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Abstract

This thesis investigates the polarisation states of intermediate vector bosons in di-boson pro-
cesses at the Large Hadron Collider (LHC). Of particular importance are vector-boson scat-
tering (VBS) processes, because VBS processes with longitudinally polarised bosons are very
sensitive to unitarity cancellations. This allows for precise tests of the Standard Model. The
Monte Carlo code BBMC was extended to compute processes with polarised vector bosons
at next-to-leading-order (NLO) quantum chromodynamics (QCD) and electroweak (EW)
accuracy using the double-pole approximation (DPA). This included the implementation of
the local and integrated massive-resonance counterterms needed to compute the EW real-
emission corrections in the presence of charged resonances. This has been the missing part
in the computation of NLO EW accurate predictions for polarised processes with electrically
charged W bosons in the DPA.

As vector-boson production processes are simpler than VBS processes they were studied
first, in order to test the implementation of the DPA formalism. The production of a Z and
W+ boson with semi-leptonic decay was the first process calculated. The computation was
done including the NLO QCD corrections. The second process that was studied was W+W−

production with purely leptonic decays including the NLO EW corrections. To compute this
process some of the massive-resonance counterterms had to be used. Then the focus was put
on the main goal, polarised VBS. Therefore, the third process studied was the scattering of
two polarised W+ bosons at NLO QCD and EW accuracy with both bosons decaying into
different flavour leptons. In VBS all of the massive-resonance counterterms are needed to
subtract the infrared (IR) divergences.

For the three processes both the integrated and differential cross-sections were calculated.
The computations were done with both bosons unpolarised and all combinations of trans-
versely and longitudinally polarised bosons. For all the studied processes, measurable LHC
observables were found that are sensitive to the polarisation of the resonant vector bosons.
A selection of the found observables is: the decay angle of the positron for ZW+ production,
the angular separation of positron and muon for W+W− production and the ratio of trans-
verse momenta of the subleading and leading charged lepton for W+W+ scattering. These
observables are well suited to be used for polarised templates to distinguish the polarisation
states in measurements.

The inclusion of NLO corrections is very important since their effects can differ con-
siderably between polarisation states. Particularly large differences were found for ZW+

production where the NLO QCD corrections range from −5% to +200% depending on the
polarisation state. For W+W− production the NLO EW corrections extend from −0.2%
to −2.5% and in W+W+ scattering the NLO EW+QCD corrections reach from −15% to
−21%. Furthermore, the NLO corrections have been shown to change the normalised shapes
of some differential cross-sections.
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Kurzzusammenfassung

Diese Dissertation behandelt die Polarisationszustände virtueller Vektorbosonen in Vektor-
bosonpaarproduktions- und Vektorbosonstreuprozessen am LHC. Hierbei sind Vektorboson-
streuprozesse von besonderer Wichtigkeit, denn die Streuung longitudinal polarisierter Vek-
torbosonen ist besonders empfindlich für die Unitaritätskompensationen. Diese ermöglichen
die Untersuchung des Standardmodells mit hoher Präzision. Der Monte Carlo Code BBMC
wurde erweitert, um polarisierte Prozesse in der Doppelpolnäherung mit Vektorbosonen bis
zur nächstführenden Ordnung zu berechnen. Dies beinhaltete die Implementierung der reellen
und integrierten massiven Resonanzgegenterme, die gebraucht werden, um die elektroschwa-
chen Korrekturen durch reelle Emissionen in der Anwesenheit von geladenen Resonanzen zu
berechnen. Das war Vorrausetzung, um Vorhersagen für Prozesse mit polarisierten Vektor-
bosonen machen zu können, die bis zur nächstführenden elektroschwachen Ordnung akkurat
sind.

Da Vektorbosonpaarproduktionsprozesse einfacher als Vektorbosonstreuprozesse sind,
wurden sie zuerst untersucht, um die Implementierung der Doppelpolnäherung zu testen.
Zuerst wurde die Produktion eines Z und W+ Bosons mit semileptonischem Zerfall berech-
net. In der Berechnung wurden die nächstführenden QCD Korrekturen berücksichtigt. Der
zweite untersuchte Prozess war die W+W− Paarproduktion, bei der beide Bosonen lepto-
nisch zerfallen. Für diesen Prozess wurden einige der massiven Resonanzgegenterme benötigt.
Als nächstes wurde der Fokus auf das Hauptziel, polarisierte Vektorbosonstreuung, gelegt.
Hierfür wurde als dritter Prozess die Streuung von zwei W+ Bosonen bis zur nächstführenden
QCD und elektroschwachen Ordnung berechnet. In dem untersuchten Prozess zerfallen beide
Bosonen in Leptonen unterschiedlicher Familien. In Vektorbosonstreuprozessen werden alle
massiven Resonanzgegenterme benötigt.

Für die drei analysierten Prozesse wurden die integrierten und die differenziellen Wir-
kungsquerschnitte ermittelt. Die Berechnungen wurden für den unpolarisierten Prozess und
für alle Kombinationen von transversaler und longitudinaler Polarisation durchgeführt. Für
alle drei Prozesse wurden messbare LHC Observablen gefunden, die sensitiv auf die Polarisa-
tion der Vektorbosonen sind. Eine Auswahl der gefunden Observablen ist: der Zerfallswinkel
des Positrons für ZW+ Produktion, der Winkel zwischen dem Positron und dem Muon für
W+W− Produktion und das Verhältnis der transversalen Impulse des nächstführenden und
führenden geladenen Leptons für W+W+ Streuung. Mit diesen Observablen können Tem-
plates erstellt werden. In Messungen kann mit ihnen zwischen den Polarisationszuständen
unterschieden werden.

Das Miteinbeziehen der nächstführenden Korrekturen ist entscheidend, da sie sich sehr
unterschiedlich auf die Polarisationszustände auswirken können. Besonders große Unterschie-
de wurden für die ZW+ Produktion gefunden. Die relativen nächstführenden QCD Korrek-
turen sind je nach Polarisationszustand −5% bis +200%. Die elektroschwachen Korrekturen
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zur W+W− Produktion reichen von −0.2% bis −2.5%. Die W+W+ Streuung erhält eine
−15% bis −21% Korrektur von der nächstführenden elektroschwachen und QCD Ordnung.
Insbesondere können die Korrekturen auch die Form der differenziellen Wirkungsquerschnit-
te ändern.
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Chapter 1

Introduction

1.1 Standard Model

The Standard Model of particle physics is the most successful model to describe the interac-
tions of particles at very small distances. In its form today it encompasses the electroweak
(EW) theory and quantum chromodynamics (QCD). To get to the well known form of
the Standard Model, prominently displayed on the European Organization for Nuclear Re-
search (CERN) coffee mug, much work by many great physicists was needed.

The construction of the Standard Model started with the formulation of quantum elec-
trodynamics (QED) [1–3] in the late 1920s. This allowed for a consistent explanation of
the emission and absorption of photons off and by electrons. This was the first interact-
ing quantum theory that included special relativity that could be tested in nature. In the
non-relativistic theory of atoms, giving electrons a spin degree of freedom was needed to
explain why two electrons could occupy the same energy state. However, it lacked a fun-
damental motivation for the existence of spin. In a relativistic quantum theory the spin
is a consequence of particle states transforming in unitary representations of the Poincaré
group. In QED electrons are Dirac fermions and have four intrinsic degrees of freedom: two
for the spin states and two for the antiparticle states. The corresponding antiparticle of the
electron, the positron, was discovered in cosmic rays [4] soon after.

Despite the initial success of QED in explaining many phenomena in nature, when at-
tempting to compute higher perturbative orders divergences appeared rendering the predic-
tions unusable. In higher-order corrections loop diagrams are present. In loop diagrams not
all momenta are fixed by the external momenta and four-momentum conservation. Instead,
an integration over all loop momenta is performed. These integrals in general do not have
well-defined solutions as they can be divergent. There are two types of divergences that can
be present: ultraviolet (UV) divergences and infrared (IR) divergences. The UV divergences
stem from an insufficiently fast fall-off of the integrand in the limit where the loop mo-
mentum approaches infinity. The IR divergences originate from the denominator of a loop
propagator vanishing when the loop momentum is zero or collinear to one of the external
legs of the loop. The treatment of the divergences boils down to the in principle trivial
statement that only physical observables, quantities that are measured in experiments, have
to be finite. The loop integrals are not physical observables. Therefore, as long as the final
result of the prediction is finite, the divergences in intermediate steps of the calculation pose
no fundamental problem. To deal with the IR divergences it has to be taken into account
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Chapter 1. Introduction

that not all final-state particles are observable as separated tracks or energy deposits in
the detector. Any detector will have an energy threshold below which it will not register a
particle and a separation threshold below which multiple particles are detected as one. The
mere existence of these fundamental detector limitations requires the inclusion of processes
with degenerate final states. In practice this means that processes with additional massless
final-state particles that can produce the same signal in the detector have to be considered.
These are called the real-emission contributions. Like the contributions from loops they also
feature IR singularities. However, they do not stem from the integration over unconstrained
momenta in loops, instead they arise from the phase-space integration over the momenta of
the additional final-state particles. When a final-state particle is produced with vanishing
momentum or in the same direction as another particle internal propagators can become sin-
gular. For QED the IR divergences of the loop integrals and the real-emission processes are
shown to cancel order by order [5]. The cancellation of the IR divergences in more general
theories is shown by the Kinoshita-Lee-Nauenberg (KLN) theorem [6, 7]. When both the
virtual and real-emission contributions are included the final result is free of IR divergences.
The UV divergences have to be treated in a different manner. Renormalisation allows for
the removal of the UV divergences by shifting them to the unobservable bare parameters.
The predictions of observables are then only dependent on measured quantities, which are
by definition finite and not on unobservable bare quantities. Thus keeping the measurable
observables finite. With the singularities removed also loop effects such as the Lamb shift
could be measured [8].

The inclusion of the weak and the strong force was accompanied by additional con-
ceptional challenges. By the 1950s a large number of particles that are today classified
as hadrons had been discovered in collider and cosmic ray experiments. This diverse as-
sortment of particles was called the particle zoo. The formulation of the quark model in
1964 [9, 10] allowed for the disentanglement of all the discovered particles. In the quark
model the discovered hadrons are bound states of quarks. Among the discovered hadrons
were also spin three half particles like the ∆++ [11] that are symmetric in all quantum num-
bers known at that time. The contradiction of having a fermionic half integer spin particle
that is symmetric could be resolved by introducing a colour quantum number. This sparked
the formulation of QCD as a local SU(3)colour gauge theory. QCD predicts a gauge boson,
the gluon, that mediates the strong interaction. The theory was backed up when experi-
ments at Positron-Electron-Tandem-Ring Accelerator (PETRA) found three-jet events that
confirmed the existence of the gluon [12–15].

The last building block of the Standard Model came with the unification of the electro-
magnetic and the weak interaction to the EW part of the Standard Model. The first model
of the weak interaction, the Fermi theory [16], was very successful in describing beta decays
and the decay of the muon. But the theory was soon found to be non-renormalisable meaning
it could only be used as an effective theory at low energies. To make predictions that re-
main valid at high energies a new theory was needed. The Glashow-Salam-Weinberg (GSW)
model [17–20] with the local symmetry SU(2)⊗ U(1) seemed to be a promising candidate.
In gauge theories the invariance under the chosen symmetry forbids explicit mass terms for
the vector bosons. The GSW model circumvents this problem by introducing a spontaneous
breaking of the gauge symmetry [21–24]. This added an additional scalar particle, later
named the Higgs boson, that through its interaction with the gauge bosons gives them their
mass. The predicted heavy gauge bosons were discovered in 1983 at Super Proton Syn-

2



1.1. Standard Model

chrotron (SPS) experiments (W boson [25, 26], Z boson [27, 28]). Finding the scalar boson
proved more difficult as its potential mass range was much less constrained by existing meas-
urements and theoretical considerations. In 2012 first indications of the Higgs boson were
discovered at the Large Hadron Collider (LHC) in Geneva by the A Toroidal LHC Appar-
atus (ATLAS) [29] and Compact Muon Solenoid (CMS) collaborations [30] completing the
particle set of the Standard Model.

Today’s Standard Model is a quantum field theory (QFT) containing fermion fields,
vector-boson fields and one scalar boson field. It has Lorentz symmetry making it a relativ-
istic QFT. The interactions are described as gauge interactions with the symmetry group

SU (3)colour ⊗ SU (2)weak isospin ⊗ U (1)hypercharge . (1.1)

This symmetry is spontaneously broken via the Higgs mechanism.

The Standard Model has given us a theoretical description of many observed phenomena
in nature. It has been tested to great precision in many different experimental setups like
high-energy collider experiments, cosmic ray experiments, atomic physics and many others.
So far it has been confirmed by these experiments; however, the Standard Model cannot
describe all phenomena observed in nature. Its first shortcoming is that the Standard Model
does not include gravity. In our goal to find a theory of everything a theory that only covers
three of the four fundamental forces is only a partial success. So far none of the proposed
theories that combine gravity and the Standard Model could be experimentally verified.
Furthermore, the Standard Model does not give any explanation for dark-matter phenomena
observed in astrophysical measurements. The observed motion of stars in a galaxy cannot
be explained by visible objects alone. From extensive astrophysical measurements we can
conclude that dark matter cannot be made solely from Standard Model particles. Also the
observed phenomenon of dark energy, detected when measuring the rate of expansion of the
universe, cannot be explained by the Standard Model. In the most primitive form of the
Standard Model the neutrinos are massless which contradicts the findings from neutrino-
oscillation experiments. It was found that neutrinos could be measured with a different
flavour than the one they were initially created with. This is only permitted if the weak
eigenstates in which they are created are different from the mass eigenstates in which they
travel long distances. The weak eigenstates and the mass eigenstates can only be different
when the neutrinos are massive. Additionally there are many that argue that the Standard
Model lacks naturalness as it does not give any reason why the theory input parameters have
the values that they have.

The before listed problems make it clear that the Standard Model cannot be the final an-
swer in physics and that some form of extension or an entirely new theory is needed. Today
there is no shortage of theories that claim to give explanations to some or all of the short-
comings of the Standard Model previously mentioned. Yet so far there is no clear indication
which of these if any are realised in nature. Therefore, it is important to understand where
the Standard Model starts to break down. This requires very precise experimental meas-
urements which can be compared to equally precise theoretical predictions of the Standard
Model.
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Chapter 1. Introduction

1.2 Testing the Standard Model with vector-boson pair-

production and vector-boson-scattering processes

There are numerous ways to test the validity of the Standard Model in the field of high-
energy physics. The focus here is providing precise predictions for polarised di-boson pro-
cesses: vector-boson pair production and vector-boson scattering (VBS). In vector-boson
pair production final states are studied that can stem from the decay of two intermediate
EW vector bosons. The final state of VBS entails particles that can stem from the decay
of two intermediate vector bosons and two jets. These processes are well suited to test the
Standard Model because of their sensitivity to the exact method of EW spontaneous sym-
metry breaking. In VBS and to a lesser extent also in vector-boson pair-production processes
there are contributions which individually would cause violations to the unitarity of the per-
turbative S-matrix [31, 32]. These stem from the high-energy behaviour of the polarisation
vectors. While the transverse polarisation vectors are constant in the high-energy limit, the
longitudinal polarisation vectors grow with the energy. The high-energy behaviour of the
transverse and longitudinal polarisation vectors is a general property and is seen in their
explicit form used in the performed calculations [33]. The polarisation vector of a vector
boson with mass M and four-momentum

p =

(
p0
p⃗

)
=


p0
px
py
pz

 (1.2)

reads

ϵ± =
1√

2|p⃗|
√

p2x + p2y


0

∓pxpz + ipy|p⃗|
∓pypz − ipx|p⃗|
±(p2x + p2y)

 , ϵ0 =
1

M |p⃗|


|p⃗|2
pxp0
pyp0
pzp0

 . (1.3)

The right- and left-handed polarisation vectors are ϵ± and the longitudinal one is ϵ0. In the

high-energy limit the longitudinal polarisation vector grows with O
( p0
M

)
.

Therefore, in principle the amplitude for the scattering of longitudinally polarised vector
bosons could grow with the fourth power of the center of mass (CM) energy

√
s. In a

perturbative theory the unitarity of the S-matrix restricts how fast an amplitude can grow
with the energy. In the Standard Model at high energies the problematic contributions
cancel, keeping the theory perturbative and the S-matrix unitary. These are the unitarity
cancellations.

Using the derivation from Ref. [34] it can be shown how perturbation theory breaks down
when the amplitude grows with the energy. From the requirement that the time evolution
of the quantum states is unitary follows the optical theorem

Im (M (A → A)) = 2
√
s|p⃗i|

∑
X

σ (A → X) . (1.4)

It relates the imaginary part of the forward scattering amplitude of a transition from a two-
particle state A to itself to a sum of scattering cross-sections of the transition from the state
A to an arbitrary state X. Here p⃗i is the three-momentum of one of the initial states in the
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1.2. Testing the Standard Model with vector-boson processes

CM frame and
√
s is the CM energy. The optical theorem holds for arbitrary two-particle

states A. To derive a threshold for the amplitude one first uses that the cross-section of any
physical process has to be greater or equal to zero; therefore,

Im (M (A → A)) ≥ 2
√
s|p⃗i|σ (A → A) . (1.5)

Inserting that the cross-section for two particle scattering is the absolute value of the amp-
litude square times a kinematic factor integrated over the decay phase space gives

Im (M (A → A; θ = 0)) ≥ 2
√
s|p⃗i|

∫
1

64π2s
|M (A → A; θ)|2 d cos(θ)dφ . (1.6)

Carrying out the integration over the angle φ results in

Im (M (A → A; θ = 0)) ≥ |p⃗i|
16π

√
s

∫ 1

−1

|M (A → A; θ)|2 d cos(θ) . (1.7)

To get a threshold where perturbation theory can be used consistently the amplitude is
expanded in a sensible set of functions. Afterwards the integral over cos(θ) is performed.
This results in a criterion for the expansion coefficients.

A criterion that is very useful for longitudinal VBS is the partial-wave unitarity bound. To
derive the partial-wave unitarity bound the amplitude is expanded in Legendre polynomials
of cos(θ)

M (A → A; θ) = 16π
∞∑
j=0

aj (2j + 1)Pj (cos(θ)) . (1.8)

Using the orthogonality of the Legendre polynomials the integration over cos(θ) is performed
giving

∞∑
j=0

(2j + 1) Im (aj) ≥
2|p⃗i|√

s

∞∑
j=0

(2j + 1) |aj|2 . (1.9)

When considering the scattering of angular-momentum eigenstates the inequality holds for
all terms in the series individually [35] giving

Im (aj) ≥
2|p⃗i|√

s
|aj|2 . (1.10)

In the limit where the process (A → X) is dominated by elastic scattering (A → A) the
equality is fulfilled; furthermore, taking the limit of large energies

√
s = 2|p⃗i| holds simpli-

fying the expression to
Im (aj) = |aj|2 . (1.11)

So far the coefficients aj are those of the amplitude computed to all orders. To obtain a
criterion for the amplitude computed to a fixed order an expansion in a generic coupling
constant g

aj =
∞∑
k=0

g2(k+1)aj,k , (1.12)

where k runs over the number of loops in the amplitude, is inserted resulting in

∞∑
k=0

g2(k+1) Im (aj,k) =

∣∣∣∣∣
∞∑
k=0

g2(k+1)aj,k

∣∣∣∣∣
2

. (1.13)
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Figure 1.1: Tree-level contributions to the scattering of longitudinally polarised W+ bosons.
Individually all of them violate the unitarity of the S-matrix.

Taking the terms with equal powers in the coupling of the amplitude results in the relation

g4 Im (aj,1) = g4 |aj,0|2 (1.14)

for the imaginary part of the one-loop coefficient and the absolute value squared of the
tree-level coefficient.

This means that the unitarity of the S-matrix allows one to get an estimate of the
potential size of the higher-order contributions to the amplitude. Therefore, when the tree-
level coefficient is of order one, the coefficient from the loop contribution will also be at least
of order one. When this is the case, all terms in the perturbative expansion are of similar
size and the theory is non-perturbative. This results in the condition for the coefficient of
the tree-level amplitude

|aj,0| ≤ 1 . (1.15)

This relation restricts the possible range of coefficients in a unitary theory where perturba-
tion theory is valid. This is only a rough bound where perturbation theory definitely breaks
down, as already a too slow fall-off of the higher-order terms prevents convergence. By
computing the scattering amplitude for the processes of interest, here the scattering of lon-
gitudinally polarised vector bosons, with pertubation theory and expanding the result in
Legendre polynomials an explicit kinematic bound can be derived. Having an amplitude
that grows with the CM energy will lead to an energy threshold. When the perturbative
amplitude is beyond the bound given by the unitarity of the S-matrix, perturbation theory
breaks down and the perturbatively computed amplitude is wrong.

For longitudinal W+W+ scattering the problematic contributions are depicted in Figure 1.1.
For same-sign W+ scattering

W+
L (p1) +W+

L (p2) → W+
L (p3) +W+

L (p4) (1.16)
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1.2. Testing the Standard Model with vector-boson processes

the momenta and polarisation vectors can be written as

p1 =
1

2


√
s√

s− 4M2
W

0
0

 , p2 =
1

2


√
s

−
√
s− 4M2

W

0
0

 ,

p3 =
1

2


√
s

cos(θ)
√

s− 4M2
W

0

sin(θ)
√

s− 4M2
W

 , p4 =
1

2


√
s

− cos(θ)
√

s− 4M2
W

0

− sin(θ)
√
s− 4M2

W


(1.17)

and

ϵ0(p1) =
1

2MW


√

s− 4M2
W√

s
0
0

 , ϵ0(p2) =
1

2MW


√
s− 4M2

W

−√
s

0
0

 ,

ϵ0(p3) =
1

2MW


√

s− 4M2
W

cos(θ)
√
s

0
sin(θ)

√
s

 , ϵ0(p4) =
1

2MW


√
s− 4M2

W

− cos(θ)
√
s

0
− sin(θ)

√
s

 .

(1.18)

Applying the Feynman rules to the diagrams depicted in Figure 1.1 results in the following
amplitudes. The t-channel photon- and Z-boson-exchange diagrams give

M1 =
1

16M4
W

(
e2

(cos(θ)− 1) (4M2
W − s)

+
e2 cot2(ϑW)

(cos(θ)− 1) (4M2
W − s) + 2M2

Z

)
× (s2 cos3(θ)

(
4M2

W − s
)
− s cos2(θ)

(
160M4

W − 36M2
Ws+ s2

)
+ cos(θ)

(
64M6

W + 112M4
Ws− 52M2

Ws2 + 5s3
)

+ 64M6
W − 16M4

Ws+ 12M2
Ws2 − 3s3) .

(1.19)

The quartic-gauge-boson-coupling diagram gives

M2 =
e2s (6s− 2s cos2(θ)− 16M2

W)

16 sin2(ϑW)M4
W

. (1.20)

The t-channel Higgs-exchange diagram gives

M3 =
e2 (s (cos(θ)− 1) + 4M2

W)
2

8 sin2(ϑW)M2
W ((cos(θ)− 1) (4M2

W − s) + 2M2
H)

. (1.21)

The u-channel photon- and Z-boson-exchange diagrams give

M4 =
1

16M4
W

(
e2

(cos(θ) + 1) (4M2
W − s)

+
e2 cot2(ϑW)

(cos(θ) + 1) (4M2
W − s)− 2M2

Z

)
× (s2 cos3(θ)

(
4M2

W − s
)
+ s cos2(θ)

(
160M4

W − 36M2
Ws+ s2

)
+ cos(θ)

(
64M6

W + 112M4
Ws− 52M2

Ws2 + 5s3
)

− 64M6
W + 16M4

Ws− 12M2
Ws2 + 3s3) .

(1.22)
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The u-channel Higgs-exchange diagram gives

M5 = − e2 (s(cos(θ) + 1)− 4M2
W)

2

8 sin2(ϑW)M2
W ((cos(θ) + 1) (4M2

W − s)− 2M2
H)

. (1.23)

As expected, individually these amplitudes grow with the CM energy
√
s. Expanding the

expressions for large CM energies (
√
s ≫ MW,MZ,MH) results in

M1 =
e2 (cos2(θ) + 2 cos(θ)− 3) s2

16 sin2(ϑW)M4
W

− 2e2 cos(θ)s

M2
W

+
e2 (3M2

Z + (M2
Z − 16M2

W) cos(θ)) cos2(ϑW)s

8 sin2(ϑW)M4
W

+O
(
s0
)
,

(1.24)

M2 = −e2 (2 cos2(θ)− 6) s2

16 sin2(ϑW)M4
W

− e2s

sin2(ϑW)M2
W

+O
(
s0
)
, (1.25)

M3 = −e2(cos(θ)− 1)s

8 sin2(ϑW)M2
W

+O
(
s0
)
, (1.26)

M4 =
e2 (cos2(θ)− 2 cos(θ)− 3) s2

16 sin2(ϑW)M4
W

+
2e2 cos(θ)s

M2
W

+
e2 (3M2

Z + (16M2
W −M2

Z) cos(θ)) cos
2(ϑW)s

8 sin2(ϑW)M4
W

+O
(
s0
)
,

(1.27)

M5 =
e2(cos(θ) + 1)s

8 sin2(ϑW)M2
W

+O
(
s0
)
. (1.28)

The amplitudes from the quartic-gauge-boson-coupling and the vector-boson-exchange dia-
grams grow with O(s2) in the high-energy limit. The Higgs-exchange diagrams grow with
O(s). Summing all the diagrams with purely vector-boson exchanges results in

M1 +M2 +M4 = − e2s

4 sin2(ϑW)M2
W

+O
(
s0
)
, (1.29)

where the relation MW = cos(ϑW)MZ was used to simplify the expression. The O(s2) terms
cancel. This is a consequence of relations between the couplings of the triple- and quartic-
gauge-boson vertices, which themselves are required by gauge invariance. Summing the
contributions to the amplitude from the t- and u-channel Higgs exchanges gives

M3 +M5 =
e2s

4 sin2(ϑW)2M2
W

+O
(
s0
)
. (1.30)

This is the same expression as Eq. (1.29) up to an opposite overall sign; therefore, in the
full Standard Model no problematic terms remain. By using the partial-wave unitarity
bound it is possible to get an estimate for the CM energy where a Standard Model without
Higgs would become non-perturbative. Taking the O(s) term and expanding it in Legendre
polynomials results in

16π
∞∑
j=0

aj,0 (2j + 1)Pj (cos(θ)) = − e2s

4 sin2(ϑW)M2
W

, (1.31)
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103

s  [GeV]

100

101

102

103

104

105

 [p
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Total cross section for W+W+ W+W+
′ (10 < < 170 )

solid: SM, dashed: no Higgs

UU
LL
TT
TL+LT

Figure 1.2: Total cross-sections for on-shell W+W+ → W+
λW

+
λ′ scattering at tree level, as

functions of the di-boson CM energy. The two initial bosons are unpolarised, while the two
final ones can be in a longitudinal (L) or transverse (T) polarisation state. Numerical results
have been obtained with Recola 1 [33,36] for the complete Standard Model (solid curves)
and in the absence of Higgs-mediated diagrams (dashed curves). Figure taken from Ref. [37].

with

a0,0 = − 1

16π

e2

4 sin2(ϑW)

s

M2
W

and aj,0 = 0, j > 0 . (1.32)

The partial-wave unitarity bound |aj,0| ≤ 1 is then applied to the computed coefficients
resulting in the expression

64π sin2(ϑW)

e2
≥ s

M2
W

(1.33)

as a bound on the energy. Plugging in the numerical values leads to that for CM energies√
s ≳ 1.8TeV the Standard Model without a Higgs bosons is non-perturbative.

The discussion of the unitarity cancellation so far only focussed on the amplitude. The
amplitude is not directly measurable; therefore, it is important to understand how the cancel-
lation or the non-cancellation affects physical observables. In Figure 1.2 the cross-section for
the scattering of two polarised W+ bosons is shown. When all Standard Model contributions
are included the cross-section decreases with the CM energy as is required by the unitarity
of the S-matrix. When the contributions from the Higgs exchange are omitted the cross-
sections of the transverse transverse (TT), transverse longitudinal (TL) and longitudinal
transverse (LT) states only change slightly. For the longitudinal longitudinal (LL) polar-
isation state the cross-section increases very fast with the energy. This is caused by the
missing diagrams that prevent the cancellation resulting in a cross-section that grows with
the energy. As the transverse polarisation vectors feature a constant behaviour in the high-
energy limit the scattering of transversely polarised bosons is not sensitive to the unitarity
cancellations. The unpolarised cross-section also has an enhancement at high energies as it
contains a contribution from both W bosons being longitudinally polarised. In contrast to
the LL polarisation state the energy at which the curves with Higgs and without Higgs show
significant differences is much higher. As the unpolarised cross-section contains contribu-
tions from all polarisation states, the effects of the unitarity cancellations become obscured.
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Chapter 1. Introduction

This is particularly apparent in di-boson processes where the contribution from the TT state
is generally much larger than the one from the LL state.

