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Abstract

Explaining the baryon asymmetry of the Universe has been a long-standing problem of
particle physics, with the consensus being that new physics is required as the Standard
Model (SM) cannot resolve this issue. Beyond the Standard Model (BSM) scenarios would
need to incorporate new sources of CP violation and either introduce new departures from
thermal equilibrium or modify the existing electroweak phase transition. In this thesis,
we explore two approaches to baryogenesis, i.e. the generation of this asymmetry.

In the first approach, we study the two-particle irreducible (2PI) formalism as a means
to investigate non-equilibrium phenomena. After arriving at the renormalised equations
of motions (EOMs) to describe the dynamics of a phase transition, we discuss the tech-
niques required to obtain the various counterterms in an on-shell scheme. To this end, we
consider three truncations up to two-loop order of the 2PI effective action: the Hartree
approximation, the scalar sunset approximation and the fermionic sunset approximation.
We then reconsider the renormalisation procedure in an MS scheme to evaluate the 2PI
effective potential for the aforementioned truncations. In the Hartree and the scalar sunset
approximations, we obtain analytic expressions for the various counterterms and subse-
quently calculate the effective potential by piecing together the finite contributions. For
the fermionic sunset approximation, we obtain similar equations for the counterterms in
terms of divergent parts of loop integrals. However, these integrals cannot be expressed
in an analytic form, making it impossible to evaluate the 2PI effective potential with
the fermionic contribution. Our main results are thus related to the renormalisation
programme in the 2PI formalism: (i) the procedure to obtain the renormalised EOMs,
now including fermions, which serve as the starting point for the transport equations for
electroweak baryogenesis and (ii) the method to obtain the 2PI effective potential in a
transparent manner.

In the second approach, we study baryogenesis via leptogenesis. Here, an asymmetry in
the lepton sector is generated, which is then converted into the baryon asymmetry via the
sphaleron process in the SM. We proceed to consider an extension of the SM along the lines
of a scotogenic framework. The newly introduced particles are charged odd under a Z2

symmetry, and masses for the SM neutrinos are generated radiatively. The Z2 symmetry
results in the lightest BSM particle being stable, allowing for a suitable dark matter (DM)
candidate. Furthermore, the newly introduced heavy Majorana fermionic singlets provide
the necessary sources of CP violation through their Yukawa interactions and their out-of-
equilibrium decays produce a lepton asymmetry. This model is constrained from a wide
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range of observables, such as consistency with neutrino oscillation data, limits on branching
ratios of charged lepton flavour violating decays, electroweak observables and obtaining
the observed DM relic density. We study leptogenesis in this model in light of the results
of a Markov chain Monte Carlo scan, implemented in consideration of the aforementioned
constraints. Successful leptogenesis in this model, to account for the baryon asymmetry,
then severely constrains the available parameter space.

ii



Kurzzusammenfassung

Die Erklärung der beobachteten Baryon-Asymmetrie im Universum ist ein seit langem un-
gelöstes Problem in der Hochenergiephysik. Ein weitgehender Konsens besteht darin, dass
dafür “neue Physik” erforderlich ist, da dieses Problem nicht im Rahmen des Standard-
modells gelöst werden kann. Dazu gehören CP-verletzende Erweiterungen des Standard-
modells ebenso wie neue Aspekte des Nichtgleichgewichts und Modifikationen des elek-
troschwachen Phasenübergangs. In dieser Dissertation werden zwei Herangehensweisen
untersucht, mit denen eine Baryon-Asymmetrie erzeugt werden könnte.

Die erste Herangehensweise besteht darin, den 2-Teilchen-irreduziblen (2PI) Formal-
ismus anzuwenden, um auf diese Weise Nichtgleichgewichtsphänomene berücksichtigen zu
können. Nach Ableitung der renormierten Bewegungsgleichungen, welche die Dynamik
des Phasenübergangs beschreiben, werden Methoden diskutiert, mit denen die sogenan-
nten Counterterme im “On-shell”-Schema berechnet werden können. Um dieses Ziel
zu erreichen, betrachten wir drei verschiedene Näherungen der 2PI-Wirkung in zweiter
Schleifenordnung, nämlich die Hartree- und die skalare ‘sunset’ Approximation sowie die
fermionische ‘sunset’-Approximation. Danach kehren wir zur Renormierungsprozedur in
einem MS-Schema zurück, um das effektive 2PI-Potential für die jeweiligen Abschneidever-
fahren zu berechnen. In den ersten beiden Fällen gelangen wir zu analytischen Ausdrücken
für die verschiedenen Counterterme und berechnen anschließend durch Zusammenfügen
aller Beiträge das effektive Potential. Im fermionischen Fall erhalten wir ähnliche Gle-
ichungen für die Counterterme, deren Schleifenintegrale allerdings noch divergente An-
teile enthalten. Weil diese Integrale nicht in analytisch geschlossener Form dargestellt
werden können, ist es in diesem Fall nicht möglich, das effektive Potential zu berech-
nen. Die beiden wesentlichen Resultate beziehen sich also auf Renormierungsverfahren
im 2PI-Formalismus: (i) eine Methode, um renormierte Bewegungsgleichungen, jetzt auch
mit Fermionen, zu erhalten, die als Ausgangspunkt für Transportgleichungen in der elek-
troschwachen Baryogenese nutzbringend sein können, und (ii) eine Methode, um das ef-
fektive 2PI-Potential in einer transparenten Weise zu bestimmen.

Die zweite Herangehensweise befasst sich mit der Baryogenese durch Leptogenese. In
diesem Fall wird zunächst eine Asymmetrie im leptonischen Sektor erzeugt, die dann ver-
mittels eines Sphaleron-Prozesses in eine Baryonasymmetrie konvertiert wird. Wiederum
betrachten wir eine Erweiterung des Standardmodells im Sinn eines skotogenen Ansatzes.
Die zusätzlich eingeführten Teilchen sind ungerade geladen unter einer Z2-Symmetrie und
die Massen für die Neutrinos im Standardmodell werden durch Strahlungskorrekturen

iii



erzeugt. Wegen der Z2-Symmetrie sind die leichtesten Teilchen im erweiterten Stan-
dardmodell stabil und kommen damit als geeignete Kandidaten für dunkle Materie in-
frage. Darüber hinaus verursachen die zusätzlich eingeführten schweren Majorana-Singlet-
Fermionen durch ihre Yukawa-Wechselwirkung die benötigte CP-Verletzung, wobei Zer-
fälle im Nichtgleichgewicht zu einer Leptonen-Asymmetrie führen. Dieses Model wird
durch eine Vielzahl von Observablen eingeschränkt, wie z.B. Konsistenz mit den Daten
zu Neutrino-Oszillationen, Schranken der Verzweigungsverhältnisse für leptonische Flavor-
verletzende Zerfälle, elektroschwache Präzisionsobservablen sowie die im Universum beobachtete
Dichte dunkler Materie. Wir untersuchen die Leptogenese im Rahmen dieses Modells in
einem Parameterraumbereich, der mithilfe einer Makovketten-Monte-Carlo-Simulation die
unter Berücksichtigung der genannten Einschränkungen bestimmt wurde. Eine erfolgre-
iche Leptogenese in diesem Modell, welche auf die gewünschte Baryon-Asymmetrie führt,
schränkt dann den Parameterraum erheblich weiter ein.
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Conventions

In this thesis, we will make use of natural units, where

c = h̄ = kB = 1 ,

where c is the speed of light in vacuum, h̄ is the reduced Planck’s constant and kB is
Boltzmann’s constant. Accordingly, we define the Planck mass

MPl =
1√
GN

= 1.22× 1019 GeV ,

where GN is Newton’s gravitational constant.

For the Minkowski metric, we will use the mostly minus convention, so that in four space-
time dimensions

ηµν = diag {1,−1,−1,−1} .

