboloid,
from which we can then determine the wanted covariance.
For the parabola-fit the error for each {χ2

l } is needed, and can be calculated
using error propagation (the subscript l has been omitted for convenience):

(δχ2)2 =
∑
bins

[(
∂fk

∂NSM,k

)2

(δNSM,k)2 +
(

∂fk
∂NNC,k

)2

(δNNC,k)2
]
. (3.64)

3.2.5 Bounds from the LHC

A priori, multidimensional fits must be done in order to take into account
possible correlations among the parameters. Nevertheless, the only source of
violation of rotational invariance is θµν itself. Therefore no correlations for
the pairs (E1, E2), (B1, B2) are expected and even more, the corresponding
error ellipses degenerate to circles. Therefore, neither correlations for (Ei, E3)
and (Bi, B3) with i = 1, 2 will occur. Yet, the situation is different for the
pairs (E1, B2) and (E2, B1): at hadron colliders, the partonic CMS of most
events is boosted significantly along the beam axis7. As is well known from

7The boosted events are further enriched by the cuts chosen for the LHC.
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electrodynamics, ~E and ~B are mixed by Lorentz boosts along the beam axis
x3:

E1 → γ(E1 − βB2) , B1 → γ(B1 + βE2) ,
E2 → γ(E2 + βB1) , B2 → γ(B2 − βE1) ,
E3 → E3 , B3 → B3

(3.65)

(γ = 1/
√

1− β2, β = v/c). The measurements of (E1, B2) and (E2, B1), re-
spectively, are therefore highly correlated by kinematics.
As expected from the Lorentz boost (3.65), we find that in the laboratory frame
measurements of E1 are correlated with B2 and measurements of E2 with B1.
The corresponding 1σ and 3σ contours are depicted for ΛNC = 500GeV in the
right most column of figure 3.10. We have verified that the strength of the
correlation is essentially determined by the expectation value of the boost 〈|β|〉.
Since the dependence on B1 and B2 in the partonic CMS is very weak, one
expects very elongated ellipses in the laboratory frame, in agreement with our
result. Due to statistical fluctuations, the fitted matrix X2 can have a negative
eigenvalue, as happened in the bottom right plot of figure 3.10. This sign is
unphysical and, as expected, changes with the random number sequence used
in the simulations. For all practical purposes, the error ellipses for (E1, B2) and
(E2, B1) should be viewed as straight lines.
Having established the absence of correlations that are not of purely kinematical
origin, one can avoid expensive non-linear 4-parameter fits in subsequent work
that will take higher orders in θµν into account.
Nevertheless, the correlations among (E1, B2) and (E2, B1), respectively, inhibit
in principle measurements of pure space- or pure time-like noncommutativity.
Yet, there is a way out, as we will see. It was shown previously that the
dependency on ~E is much stronger than on ~B. Thus, if setting ~E 6= 0, ~B = 0,
the Lorentz-boost will induce the corresponding B-component, and vice-versa,
an E component will be induced when assuming pure B type noncommutativity.
Therefore, when using the cuts specified in section 3.2.3 and integrating over one
hemisphere, in both cases (pure ~E or pure ~B) we will be sensitive only on the
time-like directions, since the space-like is negligibly small. Nevertheless, a pure
measurement on B can be achieved by the appropriate cuts, namely integration
over the whole sphere. The fact that for ~B 6= 0 the noncommutative effects are
symmetric w. r. t. cosϑγ while for ~E 6= 0 they are antisymmetric, will lead to
the cancellation of E-type noncommutativity, such that only noncommutative
effects in B direction will remain.
We derived the sensitivity bounds on ΛNC using the method of the previous
section. The fits were done by a Fortran-program, which we checked against
MINUIT [66] for some one dimensional examples.
For the LHC, the results of the likelihood fits are shown in figure 3.10, setting
ΛNC = 500 GeV and KZγγ = KZZγ = 0. The bounds on the noncommutative
scale were derived for an integrated luminosity of 100 fb−1 (with 100% detection
efficiency) and are presented in table 3.3.
The results are not surprising, if we review the discussions of the previous
sections. Therefore, at the LHC we have maximal sensitivity in E-direction for
values of the TGB couplings lying in the upper region of the polygon 3.1. The
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Figure 3.10: The 1σ (dark) and 3σ (light) exclusion contours for ΛNC = 500GeV, K0 and
100 fb−1 at the LHC discussed in the text.

(KZγγ ,KZZγ) | ~E|2 = 1, ~B = 0 ~E = 0, | ~B|2 = 1

K0 ≡ (0, 0) (mNCSM) ΛNC & 1 TeV -

K1 ≡ (−0.333, 0.035) (nmNCSM) - -

K5 ≡ (0.095, 0.155) (nmNCSM) ΛNC & 1.2 TeV -

Table 3.3: Bounds on ΛNC from pp→ Zγ → e+e−γ at the LHC.
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LHC is not sensitive to noncommutative effects for couplings lying in the lower
region of the polygon, nor is it at all sensitive to space-like noncommutativity.
The effects for this case are simply too small in order to detect them with
energies and the statistics available, despite the cuts mentioned above.
Nevertheless, this analysis indicates that the current collider bounds [41] can
be improved at the LHC by an order of magnitude, for certain choices of the
TGB couplings and time-like noncommutativity. The bounds could even be
enhanced by including the decay of the Z boson into muons and adding the
mirrored histogram of the same Monte Carlo simulation yet integrating over
the other hemisphere.
In order to obtain a realistic estimate of the sensitivity at the Tevatron and the
LHC, one has to take into account backgrounds, detector effects and selection
cuts. Clearly, a comprehensive analysis of all reducible backgrounds and detec-
tor effects is beyond the scope of a theoretical study and must eventually be
performed by the experimental collaborations. However, the final states under
consideration are simple enough for our phenomenological analysis based on
simple cuts.
Moreover, experience at the Tevatron [64, 65] indicates that the combined detec-
tion efficiency for `+`−γ can be assumed to be larger than 50%. All numerical
results presented are obtained for a 100% efficiency. Smaller uniform efficien-
cies can easily be taken into account by scaling up the integrated luminosity
accordingly.
For simplicity, we have assumed that the components of θµν remain aligned
with the beam axis and the detector over the time of the measurement. This
assumption is not justified, because we should expect that θµν is aligned with a
fixed cosmic reference frame, that is determined by the dynamics of the under-
lying string theory. Therefore the alignment of the detector must be recorded
with each event and the combined effect of the earth’s rotation and revolution
must be taken into account. This poses no principal difficulty and will not
change our conclusions.

3.2.6 Bounds from the ILC

The LHC is the experiment providing experimental data within the next years,
hence we dedicated most of our phenomenological studies to this experiment.
Nevertheless, since a design effort is underway for the construction of the In-
ternational Linear Collider (ILC), an electron-positron collider, starting from
2015, we have also performed an analysis of the NCSM for a linear collider.
The ILC has definite advantages over the LHC, which not only will change the
sensitivity bounds on the noncommutative scale quantitatively, but will also
provide measurements for other sets of values of the TGB couplings. In this
sense, experiments at the ILC are complementary to those of the LHC.
The complementarity of the two experiments w.r.t. the nmNCSM is due to the
different charge of the scattered particles, more precisely due to the different
signs of their charge. We have seen in section 3.2.2 and recall it here once more,
that while the cross section of the minimal NCSM is independent of the sign
of the charge Q the cross section within the nonminimal NCSM additionally
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Figure 3.11: Azimuthal dependence of the cross section, with different values for the TGB
couplings: K1 = (−0.333, 0.035) (solid) , K5 = (0.095, 0.155) (dotted) and K0 = (0.0, 0.0)
(dashed).

depends on sign(Q) via the s-channel amplitudes. These depend linearly on
the charge of the particles, while the t-, u- and c-channels are always propor-
tional to Q2. Therefore, the interference terms ASMA

∗
NC,s depend on Q3 and

the sign(Q) becomes relevant. Thus, for e+e− scattering, noncommutative ef-
fects are maximally enhanced by the s-channels contribution for K1 and K2

8,
whereas these couplings lead to cancellations of the noncommutative effects for
uū scattering resulting in minimal deviations of the NCSM w. r. t. the SM.
On the other hand, the set of couplings K5, which gave maximal effects for
the LHC, will lead to an NCSM cross section comparable to the one where the
couplings vanish. These dependencies are depicted in figure 3.2 and figure 3.11.
We have performed Monte Carlo simulations for different values of the TGB
couplings, similar to the LHC analysis.
The ILC is planned to initially reach a CMS energy of

√
s = 500GeV. Counting

on an integrated luminosity of L = 500 fb−1 corresponding to fours years of
running, minus the first year of calibration, we will have a large number of
events at our disposal, thus improving the statistics significantly. The better
statistics enhances the sensitivity on ΛNC by a factor 4

√
NILC/NLHC where N

is the number of events.
One important advantage of the ILC compared to the LHC with consequences
on our analysis is the only mildly boosted initial state. We have an e+e−

initial state, where just beam-strahlung has to be accounted for, which we have
done, using CIRCE [67]. This will lead to a boost of the CMS of the electrons
to the laboratory frame. Yet, compared to the LHC, this boost is negligibly
small: βILC = 0.14 versus βLHC = 0.8. We therefore have negligible correlations
between E1 and B2 or E2 and B1, respectively, as can be seen from figure 3.15
Due to the high statistics and the sharp CMS energy of the initial particles

8The azimuthal dependence of the cross section for these two values of the TGB couplings
is almost identical, therefore we have done the fits only for K1.
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Figure 3.12: Monte Carlo simulation for the photon pT distribution of the process e+e− → Zγ
at the ILC showing above the black SM histogramm the NCSM distribution for 0.0 < φ < π
and beneath the NCSM distribution for π < φ < 2π.
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Figure 3.13: Monte Carlo simulation for the azimuthal dependence of the process e+e− → Zγ
at the ILC.
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Figure 3.14: The allowed range for the values of TGB couplings is probed complementary by
the LHC and ILC.

at the ILC, deviations of the NCSM from the SM can actually be seen also in
the pT distribution for reasonable values of ΛNC (see figure 3.12). Of course,
cuts w.r.t. the azimuthal angle φ have to be performed, otherwise the effect
will cancel, since the events “missing” in one hemisphere (e. g. for π < φ <
2π) are compensated by the “excess” of events in the other (see figure 3.13).
Figure 3.13 shows this distribution exemplarily, where for the TGB couplings
we have chosen the set of values, where we expect the largest deviation from
the SM distribution, i. e. K1. Nevertheless, we still have used the azimuthal
dependency of the cross section in order to derive the bounds on ΛNC from
the ILC. This is exactly the set of TGB couplings, for which the LHC is less
sensitive, while the TGB couplings leading to maximal deviations at the LHC,
lead to minimal effects at the ILC. Here the complementarity of LHC and ILC
measurements comes in, as illustrated in figure 3.14.
We derived bounds on ΛNC considering time-like as well as space-like noncom-
mutativity, like in the previous section. Unlike the LHC, the ILC is also sensitive
on the B-type components of the noncommutative parameter, which could not
be probed by the LHC, due to the poor statistics. By integrating over the
whole range of the scattering angle cosϑ, statistics is enhanced even more. In
addition, the influence of the E-components, which might be introduced by the
boost due to beamstrahlung, is canceled out. Anyway, this is almost redundant,
since the correlation between E and B is minimal for the ILC.
The resulting bounds on ΛNC for purely time-like ( ~E 6= 0) and purely space-like
( ~B 6= 0) noncommutativity, respectively are presented in table 3.4.
We have derived sensitivity bounds on ΛNC for three cases: the mNCSM
(i. e. vanishing TGB couplings), and for some sets of values (KZγγ ,KZZγ). K1

corresponds to maximal and K5 to minimal deviation from the SM . The corre-
sponding error ellipses are depicted in figure 3.15. We have plotted the ellipses
only for the mNCSM. The shape of the ellipses does not change by changing the
values of the TGB couplings, since these cannot introduce correlations among
the entries of the matrix θµν .
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Figure 3.15: The 1σ (dark) and 3σ (light) exclusion contours for ΛNC = 500GeV, K0 and
500 fb−1 at the ILC for the mNCSM.

(KZγγ ,KZZγ) | ~E|2 = 1, ~B = 0 ~E = 0, | ~B|2 = 1

K0 ≡ (0, 0) (mNCSM) ΛNC & 2 TeV ΛNC & 0.4 TeV

K1 ≡ (−0.333, 0.035) (nmNCSM) ΛNC & 5.9 TeV ΛNC & 0.9 TeV

K5 ≡ (0.095, 0.155) (nmNCSM) ΛNC & 2.6 TeV ΛNC & 0.25 TeV

K3 ≡ (−0.254,−0.048) (nmNCSM) ΛNC & 5.4 TeV ΛNC & 0.9 TeV

Table 3.4: Bounds on ΛNC from pp→ Zγ → e+e−γ at the LHC.
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Figure 3.16: The 1σ (dark) and 3σ (light) exclusion contours for ΛNC = 50 GeV and 15 fb−1

at the Tevatron discussed in the text.

Thus, the ILC not only provides measurements for additional parameters (B-
components) and probes the NCSM for different values of the TGB couplings,
but it also improves the sensitivity bounds on ΛNC considerably. Furthermore,
we do not have to worry about getting negative cross sections and therefore
unphysical results in our simulations. The phase space of the process is much
simpler than in the case of the LHC, where convolutions with the broad parton
distribution functions had to be taken into consideration9. The long tails of the
PDF towards high energy leading to regions in phase space for which

√
ŝ/ΛNC

becomes too large, as discussed in section 3.2.5, are absent in the case of the
beam-strahlung distribution.

