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We wish to find the truth, no matter where it
lies. But to find the truth we need imagination
and skepticism both. We will not be afraid to
speculate, but we will be careful to distinguish
speculation from fact.

- Carl Sagan





Zusammenfassung

Der Einsatz von gekrümmten Raumzeithintergründen mit Extradimensionen, vor
allem des AdS5, hat seit der viel beachteten Arbeit von Randall/Sundrum (RS)
vor 10 Jahren, insbesondere in Verbindung mit der AdS/CFT -Korrespondenz,
sehr an Popularität gewonnen und gilt seither als eine der fruchtbarsten neu-
en Ideen bei der Suche nach Modellen jenseits des Standardmodells (SM). Die-
ser Ansatz brachte nicht nur frische Einsichten in die Physik stark wechselwir-
kender Feldtheorien, die zuvor störungstheoretischen Methoden verschlossen wa-
ren, sondern schaffte auch einen faszinierenden neuen Zusammenhang zwischen
phänomenologischen Modellen an der TeV-Skala und der Gravitation. Dies hat
unter anderem auch das Interesse an Modellen der elektroschwachen Symmetrieb-
rechung ohne physikalische Skalarfelder (“Higgslose Modelle”) in diesem Kontext
mit dem Ziel neu aufleben lassen, Alternativen zu dem im Standardmodell der
Teilchenphysik enthaltenen Higgs-Mechanismus zu finden. Bei der Umsetzung
dieser Ideen lag das Hauptaugenmerk meisst auf potentiellen neuen Beträgen zu
elektroschwachen Präzisionsobservablen. Gleichzeitig gibt es jedoch sehr starke
astrophysikalische Indizien dafür, dass die Antwort auf die Frage nach dem Ur-
sprung der beobachteten dunklen Materie in Teilchenmodellen jenseits des Stan-
dardmodells zu finden ist. Die Natur der elektroschwachen Symmetriebrechung
und der dunklen Materie gehören zu den zentralen Fragen, deren Beantwortung
dank aktueller und anstehender Experimente z.B. an Beschleunigern wie dem
Tevatron, wie auch in naher Zukunft am LHC, in greifbare Nähe rückt. Die-
se Situation legt nahe, dass neue Szenarien jenseits des Standardmodells bei-
de Fragestellungen gleichermaßen thematisieren sollten. In der vorliegenden Ar-
beit untersuchen wir die phänomenologischen Implikationen einer Erweiterung
Higgsloser Modelle in 5D um Supersymmetrie mit erhaltener R-Parität im elek-
troschwachen Symmetriebrechungssektor. Das Ziel war, eine möglichst einfache
Erweiterung zu finden, die ein realistisches leichtes Spektrum aufweist und gleich-
zeitig einen guten Kandidaten für kalte dunkle Materie enthält, ohne zu viele freie
Parameter einzuführen. Um dies zu bewerkstelligen, bot sich der gleiche Mecha-
nismus an, der bereits für die Brechung der Eichsymmetrien zum Einsatz kommt,
nämlich die Brechung durch Randbedingungen. Während Supersymmetrie in 5D
vier Superladungen beinhaltet und somit eng mit N = 2 Supersymmetrie in 4D
verwandt ist, wird allein durch den RS-Hintergrund die Hälfte der Symmetri-
en gebrochen, so dass nach der Kaluza-Klein-Reduktion lediglich eine erhaltene
Supersymmetrie verbleibt. Davon ausgehend war das einfachste gangbare Sze-
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nario, die Brechung der verbleibenden Generatoren effektiv durch Randbedin-
gungen auf der UV-Brane der RS-Raumzeit zu beschreiben. Obwohl hierdurch
Teile des leichten SUSY-Spektrums, insb. die Superpartner der Fermionen, aus-
projeziert werden, verbleibt die reichhaltige Phänomenologie von vollständigen
N = 2-Multiplets im Kaluza-Klein-Sektor. Das leichte erweiterte Spektrum be-
steht aus den Superpartnern der elektroschwachen Eichbosonen, die Massen um
O(100 GeV) erhalten. Die Neutralinos als Masseneigenzustände des neutralen
Bino-Wino-Sektors sind automatisch die leichtesten supersymmetrischen Teilchen
(LSP) und damit natürliche Kandidaten für kalte dunkle Materie. Ihre Relikt-
dichte kann ohne exzessive Feineinstellung von Parametern in Einklang mit Be-
obachtungen gebracht werden. Das Modell sagt somit eine leichte NLSP-Masse
im Bereich mχ+ ≈ 100 . . . 110 GeV und einen LSP bei etwa mχ ≈ 90 GeV voraus.
Am LHC hat der nicht-supersymmetrische Teilcheninhalt des Modells weitestge-
hend die gleichen phänomenologischen Konsequenzen wie sie bereits von Studien
Higgsloser Modelle bekannt sind. Wir haben uns daher auf die Produktion des
LSP und NLSP am LHC als typische Signatur des erweiterten Modells konzen-
triert, und insbesondere Monte-Carlo-Simulationen mit O’Mega/WHIZARD zur
Beobachtung von fehlender transversaler Energie (/pT ) in Assoziation mit schwe-
ren Quarks durchgeführt. Wir diskutieren geeignete Schnitte auf Winkel, inva-
riante Massen und Impulse, und erhalten Hadronische Produktionsquerschnitte
von σ > 100 fb bei 14 TeV, welche charakteristische /pT -Verteilungen im χχtt
Endzustand aufweisen. Der Nachweis über die Produktion von b-Paaren erweist
sich als schwieriger. Unsere Ergebnisse legen nahe, dass die Entdeckung dieses
Typs von dunkler Materie in Higgslosen Modellen am LHC über fehlende trans-
versale Energie mit wenigen fb−1 bei 14 TeV möglich ist, insofern eine zuverlässige
Identifikation schwerer Quarks gegeben ist.



Abstract

Since its popularization due to Randall and Sundrum (RS) one decade ago, and
in connection with the AdS/CFT correspondence in particular, 5D warped back-
ground spacetime has been one of the most fruitful new ideas in physics beyond
the standard model (SM), leading to new insights into symmetry breaking and
the properties of strongly interacting theories inaccessible to direct perturba-
tive calculations, while at the same time relating gravity to phenomenological
model building. This has, among others, led to a renewed interest in models
of electroweak symmetry breaking without physical scalar fields in the guise of
so-called ’warped higgsless’ models, which could provide an alternative to the
famed Higgs mechanism of electroweak symmetry breaking which is part of the
Standard Model of particle physics. However, little emphasis was put on rec-
onciling these models with the strong evidence from astrophysical observations
that one or several new, as yet unknown, stable particle species exist which form
the cold dark matter content of the universe. The nature of dark matter and
electroweak symmetry breaking are among the most prominent puzzles subject
to experimental scrutiny at the Tevatron, direct search experiments, and in the
near future at the LHC, which compels us the believe that both issues should
be addressed together in any alternative scenario beyond the Standard Model.
In this thesis we have investigated phenomenological implications which arise for
cosmology and collider physics when the electroweak symmetry breaking sector
of warped higgsless models is extended to include warped supersymmetry with
conserved R parity. The goal was to find the simplest supersymmetric extension
of these models which still has a realistic light spectrum including a viable dark
matter candidate. To accomplish this, we have used the same mechanism which
is already at work for symmetry breaking in the electroweak sector to break su-
persymmetry as well, namely symmetry breaking by boundary conditions. While
supersymmetry in five dimensions contains four supercharges and is therefore
directly related to 4D N = 2 supersymmetry, half of them are broken by the
background leaving us with ordinary N = 1 theory in the massless sector after
Kaluza-Klein expansion. We thus use boundary conditions to model the effects of
a breaking mechanism for the remaining two supercharges. The simplest viable
scenario to investigate is a supersymmetric bulk and IR brane without supersym-
metry on the UV brane. Even though parts of the light spectrum are effectively
projected out by this mechanism, we retain the rich phenomenology of complete
N = 2 supermultiplets in the Kaluza-Klein sector. While the light supersymmet-
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ric spectrum consists of electroweak gauginos which get their O(100 GeV) masses
from IR brane electroweak symmetry breaking, the light gluinos and squarks are
projected out on the UV brane. The neutralinos, as mass eigenstates of the neu-
tral bino-wino sector, are automatically the lightest gauginos, making them LSP
dark matter candidates with a relic density that can be brought to agreement
with WMAP measurements without extensive tuning of parameters. For chargino
masses close to the experimental lower bounds at around mχ+ ≈ 100 . . . 110 GeV,
the dark matter relic density points to LSP masses of around mχ ≈ 90 GeV. At
the LHC, the standard particle content of our model shares most of the key
features of known warped higgsless models. We have performed Monte Carlo
simulations of warped higgsless LSP and NLSP production at a benchmark point
using O’Mega/WHIZARD, concentrating on /pT in association with third genera-
tion quarks. After background reduction cuts on the quark momenta and angles,
we get hadronic cross sections of σ > 100 fb at 14 TeV with characteristic /pT
distributions for χχtt final states, while the final states with bb pairs have much
lower event rates and shapes which are hard to discern in experiments. Our re-
sults suggest that the discovery of warped higgsless LSP dark matter at the LHC
via missing energy is within reach for the first few fb−1 at 14 TeV if b and in
particular t identification is reliable.
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Chapter 1

Introduction

As the Large Hadron Collider (LHC) at CERN will commence operation in 2009,
some of the most pressing questions in fundamental physics that have arisen dur-
ing the past decades might finally be answered as more and more data will be
collected by the associated experiments in the months and years to come. Two
of them in particular, ATLAS and CMS, have the potential to either vindicate or
bring to an end the decades-long rule of the so-called Electroweak Standard Model
of particle physics (SM) and the standard Higgs mechanism of electroweak sym-
metry breaking employed therein as the favoured model of fundamental particle
interactions. The SM has earned this status through three decades of astonishing
experimental successes which range from discoveries of theoretically predicted
particles (most recently the τ neutrino in 2000 at Fermilab) to successful non-
trivial precision tests at the LEP experiments and B factories among others.
Despite all this, we now know that the picture of fundamental interactions as de-
scribed by the SM is incomplete, inviting theorists to speculate about extensions
or alternatives.

The most obvious shortcoming of the SM is the complete lack of an explana-
tion for the lion’s share of the matter in the universe dubbed dark matter (DM)
which, according to the combined evidence of observations of the cosmological
microwave background and direct observations of gravitational lensing, is most
readily explained by the presence of one or several species of massive particles per-
meating the cosmos at nonrelativistic speeds which neither carry electrical charge
nor participate in the strong interaction and, most importantly, must be stable
on cosmological time scales. Indeed, recent results of the WMAP experiment
confirm that nonrelativistic DM makes up roughly 20% of the energy density of
the universe, as compared to ordinary baryonic matter such as atoms and their
nuclei which contributes about 5%. The remaining ≈ 70% of the energy density
appears to have the equation of state of vacuum energy and thus raises deep
questions about quantum field theory and gravity in its own right.

In contrast, on the side of yet to be verified predictions, the Higgs boson is the last
and only particle species predicted by the SM which has so far eluded experimen-
tal detection, and has therefore become one of the central topics to be addressed
at the LHC, along with precision measurements for example of mesons and the
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top quark, which are the basis for a deeper understanding of the structure of
flavour and symmetry breaking. One should keep in mind that the version of the
Higgs mechanism for electroweak symmetry breaking used in the SM is not unique
but merely the simplest in a whole family of models. It is minimal in the sense
that it, as far as we know today, represents the smallest possible particle content
required to achieve electroweak symmetry breaking in a way that is compatible
with experiments while at the same time being renormalizable, meaning that the
model can, even after the inclusion of quantum corrections, be parametrized com-
pletely using a finite set of input parameters. The fields it introduces to do the
job are one physical Higgs boson whose theoretical significance will be discussed
in more detail later, and three unphysical “would-be” Goldstone bosons needed
to obtain the three currently known massive vector bosons W+, W− and Z.

Apart from the absence of evidence for Higgs bosons and the lack of DM can-
didates in the SM, there is another theoretical reason why alternatives to the
minimal Higgs mechanism are considered, namely the hierarchy problem. It can
be stated as follows: defining the SM with a weak scale (mH < TeV) Higgs boson
via a renormalization prescription is unproblematic. However, as soon as the SM
is to be embedded in a larger theory involving higher scales (for example quantum
gravity), quantum corrections of the Higgs potential will include the contributions
up to this scale. Unfortunately, the SM contributions to the Higgs self energy
are quadratically divergent in the cutoff scale, leading to a natural1 Higgs mass
of mH ≈ 1019 GeV which can only be brought down to the theoretically accept-
able sub-TeV scale by introducing a counterterm which has to be dialed to many
digits accuracy in order to cancel this huge mass shift. This is very unappealing
and compels many theorists to believe that some mechanism might set in not too
far above currently observable energies to tame this quadratic divergence, the
classic (and to date still the only renormalizable) example being supersymmetry
(SUSY), or the composite Higgs and little Higgs models. A yet more radical
approach leads us to abandon the notion of symmetry breaking from a physical
scalar Higgs particle - fundamental or composite - altogether while introducing
vector resonances to unitarize scattering amplitudes in its stead. Historically,
such models were already proposed only a few years after the introduction of the
SM. In this class of models a new strong interaction, called Technicolor (TC),
effects EWSB in analogy to chiral symmetry breaking in QCD, but at the TEV
scale. While they do a good job giving the W± and Z their masses, it turned
out to be much more challenging to implement fermion masses, in particular for
the third generation of quarks. In order to generate these masses, the twelve
known fermions had to participate in the new strong interaction (extended Tech-
nicolor or ETC), introducing severe flavour changing neutral currents and large
corrections to LEP precision observables. Even though progress has been made
since the first introduction of TC and ETC, for example by considering different
choices of representations for the fermions, these models remain strongly coupled
and thus uncalculable in perturbation theory.

1if, for example, the Planck scale is assumed to be the cutoff scale where new physics appears
to provide a consistent completion of the SM at high energies
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One particularly fruitful new approach was developed during the past 5 years
which has led to a renewed interest in “higgsless” models, namely electroweak
symmetry breaking (EWSB) in extra dimensions, and in particular in a slice
of AdS5 (“warped space”). Warped EWSB has all the properties to be a dual
description of Technicolor in the sense of the AdS/CFT correspondence, and
even reproduces some of the problems mentioned above. However, it has two
great advantages which make it worthwile to consider as an alternative to the
standard Higgs mechanism: The 5D picture is weakly coupled well above LHC
energies and valid beyond the perturbative unitarity cutoff of the SM in the limit
mH → ∞ which is at around 1 . . . 1.5 TeV. They can therefore be said to provide
a weakly coupled description of the symmetry breaking physics. On the other
hand, properties and parameters which have before been hard to control, such
as the scaling behaviour of operators, now become accessible through mass pa-
rameters and boundary terms of the extra dimensional gauge theory. By virtue
of appropriate fermion representations under the 5D gauge theory corresponding
to global symmetries of the 4D theory, and slight tuning of the 5D mass pa-
rameters, the first realistic higgsless models could be constructed. That is, they
are realistic up to their lack of DM, and it is the main subject of this work to
construct a well-motivated extension to provide them with a candidate particle
which exhibits the right properties to account for the missing matter density in
the universe that so far went unexplained.

There are many ways to extend the particle spectrum of any model, and we
would therefore like to use a construction principle which is at the same time
predictive and well motivated. As we will explain in the chapter on symmetry
breaking, the well-known mechanism of Kaluza-Klein parity which is employed
to generate stable particles in so-called models of “Universal Extra Dimensions”
(UED), is not available in the warped higgsless setting. We instead consider a
supersymmetric extension of higgsless models in a slice of AdS5 with R parity, and
show how the boundary conditions in the extra dimension can be used to obtain
a realistic sparticle spectrum and a viable DM candidate without additional fine
tuning of input parameters. Many of the features of the extended model are
imposed by 5D SUSY, leading to several interesting predictions concerning its
low energy phenomenology, including the nature of DM and its signatures at the
LHC.

This thesis is structured as follows: In the second chapter we give a general intro-
duction to field theory in extra dimensions and spend some time on the technical
details of assigning boundary conditions and boundary operators, calculating the
spectrum and the treatment of gauge theories. We furthermore present the con-
cept of warped space, discuss how fields of different spin behave in a slice of
AdS5, and present the action of Yang-Mills theory. The third chapter is de-
voted to higgsless electroweak symmetry breaking. In this context, the notion of
perturbative unitarity is introduced, and the full model of higgsless electroweak
symmetry breaking in warped space is presented upon which the following work
will be based. The fourth chapter provides some theoretical background which is
necessary to formulate supersymmetric theories in AdS5, in particular we discuss
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a useful formalism using N = 1 superfields in D > 4. In the fifth chapter we illus-
trate its use with an abelian toy model. The chapters six and seven connect the
different concepts which were introduced in the preceding chapters and present in
detail the construction of a warped supersymmetric higgsless model, the resulting
particle spectrum and their interactions, first for the N = 1 supersymmetric case
followed by a scenario with broken supersymmetry. Finally, the phenomenological
properties of the model are investigated in chapter eight. We calculate the relic
density of the lightest superpartner (LSP) DM candidate and discuss some strik-
ing features of the extended particle spectrum. We identify promising channels
for observing missing energy signatures of LSP and next-to-lightest superpart-
ner (NLSP) production at the LHC, propose kinematical cuts, and perform the
corresponding Monte Carlo simulations using O’Mega/WHIZARD. Chapter nine
summarizes our results. Finally, conventions, further details about the software
implementations of the model and some background on mathematical methods
are given in the Appendix.



Chapter 2

Extra Dimensions

Ham’ se welche gesehen?

- Ernst Mach’s answer when being asked whether atoms exist

In this chapter, the basics of extra dimensional models in flat and warped space
are introduced. The beginning of the first section presents some motivation to
consider such scenarios. The remainder is dedicated to the task of making sense
of extra dimensional models as a description of 4D physics. In doing so, some
formalism and terminology is introduced.

2.1 A Short Introduction to Quantum Fields in Extra
Dimensions

2.1.1 Motivation

The notion that our world might have more than four spacetime dimensions dates
back to at least 1921 and 1926 when Theodor Kaluza and Oskar Klein published
their work on the unification of gravity and electromagnetism in five dimensions
[1, 2]. Since in the meantime, many new forces and particles have been discovered,
generating Maxwell’s equations from higher dimensional Einstein’s equations is,
though elegant, not sufficient any more. The idea of extra dimensions in parti-
cle physics has become popular again many years later through String Theory.
When it turned out that Superstring Theory requires 6 additional spacetime di-
mensions for internal consistency, there was initially no reason to think of them
as being visible at low energy scales accessible to experiments, but in the late
nineties, with the advent of D-branes in String Theory, warped space [3] and the
ADD scenario [4, 5] among others, having extra dimensions at the scale of cur-
rent colliders suddenly became an option that was considered seriously, sparking
renewed interest in phenomenological model building in this direction.

Considering the existence of additional dimensions is interesting due to various
reasons of different origins. The first and most obvious is that, though quantum
field theories in four dimensions have rather special properties, there is no a
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priori reason why extra space dimensions should not exist in nature1, suggesting
the search for and theoretical modeling of extra dimensions in the context of
upcoming experiments such as the LHC.

As will be discussed in section 3 there are good reasons to expect that within
the energy range accessible to the LHC experiments, new effects have to appear
which are connected to the origin of gauge boson masses. Since the kinetic energy
component of a particle in the direction of an extra dimension has the same
phenomenological consequences in four dimensions as a mass, it is intriguing to
consider this mechanism as an alternative or extension of the standard Higgs
mechanism. In such a scenario extra dimensions would exist which are somehow
related to the generation of masses of the W and Z particles.

We will see in section 2.1.5 that it is a general property of quantum field theo-
ries in D > 4 that they are valid only up to a certain energy called the cut-off
scale above which the descriptive power of the model breaks down. In this sense
an extra dimension is only a metaphor, providing a construction principle for a
set of particles and their interactions. This idea lead to an approach dubbed
“deconstructed extra dimensions” [6]. One of the most exciting theoretical devel-
opments in quantum field theory and string theory in recent years, the celebrated
AdS/CFT correspondence, gives us reason to believe that certain field theories
with a curved extra dimension might be closely related or even equivalent to a
class of four-dimensional theories which have so far been virtually inaccessible to
known mathematical techniques2, namely strongly coupled gauge theories with
an approximate conformal symmetry. The Technicolor and Composite Higgs
models mentioned in the introduction are important examples of this. There-
fore, one further motivation for considering extra dimensions in particle physics
phenomenology is that they might provide a calculable framework to model the
dynamics of bound states present in this class of models, shedding new light on
the properties of Technicolor and the Composite Higgs. However, regardless of
whether the models discussed in this work have an exact strongly coupled dual via
the AdS/CFT correspondence, they can still provide an interesting description
of symmetry breaking and DM in their own right.

It is clear that any additional spacelike dimensions, since so far observable indi-
rectly at best, have to differ in nature from the three known ones to escape direct
detection. This is easily imaginable if either

1. the extra dimension is of finite extent with a size R corresponding to ener-
gies ~c/R hitherto unreached by experiments. Here R is typically around
~c/R ≈ 1 TeV corresponding to the energy range of past and current ex-
periments such as LEP and the Tevatron.

2. the number of particle species allowed to propagate in the higher dimen-
sional volume is restricted. In particular in the case of extra dimensions in

1Extra timelike dimensions are a significantly more problematic subject that will not be
treated in this work

2With the exception of lattice calculations, which so far only capture static properties of
strongly interacting particles rather than their dynamics
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which only geometry and thus gravitons themselves are present, the bounds
on R are greatly loosened to the order of microns.

3. the extra dimension is strongly curved as proposed by Randall and Sundrum
[7], locating low energy physics sufficiently towards the boundary of the
space and thus making it appear effectively four dimensional even though
it does not have to be compact.

The scenario investigated in this work contains a variation of the latter. The
curved background geometry and brane setup is that of Randall and Sundrum
[7]. While the possibility of mode localization in the warped background is used
to some extent and plays an important role, every field in the model is allowed
to propagate in the volume of the extra dimension.

2.1.2 The Kaluza-Klein Approach for a Scalar Field

Kaluza-Klein Decomposition

For definiteness, let us consider the simplest case of Minkowski space extended
by one flat compact extra dimension. Such a space can be represented as the
direct product of Minkowski space and an interval

(xµ, y) ≡ xM ∈ R
4 × [0, πR] (2.1)

with the metric gMN = diag(1,−1,−1,−1,−1) where now M,N = 0 . . . 3, 5.
Fields now depend on x and y,

φ(x) −→ φ(x, y)

In the present case of a compact space, Fourier analysis teaches us that we can
represent the y dependence using a complete, countably infinite set of functions
gn(y) and an equal number of coefficients φn(x),

φ(x, y) =

∞∑

n=0

φn(x)gn(y) (2.2)

The key point is now the choice of functions gn(y) and it turns out that it will
be dictated to us by the dynamics. Consider the free action of such a real scalar
field

S =
1

2

∫
d4x

∫
dy
[
∂Mφ∂

Mφ
]

(2.3)

Substituting (2.2) and integrating by parts with respect to y, we obtain

S =
1

2

∑

n,m

∫
d4x

[
Imn∂µφn∂µφm −Mmnφ

nφm
]

(2.4)
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where Imn =
∫
dy gngm and Mmn = −

∫
dy gn∂2

yg
m. It becomes obvious that the

action takes a particularly simple form if the functions g are chosen orthonormal
with respect to the scalar product,

Imn = δmn (2.5)

and even more so if they are eigenfunctions of the operator Ô = ∂2
y , satisfying

Ôgn = −m2
ng

n and thus

Mmn = δmnm
2
n (no sum) (2.6)

Once boundary conditions for the field are specified, this is a Sturm-Liouville
problem of which we know that it is solvable with orthonormal solutions. In
section 2.2 where curvature is introduced, the operator and the scalar product
will become more complicated, but this particular point remains unchanged. In
either case, we are left with

S =
1

2

∑

n

∫
d4x

[
∂µφ

n∂µφn −m2
nφ

nφn
]

(2.7)

This is the action of an infinite tower of scalar fields with massesmn! The particles
springing from the quantization of the coefficient fields φn(x) will henceforth be
called Kaluza-Klein modes, and the functions gn(y) Kaluza-Klein wave functions.
The Fourier expansion (2.2) in mass eigenmodes and substitution into the action
(2.7) is consequently dubbed Kaluza-Klein decomposition.

Boundary Terms and the Choice of Boundary Conditions

In the above example we have ignored the boundary term from the partial inte-
gration,

Sbnd =
1

2

∫
d4x

[
− φ(x, y)∂yφ(x, y)

]∣∣∣
y=πR

y=0
=

1

2

∑

n,m

Bnm
∫
d4xφnφm

(2.8)

where

Bnm = [gn∂yg
m]
∣∣∣
y=πR

y=0

which will do two things if present. If Bnm 6= 0 for n 6= m the diagonality of
the free action is spoiled, whereupon the particles associated with φn will not
be physical mass eigenstates. This is not in and of itself a problem, but has to
be taken into account carefully. Furthermore, if Bnm 6= 0, solving the equations
of motion on the boundary will give additional constraints, thus modifying the
effective boundary conditions. In this case it is said that the original boundary
conditions are “not compatible” with the variation of the action.
Thus Bnm = 0 is a condition we can use to restrict the choice of boundary
conditions. In the case of one 5D field, this is rather trivial. Excluding the cases
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where the two boundaries cancel by some nonlocal constraint or where the field
takes some constant nonzero value, two possibilities remain,

φ|y0 = 0 or ∂yφ|y0 = 0 (2.9)

independently for y0 = 0, πR corresponding to Dirichlet or Neumann boundary
conditions on either boundary of the interval. This becomes more interesting if
several fields are coupled on the boundary, an essential ingredient of the models
described in this work. Consider n flavors of scalars,

S =
1

2

n∑

f=1

∫
d4x

∫
dy
[
∂Mφf∂

Mφf

]
(2.10)

The resulting boundary term is (writing ~φ′ ≡ ∂y~φ)

Lbnd =
1

2

∑

f

φf∂yφf

∣∣∣
πR

0
=

1

2
〈~φ, ~φ′〉

∣∣∣
πR

0
(2.11)

which has the form of a scalar product. The boundary conditions we would like
to impose are (at y0 = 0 or y0 = πR)

D~φ+N~φ′|y=y0 = 0 (2.12)

where D,N ∈ R
n×n. We are thus looking for matrices D,N which satisfy

∀v,w ∈ R
N : Dv +Nw = 0 ⇒ 〈v,w〉 = 0 (2.13)

A constructive proof (appendix C) shows that they can without loss of generality
be parametrized as follows:

D =

(
Id×d 0

0 0

)
V N =

(
Ñ 0

0 In−d×n−d

)
V (2.14)

in which V ∈ SO(N) and

Ñ = diag

([
0 b1

−b1 0

]
, ...

)

This corresponds to a net number of n − d Neumann boundary conditions and
d mixed or Dirichlet boundary conditions depending on the choice of bi. For d
odd, there is one trailing zero in Ñ . The two options in the trivial case of one
field are reproduced by d = 1, 0.

Localized Mass Terms

We have seen that it is possible to assign antisymmetric mixed boundary condi-
tions if several fields are present. There is yet another possibility, namely via a
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symmetric localized mass term. If it is situated at y0 = 0 (y0 = πR) it has the
following structure

L =
1

2
δ(y − y0)Mefφeφf , M = MT (2.15)

and contributes to the boundary action

Lbnd =
1

2
〈~φ,±~φ′ +M~φ〉|y=y0 (2.16)

The most general boundary conditions have the same form, except that now

D~φ+N(±~φ′ +M~φ)|y=y0 = 0 (2.17)

In the case of just one field, we have

φ|y=y0 = 0 or (±∂yφ+Mφ)|y=y0 = 0 (2.18)

Localized Kinetic Terms

The remaining possibility to modify the free action is through localized kinetic
terms. They differ in an essential way from the things covered before because after
Kaluza-Klein expansion, each mode will, according to its mass, see a different
effective boundary condition. Also, the scalar product with respect to which the
solutions of the eigenvalue problem are orthonormal is modified3. Consider the
following action

S =
1

2

∫
d4x

∫
dy
[
∂Mφ∂

Mφ
]

+
1

2

∫
d4xκ∂µφ∂

µφ
∣∣∣
y=0

(2.19)

The boundary term at y = 0 after partial integration gives

Sbnd =
1

2

∫
d4x [φ∂yφ− κφ�φ]

∣∣∣
y=0

(2.20)

We see that the boundary action contains a kinetic operator, which, after Kaluza-
Klein expansion, turns into the 4D mass of the mode, giving a mass dependent
boundary condition

φ(p, y)
∣∣∣
y=0

= 0 or
(
∂yφ(p, y) + κp2φ(p, y)

) ∣∣∣
y=0

= 0 (2.21)

After Kaluza-Klein decomposition, the individual modes on their mass shell will
have p2 = m2

n. If one solves the eigenvalue problem (2.6) using this prescription,

3If the kinetic term includes higher powers of fields (such as covariant derivatives), the effec-
tive couplings will also receive corrections. This will be treated later.
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one notices that the solutions are not orthogonal with respect to 〈f, g〉 =
∫
dyfg.

For this type of boundary conditions, the scalar product has to be modified to

〈f, g〉κ =

∫ πR

0
fg dy + κfg

∣∣∣
y=0

(2.22)

This makes sense physically as any new kinetic term in the Lagrangian, localized
or not, also contributes to the wave function normalization of the field.

There is one caveat when introducing this type of terms: If the coefficient κ
becomes negative, the effective kinetic term can get a negative sign and the
scalar product is not positive definite any more. This will result in tachyonic
solutions of the eigenvalue problem (2.6) with m2 < 0. If |κ| is not too large
compared to the radius, this tachyon resides at high energies beyond the cutoff
scale of the model, which is maybe theoretically less severe than having one at
accessible energies. We have nevertheless avoided this situation in our model.

2.1.3 An Algorithm for Solving KK Towers with Many Fields
Coupled by Boundary Conditions

As long as each boundary condition on the branes only affects two fields (in a
suitable basis), we can obtain the Kaluza-Klein tower and wave functions by
solving the conditions step by step until we have one boundary condition left
and one free parameter, the mass eigenvalue, which we can solve for numerically
or in an analytic approximation. We would like to outline an algorithm which,
from matrices defining the boundary conditions for a set of fields φf , gives us the
complete action on a boundary and thus a compact expression which can be used
to determine the Kaluza-Klein tower.

We start from the premise that the n fields φf (x, y), f = 1 . . . n live on an interval
y ∈ [0, π] and obey n boundary conditions on both ends. To write mixed boundary
conditions in a compact form, we define (with suppressed Kaluza-Klein indices)

φf = φf (x)gf (y), G = (g1, ∂̃g1, . . . gn, ∂̃gn) (2.23)

where the ∂̃ is a first order differential operator which is chosen such that ∂̃φ = 0
is a valid modified Neumann boundary condition compatible with the variation of
the boundary action as it was introduced above. In the case of scalar fields in flat
space without boundary operators, it reduces to the ordinary partial derivative.
Now we can write the coupled boundary conditions for n flavours as

AG(0) = 0 BG(π) = 0 (2.24)

where A,B ∈ R
n×2n should fulfil (2.14) for compatibility with the action. Since

we assume second order equations of motion for φ, n fields should be subject to
2n boundary conditions, with n conditions imposed on each. This means that
rk A = rk B = n, dim ker A = dim ker B = n. Furthermore, we can solve for
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G(y) explicitly if we fix G on one boundary and choose an eigenvalue m. This is
done using the transport diffeomorphism Tm(y1, y2), for example

G(0) = Tm(0, π)G(π) (2.25)

We can use this to connect the boundary conditions on both sides as follows: We
know that

G(π) ∈ ker B (2.26)

We write the kernel of B as a matrix, KB ∈ R
2n×n with the vectors as columns.

For arbitrary vectors v ∈ R
n we can reach all valid configurations on the boundary

G(π) = KBv ⇔ BG(π) = 0 (2.27)

It follows from (2.25) that

G(0) = Tm(0, π)KBv (2.28)

We can now impose the boundary conditions at y = 0 and demand that v should
fulfil

ATm(0, π)KBv = 0 (2.29)

To find all Kaluza-Klein modes in a mass range, all we need to do is impose

det (ATm(0, π)KB) = 0 (2.30)

and determine the values ofm for which it is satisfied. Drawbacks of this approach
are that the expressions can get large, and that mass degeneracy of particles will
result in higher order roots of (2.30) which are harder to solve for numerically.
Once we have found a value m0 which satisfies (2.30), we can automatically
obtain the complete Kaluza-Klein wave functions pertaining to one particle mass
eigenstate,

v ∈ ker (ATm0
(0, π)KB) ⇒ G(y) = Tm0

(y, π)KBv (2.31)

The corresponding 5D fields are

φf (x, y) = φn0(x)G2f−1(y) (2.32)

Note that we assign one 4D coefficient field for all f = 1 . . . n. If some of the
flavours do not participate in a particular eigenmode, the corresponding functions
in G will vanish identically. In the case of d-fold degeneracy at mass m0, we have

dim ker (ATm0
(0, π)KB) = d

We use this for example in appendix D.1.
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2.1.4 Gauge Theory

Gauge Fixing

Gauge fields require a special treatment because unphysical degrees of freedom
differ in their Kaluza-Klein expansion. For simplicity and clarity, we restrict
ourselves to abelian gauge theory, and will treat the nonabelian case and the
dependence on boundary conditions in the context of warped space. To proceed,
we first have to implement the BRST program in 5D. For this discussion of
the abelian case it is sufficient to concentrate on the gauge fixing term which
decouples the 4D vector and scalar components of the gauge field in the free
action. Also, we will postpone the discussion of boundary conditions in relation
to gauge invariance to the section on symmetry breaking. The straightforward
generalization of the Lorenz condition to five dimensions is given by

Lgf = −1

2

(
∂MA

M
)2

(2.33)

It is however much more convenient to be able to go to an axial gauge A5 → 0
(which turns out to be equivalent to a unitary gauge), and this can be easily
implemented by

Lgf = − 1

2ξ

(
∂µA

µ + ξ∂5A
5
)2

(2.34)

Now, the unitary gauge can be reached by taking the limit ξ → ∞. The combined
action of gauge kinetic and gauge fixing terms is

S =

∫
d4x

∫
dy

[
−1

4
FMNF

MN − 1

2ξ

(
∂µA

µ + ξ∂5A
5
)2
]

(2.35)

After partial integration,

S =

∫
d4x

∫
dy
[1
2
Aµ

(
�gµν − (1 − 1

ξ
)∂µ∂ν − ∂5∂5g

µν
)
Aν

− 1

2
A5 (� − ξ∂5∂5)A5

]
(2.36)

where the mixing terms ∂µA
µ∂5A

5 have canceled between the gauge fixing and
kinetic terms.

Kaluza-Klein Decomposition

It would complicate the expansion significantly if longitudinal, scalar and trans-
verse modes of Aµ had different Kaluza-Klein wave functions. Luckily this is not
the case due to our choice of gauge fixing through which all components share
the 5D kinetic operator Ô = ∂5∂5 and do not mix. We can thus write

Aµ(x, y) =
∑

n

Anµ(x)g
n(y) (2.37)
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Figure 2.1: An illustration of nonrenormalizability of models in extra dimensions. The
graph on the left shows a contribution to the interaction of four fermions in the SM. It
is finite which means that counterterms such as the one on the right are not required
in the model, thus increasing its predictivity. The graph in the middle shows the same
contribution in extra dimensions. Since every propagator contains an infinite tower of
particles, this contribution is in general not finite. To remove this infinity, the four fermi
interaction on the right has to be introduced in the Lagrangian.

A5(x, y) =
∑

l

Al5(x)f
l(y) (2.38)

giving us

S =

∫
d4x

∫
dy
∑

n

[1
2
Anµ

(
(� +m2

n)g
µν − (1 − 1

ξ
)∂µ∂ν

)
Anν

−
∑

l

1

2
Al5
(
� + ξm̃2

l

)
Al5

]
(2.39)

This is the action of massive scalar fields Al5 of mass
√
ξm̃l and massive Stückel-

berg vector fields Anµ of mass mn. The correct choice of boundary conditions will
achieve that for all modes ml = m̃l except that either Aµ or A5 may also have a
massless mode which is projected out for the other field. This is important be-
cause exactly like in the standard Higgs mechanism, the gauge boson propagator
has an unphysical pole at

√
ξmn which must cancel with the scalar contribution.

2.1.5 A Note on Nonrenormalizability

As hinted at in the introduction, quantum field theories in four dimensions have
special properties which are modified when going to D > 4. The key difference
is the property of renormalizability. Since the first beginnings of quantum field
theory in the first half of the 20th century, the major difficulty was the handling
of infinities appearing in quantum corrections to the classical field theory. With
the success of Quantum Electrodynamics (QED), it became clear that it was
possible to remove them consistently by rescaling (renormalizing) the existing
parameters of the model. This property of models has been considered an es-
sential consistency condition, and the proof of renormalizability of the SM was a
major theoretical achievement which led to the Nobel Prize for Martinus Veltman
and Gerardus ’t Hooft in 1999. Nevertheless, it became clear in the past decade
that nonrenormalizable models can very well be a sensible description of physics
in the context of low energy effective theories, with one limitation, namely the
existence of a cutoff energy scale Λc which marks the upper limit of validity above
which the predictive power of the model breaks down. This is always the case
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in the extra dimensional models discussed in this work. The critical step is that
infinities appear corresponding to operators with energy dimension larger than
four, for example 1

Λ2
c
ΨΨΨΨ as illustrated in figure 2.1. Once they are introduced,

an infinite number of higher operators follows. This sounds severe at first, but the
predictiveness of these models lies in the fact that those operators are by dimen-
sional analysis suppressed by increasing powers of a scale Λc, rendering higher
contributions irrelevant at energies E ≪ Λc [8]. Raising Λc by putting as much
of the physics as possible in renormalizable operators is therefore an important
objective for effective theories.

2.2 The Randall/Sundrum Scenario and
Warped Space

Even though the AdS/CFT correspondence was formulated already in 1997 [9],
AdS5 as a background space for particle physics models became much more pop-
ular starting with the two seminal papers by Randall and Sundrum in 1999 [7, 3].
They showed that a slice of AdS5 arises dynamically as a solution to Einstein’s
equations in 5D if two 3-Branes are set up and suitable brane and bulk cosmo-
logical constants are chosen. Furthermore, they demonstrated that this scenario
could provide a solution to the hierarchy problem of the Higgs model. We will
state the results of this construction as far as they are relevant for this thesis and
refer the reader to the literature for details of the derivation. We work with the
“mostly -” metric convention throughout the remaining chapters. In so-called
proper distance coordinates, the background metric takes the form

gµν(x, y) = e−2Rkyηµν , g55(x, y) = −R2, g5µ(x, y) = 0 (2.40)

where y ∈ [0, π]. In these coordinates, the density factor is

√
g ≡

√
det g = Re−4Rky (2.41)

The 5D space equipped with such a nonfactorizable background metric is gen-
erally referred to as warped space. We see that R gives the size of the extra
dimension, while k is the RS curvature. As always for fields in a curved back-
ground, the Lagrangian has to be densitized with

√
g to make the action a scalar

unter general coordinate transformations,

S =

∫
d5x

√
gL5D[φ, ∂µφ, g

µν ] (2.42)

The 4D spaces at y = 0 and y = π are referred to as the ultraviolet- or Planck
brane (UV brane) and the infrared- or TeV brane (IR brane) respectively. The
name hints already at the role the branes will play: If Rkπ ≈ 37, then

e−RkπMP l ≈ 1 TeV (2.43)
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This has an interesting consequence for the physical mass of a scalar field living
on the IR brane,

L =

∫
dy

√
g
[
gµν∂µφ

†∂νφ−M2φ†φ+ λ(φ†φ)2
]
δ(y − π) (2.44)

If we evaluate this expression, it yields

L = Re−4Rkπ
[
e2Rkπηµν∂µφ

†∂νφ−M2φ†φ+ λ(φ†φ)2
]

(2.45)

Going to canonical normalization of the scalar field (φ→ eRkπ/
√
Rφ) to read off

the physical parameters, we find

L = ηµν∂µφ
†∂νφ− (e−RkπM)2φ†φ+ λ(φ†φ)2 (2.46)

Together with (2.43) this produces a TeV scale mass from a Planck scale mass
parameter. A second important property is the profile of the massless graviton
mode h, which is e−2Rky(ηµν +hµν). This ensures that all particle species feel the
same strength of mutual gravitational attraction in the 4D Kaluza-Klein picture
independent of their localization in the extra dimension.
In this work it is not the purpose of the warped background to solve the hierarchy
problem for scalar particles. It instead helps to realize symmetry breaking by
boundary conditions, and the hierarchy of scales which it produces separates the
electroweak symmetry breaking sector with intact custodial SU(2) symmetry (the
IR brane and bulk) from the UV brane localized physics with broken SU(2)R,
leading naturally to ρ = cos θ2

Wm
2
Z/m

2
W ≈ 1. Warped space provides a natural

localization mechanism through bulk masses which can help to explain the mass
hierarchy of fermions [10]. Also, it opens up interesting possibilities for SUSY
breaking with a distinct low energy phenomenology.
There is a fashionable interpretation of fields in warped space which is very useful
to gain an intuitive understanding of the physics which is going on, namely the
dictionary provided by the AdS/CFT correspondence. A useful introduction to
the basic concepts can be found in [11, 12].

2.2.1 Christoffel Symbols and Spin Connections

In the following sections lowercase latin indices and barred numbers 5 indicate
“flat” indices. The coordinate frame introduced above has the advantage that g55
is constant and yet the gµν only depend on y. Therefore, the only nonvanishing
Christoffel symbols are

Γ5
µν = − k

R
gµν Γµ5ν = Γµν5 = −Rkδµν (2.47)

The connection for “flat” indices which is used to built covariant derivatives for
spinors is defined as

ωM
n
m = enNe

R
mΓNMR − (∂Me

n
N )eNm (2.48)
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where we use the fünfbein and inverse fünfbein

eaµ = e−Rkyδaµ, eµa = eRkyδµa , e55 = R, e5
5

= 1/R (2.49)

After lowering the upper index with the Minkowski metric, there are two nonva-
nishing spin connection coefficients,

ωµ5a = −ωµa5 = ke−Rkyηµνδ
ν
a (2.50)

2.3 Scalars, Spinors and Gauge Fields in

Warped Space

2.3.1 Scalars

The Lagrangian of a scalar field which can propagate in warped space is given by

L =
1

2

∫
dy

√
g
[
gMN∂Nφ∂Mφ−M2

5φ
2
]

=
1

2

∫
dy

√
g

[
e2Rkyηµν∂µφ∂νφ− ∂y

R
φ
∂y
R
φ−M2

5φ
2

]
(2.51)

The general covariant derivatives are trivial in this case. After partial integration,
we get

L = −1

2

∫
dy

√
g

[
e2Rkyφ�φ− φ

(
∂y∂y
R2

− 4k
∂y
R

−M2
5

)
φ

]

+
1

2

[
−e

−4Rky

R
φ∂yφ

]π

0

(2.52)

The differential equation for φ = φn(x)gn(y) together with the on-shell condition
� → −m2

n leads to a basis of solutions

gn(y) = e2Rky
[
anJ√4+M2

5
/k2

(mn

k
eRky

)
+ bnY√4+M2

5
/k2

(mn

k
eRky

)]
(2.53)

We will see later that the scalar fields which are part of supermultiplets have to
be provided with the right boundary and bulk mass terms for SUSY to be intact.