Since their effects are more apparent, when all vector bosons taking part in the scattering
are longitudinally polarised, explicitly searching for the purely longitudinal signal grants
additional sensitivity to the unitarity cancellations. Extensions of the EW sector of the
Standard Model can affect the unitarity cancellations. In particular, additional particles
that couple to the vector bosons or modified couplings of the vector bosons can disrupt
the unitarity cancellations. Such extensions of the Standard Model could shift the scale at
which the unitarity cancellations happen to much higher energies or prevent the cancellations
entirely. When this is the case in processes like VBS, that are very sensitive to the unitarity
cancellations, even nominally small deviations from the Standard Model are enhanced in
the high-energy regions. This makes the study of polarised VBS processes a very crucial
building block in understanding the Standard Model. The sensitivity of vector-boson pair-
production processes to the unitarity cancellations and therefore to beyond the Standard
Model contributions is smaller than for VBS processes. For vector-boson pair-production
processes the diagrams containing a Higgs boson are suppressed by the light quark masses at
leading-order (LO). Diagrams with a Higgs exchange between vector bosons only contribute
at the one-loop order and higher. However, vector-boson pair-production processes have
less final-state particles simplifying their study. This makes them ideal to test both the
computational tools needed for the calculation of next-to-leading-order (NLO) corrections
and experimental analysis methods needed to measure them.

1.3 Polarisation of virtual particles

In the previous section it has been explained why the study of longitudinally polarised vector
bosons is an integral part for testing the Standard Model. However, only the polarisation
of stable external particles is defined unambiguously and can be measured in experiments.
The polarisation of intermediate virtual particles is not a well defined observable and is not
directly experimentally accessible. The W and Z bosons, which are of interest here, have
a mean lifetime of τ ≈ 3 · 10−25s; therefore, they cannot be treated as stable final-state
particles. To define the polarised signal in theoretical calculations a special framework is
needed. In this framework the vector bosons have to be treated as if they were on-shell
external particles to assign polarisation vectors to them. Furthermore, it has to select,
gauge invariantly, the diagrams that contain the intermediated particle studied. One such
method is the double-pole approximation (DPA) detailed in Chapter 2. This means that the
polarisation states of the vector bosons are only uniquely defined within such a framework
using a different method will give a different polarisation definition. While the polarisation
cannot be measured experimentally, the polarisation fractions can be extracted by measuring
the cross-sections and fitting them to polarisation templates. The polarisation fractions
are the ratios at which each polarisation state contributes to the unpolarised signal. The
extracted polarisation fractions can then be compared to the theoretical predictions.

The polarised templates are the normalised shapes of differential cross-section distribu-
tions. For the creation of polarised templates that can be used for polarisation discrimin-
ation it is crucial to find observables for which the shape of the differential cross-section
varies greatly with the polarisation. It is important to note that the polarisation templates
depend on the exact model they were created with. In particular, it is expected that beyond
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1.3. Polarisation of virtual particles

the Standard Model physics does not only change the polarisation fractions but also the
shapes of the distributions. This means that ideally one should choose observables where
the shape of the distribution is insensitive to beyond the Standard Model effects. Templates
from such observables can be created in a purely Standard Model computation and can
be used to measure the polarisation fractions also in beyond the Standard Model analyses.
Generally these are observables which only depend on the decay of one of the studied res-
onances. It is expected that the new physics only results in very small corrections to the
decays. Observables which have a large dependence on the production of the resonances can
feature considerable shape changes from the inclusion of beyond the Standard Model physics.
Therefore, these observables are only suited to discriminate polarisation states in an analysis
that uses the same model as the one that was used to create the templates. Therefore the
polarised templates would have to be recomputed when performing an analysis in a different
model.

The thesis is structured as follows:

• In Chapter 2 the method, the DPA, that is used to define polarised cross-sections is
detailed. In particular, it is shown how to select the polarisation of a virtual particle
in a gauge-invariant way.

• In Chapter 3 the treatment of IR divergences present in the NLO EW corrections to
DPA processes with charged resonances is discussed. This includes how the needed
subtraction counterterms both local and integrated are constructed.

• In Chapter 4 the methods described in Chapter 2 and Chapter 3 are used to compute
the polarised cross-section for vector-boson pair-production processes. The particular
processes discussed are ZW+ and W+W− production.

• In Chapter 5 the results of the computation of polarised W+ W+ scattering are studied.

• Chapter 6 concludes the thesis with some final remarks.

11



Chapter 1. Introduction

12



Chapter 2

Double-pole approximation

To compute polarised cross-sections the DPA is used. This chapter explains the details of
the DPA applied in the calculations carried out in Chapters 4 and 5. The methods used in
the calculations follow the DPA definition from Refs. [37–39].

The DPA used in the computations here is the special case of a general pole approxim-
ation (PA) with two resonances. Originally the main use of the PA formalism was as an
approximation of a full off-shell process. The PA is a valid approximation in phase-space
regions dominated by contributions from s-channel resonances that are close to on-shell.

Nominally the PA reproduces the full off-shell process up to terms of O
(

Γres

Mres

)
, where Γres

and Mres are the decay width and the mass of the studied resonances. The main use of the
PA is simplifying the computations of higher-order corrections. The PA is particularly useful
when the NLO non-resonant effects are smaller than the wanted accuracy of the predictions.
When the PA is performed, the contributing loop diagrams that need to be evaluated are
considerably simpler compared to the full off-shell computation.

When computing the cross-sections of polarised processes the PA is not used as an approx-
imation but to define the on-shell signal. To compute processes with polarised intermediate
particles polarisation vectors need to be assigned to them. This is only possible when said
particle is present as an s-channel resonance in all contributing diagrams. For most processes
there will be diagrams that do not have all the wanted resonances of which the polarisation
is studied. These diagrams have to be removed in a consistent and gauge invariant man-
ner to have a meaningful definition of the polarisation of intermediate particles. The naive
approach of simply discarding the non-resonant contributions leads to a gauge-dependent
amplitude and cross-section. To remove the non-resonant contributions and keeping the
amplitude gauge independent a PA [40–43] can be used.

2.1 General method

In a full off-shell computation all diagrams corresponding to the chosen initial and final state
are included. In a PA a set of intermediate massive s-channel resonances, that is present in
the process, is chosen. The PA amplitude is split into a production part, decay parts and the
propagators of the chosen resonances. The diagrams that cannot be split in this manner are
discarded. This removes any diagrams that do not have the wanted resonances. To preserve
gauge invariance the momenta of the resonant particles are projected on-shell {p} ⇒ {p̃}:
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Chapter 2. Double-pole approximation

p̃2res,i =
(∑ni

j=1 p̃decay,i,j

)2
= M2

res,i. The PA amplitude takes the form

MPA

(
{p̃}, p2res

)
= Mµ1...µn

production ({p̃})
n∏

i=1

Nµiνi ({p̃})
p2res,i −M2

res,i + iMres,iΓres,i

Mνi
decay ({p̃}) . (2.1)

While the production amplitude, the decay amplitudes and the numerators of the resonant
propagators are evaluated with the on-shell projected momenta (denoted with a tilde), the
denominators of the resonant propagators are evaluated with the off-shell momenta (without
a tilde). The explicit functional form of the numerator of the propagator N depends on the
type of the resonant particle. Similarly the type of indices that µi and νi are also depends
on the type of the resonant particle, for resonant vector bosons they are Lorenz indices, for
fermionic resonances they are spinor indices. In the production and decay subprocesses the
resonances are external particles; therefore, to conserve gauge invariance their decay width
is set to zero in the production and decay amplitude. Keeping the off-shell momenta of the
resonances in the denominators of the propagators, preserves some of the off-shell effects like
the Breit-Wigner shape of the resonance. Off-shell effects in the numerator of the propagator
and in the production and the decay subprocesses are not included in a PA. Such effects are
considered beyond the accuracy of the PA. The phase-space integration is performed over
the off-shell phase space giving

σPA =

∫
1

(2E1) (2E2) |v⃗1 − v⃗2|
∣∣MPA

(
{p̃ ({p})} , p2res

)∣∣2 dΠ({p}) . (2.2)

This means that any phase-space cuts are applied to the off-shell momenta. Furthermore,
the histogram binning used to compute differential cross-sections is done with the off-shell
momenta. This ensures that the Breit-Wigner shape is recovered in differential cross-sections
with respect to the invariant mass of a resonance.

Which diagrams contribute can be best seen with an example. Taking the process of
W+W+ scattering, where the two W bosons are set as resonant, the full off-shell process is

uu → e+νeµ
+νµdd . (2.3)

In the full off-shell computation all of the diagrams resonant and non-resonant depicted in
Figure 2.1 are included. The PA process is

uu → W+
(
→ e+νe

)
W+

(
→ µ+νµ

)
dd . (2.4)

In a PA computation only the diagrams with one W+ boson decaying into a positron and
an electron neutrino and one W+ boson decaying into an antimuon and a muon neutrino as
depicted in Figure 2.1(a) are included. Diagrams of the type shown in Figure 2.1(b) have the
same final-state particles and are a needed in a full off-shell computation. They, however,
do not contain the required s-channel W bosons; therefore, they do not contribute to a PA
calculation and are a part of the non-resonant background. Furthermore, this means that
also interferences of resonant and non-resonant diagrams are not part of a PA. The PA
amplitude factorises as

MPA = M
(
uu → W+W+dd

)︸ ︷︷ ︸
production

× propagator 1×M
(
W+ → e+νe

)︸ ︷︷ ︸
decay 1

× propagator 2×M
(
W+ → µ+νµ

)︸ ︷︷ ︸
decay 2

.
(2.5)
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e+

νe

νµ

µ+

d

d

u

u

W+

W+

e+

νe

νµ

µ+

d

d

u

u

W+

W+

(a) Doubly resonant diagrams

e+

νe

νµ

µ+

d

d

u

u

(b) Non-resonant dia-
gram

Figure 2.1: Sample resonant diagrams that are included in a PA and non-resonant diagrams
that are excluded in a PA. The diagrams depicted here are for the sample process of W+W+

scattering.

The on-shell projection modifies the external momenta (pu,1, pu,2, pe+ , pνe , pµ+ , pνµ , pd,1, pd,2)
such that

(p̃e+ + p̃νe)
2 = M2

W ,
(
p̃µ+ + p̃νµ

)2
= M2

W (2.6)

holds.

So far all diagrams that do not feature the wanted resonance are removed. In gen-
eral one has to distinguish between factorisable and non-factorisable contributions. In the
calculations carried out in the following chapters only the factorisable contributions are
treated as part of the PA. The non-factorisable contributions are removed and treated as
part of the non-resonant background. Non-factorisable are those contributions that fea-
ture the wanted s-channel resonances, but that do not factorise into production and decay.
Figure 2.2 shows sample contributions that are non-factorisable. The non-factorisable con-
tributions can be loop diagrams where a massless propagator connects the production and
the decay or different decays. The diagram shown in Figure 2.2(a) is non-factorisable since
the photon connects the production subprocess

(
qq

′ → W+W+qq
′)
and the decay subprocess(

W+ → e+νe
)
. Another type of non-factorisable contribution is the interference of diagrams

where a massless final-state particle is emitted from one sub-process in one diagram, but
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q

q̄′
µ+

νµ

νe

e+

W+

W+

q

q̄′

γ

(a) Non-factorisable loop diagram

q

q̄′
µ+

νµ

νe
e+

γ

W+

W+

q

q̄′

×
q

q̄′
µ+

νµ

νe

e+

γ

W+

W+

q

q̄′

(b) Non-factorisable interferences

Figure 2.2: Non-factorisable contributions of the types shown here are neglected and not
part of the PA signal. The diagrams depicted here are for the sample process of W+W+

scattering.

from another sub-process in the second diagram. This is shown in Figure 2.2(b). In the first
diagram the photon is emitted from one of the decays and in the second diagram the photon
is emitted from the production. When both the non-factorisable virtual contributions and
real-emission contributions are removed together their sum is generally small [44–46]. When
observables are studied that are inclusive regarding the decay products of the resonances the
non-factorisable real and virtual contributions cancel against each other [47–49]. This means
that treating the non-factorisable contributions as non-resonant background only changes the
result by terms that are smaller than the intrinsic uncertainty of the PA.

As stated in the beginning of this chapter the size of the non-resonant background is

nominally of O
(

Γres

Mres

)
. How close to the full off-shell result the PA result ends up, depends

largely on the process studied. There are many effects that can worsen the performance
of a PA, in particular when there are other resonances besides the considered ones that
contribute to the same final state. An example of this in the context of di-boson processes,
is the s-channel Higgs resonance present in opposite sign W boson scattering. In the DPA
calculation, the two decay bosons are projected on-shell; therefore, only contributions where
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2.2. On-shell projection

the Higgs is far off-shell are included. In the full off-shell computation contributions, where
an on-shell Higgs decays into the two W bosons with one being off-shell, are also included.
Underlying resonances like the Higgs can cause larger non-resonant backgrounds. Different
underlying resonances are also important when studying vector bosons decaying into jets.
Here the contributions from resonant W+, W− and Z bosons cannot be distinguished by
the types of the decay particles. The contributions from the different resonances have to be
computed separately in different DPA calculations. Another important point to consider are
the phase-space cuts. If the event selection does not favour the resonant regions over the
non-resonant background, there can be larger differences between the PA and full off-shell
computation. How well the resonant contribution can be selected depends primarily on the
process. Having decays that include neutrinos that can only be treated as missing transverse
momentum can complicate the selection of the resonant regions.

2.2 On-shell projection

To evaluate the production and decay matrix elements as well as the numerators of the
resonant propagators a phase-space point with on-shell resonant particles is needed. There
are many ways of constructing a phase-space point with on-shell resonances from one with
off-shell resonances. The cross-sections computed with the PA will depend on the specific
choice of on-shell projection. This means in particular the polarisation definition depends
on the chosen on-shell projection.

However, not all of them will produce equally good results. Primarily one is interested in
a physically meaningful result. Therefore, the constructed on-shell phase-space point must
satisfy four-momentum conservation. Furthermore, the squares of the external momenta
(initial-state particles, decay particles of resonances and other final-state particles) must
remain equal to their respective masses squared. Without four-momentum conservation and
on-shell external particles the amplitudes of the production and decay sub-processes are
not well defined. In the limit where the phase-space point is already close to on-shell the
projection should become trivial and return the same phase-space point. A discontinuous on-
shell projection could lead to potentially large unphysical artefacts when integrating over the
phase space. If these requirements are considered, the explicit choice of on-shell projection
leads only to differences that are beyond the intrinsic accuracy of the PA.

On top of these mandatory constraints, a number of additional conserved quantities are
chosen for the on-shell projection used in the computations here. In particular, the on-shell
projection should conserve some of the angles between particles. Firstly the angle between
the two resonant particles in their CM frame should be conserved by the on-shell projection.
Secondly the angles between the decay products in the rest frame of their resonance are left
unchanged. These conditions will ensure that the collinear limits of possible real radiation
are approached smoothly. This allows for a proper cancellation of the IR singularities present
in real-emission processes with the local subtraction counterterms. By keeping the angles
between the decay particles constant, the angular part of the radiation phase-space measure
remains the same for the on- and off-shell momenta. This will become important in Chapter 3
when the correspondence of the local and integrated counterterms is studied in more detail.
Lastly the external momenta that are not associated to the decay of a resonance should be the
same for the on- and off-shell phase-space point. This prevents the on-shell projection from
shifting the phase-space point too far. Furthermore, in combination with four-momentum
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pres,1

pres,2

pdecay,1,1

...

pdecay,1,n1
pdecay,2,1
...
pdecay,2,n2

pfinal,1

...

pfinal,m

pinitial,1

pinitial,2

Figure 2.3: Generic doubly-resonant process with the momenta that are projected on-shell.
The arrows indicate the direction of the momentum flow.

conservation this preserves the sum of the resonant momenta.
The selected conserved quantities are tailored to processes with two resonances. The

method can be generalised to processes with more particles set as resonant as done in
Ref. [50].

2.2.1 Numerical implementation of the on-shell projection

With the before mentioned constraints the on-shell projection for two resonances is defined.
The implementation follows the steps performed in Ref. [39]. The formulas of the on-shell
projection are constructed for the generic doubly-resonant process

pinitial,1 + pinitial,2 → pres,1 (→ pdecay,1,1 + ...+ pdecay,1,n1)

+ pres,2 (→ pdecay,2,1 + ...+ pdecay,2,n2)

+ pfinal,1 + ...+ pfinal,m

(2.7)

shown diagramatically in Figure 2.3. The momenta of the initial-state particles are labelled
as pinitial,1 and pinitial,2. The momenta of the resonances pres,1 and pres,2 are the sum of the
decay particle momenta from the generated off-shell phase-space point

pres,1 =

n1∑
i=1

pdecay,1,i , pres,2 =

n2∑
i=1

pdecay,2,i . (2.8)

The momenta pfinal,j j ∈ {1, ...,m} correspond to other final-state particles that are not decay
particles of one of the resonances. After the on-shell projection, the resonances should have
the masses

p̃2res,1 = M2
res,1 , p̃2res,2 = M2

res,2 . (2.9)

The chosen criteria cannot be fulfilled by all valid off-shell phase-space points. The square
of the combined momenta of the two resonances must be at least the square of the sum of
the masses they are to be projected on. If

(Mres,1 +Mres,2)
2 ≤ (pres,1 + pres,2)

2 (2.10)
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2.2. On-shell projection

is not satisfied, an on-shell phase-space point with the required conditions does not exist.
When the off-shell phase-space point cannot be projected on-shell, the DPA amplitude is set
to zero.

To project the resonances on-shell, first the on-shell momenta of the resonances are
computed. From those the on-shell projected decay momenta are constructed. First a boost
is performed into the CM frame of the two resonances (denoted with a prime). In the CM
frame of the two resonances, their three-momenta are exactly back to back. Since the angle
between the two resonances in the CM frame is conserved, the resonances remain back to
back after the on-shell projection giving

p⃗′res,1 = −p⃗′res,2 , ⃗̃p′res,1 = −⃗̃p′res,2 . (2.11)

From this and from the fact that the sum of the resonant momenta are not changed follows(
E ′

res,1 + E ′
res,2

)2
= (pres,1 + pres,2)

2 = (p̃res,1 + p̃res,2)
2 =

(
Ẽ ′

res,1 + Ẽ ′
res,2

)2
. (2.12)

To satisfy the on-shell condition p̃2res,i = M2
res,i the energy in the CM frame is given by

Ẽ ′
res,1 =

√
|⃗̃p′res,1|2 +M2

res,1 , Ẽ ′
res,2 =

√
|⃗̃p′res,1|2 +M2

res,2 . (2.13)

Inserting the energy expressions into Eq. (2.12) and solving for the absolute value squared
of the on-shell projected three-mementum in the CM frame gives

|⃗̃p′res,1|2 =
(
(pres,1 + pres,2)

2)2 − 2 (pres,1 + pres,2)
2 (M2

res,1 +M2
res,2

)
+
(
M2

res,1 −M2
res,2

)2
4 (pres,1 + pres,2)

2 .

(2.14)
The three-momenta of both resonances are then rescaled to their new lengths keeping their
spatial directions fixed. This ensures that the requirement of preserving the angle in the
resonance CM frame is fulfilled. The on-shell energies of the resonances are then computed
from the on-shell condition in Eq. (2.13). Now the momenta of the resonances have the
desired masses. As initially the phase-space point was constructed in the lab frame the
newly on-shell projected resonant momenta are boosted back to the lab frame. This results
in the on-shell resonant momenta in the lab frame p̃res,1 and p̃res,2.

In the next step the on-shell projection first applied to the resonant momenta needs to
be applied to the decay momenta, which will be needed in the amplitude evaluation. To do
this one starts by taking the off-shell decay momenta of one of the resonances. The decay
momenta are then boosted into the CM frame of their off-shell resonance (denoted with a
double prime). Here only the case of massless decay particles is treated, the general case
of massive decay particles is considered in Ref. [50]. The decay momenta are then rescaled
with

p̃′′decay,j,i =
Mres,j√
p2res,j

p′′decay,j,i . (2.15)

The rescaling of the decay momenta keeps the angle between the decay particles of one res-
onance untouched fulfilling the requirement. The rescaled decay momenta are then boosted
back to the lab frame. This is done with the inverse of the boost to the CM frame of the
on-shell resonance. The on-shell decay momenta are then computed completely analogously
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Chapter 2. Double-pole approximation

for the other resonance. After this all on-shell momenta of the decay particles have been
calculated. The other external momenta are not changed by the on-shell projection giving

p̃initial,1 = pinitial,1, p̃initial,2 = pinitial,2 (2.16)

and

p̃final,j = pfinal,j , j ∈ {1, ...,m} . (2.17)

The on-shell phase-space point needed to compute amplitudes in the DPA is now complete.
As a shorthand notation the on-shell projection with two resonances, the first decaying into
i and the second into j particles is labelled as DPA(i,j).

2.3 Polarisation definition

With the methods described so far the calculation of unpolarised processes in the DPA
can be carried out. The primary focus of this thesis are polarised processes. The step
from unpolarised DPA to polarised DPA calculations is fairly straight-forward. In the DPA
the resonances are on-shell. Massive vector bosons have three physical polarisation states
and the unphysical auxiliary state that cancels against the contribution from the Goldstone
boson. Therefore, the numerator of the propagator only contains a sum over the physical
polarisation states (longitudinal (L), left (−) and right (+))∑

λ′=L,±

ε(λ
′)

µ (p̃res) ε
∗ (λ′)
ν (p̃res) = −gµν +

p̃resµp̃res ν
M2

res

. (2.18)

For a resonant W boson the unpolarised PA amplitude reads

MPA

(
{p̃}, p2res

)
= Mµ

production ({p̃})
i

(
−gµν +

p̃resµp̃res ν
M2

W

)
p2res −M2

W + iMWΓW

Mν
decay ({p̃}) . (2.19)

This expression is obtained from the general form shown in Eq. (2.1) by replacing the gen-
eric numerator of the resonant propagator, masses and decay widths with the ones of the
W boson. For simplification only one resonant propagator is studied. For the case of more
resonances the polarisation selection is performed for each resonance separately. The po-
larisation split is performed by replacing the polarisation sum with the desired physical
polarisation state λ [51, 52] in the numerator of the propagator,∑

λ′=L,±

ε(λ
′)

µ (p̃res) ε
∗ (λ′)
ν (p̃res) −→ ε(λ)µ (p̃res) ε

∗ (λ)
ν (p̃res) . (2.20)

As in the PA the resonant propagators are on-shell, the polarised amplitudes are defined
independently of the chosen gauge. The unpolarised PA amplitude is then written as the
sum over the polarised PA amplitudes

MPA =
∑

λ′=L,±

M(λ′)
PA . (2.21)
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2.4. Exceptions

To compute cross-sections the absolute value squared of an amplitude is needed. Squaring
the unpolarised PA amplitude results in

|MPA|2 =
∑
λ′

∣∣∣M(λ′)
PA

∣∣∣2 + ∑
λ′ ̸=λ′′

M(λ′)
PA M(λ′′)

PA

∗
, (2.22)

where the first term is the incoherent sum over the squared amplitudes with a fixed polar-
isation state, the second term contains the interferences of different polarisation states.

There is a further aspect where unpolarised and polarised amplitudes differ. As for the
full off-shell amplitude the unpolarised PA amplitude is frame independent. However, the
polarisation vectors ε

(λ)
µ (p̃res) of a polarisation λ do not transform as four-vectors. There-

fore, the polarised PA amplitude and cross-sections calculated from it are inherently frame
dependent. This means that what is treated as the signal from a specific polarisation will
depend on this choice of frame used to define the polarisation vectors. In principle, all
frame choices give equally valid polarised cross-sections. For di-boson processes, as the ones
studied in more detail in Chapters 4 and 5, a commonly used choice is the CM frame of the
two bosons. This frame is directly related to the interactions of the resonant vector bosons;
therefore, it might offer more sensitivity to the EW symmetry breaking. Another frame
choice that has been used in the past is the lab frame. The lab frame was used as it is the
simplest frame choice. Today it is only used very rarely in polarisation studies of di-boson
processes.

2.4 Exceptions

The DPA, as explained so far, cannot be used in a straight-forward manner for all processes.
Problems can arise when the studied final state allows for more resonances than the ones
explicitly treated as resonant in the PA. This is particularly relevant for VBS processes, while
for vector-boson pair-production processes additional resonances can only appear beyond
NLO accuracy. To preserve the gauge invariance of the amplitude for the production of W
and/or Z bosons the decay width of all internal W and Z propagators needs to be set to zero.
When studying a final state, where another W or Z boson can be in the s-channel, setting
the width to zero will result in a divergent amplitude.

Another issue is that the on-shell projection defined in Section 2.2 can shift certain in-
variants. Even though the definition of the on-shell projection is chosen in a way to avoid
large shifts in the relevant invariants some changes are necessary. A type of invariant that
can be subject to change is the one corresponding to the momenta of one decay and other
final-state momenta. In the notation from Section 2.2.1 this would for example be an invari-
ant like (pres,1 + pfinal,1 + pfinal,2)

2. This can become problematic when the studied final state
allows for an underlying resonance that is not treated in a PA. The shift of invariants from
the on-shell projection can shift the underlying resonance closer to being on-shell. In the
numerical integration of the process carried out with a Monte Carlo code this can lead to
large event weights that cause the convergence to become very unstable. For VBS processes
the invariant that can be problematic is the one of the decay particles of one vector boson
and the two jets. In partonic processes that have a triple-resonant background this invariant
corresponds to a s-channel Higgs boson that decays into an on-shell vector boson and two
jets. The on-shell projection can shift the invariant of the Higgs to or away from the reson-
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Chapter 2. Double-pole approximation

ance peak giving large enhancements or suppressions of the DPA cross-section compared to
the full of-shell process.

How these exceptions are handled for W+W+ scattering is discussed in Section 5.2.2.
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Chapter 3

Subtraction method for divergences
from unresolved real radiation in the
presence of charged resonances

This Chapter is based on the methods of Ref. [37]. In the previous chapter, the general
structure of the DPA has been explained. For predictions that are only LO accurate this is
enough. But to achieve accurate theoretical predictions higher-order corrections have to be
included. For contributions that feature the Born topology, such as virtual and integrated-
dipole contributions, the LO DPA can be applied analogously. More care has to be taken
when computing the NLO subtracted-real contributions. For chargeless resonances, like
the Z boson as seen in Figure 3.1, the computation of the NLO EW corrections is fairly
straightforward. The treatment of the IR singularities from unresolved real radiation can
be done with the same dipole structures used for the full off-shell process. Compared to
the full off-shell process only a subset of the dipoles (combinations of emitter, spectator
and emissus) are necessary. As in the DPA only diagrams are included that factorise into
production and decay, it matters from which subprocess the real radiation is emitted. This
means that only dipoles, where emitter, spectator and emissus are all external particles of
the same subprocess, are needed. In particular, only dipoles where emitter, spectator and
emissus all stem from the production or the same decay are included. Since non-factorisable
contributions are not considered in the DPA this is sufficient. To apply the DPA on-shell
projection to a process with real radiation from one of the decays the on-shell projection
must include the additional decay particle. The NLO QCD corrections with colour neutral
resonances as the W and the Z boson can be computed in the same manner. This has been
used in the past for vector-boson pair-production processes [39,52,53].

The calculation of the NLO EW corrections for processes with charged resonances is more
involved. With charged resonances new singular structures appear that are not present in the
full off-shell process. In the DPA the resonances are projected on-shell and the decay widths
of the resonant particles are set to zero everywhere, but in the two propagators explicitly
set as resonant. Therefore, the emission of soft photons can cause the denominators of the
intermediate propagators, corresponding to the particle of the charged resonance, to vanish
resulting in a divergence. In the full off-shell process the emission of a soft photon from a W
boson is not singular as the divergence is regulated by the decay width in the denominator
of the W propagator. This is different in the DPA where the emission of a soft photon from
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Chapter 3. Subtraction method for charged resonances
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Figure 3.1: Types of real-emission diagrams contributing in the case of chargeless reson-
ances, here displayed with the sample process ZZ pair production.
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Figure 3.2: Types of real-emission diagrams contributing in the case of charged resonances,
here displayed for the sample process of W+W+ scattering.
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3.1. Splitting real-emission diagrams with a partial fractioning

ℓ+ (k1)

νℓ (k2)W+

γ (k3)

MP

Figure 3.3: Photon-radiation off a W-boson propagator.

a W boson is singular. Therefore, simply removing the dipoles connecting production and
decay or different decays is not enough in the presence of charged resonances. When the real
radiation can be emitted from one of the resonances, additional counterterms are needed to
cancel the IR divergences. The methods to deal with the IR divergences in the presence of
charged resonances have been published in Ref. [37,54,55]. Not all real-emission partonic
processes have singular structures not present in the full off-shell process. Partonic processes
that have real-quark radiation do not have additional singularities. The IR singularities can
be treated in the same manner as for electrically neutral resonances.