3.2.7 Bounds from LEP and Tevatron

Before closing the chapter on the phenomenological consequences of the NCSM
at O(θ), for the sake of completeness, we also include a brief analysis of the
NCSM and the resulting bounds which can be derived from present experiments,
like LEP or Tevatron. The OPAL collaboration has established bounds resulting
from LEP in the framework of the “naive” version of NCQED [41], nevertheless
we perform the analysis within the model which is subject of this thesis.
Thus, for the Tevatron, we have simulated pp̄→ `+`−γ at

√
s = 1.96 TeV using

the same acceptance cuts (3.52). In the case of the Tevatron, the rôles of quarks
and anti-quarks are reversed in the antiproton. Therefore, we demand in this
case that the momenta of the photon and the lepton pair lie in opposite hemi-
spheres. For sufficiently small ΛNC, the azimuthal distribution of the γ is similar
to the distribution plotted in figure 3.9. The error ellipses are similar to the
ones obtained for the LHC or ILC, only the size and, due to the smaller boost,
also the magnitude of the correlation between the boost-mixed components of θ
vary (figure 3.16). From these we derive the sensitivity on the noncommutative
scale which reaches ΛNC & 130 GeV at the Tevatron, comparable to the LEP
bounds in [41].
At LEP we have simulated e+e− → Zγ at

√
s = 200GeV. Using an integrated

luminosity of
∫
L = 3 fb−1 and the same cuts as for the ILC analysis we obtain

9The convolution with photonic distribution function can only reduce the “partonic” center
of mass energy

√
ŝ.
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ΛNC & 770 GeV assuming K1 for the TGB, the value which gives maximal
noncommutative effects. This is a much better bound that the one obtained in
[41], but we should not forget that we did not perform a full detector simulation,
nor did we take into account a realistic detector efficiencies. On the other
hand, bounds on ΛNC obtained assuming the minimal version of the NCSM,
i.e. vanishing TGB, are found to be ΛNC & 300 GeV, which are closer to those
obtained by the OPAL collaboration in [41]. The difference to the ILC bounds
can be accounted for by scaling the luminosity and center of mass scattering
energy.

3.2.8 Remarks

Before closing the chapter on the phenomenology of the NCSM we need to
emphasise, that we did not account for the motion of the earth (or our galaxy)
w.r.t. to the universe, as discussed in section 2.5.3. We have no information at
all on the values of the components of θµν , we do not know whether, how or
how much they vary w.r.t. to the space-time coordinate system. We did not
include in our analysis the position of the collider on the earth, which a complete
phenomenological analysis should eventually include. Effects might cancel out
and therefore tagged data taking w.r.t. the orientation of the earth is required.
If nevertheless all noncommutative effects cancel, other processes will be needed
to reveal a possible noncommutative nature of space-time. For example, Z →
γγ decay, as studied in [68], or higher orders in the noncommutative parameter
have to be included in the calculation of processes. When the dependence
on θµν in observables is realized by harmonic functions, the noncommutative
effects average to zero at O(θ) when integrating over the motion of the detector
w.r.t a given frame. This cannot happen when noncommutative effects enter
observables quadratically in θµν .
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Chapter 4

The Neutral Current Sector of
the NCSM at O(θ2)

The θ-expanded approach to the noncommutative extension of the SM studied
within this work results in an effective theory, which means that its range of
validity is determined by the size of the expansion parameter

√
s/ΛNC. In

section 3.2.2 we have seen that the validity of the model breaks down if this
ratio is chosen too large. This manifests itself in unphysical (negative) cross
sections, as shown in figure 3.5 and has to be circumvented when performing
phenomenological studies.
It is not always possible to control the magnitude of

√
s/ΛNC. As we have

seen in the case of the LHC study, the broad distribution of the PDFs led to
regions in phase space where the partonic scattering energy was so large that
the model was not valid any more. To repair this unphysical behaviour in a
consistent manner, higher orders in the expansion parameter are needed. Thus,
as a first step, cross sections have to be computed up to O(θ2), which requires
the corresponding Feynman rules and therefore the Seiberg-Witten maps up to
this order.
Also, we have seen that some processes, like pp → γγ, show at O(θ) small or
no noncommutative signatures. Nevertheless, some of them, like the mentioned
one, will be under intense study at the LHC due to their importance for the
confirmation (or falsification) of other theoretical models, like the discovery or
exclusion of the Higgs from pp→ γγ. Since in such processes, the noncommuta-
tive signal enters the observable (the unpolarized cross section for this example)
at O(θ2), the processes must of course be calculated to this order.
We will lay the foundation to this endeavor, and derive the Seiberg-Witten
maps to O(θ2). It was shown previously that the Seiberg-Witten maps are
not unique. To our surprise it proved that some of these ambiguities, which
parametrize the solutions of the homogeneous consistency and gauge equiva-
lence equations, respectively, do not always correspond to field redefinitions
and thus have physical consequences.
Finding the general solution of the Seiberg-Witten map at O(θ2) required ex-
tensive manual and computerized calculations. For the main part of the com-
putations FORM [69] was used.



4.1 General Solution of the Seiberg-Witten Maps up to O(θ2) 67

4.1 General Solution of the Seiberg-Witten Maps up
to O(θ2)

Seiberg-Witten maps to second order in θ have been derived previously [70, 71].
In the first reference only one special solution of the consistency and gauge
equivalence equations is given, whereas in the second reference some ambiguities
are included, but not all. We will give the complete solution of the Seiberg-
Witten maps up to second order in θ for the gauge parameter, gauge and matter
field and show that, against our expectation, not all ambiguities correspond to
field redefinitions, as it was stated in [71].
The approach is the same as for theO(θ) calculation of the Seiberg-Witten maps
done in section 2.4. The θ expansion (2.43) of the gauge parameter and the
fields is inserted in the consistency and gauge equivalence equations (2.40, 2.41)
and then the O(θ2) contributions are collected. We introduce an abbreviation
for the homogeneous part of the consistency and gauge equivalence equations.
At every oder in θ, the homogeneous part of the consistency equation has the
same form

Hλ[λk(λ,A, θ)] ≡ δλ1λ
k(λ2, A, θ)− δλ2λ

k(λ1, A, θ)

− i
[
λk(λ1, A, θ), λ2

]
− i
[
λ1, λ

k(λ2, A, θ)
]
− λk(λ3, A, θ) . (4.1)

For the homogeneous part of the gauge equivalence equations we have for every
order in θ:

HA[Ak(A, θ)] ≡ δλA
k
ξ − i[λ,Akξ ] , (4.2a)

Hψ[ψk(ψ,A, θ)] ≡ δλψ
k − iλψk . (4.2b)

Thus, for the consistency equation at O(θ2) we can write (omitting from now
on the arguments A, ψ and θ in λk, Ak, ψk, with k = 1, 2)

Hλ[λ2] = i[λ1(λ1), λ1(λ2)]−
1
2
θµν
({
∂µλ

1(λ1), ∂νλ2

}
+
{
∂µλ1, ∂νλ

1(λ2)
})

− i
8
θµνθκλ

[
∂µ∂νλ1, ∂κ∂λλ2

]
. (4.3)

For the gauge equivalence equations we obtain:

HA[A2] = ∂ξλ
2(λ)− i[A1

ξ , λ
1(λ)]− i[Aξ, λ2(λ)] (4.4a)

+
1
2
θµν
({
∂µA

1
ξ , ∂νλ

}
+
{
∂µAξ, ∂νλ

1(λ)
})

+
i
8
θµνθκλ∂µ∂κAξ∂ν∂λλ ,

Hψ[ψ2] = iλ1(λ)ψ1 + iλ2(λ)ψ − 1
2
θµν
(
∂µλ

1(λ)∂νψ + ∂µλ∂νψ
1
)

(4.4b)

− i
8
θµνθκλ∂µ∂κλ∂ν∂λψ .

We will first give one special solution for each of these equations, before turning
to their homogeneous solutions. We will see that the O(θ) ambiguities of the
Seiberg-Witten maps will also contribute to the O(θ2) Seiberg-Witten maps.
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4.1.1 Special Solutions at O(θ2)

We start, as in the O(θ) case, by solving the inhomogeneous linear equation
(4.3) for the gauge parameter. A special solution preserving hermiticity was
found to be:

λ2(λ) =
i

32
θκλθµν

(
− 3AκAλ∂νλAµ − 4AκAν∂λλAµ − 3Aκ∂λλAµAν (4.5)

− 2Aλ∂νλAµAκ − 2AµAκAλ∂νλ−AµAνAκ∂λλ

− 2AνAκ∂λλAµ − 4Aν∂λλAµAκ − 2∂µAκ∂λ∂νλ
− 2∂λλAµAνAκ − ∂νλAµAκAλ + 2∂λ∂νλ∂µAκ

)
+

1
16
θκλθµν

(
4Aκ∂λ∂νλAµ +Aλ∂νλ∂µAκ + 2AµAκ∂λ∂νλ

− 2Aµ∂κAν∂λλ− ∂κAν∂λλAµ + ∂µAκAλ∂νλ

− ∂λλAµ∂κAν + 2∂νλ∂µAκAλ + 2∂λ∂νλAµAκ
)
.

This solution was checked against the ones presented in [70] and [71], we find
that they are all equivalent, differing by homogeneous solutions to (4.3).
With the expression (4.5) for λ2 and the first order special solutions for λ1 and
A1
ξ , we can solve the gauge equivalence equation (4.4a) for the gauge field. We

find the special Hermitian solution:

A2
ξ =

i
16
θµνθκλ

(
2[∂ν∂λAξ, ∂µAκ] + [∂µAκ, ∂ξ∂λAν ]

)
(4.6)

+
1
16
θµνθκλ

(
+ 2AµAκ∂ν∂λAξ −AµAκ∂ν∂ξAλ +AµAκ∂ξ∂λAν

+ 4Aµ∂νAκ∂λAξ − 4Aµ∂νAκ∂ξAλ − 2Aµ∂κAν∂λAξ
− 2Aν∂λAξ∂µAκ + 3Aν∂ξAλ∂µAκ + 4Aκ∂ν∂λAξAµ
+ 2Aλ∂νAξ∂µAκ −Aλ∂ξAν∂µAκ −Aξ∂µAκ∂λAν

− 4∂µAκAν∂λAξ + ∂µAκAν∂ξAλ + ∂µAκAλ∂ξAν

− ∂µAκ∂λAνAξ + 2∂νAκ∂λAξAµ − 3∂νAκ∂ξAλAµ
+ 2∂νAξ∂µAκAλ − 2∂κAν∂λAξAµ + ∂κAν∂ξAλAµ

+ 2∂λAνAξ∂µAκ + 2∂λAξAµ∂νAκ − 4∂λAξ∂µAκAν
− ∂ξAλAµ∂νAκ − ∂ξAλAµ∂κAν + 4∂ξAλ∂µAκAν
+ 2∂ν∂λAξAµAκ + ∂ν∂ξAλAµAκ − ∂ξ∂λAνAµAκ

)
+

i
32
θµνθκλ

(
− 4AµAνAκ∂λAξ + 3AµAνAκ∂ξAλ − 2∂ξAλAµAκAν

+ 4AµAκAν∂λAξ − 2AµAκAν∂ξAλ − 4AµAκAλ∂νAξ
− 2AµAκ∂νAλAξ + 2AµAκ∂λAνAξ − 8Aµ∂νAκAλAξ
− 4AνAκ∂λAξAµ + 4AνAκ∂ξAλAµ + 8AνAλAξ∂µAκ
− 4Aν∂λAξAµAκ − 2Aν∂ξAλAµAκ − 4AκAν∂λAξAµ
− 2AκAν∂ξAλAµ − 4AκAλ∂νAξAµ +AκAλ∂ξAνAµ

− 8Aκ∂λAνAξAµ − 4Aκ∂λAξAµAν +Aκ∂ξAλAµAν
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− 4AλAνAξ∂µAκ − 4AλAξAµ∂νAκ + 4AλAξAµ∂κAν
+ 8AλAξ∂µAκAν − 4Aλ∂νAξAµAκ + 4Aλ∂ξAνAµAκ
− 2AξAµAκ∂νAλ − 2AξAµAκ∂λAν + 8AξAµ∂κAνAλ
− 2Aξ∂µAκAνAλ + 2Aξ∂µAκAλAν + 2∂µAκAνAλAξ
+ 2∂µAκAλAνAξ − 4∂νAκAλAξAµ + 4∂νAλAξAµAκ
− 4∂νAξAµAκAλ + 4∂κAνAλAξAµ − 8∂λAνAξAµAκ
− 4∂λAξAµAνAκ + 4∂λAξAµAκAν + 3∂ξAνAµAκAλ

)
+

1
32
θµνθκλ

(
− 3AµAνAκAλAξ + 2AµAκAνAλAξ − 4AνAκAλAξAµ

+ 4AνAλAξAµAκ − 4AνAξAµAκAλ + 4AκAνAλAξAµ
− 4AκAλAνAξAµ − 2AκAλAξAµAν − 8AλAνAξAµAκ
− 4AλAξAµAνAκ + 4AλAξAµAκAν
− 3AξAµAνAκAλ + 2AξAµAκAνAλ

)
,

where we have arranged the terms by the order of A, for later convenience.
Again, this solution was compared to [70, 71]. It is equivalent up to homoge-
neous solutions to the solution found in the first reference, but not to the one in
[70]. It was verified that the solution therein does not fulfill the corresponding
gauge equivalence equation.
Plugging λ2, λ1 and ψ1 into equation (4.4b), we obtain the special solution for
the matter field:

ψ2 = − i
8
θµνθκλ∂µAκ∂ν∂λψ (4.7)

+
1
16
θµνθκλ

(
− 2Aµ∂κAν∂λψ − 2∂µAκAν∂λψ

+ 2AµAκ∂ν∂λψ + 4Aµ∂νAκ∂λψ − ∂µAκ∂νAλψ
)

+
i
8
θµνθκλ

(
− 2Aµ∂νAκAλψ + ∂µAκAνAλψ

−AµAκAλ∂νψ +AµAκAν∂λψ −AµAνAκ∂λψ
)

+
1
32
θµνθκλ

(
− 3AµAνAκAλψ + 4AµAκAνAλψ − 2AµAκAλAνψ

)
.

Differences between the above special solution and the ones published in [70, 71]
are due to different choices for the gauge parameter λ2(λ) at O(θ2) and to
homogeneous solutions to the gauge equivalence equations (4.4b).