2.3.2 Spinors

Spinors in 5D are always of Dirac type, and in warped space, their behaviour
under Lorentz transformations gives us a nontrivial general covariant derivative
for objects with spinor indices

∇MΨ = ∂MΨ − i

4
ωMΨ, ∇MΨ = ∂MΨ +

i

4
ΨωM (2.54)
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where

ωM = ωMnm
i

2
[γn, γm] (2.55)

As a generalization of metric compatibility ∇Kg
MN = 0, it satisfies ∇Mγ

N = 0
and allows for integration by parts under the density factor

√
g,

∫
d5x

√
gΨγM∇MΨ = −

∫
d5x

√
g(∇MΨ)γMΨ (2.56)

In our case, ω5 = 0 and

γµ∇µΨ =
[
eRkyγµ∂µ − 2kγ5

]
Ψ (2.57)

and therefore,

ΨγM∇MΨ = Ψ

[
eRkyγµ∂µ + γ5 ∂5 − 2Rk

R

]
Ψ (2.58)

It is customary to rewrite the bulk mass in units of the RS curvature k as
M5/k = c. Up to 5D boundary terms, the action rewritten using our conventions
is therefore

L =

∫
dy

√
gΨ

[
iγM∇M −M5

]
Ψ

=

∫
dy

√
gΨ

[
ieRkyγµ∂µ +

1

R

(
−∂5 + (2 − c)Rk

∂5 + (−2 − c)Rk

)]
Ψ

(2.59)

Compare this for example to L11,L18,L20 (appendix B.2). One can now proceed
to solve the differential equation to obtain a basis of Kaluza-Klein wave functions
in analogy to the scalar case, but since we now have first order equations, there
is some additional work to do. First of all, we vary Ψ and get

ieRkyγµ∂µΨ =

(
− i

R
(∂5 − 2Rk)γ5 − ck

)
Ψ (2.60)

We act on both sides with γµ∂µ and commute it to the right. After resubstituting
(2.60) in the RHS we get diagonal second order equations of motion

�Ψ = e−2Rky

[
(∂5/R − 5k)∂5/R + (6 − c2 − c)k2 0

0 (∂5/R− 5k)∂5/R+ (6 − c2 + c)k2

]
Ψ

(2.61)
Now we again solve the differential equation for the Kaluza-Klein wave functions

Ψ =

(
ψn(x)fn(y)

ψ
c
n(x)gn(y)

)
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by assuming the on-shell condition � → −m2
n and get

fn(y) = e5Rky/2
[
anJc+1/2

(mn

k
eRky

)
+ bnYc+1/2

(mn

k
eRky

)]

gn(y) = e5Rky/2
[
anJc−1/2

(mn

k
eRky

)
+ bnYc−1/2

(mn

k
eRky

)]
(2.62)

2.3.3 Nonabelian Gauge Theory in Warped Space

The flat 5D version of Yang-Mills theory is a straightforward generalization of
the 4D form,

L =

∫
dy

[
−1

4
F aMNF

aMN − 1

2ξ

(
∂µA

aµ + ξ∂5A
a5
)2 − ca

(
∂µDab

µ + ξ∂5Dab
5

)
cb
]

(2.63)

and substituting the metric and density factor, we get the warped version of the
gauge invariant part,

L =

∫
dy

√
g

[
−1

4
gMNgOPFMOFNP

]

=

∫
dy R

[
−1

4
ηµνηωρFµωFνρ +

1

2R2
e−2RkyηµνFµ5Fν5

]
(2.64)

The fifth component of the gauge connection has still energy dimension [A5] = 1/2
because y is unitless. To furnish A5 with the canonical normalization of a scalar,
we now perform the substitution A5 → RA5. The warped version of the Rξ
gauge fixing is

Lgf = −
∫
dy

R

2ξ

(
ηµν∂µA

a
ν − ξ

e−2Rky

R
(∂5 − 2Rk)Aa5

)2

(2.65)

which entails a BRST ghost Lagrangian

Lgh = −
∫
dy R ca

(
ηµν∂µD

ab
ν − ξ

e−2Rky

R
(∂5 − 2Rk)Dab

5

)
cb (2.66)

with

Dac
µ = ∂µδ

ac + fabcAbµ, Dac
5 =

∂y
R
δac + fabcAb5 (2.67)

It is designed such that the ghosts c, c have a Kaluza-Klein expansion which
matches that of Aµ, but with unphysical Kaluza-Klein masses

√
ξmn like A5. We

have included them for completeness but will not need them for the bulk of this
thesis. Let us state the kinetic Lagrangian in its Kaluza-Klein decomposed form:

Lkin[Aµ] =
∑

m,n;a

[
1

2
Aa,nµ

(
�ηµν − (1 − 1

ξ
)∂µ∂ν

)
Aa,mµ

] ∫
dy Rfanf

a
m
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+
∑

m,n;a

[
−1

2
ηµνAa,nµ Aa,mν

] ∫
dy

1

R
fan(∂ye

−2Rky∂y)f
a
m

+
∑

m,n;a

[
1

2
ηµνAa,nµ Aa,mν

] [
1

R
e−2Rkyfan∂yf

a
m

]π

0

(2.68)

Lkin[A5] =
∑

m,n;a

[
−1

2
Aa,n5 �Aa,m5

] ∫
dy Re−2Rky gang

a
m

+
∑

m,n;a

[
ξ

2
Aa,n5 Aa,m5

] ∫
dy

1

R
gan(e

−2Rky∂2
ye

−2Rky)gam

+
∑

m,n;a

[
ξ

2
Aa,n5 Aa,m5

] [
− 1

R
gane

−2Rky∂ye
−2Rkygam

]π

0

(2.69)

Lmix[AM ] =
∑

m,n;a

[ηµν∂µA
a,n
ν Aa,m5 ]

[
Re−2Rkyfang

a
m

]π
0

(2.70)

Note the boundary terms indicated by [. . . ]π0 . As explained in section 2.1.2 they
should vanish by choice of boundary conditions. Solving the equations of motion
which follow from this action, the Kaluza-Klein decomposition of the vector field
is given by

Aµ(x, y) = A0
µ(x)

[
a0 + b0e

2Rky
]

+
∑

n

Anµ(x) e
Rky

[
anJ1

(mn

k
eRky

)
+ bnY1

(mn

k
eRky

)]

A5(x, y) = A0
5(x)

[
ã0ye

2Rky + b̃0e
2Rky

]

+
∑

n

An5 (x) e2Rky
[
ãnJ0

(√
ξm̃n

k
eRky

)
+ b̃nY0

(√
ξm̃n

k
eRky

)]

c(x, y) = c0(x)
[
a0 + b0e

2Rky
]

+
∑

n

cn(x) eRky
[
anJ1

(√
ξmn

k
eRky

)
+ bnY1

(√
ξmn

k
eRky

)]

(2.71)

Much can be said about relations between the two groups of parameters if bound-
ary conditions are chosen that are compatible with Ward identities. Simply
speaking, it is necessary for unitarity to have ghost modes for each massless vec-
tor mode and both ghost modes and a would-be goldstone mode for each massive
vector mode. We can draw two conclusions: c and c should get the same BC
as Aµ. Furthermore, looking at the 5D equation of motion which arises for the
Kaluza-Klein wave function of the Aµ and A5 fields,

m2f(y) = −∂ye−2Rky∂yf(y)

m2g(y) = −∂y∂ye−2Rkyg(y)
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it becomes apparent that A5 satisfies the same equation of motion as ∂yAµ if
m 6= 0. This leads to an obvious choice of relative boundary conditions

∂yAµ|∂ = 0 =⇒ A5|∂ = 0

Aµ|∂ = 0 =⇒ ∂ye
−2RkyA5|∂ = 0 (2.72)

which achieves exactly the desired spectrum and is compatible with gauge trans-
formations. The Kaluza-Klein wave functions of the massive modes indeed satisfy

mn = m̃n, an = ãn, bn = b̃n (2.73)

and thus
f ′n(y) = mngn(y) (2.74)

The existence of massless modes depends on the interplay of all boundary con-
ditions on both branes. For now let us state that there are combinations such
that A5 contains a massless scalar physical mode, for example when two Dirichlet
conditions on Aµ coincide. This is interesting for models of gauge-higgs unifica-
tion. The model presented in this thesis assigns at least one Neumann boundary
condition for each vector such that b0 = 0 and ã0 = b̃0 = 0 for every field. There
are thus no massless physical scalars, and all massless vector modes have a flat
profile f0(y) = a0. This can be restated in the language of the AdS/CFT dictio-
nary: all symmetries which are broken dynamically (Dirichlet conditions on the
IR brane) are also gauged (Neumann conditions on the UV brane) such that no
true goldstone bosons appear.

2.3.4 The Impact of UV and IR Boundary Conditions

We have seen above that extra dimensional gauge theories result in scenarios
with nonlinear gauge invariance. Which gauge symmetries are realized exactly
in the effective 4D theory and which are not, depends on the choice of boundary
conditions for the fields. From now on we shall designate the basic two types of
boundary conditions as follows:

⊕⊕ Neumann at y = 0 and y = π

⊕⊖ Neumann at y = 0, Dirichlet at y = π

⊖⊕ Dirichlet at y = 0, Neumann at y = π

⊖⊖ Dirichlet at y = 0 and y = π

By Neumann conditions we mean the modified Neumann condition appropriate
for the field as derived in chapter D, or for example in (2.18) or (2.72). It is
fair to say that on 4D slices in 5D space where Aµ = 0 is enforced, the 4D
gauge symmetry is absent as covariant derivatives locally reduce to ordinary
derivatives and gauge transformations are incompatible with this constraint. For
a U(1) gauge theory, there are now four possibilities which we want to recapitulate
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UV\IR Aµ(⊕), A5(⊖) Aµ(⊖), A5(⊕)

Aµ(⊕)

A5(⊖)

Unbroken gauge theory
There is a massless delocalized
vector mode with massive IR lo-
calized vector resonances start-
ing at m = 1266 GeV

Softly broken gauge theory
There is a light almost delocal-
ized vector mode at m = 121
GeV with massive IR localized
vector resonances starting at
m = 2006 GeV

Aµ(⊖)

A5(⊕)

UV broken gauge theory
There is no light vector, but
massive IR localized vector
resonances starting at around
m = 1245 GeV

UV+IR broken
There is again no light vector,
but massive IR localized vector
resonances starting at m = 1983
GeV. In addition, a massless
physical scalar mode from A5

appears.

Table 2.1: The impact of different choices of boundary conditions on the spectrum of a
U(1) gauge theory in warped space. The numbers are determined using (2.75) with a
typical choice of parameters, k = 1019 GeV, Rkπ = 37.5.

quickly as they are the prototypes of what happens in the full model. Let us
therefore summarize the different cases in table 2.1.

The generic Kaluza-Klein wave function of vector bosons is given in (2.71). Ac-
cording to (2.9), we can assign a Dirichlet condition to either Aµ or A5, with the
other field receiving the Neumann assignment. From this we directly obtain the
equation which we have to solve in order to calculate the nonzero eigenvalues,

Yω(meRkπ/k) − Yδ(m/k)

Jδ(m/k)
Jω(meRkπ/k) = 0 (2.75)

where δ = 0/1 for the UV condition Aµ(⊕/⊖) and ω = 0/1 for the IR condition
Aµ(⊕/⊖). The condition for A5 has δ → 1− δ and ω → 1−ω. Thus the massive
modes of A5 always coincide with modes of Aµ and can thus act as would-be
goldstone modes. Things are a little different for massless modes. The m = 0
solutions for the gauge field are also given in (2.71). In the present scenario,
two solutions arise, b0 = ã0 = b̃0 = 0, a0 6= 0 which is allowed for Aµ(⊕⊕) and
ã0 = a0 = b0 = 0, b̃0 6= 0 which is allowed for Aµ(⊖⊖).

Solving the equations (2.75), we see that the masses of the heavy resonances are
almost, but not quite, entirely unaffected by what happens on the UV brane.
The UV physics contributes a ≈ 20 GeV shift while the choice of IR boundary
conditions causes a large shift. The existence of light vector modes however
depends crucially on the boundary condition at the UV brane, and a Dirchlet
condition there pushes the zero mode out of the spectrum. This behavior is a
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peculiarity of fields in warped space and will be very important in later chapters
as the superpartners of vector particles do inherit it. In flat space in comparison,
there is essentially no hierarchy between the two boundaries, and light modes as
well as heavy modes are equally affected by both.



Chapter 3

Higgsless Electroweak
Symmetry Breaking

In the minimal SM, EWSB is accomplished by the condensation of a fundamental
scalar Higgs field, but the corresponding particle has, so far, eluded detection at
LEP and the Tevatron. While the minimal SM with a rather light Higgs particle
describes the electroweak precision data very well, any model with just a light
fundamental scalar is not natural when a much higher scale exists, such as the
grand unification and quantum gravity scales. As we have already pointed out in
the introduction, this is a reason to believe that the minimal SM is just the low
energy effective theory of an extended model in which new physics protecting the
mass of the Higgs particles appears at the TeV scale. Instead of adding particles to
the minimal SM in order to protect the naturalness of a light fundamental scalar,
one can instead attempt to break the electroweak symmetry without invoking
the condensation of fundamental scalar fields. Indeed, such models were already
proposed [13] in the form of TC models a few years after the introduction of
the SM. Recently a deeper understanding, based on the celebrated AdS/CFT
duality, of such higgsless models has emerged which is inspired by EWSB in
extra dimensions, particularly in warped spacetimes such as a slice of AdS5 [14,
15]. Even though these approaches are nonrenormalizable and still suffer from
some of the problems that plague ETC, they remain perturbatively calculable
up to energies of 5 . . . 10 TeV [16] while simultaneously improving the fits to
electroweak precision observables [17, 18].

It is no problem at all to introduce a mass for abelian gauge fields, as Stückelberg
has pointed out already in 1938 [19]. Introducing a scalar (“Stückelberg”) field
B which transforms nonlinearly under gauge transformations

Aµ → Aµ + ∂µθ, B → B +mθ (3.1)

one can write down an action

L = −1

4
FµνF

µν +
1

2
(mAµ − ∂µB)2 − 1

2
(∂µA

µ +mB)2 (3.2)
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which closely resembles (2.39) for ξ = 1 if one identifies B with Kaluza-Klein
modes of A5 and applies a gauge fixing term. This simple model has many nice
properties as it is unitary and even renormalizable [20] in the context of massive
QED. This invites us to extend the idea to nonabelian gauge theory in order to
find models of electroweak symmetry breaking without a Higgs boson. This has
been tried extensively in the past three decades, but it turned out that either
unitarity or renormalizability is lost. As pointed out earlier, the latter point is
not so severe if we restrict ourselves to effective theory describing physics to, say,
scales somewhat above LHC energies. It turns out that 5D Yang-Mills theory
provides an elegant method of constructing improvements on Stückelberg models
for the nonabelian case as well.

3.1 Symmetries, Unitarity and Boundary Conditions

3.1.1 Perturbative Unitarity and Massive Vector Bosons

There is a well-known consistency criterion for the S matrix due to Froissart [21]
which sets limits on the growth of scattering amplitudes. The S matrix should
be unitary, leading to the constraint

S†S = (1 − iT †)(1 + iT ) = 1 =⇒ T †T = −i(T − T †) (3.3)

It can be applied to the unitarity of the S matrix in the context of perturbation
theory, for example as in the classic analyses of longitudinal massive gauge boson
scattering at tree level by Lee, Quigg and Thacker [22] and the search for renor-
malizable massive vector theories in [23]. Massive vector bosons are important in
this context because they have longitudinal modes which feature polarization vec-
tors ǫ = (p/m, 0, 0, E/m) growing with energy. Näıvely, a scattering amplitude
of four longitudinal vector bosons,

�
VL

VL

VL

VL

grows therefore with M ∝ E4, and this is indeed the case if the coupling con-
stants are not carefully chosen. Unfortunately, tree level amplitudes are real and
therefore never unitary in the strict sense - they only allow to estimate how large
the corrections of the next order have to be to satisfy (3.3), giving an upper
bound based on perturbative calculability. While in the SM the O(E4) growth
cancels between the three electroweak gauge bosons, the Higgs boson plays a
central role in canceling the remaining O(E2) growth, giving an upper bound of
the Higgs mass of mH ≤ TeV. One can obtain more stringent bounds for massive
vector bosons and the Higgs model going to the one loop level [24], leading to
mH ≤ 350 GeV. If the Higgs boson is heavier, it comes in too late to tame high
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energy behavior and the perturbative description breaks down, leaving us with
an effective theory and a cutoff scale Λ ≈ TeV. Now, how is the situation in
higgsless models? Obviously, something has to take over at low scales to cancel
the O(E2) growth of scattering amplitudes, and it is the Kaluza-Klein resonances
which can do the job. Consider the graphs of elastic 2 → 2 charged gauge boson
scattering in extra dimensions,

�γ Zk
W−
n

W+
n

W−
n

W+
n �γ Zk

W−
n

W+
n

W−
n

W+
n �

W−
n

W+
n

W−
n

W+
n

with the triple and quartic coupling constants gnnk and gnnnn. The asymptotical
expansion of scattering amplitudes for high energies is of the form

M ≈ c+ bE2 + aE4 (3.4)

a ∝ gnnnn −
∑

k

g2
nnk, b ∝ 4

3
M2
ngnnnn −

∑

k

g2
nnkM

2
k (3.5)

Many more similar, but more complicated expressions hold for the inelastic case
[25]. It is surely not by chance that any model would satisfy these conditions.
Fortunately, due to Ward identities and 5D BRST invariance, one can satisfy
all of them at once simply by choosing appropriate boundary conditions. A de-
tailed discussion of these connections can be found in [26]. The advantage of
extra dimensional models as opposed to 4D models or deconstructed models of
massive Yang-Mills theory is the absence of derivative couplings for the would-be
Goldstone bosons. It is sufficient to have BRST invariance and from it Gold-
stone boson equivalence for high energy vector scattering, and good high energy
behavior follows. Derivative couplings of A5 as they are present for example for
the link fields in deconstructed higgsless models such as in [27] only come in as
effective operators at the cutoff scale and can be the more suppressed the better
the unitarization from Kaluza-Klein modes works.

3.2 Warped Higgsless Models

Let us first give a short description of the higgsless models our construction is
based upon, which are due to Csaki et al. [15, 10]. They feature a left-right
symmetric gauge group1

G = SU(3)C × SU(2)L × SU(2)R × U(1)B−L (3.6)

1The general case gL 6= gR has been studied in the literature and it turned out not to be an
effective means to improve precision fits and perturbative unitarity. We therefore assume the
gauge action to be LR symmetric in the bulk for simplicity.
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UV Brane IR Brane
SU(3)c × SU(2)L × U(1)Y SU(3)c × SU(2)D × U(1)B−L

SU(3)c × SU(2)L × SU(2)R × U(1)B−L

Figure 3.1: A gauge breaking scenario for warped higgsless models. The diagonal sub-
groups which remain unbroken in the entire space are QCD and electromagnetism,
SU(3)c × U(1)Q.

where X will be the (B − L)/2 quantum number which is 1/6 for quarks and
−1/2 for leptons. The corresponding coupling constants are g5s, gL = gR = gew
and g̃ew. The natural hierarchy in the warped background is used to break
electroweak symmetry at an IR scale while the LR symmetry which is present in
the gauge group is broken on the UV brane. This results in a breaking scheme

G→
{
SU(3)C × SU(2)L × U(1)Y on the UV brane

SU(3)C × SU(2)D × U(1)X on the IR brane
, (3.7)

leaving only an overall SU(3)C × U(1)EM unbroken. This is illustrated in figure
3.1. The model exploits the fact that, in the SM, the hypercharge assignments
can be “explained” using baryon and lepton number and a righthanded isospin.

Q =
B − L

2
+ T 3

L + T 3
R, Y/2 =

B − L

2
+ T 3

R (3.8)

The diagonal subgroup SU(2)D generated by T aD = T aL + T aR acts as custodial
symmetry.

In the most radical variety of these models which we use, all gauge symmetry
breaking is done purely by boundary conditions. They can be obtained by putting
Higgs doublets in the appropriate representations on the boundaries. Localized
scalar VEVs can be translated into effective boundary conditions, and taking
the limit v → ∞ causes the localized dynamical scalar fields to decouple. For
example, the scalar on the IR brane is in a fundamental representation under
SU(2)L and SU(2)R and its VEV breaks SU(2)L×SU(2)R down to the SU(2)D
which plays a role in reproducing ρ ≈ 1. Let us analyze how this works in detail
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on the Planck brane [25]. The covariant derivative of the VEV is

Dµ〈φ〉 = −v i

2
√

2

[
gew

( √
2AR+

µ

−AR3
µ

)
+ g̃ew

(
0

Bµ

)]

y=0

(3.9)

and the VEV-dependent non-kinetic part of the Klein-Gordon Lagrangian be-
comes

Dµ〈φ〉†Dµ〈φ〉 =
v2

4
gewA

R+
µ AR−µ|y=0 +

v2

8
(g̃ewBµ − gewA

R3
µ )2|y=0 (3.10)

The variation of this yields

δB(Dµ〈φ〉†Dµ〈φ〉) =
v2

4
g̃ew(g̃ewBµ − gewA

R3
µ )|y=0 (3.11)

δA±(Dµ〈φ〉†Dµ〈φ〉) =
v2

4
gewA

∓|y=0 (3.12)

δA3(Dµ〈φ〉†Dµ〈φ〉) = −v
2

4
gew(g̃ewBµ − gewA

R3
µ )|y=0 (3.13)

This can already be part of a viable model of warped electroweak symmetry
breaking for finite v, but taking the limit, we generate a set of Dirichlet boundary
conditions,

g̃ewBµ − gewA
R3
µ = 0, AR± = 0 (3.14)

which represent the higgsless limit of the breaking of

SU(2)L × SU(2)R × U(1)B−L → SU(2)L × U(1)Y

The BCs for the gauge fields (and later on those of their scalar and fermionic
superpartners) which can be obtained in this way are compatible with the break-
ing scenario and with variation of the boundary action. From now on we keep
in mind the possibility to generate higgsless limits from brane Higgs models, and
simply assign conditions consistent with the action, symmetries and ward identi-
ties as required. The full set of gauge sector boundary conditions for the warped
higgsless model is given by [25]

Â




ALµ
ARµ
Bµ


 = Â′




AL5
AR5
B5


 = B̂




ALµ
AR12
µ

AR3
µ

Bµ




= B̂′




AL5
AR12

5

AR3
5

B5




= 0 (3.15)
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where the boundary matrices are defined as

Â =




1 −1 0

∂y ∂y 0

0 0 ∂y




∣∣∣∣∣∣∣
y=π

B̂ =




∂y 0 0 0

0 1 0 0

0 0 g̃ew∂y gew∂y

0 0 −gew g̃ew




∣∣∣∣∣∣∣∣∣∣
y=0

(3.16)

From gauge invariance, we obtain the corresponding would-be Goldstone bound-
ary conditions,

X̂ ′ = X̂(∂y ↔ 1) e−2Rky (3.17)

By virtue of these BCs, the W± is a mixture of the SU(2)L and SU(2)R gauge
bosons (localized in the SU(2)L field up to one permille in order to ensure the
observed V − A coupling), the Z and γ are a mixture of the SU(2)L, SU(2)R
and U(1)B−L gauge bosons. For this reason, the neutral boson tower will be 3/2
as dense, with modes which can be identified as either roughly W -like or B-like.
The UV brane kinetic term which we will introduce later is that of 4D SU(2)L
gauge theory and has the form

S → S + κ

∫
d5x δ(y − 0+)πR

(
−1

4
ηµρηνωLaµνL

a
ρω

)
(3.18)

We pull the volume factor πR out of the constants κ and β to simplify the
following expressions. In addition, we will use a IR brane localized kinetic term
for the SU(2)D group,

S → S + β

∫
d5x δ(y − π + 0+)πR

(
−1

4
ηµρηνω(LaµνL

a
ρω +RaµνR

a
ρω)

)
(3.19)

Since those are the full gauge invariant terms with interactions, adding them not
only modifies the boundary conditions and the scalar product of the gauge bosons
but also contributes to the effective gauge boson coupling constants. In the case
of SU(2)L, the canonical normalization conditions for the W±, Z and photon
Kaluza-Klein wave functions are affected as follows:

∫
dy R

(
fL12(n)(y)2 + fR12(n)(y)2

)

+ πRκfL12(n)(0)2 + πRβ
(
fL12(n)(π)2 + fR12(n)(π)2

)
= 1 (3.20a)

∫
dy R

(
fL3(n)(y)2 + fR3(n)(y)2 + fX(n)(y)2

)

+ πRκfL3(n)(0)2 + πRβ
(
fL3(n)(π)2 + fR3(n)(π)2

)
= 1 (3.20b)
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πR

(
(2 + κ+ 2β)

(
a0

gew

)2

+

(
a0

g̃ew

)2
)

= 1 (3.20c)

The Neumann BC for the 5D fields is modified to

∂yA
L
µ(0) = 0 →

(
∂y +m2πR2κ

)
ALµ(0) = 0 . (3.21)

∂y(A
L
µ +ARµ )(π) = 0 → (∂y −m2πR2βe2Rkπ)(ALµ +ARµ )(π) = 0 (3.22)

The constants κ and β are dimensionless and naturally of ≃ O(1). The coupling
of Kaluza-Klein modes to the β term is however so large that we will always have
β < 0.1 (section 8.2). The effective 4D coupling constant of gauge bosons is now

gnml = gew

[ ∫ π

0
dyR

(
fLn f

L
mf

L
l + fRn f

R
mf

R
l

)

+ RπκfLn f
L
mf

L
l (0) +Rπβ(fLn f

L
mf

L
l + fRn f

R
mf

R
l )(π)

]
(3.23)

gnmlr = g2
ew

[ ∫ π

0
dy
(
fLn f

L
mf

L
l f

L
r + fRn f

R
mf

R
l f

R
r

)

+ RπκfLn f
L
mf

L
l f

L
r (0) +Rπβ(fLn f

L
mf

L
l f

L
r + fRn f

R
mf

R
l f

R
r )(π)

]
(3.24)

The UV localized kinetic term has two effects: it raises the Kaluza-Klein scale
relative to theW mass, which is generally not conducive to perturbative unitarity,
and lowers the S precision observable somewhat, which is desirable. We adopt
this approach in combination with the IR brane term which affects the light
modes very little but lowers the mass of Kaluza-Klein modes at the expense of
a larger value for S (section 8.2). For the lightest modes of W± and Z which
correspond to the standard model gauge bosons, they are given approximately
by2

m2
W ≃ ke−2Rkπ

(1 + κ)Rπ
(3.25a)

m2
Z ≃ (gew/g̃ew)2 + κ+ 2

(gew/g̃ew)2 + 1
m2
W , (3.25b)

where the brane kinetic term (3.18) contributes the κ-dependence, while the
term (3.19) is neglected for small β. To leading order in m/ΛIR and (Rkπ)−1,
the radius R is therefore determined by the RS curvature k and the W mass.

The leptons and quarks are implemented as in [17]. There are two doublets

2If the ratio gew/ ˜gew is determined from the particle masses, the deviations from the SM are
shifted to the couplings. To make the tree level corrections “oblique”, this quantity should be
defined by fixing the gauge couplings to matter first [17].
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transforming under SU(2)L and SU(2)R respectively for each SM fermion

ΨL = (ψuL, ψ
uc
L , ψ

d
L, ψ

dc
L )T (3.26a)

ΨR = (ψuR, ψ
uc
R , ψ

d
R, ψ

dc
R )T . (3.26b)

The two doublets get 5D Dirac masses as defined in (2.61) and (4.34) denoted
by cL and cR respectively which are allowed in the bulk where the theory is
vectorlike. In the limit of massless fermion zero modes, we impose BCs such that
ψL and ψcR have a zero mode for which ψR and ψcL vanish,

ψR(0) = ψR(π) = 0, ψcL(0) = ψcL(π) = 0 (3.27)

The mass of the zero modes is then lifted by a SU(2)D-invariant Dirac mass µ
on the IR brane, resulting in modified effective BCs which mix ΨL and ΨR,

ψR(π) = µψL(π), ψcL(π) = −µψcR(π) (3.28)

We now have degenerate massive SU(2) fermion doublets. So far the treatment
is the same for the quarks and leptons. They differ however in the way how
the doublets are split on the UV brane where the theory is not invariant under
SU(2)D. Here, it is permitted to couple to localized fermions on the UV brane
to split the doublets, or to add a localized kinetic term resulting in modified
boundary conditions, scalar products and effective coupling constants. Consider
the discussions in [10] about the different prescriptions how localized fermion
terms can be converted to effective boundary conditions. We assume a localized
kinetic term for the SU(2)R transforming fields on the UV brane controlled by a
parameter ρ, which yields effective boundary conditions

fRq (0) = mρ2fRqc(0) (3.29)

For neutrinos the situation is a little different than for quarks: The SU(2)R
transforming neutrinos are singlets on the UV brane where SU(2)R × U(1)X
is broken down to hypercharge, and the action of the two generators Y/2 =
T 3
R − L/2 = 0 exactly cancels. Thus they can receive a UV localized Majorana

mass µr,

ψRν (0) =
µr
k
ψRcν (0) (3.30)

which for µr ≫ TeV leads to a seesaw-like mechanism with light almost exactly
lefthanded neutrinos (section D.1). To conclude, the mass of each fermion is
determined by the UV splitting parameter, the IR mass and the 5D “bulk” masses
of the doublets, cL and cR, which control the localization of the fermion zero
modes. The resulting masses are approximately (for cL > 1/2, cR < −1/2)

mf ≃
√

(1 − 2 cL) (1 + 2 cR)
(
eRkπ

)cL−cR−1
µ√

1 − (1 + 2cR) k ρ2
(3.31a)
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mν ≃
µ2

µr
(2cL − 1)

(
e−2Rkπ

)cL−cR−1
(3.31b)

In our implementation of the model, we do not rely entirely on approximation
formulae for masses and effective coupling constants but solve the “exact” ex-
pressions numerically.

Like in Technicolor theories, the generation of Fermion masses is the most serious
problem of this class of models, for many of the same reasons. The phenomeno-
logical challenges to warped higgsless models have been addressed extensively
in the literature [10, 15, 28, 29, 30, 31, 32, 17, 33, 16, 34, 18, 35] from differ-
ent perspectives, mainly concerning LEP precision observables STU and Zbb,
perturbative unitarity and flavour changing operators.

In our implementation of flavour we restrict ourselves to generating realistic
masses to limit the complexity of the model. In the work cited above, the gen-
eration of quark and lepton mixing on the UV and IR brane is discussed. The
generation of flavour in the IR sector is strongly constrained and ruled out for
ΛIR ≈ TeV [36, 37, 38]. Thus, it seems unlikely that the mechanisms which have
been devised to explain flavour using a warped background [39, 37] are transfer-
able to warped higgsless models which are bound to have Kaluza-Klein gluons
and other resonances at the TeV scale to satisfy unitarity constraints. The im-
plementation of realistic quark and lepton mixing angles in the extended model
is an interesting and challenging objective for further study.

3.3 Why do We Need to Extend Higgsless Models

Models in extra dimensions can be set up to contain stable particles without
having to introduce new fields beyond the SM particle content. They are known
as models of “Universal Extra Dimensions” (UED) and provide an interesting
mechanism to explain the DM content of the universe [40]. This class of models
very much restricts the allowed boundary conditions and boundary operators
which is one of its strengths. It is owed to an exact mirror symmetry of the extra
dimension, y → π/2 − y which all operators and boundary conditions have to
obey. As a consequence, the Kaluza-Klein eigenmodes have definite parity called
Kaluza-Klein parity,

fn(y) = ±fn(π/2 − y) (3.32)

Since all interactions can be chosen to be parity-even, the lightest parity-odd
Kaluza-Klein mode (LKP) is automatically stable, even when radiative correc-
tions are included. Unfortunately, this mechanism is not suitable in our case. We
have seen above that higgsless models heavily rely on different physics on both
boundaries to realize a realistic gauge symmetry breaking scenario. Also, the
warped background is of course not even under this kind of KK parity. Still, the
presence of a stable neutral particle is essential to cosmology as has been outlined
in the introduction. There are now several ways how one can proceed:
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• Extend the particle spectrum in some way and introduce an internal parity
such as R parity, T parity etc. under which one or some of the new particles
are odd [41, 42, 43].

• Extend the space, for example to two warped intervals glued together, to
regain a KK-even background and thus KK parity as a good quantum
number [44].

• There exists the possibility that some 5D gauge theories can contain stable
Skyrmion-like topological defects [45].

We are going to follow the first approach [41]. There is an infinite number of ways
to extend the particle spectrum of any theory, but one of them, SUSY, has been
particularly successful and unique as it is the only nontrivial extension of the
Poincaré group in four dimensions. As we will see, SUSY will provide us with the
necessary particle candidate for DM once we employ an R parity, and yields an
interesting and characteristic spectrum of superpartners. Before we can proceed
with the extension of the models, we have to review the properties of SUSY in
warped space, and introduce the tools necessary to formulate the supersymmetric
action and boundary conditions.



Chapter 4

Supersymmetry in Warped
Space

Interesting if true.

- Rich Little’s Head on Futurama

4.1 Killing Spinors and Global Supersymmetry
in Warped Space

It is natural to allow for supergravity in the bulk of a warped extra dimension.
In terms of AdS/CFT language, a CFT with global supersymmetry has local
supersymmetry in AdS5 and will exhibit spin 3/2 and spin 2 resonances corre-
sponding to the 5D Kaluza-Klein graviton and gravitinos. We do not want to
insist on this interpretation, and it will greatly simplify the task of determining
the low energy phenomenology of our model if we have a means to separate 5D
gravity from matter and gauge multiplets. Therefore it is useful to introduce
the notion of global supersymmetry in AdS5. This can be done in two ways -
either those supersymmetry transformations are determined which do not affect
the gravitino, or equivalently, those which close into a Killing vector and thus
leave the metric invariant.

In the case of flat extra dimensions, the SUSY algebra in Minkowski space can
be generalized straightforwardly to five dimensions by using the corresponding
Clifford algebra and promoting the parameters to four component spinors. The
commutator of two transformations then still reads

[δη, δξ ] = −2(η̄γMξ − ξ̄γMη)PM , (4.1)

where the gamma matrices are now defined such that

{γM , γN} = 2ηMN , M,N = 0 . . . 3, 5 . (4.2)
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Expressing the 5D N = 1-SUSY algebra in terms of four component generators,

{Qi, Qj} = −2γMij PM = −2γµijPµ − 2γ5
ijP5 , (4.3)

a comparison with the 4D N=2-SUSY algebra reveals that iP5 plays the role of
a central charge in the 4D picture [46]. Since translations leave the metric ηMN

invariant, we are dealing with a global spacetime symmetry.

Moving on to a warped background, we retain the approximation of neglecting the
backreaction, as stated above. Following the approach of [47] for the treatment
of a curved background, we define global SUSY transformations by demanding
that these global SUSY transformations close into a Killing vector field v of the
background metric. In particular

[δξ, δη ] = vNPN (4.4)

and the Killing condition for v reads

vM∂MgAB + gAM∂Bv
M + gBM∂Av

M = 0 , (4.5)

while the gamma matrices satisfy now

{γM , γN} = 2gMN . (4.6)

This gives us a condition for the spinor valued parameters of the SUSY transfor-
mations, and solutions (ξ, η) of (4.4) and (4.5) are called Killing spinors.

There are the usual 4D Poincaré symmetries and an additional scaling symmetry
xM −→ (1 + δ)xM which is broken only by the presence of the branes. Working
out the Killing condition (4.4) and (4.5) in this background, one ends up with
a set of SUSY parameters which generate SUSY transformations that close into
the remaining symmetries, namely, using 2-spinor notation,

ξ(x, y) = e−Rky/2
(
ξ0α
0

)
, (4.7)

where the space-time dependence remains confined to the warp factor. This
relation fixes the KK wave functions of the superpartners. Since (4.7) is param-
eterized by a single Weyl-spinor, there can be at most one 4D supersymmetry
left after integrating out the extra dimension. Nevertheless, we will see in the
following sections, that the spectrum of the massive KK modes will formally be
that of 4D N = 2-SUSY.

We can conclude from the above considerations that in unbroken N = 1 SUSY,
the Kaluza-Klein wave functions within one 4D multiplet should only differ by
factors of e−Rky/2. Looking at the generic solutions for Kaluza-Klein wave func-
tions of scalars, spinors and vectors in section 2.3, it is clear that the bulk masses
of scalars and spinors are constrained by supersymmetry. First of all, sfermions
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belonging to a fermion with bulk mass Mf = ck have to fulfil

√
4 +M2

s /k
2 = c+ 1/2 (4D lefthanded)√

4 +M2
s /k

2 = c− 1/2 (4D righthanded) (4.8)

The Kaluza-Klein wave functions of Aµ always come with a J1 or Y1 while A5

features J0 and Y0, which is only consistent with the gaugino bulk mass choice

c(Gauginos) = 1/2 (4.9)

Further scalar partners of A5 need to fulfil

√
4 +M2

s /k
2 = 0 ⇒ M2

s = −4k2 (4.10)

This is a negative mass squared which would certainly pose a problem in flat
space. In the warped background however there are no tachyonic solutions for
this choice due to the Breitenlohner-Freedman bound which holds for AdS5, and
the mass term vanishes in the flat limit k → 0. We will now review a formalism
which gets all these conditions right automatically along with the supersymmetric
gauge interactions.

4.2 Formulating Warped Supersymmetry Using
4D N = 1 Superfields

Näıvely, the formalism using ordinary 4D N = 1 superfields is not suitable to
treat theories with two supercharges or, equivalently, 5D N = 1 supersymme-
try. There are developments in this direction (harmonic superspace) which will
not be pursued further in this work. However, if one takes a hybrid approach
which furnishes the kinetic terms ∂µ acting on four of the five dimensions through
the σµθ∂µ and θ4� components of chiral superfields as usual while putting the
remaining ones involving ∂5 in by hand, one can use the well known and compar-
atively simple formalism involving 4D N = 1 vector- and chiral superfields. By
choosing a convenient coordinate frame, the dimension receiving the special treat-
ment will coincide with the compact direction of the extra dimension which is
treated separately during Kaluza-Klein reduction (and Holography, for that mat-
ter) anyhow, and there is thus no great disadvantage from the fact that neither
5D Lorentz invariance nor 5D Supersymmetry are manifest.

Using ordinary superfields for SUSY in higher dimensions was considered in detail
already in 1983 by [48], where the authors extend the formalism for treating 4D
N = 4 SUSY to the maximal case of 10D N = 1 SUSY. They also present
the extended gauge and supersymmetry transformations and the action for the
resulting vector- and triplet of chiral superfields. The explicit formalism in 5D
and 6D was presented again more recently in [49] for flat space and then extended
to a slice of AdS5 in [50]. We shall now summarize the aspects relevant for this
work in some detail and discuss the straightforward extension of the formalism
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to nonabelian gauge theory in AdS5. Note that evaluating the larger traces of
superfields including group generators as well as Berezin integrals by hand to
recover the action in component fields can be cumbersome and was partly done
using a FORM program outlined in appendix E.4.

The Gauge Multiplet

In order to be able to express the action for matter in a gauge invariant form
right away, let us start discussing how to extend 4D Supersymmetric Yang-Mills
theory to five dimensions. Our convention for the expansion in components of
the vector superfield in Wess-Zumino gauge is

V a = −θσmθAam − iθ
2
θλa1 + iθ2θλ

a
1 +

1

2
θθθθ Da (4.11)

In the following, V ≡ V aT a where T a are the generators of the gauge group in
question. At this point the Yang-Mills gauge coupling is still absorbed in the
fields and [V ] = 0. There are two important objects that can be built from this,
namely the superfield from the exponential and its inverse

e±V (4.12)

and a superfield

Wα = −1

4
DDeVDαe

−V (4.13)

which is automatically chiral as it fulfils Dβ̇Wα = 0 by virtue of the covariant
derivative’s properties. As usual, a chiral superfield Φ = ΦaT a

Φ = φ+ iθσmθ∂mφ− 1

4
θθθθ�φ+

√
2θω − i√

2
θθ∂mωσ

mθ + θθG (4.14)

acts as the supergauge parameter:

eV −→ eΦeV eΦ (4.15)

We consequently have to define Wα to end on e−V because then

Wα −→ eΦWαe
−Φ (4.16)

The real scalar α = −Imφ can be identified with the usual bosonic gauge param-
eter via Baker-Campbell-Hausdorff,

Aaµ −→ Aaµ − 2∂µα
a + fabcαbAcµ (4.17)

Only after the redefinition V −→ 2gY MV does this take the conventional form

Aaµ −→ Aaµ −
1

gYM
∂µα

a + fabcαbAcµ (4.18)
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Now we would like to extend this to 5D. As a first step, we give all fields including
the gauge parameter a formal dependence on a new parameter y. It is well-known
that the 4D N = 2 gauge multiplet as well as the 5D and 6D N = 1 gauge
multiplet have the same field content as one N = 1 gauge multiplet and one
N = 1 chiral multiplet [46]. The fifth component of the vector field is a 4D scalar
and should therefore be part of the complex scalar in the chiral multiplet. Since
the gauge parameter is a chiral superfield with the bosonic gauge parameter as
imaginary part, it is clear that the scalar in the gauge sector chiral superfield
should be of the form A = (Σ + iA5) /

√
2 with

χ = A+ iθσmθ∂mA− 1

4
θθθθ�A+

√
2θλ2 −

i√
2
θθ∂mλ2σ

mθ + θθC (4.19)

The real component Σ is a new scalar field which in 6D would be identified with
A6. The vector should transform as

Aa5 −→ Aa5 − 2∂yα
a + fabcαbAc5 (4.20)

The result of the gauge transformation on χ must again be a chiral superfield, so
only Φ can be involved. This leads us to the 5D supergauge transformation law

χ −→ eΦ(χ−
√

2∂y)e
−Φ (4.21)

Using the above redefinition, we get fundamental and adjoint covariant derivatives
with the following sign conventions

DMΨ = (∇M − igYMA
a
MT

a)Ψ (4.22)

(DMΦ)a = ∇MΦa + gYMf
abcAbMΦc . (4.23)

The challenging part is now to find gauge and SUSY invariant combinations
which give us the complete 5D gauge theory. It can be easily checked that the
expression proposed by the authors mentioned above,

∫
d4θ tr

[
(
√

2∂y + χ)e−V (−
√

2∂y + χ)eV + ∂ye
−V ∂ye

V
]

(4.24)

satisfies this requirement. The 4D part is
∫
dθ2WW + h.c. as usual, and the

normalization of generators is

tr[T aT b] = Nδab (4.25)

Thus the 5D action is given by

Sg[V, χ] =

∫
d5x

∫
d2θ

R

16Ng2
Y M

tr[WαWα] + h.c.
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+

∫
d5x

∫
d4θ

1

4RNg2
YM

tr[(
√

2∂y + χ)e−V (−
√

2∂y + χ)eV + ∂ye
−V ∂ye

V ]

(4.26)

In warped space, the density e−4Rky cancels with the two inverse metric tensors
of F 2, so the first part of the action is already complete. To give the vector field
its correct canonical 5D kinetic term

∫
dyηµνRe−2Rky∂yAµ∂yAν

however, we need to add it in the second part of the action. The final 5D SYM
action in AdS5 reads

Sg[V, χ] =

∫
d5x

∫
d2θ

R

16Ng2
Y M

tr[WαWα] + h.c.