In processes with chargeless resonances it is clear whether a diagram contributes to
the process with the radiation emitted from the production or from one of the decays.
For charged resonances this is not necessarily the case. For diagrams of the type depic-
ted in Figure 3.2(a) the radiation is part of the decay. For diagrams of the type shown
in Figures 3.2(b) and 3.2(c) the real radiation is evidently from the production. But for
diagrams with real radiation off the resonant propagators as shown in Figure 3.2(d), it is
not inherently clear whether this diagram should contribute to the production or the decay
subprocess. They are not uniquely part of the process with emission from the production
or the decay as they contribute to both processes. The diagram has to be split into two
contributions one for the production and one for the decay subprocess. The split is done
with a partial-fraction decomposition described in more detail in Section 3.1.

After the partial fraction split is performed, additional counterterms can be used to cancel
all IR singularities. These additional soft singularities need to be cancelled with subtraction
counterterms tailored to resonance processes. Their exact form and use is discussed in
Sections 3.2 and 3.3.

3.1 Splitting real-emission diagrams with a partial frac-

tioning

As mentioned before, to cancel the IR singularities present in the contributions with real
radiation off the resonant propagators, a split into a part associated with emission from
the decay and one with emission from the production is needed. The discussion follows the
example of the emission of a photon from a W boson but is completely analogous for photons
emitted from other charged resonances. Putting aside the DPA for a moment, the off-shell
amplitude for the subdiagram in Figure 3.3 is

Mprop = Nprop(k1, k2, k3)
1

s123 −M2
W + iMWΓW

· 1

s12 −M2
W + iMWΓW

=− Nprop(k1, k2, k3)

s13 + s23

(
1

s123 −M2
W + iMWΓW

− 1

s12 −M2
W + iMWΓW

)
.

(3.1)
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Chapter 3. Subtraction method for charged resonances

Here k1, k2 and k3 are the decay momenta of the charged lepton, neutrino and photon with
corresponding invariants sab = 2ka · kb and sabc = sab + sbc + sac. The amplitude features a
product of the two W-boson propagators with different momentum invariants. This product
is then rewritten as a sum with the help of a partial fraction decomposition. The two terms
have different invariants (s123 and s12) in the propagators.

The discussion so far only concerned the full off-shell amplitude. Now the DPA is applied
to the amplitude but with treating different propagators as the resonant one. When the W
boson with momentum k1+k2 is set as resonant, the invariant s12 is projected on-shell. Here
the on-shell projection with two decay particles is needed, resulting in the DPA amplitude

M̃(2)
prop =

1

s12 −M2
W + iMWΓW[Nprop(k1, k2, k3)

s13 + s23

(
1− s12 −M2

W + iMWΓW

s123 −M2
W + iMWΓW

)]
s12=M2

W,ΓW=0

=
1

s12 −M2
W + iMWΓW

[
Nprop(k̃

(12)
1 , k̃

(12)
2 , k̃

(12)
3 )

s̃
(12)
13 + s̃

(12)
23

]
.

(3.2)

This amplitude is part of the process, where the photon is emitted from the production sub-
process. Following the notation from Section 2.2, the tilded momenta denote the on-shell
projected momenta with the superscript indicating the invariant that is projected on shell.
Subsequently, the IR-singular behaviour is only in the production sub-process.

The propagator with then momentum k1+k2+k3 can also be treated as the resonant one.
Therefore, the on-shell projection with three decay particles sets the invariant s123 on-shell.
The DPA amplitude reads

M̃(3)
prop =

1

s123 −M2
W + iMWΓW[

−Nprop(k1, k2, k3)

s13 + s23

(
1− s123 −M2

W + iMWΓW

s12 −M2
W + iMWΓW

)]
s123=M2

W,ΓW=0

=
1

s123 −M2
W + iMWΓW

[
−Nprop(k̃

(123)
1 , k̃

(123)
2 , k̃

(123)
3 )

s̃
(123)
13 + s̃

(123)
23

]
.

(3.3)

This amplitude is part of the process with the photon being emitted from the decay of the
W boson. The IR singularities are only in the decay sub-process.

The two terms from the partial fractioned amplitude in Eq. (3.1) are the ones that are
treated in the DPA by projecting different momenta on-shell. For the first term the mo-
mentum k1 + k2 + k3 is projected on-shell giving the contributions in (3.3). For the second
term the momentum k1 + k2 is projected on-shell giving the contribution in (3.2).

3.2 Production counterterms

The typical energy scales of the hard scattering at the LHC are of a similar order of magnitude
as the W mass. Therefore, the W bosons are treated as massive and only the limit where
the emitted photons become soft is singular. The limit where the photon is collinear to a W
boson is finite. With only soft singularities present the singular limits are spin independent.
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Figure 3.4: QED subtraction dipoles involving one or two massive external particles (high-
lighted as bold lines) with emitter j, emissus i and spectator k. The indices indicate the
masses of emitters (first indices) and spectators (second indices) and the labels F and I stand
for final and initial state.

Because of the spin independence, the IR singularities can be cancelled with the same dipoles
as for soft radiation off massive fermions [56].

As seen in Figure 3.4 there are five types of dipoles needed to cancel all additional soft
singularities from the charged resonance. In these dipoles a charged resonance takes the role
of the emitter and/or the spectator.

In order for the subtraction scheme to work properly the local dipoles must cancel all IR
singularities of the real matrix element. Additionally, the finite part of the local counterterms
must be exactly added back in the integrated counterterms. These requirements for every
valid subtraction scheme lead to constraints on how the dipoles need to be evaluated. In
particular, the interplay of the subtraction mapping and the on-shell projection needs to
be analysed carefully to prevent a mismatch between the local and integrated dipoles. The
detailed understanding of how the subtraction mapping and the on-shell projection interact
is very important as the pole in dimensional regularisation from soft-photon emission is only
present for on-shell resonances.

To study this in more detail the partonic process

q q → µ+(k1) νµ(k2)︸ ︷︷ ︸
W+(k12)

e+(k3) νe(k4)︸ ︷︷ ︸
W+(k34)

q(k5) q(k6) γ(k7) (3.4)

is considered. In this process a closer look is taken at the dipole D[12]7,5 which has the
first W+ boson (momentum k12) as the emitter, the massless quark (momentum k5) as the
spectator and the photon (momentum k7) as the emissus. This dipole corresponds to the
type depicted in Figure 3.4(b) with massive emitter and massless spectator. The following
argument is done explicitly for this dipole to simplify the used formulas. The same arguments
also apply to the other types of dipoles featuring a resonance as an emitter and/or spectator.
Following the notation from Section 2.2 the on-shell projected momenta are denoted with a
tilde. The momenta with the subtraction mapping applied to them are denoted with a bar.
The subtraction mapping here is the massive-Catani-Seymour (CS)-dipole mapping [56].
To simplify the following formulas the absolute value squared of the denominator of the
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Breit-Wigner propagator is abbreviated as

BW(kij) =
(
k2
ij −M2

W

)2
+
(
ΓWMW

)2
. (3.5)

To begin the discussion one starts from the real-emission contribution R to the differential
cross-section including the phase-space measure. In the DPA the phase-space integration
is performed over the off-shell phase space giving a phase-space measure of the off-shell
momenta. To keep the focus on the main point, the correct use of the subtraction dipoles,
the flux factor and possible symmetry factors have been omitted giving

R ∝

∣∣∣M(7)
(
Q; k̃1, .. , k̃4, k5, k6, k7

)∣∣∣2
BW(k12) BW(k34)

dΦ7 (Q; k1, .. , k5, k6, k7)

=

∣∣∣M(7)
(
Q; k̃1, .. , k̃4, k5, k6, k7

)∣∣∣2
BW(k12) BW(k34)

dΦ5 (Q; k12, k34, k5, k6, k7)

× dk2
12

2π

dk2
34

2π
dΦ2 (k12; k1, k2) dΦ2 (k34; k3, k4) .

(3.6)

While the phase-space measure depends on the off-shell momenta, the numerator is evaluated
with the on-shell projected momenta. Using the on-shell projection detailed in Section 2.2
the momenta k5, k6, k7 are left unchanged. Therefore, the tilde is omitted. The integration
measure over the seven final-state particles is split up into two two-particle phase-space
measures for the decays of the two resonances and a five-particle phase-space measure for
the production. Next the numerator is split into the production, the decay parts and the
polarisation vectors of the resonances. Here an unpolarised DPA process is studied; therefore,
a sum over all possible polarisations is present in the real amplitude squared∣∣∣M(7)

(
Q; k̃1, .. , k̃4, k5, k6, k7

)∣∣∣2 = ∑
λ12,λ34

∣∣∣M(5)
P,µν

(
Q; k̃12, k̃34, k5, k6, k7

)
ε̃µ,∗12 ε̃

ν,∗
34

∣∣∣2
×
∣∣∣ε̃µ12M(2)

D,µ

(
k̃12; k̃1, k̃2

)∣∣∣2 ∣∣∣ε̃µ34M(2)
D,µ

(
k̃34; k̃3, k̃4

)∣∣∣2 .

(3.7)

The split into production and decay is then inserted into the formula for the real-emission
contribution from Eq. (3.6) resulting in

R ∝
∑

λ12,λ34

∣∣∣M(5)
P,µν

(
Q; k̃12, k̃34, k5, k6, k7

)
ε̃µ,∗12 ε̃

ν,∗
34

∣∣∣2
BW(k12) BW(k34)

×
∣∣∣ε̃µ12M(2)

D,µ

(
k̃12; k̃1, k̃2

)∣∣∣2 ∣∣∣ε̃µ34M(2)
D,µ

(
k̃34; k̃3, k̃4

)∣∣∣2
× dΦ5 (Q; k12, k34, k5, k6, k7)

dk2
12

2π

dk2
34

2π
dΦ2 (k12; k1, k2) dΦ2 (k34; k3, k4) .

(3.8)

In dimensional regularisation the two-particle decay phase-space measure takes the form

dΦ2 (k12; k1, k2) =
(k2

12)
−ϵ

2 (4π)2−2ϵ
dΩ

(2−2ϵ)
2 , (3.9)
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when the DPA(2,2) is applied, the decay phase-space measure is

dΦ2

(
k̃12; k̃1, k̃2

)
=

(
k̃2
12

)−ϵ

2 (4π)2−2ϵ
dΩ

(2−2ϵ)
2 . (3.10)

The on-shell projection chosen conserves the angles of the decay momenta in the CM frame of
the decaying resonance. This leaves the angular part of the phase-space measure unchanged,
when projecting the momenta on-shell. Therefore, the two expressions only differ in the
square of the decay momentum.The off-shell phase-space measure features the off-shell mo-

mentum (k2
12)

−ϵ
while the on-shell phase-space measure has

(
k̃2
12

)−ϵ

. Here the real radiation

is emitted from the production; therefore, the decay, both matrix element and phase-space
measure, is LO like. This means that they are always evaluated in four space-time dimensions
(ϵ = 0) resulting in equal phase-space measures for the decays.

To remove the IR singularities the local counterterms are subtracted from the real-
emission contribution. To evaluate the local counterterms first the subtraction mapping,
the massive-CS mapping generalised to off-shell momenta, is applied. Afterwards the on-
shell projection is performed on the reduced kinematics. This order is chosen since the
reverse order leads to a discrepancy between the local and integrated counterterms that is
not necessarily beyond the accuracy of the DPA. A detailed discussion of the approach
with first projecting the momenta on-shell and applying the subtraction mapping second is
found in App. A. Subtracting the local counterterms D from the real-emission contribution
R gives the subtracted real

R−D ∝
∑

λ12,λ34

[∣∣∣M(5)
P,µν (Q; k12, k34, k5, k6, k7) ε

µ,∗
12 ε

ν,∗
34

∣∣∣2
× 1

BW(k12)

∣∣∣εµ12M(2)
D,µ (k12; k1, k2)

∣∣∣2
× dΦ5 (Q; k12, k34, k5, k6, k7)

dk2
12

2π
dΦ2 (k12; k1, k2)

−D[12]7,5(k̄12, k̄5; y, z, ϕ)
∣∣∣M(4)

P,µν

(
Q; k̄12, k34, k̄5, k6

)
ε̄µ,∗12 ε

ν,∗
34

∣∣∣2
× 1

BW(k̄12)

∣∣∣ε̄µ12M(2)
D,µ

(
k̄12; k̄1, k̄2

)∣∣∣2
× dΦrad

(
k̄12 + k̄5; z, y, ϕ

)
dΦ4

(
Q; k̄12, k34, k̄5, k6

) dk̄2
12

2π
dΦ2

(
k̄12; k̄1, k̄2

) ]
× 1

BW(k34)

∣∣∣εµ34M(2)
D,µ (k34; k3, k4)

∣∣∣2 dk2
34

2π
dΦ2 (k34; k3, k4) .

(3.11)

Only the dipole D[12]7,5, studied here in detail, is given, the others needed for a finite
subtracted-real contribution are omitted for simplicity. The dipole depends on the radiation
variables y, z and ϕ that parametrise the radiation phase space. As seen by the absence of
any tilded momenta, all present momenta are still off-shell.

To have a final result that is independent of the subtraction scheme the term subtracted
with the local counterterms has to be added back with the integrated counterterms. This
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Chapter 3. Subtraction method for charged resonances

results in the integrated counterterm, before on-shell projection,

I =
∑

λ12,λ34

I[12]7,5(k̄12, k̄5)
1

BW(k̄12) BW(k34)

∣∣∣M(4)
P,µν

(
Q; k̄12, k34, k̄5, k6

)
ε̄µ,∗12 ε

ν,∗
34

∣∣∣2
×
∣∣∣ε̄µ12M(2)

D,µ

(
k̄12; k̄1, k̄2

)∣∣∣2 ∣∣∣εµ34M(2)
D,µ (k34; k3, k4)

∣∣∣2
× dΦ4

(
Q; k̄12, k34, k̄5, k6

) dk̄2
12

2π

dk2
34

2π
dΦ2

(
k̄12; k̄1, k̄2

)
dΦ2 (k34; k3, k4) ,

(3.12)

with the dipole kernel

I[12]7,5(k̄12, k̄5) =

∫
d=4−2ϵ

D[12]7,5(k̄12, k̄5; y, z, ϕ) dΦrad

(
k̄12 + k̄5; z, y, ϕ

)
. (3.13)

The explicit poles that cancel with those present in the virtual contributions arise, when the
d-dimensional integral over the radiation phase space is performed.

So far the counterterms and real amplitude are evaluated with the off-shell momenta. To
have a subtracted-real contribution in the DPA, the momenta of the resonant particles are
projected on-shell leading to the subtracted real contribution

R−D ∝
∑

λ12,λ34

[∣∣∣M(5)
P,µν

(
Q; k̃12, k̃34, k5, k6, k7

)
ε̃µ,∗12 ε̃

ν,∗
34

∣∣∣2
× 1

BW(k12)

∣∣∣ε̃µ12M(2)
D,µ

(
k̃12; k̃1, k̃2

)∣∣∣2 dΦ7 (Q; k1, . . . , k7)

−D[12]7,5(
˜̄k12, k̄5; ỹ, z̃, ϕ̃)

∣∣∣M(4)
P,µν

(
Q; ˜̄k12, k̃34, k̄5, k6

)
˜̄εµ,∗12 ε̃

ν,∗
34

∣∣∣2
× 1

BW(k̄12)

∣∣∣˜̄εµ12M(2)
D,µ

(
˜̄k12;

˜̄k1,
˜̄k2

)∣∣∣2
× dΦrad

(
k̄12 + k̄5; z, y, ϕ

)
dΦ6

(
Q; k̄1, k̄2, k3, k4, k̄5, k6

)]
× 1

BW(k34)

∣∣∣ε̃µ34M(2)
D,µ

(
k̃34; k̃3, k̃4

)∣∣∣2 .

(3.14)

As before, only the dipole D[12]7,5 is considered while the other dipoles are omitted for
simplicity. Performing the integration over the radiation phase space gives the integrated
dipole

I ∝
∑

λ12,λ34

[
I[12]7,5(

˜̄k12, k̄5)
∣∣∣M(4)

P,µν

(
Q; ˜̄k12, k̃34, k̄5, k6

)
˜̄εµ,∗12 ε̃

ν,∗
34

∣∣∣2
× 1

BW(k̄12) BW(k34)

∣∣∣˜̄εµ12M(2)
D,µ

(
˜̄k12;

˜̄k1,
˜̄k2

)∣∣∣2 ∣∣∣ε̃µ34M(2)
D,µ

(
k̃34; k̃3, k̃4

)∣∣∣2
× dΦ6

(
Q; k̄1, k̄2, k3, k4, k̄5, k6

)]
,

(3.15)

with kernel

I[12]7,5(
˜̄k12, k̄5) =

∫
d=4−2ϵ

D[12]7,5(
˜̄k12, k̄5; ỹ, z̃, ϕ̃) dΦrad

(
˜̄k12 + k̄5; z̃, ỹ, ϕ̃

)]
. (3.16)
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3.2. Production counterterms

Comparing the functional form of the on-shell integrated-dipole kernel with the off-shell one
in Eq. (3.13) one finds a few differences. The shift from the off-shell radiation variables

(y, z, ϕ) to their on-shell counterparts
(
z̃, ỹ, ϕ̃

)
does not affect the kernel as this is only

a relabelling of variables. The real difference comes from the momenta that are used to
evaluate the kernels. The off-shell kernel is evaluated with the off-shell momenta while the
on-shell kernel is evaluated with on-shell momenta.

In the limit of soft-photon emission the CS mapping becomes trivial resulting in{
k̄12, k34, k̄5, k6

}
→ {k12, k34, k5, k6}. Omitting the phase-space measure and decay subamp-

litudes, which are not affected by CS mapping, the on-shell projection in four space-time
dimensions results in the subtracted real in the soft limit∣∣∣M(5)

P,µν

(
Q; k̃12, k̃34, k5, k6, k7

)
ε̃µ,∗12 ε̃

ν,∗
34

∣∣∣2
BW(k12) BW(k34)

−
D[12]7,5(

˜̄k12, k̄5; ỹ, z̃, ϕ̃)
∣∣∣M(4)

P,µν

(
Q; ˜̄k12, k̃34, k̄5, k6

)
˜̄εµ,∗12 ε̃

ν,∗
34

∣∣∣2
BW(k̄12) BW(k34)

→ ∣∣∣M(5)
P,µν

(
Q; k̃12, k̃34, k5, k6, k7

)
ε̃µ,∗12 ε̃

ν,∗
34

∣∣∣2
BW(k12) BW(k34)

−
D[12]7,5(k̃12, k5; ỹ, z̃, ϕ̃)

∣∣∣M(4)
P,µν

(
Q; k̃12, k̃34, k5, k6

)
ε̃µ,∗12 ε̃

ν,∗
34

∣∣∣2
BW(k12) BW(k34)

.

(3.17)

Here the correct cancellation of the IR singularities in the soft-photon limit is shown. This
means that the constructed local counterterms work as intended.

After demonstrating that the local counterterms function as needed, it is required to test,
if they feature the correct correspondence between the integrated and local counterterms.
To this end the two expressions

Eq. (3.14) :

∫
(d=4)

D[12]7,5(
˜̄k12, k̄5; ỹ, z̃, ϕ̃) dΦrad

(
k̄12 + k̄5; z, y, ϕ

)
,

Eq. (3.16) :

∫
(d=4−2ϵ)

D[12]7,5(
˜̄k12, k̄5; ỹ, z̃, ϕ̃) dΦrad

(
˜̄k12 + k̄5; z̃, ỹ, ϕ̃

)
(3.18)

= I[12]7,5(
˜̄k12, k̄5) ,

are compared. The first equation is the local-counterterm kernel. The numerical integration
over the radiation phase space is done in d = 4 space-time dimensions. Also the integration
is performed over the off-shell phase space. The second equation shows the integrated-
counterterm kernel that is added back. Here the integration is done over the d = 4− 2ϵ
dimensional on-shell radiation phase space. That the phase-space integration is done over
the off-shell phase space for the local counterterms and over the on-shell one for the integ-
rated counterterms introduces a mismatch between them. In principle this means that the
approach of using massive dipoles from the literature [56] to cancel the IR divergences from
charged resonances is not applicable and one would have to carry out the analytic d = 4−2ϵ
dimensional integration over the off-shell phase space.
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Chapter 3. Subtraction method for charged resonances

However, when the counterterms are evaluated with the on-shell projection applied to
the subtraction mapped momenta, the mismatch is beyond the accuracy of the DPA. The
change from off-shell to on-shell phase space results in a Jacobian factor of the on-shell
projection in the integration. When using the on-shell projection defined in Section 2.2
it follows from Eq. (2.15) that the Jacobian factor is of order O(M2

W/k2
12). At the fully

differential level this Jacobian can be fairly large and cause a significant mismatch between
the local and integrated counterterms. At the integrated level this has a much smaller effect
because the regions of phase space, where the W boson is far off-shell are suppressed by the
Breit-Wigner modulation. The same argument holds in case of differential cross-sections,
where the contributions to each bin are dominated by contributions where the W boson is
close to on-shell.

While first applying the subtraction mapping comes with the advantage of a nominally
smaller discrepancy between the integrated and local counterterms there is an additional
subtlety. This occurs when taking an off-shell real phase-space point where the invariants
are too small so that it is below the threshold of the on-shell projection given in Eq. (2.10).
As the on-shell projection and the subtraction mapping do not commute, the subtraction
mapping can push a phase-space point above the threshold. This can happen only in the
presence of hard-real radiation. Additional soft radiation can only shift the relevant invariant
by a very small amount resulting in the CS mapping and on-shell projection commuting.
Normally the kernel of the local counterterms are evaluated with the radiation variables
constructed from the on-shell projected real momenta. Since the real phase-space point is
below threshold, this cannot be done here. For these phase-space points the kernel part of
the dipoles is evaluated with the off-shell real momenta. As the emitted photon needs to
be hard these phase-space points are all far from the singular regions. Therefore, the exact
treatment of these events has no effect on the local subtraction. Also any discrepancies
between the local and integrated dipoles that arise from this are beyond the accuracy of
the DPA. Furthermore, it has been shown that this effect is numerically small for W+W+

scattering detailed in Chapter 5.

An important point has been ignored so far. How does the subtraction mapping for the
momenta of the resonances translate to a mapping of the decay momenta? The mapped
decay momenta are needed to evaluate the decay amplitudes. To apply the mapping to
decay momenta the decay momenta are first boosted into the rest frame of the unmapped
resonance momentum. Afterwards they are boosted back using the inverse of the boost to
the rest frame of the mapped resonance momentum. This gives the mapped decay momenta

k̄i = Λ(k̄12)
−1 · Λ(k12) · ki for i = 1, 2 , (3.19)

where Λ(p) denotes the boost to the rest frame of the momentum p.

3.2.1 Dipoles

Following the general discussion from the previous section this section details the explicit
functional form of the dipoles used to cancel the IR divergences. The dipoles here are adapted
from the massive-fermion dipoles from Refs. [56, 57]. This can be done since photons emitted
off W bosons only result in soft divergences and not collinear ones. For the processes studied
in more detail in Chapters 4 and 5 the charged resonance will always be a W boson. The
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3.2. Production counterterms

dipoles, however, are more general and can be used for any DPA process with charged
resonances.

3.2.2 Final-state massive emitter and final-state massive spectator

The first production level dipole has both as the emitter (label: j) and the spectator (label:
k) a massive charged resonance. Following the reasoning from Section 3.2 the CS mapping
is applied to the off-shell momenta. Therefore, in general the momentum squared of the
resonances will not be equal to their mass squared. This means in contrast to the formulas
from the literature [56] the squared masses of the emitter and the spectator are replaced
by their momenta squared. For NLO EW the emissus (label: i) will always be a massless
photon, allowing us to set p2i = m2

i = 0. The mass of the mapped emitter m2
ij is set to p2j .

The momentum Q = pi + pj + pk = p̄j + p̄k is the sum of the emissus, emitter and spectator
momenta. This results in the off-shell CS mapping taking the form

p̄k =

√
λ
(
Q2, p2j , p

2
k

)
λ
(
Q2, (pi + pj)

2 , p2k
) (pk − Q·pk

Q2
Q

)
+

Q2 + p2k − p2j
2Q2

Q ,

p̄j = Q− p̄k ,

(3.20)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz is used. In the following, the Lorentz
invariant radiation variables defined as

z ≡ zi =
pi ·pk

pi ·pk + pj ·pk
, zj = 1− zi , y ≡ yij,k =

pi ·pj
pi ·pj + pi ·pk + pj ·pk

(3.21)

are used. Furthermore, the rescaled masses

µ2
j =

p2j
Q2

, µ2
k =

p2k
Q2

(3.22)

and the quantities

v̄ij,k =

√
λ
(
1, µ2

j , µ
2
k

)
1− µ2

j − µ2
k

=

√
1 +

(
µ2
j

)2
+ (µ2

k)
2 − 2

(
µ2
j + µ2

k + µ2
jµ

2
k

)
1− µ2

j − µ2
k

,

vij,k =

√[
2µ2

k +
(
1− µ2

j − µ2
k

)
(1− y)

]2 − 4µ2
k(

1− µ2
j − µ2

k

)
(1− y)

(3.23)

are utilised to simplify the formulas. The momenta used to compute the radiation variables,
rescaled masses, v̄ij,k and vij,k are the on-shell projected real momenta, when both the real
and reduced phase-space point can be projected on-shell. For the special case, where only
the reduced phase-space point can be projected on-shell, the quantities are computed in the
same functional form with the off-shell real momenta. With all these quantities defined, the
local dipole takes the form

Dij,k =(8πα)µ2ϵ θ[ij]θkQ[ij]Qk

−yQ2
(
1− µ2

j − µ2
k

)[
2

1− (1− z) (1− y)
− v̄ij,k

vij,k

(
2− z (1− ϵ) +

2µ2
j

y
(
1− µ2

j − µ2
k

))] .

(3.24)
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Chapter 3. Subtraction method for charged resonances

Here α is the EW coupling constant and µ is the IR-regularisation scale. The θ[ij]θkQ[ij]Qk

term is the charge correlation factor. The θa take the value −1 when a is an initial-state
particle and +1 when a is a final-state particle. For this dipole, since the resonances can
only be in the final state, θ[ij] = θk = +1 holds. The Qa denote the electric charge of the
particle a in multiples of the elementary charge. For the dipole with a W boson as emitter
and spectator studied here the factor takes the values ±1. To also accommodate the case,
where the reduced momenta can be projected on-shell but the real momenta cannot and
the dipole kernel is evaluated with the off-shell momenta, the local-dipole kernel is written
in a form, where all masses of the resonances are replaced by their corresponding momenta
squared. Therefore, this expression of the local-dipole kernel is valid independent of whether
pj and pk are on- or off-shell. The corresponding integrated dipole is given as∫

dΦ
(4−2ϵ)
rad Dij,k =

(
−θ[ij]θkQ[ij]Qk

) α

2π

(4π)ϵ

Γ(1− ϵ)

(
µ2

Q2

)ϵ

×
[
1

ϵ

(
ln(ρ)

v̄ij,k
+ 1

)
+

1

v̄ij,k

(
−2 ln(ρ) ln

(
1− (µj + µk)

2
)
− ln(ρj)

2

− ln(ρk)
2 +

π2

3
+ 4Li2(−ρ)− 4Li2(1− ρ)− Li2(1− ρ2j)− Li2(1− ρ2k)

)
+

1

2
ln(µ2

j)− 2− 2 ln
(
(1− µk)

2 − µ2
j

)
+ ln (1− µk)

− 2µ2
j

1− µ2
j − µ2

k

ln

(
µj

1− µk

)
+ 5− µk

1− µk

− 2µk (1− 2µk)

1− µ2
j − µ2

k

+O(ϵ)

]
,

(3.25)

where

ρn =

√√√√√√√√
1− v̄ij,k +

2µ2
n

1− µ2
j − µ2

k

1 + v̄ij,k +
2µ2

n

1− µ2
j − µ2

k

, n = j, k , ρ =

√
1− v̄ij,k
1 + v̄ij,k

. (3.26)

The formula of the integrated dipole only features a single pole in ϵ. This is a consequence
of the massive emitter that only leads to soft and not to collinear singularities.

For the types of processes studied here the charged resonance will always be a W bo-
son. The kernels of the integrated dipoles are always evaluated with the on-shell momenta.
Therefore, it can be used that

µ2
j = µ2

k =
M2

W

Q2
. (3.27)

For standard phase-space points, where the local dipole kernels are evaluated with the on-
shell real momenta, this simplification can also be used for the local dipoles.