4.1.2 Contributions from O(θ)-Ambiguities to the O(θ2) Solu-
tions

The ambiguities at first order will propagate in the solutions at the second order.
Thus, the ambiguity c1λ at first order of the gauge parameter will contribute an
additional term to the solution at second order

λ2
c1λ

(λ) =
c1λ
2
θµνθκλ

(
+AκAλ∂νλAµ −Aκ∂λλAµAν − i(Aµ∂κAν∂λλ (4.8)

+ ∂µAκAλ∂νλ+ ∂λλAµ∂κAν + ∂νλ∂µAκAλ)
)
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+
i(c1λ)

2

2
θµνθκλ

(
+AκAλ∂νλAµ +Aκ∂λλAµAν

−AµAνAκ∂λλ− ∂νλAµAκAλ
)
.

Of course, c1λ will contribute to the solutions for the gauge and matter field,
too, since λ1 appears in the inhomogeneous term on the right hand side of the
gauge equivalence equations at second order. Thus, we obtain the additional
c1λ terms for the gauge field:

A2
ξ,c1λ

=
c1λ
2
θµνθκλ

(
− i{Aµ∂κAν , ∂λAξ} − i{∂µAκAλ, ∂νAξ}

)
(4.9)

+ [AµAν , {Aκ, ∂λAξ}]−AµAνAκ∂ξAλ + ∂ξAνAµAκAλ
)

+ i[AνAξAµ, AκAλ] + i[Aξ, AµAνAκAλ]
)

+
(c1λ)

2

2
θµνθκλ

(
i[Aκ∂ξAλ, AµAν ] + i[AκAλ, ∂ξAνAµ]

+ {AµAνAκAλ, Aξ} −AκAλAξAµAν
)

and for the matter field:

ψ2
c1λ

=
c1λ
2
θµνθκλ

(
AµAνAκDλψ − i[Aµ, ∂κAν ]∂λψ

)
(4.10)

+
(c1λ)

2

2
θµνθκλ

(
AµAνAκAλψ

)
.

The O(θ2) Seiberg-Witten maps depend linearly and quadratically on the pa-
rameter c1λ. The quadratic term arises due to the product of the two O(θ)
Seiberg-Witten maps in the inhomogeneous part of (4.4a) and (4.4b). Since
the gauge parameter, the gauge field and the matter field all depend on c1λ,
quadratic terms will occur in the O(θ2) solutions.
The first order ambiguity of the gauge field, parametrized by c1A, will contribute
linearly to the gauge field in second order:

A2
ξ,c1A

= −
ic1A
2
θµνθκλ

(
{Aλ, ∂ξ∂µ∂κAν} (4.11)

+
c1A
4
θµνθκλ

(
AµAν∂ξ∂κAλ + 2AµAκ∂ν∂ξAλ + 2Aµ∂νAκ∂ξAλ

− 2Aµ∂κAλ∂νAξ − 2Aµ∂ν∂κAλAξ + 2Aν∂ξAλ∂µAκ
+ 2Aν∂ξ∂κAλAµ + 2Aκ∂λAξ∂µAν + 2Aκ∂ν∂ξAλAµ
− 2Aκ∂ξ∂λAνAµ − 2AλAξ∂µ∂κAν − 2Aξ∂µ∂κAνAλ
+ 2∂νAκ∂ξAλAµ − 2∂κAλ∂νAξAµ + 2∂λAξ∂µAνAκ
+ 2∂ξAλ∂µAκAν − 2∂ν∂κAλAξAµ + ∂ξ∂κAλAµAν

− 2∂ξ∂λAνAµAκ
)

+
ic1A
4
θµνθκλ

(
AµAν∂κAλAξ −AµAνAκ∂ξAλ + 2AµAκAλ∂νAξ

+ 2AµAκ∂νAλAξ + 2Aµ∂νAκAλAξ − 2AνAκ∂ξAλAµ
+ 2AνAξ∂µAκAλ + 2Aν∂κAλAξAµ −AκAλAξ∂µAν
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+ 2AκAλ∂νAξAµ +AκAλ∂ξAνAµ + 2Aκ∂νAλAξAµ
− 2Aκ∂λAξAµAν −Aκ∂ξAλAµAν + 2AλAξAµ∂κAν
− 2AλAξ∂µAνAκ + 2Aλ∂ξAνAµAκ + 2AξAµ∂κAνAλ
−Aξ∂µAνAκAλ + 2Aξ∂µAκAλAν + 2∂νAκAλAξAµ
+ ∂κAλAξAµAν − 2∂λAξAµAνAκ + ∂ξAνAµAκAλ

)
+
c1A
4
θµνθκλ

(
[AµAνAκAλ, Aξ] + 2[AνAκ, AλAξAµ]

)
.

We also have terms where the first order ambiguities from the gauge parameter
mix with those from the gauge and matter field, respectively:

A2
ξ,c1λ,c

1
A

= c1λ c
1
A θ

µνθκλ
(
i[AµAν , ∂ξ∂κAλ] + [AµAν , Aκ∂ξAλ]

+
[
AκAλ, [Aξ, ∂µAν ]

]
− [AκAλ, ∂ξAνAµ]

+ i[AµAν , AκAλAξ] + i[AξAµAν , AκAλ]
)
. (4.12)

The mixedO(θ)-ambiguities are caused by the presence of the same commutator-
term in (4.4a) which led to the c1λ-quadratic term in (4.8).
The first order ambiguity c1ψ in the solution for the matter field leads to addi-
tional terms to the second order solution:

ψ2
c1ψ

=
c1ψ
4
θµνθκλ

(
AµAνAκAλψ + iAµAν∂κAλψ + 2iAµAκAλ∂νψ

+ 2iAµAκ∂νAλψ + 2iAµ∂νAκAλψ
− 2Aµ∂κAλ∂νψ + 2Aλ∂µ∂κAνψ

)
. (4.13)

Again, terms containing both first order ambiguities (c1λ, c
1
ψ) appear, due to the

first term in the inhomogeneous part of (4.4b):

ψ2
c1λ,c

1
ψ

= c1λ c
1
ψ θ

µνθκλ
(
iAµAνAκAλψ −AµAν∂κAλψ

)
. (4.14)

4.1.3 Homogeneous Solutions at O(θ2)

Let us now consider the purely second order ambiguities, i.e. those parametriz-
ing the solutions of the homogeneous equations at second order in θ. The
homogeneous consistency and gauge equivalence equations can be compactly
written as

Hλ[λ2(λ,A, θ)] = 0 , (4.15a)
HA[A2(A, θ)] = 0 , (4.15b)

Hψ[ψ2(ψ,A, θ)] = 0 . (4.15c)

As before, we first consider the consistency equation. The homogeneous solution
for the gauge parameter is lengthy and since its explicit form will not affect our
final results, we just give it in the appendix A. We find a 15 parameter family
for each value of c1λ, which again appears in the Seiberg-Witten maps for the
gauge and matter field. Thus, adding this homogeneous solution to the special
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one and plugging it into the gauge equivalence equation for the gauge and
matter field, we obtain additional c2λ,i contributions to A2

ξ and ψ2. Again, the
corresponding expressions can be found in appendix A.
Now we focus our attention to the purely second order ambiguities for the
gauge field. We find the following six-parameter family of Hermitian solutions
in O(θ2):

A2
ξ,c2A,1

= c2A,1
i
2
θµνθκλ(DκFµν)Fλξ , (4.16a)

A2
ξ,c2A,2

= c2A,2
i
2
θµνθκλFλξ(DκFµν) , (4.16b)

A2
ξ,c2A,3

= c2A,3
i
2
θµνθκλFµκ(DξFνλ) , (4.16c)

A2
ξ,c2A,4

= c2A,4
i
2
θµνθκλ(DξFνλ)Fµκ , (4.16d)

A2
ξ,c2A,5

= c2A,5
i
2
θµνθκλFκλ(DξFµν) , (4.16e)

A2
ξ,c2A,6

= c2A,6
i
2
θµνθκλ(DξFµν)Fκλ . (4.16f)

These are all possible solutions to the homogeneous equation (4.15b), two more
as in [70], where the ambiguities A2

ξ,c2A,1
and A2

ξ,c2A,2
were omitted. Exactly

these ambiguities (together with the first order ambiguity A1
ξ,c1A,1

) will lead to

the unexpected result in the next section.
The homogeneous solutions for the matter field lead to three ambiguities at
second order:

ψ2
c2ψ,1

= ic2ψ,1θ
µνθκλ(DµFνκ)Dλψ , (4.17a)

ψ2
c2ψ,2

= −
c2ψ,2
4
θµνθκλFµνFκλψ , (4.17b)

ψ2
c2ψ,3

=
c2ψ,3
2
θµνθκλFµκFνλψ . (4.17c)

These correspond to [70]. To our original result for (4.17a), given in appendix A,
we added the other two homogeneous solutions in order to obtain the compact
form (4.17a).

4.1.4 Remarks

We have shown how an enveloping algebra valued gauge theory up to O(θ2)
can be constructed. The computations are lengthy and little transparent. An
alternative way of obtaining the Seiberg-Witten maps even order by order up
to an arbitrary high order n in θ was proposed in [72]. The starting point, pro-
vided again in the work of Seiberg and Witten [5], are the differential equations
describing the change in the gauge parameter along a trajectory θ + δθ in θ
space:

δλ̂(θ) = δθµν
∂

∂θµν
λ̂(θ) = −1

4
δθµν

{
Âµ ?, ∂ν λ̂

}
. (4.18)
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Parametrizing the path δθ in θ space by tθ, the above equation can be rewritten:

∂λ̂(t)
∂t

= −1
4
θµν
{
Âµ(t) ?

t
, ∂ν λ̂(t)

}
, (4.19)

with ?t denoting the Moyal-Weyl ?-product (2.13) with θ → tθ. Taking the
Taylor expansion for λ̂(t)

λ̂(t) = λ+ tλ1 + t2λ2 + . . . = λ+ t
∂λ̂(t)
∂t

∣∣∣∣∣
t=0

+
1
2!
t2
∂2λ̂(t)
∂t2

∣∣∣∣∣
t=0

+ . . . , (4.20)

the gauge parameter to O(θ) is simply given by

λ1 =
∂λ̂

∂t

∣∣∣∣∣
t=0

= −1
4
θµν
{
Âµ ?t, ∂ν λ̂

}
|t=0 = −1

4
θµν
{
Aµ, ∂νλ

}
. (4.21a)

The next order can be obtained by differentiating the previous one w.r.t. to t:

λ2 =
1
2
∂2λ̂

∂t2

∣∣∣∣∣
t=0

=
1
2

(
∂

∂t

∂λ̂

∂t

)
t=0

= (4.21b)

= −1
8
θµν
({
A1
µ, λ
}

+
{
Aµ ?1, λ

}
+
{
Aµ, λ

1
})

,

and so on:

λ3 =
1
3!
∂3λ̂

∂t3

∣∣∣∣∣
t=0

= . . . , (4.21c)

with A1
ξ = (∂Âξ/∂t)t=0 and the O(θ) term in the Taylor expansion of the

?-product:

f(x) ?1 g(x) = f(x)
(
∂

∂t
?t
)
g(x)|t=0 =

i
2
θµν∂µf(x)∂νg(x) . (4.22)

Starting with the second order, these equations are not closed anymore, since
they require derivatives of Aξ w.r.t. t. Therefore, similar differential equations
for the gauge field must be solved first. The higher order Seiberg-Witten maps
for the matter fields can be derived analogously, also needing the higher orders
in Aξ.
Thus, the Seiberg-Witten maps can be derived up to any power θn. Neverthe-
less, this approach has a drawback: only Seiberg-Witten maps corresponding
to special solutions of the consistence and gauge equivalence equations are pro-
vided and is thus useless for our purpose of analyzing the relevance of the
ambiguities of the Seiberg-Witten maps for observables. Since we will show
that some of these ambiguities indeed have a physical meaning and appear in
observables, this approach leads to incomplete results.
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4.2 Feynman Rules

We now posses the complete expressions for the Seiberg-Witten maps for the
gauge parameter, gauge and matter field and are ready to derive Feynman rules
up to O(θ2). We will not resolve to derive the complete Lagrangian and to write
it in a gauge covariant way. Instead, we will restrict ourselves to the matter and
the kinetic part. We are interested only in neutral currents for the purpose of
this work. We have chosen the process ff̄ → γγ for illustration and hence, we
will consider only the NCQED-Lagrangian. We go no further than tree level in
perturbation theory. Thus, we are interested only in terms containing no more
than two gauge fields in the matter part and only the cubic photon interaction
in the kinetic part. This means that in the Seiberg-Witten maps of the gauge
and matter field we will collect only the terms containing no more than two
gauge fields and insert them into the Lagrangian:

Lfermionic = ¯̂
ψ ? i /̂Dψ̂ =

( ¯̂
ψ ? i/∂ψ̂ + ¯̂

ψ ? /̂Aψ̂
)

(4.23a)

= i
(
ψ̄ + ψ̄1 + ψ̄2

)
?
(
/∂ψ + /∂ψ1 + /∂ψ2

)
+
(
ψ̄ + ψ̄1 + ψ̄2

)(
/A+ /A1 + /A2

)
?
(
ψ + ψ1 + ψ2

)
,

Lgauge = − 1
2g2

Tr
(
F̂µν ? F̂

µν
)
. (4.23b)

The Feynman rules are derived in the usual way. With all momenta incoming,
we obtain the vertex factors up to O(θ2) as follows:

εµ(k)

u(p)

ū(p′)

= ig · Vµ(p′, k, p) , (4.24a)

εµ(k1)

εν(k2)

u(p)

ū(p′)

= ig2 · V c
µ2µ1

(p′, k2, k1, p) , (4.24b)

εξ1(k1)

εξ2(k2)

εξ3(k3) = ig[ρ] · V 3
ξ1ξ2ξ3(k1, k2, k3) , (4.24c)

with g[ρ] indicating the representation-dependence of the TGB coupling and

V (1)
µ (p′, k, p) =

i
2

[
kθµ/p(1− 4c1ψ) + 2 kθµ/k(c1A − c1ψ)− pθµ/k − (kθp)γµ

]
,

(4.25a)
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V (2)
µ (p′, k, p) =

1
8
(kθp)