For the gamma matrices, we use the convention found in usual QFT textbooks such as
Peskin and Schroeder [2] and Schwartz [3]. The corresponding Clifford algebra is then
given as

{γµ, γν} = 2ηµνI4 ,

where {...} denotes the anti-commutator and I4 is the 4×4 identity matrix in spinor space.

Logarithms, referred to as log(...), are all taken with respect to the base e (natural loga-
rithms), unless specified otherwise.



Chapter 1

Introduction

To the best of our knowledge, the observable structures in the Universe − stars, galaxies
and clusters − consist mainly of matter, i.e. made up of baryons such as protons and
neutrons with little to no anti-matter, otherwise they would annihilate. The Earth has
been visited by galactic probes, such as comets and asteroids, and the fact that their
remnants survive implies that they consist of matter. Studies of the composition of cosmic
rays (see, for e.g. [4]) have found about 0.01% anti-protons and no heavy anti-nuclei. Thus,
if there is a significant amount of anti-matter in the Universe, it must be segregated from
matter on supercluster scales [5, 6], which is a scenario hard to envisage.

After the epoch of proton formation (see Fig. 1.1), matter and anti-matter remain
in thermal equilibrium due to reactions such as γγ → pp, until a temperature of about
T ≈ 22MeV. Assuming that there was no initial asymmetry between the two, this leads
to equal number densities of baryons B and anti-baryons B in the present day t0 [6]

neq.
B

nγ

∣∣∣∣
t0

=
neq.
B

nγ

∣∣∣∣
t0

≈ 6× 10−19 , (1.1)

where we have normalised these to the photon number density. However, the observed
abundances of light elements − deuterium, helium, tritium and lithium − from Big Bang
Nucleosynthesis (BBN) [7, 8] and measurements of the Cosmic Microwave Background
(CMB) [9–11] strongly constrain the value of the ratio of the number densities of baryons
to photons to around

nB
nγ

∣∣∣∣
t0

≈ 6.14× 10−10 , (1.2)

meaning that the prediction (1.1) is off by 9 orders of magnitude. The only reasonable
conclusion is that at early times in the Universe, an asymmetry between baryons and anti-
baryons came into existence, which greatly reduced the number of anti-baryons present.
To quantify this asymmetry, we define

ηB =
|nB − nB|

nγ

∣∣∣∣
t0

≈ |nB|
nγ

∣∣∣∣
t0

, (1.3)

where we have assumed that there is negligible anti-matter in the present day, so nB � nB.
The mechanism to produce this asymmetry is termed as baryogenesis and its goal is to
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Chapter 1. Introduction

Figure 1.1: Illustration of the history of the Universe, from [13], starting from t = 0 till today
at t0 = 13.8 billion years, depicting various events in its thermal evolution. After the Big Bang at
t = 0, observations of homogeneities of the CMB suggest a period of inflation. The small baryon
asymmetry is believed to have been generated before the proton formation era and resulted in an
elimination of anti-baryons. BBN takes place during the era where nuclear fusion begins. After
nuclear fusion ends, electrons and atomic nuclei become bound to form neutral atoms (recombina-
tion) and photons start to go out of thermal equilibrium with matter. The photons of the CMB
originate from this time.

successfully obtain the baryon asymmetry ηB close to the value in (1.2). Baryogenesis
thus attempts to answer the question, why is there more matter than anti-matter in the
Universe?

One might wonder whether it is possible to impose the baryon asymmetry as an initial
condition at very early times. This is strongly disfavoured as it leads to a highly fine-
tuned scenario: one would need about 30, 000, 001 quarks, which constitute baryons, for
every 30, 000, 000 anti-quarks, which constitute anti-baryons, to ensure that ηB is close to
the value in (1.2). A stronger reason favouring the dynamical generation of the baryon
asymmetry is that observations of the CMB suggest an epoch of inflation took place during
the history of the Universe, as shown in Fig. 1.1. Inflation is a period of exponential
expansion of the Universe (c.f. [12] for a review) which would have washed away any
primordial baryon asymmetry that might have been present. Thus, imposing the baryon
asymmetry as an initial condition in an inflationary Universe would be useless.

The next question would be, knowing that this asymmetry is present, how does one
dynamically generate it? The recipe for this was formulated by Sakharov, in the 1960s
[14]. The three conditions for baryogenesis are:

• Baryon number violating interactions, in order to evolve an initial state with
∆B = 0, to a final state with ∆B 6= 0, where ∆B is the change in baryon number.

• C and CP violation, where C refers to charge conjugation symmetry and P refers
to parity symmetry. This is required in order to have processes involving baryons
proceeding at different rates than the C- or CP -conjugate processes involving anti-
baryons. This then leads to a net baryon asymmetry.
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• The baryon number violating processes must occur out-of-equilibrium, as no net
baryon asymmetry can be produced in equilibrium. This is because processes gen-
erating and eliminating the asymmetry occur at the same rates in equilibrium by
definition.

The Standard Model (SM) of particle physics, which has been successful in giving an
accurate description of most observed data up to the TeV scale, technically contains, to
an extent, all the aforementioned ingredients:

• Baryon number is violated in the SM through the sphaleron process [15], which
are active during the early Universe due to the high temperature. As the Universe
expanded and cooled, they started to become exponentially suppressed [16], and
presently, are no longer active.

• The weak interactions of the SM violate C and CP via the phase in the Cabbibo-
Kobayashi-Maskawa (CKM) matrix [17], which describes the mixing between quarks.
The amount of CP violation [18], unfortunately, has been found to be too small [19,
20], and cannot generate the asymmetry to the order of (1.2).

• The electroweak phase transition (EWPT), whereby the SU(2)L×U(1)Y symmetry
of the SM is broken after the Higgs acquires a vacuum expectation value (VEV), is
an out-of-equilibrium process. However, it is not a strong first-order phase transition
required for baryogenesis [21, 22], due to the observed Higgs mass of 125GeV [23–
25].

Thus, explaining the baryon asymmetry of the Universe underlines the call for physics
beyond the Standard Model (BSM physics). This needs to be in the form of new sources
of CP violation and (i) either a separate departure from thermal equilibrium besides
the EWPT or (ii) a modification of the EWPT itself. In (i), this usually involves some
newly introduced heavy particle(s) whose out-of-equilibrium decays produces a baryon
asymmetry, whereas in (ii), termed as electroweak baryogenesis, the nature of the EWPT
is altered by, for example, introducing new scalars in the SM Higgs potential.

So far, we have only discussed the generation of the observable, baryonic matter in
the early Universe. However, this baryonic matter comprises only a small fraction of the
total matter in the Universe. The rest of the total matter (∼ 84%) is non-baryonic in
nature and invisible as it does not have interactions with electromagnetic radiation. This
dominant component is termed as dark matter (DM) for which there is well-established
gravitational evidence, such as studies of galactic rotation curves (for e.g. [26–29]), the
“Bullet Cluster” event [30, 31], gravitational lensing (see [32] for a review) and measure-
ments of the power-spectrum of the CMB [9–11]. From what we know about dark matter
[6, 33–37], particle physics candidates need to be non-relativistic (“cold”), at least till the
onset of large structure formation (just before the period when the first stars and galaxies
form, in Fig. 1.1), having little to no interactions with electromagnetic radiation and sta-
ble on cosmological time scales. The Standard Model does not contain such a candidate
and one requires the advent of new physics to explain DM phenomena.

One might think that the Standard Model neutrinos would be good candidates for
particle DM, as they do not interact with electromagnetic radiation. They, unfortunately,
form the “wrong kind” of DM, as they would constitute hot dark matter which would,
being relativistic during structure formation, wash out the small-scale structures of the
Universe. However, neutrinos pose a further riddle, as they are massless in the SM,
contrary to what has been established by neutrino oscillation experiments [38, 39].
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Chapter 1. Introduction

This thesis thus intends to study methods aimed at the resolution of the baryon asym-
metry of the Universe. To this end, we present two different approaches in two parts.