3.2.3 Final-state massless emitter and final-state massive spec-
tator

Now the case, where the emitter is a massless final-state particle (label: j) and the spectator
is a massive resonance (label: k), is discussed. This dipole is very similar to the one in
Section 3.2.2 with both emitter and spectator massive. Unless explicitly mentioned the
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3.2. Production counterterms

notation from the massive-massive dipole is reused. For this dipole the emitter is massless;
therefore, p2j = m2

j = 0 simplifies the mapping. The mass squared of the spectator is set
to its momentum squared following the same argument as for the massive-massive dipole.
Therefore, the CS mapping adapted from the literature [56] is given as

p̄k =
Q

2

(
1 + µ2

k

)
+

1

2

Q2 − p2k√
(Q·pk)2 −Q2p2k

(
pk −Q

Q·pk
Q2

)
,

p̄j = Q− p̄k .

(3.28)

The radiation variables and invariants are defined in the same way as for the case with a
resonance as the emitter and spectator in Eqs. (3.21), (3.22) and (3.23). Also for this dipole,
when only the reduced momenta can be projected on-shell and not the real momenta, the
off-shell momenta are used to evaluate the invariants. This gives the kernel of the local
dipoles

Dij,k = (8πα)µ2ϵ θ[ij]θkQ[ij]Qk

−y Q2(1− µ2
k)

[
2

1− (1− z)(1− y)
− 1

vij,k
(2− z (1− ϵ))

]
. (3.29)

The functional form of the local dipole kernel was constructed in a way to have the same
functional form independent of being evaluated with on- or off-shell spectator momenta. The
integrated dipole is given as∫

dΦ
(4−2ϵ)
rad Dij,k = (−θ[ij]θkQ[ij]Qk)

α

2π

(4π)ϵ

Γ(1− ϵ)

(
µ2

Q2

)ϵ

×
[
1

ϵ2
− 2

ϵ
log
(
1− µ2

k

)
− 5π2

6
+ 2 log2

(
1− µ2

k

)
+ 2Li2

(
1− µ2

k

)
+

3

2ϵ
+ 2 +

3

1 + µk

− 3 log(1− µk) +O(ϵ)

]
.

(3.30)

The emitter of this dipole is massless; therefore, it not only regularises the singularities from
soft-photon emission but also those from photons that are produced collinear to the emitter.
In the integrated dipoles this leads to an ϵ−2 pole. For W-boson processes the rescaled

momenta can be replaced with the rescaled W mass µ2
k =

M2
W

Q2 in the integrated dipoles and
the local dipoles when the real phase-space point can be projected on-shell.

3.2.4 Final-state massive emitter and final-state massless spec-
tator

In the dipole detailed here the emitter is a massive resonance (label: j) and the spectator
is a massless final-state particle (label: k). The CS mapping from literature [56] is adapted
for this dipole. This dipole has a massless spectator; therefore, the equations are simplified
by setting p2k = m2

k = 0. The off-shell CS mapping is defined as

p̄k = pk
Q2 − p2j
2Q·pk

, p̄j = Q− pk
Q2 − p2j
2Q·pk

. (3.31)

Again using the radiation variables defined before in Eqs. (3.21), (3.22) and (3.23) the local
dipole kernel reads

Dij,k = (8πα)µ2ϵ θ[ij]θkQ[ij]Qk

−y Q2(1− µ2
j)

[
2

1− (1− z)(1− y)
− 2 + z (1− ϵ)− 2µ2

j

y (1− µ2
j)

]
, (3.32)
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while its integrated counterpart is given by

∫
dΦ

(4−2ϵ)
rad Dij,k = (−θ[ij]θkQ[ij]Qk)

α

2π

(4π)ϵ

Γ(1− ϵ)

(
µ2

Q2

)ϵ

×
[
2

ϵ
log µj − 2 log2 µj − 4 log µj log

(
1− µ2

j

)
− 4Li2

(
1− µ2

j

)
+

1

ϵ
+ 3 +

3µ2
j − 1

µ2
j − 1

log µj − 2 log
(
1− µ2

j

)
+O(ϵ)

]
.

(3.33)

As for the case of a massive resonance emitter and spectator the absence of a collinear
singularity only results in a single pole in ϵ in the integrated dipole.

3.2.5 Final-state massive emitter and initial-state massless spec-
tator

The dipoles discussed so far were all with final-state emitters and spectators. This dipole
has an emitter that is a massive resonance (label: j) and a spectator that is a massless
initial-state particle (label: a). The CS mapping is adapted from literature [56]. As for the
final-final dipoles the subtraction mapping is applied to the off-shell momenta. Defining as
Q = pi + pj − pa = p̄j − p̄a, the mapped momenta are

p̄j = pi + pj − (1− xij,a) pa, p̄a = xij,a pa . (3.34)

The radiation variables

x ≡ xij,a =
pi ·pa + pj ·pa − pi ·pj

pi ·pa + pj ·pa
, z ≡ zi =

pi ·pa
pi ·pa + pj ·pa

, zj = 1− zi (3.35)

used to compute the dipole kernels are defined in the same functional form as for the equi-
valent massless dipoles [56, 58]. It is useful to define the quantity

µ2
j =

p2j
2p̄j ·pa

=
p2j

2 (pi ·pa + pj ·pa)
= x

p2j
p2j −Q2

. (3.36)

When the real phase-space point can be projected on-shell the invariants are all constructed
from the on-shell momenta. The off-shell real momenta are used, when this is not possible.
The local dipole reads

Dij,a = (8πα)µ2ϵ θ[ij]θaQ[ij]Qa

(1− x)
(
Q2 − p2j

) ( 2

1− x+ z
+ z (1− ϵ)− 2− 2p2j

p2j −Q2

x

1− x

)
, (3.37)
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and its integration leads to the integrated counterterm∫
dΦ

(4−2ϵ)
rad Dia,j = θ[ij]θaQ[ij]Qa

α

2π

(4π)2

Γ (1− ϵ)

(
µ2

2p̄j ·pa

)ϵ

×
{[

1− x

2
(
1− x+ µ2

j

)2 − 2

1− x

(
1 + log

(
1− x+ µ2

j

))]
+

+

(
2

1− x

)
+

log(2 + µ2
j − x)

+ δ(1− x)

[
1

ϵ

(
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where the plus distribution is defined as∫ 1

−1

a(x)+ b(x) dx =

∫ 1

−1

a(x)
[
b(x)− b(1)

]
dx . (3.39)

The integrated dipole will always be evaluated with on-shell projected momenta. Therefore,
for resonant W bosons the simplification

µ2
j = µ2

W = x
M2

W

M2
W −Q2

(3.40)

can be used.

3.2.6 Initial-state massless emitter and final-state massive spec-
tator

In the last production-level dipole the emitter is a massless initial-state particle (label: a)
and the spectator is a massive resonance (label: j). The definition of this dipole follows the
results of Ref. [56]. By setting Q = pi + pj − pa = p̄j − p̄a the CS mapping with the off-shell
phase-space point is defined as

p̄j = pi + pj − (1− xij,a) pa , p̄a = xij,apa . (3.41)

The radiation variables are taken from Eq. (3.35). The formula for the rescaled momentum
of the spectator is the same as for the emitter from Eq. (3.36). The on-shell projected
momenta are used unless the real phase-space point cannot be projected on-shell. The local
dipole takes the form

Dia,j = (8πα)µ2ϵ θ[ia]θjQ[ia]Qj

z
(
Q2 − p2j

) ( 2

1− x+ z
− (1 + x)− ϵ (1− x)

)
, (3.42)
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while the integrated counterpart can be written as∫
dΦ

(4−2ϵ)
rad Dia,j = θ[ia]θjQ[ia]Qj
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(3.43)

Like for all other dipoles the integrated dipole is evaluated with the on-shell momenta.
Therefore, Eq. (3.40) can be used to simplify the expression for resonant W bosons.

3.2.7 Additional dipoles with a massive resonant spectator

There are types of EW dipoles that only need one spectator as a recoiler for the CS mapping.
Therefore, all singularities associated to them can be cancelled with one choice of spectator.
These are dipoles of the types:

• where a photon is emitted from the reduced process and afterwards splits into a
fermion-antifermion pair,

• where an initial-state fermion splits into a fermion and a photon and the photon enters
the reduced process,

• where an initial-state photon splits into a fermion-antifermion pair.

In principle one could use a resonance as a spectator for these dipoles. This is, however, not
necessary as one can always choose one of the massless external particles as the spectator.
Doing so will cancel this specific singularity with a standard massless CS dipole. When
generalising this method to NLO QCD with colour charged resonances like the top quark
care must be taken. The corresponding QCD dipoles with gluons replacing the photons
feature colour correlations; therefore, a dipole for each possible spectator including the colour
charged resonance is needed. Therefore, dedicated dipoles with a massive spectator would
be needed for a generalisation. These dipoles are known in the literature [56] and can be
adapted to the DPA.

3.3 Decay counterterms

So far the focus has been on the IR singularities in the production part of the amplitude
and their treatment. Unresolved radiation can also be emitted from the decay sub-process of
one of the resonances. As for the production, having charged resonances leads to additional
singular configurations. The emission of a photon from a massless decay particle leads to both
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soft and collinear singularities. When a photon is emitted off the W-boson propagator, this
results only in soft divergences. These divergences need to be subtracted with a counterterm.

The subtraction method of equivalent IR singularities present in top-quark decays [59]
can also be used for W-boson decays. As the emission of soft photons from top quarks
and W bosons does not give rise to spin-dependent singularities the top-quark dipoles can
also be used for W bosons. This approach has been used successfully in the calculations
from Refs. [54,60]. Similar to the production counterterms studied previously the typical
energy scales of the hard scattering at the LHC are of a similar order as the masses of the
resonances. Therefore, the quasi-collinear configurations do not cause problems [57].

Here a slightly different approach is chosen. A subtraction counterterm is used that
reproduces the decay of the W boson into a photon and a charged lepton and the corres-
ponding neutrino. This counterterm uses a mapping, where the charged lepton takes the
role of emitter and the neutrino takes the role of spectator. With k1 the momentum of the
charged lepton, q the momentum of the parent W boson, k3 the momentum of the photon
and k2 the momentum of the neutrino, the mapping takes the form

k̄µ
1 = kµ

1 + kµ
3 − s13

q2 − s13
kµ
2 , k̄µ

2 = kµ
2

q2

q2 − s13
(3.44)

known from massless final-final dipoles [58]. The radiation variables are defined in the usual
way as

y =
s13
q2

, z =
s12

s12 + s23
=

s12
q2 − s13

. (3.45)

This gives the local counterterm

D(dec)(q2, y, z) =
8πα

q2 y

(1− y) (1− z) [1 + (1− y)(z2 − y(2− 2z + z2))]

[1− z(1− y)]2
. (3.46)

This counterterm cancels the soft and collinear singularities from the photon emitted from the
charged lepton as well as the soft singularity, when the photon is emitted from the W boson.
To get the functional expression of the integrated counterterm an analytic integration over
the radiation phase space in d = 4− 2ϵ dimensions is performed. This gives the integrated
counterterm∫

dΦradD(dec)(q2, y, z) =
α

2π

(4π)ϵ

Γ(1− ϵ)

(
µ2

q2

)ϵ [
1

ϵ2
+

5

2ϵ
+

(
95

12
− π2

2

)
+O(ϵ)

]
. (3.47)

The same ϵ poles are found as for top-quark dipoles from Ref. [59]
The decay counterterm is explicitly constructed for a W boson decaying into a photon,

a charged lepton and a neutrino. But it can also be used to cancel the divergences present,
when the W boson decays hadronically into a photon, a quark and an antiquark. In this case
the decay counterterm is needed twice, once with the quark as the emitter in the mapping
and the antiquark as the spectator and once with the antiquark as the emitter and the quark
as the spectator. Additionally, two massless CS dipoles with the quark and antiquark as
emitter and spectator are needed.

The subtraction mapping of the counterterm is only designed for the case, where the
spectator of the mapping is massless. For processes with resonant W bosons decaying into
two massless fermions at LO this is always given. When studying processes with charged
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resonances that decay into three or more particles at LO, such as the top quark, the given
mapping cannot be used. Here the spectator momentum is the sum of the final-state decay
momenta that are not the emitter or emissus. Therefore, in general the spectator momentum
is not lightlike. This requires a generalised mapping that includes massive spectators.

The Eqs. (3.44)−(3.47) keep q2 as the mass squared of the W boson. As for the produc-
tion dipoles the subtraction mapping is applied to the off-shell real momenta. The on-shell
projection DPA(2,2) is applied to the reduced kinematics which are then used to evaluate
the reduced process. The real momenta are projected on-shell with the DPA(2,3) or DPA(3,2)

because of the additional decay particle present. The on-shell projection was designed in
a way not to change the ratios of the decay invariants. Therefore, the radiation variables
from Eq. (3.45) that are used in the kernel evaluation are left unchanged by the on-shell
projection. Furthermore also the integration measure does not change resulting in the same
pole structure in the integrated counterterm independent of whether q2 = M2

W holds or
not. Since the numerical integration of the local counterterms is performed over the off-shell
phase space and the analytic integration of the integrated counterterms is performed over
the on-shell phase space, there is a mismatch between them. This means that the term that
is subtracted from the real-emission contribution is not exactly added back by the integrated
counterterms. The mismatch stems from the Jacobian of the on-shell projection. This Jac-
obian can be large for phase-space points where the resonances are far off-shell. Following
the same argument as for the production counterterms, when the phase-space integration
is performed these regions are suppressed by the Breit-Wigner propagator. Therefore, this
only results in a discrepancy that is beyond the accuracy of the DPA and can be neglected.

The method of first projecting the real phase-space point on-shell and afterwards applying
the subtraction mapping, which was used for ZZ production [39], also produces a mismatch
between the local and integrated counterterms. Other than for the production counterterms
for the decay counterterms this mismatch is also beyond the accuracy of the DPA. Therefore,
for the decay counterterms both methods give nominally equally valid results. In particular,
for W+W+ scattering, detailed in Chapter 5, it has been found that the difference is beyond
the numerical uncertainty of the integration. This is different from the production dipoles.
There the different order of on-shell projection and subtraction mapping can lead to sizeable
differences.

3.4 Generalisation to NLO QCD

So far the discussion has only been about the NLO EW real-emission corrections in the
presence of electrically charged resonances. The used method can be generalised to also
treat the NLO QCD real-emission corrections. For colour neutral resonances like the W
and Z boson, similar to the EW case with chargeless resonances, no additional IR-singular
structures associated to the resonance appear. All present IR divergences can be treated
with the same dipole structures used for full off-shell processes. As done in the EW case the
dipoles connecting different decays or production and decay are not needed. This has been
successfully done in the past as seen in Refs. [39,52,53].

The case of colour charged resonances like the top quark is more involved. Here additional
IR-singular structures appear that need to be subtracted with counterterms. The general
method is the same as for the EW case. Also here contributions with real emission from the
resonant propagators are present. The emission of a photon is replaced by the emission of a
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gluon. The same partial fractioning used for the EW emission can also be used to split the
diagrams into a contribution where the gluon is emitted from the production and one where it
is emitted from the decay. After the split is performed the IR divergences can be cancelled by
massive dipoles. The EW dipoles seen before can be adapted to the QCD case. The reduced
amplitude squared is replaced by its colour correlated equivalent. The charge correlation
factors are replaced by the colour correlations. Also for QCD dipoles the order in which
the on-shell projection and the subtraction mapping are applied matters. The argument
made for first applying the subtraction mapping in Section 3.2, that the mismatch between
the local and integrated dipoles is beyond the accuracy of the DPA, remains valid for QCD
dipoles. Therefore, the ordering of first applying the subtraction mapping and afterwards
projecting the reduced momenta on-shell should also be used for QCD dipoles. As in the
EW case this choice comes with the subtlety that there are phase-space points where the
reduced momenta can be projected on-shell but the real momenta cannot be projected on-
shell. Evaluating the dipole kernel with the off-shell momenta for these phase-space points
can also be done for QCD dipoles.

There are some differences to the EW case already noted before. The colour correlations
require that the kinds of dipoles in Section 3.2.7 with gluons replacing the photons are
needed. The basic structure of these dipoles is known in the literature [56] and can be
adapted to DPA in the same manner as the EW dipoles. For a resonant top quark, that
decays into three particles at LO, the mapping of the decay counterterm needs to be extended
to massive spectators.
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Chapter 4

Vector-boson pair production

The first class of processes to study polarisation are vector-boson pair-production processes.
They are not as sensitive to the intricate details of vector-boson interactions as VBS pro-
cesses, since the effects of the unitary cancellations are reduced. However, they are much
simpler to study. Compared to VBS processes vector-boson pair-production processes only
have four instead of six final-state particles at LO. Furthermore, the number of partonic
channels that contribute is much smaller. Their simpler structure makes them ideal to test
the methods both theoretical and experimental, later used for the study of VBS processes.
The investigation of their polarisations is nevertheless suited to test the EW part of the
Standard Model. In Section 4.1 the production of a Z and W+ boson in the semi-leptonic
decay mode is treated. The presented results of this computation have previously been pub-
lished in Ref. [61]. In Section 4.2 the production of a W+W− pair with fully leptonic decay
is discussed. The results of this calculation have already been published in Ref. [60].

4.1 Polarised ZW+ production with semi-leptonic de-

cay at NLO QCD

The primary focus of polarisation studies both experimental [62–72] and phenomenological
[39, 51–55,73–97] in vector-boson pair production has been on processes where both bosons
decay leptonically. Studying hadronic final states at the LHC comes with several advantages
and disadvantages compared to purely leptonic final states. Hadronic decays of W bosons
do not contain any unobservable neutrinos that can only be treated as missing transverse
momentum in experimental measurements. This allows for better reconstruction of the W-
boson momentum. Hadronic decays benefit from a higher event rate at collider experiments
compared to leptonic decays because of the larger branching ratio. The main drawback
of the study of hadronic decays is the more complicated reconstruction of jets compared
to charged leptons. In particular, charged leptons can be distinguished by their charge and
flavour. For jets this is much more complicated, as in general the type of quark that initiated
the jet cannot be reconstructed. This means contributions from resonant W+, Z and W−

bosons cannot be distinguished. In a polarisation study they would all have to be treated as
separate contributions to the same final state. In experiments the hadronic decays result in
an overall increase in hadronic activity. This makes it much harder to associate the measured
signals in the detector to the final states of the hard scattering. Another downside is the
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large QCD background present that has to be subtracted before any polarisation study can
be done.

Nevertheless there has been an increased interest in measuring gauge-boson polarisation
at the LHC also in semi-leptonic decays. This has brought about a few phenomenological
studies [98–101] of hadronically decaying bosons. The focus of past polarisation studies has
been the discrimination of longitudinal and transverse bosons in boosted kinematic configur-
ations [98–100]. The focus on boosted setups is driven by the interest in the substructure of
fat jets. Much information on the polarisation of the parent vector boson can be extracted
from the boosted-fat-jet substructure with traditional observables like N -subjettiness [98]
and soft-drop [100], or machine-learning [99] techniques. The jet constituents can up to a
degree be associated to the decay quarks. Therefore, these methods are expected to extract
the maximal amount of information on the polarisation of the parent vector boson. Another
method that has recently been proposed for polarisation discrimination are energy correlat-
ors [101]. There may also be LHC observables that are sensitive to the polarisation without
having any dependence on the jet substructure [71] as existing polarisation studies targeting
the purely leptonic decay channels suggest.

So far only sensitivity studies for polarisation measurements in di-boson processes with
semi-leptonic decays have been performed, for the high-energy [102] and high-luminosity
(HL) [103] runs of the LHC. The main focus of these studies was on VBS processes rather
than vector-boson production. No actual measurements have been conducted so far for
semi-leptonic vector-boson production.

However, there have been other studies conducted for di-boson production with semi-
leptonic decay. In particular, searches for potential new resonances [104–108] have been
carried out with the 13TeV LHC data. Including a polarisation split in these measurements
could further constrain new physics effects [109] and the spin of the potential new resonance
decaying into two vector bosons. For di-boson processes with purely leptonic decays many
studies both unpolarised [110–131] and polarised [39, 52–55, 88] exist that include higher-
order corrections. The methods needed to compute the NLO QCD corrections to polarised
di-boson production with semi-leptonic decays are known [132,133]. Despite this so far only
LO or LO + parton shower (PS) accurate studies exist but no NLO accurate computations
in a realistic LHC setting.

4.1.1 Setup

The considered process is the inclusive production of a Z and a W+ boson at the LHC:

pp → Z (→ ℓ+ℓ−)W+ (→ jj) +X , pp → Z (→ ℓ+ℓ−)W+ (→ J) +X , (4.1)

where the Z boson decays leptonically and the W+ boson decays hadronically. The two
decay channels differ in the treatment of the decay jets. The first process corresponds to the
resolved setup where the W+ boson decays into two separated jets and the second one to
the unresolved setup where the W+ decays into one fat jet. The details of the two setups are
explained later in this section. The LO contribution O(α4) and the NLO QCD corrections
O(αsα

4) are computed in the Standard Model for the two setups. The calculation of the
polarised and unpolarised cross-sections is done using the DPA as explained in Chapter 2.
The polarisation split is performed according to Section 2.3. For the non-resonant, QCD,
interference, ZW− and ZZ backgrounds only a LO accurate calculation is performed. As
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Figure 4.1: Sample tree-level (a), one-loop (b-c), and real-radiation (d-f) diagrams contrib-
uting to di-boson production at the LHC in the semi-leptonic decay channel at NLO QCD.
Particles carrying colour charge are highlighted in red.

emphasised before the novelty of this calculation compared to previous polarisation studies
targeting ZW+ production [53] is the treatment of a semi-leptonic decay mode. Unlike
fully leptonic decay modes where QCD real radiation can only stem from the production
subprocess, for semi-leptonic decays the real emission can also be emitted from one of the
decays. A selection of the diagrams contributing to the process are shown in Figure 4.1.
Figure 4.1(a) shows one of the tree-level diagrams. The diagrams in Figures 4.1(b) and
4.1(c) depict contributions to the factorisable virtuals. The Figures 4.1(d) and 4.1(e) depict
real-emission diagrams where the real radiation is emitted from the production. Diagrams
of this type are also present in purely leptonic decay modes. Figure 4.1(f) shows one of the
diagrams with real radiation from the decay subprocess.

The calculation is done in the five flavour scheme with no quark-family mixing assuming
a unit Cabibbo-Kobayashi-Maskawa (CKM) matrix. The masses of all light quarks and
leptons are set to zero. The on-shell masses and decay widths taken from the Particle Data
Group (PDG) [134] are as follows:

MOS
W = 80.379GeV, MOS

Z = 91.1876GeV,

ΓOS
W = 2.085GeV, ΓOS

Z = 2.4952GeV.
(4.2)

The on-shell masses are then converted to their pole equivalents with the formula [135]

MV =
MOS

V√
1 +

ΓOS
V

MOS
V

, ΓV =
ΓOS
V√

1 +
ΓOS
V

MOS
V

. (4.3)

No diagrams containing the Higgs boson or the top quark contribute at the considered
orders; therefore, their masses and widths have no effect on the results. To calculate the
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EW coupling α the Gµ scheme [43] with real masses is employed giving

α =

√
2

π
GµM

2
W

(
1− M2

W

M2
Z

)
, Gµ = 1.16638 · 10−5GeV−2. (4.4)

The NNPDF31 nlo as 0118 [136, 137] parton-distribution functions (PDFs) are used. The
LHAPDF package [138] is utilised to interface the PDFs with the Monte Carlo code. Fur-
thermore, the built-in routines of LHAPDF are used to compute the running of αs. The
CS-dipole subtraction scheme [56,58,139], that has been adapted to the DPA, treats the IR
singularities of QCD origin. The initial-state collinear singularities are treated with the MS
factorisation scheme. To estimate the size of the QCD scale uncertainties a seven-point scale
variation is performed. The renormalisation and factorisation scales are varied by factors of

(µR/µ0, µF/µ0) = (1/2, 1/2), (1/2, 1), (1, 1/2), (1, 1)(1, 2), (2, 1), (2, 2) . (4.5)

The smallest and largest value obtained give the scale uncertainty bands.
The CMS analysis in Ref. [108] (see Table 1 therein) is taken as a template for the event

selection and reconstruction. The jets are clustered with the anti-kT algorithm [140] with
a maximal rapidity of 5. The analysis is carried out in two slightly different setups: the
resolved setup and the unresolved setup. Their main difference is the recombination method
of the final-state jets and how the jets from the W+ boson decay are identified. Furthermore,
they differ slightly in the way the phase-space cuts are applied to the jets. In the resolved
setup the final state consists of:

• at least two final-state jets (jet clustering radius R0 = 0.4) fulfilling pT,j > 30GeV,
|yj| < 2.4 and ∆Rjℓ± > 0.4,

• the system of decay jets (jet system: J) is defined as the two jets after clustering which
feature an invariant mass closest to the pole mass of the W boson,

• with the jet system fulfilling pT,J > 200GeV and 65GeV < MJ < 106GeV,

• two same flavour opposite charged leptons satisfying pT,ℓ± > 40GeV, |yℓ±| < 2.4,
pT,ℓℓ > 200GeV and 76GeV < Mℓℓ < 106GeV.

In the unresolved setup the final state consists of:

• at least one massive wide jet (jet system: J) (jet clustering radius R0 = 0.8),

• with the jet system fulfilling |yJ| < 2.4, ∆RJ,ℓ± > 0.8, pT,J > 200GeV and 65GeV <
MJ < 105GeV,

• two same flavour opposite charged leptons satisfying pT,ℓ± > 40GeV, |yℓ±| < 2.4,
pT,ℓℓ > 200GeV and 76GeV < Mℓℓ < 106GeV.

By requiring that the transverse momentum of the jet system and the electron-positron pair
is large, this setup focuses on a regime where both vector bosons are very boosted. No jet veto
is applied in either setup as the logarithmically-enhanced real corrections with soft-boson
radiation [121, 141, 142] are suppressed. This is caused by the transverse momentum cuts
on the jet system and the electron-positron pair. The symmetric nature of the transverse

46



4.1. Polarised ZW+ production with semi-leptonic decay at NLO QCD

momentum cuts, which are applied to the jet system and the electron-positron pair, causes
large real corrections close to the cut. This region of phase space close to the cut becomes
very sensitive to quasi-soft and quasi-collinear QCD initial-state radiation [143–147]. The
renormalisation and factorisation scales are set to

µR = µF =
MT,Z +MT,J

2
. (4.6)

Here MT,Z and MT,J denote the transverse masses of the Z boson and jet system defined as

MT,Z =
√

p2T,ℓℓ +M2
ℓℓ , MT,J =

√
p2T,J +M2

J . (4.7)

The polarisation states of virtual particles are frame dependent. To define the polarisa-
tion of the W and Z boson their CM frame is used. This frame choice allows for a good
interpretation of the results. In this frame the Goldstone-boson equivalence theorem [31,32]
can be directly used to explain features seen in the results.

4.1.2 Integrated Results

This section lists the numerical results at the integrated level of doubly-polarised and un-
polarised ZW+ production as described in Section 4.1.1. The computation was performed
independently with the two Monte Carlo codes MoCaNLO and BBMC, finding agree-
ment within the integration uncertainties. The shown results here are those calculated with
MoCaNLO. Here the Z boson has been chosen to decay into an electron-positron pair.
However, the results are equivalent to processes where the Z boson decays into pairs of other
massless charged leptons like muons.