+

∫
d5x

∫
d4θ

e−2Rky

4RNg2
YM

tr[(
√

2∂y + χ)e−V (−
√

2∂y + χ)eV + ∂ye
−V ∂ye

V ]

(4.27)

All we have to do now is to perform field redefinitions on the remaining compo-
nents of the multiplet to give them proper units and canonical kinetic terms with
general covariant derivatives according to their spin:

Aµ −→ 2gYMAµ, λ1 −→ 2gYMe−
3

2
Rkyλ1,

A5 −→ 2gYMRA5, λ2 −→ −2igYMRe−
1

2
Rkyλ2, Σ −→ 2gYMRΣ

(4.28)

To have supersymmetry, the fields get bulk masses which are already encoded in
this action, and boundary localized masses, which will be implemented through
effective boundary conditions. More on this will be said in the section on bound-
ary conditions and the spectrum.

The Hypermultiplet

As we have seen in the previous sections, the natural extension of the chiral
multiplet to five dimensions is obtained by adding a second chiral fermion as
demanded by 5D Lorentz invariance and with it the corresponding scalar partners.
We then get the so-called Hypermultiplet, and it is not surprising that it can be
seen as a combination of a chiral and an antichiral superfield. This shall now be
made explicit. We expand the chiral superfield as follows

H = h+ iθσmθ∂mh− 1

4
θθθθ�h+

√
2θψ − i√

2
θθ∂mψσ

mθ + θθF (4.29)
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and in an analogous way the antichiral superfield which is basically the complex
conjugate of a chiral superfield, is given by

H
c
= hc†− iθσmθ∂mhc†−

1

4
θθθθ�hc† +

√
2 θψ

c
+

i√
2
θθθσm∂mψ

c
+ θθF c† (4.30)

The gauge transformations are exactly like those of a hypermultiplet in 4D,
namely

H −→ eΦH, H
c −→ e−ΦH

c
(4.31)

such that the real superfields He−VH and HceVH
c

are gauge invariant, supply-
ing us with the usual 4D kinetic terms. There are also gauge invariant chiral
superfields, HcH and HH

c
which are used to write down mass terms. Can a

5D kinetic term be constructed as well with what we have so far? The answer is
yes, because χ can be used to compensate the derivative ∂y acting on Φ in the
following manner,

Hc(∂y −
1√
2
χ)H (4.32)

the θ2 component of which gives us a 5D kinetic term for the multiplet. The
complete action of a hypermultiplet of mass M5 coupled to 5D SYM is thus

Sh[H,H
c, V, χ] =

∫
d5xR

∫
d4θ

[
He−VH +HceVH

c

]

+

∫
d5xR

∫
d2θHc

[
∂y/R− 1√

2R
χ−M5

]
H + h.c. . (4.33)

Introducing the correct density factors in warped space as determined in [50], we
finally obtain the offshell action of a hypermultiplet coupled to SYM in warped
space,

Sh[H,H
c, V, χ] =

∫
d5xR

∫
d4θ e−2Rky

[
He−VH +HceVH

c

]

+

∫
d5xR

∫
d2θ e−3RkyHc

[
∂y/R− 1√

2R
χ− (

3

2
− c)k

]
H + h.c. . (4.34)

where the mass has been expressed in units of the RS curvature by introducing
the bulk mass parameter c, and a shift of 3/2k has been added to generate the
correct general covariant derivatives. The action of the fermions in the gauge
multiplet corresponds to the choice c = 1/2. Again, a redefinition of fields has to
be done in order to recover the canonical Lagrangian. In addition to (4.28), the
substitution

ψ −→ e−
1

2
Rkyψ, ψc −→ e−

1

2
Rkyψc (4.35)

has to be performed.
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Figure 4.1: An illustration on how the boundary conditions within a 5D vector multiplet
are naturally related by different consistency conditions imposed on the model.

4.3 Boundary Conditions for Supersymmetry

Before any further field redefinitions, the supersymmetric action as outlined above
includes bulk mass terms to the effect that, indeed, the same bulk equations of
motion and the same basis of Kaluza-Klein solutions are bestowed upon all com-
ponents within each superfield. It should be noted that this is the case for the
gauge sector only after a suitable gauge fixing term is introduced. There is only
one Killing spinor in warped space, and consequently this kind of degeneracy is
not present within entire 5D supermultiplets. This is visible already before super-
symmetry is introduced since the ψc fermions have Kaluza-Klein wave functions
which differ from those of ψ and the same is true for Aµ and A5. To conserve at
least one supersymmetry, the boundary conditions have to fulfil the right relations
to make sure that even the actual Kaluza-Klein wave solutions and corresponding
mode masses are the same throughout the 4D multiplets, and this is obviously
the case if the superfields themselves are assigned to boundary conditions which
are shared by all coefficient fields. Let us start with the gauge sector, which
consists of two real scalars, a dirac spinor and a 4D vector. First of all, we would
like to have BRST invariance of the massless sector and a nonlinear realization
for the massive modes. This dictates to us the boundary conditions of A5 and
therefore of the chiral superfield. Requiring one supersymmetry to remain intact
fixes the boundary conditions for the remaining parts of the multiplet (figure
4.1). Assume n gauge fields A1

µ . . . A
n
µ and (n×n) matrices N and D chosen such

that the boundary action of Aµ vanishes and the symmetry breaking is consistent
when

(N∂y +D) ~Aµ = 0 (4.36)

Also, we assume that kerN⊥ kerD. Then a consistent choice for the would-be
Goldstone scalars is (

D∂ye
−2Rky +N

)
~A5 = 0 (4.37)
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This translates to boundary conditions for the multiplets

(N∂y +D) ~V = 0,
(
D∂ye

−2Rky +N
)
~χ = 0 (4.38)

Similar reasoning applies for the Hypermultiplets, where

ψ = 0 −→ H = 0, ψc = 0 −→ Hc = 0 (4.39)

We now have all the tools to construct supersymmetric models of matter and
gauge multiplets in warped space. In order to be able to do explicit calculations
we have to determine the onshell action in terms of 5D component fields from the
superfield expressions. This is done in appendix B. To illustrate the mechanism,
we will first study an abelian toy model.



Chapter 5

A Toy Model: Warped sQED

The best way to see the formalism which we have introduced at work is in a simple
abelian toy model, in our case an implementation of warped supersymmetric
QED. There are certainly many different ways how one could embed QED in
warped supersymmetry, and we do it in a way that is partly reminiscent of the
full higgsless model treated later, but deviates from it in the way it implements
fermions in order to discuss some challenges which will appear. We want U(1)
gauge theory with one fermion species, and we exploit the fact that, in contrast
to electroweak theory, we do not need chiral fermions. We therefore have four
superfields,

(VQ, χQ) (H,Hc) (5.1)

which house the “standard” fields Aµ, A5, ψ, ψc and their superpartners λ1, λ2,
Σ, h and hc. They have generic Kaluza-Klein wave functions given in (2.53),
(2.62) and (2.71) using the parameters specified in (4.8), (4.9) and (4.10).

5.1 The Supersymmetric Spectrum

For unbroken electromagnetism, we assign boundary conditions ⊕⊕ to V and ⊖⊖
to χ. The tower of vector bosons, gauginos and gauge scalars is then determined
by the eigenvalue problem

Y0(m
eRkπ

k
) =

J0(m
eRkπ

k )Y0(m/k)

J0(m/k)
(5.2)

There is a zero mode for the vector,

Aµ(x, y) = A0
µ(x)

g4
g5

+ . . . (5.3)

and a corresponding zero mode of λ1,

λ1(x, y) = λ0
1(x)e

3/2Rky g4
g5

+ . . . (5.4)
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while λ2, Σ and A5 have no corresponding solution for m = 0 and vanish. Apart
from the massless modes, the expression (5.2) is approximately satisfied when

J0(m
eRkπ

k
) ≈ 0 (5.5)

which leads to a mass spectrum of Kaluza-Klein modes

mn ≈ znke
−Rkπ, zn = 2.4, 5.52, 8.65 . . . (5.6)

of degenerate massive photons, Dirac photinos and real scalar “sphotinos”. Now
let us construct the electron. If we assign boundary conditions (⊕⊕,⊖⊖) to
(ψ,ψc) we get a massless Weyl electron. This is certainly not satisfactory and
we need to introduce a second hypermultiplet to get a complete light vectorlike
electron. This is the way how it is done in the full model since there we need chiral
fermion interactions anyhow, but let us try something else here: If we twist the
boundary conditions on the IR brane, (⊕⊖,⊖⊕), the massless electron mode is
lifted to m > 0 and the 5D Dirac fermion provides a right-handed component. It
will have a completely different Kaluza-Klein profile, but still couples universally
to the massless delocalized gauge bosons. We have a free localization parameter
c which we can use to dial the coupling strength of the electron to the IR brane
to get realistic masses. With twisted IR boundary conditions, the electron and
selectron towers are determined by the eigenvalue problem

Yc+1/2(m
eRkπ

k
) =

Jc+1/2(m
eRkπ

k )Yc−1/2(m/k)

Jc−1/2(m/k)
(5.7)

We want the electron to be much lighter that the Kaluza-Klein scale and therefore
have to choose c > 1/2 to localize it sufficiently towards the UV brane. In this
case we can, at least for the lightest modes, approximate the Bessel functions to
first order using (m/k)2c ≪ 1 and m≪ ke−Rkπ, and get the condition

(1 − 4c2)
(m
k

)2c−1
+

(
m
eRkπ

k

)2c+1

= 0 (5.8)

which further simplifies to

(1 − 4c2)
k2

m2
+ (eRkπ)2c+1 = 0 (5.9)

giving us an approximation for our electron and selectron mass of

m2 ≈ (4c2 − 1)k2e−(1+2c)Rkπ (5.10)

The heavy Kaluza-Klein electron and selectron modes from (5.7) for c > 1/2 are
mainly determined by the roots z̃n of Jc+1/2 with

mn ≈ z̃nke
−Rkπ (5.11)
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5.2 A Broken Spectrum

We have used warped space localization to generate a small electron mass from
Dirac boundary conditions, but this comes at a price: We have used up our
freedom to generate “soft” masses, and it is impossible to raise the selectron to a
much larger scale purely by putting further selectron operators on the IR brane.
We will be facing a similar dilemma later with electroweak and SUSY breaking.
Let us therefore see what happens when we project out the light superpartners
by twisting UV boundary conditions for the photino and selectrons. First we
assign boundary conditions (⊖⊕,⊕⊖) to (λ1, λ2). The equation for the photino
tower is now

Y0(m
eRkπ

k
) =

J0(m
eRkπ

k )Y1(m/k)

J1(m/k)
(5.12)

There is no zero mode for either λ1 or λ2 which is good, and no light almost-zero
mode as we have it in the case of our electron, which is not so nice since SUSY is
basically absent in the light sector. The above equation is again approximately
satisfied when J0(m

eRkπ

k ) = 0, leading to a heavy photino spectrum which is
almost degenerate with the heavy photons and sphotinos. We can now try to do
the same to the selectrons by assigning (⊖⊕,⊖⊕) to (h, hc) which corresponds to
twisting boundary conditions on the UV brane. This does unfortunately not work
since we would get a zero mode of hc, but unlike in the case of the fermions ψ and
ψc, the two components h and hc are not linked by 5D equations of motion or
boundary terms and can be treated separately. This means that we are allowed
to choose (⊖⊖,⊖⊕), and there are no light selectrons left. We now have two
separate equations from the eigenvalue problem,

Yc+1/2(m
eRkπ

k
) =

Jc+1/2(m
eRkπ

k )Yc+1/2(m/k)

Jc+1/2(m/k)
for h

Yc+1/2(m
eRkπ

k
) =

Jc+1/2(m
eRkπ

k )Yc−1/2(m/k)

Jc−1/2(m/k)
for hc (5.13)

which gives us two nondegenerate selectron towers

mn ≈ znke
−Rkπ (5.14)

where zn(h) are the positive roots of Jc+1/2 while zn(h
c) are the positive roots of

Jc−1/2.

Let us plug in some numbers to check whether this works. We choose k =
1019 GeV, Rkπ = 37.5 and thus ke−Rkπ ≈ 518 GeV which are typical values
in warped EWSB models. There is of course the massless photon, and the
massive photon and sphotino modes start at m ≈ 1266, 2880, 4500, . . . GeV.
The photino tower from UV twisted boundary conditions is, apart from the
missing massless mode, almost degenerate with the photons as it has m ≈
1245, 2856, 4479, . . . GeV. We still have to choose the bulk Dirac mass c to fit
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the electron mass. For our choice of parameters and me ≈ 5.11 · 10−4 GeV,
we need c = 0.814. The corresponding heavy electron resonances start at m ≈
2200, 3863, 5500, . . . GeV. The “lefthanded” selectron h has the same spectrum
within the accuracy shown here. The “righthanded” selectron hc however has
much lighter resonances m ≈ 1488, 3107, 4731, . . . GeV because it sees a Neu-
mann boundary condition on the IR brane.

5.3 Effective Couplings

The warped gauge action for the abelian case can be derived from (4.27) by
inserting the trivial generator T = 1. It simplifies a lot,

Sabel[V, χ] =

∫
d5x

∫
d2θ

R

16g2
Y M

WαWα + h.c.

+

∫
d5x

∫
d4θ

e−2Rky

4Rg2
YM

(
∂yV − 1

2
(χ+ χ)

)2

(5.15)

while the gauge invariant action of the hypermultiplet essentially remains the
same as (4.34),

Sh[H,H
c, V, χ] =

∫
d5xR

∫
d4θ e−2Rky

[
He−VH +HceVH

c

]

+

∫
d5xR

∫
d2θ e−3RkyHc

[
∂y/R− 1√

2R
χ− (

3

2
− c)k

]
H + h.c. . (5.16)

The abelian gauge action contains no interactions as was to be expected, while
the gauge coupling to matter gives us the following types of dimension four in-
teractions between physical particles and auxiliary fields:

eeγ ẽẽγ ẽẽγγ eẽγ̃ eeΣ ẽẽΣΣ Dẽẽ Cẽẽ F ẽΣ (5.17)

Since the photon zero mode has a flat profile, it couples universally with the same
strength because the overlap integral reduces to an expression proportional to the
norm and can be used to set the 5D gauge coupling,

− g5

∫
dy Re−3RkyψcσµAµψ

c

= −ψc,r(x)σµA0
µ(x)ψ

c,l
(x)

∫
dy Re−3Rkyg4f

r
ψc(y)f

l
ψc(y) + O(A′)

= −g4ψc,r(x)σµA0
µ(x)ψ

c,r
(x) + O(A′)

With this matching condition to the 4D effective coupling and the way we have
defined the photon Kaluza-Klein zero mode, we get the 5D gauge coupling directly
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from the canonical normalization condition for the photon,

∫ π

0
dy R

(
g4
g5

)2

= 1 ⇒ g5 = g4
√
πR (5.18)

Now, all 4D tree level couplings are fixed as long as we do not introduce further
operators (such as boundary terms). In particular, the lefthanded electron has
the same coupling strength,

g5

∫
dy Re−3Rky g4

g5
f rψ(y)f lψ(y) = g4 (5.19)

In the unbroken SUSY case, there are relationships between the corresponding
Kaluza-Klein wave functions given by the Killing spinor,

f lψc = e1/2Rkyf lhc, f lψ = e1/2Rkyf lh, f lλ1 = e3/2Rkyf lA, . . . (5.20)

from which we get identical effective couplings from supersymmetry,

e−3Rky f lψf
r
ψf

s
A = e−4Rky f lhf

r
ψf

s
λ1 (5.21)

As a final point, let us look at the effective coupling constants of the first massive
photon to left- and righthanded electrons. It is

g5〈ψ0ψ0A1〉 = −0.1871 g4 (5.22)

g5〈ψc,0ψc,0A1〉 = 6.55 g4 (5.23)

g5〈ψ1ψ1A1〉 = 5.0 g4 (5.24)

g5〈ψc,1ψc,1A1〉 = 3.8 g4 (5.25)

We notice that first of all, some couplings to light matter are suppressed while
couplings between three heavy resonances can be an order of magnitude larger
than the zero mode coupling. Secondly, the coupling of the righthanded electron
to the heavy photon is also strongly enhanced with potentially disastrous conse-
quences for precision tests. Realistic models avoid this problem by introducing a
second electron field with c < 0 which is set up to contain the light righthanded
fermion modes.



Chapter 6

Building the Extended
Higgsless Model

Die Supersymmetrie ist viel zu schön, um sie zur Lösung des
Hierarchieproblems zu verschwenden

- Julius Wess, 2007

6.1 The Superfield Content

Let us recapitulate the field content of the model before supersymmetrization:
We have a 5D Yang-Mills theory with custodial symmetry,

SU(3)c × SU(2)L × SU(2)R × U(1)X (6.1)

which gives us the fields Gaµ, G
a
5, A

Li
µ , ALi5 ,ARiµ ,ARi5 ,Bµ, and B5. Since there are

no chiral fermions in 5D, each flavor of matter gets two complete Dirac spinors.
The Lepton components are in the representation

LL ≃ (1,2,1,−1) LR ≃ (1,1,2,−1) (6.2)

while quarks have

QL ≃ (3,2,1, 1/3) QR ≃ (3,1,2, 1/3) (6.3)

Each of the components consists of two Weyl spinors ψα and ψ
cα̇

. As was ex-
plained in Chapter 4, each 5D gauge field corresponds to one vector superfield
and one chiral superfield carrying an adjoint index. Each Dirac spinor on the
other hand corresponds to two chiral superfields in the fundamental containing
ψα and ψcα. This leads to the superfield content given in table 6.1 which repre-
sents the complete supersymmetric field content (up to boundary fields which can
be added to modify the model further). As an example, the 4D gauge coupling
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Field Representations Field Representations

V Ca, χCa 8 of SU(3)C V Li, χLi 3 of SU(2)L

V Ri, χRi 3 of SU(2)R V X , χX U(1)B−L

HL
l,g (1,2,1,−1) HR

l,g (1,1,2,−1)

HLc
l,g (1,2,1, 1) HRc

l,g (1,1,2, 1)

HL
q,g (3,2,1, 1/3) HR

q,g (3,1,2, 1/3)

HLc
q,g (3,2,1,−1/3) HRc

q,g (3,1,2,−1/3)

Table 6.1: The superfield content of the model and respective group representations
under SU(3)c × SU(2)L × SU(2)R × U(1)X , where g = 1 . . . 3 denotes the generation.
The quantum numbers refer to the usual bosonic gauge transformations and it is implied
that the vector fields also have the inhomogeneous transformation property.

of HLc
q is

L5 =

∫
d4θ Hc exp

[
λa

2
V a
C +

σi

2
V i
L +

1

2

1

3
VX

]
H
c

(6.4)

6.2 Supersymmetric Boundary Conditions and Spec-
trum

In section 4.3 we have established explicit relations between the boundary con-
ditions which have to be assigned to the components of a 5D supermultiplet to
obtain a theory which is 4D N = 1 SUSY and BRST invariant. From these
rules and the conditions given in section 3.2 we can read off the complete set of
boundary conditions for the higgsless model with supersymmetry. They are

[
1 −1

∂y ∂y

] [
V L

V R

]∣∣∣∣∣
y=π

=

[
∂y −∂y
1 1

]
e−2Rky

[
χL

χR

]∣∣∣∣∣
y=π

= 0 , (6.5a)

∂yV
X(π) = χX(π) = ∂yV

C(π) = χC(π) = 0, (6.5b)

Hc
Lf (π) + µHc

Rf (π) = HRf (π) − µHLf (π) = 0 (6.5c)

on the IR brane (i. e. y = π), where f runs over all leptons and quarks, and
µke−Rkπ is the IR Dirac boundary mass parameter. On the UV brane (i. e. y = 0),
we have

[
g̃5∂y g5∂y

−g5 g̃5

] [
V R3

V X

]∣∣∣∣∣
y=0

=

[
g̃5 g5

−g5∂y g̃5∂y

]
e−2Rky

[
χR3

χX

]∣∣∣∣∣
y=0

= 0 , (6.5d)

∂yV
L(0) = V R12(0) = ∂yV

C(0) = 0 (6.5e)

χL(0) = ∂ye
−2RkyχR12(0) = χC(0) = 0, (6.5f)
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Figure 6.1: The gauge sector spectrum of the supersymmetrized warped higgsless model.
Filled/unfilled boxes in the s = 1 column stand for three/two physical degrees of freedom.
The filled boxes in the s = 1/2 column stand for Dirac fermions in the electrically charged
sector and Majorana/Weyl fermions in the neutral and color sector. Similarly, the filled
boxes in the s = 0 column stand for complex scalars in the electrically charged sector
and real scalars in the neutral and color sector.

Hc
Lf (0) = HRf (0) = 0 (6.5g)

The spectroscopy which follows from this after Kaluza-Klein expansion is shown
in figure 6.1. It is characteristic for warped supersymmetric models and can
be summarized as follows: For every massless vector in the nonsupersymmetric
theory, there is one massless 4D N = 1 vector multiplet. For each massive
vector in the nonsupersymmetric theory with mass m 6= 0, there is a degenerate
4D N = 2 vector multiplet with central charge m. The unphysical degrees of
freedom are not shown, and are degenerate with the others for ξ = 1.

6.3 The Action in 4D Fields

In this section we will recast a selected number of interaction terms from the 5D
Lagrangian in warped space in an explicit 4D language with 4D Vectors, Dirac and
Majorana spinors and Scalars. All information about the fifth dimension is then
encoded in the overlap integrals. This is done in the usual Kaluza-Klein approach
which is straightforward apart from the somewhat tedious task of classifying all
possible types of 4D vertex expressions in connection with their corresponding
effective coupling constants.

6.3.1 Chargino Interactions with Matter

Let us start with the arguably most complicated interaction from L16, L17, L19,
L21 (appendix B.2) in which many of the interesting subtleties such as “clashing”
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fermion lines appear. To proceed, we need the following definitions of 4D fields:

Ψ =
(
ψu, ψ

c
u, ψd, ψ

c
d

)T
H =

(
hu

hd

)
Hc† =

(
hc†u
hc†d

)
(6.6)

represent any one fermion generation and the sfermion partners of the lefthanded
(H) and righthanded components (Hc), while

χ+
a =

1√
2

(
λ1

1 − iλ2
1

λ
1
2 − iλ

2
2

)
χ+
b =

1√
2

(
λ1

2 − iλ2
2

λ
1
1 − iλ

2
1

)
(6.7)

(Cχ+
a ) =

1√
2

(
λ1

2 + iλ2
2

λ
1
1 + iλ

2
1

)
(Cχ+

b ) =
1√
2

(
λ1

1 + iλ2
1

λ
1
2 + iλ

2
2

)
(6.8)

are our choice of chargino mass eigenstates which are both positive in the standard
form and negative in their charge conjugated form denoted with a prefix C. In
all these the Kaluza-Klein index and the xµ dependence are left implicit for
now. Since there are no identical particles in this interaction there should be no
ambiguities. Let us furthermore define the matrices for charged currents and the
chirality projectors as

T± = T 1 ∓ iT 2 P+ =

(
δβα 0

0 0

)
P− =

(
0 0

0 δα̇
β̇

)
(6.9)

With these components we can build (up to complex conjugation) the following
electrically neutral Lorentz invariants

ΨT+P+(Cχ+
a )H =

1√
2
ψcαd (λ1

2 + iλ2
2)αhu = ψcdλ

−
2 hu (6.10)

ΨT+P−(Cχ+
a )H =

1√
2
ψdα̇(λ

1
1 + iλ

2
1)
α̇hu = ψdλ

−
1 hu (6.11)

ΨT−P+χ+
aH =

1√
2
ψcαu (λ1

1 − iλ2
1)αhd = ψcuλ

+
1 hd (6.12)

ΨT−P−χ+
aH =

1√
2
ψuα̇(λ

1
2 − iλ

2
2)
α̇hd = ψuλ

+
2 hd (6.13)

where the missing 12 combinations are obtained when exchanging χa ↔ χb and
H ↔ Hc† by performing the substitutions λ1 ↔ λ2 and hi ↔ hc†i respectively
on the results. Luckily, only half of the possible combinations actually appear
in the interaction, and the resulting structure bears some resemblance to the
corresponding interaction in the MSSM. Now we can compare with the corre-
sponding expressions in the 5D Lagrangian density where now all fields depend
on xµ and y,

L =

∫
dy

√
g gew

√
2
[
iλ
l
1ψT

lh+ iλl1ψ
cT lhc† − iλl2ψ

cT lh+ iλ
l
2ψT

lhc†
]

+ h.c.
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=

∫
dy

√
g gew

[
iλ

+
1 ψT

−h+ iλ
−
1 ψT

+h+ iλ+
1 ψ

cT−hc† + iλ−1 ψ
cT+hc†

− iλ+
2 ψ

cT−h− iλ−2 ψ
cT+h+ iλ

+
2 ψT

−hc† + iλ
−
2 ψT

+hc†
]

+ h.c.+ neutral

=

∫
dy

√
g gew

[
iλ

+
1 ψuhd + iλ

−
1 ψdhu + iλ+

1 ψ
c
uh

c†
d + iλ−1 ψ

c
dh
c†
u

− iλ+
2 ψ

c
uhd − iλ−2 ψ

c
dhu + iλ

+
2 ψuh

c†
d + iλ

−
2 ψdh

c†
u

]

+ h.c.+ neutral (6.14)

By comparing the coefficients, we finally get an answer in 4D notation

L = igew

[
ΨT−

(
〈λ1u d̃ 〉P− − 〈λ2u

cd̃ 〉P+
)
χ+
b H

+ΨT+
(
〈λ1d ũ 〉P− − 〈λ2d

cũ 〉P+
)

(Cχ+
a )H

+ΨT−
(
〈λ1u

cd̃c 〉P+ + 〈λ2u d̃
c 〉P−

)
χ+
aH

c†

+ΨT+
(
〈λ1d

cũc 〉P+ + 〈λ2d ũ
c 〉P−

)
(Cχ+

b )Hc†
]

+h.c.+ neutral (6.15)

where the overlap integrals are defined as

〈λff̃ 〉 =

∫
dyRe−4Rky fλ(y)ff (y)ff̃ (y) (6.16)

The expression (6.15) is still incomplete: The chargino is actually a mix of SU(2)L
and SU(2)R gauginos while each fermion flavour also possesses two 5D doublets
ΨL and ΨR which each transform only under the group of the same name. So far
we have simply written down everything as if there was only one SU(2) group
present, but for quarks it is simple to do the final step to the full gauge group:
Let us recall that the boundary terms on the IR brane mix ψL(x, y) with ψR(x, y)
and ψcL(x, y) with ψcR(x, y) only. Similarly, the boundary conditions mix λijL and

λijR only for i,j equal. This means that it is these combinations of 5D fields
which share the same 4D Kaluza-Klein coefficient field, and since the couplings
are diagonal with respect to the two groups (everywhere except in the coupling of
two scalars to two gauge bosons), all we have to do is to sum over the contributing
overlap integrals in the Lagrangian. The final result is

L =igew× (6.17)
[
ΨT−

(
〈λ1LuL d̃L + λ1RuR d̃R 〉P− − 〈λ2Lu

c
Ld̃L + λ2Ru

c
Rd̃R 〉P+

)
χ+
b H

+ΨT+
(
〈λ1LdL ũL + λ1RdR ũR 〉P− − 〈λ2Ld

c
LũL + λ2Rd

c
RũR 〉P+

)
(Cχ+

a )H

+ΨT−
(
〈λ1Lu

c
Ld̃

c
L + λ1Ru

c
Rd̃

c
R 〉P+ + 〈λ2LuL d̃

c
L + λ2RuR d̃

c
R 〉P−

)
χ+
aH

c†
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+ΨT+
(
〈λ1Ld

c
Lũ

c
L + λ1Rd

c
Rũ

c
R 〉P+ + 〈λ2LdL ũ

c
L + λ2RdR ũ

c
R 〉P−

)
(Cχ+

b )Hc†
]

+h.c.+ neutral (6.18)

Again, we have left the triple sum over all combinations of Kaluza-Klein modes
implicit for clarity.

6.3.2 Neutralino Interactions with Matter

Now we turn to the neutral gauginos which we ignored in the above derivation.
We define two Majorana neutralino towers

χ0
a(x) =

1√
2

(
λ0

1 + λ0
2

λ0
1 + λ0

2

)
χ0
b(x) =

i√
2

(
λ0

1 − λ0
2

λ0
2 − λ0

1

)
(6.19)

where λ0
i (x) is the Kaluza-Klein coefficient which pertains to the 5D fields λL3

i ,
λR3
i and λXi after electroweak symmetry breaking. With these definitions, the

full 4D neutralino-matter-smatter interaction Lagrangian takes the form

L = hj ΨiiΓij(χ
0
a + iχ0

b) + hc†j ΨiiΓ
c
ij(χ

0
a − iχ0

b) + h.c. (6.20)

The vertices are given in terms of the projectors, overlap integrals and quantum
numbers by

Γij = gewT
3L
ij

[
P−〈λL3

1 ψLihLj〉 − P+〈λL3
2 ψcLihLj〉

]

+ gewT
3R
ij

[
P−〈λR3

1 ψRihRj〉 − P+〈λR3
2 ψcRihRj〉

]

+ g̃ewXij

[
P−〈λX1 ψLihLj〉 − P+〈λX2 ψcLihLj〉

]

+ g̃ewXij

[
P−〈λX1 ψRihRj〉 − P+〈λX2 ψcRihRj〉

]

Γcij = gewT
3L
ij

[
P−〈λL3

2 ψLih
c
Lj〉 + P+〈λL3

1 ψcLih
c
Lj〉
]

+ gewT
3R
ij

[
P−〈λR3

2 ψRih
c
Rj〉 + P+〈λR3

1 ψcRih
c
Rj〉
]

+ g̃ewXij

[
P−〈λX2 ψLihcLj〉 + P+〈λX1 ψcLihcLj〉

]

+ g̃ewXij

[
P−〈λX2 ψRihcRj〉 + P+〈λX1 ψcRihcRj〉

]
.

In this expression, the brackets

〈λψh〉 ≡
∫

dy
√
g fλ(y)fψ(y)fh(y) (6.21)

stand for the 5D overlaps which give us the coupling strengths of a sfermion
to the corresponding matter fermion and a neutralino. The coupling constants
gew and g̃ew are those of the SU(2) groups and U(1)X group respectively, while
T 3L,R
ij = ±1

2 , 0 is the SU(2)L,R isospin and Xij = 1
2(B − L)iδij is the U(1)X

quantum number. The structure is such that the “left handed” sfermion couples
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to gauginos and matter fermions of the same handedness, the “right handed” one
to gauginos and matter fermions of opposite handedness.

6.3.3 Gluino Interactions with Matter

The QCD analog of the above interactions are the couplings of the gluinos to
quarks and squarks which of course originate from the same parts of the warped
SU(N) SYM Lagrangian, L16, L17, L19, L21 (appendix B.2). In contrast to the
charginos which one usually puts in a complex representation on purpose to obtain
electrical charge eigenstates, we choose a Majorana basis of mass eigenstates for
all gluinos analogous to the neutralino

Λa =
1√
2

(
λ1 + λ2

λ1 + λ2

)
Λb =

i√
2

(
λ1 − λ2

−λ1 + λ2

)
(6.22)

In analogy to what we have seen before, the 4D interaction has to have the
structure

L =Ψ iΓl (Λa + iΛb)
l h+ Ψ iΓc,l (Λa − iΛb)

l hc† (6.23)

where the vertex expression reads

Γl = gYMT
l[P−〈λ1ψLhL + λ1ψRhR〉 − P+〈λ2ψ

c
LhL + λ2ψ

c
RhR〉] (6.24)

Γc,l = gYMT
l[P−〈λ2ψLh

c
L + λ2ψRh

c
R〉 + P+〈λ1ψ

c
Lh

c
L + λ1ψ

c
Rh

c
R〉] (6.25)

where the overlap integrals are defined as

〈λψh 〉 =

∫
dyRe−4Rky fλ(y)fψ(y)fh(y) (6.26)

6.3.4 The Strong Quark Yukawa Coupling

The scalar partner of the gluon has a Yukawa type interaction with the quarks
from L18 and L20 (appendix B.2). The KK decomposed version is straightfor-
ward,

L = Σ(n),lΨ
(m)

T lΓ(nmk)Ψ(k) (6.27)

where

Γ(nmk) = gYMP
+
[
〈Σ(n)ψ

c(m)
L ψ

(k)
L 〉 + 〈Σ(n)ψ

c(m)
R ψ

(k)
R 〉
]

+gYMP
−
[
〈Σ(n)ψ

c(k)
L ψ

(m)
L 〉 + 〈Σ(n)ψ

c(k)
R ψ

(m)
R 〉

]
(6.28)

and

〈Σψcψ〉 ≡
∫

dy
√
g fΣ(y)fψc(y)fψ(y) (6.29)
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while T l are the Gell-Mann matrices. What is special about this class of couplings
is the suppression with mass and potential cancellations between the L and R
sectors for cL = −cR.

6.3.5 The Gluino Yukawa Interaction

The interaction of gluinos with the same color charged gauge scalar from L8

(appendix B.2) has a similar structure,

√
ggYM

[
− if bdaΣd(λ

a
2λ

b
1 + λa2λ

b
1)
]

(6.30)

We choose the same Majorana basis for the gluinos as above. Now, it can be
easily checked, that, in order to obtain the interaction above including the color
structure, we have to combine these in the following way

L = gYM
∑

q,k,p

〈λq1λk2Σp〉fmnl×

1

2
Σn,p

(
Λ
l,k
a Λm,qb − Λ

m,q
a Λl,kb + iΛ

l,k
a (−iγ5)Λm,qa + iΛ

m,q
b (−iγ5)Λl,kb

)

(6.31)

where

〈Σλλ〉 ≡
∫

dy
√
g fΣ(y)fλ(y)fλ(y) (6.32)

Note the assignment of Kaluza-Klein indices to the wavefunctions of λ1, λ2 and
the fact that they are independent of color.

6.3.6 The Strong Squark Gauge Scalar Coupling

This interaction stems from L24 and L31 (appendix B.2). Since in 6D this would
be the A6 gauge coupling (but p6 = 0 in this model), it is not surprising that all
the 5D derivative terms ∂y which appear in it merely form a 5D boundary term.
Gathering the terms, we obtain

L =∂y

[
gYMe

−4Rky(Σlh†T lh− ΣlhcT lhc†)
]

+
√
ggYMkΣ

l
[
(2c− 1)h†T lh+ (2c + 1)hcT lhc†

]
(6.33)

The 4D version is

L =gYM
∑

m,n,r

Σl,nhm†T lhr [(2cL − 1)k〈ΣnhmL h
r
L〉 + (2cR − 1)k〈ΣnhmRh

r
R〉] +

gYM
∑

m,n,r

Σl,nhc,mT lhc†,r
[
(2cL + 1)k〈Σnhc,mL hc,rL 〉 + (2cR + 1)k〈Σnhc,mR hc,rR 〉

]

(6.34)



56 Building the Extended Higgsless Model

The overlap integrals in this case are defined as

〈Σhh〉 ≡
∫

dy
√
g fΣ(y)fh(y)fh(y) (6.35)

The resulting couplings have energy dimension 1 where, similarly to A5, the scale
is set by the masses of the particles participating in the interaction.

6.3.7 The Electroweak Matter Gauge Coupling

This is the standard gauge interaction of quarks from L15 (appendix B.2) for the
gauge groups SU(2)2 × U(1). From this follows

L =
∑

nmr

[
Ψ
m
Γ/+ Ψr + Ψ

m
Γ/− Ψr

]
(6.36)

where

Γ/+ =
(
gewT

lA/ l,nL 〈AnLψmL ψrL〉

+ gewT
lA/ l,nR 〈AnRψmRψrR〉 + g̃ewXB/

n〈BnψmL ψ
r
L +BnψmRψ

r
R〉
)
P+ (6.37)

Γ/− =
(
gewT

lA/ l,nL 〈AnLψc,mL ψc,rL 〉

+ gewT
lA/ l,nR 〈AnRψc,mR ψc,rR 〉 + g̃ewXB/

n〈Bnψc,mL ψc,rL +Bnψc,mR ψc,rR 〉
)
P− (6.38)

and

〈Aψψ〉 ≡
∫
dy

√
g eRky fA(y)fψ(y)fψ(y) (6.39)

The matrix X contains the abelian quantum numbers (B−L)/2 on the diagonal
which is 1/6 for quarks and −1/2 for leptons.

6.3.8 The Strong Quark Gauge Coupling

This is the standard gauge interaction of quarks from L15 (appendix B.2) for the
gauge group SU(3)c. From this follows

L = gYM
∑

nmr

Gl,nµ

[
Ψ
m
γµT lP+Ψr〈GnψmL ψrL +GnψmRψ

r
R〉+

Ψ
m
γµT lP−Ψr〈Gnψc,mL ψc,rL +Gnψc,mR ψc,rR 〉

]
(6.40)

where

〈Gψψ〉 ≡
∫
dy

√
g eRky fG(y)fψ(y)fψ(y) (6.41)
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6.3.9 The Gaugino Charged Current Interaction

The charged current interaction Lagrangian from L0,L6 (appendix B.2) can again
be rewritten using the definitions of 4D fields given above. It is

L = − 1√
2
W+
µ

[
χ+
a Γµa

(
χ0
a − iχ0

b

)
+ χ+

b Γµb
(
χ0
a + iχ0

b

)]
+ h.c. (6.42)

and the corresponding vertex expressions are

Γµa = gewγ
µ
[
P−(〈WL±λL±2 λL3

2 〉 + 〈WR±λR±2 λR3
2 〉)

+P+(〈WL±λL±1 λL3
1 〉 + 〈WR±λR±1 λR3

1 〉)
]

Γµb = Γµa(P
+ ↔ P−) ,

with the overlap integrals

〈Wλiλj〉 ≡
∫

dy
√
g eRkyfW (y)fλi

(y)fλj
(y) (6.43)

which now have an additional factor eRky from the inverse vielbein contained
in γµ.

6.3.10 The Gaugino Neutral Current Interaction

The interaction of charginos with the neutral gauge bosons comes from the same
part of the Lagrangian. It is

L = Zkµ

[
χ+,l
a Γµ,klra χ+,r

a + χ+,l
b Γµ,klrb χ+,r

b

]
(6.44)

where

Γµ,klra =gewγ
µ
[
P+〈WL3,kλL±,l1 λL±,r1 +WR3,kλR±,l1 λR±,r1 〉

+ P−〈WL3,kλL±,l2 λL±,r2 +WR3,kλR±,l2 λR±,r2 〉
]

Γµ,klrb =Γµ,klra (P+ ↔ P−)

again with the overlap integrals

〈Wλiλj〉 ≡
∫

dy
√
g eRkyfW (y)fλi

(y)fλj
(y) (6.45)



Chapter 7

Breaking Supersymmetry

Right from the start when supersymmetry was considered as an extension of the
Poincaré group in high energy physics, it was clear that it had to be hidden or
broken in nature similarly to electroweak symmetry. It is obviously not present
in the known particle spectrum and as of today still remains a purely specula-
tive endeavour. There are mass sum rules which imply that it is not possible to
achieve purely spontaneous supersymmetry breaking in the minimal supersym-
metric extension of the standard model (MSSM) without there being very light
superpartners of matter fermions. Eventually, there was a consensus that one
should remain agnostic about the origin of supersymmetry breaking by deter-
mining a maximal set of symmetry breaking operators which could be used to
obtain a realistic spectrum while still retaining the most important properties
of the model, in particular the absence of quadratic contribution to the Higgs
potential. These operators were then dubbed “soft supersymmetry breaking”
terms, and they are responsible for the proliferation of free parameters in the
MSSM. Many scenarios to avoid this have been proposed in the literature which
involve a so-called hidden sector where supersymmetry breaking occurs which is
then mediated to the MSSM via some messenger. This has for example been
implemented in approaches such as mSUGRA models which postulate relations
between parameters at a high scale and exploit the renormalization group running
to achieve a realistic low energy spectrum with SUSY breaking and electroweak
symmetry breaking. Again, models in D > 4, within the limitations mentioned
in the preceeding chapters, offer new tools to approach SUSY breaking. More
sophisticated schemes employ for example the VEV of 5D gravity fields over the
interval (Wilson lines) which then lead to SUSY breaking, or brane F terms,
among many others. The simplest path to implementing effective SUSY break-
ing in higher dimensions without introducing a plethora of breaking parameters
is to assign different boundary conditions for the components of a multiplet on
an interval. This approach will be used here to generate a realistic spectrum of
superpartners while introducing as few new parameters as possible. First we will
discuss the different possibilities on the IR and UV brane that are compatible
with the gauge symmetry breaking scheme and do not violate obvious constraints.
We will then give the mass spectra for different choices.
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7.1 Supersymmetry Breaking by Boundary Conditions

A rather appealing implementation of SUSY breaking by boundary conditions
would be to have it on the IR brane together with the breaking of electroweak
symmetry. We do not follow along this path for several reasons. An obvious
phenomenological constraint is that in this setup the gluino mass saturates at
around mg̃ ≈

√
2mW while the coupling remains at αs strength. We would

therefore have to raise the scales of the extra dimension significantly to avoid the
experimental bound of mg̃ & 300 GeV. This situation becomes even more severe
when we try to raise the masses of squarks and sneutrinos. The experimental
limit of around mf̃ & 380 GeV for squarks is hard to avoid. If cL > 1/2 the
SU(2)L doublets couple less strongly to the IR brane than gauge bosons, and
at values cL ≈ 1/2 which are necessary to satisfy LEP precision bounds, masses
saturate much below 100 GeV. The mechanisms which are used on the UV brane
to split the SU(2) doublets (large localized kinetic terms and localized Majorana
masses) make things worse. One also has to decide what attitude one has towards
the gravity sector of the model which we have excluded from our considerations
as much as possible. If one allows for the gravitino on the UV brane by giving
the gravitino the same boundary conditions as the graviton, there is going to be
a massless gravitino mode whose couplings to the IR brane are supressed such
that it can only be raised to the sub-eV level by Dirac boundary conditions on
the IR brane, resulting in a superlight gravitino whose couplings are partly only
TeV suppressed. We will get back to this point later. There are some conceptual
difficulties related to unitarity and consistency with supergravity in this class
of models (see for example [47, 51]) which are particularly problematic for light
gravitinos.