In Part I, we focus on non-equilibrium field theory, as a means to study phase tran-
sitions in a Quantum Field Theory (QFT), which forms the starting point to resolve the
baryon asymmetry through electroweak baryogenesis. We introduce the two-particle ir-
reducible (2PI) formalism in Chapter 2 by giving an overview of the features that make
it ideal for studying non-equilibrium problems. We arrive at the quantum equations of
motion that describe the dynamics of a phase transition, and stress the need to renor-
malise them. In Chapter 3, we explore the techniques to carry out renormalisation within
the 2PI formalism and apply them to obtain expressions for the required counterterms
that make the 2PI effective action finite. To this end, we describe an on-shell scheme and
formulate the renormalisation procedure within the broken phase, i.e. at non-vanishing
field expectation value. We also extend our techniques to include fermions in the 2PI
formalism, which to our knowledge, has not been extensively described in the literature.
Then, in Chapter 4, we apply an alternative approach to renormalise the 2PI effective
action in the MS scheme, which makes it easier to calculate the 2PI effective potential.
For the pure scalar cases, we obtain equations for the counterterms, in terms of divergent
parts of loop integrals, which we solve analytically for explicit expressions. Subsequently,
we are able to obtain the 2PI effective potential at zero temperature in a transparent
manner by tracking finite quantities and using finite parts of these loop integrals, which,
as far as we know, constitutes a novel result. With fermions, we are able to obtain similar
equations for the various counterterms. The technical challenge lies that, although the
divergent structures are known, we cannot evaluate the integrals analytically and extract
the finite pieces needed to evaluate the 2PI effective potential. We close Part I with a
future outlook of the methods we have presented.

Switching gears in Part II, we approach the baryon asymmetry problem from the
perspective of BSM physics and the leptogenesis mechanism. In Chapter 5, we describe
several key aspects of leptogenesis, namely the fulfilment of Sakharov’s conditions. We
demonstrate that the decays of newly introduced heavy neutrinos violate lepton number
and generate CP violation. These decays, which source a lepton asymmetry, occur out-
of-equilibrium and are tracked using Boltzmann equations. We then discuss how this
lepton asymmetry is converted into the required baryon asymmetry through the sphaleron
process. With this framework established, we investigate an extension of the SM allowing
for radiative generation of neutrino masses in Chapter 6. We proceed to perform an
analysis of this model in the context of DM phenomenology and leptogenesis, based on
several considerations, such as generating SM neutrino masses compatible with neutrino
oscillation data, constraints from branching ratios on charged lepton flavour violating
processes, fitting the observed value of the anomalous magnetic moment of the muon,
obtaining the correct DM relic density, etc. We show that this model is indeed capable
of explaining the baryon asymmetry of the Universe, albeit within a severely constrained
parameter space. We close by giving an outlook for the improvement of our analysis along
the lines of leptogenesis.

We conclude this thesis in Chapter 7 by summarising our findings and giving an outlook
for future directions along the lines of this work.
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Chapter 2

The 2PI Formalism

In this chapter, we present and discuss formal aspects related to the two-particle irreducible
(2PI) effective action [40]. Similar to the more familiar one-particle irreducible (1PI)
effective action (see, for e.g. [2, 3]), the 2PI effective action involves a diagrammatic
expansion in terms of closed loops. The main difference is that these diagrams are built
from the resummed propagator in the 2PI formalism, instead of the bare one. A particular
resummation is chosen by truncating the series of diagrams. Finally, a variational principle
when applied to this truncated action leads to a set of self-consistent equations from
which the independent quantities, the one- and two-point functions, are obtained. These
equations are typically coupled, non-linear integro-differential equations which must be
solved numerically.

Resummation schemes based on the 2PI effective action have been known to show
many advantages compared to other methods. For example, in treating bosonic field
theories at high temperature, “hard” thermal loops are resummed to resolve infrared
(IR) singularities [41, 42]. This resulting resummed perturbation theory still shows poor
convergence [43]. However, in the same context, improved convergence behaviour may be
observed using systematic loop- or coupling-expansions of the 2PI effective action [44–46].
Furthermore, out-of-equilibrium properties of fields can also formally studied using 2PI
techniques, whereby the resummation feature of the 2PI formalism allows one to obtain
approximations uniform in time [47–50].

This chapter is intended to provide an introduction to the 2PI formalism by presenting
various definitions and setting notation. Based on this framework, we will treat topics such
as renormalisation and the evaluation of the 2PI effective potential in chapters 3 and 4.
For comprehensive reviews on the 2PI formalism, we suggest [49, 50].

2.1 Properties of the 2PI and nPI Formalisms

To describe out-of-equilibrium phenomena, one needs the specification of an initial state
and the Hamiltonian, which leads to an effective action Γ for the system and describes its
time-evolution. Additional complications arise, however, which are secularity and univer-
sality [49, 50]. Secularity refers to the fact that the perturbative time evolution suffers
from the presence of spurious terms growing with time and invalidating approximations,
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2.1. Properties of the 2PI and nPI Formalisms

meaning one needs to resort to non-perturbative methods for consistency. Universality is
the insensitivity of the late-time behaviour to the initial conditions. This means that if
one approaches thermal equilibrium, the late-time result is determined essentially by the
specified energy density and other conserved quantities (charges).

The challenge of describing non-secular and universal behaviour can be fulfilled us-
ing functional integral techniques based on n-particle irreducible (nPI) effective actions
ΓnPI[φ,G, ..., Vn]. In this formalism, the mean field φ, the propagator G, and the n−point
(n > 2) vertices Vn constitute dynamical degrees of freedom. The effective action then
gives the equations of motion (EOMs) for these quantities, which are obtained by first-
order functional differentiation

δΓnPI[φ,G, ..., Vn]

δφ
=

δΓnPI[φ,G, ..., Vn]

δG
= ... =

δΓnPI[φ,G, ..., Vn]

δVn
= 0 , (2.1)

at some fixed values (φ = φ,G = G, ... , Vn = V n), which are termed as stationarity
conditions.

For practical reasons, we need to understand that it is not necessary to calculate the
general nPI effective action for arbitrarily large n, as there exists an equivalence hierarchy
between nPI effective actions. For example, in terms of the loop expansion [51], we have
in the absence of external sources

Γ1-loop
1PI = Γ1-loop

2PI = ... = Γ1-loop
nPI ,

Γ2-loop
1PI 6= Γ2-loop

2PI = ... = Γ2-loop
nPI ,

and so on.

Here Γk-loop
nPI denotes the kth loop order approximation of the respective nPI effective

action. For instance, at two-loop order, the 1PI effective action differs from the 2PI
effective action; Γ2PI can be understood to resum an infinite series of contributions for
Γ1PI and provides a self-consistent description at this order. When employing nPI effective
actions, we must then keep in mind the required (or typically, the computationally feasible)
order of approximation that will capture a consistent picture. In this thesis, we will
restrict ourselves to truncations at two-loop order, meaning that the 2PI effective action
is sufficient for our purposes.

In particular, the 2PI formalism is known to provide a systematic method for resum-
mations, as mentioned before. As we have hinted at, one can always improve the given
approximation by truncating the 2PI effective action at higher order in some expansion
parameter (like the coupling constant, etc.) [52, 53]. Approximations within the 2PI for-
malism have been shown to be consistent with (global) conservation laws stemming from
Noether’s theorem, implying that they guarantee charge and energy conservation [54, 55].
Furthermore, it has been shown that the 2PI effective action is consistent with Ward iden-
tities [46, 56–59]. Finally, the associated 2PI improved effective potential obtained from
the 2PI effective action (see later in Sec. 2.4) has a tendency to give stronger transitions
than the 1PI loop expanded effective potentials [60], which may be better in agreement
with lattice results, when these are valid (see for e.g. [61], and [62] for a discussion on the
validity of the lattice results).
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Chapter 2. The 2PI Formalism

Figure 2.1: The Keldysh contour in the complex time plane, running from some initial time to
an arbitrary future time and back again. The contour is shifted slightly away from the real axis
for clarity.