Table 4.1 shows the computed integrated cross-sections in the resolved and unresolved
setups as specified in Section 4.1.1. The LO results show the comparably large contribution
from the purely longitudinal polarisation state contributing at ≈ 35% to the unpolarised res-
ult. In contrast to ZZ production in W+Z production diagrams containing the triple-gauge
coupling contribute at LO. Therefore, the production of Goldstone bosons is unsuppressed.
In the high-energy limit, which is given by the transverse momentum requirement, the two
longitudinally polarised bosons behave as would-be-Goldstone bosons [31, 32]. Therefore,
unlike for ZZ pair production there is no suppression of the LL signal. The purely trans-
verse polarisation state contributes at ≈ 50% giving the dominant contribution. The mixed
polarisation states TL and LT contribute at≈ 4% each. In the high-energy limit the LO amp-
litudes of the mixed polarisation states are subject to a strong unitarity suppression [148,149].
The unitarity suppression causes the amplitude of the mixed polarisation to be diminished
by the energy of the longitudinal vector-boson. In the resolved setup the LO contributions
from the mixed polarisation states are very similar while in the unresolved setup the TL
polarisation state is ≈ 15% larger. Since the decay quarks of a longitudinal W+ boson are
mainly produced orthogonal to the direction of the W+ boson in its CM frame they are
more likely to be recombined into one jet. For a transversely polarised W+ boson the decay
quarks are mostly emitted in and opposite to the direction of the W+ boson in the bosons
rest frame. Therefore, in the lab frame they tend to have a larger separation compared to
the decay particles from a longitudinally polarised W+ boson. The two quarks are thus less
likely to be combined into one jet making it harder to fulfil the massive jet requirement.
This favours the TL polarisation state in the unresolved setup. Another interesting feature
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state σLO [fb] fLO[%] σNLO [fb] fNLO[%] KNLO K
(no g)
NLO

resolved, Z(e+e−)W+(jj)

unpol. 1.8567(2)+1.2%
−1.4% 100 3.036(2)+6.8%

−5.3% 100 1.635 1.033

ZLW
+
L 0.64603(5)+0.2%

−0.6% 34.8 0.6127(4)+0.9%
−0.7% 20.2 0.948 1.031

ZLW
+
T 0.08687(1)+0.2%

−0.6% 4.7 0.17012(6)+8.6%
−6.8% 5.6 1.958 0.967

ZTW
+
L 0.08710(1)+0.1%

−0.6% 4.7 0.24307(7)+10.2%
−8.2% 8.0 2.791 1.017

ZTW
+
T 0.97678(7)+2.0%

−2.2% 52.6 2.0008(7)+8.9%
−7.1% 65.8 2.048 1.059

interf. 0.0595(1) 3.2 0.009(2) 0.4 − −
unresolved, Z(e+e−)W+(J)

unpol. 1.6879(2)+1.9%
−2.1% 100 3.112(2)+7.6%

−6.1% 100 1.843 1.193

ZLW
+
L 0.61653(5)+1.0%

−1.3% 36.5 0.6799(5)+0.9%
−0.7% 21.9 1.103 1.170

ZLW
+
T 0.06444(1)+0.7%

−1.0% 3.8 0.17584(6)+10.8%
−8.6% 5.7 2.729 1.158

ZTW
+
L 0.07437(1)+0.6%

−0.9% 4.4 0.24742(8)+11.0%
−8.9% 8.0 3.327 1.193

ZTW
+
T 0.88233(9)+2.9%

−2.9% 52.3 2.0041(8)+9.6%
−7.7% 64.3 2.271 1.227

interf. 0.0503(3) 3.0 0.004(2) 0.1 − −

Table 4.1: Integrated cross-sections (in fb) in the resolved and unresolved fiducial setups
described in Section 4.1.1 for unpolarised and doubly-polarised ZW+ production in the semi-
leptonic decay channel. Polarisations are defined in the di-boson CM frame. Numerical errors
(in parentheses) and QCD-scale uncertainties from 7-point scale variations (in percentages)
are shown. The fractions (in percentage) are computed as ratios of polarised cross-sections
over the unpolarised one. K-factors are defined as ratios of the NLO QCD cross-sections
with (KNLO) and without (K

(no g)
NLO ) gluon-induced contributions over the LO ones.

is the very small contribution of ≈ 3% from the interferences between the longitudinal and
transverse polarisation states. The contribution from the interferences cancels to zero when
the full decay phase space of the resonances is considered. The phase-space cuts prevent the
exact cancellation resulting only in a suppression of the interferences.

Shifting the focus to the results including the NLO QCD corrections one notices that,
if at least one transversely polarised boson is present, the NLO QCD corrections are very
large. In the resolved setup the NLO QCD corrections for the LT and TT polarisation states
are at ≈ 100% compared to the LO contribution. For the TL state they receive a correction
of ≈ 200%. For the unresolved setup the corrections are slightly larger. In contrast the
LL polarisation state gets a much smaller correction of ≈ −5% in the resolved setup and
≈ 10% in the unresolved setup. The large corrections are caused by real-emission processes
with initial-state gluons [141]. These processes receive an enhancement from the large gluon
PDFs of the proton. When the partonic processes with initial-state gluons are excluded, the
K-factors become much smaller as shown in columnK

(no g)
NLO of Table 4.1. The LL polarisation

state only receives small corrections from the gluon-induced real-emission processes. This has
already been shown for ZW production with leptonic decays [53,54]. As shown in Ref. [142]
the dominant contribution to the gluon-induced process stems from diagrams where the
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Figure 4.2: Leading QCD-radiation contributions in the qug partonic channel for LT and TL
ZW+ production at the LHC in the semi-leptonic decay channel. Particles carrying colour
charge are highlighted in red.

quark absorbs the gluon and afterwards emits the two vector bosons. In the subprocess gq →
Vq′ the production of an energetic longitudinally polarised vector boson is suppressed. From
the Goldstone-boson equivalence theorem [31,32,150] follows that the energetic longitudinal
vector boson behaves like a Goldstone boson. Owing to the massless quark, there are no non-
vanishing diagrams of the subprocess, where the longitudinal boson is replaced by a would-
be Goldstone boson; therefore, the emission of high-transverse-momentum longitudinally
polarised bosons is suppressed. This means the contributions that give the large corrections
to the polarisation states with at least one transversely polarised boson are suppressed in
the LL state. As the NLO QCD corrections affect the polarisation states very differently,
the fractions, at which the individual polarisation states contribute to the unpolarised cross-
section, also change considerably. The contribution of the purely longitudinal polarisation
state is reduced to ≈ 20.0% while the contributions of the mixed polarisation states increase
to ≈ 6% for the LT state and ≈ 8% for the TL state. The increase in the differences
of the mixed polarisation states from LO to NLO is caused by a larger contribution from
gluon-induced real emission to the TL state. Both mixed polarisation states are subject to
a suppression from unitarity cancellations in the high-transverse-momentum region of the
longitudinal boson. This suppression remains when real radiation is included. Therefore,
the preferred kinematic configurations are those, where the longitudinally polarised boson is
emitted very close in direction to the real radiation. In these configurations the transverse
momentum of the transversly polarised boson is split between the longitudinal boson and
the real radiation. Therefore, the TL state prefers real radiation that is emitted close to
the decay jets and the LT favours real emission close to the electron-positron pair. It has
been verified that the Monte Carlo integration channels, corresponding to the diagrams
depicted in Figures 4.2(a) and 4.2(b), give the dominant contribution to the real-emission
corrections of the LT and TL states. When the real radiation is emitted close to the decay
jets of the longitudinal W+ boson, as preferred by the TL state, it frequently occurs that
the selected jet system is not constructed from the decay jets of the W+ boson. Because of
the preference of producing the real radiation close to the electron-positron pair, the wrong
reconstruction of the W+ decay is less frequent in the LT state. When the jet system does not
correctly identify the decay jets, the production of low-transverse-momentum W+ bosons is
not forbidden by the event selection. In the TL state the W+ boson is longitudinally polarised
causing such events to be much less effected by unitarty cancellations. In the LT state
the Z boson is longitudinally polarised and must fulfil the 200GeV transverse momentum
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requirement giving a stronger unitartiy cancellation. Therefore, the misidentification of the
W+ boson weakens the suppression from unitarity cancellations in the TL state causing
the seen larger NLO QCD corrections. The effects of the misidentification are even more
prominent in differential observables. The distribution of the invariant mass of the jet
system, depicted in Figure 4.8, is particularly distorted by them. The contribution from
the purely transverse polarisation state increases to ≈ 65%. The TT polarisation state
features an approximate amplitude zero effect [109, 148] at tree level that is spoiled by the
inclusion of NLO real-emission corrections. The detailed effects of this are seen much better
in differential observables like the scattering angle in Figure 4.4. Including the NLO QCD
corrections decreases the size of the interferences to the sub percent level. The LO scale
uncertainties are small as the LO process is purely EW; therefore, the scale variation only
enters in the different factorisation scales. Additionally, selecting a regime, where the bosons
are very boosted, further reduces the scale uncertainties by about a factor of 4 compared
to more inclusive setups [53, 54]. This is independent of the semi-leptonic decay mode,
as it has been checked numerically that the same effect is also present in purely leptonic
decay modes. Including the NLO QCD corrections increases the scale uncertainties greatly
(≈ 7% − 11%) for the processes with at least one transversely polarised boson while for
the purely longitudinal state they remain of similar order (≈ 1%). The cause of this is
that at NLO also the renormalisation scale dependence of the strong coupling enters the
computation. On top of that the large real corrections further enhance the scale uncertainties.
As at LO ZW+ production is a purely EW process, to get a scale variation that is truly NLO
QCD the next-to-next-to-leading-order (NNLO) QCD corrections need to be included. With
the methods used in Ref. [88] this is possible. The inclusion of the NNLO QCD corrections
would also increase the reliability of the computed scale uncertainties.

The main difference between the resolved setup and the unresolved setup are the effects
of the recombination. For an event to be accepted in the resolved setup the decay jets of the
W boson need to have a large enough separation that they are not recombined together into
one jet. In the unresolved setup it is the other way around, the two decay particles of the W
boson need to be emitted close enough together to be recombined to fulfil the mass require-
ment of the jet. This means that at LO the low-transverse-momentum region is favoured
in the resolved setup compared to the unresolved setup. The high-transverse-momentum
region is favoured in the unresolved setup compared to the resolved setup. As the low-
transverse-momentum region contributes more to the total cross-section, the cross-section
for the resolved setup is larger at LO. At NLO QCD the large real-emission corrections
for the polarisation states with at least one transversely polarised boson reduce the dif-
ference significantly. This is particularly apparent for the mixed polarisation states. This
suggests that the effects of the different recombination procedures are less relevant for the
real-emission corrections.

Both the resolved and the unresolved setup apply a 200GeV transverse momentum cut
on the lepton pair and the jet system. This prevents the NLO corrections from becoming
too large by acting as a veto on additional jets. The symmetric nature of the cut can,
however, cause unphysical artefacts in the regions of phase space close to the cut threshold
from real QCD radiation [147]. When the transverse momentum cut on the jet system
is omitted, such effects can be prevented. In Table 4.2 the integrated cross-section in the
resolved setup without the cut on the transverse momentum of the jet system is shown. At
LO the bosons are always produced back to back in the transverse direction; therefore, the
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state σLO [fb] fLO[%] σNLO [fb] fNLO[%] KNLO K
(no g)
NLO

resolved (no minimum pT,jj cut), Z(e
+e−)W+(jj)

unpol. 1.8564(1)+1.2%
−1.4% 100 5.5388(8)+10.6%

−8.6% 100 2.984 1.371

ZLW
+
L 0.64605(3)+0.2%

−0.6% 34.8 0.7525(4)+1.5%
−1.2% 13.6 1.165 1.194

ZLW
+
T 0.08687(1)+0.2%

−0.6% 4.7 0.3057(1)+11.4%
−9.2% 5.5 3.519 1.462

ZTW
+
L 0.08710(1)+0.1%

−0.6% 4.7 1.0486(1)+14.6%
−11.9% 18.9 12.04 2.408

ZTW
+
T 0.97677(7)+2.0%

−2.2% 52.6 3.5506(9)+11.8%
−9.6% 64.1 3.635 1.424

interf. 0.0595(1) 3.2 −0.119(2) −2.1 − −

Table 4.2: Integrated cross-sections (in fb) in the resolved setup described in Section 4.1.1
without the minimum pT,jj cut of 200GeV. Polarisations are defined in the di-boson CM
frame. Numerical errors (in parentheses) and QCD-scale uncertainties from 7-point scale
variations (in percentages) are shown. The fractions (in percentage) are computed as ratios
of polarised cross-sections over the unpolarised one. K-factors are defined as ratios of the
NLO QCD cross-sections with (KNLO) and without (K

(no g)
NLO ) gluon-induced contributions

over the LO ones.

LO cross-sections remain unchanged. The NLO QCD corrections become larger without the
transverse momentum cut on the jet system. This effect is particularly extreme for the TL
polarisation state increasing its contribution from 5% at LO to 19%. The K-factor of the
purely longitudinal polarisation state is only increased slightly and remains the smallest.
Similar to the base setup with the transverse momentum cut also in this setup the large
NLO QCD corrections mainly stem from gluon-induced real-emission processes. This is seen
best in the K

(no g)
NLO column in Table 4.2 displaying the K-factors excluding the gluon-induced

partonic channels. The absence of large NLO enhancements for LL polarisation state cause
its polarisation fraction to reduce to 13.6% compared to the 20.2% in the default resolved
setup. Without the transverse momentum cut on the jet system the transverse momentum
of the electron-positron pair is absorbed by the entire hadronic system including the decay
and additional real radiation. This causes the much larger K-factors, when at least one
boson is transversely polarised, confirming the argument from before that the cut restricts
the size of the NLO corrections. The much larger enhancement of the TL polarisation state
compared to the LT polarisation state is a result of the requirement that the Z boson is still
very boosted but the W boson no longer needs to be boosted. This leads to a much smaller
unitarity suppression for the TL polarisation state compared to the LT polarisation state.

It is important to know how large the non-resonant background is, as only the full off-shell
result is accessible experimentally. To test how well the DPA describes the full result, a LO
accurate study of the background processes is done. The results are presented in Table 4.3.
An important difference of hadronic decays compared to leptonic decays is that the final
states of W+, Z and W− decays cannot be distinguished. This means that on top of the non-
resonant background there is also background from other resonances. The LO accurate cross-
sections for ZW+ and ZZ production in the DPA are shown in Table 4.3. Their size is of the
same order as the one from ZW+ production treated as the signal here. In both the resolved
and the unresolved setup the ZW− production contribution is the smallest. The contribution
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resolved unresolved

process σLO [fb]
ratio over
full O(α4)

σLO [fb]
ratio over
full O(α4)

DPA ZW+ 1.8567(2)+1.2%
−1.4% 0.353 1.6879(2)+1.9%

−2.1% 0.425

DPA ZW− 1.0527(1)+1.3%
−1.6% 0.200 0.9003(1)+2.0%

−2.1% 0.227

DPA ZZ 2.1430(3)+1.3%
−1.6% 0.408 1.2804(2)+2.6%

−2.7% 0.323

DPA ZV 5.0523(4)+1.3%
−1.5% 0.961 3.8685(3)+2.2%

−2.3% 0.975

full O(α4) 5.253(1)+1.2%
−1.5% 1.000 3.967(2)+2.1%

−2.3% 1.000

full O(αsα
3) −0.3124(6)+9.2%

−10.7% −0.059 −0.2145(6)+9.7%
−11.4% −0.054

full O(α2
sα

2) 97.91(7)+24.3%
−18.4% 18.638 62.55(7)+25.0%

−18.8% 15.768

Table 4.3: Integrated LO cross-sections (in fb) in the resolved and unresolved fiducial setups
described in Section 4.1.1 for: the signal process (DPA ZW+), the background processes
with a resonant W− boson (DPA ZW−) and with two resonant Z bosons (DPA ZZ), the
full off-shell process at the three perturbative orders in αs. The result dubbed DPA ZV is
understood as the sum of the three DPA contributions (ZW+ + ZW− + ZZ).

from ZW+ production is the largest in the unresolved setup while in the resolved setup the
one from ZZ production is larger. Since the Z boson is more massive than the W boson
the decay quarks of the Z boson will be more energetic in the frame of the decaying boson
than those of the W boson. Therefore in the lab frame the separation of the decay quarks
of the Z boson will be larger making it harder to fulfil the massive jet requirement in the
unresolved setup. When all the resonant contributions ZW+ production, ZW− production
and ZZ production are summed up they agree with the EW full off-shell result O(α4) up
to 2% - 4%. This is the expected accuracy of the DPA of O(ΓV /MV ). But not only the
purely EW contribution is part of the full result. There are also the interference background
O(αsα

3) and the QCD background O(α2
sα

2) that contribute to the same final state. The
interference background only gives a contribution of ≈ 6% compared to the full off-shell EW
contribution. The QCD background is much larger resulting in a contribution that is 15 to
20 times larger than the EW signal. In the resolved setup the QCD background is larger than
in the unresolved setup. As the jets in the QCD background do not stem from a resonance
there is no strong preference for them to be emitted in a similar direction; therefore, the jets
are less often recombined into a fat jet suppressing the unresolved result. To measure the
polarisation these two background contributions would need to be subtracted beforehand.
All three resonant processes contribute to the same off-shell EW signal. They, however,
feature different resonance structures and spin structures that can cause very different LO
suppressions in the polarised signals and/or phase-space regions. This can lead to spin-
specific details in the differential cross-sections being washed out or a reduced sensitivity
to new physics from effects originating from one of the other Standard Model resonances.
Therefore, the three resonant contributions must be treated separately either by removing
them as background or using separate templates for all possible resonances.
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Figure 4.3: Distribution in the cosine of the polar decay angle of the positron in semi-leptonic
ZW+ production at the LHC. The definition of this angle is given in Eq. (4.8). Details are
described in the main text (first paragraphs of Section 4.1.3)

4.1.3 Differential Results

To study the effects of the different polarisation states and the different setups, differential
cross-sections are analysed. The default resolved and unresolved setups given in Section 4.1.1
are used in the plots if not stated otherwise. The plots are structured in two columns
if not declared otherwise. The left one corresponds to the resolved and the right one to
the unresolved setup. Each column of the plots (Figures 4.3–4.12) contains four individual
plots. The top one displays the NLO accurate differential cross-sections with respect to the
given observable for the unpolarised (gray) and the polarised LL (red), LT (yellow), TL
(green), TT (blue) DPA process. The first polarisation label represents the polarisation of
the Z boson and the second label the polarisation of the W+ boson. The second plot shows
the NLO QCD K-factors, including the uncertainty bands from the scale variation, of the
polarised and unpolarised processes. The third panel presents the normalised shapes of the
LO cross-sections (dashed) and the NLO cross-sections (full). The bottom panel displays
the interference contribution normalised to the unpolarised contribution at LO (dashed,
magenta) and at NLO (solid, magenta).

Observables that are very well suited to distinguish the polarisation states of the Z boson
are the decay angles of the electron and the positron. These observables have been used in
several porarisation studies [39,53,55,151] to distinguish the different polarisation states. In
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Figure 4.3 the decay angle of the positron is depicted. The decay angle of the electron or
positron is defined as

cos
(
θ∗,CM
e±

)
=

p⃗ ∗
e± · p⃗CM

e+e−

|p⃗ ∗
e±||p⃗CM

e+e−|
. (4.8)

Here p⃗ ∗
e± is the three-momentum of the positron or electron in the CM of the recombined Z

boson. The vector p⃗CM
e+e− denotes the three-momentum of the electron-positron pair in the CM

frame of the recombined Z boson and the jet system. When studying the normalised shapes
of the distributions, clear differences between the cases where the Z boson is transversely
polarised and longitudinally polarised are visible. In case of a transverse polarised Z boson

the distribution has peaks at cos
(
θ∗,CM
e+

)
= ±0.6. The LL and LT polarisation states have

a single peak at cos
(
θ∗,CM
e+

)
= 0. The decay particles of a longitudinally polarised boson

are predominantly emitted orthogonal to the direction of the boson in the boson rest frame.
In case of a transversely polarised boson one of the decay particles is generally emitted in
the direction of the boson and one opposite to its direction in the Z boson rest frame. The
cuts on the transverse momentum of the charged leptons greatly suppress the contributions
close to the edges. This shifts the peaks of the distributions of transversely polarised Z

bosons from cos
(
θ∗,CM
e+

)
= ±1, as expected in a fully inclusive setup, to the observed value.

The small differences in shape between the TT and TL or LL and LT polarisation state
are the effect of left-right interferences and spin-correlations. The left-right interferences,
which are part of the transverse polarisation state, do not cancel when phase-space cuts
are applied. The phase-space cuts on the jets cause the spin correlations to depend on the
decay angle giving a different shape depending on the W+ boson polarisation. The plots
of the K-factors show that in the central region the NLO QCD corrections only rescale the
cross-section and do not change the shape. At the edges of the plot this is different, here the
NLO QCD corrections become large compared to the LO contribution. This is the kinematic
region that is influenced the most by the phase-space cuts. That the differential cross-section
only depends on the decay dynamics of the Z boson and the small shape changes make the
observable well suited to distinguish the different polarisation states also in extensions of the
Standard Model. The beyond the Standard Model contributions to the Z decay are assumed
to be small. There are only very minor differences between the resolved and the unresolved
setup. The interferences are very small in the central region. At the edges, where the effects
of the phase-space cuts are the strongest, they can reach up to −10%. Here the effects of
the phase-space cuts, that prevent the cancellation of the interferences, are the largest.

Figure 4.4 shows the differential cross-section with respect to the cosine of the scattering
angle, defined as

cos (θscatt) =
|pCM

e+e−,z|
|p⃗CM

e+e−|
(4.9)

where p⃗CM
e+e− is the momentum of the electron-positron pair in the CM frame of the electron-

positron pair and the jet system and pCM
e+e−,z is its z component (beam direction). Like the

decay angle seen before this observable is well suited for the discrimination between the
polarisation states as evidenced by the different shapes of the normalised distributions. In
contrast to the decay angle that was primarily sensitive to the decay of the Z boson the
scattering angle is mainly sensitive to the production dynamics of the W+ and Z boson.
Its dependence on the decay is limited to small effects from the reconstruction of the decay
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Figure 4.4: Distribution in the cosine of the scattering angle in semi-leptonic ZW+ pro-
duction at the LHC. The scattering angle is defined according to Eq. (4.9). Details are
described in the main text (first paragraphs of Section 4.1.3).

products. The dependence on the production part of the amplitude makes the scattering
angle only directly usable to distinguish the polarisation states in a Standard Model analysis.
The inclusion of beyond the Standard Model physics could give very different normalised
shapes. Therefore, in any beyond the Standard Model analysis the distribution would have
to be recalculated. In the region of large cos (θscatt) > 0.6 the cross-section is dominated by
the purely transverse polarisation state. In the region of small scattering angles the purely
longitudinal polarisation state has a contribution that is of similar size as the one of the
TT state. When studying the normalised shapes of the distributions a considerable shape
change from LO to NLO can be observed for the TT polarisation state and to a lesser extent
for the mixed polarisation states LT, TL. The large shape change of the TT polarisation
state is caused by a suppression of the LO contribution in the low-cos (θscatt) range. The
LO contribution is suppressed because of an approximate amplitude zero effect [109, 148].
The inclusion of real-emission corrections spoils this effect giving the large K-factors that
are shown in the plot. The mixed polarisation states also have large K-factors in the region
cos (θscatt) > 0.75. The unitarity suppression of the mixed polarisation states already seen at
the integrated level further diminishes the LO contribution for small scattering angles. When
the electron positron pair is emitted with a small scattering angle they must be very energetic
to fulfil the transverse momentum requirement enhancing the unitarity suppression. Close
to cos (θscatt) = 1 the K-factors of all polarisation states become very large. This is caused
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Figure 4.5: Rapidity distribution of the jet system J in semi-leptonic ZW+ production at
the LHC. The identification of the jet system J is described in Section 4.1.1. Details are
described in the main text (first paragraphs of Section 4.1.3).

by real radiation allowing momentum configurations where the momenta of the electron-
positron pair are closer to the beam direction without being cut away by the rapidity cuts.
At NLO the interferences are very small except for the region close to cos (θscatt) = 1 where
the interferences reach −7% of the unpolarised contribution. There are only very small
differences in the resolved and unresolved setup. The largerK-factors in the unresolved setup
of the mixed polarisation states already seen at the integrated level are seen differentially
here.

The plots in Figure 4.5 show the differential cross-section with respect to the rapidity
of the jet system. The TT polarisation state undergoes a significant shape change from
LO to NLO. At LO there is a plateau in the central region (|yJ| < 1.8) while at NLO the
curve has a peak similar to the other polarisation states. This is indirectly caused by the
approximate amplitude zero effect seen in the distribution with respect to the scattering
angle, shown in Figure 4.4, that suppresses the TT state at LO. At NLO real radiation fills
the suppressed regions. Another effect of this suppression of the LO is that the K-factors
of the TT polarisation state are peaked in the central region. In the resolved setup the
K-factors of the mixed polarisation states are close to flat only having slight deviation from
the flat behaviour at |yJ| ≈ 2. The K-factors in the unresolved setup are only flat in the
central region (|yJ| < 1.3) and decrease towards the edges. The cause for the differences
seen in the shape of the resolved and unresolved setup stem from the rapidity cut on the
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Figure 4.6: Rapidity distribution of the electron–positron pair in semi-leptonic ZW+ pro-
duction at the LHC. Details are described in the main text (first paragraphs of Section 4.1.3).

jets. In the resolved setup individual cuts are applied to the two jets while in the unresolved
setup the cut is directly applied to the momentum of the massive fat jet that constitutes
the jet system. This results in a steeper fall-off in phase-space region close to the cut in the
resolved setup compared to the unresolved setup. The NLO QCD corrections to the purely
longitudinal polarisation state are very small over the whole rapidity range mirroring the
picture seen at the integrated level. The interferences are also small over the studied rapidity
range.

Figure 4.6 shows the rapidity distribution of the electron-positron pair. As mentioned
before, at LO the electron-positron pair and the jet system are produced back to back in
the transverse direction causing this observable to be highly correlated to the rapidity of
the jet system. The shape of the distributions only changes very slightly translating to the
mostly flat NLO QCD K-factors. Only at the edge of the allowed rapidity region the shape
is mildly affected by the NLO QCD corrections. This effect is slightly larger in the resolved
setup compared to the unresolved setup. The normalised shapes of the polarised signals are
very similar.

In Figure 4.7 the differential cross-section with respect to the absolute value of the rapid-
ity difference of the positron and the jet system is depicted. This observable is strongly
correlated to the scattering angle from Figure 4.4. The correlation can be motivated as fol-
lows. In the CM frame the jet system and the electron-positron pair are emitted back to
back. Therefore, an event with small cos (θscatt) will generally have a small rapidity separ-
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Figure 4.7: Distribution in the rapidity separation between the positron and the hadronic
system J in semi-leptonic ZW+ production at the LHC. The identification of the hadronic
system J is described in Section 4.1.1. Details are described in the main text (first paragraphs
of Section 4.1.3).

ation between the jet system and the electron-positron pair when boosted back to the lab
frame. Since the electron and positron are emitted in very similar directions, because of the
large transverse momentum requirement, also the rapidity separation of the positron and the
jet system will be small. Similarly, a large cos (θscatt) often corresponds to a large rapidity
separation between the jet system and the positron. The rapidity separation is similarly
well suited for the discrimination of the polarisation of the W and Z boson as the scattering
angle. It is also mainly sensitive to the production of the W and Z bosons; therefore, the
shape would have to be recomputed for a beyond the Standard Model polarisation analysis.
The LL, LT and TL polarisation states are all peaked at |∆ye+J| = 0. The TT polarisation
state has a peak at |∆ye+J| = 0.8 in the resolved and |∆ye+J| = 1.0 in the unresolved setup.
The normalised shapes show a large change in the shape of the distributions with at least
one transversely polarised boson from LO to NLO. The reasons for the shape changes are
the same as for the ones seen in the scattering angle. The LO contribution to the TT state
is suppressed by the approximate amplitude zero effect in the phase-space region close to
|∆ye+J| = 0. The LO contributions to the mixed polarisation states are subject to the unit-
arity suppression. This effect is particularly strong, when the rapidity separation is large
|∆ye+J| ≳ 2.5, resulting in the shape change and large K-factors. For large rapidity separ-
ations between the positron and the jet system the contributions of all polarisation states
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Figure 4.8: Invariant-mass distribution of the hadronic system J in semi-leptonic ZW+ pro-
duction at the LHC. The identification of the hadronic system J is described in Section 4.1.1.
Details are described in the main text (first paragraphs of Section 4.1.3).

become suppressed by the cuts on the rapidity. The contribution from the interferences of
different polarisation states is small. There are only very small differences in the distributions
in the resolved and unresolved setup.

Figure 4.8 shows the differential cross-section with respect to the invariant mass of the
jet system. Close to the mass of the W boson the distributions follow the expected Breit-
Wigner shape. Further away from the resonance peak the distributions of the TT, LT and
LL polarsation state fall off very quickly as expected by the Breit-Wigner modulation. The
behaviour of the TL polarisation state differs considerably from that of a pure Breit-Wigner
peak by not falling off when the invariant mass of the jet system is far from the W mass.
With the inclusion of NLO real-emission processes the decay jets of the W boson are no
longer uniquely defined. Therefore, it can happen that the chosen jet system is not actually
constructed from the decay jets of the W boson. This misidentification of the W boson
introduces a background to the expected Breit-Wigner shape and adds a strong dependence
on how successful the identification of the W decay is to the distribution. All polarisation
states receive a background contribution from this misidentification. The reasoning behind
this has already been hinted at in Section 4.1.2 for the integrated results. For the TL
polarisation the effect is much larger compared to the other polarisation states, because here
the emission of the real radiation from the production in a similar direction as the W boson is
preferred. Both the TL and LT polarisation state are unitarity suppressed at LO. Therefore,
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Figure 4.9: Distribution in the invariant mass of the hadronic system J (a) and in the
transverse momentum of the hardest decay jet (b) in semi-leptonic ZW+ production at the
LHC. The identification of the hadronic system J is described in Section 4.1.1. The resolved
setup is considered, but no minimum cut is applied on pT,jj. The panels of the subfigures
have the same structure as described in the main text (first paragraphs of Section 4.1.3).

the gluon-induced real-emission contributions are responsible for the very large corrections.
For the TL polarisation state the additional final-state quark is preferably produced in the
direction of the W boson, while for the LT polarisation state it is preferably produced
opposite to the direction of the W boson. With the additional quark often being emitted in
a similar direction as the W boson misidentifications happen much more frequently for the
TL polarisation state. For the other polarisation states the misidentification happens more
rarely resulting in the more prominent feature in the TL state. The root cause of this effect
is the transverse momentum cut on the jet system that discards events where the W boson
has low to moderate transverse momentum. This is shown in more detail in Figure 4.9(a).