Since our goal is to study the interplay of supersymmetry and the higgsless
electroweak symmetry breaking sector and its implications on DM and collider
physics, the above considerations lead us to investigate the following scenario:
We do not assume that there is unbroken or low energy supersymmetry on the
UV brane. Something similar has been considered before in a different context,
for example by [52]. We retain SUSY in the higgsless EWSB sector represented
by the bulk and IR brane and study the effects that arise when it is coupled
to the UV brane. We can also feel free to assign different UV Dirac boundary
conditions to the gravitino. As we will see later there will still be heavy spin
3/2 resonances, but they have short lifetimes, masses above the Kaluza-Klein
scale and suppressed couplings to light matter. Let us now consider the different
choices for UV brane boundary conditions.

7.1.1 Gauginos

In the supersymmetric case, the gluinos (λa1, λ
a
2) satisfy boundary conditions1

(⊕⊕,⊖⊖). This is of course undesirable because there is a massless Weyl gluino

1The different assignments of boundary conditions correspond to the choices outlined in
section 2.3.4.



60 Breaking Supersymmetry

acting as superpartner to the gluon. We can “twist” the boundary conditions to
(⊖⊕,⊕⊖) and so completely get rid of the massless modes. Compare this to the
photino in our toy model. The equation for the gluino tower is now

Y0(m
eRkπ

k
) =

J0(m
eRkπ

k )Y1(m/k)

J1(m/k)
(7.1)

There is again no zero mode for either λ1 or λ2, and the equation is approximately
satisfied when J0(m

eRkπ

k ) = 0, leading to a heavy gluino spectrum which is almost
degenerate with the heavy gluons and sgluinos. Note that (⊖⊕,⊖⊕) would, apart
from breaking SUSY on the IR brane, reintroduce a massless Weyl gluino.

The situation is more interesting in the electroweak sector. We want our new
assignments to be compatible to the gauge symmetry breaking scheme, and
that means in this case that all boundary conditions should be compatible with
SU(2)L ×U(1)Y gauge symmetry. Hypercharge is generated by T 3

R + (B −L)/2,
which rotates λR1

s into λR2
s and vice versa, but leaves λXs and λR3

s invariant. T iL
generates arbitrary orthogonal rotations among the three λLis . This leaves us with
several conditions: λX and λR3 can mix, while λR1,2 and λL1,2,3 each share one
type of boundary condition. There are several classes of solutions summarized
in table 7.1. All models of type III feature a massless BLino. The models Ic,IIc
and Id,IId contain a massless chargino mode while model IIb contains a massless
neutralino mode. Since model Ia is the unbroken case if θ = θw5 and always con-
tains a photino-like massless mode, we are left with varieties Ib and IIa. In IIa
the neutralino and chargino are degenerate at tree level and have Kaluza-Klein
wave functions identical to those of the W . Furthermore, the chargino in both
varieties is degenerate in mass with the W boson, which is unfortunately too low
a mass to escape current detection bounds. How can we remedy this without
having to introduce further SUSY breaking in the bulk or on the IR brane? One
mechanism to raise the chargino mass would be a negative UV localized kinetic
term, but as was hinted at in section 2.1.2, this introduces a tachyonic mode
because the scalar product is no longer positive definite. The imaginary mass
solution can generally be above the cutoff of our effective theory, |mT | ≫ Λc, but
we nevertheless avoid this measure altogether in order not to jeopardize theo-
retical consistency. Now, the opposite strategy would be to introduce a positive
localized kinetic term for the gauge fields. This was done in the literature (for
example [33]), though not in detail for the case of delocalized fermions. We thus
split the W± and charginos by introducing the SU(2)L UV brane localized term
(3.18) which is non-supersymmetric. The degeneracy is thus lifted and

m2
χ+ ≃ k2e−2Rkπ

Rkπ
≃ (1 + κ)m2

W (7.2)

For an optimistic lower mass bound for the chargino of 95 GeV this requires
κ & 0.4. The neutralinos differ between Ib and IIa, in that

Ib: mχ0 ≃ cos θ mχ+ ≃
√

1 + κ cos θ mW
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λLi1 λR1,2
1 λR3

1 λX1

Ia. ⊕ ⊖ cos θλR3
1 = sin θλX1

Ib. ⊖ ⊕ cos θλR3
1 = sin θλX1

Ic. ⊕ ⊕ cos θλR3
1 = sin θλX1

Id. ⊖ ⊖ cos θλR3
1 = sin θλX1

IIa. ⊕ ⊖ ⊖ ⊖
IIb. ⊖ ⊕ ⊖ ⊖
IIc. ⊕ ⊕ ⊖ ⊖
IId. ⊖ ⊖ ⊖ ⊖
IIIa. ⊕ ⊖ ⊕ ⊕
IIIb. ⊖ ⊕ ⊕ ⊕
IIId. ⊕ ⊕ ⊕ ⊕
IIIc. ⊖ ⊖ ⊕ ⊕

Figure 7.1: Combinations of UV brane boundary conditions for the electroweak gaugino
sector. The varieties without massless gaugino modes are marked in boldface. It is
implied that the λ2 components get the corresponding boundary conditions which make
the variation of the boundary action vanish.

IIa: mχ0 ≃ mχ+ ≃
√

1 + κ mW (7.3)

The former is appealing as the neutralino is naturally the LSP due to the mixing
with the BLino of U(1)X , while in the latter one would have to rely on radiative
corrections or further localized terms to lift the degeneracy. It will also turn out
that the “twisted gaugino” in Ib has suppressed couplings to the LSP and W
which is favoured by observations.

7.1.2 Scalars

There is no reason why brane localized masses for the scalars from hypermultiplets
should be at the TeV scale, and we therefore assign effective Dirac boundary
conditions to them,

hLf (0) = hcLf (0) = hRf (0) = hcRf (0) = 0 (7.4)

All sfermions in the model are now resonances, and the degeneracy between the
“lefthanded” and “righthanded” sfermions is lifted. The same is assumed for the
physical scalar partners of the gauge bosons,

ΣL(0) = ΣR(0) = ΣX(0) = ΣC(0) = 0 (7.5)
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This pushes the SU(3) and U(1)X gauge scalars up to a mass2

mΣC = mΣX = z0ke
−Rkπ ≃ z0

√
Rkπ(1 + κ)mW ≃ TeV (7.6)

where z0 ≃ 2.41 is the first zero of the Bessel function J0(z). The sfermions lie in
a similar mass range, depending on the localization parameter c of the multiplet.
For a massless fermion we can approximate the tree level sfermion masses

mf̃ = z0ke
−Rkπ , (7.7)

where, if cL 6= 1/2, cR 6= −1/2, z0 is the first positive root of JcL−1/2 for f̃L,

J|cR+1/2| for f̃R, J|cL−1/2| for f̃ cL and J−cR−1/2 for f̃ cR. The situation is different
for the scalars from gauge groups that are broken on the IR brane. These scalars
receive smaller tree level masses

mΣ0 = mΣ+ ≃
√

2k

Rπ
e−Rkπ =

√
2(1 + κ)mW (7.8)

which is very interesting from a phenomenological point of view. However, their
tree level coupling to fermions is of the form Σψψc and therefore suppressed with
the fermion mass, vanishing altogether in the massless fermion limit where it is
forbidden by the chiral symmetry. For a large range of parameters, the coupling
to leptons and quarks is similar to the corresponding SM Higgs coupling. Note
however that since it is not the vacuum expectation value of this scalar triplet
that breaks electroweak symmetry, this similarity does not extend to the coupling
to gauge bosons. Consequently, the processes corresponding to Higgsstrahlung
and vector boson fusion in the SM are absent in our model at tree level. This
provides an experimental signature for distinguishing our model from the MSSM
at the upcoming LHC experiments.

7.1.3 Gravitinos

In some supersymmetric extensions of the SM, the gravitino poses a problem for
cosmological observables, either because it is overabundant or so long-lived that
its decay products spoil nucleosynthesis. So far we have not included supergravity
in the bulk, and we want to give an argument that the inclusion of KK gravitons
and gravitinos in the bulk is possible without loosing the desired properties of the
model. A holographic interpretation along the AdS/CFT correspondence where
the energy momentum tensor and the supersymmetric currents are present on
the CFT side also warrants the inclusion of supersymmetric gravity multiplets.
Similarly to BC gauge symmetry breaking we adopt the philosophy that the
simple picture with BCs is a description mimicking a full theory with symmetry
breaking in a slice of AdS5 [47, 51]. By setting the appropriate BCs we obtain a
heavy short-lived gravitino.

2This is accurate if further localized kinetic terms are absent. The values are given here for
k = ΛPl.
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Solving and KK expanding the (free) Rarita-Schwinger equations with “twisted”
IR BCs ψµ2 (0) = ψµ1 (π) = 0, we obtain a very light gravitino [53],

J1(
m
k )

Y1(
m
k )

− J2(e
Rkπ m

k )

Y2(eRkπ
m
k )

= 0 −→ m0 ≃
√

8ke−2Rkπ ,

However, twisting the BC on the UV brane yields the condition

J2(
m
k )

Y2(
m
k )

− J1(e
Rkπ m

k )

Y1(eRkπ
m
k )

= 0 −→ mn ≃ znke
−Rkπ ,

where zn are the positive roots of J1. From z0 ≈ 3.83 we find a heavy gravitino
solution at the scale of the lightest graviton KK mode (O(2 TeV) for k = ΛPl).
Like the heavy gravitons, this gravitino does not have Planck suppressed interac-
tions but rather a coupling . TeV−1 depending on the localization parameters.
To be more precise, let us calculate the coupling scales relevant for neutralino an-
nihilation (and gravitino decay). The general solutions for the KK wave functions
are (cf., e. g., [53, 51, 54])

G̃
(n)
1 (y) = e2Rky

[
αJ2(mn eRky/k) + β Y2(mn eRky/k)

]
(7.9)

G̃
(n)
2 (y) = e2Rky

[
αJ1(mn eRky/k) + β Y1(mn eRky/k)

]
=

e−Rky

Rmn
∂yG̃

(n)
1 , (7.10)

with the canonical normalization condition
∫

dy e−2RkyG2
i (y) = 1 .

With these conventions, the coupling strength to a vector and a gaugino is

〈G̃ifV fχi
〉 =

1

ΛPl

√
R

2k

∫
dye−3/2Rky G̃ifV fχi

. (7.11)

The normalization is chosen such that a gravitino zero mode with unbroken SUSY

would yield 〈G̃(0)
1 fV fχ1

〉 = Λ−1
Pl , G̃

(0)
2 = 0. For κ = 0.4 and k = ΛPl we obtain

〈G̃1fZf
(1)

χ0
1

〉 ≈ (500 TeV)−1 〈G̃2fZf
(1)

χ0
2

〉 ≈ (25 TeV)−1 (7.12a)

〈G̃1f
(2)
Z f

(1)

χ0
1

〉 ≈ (10 TeV)−1 〈G̃2f
(2)
Z f

(1)

χ0
2

〉 ≈ (80 TeV)−1 (7.12b)

〈G̃1f
(2)
Z f

(2)

χ0
1

〉 ≈ (1 TeV)−1 〈G̃2f
(2)
Z f

(2)

χ0
2

〉 ≈ (3 TeV)−1 (7.12c)

Considering the usual holographic picture, this result is not surprising, because
the heavy gravitino is interpreted as a bound state with TeV suppressed inter-
actions to other bound states (7.12c), coupling less strongly to lighter, mostly
elementary particles (7.12a) and (7.12b). With the result in (7.12a) for the
SM couplings we can neglect neutralino annihilation with the gravitino in the
t-channel in the following discussion. Still, such a gravitino couples strongly
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cL(u, d) 0.48

cL(c, s) 0.48

cL(t, b) 1/3

cR(u, d) −0.48

cR(c, s) −0.48

cR(t, b) −0.4

cL(e) 0.48

cL(µ) 0.48

cL(τ) 0.48

cR(e) −0.48

cR(µ) −0.48

cR(τ) −0.48

κ 0.6

β 0

tan θ 0.6

k 1019 GeV

ke−Rkπ 622 GeV

Table 7.1: A set of input parameters used in the following discussions

enough to essentially vanish immediately for a temperature of T ≪ TeV, long
before nucleosynthesis.

7.2 A Benchmark Point

The parameter space of our model is of course rather large. It is fortunate that
important phenomenological aspects such as the DM relic density will turn out
to depend weakly on most parameters and can be controlled by a few, in this
case the neutralino mixing angle. For the following discussions of the model
spectrum and collider phenomenology, we have to take into account the whole
spectrum at least of the strongly interacting particle species. We therefore decide
on a point in parameter space which will allow us to give numbers for explicit
calculations and to run Monte Carlo simulations. We will mention when we
encouter properties which depend strongly on our particular choice of parameters
and are not stable under small variations. The values which we will assume in
the following discussions are given by those in table 7.1 unless stated otherwise.

7.2.1 The Spectrum

We have developed a Fortran tool which is able to calculate all masses and cou-
pling constants of the model automatically (E.1), and the following tree level
quantities have largely been determined in this manner. There is one case in
the scalar sector in which additional discussion is warranted. A typical tree level
particle spectrum is shown in figure 7.2. The corresponding numbers are shown
in table 7.2.
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Spin Tower Light Mode(s) First heavy Mode(s)

1 Neutral γ(0) Z(91) Z2(1503) Z3(1520)

1/2 χ0,1
i (88) χ0,2

i (1496) χ0,3
i (1512)

0 - Σ0(145) Σ0
X(1522) Σ0(1522)

1 Charged W±(80) W±,2(1504)

1/2 χ±,1
i (102) χ±,2

i (1509)

0 Σ±(145) Σ±(1522)

1 Gluons g(0) g(1522)

1/2 - (-) g̃(1496)

0 - Σc(1522)

1/2 up u(0.003) u2(1489) u3(1527)

0 (-) (-) ũ1
l (1477) ũ2

l (1527) ũ1
r(1477) ũ2

r(1527)

1/2 down d(0.006) d2(1527) d3(1527)

0 (-) (-) d̃1
l (1477) d̃2

l (1527) d̃1
r(1477) d̃2

r(1527)

1/2 charm c(1.3) c2(1501) c3(1552)

0 (-) (-) c̃1l (1466) c̃2l (1537) c̃1r(1466) c̃2r(1537)

1/2 strange s(0.1) s2(1466) s3(1537)

0 (-) (-) s̃1l (1466) s̃2l (1537) s̃1r(1466) s̃2r(1537)

1/2 top t(175) t2(973) t3(2144)

0 (-) (-) t̃1l (878) t̃2l (2038) t̃1r(768) t̃2r(1975)

1/2 bottom b(4.5) b2(798) b3(1975)

0 (-) (-) b̃1l (878) b̃2l (2038) b̃1r(768) b̃2r(1975)

1/2 νe νe(≈ 0) νe
2(1527) νe

3(1544)

0 (-) (-) ν̃e
1
l (1477) ν̃e

2
l (1546) ν̃e

1
r(1527) ν̃e

2
r(1544)

1/2 e e(0.0005) e2(1527) e3(1546)

0 (-) (-) ẽ1l (1477) ẽ2l (1546) ẽ1r(1527) ẽ2r(1544)

1/2 νµ νµ(≈ 0) νµ
2(1523) νµ

3(1548)

0 (-) (-) ν̃µ
1
l (1476) ν̃µ

2
l (1547) ν̃µ

1
r(1523) ν̃µ

2
r(1548)

1/2 µ µ(0.1) µ2(1523) µ3(1549)

0 (-) (-) µ̃1
l (1476) µ̃2

l (1547) µ̃1
r(1523) µ̃2

r(1548)

1/2 ντ ντ (≈ 0) ντ
2(1376) ντ

3(1679)

0 (-) (-) ν̃τ
1
l (1349) ν̃τ

2
l (1659) ν̃τ

1
r(1376) ν̃τ

2
r(1679)

1/2 τ τ(1.7) τ2(1377) τ3(1680)

0 (-) (-) τ̃1
l (1349) τ̃2

l (1659) τ̃1
r (1376) τ̃2

r (1679)

Table 7.2: The numbers corresponding to the sample spectrum shown in figure 7.2 (with
fixed neutralino angle) including all Kaluza-Klein modes below 2500 GeV. A dash “-”
indicates that no mode is present in the 4D N = 1 supersymmetric spectrum, a dash in
parentheses “(-)” indicates that a mode is projected out by boundary conditions.
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Figure 7.2: The tree level spectrum of the model . The arrows indicate that the scalar
quasi-zeromodes receive large corrections from UV brane SUSY breaking. The neutralino
mixing angle is left arbitrary leading to the mass range which is indicated by the solid
rectangle.



Chapter 8

Phenomenology

La véritable physique consiste donc à bien déterminer tous les
effets. Nous connâıtrons les causes premières quand nous serons des
dieux. Il nous est donné de calculer, de peser, de mesurer, d’observer:
voilà la philosophie naturelle; presque tout le reste est chimère.

- Voltaire

The phenomenological consequences of higgsless electroweak symmetry breaking,
in warped models and in the context of deconstruction, have been studied in the
literature. We therefore concentrate on the peculiarities that enter when such
models are combined with SUSY in the EWSB sector.

8.1 General Features

There are some unique features which distinguish this model from the MSSM on
one side and the basic warped higgsless models on the other. The model contains
no fermions with negative R parity in the fundamental representation and there
are thus no couplings of neutralinos with neutral gauge bosons at tree level,

L[χ0
i , χ

0
j , Z] ∝ ǫ333 = 0 (8.1)

They are present in the MSSM due to the neutral Higgsinos. All gaugino gauge
interactions at tree level are proportional to the SU(N) structure constants and
our neutralinos and charginos are by definition Wino and Bino mixings. This
has important consequences for the phenomenology of the LSPs since potentially
important annihilation and production channels are absent, for example coanni-
hilation of the two (tree level) degenerate light neutralinos with a Z boson in the
s channel.
Even the lightest sfermions in our model are without exception Kaluza-Klein res-
onances. They have, apart from the third quark generation, suppressed effective
couplings to matter due to the wave function profile which is similar to that of the
corresponding Kaluza-Klein matter fermions and thus almost orthogonal to the
zero mode. At the same time, they are heavy with mf̃ = 700 . . . 1500 GeV. This
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makes them harder to produce and detect, and were it not for the IR localization
of the t and b quarks, the sfermion sector would be somewhat hidden from SM
matter. The photon and gluon couplings to the sfermions are of course universal,
but they have to produce them in pairs. These two properties together result
in the rather low LHC production cross sections of neutralino pairs discussed in
section 8.6.
Even though our SUSY extension does not modify directly the couplings within
the “standard” higgsless particle spectrum, it can still drastically change their
properties, namely through the introduction of new decay modes which increase
the width of some of the Kaluza-Klein resonances. This will be discussed in more
detail in section 8.5.
5D SYM theory necessarily contains scalar particles with special properties which
will be reviewed in section 8.4. Again, the third generation coupling is strongest,
but for different reasons.

8.2 Tree Level Contributions to Precision Observables

The calculations in this section are not per se tied to our supersymmetric ex-
tension, but concern the relationship between fermion localization and boundary
kinetic terms of the gauge bosons and their combined impact on the Peskin-
Takeuchi S parameter and the masses of Kaluza-Klein resonances. This has not
been treated in the literature in detail, it is however relevant to our supersymmet-
ric model because we use one of the kinetic terms to split the electroweak gauge
supermultiplet. We follow the approach outlined in [17, 33] to calculate the tree
level contributions to oblique corrections, but extend the analysis to account for
the combined effect of an UV brane localized SU(2)L kinetic term, an IR brane
localized SU(2)D diagonal kinetic term and bulk delocalized fermions. The cal-
culation was done in the conformal coordinate frame. First of all, we introduce
a second parameter β for the IR brane term and both together give us modified
gauge boson boundary conditions,

∂zA
L
µ + κRπm2ALµ = 0|z=1/k (8.2a)

(
∂zA

L
µ + ∂zA

R
µ

)
− β RπeRkπm2

(
ALµ +ARµ

)
= 0|z=eRkπ/k (8.2b)

The procedure goes now as follows: the eigenvalue problem with these modified
boundary conditions is now solved for the W and Z tower analytically, and we
expand the resulting expressions for the lowest massive modes in m/k ≈ 10−17

and meRkπ/k ≈ 0.2, the latter of which is unfortunately not very small. We fix
the ratio Rkπ and can thus invert the expressions for mZ and mW to calculate
R(mW , κ, α)1. We plug those back into the Kaluza-Klein wave functions which
we also expand in the same small quantities to get an analytic expression for
the normalization integral of the gauge bosons. We assume massless fermions
which saves us the additional work of having to construct analytic expressions

1We could now calculate g̃ew/gew from mW /mZ , but this would lead to non-oblique devia-
tions from the SM in the resulting gauge boson couplings to matter.
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for massive fermion wave functions. This is justified as the IR Dirac mass of the
light quarks and leptons (m ≪ ΛIR) only introduces a small deformation of the
Kaluza-Klein wavefunction. The zero mode has the well-known shape

f0
ψ = N (kz)2−cL (8.3)

and we demand canonical normalization

∫ eRkπ/k

1/k
dz (kz)−4(f0

ψ)2 = N2 1 − e(1−2cL)Rkπ

k(2cL − 1)
= 1 (8.4)

We can now build the analytic expressions for the coupling constants. The ex-
pression for the effective weak mixing angle from the Z coupling does not depend
on the absolute values of g̃ew and gew,

tan θW =

√
− g̃ew
gew

〈ψ0ψ0B〉
〈ψ0ψ0AL〉

(8.5)

However, the Kaluza-Klein wave functions fB and fL also depend on g̃ew/gew.
We can now solve for this ratio numerically, and together with the fine structure
constant as an input parameter, we can determine the absolute values of g̃ew and
gew through the canonical normalization relation of the photon

gew√
4πα

=

√√√√Rπ

((
gew
g̃ew

)2

+ 2 + κ+ 2β

)
(8.6)

The point of this definition of gew and g̃ew is that we can now compare the
absolute size of the weak couplings to fermions to the SM value, and express
the discrepancy as an effective BSM wave function renormalization of the gauge
boson,

Π′ ≡
2

(
1 +

g
√

cos θw
gew〈ψ0ψ0AL〉

)

g2 + g′2
(8.7)

which can be used to determine the S parameter (which is simplified since our
model does not produce tree level mixing ΠZγ),

S = 16πΠ′ (8.8)

Let us now plug in numbers to see how masses and couplings are affected. The
result is shown in figure 8.1. The UV term raises the Kaluza-Klein scale relative
to the W mass, shifting the W and Z resonances beyond the unitarity bound if
the chargino is to escape detection at LEP and Tevatron. In return it lowers the
S parameter somewhat. The IR term raises the S parameter again, but leads
to much lighter gauge boson resonances. A combined IR and UV term gives us
heavy charginos while the W and Z resonances stay below a TeV, and the S
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κ β mχ+/GeV mW ′/GeV

0 0.02 80 700

0.4 0.02 95 820

0.8 0.02 108 930

0 0 80 1189

0.4 0 95 1405

0.8 0 108 1590

Figure 8.1: The dependence of tree level contributions to the S parameter on κ, β and cL
for e−Rkπ = 500 · 10−19. The curves from top to bottom correspond to the values shown
in the table in the same order. The two parameters have a tendency to counteract each
other.

parameter again vanishes for almost delocalized fermions.

There is still the issue of the Zbb coupling which deviates significantly from
the SM value and from the light quarks. The coupling becomes nonuniversal
because the top mass is produced by a combination of IR localization and large
IR boundary mass, which in turn makes a large splitting necessary. We do not
address this weakness of the model in this work, and the ratio of couplings for
cL = 0.4, cR = −1/3 indeed yields

g(Zblbl)/g(Zdldl) ≈ 0.8 (8.9)

For proposed solutions consider for example [34, 18]. It would be interesting to
see how these mechanisms (in particular a second warped throat in [34]) could
be used to implement soft SUSY breaking.
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8.3 The LSP and its Relic Density

The calculation of the thermal relic density of stable DM candidates in beyond
the SM-scenarios is by now a standard calculation which has been repeated for a
wide range of models. As we do here, one often assumes a parity charge carried
by some of the particles. If the Hamiltonian is even under this parity, the total
parity of all particles participating in an interaction is always +1, rendering the
lightest parity-odd particle of mass m0 stable. If it participates for example in
the weak interaction, it remains in thermal equilibrium with the other particle
species present at early cosmological times as long as the temperature exceeds
T ≫ m0. While the universe is cooling due to its expansion, less and less energy
is available for production of heavy particles with m ≫ T , and they begin to
decouple from the other still effectively massless particle species which remain in
thermal equilibrium relative to each other and the photons. From this time on,
the number density per comoving volume can only decrease via annihilation with
other parity-odd particles, and once the expansion rate of the universe exceeds
the annihilation rate,

H ≫ Γ (8.10)

pairs of parity-odd particles hardly scatter any more and the number density per
comoving volume remains constant (“freezes out”). The temperature at this point
in time is called freezeout temperature Tf = m0/xf , and can be much smaller
than the particle’s mass (xf > 20 is a typial value for annihilation through the
weak interaction). To obtain the density of the lightest stable particle at present
times (T = 2.7K), one needs to solve the Boltzmann equations for the decoupling
process,

dn

dt
+ 3Hn = −〈σv〉

(
n2 − n2

eq

)
(8.11)

which describe the change in density n of a particle with annihilation cross sec-
tion σ averaged over the velocity v. Fortunately, there are good approximative
formulae for weakly interacting particles which can be used to give an estimate
of relic densities without having to do the full numerical simulation. Once the
relevant masses and cross sections are known, the only missing ingredient is the
number of active (effectively massless) particle degrees of freedom g∗ at times
around the freezeout, where fermion d.o.f. are weighted with a relative factor of

∫ ∞

0
dǫ

ǫ3

(eǫβ + 1)

/∫ ∞

0
dǫ

ǫ3

(eǫβ − 1)
= 7/8. (8.12)

accounting for the smaller energy density due to Fermi-Dirac statistics. The
annihilation scattering crossection is expanded in small velocities

σv ≈ a+ v2b+ O(v3) (8.13)
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and averaged thermally (in the nonrelativistic limit)

〈σv〉 ≈ a+ 6
T

m0
b = a+ 6b/x (8.14)

Based on this, the authors of [40] give the approximation for the relic density

Ωh2 =
1.04 · 109 GeV−1

Mpl

xf√
g∗

1

a+ 3b/xf
(8.15)

At relevant energies 5 GeV < E < 80 GeV we assume 2 + 2 × 8 vector boson
d.o.f. from γ and g, 3×2 neutrino d.o.f., 3×4 charged lepton d.o.f. and 5×4×3
quark d.o.f., giving us g∗ ≈ 86 1/4. The relative freezeout temperature can in
turn be determined by an iterative procedure [40],

xn+1 = log

(
5

4

√
45

8

g

2π3

m0Mpl(a+ 6b/xn)√
g∗ xn

)
(8.16)

which involves some empirical factors from the matching to numerical integration.
We have put in an estimate of xf to obtain g∗, and the result for xf determined
in this manner should of course be self-consistent. Due to the log, the result turns
out not to be very sensitive on σ. The number of degrees of freedom of the relic
particle is g = 4 as will be explained later.

In our model with SUSY breaking on the UV brane, the scalar partners of quarks
and gauge bosons receive large mass corrections. Therefore, the main contribu-
tion to neutralino annihilation is not into fermions via sfermion exchange, but
into W pairs through chargino exchange. The third and fourth graph in figure
8.1 are only present if interactions with higher resonances of the gravity sector
are taken into account. We have calculated the effective couplings in section
7.1.3 which indicate that spin 2 and 3/2 resonances do not play an important
rôle in neutralino annihilation. Potential coannihilation partners are the NLSP
charginos, and since we can assume m(NLSP)−m(LSP) = mχ+ −mχ0 > 10 GeV
it seems justified to neglect the effect of coannihilation χ0χ+ → X for simplicity.
To give an estimate of the individual contributions χ0

iχ
0
j → X, it makes sense to

add the inverse densities

1/Ωh2(xf ) =
∑

n

Ωh2
n(xf )

−1 ∝
∑

n

an+ 3 bn/xf (8.17)

for a realistic fixed freezeout temperature, which depends only weakly on the cross
section. The value currently favored by WMAP data is 1/Ωh2 ≈ 9 . . . 11 [55].

Now, let us calculate the effective coupling constants relevant for neutralino an-
nihilation into W pairs. The corresponding piece of the Lagrangian is given in
section 6.3.9. The effective coupling constants for the charged current are of the
form

〈Wλiλj〉 ≡
∫

dy
√
g eRkyfW (y)fλi

(y)fλj
(y) (8.18)
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�χ+
k

χ0
j

χ0
i

W−

W+	f̃nk
χ0
j

χ0
i

f

f 
G̃nk
χ0
j

χ0
i

Z, γ

Z, γ�Gnk
χ0
j

χ0
i

X

X

Table 8.1: The graphs which potentially contribute to Neutralino annihilation at tree
level

They can be approximated analytically to leading order using Rkπ ≫ 1 and
mW ,mχ ≪ ke−Rkπ as

〈WL±λL±2 λL3
2 〉 ≃ −3

8
C

〈WR±λR±2 λR3
2 〉 ≃ −1

8
C (8.19)

with

〈WL±λL±1 λL3
1 〉 ≃ −C

〈WR±λR±1 λR3
1 〉 ≃ − 1

48Rkπ
C (8.20)

in scenario IIa and

〈WL±λL±1 λL3
1 〉 ≃ −| cos(θ)|

24Rkπ
C

〈WR±λR±1 λR3
1 〉 ≃ −7| cos(θ)|

48Rkπ
C (8.21)

in scenario Ib, respectively, where

C =
1√

(κ+ 1)Rπ
. (8.22)

They are accurate to about 5% for Rkπ > 30 (cf. also Fig. 8.2 below). Note
that the absolute size of the coupling is approximately independent of the free
parameters,

gewC ≃
√

4πα

sin(θW )
, (8.23)

and the leading contributions are also independent of the neutralino mass. This
is remarkable because it means that the annihilation cross section depends on
the neutralino and chargino mass only which is governed by the kinetic term κ
and the gaugino mixing angle θ. Since we have two lightest Majorana neutralinos
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which are degenerate at tree level, we treat them as one particle with 4 degrees
of freedom for our purposes. In terms of Majorana neutralinos there are four
relevant annihilation processes

χaχa →W+W−, χbχb → W+W−, χaχb →W+W−, χbχa → W+W−

(8.24)
We assume that both species χa and χb have the same density which seems rea-
sonable since the cross sections σaa and σbb are equal. Four diagrams contribute
to each of these processes, since there are two light charginos χ+

a,b in either the
t or u channel. We have implemented the relevant interaction (section 6.3.9) in
FeynArts/FormCalc to compute the spin and neutralino flavor averaged analytic
scattering cross section 〈vσ〉 = 〈v(σaa + σbb + 2σab)/4〉, which we have expanded
to second order in v and performed the simple phase space integration over φ and
t in Mathematica.

The coupling constants which result from scenario IIa are exactly of electroweak
strength with

gew〈WL±λL±1 λL3
1 〉 ≃ −

√
4πα

sin(θW )

which results in annihilation cross sections which are generally much too large.
Incidentally, the “twisted gaugino” boundary conditions in scenario Ib which give
us a light neutralino also suppresses the chargino component in λL1 sufficiently
such that the corresponding coupling constants become very small and only the
couplings to λ2 contribute which are just about of the right size to lead to viable
annihilation cross sections. Unfortunately, the appealing choice θ = θw5 which
would implement the same mixing angle for gauge bosons and gauginos, leads
to a neutralino with mχ ≈ 40 GeV which, at tree level, only annihilates into
fermions via sfermion resonance exchange. These channels are, despite the large
number of quark and lepton final states, doubly suppressed. Due to the large KK
mass of the sfermions around −cR, cL ≈ 0.2 . . . 0.7 of m ef

> 2ke−Rkπ, the cross

sections χ0χ0 → ff will be suppressed relative to the annihilation to W pairs
if mχ0 > mW . We find that the couplings and cross section depend strongly on
the localization of the fermion multiplets, but that a rather extreme localization
towards the IR brane is necessary to make a significant contribution to the total
annihilation cross section. This region of parameter space is ruled out due to
FCNCs (unless an additional flavor symmetry is introduced to suppress them)
and proton decay from higher dimensional operators. Therefore we conclude that
in this scenario the tree level annihilation of neutralinos into fermions is negligible.
For example, if one carries out the calculation for k = ΛPl, κ = 0.4, xf = 23 the
contribution of the charm quark stays below 1/Ωh2 < 0.3 for |cL,R| > 0.25 and
even 1/Ωh2 < 0.02 for |cL,R| > 0.5. The electron which must be at cL ≈ 0.5 to get
a realistic S parameter, contributes 1/Ωh2 < 0.01. One uncertainty comes from
the precise implementation of the third quark generation. The straightforward
generation of mb and mt with boundary terms leads to problems with the Zbb
coupling. Depending on how the b quark is realized, its coupling to the neutralino
could be somewhat enhanced, but we can still expect that the channel χ0

iχ
0
j → bb
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Figure 8.2: The mχ0 -dependence of contributions to 1/Ωh2 for annihilation into W
pairs for Rkπ ≃ 37.5, k = ΛPl. The parameter is (from topmost) κ = 0.4, 0.6, 0.8, 1.0,
corresponding to mχ+ = 95, 102, 108, 114 GeV. For this process we use α = 1/128. The
dashed lines are obtained using the approximations in (8.19)-(8.23). The shaded area
represents the region allowed by the WMAP three year data.

does not play a major role for LSP annihilation. This means that our neutralino
must be heavy enough, mχ0 > mW , to annihilate into W pairs efficiently. The
resulting inverse density for Ib is shown in figure 8.2. We conclude that it is
possible to reach realistic relic densities without the need for any fine tuning of
parameters because our choice of twisted boundary conditions gives us sufficiently
suppressed coupling constants relative to weak strength such that there is enough
relic density from thermal production.

8.4 Properties of the Physical Scalars

Interestingly, there are physical scalars in higgsless warped SUSY models which
result from the structure of the 5D vector supermultiplet. In the unbroken case
they are degenerate with the massive gauge bosons. In our breaking scenario
outlined in chapter 7, the tree level masses of the lightest modes in the electroweak
triplet Σ±0 are shifted somewhat up to masses mΣ &

√
2mW , while the color

charged scalar Σc remains at mΣ = mG̃ & TeV. Let us now first investigate the
properties of these scalars in the tree level approximation. We then consider the
implications of our UV brane SUSY breaking scheme on the masses of the light
electroweak scalars.
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Particle cL cR y0
eff m/y0

eff
u 0.48 −0.48 1.19 · 10−5 253 GeV

d 0.48 −0.48 2.35 · 10−5 255 GeV

c 0.48 −0.48 5.10 · 10−3 255 GeV

s 0.48 −0.48 4.36 · 10−4 252 GeV

t 0.4 −1/3 0.53 338 GeV

b 0.4 −1/3 1.53 · 10−2 294 GeV

Table 8.2: The Yukawa couplings of the lightest neutral gauge scalar to quarks assuming
the parameters given in table 7.1

8.4.1 Yukawa Couplings

Since our scalars do not have VEVs, the classic “Higgsstrahlung” production
channel is absent and the corresponding LEP bounds are not relevant. There
is, however, the interaction from L18 (appendix B.2) which has an interesting
property: Since massless fermion modes are localized entirely in the 5D fields ψL
and ψcR, this interaction vanishes exactly. Once we turn on the IR brane Dirac
mass, the fields transforming under SU(2)L and SU(2)R mix and ψR, ψ

c
L 6= 0.

Wouldn’t it be ironic if it turned out that this produces a Yukawa coupling which
is approximately proportional to the fermion mass like the SM Higgs coupling?
The effective coupling is given by

y0
eff = gew|T 3|〈ψLψcLΣ0

L + ψRψ
c
RΣ0

R〉 (8.25)

where |T 3| = 1/2 and

〈ψiψjΣk〉 =

∫
dy

√
g fψi

fψj
fΣk

(8.26)

We consider only the Kaluza-Klein wave functions of the lowest mode in each
tower as they represent the SM fermions and the lightest scalar. The values for
k = 1019 GeV, κ = 0.6 are given in table 8.2.

The tree level mass of the scalars for this configuration is mΣ = 154 GeV. The
coupling strength is somewhat below the corresponding SM value of m/y ≃
246/

√
2 GeV. This has consequence that the sneutralino Σ0 might look Hig-

gslike in some of the typical LHC production and decay channels such as gluon
fusion to a top triangle. The same order of magnitude would hold for the charged
scalar couplings

y+

eff
= gew|T±|〈ψf1Lψ

c
f2LΣ∓

L + ψf1Rψ
c
f2RΣ∓

R〉 (8.27)

which are however chiral, as shown in table 8.3. The situation is very different
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Part. (f1,f2) cL cR y+

eff
ud 0.48 −0.48 2.37 · 10−5

du 0.48 −0.48 1.17 · 10−5

cs 0.48 −0.48 4.31 · 10−4

sc 0.48 −0.48 5.15 · 10−3

tb 0.4 −1/3 0.013

bt 0.4 −1/3 0.62

Table 8.3: The Yukawa couplings of the lightest charged gauge scalar to quarks assuming
the parameters given in table 7.1

Particle cL cR yceff
u 0.48 −0.48 < 10−6

d 0.48 −0.48 < 10−6

c 0.48 −0.48 < 10−6

s 0.48 −0.48 10−5

t 0.4 −1/3 −0.1316

b 0.4 −1/3 6.5 · 10−3

Table 8.4: The Yukawa couplings of the color octet of gauge scalars to quarks assuming
the parameters given in table 7.1

for the color charged gauge scalar Σc or “sgluino”, which couples to matter with

yceff = gYM 〈ψLψcLΣc + ψRψ
c
RΣc〉 (8.28)

The electroweak scalars fulfil an IR boundary condition of the type

Σ±0
L = −Σ±0

R |y=π

and this sign flip compensates the relative sign flip of the matter fermion wave
functions ψL/ψ

c
L to ψR/ψ

c
R. The color charged scalar however couples to both

the SU(2)L transforming doublet as it does to the SU(2)R transforming doublet.
If cL = −cR and the UV brane fermion kinetic term is not large then ψL ≈ ψR,
ψcL ≈ −ψcR and the two contributions cancel! In our configurations, only the third
generation quarks have a small coupling which can however still be neglected
relative to the Kaluza-Klein gluon in most processes. The results are shown in
table 8.4.
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Figure 8.3: Quadratic contributions to the self energy of the neutral scalar.

8.4.2 Mass Corrections from UV Brane Breaking

The original Randall-Sundrum scenario adresses the hierarchy problem by placing
the Higgs boson on what is now known as the infrared or TeV brane. We do not
have to stabilize any Higgs masses, but it would be interesting if some of the
scalars mentioned above remained light. Our IR sector is supersymmetric, and
even though strongly IR localized states see the breaking on the UV brane and get
masses at tree level, they can still get corrections through loops of UV localized
particles. The quadratic corrections from the individual IR localized particles get
very large, but they almost exactly cancel within supermultiplets. To obtain an
estimate of how strongly our UV brane breaking in the matter- and gauge sector
affects Σ0, we have evaluated the corresponding loops (figure 8.3) in the Kaluza-
Klein picture and discuss the resulting effective couplings. We want to see how
large the contributions from possible quadratic divergences will be. In massive
regularization schemes like Pauli-Villars, we see the Λ scale dependence directly,
but it breaks gauge invariance. There is however a general relationship between
poles in dimensional regularization and quadratic and quartic divergences which
has been discussed in detail in [56, 57]. It is important to note that quadratic
divergences at the L loop level are associated with poles at

d = 4 − 2ǫ = 4 − 2/L′ (8.29)

where L′ ≤ L [56]. While there are poles associated to log divergences up to
order ǫ−L, the “leading” pole from higher divergences 1/(ǫ−L) is simple. This is
also true for the other poles except the one at L′ = 1 which can be double from
quadratically divergent subgraphs in quadratically divergent two loop graphs.
The authors of [56, 57] follow the philosophy that the renormalized action should
be finite for all d ≤ 4, leading to generalized counterterms and renormalization
group equations. In our case at one loop, if a quadratic divergence is present,
there is a simple µ2/(ǫ − 1) pole alongside the 1/ǫ pole in the self energy. We
extract the quadratic divergences by going to d → 2. Therefore we need the
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contributions of the epsilon scalars which provide the missing two vector degrees
of freedom. Consider the quadratic gauge contribution from the graphs in figure
8.3,

Σlr =
1

ǫ− 1

ig2
5µ

2

2π

∑

n

[
4
∑

m

〈f lΣfmχ1
fnχ2

〉〈f rΣfmχ1
fnχ2

〉 + ξ
∑

m

〈f lΣfmWµ
fnΣ+〉〈f rΣfmWµ

fnΣ+〉

−〈f lΣf rΣfmW5
fmW5

〉 − (3 + ξ)〈f rΣf lΣfmWµ
fmWµ

〉
]

+ O(
1

ǫ
+ finite)

It is implied that there are infinite sums over the Kaluza-Klein indices m and
n. There is a ξ dependence, which we can get rid of by using the same types of
sum rules which also ensure Ward identities and unitarity. We further identify
the loop cutoff scale Λ2 with the scale parameter 4πµ2. It might appear a little
strange that we have to take some sums to infinity to cancel the ξ dependence
etc., but then have to cut the remaining sums off at our current cutoff scale.
In a more comprehensive treatment, this can surely be avoided by introducing
appropriate nonrenormalizable operators at the cutoff as they appear for example
in deconstrucion to restore gauge invariance using a finite particle content. We
rewrite the self energy with sum rules in a manner such that ξ cancels and the
quadratic divergences vanish manifestly in the unbroken case,

Σquad(Λ) =
1

ǫ− 1

ig2
5Λ

2

8π2

∑

Mn<Λ

[
〈f lΣf rΣfnχ2

fnχ2
〉 − 〈f lΣf rΣfnW5

fnW5
〉

+3〈f rΣf lΣfnχ1
fnχ1

〉 − 3〈f rΣf lΣfnWµ
fnWµ

〉
︸ ︷︷ ︸

=0 for unbroken SUSY

]

We then go to the 4D effective theory, and assuming an optimistic cutoff of
Λc ≈ 10 TeV we collect the corrections to the pole mass going fromm(Λc) ≈ mKK

to m(Λ) ≈ Λ, switching off contributions of particles in the loop with masses
much larger than the current Λ. A general result is that the corrections to
the scalar mass squared are positive and at the order of a few hundred GeV to
1.5 TeV. The largest contributions come from the lightest gauge sector modes
and the top quark which has no light partner. The contributions from higher
modes are almost supersymmetric and cancel. It is not clear how stable this
procedure is since the effective couplings involved are rather large and we make
the approximation that particles are either massless or integrated out, but we can
draw the conclusion that in our class of models, the Higgslike scalars are shifted
to heavier masses close to the Kaluza-Klein scale unless a softer SUSY breaking
scheme is employed.