2.2 Review of the 1PI Effective Action

We will briefly review the construction of the 1PI effective action, as the framework extends
well to the 2PI effective action. Our starting point is the partition function or generating
functional, given in a scalar field theory as

Z[J ] =

∫
Dϕ exp

[
i

(
S[ϕ] +

∫
x
J(x)ϕ(x)

)]
, (2.2)

where
S[ϕ] =

∫
x
L[ϕ(x)] , (2.3)

is the action and L is the Lagrangian for the scalar field ϕ(x). Z[J ] is hence a functional
integration over ϕ, with the addition of a source term J(x)ϕ(x). As we are interested in
the non-equilibrium evolution of the field theory, where a final state is not known, the
integration in the exponential is defined as follows∫

x
≡
∫
C
dx0

∫
dd−1x , (2.4)

whereby the temporal integration is carried out along the time-ordered Keldysh contour
C [63] (see Fig. 2.1), which is a closed time path, and d refers to the spacetime dimension.
Consequently, standard functional differentiation w.r.t. the source current J is modified
to include time arguments on the Keldysh contour

δJ(x)

δJ(y)
= δC(x− y) ≡ δC(x

0 − y0)δ(~x− ~y) . (2.5)

The temporal delta-function is defined on the time contour to be 0 everywhere except
when x0 = y0, or if either x0 and y0 are both on the same branch C+ or C−, where it is
infinite with ∫

C
dx0δC(x

0) = 1 . (2.6)

To define a generating functional of connected correlation functions, we introduce

W [J ] = −i logZ[J ] . (2.7)
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2.2. Review of the 1PI Effective Action

The mean field φ, the propagator G, and n-point connected correlation functions Γ(n) can
then be obtained by functional differentiations of W [J ] w.r.t. J , i.e.

i
δW [J ]

iδJ(x)
= 〈ϕ(x)〉J ≡ φ(x) , (2.8)

i
δ2W [J ]

iδJ(x) iδJ(y)
= 〈TCϕ(x)ϕ(y)〉J ≡ iG(x, y) , (2.9)

i
δnW [J ]

iδJ(x1) iδJ(x2) ... iδJ(xn)
= 〈TCϕ(x1)ϕ(x2) .... ϕ(xn)〉J ≡ iΓ(n)(x1, x2, ... , xn) , (2.10)

where we have denoted time ordering along the Keldysh contour through TC . This is
defined such that any point on C− is later than any point on C+, alongside the usual
time ordering used in vacuum QFT. The 1PI effective action is given by the Legendre
transform of W [J ] w.r.t. J ,

Γ1PI[φ] =W [J ]−
∫
x
J(x)

δW [J ]

δJ(x)
=W [J ]−

∫
x
J(x)φ(x) , (2.11)

and gets its name from the fact that it is the generating functional of one-particle-
irreducible (1PI) diagrams (see, for e.g., [2, 3]), i.e. diagrams that cannot be disconnected
by removing (“cutting”) an internal propagator line.

Consider now the first derivative of the 1PI effective action w.r.t. the mean field
δΓ1PI[φ]

δφ(x)
=
δW [J ]

δφ(x)
−
∫
y

δJ(y)

δφ(x)
φ(y)−

∫
y
J(y)

δφ(y)

δφ(x)

=

∫
y

δJ(y)

δφ(x)

δW [J ]

δJ(y)︸ ︷︷ ︸
=φ(y)

−
∫
y

δJ(y)

δφ(x)
φ(y)−

∫
y
J(y) δC(y − x) = −J(x) . (2.12)

Notice that if we set J = 0 at some particular φ = φ, we obtain the stationarity condition

δΓ1PI[φ]

δφ(x)

∣∣∣∣
φ=φ

= 0 , (2.13)

which is, equivalently, the EOM for φ. The solutions to this are the vacuum states of the
theory.

It is possible to explicitly evaluate Γ1PI in the saddle-point approximation around the
mean field φ [64]. To this end, consider

exp {iΓ1PI[φ]} =

∫
Dϕ exp

{
i

[
S[ϕ] +

∫
x
J(x) (ϕ(x)− φ(x))

]}

=

∫
Dϕ exp

{
i

[
S[ϕ+ φ] +

∫
x
J(x)ϕ(x)

]}

= exp {i S[φ]}
∫

Dϕ exp

{
i

[
S[ϕ+ φ]− S[φ] +

∫
x
J(x)ϕ(x)

]}
, (2.14)

where in the second step, we have shifted the fluctuating field ϕ→ ϕ+ φ. Now, consider

S[ϕ+ φ]− S[φ] =

∫
x

δS[ϕ]

δϕ(x)

∣∣∣∣
ϕ=φ

ϕ(x) +
1

2!

∫
x

∫
y
ϕ(x)

δ2S[ϕ]

δϕ(x)δϕ(y)

∣∣∣∣
ϕ=φ

ϕ(y) + Sint[ϕ, φ] .

(2.15)
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Chapter 2. The 2PI Formalism

where we have Taylor expanded S[ϕ+ φ] about the mean field φ. Sint contains in it cubic
and quartic powers of the fluctuating field1. Substituting (2.15) into (2.14), we obtain

exp {iΓ1PI[φ]} = exp {i S[φ]}
∫

Dϕ exp

{
i

[
1

2

∫
x

∫
y
ϕ(x)

(
iG̃−1

φ (x, y;φ)
)
ϕ(y)

+ Sint.[ϕ, φ] +

∫
x

δS[ϕ]

δϕ(x)

∣∣∣∣
ϕ=φ

ϕ(x) +

∫
x

J(x)︸︷︷︸
=− δΓ1PI[φ]

δφ(x)

ϕ(x)

]}
(2.16)

where

G̃−1
φ (x, y;φ) ≡ −i δS[ϕ]

δϕ(x)δϕ(y)

∣∣∣∣
ϕ=φ

. (2.17)

We can evaluate the term which is quadratic in ϕ as a standard Gaussian integral (see [2,
3] for example),∫

Dϕ exp

{
−1

2

∫
x

∫
y
ϕ(x)

(
G̃−1
φ (x, y;φ)

)
ϕ(y)

}
=
[
det G̃−1

φ (φ)
]− 1

2 (2.18)

The term Sint. needs to be treated by expanding the exponential and is interpreted as an
expansion in terms of connected diagrams. As a requirement, the linear term in ϕ is an
example of a tadpole, which guarantees a vanishing field expectation value for ϕ when the
shift ϕ→ ϕ+ φ is performed. Thus, the final result can be expressed as [2, 3],

Γ1PI[φ] = S[φ] +
i

2
TrC log G̃−1

φ (φ)︸ ︷︷ ︸
1-loop part

− i [connected diagrams] + const. (2.19)

where the “const.” can be adjusted for proper normalisation and we have used log detA =
Tr logA for the second term in (2.19). The TrC [...] refers to the integration over space-time
coordinates on the Keldysh contour.