Figure 4.9(a) shows the distributions of the invariant mass of the jet system in the re-
solved loose setup without the 200GeV transverse momentum cut on the jet system. Without
the transverse momentum requirement the shape of the TL distribution is much closer to
ones of the other polarisation states. The background from misidentified W bosons still
exists as is shown in the MJ > 90GeV range for the TL polarisation state. The effect on
the overall shape of the distribution is much smaller compared to the standard setup with
the transverse momentum cut on the jet system. This confirms that the cause of the large
background is the transverse momentum cut on the jet system.
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The removal of the 200GeV transverse momentum requirement allows for real-radiation
events with a low transverse momentum of the jet system to be accepted. In Figure 4.9(b)
the differential cross-section with respect to the transverse momentum of the hardest decay
jet in the loose setup is depicted. Here the effect of the transverse momentum cut on the
jet system is shown very clearly. The transverse momentum cut on the jet system would
remove all events with pT,j1 < 100GeV. The TL polarisation state has a clear peak at
pT,P j1 = 50GeV causing it to be affected the most by the transverse momentum cut. In the
low-transverse-momentum region the emission of the real radiation in a similar direction as
the jets system is less favoured. Therefore, the chance of misidentifying the decay jets of the
W boson is smaller. With the inclusion of the low-transverse-momentum events the peak
is now included giving a normalised shape for the invariant mass of the jet system that is
much closer to the expected Breit-Wigner shape. In the low-transverse-momentum region
the interference contribution reaches up to −10%. This causes the negative interference
contribution seen at the integrated level.

Circling back to the invariant mass of the jet system in the default setup in Figure 4.8, the
misidentification background is different in the resolved and the unresolved setup. The size
of the flat background compared to the Breit-Wigner peak is larger in the unresolved setup
as seen by the lower peak in the normalised shapes. This is a consequence of the different
reconstruction of the jets. In the resolved setup jets are recombined with a radius R0 = 0.4
and in the unresolved setup with a radius R0 = 0.8. The larger recombination radius allows
for more of the QCD radiation to become part of the jet system in the unresolved setup.
Therefore, in the unresolved setup more events with misidentified W bosons will be present.
While the relative size of the misidentification background was greatly reduced for the TL
state by omitting the transverse momentum cut on the jet system the shapes of the other
polarisation states only receive very small changes. The misidentification background of
the other polarisation states are not enhanced by a single cut; therefore, its removal is not
expected to result in large changes. The cross-sections of the TT and the LT state are
very similar up to an overall normalisation previously seen at the integrated level. This
remains valid at NLO accuracy as the QCD real radiation only has a very small effect on the
polarisation of the leptonically decaying Z boson. The K-factors of the polarisation states
with at least one transversely polarised boson are always greater than one. The ones of
the purely longitudinal polarisation state are less than one close to the peak and increase,
when the invariant mass is further away from the W mass. The increase of the K-factors is
very different in the resolved and the unresolved setup. In the resolved setup the K-factors
increase more steeply for MJ < MW because of events, where not all of the decay jets of the
W boson are included in the jet system. In the unresolved setup the increase is steeper for
MJ > MW. This results from events where real radiation from the initial state is recombined
as part of the jet system. The different behaviour of the NLO real-emission corrections in
the LL state is an effect of the different recombination radii used.

Figure 4.10 shows the invariant mass of the positron and the jet system. The shape of the
distributions is sensitive to the polarisation of the bosons. When the Z boson is longitudin-
ally polarised, the distribution features a peak at Me+J ≈ 400GeV. This peak is sharper for
the LL polarisation state than for the LT polarisation state. The TT polarisation state has a
plateau in the region of 250GeV < Me+J < 500GeV. The shape of the TL polarisation state
has features of the longitudinal and the transverse polarisation state, having a plateau in the
region 300GeV < Me+J < 350GeV and a small peak at Me+J ≈ 400GeV. The NLO QCD
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Figure 4.10: Invariant-mass distributions of the system formed by the hadronic system J
and the positron in semi-leptonic ZW+ production at the LHC. The identification of the
hadronic system J is described in Section 4.1.1. Details are described in the main text (first
paragraphs of Section 4.1.3).

corrections considerably change the shape of the distributions. At high invariant masses the
TT polarisation state falls off slower than the other polarisation states. The purely longitud-
inal polarisation state falls off faster in the resolved setup compared to the unresolved setup
causing the LL cross-section to be almost one order of magnitude smaller at Me+J = 1TeV.
The reason is that the LL polarisation state only receives small NLO corrections and behaves
more LO like. In the high-invariant-mass region the decay jets of the W boson are emitted
very close together, making it much easier for them to be recombined into one jet. This
results in a suppression of the LO contribution of the resolved setup compared to unresolved
setup. While for the pure polarisation states the NLO QCD K-factors are comparably small
in the high-invariant-mass range the ones of the mixed polarisation states increase steadily.
This is an effect of the LO unitarity suppression of the mixed polarisation states. In the
low-invariant-mass region (Me+J < 200GeV) the NLO QCD K-factors become very large.
Here the cross-section is dominated by real-radiation contributions. The additional final-
state particle in real-emission processes allows for lower invariant masses, since they permit
configurations where the W and Z boson are not back to back in the partonic CM frame.
This contribution is larger in the resolved setup compared to the unresolved setup, since
the larger recombination radius clusters more of the real emission into the jet system. The
low-invariant-mass region also features a sizeable interference contribution (≈ −10%).
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Figure 4.11: Transverse-momentum distributions of the positron in semi-leptonic ZW+ pro-
duction at the LHC. Details are described in the main text (first paragraphs of Section 4.1.3).

In Figure 4.11 the differential cross-section with respect to the transverse momentum of
the positron is presented. The low-transverse-momentum region (pT,e+ < 200GeV) is very
sensitive to the polarisation of the Z boson. The distributions with a longitudinally polarised
Z boson display a peak at pT,e+ ≈ 120GeV. When the Z boson is transversely polarised the
distributions have two small peaks at pT,e+ = 20GeV and pT,e+ ≈ 180GeV. The cause is
the same as for the different shapes in the decay angle of the Z boson shown in Figure 4.3.
When the Z boson is longitudinally polarised the decay particles are predominantly emitted
orthogonal to the direction of the Z boson in its rest frame. This leads to the decay products
receiving similar amounts of transverse momentum, resulting in the one peak shape seen
in the plot. For a transversely polarised Z boson in its CM frame the decay particles are
mostly emitted in and opposite to its direction. This results in one of the decay particles
getting more transverse momentum than the other one resulting in the two peak structure
that is shown in the figure. The shape differences and the small interference contribution
make the transverse momentum of the positron a suited observable for the discrimination of
the polarisation states of the Z boson. Studying the behaviour at large transverse momenta
the differences between the resolved and the unresolved setup can be understood. The NLO
QCD K-factors increase much faster in the resolved setup than in the unresolved setup.
This is caused by a suppression of the LO contribution of the resolved setup compared to
the unresolved setup. When the positron has a large transverse momentum at LO this causes
the W boson to also have a large transverse momentum. In the kinematic region, where the
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Figure 4.12: Distributions in the leading-jet decay angle (left) and in the subleading-jet
transverse momentum (right) in semi-leptonic ZW+ production at the LHC. The identi-
fication of the leading and subleading jet is discussed in Section 4.1.1 and the decay-angle
definition is given in Eq. (4.10). Results for the unpolarised and doubly-polarised process
are shown in the resolved setup described in Section 4.1.1. The panels of the subfigures have
the same structure as described in the main text (first paragraphs of Section 4.1.3).

W boson is strongly boosted, the two decay jets are emitted very close together in the lab
frame resulting in a high probability that they will be recombined into one jet. The resolved
setup requires two separated jets in the final state resulting in more of these events being
cut away. The unresolved setup only requires one jet in the final state; therefore, these
events pass the cuts. Another effect of the suppression of the LO in the unresolved setup at
high transverse momenta is the faster fall-off of the LL polarisation state at large transverse
momenta. For the polarisation states with at least one transversely polarised boson the
large real-emission corrections reduce the differences between the resolved and unresolved
setup at LO. The real-radiation contributions to the LL state are much smaller resulting
in the suppression of the LO also being visible at NLO. Similar effects are found in the
high-energy tails of correlated observables like the transverse momentum of the jet system
or the electron-positron pair.

In the resolved setup the two decay jets of the W boson can be distinguished by their
transverse momenta. This allows one to study observables that depend on the momenta of
the individual jets forming the jet system. Analogous to the decay angle of the positron one
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can define the decay angle of the decay jet with the largest transverse momentum as

cos
(
θ∗,CM
j1

)
=

p⃗ ∗
j1
· p⃗CM

J∣∣∣p⃗ ∗
j1

∣∣∣ |p⃗CM
J |

. (4.10)

Similarly to the decay angle of the positron p⃗ ∗
j1
denotes the three-momentum of the jet with

the largest transverse momentum making up the jet system in the CM frame of the jet
system. The three-momentum of the jet system in the CM frame of the jet system and
the electron-positron pair is labelled as p⃗CM

J . The corresponding distributions are shown in
Figure 4.12(a). The most significant difference to the decay angle of the positron is that the
jets cannot be distinguished by their quark flavour. This means that the largest transverse
momentum jet can be an up-type or down-type quark. The distribution is not symmetric

around cos
(
θ∗,CM
j1

)
= 0 but instead there is a strong preference for the jet to be emitted

in the direction of the jet system. The cause is that the largest transverse momentum jet
generally contributes the most to the momentum of the jet system. The decay angle of the
subleading decay jet features the opposite behaviour with a clear preference to be emitted
opposite to the direction of the jet system. Analogous to the decay angle of the positron this
observable is very sensitive to the polarisation of the W boson. The TT and the LT have

a peak at cos
(
θ∗,CM
j1

)
= 0.7, while the LL has a peak at cos

(
θ∗,CM
j1

)
= 0.1. The reason for

the observed shapes is the same as for the decay angle of the positron. Taking the hardest
transverse momentum jet primarily shifts the distributions. Transversely polarised bosons
preferably emit their decay particles in and opposite to their direction, while longitudinal
ones emit their decay particles orthogonal to their direction. The decay angle of the hardest
decay jet is very sensitive to the correct identification of the decay jets by the jet system.As
shown for the invariant mass of the jet system in Figure 4.8 the TL polarisation state receives
the largest misidentification background. At LO the shape of the TL distribution is identical
to the LO one of the LL state. This is expected since the decay angle is insensitive to
the polarisation of the Z boson. At NLO the TL distribution resembles the shape of the
distributions with a transversely polarised W boson. This is caused by misidentification
of the decay jets of the W boson. The contribution from the interferences are very small
in the most populated regions. Close to the edges of the plot, where the effects from the
phase-space cuts are the largest, they are large and negative.

In Figure 4.12(b) the differential cross-section with respect to the transverse momentum
of the second largest transverse momentum decay jet is shown. All polarisation states feature
a very fast fall-off at moderate transverse momenta. The LL polarisation state has a peak at
pT,j2 ≈ 100GeV. The LT polarisation features the same peak but only at LO. The 100GeV
of the peak is exactly half of the minimum transverse momentum required for the jet system.
As seen in Figure 4.4 the longitudinally polarised W boson is mostly produced with a large
scattering angle. As the decay particles of longitudinally polarised bosons are predominantly
emitted orthogonal to the bosons direction the transverse momentum of the boson is split
evenly between the decay particles resulting in the observed peak. For the other polarisation
states the NLO cross-section steadily decreases with increasing transverse momentum. The
distribution of the TL polarisation state follows the shape of the LL polarisation state at LO
featuring the same peak at pT,j2 ≈ 100GeV but when including the NLO QCD corrections
the shape of the distribution drastically changes. The shape of the TL at NLO is very similar
to the ones from the transversely polarised W bosons. The decay particles of transversely
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polarised bosons are predominantly emitted in and opposite to its direction resulting in
one decay particle having more transverse momentum then the other one. This causes the
subleading decay jet to be preferably produced with very low transverse momentum. This
considerable change in shape is caused by misidentification of the decay jets of the W boson
as already seen for the decay angle of the hardest jet in Figure 4.12(a). The gluon-induced
partonic real-emission processes that give the main contribution to the NLO corrections of
the TL state prefer a boosted Z boson that recoils against the W boson, decaying into low-
transverse-momentum jets, and a hard-real-radiation parton. When the real-radiation jet
from the production is treated as a decay jet of the W boson the jet system is composed
of one high-transverse-momentum jet and one low-transverse-momentum jet. This enhances
the cross-section in the low-transverse-momentum region causing the shape to resemble the
ones from transverse W bosons.

4.2 Polarised W+W− pair production at NLO EW

To further the understanding of the Higgs sector of the Standard Model, additional vector-
boson pair-production processes can be studied. An interesting example for such a process
is W+W− pair production. In particular,

pp → e+νeµ
−νµ +X (4.11)

for the full process and the process

pp → W+
(
→ e+νe

)
W− (→ µ−νµ

)
+X (4.12)

in the DPA are studied. The two initial-state protons collide and produce a W+ and a
W− boson. For the full off-shell process many higher-order accurate predictions exist. In
particular, the QCD corrections are known up to NNLO [152–154]. The EW corrections have
been calculated up to NLO [154–156]. Additionally the matching to PS has been performed
[127, 128, 157]. For the purpose of a polarisation study using the DPA the NLO [52] and
NNLO [88] QCD corrections have been calculated. The NLO QCD accurate calculation has
been matched to PS [158]. The missing piece is the calculation of the NLO EW corrections
in the DPA.

The NLO EW corrections to W+W− pair production include real-emission diagrams
with an unresolved photon radiated off one of the W boson propagators. To cancel the IR
divergences present in diagrams as the ones from Figure 4.13 the charged resonance coun-
terterms given in Chapter 3 are required. In particular, to cancel the divergence from a soft
photon that is emitted from one of the initial-state quarks seen in Figure 4.13(a), dipoles
with the resonant W bosons taking the role of the spectator are needed. For diagrams like
Figure 4.13(b), where the photon is emitted form the resonant propagator, a partial fraction
decomposition as described in Section 3.1 is performed to split the divergence between pro-
duction and decay. For the process with the photon emitted from the production, dipoles
with the resonance as emitter and either the other resonance or one of the initial states as
spectator are needed. The divergence in the process with the photon emitted from the decay
is cancelled together with the divergences arising from diagrams like in Figure 4.13(c) with
the decay dipoles given in Section 3.3. Since at LO the two resonant W bosons and their
decay products are the only charged final-state particles the final-final massive-massless and
the final-final massless-massive dipoles are not necessary.
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Figure 4.13: Sample photon-radiation diagrams contributing to W+W− production and
decay at NLO EW.

4.2.1 Setup

In this section the setup chosen for the calculation is discussed. In the full off-shell calculation
the partonic processes

qq̄, bb̄ , γγ → e+νeµ
−νµ (4.13)

(q = u, d, s, c) contribute to the LO cross-section. At NLO EW the real-emission processes

qq̄, bb̄ , γγ → e+νeµ
−νµγ ,

γ
(–)

q → e+νeµ
−νµ

(–)

q ,

γ
(–)

b → e+νeµ
−νµ

(–)

b

(4.14)

contribute.
The contributing partonic processes with an initial-state photon and bottom or antibot-

tom quark receive a large contribution from the production of an s-channel top or antitop
quark. The focus of this computation is the polarisation of the W boson from pair pro-
duction and not from top-quark decays. Therefore, the contribution from these partonic
processes is regarded as irreducible background that would have to be subtracted similarly
to the non-resonant background. In the DPA calculation these contributions are removed
by assuming a perfect b-jet veto. For the full off-shell computation all contributing partonic
processes are studied. In the DPA calculation the partonic processes

qq̄, bb̄ , γγ → W+
(
→ e+νe

)
W− (→ µ−νµ

)
(4.15)

are present in contributions with Born-like external particles (Born, virtual and integrated-
subtraction counterterms). The partonic processes

qq̄, bb̄ , γγ → W+
(
→ e+νe

)
W− (→ µ−νµ

)
γ ,

γ
(–)

q → W+
(
→ e+νe

)
W− (→ µ−νµ

) (–)

q
(4.16)

contribute to the NLO EW real-emission corrections. These partonic processes are treated
with the on-shell projection for two resonances decaying into two particles each. The real-
emission processes

qq̄, bb̄ , γγ → W+
(
→ e+νeγ

)
W− (→ µ−νµ

)
qq̄, bb̄ , γγ → W+

(
→ e+νe

)
W− (→ µ−νµγ

) (4.17)
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are treated with the on-shell projection, where one of the resonances decays into three
particles and the other one into two particles. For the DPA calculation the method described
in Chapter 2 is followed.

The proton CM energy is set to
√
s = 13.6TeV corresponding to Run-3 of the LHC. The

on-shell values for the W and Z mass and width taken from the PDG [159] are

MOS
Z = 91.1876GeV, ΓOS

Z = 2.4952GeV,

MOS
W = 80.377GeV, ΓOS

W = 2.085GeV .
(4.18)

The values were then converted to the pole values in the same manner as for the calculation
of the ZW production in Section 4.1 using Eq. (4.3). The used width and mass of the top
quark and the Higgs boson taken from the PDG [159] are

Mt = 172.69GeV, Γt = 1.42GeV,

MH = 125.25GeV, ΓH = 0.0041GeV .
(4.19)

The EW coupling is calculated using the Gµ scheme. For the full off-shell computation the
complex masses are used and for the computations in the DPA the real masses are used.
The Fermi coupling constant is set to

Gµ = 1.16638× 10−5GeV−2 . (4.20)

The calculation is done in the five flavour scheme. The PDF set
NNPDF31 nnlo as 0118 luxqed [136, 137] is used. The renormalisation and factorisa-
tion scale are set to the fixed scale

µR = µF = MW . (4.21)

The CMSmeasurement [160] (sequential-cut selections therein) was used as a template for the
chosen event selection. To recombine the charged leptons with unresolved photon radiation
the anti-kT jet clustering algorithm [140] is applied with a radius of R = 0.1. The selected
events must fulfil

pT,ℓ1 > 25GeV,

pT,ℓ2 > 20GeV ,

|ηe+| < 2.5,

|ηµ− | < 2.4,

pT,e+µ− > 30GeV,

Me+µ− > 20GeV,

pT,miss > 20GeV.

(4.22)

The final-state particles are ordered with respect to their transverse momentum and ℓ1,2
denotes the charged lepton with the largest and second largest transverse momentum.

4.2.2 Integrated results

In Table 4.4 the integrated cross-section of the setup described in the previous section is
presented. Two independent calculations with the Monte Carlo codes MoCaNLO and
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state σLO [fb] σNLOEW [fb] δEW[%] fNLOEW[%]

bb̄, γb, γb̄ excluded

full 254.79(2) 249.88(9) −1.93 103.5

unp. 245.79(2) 241.48(2) −1.75 100

LL 18.752(2) 18.510(2) −1.30 7.7

LT 32.084(3) 32.043(3) −0.13 13.3

TL 33.244(5) 33.155(5) −0.27 13.7

TT 182.17(2) 177.83(2) −2.38 73.6

int. −20.46(3) −20.1(1) −1.96 −8.3

bb̄ included, γb, γb̄ excluded

full 259.02(2) 253.95(9) −1.96 103.4

unp. 249.97(2) 245.49(2) −1.79 100.0

LL 21.007(2) 20.663(2) −1.64 8.4

LT 33.190(3) 33.115(3) −0.23 13.5

TL 34.352(5) 34.230(5) −0.35 13.9

TT 182.56(2) 178.21(3) −2.38 72.6

int. −21.14(5) −20.6(2) −2.45 −8.4

bb̄, γb, γb̄ included

full 259.02(2) 265.59(9) +2.54 -

Table 4.4: Fiducial cross-sections (in fb) at LO and NLO EW for full, unpolarised, and
doubly polarised W+W− production at the LHC in the fully leptonic decay channel. Ab-
solute numbers in parentheses are numerical integration uncertainties. The value δEW (in
percentage) is computed as the EW correction relative to the LO result. The values fNLOEW

are fractions of NLO EW cross-sections over the NLO EW unpolarised result. The γb, γb̄
contributions are only included in the full calculation (last row). The interference (int.) is
evaluated as the difference between the unpolarised and the sum of the polarised results.

BBMC were performed, finding agreement within the integration uncertainties. The results
shown here are those computed with MoCaNLO. The scale variation uncertainties were
omitted in the table as the NLO QCD corrections are not considered. Since the LO process
and the NLO EW corrections are purely EW processes, only the factorisation scale enters
the scale variation. Therefore, the scale variation does not properly reflect the potential un-
certainties from higher-order QCD corrections. In a similar calculation [158] the NLO QCD
corrections were calculated giving scale uncertainties of 3–5% depending on the polarisation
state.

To analyse the effects of certain individual contributions different initial states were
studied. Firstly the bottom-antibottom, photon-bottom and photon-antibottom induced
processes, were excluded. Secondly only the photon-bottom and photon-antibottom induced
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processes were excluded. Lastly only for the full off-shell case all initial states were in-
cluded. The exclusion of the photon-bottom and photon-antibottom induced processes can
be accomplished by applying a perfect bottom-jet veto. The main goal of removing these
contributions is the removal of the top W-boson production background. The difference from
the bottom-antibottom induced channels is the inclusion of t-channel top-quark diagrams.
By studying the different partonic processes the effects of the t-channel top-quark diagrams
are analysed.

Comparing the fractions of the full off-shell and unpolarised contribution, the non-
resonant background is found to be of the order ≈ 3.5%. This is of the expected accuracy of
the DPA O(ΓW/MW). As expected for a di-boson process, the TT polarisation state gives
by far the largest contribution at over 70%. The contributions from the other polarisation
states are notably smaller. The mixed polarisation states have very similar contributions.
The small differences in the LT and TL state are primarily caused by the different PDFs for
quarks and antiquarks. The purely longitudinal state has the smallest cross-section. There
is a fairly large contribution from the longitudinal and transverse interferences that amounts
to ≈ −8% of the unpolarised result. The large interference contribution observed in previous
W+W− production calculations [52, 88, 158] stems from the phase-space cuts. In particu-
lar, the transverse momentum cuts on the two charged leptons prevent the cancellation of
the interference contribution. For W bosons the effect is particularly large as the left-chiral
coupling to fermions significantly changes the shape of the decay angle in the most populated
regions.

While the NLO EW corrections are negative for all polarisation states their relative size
differs considerably. They are the most negative for the TT polarisation state and the least
negative for the mixed polarisation states. The LL polarisation state features an intermediate
behaviour.

The bottom-antibottom induced partonic processes provide a much larger enhancement
to the longitudinal polarisation states than to the transverse polarisation states. The cross-
section of the purely longitudinal polarisation states increase by ≈ 2 fb. The mixed polar-
isation states gain ≈ 1 fb and the cross-section of the purely transverse polarisation state
only increases by ≈ 0.4 fb. The cause of this effect are diagrams with a massive t-channel
top-quark exchange. The different helicity structure in contrast to massless t-channel propag-
ators favour the coupling of the top quark to longitudinally polarised W bosons resulting in
the seen enhancement of the longitudinal signal.

For the full off-shell process also the photon-bottom/antibottom induced real-emission
contributions were computed. These partonic processes are dominated by top/antitop-W
production. Even though they are suppressed by the photon and bottom PDFs, they give
an almost 5% correction to the full off-shell NLO EW cross-section.

4.2.3 Differential results

For the experimental separation of the polarised signals differential observables are needed
that feature very different normalised shapes for the polarised signals. The plots of the
differential cross-sections (Figures 4.14–4.16) are organised as follows. The top left panel
displays the absolute differential cross-section including the bb̄-induced processes and ex-
cluding γb(γb)-induced ones for the full off-shell (black), unpolarised (gray), LL (red), LT
(yellow), TL (green), TT (blue) and sum of all polarised processes (magenta). Additionally
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Figure 4.14: Distributions in the polar decay angle of the positron in the W+ rest frame for
W+W− production and decay at the LHC with NLO EW accuracy. The setup detailed in
Section 4.2.1 is understood. Polarisations are defined in the di-boson CM reference frame.
Details are described in the main text (first paragraphs of Section 4.2.3).

the panel also depicts the full off-shell contribution from the γb(γb)-induced partonic pro-
cesses (dashed, brown). The bottom left panel shows the normalised shapes of the polarised
signals. The top right panel presents the NLO EW K-factors. The center right panel shows
the relative size of the cross-section including the bb̄-induced partonic processes compared
to the cross-section without the bb̄-induced processes. The bottom right panel depicts the
relative size of the full off-shell LO (dashed, black), NLO EW (solid, black) and the sum of all
polarisations LO (dashed, magenta), NLO EW (solid, magenta) compared to the unpolarised
DPA cross-section.

In Figure 4.14 the differential cross-section with respect to the decay angle of the positron
in the CM frame of the W+ boson is depicted. This is an unobservable quantity as it requires
the reconstruction of the two neutrino momenta. Its study is, however, still important as its
features translate to other correlated observables that are measurable. The decay angle of
the positron is very sensitive to the polarisation of the W+ boson. The normalised shapes
of the plots show the characteristic peak in the central region for a longitudinally polarised
W+ boson and a dip for a transversely polarised W+ boson already seen in other di-boson
processes [39, 53–55, 151]. For decay angles cos (θ∗) < −0.75 the shape of the distribution
is heavily influenced by the transverse momentum cut on the positron. Since there is no
analogous cut on the electron neutrino, there is no similar suppression of the cross-section
at cos (θ∗) > +0.75. The inclusion of the NLO EW corrections only affects the shape of
the distributions in the region cos (θ∗) < −0.75. This is the region of phase space that is
affected the most by the transverse momentum cut on the positron. In the rest of the phase
space the NLO K-factor is close to constant and mirrors the results seen at the integrated
level. As seen at the integrated level the contribution from the bb̄-induced channels is the
largest for the LL state and very small for the TT state. For states where the W− boson
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Figure 4.15: Distributions in the cosine of the angular separation between the positron and
the muon for W+W− production and decay at the LHC with NLO EW accuracy. Details
are described in the main text (first paragraphs of Section 4.2.3).

is longitudinally polarised the contribution increases, when the positron is emitted closer to
the direction of the W+ boson. The relative size of the non-resonant background increases
to 15%, when the positron is emitted anticollinear to the W+ boson. This is the phase-
space region effected the most by the cuts. In the rest of the phase space the non-resonant
background is constant. The size of the interferences is the largest at θ∗,CM

e+ ≈ π/2 where
they reach up to −13%. Large interference contributions were already found in setups with
the polarisation defined in the lab frame [52,88]. The origin of the large interferences is the
transverse momentum cut on the two charged leptons, that prevents them from cancelling.

In Figure 4.15 the differential cross-section with respect to the angular separation of
the positron and muon momenta is shown. This is a polarisation sensitive observable that
can be measured at the LHC. The shapes of all polarisation states feature a peak in the
quasi collinear region. The bin with the smallest angular separation is suppressed by the
invariant mass requirement Me+µ− > 20GeV for the two charged leptons. The shape of the
purely transverse polarisation state is different from the others as it features a second local
maximum in the quasi anticollinear region. For the LL, LT and TL polarisation state the
cross-section decreases with increasing angular separation. The local maximum in the quasi
collinear region is caused by the PDFs. The dominant contribution to the W+W− production
cross-section originates from valence-quark sea-quark scattering. This means that for most
events one of the initial-state partons will be more energetic than the other one resulting in
the complete event being boosted into one direction. Therefore, the emission of a positron
and a muon in a similar direction is favoured. The additional enhancement for the purely
transverse polarisation state, when the positron and the muon are emitted in close to opposite
directions, is an effect of the different decay kinematics of transversely polarised bosons. As
seen in the plot of the decay angle of the positron in Figure 4.14 the decay particles of a
transversely polarised W boson are preferably emitted in and opposite to the direction of the
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Figure 4.16: Distributions in the invariant mass of the positron–muon pair for W+W−

production and decay at the LHC with NLO EW accuracy. Details are described in the
main text (first paragraphs of Section 4.2.3).