[
kθµ/p(1− 16c2ψ) + 4kθµ/k(c1A − 2c2ψ)− pθµ/k − (kθp)γµ

]
,

(4.25b)

V c,(1)
νµ (p′, k2, k1, p) =

i
2

[
k2θ

µγν − k1θ
µγν(1− 4c1ψ)− θµν/k1 + (µ↔ ν, k1 ↔ k2)

]
,

(4.25c)

V c,(2)
νµ (p′, k2, k1, p) =

1
8

[
k1θk2 k1θ

µγν (8c2A − 4c1ψ + 8c2ψ − 1)

+ k1θp k1θ
µγν (16c2ψ − 1) + 2 k2θp k1θ

µγν (4c1ψ − 1)

− k1θk2 k2θ
µγν + 3 k1θp k2θ

µγν + 2 k2θp k2θ
µγν − 3 k1θk2 pθ

µγν

+ 4 k1θ
µk1θ

ν/k1(2c2A − c1A − c1ψ) + 2 k1θ
µpθν/k1(1− 4c1ψ) + 2 k2θ

µpθν/k1

− 4 θµνk1θp/k1 + (µ↔ ν, k1 ↔ k2)
]

+ equation of motion terms , (4.25d)

V
3,(1)
ξ1ξ2ξ3

(k1, k2, k3) =

θξ1ξ2 [(k1k3)k2,ξ3 − (k2k3)k1,ξ3 ] + (k1θk2) [k3,ξ1gξ2ξ3 − gξ1ξ3k3,ξ2 ]

+
[
(k1θ)ξ1 [k2,ξ3k3,ξ2 − (k2k3)gξ2ξ3 ]− (ξ1 ↔ ξ2)− (ξ1 ↔ ξ3)

]
+ cyclical permutations of

{
(ξ1, k1), (ξ2, k2), (ξ3, k3)

}
, (4.25e)

V
3,(2)
ξ1ξ2ξ3

(k1, k2, k3) = i
[
k1θk2k1θ

ξ1
(
(c2A − c1A)(k1,ξ3k3,ξ2 − gξ2ξ3(k1k3))

+ c2A(k2,ξ3k3,ξ2 − gξ2ξ3(k2k3))
)

+ k1θ
ξ1k1θ

ξ2(c2A − c1A)(k2,ξ3(k1k3)− k1,ξ3(k2k3)) + (ξ2, k2) ↔ (ξ3, k3)
]

+ cyclical permutations of
{
(ξ1, k1), (ξ2, k2), (ξ3, k3)

}
. (4.25f)

From the three second order ambiguities for the matter field only one, c2ψ,1,
survives in the Feynman rules and thus has been denoted by c2ψ. The gauge
field ambiguities at second order which appear in the Feynman rules are c2A,1
and c2A,2. As can be seen from (4.16) in the abelian case they coincide and
hence we have introduced the notation c2A = c2A,1 + c2A,2.
The TGB vertex has no ambiguities at O(θ) stemming from the homogeneous
part of the gauge equivalence equations.1 At second order in θ only the ambi-
guities contribute, whereas there are no ambiguity-free contributions.
Since we are interested in ff̄ → γγ scattering at tree level, we will need only
the on-shell expression for the f̄γγf contact term. Therefore we have sup-
pressed terms that vanish due to the equations of motion for the fermions in
the vertex (4.25d). The complete expressions can be found in appendix B.

1The nonuniqueness of the coupling constant is of course also an ambiguity innate to the
NCSM, but has different origin, as discussed in section 3.1.2.
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4.3 The Rôle of the Ambiguities

It was stated in [70] that the ambiguities of the Seiberg-Witten maps corre-
spond to field redefinitions and thus must have no physical consequences for
observables. In this section this statement will be invalidated by showing that
some ambiguities still survive in the cross section at second order in the non-
commutative parameter θ. We will also give an explicit calculation of an NC-
QED process up to O(θ2) and show the dependence on some ambiguities of the
Seiberg-Witten map.
It has been shown that physical predictions of Quantum Field Theory, in par-
ticular on-shell S-matrix elements and scattering cross sections, do not depend
on the choice of interpolating fields [73, 74, 75]. Any two theories which are
related by non-singular local field redefinitions

φ↔ φ′(φ) with
∂φ′

∂φ

∣∣∣∣
φ=0

= 1 (4.26a)

(up to finite renormalizations) and the corresponding change in the Lagrangian

L(φ) ↔ L′(φ′) = L(φ(φ′)) (4.26b)

will predict identical scattering cross sections. This is often referred to as
reparametrization invariance and can be proven both in axiomatic quantum
field theory [73] and in perturbation theory [75]. Therefore, we must care-
fully distinguish the ambiguities corresponding to field redefinitions from those
which do not. The latter can have physical consequences and affect observable
quantities.
In principle, the Seiberg-Witten maps λ

Aµ
ψ

→

 λ̂(λ,A, θ)
Âµ(A, θ)
ψ̂(ψ,A, θ)

 (4.27)

appear to correspond to non-singular field redefinitions as described by (4.26).
However, this is true only for some special cases, namely for U(1) with unit
charge or U(N) gauge theories. We have shown previously that in this case
the Seiberg-Witten maps are Lie algebra valued. Hence they are non-singular
and correspond to field redefinitions. Their effect will cancel in observables, as
we will immediately show for the e+e− → γγ cross section. We are left only
with the noncommutative effects stemming from the Moyal-Weyl ?-product.
Nevertheless, we have seen that in order to allow for SU(N) and U(1) with
arbitrary charges, we have to leave the Lie algebra and enter the universal
enveloping algebra. The latter is strictly larger than the former and therefore,
the maps relating the Lie algebra with its enveloping algebra must be singular.
Hence, in general they do not correspond to field redefinitions any more. We
have also seen, that the Seiberg-Witten maps are not unique. They differ
by homogeneous solutions to the consistency and gauge equivalence equations,
which in general are also enveloping algebra valued, such that we can not expect
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that they will cancel in observables. Only if the ambiguities are Lie algebra
valued, they correspond to field redefinitions and must cancel in cross sections.
We have seen in section 3.2.1 that in the case of fermion scattering into Zγ at
first order in θ, all ambiguities cancel in the cross section. Indeed, to O(θ) the
ambiguities c1λ, c

1
A and c1ψ in (2.51, 2.52) correspond to field redefinitions, since

they are all Lie algebra valued:

A1
ξ,c1λ

= ic1λ θ
µν [DξAµ, Aν ] , (4.28a)

A1
ξ,c1A

= −2i c1A θ
µνDσFµν , (4.28b)

ψ1
c1λ

= − c1λ θµνAµAνψ = −
c1λ
2
θµν [Aµ, Aν ]ψ , (4.28c)

ψ1
c1ψ

=
c1ψ
2
θµνFµνψ . (4.28d)

It was just shown in section 4.1.2 that the first order Seiberg-Witten maps
enter the equations for the second order Seiberg-Witten maps. Thus, these
equations and their solution space depend on the value of the triple (c1λ, c

1
ψ, c

1
A).

It is not guaranteed that the resulting dependence of the second order Seiberg-
Witten maps on (c1λ, c

1
ψ, c

1
A) again correspond to field redefinitions and must

cancel in observables. In fact, we will see, that the first order ambiguity c1A
will give nonvanishing contributions to observables in second order of θ. The
ambiguities c1λ and c1ψ in section 4.1.2 will not contribute to the process since
they enter the second order as coefficients for terms with more than two gauge
fields. Only A2

ξ,c1A
in (4.11) contains a term with two gauge fields. Since this

one is an anticommutator of gauge fields, it is enveloping algebra valued and is
thus not expected to vanish in observables.
Contrary to [70], we also have found additional ambiguities (4.16a,4.16b) at
second order for the gauge field. Exactly these are the crucial ones, since these
will not vanish in observables, as we will show considering the O(θ2) scattering
cross section for e+e− → γγ in NCQED as a prototype of the neutral sector
of the NCSM.2 For a straightforward discrimination of the ambiguities which
vanish in observables and those which might give physical contributions, it is
helpful to perform a change of basis {c2A,i}6

i=1 → {c̃2A,i}6
i=1 in the six dimensional

parameter space of the ambiguities and to consider the linear combinations:

c̃2A,1 =
1
2
(
c2A,1 + c2A,2

)
, (4.29a)

c̃2A,2 =
1
2
(
c2A,3 + c2A,4

)
, (4.29b)

c̃2A,3 =
1
2
(
c2A,5 + c2A,6

)
, (4.29c)

c̃2A,4 =
1
2
(
c2A,1 − c2A,2

)
, (4.29d)

c̃2A,5 =
1
2
(
c2A,3 − c2A,4

)
, (4.29e)

2The additional Z-boson couplings and its mass in the NCSM will not add to our conclu-
sions about the ambiguities.
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c̃2A,6 =
1
2
(
c2A,5 − c2A,6

)
. (4.29f)

This way, the homogeneous solutions (4.16) can be rewritten:

A2
ξ,c̃2A,1

= c̃2A,1
i
2
θµνθκλ{DκFµν , Fλξ} , (4.30a)

A2
ξ,c̃2A,2

= c̃2A,2
i
2
θµνθκλ{Fµκ, DξFνλ} , (4.30b)

A2
ξ,c̃2A,3

= c̃2A,3
i
2
θµνθκλ{Fκλ, DξFµν} , (4.30c)

A2
ξ,c̃2A,4

= c̃2A,4
i
2
θµνθκλ[DκFµν , Fλξ] , (4.30d)

A2
ξ,c̃2A,5

= c̃2A,5
i
2
θµνθκλ[Fµκ, DξFνλ] , (4.30e)

A2
ξ,c̃2A,6

= c̃2A,6
i
2
θµνθκλ[Fκλ, DξFµν ] . (4.30f)

The ambiguities in the new basis {c̃2A,i}6
i=1 are more transparent w.r.t. their

physical contribution to observables. We can immediately exclude the last
three from appearing in observables, since they are clearly in the Lie algebra.
Thus, we have reduced the ambiguities with possible nonvanishing contributions
to cross sections from six to three. Note that c̃2A,1 = c2A. Furthermore, the
ambiguities (4.30b) and (4.30c) vanish in the Feynman rules after contraction
with the corresponding vertex momenta.
We now show exemplary by means of the second order ambiguity of the gauge
field in a simple calculation how it is possible for the ambiguities not to vanish.
In the case of NCQED, the two ambiguities c2A,1 and c2A,2 are identical and their
sum was denoted by c2A. The only relevant term for our tree level process in
(4.30a) is

A2
ξ,c2A

= ic2Aθ
µνθκλ∂µ∂κAν(∂λAξ − ∂ξAλ) . (4.31)

In the Lagrangian, it can only contribute to the contact term and the three
gauge boson vertex. The corresponding Feynman rule for the contact term
containing c2A is:

g2(i)5c2Aθ
µνθκλ [k1θ

µ1(k1θk2γ
µ2 − k1θ

µ2/k2) + k2θ
µ2(k2θk1γ

µ1 − k2θ
µ1/k1)] ,

(4.32)
giving immediately the corresponding contribution to the contact amplitude

A(2)
c = . . .+ ig2c2A [k1θε1(k1θk2/ε2 − k1θε2/k2) + k2θε2(k2θk1/ε1 − k2θε1/k1)] .

(4.33)
This contribution will not vanish on its own, nor can it be cancelled by any term
coming from the t- or u-channel diagram, since these cannot contain terms pro-
portional to c2A. The only possible cancellation can be provided by the s-channel
diagram. In fact, with the γγγ interaction (4.25f), the s-channel diagram will
yield exactly the terms needed to cancel (4.33). But, there is a caveat: while the
normalization of the contact term (4.24b), including the terms involving c2A, is
fixed, the normalization of the three boson vertex (4.24c) depends on the choice



4.3 The Rôle of the Ambiguities 79

Figure 4.1: Feynman diagrams contributing to e+e− → γγ in O(θ2). The black box stands
for the full vertex (SM + O(θ) + O(θ2)), while the white box denotes the vertex up to first
order (SM + O(θ)).

of the representation of the enveloping algebra. Therefore, the contributions
from these vertices can not cancel in the general case, but only for the special
choice g[ρ] = g, and would need to vanish separately if the ambiguities were to
drop out of observables.
For the first order ambiguity c1A, the same arguments come into play and it
will not disappear from cross sections. Yet, the calculations are a little more
intricate and not as straightforward as for c2A, therefore we will not present
them explicitly.
We will now study the process e+e− → γγ in more detail. The contributing
Feynman diagrams up to second order in θ are given in figure 4.1. In the on-shell
NCQED scattering amplitude for e+e− → γγ up to second order in θ

A(e+e− → γγ) = g2ASM + g2A(1) + gg[ρ]A
(1)
s + g2A(2) + gg[ρ]A

(2)
s , (4.34)

we have split off the separately gauge invariant s-channel contributions, because
their normalization depends on the representation of the enveloping algebra.
For completeness, we restate the SM

ASM = − i
q2u
v̄(p2)/ε1/qu/ε2u(p1)−

i
q2t
v̄(p2)/ε2/qt/ε1u(p1) (4.35)

(using qt = p1 − k1 and qu = p1 − k2) and first order contributions

A(1) = − i
q2u

(
p1θp2 + k1θk2

2i

)
v̄(p2)/ε1/qu/ε2u(p1)

− i
q2t

(
p1θp2 − k1θk2

2i

)
v̄(p2)/ε2/qt/ε1u(p1) +A(1)

c . (4.36)

The 1/t- and 1/u-pole terms in (4.36) and (4.43) can be derived from the
Moyal phase alone. The contributions coming from the Seiberg-Witten maps
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are cancelled by corresponding terms in the contact diagram3 after applying
the Dirac equation to remove q2t and q2u in the denominators.
At each vertex we have

e−ip1θp2 = e−ip2θp3 = e−ip3θp1 (4.37)

with all momenta incoming. Therefore in the t-channel we obtain:

e−i(−k2)θ(p1−k1)e−ip1θ(p2−k2) = e−i(p1θp2−k1θk2) (4.38)

and in the u-channel, from k1 ↔ k2, we get:

e−i(p1θp2+k1θk2) . (4.39)