As it will become useful when we discuss fermions in the 2PI formalism, we briefly
outline the technology required for fermionic fields. To this end, we introduce Grass-
mann variables, which are anti-commuting, complex numbers, making them suitable for
describing fermionic fields. They have the property of differentiation and integration being
treated on the same footing, i.e.∫

dη η =
d

dη
η =

∫
dη∗ η∗ =

d

dη∗
η∗ = 1 , with {η, η} = {η∗, η∗} = 0 (2.20)

where {x, y} = xy + yx denotes anti-commutation. The most relevant result is the equiv-
alent of the Gaussian integral,∫

dη∗ dη exp[−bη∗η] =
∫
dη∗ dη [1− bη∗η]

= −b
∫
dη∗ dη η∗η = b (2.21)

1Typically, in four space-time dimensions, one can write down up to a quartic interaction between scalars
on account of renormalisability
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2.3. 2PI Effective Action

where b is a complex number. In the last step, we have anti-commutated η∗ in order to use
(2.20). The analogue for the Gaussian functional integral for encountered for a fermionic
field is hence ∫

DψDψ exp

{
−
∫
x

∫
y
ψ(x)D(x, y)ψ(y)

}
= detD , (2.22)

where ψ is the Dirac conjugate of ψ. Thus, on going through a similar evaluation as (2.19),
one would obtain with fermions now,

Γ1PI[φ] = S[φ, ψ] +
i

2
TrC log G̃−1

φ (φ)− iTrC log D̃−1
ψ (φ) − i [connected diagrams] + const. ,

(2.23)

where
D̃−1
ψ (x, y;φ) = −i δ

2S[φ, ψ]

δψ(y)ψ(x)

∣∣∣∣
ϕ=φ, ψ=ψ̄=0

. (2.24)

Notice that we have not allowed fermionic field ψ to acquire a vacuum expectation value
(VEV), on account of the fact that this would break Lorentz invariance. Essentially, the
fermionic contributions come with a factor of −1 instead of the 1/2 for scalars.

2.3 2PI Effective Action

We now introduce an additional bi-local source, K(x, y) = K(y, x), in the partition func-
tion (2.2),

Z[J,K] =

∫
Dϕ exp

[
i

(
S[ϕ] +

∫
x
J(x)ϕ(x) +

1

2

∫
x

∫
y
ϕ(x)K(x, y)ϕ(y)

)]
, (2.25)

for which we have the generating functional defined analogously as

W [J,K] = −i logZ[J,K] . (2.26)

The mean field and the connected two-point function (the propagator) are obtained by
appropriate functional differentiation w.r.t. the sources J and K,

δW [J,K]

δJ(x)
= φ(x) ,

δW [J,K]

δK(x, y)
=

1

2
[φ(x)φ(y) +G(x, y)] . (2.27)

The 2PI effective action is formally defined as the Legendre transform of W [J,K]
w.r.t. the local and bi-local sources,

Γ2PI[φ,G] =W [J,K]−
∫
x

δW [J,K]

δJ(x)
J(x)−

∫
x

∫
y

δW [J,K]

δK(x, y)
K(x, y) (2.28)

=W [J,K]−
∫
x
φ(x)J(x)− 1

2

∫
x

∫
y
[φ(x)φ(y) +G(x, y)]K(y, x) . (2.29)

The sources can then be re-expressed as

J(x) = −δΓ2PI[φ,G]

δφ(x)
−
∫
y
K(x, y)φ(y) , K(x, y) = −2

δΓ2PI[φ,G]

δG(x, y)
. (2.30)

We mention that the use of both local and bi-local sources forms an appropriate setting
for the study of non-equilibrium problems as these encode the initial conditions [49, 50].
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2.3.1 Salient Features of the 2PI Effective Action

Along similar lines as we have obtained (2.19), we first notice that on performing a shift
in the action,

S[ϕ] → S[ϕ] +
1

2

∫
x

∫
y
ϕ(x)K(x, y)ϕ(y)

and replacing this in (2.14) and (2.15), a similar evaluation allows one to express Γ2PI in
the following convenient form [40, 49, 50, 64, 65]

Γ2PI[φ,G] = S[φ] +
i

2
TrC logG−1 +

i

2
TrC

[
G̃−1
φ (φ)G

]
︸ ︷︷ ︸

1-loop

+ Γ2[φ,G]︸ ︷︷ ︸
≥2-loop

+const. (2.31)

where we collect all the contributions of two-loop and higher (multiplied by a factor of
−i) into Γ2. The second equation of (2.30) then gives

K(x, y) = −2

[
− i

2
G−1(x, y) +

i

2
G̃−1
φ (x, y;φ) +

δΓ2[φ,G]

δG(x, y)

]
=⇒ G−1(x, y) = G̃−1

φ (x, y;φ)− iK(x, y)−Π(x, y;φ,G) (2.32)

where we have introduced the self-energy

Π(x, y;φ,G) = 2i
δΓ2[φ,G]

δG(x, y)
(2.33)

to which only 1PI diagrams contribute [49, 50, 65]. The consequence of this is that Γ2

contains only two-particle irreducible (2PI) contributions, i.e. it does not become discon-
nected upon removing two internal propagators. We can discern this by contradiction:
suppose that Γ2 had a two-particle reducible contribution of the form ΓGGΓ

′, whereby
removing two G’s yields the separate contributions Γ and Γ

′. Calculating the self-energy
using (2.33), we obtain Π ∼ ΓGΓ

′, which is one-particle reducible and cannot contribute
to the self-energy.

In view of the renormalisation procedure, which we will study thoroughly in the next
two chapters of this thesis, we split the classical action into a free and an interacting part
S[φ] = S0[φ] + Sint[φ] and to decompose G̃−1

φ = G̃−1
0 + G̃−1

φ,int [65]. Correspondingly, one
can split the 2PI effective action into Γ2PI = Γ2PI,0 + Γ2PI,int, where

Γ2PI,0[φ,G] = S0[φ] +
i

2
TrC

[
lnG−1

]
+
i

2
TrC [G̃−1

0 G] , (2.34)

Γ2PI,int[φ,G] = Sint[φ] +
i

2
TrC [G̃−1

φ,intG] + Γ2[φ,G] + const. (2.35)

and accordingly, we define the scalar self-energy as

Π(x, y;φ,G) = 2i
δΓ2PI,int[φ,G]

δG(x, y)

∣∣∣∣
φ,G

. (2.36)

The stationary conditions are obtained from (2.30) by setting J = K = 0,

δΓ2PI[φ,G]

δφ(x)

∣∣∣∣
φ,G

=
δS0[φ,G]

δφ(x)

∣∣∣∣
φ

+ i
δΓ2PI,int[φ,G]

δφ(x)

∣∣∣∣
φ,G

= 0 , (2.37)

12



2.3. 2PI Effective Action

δΓ2PI[φ,G]

δG(x, y)

∣∣∣∣
φ,G

= − i

2
G

−1
(x, y) +

i

2
G̃−1

0 (x, y) + i
δΓ2PI,int[φ,G]

δG(x, y)

∣∣∣∣
φ,G

= 0 . (2.38)

and then give the equations of motion (EOMs) to determine φ and G, with the specification
of appropriate boundary conditions. For convenience, we will typically drop the bar symbol
on φ and G from now onward, as we will assume that the sources are always switched off,
unless specified otherwise.

2.3.2 A Pedagogical Example

Loop expansions of the 2PI effective action proceed in a similar manner as for the 1PI
effective action, but one needs to keep in mind that contributions are parametrised using
the resummed (“dressed”) propagator G, obtained from the stationarity condition (2.38)
instead of the classical propagator, and only 2PI contributions are to be kept. To illustrate
this, we consider the following classical action

S[ϕ] =

∫
x

[
1

2
∂µϕ(x)∂

µϕ(x)− m2

2
ϕ2(x)− λ

4!
ϕ4(x)

]
. (2.39)

For the example, we will work in the case of vanishing field expectation value. Up to
three-loops, we then have the following contributions to Γ2

Γ2,ht = (−i) (3)
(
−i λ

4!

) ∫
x
G2(x, x) = −λ

8
, (2.40)

Γ2,bb = (−i) (2) (4× 3)
1

2

(
−i λ

4!