W boson in the di-boson CM frame. When boosting back to the lab frame there is a good
chance that one of the charged leptons will be emitted opposite to the direction of the other
one resulting in a large angular separation. The angular separation of the positron and the
muon is also very well suited to see the effects of the bottom-antibottom induced processes.
The plot shows that their relative size for the longitudinal polarisation states becomes very
large in the anticollinear region. The reason is that the bottom-antibottom induced processes
are sea-quark sea-quark scattering events resulting in a much more symmetric final state in
the lab frame. This means that unlike the up-antiup and down-antidown quark induced
processes the bottom-antibottom induced processes are not suppressed in the anticollinear
region producing the large relative correction (more than 75% for ∆θe+µ− ≈ π). The same
effect, though less sizeable, is also seen for the mixed polarisation states. The relative size
of the NLO EW corrections are largest in the anticollinear region. The corrections to the
mixed polarisation states increase to +6.5%. The anticollinear region is preferably filled with
events with a large invariant mass. The positive corrections are an effect of the suppression
of the LO cross-section in the high-energy limit. The corrections to the LL polarisation state
increase from −5% to −0.1%. The change in the relative size of the NLO EW correction
to the TT state is much smaller increasing from −4% in the anticollinear region to −2% in
the collinear region. The more negative corrections in the anticollinear region of the LL and
TT state are caused by EW logarithms. The smaller effect of the EW logarithms on the TT
state is a consequence of the large LO signal in the quasi anticollinear region. The effects
from the LO suppression and the EW logarithms in the high-energy region are seen better
in the distribution with respect to the invariant mass of the two charged leptons shown in
Figure 4.16.

In Figure 4.16 the differential cross-section with respect to the invariant mass of the two
charged leptons is presented. This observable is closely related to the angular separation of
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the positron and the muon as large angular separations generally result in large invariant
masses. The purely transverse polarisation state has a notably different shape compared to
the other polarisation states. The cross-section of the TT state falls off slower in the high-
invariant-mass region compared to the mixed and purely longitudinal polarisation states.
This results in an overall much flatter shape for the purely transverse polarisation state.
The position of the peak is also different depending on the polarisation state. The purely
longitudinal and the mixed polarisation states are peaked at Me+µ− ≈ 65GeV, while the
purely transverse is peaked at Me+µ− ≈ 50GeV. The relative NLO EW corrections increase
in size in the high-invariant-mass region. The large positive corrections of the mixed polar-
isation states are the result of a suppression of the LO contribution, that originates from
unitarity cancellations and is proportional to the energy of the longitudinally polarised W bo-
son [149]. The increasingly negative corrections to the LL and TT states are caused by large
EW logarithms. In the low-invariant-mass region the contribution from the interferences is
very large amounting to ≈ 40% of the unpolarised cross-section. In the high-invariant-mass
region they become negligible. The reason is that the transverse momentum cuts on the
charged leptons, which spoil the cancellation of the interferences, is much more prominent in
the low-invariant-mass region. For small invariant masses the bb̄-induced partonic processes
only give a very small contribution. At moderate invariant masses their effect becomes very
large (+50% at 200GeV for LL). The relative size of the non-resonant background varies
between 3% and 8% increasing with larger invariant masses.
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Vector-boson scattering

5.1 Overview

As already mentioned in the introduction, VBS processes are ideal for studying all possible
interactions of the EW gauge bosons and the Higgs. Polarised VBS processes offer addi-
tional sensitivity to the delicate unitarity cancellations in the EW sector. This makes them
indispensable for precision tests of the Standard Model. Therefore, also the experimental
collaborations ATLAS and CMS have invested much to measure VBS at the LHC. This has
lead to the successful measurement of W±W± [161–165], ZZ [166–168], ZW± [164, 169–171]
and W+W− [172, 173] scattering in fully leptonic decay channels. VBS has been used to
constrain possible deviations from the Standard Model [161, 174–176]. Recent studies have
begun to look into VBS in semi-leptonic decay channels [176–178]. So far only one experi-
mental study of polarised VBS by the CMS collaboration exists [72].

Theoretical predictions for full off-shell VBS exist that are NLO QCD [179–190] and NLO
EW [184,186–191] accurate. Furthermore, the irreducible QCD backgrounds to W+W+ and
ZZ have been computed up to NLO QCD and EW [184,188,190] accuracy. The matching to
PS has been performed to NLO QCD accurate fixed-order computations [185,192–199] and
to NLO EW accurate fixed-order computations [200].

The existing theoretical computation for polarised VBS are only LO accurate [51,85–87,
151]. They have been computed with the publicly available Monte Carlo codes PHANTOM

[201], MG5 aMC@NLO [202] and Sherpa [203]. Sherpa is capable of producing approx-
imate NLO QCD accurate predictions [151], this has so far only been used for vector-boson
pair production and not VBS. Improving the accuracy to NLO QCD and EW for VBS is
urgently needed in the context of the data that is being gathered at LHC experiments.

The particular process that will be discussed in this chapter is the scattering of two W+

bosons.

5.2 W+W+ scattering at NLO EW and QCD

The results that are presented in this section have been published in Ref. [37]. Same-sign
W-boson scattering with leptonic decays is the simplest VBS process to study as it features
the cleanest signal. It does not have a top-antitop production background as in W+W−

scattering. Additionally, there is no contribution from on-shell Higgs production at LO.
Such contributions can severely disrupt the DPA and lead to large non-resonant backgrounds.
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This makes W+W+ the ideal VBS process to compute the NLO corrections by applying the
methods discussed in Chapter 3.

Here VBS in the purely leptonic decay mode is considered. For the full off-shell calculation
the process studied is

pp → e+νeµ
+νµ + jj +X . (5.1)

The DPA process is

pp → W+
(
→ e+νe

)
W+

(
→ µ+νµ

)
+ jj +X . (5.2)

At LO there are three different orders that contribute to the processes defined in Eqs. (5.1)
and (5.2): the LO VBS signal O(α6), the LO interference background O(αsα

5) and the LO
QCD background O(α2

sα
4). At NLO there are four different orders that contribute: the

NLO EW corrections to the VBS signal O(α7), the NLO QCD corrections to the VBS signal
O(αsα

6) and the NLO corrections to the irreducible backgrounds O(α2
sα

5) and O(α3
sα

4).
At LO all contributions, signal and background, are computed. At NLO only the correc-
tions to the signal O(α7) and O(αsα

6) are computed. The contribution denoted as the
NLO QCD corrections to the VBS signal also contains EW corrections to the interference
background. As these contributions are of the same perturbative order they cannot be split
in an unambiguous way. Since the QCD corrections to the VBS signal give the dominant
contribution [184] they are referred to as such in the following. The computation of the NLO
corrections to the irreducible background is not part of this thesis.

In Figure 5.1 diagrams that feature Born kinematics are shown. These contributions
are characterised by the W bosons decaying into a charged lepton and the corresponding
neutrino. These are LO contributions to the signal (top left), EW virtual corrections (bottom
left), QCD virtual corrections (bottom right) and LO contributions to the irreducible QCD
background (top right). The interference of the two top diagrams is part of the interference
background. Only some of the partonic processes give an non-zero contribution to the
interference-background cross-section. In partonic processes, with two external quarks of the
first generation and two from the second generation, the colour algebra causes the colour-
averaged product of the amplitudes to vanish.

5.2.1 Setup

The calculation is performed with a CM energy of
√
s = 13.6TeV corresponding to Run-3

of the LHC. The general methods are the same as for the vector-boson pair-production
processes in Chapter 4. The values for the on-shell masses and decay widths of the W and
Z bosons are taken from the PDG [159] giving

MOS
Z = 91.1876GeV, ΓOS

Z = 2.4952GeV,

MOS
W = 80.377GeV, ΓOS

W = 2.085GeV .
(5.3)

As the calculation requires the pole values of the masses and widths they have been converted
according to Eq. (4.3). Furthermore, the mass and width values of the top quark and the
Higgs boson taken from the PDG [159] are

mt = 172.69GeV, Γt = 1.42GeV,

MH = 125.25GeV, ΓH = 0.0041GeV .
(5.4)
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Figure 5.1: Sample doubly-resonant contributions to W+W+ scattering at LO EW (top left),
NLO EW (bottom left) and NLO QCD (bottom right) accuracy, and to the QCD background
at LO (top right).

In the full off-shell calculations the non-zero top-quark width Γt is used. For the calculations
in the DPA, both polarised and unpolarised, the top width is set to zero Γt = 0GeV. The
EW coupling is computed using the Gµ scheme [43,204] with the Fermi constant

Gµ = 1.16638× 10−5GeV−2 . (5.5)

The EW coupling is computed differently in the full off-shell computation compared to the
DPA ones. In the full off-shell calculation the EW coupling is calculated with the complex-
mass scheme [38,205,206] giving

α =

√
2

π
Gµ

∣∣∣∣µ2
W

(
1− µ2

W

µ2
Z

)∣∣∣∣ , µ2
V = M2

V − iMV ΓV (V = W, Z) . (5.6)

The calculations performed in the DPA, both polarised and unpolarised, make use of the
real-mass scheme giving the EW coupling

α =

√
2

π
GµM

2
W

(
1− M2

W

M2
Z

)
. (5.7)

Both the full off-shell and the DPA calculations are performed with five active quark flavours,
even though for this process no bottom-quark-induced processes contribute up to NLO.
However, photon-induced partonic processes contribute to the real EW corrections. For
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the treatment of the initial-state collinear singularities both from EW and QCD the MS
factorisation scheme is applied. The NNPDF40 nnlo as01180 qed PDFs [207], linked via the
LHAPDF interface [138], are employed. The factorisation and renormalisation scales are
dynamically set to

µR = µF =
√

pT,j1 pT,j2 , (5.8)

where pT,j1 and pT,j2 are the transverse momenta of the hardest and second-hardest
transverse-momentum tagged jet. To compute the scale uncertainties a 7-point scale vari-
ation with factors

(ξF, ξR) ∈ {(1/2, 1/2), (1/2, 1), (1, 1/2), (1, 1), (1, 2), (2, 1), (2, 2)} (5.9)

is performed. The minimal and maximal values, obtained from the scale variation, constitute
the uncertainty bands.

The applied phase-space cuts are adapted from the ones in the CMS analysis [72]. A
final state with at least one positron, one antimuon and two tagged jets is required. The
charged leptons are recombined with photons using the anti-kt algorithm [140] with a radius
of R = 0.1. Jets are also clustered with the anti-kt algorithm but with a radius R = 0.4.
Final-state particles with a rapidity |y| > 5 are assumed to be lost to the beam pipe and are
not recombined. After recombination the charged leptons must satisfy

pT,ℓ1 > 25GeV , pT,ℓ2 > 20GeV , |yℓ1,2| < 2.5 , Me+µ+ > 20GeV , (5.10)

where ℓ1(2) is the (sub)leading charged lepton. To be tagged a jet must fulfil

pT,j > 50GeV , |yj| < 4.7 , ∆Re+j > 0.4 , ∆Rµ+j > 0.4 . (5.11)

After jet tagging, the leading and subleading tagged jets must satisfy

Mj1j2 > 500GeV , |∆yj1j2| > 2.5 . (5.12)

The missing transverse momentum must be at least

pT,miss > 30GeV . (5.13)

Furthermore, the selected events have to satisfy the rapidity requirement,

max
ℓ

∣∣∣∣yℓ − yj1 + yj2
2

∣∣∣∣ < 0.75 |∆yj1j2| , ℓ = e+, µ+ . (5.14)

5.2.2 Exception handling

When studying VBS processes at the LHC there is always an unavoidable triple-vector-boson
production background. For W+W+ scattering the background is W+W+W− production,
where the W− boson decays into jets. These diagrams are present both in the off-shell
process and in the DPA process. In the full off-shell calculation they introduce a background
to the VBS signal. The background is suppressed by the event selection, in particular the cut
on the invariant mass of the two jets, but causes no conceptional problems. This is different
in the DPA calculation. In the DPA, to conserve gauge invariance, the decay width of the
W and Z bosons must be set to zero everywhere, but in the propagators set as the resonant
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Figure 5.2: Sample real-radiation diagrams of orderO(α7) (left) andO(αsα
6) (middle, right),

embedding triple-W-boson production and contributing to the same final state as W+W+

scattering at the LHC.

ones. When diagrams contribute with an additional s-channel W boson that is not set as
resonant this introduces a singularity when the third W becomes on-shell. In the setup used
in this calculation the invariant-mass requirement of the two jets Mj1j2 > 500GeV > MW

prevents the third W from becoming on-shell at LO. When real radiation is considered,
final states with three tagged jets are possible. These are photon/gluon-induced or gluon-
radiating processes. Sample diagrams of these partonic processes are depicted in Figure 5.2.
With three jets in the final state the invariant mass cut can no longer prevent the third W
from becoming on-shell.

To deal with the artificial singularity from the third resonance, the decay width of the
W and the Z boson is not set to zero in the partonic processes that can have triple-resonant
contributions. As stated in Chapter 2 this results in a gauge dependence of the DPA amp-
litude and the cross-sections calculated from it. To make sure that the effects from the gauge
dependence are small, several checks are been performed. Foremost there is the comparison
with the full off-shell computation. Comparing the results from the full off-shell computation
with those from the unpolarised DPA one finds no discrepancy beyond the intrinsic accuracy
of the DPA (see Table 5.4 lines full and unp.). Therefore, the gauge dependence leads at
most to contributions of the order of the accuracy of the DPA. A further check that was
performed is to estimate the size of the effect by comparing the integrated dipoles. The
integrated dipoles feature only Born kinematics; therefore, the integration can be performed
with the width set to zero and with keeping the pole value. Comparing the two obtained
values it was found that the relative difference is at most 0.3%. This amounts to a total
difference for the integrated NLO cross-section of 2.5 ·10−4 fb which corresponds to a relative
difference of 0.021%. For same-sign W scattering the contributions from triple-vector-boson
production are smaller than those from VBS diagrams. Therefore, the triple-resonant contri-
butions are suppressed as a whole and thus also the inconsistency from the gauge dependence
is suppressed in the final result. This argument and the performed checks are only valid for
the specific process and setup treated here.

For general processes with additional resonances the effect of keeping the width non zero
does not have to be small. To treat the contributions from additional resonances consistently
an improved version of the DPA is needed. A possible idea for such a method would be to
remove the triple-resonant diagrams in the DPA calculation and add the contribution back
by treating them in a triple-pole approximation (TPA). Such a method would remove the
singularities from the triple-resonance contributions. To tune this in a way to have a total
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Chapter 5. Vector-boson scattering

state σLOα6 [fb] σLOαsα5 [fb] δαsα5 σLOα2
sα

4 [fb] δα2
sα

4 δαsα5+α2
sα

4 σLO [fb]

full 1.4863(1) 0.044877(9) 0.03 0.14686(2) 0.10 0.13 1.6780(1)
unp. 1.46455(9) 0.044386(8) 0.03 0.14664(2) 0.10 0.13 1.65558(9)
LL 0.14879(1) 0.006120(1) 0.04 0.012298(2) 0.08 0.12 0.16721(1)
LT 0.23209(2) 0.007284(2) 0.03 0.029465(6) 0.13 0.16 0.26884(2)
TL 0.23208(2) 0.007284(2) 0.03 0.029471(6) 0.13 0.16 0.26884(2)
TT 0.87702(7) 0.026402(6) 0.03 0.07938(2) 0.09 0.12 0.98281(7)
int. −0.0254(1) −0.00270(1) 0.11 −0.00398(3) 0.16 0.26 −0.0321(1)

Table 5.1: LO contributions to the integrated cross-section (in fb) for the process pp →
e+νeµ

+νµ+jj at the LHC. The numbers in columns 4, 6, and 7 give the ratio of the respective
background to the LO signal O(α6).

result that is gauge independent and has the correct correspondence between the local and
integrated counterterms is significantly more complicated and is subject to future research.

Also present in partonic processes that have a triple-resonant contribution are Higgs-
strahlung diagrams, where a Higgs boson decays into one W+ boson and two jets as shown
in the middle diagram in Figure 5.2. As stated in Section 2.4 the on-shell projection can
shift the invariant corresponding to the Higgs boson closer to or further away from the peak.
Large Monte Carlo weights from such events can lead to an unstable integration. While
large eventweights occur in the chosen setup, they only lead to an integration uncertainty of
at most 9% for the individual subtracted-real contributions. Furthermore, as stated before,
the contributions from triple-resonant partonic processes are suppressed in the chosen setup;
therefore, the individual uncertainties do not affect the final result. Therefore, these partonic
processes are not treated differently from other triple-resonant contributions.

5.2.3 Integrated results

Table 5.1 shows the LO cross-sections of the signal O(α6), the interference background
O(αsα

5), and the QCD background O(α2
sα

4). When performing a polarisation study the
contributions to the background would have to be subtracted beforehand. The study of the
irreducible background is still very important to analyse the chosen setup, in particular,
to what degree it favours the signal contribution. The contribution from the signal is the
largest. The interference background only gives a relative contribution of ≈ 3% and the QCD
background one of 8−13%. The relatively small background contribution is not only caused
by the event selection but also by the fact that certain enhancements of the background are
absent. In same-sign W scattering there are no gluon-induced processes that contribute to
the LO background. The large PDF factors of the gluon have been shown to significantly
enhance the backgrounds in opposite-sign W scattering [189]. The phase-space cuts were
chosen in a way to prefer contributions from VBS diagrams. The kinematic preferences of
the signal and the background are different owing to the different diagram topologies that
give the dominant LO contribution. The dominant diagram topology of the signal is where
the two quark lines each emit a W+, which then scatter off each other as shown in the top-left
diagram in Figure 5.1. For the QCD background the quark lines exchange a t-channel gluon
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state fLOα6 [%] fLOαsα5 [%] fLOα2
sα

4 [%] fLO[%]

full 101.5 101.1 100.1 101.4
unp. 100.0 100.0 100.0 100.0
LL 10.2 13.8 8.4 10.1
LT 15.8 16.4 20.1 16.2
TL 15.8 16.4 20.1 16.2
TT 59.9 59.5 54.1 59.4
int. −1.7 −6.1 −2.7 −1.9

Table 5.2: LO polarisation fractions for the process pp → e+νeµ
+νµ + jj at the LHC.

and each emit a W+ boson as seen in the top-right diagram in Figure 5.1. When analysing
differential distributions in Section 5.2.4 the effects of the different topologies become more
evident.

Table 5.2 shows the polarisation fractions normalised to the unpolarised DPA cross-
sections of the LO signal and backgrounds. From the polarisation fractions of the full off-
shell cross-section the size of the non-resonant background can be inferred. For the signal,
interference background and QCD background it is ≲ 1.5%, which is within the accuracy
of the DPA. As seen in many di-boson processes [39, 53, 60, 61] the TT polarisation state
gives by far the largest contribution at ≈ 60% for the signal. The mixed polarisation states
LT and TL have identical polarisation fractions. This is a consequence of the symmetric
cuts on the two charged leptons. The LL polarisation state has the smallest contribution.
The contribution from the interference of longitudinal and transverse polarisations is small
and negative. When the whole decay phase space of the W bosons is considered, the con-
tributions from the interferences cancel. The applied phase-space cuts prevent the complete
cancellation of the interferences, the setup is still inclusive enough to give a strong suppres-
sion. Even though the interference and the QCD background are not part of the VBS signal
they are also doubly resonant. Therefore, also for them a polarisation split is performed.
The obtained polarisation fractions are similar to the ones of the VBS signal with the in-
terference background having a larger LL contribution and the QCD background having a
large contribution from the mixed states. The sensitivity of the irreducible background to
the unitarity cancellations is smaller than of the VBS signal. Therefore, only the polarisation
states of the signal processes are analysed in more detail.

In Table 5.3 the NLO accurate integrated cross-sections are shown. The relative NLO EW
corrections are all fairly large and negative. Their size differs depending on the considered
polarisation state. The EW corrections to the TT polarisation state are the most negative
at ≈ −15%. The ones to the LL polarisation state are the least negative at ≈ −10%.
For the mixed polarisation states the size is in between the ones from the LL and TT
states at ≈ −13%. The large negative NLO EW corrections are caused by large Sudakov
logarithms [184, 191] present here. The prefactors of the leading double logarithms are the
EW Casimir operators [208]. The size of these Casimir operators depends on the W-boson
polarisation. When the boson is transversely polarised it is larger than when the W boson
is longitudinally polarised. This results in the less negative NLO EW corrections to the LL,
LT and TL state.
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state σLO [fb] ∆σNLOEW [fb] ∆σNLOQCD [fb] σNLOEW+QCD [fb]

full 1.4863(1)+9.2%
−7.8% −0.2084(6) −0.0704(7) 1.208(1)+1.6%

−3.1%

unp. 1.46455(9)+9.2%
−7.8% −0.2076(2) −0.0733(5) 1.1836(5)+1.7%

−3.3%

LL 0.14879(1)+8.3%
−7.2% −0.01505(2) −0.00660(7) 0.12715(8)+1.0%

−2.1%

LT 0.23209(2)+9.1%
−7.8% −0.03040(4) −0.0098(1) 0.1919(1)+1.4%

−2.8%

TL 0.23208(2)+9.1%
−7.8% −0.03051(4) −0.0097(1) 0.1918(1)+1.4%

−2.8%

TT 0.87702(7)+9.4%
−8.0% −0.1352(1) −0.0474(4) 0.6944(4)+1.9%

−3.7%

int. −0.0254(1)−8.9%
+10.6% 0.0035(2) 0.0002(6) −0.0217(7)−1.6%

+0.7%

state δEW δQCD δEW+QCD

full −0.140 −0.047 −0.188
unp. −0.142 −0.050 −0.192
LL −0.101 −0.044 −0.145
LT −0.131 −0.042 −0.173
TL −0.131 −0.042 −0.173
TT −0.154 −0.054 −0.208
int. −0.139 −0.007 −0.147

Table 5.3: NLO contributions to the integrated cross-section (in fb) for the process pp →
e+νeµ

+νµ + jj at the LHC. The numbers in the lower part of the table give the ratio of the
given O(α7) and O(αsα

6) NLO corrections to the corresponding LO signal at O(α6).

For the NLO QCD corrections the picture is different. They are negative similar to the
EW corrections but their size is smaller than their EW counterparts. In VBS processes the
NLO QCD corrections only affect the quark lines; therefore, their dominant behaviour is
comparable to the NLO QCD corrections to deep-inelastic electron-proton scattering. For
deep-inelastic scattering the NLO QCD corrections have been found to be small [209]. The
relative size of the corrections is very similar for the different polarisation states at −4% to
−5%. With both W bosons decaying leptonically the NLO QCD corrections only affect the
production part of the process. The LO VBS signal is a purely EW process; therefore, only
the variation of the factorisation scale enters the LO scale uncertainties. To have a sound
estimate of the size of the higher-order QCD corrections the NLO QCD corrections need to
be included. This results in scale uncertainties of 1−3% for the NLO EW+QCD prediction.
The size of the scale uncertainties only varies slightly with the polarisation state.

Table 5.4 shows the polarisation fractions including the NLO corrections. The relative
size of the non-resonant background is slightly larger at NLO compared to LO. The value
is still within the expected accuracy of the DPA. Overall the polarisation fractions are only
subject to small changes of the order of 1% from LO to NLO. The fractions of the LL, LT,
TL polarisation states and the interferences are slightly increased, while the fraction of the
TT polarisation state is slightly decreased. This is a consequence of the less negative NLO
EW corrections to the states with at least one longitudinally polarised boson compared to
the purely transverse state previously discussed in Table 5.3. As at LO, the interference
contribution is also small at NLO because of the cancellations, when integrating over the
whole decay phase space.
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state fLO[%] fNLOEW[%] fNLOQCD[%] fNLOEW+QCD[%]

full 101.5 101.7 101.8 102.0
unp. 100.0 100.0 100.0 100.0
LL 10.2 10.6 10.2 10.7
LT 15.8 16.0 16.0 16.2
TL 15.8 16.0 16.0 16.2
TT 59.9 59.0 59.6 58.7
int. −1.7 −1.7 −1.8 −1.8

Table 5.4: NLO polarisation fractions for the process pp → e+νeµ
+νµ + jj at the LHC.

5.2.4 Differential results

While the integrated cross-sections give a good overview on how large the polarised contri-
butions are, to fully understand the underlying differences between the polarisation states,
differential cross-sections have to be studied. Furthermore, their study is necessary in order
to judge, which observables are suited to discriminate between the polarisation states. Ob-
servables that feature large differences in the normalised shapes of the distributions can be
used as polarisation templates.

The histogram plots (Figures 5.3–5.13) are set up as follows. For each observable there
are four subplots, each containing three panels. Starting with the top left subplot, the first
panel depicts the differential cross-section of the LO accurate signal O(α6) with respect to
the given observable. The cross-section is given for the full off-shell process (black), the
unpolarised DPA process (grey) and the polarised DPA processes (LL red, LT yellow, TL
green, TT blue). The panel below shows the relative size of the interference background
O(αsα

5) compared to the LO signal. The bottom panel of the top left subplot presents
the relative size of the LO QCD background O(α2

sα
4) compared to the LO signal. The

top right subplot is dedicated to the NLO results. The top panel illustrates the differen-
tial NLO accurate cross-section containing the LO signal O(α6), the NLO EW corrections
O(α7) and the NLO QCD corrections O(αsα

6). The panel below depicts the NLO accurate
cross-section normalised to the integrated cross-section. The last panel shows the NLO ac-
curate polarisation fractions. They are depicted for the full off-shell process, the polarised
DPA processes and the contribution from interferences of the longitudinal and transverse
polarisation states (magenta). The relative sizes of the NLO corrections with respect to the
LO signal are shown in the bottom left subplot. The first panel shows the relative NLO
EW corrections, the second one the NLO QCD ones and the third NLO EW and QCD
combined. The bottom right subplot depicts the relative size of the combined NLO EW and
QCD corrections including the uncertainty bands obtained from the QCD scale variation,
defined in Eq. (5.9).

Figure 5.3 shows the differential cross-section with respect to the cosine of the decay angle
of the positron in the CM frame of the decaying boson. This is a very standard observable
for the study of polarisation that has already been used for vector-boson pair production
[39, 53, 55, 151]. As the leptonic decays of the W bosons have two final-state neutrinos the
decay angle is not experimentally observable. However, there are features of experimentally
measurable observables that can be explained by characteristics of the decay angle making
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Figure 5.3: Distribution in the polar decay angle of the positron in the rest frame of the
decaying W+ boson. Details are described in the main text (first paragraphs of Section 5.2.4).

its study still worthwhile. The decay angle is directly sensitive to the polarisation of the
decaying W+ boson. Therefore, when investigating the normalised shapes one finds large
differences depending on the polarisation of the W+ boson decaying into the positron. When
the W boson is longitudinally polarised the distribution is peaked in the central region. This
is caused by the decay particles of longitudinally polarised vector bosons being predominantly
emitted orthogonal to the direction of the decaying boson. For a transversely polarised W
boson there is a local minimum in the central region. For the decay of a transversely polarised
vector boson the decay particles are preferably emitted in and opposite to the direction of
the decaying boson. The region close to the edge −1 < cos θ∗,CM

e+ < −0.75 is affected most
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by the phase-space cuts. In particular, the cut on the transverse momentum of the positron
distorts the shape compared to the one expected in a fully inclusive setup. Since there is no
analogous cut on the electron neutrino there is no such distortion at cos θ∗,CM

e+ = 1 resulting
in the asymmetric shape seen in the plot. While the shapes of the LL and LT states are
almost identical, the ones of the TT and TL state feature some small differences. The peak
at cos θ∗,CM

e+ = −0.75 is more prominent in the TL state. The increase close to cos θ∗,CM
e+ = 1

is steeper for the TT state. The relative NLO corrections, both EW and QCD, are very
close to flat and mostly mirroring the effects seen at the integrated level. Only in the region
−1 < cos θ∗,CM

e+ < −0.75 that is affected most by the cuts some deviation from the flat
behaviour is seen in the EW corrections to the TT and TL state.

In Figure 5.4 the differential cross-section with respect to the azimuthal angular separ-
ation of the positron and the antimuon is presented. As seen at LO [86] the normalised
shapes show significant differences between the different polarisation states. Therefore, this
observable is a well suited candidate for the use in polarisation templates to discriminate
the different polarisation states. The TT state has a clear preference for the positron and
the muon to be produced in opposite directions. This is an effect of the decay leptons from
transversely polarised bosons tending to be aligned with their parent W boson. The shapes
of the mixed polarisation states are identical and feature only a very small preference for the
positron and antimuon to be emitted in opposite hemispheres. The shape of the LL state is
close to flat with a small but wide peak at ∆ϕe+µ+ = 0.75. The different shapes cause large
changes in the polarisation fractions. The relative contribution of the TT state increases to
68% for large separations. As in most angular observables the relative NLO corrections are
close to flat reproducing the values seen at the integrated level.