8.5 Decays of Heavy Resonances

In this section we will summarize the decay modes and widths of all color charged
and some important weakly interacting Kaluza-Klein resonances below 2500 GeV
insofar as they become relevant for our LHC simulations. Since all of them can
decay to two onshell particles, we neglect processes with intermediate offshell



80 Phenomenology

Squark Mass Width

ũ1 1477 1

ũc,1 1477 0.2

d̃1 1477 0.1

d̃c,1 1477 0.5

c̃1 1466 4

c̃c,1 1466 2

s̃1 1466 3

s̃c,1 1466 4

t̃1 878 94

t̃c,1 798 21

b̃1 878 71

b̃c,1 798 66

Squark Mass Width

ũ2 1527 15

ũc,2 1527 20

d̃2 1527 10

d̃c,2 1527 20

c̃2 1537 17

c̃c,2 1537 6

s̃2 1537 11

s̃c,2 1537 17

t̃2 2038 > 500

t̃c,2 1975 > 500

b̃2 2038 > 500

b̃c,2 1975 > 500

Figure 8.4: Masses and main contributions to tree level widths of the lightest and next-to
lightest squark resonances.

Gaugino Mass Width

χ0,2
a ,χ0,2

b 1496 71

χ0,3
a ,χ0,3

b 1512 133

χ+,2
a 1509 216

χ+,2
b 1509 216

g̃1
1 ,g̃

1
2 1496 570

Boson Mass Width

Z2 1503 470

Z3 1520 385

W 2 1504 595

g2 1522 333

Σc 1522 96

Figure 8.5: Masses and main contributions to tree level widths of gauge sector resonances.

particles along with all other higher order contributions. In particular the small
widths O(1 GeV) result from suppressed tree level couplings and will certainly
receive large relative corrections at higher orders. We therefore give only one
significant digit for widths below 1 GeV. Note that the branching ratios add up
to 100% only together with the charge conjugate channels (where present).

Squarks

For our benchmark choice of parameters, the squark spectrum is given in figure
8.4. The Lagrangian relevant for these decays is given in Sections 6.3.1, 6.3.2 and
6.3.3. Both the lightest and next-to-lightest squark resonances can decay via

q̃ → qχ0± (8.30)
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The decay mode to a quark and the two lightest degenerate gluino resonances,

q̃ → qg̃ (8.31)

is only allowed for the next-to-lightest squark resonances. They are particularly
heavy in the third generation and there can even decay to final states containing
one Kaluza-Klein excitation,

q̃2 → q2χ0±, qχ0±,2 (8.32)

Other Bosons

At tree level, the color charged gauge scalar Σc decays almost exclusively to pairs
of one third generation quark and its lightest KK resonance,

Σc → tt2(34%), bb2(16%) + c.c. (8.33)

The relevant Lagrangian is given in section 6.3.4. The small partial width
Γuu,dd,ss,cc/Γtot < 1% to zero mode quarks is due to a cancellation between the
two 5D quark doublets (see section 8.4.1) and thus depends on the precise choice
of quark bulk masses. The gluon resonance is rather broad because the decay to
third generation quarks is enhanced compared to the other couplings which are
suppressed because delocalized quark zero modes are nearly orthogonal to the
heavier modes in the gluon Kaluza-Klein tower. While light quarks contribute
Γuu,dd,ss,cc/Γtot < 1%, the leading contribution is

g2 → tt(33%), bb(15%) (8.34)

followed by decay into pairs of one third generation quark and its lightest KK
resonance,

g2 → tt2(13%), bb2(13%) + c.c. (8.35)

The relevant Lagrangian is given in section 6.3.8. The electroweak boson reso-
nances are somewhat peculiar due to their strong decay mode to gauginos,

W+,2 → χ+χ0(80%) Z2/3 → χ+χ−(81/23%) (8.36)

which dominates for the first resonances W 2, Z2 and makes them unusually
broad. The culprit is the large overlap of the wave functions belonging to the
“righthanded” gaugino fields λ2 with the first KK excitations of the gauge bosons
which is of the order gew〈λ±0

2 λ±2 A
′〉 & 3. The relevant Lagrangian is given in

Sections 6.3.9 and 6.3.10. At the same time, decays of gauge boson resonances
to light gauge bosons do not contribute significantly.
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Gauginos

The main contributions to gluino decay are

g̃ → tt̃(34%), bb̃(16%) + c.c. (8.37)

The relevant Lagrangian is given in section 6.3.3. The corresponding couplings
are enhanced by localization, making the gluinos very broad. In contrast the first
and second generation quarks contribute less than 1 GeV at tree level. Similarly,
the neutralinos decay almost exclusively via

χ0,2 → tt̃(21%), bb̃(29%) + c.c. (8.38)

χ0,3 → tt̃(40%), bb̃(10%) + c.c. (8.39)

while for the charginos
χ±
a → tb̃(76%), bt̃(24%) (8.40)

χ±
b → tb̃(42%), bt̃(58%) (8.41)

There are electroweak decays as well, namely

χ0,2/3 → χ±W∓ (8.42)

and
χ±,2/3 → χ±Z,χ0W± (8.43)

but they couple two almost-zero modes to one gauge sector Kaluza-Klein mode
which is approximately orthogonal to light modes, and therefore this effective
coupling is suppressed relative to weak strength. One can state that generally,
heavy gaugino resonances become broad mainly because of third generation IR
localization and the large IR brane Dirac mass which splits the corresponding
fermion and sfermion modes and pushes the light ones below the typical Kaluza-
Klein scale.

Quarks

The quark resonances of the first and second generation are again very narrow
compared to their mass (figure 8.6). They can only decay to a SM quark and a
light massive gauge boson,

q2/3 → qW, qZ (8.44)

The relevant Lagrangian is given in section 6.3.7. The lightest third generation
Kaluza-Klein resonances decay faster only because the heavy doublet has strong
IR localization to generate the top mass on the IR brane, while couplings to the
light almost delocalized quarks are again suppressed. There is just enough phase
space for the light top resonance t2 to decay to the light stop resonances and a
neutralino,

t2 → t̃1χ0 (8.45)
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Quark Mass Width

u2 1489 3

d2 1527 4

c2 1501 4

s2 1566 3

t2 973 25

b2 798 37

Quark Mass Width

u3 1527 5

d3 1527 4

c3 1552 3

s3 1537 4

t3 2144 730

b3 1975 650

Figure 8.6: Masses and main contributions to tree level widths of the lightest quark
Kaluza-Klein resonances.

but these modes contribute only about 2%. The splitting of the third generation
modes is however large enough to allow

f3 → f2Z, f2W,fg2, fΣ, fW 2, fZ2/3, f̃1χ±0 (8.46)

which dominate because the couplings of two heavy modes to one light mode are
not suppressed, and let those quark resonances become extremely broad.

8.6 Production of the LSP

8.6.1 Heavy Quarks and Missing Energy at the LHC

Stable neutralinos (and very likely any other DM candidates which are not yet
ruled out by direct searches) are invisible to the detectors at collider experiments.
This means that, even though our LSP might be produced copiously in processes
of the type qq → χ0χ0, the remainders of the protons go down the beam line, and
since we lack information about the total crossection, the process is entirely in-
visible. The standard approach is therefore to observe the associated production
with other easily detectable objects such as leptons or hard jets, and to look for
missing momentum in the direction transverse to the proton beams, /pT , which
experiments are equipped to measure by balancing the visible momentum. One
such process which we will however not pursue further is the electroweak produc-
tion channel of neutralinos and charginos by VBF shown in figure 8.7. Instead
we concentrate on another set of final states which is particularly favored in the
model which we consider in this work, the production of third generation quarks
in association with missing energy. In general, it can be an important process for
discovering scenarios of WIMP DM such as SUSY with R parity. It is particularly
interesting if a “partner” of heavy quarks exists which decays directly to a heavy
quark (preferably the top) and invisible particles. In our scenario, this partner is
the first stop mode t̃, and it is in a convenient mass range: it is still light enough
to be pair produced copiously at the LHC at 14 TeV, and at the same time heavy
enough (mt̃ − mχ −mt & 400 GeV) to produce a strong missing energy signal
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Figure 8.7: This vector boson fusion process is one of the electroweak LSP production
channels at the LHC.

from the decay. Such a situation has been discussed in a generic way in [58].
The analysis carried out by the authors is valid for our t̃ pair production contri-
butions, but this is only one of the contributions to this class of final states in
our model, where the production of heavy quark and gluon resonances proves to
be important as well. Due to the size of the model, we rely on simulations with
four particle final states, which means that we do not consider the possible decay
modes of the t (hadronic, semileptonic, leptonic). When judging the results for
the missing energy signal with t and b quarks in the final state, one therefore has
to remember the following points: The t pair production itself does not introduce
/pT , but the leptonic and semileptonic decay modes contain neutrinos, and consid-
ering the relative strength of t pair production, this can constitute an important
background. In addition to this, there are SM processes with have final states
distinguishable from our signal only by their kinematics, for example pp→ bbνljj
[58]. While the analysis of these contributions is beyond the scope of this thesis,
there is a generic way to suppress these backgrounds: as becomes apparent in the
following discussion, we can fortunately afford to place rather strong pT and ∆φ
cuts without losing too much of our signal - this strategy would be futile if there
was only a small mass gap between the t, neutralinos and the heavy partners.
Let us therefore have a closer look at the model to see how the production of
heavy quarks is suited for the discovery of our DM candidate via /pT .

The couplings of the neutralino itself are necessarily of weak strength, and consid-
ering the vertices in the model, the only production process at O(αsα) is through
squarks. Even though these are Kaluza-Klein in our version of UV brane sym-
metry breaking, they can be produced onshell and can only decay via

q̃ −→ qχ0, qχ+ (8.47)

due to the heavyness of the gluino, making this effectively an O(αs) process which
can however be partly suppressed by the small coupling of Kaluza-Klein smatter
to matter and the large parton momentum fraction x needed to produce two
onshell squarks. We can also obtain final states with two quarks and two LSPs
by producing a heavy chargino or neutralino resonance which then decays to the
LSP and two quarks through the decay chain shown in figure 8.8,

qq → χ0χ0±,2/3, χ0±,2/3 → q̃q → χ0qq + c.c (8.48)
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Figure 8.8: The relevant tree level contributions (up to charge conjugation and crossing)
to associated heavy quark and LSP pair production with a qq initial state.

qq → χ0g̃, g̃ → q̃q → χ0qq + c.c. (8.49)

but these channels are suppressed because of the small coupling of a light neu-
tralino to squarks and light quarks and like for LSP annihilation they do not play
a significant role. Kaluza-Klein top production and decay (figure 8.8) is not as
suppressed because of the IR localization of the top quark, and we can thus have

qq → tt2 t2 → χ0t̃1 → χ0χ0t (8.50)

Considering the tree level 2 to 4 particle interactions for these processes we find
that only the following vertices actually appear in pp −→ χ0χ0qiqj (indices are
implicit):

ggg qqg q̃q̃g q̃q̃gg qq̃g̃ qqΣ q̃q̃Σ q̃qχ0 q̃qχ+ (8.51)

For chargino production, we also have to include

WWZ, γ qqW qqZ, γ χ+χ−Z, γ χ+χ0W− (8.52)

Due to the unbroken U(1)Q and SU(3)c, the vertices involving only zero mode
photons and gluons couple exactly with e, gs and g2

s respectively. The strength of
interactions between massive Kaluza-Klein modes as determined by the overlap of
their bulk profiles may differ significantly from the strong or electroweak coupling
of the lightest modes.

Clearly, the light third generation squarks will be most important at the LHC as
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Figure 8.9: The invariant mass distribution of the quark and a neutralino in the process
gg → qqχ0χ0 with a center of mass energy of

√
s = 14 TeV and

∫
L = 200 fb−1 with

PDFs and bin size 20 GeV. The lightest third generation squarks are clearly dominant,
while heavier squark resonances are visible as well between 1400 . . .1600 GeV.

they couple strongly (also to their quark partners) and are not too broad. This
is illustrated by the (unobservable) production of neutralinos and squarks shown
in figure 8.9.

8.6.2 Simulation of Warped Higgsless LSP Production at the
LHC

We simulate the production of our LSP with O’Mega/WHIZARD, and all fol-
lowing statements refer to our implementation (section E.2) and, if not stated
otherwise, hadronic cross sections using the cteq6m.LHpdf PDF sets from the
LHAPDF library [59].
The SM cross section for pp→ bb, tt at

√
s = 14 TeV is of course huge, at around

σ > 105 fb for cuts pT (b) > 400 GeV, η(b) > 200 GeV and “low x cuts” of
E > 20 GeV of the incoming partons. One should avoid as much as possible
misattributions of such processes, for example by cutting on angular distance of
the jets. How well this works in each case depends on many experimental factors
which are beyond the scope of this work. At the 2 → 4 particle level, the SM
background from pp → qqνν is also large, and we want to separate it from our
contributions with massive neutralinos. One efficient way to do this is by cutting
on the transverse momentum of the quarks. For pT (q) > 300 GeV the cross
section is reduced down to ≈ 10 fb. The remaining neutrinos are dominantly
produced from Z decays (figure 8.11). On the signal side, contributions from
graphs like the last one in figure 8.8 would have a lot of recoil and large E/T



Production of the LSP 87

�t̃, b̃

g

g

χ0

t, b

χ0

t, b

�
g

g

χ0

t, b

χ0

t, b

�t̃, b̃

g

g

χ0

t, b

χ0

t, b

�
g

g

χ0

t, b

χ0

t, b

�t, b

t̃, b̃

g

g

t, b

χ0

χ0

t, b

�
g

g

t, b

χ0

χ0

t, b

Figure 8.10: The relevant tree level contributions (up to charge conjugation and crossing)
to associated heavy quark and LSP pair production with a gg initial state.
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Figure 8.11: The invariant mass (above) and energy (below) of the neutrino pair in the
SM background process pp→ ννtt after the cut pT (t), pT (t) > 300 GeV (

∫
L = 200 fb−1,

bin=33 GeV).

and produce qq and in particular tt pairs with ∆φ < 180 from heavy gluon
decay. They are unfortunately strongly suppressed and do not play a significant
role here. Important contributions which allow us to observe LSP neutralino
production are the Kaluza-Klein top decay chain to a top and two LSPs, and the
radiation of a top squark off a top, which in this form constitute a rather unique
feature of warped SUSY models with UV brane SUSY breaking. It seems most
straightforward to do an analysis of LSP production in association with t and
b quark pairs as they are easy to detect and have fewer background processes.
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Also, we have seen above that the third generation is favoured because it couples
more strongly to the Kaluza-Klein sector. Let us look at the simulation results
in detail. The integration error is below 1% for all simulations, but we give two
digits only for small cross sections as some event samples are of the order of
< 1000 events. Finally it should be noted that our enhanced particle spectrum
can contribute to neutrino production as well. We neglect this background which
does not change the nature of our predictions drastically.

8.6.3 Production of tt + E/ T

The SM background pp→ ννtt is only moderately large. The classes of diagrams
contributing to the signal at this order are shown in figure 8.8 for initial quarks
and in figure 8.10 for initial gluons. We apply the following basic cuts:

cuts I

Standard invariant mass cuts M(q, q) ∈ [10,∞]

M(parton, q),M(parton, q) ∈ [−∞,−10]

Energy (“low x”) E(parton) > 20

Pseudorapidity η(q), η(q) ∈ [−5, 5]

These are the default invariant mass cuts proposed by WHIZARD for the SM
background process to exclude possible divergences which would make the inte-
gration unstable. We introduce cuts on energy and pseudorapidity of the quarks
to improve convergence. To reduce the relative contributions of the SM back-
ground further, we add

cuts I.1

cuts I

Transverse momentum pT (q), pT (q) > 100 GeV

and then a stronger one,

cuts I.2

cuts I

Transverse momentum pT (q), pT (q) > 300 GeV

This results in the following total cross sections for the subprocesses:

Process σI/fb σI.1/fb σI.2/fb

qiqj, qiqj → νkνltt 52 30 4.6

gg → νkνltt 100 53 5

qiqj , qiqj → χ0
kχ

0
l tt 80 74 32

gg → χ0
kχ

0
l tt 48 44 17

Signal/Background 0.84 1.4 5.1
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Using these results we first generate events corresponding to an integrated lumi-
nosity of

∫
L = 200 fb−1 (I.2) and

∫
L = 20 fb−1 (I,I.1). These cross sections are

however large enough to justify an analysis of lower integrated luminosities, and
we choose

∫
L = 10 fb−1 for (I.2).

The SM process has a /pT distribution which decreases quickly for large missing
momentum. In contrast, if the two top quarks are almost collinear, we see a
peak in our signal at around 600 . . . 700 GeV roughly corresponding to the in-
termediate resonance minus the neutralino energy. It moves towards 0 for larger
azimuthal distance between the quarks, giving the distribution with qq initial
state a rectangular shape. The resulting /pT distribution for cuts I.2 is shown in
figure 8.28, the sum of all contributions is shown in figure 8.12 (I), figure 8.13
(I.1) and figure 8.14 (I.2). Since we get large contributions to LSP production
with /pT > 400 GeV, a clear signal can be seen at large /pT even for moderate cuts
or only the basic cuts.

Let us now take a 10 fb−1 sample to discuss how well the missing energy signal
could be observed after shorter observation times. The resulting /pT distribution
is shown in figure 8.17. There are still plenty of events left, but it would require a
more detailed investigation to determine how well these top jets can be detected
and separated in a real detector.

In addition to cutting on the energy of the quarks, we can exploit the azimuthal
distance distribution. They are shown in figure 8.15. We introduce a further
set of cuts to exploit the larger contribution of top quarks from LSP production
which are not back to back,

cuts I.3

cuts I

Transverse momentum pT (q), pT (q) > 100 GeV

Azimuthal distance ∆φ(q, q) < 140◦

The resulting /pT distribution for
∫
L = 20 fb−1 is shown in figure 8.16. These

cuts might also be useful for excluding instrumental backgrounds, e.g. from hard
t pair production without missing energy. The corresponding cross sections are

Process σI/fb σI.3/fb

qiqj , qiqj → νkνltt 52 1.6

gg → νkνltt 100 4.2

qiqj , qiqj → χ0
kχ

0
l tt 80 18

gg → χ0
kχ

0
l tt 48 12

Signal/Background 0.84 5.2

As one would expect, the low /pT contributions which can only come from almost
back to back quarks, are reduced.

To gain some insight in the relevant underlying processes, let us look at the invari-
ant mass spectra of subsets of the outgoing particles. This is only an academic
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Figure 8.12: A histogram of the /pT distribution (
∫
L = 20 fb−1, bin=33 GeV) after cuts

I of the SM background (dashed, blue) and the signal (filled, red) for pp→ xxtt.

exercise as they are not accessible experimentally. The histograms of M(q, χ)
shown in Figures 8.24, 8.25 point to third generation squark decay as the pri-
mary source. The histogram of M(q, χ, χ) in figure 8.23 indicates that diagrams
involving decay cascades of the first top resonance t2 into the LSPs and a top are
important. The coupling of light quarks vanishes for ideal delocalization, but for
our bulk mass value which gives us S ≈ 0, there is a nonzero coupling of O(0.2)
to the heavy gluon which is compensated by the g2t2t coupling which is of O(2).
The t2 decays mainly to electroweak bosons and quarks, so the LSP production
is certainly not the first sign of a warped extra dimension. The color charged
gauge scalar Σc does not contribute because of the smallness of couplings.
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Figure 8.13: A histogram of the /pT distribution (
∫
L = 20 fb−1, bin=33 GeV) after cuts

I.1 of the SM background (dashed, blue) and the signal (filled, red) for pp→ xxtt.
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Figure 8.14: A histogram of the /pT distribution (
∫
L = 200 fb−1, bin=33 GeV) after

cuts I.2 of the SM background (dashed, blue) and the signal (filled, red) for pp→ xxtt.
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Figure 8.15: A histogram of the ∆φ(t, t) distribution (
∫
L = 20 fb−1, bin=33 GeV) after

cuts I.1 of the SM background (dashed, blue) and the signal (solid, red) for pp→ xxtt.
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Figure 8.16: A histogram of the /pT distribution (
∫
L = 20 fb−1, bin=33 GeV) after cuts

I.3 of the SM background (dashed, blue) and the signal (solid, red) for pp→ xxtt.
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Figure 8.17: A histogram of the /pT distribution (
∫
L = 10 fb−1, bin=33 GeV) after cuts

I.2 of the SM background (dashed, blue) and the signal (solid, red) for pp→ xxtt.
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8.6.4 Production of bb + E/ T

The SM background pp→ ννbb is very large without the pT cuts while our signal
is much smaller than before. With the cuts given above, we get

Process σI/fb σI.1/fb σI.2/fb

qiqj , qiqj → νkνlbb ≈ 10000 100 6.9

gg → νkνlbb ≈ 65000 320 7.6

qiqj, qiqj → χ0
kχ

0
l bb 6.4 6.4 2.5

gg → χ0
kχ

0
l bb 24 8.7 3.1

Signal/Background 0 0.035 0.39

The background is reduced efficiently by these cuts, but our signal never rises
above the background contribution before the cross sections becomes too low to
be observable with reasonable integrated luminosity. Yet, this becomes important
as an additional background for the signatures discussed in the previous section
if the reliability of t and b identification is limited. To improve the situation for
the χ0χ0bb signature itself we can try to exploit the fact that the /pT distribution
of pp → ννbb falls off quickly, and try to look for very large /pT . We therefore
employ

cuts II.1

cuts I

Transverse momentum pT (q, q) > 300 GeV

or

cuts II.2

cuts I

Transverse momentum pT (q, q) > 500 GeV

Since we now cut on the very quantity which we would like to observe, this is
equivalent to a selection of the plot range. Doing so we can actually retain a
larger percentage of signal events, but our signal is still almost drowned by SM
b production.

Process σI/fb σII.1/fb σII.2/fb

qiqj , qiqj, gg → νkνlbb ≈ 10000 25 3.2

qiqj , qiqj, gg → νkνlbb ≈ 65000 58 4.2

qiqj , qiqj → χ0
kχ

0
l bb 6.4 4.6 2.6

gg → χ0
kχ

0
l bb 24 10.6 4.0

Signal/Background 0 0.18 0.89

The production cross section drops below 10 fb, and the contribution from our
LSPs which has the same basic shape is probably visible in the parton level
simulation only (figure 8.18).
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Figure 8.18: A histogram of the /pT distribution (
∫
L = 200 fb−1, bin=50 GeV) after

cuts II.2 of the SM background (dashed, blue) and the signal (solid, red) for pp→ xxbb.

8.6.5 Production of the NLSPs

In the previous sections we have considered the leading order contributions to
neutralino pair production in association with third generation quarks. There is
however another kind of events which might not be easily distinguishable from
LSP production in an experiment, namely the production of chargino NLSPs
or of one chargino NLSP and a neutralino LSP. Our charginos are close to the
lower experimental exclusion bound and decay via χ+ → χ0W+∗ → χ0fufd.
They are very narrow (Γ ≈ 10−7 GeV) due to the offshell intermediate W , yet
unlike in some models with light gravitino LSP, the corresponding lifetime is
still negligible. The fermion pair has ≈ 10 . . . 20 GeV in the chargino center
of mass frame. Depending on how well such processes can be resolved in the
experiments, this will be an important way to observe LSP or NLSP production.
In the detector, one might see missing energy with one or two comparatively soft
jets (few tens of GeVs) and two b or t jets, so chargino production events would
look similar to the signal discussed above. We therefore close this section by
studying the processes

pp→ χ+χ−tt (8.53)

and
pp→ χ0χ−tb pp→ χ0χ+tb (8.54)

to which the three point couplings W+,nχ−χ0 and Znχ+χ− can make important
contributions in contrast to neutralino pair production. We apply the cuts I.2 to
the quarks. Now, the pT of the b and t jets is not exactly equal to /pT any more,
but only up to the pT of the softer jet(s) from the chargino decay products. The
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Figure 8.19: The pT distribution of the quark pair in pp → χ+χ−tt (
∫
L = 200 fb−1,

bin=33 GeV) after cuts I.2.

cross sections are

Process σI.2/fb

pp→ χ+χ−tt 57

pp→ χ0χ−tb 25

The distribution of pT (q, q) is shown in figure 8.19. The boost distribution of
the charginos can be used to infer how hard the jets from the chargino decay
products are going to be (figure 8.20). The maximum is at around γ(χ±) =
Eχ/mχ ≈ 3 leading to rather soft jets, but more than on third of the events
can reach γ(χ±) = Eχ/mχ > 5. The corresponding results for the production of
one chargino are shown in figure 8.21 and figure 8.22. These cross sections are
even larger than those for pure neutralino production, but it is subject of further
study how well this type of events can be distinguished at the LHC. The proper
treatment of the background to this type of processes would require production
of 8 particles in the final state to account for the three body decays of two χ±s
via offshell W s, and possibly detector simulations which are beyond the scope of
this thesis. In any case, NLSP production should give us an equally important
source of missing energy.

8.7 Discussion and Further Issues

We have seen above that the production of third generation quark pairs in asso-
ciation with two neutralino LSPs gives us a clear missing energy signal with only
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Figure 8.20: The boost γ(χ+) = Eχ/mχ of a chargino in pp→ χ+χ−tt (
∫
L = 200 fb−1,

bin=50 GeV) after cuts I.2.
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Figure 8.21: The pT distribution of the quark pair in pp → χ0χ−tb (
∫
L = 200 fb−1,

bin=33 GeV) after cuts I.2.
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Figure 8.22: The boost γ(χ+) = Eχ/mχ of the chargino in pp→ χ0χ−tb (
∫
L = 200 fb−1,

bin=50 GeV) after cuts I.2.

moderate backgrounds at the LHC, while the production of NLSPs in associa-
tion with third generation quark pairs is even stronger but harder to interpret.
These simulations with heavy quark final states give a first insight in the LHC
phenomenology of the model, but have to be complemented by a more detailed
analysis of final states, possibly including fragmentation and detector simulations
to reliably gauge the potential of discovery and differentiation from other models
at the LHC. Due to the structure of our SUSY breaking sector, production and
annihilation channels involving squarks are suppressed, but we are nevertheless
confident that our DM candidate will be visible at the LHC if models of this type
are realized in nature. A realistic LSP density can be reached without extensive
tuning of mixing angles. Many of the properties discussed in the previous sections
are connected to the special rôle of the third generation in warped models. The IR
localization of the top and bottom make them an important probe of the Kaluza-
Klein sector in which for example the squark resonances reside. Many widths
and cross sections are enhanced due to this effect, and the strong mixing of the
Kaluza-Klein modes of third generation quarks and squarks on the IR brane gives
us rather light resonances which are produced much more copiously at the LHC.
In this context it would be interesting to investigate how alternative implementa-
tions of third generation quarks introduced to remedy the Zbb problem will affect
the general phenomenology [18, 34]. If we do not limit ourselves to production
of third generation quarks, there are LSP electroweak production channels which
are much less Kaluza-Klein suppressed and will yield larger cross sections than
the QCD ones discussed here, of course with much larger backgrounds to begin
with. One such mode is shown in figure 8.7. Another interesting and challenging
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Figure 8.23: The invariant mass distribution of χ0χ0t for initial state qq and cuts I.2
shows top resonance decay t2 → χ0χ0t + c.c as a dominant production channel (

∫
L =

200 fb−1, bin=33 GeV).

subject for further study which we have only hinted at in this thesis is the gen-
eration of flavour mixing in warped models in connection with supersymmetry,
and the consequences for FCNCs and rare decays.
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Figure 8.24: The invariant mass distribution of χ0t for initial state qq and cuts I.2 shows
an intermediate stop resonance decaying as t̃1i → χ0t + c.c (

∫
L = 200 fb−1, bin=33

GeV).
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Figure 8.25: The invariant mass distribution of χ0t for initial state gg and cuts I.2
shows stop production and decay t̃1i → χ0t + c.c as the dominant production channel
(
∫
L = 200 fb−1, bin=33 GeV).
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Figure 8.26: The total invariant mass distribution for the qq initial state and cuts I.2
(
∫
L = 200 fb−1, bin=33 GeV).
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Figure 8.27: The total invariant mass for the gg initial state and cuts I.2 (
∫
L = 200 fb−1,

bin=33 GeV).
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Figure 8.28: The /pT distribution of the signal gg → χ0χ0tt after cuts I.2 (
∫
L = 200 fb−1,

bin=33 GeV).
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Figure 8.29: The /pT distribution of the signal qq → χ0χ0tt after cuts I.2. The same
contribution comes from qq (

∫
L = 200 fb−1, bin=33 GeV).
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Figure 8.30: The /pT distribution of the signal gg → χ0χ0bb after cuts I.2 (
∫
L = 200 fb−1,

bin=33 GeV).
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Figure 8.31: The /pT distribution of the signal qq → χ0χ0bb after cuts I.2. The same
contribution comes from qq (

∫
L = 200 fb−1, bin=33 GeV).



Chapter 9

Conclusions

Since its popularization due to Randall and Sundrum one decade ago, and in con-
nection with the AdS/CFT correspondence in particular, 5D warped background
spacetime has been one of the most fruitful new ideas in physics beyond the stan-
dard model, leading to new insights into symmetry breaking and the properties
of strongly interacting theories inaccessible to direct perturbative calculations,
while at the same time relating gravity to phenomenological model building. The
nature of dark matter and electroweak symmetry breaking which are among the
most prominent puzzles subject to experimental scrutiny at the Tevatron, direct
search experiments, and in the near future at the LHC, invite us to speculate
about possible solutions in the context of warped models.

In this thesis we have investigated phenomenological implications which arise for
cosmology and collider physics when the electroweak symmetry breaking sector
of warped higgsless models is extended to include warped supersymmetry with
conserved R parity. The goal was to find the simplest supersymmetric extension
of these models which still has a realistic light spectrum including a viable dark
matter candidate. To accomplish this, we have used the same mechanism which
is already at work for symmetry breaking in the electroweak sector to break su-
persymmetry as well, namely symmetry breaking by boundary conditions. While
supersymmetry in five dimensions contains four supercharges and is therefore
directly related to 4D N = 2 supersymmetry, half of them are broken by the
background leaving us with ordinary N = 1 theory in the massless sector after
Kaluza-Klein expansion. This is reflected in the fact that only one two-component
Killing spinor with nontrivial dependence on the extradimensional coordinate re-
mains. We thus use boundary conditions to model the effects of a breaking mech-
anism for the remaining two supercharges. The formulation of supersymmetric
theories has been greatly simplified through the invention of the superfield for-
malism, and even though it can not be applied to higher dimensions or extended
supersymmetry in a straightforward manner, there exists a hybrid approach for
using superfields in D > 4 which we use to build our model. It exploits the fact
that the field content of 5D vector- or hypermultiplets is equivalent to that of
two 4D superfields which can each be furnished with the correct 5D dynamics
by hand. Supersymmetry and gauge symmetry relate the boundary conditions
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which have to be assigned to the fields within the extended supermultiplets, and
the result is a Kaluza-Klein particle spectrum consisting of 4D N = 2 multiplets.
Even though they are degenerate in mass, the breaking of the extended super-
symmetry divides them into two different classes of Kaluza-Klein wave functions
each associated with one of two 4D N = 1 superfields. It turns out that the
infrared scale of the warped background, ΛIR = 200 . . . 600 GeV which is related
to the electroweak scale, is too low to account for all of the supersymmetry break-
ing necessary to achieve a realistic light spectrum. Since the strength with which
fields couple to the IR brane is dictated by their localization, the masses of most
superpartners remain below the allowed experimental exclusion bounds even for
infinite IR brane masses. Since we do not have to worry about protecting Higgs
scalars from quadratic corrections, the simplest scenario to investigate is a super-
symmetric bulk and IR brane without supersymmetry on the UV brane. Even
though parts of the light spectrum are effectively projected out by this mecha-
nism, we retain the rich phenomenology of complete N = 2 supermultiplets in
the Kaluza-Klein sector. While the light supersymmetric spectrum consists of
electroweak gauginos which get their O(100 GeV) masses from IR brane elec-
troweak symmetry breaking, the light gluinos and squarks are projected out on
the UV brane. After the implementation of UV Dirichlet boundary conditions
for all physical scalars, further breaking is only governed by a few parameters
consisting of localized kinetic terms and a mixing angle. The neutralinos, as
mass eigenstates of the neutral bino-wino sector, are automatically the lightest
gauginos, making them LSP dark matter candidates with a relic density that can
be brought to agreement with WMAP measurements without extensive tuning
of parameters. The coupling constants relevant for LSP annihilation are approx-
imately independent of the neutralino mixing angle such that the cross section is
mainly determined by the gaugino masses. For chargino masses close to the ex-
perimental lower bounds at around mχ+ ≈ 100 . . . 110 GeV, the dark matter relic
density points to LSP masses of around mχ ≈ 90 GeV. Larger chargino masses
are problematic since the corresponding rise in the Kaluza-Klein scale is at odds
with unitarization by Kaluza-Klein modes, so light charginos are a prediction of
this class of models.

At the LHC, the standard particle content of our model shares the key features of
known warped higgsless models, with the exception of larger widths of resonances
which can decay to superpartners such as W ′ and Z ′. We have performed Monte
Carlo simulations of warped higgsless LSP and NLSP production at a benchmark
point using O’Mega/WHIZARD, concentrating on production in association with
third generation quarks. After background reduction cuts on the quark momenta
and angles, we get hadronic cross sections of σ > 100 fb with characteristic /pT
spectra for χχtt final states, while the final states with bb pairs have much lower
event rates and shapes which are hard to discern in experiments. Our results
suggest that the discovery of warped higgsless LSP dark matter at the LHC via
missing energy is within reach for the first O(10) fb−1 if b and in particular t
jet identification is reliable. More precise statements will require the inclusion of
larger final states, fragmentation and detector simulations. Among the interesting
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questions which were raised during this work, but are beyond the scope of this
thesis, are the impact this particular extension has on flavour physics and related
precision observables in higgsless models, the possibility of having scalars from
warped space at the electroweak scale, and the embedding of the model in a
UV completion including an underlying mechanism for supersymmetry breaking
by boundary conditions consistent with supergravity. Whether in the context of
higgsless models or related alternatives to the standard Higgs mechanism, these
are intriguing questions for future research. As always, experimental observations
will be the arbiter of which theoretical concepts, previously considered or hitherto
unknown, best describe the physics that awaits us at the electroweak scale.



Appendix A

Conventions

A.1 Coordinate Systems and Lorentz Structure

Two coordinate systems are commonly used to parametrize a slice of AdS5. The
“proper distance” coordinates have

xM = (xµ, y), y ∈ [0, π] (A.1)

They are related to the “conformal” coordinates with

xM = (xµ, z), z ∈ [k−1,Λ−1
IR ] (A.2)

through

z = k−1eRky ΛIR = ke−Rkπ (A.3)

We use lowercase greek letters µ, ν . . . for 4D curved space Lorentz indices and up-
percase letters M,N . . . for 5D curved space Lorentz indices. In some instances,
there appear flat 4D Lorentz indices which will be denoted by lowercase latin
letters a, b, n . . . . We do not introduce 5D flat indices. There can be confusion
between the use of “flat indices” and flat metrics with ordinary indices. Vectors
with curved and flat indices are related by a vielbein, for example

V µ = eµaV
a (A.4)

Since eµa = (eaµ)
−1, we get

V µWµ = V aWa (A.5)

When doing a Kaluza-Klein expansion in warped space, we usually pull the space-
time dependence out of the metric without making all vectors associated with it
“flat index” vectors, for example

AµA
µ = gµνAµAν = e2RkyηµνAµAν (A.6)
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Compare this to
AµA

µ = gµνAµAν = ηmnAmAn (A.7)

where the definition of the vector fields has changed to include an inverse vierbein
factor. In this context it is important that we never raise or lower “curved” indices
with the flat metric. (Covariant) derivatives and gauge fields with upper indices
are always defined as Aµ = gµνAν and Fµν = gµρgνωFρω. The flat dirac matrices
are marked with a bar,

γµ = eµaγ
a (A.8)

but sometimes we use them with curved index

γµ = δµnγ
n (A.9)

They are defined as

{γµ, γν} = 2ηµν {γm, γn} = 2ηmn (A.10)

Since the symbol σ is taken already, we define all appearances of the σ matrices
in this work to be without spacetime dependence and with an upper index which
can be flat or curved. We will not use curved σ matrices. Furthermore we use
the flat metric sign convention

η = diag(+,−,−,−,−) (A.11)

and the corresponding Dirac matrices

γm = −
(

0 σm

σm 0

)
γ5 =

(
i 0

0 −i

)
(A.12)

where σ0 = σ0 = −1 and −σi = σi are the Pauli matrices. We define the
projectors

P+ =
1

2
(1 − iγ5) P− =

1

2
(1 + iγ5) (A.13)

on the 4D “left handed” and “right handed” component respectively. For Dirac
spinors

ΨT = (ηα, χ
α̇) (A.14)

we define
Ψ = Ψ†γ0 = (χα, ηα̇) (A.15)

The Dirac matrices read in proper distance coordinates

γµ = −δµmeRky

(
0 σm

σm 0

)
γ5 =

1

R

(
i 0

0 −i

)
(A.16a)

γµ = ηµνe
−2Rkyγν γ5 = −R2γ5 (A.16b)
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and in conformal coordinates

γµ = −δµmkz
(

0 σm

σm 0

)
γ5 = kz

(
i 0

0 −i

)
(A.17a)

γµ = ηµν
1

k2z2
γν γ5 = − 1

k2z2
γ5 (A.17b)

A.2 Overlap Integrals for Effective Coupling Constants

We discuss in chapter D that the overlap integrals over the extra dimension as
they appear in interaction terms, only come in a finite number of varieties which
are determined by the spin of the fields. There are exceptions to the following
rules in the case of some dimensionful couplings, and they are mentioned in the
text explicitly.

Every interaction term contains one factor
√
g = det e = Re−4Rky. In addition

to this, there are potential metric factors gµν = e2Rkyηµν (from derivatives and
vector fields) and vierbein factors (from Dirac/Weyl matrices) eµa = δµaeRky in the
Lagrangian. The most common cases throughout this work are the following:

Yukawa Type Couplings

This can be either the coupling of a scalar to two matter fermions, or the su-
persymmetric Yukawa interaction of one matter fermion, one gaugino and the
sfermions. In either case, we have

S ∝
∫ √

g φψχ (A.18)

leading to

〈φψχ〉 ≡
∫ π

0
dy Re−4Rkyfφfψfχ (A.19)

Fermion Gauge Interactions

This applies to the standard 4D gauge interaction of matter in fundamental or
abelian representations or gauginos with a vector boson. There is one vierbein,

S ∝
∫ √

geµnAµ ψσ
nχ (A.20)

leading to

〈Aψχ〉 ≡
∫ π

0
dy Re−3RkyfAfψfχ (A.21)
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Scalar Gauge Interactions

This applies to sfermion gauge interactions as well as to the scalars from the
gauge supermultiplets. There is one metric factor,

S ∝
∫ √

g gµνAµ φ1∂νφ2 (A.22)

or

S ∝
∫ √

g gµνAµAν φ1φ2 (A.23)

leading to

〈Aφ1φ2〉 ≡
∫ π

0
dy Re−2RkyfAfφ1fφ2 (A.24)

〈A1A2φ1φ2〉 ≡
∫ π

0
dy Re−2RkyfA1fA2fφ1fφ2 (A.25)

Gauge Self Interactions

There are two metric factors,

S ∝
∫ √

ggµνgωρFµωFνρ (A.26)

leading to

〈A1A2A3(A4)〉 ≡
∫ π

0
dy RfA1fA2fA3(fA4) (A.27)



Appendix B

The Action of 5D SYM
Coupled to Matter in 5D
Component Fields

B.1 Derivation

The Gauge Multiplet

The 4D action of the gauge multiplet is the same as ordinary 4D SYM theory. The
gauge boson part is given in the section on nonabelian gauge theory in warped
space, and we will give the minimally coupled gaugino action later. First let us
analyze the parts that are new in 5D, namely

χe−V χeV +
√

2∂5e
−V χeV −

√
2χe−V ∂5e

V − ∂5e
−V ∂5e

V

They are equivalent (appendix E.4) to the component Lagrangian

S = 4D-Part

+

∫
d5x

1

4Rg2
YM

e−2Rky
{
− iλa2σ

µ∂µλ
a
2 −

1√
2
f bdaλ

a
2λ

b
1A

d
1

− 1√
2
fdeaAa2λ

d
2λ

e
1 +

i

2
fdeaAa2A

d
1D

e − 1

4
fdfgf geaAa2A

d
1A

e
µA

f
µ −Aa2�A

a
1

+
1

2
(fdeaAa2∂µA

d
1A

e
µ + f bda∂µA

a
2A

d
1A

b
µ) +

i

2
f bdaAbµλ

d
2σ

µλ
a
2 +C†aCa

−iλa2∂5λ
a
1 + iλ

a
2∂5λ

a
1 −

1√
2
(A2 +A1)

a∂5D
a − i√

2
∂µ(A2 −A1)

a∂5A
a
µ

+
1

2
∂5A

a
µ∂5A

a
µ −

i

2
f bca

1√
2
(Ac2 −Ac1)A

b
µ∂5A

a
µ

}

where we have introduced i√
2
(A2 − A1) = A5,

1√
2
(A2 + A1) = Σ. Also, for

simplicity AµAµ ≡ ηµνAµAν etc. The final form after all field redefinitions can
be found in appendix B.2.
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The Hypermultiplet

The first part of (4.34) is identical to 4D SUSY, but we present it here again
for sake of completeness. Let us first turn to the expression He−VH|θ4 order by
order in V . This is possible as in Wess-Zumino gauge, V 3 = 0.