Thus, in (4.36) the first terms in the Taylor expansions from above appear. The
remaining terms yield:

A(1)
c = v̄(p2)

[
1
2
ε1θε2(/k1 − /k2)− k1θε2/ε1 − k2θε1/ε2

]
u(p1) , (4.40)

where in the latter all ambiguities in the Seiberg-Witten maps have cancelled
after application of the equations of motion. The s-channel contribution turns
out to be proportional to the part of the amplitude without t- or u-channel poles
and a 1/s-pole contribution steming from the Moyal-Weyl ?-product alone:

A(1)
s = −A(1)

c +A
(1)
s,? , (4.41)

with

A
(1)
s,? =

1
s
(k1θk2) v̄(p2)

[
1
2
(ε1ε2)(/k2 − /k1) + (k1ε2)/ε1 − (k2ε1)/ε2

]
u(p1) . (4.42)

The cancellation of the 1/s-poles in the s-channel amplitude occurs in the con-
tributions from the Seiberg-Witten maps after applying s+ t+ u = 0. Thus, if
g[ρ] = g all contributions stemming from the Seiberg-Witten maps will cancel.
The contribution from O(θ2) reads:

A(2) = − i
q2u

1
2

(
p1θp2 + k1θk2

2i

)2

v̄(p2)/ε1/qu/ε2u(p1)

− i
q2t

1
2

(
p1θp2 − k1θk2

2i

)2

v̄(p2)/ε2/qt/ε1u(p1) +A(2)
c . (4.43)

Again, the 1/t- and 1/u-poles are accompanied by the second terms in the Tay-
lor series expansion of the vertex factors induced by the Moyal-Weyl ?-product.
The pole-free terms are summarized in

3We must make a remark regarding our notations: A
(1)
c does not designate the amplitude

for the contact diagram in figure 4.1, instead it is a notation for all terms in A(1) which do
not contain 1/t- and 1/u-pole terms. Thus, A

(1)
c is not the same as ANC

c from section 3.2.1.
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A(2)
c = − i

2
p1θp2A

(1)
c + i(c2A − c1A)v̄(p2)

[
k1θε1k1θε2/k1 + k2θε1k2θε2/k2

+ k1θk2

(
k1θε1/ε2 − k2θε2/ε1

)]
u(p1) . (4.44)

As in first order, we find that the s-channel term exactly cancels the contact
term if an appropriate representation of the enveloping algebra is used:

A(2)
s (c1A, c

2
A) = −A(2)

c (c1A, c
2
A) . (4.45)

Here, we explicitly write down the dependence on the ambiguities of the Seiberg-
Witten maps. As qualitatively sketched at the beginning of this section, we
observe that the only parts of the amplitude in which the ambiguities appear are
A

(2)
c and A(2)

s . They enter the total amplitude (4.34) with different coefficients,
g and g[ρ], and hence they can cancel only for the special case g[ρ] = g. Thus, in
the general case we are left with the ambiguities, enlarging thus the parameter
space of the model by two dimensions.
This result is surprising, because the consensus was that theories described
by different Seiberg-Witten maps should be equivalent. We have seen at the
beginning of this section, that this is not true for theories formulated in the
enveloping algebra. Observables are not identical for different ambiguities be-
cause the corresponding field transformations relating the different Lagrangians
do not correspond to field redefinitions. Compare the two classes of transfor-
mations:

Aµ = AaµT
a → A′µ = AaµT

a + ανρµ A
a
νT

aAbρT
b (4.46a)

and
Aµ = AaµT

a → A′µ =
(
Aaµ + ανρµ A

a
νA

a
ρ

)
T a . (4.46b)

The latter remains in the Lie algebra and scattering matrix elements are invari-
ant under such reparametrizations. The first class, however, since T aT b leaves
the Lie algebra generated by the T a requires us to consider the enveloping al-
gebra. Thus, additional degrees of freedom are introduced the transformation
must be singular. Consequently the transformation

Aµ → (A′1,µ, A
′
2,µ) , (4.47)

with A′µ = A′a1,µT
a + A′2,µ is singular and reparametrization invariance of ma-

trix elements need not hold, which is exactly what we observe. Only in the
fundamental representation of the U(1) the fields remain in the Lie Algebra
and the cancellation of the ambiguities will take place. In a U(1) gauge theory
we can choose an arbitrary Hermitian matrix ρ(T ) as a generator. The choice
ρ(T ) = σ3 leads to g[ρ] = 0, while choosing ρ(T ) = 1 yields g[ρ] = g. Only in
the latter case, the anticommutator remains in the Lie algebra representation.
This is in agreement with our statement at the beginning: for U(1) with unit
charge, the Seiberg-Witten maps correspond to field redefinitions and thus do
not contribute to the cross section.
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Figure 4.2: The azimuthal distribution of the differential cross section for e+e− → Zγ in the
framework of the minimal NCSM at O(θ2) showing the dependence on the ambiguities of the
Seiberg-Witten maps.

4.3.1 Numerical Dependence on Ambiguities in e+e− → Zγ

After we have presented the dependence on the ambiguities in analitical calcu-
lations for the process e+e− → γγ as an example, we finally show the numerical
dependence on these ambiguities for the scattering process e+e− → Zγ at O(θ2)
in figure 4.2. For illustration, we have chosen rather high values for c1A and c2A.
We observe that if both ambiguities have the same value, c1A = c2A, they will
cancel each other. We do not find a particular reason for this behaviour and
hence it seems to be an accidental feature for this process.
It is particularly interesting to remark that for space-like noncommutativity,
i.e. Ei = 0, all ambiguities cancel in the cross section. Space-like noncommuta-
tivity is exactly the type of noncommutativity favored by many authors since
it preserves unitary as well as gauge invariance. In addition, in string theories
only space-like noncommutativity is predicted.

4.4 Phenomenological Outlook

Now the mathematical apparatus describing the neutral current sector of the
NCSM4 up to O(θ2) stands and phenomenological studies within this frame-
work can be performed. However, this goes beyond the purpose of this work.
Nevertheless, we will close with one brief example of O(θ2) NCSM phenomenol-
ogy.
One of the motivations for going to higher orders in θ given at the beginning of
this section was the unphysical behavior (i.e. negative cross sections) at O(θ)
for high scattering energies compared to the noncommutative scale ΛNC. We

4In principle, using the Seiberg-Witten maps found in section 4.1 and proceeding like in
the case of the neutral current sector, the complete NCSM up to O(θ2) can be build.
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Figure 4.3: The unphysical behaviour of the differential cross section for ff̄ → Zγ at O(θ) is
cured by the O(θ2) contributions. All ambiguities are set to zero.

promised, that this was to be repaired by the second order in θ contributions,
at least for a wider range of the scattering energy. And indeed, this happens.
Figure 4.3 is similar to figure 3.5, but now the full differential cross section up to
second order in θ is added. The O(θ) contribution is such that it shifts the cross
section from negative to positive values and thus our headaches regarding un-
physical contributions for some regions in phase space when performing Monte
Carlo simulation are soothed for a while. Of course, the cure is temporary since
the theory is still an effective theory. We just shifted its region of validity to
higher energies. Qualitatively, the form of the O(θ2) differential cross section
in figure 4.3 justifies the brute force approach in section 3.2.3, where unphysical
contributions were regularized by setting them to zero.

We also have stated that some processes which at O(θ), depending on whether
we choose the minimal or the nonminimal NCSM, show no or few noncommu-
tative effects in the unpolarized cross section (e.g. e+e− → γγ), possess a richer
noncommutative phenomenology at second order in θ. Thus, processes which
are important at the LHC for other reasons, and will therefore be studied in
detail, might be interesting from the point of view of noncommutativity.

As an example, we have calculated the process pp → γγ up to O(θ2). This
certainly will be analyzed in detail at the LHC due to the Higgs searches. In
figure 4.4 we show the invariant di-photon mass distribution to O(θ2). Our
expectations to see clear noncommutative signals are not disappointed. The
Z-exchange s-channel diagram led at first order to minute observable noncom-
mutative effects since only its interference with the SM amplitude entered the
cross section. The second order accounts for the squared diagram which leads
to a peak at the Z-mass in the γγ distribution. Its height depends on the value
of the TGB coupling. The cross section in figure 4.4 was calculated using only
the special solutions (4.6) and (4.7) to the gauge equivalence equations, that is
with all ambiguities set to zero.
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Figure 4.4: The invariant di-photon mass distribution for the process pp→ γγ to O(θ2).

We have used typical cuts as in studies regarding the light Higgs search.

E(γ) ≥ 10 GeV , (4.48a)
5◦ ≤ θ(γ) ≤ 175◦ , (4.48b)
pT ≥ 25 GeV, (4.48c)
|η| ≥ 2.5, (4.48d)

80 GeV ≤Mγγ ≤ 150 GeV, (4.48e)
DRγγ ≥ 0.4 . (4.48f)

The last aspect justifying the O(θ2) effort is related to our ignorance about the
noncommutative parameter θ. As already discussed in section 2.5.3 and section
3.2.8, due to the permanent variaton of the earth position w.r.t. a galactic
reference-frame, in observables these effects are averaged over. Thus, at O(θ)
it might very well occur that all noncommutative signals drop out unless the
orientation of the experiment is recorded for each event, since they enter the
cross sections linearly as harmonic functions of the angles. In this case, only
the second or higher order contribution will survive.
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Chapter 5

Conclusions

Apart from the popular motivation due to string theory, quantum field the-
ories on noncommutative space-time developed a life of their own giving rise
to numerous theoretical and phenomenological efforts. In this thesis we view
noncommutative QFT as intermediate theory between the SM and physics at
the Planck scale, possibly occurring at a scale, which is broken down to the TeV
scale and thus being accessible by the next generation of colliders. In the light
of the upcoming LHC and assuming that noncommutative space-time might
occur already at energy scales lying in the TeV range, we have performed in
the first part of this thesis a phenomenological analysis of the process pp→ Zγ
with subsequent leptonic decay of the Z boson for the LHC and of e+e− annihi-
lation into a Z and a photon at a future linear collider. During these studies the
necessity of a further theoretical development of the considered model arose,
which constituted the second part of this thesis.
We have presented a possible realization of the SM on noncommutative space-
time. Its main ingredients are the Moyal-Weyl ?-product of functions on ordi-
nary space-time which reproduces thus the noncommutativity inherent to the
noncommutative operators x̂µ on an algebra of functions on the ordinary space-
time, and the Seiberg-Witten maps. The latter map the ordinary fields to non-
commutative fields in such a way that ordinary gauge transformations induce
noncommutative transformations. This requirement was described mathemat-
ically by the so called gauge equivalence conditions for the gauge and matter
field, and the consistency equation for the gauge parameter. These differen-
tial equations can be solved order by order in the noncommutative parameter θ
and their solutions are the Seiberg-Witten maps, determined nonuniquely, since
they differ by homogeneous solutions of the differential equations. The result is
an effective theory as expansion in powers of θ, which preserves noncommuta-
tive gauge invariance, is anomaly free, does not modify the SM particle content
and accommodates fractional charges. Being an effective theory, unitarity is
ensured below a certain cut-off scale. The model was shown to be one-loop
renormalizable within the gauge sector. Even if the inclusion of fermions in
general still spoils multiplicative renormalizability, this is not relevant for the
processes under consideration within this thesis.
The construction of this model is nevertheless not unique for two reasons. The
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first one is given by the freedom to choose between the minimal NCSM, a
model which forbids triple gauge boson (TGB) couplings as in the SM, and
the nonminimal NCSM allowing for TGB couplings. These again are not fixed
but can vary within a finite range of allowed values. The second ambiguity in
constructing the NCSM was discovered as a result of this work, and is due to
the ambiguities in the Seiberg-Witten maps.
In the phenomenological part of this thesis we concentrated on possible signals
of noncommutativity in hadronic scattering processes. The absence of such
studies for the LHC motivated one of the goals of this work, the phenomeno-
logical study of pp scattering at the LHC within the θ expanded approach
presented in chapter 3 up to O(θ). We have settled on the production of a Z
boson and a photon in the final state. Choosing the nonsymmetric final state
was motivated by the fact that in unpolarized cross sections, as being studied
at the LHC, only the axial coupling of the Z boson will lead to observable
noncommutative effects. We have seen in section 3.2.2 that noncommutative
space-time breaks rotational invariance with respect to the beam axis giving
rise to an azimuthal dependence of the cross section. This provides an unmis-
leadingly clear and typical signal for noncommutativity of space-time, which
discriminates these models against other new physics models. The study of the
partonic cross section in section 3.2.2 also provided valuable information w.r.t.
the cuts which had to be done for the Monte Carlo simulation of the hadronic
process in the next section, since it was not trivial to make the noncommutative
signal visible in the symmetric pp final state. The azimuthal dependence of the
cross section was then used to perform likelihood fits and derive constraints on
the noncommutative scale ΛNC.
Thus, we have found that the LHC is in this channel only sensitive on ~E-type
noncommutativity, unless the values of the TGB coupling constants lie in an
unfavourable range. In this case the bounds on ΛNC set by the LHC are of the
order of 1.2 TeV. Compared to this, the ILC has better cards. We have shown
that ILC measurements are complementary to those at LHC being most sensi-
tive on TGB couplings lying in the opposite corner of the region of their allowed
values. Not only this, the ILC is more or less sensitive on all values of the TGB
couplings, as well as on both time- and space-like noncommutativity. Thus, the
bounds obtained for space-like ( ~E 6= 0, ~B = 0) noncommutativity are between
ΛNC & 400− 900 GeV and for time-like ( ~E 6= 0, ~B = 0) noncommutativity they
range even up to ΛNC & 6 TeV.
The upcoming LHC data will hopefully provide clear directions for further
theoretical and phenomenological efforts. We have seen that the absence of
noncommutative signals in the process studied in this work does not necessarily
exclude the possibility of a noncommutative structure of space-time. It merely
means that either the noncommutative scale is shifted beyond 1 TeV, or that
nature has chosen exactly such values of the TGB coupling constants which lie
exactly in the unfortunate part of their theoretical allowed range which is not
accessible at the LHC, or that only space-like noncommutativity is realized in
nature. For all these cases, the ILC would provide better answers.
We have also briefly studied similar processes at present experiments, like
pp̄ → Zγ → `+`−γ at the Tevatron and e+e− → Zγ at LEP. In principle
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our analysis confirms the current existing bounds on ΛNC from high energy
scattering experiments.
In the second part of this work we continued the construction of the NCSM to
next order in θ. The motivation came from the phenomenological side: we could
not prevent high partonic center of mass energies for some cases, so that the
validity of the