)2 ∫
x

∫
y
G4(x, y) = i

λ2

48
. (2.41)

Here, we keep the pre-factor of −i in the definition of Γ2 and have accounted for the
various symmetry factors for the diagrams. The solid lines denote the full propagator
G. We mention, for completeness, that the truncation till the two-loop diagram (2.40) is
referred to as the “Hartree approximation” and the three-loop diagram (2.41) is called the
“Basketball diagram” . The former of these will form a local term (depending on only one
space-time coordinate) and the latter is a non-local term (depending on two space-time
coordinates), which will lead to so-called memory integrals in the EOMs. We obtain the
self-energies according to these diagrams in Γ2 as

Πht(x) = −i λ
2
G(x, x) = −i λ

2
(2.42)

Πbb(x, y) = −λ
2

6
G3(x, y) = −λ

2

6
(2.43)

Thus, the mapping from obtaining the self-energy from Γ2 is by “cutting” a single prop-
agator line. This also illustrates the feature that the self-energy as defined in (2.33) is
indeed one-particle irreducible.
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Now, using

iG̃−1
φ (x, y) =

δ2S[φ]

δφ(x)δφ(y)
= −

(
�x +m2

)
δC(x− y)︸ ︷︷ ︸

iG̃−1
0 (x,y)

− λ

2
φ2(x)δC(x− y)︸ ︷︷ ︸

iG̃−1
φ,int

, (2.44)

we have the following interaction part of the 2PI effective action in this three-loop trun-
cation

Γ2PI, int[φ,G] = − λ

4!

∫
x
φ4(x)− λ

4

∫
x
φ2(x)G(x, x)− λ

8

∫
x
G2(x, x) +

i λ2

48

∫
x

∫
y
G4(x, y) .

(2.45)

This gives the EOMs according to (2.37) and (2.38) as(
�x +m2 +

λ

2
φ2(x) +

λ

2
G(x, x)

)
φ(x) = 0 , (2.46)

[
�x +m2 +

λ

2
φ2(x) +

λ

2
G(x, x)

]
G(x, z)− i

λ2

6

∫
y
G3(x, y)G(y, z) = δC(x− z) , (2.47)

where (2.47) was obtained by multiplying the stationarity condition (2.38) by G(y, z) and
integrating. As a result, the term outside of square parenthesis in this equation forms an
example of the aforementioned memory integral as it integrates over the time history of
the evolution [49, 50, 54]. One can then numerically solve these equations with a set of
boundary conditions to obtain the profiles for φ and G. The memory integrals have been
known to grow with time and tend to slow down the numerical evaluation [49, 50, 54].

2.3.3 Including Fermions

Analogously as in the 1PI effective action, the 2PI effective action is modified to include
fermions as [40, 49, 50],

Γ2PI[φ,G,D] =S[φ, ψ] +
i

2
TrC logG−1 +

i

2
TrC

[
G̃−1
φ (φ)G

]
− TrC logD−1 − TrC

[
D̃−1
ψ D

]
+ Γ2[φ,G,D] + const. , (2.48)

where D is the resummed fermionic propagator. One defines a self-energy corresponding
to D [49, 50, 66] as

Σ(x, y) = i
δΓ2[φ,G,D]

δD(x, y)
. (2.49)

We now give the stationarity condition for D as

δΓ2PI[φ,G,D]

δD(x, y)

∣∣∣∣∣
φ,G,D

= 0 , (2.50)

and do not write down one for the fermionic field ψ. The reason for this is one can interpret
the stationarity condition for a field as it acquiring a vacuum expectation value (VEV).
Assuming that Lorentz invariance is preserved, only scalar fields (like φ) can acquire VEVs.
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Performing the similar splitting of the effective action as in (2.34) and (2.35) with the
fermionic parts, we obtain the generic equation of motion for D as

(i/∂x −M)D(x, z) +

∫
y
Σ(x, y)D(y, z) = δC(x− z) , (2.51)

where M is the free fermionic mass and we have defined

Σ(x, y) = i
δΓ2PI, int[φ,G,D]

δD(x, y)

∣∣∣∣
φ,G,D

. (2.52)

2.4 Effective Potential
We now describe how one obtains the effective potential from the effective action. Let
us understand this from the more familiar 1PI formalism by referring to the stationarity
condition (2.13)

δΓ1PI[φ]

δφ(x)

∣∣∣∣
φ(x)=v(x)

= 0 (2.53)

where v is the VEV. Equation (2.53) is alternately referred to as the minimisation condi-
tion.

The effective potential is an equilibrium quantity [60], so we can assume Poincaré
invariance so that the vacuum states are independent of the space-time coordinate x.
This reduces (2.53) to solving for the variable v. Now, the effective action, in analogy to
thermodynamics, is an extensive quantity meaning that it is proportional to the volume of
the space-time region, V. With the aforementioned consideration of Poincaré invariance,
we can express

Γ1PI[φ]

∣∣∣∣
K.E. = 0

= V (−V1PI(φ)) , (2.54)

where K.E. = 0 refers to setting the kinetic terms of fields in the Lagrangian to 0. Hence,
V1PI(φ) is the 1PI effective potential and this transforms the minimisation condition into

∂V1PI(φ)

∂φ

∣∣∣∣
φ=v

= 0 . (2.55)

This analysis carries over to the 2PI formalism to similarly study the vacuum struc-
ture of a theory. One considers any φ and evaluates the corresponding propagators as
a function of φ, i.e. G ≡ G(φ) and D ≡ D(φ). This leads to a 2PI effective action
Γ2PI[φ,G(φ), D(φ)] ≡ Γ2PI[φ] and gives rise to the 2PI effective potential in a similar man-
ner to (2.54). As we will employ methods in momentum space in Chapters 3 and 4, it is
more convenient to define the 2PI effective action normalised to the space-time volume,
i.e.

Γ̂2PI[φ] =
1

V
Γ2PI[φ] , (2.56)

and accordingly, the 2PI improved effective potential is given by

V2PI(φ) = −Γ̂2PI[φ]

∣∣∣∣
K.E. = 0

, (2.57)

which then forms a convenient tool to study phase transitions in the 2PI formalism.
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Chapter 2. The 2PI Formalism

We mention here that, so far, we have considered the unrenormalised action. A crucial
step to obtain self-consistent results and/or compare different approaches when solving the
EOMs is to perform a consistent renormalisation of the 2PI effective action. This requires
setting up appropriate renormalisation conditions and specific tools to resolve divergences
and sub-divergences. Furthermore, the renormalisation of the 2PI effective action is a
necessary step in the evaluation of the 2PI improved effective potential. Thus, the task of
a consistent renormalisation programme in the 2PI formalism form the basis of Chapters
3 and 4.
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Chapter 3

On-shell Renormalisation

In this chapter, which describes the results of [67], we carry out the renormalisation
of the 2PI effective action. We restrict ourselves to all contributions up to two-loop
order, which amounts to truncations till the Hartree approximation, the scalar sunset
approximation and the fermionic sunset approximation. As novel aspects, we (i) carry out
the renormalisation in the broken phase and (ii) will consistently treat the renormalisation
of fermions in the 2PI formalism.

We take the following classical action as a starting point

S[φ, ψ] = S0[φ, ψ] + Sint[φ, ψ]

=

∫
x

{
1

2
∂µφ(x)∂

µφ(x)− m2

2
φ2(x)− α

3!
φ3(x)− λ

4!
φ4(x)

+ ψ(x)(i/∂ −M)ψ(x)− gψ(x)ψ(x)φ(x)

}
. (3.1)

Accordingly (c.f. (2.34) and (2.35)), the 2PI action up to this order is given by

Γ2PI[φ,G,D] =

∫
x

{
1

2
∂µφ(x)∂

µφ(x)− m2

2
φ2(x)− α

3!
φ3(x)− λ

4!
φ4(x)

− 1

2

(
�x +m2

)
G(x, y)|x=y −

1

2
αφ(x)G(x, x)− 1

8
λG2(x, x)− 1

4
λφ2(x)G(x, x)

+ tr
[(
i/∂x −M

)
D(x, y)|x=y

]
− g φ(x) tr[D(x, x)]

}

+

∫
x

∫
y

{
i

12
(α+ λφ(x))(α+ λφ(y))G3(x, y)− i

2
g2G(x, y) tr [D(x, y)D(y, x)]

}
. (3.2)