∫
d4θ Re−2kRyHH =

Re−2kRy
{
− h†�h

4
− �h†h

4
+

1

2
ηµν(∂µh

†)(∂νh)

− i

2
ψσµ∂µψ +

i

2
∂µψσ

µψ + F †F
}

= Re−2kRy
{
− h†�h− iψσµ∂µψ + F †F

}
(B.1)

∫
d4θ Re−2kRyH(−V lT l)H =

−Re−2kRy
{
− i

2η
µνAlµh

†T l∂νh+ i
2η

µνAlµ∂νh
†T lh

+ i√
2
λ
l
1ψT

lh− i√
2
h†T lψλl1 + 1

2A
l
µψσ

µT lψ + 1
2D

lh†T lh
}

(B.2)

∫
d4θ Re−2kRyH

(−V lT l)2

2
H =

∫
d4θ R

e−2kRy

2
H(θσµθAlµ)(θσ

νθAkν)T
lT kH

= +
1

4
Re−2kRy

{
ηµνAlµA

k
ν h

†T lT kh
}

(B.3)

The corresponding expressions for HceVH
c|θ4 are as follows:

∫
d4θ Re−2kRyHcH

c
=

Re−2kRy
{
− hc�hc† + F cF c† + i∂µψ

cσµψ
c
}

(B.4)

∫
d4θ Re−2kRyHc(V lT l)H

c
=

Re−2kRy
{ i

2
ηµνAlµh

cT l∂νh
c† − i

2
ηµνAlν∂µh

cT lhc† +
i√
2
hcT lψ

c
λ
l
1

− i√
2
λl1ψ

cT lhc† +
1

2
DlhcT lhc† − 1

2
ψcT lσµψ

c
Alµ

}
(B.5)

∫
d4θ Re−2kRyHc (V

lT l)2

2
H
c
=
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∫
d4θ R

e−2kRy

2
Hc(θσµθAlµ)(θσ

νθAkν)T
lT kH

c

=
1

4
Re−2kRy

{
ηµνAlµA

k
ν h

cT lT khc†
}

(B.6)

Now let us consider the 5D covariant action as given in the second part of (4.34).
To simplify notation we define “covariant” derivatives of different orders in θ:

D0 = (∂y − (3/2 − c)Rk)11 − 1

2
(Σl + iAl5)T

l
L

D1 = −θλl2T l

D2 = − 1√
2
θθC lT l

Using those we find

∫
d2θ e−3RkyHc

LD0HL = e−3Rky
{
hcLD0FL − ψcLD0ψL + F cLD0hL

}

∫
d2θ e−3RkyHc

LD1HL = e−3Rky 1√
2

{
hcLT

lψλl2L + λl2Lψ
cT lhL

}

∫
d2θ e−3RkyHc

LD2HL = e−3Rky 1√
2

{
− hcLT

lhLC
l
}

All of the above is of course before any field redefinitions, and the final form can
again be found in the Appendix.

B.1.1 Integrating out the Auxiliary Fields

Let us first consider the general form of the action arising from integrating out
auxiliary fields.

F Terms

The Lagrangian involving the auxiliary field of chiral multiplets can be cast in
the form

L = αF †F + β(Ω†F + F †Ω) (B.7)

Solving the algebraic equation of motion for F one finds

F +
β

α
Ω = 0 ⇒ F = −β

α
Ω (B.8)

So the onshell Lagrangian is

L = −β
2

α
Ω†Ω (B.9)
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D Terms

For the real auxiliary field from the gauge multiplet,

L = α
1

2
D2 + β(DΩ) (B.10)

and the resulting equation of motion for D is

D +
β

α
Ω = 0 ⇒ D = −β

α
Ω (B.11)

leading to an onshell Lagrangian

L = −1

2

β2

α
Ω2 (B.12)

F Term from the Chiral Part of the Vector Multiplet

The F Term Lagrangian from the 5D gauge coupling to a matter hypermultiplet
is

L =
e−2Rky

Rg2
C†aCa − e−3Rky

√
2

(
C l(hcT lh) + C†l(hcT lh)†

)
(B.13)

So, using the above definitions

Ω = (hcT lh)† (B.14)

−β
2

α
= −g

2

2
Re−4Rky = −√

g
g2

2
(B.15)

Therefore, the resulting onshell Lagrangian from the gauge F term is

L =
√
g(−g

2

2
)(hcT lh)†(hcT lh) (B.16)

D Term from the Vector Part of the Vector Multiplet

The coupling of a matter hypermultiplet to the vector superfield gives us a D
term

L =
R

2g2
D2 +

e−2Rky

Rg2

[
1

4
fdea(Aa5Σ

d − ΣaAd5)D
e − Σa∂5D

a

]

− Re−2Rky 1

2
Dlh†T lh+Re−2Rky 1

2
DlhcT lhc†

=
R

2g2
D2 +

e−2Rky

Rg2

[
1

2
fdeaAa5Σ

dDe −Da(2Rk − ∂5)Σ
a

]

+ ∂5

[
−e

−2Rky

Rg2
ΣaDa

]

︸ ︷︷ ︸
Boundary D term

−Re−2Rky 1

2
Dlh†T lh+Re−2Rky 1

2
DlhcT lhc†
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So,

Ωe =

[
1

2
fdeaAa5Σ

d − (2Rk − ∂5)Σ
e −R2g2 1

2
h†T eh+R2g2 1

2
hcT ehc†

]

α =
R

g2
β =

e−2Rky

Rg2
(B.17)

The resulting onshell Lagrangian is

L = −1

2

e−4Rky

R3g2

[
1

2
fadlAa5Σ

d − (2Rk − ∂5)Σ
l −R2g2 1

2
h†T lh+R2g2 1

2
hcT lhc†

]2

= −√
g

1

2g2

[
1

2R2
fadlAa5Σ

d − 2Rk − ∂5

R2
Σl − g2 1

2
h†T lh+ g2 1

2
hcT lhc†

]2

F Term from a Matter Hypermultiplet

e−3RkyhcDF = e−3Rky

[
−(3/2 − c)Rσ′ · hcF − 1

2
(Σl + iAl5)h

cT lF + hc∂5F

]

= e−3Rky

[
−(3/2 − c)Rσ′hcF − 1

2
(Σl + iAl5)h

cT lF + (−∂5 + 3Rk)hcF

]

+∂5

[
e−3RkyhcF

]

≃ e−3Rky

[
−(3/2 − c)Rσ′hc − 1

2
(Σl + iAl5)h

cT l + (−∂5 + 3Rk)hc
]
· F

= e−3RkyΩ†F

So, the onshell Lagrangian is

L = −e
−4Rky

R
(Ω†Ω + ΩcΩc†)

= −
√
g

R2

[
−(3/2 − c)Rσ′hc − 1

2
(Σ + iA5)

lhcT l + (3kR − ∂5)h
c

]
×

[
−(3/2 − c)Rσ′hc† − 1

2
(Σ − iA5)

lT lhc† + (3kR − ∂5)h
c†
]

−
√
g

R2

[
∂5h

† − (3/2 − c)Rσ′h† − 1

2
(Σ − iA5)

lh†T l
]
×

[
∂5h− (3/2 − c)Rσ′h− 1

2
(Σ + iA5)

lT lh

]
(B.18)

B.1.2 Many Flavors

In all of these terms, we have only assumed there to be one SU(N) gauge group
and one flavour charged under it in the fundamental representation. Since each
auxiliary field will couple to all flavours present in the model which are charged
under it, the resulting interactions in the onshell Lagrangian will mix flavours.
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B.2 Summary of the 5D Onshell Action

The following is the action of one hypermultiplet coupled to SU(N) SYM in
warped space, written in 5D component fields with the 5D gauge coupling con-
stant gYM . The convention is such that the correct density factors are already
included in the expressions and

S =

∫
d4x

∫ π

0
dy

31∑

i=0

Li (B.19)

For brevity we have again adopted a notation where AµAµ ≡ ηµνAµAν and
ν, µ = 0..3. First, the 4D SYM Lagrangian (without the RDaDa/2 term which
is already integrated out),

−1

4
RF aµνF

a
µν

+Re−3Rky
[
−iλa1σµ∂µλ

a
1 + igY Mf

bdaAbµλ
d
1σ

µλ
a
1

]
(L0)

B.2.1 Action from the Gauge Superfields

Re−2Rky

[
−1

2
Σ�Σ − 1

2
A5�A5

]
(L1)

Re−3Rky(−iλa2σµ∂µλ
a
2) (L2)

Re−4Rky

[
−λa2

∂5 − 3/2Rk

R
λa1 − λ

a
2

∂5 − 3/2Rk

R
λ
a
1

]
(L3)

Re−2Rky

[
1

2

∂5

R
Aµ

∂5

R
Aµ

]
−Re−2Rky∂µA5

∂5

R
Aµ (L4)

Re−2RkygYMf
dea
[
Σa∂µΣ

dAeµ +Aa5∂µA
d
5A

e
µ

]
(L5)

Re−3RkyigYMf
bdaAbµλ

d
2σ

µλ
a
2 (L6)

Re−2RkygYM

[
−f bcaAc5Abµ

∂5

R
Aaµ

]
(L7)

Re−4RkygYM

[
−if bdaΣd(λ

a
2λ

b
1 − λa2λ

b
1) + f bdaAd5(λ

a
2λ

b
1 + λa2λ

b
1)
]

(L8)

Re−2Rky 1

2
g2
YM

[
−fdfgf gea(ΣaΣdAeµA

f
µ +Aa5A

d
5A

e
µA

f
µ)
]

(L9)

B.2.2 Interaction with Matter

Re−2Rky
[
−h†�h− hc�hc†

]
(L10)

Re−3Rky
[
i∂µψ

cσµψ
c − iψσµ∂µψ

]
(L11)

Re−2RkyigYM

[
Alµh

†T l∂µh−Alµ∂µh
†T lh

]
(L12)
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Re−2RkyigY M

[
Alµh

cT l∂µh
c† −Alµ∂µh

cT lhc†
]

(L13)

Re−2Rkyg2
YM

[
AlµA

k
µh

†T lT kh+AlµA
k
µh

cT lT khc†
]

(L14)

Re−3RkygYM

[
−AlµψσµT lψ − ψcT lσµψ

c
Alµ

]
(L15)

Re−4RkyigY M

[√
2λ

l
1ψT

lh−
√

2h†T lψλl1
]

(L16)

Re−4RkyigYM

[
−
√

2hcT lψ
c
λ
l
1 +

√
2λl1ψ

cT lhc†
]

(L17)

B.2.3 Matter Coupling to the Chiral Part of the Vector

Re−4Rky

[
−ψc(∂5

R
+ (c− 2)k)ψ + gYM (Σ + iA5)

lψcT lψ

]
(L18)

Re−4RkyigYM

[
−
√

2hcT lψλl2 −
√

2λl2ψ
cT lh

]
(L19)

Re−4Rky

[(
−∂5 + (c− 2)Rk

R
ψ

)
ψ
c
+ gYM (Σ − iA5)

lψT lψ
c
]

(L20)

Re−4RkyigYM

[√
2λ

l
2ψT

lhc† +
√

2h†T lψ
c
λ
l
2

]
(L21)

B.2.4 The F Term

−Re−4Rky

[
(3/2 + c)kR − ∂5

R

]
hc
[
(3/2 + c)kR − ∂5

R

]
hc†

−Re−4Rky

[
∂5 − (3/2 − c)Rk

R

]
h†
[
∂5 − (3/2 − c)Rk

R

]
h (L22)

−Re−4Rkyg2
YM (Σ + iA5)

l(Σ − iA5)
mhcT lTmhc†

−Re−4Rkyg2
YM (Σ − iA5)

l(Σ + iA5)
mh†T lTmh (L23)

Re−4RkygYM (Σ − iA5)
l

(
(3/2 + c)kR − ∂5

R
hc
)
T lhc†

Re−4RkygYM (Σ + iA5)
lhcT l

(
(3/2 + c)Rk − ∂5

R
hc†
)

Re−4RkygYM (Σ + iA5)
l

(
∂5 − (3/2 − c)Rk

R
h†
)
T lh

Re−4RkygYM (Σ − iA5)
lh†T l

(
∂5 − (3/2 − c)Rk

R
h

)
(L24)

B.2.5 The Vector F Term

Re−4Rky(−2g2
YM )(hcT lh)†(hcT lh) (L25)
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B.2.6 The D Term

−Re−4Rky 1

2

(
∂5 − 2Rk

R
Σl

)(
∂5 − 2Rk

R
Σl

)
(L26)

−Re−4Rkyg2
YM

(
1

2
fadlf fglAa5Σ

dAf5Σg

)
(L27)

−Re−4RkygYMf
adlAa5Σ

d

(
∂5 − 2Rk

R
Σl

)
(L28)

−Re−4Rkyg2
YM

1

2

[
(hcT lhc†)(hcT lhc†)

+(h†T lh)(h†T lh) − 2(hcT lhc†)(h†T lh)
]

(L29)

−Re−4Rkyg2
YMf

adl
[
Aa5Σ

d(hcT lhc† − h†T lh)
]

(L30)

−Re−4RkygYM

(
∂5 − 2Rk

R
Σl

)
(hcT lhc† − h†T lh) (L31)



Appendix C

Boundary Conditions and
Linear Algebra

In this chapter we present the proof of the property (2.14) of the matrices defining
the boundary conditions for a field on any of the two boundaries. We are looking
for the most general matrices N,D ∈ R

n×n which satisfy

∀v,w ∈ R
n : Dv +Nw = 0 ⇒ vTw = 0 (C.1)

the latter being required for the boundary action to vanish. We proceed in several
steps: first we recast (C.1) to a normal form, and then derive its properties. Let
us first note that we are allowed to act with any regular n × n matrix from the
left without changing the condition. Furthermore, we can do orthogonal basis
transformations as long as we act on v and w simultaneously. As a first step we
perform a SVD on D. For the SVD we choose the orthogonal matrices A, B such
that

ADBT =




σ1

. . .

σr

0n−r×n−r




(C.2)

and define v′ = Bv, w′ = Bw. Here r = rk D is the number of Dirichlet- or
mixed boundary conditions. We obtain

Dv +Nw = AT (ADBT )Bv +Nw = 0 ⇔ (ADBT )Bv +ANBTBw = 0 (C.3)

Furthermore we act from the left with R = diag(σ−1
1 , . . . , σ−1

r , 1, . . . , 1) and define
N ′ = RANBT . We now have

Dv +Nw = 0 ⇔ diag(1, . . . , 1, 0, . . . , 0)v′ +N ′w′ = 0 (C.4)
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We then split N ′ in submatrices,

Dv +Nw = 0 ⇔
(
Ir×r

0n−r×n−r

)
v′ +

(
W X

Y Z

)
w′ (C.5)

Now we begin to determine the properties of W,X, Y,Z using (C.1).
i) rk Z = n− r:
Assume ∃u ∈ ker Z. We choose

w′ =

(
0

u

)
v′ =

(
−Xu
a

)
(C.6)

where a is arbitrary. This choice fulfils D′v′ +N ′w′ = 0, but since w′T v′ = uT a,
it follows that u = 0. Thus dim ker Z = 0 �

We use the fact that Z has full rank to act with another matrix R′ from the left
such that X is eliminated using row transformations. This changes W , but the
matrix D′ remains the same. We thus have, without loss of generality,

(Dv +Nw = 0 ⇒ vTw = 0) ⇔
(
Ir×r

0n−r×n−r

)
v′ +

(
W ′ 0

Y Z

)

︸ ︷︷ ︸
N ′′

w′ ⇒ vTw = 0 (C.7)

ii) Y = 0:
Assume ∃u : Y u 6= 0. We choose

w′ =

(
u

−Z−1Y u

)
v′ =

(
−W ′u

a

)
(C.8)

which satisfies D′v′ + N ′′w′ = 0, but Z−1Y u 6= 0 by assumption, and thus
wT v = −uTW ′u− aTZ−1Y u can be made nonvanishing by choice of a. This is a
contradiction, and Y = 0. �

Therefore, without loss of generality, our problem is equivalent to

(
Ir×r

0n−r×n−r

)
v′ +

(
W ′ 0

0 Z

)
w′ = 0 ⇒ vTw = 0 (C.9)

iii) W ′T = −W ′:
We choose

w′ =

(
a

0

)
(C.10)
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To satisfy the LHS, we have to choose

v′ =

(
−W ′a

∗

)
(C.11)

We get
∀a : vTw = −aTW ′a = 0 ⇒W ′T = −W ′ � (C.12)

In a final step, we perform a basis change to bring W ′ to the (antisymmetric) real
Jordan Normal Form, and to diagonalize Z. We then act with a regular matrix
from the left to set the diagonal entries to unity. Both transformations do not
change D′. We thus arrive at (2.14), up to an arbitrary regular matrix acting
from the left.



Appendix D

Useful Properties of the
Warped KK expansion

This chapter is in conformal coordinates because the results are relevant to the
software implementation which works with this coordinate frame.

All effective n point coupling constants (including normalization conditions in
the case of one field) can be written in the following form

〈φ1 . . . φn〉 =

∫ r2

r1
dz kδzγ (a1Jα1

(mz)+b1Yα1
(mz))×· · ·×(anJαn(mz)+bnYαn(mz))

(D.1)
where r1 = 1/k, r2 = eRkπ/k and z is the conformal coordinate. The Bessel
functions for fermion modes always come with a z5/2, for scalars with a z2 and for
gauge bosons with a z. This is compensated by the corresponding metric tensors
and fünfbeins in such a way that in normalizations and nearly all interactions
(4D gauge interactions and their “superpartners”), we get

γ = n− 1 (D.2)

For example, in a fermion gauge three point coupling,

1

k5z5
ψσµAµψ ∝ 1

k5z5
(z5/2Y )(zσn)(zY )(z5/2Y ) + · · · ∝ z2 (D.3)

while in a sfermion gauge four point coupling

1

k5z5
φ†gµνAµAνφ ∝ 1

k5z5
(z2Y )(z2ηmn)(zY )(zY )(z2Y ) + · · · ∝ z3 (D.4)

The three scalar couplings such as the ones calculated in section 6.3.6 are an
exception to this rule. The normalization conditions as well as some coupling
constants receive corrections from boundary kinetic terms if they are present. In
the case of coupling constants, we have no choice but to add them explicitly.
In the case of normalization, there is a simpler way. Consider the recurrence
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relations of Bessel functions Xα = Jα, Yα,

2α

x
Xα(x) = Xα−1(x) +Xα+1(x) (D.5)

2
d

dx
Xα(x) = Xα−1(x) −Xα+1(x) (D.6)

Taking the sum and difference, we get

(
d

dx
+
α

x

)
Xα(x) = Xα−1(x) (D.7)

(
d

dx
− α

x

)
Xα(x) = −Xα+1(x) (D.8)

We exploit the fact that the modified derivatives in 5D kinetic terms always have
the form (D.7) or (D.8), namely for any field

φ = φn(x)fn(z) = φn(x) zr
(
anJα(mnz) + bnYα(mnz)

)
(D.9)

the combination
∂̃αδ f = zr+δα∂zz

−(r+δα)f (D.10)

appears which either raises (δ = 1) or lowers (δ = −1) the Bessel functions by
one (which for α = 0 is the same up to a relative sign), and which satisfies

∂̃αδ z
r
(
anJα(mnz) + bnYα(mnz)

)

︸ ︷︷ ︸
≡f

= −mδ zr
(
anJα+δ(mnz) + bnYα+δ(mnz)

)

︸ ︷︷ ︸
≡g

(D.11)
so,

∂̃αδ f = −mδ g ∂̃α+δ
−δ g = mδ f ∂̃α+δ

−δ ∂̃αδ f = −m2f (D.12)

The latter is the 5D kinetic operator which should be hermitian. This means
that the scalar product in the action should satisfy

∫
d̃z B∂̃αδ A = −

∫
d̃z A∂̃α+δ

−δ B + bnd (D.13)

which immediately gives us

∫
d̃z =

∫
dz z−2r+δ2 =

∫
dz z−2r+1 (D.14)

in accordance with (D.2) for n = 2. It only depends on spin and is proportional
to

√
g times metric or fünfbein factors. If there are no localized kinetic terms,

and iff the boundary problem is solved correctly, we can integrate by parts, and

∑

i

∫
d̃z fifi =

∑

i

∫
d̃z

∂̃α+δ
−δ gi ∂̃

α+δ
−δ gi

m2
=
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= −
∑

i

∫
d̃z

gi∂̃
α
δ ∂̃

α+δ
−δ gi

m2
+ bndi =

∑

i

∫
d̃z gigi + bndi. (D.15)

which can be used as a consistency test. The sum over i covers all 5D fields which
mix by boundary conditions to form one Kaluza-Klein tower. The boundary
action does not necessarily vanish for each field individually, and therefore this
relation only holds for the sum where

∑
i bndi = 0. Assume that φ satisfies a

modified Neumann condition ∂̃αδ φ = 0 on a boundary (and gφ = 0 there). If we
switch on a boundary kinetic term for φ, above relation D.15 is not satisfied any
more, but ∑

i

∫
d̃z fifi + B.K.T =

∑

i

∫
d̃z gigi (D.16)

This can again be used as a consistency check, but more importantly, we can use
the RHS to calculate our field normalizations without having to include boundary
terms. The fields in our model when taken in conformal coordinates have the
following assignments

Field φ = r α δ

Aµ 1 1 −1

λ1 5/2 1 −1

ψ 5/2 c+ 1/2 −1

h 2 c+ 1/2 −1

A5 1 0 1

Σ 2 0 1

λ2 5/2 0 1

ψc 5/2 c− 1/2 1

hc 2 c− 1/2 1

In the case of Dirac fermions with a boundary kinetic term in the 4D “righthanded”
component, we can for example simply use the 4D “lefthanded” component to
calculate the canonical normalization for both since they satisfy

gψ = ±fψc ⇒ ∂̃
c+1/2
−1 fψ = mgψ = ±mfψc (D.17)

and thus a variation of (D.16) by virtue of the 5D Dirac equation.

D.1 Remarks about Majorana Spinors

There are no Majorana spinors in five dimensional space, simply because the
reality condition CΨ = Ψ is incompatible with 5D Lorentz transformations of
the form Ψ → ωµ5[γ

µ, γ5]Ψ. However, after Kaluza-Klein decomposition we can
always rewrite Dirac spinors as two Majorana spinors which are not necessarily
charge eigenstates, but still degenerate mass eigenstates. Also, since 5D Lorentz
invariance is broken on the branes, brane localized Majorana masses are allowed
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which will split the degeneracy, leaving us with a pair of 4D Majorana spinors
with different mass. How these Kaluza-Klein states are calculated in detail has
not been treated all that extensively in the literature, and we will therefore use
this as an excuse to present a compact approach using transport diffeomorphisms
and some linear algebra to simultaneously obtain all modes and wave functions
for an arbitrary number of fields coupled by boundary conditions. It is easy to
miss half of the Majorana states if one solves the coupled eigenvalue problem in
analogy to gauge bosons and scalars. The reason is as follows: As long as only
Dirac masses appear, the relative sign convention of the dotted and undotted
spinor Kaluza-Klein wave functions is inconsequential since it is equivalent to a
redefinition of the 4D spinor. However, in the presence of Majorana masses, this
amounts to flipping the sign of the boundary condition generated by the Majorana
mass, essentially exchanging the two sets of solutions, for example the heavy and
the light Neutrino with their respective KK towers. We will now consider the
case of the electrically neutral spinor in the SU(2)L × SU(2)R × U(1)B−L gauge
theory which is broken down to GSM on the UV brane and SU(2)D × U(1)B−L
on the IR brane as in the higgsless models with LR-symmetric Bulk gauge group.
It consists of the following 5D fields in two component spinors (up to factors of
z = eRky/k which we consistently pull out of the KK wave functions for clarity)

χL(x, z) = χnL(x)z5/2fL,n(z)

ψL(x, z) = ψnL(x)z5/2gL,n(z)

χR(x, z) = χnR(x)z5/2fR,n(z)

ψR(x, z) = ψnR(x)z5/2gR,n(z) (D.18)

where

fL,n(z) = anfLJcL+1/2(mnz) + bnfLYcL+1/2(mnz)

gL,n(z) = angLJcL−1/2(mnz) + bngLYcL−1/2(mnz)

fR,n(z) = anfRJcR+1/2(mnz) + bnfRYcR+1/2(mnz)

gR,n(z) = angRJcR−1/2(mnz) + bngRYcR−1/2(mnz) (D.19)

They are related by the bulk equations of motion. Recall that

∂z(z
1/2+cJ1/2+c(mz)) =m(z1/2+cJ−1/2+c(mz)) (D.20)

∂z(z
1/2−cJ−1/2+c(mz)) = −m(z1/2−cJ1/2+c(mz)) (D.21)

and analogous for Y . The second order bulk equation then allows anfi = ±angi.
This is the sign choice mentioned above, and both varieties will indeed appear
automatically in the full treatment. It is therefore not sufficient to solve only for
χLR, ψLR but we will have to include the derivatives. The vector of Kaluza-Klein
wave functions and derivatives for which we solve is defined as

~F = (fL, ∂̃fL, fR, ∂̃fR, ∂̃gL, gL, ∂̃gR, gR)T (D.22)
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where

∂̃f ≡z−1/2−c∂zz
1/2+cf (D.23)

∂̃g ≡− z−1/2+c∂zz
1/2−cg (D.24)

With these conventions, the transport diffeomorphism takes a particularly simple
form for all components,

~v(a) =

(
Jc+1/2(ma) Yc+1/2(ma)

Jc−1/2(ma) Yc−1/2(ma)

)(
Jc+1/2(mb) Yc+1/2(mb)

Jc−1/2(mb) Yc−1/2(mb)

)−1

︸ ︷︷ ︸
≡ T (c,m)

~v(b)

(D.25)
where now ~v = (fi, ∂̃fi) or ~v = (∂̃gi, gi) [sic!]. The full transport diffeomorphism
for ~F is thus

T (m) =




T (cL,m) 0 0 0

0 T (cR,m) 0 0

0 0 T (cL,m) 0

0 0 0 T (cR,m)




(D.26)

By putting a IR Dirac mass µχLψR+h.c. and a UV Majorana massMψRψR+h.c.,
we generate effective boundary conditions

A~F (1/k) = 0 B ~F (eRkπ/k) = 0 (D.27)

with

A =




0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 −M/k

0 0 0 0 0 1 0 0

0 0 0 −M/k 0 0 1 0




(D.28)

B =




−µ 0 1 0 0 0 0 0

0 1 0 µ 0 0 0 0

0 0 0 0 −µ 0 1 0

0 0 0 0 0 1 0 µ




(D.29)

Now, to solve this system we proceed as follows: Choose a MatrixKB = (~k1 . . . ~k4)
where ki span the Kernel of B. Now all allowed IR boundary configurations can
be expressed as

~F (eRkπ/k) = KB~a, ~a ∈ R
4 (D.30)

The corresponding UV boundary configurations are given by

~F (1/k) = T (m)KB~a (D.31)
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Those in turn have to satisfy

AT (m)KB~a = 0 (D.32)

So, finally, a Kaluza-Klein mode of mass m̃ exists iff

det (AT (m̃)KB) = 0 (D.33)

and the corresponding mode(s) are uniquely determined by the initial conditions

~F0(1/k) ∈ T (m̃)KB ker(AT (m̃)KB) (D.34)

For M = 0, we will always have

dim ker (AT (m̃)KB) = 2

with the solutions corresponding to the two Majorana spinors which are equiva-
lent to the Dirac fermion. Even if the degeneracy is lifted by M , this is the answer
to the question where the second half of the states are in the Majorana case. Now,
let us discuss the Kaluza-Klein expansion and orthonormality conditions for these
modes. The Dirac mass relates pairs of fields χL and χR as well as ψL and ψR by
the resulting boundary conditions and we have to choose χnL(x) = χnR(x) ≡ χn(x)
and ψnL(x) = ψnR(x) ≡ ψn(x) in order to satisfy them. We say that the corre-
sponding pairs of 5D fields are part of the same Kaluza-Klein towers, and we
are left with a tower of 4D Dirac fermions Ψn(x) = (χn, ψ

n
). Like in the gauge

sector, the apparent loss of states is compensated by a Kaluza-Klein tower which
is twice as dense. Since we want the 4D fields to have canonical normalization,
we use a combined scalar product

〈χn, χm〉 ∝
∫
dz z−4(χnLχ

m
L + χnRχ

m
R ) (D.35)

with respect to which the KK solutions are indeed mutually orthogonal. As an
aside, there is a nice consistency check analogous to the one for bosons:

〈χn, χm〉 = 〈ψn, ψm〉 ∝ Nnδ
mn (D.36)

which is violated if the solutions are not compatible with the the variation of the
boundary action, for example if there happen to be large numerical errors in mn

or the coefficients. It is again modified when brane kinetic terms are present,
and if, as in the higgsless models, brane kinetic terms for ψR are introduced, it is
simplest to use 〈χ, χ〉 as the scalar product because it is already the correct one
without having to include further corrections from the boundary.

All this changes now when the Majorana mass term is introduced. It generates
boundary conditions which relate χ and ψ, and suddenly, we have to choose
χnL(x) = χnR(x) = ψnL(x) = ψnR(x) ≡ χn(x) in order to satisfy them. Now it looks
as though we had again lost half of our degrees of freedom, since in 4D all we have
are Majorana spinors Ψn = (χn, χn)! For the reasons outlined above this is not
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the case, since we have two solutions in each Kaluza-Klein level corresponding to
the two sign choices. As we would hope, they are even orthogonal with respect
to each other and to the other Kaluza-Klein levels, but only when we adopt
the extended scalar product resulting naturally from the Kaluza-Klein reduced
Lagrangian,

〈χn, χm〉 ∝
∫
dz z−4(χnLχ

m
L + χnRχ

m
R + ψnLψ

m
L + ψnRψ

m
R ) (D.37)

The example given in this section reproduces a Seesaw-like effect, with the ∂̃fi =
mgi solution giving a light Majorana neutrino and the ∂̃fi = −mgi solution
giving us the heavy Majorana neutrino which is pushed out of the spectrum as
mν0 → 0. The Kaluza-Klein neutrino modes couple weakly to the UV brane and
are therefore pseudo-Dirac in this scenario with a tiny mass shift ∆m2 ≪ m2

between the mass eigenstates. In the mν0 → 0 limit, we obtain for the light
neutrino

f0
R = g0

R = g0
L = 0 f0

L ∝ z−cL−1/2 (D.38)

with the only nonvanishing wave function f0
L being identical to the SU(2)L trans-

forming Weyl zero mode in the µ = M = 0 case. Thus the resulting almost
massless neutrino only contains a lefthanded component coupling to SU(2)L.



Appendix E

Implementation of the Model

E.1 Fortran/Mathematica

We have implemented the entire model in a Fortran program which calculates all
tree level masses and all desired coupling constants using only free parameters as
inputs. The 16 input parameters are

Physical Parameters #

Quark Masses mu,md,mc,ms,mt,mb 6

Lepton Masses mνe,me,mνµ,mµ,mντ ,mτ 6

Electroweak Masses mW , mZ 2

finestructure constant α 1

strong coupling αs 1

These are the free parameters which we introduce at this point

Free 5D parameters #

RS curvature k 1

Fermion bulk masses cL(q1) . . . cL(q3), cL(l1) . . . cL(l3) 6

SU(2)L brane kinetic term κ 1

There are more which we have not included in this implementation, such as brane
kinetic terms for the other brane gauge groups and for the heavy fermion of each
doublet. The 16 derived quantities are

Derived 5D Parameters #

Radius R 1

5D couplings gew, g̃ew, gs 3

Fermion IR brane mass µ(q1) . . . µ(q3), µ(l1) . . . µ(l3) 6

Fermion UV brane term ρ(q1) . . . ρ(q3), M(l1) . . .M(l3) 6

The masses are calculated using a kind of shooting method in which all but one
boundary condition are solved analytically, while the last boundary condition is
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scanned as a function of the eigenvalue m. The roots of this function give us the
mode masses1. In order to get analytic expressions for the mass scan, the Kaluza-
Klein wave function coefficients and the necessary dependent input parameters
for a given set of particle masses, fermion bulk masses and gauge boson boundary
terms, we let some Mathematica scripts generate the corresponding Fortran code
which is then pasted to the appropriate places in the Fortran module using #in-
clude. The Bessel functions and integration routines are provided by the FGSL
package. As an example, the analytic expressions for the gluino and neutralino
towers are generated by the following code:

(∗ C r e a t eAna l y t i c s .m ∗)

myform = { Bes s e l J [ a , b ] −> j n [ a , b ] , Bes se lY [ a , b ] −> yn [ a , b ] ,
m −> mass , r1 −> ”m r1 ” , r2 −> ”m r2 ” , 0 −> ”0d0 ” ,
1 −> ”1d0 ” , 2 −> ”2d0 ” , 3 −> ”3d0 ” , 4 −> ”4d0 ”} ;

Pr i n t [ ”1 b . the G lu i no ” ] ;
f [ z ] = z Be s s e l J [ 1 , m z ] + z par ∗Besse lY [ 1 , m z ] ;
s o l 1 = So lve [ ( f [ r1 ] == 0) // Fu l l S imp l i f y , par ] [ [ 1 ] ] ;
path=(prepa th <> ” a n a l y t i c s / g l u i n o p r e f a c t o r y 1 . a n a l y t i c . p r e ” ) ;
Put [ FortranForm [ par / . s o l 1 // . myform ] , path ] ;
a c t i o n=f ’ [ r2 ] /m/ . s o l 1 // Fu l l S im p l i f y ;
path=(prepa th <> ” a n a l y t i c s / g l u i n o a c t i o n . a n a l y t i c . p r e ” ) ;
Put [ FortranForm [ a c t i o n // . myform ] , path ] ;

Here, the generic Kaluza-Klein wave function for the “lefthanded” Gluino is de-
fined. We then solve for the prefactor of Y1 using the UV (Dirichlet) boundary
conditon. The result is written to file for use in the Fortran module which calcu-
lates normalizations and coupling constants. The solution is substituted into the
IR (Neumann) boundary condition which contains only m as a remaining free
parameter and is also written to file for use in the module which determines the
mass spectrum. In this simple case it looks like this:

m r2 ∗( j n (0 d0 , m r2∗mass ) − &
( j n (1 d0 , m r1∗mass )∗ yn (0 d0 , m r2∗mass ) )/ yn (1 d0 , m r1∗mass ))&

+0 ! end o f a n a l y t i c

The case of the neutralino is a little more complicated because three 5D fields
are involved, but the principle is the same.

Pr i n t [ ” 6 . the N eu t r a l i n o ” ] ;
z l [ z ] = a l z Be s s e l J [ 1 , m z ] + b l z Bes se lY [ 1 , m z ] ;
z r [ z ] = ar z Be s s e l J [ 1 , m z ] + br z Bes se lY [ 1 , m z ] ;
zx [ z ] = z Be s s e l J [ 1 , m z ] + bx z Bes se lY [ 1 , m z ] ;
s o l 1 = So lve [ zx ’ [ r2 ] == 0 , bx ] [ [ 1 ] ] // Fu l l S im p l i f y ;
path=(prepa th <> ” a n a l y t i c s / n e u x p r e f a c t o r y . a n a l y t i c . p r e ” ) ;
Put [ FortranForm [ bx / . s o l 1 // . myform ] , path ] ;
s o l 2 = So lve [{ zx [ r1 ] − gneu z r [ r1 ] == 0 , zx ’ [ r1 ] + 1/gneu zr ’ [ r1 ] == 0}

// . s o l 1 // Fu l l S imp l i f y , { ar , br } ] [ [ 1 ] ] // Fu l l S im p l i f y ;
path=(prepa th <> ” a n a l y t i c s / n e u r p r e f a c t o r j . a n a l y t i c . p r e ” ) ;
Put [ FortranForm [ Se tP r e c i s i o n [ a r // . Jo in [ s o l 1 , s o l 2 ] // . myform ,

\ [ I n f i n i t y ] ] ] , path ] ;
path=(prepa th <> ” a n a l y t i c s / n e u r p r e f a c t o r y . a n a l y t i c . p r e ” ) ;
Put [ FortranForm [ Se tP r e c i s i o n [ br // . Jo in [ s o l 1 , s o l 2 ] // . myform ,

\ [ I n f i n i t y ] ] ] , path ] ;
s o l 3 = So lve [{ z l [ r2 ] == z r [ r2 ] , z l ’ [ r2 ] == −zr ’ [ r2 ]} // . Jo in [ s o l 1 , s o l 2 ]

1This is similar to using the poles of the Holographic action, but simpler if boundary condi-
tions do not mix more than two fields at once.
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// Fu l l S imp l i f y , { a l , b l } ] [ [ 1 ] ] // F u l l S imp l i f y ;
path=(prepa th <> ” a n a l y t i c s / n e u l p r e f a c t o r j . a n a l y t i c . p r e ” ) ;
Put [ FortranForm [ Se tP r e c i s i o n [ a l // . Jo in [ s o l 3 ] // . myform ,

\ [ I n f i n i t y ] ] ] , path ] ;
path=(prepa th <> ” a n a l y t i c s / n e u l p r e f a c t o r y . a n a l y t i c . p r e ” ) ;
Put [ FortranForm [ Se tP r e c i s i o n [ b l // . Jo in [ s o l 3 ] // . myform ,

\ [ I n f i n i t y ] ] ] , path ] ;
rho =. ;
cond = z l [ r1 ] // . s o l 3 // Together ;
pcond = Numerator [ cond ] // Fu l l S imp l i f y ;
path=(prepa th <> ” a n a l y t i c s / neu a c t i on . a n a l y t i c . p r e ” ) ;
Put [ FortranForm [ pcond // . myform ] , path ] ;

Note that we have N−1 coefficients for N fields because we fix the normalization
to an arbitrary value. Using this code, the gluino mass tower and canonical
normalization constants are determined,

c a l l r o o t i f y ( m bndaction , PART GLUINO, 0 , 10 d0 , maxmass , 1 d−6 ,1000 , m a s s l i s t )
c a l l m setpa ramete r s (PART GLUINO, 0 , m a s s l i s t )
c a l l m norma l i z a t i on s (PART GLUINO , 0 )

All effective n point coupling constants (including normalization conditions in
the case of one field) can be written in the following form

〈φ1 . . . φn〉 =

∫ r2

r1
dz kδzγ (a1Jα1

(mz)+b1Yα1
(mz))×· · ·×(anJαn(mz)+bnYαn(mz))

(E.1)
where r1 = 1/k, r2 = eRkπ/k and z is the conformal coordinate. This is imple-
mented as (for the three point coupling)

m wavefunct ion=m p r e f a c t o r j ( which , mode )∗ j n ( m b e s s e l k i n d j ( which , mode)+&
mod i f i e r , m mass ( which , mode )∗ x)+&

m pr e f a c to r y ( which , mode )∗ yn ( m be s s e l k i ndy ( which , mode)+&
mod i f i e r , m mass ( which , mode )∗ x )

[ . . . ]
case (3)
mu l t i p o i n t=x∗∗ cmd i n t zwe i gh t ∗ &

m wavefunct ion ( x , cmd i n t wh i ch s (1 ) , cmd int modes (1))∗&
m wavefunct ion ( x , cmd i n t wh i ch s (2 ) , cmd int modes (2))∗&
m wavefunct ion ( x , cmd i n t wh i ch s (3 ) , cmd int modes (3 ) )

For normalizations we exploit the relation (D.16). This is done by setting modifier=±1.

E.2 O’Mega/WHIZARD

E.2.1 O’Mega

The immediate implementation into O’Mega consists first of all of the O’Caml model
and interface files models7.ml, models7.mli which contain the main functor HLCDM’
(“HiggsLess Cold Dark Matter”) and several auxiliary and option modules which
are used to implement different model varieties. For each model variety there is
an O’Caml file f90 * Col.ml which tells O’Mega how the different modules are to
be combined. The module definitions in the model files look like this:

(∗ models7 . m l i ∗)
module type HLCDM options=

s i g

va l extended3 : boo l
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va l extended4 : boo l

v a l decay s3 : boo l

v a l cdm3 : boo l

v a l cdm4 : boo l

end

module HLCDM Full : HLCDM options
module HLCDM Cdm: HLCDM options
module HLCDM Dec : HLCDM options

module HLCDM Ful l export : Model .MyT
module HLCDM Cdm export : Model .MyT
module HLCDM Dec export : Model .MyT

module HLCDM color : f unc t o r ( Modu l e opt i ons : HLCDM options ) −>
f unc t o r (F : C o l o r i z e . Flows ) −> Model .T

(∗ models7 . ml ∗)
module type HLCDM options=

s i g

va l extended3 : boo l

v a l extended4 : boo l

v a l decay s3 : boo l

v a l cdm3 : boo l

v a l cdm4 : boo l

end

module HLCDM Full : HLCDM options=
s t r u c t

l e t extended3=t rue

l e t extended4=t rue

l e t decay s3=t rue

l e t cdm3=t rue

l e t cdm4=t rue

end

module HLCDM Cdm : HLCDM options=
s t r u c t

l e t extended3=f a l s e

l e t extended4=f a l s e

l e t decay s3=t rue

l e t cdm3=t rue

l e t cdm4=t rue

end

module HLCDM Dec : HLCDM options=
s t r u c t

l e t extended3=f a l s e

l e t extended4=f a l s e

l e t decay s3=t rue

l e t cdm3=f a l s e

l e t cdm4=f a l s e

end

module HLCDM’ ( Modu l e opt i ons : HLCDM options ) =
s t r u c t

<The Model D e f i n i t i o n >

end

module HLCDM Ful l export = (HLCDM’ ( HLCDM Full ) )
module HLCDM Cdm export = (HLCDM’ (HLCDM Cdm))
module HLCDM Dec export = (HLCDM’ (HLCDM Dec ) )
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module HLCDM color ( Opt ions : HLCDM options ) (F : C o l o r i z e . Flows ) =
C o l o r i z e . I t (F) (HLCDM’ ( Opt ions ) )

The complete model including all resonances below 2500 GeV contains over 4000
vertices (without the four scalar vertices), which is a little too much for either
O’Mega or WHIZARD to function efficiently. We have therefore introduced the
module HLCDM Cdm which contains a restricted set of particles and vertices
necessary for neutralino and chargino production at the LHC without the fac-
torizable SM backgrounds, and an even smaller set of interactions HLCDM Dec
necessary to integrate various decay widths. The functor HLCDM color applies
a model definition to the O’Mega Colorizer functor which implements the SU(3)
color flows. Whizard expects a model file *.mdl defining particles, masses, widths
and vertices which are used for phase space generation. The modules * export are
of a module type derived from Model.T which provides additional information
for the automatic generation of these WHIZARD model files.