√
s/ΛNC expansion broke down. We have circumvented negative

cross sections by simply setting them to zero, relying on the fact, that the
O(θ2) contribution will repair the unphysical behaviour. On the other hand,
processes which at O(θ) showed little or no noncommutative effects show within
the NCSM to O(θ2) clear noncommutative signals.
Thus, we have first derived the complete expressions for the Seiberg-Witten
maps to O(θ2) finding additional ambiguities compared to those present in the
literature. We could show that the ambiguities do not always correspond to
field redefinitions and thus must not always cancel in physical observable, as it
was commonly believed. We have exemplified the dependency on the ambigui-
ties by means of a NCQED process in analytical and numerical calculations and
proved thus that at higher order the NCSM obtains more free parameters. In
the last section we proved the importance of going to O(θ2) by means of some
examples. At O(θ2) a wide range of possibilities to study further noncommu-
tative effects opens in various processes. On the theoretical side, the question
of the ambiguities and their importance for the theory should be further eluci-
dated. Recent work [34], studying the Seiberg-Witten maps to all orders in the
noncommutative parameter θ, points to the fact, that each order in θ introduces
new ambiguities.
The upcoming experimental input will hopefully point out the road elementary
particle theory in general and noncommutative quantum field theory in partic-
ular must follow. Thus, soon we will know better on which phenomenological
aspects of noncommutativity we should concentrate and which theoretical di-
rection we should pursue.
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Appendix A

Seiberg-Witten Maps to O(θ2)

We provide the complete O(θ) and O(θ2) Seiberg-Witten maps for the gauge
parameter, gauge field and matter field as solutions to the consistency and gauge
equivalence equations to the corresponding order. For each field and the gauge
parameter, at each order we will split the full solution into one special solution,
additional contributions coming either due to the ambiguity of the gauge pa-
rameter or the ambiguities of the same field but at the precedent order in θ and
homogeneous solutions of the differential equations at the corresponding order
in θ.

A.1 Gauge Parameter

The Seiberg-Witten map for the gauge parameter to O(θ) is given by the fol-
lowing (special and homogeneous) solution to the consistency equation (2.44):

λ1(λ,A, θ) =
1
4
θµν
{
∂µλ,Aν

}
, (A.1)

λ1
c1λ

(λ,A, θ) = i c1λθ
µν [∂µλ,Aν ] . (A.2)

At O(θ2), one special solution to the consistency equation at O(θ2) for c1λ = 0,
reads:

λ2(λ,A, θ) =
i

32
θκλθµν

(
− 4AκAν∂λλAµ − 3Aκ∂λλAµAν (A.3)

− 2Aλ∂νλAµAκ − 2AµAκAλ∂νλ−AµAνAκ∂λλ

− 2AνAκ∂λλAµ − 4Aν∂λλAµAκ − 2∂µAκ∂λ∂νλ
− 2∂λλAµAνAκ − ∂νλAµAκAλ + 2∂λ∂νλ∂µAκ
− 3AκAλ∂νλAµ

)
+

1
16
θκλθµν

(
4Aκ∂λ∂νλAµ +Aλ∂νλ∂µAκ + 2AµAκ∂λ∂νλ

− 2Aµ∂κAν∂λλ− ∂κAν∂λλAµ + ∂µAκAλ∂νλ

− ∂λλAµ∂κAν + 2∂νλ∂µAκAλ + 2∂λ∂νλAµAκ
)
.
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The first order ambiguity c1λ leads to the additional terms for λ2:

λ2
c1λ

(λ,A, θ) =
c1λ
2
θµνθκλ

(
+AκAλ∂νλAµ −Aκ∂λλAµAν − i(Aµ∂κAν∂λλ (A.4)

+ ∂µAκAλ∂νλ+ ∂λλAµ∂κAν + ∂νλ∂µAκAλ)
)

+
i(c1λ)

2

2
θµνθκλ

(
+AκAλ∂νλAµ +Aκ∂λλAµAν

−AµAνAκ∂λλ− ∂νλAµAκAλ
)
.

The purely second order ambiguity is parametrized by a 15 parameter family
and is given by the solution to the homogeneous consistency equation at O(θ2):

λ2
c2λ,1,...,15

(λ,A, θ) = c2λ,1 θ
µνθκλ

(
−Aλ∂νλAµAκ + iAµAκ∂λ∂νλ (A.5)

+AνAκ∂λλAµ −Aν∂λλAµAκ + iAν∂λλ∂µAκ
− i∂µAκAλ∂νλ+ i∂νAκ∂λλAµ − i∂λλAµ∂κAν
− i∂λ∂νλAµAκ +AκAν∂λλAµ

)
+ c2λ,2 θ

µνθκλ
(
−AκAλ∂νλAµ +Aκ∂λλAµAν + iAκ∂λλ∂µAν

+ iAµ∂κAν∂λλ− i∂κAλ∂νλAµ + i∂µAκAλ∂νλ
+ i∂λλAµ∂κAν − ∂λλ∂µ∂κAν + i∂νλ∂µAκAλ
− ∂µ∂κAν∂λλ

)
+ c2λ,3 θ

µνθκλ
(

+AκAλ∂νλAµ −AκAν∂λλAµ −Aκ∂λλAµAν

− iAµ∂κAν∂λλ+ iAµ∂νAκ∂λλ+Aν∂λλAµAκ

+ i∂λλ∂µAκAν − i∂νλ∂µAκAλ
)

+ c2λ,4 θ
µνθκλ

(
−AκAν∂λλAµ +Aλ∂νλAµAκ − iAλ∂νλ∂µAκ
− iAµAκ∂λ∂νλ−AνAκ∂λλAµ +Aν∂λλAµAκ

− i∂κAν∂λλAµ + i∂µAκAν∂λλ+ i∂λλAµ∂νAκ
+ i∂λ∂νλAµAκ

)
+ c2λ,5 θ

µνθκλ
(

+Aλ∂νλAµAκ − iAµ∂κAλ∂νλ−AνAκ∂λλAµ

+ i∂λλ∂µAνAκ
)

+ c2λ,6 θ
µνθκλ

(
+AκAλ∂νλAµ −Aκ∂λλAµAν − iAµ∂κAν∂λλ

− i∂µAκAλ∂νλ+ i∂µAνAκ∂λλ− i∂λλAµ∂κAν
+ ∂λλ∂µ∂κAν − i∂νλAµ∂κAλ − i∂νλ∂µAκAλ
+ ∂µ∂κAν∂λλ

)
+ c2λ,7 θ

µνθκλ
(
−AκAλ∂νλAµ +Aκ∂λλAµAν +AµAνAκ∂λλ

− ∂νλAµAκAλ
)

+ c2λ,8 θ
µνθκλ

(
−Aλ∂νλAµAκ −AµAκAλ∂νλ+AνAκ∂λλAµ

+ ∂λλAµAνAκ
)

+ c2λ,9 θ
µνθκλ

(
−AκAν∂λλAµ +AµAκAν∂λλ

+Aν∂λλAµAκ − ∂λλAµAκAν
)
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+ c2λ,10 θ
µνθκλ

(
− iAλ∂νλ∂µAκ − i∂κAν∂λλAµ − i∂µAκAλ∂νλ

+ ∂µAκ∂λ∂νλ− i∂λλAµ∂κAν + ∂λ∂νλ∂µAκ
)

+ c2λ,11 θ
µνθκλ

(
− iAκAν∂λλAµ − iAµAκAλ∂νλ+AµAκ∂λ∂νλ

− iAν∂λλAµAκ +Aν∂λλ∂µAκ + ∂µAκAλ∂νλ

− ∂νAκ∂λλAµ − i∂λλAµAνAκ − ∂λλAµ∂κAν

+ ∂λ∂νλAµAκ
)

+ c2λ,12 θ
µνθκλ

(
− iAκAλ∂νλAµ − iAκAν∂λλAµ − iAκ∂λλAµAν

+ 2Aκ∂λ∂νλAµ −Aµ∂κAν∂λλ−Aµ∂νAκ∂λλ

− iAν∂λλAµAκ + ∂λλ∂µAκAν + ∂νλ∂µAκAλ
)

+ c2λ,13 θ
µνθκλ

(
− iAλ∂νλAµAκ +Aλ∂νλ∂µAκ − iAµAκAν∂λλ

+AµAκ∂λ∂νλ− iAνAκ∂λλAµ − ∂κAν∂λλAµ

+ ∂µAκAν∂λλ− i∂λλAµAκAν − ∂λλAµ∂νAκ

+ ∂λ∂νλAµAκ
)

+ c2λ,14 θ
µνθκλ

(
+ iAκAλ∂νλAµ + iAκ∂λλAµAν −Aκ∂λλ∂µAν

− iAµAκAλ∂νλ+Aµ∂κAλ∂νλ+Aµ∂κAν∂λλ

− ∂κAλ∂νλAµ + ∂µAκAλ∂νλ− i∂λλAµAνAκ
− ∂λλAµ∂κAν + ∂λλ∂µAνAκ − i∂λλ∂µ∂κAν
− ∂νλ∂µAκAλ + i∂µ∂κAν∂λλ

)
+ c2λ,15 θ

µνθκλ
(

+ iAκAλ∂νλAµ + iAκ∂λλAµAν −Aκ∂λλ∂µAν

− iAµAνAκ∂λλ− ∂κAλ∂νλAµ + ∂µAνAκ∂λλ

− i∂νλAµAκAλ + ∂νλAµ∂κAλ
)
.

A.2 Gauge Field

The full Seiberg-Witten map to O(θ) for the gauge field is given by:

A1
ξ(A, θ) =

1
4
θµν
{
Fµξ + ∂µAξ, Aν

}
, (A.6)

A1
ξ,c1λ

(A, θ) = ic1λ θ
µν [DξAµ, Aν ] , (A.7)

A1
ξ,c1A

(A, θ) = −2i c1A θ
µνDσFµν . (A.8)

At O(θ2) we obtain one special solution to the gauge equivalence equation, with
all first order ambiguities c1λ,A and the O(θ2) ambiguities c2λ,i (i = 1, . . . , 15) set
to zero:

A2
ξ(A, θ) =

i
16
θµνθκλ

(
2[∂ν∂λAξ, ∂µAκ] + [∂µAκ, ∂ξ∂λAν ]

)
(A.9)

+
1
16
θµνθκλ

(
+ 2AµAκ∂ν∂λAξ −AµAκ∂ν∂ξAλ +AµAκ∂ξ∂λAν

+ 4Aµ∂νAκ∂λAξ − 4Aµ∂νAκ∂ξAλ − 2Aµ∂κAν∂λAξ
− 2Aν∂λAξ∂µAκ + 3Aν∂ξAλ∂µAκ + 4Aκ∂ν∂λAξAµ
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+ 2Aλ∂νAξ∂µAκ −Aλ∂ξAν∂µAκ −Aξ∂µAκ∂λAν

− 4∂µAκAν∂λAξ + ∂µAκAν∂ξAλ + ∂µAκAλ∂ξAν

− ∂µAκ∂λAνAξ + 2∂νAκ∂λAξAµ − 3∂νAκ∂ξAλAµ
+ 2∂νAξ∂µAκAλ − 2∂κAν∂λAξAµ + ∂κAν∂ξAλAµ

+ 2∂λAνAξ∂µAκ + 2∂λAξAµ∂νAκ − 4∂λAξ∂µAκAν
− ∂ξAλAµ∂νAκ − ∂ξAλAµ∂κAν + 4∂ξAλ∂µAκAν
+ 2∂ν∂λAξAµAκ + ∂ν∂ξAλAµAκ − ∂ξ∂λAνAµAκ

)
+

i
32
θµνθκλ

(
− 4AµAνAκ∂λAξ + 3AµAνAκ∂ξAλ − 2∂ξAλAµAκAν

+ 4AµAκAν∂λAξ − 2AµAκAν∂ξAλ − 4AµAκAλ∂νAξ
− 2AµAκ∂νAλAξ + 2AµAκ∂λAνAξ − 8Aµ∂νAκAλAξ
− 4AνAκ∂λAξAµ + 4AνAκ∂ξAλAµ + 8AνAλAξ∂µAκ
− 4Aν∂λAξAµAκ − 2Aν∂ξAλAµAκ − 4AκAν∂λAξAµ
− 2AκAν∂ξAλAµ − 4AκAλ∂νAξAµ +AκAλ∂ξAνAµ

− 8Aκ∂λAνAξAµ − 4Aκ∂λAξAµAν +Aκ∂ξAλAµAν

− 4AλAνAξ∂µAκ − 4AλAξAµ∂νAκ + 4AλAξAµ∂κAν
+ 8AλAξ∂µAκAν − 4Aλ∂νAξAµAκ + 4Aλ∂ξAνAµAκ
− 2AξAµAκ∂νAλ − 2AξAµAκ∂λAν + 8AξAµ∂κAνAλ
− 2Aξ∂µAκAνAλ + 2Aξ∂µAκAλAν + 2∂µAκAνAλAξ
+ 2∂µAκAλAνAξ − 4∂νAκAλAξAµ + 4∂νAλAξAµAκ
− 4∂νAξAµAκAλ + 4∂κAνAλAξAµ − 8∂λAνAξAµAκ
− 4∂λAξAµAνAκ + 4∂λAξAµAκAν + 3∂ξAνAµAκAλ

)
+

1
32
θµνθκλ

(
− 3AµAνAκAλAξ + 2AµAκAνAλAξ − 4AνAκAλAξAµ

+ 4AνAλAξAµAκ − 4AνAξAµAκAλ + 4AκAνAλAξAµ
− 4AκAλAνAξAµ − 2AκAλAξAµAν − 8AλAνAξAµAκ
− 4AλAξAµAνAκ + 4AλAξAµAκAν
− 3AξAµAνAκAλ + 2AξAµAκAνAλ

)
.