Here, “tr[...]” indicates the trace taken over spinor indices. As mentioned in Chapter 2, we
make the assumption that ψ does not acquire a VEV, allowing us to neglect terms linear
in ψ.
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Chapter 3. On-shell Renormalisation

In the 2PI formalism, the scalar and fermionic two-point functions, G and D, are
propagators resummed to all orders in perturbation theory. Thus, terms in (3.2) involving
only the one-point function φ and the propagators G and D as well as mixed terms
involving G, D and φ, would constitute separate interactions, because we are essentially
mixing orders in perturbation theory. Consequently, these vertices and the corresponding
couplings need to be renormalised separately. To this end, we need to define different mass
and coupling constant counterterms, depending on the combination of one- and two-point
functions connecting to a ‘vertex’. This becomes more clear as we define the renormalised
fields from the bare ones, using their respective wave-function renormalisations,

φ(x) = Z
1
2
φ,2φR(x) , G(x, y) = Zφ,0GR(x, y) ,

ψ(x) = Z
1
2
ψ,2ψR(x) , D(x, y) = Zψ,0DR(x, y) . (3.3)

Then, the corresponding renormalised quantities would be given as

Zφ,2m
2 = m2

R + δm2
2 , Z

i
2
φ,2Z

3−i
2

φ,0 α = αR + δαi (i = 0, 1, 2, 3) ,

Zφ,0m
2 = m2

R + δm2
0 , Z

j
2
φ,2Z

(4−j)
2

φ,0 λ = λR + δλj (j = 0, 2, 4) ,

Zψ,0M =MR + δM0 , Zψ,0Z
k
2
φ,2Z

1−k
2

φ,0 g = gR + δgk (k = 0, 1) ,

(3.4)

where we have indicated the number of fields φ (ψ) associated with a term by the index
i in Zφ,i (Zψ,i) and adopted a similar notation for the coupling constants. Note that we
have chosen to renormalise the masses for φ and G to the same value. We do the same for
the trilinear, quartic and Yukawa couplings. Finally, one needs an additional counterterm
in the action to cancel possible loop-induced divergences to the effective action linear in
φR,

−
∫
x
δt1 φR(x) . (3.5)

With the renormalised quantities introduced, we can define the interacting part of the
renormalised 2PI effective action

Γ2PI,int[φR, GR, DR] =∫
x

{
δZφ,2
2

∂µφR(x)∂
µφR(x)−

δm2
2

2
φ2R(x)−

(αR + δα3)

3!
φ3R(x)−

(λR + δλ4)

4!
φ4R(x)− δt1φR(x)

−
δZφ,0
2

(
�x + δm2

0

)
GR(x, y)|x=y −

(αR + δα1)

2
φR(x)GR(x, x)−

(λR + δλ0)

8
G2
R(x, x)

− (λR + δλ2)

4
φ2R(x)GR(x, x)

+ tr
[(
iδZψ,0/∂x − δM0

)
DR(x, y)|x=y

]
− (gR + δg1)φR(x) tr[DR(x, x)]

}

+

∫
x

∫
y

{
i

12
[(αR + δα0) + (λR + δλ1)φR(x)][(αR + δα0) + (λR + δλ1)φR(y)]G

3
R(x, y)
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− i

2
(gR + δg0)

2GR(x, y) tr [DR(x, y)DR(y, x)]

}
. (3.6)

Correspondingly, we can write down now the renormalised equations of motion using
(2.37), (2.38) and (2.51),

[
(1 + δZφ,2)�x + m̂2

2(x)
]
φR(x) = −δt1 −

(α1 + δα1)

2
GR(x, x)− (g1 + δg1) tr[DR(x, x)]

− i

6

∫
y
[(λR + δλ1)(αR + δα0 + (λR + δλ1)φR(y)] G

3(x, y) , (3.7)

[
(1 + δZφ,0)�x + m̂2

0(x)
]
GR(x, y) = δC(x− y)−

∫
z
Π(x, z)GR(z, y) , (3.8)

[
i (1 + δZψ,0) /∂x − M̂0(x)

]
DR(x, y) = δC(x− y)−

∫
z
Σ(x, z)DR(z, y) , (3.9)

with

m̂2
2(x) = m2

R + δm2
2 +

1

2
(α3 + δα3)φR(x) +

1

6
(λ4 + δλ4)φ

2
R(x) +

1

2
(λ2 + δλ2)GR(x, x) ,

(3.10)

m̂2
0(x) = m2

R + δm2
0 +

1

4
(λ0 + δλ0)GR(x, x) +

1

2
(α3 + δα3)φR(x) +

1

4
(λ2 + δλ2)φ

2
R(x) ,

(3.11)

M̂0(x) = (MR + δM0) + (g1 + δg1)φR(x) , (3.12)

Π(x, z) = − i [(α0 + δα0) + (λR + δλ1)φR(x)] [(α0 + δα0) + (λR + δλ1)φR(z)]

4
G2
R(x, z)

+
i(g0 + δg0)

2

2
tr[DR(x, z)DR(z, x)] , (3.13)

Σ(x, z) =
i(g0 + δg0)

2

2
GR(x, z) [DR(x, z) +DR(z, x)] . (3.14)

Here, we have split the self-energies Π(x, z) and Σ(x, z) into non-local contributions Π(x, z)

and Σ(x, z) and local ones which are absorbed in m̂2
0(x) and M̂0(x), respectively. The non-

local contributions form the memory integrals that we have mentioned in the previous
chapter.

The task now is to obtain the various counterterms. According to [65], renormalisation
may be carried out in the vacuum at temperature T = 0. It is most convenient to proceed
in momentum space, which allows us to employ the usual techniques to determine the
various counterterms. In this chapter, we will employ an on-shell scheme, with appropri-
ate renormalisation conditions to determine the various counterterms. This is useful in
expressing various quantities in terms of measured masses and couplings. In line with this,
we focus on obtaining the counterterms in the broken phase.
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Chapter 3. On-shell Renormalisation

3.1 Tools for Renormalisation
We will now detail the various tools required to carry out the renormalisation in the 2PI
formalism. We will then make use of these in further sections of this chapter, when we
examine the various truncations.

3.1.1 2PI Kernels and Bethe-Salpeter Equations

The standard Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) analysis used in standard
QFT to determine the structure of the divergences, does not suffice in case of the 2PI
formalism (see, for e.g. [65] and references therein), due to the resummed nature of the
propagator. The solution is to define auxiliary vertex functions which can be resummed
such that a consistent renormalisation with only a finite number of counterterms is possible.

We first define the 2PI kernel [58, 65]

Λ
(4)

(x1, x2, x3, x4) ≡ 4
δ2Γ2PI,int

δG(x1, x2)δG(x3, x4)

∣∣∣∣
φ,G

, (3.15)

which is resummed by the following vertex function using a Bethe-Salpeter equation (BSE)

V
(4)

(x1, x2, x3, x4) = Λ
(4)

(x1, x2, x3, x4)

+
i

2

∫
y1...y4

Λ
(4)

(x1, x2, y1, y2)G(y1, y3)G(y2, y4)V
(4)

(y3, y4, x3, x4) .

(3.16)

In addition, we need an auxiliary vertex function

V (4)(x1, x2, x3, x4) = Λ(4)(x1, x2, x3, x4)

+
i

2

∫
y1...y4

Λ(4)(x1, x2, y1, y2)G(y1, y3)G(y2, y4)V
(4)

(y3, y4, x3, x4) ,

(3.17)

with

Λ(4)(x1, x2, x3, x4) ≡ 4
δ2Γ2PI,int

δG(x1, x2)δφ(x3)δφ(x4)

∣∣∣∣
φ,G

. (3.18)

For fermions, we will introduce and describe the required machinery in Sec. 3.4, so for the
moment, we give the framework for scalars.