(∗ model . m l i ∗)
[ . . . ]
module type MyT =

s i g

i n c l u d e T
va l f l a v o r t o i n d e x : f l a v o r −> i n t

v a l f l a v o r o f i n d e x : i n t −> f l a v o r
va l i n d e x po sneg : f l a v o r −> i n t

v a l i n d e x we i gh t : f l a v o r −> i n t

end

The files f90 * Col.ml contain the following (here for the HLCDM Cdm model)

module O = Omega . Make ( Fus i on . Mixed23 Majorana ) ( Ta rge t s . Fo r t ran Ma jo rana )
( Models7 . HLCDM color ( Models7 .HLCDM Cdm)

( s t r u c t l e t max num = Conf i g . ncf max end ) )

Here it is defined that the final O’Mega module is obtained by giving Omega.Make
our HLCDM color functor which, as parameters, gets one of the modules con-
taining the options corresponding to the desired model variety (in this case
HLCDM Cdm) and a module defining the maximal number of color flows.
The vertex definitions contain all relevant permutations of Kaluza-Klein states,
where we exclude those which obviously vanish due to orthogonality, for example
for the gluon squark interaction,

l e t pe rm g l u s q=
l e t pe rm g l u s q p r e1 kk1 = ( Kal0 , kk1 , kk1 )
i n l e t pe rm g l u s q p r e2 kk2 kk3 = ( Kal1 , kk2 , kk3 )
i n ( l o op kk ( [ p e rm g l u s q p r e1 ] ) )@( l oop kk ( l oop kk ( [ p e rm g l u s q p r e2 ] ) ) )

[ . . . ]

l e t ve r tex g luonKK 2sq =
l e t v e r t e x g l uonKK 2sq p r e gen i s o s f ( kk1 , kk2 , kk3)=

[ ( Gauge Boson (GluonKK ( kk1 ) ) ,
S c a l a r ( Squark (Neg , s f , gen , i s o , kk2 ) ) ,
S c a l a r ( Squark ( Pos , s f , gen , i s o , kk3 ) ) ) ,
V e c t o r S c a l a r S c a l a r ( 1 ) ,
G gluonKK 2sq ( gen , i s o , s f , kk1 , kk2 , kk3 ) ]

i n L i s t . f l a t t e n ( revmap2 ( l o o p s f ( l o o p i s o ( l o op gen
[ v e r t e x g l uonKK 2sq p r e ] ) ) ) p e rm g l u s q )
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E.2.2 WHIZARD

The WHIZARD model files themselves are generated by a short O’Caml script
HLCDM automdl.ml which reads the vertices() and external flavors() lists and
writes a valid model file template for each of the model varieties. The auxiliary
function index weight helps to sort the vertices by giving an estimate of the
particles’ masses.

(∗ HLCDM automdl . ml ∗)

#load ”models7 . cmo”
module Wr i t e I t= s t r u c t

open Models7.#MODULENAME

l e t c o l o r f r om f l a v o r = f unc t i o n x −> ( match c o l o r ( x ) with

| Co lo r .SUN 3 −> ” c o l o r 3”ˆ”\n ”
| Co lo r .SUN (−3) −> ” c o l o r 3”ˆ”\n ”
| Co lo r . AdjSUN 3 −> ” c o l o r 8”ˆ”\n ”
| −> ””)

l e t s p i n f r o m f l a v o r = f unc t i o n x −> ( match l o r e n t z ( x ) with

| Coup l i ng . Sp ino r −> ” s p i n 1/2”ˆ”\ n ”
| Coup l i ng . Con jSp ino r −> ” s p i n 1/2”ˆ”\ n ”
| Coup l i ng . Vector −> ” s p i n 1”ˆ”\n ”
| Coup l i ng . Mass i v e Vecto r −> ” s p i n 1”ˆ”\n ”
| Coup l i ng . Majorana −> ” s p i n 1/2”ˆ”\ n ”
| −> ” s p i n 0”ˆ”\n ”)

l e t i f g a u g e f r om f l a v o r = f unc t i o n x −> ( match l o r e n t z ( x ) with

| Coup l i ng . Vector −> ” gauge”
| Coup l i ng . Mass i v e Vecto r −> ”gauge”
| −> ””)

With those definitions, we can write a function which composes the particle
descriptions including the name, mass and width variables, spin and color repre-
sentation from the O’Mega flavor list,

l e t p a r t i c l e f r o m f l a v o r = f unc t i o n x −> ( match i ndex po sneg ( x ) with

| 1 −> (”\n\ n p a r t i c l e ”ˆ”PART”ˆ s t r i n g o f i n t ( f l a v o r t o i n d e x x )ˆ
” ”ˆ s t r i n g o f i n t ( pdg x )ˆ” ”ˆ i f g a u g e f r om f l a v o r ( x ) ˆ”\n ”
ˆ s p i n f r o m f l a v o r ( x )
ˆ c o l o r f r o m f l a v o r ( x )
ˆ”name ”ˆ f l a v o r t o s t r i n g ( x )ˆ”\ n ”
ˆ” a n t i omega : ”ˆ f l a v o r t o s t r i n g ( con j uga t e ( x ))ˆ”\ n ”
ˆ”mass ”ˆ”mass ”ˆ( s t r i n g o f i n t ( f l a v o r t o i n d e x x ) ) ) ˆ
” , width width ”ˆ( s t r i n g o f i n t ( f l a v o r t o i n d e x x ) )

| 0 −> (”\n\ n p a r t i c l e ”ˆ”PART”ˆ s t r i n g o f i n t ( f l a v o r t o i n d e x x )ˆ
” ”ˆ s t r i n g o f i n t ( pdg x )ˆ” ”ˆ i f g a u g e f r om f l a v o r ( x ) ˆ”\n ”
ˆ s p i n f r o m f l a v o r ( x )
ˆ c o l o r f r o m f l a v o r ( x )
ˆ”name ”ˆ f l a v o r t o s t r i n g ( x )ˆ”\ n ”
ˆ”mass ”ˆ”mass ”ˆ( s t r i n g o f i n t ( f l a v o r t o i n d e x x ) ) ) ˆ
” , width width ”ˆ( s t r i n g o f i n t ( f l a v o r t o i n d e x x ) )

| −1 −>””
| −> ”hlcdm automdl : ERROR: i ndex posneg i s not 10−1”)

The functions which follow compose the lists of mass and width paramers cor-
responding to these particles. Since the numerical values are not yet known, we
insert patterns #M(i) and #W(i).

l e t mas spa r ame t e r f r om f l a v o r= f unc t i o n x −> (match i ndex po sneg ( x ) with
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| −1 −> ””
| −> (”\ nparameter ”ˆ”mass ”ˆ( s t r i n g o f i n t ( f l a v o r t o i n d e x x ) )
ˆ” #M(”ˆ s t r i n g o f i n t ( f l a v o r t o i n d e x x )ˆ”)”ˆ” # p a r t i c l e name ”ˆ

( f l a v o r t o s t r i n g x ) ) )

l e t w i d t h p a r ame t e r f r om f l a v o r= f unc t i o n x −> ( match i ndex po sneg ( x ) with

| −1 −> ””
| −> (”\ nparameter ”ˆ” width ”ˆ( s t r i n g o f i n t ( f l a v o r t o i n d e x x ) )
ˆ” 0#W(”ˆ s t r i n g o f i n t ( f l a v o r t o i n d e x x )ˆ”)”ˆ” # p a r t i c l e name ”ˆ

( f l a v o r t o s t r i n g x ) ) )

The following functions generate the vertex lists and sort them according to the
information given by index weight,

l e t kk s o r t = f unc t i o n l i s t e −> L i s t . s o r t ( fun ( x , ) ( y , ) −> x − y ) ( l i s t e )

l e t t h r e ewe i gh t = f unc t i o n ( a , b , c ) −> i n d e x we i gh t ( a)+ i ndex we i gh t ( b )
+i ndex we i gh t ( c )

l e t f ou rwe i gh t = f unc t i o n ( a , b , c , d ) −> i n d e x we i gh t ( a)+ i ndex we i gh t ( b )
+i ndex we i gh t ( c)+ i ndex we i gh t ( d )

l e t e x v e r t s 3 p r e= l e t f i l t e r n=f unc t i o n

| ( ( a , b , c ) , , x ) −> ( t h r e ewe i gh t ( a , b , c ) , ” v e r t e x ”ˆ f l a v o r t o s t r i n g ( a )ˆ
” ”ˆ f l a v o r t o s t r i n g (b )ˆ” ”ˆ f l a v o r t o s t r i n g ( c )ˆ
” #”ˆcon s t an t s ymbo l ( x )ˆ”\ n”)

i n L i s t .map f i l t e r n ( match ( v e r t i c e s ( ) ) with ( x , , ) −> x )

l e t e x v e r t s 4 p r e= l e t f i l t e r n=f unc t i o n

| ( ( a , b , c , d ) , , x ) −>
( f ou rwe i gh t ( a , b , c , d ) , ” v e r t e x ”ˆ f l a v o r t o s t r i n g ( a )ˆ
” ”ˆ f l a v o r t o s t r i n g ( b )ˆ” ”ˆ f l a v o r t o s t r i n g ( c )ˆ” ”ˆ
f l a v o r t o s t r i n g ( d )ˆ” #”ˆcon s t an t s ymbo l ( x )ˆ”\ n”)

i n L i s t .map f i l t e r n (match ( v e r t i c e s ( ) ) with ( , x , ) −> x )

Now we call them one by one,

l e t massparam = l e t s c h r e i b e n = f unc t i o n x−>
p r i n t s t r i n g ( ma s spa r ame t e r f r om f l a v o r ( x ) )
i n l e t t r ennen = f unc t i o n ( , x ) −> L i s t .map s c h r e i b e n x
i n L i s t .map t r ennen ( e x t e r n a l f l a v o r s ( ) )

l e t widhparam = l e t s c h r e i b e n = f unc t i o n x−>
p r i n t s t r i n g ( w i d t h p a r ame t e r f r om f l a v o r ( x ) )
i n l e t t r ennen = f unc t i o n ( , x ) −> L i s t .map s c h r e i b e n x
i n L i s t .map t r ennen ( e x t e r n a l f l a v o r s ( ) )

l e t f l a v s = l e t s c h r e i b e n = f unc t i o n x−>
p r i n t s t r i n g ( p a r t i c l e f r o m f l a v o r ( x ) )
i n l e t t r ennen = f unc t i o n ( , x ) −> L i s t .map s c h r e i b e n x
i n L i s t .map t r ennen ( e x t e r n a l f l a v o r s ( ) )

l e t e x v e r t s 3= l e t s c h r e i b e n = f unc t i o n (wgt , x ) −>
p r i n t s t r i n g ( x )
i n L i s t .map s c h r e i b e n ( kk s o r t ( e x v e r t s 3 p r e ) )

l e t e x v e r t s 4= l e t s c h r e i b e n = f unc t i o n (wgt , x ) −>
p r i n t s t r i n g ( x )
i n L i s t .map s c h r e i b e n ( kk s o r t ( e x v e r t s 4 p r e ) )

end

The output of this code looks like this,

#
# This f i l e was c r e a t ed a u t oma t i c a l l y u s i ng HLCDM automdl . ml
#
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############################################
# Kinemat ic Parameters
parameter mass200 #M(200) # p a r t i c l e name nue P K00F
[ . . . ]
parameter width200 0#W(200) # p a r t i c l e name nue P K00F
[ . . . ]

############################################
# P a r t i c l e Content
p a r t i c l e PART200 12

s p i n 1/2
name nue P K00F
a n t i omega : nue M K00F
mass mass200 , width width200

[ . . . ]
############################################
# Three Po int V e r t i c e s
v e r t e x g 0 K00F g 0 K00F g 0 K00F #coup001 3g lu (1)
[ . . . ]

############################################
# Four Po int V e r t i c e s
v e r t e x g 0 K00F g 0 K00F SFL u M K00F SFL u P K00F

#coup021 2g lu 2sq (1 , 1 , 1 , 1 )
[ . . . ]

However, the O’Caml model file does not know the exact particle masses and
widths. They are therefore read from file and inserted into the model file template
by a Perl script HLCDM automdl.pl using

s/#M\($search2\)/$value/g

s/0#W\(\d{1,}\)/$widthvalarray[$i]/g

The files containing the masses are written by the Fortran code discussed above,
while the file containing the widths has to be provided by the user.

O’Mega generates Fortran code containing arrays for masses, widths and cou-
pling constants. For each model variety, we have to provide a Fortran file pa-
rameters.HLCDM *.omega.f90 which contains the necessary declarations and a
subroutine to read the data into the arrays from file.

E.3 FeynArts/FormCalc

The implementation into FeynArts [60] is not intended to be complete, but in-
cludes only the necessary interactions and particles to calculate the cross sections
relevant for neutralino annihilation. The FollowinG code was piggy-backed onto
the existing MSSM implementation MSSM.mod. First the definition of fields,

M$C l a s s e sDe s c r i p t i on = {
[ . . . ]
(∗ Neu t r a l i n o s ∗)
F [ 1 3 ] == {

Se l f Con j uga t e −> True ,
I n d i c e s −> {} ,
Mass −> MNeuA,
Propaga to rLabe l −> ComposedChar [ ”\\Lambda” , ”a ” , ”” ] ,
PropagatorType −> S t r a i gh t ,
PropagatorArrow −> None } ,

F [ 1 4 ] == {
Se l f Con j uga t e −> True ,
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I n d i c e s −> {} ,
Mass −> MNeuB,
Propaga to rLabe l −> ComposedChar [ ”\\Lambda” , ”b ” , ”” ] ,
PropagatorType −> S t r a i gh t ,
PropagatorArrow −> None } ,

(∗ Charg inos ∗)
F [ 1 5 ] == {

Se l f Con j uga t e −> False ,
I n d i c e s −> {} ,
Mass −> MChaA,
Propaga to rLabe l −> ComposedChar [ ”\\ c h i ” , ”a ” , ”” ] ,
PropagatorType −> S t r a i gh t ,
PropagatorArrow −> Forward } ,

F [ 1 6 ] == {
Se l f Con j uga t e −> False ,
I n d i c e s −> {} ,
Mass −> MChaB,
Propaga to rLabe l −> ComposedChar [ ”\\ c h i ” , ”b ” , ”” ] ,
PropagatorType −> S t r a i gh t ,
PropagatorArrow −> Forward } ,

(∗ s n e u t r i n o s : Q = 0 ∗)
S [ 1 5 ] == {

Se l f Con j uga t e −> False ,
I n d i c e s −> { I ndex [ S f e rm ion ] , I ndex [ Gene r a t i on ] , I ndex [KK]} ,
P ropaga to rLabe l −> ComposedChar [ ”\\nu ” ,{ I ndex [KK] , I ndex [ S f e rm ion ]} ,

I ndex [ Gene r a t i on ] , ”\\ t i l d e ” ] ,
PropagatorType −> Sca la rDash ,
PropagatorArrow −> Forward } ,

(∗ s l e p t o n s : Q = −1 ∗)
S [ 1 6 ] == {

Se l f Con j uga t e −> False ,
I n d i c e s −> { I ndex [ S f e rm ion ] , I ndex [ Gene r a t i on ] , I ndex [KK]} ,
P ropaga to rLabe l −>

ComposedChar [ ” e ” , I ndex [ Gene r a t i on ] , I ndex [ S f e rm ion ] , ”\\ t i l d e ” ] ,
PropagatorType −> Sca la rDash ,
PropagatorArrow −> Forward } ,

(∗ s qua r k s ( u ) : Q = +2/3 ∗)
S [ 1 7 ] == {

Se l f Con j uga t e −> False ,
I n d i c e s −>

{ I ndex [ S f e rm ion ] , I ndex [ Gene r a t i on ] , I ndex [KK] , I ndex [ Co lour ]} ,
P ropaga to rLabe l −>

ComposedChar [ ” u ” , I ndex [ Gene r a t i on ] , I ndex [ S f e rm ion ] , ”\\ t i l d e ” ] ,
PropagatorType −> Sca la rDash ,
PropagatorArrow −> Forward } ,

(∗ s qua r k s ( d ) : Q = −1/3 ∗)
S [ 1 8 ] == {

Se l f Con j uga t e −> False ,
I n d i c e s −>

{ I ndex [ S f e rm ion ] , I ndex [ Gene r a t i on ] , I ndex [KK] , I ndex [ Co lour ]} ,
P ropaga to rLabe l −>

ComposedChar [ ” d ” , I ndex [ Gene r a t i on ] , I ndex [ S f e rm ion ] , ”\\ t i l d e ” ] ,
PropagatorType −> Sca la rDash ,
PropagatorArrow −> Forward } , [ . . . ] }

TheMass [ S [ typ : 15 | 16 | 17 | 18 , { s f , gen , kk , } ] ] :=
MSf [ s f , typ − 14 , gen , kk ]
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TheLabel [ S [ 15 , { s f , 1 , kk } ] ] :=
ComposedChar [ ”\\nu ” , ”e ” , { I n d e x S t y l e [ s f ] , I n d e x S t y l e [ kk ]} , ”\\ t i l d e ” ] ;
TheLabel [ S [ 15 , { s f , 2 , kk } ] ] :=
ComposedChar [ ”\\nu ” , ”\\mu” , { I n d e x S t y l e [ s f ] , I n d e x S t y l e [ kk ]} , ”\\ t i l d e ” ] ;
TheLabel [ S [ 15 , { s f , 3 , kk } ] ] :=
ComposedChar [ ”\\nu ” , ”\\ tau ” , { I n d e x S t y l e [ s f ] , I n d e x S t y l e [ kk ]} , ”\\ t i l d e ” ] ;
TheLabel [ S [ 16 , { s f , 1 , kk } ] ] :=
ComposedChar [ ” e ” , Nul l , { I n d e x S t y l e [ s f ] , I n d e x S t y l e [ kk ]} , ”\\ t i l d e ” ] ;
TheLabel [ S [ 16 , { s f , 2 , kk } ] ] :=
ComposedChar [ ”\\mu” , Nul l , { I n d e x S t y l e [ s f ] , I n d e x S t y l e [ kk ]} , ”\\ t i l d e ” ] ;
TheLabel [ S [ 16 , { s f , 3 , kk } ] ] :=
ComposedChar [ ”\\ tau ” , Nul l , { I n d e x S t y l e [ s f ] , I n d e x S t y l e [ kk ]} , ”\\ t i l d e ” ] ;
TheLabel [ S [ 17 , { s f , 1 , kk , } ] ] :=
ComposedChar [ ” u” , Nul l ,{ I n d e x S t y l e [ s f ] , I n d e x S t y l e [ kk ]} , ”\\ t i l d e ” ] ;
TheLabel [ S [ 17 , { s f , 2 , kk , } ] ] :=
ComposedChar [ ” c ” , Nul l , { I n d e x S t y l e [ s f ] , I n d e x S t y l e [ kk ]} , ”\\ t i l d e ” ] ;
TheLabel [ S [ 17 , { s f , 3 , kk , } ] ] :=
ComposedChar [ ” t ” , Nul l , { I n d e x S t y l e [ s f ] , I n d e x S t y l e [ kk ]} , ”\\ t i l d e ” ] ;
TheLabel [ S [ 18 , { s f , 1 , kk , } ] ] :=
ComposedChar [ ” d” , Nul l , { I n d e x S t y l e [ s f ] , I n d e x S t y l e [ kk ]} , ”\\ t i l d e ” ] ;
TheLabel [ S [ 18 , { s f , 2 , kk , } ] ] :=
ComposedChar [ ” s ” , Nul l , { I n d e x S t y l e [ s f ] , I n d e x S t y l e [ kk ]} , ”\\ t i l d e ” ] ;
TheLabel [ S [ 18 , { s f , 3 , kk , } ] ] :=
ComposedChar [ ” b” , Nul l , { I n d e x S t y l e [ s f ] , I n d e x S t y l e [ kk ]} , ”\\ t i l d e ” ]

The following code generates the vertices for qq̃χ0, W±χ∓χ0, χ±χ∓γ and χ±χ∓Z.

s f i n d i c e s := I f [ i f e r <3,{ s1 , j2 , k1 } ,{ s1 , j2 , k1 , o2 } ] ;
f i n d i c e s := I f [ i f e r <3,{ j 1 } ,{ j 1 , o1 } ] ;
f a r b d e l t a := I f [ i f e r <3 ,1 , I ndexDe l t a [ o1 , o2 ] ] ;

For [ i f e r =1, i f e r <5,
M$Coupl ingMatr i ces = Jo in [ M$Coupl ingMatr i ces ,
{
C [ F [ 1 3 ] , −F [ i f e r , f i n d i c e s ] , S[14+ i f e r , s f i n d i c e s ] ] ==

{{NFSL [ i f e r , j1 , s1 , k1 , 1 ] ∗ I nd exDe l t a [ j1 , j 2 ]∗ f a r b d e l t a } ,
{NFSR[ i f e r , j1 , s1 , k1 , 1 ] ∗ I nd exDe l t a [ j1 , j 2 ]∗ f a r b d e l t a }} ,

C [ F [ i f e r , f i n d i c e s ] , F [ 1 3 ] , −S[14+ i f e r , s f i n d i c e s ] ] ==
{{−NFSR [ i f e r , j1 , s1 , k1 , 1 ] ∗ I nd exDe l t a [ j1 , j 2 ]∗ f a r b d e l t a } ,
{−NFSL [ i f e r , j1 , s1 , k1 , 1 ] ∗ I nd exDe l t a [ j1 , j 2 ]∗ f a r b d e l t a }} ,

C [ F [ 1 4 ] , −F [ i f e r , f i n d i c e s ] , S[14+ i f e r , s f i n d i c e s ] ] ==
{{− I ∗ NFSLi [ i f e r , j1 , s1 , k1 , 2 ] ∗ I nd exDe l t a [ j1 , j 2 ]∗ f a r b d e l t a } ,
{− I ∗ NFSRi [ i f e r , j1 , s1 , k1 , 2 ] ∗ I nd exDe l t a [ j1 , j 2 ]∗ f a r b d e l t a }} ,

C [ F [ i f e r , f i n d i c e s ] , F [ 1 4 ] , −S[14+ i f e r , s f i n d i c e s ] ] ==
{{− I ∗ NFSRi [ i f e r , j1 , s1 , k1 , 2 ] ∗ I nd exDe l t a [ j1 , j 2 ]∗ f a r b d e l t a } ,
{− I ∗ NFSLi [ i f e r , j1 , s1 , k1 , 2 ] ∗ I nd exDe l t a [ j1 , j 2 ]∗ f a r b d e l t a }}

} ] ;
i f e r ++;

]

M$Coupl ingMatr i ces = Jo in [ M$Coupl ingMatr i ces ,
{
C[−F [ 1 5 ] , F [13] , −V [ 3 ] ] ==

{{ I / Sqr t [ 2 ] ∗ Re [NCWRL11]} ,{ I / Sqr t [ 2 ] ∗ Re [NCWRL22]}} ,
C [ F [ 1 3 ] , F [ 1 5 ] ,V [ 3 ] ] ==

{{ I / Sqr t [ 2 ] ∗ Re [NCWRL11]} ,{ I / Sqr t [ 2 ] ∗ Re [NCWRL22]}} ,
C[−F [ 1 6 ] , F [14] , −V [ 3 ] ] ==

{{−1/ Sqr t [ 2 ] ∗ Re [NCWRL22]} ,{−1/ Sqr t [ 2 ] ∗ Re [NCWRL11]}} ,
C [ F [ 1 4 ] , F [ 1 6 ] ,V [ 3 ] ] ==

{{ 1/ Sqr t [ 2 ] ∗ Re [NCWRL22]} ,{ 1/ Sqr t [ 2 ] ∗ Re [NCWRL11]}} ,
C[−F [ 1 5 ] , F [14] , −V [ 3 ] ] ==

{{ 1/ Sqr t [ 2 ] ∗ Re [NCWRL11]} ,{ 1/ Sqr t [ 2 ] ∗ Re [NCWRL22]}} ,
C [ F [ 1 4 ] , F [ 1 5 ] ,V [ 3 ] ] ==

{{−1/ Sqr t [ 2 ] ∗ Re [NCWRL11]} ,{−1/ Sqr t [ 2 ] ∗ Re [NCWRL22]}} ,
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C[−F [ 1 6 ] , F[13] , −V [ 3 ] ] ==
{{ I / Sqr t [ 2 ] ∗ Re [NCWRL22]} ,{ I / Sqr t [ 2 ] ∗ Re [NCWRL11]}} ,

C [ F [ 1 3 ] , F [ 1 6 ] ,V [ 3 ] ] ==
{{ I / Sqr t [ 2 ] ∗ Re [NCWRL22]} ,{ I / Sqr t [ 2 ] ∗ Re [NCWRL11]}}

} ] ;

M$Coupl ingMatr i ces = Jo in [ M$Coupl ingMatr i ces ,
{
C[−F [ 1 5 ] , F [ 1 5 ] ,V [ 2 ] ] =={{ I ∗(CCZ11 )} ,{ I ∗(CCZ12 )}} ,
C[−F [ 1 6 ] , F [ 1 6 ] ,V [ 2 ] ] =={{ I ∗(CCZ21 )} ,{ I ∗(CCZ22 )}} ,
C[−F [ 1 5 ] , F [ 1 5 ] ,V [ 1 ] ] =={{ I ∗(CCP11 )} ,{ I ∗(CCP12 )}} ,
C[−F [ 1 6 ] , F [ 1 6 ] ,V [ 1 ] ] =={{ I ∗(CCP21 )} ,{ I ∗(CCP22)}}
} ] ;

E.4 FORM

The purpose of the FORM program presented in this section is to automatize
the reduction of expressions involving Grassmann- and complex valued fields and
derivatives carrying spinor-, lorentz and gauge indices to a standard form. In
particular, it is suited to evaluate products of superfields to obtain expressions in
terms of component fields which are of the form θθX or θθθθX. It implements
the two component spinor algebra with the conventions of Wess/Bagger [61].

Declarations

These are the necessary definitions for commutative and noncommutative fields,
superspace coordinates, Lorentz- and spinor indices, differential operators as well

as σnαα̇, (σmσn)β̇α̇ and ǫαβ , ǫα̇β̇. The 4D derivative is not treated as an object but
is a fourvector valued argument of the object on which it acts.

∗ $ Id : $
Of f s t a t i s t i c s ;

AutoDeclare NFunction s ; ∗ Sp ino ren
AutoDeclare NFunction o ; ∗ Ska l a r e
AutoDeclare NFunction v ; ∗ Vektoren
NFunction [ t t ] ;
NFunction [TT ] ;
NFunction [ ttTT ] ;
NFunction Sigma ;
NFunction SSigma ;
NFunction t h e t ;
NFunction f oo ;
NFunction goo ;
NFunction roo ;

NFunction y ;
NFunction d5 ;

CFunction Y;
CFunction [ t t ] ;
CFunction [ TT ] ;
CFunction [ ttTT ] ;
CFunction [TAG ] ;
CFunction [DP ] ;
CFunction [UP ] ;
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CFunction ep ;
CFunction s igma ;
CFunction cigma ;
CFunction ss igma ;
CFunction CCu ;
CFunction CCd ;
CFunction s q r t ;
CFunction e ta ;

AutoDeclare Symbols i , k , n ;
Symbols a , b , c , d , e , f ;
Symbol BOX;
Symbol [BOX ] ;
NFunction [ ! ! DERIVATIVE ! ! ] ;

s e t s d e l : sD ;
s e t s p i n s : sPhi , sPhi1 , . . . , sPhi20 , sPs i , sPs i 1 , . . . , sPs i20 ,

sChi , sChi1 , . . . , sChi20 , sLamb , sLamb1 , . . . , sLamb20 ;
s e t s c a l s : oA , oA1 , . . . , oA10 , oB , oB1 , . . . , oB10 , oC , oC1 , . . . , oC10 ,

oD , oD1 , . . . , oD10 , oF , oF1 , . . . , oF10 ;
s e t v e c t s : vA , vA1 , . . . , vA10 , vB , vB1 , . . . , vB10 , vG , vG1 , . . . , vG10 ;
s e t udot : i1 , . . . , i 400 , 0 ; ∗ undotted i ndex
s e t dot : k1 , . . . , k400 , 0 ; ∗ dot ted i ndex
s e t l o r : n1 , . . . , n400 ; ∗ Lorentz I ndex

#do b l a =1,10
s e t udot { ’ b la ’ } : i { ’ b la ’+1 } , . . . , i 8 0 ;
s e t dot { ’ b la ’ } : k { ’ b la ’+1 } , . . . , k80 ;
s e t l o r { ’ b la ’ } : n{ ’ b la ’+1 } , . . . , n80 ;
#de f i n e udot { ’ b la ’} ”udot { ’ b la ’ } [ ‘ ˜ c ’ ] ”
#de f i n e dot { ’ b la ’} ”dot { ’ b la ’ } [ ‘ ˜ c ’ ] ”
#de f i n e l o r { ’ b la ’} ” l o r { ’ b la ’ } [ ‘ ˜ c ’ ] ”
#de f i n e gaug ” ‘˜a ’ ”
#de f i n e gaug2 ” ‘˜b ’ ”
#enddo

Ordering for Spinors

The following procedure brings spinor valued fields and superspace coordinates
in a standard order

#procedure che ck the t s
r epeat ;

i d t h e t ( a? dot , b? dot )∗ f oo ? s p i n s (? b)=− f oo (? b )∗ t h e t ( a , b ) ;
i d t h e t ( a? dot , b? dot )∗ t h e t ( c ? udot , d? udot)=− t h e t ( c , d )∗ t h e t ( a , b ) ;
i d t h e t ( a? dot , b? dot )∗ f oo ? s c a l s (? b)=foo (? b )∗ t h e t ( a , b ) ;
i d t h e t ( a? dot , b? dot )∗ f oo ? v e c t s (? b)=foo (? b )∗ t h e t ( a , b ) ;

endrepeat ;
i d t h e t ( a? dot , b? dot )∗ t h e t ( c ?dot , d? dot )∗ t h e t ( e ? dot , f ? dot )=0;

r epeat ;
i d t h e t ( a? udot , b? udot )∗ f oo ? s p i n s (? b)=−f oo (? b )∗ t h e t ( a , b ) ;
i d t h e t ( a? udot , b? udot )∗ t h e t ( c ? dot , d? dot)=− t h e t ( c , d )∗ t h e t ( a , b ) ;
i d t h e t ( a? udot , b? udot )∗ f oo ? s c a l s (? b)= foo (? b )∗ t h e t ( a , b ) ;
i d t h e t ( a? udot , b? udot )∗ f oo ? v e c t s (? b)= foo (? b )∗ t h e t ( a , b ) ;

endrepeat ;
i d t h e t ( a? udot , b? udot )∗ t h e t ( c ? udot , d? udot )∗ t h e t ( e ? udot , f ? udot )=0;

#endprocedure
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Derivatives

The following procedure shifts superspace covariant derivatives Dα, Dα̇ to the
right using their Leibniz rule and sets them to zero after they have nothing left
to act on. Then it does the same with the extra dimensional derivative ∂y.

#procedure d e r i v a t i v e s
#do cnt =100 ,200 ,3
r epeat ;

i d sD (0 , a? udot )∗ t h e t (0 , b? udot)=− t h e t (0 , b )∗ sD (0 , a)−ep (0 , a , 0 , b ) ;
i d sD ( a? udot , 0 )∗ t h e t ( b? udot ,0)=− t h e t (b , 0 )∗ sD (a ,0)+ ep ( a , 0 , b , 0 ) ;

i d sD (0 , a? udot )∗ t h e t ( b? udot ,0)=− t h e t (b , 0 )∗ sD (0 , a)+ep (0 , a , b , 0 ) ;
i d sD ( a? udot , 0 )∗ t h e t (0 , b? udot)=− t h e t (0 , b )∗ sD (a ,0)− ep ( a , 0 , 0 , b ) ;

i d sD (0 , a? dot )∗ t h e t (0 , b? dot)=− t h e t (0 , b )∗ sD (0 , a)+ep (0 , a , 0 , b ) ;
i d sD ( a? dot , 0 )∗ t h e t ( b? dot ,0)=− t h e t (b , 0 )∗ sD ( a ,0)− ep (a , 0 , b , 0 ) ;

i d sD (0 , a? dot )∗ t h e t ( b? dot ,0)=− t h e t (b , 0 )∗ sD (0 , a)−ep (0 , a , b , 0 ) ;
i d sD ( a? dot , 0 )∗ t h e t (0 , b? dot)=− t h e t (0 , b )∗ sD ( a ,0)+ ep (a , 0 , 0 , b ) ;

i d sD ( a? udot , b? udot )∗ t h e t ( c ? dot , d? dot)=− t h e t ( c , d )∗ sD ( a , b ) ;
i d sD ( a? dot , b? dot )∗ t h e t ( c ? udot , d? udot)=− t h e t ( c , d )∗ sD ( a , b ) ;

endrepeat ;

i d once sD( a? udot , b? udot )∗ f oo ? s p i n s (? c)=
−f oo (? c )∗ sD (a , b)+ I ∗ s igma ( a , b , 0 , k ’ cnt ’ , n ’ cnt ’ ) ∗
t h e t ( k ’ cnt ’ , 0 )∗ f oo (? c , n ’ cnt ’ ) ;

i d once sD( a? dot , b? dot )∗ f oo ? s p i n s (? c)=
−f oo (? c )∗ sD (a , b)− I ∗ t h e t ( i ’ cnt ’ , 0 )∗
s igma (0 , i ’ cnt ’ , a , b , n ’ cnt ’ ) ∗ f oo (? c , n ’ cnt ’ ) ;

i d once sD( a? udot , b? udot )∗ f oo ? s c a l s (? c)=
foo (? c )∗ sD ( a , b)+ I ∗ s igma ( a , b , 0 , k { ’ cnt ’+1} , n{ ’ cnt ’+1})∗
t h e t ( k { ’ cnt ’+1} , 0)∗ f oo (? c , n{ ’ cnt ’+1} ) ;

i d once sD( a? dot , b? dot )∗ f oo ? s c a l s (? c)=
foo (? c )∗ sD ( a , b)− I ∗ t h e t ( i { ’ cnt ’+1} , 0)∗
s igma (0 , i { ’ cnt ’+1} , a , b , n{ ’ cnt ’+1})∗ f oo (? c , n{ ’ cnt ’+1} ) ;

i d once sD( a? udot , b? udot )∗ f oo ? v e c t s (? c)=
foo (? c )∗ sD ( a , b)+ I ∗ s igma ( a , b , 0 , k { ’ cnt ’+2} , n{ ’ cnt ’+2})∗
t h e t ( k { ’ cnt ’+2} , 0)∗ f oo (? c , n{ ’ cnt ’+2} ) ;

i d once sD( a? dot , b? dot )∗ f oo ? v e c t s (? c)=
foo (? c )∗ sD ( a , b)− I ∗ t h e t ( i { ’ cnt ’+2} , 0)∗
s igma (0 , i { ’ cnt ’+2} , a , b , n{ ’ cnt ’+2})∗ f oo (? c , n{ ’ cnt ’+2} ) ;

i d once sD (? a )∗ d5=d5∗sD (? a ) ;

#enddo

i d sD (? b )=0;

r epeat ;
i d d5∗ f oo ? s c a l s (? c)= foo (? c ,5)+ foo (? c )∗ d5 ;
i d d5∗ f oo ? s p i n s (? c)= foo (? c ,5)+ foo (? c )∗ d5 ;
i d d5∗ f oo ? v e c t s (? c)= foo (? c ,5)+ foo (? c )∗ d5 ;
i d d5∗ f oo ?{ thet , [TT ] , [ t t ] , [ ttTT ] } ( ? c)= foo (? c )∗ d5 ;

i d d5∗y ( a?)=a∗y (a−1)+y ( a )∗ d5 ;
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endrepeat ;

i d y ( a?)=Y( a ) ;
#c a l l c o l l e c t y

i d d5=0;
#endprocedure

The following procedure handles powers of the extra dimensional variable y and
square roots.

#procedure c o l l e c t y
r epeat ;
i d Y( a ?)∗Y(b?)=Y( a+b ) ;
i d Y(0)=1;
endrepeat ;

#endprocedure

#procedure s q r t s
r epeat ;
i d s q r t ( a ? , b ?)∗ s q r t ( a ? , c?)= s q r t ( a , b+c ) ;
i d s q r t ( a ? ,0)=1;
i d s q r t ( a?,−2)=1/a ;
i d s q r t ( a ? ,2)=a ;
endrepeat ;
#endprocedure

Superspace Coordinates

The following procedures perform substitutions of the form θαθβ → −1
2θ

2ǫαβ .
They then introduce θ2 and θ4 etc.. as commutative objects and delete higher

powers of θ2 and θ
2
.

#procedure i d t h e t a s
r epeat ;

i d t h e t ( a? udot , 0 )∗ t h e t ( c ? udot ,0)=−1/2∗[ t t ]∗ ep ( a , 0 , c , 0 ) ;
i d t h e t (0 , b? dot )∗ t h e t (0 , d? dot )=−1/2∗[TT ]∗ ep (0 , b , 0 , d ) ;

i d t h e t (0 , a? udot )∗ t h e t (0 , c ? udot )=1/2∗ [ t t ]∗ ep (0 , a , 0 , c ) ;
i d t h e t ( b? dot , 0 )∗ t h e t ( d?dot ,0)=1/2∗ [ TT ]∗ ep (b , 0 , d , 0 ) ;

i d t h e t ( a? udot , 0 )∗ t h e t (0 , b? udot )=+1/2∗[ t t ]∗ ep ( a , 0 , 0 , b ) ;
i d t h e t (0 , a? udot )∗ t h e t ( b? udot ,0)=−1/2∗[ t t ]∗ ep (0 , a , b , 0 ) ;

i d t h e t ( a? dot , 0 )∗ t h e t (0 , b? dot )=−1/2∗[TT ]∗ ep (a , 0 , 0 , b ) ;
i d t h e t (0 , a? dot )∗ t h e t ( b?dot ,0)=1/2∗ [ TT ]∗ ep (0 , a , b , 0 ) ;

#c a l l c l e a r t h e t
endrepeat ;

#endprocedure

#procedure t h e t a s
r epeat ;

i d t h e t (? i )∗ f oo ? s p i n s (? a)=−f oo (? a )∗ t h e t (? i ) ;
i d t h e t (? i )∗ f oo ? s c a l s (? a)= foo (? a )∗ t h e t (? i ) ;
i d t h e t (? i )∗ f oo ? v e c t s (? a)= foo (? a )∗ t h e t (? i ) ;

r epeat ;
i d t h e t ( c ? udot , d? udot )∗ t h e t ( a? dot , b? dot )=

−t h e t ( a , b )∗ t h e t ( c , d ) ;
endrepeat ;

endrepeat ;
r epeat ;
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#c a l l i d t h e t a s
i d once f oo ? s p i n s (? a )∗ t h e t (? i )=− t h e t (? i )∗ f oo (? a ) ;
#c a l l i d t h e t a s
i d once f oo ? s c a l s (? a )∗ t h e t (? i )= the t (? i )∗ f oo (? a ) ;
#c a l l i d t h e t a s
i d once f oo ? v e c t s (? a )∗ t h e t (? i )= the t (? i )∗ f oo (? a ) ;
#c a l l i d t h e t a s
i d once the t ( a?dot , b? dot )∗ t h e t ( c ?udot , d? udot )=

−t h e t ( c , d )∗ t h e t ( a , b ) ;
#c a l l i d t h e t a s

endrepeat ;
#endprocedure

#procedure c l e a r t h e t

i d [ t t ] ∗ [ TT ]=[ ttTT ] ;
i d [ TT ] ∗ [ t t ]=[ ttTT ] ;

i d [ TT ]∗ t h e t ( a? dot , b? dot )=0;
i d [ t t ]∗ t h e t ( a? udot , b? udot )=0;

i d [ ttTT ]∗ t h e t (? c )=0;

i d [ ttTT ] ∗ [ t t ]=0;
i d [ ttTT ] ∗ [ TT ]=0;

i d [ t t ] ∗ [ t t ]=0;
i d [ TT ] ∗ [ TT ]=0;

i d [ ttTT ] ∗ [ ttTT ]=0;

#endprocedure

Renaming, Simplifications and Grouping of Spinors

The following procedures use the standard substitution rules to remove ǫ, ηµν and
Weyl chains σνσµ . . . from the expression. They introduce commutative objects
for ξσµη, ξη, ξη and perform a standard ordering.

#procedure c o n t a i n s ( arg1 , arg2 , arg3 )
. s o r t
Loca l ’ arg3 ’=[TAG] ∗ ’ arg1 ’ ;
i d [TAG]∗ ’ arg2 ’= ’ arg2 ’ ;
i d [TAG]=0;
#endprocedure ;

#procedure r i d t h e e p s
r epeat ;
i d ep ( a ? , 0 , b ? , 0 )∗ ep (0 , b ? , 0 , c?)=ep (a , 0 , 0 , c ) ;
i d ep ( a ? , 0 , b ? , 0 )∗ ep (0 , c ? , 0 , b?)=−ep ( a , 0 , 0 , c ) ;
endrepeat ;

r epeat ;
i d ep ( a ? , 0 , 0 , a ?)=2;
i d ep (0 , a ? , a ? ,0)=2;
i d s igma ( a ? , 0 , ? f )∗ ep (0 , e ? , 0 , a?)=sigma (0 , e , ? f ) ;
i d s igma ( a ? , b ? , c ? , 0 , ? f )∗ ep (0 , e ? , 0 , c?)=sigma ( a , b , 0 , e , ? f ) ;
i d f oo ?(? a , f ? ,? c )∗ ep ( f ? , 0 , 0 , e?)= foo (? a , e , ? c ) ;
i d f oo ?(? a , f ? ,? c )∗ ep (0 , f ? , e ? ,0)= foo (? a , e , ? c ) ;
i d f oo ?(? a , f ? ,? c )∗ ep ( e ? , 0 , 0 , f ?)= foo (? a , e , ? c ) ;
i d f oo ?(? a , f ? ,? c )∗ ep (0 , e ? , f ? ,0)= foo (? a , e , ? c ) ;
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i d f oo ?(? a , f ? , 0 , ? c )∗ ep (0 , e ? , 0 , f ?)= foo (? a , 0 , e , ? c ) ;
i d f oo ?(? a , f ? , 0 , ? c )∗ ep (0 , f ? , 0 , e?)=− f oo (? a , 0 , e , ? c ) ;
i d f oo ?(? a , 0 , f ? ,? c )∗ ep ( e ? , 0 , f ? ,0)= foo (? a , e , 0 , ? c ) ;
i d f oo ?(? a , 0 , f ? ,? c )∗ ep ( f ? , 0 , e?,0)=− f oo (? a , e , 0 , ? c ) ;
endrepeat ;

#endprocedure

Now, superfluous metric tensors are absorbed by renaming indices.