Contributions from O(θ)-ambiguities are given by:

A2
ξ,c1λ

(A, θ) =
c1λ
2
θµνθκλ

(
− i{Aµ∂κAν , ∂λAξ} − i{∂µAκAλ, ∂νAξ}

)
(A.10)

[AµAν , {Aκ, ∂λAξ}]−AµAνAκ∂ξAλ + ∂ξAνAµAκAλ
)

+ i[AνAξAµ, AκAλ] + i[Aξ, AµAνAκAλ]
)

+
(c1λ)

2

2
θµνθκλ

(
i[Aκ∂ξAλ, AµAν ] + i[AκAλ, ∂ξAνAµ]

{AµAνAκAλ, Aξ} −AκAλAξAµAν
)
,

A2
ξ,c1A

(A, θ) = −
ic1A
2
θµνθκλ

(
{Aλ, ∂ξ∂µ∂κAν} (A.11)
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+
c1A
4
θµνθκλ

(
AµAν∂ξ∂κAλ + 2AµAκ∂ν∂ξAλ + 2Aµ∂νAκ∂ξAλ

− 2Aµ∂κAλ∂νAξ − 2Aµ∂ν∂κAλAξ + 2Aν∂ξAλ∂µAκ
+ 2Aν∂ξ∂κAλAµ + 2Aκ∂λAξ∂µAν + 2Aκ∂ν∂ξAλAµ
− 2Aκ∂ξ∂λAνAµ − 2AλAξ∂µ∂κAν − 2Aξ∂µ∂κAνAλ
+ 2∂νAκ∂ξAλAµ − 2∂κAλ∂νAξAµ + 2∂λAξ∂µAνAκ
+ 2∂ξAλ∂µAκAν − 2∂ν∂κAλAξAµ + ∂ξ∂κAλAµAν

− 2∂ξ∂λAνAµAκ
)

+
ic1A
4
θµνθκλ

(
AµAν∂κAλAξ −AµAνAκ∂ξAλ + 2AµAκAλ∂νAξ

+ 2AµAκ∂νAλAξ + 2Aµ∂νAκAλAξ − 2AνAκ∂ξAλAµ
+ 2AνAξ∂µAκAλ + 2Aν∂κAλAξAµ −AκAλAξ∂µAν

+ 2AκAλ∂νAξAµ +AκAλ∂ξAνAµ + 2Aκ∂νAλAξAµ
− 2Aκ∂λAξAµAν −Aκ∂ξAλAµAν + 2AλAξAµ∂κAν
− 2AλAξ∂µAνAκ + 2Aλ∂ξAνAµAκ + 2AξAµ∂κAνAλ
−Aξ∂µAνAκAλ + 2Aξ∂µAκAλAν + 2∂νAκAλAξAµ
+ ∂κAλAξAµAν − 2∂λAξAµAνAκ + ∂ξAνAµAκAλ

)
+
c1A
4
θµνθκλ

(
[AµAνAκAλ, Aξ] + 2[AνAκ, AλAξAµ]

)
,

A2
ξ,c1λ,c

1
A
(A, θ) = c1λ c

1
A θ

µνθκλ
(
i[AµAν , ∂ξ∂κAλ] + [AµAν , Aκ∂ξAλ]

+
[
AκAλ, [Aξ, ∂µAν ]

]
− [AκAλ, ∂ξAνAµ]

+ i[AµAν , AκAλAξ] + i[AξAµAν , AκAλ]
)
. (A.12)

The O(θ2)-ambiguities of the gauge parameter also contribute to A2
ξ and yield

the additional terms:

A2
ξ,c2λ,1,...,15

= c2λ,1 θ
µνθκλ

(
−AµAκAλ∂ξAν −AµAκ∂νAλAξ (A.13)

+ iAµAκ∂ν∂ξAλ +AνAκ∂ξAλAµ + iAν∂ξAλ∂µAκ
−Aλ∂ξAνAµAκ + iAξAµAκAλAν +AξAµAκ∂νAλ

−Aξ∂µAκAλAν + ∂µAκAλAνAξ − i∂µAκAλ∂ξAν
+ i∂νAκ∂ξAλAµ + ∂ξAλAµAνAκ − i∂ξAλAµ∂κAν
− iAµAκAλAνAξ − i∂ξ∂λAνAµAκ

)
+ c2λ,2 θ

µνθκλ
(

+ iAµAκAλAνAξ +AµAκAλ∂ξAν +AµAκ∂νAλAξ

− iAµAκ∂ν∂ξAλ +Aµ∂νAκAλAξ − iAµ∂νAκ∂ξAλ
−Aµ∂κAνAλAξ + iAµ∂κAν∂ξAλ −Aµ∂κAλAνAξ

+ iAµ∂κAλ∂ξAν + iAµ∂ν∂κAλAξ −AνAκ∂ξAλAµ

− iAν∂ξAλ∂µAκ − iAν∂ξ∂κAλAµ − iAκ∂ν∂ξAλAµ
+ iAκ∂ξ∂λAνAµ +Aλ∂ξAνAµAκ −Aλ∂ξ∂µ∂κAν
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− iAξAµAκAλAν −AξAµAκ∂νAλ −AξAµ∂νAκAλ

+AξAµ∂κAνAλ +AξAµ∂κAλAν − iAξAµ∂ν∂κAλ
+Aξ∂µAκAλAν + iAξ∂µ∂κAνAλ − ∂µAκAλAνAξ

+ i∂µAκAλ∂ξAν − i∂νAκ∂ξAλAµ + i∂ξAν∂µAκAλ
− ∂ξAλAµAνAκ + i∂ξAλAµ∂κAν − i∂ξAλ∂µAνAκ
− i∂ξAλ∂µAκAν − ∂ξAλ∂µ∂κAν − i∂µ∂κAνAλAξ
− ∂µ∂κAν∂ξAλ + i∂ξ∂λAνAµAκ − ∂ξ∂µ∂κAνAλ

)
+ c2λ,3 θ

µνθκλ
(
−Aµ∂νAκAλAξ + iAµ∂νAκ∂ξAλ +Aµ∂κAνAλAξ

− iAµ∂κAν∂ξAλ + iAκ∂ν∂ξAλAµ − iAκ∂ξ∂λAνAµ
+AξAµ∂νAκAλ −AξAµ∂κAνAλ − i∂ξAν∂µAκAλ
+ i∂ξAλ∂µAκAν

)
+ c2λ,4 θ

µνθκλ
(

+ iAµAκAνAλAξ +AµAκAν∂ξAλ +AµAκ∂λAνAξ

− iAµAκ∂ξ∂λAν +Aν∂ξAλAµAκ −AκAν∂ξAλAµ

− iAλ∂ξAν∂µAκ −AξAµAκAνAλ −AξAµAκ∂λAν

+Aξ∂µAκAνAλ − ∂µAκAνAλAξ + i∂µAκAν∂ξAλ
− i∂κAν∂ξAλAµ − ∂ξAλAµAκAν + i∂ξAλAµ∂νAκ
+ i∂ν∂ξAλAµAκ

)
+ c2λ,5 θ

µνθκλ
(

+Aµ∂κAλAνAξ − iAµ∂κAλ∂ξAν + iAν∂ξ∂κAλAµ
−AξAµ∂κAλAν + i∂ξAλ∂µAνAκ

)
+ c2λ,6 θ

µνθκλ
(

+ iAµAνAκAλAξ +AµAνAκ∂ξAλ −AµAν∂κAλAξ

+ iAµAν∂ξ∂κAλ − iAµAκAλAνAξ −AµAκAλ∂ξAν

−AµAκ∂νAλAξ + iAµAκ∂ν∂ξAλ −Aµ∂νAκAλAξ

+ iAµ∂νAκ∂ξAλ +Aµ∂κAνAλAξ − iAµ∂κAν∂ξAλ
+Aµ∂κAλAνAξ − iAµ∂κAλ∂ξAν − iAµ∂ν∂κAλAξ
+AνAκ∂ξAλAµ + iAν∂ξAλ∂µAκ + iAν∂ξ∂κAλAµ
−AκAλ∂ξAνAµ +Aκ∂ξAλAµAν + iAκ∂ξAλ∂µAν
+ iAκ∂ν∂ξAλAµ − iAκ∂ξ∂λAνAµ −Aλ∂ξAνAµAκ

+Aλ∂ξ∂µ∂κAν − iAξAµAνAκAλ +AξAµAν∂κAλ

+ iAξAµAκAλAν +AξAµAκ∂νAλ +AξAµ∂νAκAλ

−AξAµ∂κAνAλ −AξAµ∂κAλAν + iAξAµ∂ν∂κAλ
+Aξ∂µAνAκAλ −Aξ∂µAκAλAν − iAξ∂µ∂κAνAλ
− ∂µAνAκAλAξ + i∂µAνAκ∂ξAλ + ∂µAκAλAνAξ

− i∂µAκAλ∂ξAν + i∂νAκ∂ξAλAµ − i∂κAλ∂ξAνAµ
− ∂ξAνAµAκAλ − i∂ξAνAµ∂κAλ − i∂ξAν∂µAκAλ
+ ∂ξAλAµAνAκ − i∂ξAλAµ∂κAν + i∂ξAλ∂µAνAκ
+ i∂ξAλ∂µAκAν + ∂ξAλ∂µ∂κAν + i∂µ∂κAνAλAξ
+ ∂µ∂κAν∂ξAλ + i∂ξ∂κAλAµAν − i∂ξ∂λAνAµAκ
+ ∂ξ∂µ∂κAνAλ

)
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+ c2λ,7 θ
µνθκλ

(
+ iAµAνAκAλAξ +AµAνAκ∂ξAλ −AκAλ∂ξAνAµ

+Aκ∂ξAλAµAν − iAξAµAνAκAλ − ∂ξAνAµAκAλ
)

+ c2λ,8 θ
µνθκλ

(
− iAµAκAλAνAξ −AµAκAλ∂ξAν +AνAκ∂ξAλAµ

−Aλ∂ξAνAµAκ + iAξAµAκAλAν + ∂ξAλAµAνAκ
)

+ c2λ,9 θ
µνθκλ

(
+ iAµAκAνAλAξ +AµAκAν∂ξAλ +Aν∂ξAλAµAκ

−AκAν∂ξAλAµ − iAξAµAκAνAλ − ∂ξAλAµAκAν
)

+ c2λ,10 θ
µνθκλ

(
+ iAµAκAνAλAξ +AµAκAν∂ξAλ − iAµAκAλAνAξ
−AµAκAλ∂ξAν −AµAκ∂νAλAξ +AµAκ∂λAνAξ

+ iAµAκ∂ν∂ξAλ − iAµAκ∂ξ∂λAν +AνAκ∂ξAλAµ

+Aν∂ξAλAµAκ + iAν∂ξAλ∂µAκ −AκAν∂ξAλAµ

−Aλ∂ξAνAµAκ − iAλ∂ξAν∂µAκ − iAξAµAκAνAλ
+ iAξAµAκAλAν +AξAµAκ∂νAλ −AξAµAκ∂λAν

+Aξ∂µAκAνAλ −Aξ∂µAκAλAν − iAξ∂µAκ∂λAν
− ∂µAκAνAλAξ + i∂µAκAν∂ξAλ + ∂µAκAλAνAξ

− i∂µAκAλ∂ξAν + i∂µAκ∂λAνAξ + ∂µAκ∂ξ∂λAν

+ i∂νAκ∂ξAλAµ − i∂κAν∂ξAλAµ + ∂ξAλAµAνAκ

− ∂ξAλAµAκAν + i∂ξAλAµ∂νAκ − i∂ξAλAµ∂κAν
+ i∂ν∂ξAλAµAκ − i∂ξ∂λAνAµAκ + ∂ξ∂λAν∂µAκ

)
+ c2λ,11 θ

µνθκλ
(

+ iAµAκ∂νAλAξ +AµAκ∂ν∂ξAλ +Aν∂ξAλ∂µAκ

− iAξAµAκ∂νAλ − iAξ∂µAκAλAν + i∂µAκAλAνAξ
+ ∂µAκAλ∂ξAν − ∂νAκ∂ξAλAµ − ∂ξAλAµ∂κAν

+ ∂ξ∂λAνAµAκ
)

+ c2λ,12 θ
µνθκλ

(
− iAµ∂νAκAλAξ −Aµ∂νAκ∂ξAλ − iAµ∂κAνAλAξ
−Aµ∂κAν∂ξAλ +Aκ∂ν∂ξAλAµ +Aκ∂ξ∂λAνAµ

+ iAξAµ∂νAκAλ + iAξAµ∂κAνAλ + ∂ξAν∂µAκAλ

+ ∂ξAλ∂µAκAν
)

+ c2λ,13 θ
µνθκλ

(
+ iAµAκ∂λAνAξ +AµAκ∂ξ∂λAν +Aλ∂ξAν∂µAκ

− iAξAµAκ∂λAν − iAξ∂µAκAνAλ + i∂µAκAνAλAξ
+ ∂µAκAν∂ξAλ − ∂κAν∂ξAλAµ − ∂ξAλAµ∂νAκ

+ ∂ν∂ξAλAµAκ
)

+ c2λ,14 θ
µνθκλ

(
+ iAµAκ∂νAλAξ +AµAκ∂ν∂ξAλ + iAµ∂νAκAλAξ

+Aµ∂νAκ∂ξAλ + iAµ∂κAνAλAξ +Aµ∂κAν∂ξAλ

−Aµ∂ν∂κAλAξ +Aν∂ξAλ∂µAκ −Aκ∂ν∂ξAλAµ

−Aκ∂ξ∂λAνAµ − iAλ∂ξ∂µ∂κAν − iAξAµAκ∂νAλ
− iAξAµ∂νAκAλ − iAξAµ∂κAνAλ +AξAµ∂ν∂κAλ

− iAξ∂µAκAλAν +Aξ∂µ∂κAνAλ + i∂µAκAλAνAξ
+ ∂µAκAλ∂ξAν − ∂νAκ∂ξAλAµ − ∂ξAν∂µAκAλ
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− ∂ξAλAµ∂κAν − ∂ξAλ∂µAκAν − i∂ξAλ∂µ∂κAν
− ∂µ∂κAνAλAξ + i∂µ∂κAν∂ξAλ + ∂ξ∂λAνAµAκ

+ i∂ξ∂µ∂κAνAλ
)

+ c2λ,15 θ
µνθκλ

(
− iAµAν∂κAλAξ
−AµAν∂ξ∂κAλ −Aκ∂ξAλ∂µAν + iAξAµAν∂κAλ
− iAξ∂µAνAκAλ + i∂µAνAκAλAξ + ∂µAνAκ∂ξAλ

− ∂κAλ∂ξAνAµ + ∂ξAνAµ∂κAλ + ∂ξ∂κAλAµAν
)
.