The differential cross-section with respect to the azimuthal angular separation of the
leading and the subleading transverse momentum jet is depicted in Figure 5.5. The norm-
alised shapes show a notably different shape of the LL polarisation state compared to the
others. While all polarisation states have a preference for the two jets to be produced at
large separations, this preference is much more pronounced when both W bosons are lon-
gitudinally polarised. In the polarisation fractions this translates to the fraction of the TT
polarisation state decreasing from ≈ 70% to only ≈ 50% over the range of angular separa-
tions. The contribution from the LL polarisation state increases from 4% to 15%. The NLO
EW corrections to the LL polarisation state give only small negative corrections for small
separations. From ∆ϕj1j2 = 0.8 the corrections become more negative with increasing sep-
aration. The effect of the NLO EW corrections to the other polarisation states is different
giving a close to flat correction that becomes slightly less negative for larger separations.
The NLO QCD corrections feature no significant differences between the polarisation states
and become slightly more negative with increasing separation. Studying the relative sizes
of the interference and QCD background it becomes evident that they feature a different
shape than the signal. The relative size of the QCD background varies between 5% and 17%
depending on the polarisation state, while the interference background has a relative size
between −7% and +6%.

The differential cross-section with respect to the rapidity separation of the positron and
antimuon is shown in Figure 5.6. The shape of the TT polarisation state, featuring a peak
at |∆ye+µ+| = 0, differs from the other polarised signals. The differential cross-sections with
at least one longitudinally polarised W boson have a peak at |∆ye+µ+| = 1.1. The reason
is the different rapidity distributions of the positron and the antimuon from the decay of a
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Figure 5.4: Distribution in the azimuthal-angle difference between the two charged leptons.
Details are described in the main text (first paragraphs of Section 5.2.4).

longitudinal or transverse W boson. As depicted in Figure 5.8 the rapidity distribution of
the positron from a transversely polarised boson has a sharper peak at ye+ = 0 than when
it is emitted from a longitudinally polarised boson. Therefore, the rapidity difference of the
positron and the antimuon will in general be smallest when both W bosons are transversely
polarised. This makes the rapidity separation a very good observable to select the TT
polarisation state. The different shapes also cause significant changes in the polarisation
fractions. The contribution of the TT state decreases from 75% at |∆ye+µ+ | = 0 to 40%
at |∆ye+µ+| = 5. The relative size of the NLO EW corrections are close to constant for
all polarisation states. The differences between the polarisation states mirror those seen at
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Figure 5.5: Distribution in the azimuthal-angle difference between the two tagged jets.
Details are described in the main text (first paragraphs of Section 5.2.4).

the integrated level. The NLO QCD corrections decrease in size with increasing rapidity
separation. For large rapidity separations the relative contribution of the QCD background
becomes very large. This is caused by the different kinematic preferences of the signal and
the QCD background. The cause of the difference can be understood when studying the
rapidity distributions of the positron is Figure 5.8. The corresponding plot for the antimuon
is not shown here but features an analogous behaviour. The positron and the muon from the
QCD background are generally emitted in a more forward/backward direction compared to
the signal. This translates to a larger rapidity separation for the QCD background resulting
in the seen large relative contribution.
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Figure 5.6: Distribution in the absolute value of the rapidity difference between the two
charged leptons. Details are described in the main text (first paragraphs of Section 5.2.4).

In Figure 5.7 the differential cross-section with respect to the rapidity of the leading
transverse momentum jet is presented. The dominant feature of the plot is the two peak
structure at yj1 ≈ ±2.2 that is present for all polarisation states. For the LL polarisation state
the shape is slightly different having an overall shift to more forward/backward directions.
These small differences in shape cause the polarisation fractions to be close to constant.
The LO irreducible backgrounds, both QCD and interference, have a different shape as seen
in the large relative contribution in the central region. While diagrams that have a VBS
topology have a strong preference for the jets to be emitted in a very forward/backward
direction the jets from topologies of the irreducible background are preferably emitted in
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Figure 5.7: Distribution in the rapidity of the leading jet. Details are described in the main
text (first paragraphs of Section 5.2.4).

the central region. The relative NLO QCD corrections are negative in the central region
at −10% while in the forward/backward region they become positive reaching +14%. This
effect has been previously observed for calculations of off-shell W+W+ scattering [184]. The
relative NLO EW corrections are close to constant featuring only differences of ≈ 4%.

Figure 5.8 depicts the differential cross-section with respect to the rapidity of the
positron. All polarisation states have a similar overall shape with a peak at ye+ = 0. This is
caused by the preference of bosons from VBS processes to be emitted in the central region.
The sharpness of the peak and the fall-off towards the edges depends on the polarisation of
the W+ boson that emitted the positron. When the W+ boson is transversely polarised the
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Figure 5.8: Distribution in the rapidity of the positron. Details are described in the main
text (first paragraphs of Section 5.2.4).

peak is sharper and the cross-section falls off faster. For a longitudinally polarised W+ boson
the peak is wider and features a slower fall-off. These small differences are caused by the
preference of a transversely polarised boson to emit its decay particles in or opposite to its
direction in the di-boson CM frame. For longitudinally polarised bosons the decay particles
are preferably emitted orthogonal to the direction of the boson. This causes the positron
from a transversely polarised boson to be emitted in a more central direction. The QCD
background has a very different kinematic preference owing to the t-channel gluon exchange
seen in the top right diagram of Figure 5.1. The t-channel gluon exchange diagrams with
the two W bosons emitted from different quark lines favour the production of the W bo-
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sons in a forward/backward direction. This is different from diagrams with a VBS topology,
where the W bosons are predominantly produced in the central region. Therefore, the shape
of the QCD background (not shown in the plot) features two peaks at ye+ = ±1.6. The
effects of the different preferences are seen in the relative contributions that become large
when the positron is emitted in a very forward or backward direction. Both the relative
NLO QCD and EW corrections are close to constant mostly reproducing the value of the
integrated cross-section. The NLO QCD corrections become marginally less negative when
the positron is emitted in a very forward or backward direction with no differences between
the polarisation states.

Figure 5.9 shows the differential cross-section with respect to the invariant mass of the
two charged leptons and the two neutrinos. This is not an experimentally observable quantity
as it requires the reconstruction of the neutrino momenta. However, it is very useful in un-
derstanding features in related observables that can be measured. In the high-invariant-mass
region the fall-off depends on the polarisation state. When both bosons are longitudinally
polarised the distribution falls off the fastest. The TT polarisation state features the slow-
est fall-off. The mixed polarisation states have an intermediate behaviour. This effect has
been observed in LO polarisation studies of VBS processes [51,85]. The different fall-off rates
translate to different normalised shapes of the polarisation states. In particular, the shape of
the LL polarised signal has a much sharper peak in the low-invariant-mass region. The slower
fall-off at high invariant masses causes the fraction of the TT polarisation state to increase to
80% at Me+νeµ+νµ = 1TeV. While the VBS signal features a peak at Me+νeµ+νµ = 200GeV
the peak of the QCD background is shifted to higher invariant masses. This results in a
very large relative contribution in the high-invariant-mass range. The cause of this are the
different kinematic preferences of the different diagram topologies already seen in the plots
of the rapidity of the positron in Figure 5.8. For diagrams which have the VBS topology,
like the one in the top left diagram of Figure 5.1 that give the dominant contribution to the
signal, the jets carry the majority of the energy. Therefore, the four-lepton invariant mass is
typically only of the order of a few hundred GeV [191]. The t-channel gluon exchange present
in diagrams like the top right one in Figure 5.1 produces the bosons preferably in a more
forward/backward direction resulting in a larger four-lepton invariant mass for the QCD
background. The relative NLO EW corrections become more negative with increasing in-
variant mass. This is less severe for the LL polarisation state. The large negative corrections
are caused by EW Sudakov logarithms. The EW Casimir operators that are the prefactors of
the leading double logarithms depend on the polarisation. When the boson is longitudinally
polarised they are smaller than when they are transversely polarised. Therefore, as already
seen at the integrated level the correction to the longitudinally polarised bosons is smaller.
The NLO QCD corrections only slightly decrease in size becoming less negative for high
invariant masses with no significant differences between the polarisation states. The size of
the QCD scale uncertainties grows with increasing invariant mass. For transversely polarised
bosons the growth of the scale uncertainties is larger than for longitudinally polarised ones.

In Figure 5.10 the differential cross-section with respect to the invariant mass of the
positron and the antimuon is shown. This observable is highly correlated to the four-lepton
invariant mass in Figure 5.9 and has very similar features. As it does not require the re-
construction of the neutrino momenta it is measurable at the LHC. As for the four-lepton
invariant mass the fall-off rates in the high-invariant-mass region depend on the polarisation
state. Also the effects of the EW Sudakov logarithms on the size of the NLO EW corrections
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Figure 5.9: Distribution in the invariant mass of the system formed by the two charged
leptons and the two neutrinos. Details are described in the main text (first paragraphs of
Section 5.2.4).

are clearly visible here. Furthermore, the charged-lepton invariant mass is also sensitive to
the different kinematic preferences of the signal and the QCD background.

Figure 5.11 shows the differential cross-section with respect to the transverse momentum
of the leading jet. The normalised shapes of the polarised signals show a considerable
difference of the LL polarisation state compared to the ones with at least one transversely
polarised boson. There is only a very small shape difference between the TT polarisation
state and the mixed polarisation states. The shape of the LL polarisation state has a
shaper peak at low transverse momenta than the other polarisation states. This makes this
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Figure 5.10: Distribution in the invariant mass of the charged-lepton pair. Details are
described in the main text (first paragraphs of Section 5.2.4).

observable suited to select the LL polarisation state. As this is a jet observable it has a
large dependence on the production subprocess. Therefore, beyond the Standard Model
effects can result in potentially large changes of the shapes making it only directly usable in
Standard Model studies. The NLO EW corrections become more negative with increasing
transverse momentum. Similarly, as for the four-lepton and charged-lepton invariant mass
this is caused by the EW Sudakov logarithms, that become more relevant at larger energies.
The differences between the LL and the TT state are much smaller compared to the invariant-
mass distributions. For transverse momenta pT,j1 > 250GeV the NLO QCD corrections are
constant. When the transverse momentum of the leading jet is small the corrections become
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Figure 5.11: Distribution in the transverse momentum of the leading jet. Details are
described in the main text (first paragraphs of Section 5.2.4).

large and positive. This behaviour has been observed in other VBS studies [184,186,189].

Figure 5.12 presents the differential cross-section with respect to the transverse mo-
mentum of the positron. There is a strong dependence on the polarisation of the W+

boson emitting the positron in the low-transverse-momentum region. When the W+ boson
is longitudinally polarised the distribution features a sharp peak at pT,e+ = 40GeV. For a
transversely polarised boson the distribution steadily decreases with increasing transverse
momentum. The fall-off at high transverse momenta is much faster for a longitudinally
polarised boson compared to a transverse one. The reason for these different shapes are
the different decay preferences of longitudinal and transverse bosons. A transversely po-
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Figure 5.12: Distribution in the transverse momentum of the positron. Details are described
in the main text (first paragraphs of Section 5.2.4).

larised boson emits its decay particles preferably in or opposite to its direction in its CM
frame. This results in one decay product having more transverse momentum than the other
one. Therefore, there are more events where the positron has either a very small transverse
momentum or a very large transverse momentum. The decay products of longitudinally po-
larised bosons favour the emission in a direction orthogonal to the bosons direction in its CM
frame. This produces decay particles with the transverse momentum split much more evenly
between the two compared to the transverse case resulting in the observed peak. Further-
more, the shape differences result in a change of the polarisation fractions as shown in the
ratios to the unpolarised cross-section. The effects from the EW Sudakow logarithms seen

95



Chapter 5. Vector-boson scattering

in other observables like the four-lepton invariant mass are also visible in the relative NLO
EW corrections that become more negative at high transverse momenta. The polarisation-
dependent prefactors of the double logarithms cause the corrections to the states with a
longitudinally polarised W+ boson emitting the positron to be less negative. For transverse
momenta pT,e+ < 150GeV the NLO QCD corrections are close to constant and the same
for all polarisation states. For higher transverse momenta this changes. The corrections to
the TT and TL state become less negative and the LL and LT state become more negative.
In the complete NLO picture the differences between the different polarisation states partly
cancel resulting very similar NLO EW+QCD corrections. The interference and the QCD
background have different shapes compared to the LO signal as is evident by the non-flat
corrections. The difference is particularly large when the W+ boson emitting the positron is
longitudinally polarised.

In Figure 5.13 the differential cross-section with respect to the transverse momentum
ratio of the second hardest charged lepton to the hardest charged lepton,

R
(ℓ)
21 =

pT,ℓ2

pT,ℓ1

, (5.15)

is presented. The normalised shapes show a clear difference between the LL polarisation
state and the other states. The differences between the mixed polarisation states and the
TT polarisation state are only minor. Therefore, this is a great observable to distinguish the
purely longitudinal polarisation state. When both bosons are longitudinally polarised there
is a preference for the charged leptons to have similar transverse momenta. When at least
one transversely polarised boson is present, larger differences are favoured. The reason for
the different preferences is the different transverse momentum distributions of the charged
leptons. As shown in Figure 5.12, for the positron, the transverse momentum distribution
for the decay of a longitudinally polarised boson has a sharp peak. The analogous distribu-
tion of the antimuon is not shown but has an equivalent feature. Therefore, the probability
that the transverse momentum of the positron and the antimuon are similar is greater, when
both bosons are longitudinally polarised. The transverse momentum distribution of a lepton
emitted from a transversely polarised W+ boson is much wider making large transverse mo-

mentum differences more probable. For very small transverse momentum ratios
(
R

(ℓ)
21 < 0.1

)
the NLO EW corrections become very negative. In the event selection it is required that
the subleading charged lepton has a transverse momentum of at least 20GeV. Therefore,
in this region of phase space the transverse momentum of the leading charged lepton must
be very large. This means one is probing the high-transverse-momentum region, where the
Sudakov logarithms cause large negative corrections. The NLO QCD corrections are for the
most part constant and the same for all polarisation states. Only in the region R

(ℓ)
21 < 0.2

the LL polarisation state receives a larger negative correction.

5.2.5 Conclusion for W+W+ scattering

There are two key aspects of polarised W+W+ scattering that appear in many observables.
For the discrimination of the different polarisation states, because of the unobservable neut-
rinos, one cannot rely on the decay angles of the positron and antimoun. However, the
characteristic kinematic preferences of the polarisation states seen in the decay angle, trans-
late to shape differences seen in measurable observables. Such observables are the rapidity
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Figure 5.13: Distribution in the ratio of the transverse momenta of the subleading and
leading lepton. Details are described in the main text (first paragraphs of Section 5.2.4).

separation of the positron and the antimuon and the transverse momentum ratio of the
subleading and leading charged lepton. They can be used to discriminate the different po-
larisation states.

Another key feature prominently seen in energy observables are the Sudakov logarithms
and how they affect the size of the NLO EW corrections. Already at the integrated level
it has been shown that they cause the NLO EW corrections to be large and negative. In
the high-energy tails of the differential distributions their effects are even more pronounced.
Furthermore, in energy-type observables the energy dependence of the logarithms is clearly
visible in the change of the relative size of the NLO EW corrections. The Sudakov logarithms
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affect the polarised signals differently. This results in less negative corrections to longitud-
inally polarised bosons and more negative corrections to transversely polarised bosons.
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Conclusion

The main goal of this thesis has been the implementation and use of the DPA at NLO ac-
curacy to compute polarised VBS processes. To this end the Monte Carlo code BBMC has
been extended to compute polarised and unpolarised processes in the DPA. This entailed
the implementation of the DPA methods such as the on-shell projection and the boost to the
frame in which the polarisation vectors are defined. The main challenge of the extension was
the implementation of the NLO corrections. in particular, the NLO EW real-emission con-
tributions with charged resonances. For these processes the massive-resonance counterterms
were implemented. With this extension BBMC is capable of computing polarised VBS at
NLO QCD and EW accuracy.

To test the used methods, before studying VBS processes, vector-boson pair-production
processes were analysed. The lower number of final-state particles and contributing Feyn-
man diagrams makes their computation simpler. As first process I computed polarised ZW+

production with a leptonically decaying Z boson and a hadronically decaying W+ boson. To
study this process two setups were considered one where the W boson decays into two slim
jets (resolved) and one where the W boson decays into one massive fat jet (unresolved). The
differences between the two setups from the different jet recombinations were found to give
significant effects at LO. When including the NLO QCD corrections, the large contribution
from real-emission processes reduced the differences. Therefore, the most significant differ-
ences are seen in the K-factors of some differential cross-sections. In both setups the two
bosons are strongly boosted enhancing the longitudinal signal compared to more inclusive
setups. The main difference to other existing polarisation studies is the hadronically decay-
ing boson. This offers a higher event rate and avoids having to treat part of the W decay as
missing transverse momentum. The primary drawbacks are that jets cannot be distinguished
by their flavour and that the QCD background can be very large. The shape of the distri-
butions depends greatly on how accurate the selection of the decay jets of the W+ boson
is. Selecting jets as decay jets that do not originate from the W-boson decay adds a back-
ground contribution. The misidentification background causes enhancements in otherwise
suppressed phase-space regions resulting in large shape changes in both angular and energy
observables. The size of this background is found to depend greatly on the studied polarisa-
tion state. For the chosen process the TL state features the largest background because of an
interplay of the unitarity suppression and the transverse momentum cut on the jet system.
The shape changes of the TL state from misidentification cause the distributions to resemble
the ones with a transversely polarised W+ boson. As seen in the different polarised shapes of

99



Chapter 6. Conclusion

the differential distributions, there are many observables that can be used for discrimination
between polarisation states. Even when, as in the unresolved setup, no information on the
substructure of the hadronic decay is used, there are many observables that are sensitive to
the polarisation of the Z boson. For example the decay angles and the transverse momenta
of the charged leptons were found to be suitable for polarisation discrimination. However,
resolving the substructure gives access to observables that are sensitive to the decay of the
W+ boson. It has been shown that the decay angle of the leading decay jet is very sensitive
to the polarisation of the W+ boson.

The process studied next was polarised W+W− production at the LHC with decays into
two different flavour opposite charged leptons. For this process the NLO EW corrections
were computed. As the resonant W bosons are electrically charged, the massive-resonance
counterterms had to be used to cancel the additional IR singularities. As this process does
not have any massless final-state particles, other than the decay particles of the resonances
at LO, only a subset of the detailed counterterms were needed for this process. Even though
this process features two neutrinos in the final state there are LHC observables, like the
angular separation of the positron and muon, suited for the discrimination of the polarised
signals. The t-channel top quark present in bb̄-induced processes was found to considerably
enhance the longitudinal signal. Furthermore, the large negative NLO EW corrections in
the tails of energy distributions show the effects from large EW logarithms.

After the study of vector-boson pair-production processes a VBS process was targeted. In
VBS the sensitivity to the unitarity cancellations is much greater than for vector-boson pair
production making them ideal for testing the Standard Model. The VBS process that was
studied here is the scattering of two W+ bosons. Same-sign W scattering is the VBS process
with the cleanest signal, since the backgrounds that complicate other VBS processes are in-
herently suppressed. For example gluon-induced contributions to the QCD background are
only present beyond LO. For this process both the NLO QCD and EW corrections were com-
puted. Compared to vector-boson pair production the hard scattering of VBS processes has
two additional final-state quarks; therefore, all massive-resonance counterterms are needed
to cancel the IR divergences. Both the QCD and EW corrections were found to be negative.
The negative EW corrections are a consequence of large Sudakov logarithms. Furthermore,
the size of the NLO EW corrections depends on the polarisation of the W bosons. The cor-
rection was found to be the most negative for the TT state and the least negative for the LL
state. This is caused by the dependence of the prefactors of the leading double logarithms
on the polarisation of the W+ boson. When the W+ boson is transversely polarised these
prefactors are larger than when the W+ boson is longitudinally polarised giving the different
relative corrections. The effects of the Sudakov logarithms are even more pronounced when
analysing energy-type observables because in the high-energy regions they can cause the
NLO EW corrections to exceed −40% of the LO. Similarly to W+W− production also in
W+W+ scattering the decays feature two neutrinos that cannot be detected in experiments.
Therefore, the decay angle cannot be used as a discriminator for the polarisation states in
measurements. However, the different decay kinematics of transverse and longitudinally po-
larised bosons translate to shape differences in other observables, which are measurable. One
of these observables is azimuthal angular separation of the positron and the antimuon. Here
the different decay kinematics cause a preference for the positron and the antimuon to be
emitted in opposite directions for the TT state. Another observable found to have discrim-
inatory capabilities is the transverse momentum ratio of the subleading and leading charged
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lepton. Here the different decay kinematics manifest in a preference for the decay leptons
from longitudinally polarised bosons to have more similar transverse momenta. These ob-
servables are ideal candidates to be used in polarisation templates needed for polarisation
measurements.

Important advancements have been made to computing polarised di-boson processes with
high accuracy. For this thesis only polarised W+W+ scattering was computed. In principal
also other polarised VBS processes can be computed with the DPA as presented. The
method is, however, not yet completely general in the sense that it is not directly applicable
to the computation of arbitrary polarised processes. When extending the methods detailed
in this thesis for the computation of other polarised VBS processes some of the subtleties
may become more important. One of these is the triple-vector-boson production background
with the third resonance decaying into jets present in all VBS processes. When the third
boson becomes resonant the standard DPA amplitude is singular. Here this was treated
by reintroducing the non-zero decay width of the bosons to regulate the divergence. This
has the problematic side effect of breaking gauge invariance. For W+W+ scattering in the
setup here it has been shown that this effect is small. In other VBS processes this does not
have to be the case. Therefore to compute polarised cross-sections of other VBS processes a
general treatment method that ensures the removal of the singularities while simultaneously
conserving gauge invariance is needed. While the process of primary interest has been VBS,
the methods can be further extend to processes such as triple-vector-boson production or
nested resonances. For the computation of such processes a generalised implementation of
the on-shell projection is needed. To summarise, the field of polarised vector bosons still
offers many opportunities for advancement in physics.
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Appendix A

Mismatch in the local and integrated
counterterms

In Section 3.2 it was argued that first applying the subtraction mapping to the off-shell phase-
space point and then projecting the reduced momenta on-shell is the preferred method. It
was shown that when the subtraction mapping and the on-shell projection are applied in this
order the mismatch between the local and integrated counterterms is beyond the intrinsic
accuracy of the DPA. In this appendix the reverse order, first applying the on-shell projection
and second the subtraction mapping, is analysed. This analysis was already part of Ref. [37].
Here it is shown that this method leads to a mismatch of the local and integrated dipoles.
But in contrast to first using the subtraction mapping this approach will give a discrepancy
that is not necessarily small and beyond the intrinsic accuracy of the DPA. Therefore, first
applying the subtraction mapping is the preferential method.

The argument follows the same partonic process

q q → µ+(k1) νµ(k2)︸ ︷︷ ︸
W+(k12)

e+(k3) νe(k4)︸ ︷︷ ︸
W+(k34)

q(k5) q(k6) γ(k7) (A.1)

and dipole D[12]7,5 already chosen in Section 3.2. As before any flux factors and symmetry
factors are omitted for simplicity. The discussion starts from the subtracted-real contribution
R−D to the production. Omitting all other counterterms the subtracted-real contribution
reads

(R−D)prod ∝
∑

λ12λ34

[ ∣∣∣M(5)
P,µν

(
Q; k̃12, k̃34, k5, k6, k7

)
ε̃µ,∗12 ε̃

ν,∗
34

∣∣∣2
× dΦ5

(
Q; k̃12, k̃34, k5, k6, k7

)
−D[12]7,5(

¯̃k12, k̄5; ỹ, z̃, ϕ̃)
∣∣∣M(4)

P,µν

(
Q; ¯̃k12, k̃34, k̄5, k6

)
ε̃µ,∗12 ε̃

ν,∗
34

∣∣∣2
× dΦrad

(
¯̃k12 + k̄5; z̃, ỹ, ϕ̃

)
dΦ4

(
Q; ¯̃k12, k̃34, k̄5, k6

)]
.

(A.2)

The momenta of the two resonances k̃12, k̃34 are projected on-shell. Additionally, as this is
only the production sub-process the on-shell phase-space measure is used. As in Section 3.2
the dipole D[12]7,5 regulates the IR singularities associated to a massive final-state resonance
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as emitter (here the W boson with momentum k̃12) and a massless final-state spectator with
momentum k5. This is the form of the dipole as used in the literature for radiation off massive
final-state particles. Carrying out the integration of the dipole, over the on-shell radiation
phase space, results in the integrated dipole that is added back in the DPA calculation.

In the DPA calculation the phase-space integration is performed over the off-shell mo-
menta. The subtracted-real DPA contribution including the decay amplitudes and phase-
space measures, when first projecting the momenta on-shell, reads

(R−D)DPA ∝
∑

λ12λ34

[∣∣∣M(5)
P,µν

(
Q; k̃12, k̃34, k5, k6, k7

)
ε̃µ,∗12 ε̃

ν,∗
34

∣∣∣2
× dΦ5 (Q; k12, k34, k5, k6, k7)

−D[12]7,5(
¯̃k12, k̄5; ỹ, z̃, ϕ̃)

∣∣∣M(4)
P,µν

(
Q; ¯̃k12, k̃34, k̄5, k6

)
ε̃µ,∗12 ε̃

ν,∗
34

∣∣∣2
× dΦrad

(
k̄12 + k̄5; z, y, ϕ

)
dΦ4

(
Q; k̄12, k34, k̄5, k6

) ]
× 1

BW(k12) BW(k34)

∣∣∣ε̃µ12M(2)
D,µ

(
k̃12; k̃1, k̃2

)∣∣∣2 ∣∣∣ε̃µ34M(2)
D,µ

(
k̃34; k̃3, k̃4

)∣∣∣2
× dk2

12

2π

dk2
34

2π
dΦ2 (k12; k1, k2) dΦ2 (k34; k3, k4) .

(A.3)

The Eqs. (A.2) and (A.3) have some differences in particular in the different phase-space
measures

dΦ5

(
Q; k̃12, k̃34, k5, k6, k7

)
→ dΦ5 (Q; k12, k34, k5, k6, k7) , (A.4)

and

dΦrad

(
¯̃k12 + k̄5; z̃, ỹ, ϕ̃

)
dΦ4

(
Q; ¯̃k12, k̃34, k̄5, k6

)
→

dΦrad

(
k̄12 + k̄5; z, y, ϕ

)
dΦ4

(
Q; k̄12, k34, k̄5, k6

)
.

(A.5)

In the DPA the phase-space integration is performed over the off-shell momenta; therefore,
the difference in Eq. (A.4) results in a Jacobian of the on-shell projection. This Jacobian is
of the order O(M2

W/k2
12). Fully differentially this discrepancy is large in particular when the

W+ boson is far off-shell. However, when the integration over the W+ boson off-shellness k2
12

is performed, the Breit-Wigner modulation of the resonant propagator suppresses the far off-
shell contributions. Therefore, when studying regions of phase space, which are dominated
by the W+ boson being close to on-shell, this mismatch only gives effects beyond the intrinsic
DPA accuracy. The argument for the discrepancy in Eq. (A.5) is more involved as for dipoles
that have an intermediate resonance as emitter and/or spectator the on-shell projection
and the subtraction mapping do not commute. The IR kernel and the matrix element
of the reduced process of the local counterterm are evaluated starting from the on-shell
projected real-emission phase-space point. The subtraction mapping is then applied to
the on-shell real-emission phase-space point to evaluate the matrix element of the reduced
process. In the expressions of the local and integrated counterterms form literature [56], that
are reused, the integrated counterterms are evaluated with an on-shell LO phase-space point.
For the local counterterms this corresponds to first taking the off-shell phase-space point and
applying the subtraction mapping and afterwards projecting it on-shell. As stated before
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the used subtraction mapping, the CS-dipole mapping, and the DPA on-shell projection do
not commute. Therefore, first applying the on-shell projection leads to a mismatch between
the local and integrated counterterms. In contrast to the difference in Eq. (A.5) this one
is not beyond the accuracy of the DPA and can be numerically sizeable. This prevents the
correct working of the subtraction scheme. This discrepancy could in principle be remedied
by introducing the Jacobian of the DPA on-shell mapping. By using the reverse order first
using the subtraction mapping and then the on-shell projection this source of discrepancy
can be avoided. Using the local and integrated dipoles from the literature with this ordering
only results in a mismatch that is beyond the intrinsic accuracy of the DPA.
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electroweak corrections to WZ scattering at the LHC, JHEP 06 (2019) 067,
[arXiv:1904.00882].

[187] A. Denner, R. Franken, M. Pellen, and T. Schmidt, NLO QCD and EW corrections
to vector-boson scattering into ZZ at the LHC, JHEP 11 (2020) 110,
[arXiv:2009.00411].

[188] A. Denner, R. Franken, M. Pellen, and T. Schmidt, Full NLO predictions for
vector-boson scattering into Z bosons and its irreducible background at the LHC,
JHEP 10 (2021) 228, [arXiv:2107.10688].

[189] A. Denner, R. Franken, T. Schmidt, and C. Schwan, NLO QCD and EW corrections
to vector-boson scattering into W+W− at the LHC, JHEP 06 (2022) 098,
[arXiv:2202.10844].
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