#procedure r i d t h e e t a
r epeat ;
i d e ta ( n1 ? , n2 ?)∗ f oo ?(? a , n1 ? ,? b)= foo (? a , n2 , ? b ) ;
i d e ta ( n1 ? , n2 ?)∗ f oo ?(? a , n2 ? ,? b)= foo (? a , n1 , ? b ) ;
endrepeat ;

i d f oo ? s c a l s (? e , n? l o r , n? l o r , ? f )= foo (? e , ? f , [ BOX ] ) ;
i d f oo ? s p i n s ( a ? , b ? ,? e , n? l o r , n? l o r , ? f )= foo ( a , b , ? e , ? f , [BOX ] ) ;
i d f oo ? v e c t s ( a? l o r , ? e , n? l o r , n? l o r , ? f )= foo ( a , ? e , ? f , [ BOX ] ) ;
#endprocedure

The following lengthy procedure performs operations on the extended sigma ma-
trices. First, mutually contracted matrices are converted to metric tensors using
the completeness relation, and extra tensors are removed.

#procedure s igmas

r epeat ;
i d s igma (0 , a ? , 0 , b ? , n1 ?)∗ s igma ( a ? , 0 , b ? , 0 , n2?)=−2∗ e ta ( n1 , n2 ) ;
i d s igma ( a ? , 0 , 0 , b ? , n1 ?)∗ s igma (0 , a ? , b ? , 0 , n2?)=2∗ e ta ( n1 , n2 ) ;
endrepeat ;
r epeat ;
i d e ta ( n1 ? , n1 ?)=4;
i d e ta ( n1 ? , n2 ?)∗ e ta ( n2 ? , n3?)= eta ( n1 , n3 ) ;
i d e ta ( n1 ? , n2 ?)∗ e ta ( n3 ? , n2?)= eta ( n1 , n3 ) ;
endrepeat ;

In the following, pairs of derivatives which are contracted with pairs of sigma
matrices in the right fashion, are recast to d’Alembert operators. There are
many different constellations in which this can occur.

r epeat ;
i d s igma ( i 1 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 4 ? , 0 , k1 ? , n2? l o r )∗
f oo ? s p i n s ( a ? , b ? ,? c , n1 ? ,? e , n2 ? ,? f )=−ep (0 , i4 , i1 , 0 )∗ f oo ( a , b , ? c , ? e , ? f , [ BOX ] ) ;
i d s igma (0 , i 2 ? , k1 ? , 0 , n1? l o r )∗ s igma ( i 3 ? , 0 , 0 , k1 ? , n2? l o r )∗
f oo ? s p i n s ( a ? , b ? ,? c , n1 ? ,? e , n2 ? ,? f )=ep (0 , i2 , i3 , 0 )∗ f oo ( a , b , ? c , ? e , ? f , [ BOX ] ) ;
i d s igma (0 , i 1 ? , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 4 ? , 0 , k1 ? , n2? l o r )∗
f oo ? s p i n s ( a ? , b ? ,? c , n1 ? ,? e , n2 ? ,? f )=−ep (0 , i1 , 0 , i 4 )∗ f oo ( a , b , ? c , ? e , ? f , [ BOX ] ) ;
i d s igma ( i 2 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma ( i 3 ? , 0 , 0 , k1 ? , n2? l o r )∗
f oo ? s p i n s ( a ? , b ? ,? c , n1 ? ,? e , n2 ? ,? f )=ep ( i2 , 0 , i3 , 0 )∗ f oo ( a , b , ? c , ? e , ? f , [ BOX ] ) ;

i d s igma ( i 1 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 1 ? , 0 , k2 ? , n2? l o r )∗
f oo ? s p i n s ( a ? , b ? ,? c , n1 ? ,? e , n2 ? ,? f )=−ep ( k1 , 0 , 0 , k2 )∗ f oo ( a , b , ? c , ? e , ? f , [ BOX ] ) ;
i d s igma ( i 1 ? , 0 , 0 , k1 ? , n1? l o r )∗ s igma (0 , i 1 ? , k2 ? , 0 , n2? l o r )∗
f oo ? s p i n s ( a ? , b ? ,? c , n1 ? ,? e , n2 ? ,? f )=ep ( k2 , 0 , 0 , k1 )∗ f oo ( a , b , ? c , ? e , ? f , [ BOX ] ) ;

i d s igma ( i 1 ? , 0 , 0 , k1 ? , n1? l o r )∗ s igma (0 , i 1 ? , 0 , k2 ? , n2? l o r )∗
f oo ? s p i n s ( a ? , b ? ,? c , n1 ? ,? e , n2 ? ,? f )=−ep (0 , k1 , 0 , k2 )∗ f oo ( a , b , ? c , ? e , ? f , [ BOX ] ) ;
i d s igma ( i 1 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 1 ? , k2 ? , 0 , n2? l o r )∗
f oo ? s p i n s ( a ? , b ? ,? c , n1 ? ,? e , n2 ? ,? f )=ep ( k1 , 0 , k2 , 0 )∗ f oo ( a , b , ? c , ? e , ? f , [ BOX ] ) ;
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i d s igma ( i 1 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 1 ? , 0 , k2 ? , n2? l o r )∗
f oo ? s p i n s ( a ? , b ? ,? c , n2 ? ,? e , n1 ? ,? f )=−ep ( k1 , 0 , 0 , k2 )∗ f oo ( a , b , ? c , ? e , ? f , [ BOX ] ) ;
i d s igma ( i 1 ? , 0 , 0 , k1 ? , n1? l o r )∗ s igma (0 , i 1 ? , k2 ? , 0 , n2? l o r )∗
f oo ? s p i n s ( a ? , b ? ,? c , n2 ? ,? e , n1 ? ,? f )=ep ( k2 , 0 , 0 , k1 )∗ f oo ( a , b , ? c , ? e , ? f , [ BOX ] ) ;

i d s igma (0 , i 1 ? , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 4 ? , 0 , k1 ? , n2? l o r )∗
f oo ? s p i n s ( a ? , b ? ,? c , n2 ? ,? e , n1 ? ,? f )=−ep (0 , i1 , 0 , i 4 )∗ f oo ( a , b , ? c , ? e , ? f , [ BOX ] ) ;
i d s igma ( i 2 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma ( i 3 ? , 0 , 0 , k1 ? , n2? l o r )∗
f oo ? s p i n s ( a ? , b ? ,? c , n2 ? ,? e , n1 ? ,? f )=ep ( i2 , 0 , i3 , 0 )∗ f oo ( a , b , ? c , ? e , ? f , [ BOX ] ) ;

i d s igma ( i 1 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 4 ? , 0 , k1 ? , n2? l o r )∗
f oo ? s p i n s ( a ? , b ? ,? c , n2 ? ,? e , n1 ? ,? f )=−ep (0 , i4 , i1 , 0 )∗ f oo ( a , b , ? c , ? e , ? f , [ BOX ] ) ;
i d s igma (0 , i 2 ? , k1 ? , 0 , n1? l o r )∗ s igma ( i 3 ? , 0 , 0 , k1 ? , n2? l o r )∗
f oo ? s p i n s ( a ? , b ? ,? c , n2 ? ,? e , n1 ? ,? f )=ep (0 , i2 , i3 , 0 )∗ f oo ( a , b , ? c , ? e , ? f , [ BOX ] ) ;

i d s igma ( i 1 ? , 0 , 0 , k1 ? , n1? l o r )∗ s igma (0 , i 1 ? , 0 , k2 ? , n2? l o r )∗
f oo ? s p i n s ( a ? , b ? ,? c , n2 ? ,? e , n1 ? ,? f )=−ep (0 , k1 , 0 , k2 )∗ f oo ( a , b , ? c , ? e , ? f , [ BOX ] ) ;
i d s igma ( i 1 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 1 ? , k2 ? , 0 , n2? l o r )∗
f oo ? s p i n s ( a ? , b ? ,? c , n2 ? ,? e , n1 ? ,? f )=ep ( k1 , 0 , k2 , 0 )∗ f oo ( a , b , ? c , ? e , ? f , [ BOX ] ) ;
endrepeat ;

r epeat ;
i d s igma ( i 1 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 4 ? , 0 , k1 ? , n2? l o r )∗
f oo ? v e c t s ( n10 ? l o r , ? c , n1 ? ,? e , n2 ? ,? f )=−ep (0 , i4 , i1 , 0 )∗ f oo ( n10 , ? c , ? e , ? f , [ BOX ] ) ;
i d s igma (0 , i 2 ? , k1 ? , 0 , n1? l o r )∗ s igma ( i 3 ? , 0 , 0 , k1 ? , n2? l o r )∗
f oo ? v e c t s ( n10 ? l o r , ? c , n1 ? ,? e , n2 ? ,? f )=ep (0 , i2 , i3 , 0 )∗ f oo ( n10 , ? c , ? e , ? f , [BOX ] ) ;

i d s igma (0 , i 1 ? , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 4 ? , 0 , k1 ? , n2? l o r )∗
f oo ? v e c t s ( n10 ? l o r , ? c , n1 ? ,? e , n2 ? ,? f )=−ep (0 , i1 , 0 , i 4 )∗ f oo ( n10 , ? c , ? e , ? f , [ BOX ] ) ;
i d s igma ( i 2 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma ( i 3 ? , 0 , 0 , k1 ? , n2? l o r )∗
f oo ? v e c t s ( n10 ? l o r , ? c , n1 ? ,? e , n2 ? ,? f )=ep ( i2 , 0 , i3 , 0 )∗ f oo ( n10 , ? c , ? e , ? f , [BOX ] ) ;

i d s igma ( i 1 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 1 ? , 0 , k2 ? , n2? l o r )∗
f oo ? v e c t s ( n10 ? l o r , ? c , n1 ? ,? e , n2 ? ,? f )=−ep ( k1 , 0 , 0 , k2 )∗ f oo ( n10 , ? c , ? e , ? f , [ BOX ] ) ;
i d s igma ( i 1 ? , 0 , 0 , k1 ? , n1? l o r )∗ s igma (0 , i 1 ? , k2 ? , 0 , n2? l o r )∗
f oo ? v e c t s ( n10 ? l o r , ? c , n1 ? ,? e , n2 ? ,? f )=ep ( k2 , 0 , 0 , k1 )∗ f oo ( n10 , ? c , ? e , ? f , [BOX ] ) ;

i d s igma ( i 1 ? , 0 , 0 , k1 ? , n1? l o r )∗ s igma (0 , i 1 ? , 0 , k2 ? , n2? l o r )∗
f oo ? v e c t s ( n10 ? l o r , ? c , n1 ? ,? e , n2 ? ,? f )=−ep (0 , k1 , 0 , k2 )∗ f oo ( n10 , ? c , ? e , ? f , [ BOX ] ) ;
i d s igma ( i 1 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 1 ? , k2 ? , 0 , n2? l o r )∗
f oo ? v e c t s ( n10 ? l o r , ? c , n1 ? ,? e , n2 ? ,? f )=ep ( k1 , 0 , k2 , 0 )∗ f oo ( n10 , ? c , ? e , ? f , [BOX ] ) ;

i d s igma ( i 1 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 1 ? , 0 , k2 ? , n2? l o r )∗
f oo ? v e c t s ( n10 ? l o r , ? c , n2 ? ,? e , n1 ? ,? f )=−ep ( k1 , 0 , 0 , k2 )∗ f oo ( n10 , ? c , ? e , ? f , [ BOX ] ) ;
i d s igma ( i 1 ? , 0 , 0 , k1 ? , n1? l o r )∗ s igma (0 , i 1 ? , k2 ? , 0 , n2? l o r )∗
f oo ? v e c t s ( n10 ? l o r , ? c , n2 ? ,? e , n1 ? ,? f )=ep ( k2 , 0 , 0 , k1 )∗ f oo ( n10 , ? c , ? e , ? f , [BOX ] ) ;

i d s igma (0 , i 1 ? , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 4 ? , 0 , k1 ? , n2? l o r )∗
f oo ? v e c t s ( n10 ? l o r , ? c , n2 ? ,? e , n1 ? ,? f )=−ep (0 , i1 , 0 , i 4 )∗ f oo ( n10 , ? c , ? e , ? f , [ BOX ] ) ;
i d s igma ( i 2 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma ( i 3 ? , 0 , 0 , k1 ? , n2? l o r )∗
f oo ? v e c t s ( n10 ? l o r , ? c , n2 ? ,? e , n1 ? ,? f )=ep ( i2 , 0 , i3 , 0 )∗ f oo ( n10 , ? c , ? e , ? f , [BOX ] ) ;

i d s igma ( i 1 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 4 ? , 0 , k1 ? , n2? l o r )∗
f oo ? v e c t s ( n10 ? l o r , ? c , n2 ? ,? e , n1 ? ,? f )=−ep (0 , i4 , i1 , 0 )∗ f oo ( n10 , ? c , ? e , ? f , [ BOX ] ) ;
i d s igma (0 , i 2 ? , k1 ? , 0 , n1? l o r )∗ s igma ( i 3 ? , 0 , 0 , k1 ? , n2? l o r )∗
f oo ? v e c t s ( n10 ? l o r , ? c , n2 ? ,? e , n1 ? ,? f )=ep (0 , i2 , i3 , 0 )∗ f oo ( n10 , ? c , ? e , ? f , [BOX ] ) ;

i d s igma ( i 1 ? , 0 , 0 , k1 ? , n1? l o r )∗ s igma (0 , i 1 ? , 0 , k2 ? , n2? l o r )∗
f oo ? v e c t s ( n10 ? l o r , ? c , n2 ? ,? e , n1 ? ,? f )=−ep (0 , k1 , 0 , k2 )∗ f oo ( n10 , ? c , ? e , ? f , [ BOX ] ) ;
i d s igma ( i 1 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 1 ? , k2 ? , 0 , n2? l o r )∗
f oo ? v e c t s ( n10 ? l o r , ? c , n2 ? ,? e , n1 ? ,? f )=ep ( k1 , 0 , k2 , 0 )∗ f oo ( n10 , ? c , ? e , ? f , [BOX ] ) ;
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endrepeat ;

r epeat ;
i d s igma ( i 1 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 4 ? , 0 , k1 ? , n2? l o r )∗
f oo ? s c a l s (? c , n1 ? ,? e , n2 ? ,? f )=−ep (0 , i4 , i1 , 0 )∗ f oo (? c , ? e , ? f , [ BOX ] ) ;
i d s igma (0 , i 2 ? , k1 ? , 0 , n1? l o r )∗ s igma ( i 3 ? , 0 , 0 , k1 ? , n2? l o r )∗
f oo ? s c a l s (? c , n1 ? ,? e , n2 ? ,? f )=ep (0 , i2 , i3 , 0 )∗ f oo (? c , ? e , ? f , [BOX ] ) ;

i d s igma (0 , i 1 ? , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 4 ? , 0 , k1 ? , n2? l o r )∗
f oo ? s c a l s (? c , n1 ? ,? e , n2 ? ,? f )=−ep (0 , i1 , 0 , i 4 )∗ f oo (? c , ? e , ? f , [ BOX ] ) ;
i d s igma ( i 2 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma ( i 3 ? , 0 , 0 , k1 ? , n2? l o r )∗
f oo ? s c a l s (? c , n1 ? ,? e , n2 ? ,? f )=ep ( i2 , 0 , i3 , 0 )∗ f oo (? c , ? e , ? f , [BOX ] ) ;

i d s igma ( i 1 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 1 ? , 0 , k2 ? , n2? l o r )∗
f oo ? s c a l s (? c , n1 ? ,? e , n2 ? ,? f )=−ep ( k1 , 0 , 0 , k2 )∗ f oo (? c , ? e , ? f , [ BOX ] ) ;
i d s igma ( i 1 ? , 0 , 0 , k1 ? , n1? l o r )∗ s igma (0 , i 1 ? , k2 ? , 0 , n2? l o r )∗
f oo ? s c a l s (? c , n1 ? ,? e , n2 ? ,? f )=ep ( k2 , 0 , 0 , k1 )∗ f oo (? c , ? e , ? f , [BOX ] ) ;

i d s igma ( i 1 ? , 0 , 0 , k1 ? , n1? l o r )∗ s igma (0 , i 1 ? , 0 , k2 ? , n2? l o r )∗
f oo ? s c a l s (? c , n1 ? ,? e , n2 ? ,? f )=−ep (0 , k1 , 0 , k2 )∗ f oo (? c , ? e , ? f , [ BOX ] ) ;
i d s igma ( i 1 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 1 ? , k2 ? , 0 , n2? l o r )∗
f oo ? s c a l s (? c , n1 ? ,? e , n2 ? ,? f )=ep ( k1 , 0 , k2 , 0 )∗ f oo (? c , ? e , ? f , [BOX ] ) ;

i d s igma ( i 1 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 1 ? , 0 , k2 ? , n2? l o r )∗
f oo ? s c a l s (? c , n2 ? ,? e , n1 ? ,? f )=−ep ( k1 , 0 , 0 , k2 )∗ f oo (? c , ? e , ? f , [ BOX ] ) ;
i d s igma ( i 1 ? , 0 , 0 , k1 ? , n1? l o r )∗ s igma (0 , i 1 ? , k2 ? , 0 , n2? l o r )∗
f oo ? s c a l s (? c , n2 ? ,? e , n1 ? ,? f )=ep ( k2 , 0 , 0 , k1 )∗ f oo (? c , ? e , ? f , [BOX ] ) ;

i d s igma (0 , i 1 ? , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 4 ? , 0 , k1 ? , n2? l o r )∗
f oo ? s c a l s (? c , n2 ? ,? e , n1 ? ,? f )=−ep (0 , i1 , 0 , i 4 )∗ f oo (? c , ? e , ? f , [ BOX ] ) ;
i d s igma ( i 2 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma ( i 3 ? , 0 , 0 , k1 ? , n2? l o r )∗
f oo ? s c a l s (? c , n2 ? ,? e , n1 ? ,? f )=ep ( i2 , 0 , i3 , 0 )∗ f oo (? c , ? e , ? f , [BOX ] ) ;

i d s igma ( i 1 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 4 ? , 0 , k1 ? , n2? l o r )∗
f oo ? s c a l s (? c , n2 ? ,? e , n1 ? ,? f )=−ep (0 , i4 , i1 , 0 )∗ f oo (? c , ? e , ? f , [ BOX ] ) ;
i d s igma (0 , i 2 ? , k1 ? , 0 , n1? l o r )∗ s igma ( i 3 ? , 0 , 0 , k1 ? , n2? l o r )∗
f oo ? s c a l s (? c , n2 ? ,? e , n1 ? ,? f )=ep (0 , i2 , i3 , 0 )∗ f oo (? c , ? e , ? f , [BOX ] ) ;

i d s igma ( i 1 ? , 0 , 0 , k1 ? , n1? l o r )∗ s igma (0 , i 1 ? , 0 , k2 ? , n2? l o r )∗
f oo ? s c a l s (? c , n2 ? ,? e , n1 ? ,? f )=−ep (0 , k1 , 0 , k2 )∗ f oo (? c , ? e , ? f , [ BOX ] ) ;
i d s igma ( i 1 ? , 0 , k1 ? , 0 , n1? l o r )∗ s igma (0 , i 1 ? , k2 ? , 0 , n2? l o r )∗
f oo ? s c a l s (? c , n2 ? ,? e , n1 ? ,? f )=ep ( k1 , 0 , k2 , 0 )∗ f oo (? c , ? e , ? f , [BOX ] ) ;
endrepeat ;

r epeat ;
i d ep ( a ? , 0 , 0 , b?)=ep (0 , b , a , 0 ) ;
endrepeat ;

A special name is introduced for chains of two sigma matrices.

i d s igma ( i 1 ? udot , i 2 ? udot , 0 , k1? dot , n1 ?)∗
s igma ( i 3 ? udot , i 4 ? udot , k1? dot , 0 , n2?)= ss igma ( i1 , i2 , i3 , i4 , n1 , n2 ) ;

i d s igma ( i 1 ? udot , 0 , k1 ?dot , k2? dot , n1 ?)∗
s igma (0 , i 1 ? udot , k3? dot , k4? dot , n2?)= ss igma ( k1 , k2 , k3 , k4 , n1 , n2 ) ;

#endprocedure

Compact names are introduced for sigma matrices which are contracted with a
spinor.

#procedure cont rac tS i gma
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i d Sigma ( f ? , 0 , 0 , sba r2 ?(? c ) , ? a )∗ f oo ? s p i n s (0 , f ? ,? b)=
cigma (0 , f oo (? b ) , 0 , sba r2 (? c ) , ? a ) ;

i d Sigma (0 , f ? , 0 , sba r2 ?(? c ) , ? a )∗ f oo ? s p i n s ( f ? , 0 , ? b)=
−cigma (0 , f oo (? b ) , 0 , sba r2 (? c ) , ? a ) ;

i d Sigma (0 , sba r2 ?(? c ) , f ? , 0 , ? a )∗ f oo ? s p i n s (0 , f ? ,? b)=
−cigma (0 , sba r2 (? c ) , 0 , f oo (? b ) , ? a ) ;

i d Sigma (0 , sba r2 ?(? c ) , 0 , f ? ,? a )∗ f oo ? s p i n s ( f ? , 0 , ? b)=
cigma (0 , sba r2 (? c ) , 0 , f oo (? b ) , ? a ) ;

i d Sigma ( f ? , 0 , 0 , sba r2 ?(? c ) , ? a )∗ f oo ?{ t h e t } (0 , f ? ,? b)=
cigma (0 , f oo (? b ) , 0 , sba r2 (? c ) , ? a ) ;

i d Sigma (0 , f ? , 0 , sba r2 ?(? c ) , ? a )∗ f oo ?{ t h e t }( f ? , 0 , ? b)=
−cigma (0 , f oo (? b ) , 0 , sba r2 (? c ) , ? a ) ;

i d Sigma (0 , sba r2 ?(? c ) , f ? , 0 , ? a )∗ f oo ?{ t h e t } (0 , f ? ,? b)=
−cigma (0 , sba r2 (? c ) , 0 , f oo (? b ) , ? a ) ;

i d Sigma (0 , sba r2 ?(? c ) , 0 , f ? ,? a )∗ f oo ?{ t h e t }( f ? , 0 , ? b)=
cigma (0 , sba r2 (? c ) , 0 , f oo (? b ) , ? a ) ;

#endprocedure

#procedure cont rac tSS igma

i d SSigma ( f ? , 0 , 0 , sba r2 ?(? c ) , ? a )∗ f oo ? s p i n s (0 , f ?udot , ? b)=
CCu(0 , f oo (? b ) , 0 , sba r2 (? c ) , ? a ) ;

i d SSigma (0 , f ? , 0 , sba r2 ?(? c ) , ? a )∗ f oo ? s p i n s ( f ? udot , 0 , ? b)=
−CCu(0 , f oo (? b ) , 0 , sba r2 (? c ) , ? a ) ;

i d SSigma (0 , sba r2 ?(? c ) , f ? , 0 , ? a )∗ f oo ? s p i n s (0 , f ?udot , ? b)=
−CCu(0 , sba r2 (? c ) , 0 , f oo (? b ) , ? a ) ;

i d SSigma (0 , sba r2 ?(? c ) , 0 , f ? ,? a )∗ f oo ? s p i n s ( f ? udot , 0 , ? b)=
CCu(0 , sba r2 (? c ) , 0 , f oo (? b ) , ? a ) ;

i d SSigma ( f ? , 0 , 0 , sba r2 ?(? c ) , ? a )∗ f oo ?{ t h e t } (0 , f ? udot , ? b)=
CCu(0 , f oo (? b ) , 0 , sba r2 (? c ) , ? a ) ;

i d SSigma (0 , f ? , 0 , sba r2 ?(? c ) , ? a )∗ f oo ?{ t h e t }( f ? udot , 0 , ? b)=
−CCu(0 , f oo (? b ) , 0 , sba r2 (? c ) , ? a ) ;

i d SSigma (0 , sba r2 ?(? c ) , f ? , 0 , ? a )∗ f oo ?{ t h e t } (0 , f ? udot , ? b)=
−CCu(0 , sba r2 (? c ) , 0 , f oo (? b ) , ? a ) ;

i d SSigma (0 , sba r2 ?(? c ) , 0 , f ? ,? a )∗ f oo ?{ t h e t }( f ? udot , 0 , ? b)=
CCu(0 , sba r2 (? c ) , 0 , f oo (? b ) , ? a ) ;

i d SSigma ( f ? , 0 , 0 , sba r2 ?(? c ) , ? a )∗ f oo ? s p i n s (0 , f ?dot , ? b)=
CCd(0 , f oo (? b ) , 0 , sba r2 (? c ) , ? a ) ;

i d SSigma (0 , f ? , 0 , sba r2 ?(? c ) , ? a )∗ f oo ? s p i n s ( f ? dot , 0 , ? b)=
−CCd(0 , f oo (? b ) , 0 , sba r2 (? c ) , ? a ) ;

i d SSigma (0 , sba r2 ?(? c ) , f ? , 0 , ? a )∗ f oo ? s p i n s (0 , f ?dot , ? b)=
−CCd(0 , sba r2 (? c ) , 0 , f oo (? b ) , ? a ) ;

i d SSigma (0 , sba r2 ?(? c ) , 0 , f ? ,? a )∗ f oo ? s p i n s ( f ? dot , 0 , ? b)=
CCd(0 , sba r2 (? c ) , 0 , f oo (? b ) , ? a ) ;

i d SSigma ( f ? , 0 , 0 , sba r2 ?(? c ) , ? a )∗ f oo ?{ t h e t } (0 , f ? dot , ? b)=
CCd(0 , f oo (? b ) , 0 , sba r2 (? c ) , ? a ) ;

i d SSigma (0 , f ? , 0 , sba r2 ?(? c ) , ? a )∗ f oo ?{ t h e t }( f ? dot , 0 , ? b)=
−CCd(0 , f oo (? b ) , 0 , sba r2 (? c ) , ? a ) ;

i d SSigma (0 , sba r2 ?(? c ) , f ? , 0 , ? a )∗ f oo ?{ t h e t } (0 , f ? dot , ? b)=
−CCd(0 , sba r2 (? c ) , 0 , f oo (? b ) , ? a ) ;

i d SSigma (0 , sba r2 ?(? c ) , 0 , f ? ,? a )∗ f oo ?{ t h e t }( f ? dot , 0 , ? b)=
CCd(0 , sba r2 (? c ) , 0 , f oo (? b ) , ? a ) ;

#endprocedure
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#procedure dummynator
r epeat ;
i d f oo ? s p i n s ( k1 ?dot , 0 , ? c )∗ t h e t (0 , k1? dot )=−[DP] ( f oo (? c ) , t h e t ) ;
i d t h e t ( k1? dot , 0 )∗ f oo ? s p i n s (0 , k1? dot , ? c)=−[DP] ( f oo (? c ) , t h e t ) ;

i d f oo ? s p i n s (0 , k1? dot , ? c )∗ t h e t ( k1 ? ,0)=[DP] ( f oo (? c ) , t h e t ) ;
i d t h e t (0 , k1? dot )∗ f oo ? s p i n s ( k1 ?dot , 0 , ? c )=[DP] ( f oo (? c ) , t h e t ) ;
endrepeat ;

r epeat ;
i d f oo ? s p i n s ( i 1 ?udot , 0 , ? c )∗ t h e t (0 , i 1 ? udot )=[UP ] ( f oo (? c ) , t h e t ) ;
i d t h e t ( i 1 ? udot , 0 )∗ f oo ? s p i n s (0 , i 1 ?udot , ? c )=[UP ] ( f oo (? c ) , t h e t ) ;

i d f oo ? s p i n s (0 , i 1 ? udot , ? c )∗ t h e t ( i 1 ? udot ,0)=−[UP ] ( f oo (? c ) , t h e t ) ;
i d t h e t (0 , i 1 ? udot )∗ f oo ? s p i n s ( i 1 ? udot , 0 , ? c)=−[UP ] ( f oo (? c ) , t h e t ) ;
endrepeat ;

i d s igma ( a ? , b ? , c ? , d ? , n ?)∗ t h e t ( d? ,0)=Sigma ( a , b , 0 , thet , n ) ;
i d s igma ( a ? , b ? , c ? , d ? , n ?)∗ t h e t (0 , c?)=−Sigma (a , b , 0 , thet , n ) ;

i d s igma ( a ? , b ? , c ? , d ? , n ?)∗ t h e t ( b? ,0)=Sigma (0 , thet , c , d , n ) ;
i d s igma ( a ? , b ? , c ? , d ? , n ?)∗ t h e t (0 , a?)=−Sigma (0 , thet , c , d , n ) ;

i d s igma ( a ? , b ? , c ? , d ? , n ?)∗ f oo ? s p i n s ( d ? , 0 , ? f )=Sigma ( a , b , 0 , f oo (? f ) , n ) ;
i d s igma ( a ? , b ? , c ? , d ? , n ?)∗ f oo ? s p i n s (0 , c ? ,? f )=−Sigma ( a , b , 0 , f oo (? f ) , n ) ;

i d s igma ( a ? , b ? , c ? , d ? , n ?)∗ f oo ? s p i n s ( b ? , 0 , ? f )=Sigma (0 , f oo (? f ) , c , d , n ) ;
i d s igma ( a ? , b ? , c ? , d ? , n ?)∗ f oo ? s p i n s (0 , a ? ,? f )=−Sigma (0 , f oo (? f ) , c , d , n ) ;

i d ss igma ( a ? , b ? , c ? , d ? , n1 ? , n2 ?)∗ t h e t ( d? ,0)=SSigma (a , b , 0 , thet , n1 , n2 ) ;
i d ss igma ( a ? , b ? , c ? , d ? , n1 ? , n2 ?)∗ t h e t (0 , c?)=−SSigma ( a , b , 0 , thet , n1 , n2 ) ;
i d ss igma ( a ? , b ? , c ? , d ? , n1 ? , n2 ?)∗ t h e t ( b? ,0)=SSigma (0 , thet , c , d , n1 , n2 ) ;
i d ss igma ( a ? , b ? , c ? , d ? , n1 ? , n2 ?)∗ t h e t (0 , a?)=−SSigma (0 , thet , c , d , n1 , n2 ) ;
i d ss igma ( a ? , b ? , c ? , d ? , n1 ? , n2 ?)∗ f oo ? s p i n s ( d ? , 0 , ? f )=

SSigma ( a , b , 0 , f oo (? f ) , n1 , n2 ) ;
i d ss igma ( a ? , b ? , c ? , d ? , n1 ? , n2 ?)∗ f oo ? s p i n s (0 , c ? ,? f )=

−SSigma ( a , b , 0 , f oo (? f ) , n1 , n2 ) ;
i d ss igma ( a ? , b ? , c ? , d ? , n1 ? , n2 ?)∗ f oo ? s p i n s ( b ? , 0 , ? f )=

SSigma (0 , f oo (? f ) , c , d , n1 , n2 ) ;
i d ss igma ( a ? , b ? , c ? , d ? , n1 ? , n2 ?)∗ f oo ? s p i n s (0 , a ? ,? f )=

−SSigma (0 , f oo (? f ) , c , d , n1 , n2 ) ;

r epeat ;
i d Sigma (? a )∗ f oo ? s p i n s (? b)=− f oo (? b )∗ Sigma (? a ) ;
i d Sigma (? a )∗ f oo ? s c a l s (? b)= foo (? b )∗ Sigma (? a ) ;
i d Sigma (? a )∗ f oo ? v e c t s (? b)= foo (? b )∗ Sigma (? a ) ;
i d Sigma (? a )∗ f oo ?{ [TT ] , [ t t ] , [ ttTT ] } ( ? b)=foo (? b )∗ Sigma (? a ) ;
i d Sigma (? a )∗ f oo ?{ t h e t }(? b)=− f oo (? b )∗ Sigma (? a ) ;
endrepeat ;

r epeat ;
i d f oo ? s p i n s (? b )∗ Sigma (? a)=−Sigma (? a )∗ f oo (? b ) ;

#c a l l cont rac tS i gma

i d f oo ?{ t h e t }(? b )∗ Sigma (? a)=−Sigma (? a )∗ f oo (? b ) ;

#c a l l cont rac tS i gma

i d f oo ? s c a l s (? b )∗ Sigma (? a)=Sigma (? a )∗ f oo (? b ) ;
i d f oo ? v e c t s (? b )∗ Sigma (? a)=Sigma (? a )∗ f oo (? b ) ;
i d f oo ?{ [TT ] , [ t t ] , [ ttTT ] } ( ? b )∗ Sigma (? a)=Sigma (? a )∗ f oo (? b ) ;
endrepeat ;
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r epeat ;
i d SSigma (? a )∗ f oo ? s p i n s (? b)=−f oo (? b )∗ SSigma (? a ) ;
i d SSigma (? a )∗ f oo ? s c a l s (? b)= foo (? b )∗ SSigma (? a ) ;
i d SSigma (? a )∗ f oo ? v e c t s (? b)= foo (? b )∗ SSigma (? a ) ;
i d SSigma (? a )∗ f oo ?{ [TT ] , [ t t ] , [ ttTT ] } ( ? b)= foo (? b )∗ SSigma (? a ) ;
i d SSigma (? a )∗ f oo ?{ t h e t }(? b)=− f oo (? b )∗ SSigma (? a ) ;
endrepeat ;

r epeat ;
i d f oo ? s p i n s (? b )∗ SSigma (? a)=−SSigma (? a )∗ f oo (? b ) ;

#c a l l cont rac tSS igma

i d f oo ?{ t h e t }(? b )∗ SSigma (? a)=−SSigma (? a )∗ f oo (? b ) ;

#c a l l cont rac tSS igma

i d f oo ? s c a l s (? b )∗ SSigma (? a)=SSigma (? a )∗ f oo (? b ) ;
i d f oo ? v e c t s (? b )∗ SSigma (? a)=SSigma (? a )∗ f oo (? b ) ;
i d f oo ?{ [TT ] , [ t t ] , [ ttTT ] } ( ? b )∗ SSigma (? a)=SSigma (? a )∗ f oo (? b ) ;
endrepeat ;
#endprocedure

Main Program

Those were the procedures that make up the bulk of the program. Now it remains
to define the superfields and to call the procedures that do the simplification. The
example given here evaluates χe−V χeV

#procedure pa r t1
#c a l l d e r i v a t i v e s
#c a l l r i d t h e e p s

#endprocedure

#procedure pa r t2
#c a l l t h e t a s
r epeat ;
#c a l l r i d t h e e t a
#c a l l r i d t h e e p s
#c a l l s igmas
endrepeat ;
#c a l l s q r t s

#c a l l dummynator
#endprocedure

#de f i n e c h i ( c , a ) ”(
oA1 ( ’ gaug ’ )
+i ∗ t h e t ( ’ udot1 ’ , 0 )∗ s igma (0 , ’ udot1 ’ , 0 , ’ dot1 ’ , ’ l o r 1 ’ ) ∗
oA1 ( ’ l o r 1 ’ , ’ gaug ’ ) ∗ t h e t ( ’ dot1 ’ ,0)+1/4∗ t h e t ( ’ udot1 ’ , 0 )∗
t h e t ( 0 , ’ udot1 ’ )∗ t h e t ( 0 , ’ dot1 ’ ) ∗ t h e t ( ’ dot1 ’ , 0 )∗
oA1 ( ’ l o r 1 ’ , ’ l o r 1 ’ , ’ gaug ’)+ s q r t (2 , 1 )∗ t h e t ( ’ udot1 ’ , 0 )∗
sP s i 1 (0 , ’ udot1 ’ , ’ gaug ’)− i ∗ s q r t (2 ,−1)∗ t h e t ( ’ udot1 ’ , 0 )∗
t h e t ( 0 , ’ udot1 ’ )∗ sP s i 1 ( ’ udot2 ’ , 0 , ’ l o r 1 ’ , ’ gaug ’ ) ∗
s igma (0 , ’ udot2 ’ , 0 , ’ dot2 ’ , ’ l o r 1 ’ ) ∗ t h e t ( ’ dot2 ’ , 0 )
+the t ( ’ udot1 ’ , 0 )∗ t h e t ( 0 , ’ udot1 ’ )∗ oF1 ( , ’ gaug ’ )
)”

#de f i n e c h i b a r ( c , a ) ”(
oA2 ( ’ gaug ’ )
− i ∗ t h e t ( ’ udot1 ’ , 0 )∗ s igma (0 , ’ udot1 ’ , 0 , ’ dot1 ’ , ’ l o r 1 ’ ) ∗
oA2 ( ’ l o r 1 ’ , ’ gaug ’ ) ∗ t h e t ( ’ dot1 ’ ,0)+1/4∗ t h e t ( ’ udot1 ’ , 0 )∗
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t h e t ( 0 , ’ udot1 ’ ) ∗ t h e t ( 0 , ’ dot1 ’ ) ∗ t h e t ( ’ dot1 ’ , 0 )∗
oA2 ( ’ l o r 1 ’ , ’ l o r 1 ’ , ’ gaug ’)+ s q r t (2 , 1 )∗ t h e t ( 0 , ’ dot1 ’ ) ∗
sP s i 2 ( ’ dot1 ’ , 0 , ’ gaug ’)+ i ∗ s q r t (2 ,−1)∗ t h e t ( 0 , ’ dot1 ’ ) ∗
t h e t ( ’ dot1 ’ , 0 )∗ t h e t ( ’ udot1 ’ , 0 )∗ s igma (0 , ’ udot1 ’ , 0 , ’ dot2 ’ , ’ l o r 1 ’ ) ∗
sP s i 2 ( ’ dot2 ’ , 0 , ’ l o r 1 ’ , ’ gaug ’ )
+the t ( 0 , ’ dot1 ’ ) ∗ t h e t ( ’ dot1 ’ , 0 )∗ oF2 ( , ’ gaug ’ )
)”

#de f i n e eV( c , a , b ) ”(
1
− t h e t ( ’ udot1 ’ , 0 )∗ s igma (0 , ’ udot1 ’ , 0 , ’ dot1 ’ , ’ l o r 1 ’ ) ∗
t h e t ( ’ dot1 ’ , 0 )∗ vA( ’ l o r 1 ’ , ’ gaug ’)− i ∗ t h e t ( ’ udot1 ’ , 0 )∗
t h e t ( 0 , ’ udot1 ’ ) ∗ t h e t (0 , ’ dot1 ’ ) ∗ ( sLamb2 ( ’ dot1 ’ , 0 , ’ gaug ’ ) )
+i ∗ t h e t (0 , ’ dot1 ’ ) ∗ t h e t ( ’ dot1 ’ , 0 )∗ t h e t ( ’ udot1 ’ , 0 )∗
( sLamb1 (0 , ’ udot1 ’ , ’ gaug ’ ))+1/2∗ t h e t ( 0 , ’ dot1 ’ ) ∗
t h e t ( ’ dot1 ’ , 0 )∗ t h e t ( ’ udot1 ’ , 0 )∗ t h e t ( 0 , ’ udot1 ’ ) ∗ ( oD( ’ gaug ’ ) )
−1/4∗ t h e t ( 0 , ’ dot1 ’ ) ∗ t h e t ( ’ dot1 ’ , 0 )∗ t h e t ( ’ udot1 ’ , 0 )∗
t h e t ( 0 , ’ udot1 ’ ) ∗ vA( ’ l o r 1 ’ , ’ gaug ’ ) ∗ vA( ’ l o r 1 ’ , ’ gaug2 ’ )
)”

#de f i n e emV( c , a , b ) ”(
1
+ the t ( ’ udot1 ’ , 0 )∗ s igma (0 , ’ udot1 ’ , 0 , ’ dot1 ’ , ’ l o r 1 ’ ) ∗
t h e t ( ’ dot1 ’ , 0 )∗ vA( ’ l o r 1 ’ , ’ gaug ’)+ i ∗ t h e t ( ’ udot1 ’ , 0 )∗
t h e t ( 0 , ’ udot1 ’ ) ∗ t h e t (0 , ’ dot1 ’ ) ∗ ( sLamb2 ( ’ dot1 ’ , 0 , ’ gaug ’ ) )
− i ∗ t h e t (0 , ’ dot1 ’ ) ∗ t h e t ( ’ dot1 ’ , 0 )∗ t h e t ( ’ udot1 ’ , 0 )∗
( sLamb1 (0 , ’ udot1 ’ , ’ gaug ’))−1/2∗ t h e t ( 0 , ’ dot1 ’ ) ∗ t h e t ( ’ dot1 ’ , 0 )∗
t h e t ( ’ udot1 ’ , 0 )∗ t h e t ( 0 , ’ udot1 ’ ) ∗ ( oD( ’ gaug ’ ) )
−1/4∗ t h e t ( 0 , ’ dot1 ’ ) ∗ t h e t ( ’ dot1 ’ , 0 )∗ t h e t ( ’ udot1 ’ , 0 )∗
t h e t ( 0 , ’ udot1 ’ ) ∗ vA( ’ l o r 1 ’ , ’ gaug ’ ) ∗ vA( ’ l o r 1 ’ , ’ gaug2 ’ )
)”

Loca l a c t i on1 =’ c h i b a r (10 , a ) ’ ∗ ’emV(20 , b , c ) ’∗ ’ c h i (30 , d ) ’∗ ’ eV (40 , e , f ) ’ ;
∗ Loca l a c t i on2=s q r t (2 , 1 )∗ ’emV(20 , b , c ) ’∗ ’ c h i (20 , d ) ’∗ d5 ∗ ’emV(10 , a , b ) ’ ;
∗ Loca l a c t i on3 =’ c h i b a r (10 , a ) ’ ∗ ’emV(20 , b , c ) ’∗ ’ c h i (30 , d ) ’∗ ’ eV (40 , e , f ) ’ ;
∗ Loca l a c t i on4 =’ c h i b a r (10 , a ) ’ ∗ ’emV(20 , b , c ) ’∗ ’ c h i (30 , d ) ’∗ ’ eV (40 , e , f ) ’ ;
∗ . s o r t

#c a l l pa r t1
#c a l l pa r t2

#c a l l c o n t a i n s ( ac t i on1 , [ ttTT ] , output1 ) ;

Pr i n t +s ;
. end
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• und natürlich Lisa, für Rückhalt und unablässige Ermunterung in allen
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