The purely O(θ2)-ambiguities from homogeneous solutions to the gauge equiv-
alence equation at O(θ2) read:

A2
ξ,c2A,1

(A, θ) = c2A,1
i
2
θµνθκλ(DκFµν)Fλξ , (A.14a)

A2
ξ,c2A,2

(A, θ) = c2A,2
i
2
θµνθκλFλξ(DκFµν) , (A.14b)

A2
ξ,c2A,3

(A, θ) = c2A,3
i
2
θµνθκλFµκ(DξFνλ) , (A.14c)

A2
ξ,c2A,4

(A, θ) = c2A,4
i
2
θµνθκλ(DξFνλ)Fµκ , (A.14d)

A2
ξ,c2A,5

(A, θ) = c2A,5
i
2
θµνθκλFκλ(DξFµν) , (A.14e)

A2
ξ,c2A,6

(A, θ) = c2A,6
i
2
θµνθκλ(DξFµν)Fκλ . (A.14f)

A.3 Matter Field

The Seiberg-Witten map for the matter field to O(θ) including the ambiguity
due to the gauge parameter ambiguity is given by

ψ1(ψ,A, θ) =
1
2
θµν

(
Aµ∂νψ +

i
2
AµAνψ

)
, (A.15)

ψ1
c1λ

(ψ,A, θ) = − c1λ θµνAµAνψ , (A.16)

ψ1
c1ψ

(ψ,A, θ) =
c1ψ
2
θµνFµνψ . (A.17)

AtO(θ2) we obtain the special solution for the matter field, when all ambiguities
from O(θ) and from the gauge parameter are set to zero:

ψ2(ψ,A, θ) = − i
8
θµνθκλ∂µAκ∂ν∂λψ (A.18)

+
1
16
θµνθκλ

(
− 2Aµ∂κAν∂λψ − 2∂µAκAν∂λψ

+ 2AµAκ∂ν∂λψ + 4Aµ∂νAκ∂λψ − ∂µAκ∂νAλψ
)

+
i
8
θµνθκλ

(
− 2Aµ∂νAκAλψ + ∂µAκAνAλψ

−AµAκAλ∂νψ +AµAκAν∂λψ −AµAνAκ∂λψ
)
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+
1
32
θµνθκλ

(
− 3AµAνAκAλψ + 4AµAκAνAλψ − 2AµAκAλAνψ

)
.

Contributions from O(θ)-ambiguities read:

ψ2
c1λ

(ψ,A, θ) =
c1λ
2
θµνθκλ

(
AµAνAκDλψ − i[Aµ, ∂κAν ]∂λψ

)
(A.19)

+
(c1λ)

2

2
θµνθκλ

(
AµAνAκAλψ

)
,

ψ2
c1ψ

(ψ,A, θ) =
c1ψ
4
θµνθκλ

(
AµAνAκAλψ + 2iAµAκAλ∂νψ (A.20)

+ 2iAµAκ∂νAλψ + 2iAµ∂νAκAλψ − 2Aµ∂κAλ∂νψ
+ iAµAν∂κAλψ + 2Aλ∂µ∂κAνψ

)
,

ψ2
c1λ,c

1
ψ
(ψ,A, θ) = c1λ c

1
ψ θ

µνθκλ
(
iAµAνAκAλψ −AµAν∂κAλψ

)
. (A.21)

Contributions from theO(θ1)-ambiguities of the gauge parameter to the Seiberg-
Witten map for the matter field at O(θ2) are

ψ2
c1λ,1,...,15

(ψ,A, θ) = c2λ,1 θ
µνθκλ

(
+ ∂µAκAνAλψ + i∂µAκ∂νAλψ (A.22)

− iAµAκAνAλψ −AµAκ∂λAνψ − i∂µAκ∂λAνψ
)

+ c2λ,2 θ
µνθκλ

(
iAµAκAνAλψ +AµAκ∂λAνψ +Aµ∂νAκAλψ

−Aµ∂κAνAλψ −Aµ∂κAλAνψ − iAλ∂µ∂κAνψ
− ∂µAκAνAλψ − i∂µAκ∂νAλψ + i∂µAκ∂λAνψ
− i∂µ∂κAνAλψ

)
+ c2λ,3 θ

µνθκλ
(
−Aµ∂νAκAλψ +Aµ∂κAνAλψ

)
+ c2λ,4 θ

µνθκλ
(
iAµAκAνAλψ +AµAκ∂λAνψ − ∂µAκAνAλψ

)
+ c2λ,5 θ

µνθκλAµ∂κAλAνψ

+ c2λ,6 θ
µνθκλ

(
− iAµAκAνAλψ −AµAκ∂λAνψ −Aµ∂νAκAλψ

+Aµ∂κAνAλψ +Aµ∂κAλAνψ + iAλ∂µ∂κAνψ
+ i∂µAν∂κAλψ + ∂µAκAνAλψ + i∂µAκ∂νAλψ
− i∂µAκ∂λAνψ + i∂µ∂κAνAλψ

)
+ i c2λ,7 θ

µνθκλAµAνAκAλψ − i c2λ,8 θ
µνθκλAµAκAλAνψ

+ i c2λ,9 θ
µνθκλAµAκAνAλψ + i c2λ,10 θ

µνθκλ∂µAκ∂νAλψ

+ c2λ,11 θ
µνθκλ

(
AµAκAνAλψ −AµAκAλAνψ + 2iAµAκ∂νAλψ

− iAµAκ∂λAνψ + i∂µAκAνAλψ − ∂µAκ∂νAλψ

+ ∂µAκ∂λAνψ
)

+ i c2λ,12 θ
µνθκλ

(
−Aµ∂νAκAλψ −Aµ∂κAνAλψ

)
+ i c2λ,13 θ

µνθκλ
(
AµAκ∂λAνψ + ∂µAκAνAλψ

)
+ c2λ,14 θ

µνθκλ
(
AµAκAνAλψ −AµAκAλAνψ + 2iAµAκ∂νAλψ
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− iAµAκ∂λAνψ + iAµ∂νAκAλψ + iAµ∂κAνAλψ
+Aλ∂µ∂κAνψ + i∂µAκAνAλψ − ∂µAκ∂νAλψ

+ ∂µAκ∂λAνψ − ∂µ∂κAνAλψ
)

+ c2λ,15 θ
µνθκλ

(
−AµAνAκAλψ − 2iAµAν∂κAλψ + ∂µAν∂κAλψ

)
.

The purely O(θ2)-ambiguities can be written compactly as

ψ2
c2ψ,1

(ψ,A, θ) = ic2ψ,1 θ
µνθκλ(DµFνκ)Dλψ , (A.23a)

ψ2
c2ψ,2

(ψ,A, θ) = −
c2ψ,2
4
θµνθκλFµνFκλψ , (A.23b)

ψ2
c2ψ,3

(ψ,A, θ) =
c2ψ,3
2
θµνθκλFµκFνλψ . (A.23c)

Our original solution for the O(θ2) ambiguity parametrized by c2ψ,1 is

ψ2
c2ψ,1

(ψ,A, θ) = c2ψ,1 θ
µνθκλ

(
− iAµAν∂κAλψ −AµAκAνAλψ (A.24)

− iAµAκAλ∂νψ − iAµAκ∂νAλψ + iAµAκ∂λAνψ
+Aµ∂κAν∂λψ − iAµ∂κAνAλψ +Aµ∂κAλ∂νψ

− iAµ∂κAλAνψ − ∂µAνAκ∂λψ + ∂µAν∂κAλψ

− i∂µAκAνAλψ + ∂µAκAλ∂νψ + ∂µAκ∂νAλψ

− ∂µAκ∂λAνψ + i∂µ∂κAν∂λψ + ∂µ∂κAνAλψ

+ iAµAνAκ∂λψ
)
.

The difference between this solution and (A.23a) consists in homogeneous so-
lutions to the gauge equivalence equation at O(θ2) (4.4b).
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Appendix B

Feynman Rules to O(θ2)

We give the Feynman rules for neutral currents and triple gauge boson inter-
actions to O(θ) and O(θ2). Since the chiral structure of the fermionic currents
remains unaffected by the SWMs, we have written the following vertex fac-
tors involving fermions as pure vector currents. The necessary substitutions
γµ → gV γµ − gAγµγ5 depending on the fermion flavor and the vector boson
contracted with to γµ can be copied directly from the SM Lagrangian. All
momenta are incoming.

εµ(k)

u(p)

ū(p′)

= ig · Vµ(p′, k, p) , (B.1a)

εµ(k1)

εν(k2)

u(p)

ū(p′)

= ig2 · V c
µ2µ1

(p′, k2, k1, p) , (B.1b)

εξ1(k1)

εξ2(k2)

εξ3(k3) = ig[ρ] · V 3
ξ1ξ2ξ3(k1, k2, k3) , (B.1c)

where g[ρ] indicates the representation-dependence of the TGB coupling. The

vertex functions V (i)
µν...(p, k, . . .) read:

V (1)
µ (p′, k, p) =

i
2

[
kθµ/p(1− 4c1ψ) + 2 kθµ/k(c1A − c1ψ)− pθµ/k − (kθp)γµ

]
,

(B.2a)
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V (2)
µ (p′, k, p) =

1
8
(kθp)

[
kθµ/p(1− 16c2ψ) + 4kθµ/k(c1A − 2c2ψ)− pθµ/k − (kθp)γµ

]
,

(B.2b)

V c,(1)
νµ (p′, k2, k1, p) =

i
2

[
k2θ

µγν − k1θ
µγν(1− 4c1ψ)− θµν/k1 + (µ↔ ν, k1 ↔ k2)

]
.

(B.2c)
We split the expression for the contact vertex at O(θ2) into the on-shell and
the off-shell contributions, since for the processes calculated within this work
only the first part is needed:

V c,(2)
νµ (p′, k2, k1, p) = V c,(2),on-shell

νµ (p′, k2, k1, p) + V c,(2),off-shell
νµ (p′, k2, k1, p) .

(B.2d)

with

V c,(2),on-shell
νµ (p′, k2, k1, p) =

1
8

[
k1θk2 k1θ

µγν (8c2A − 4c1ψ + 8c2ψ − 1)

+ k1θp k1θ
µγν (16c2ψ − 1) + 2 k2θp k1θ

µγν (4c1ψ − 1)

− k1θk2 k2θ
µγν + 3 k1θp k2θ

µγν + 2 k2θp k2θ
µγν − 3 k1θk2 pθ

µγν

+ 4 k1θ
µk1θ

ν/k1(2c2A − c1A − c1ψ) + 2 k1θ
µpθν/k1(1− 4c1ψ) + 2 k2θ

µpθν/k1

− 4 θµνk1θp/k1 + (µ↔ ν, k1 ↔ k2)
]

(B.2e)

and

V c,(2),off-shell
νµ (p′, k2, k1, p) =

1
8

[
k2θ

µpθν(/k1 + /k2) + 3 k1θp θ
µν(/k1 + /k2)

+ (µ↔ ν, k1 ↔ k2)
]

+ k1θ
µk2θ

ν
[
C1(/k1 + /k2) + C2/p

]
+ k1θ

νk2θ
µ
[
C3(/k1 + /k2) + C4/p

]
+ k1θk2 θ

µν
[
(C3 −

1
8
)(/k2 + /k1) + C4/p

]
, (B.2f)

where the Ci are combinations of the ambiguity parameters:

C1 =
c1A
2
−
c1ψ
2
− 2c1Ac

1
ψ + (c1ψ)2 + 2(c2λ,15 − c2λ,6)

+2(c2ψ,2 − c2ψ,2) ,

C2 =
1
4

+ 2((c1ψ)2 − c1ψ) + 4(c2λ,15 + c2ψ,1 − c2ψ,2) ,

C3 = 2(c2λ,2 − c2λ,1 − c2λ,6 − c2λ,10

− c2λ,11 − c2λ,14 + c2ψ,1 + c2ψ,3) + c2A,3 + c2A,4 ,

C4 = −1
2
− 4(c2λ,11 + c2λ,14 − c2ψ,1 − c2ψ,3) .

For the TGB interaction we have:

V
3,(1)
ξ1ξ2ξ3

(k1, k2, k3) =



100 B. Feynman Rules to O(θ2)

θξ1ξ2 [(k1k3)k2,ξ3 − (k2k3)k1,ξ3 ] + (k1θk2) [k3,ξ1gξ2ξ3 − gξ1ξ3k3,ξ2 ]

+
[
(k1θ)ξ1 [k2,ξ3k3,ξ2 − (k2k3)gξ2ξ3 ]− (ξ1 ↔ ξ2)− (ξ1 ↔ ξ3)

]
+ cyclical permutations of

{
(ξ1, k1), (ξ2, k2), (ξ3, k3)

}
, (B.2g)

V
3,(2)
ξ1ξ2ξ3

(k1, k2, k3) = i
[
k1θk2k1θ

ξ1
(
(c2A − c1A)(k1,ξ3k3,ξ2 − gξ2ξ3(k1k3))

+ c2A(k2,ξ3k3,ξ2 − gξ2ξ3(k2k3))
)

+ k1θ
ξ1k1θ

ξ2(c2A − c1A)(k2,ξ3(k1k3)− k1,ξ3(k2k3)) + (ξ2, k2) ↔ (ξ3, k3)
]

+ cyclical permutations of
{
(ξ1, k1), (ξ2, k2), (ξ3, k3)

}
. (B.2h)
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