The two-point functions in this case can be evaluated from the stationarity condition
(2.38), leading to the gap equation for the scalars

Ḡ−1(x, y;φ) = G−1
0 (x, y)−Π(x, y;φ) . (3.19)

We will, in view of the renormalisation procedure, choose the point G = GR and φ = φR 6=
0. In the on-shell scheme that we will describe, φR is the VEV, and this is determined by
the stationarity condition as

iΓ(1)(x) =
δΓ2PI
δφ(x)

∣∣∣∣
φ,G

+

∫
y,z

δΓ2PI
δG(y, z)

∣∣∣∣
φ,G︸ ︷︷ ︸

=0

δG(y, z)

δφ(x)

!
= 0 (3.20)
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3.1. Tools for Renormalisation

where Γ(1) denotes the physical one-point function. Note that we have used the chain rule
to obtain the second term, as G obtained from (3.19) depends on φ. This term vanishes
due to the stationarity condition of the 2PI effective action, which we have marked. Now,
in analogy to the 1PI formalism (see Sec. 2.2), it would be natural to consider further
field derivatives of the 2PI effective action to obtain n-point functions (n > 2) pertaining
to only the fields

iΓ(n)(x1, . . . , xn) =
δnΓ2PI

δφ(x1) . . . δφ(xn)

∣∣∣∣
φ,G

. (3.21)

As mentioned, one has to take care since G depends on φ. For example, consider the
physical two-point function for the fields, obtained by taking another derivative of (3.20)

δ2Γ2PI
δφ(x1)δφ(x2)

=
δ2Γ2PI

δφ(x1)δφ(x2)

∣∣∣∣
φ,G

+

∫
y1,y2

δΓ2PI
δφ(x1)δG(y1, y2)

∣∣∣∣
φ,G

δG(y1, y2)

δφ(x2)

+

∫
y1,y2

δΓ2PI
δG(y1, y2)

∣∣∣∣
φ,G︸ ︷︷ ︸

=0

δ2G(y1, y2)

δφ(x1)δφ(x1)
.

We take a field derivative of the propagator

δG(x, y)

δφ(z)
= −

∫
u,v
G(x, u)G(y, v)

δG−1(u, v)

δφ(z)
=

∫
u,v
G(x, u)G(y, v)

δΠ(u, v)

δφ(z)
, (3.22)

where, to obtain the second equality, we have used the gap equation (3.19). Substituting
this into the equation for the physical two-point function for the fields,

iΓ(2)(x1, x2) ≡
δ2Γ2PI

δφ(x1)δφ(x2)
= iG−1

0 (x1, x2) +
δ2Γ2PI,int

δφ(x1)δφ(x2)

∣∣∣∣
φ,G

+

∫
y1....y4

δ2Γ2PI,int
δφ(x1)δG(y1, y2)

∣∣∣∣
φ,G

G(y1, y3)
δΠ(y3, y4)

δφ(x2)
G(y4, y2) .

(3.23)

Thus, in general, for the n-point functions, a system of coupled integral equations emerges,
which have the following form

i
δnΓ2PI

δφ(x1) . . . δφ(xn)
= A(n)(x1, . . . , xn)

+

∫
z1...z4

δ2iΓ2PI,int
δφ(x1)G(z1, z2)

∣∣∣∣
φ,G

G(z1, z3)
δn−1Π(z3, z4)

δφ(x2) . . . δφ(xn)
G(z4, z2)

(3.24)

δnΠ(y1, y2)

δφ(x1) . . . δφ(xn)
= B(n)(y1, y2, x1, . . . , xn)

+

∫
z1...z4

δ22iΓ2PI,int
δG(y1, y2) δG(z1, z2)

∣∣∣∣
φ,G

G(z1, z3)
δnΠ(z3, z4)

δφ(x1) . . . δφ(xn)
G(z4, z2) .

(3.25)
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Chapter 3. On-shell Renormalisation

iΓ2PI,int = GR(x1, x2) = 1 2

iδ2Γ2PI,int
δφR(x1)δφR(x2)

= 1 2 iΠ(x1, x2) =
1
2

iV
(4)iV

(4)
(x1, x2, x3, x4) =

1
2

3
4

iδΠ(x1,x2)
δφR(x3)

=
1
2

3

Figure 3.1: Graphical representation of basic building blocks

The functions A(n) and B(n) contain various derivatives of Γ2PI,int w.r.t. φ and G at the
stationarity point [65], as well as field derivatives of Π of the form δkΠ/δφk where k < n,
as we have demonstrated from the simpler example of the two-point function for the fields.
A formal solution [65] to the self-energy integral equation (3.25) can be given in terms of
the vertex function V

(4), c.f. (3.16), as

δnΠ(y1, y2)

δφ(x1) . . . δφ(xn)
= B(n)(y1, y2, x1, . . . , xn)

+
1

2

∫
z1...z4

iV
(4)

(y1, y2, z1, z2)G(z1, z3)B(n)(z3, z4, x1, . . . , xn)G(z4, z2) ,

(3.26)

and from this, one also obtains the solution to (3.24).

3.1.2 Diagrammatic Treatment of Integral Equations

To treat the various integral equations encountered in the course of determining the n-
point functions, it is useful to consider a diagrammatic representation, as described in [65].
The basic building blocks are given in Fig. 3.1.

Consider the physical two-point function in (3.23). Using the diagrams defined in Fig.
3.1, this reads in graphical form

δ2Γ2PI
δφR(x1)δφR(x2)

= iG−1
0,R(x1, x2) + 1 2 +

1

2
1 2 (3.27)

We can then replace the derivative of the self-energy w.r.t. a field expectation value, i.e.
δΠ/δφR which is the third term of (3.27), using the following graphical representation, c.f.
(3.26),

1
2

3 =
1
2

3 +
1

2 V
(4)1

2
3 (3.28)

which are all known quantities.
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One can then examine the three-point function for the fields. Another differentiation
w.r.t. φR of (3.27) gives the following topologies

Γ(3) = +
1

2

+
1

4
+

+
1

2
, (3.29)

Taking now the four-point function, we have the possible contributing diagrams ,

Γ(4) = +
1

2
+

1

4
+

1

8

+ +
1

2
+

+
1

2
+

1

4
+

+
1

2
, (3.30)
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Chapter 3. On-shell Renormalisation

where in (3.29) and (3.30), the new quantities, δ2Π/δφ2R and δ3Π/δφ3R appear. For the
sake of brevity, the “legs” representing the external space-time points, previously denoted
in the diagrams with numbered indices, are now suppressed and it is understood that
all permutations of x2, x3 (and x4 for the four-point function) contribute, as long as the
resulting diagrams are not equivalent. An example of such a diagram where permutations
must be considered, is

=

1

4

3

2

+

1

4

2

3

+

1

3

2

4

(3.31)

It is important to note that the index 1 is not part of the permutation. This happens
because the diagrams are obtained by a subsequent differentiation with respect to the four
fields φR(x1), … , φR(x4). The first self-energy box only appears in the second differen-
tiation and thus the 1-index is always attached to the Γ2PI,int blob. In the subsequent
discussion, the leg to the left side is always considered to correspond to the 1-index. At
first glance, this might seem to not be in line with the symmetry properties of the 4-point
function, such as Γ(4)(x1, x2, x3, x4) = Γ(4)(x2, x1, x3, x4) and so on. However, these prop-
erties are only hidden in the above case and become apparent once the identities of the
self-energy boxes are inserted.

The single derivative is given in (3.28). The other two can be expressed using diagrams
that contain only the first derivative of the self-energy. Permutations of field indices are
implied wherever they lead to non-equivalent topologies.

= +
1

2
V

(4)

+
1

2
+

1

4

V
(4)

+
1

4
+

1

8

V
(4)

+ +
1

2

V
(4)

(3.32)
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3.1. Tools for Renormalisation

For the triple derivative d3Π/dφ3R, it is more convenient to not insert instances of the
double derivative d3Π/dφ2R as the expressions get too lengthy otherwise. One simply needs
to substitute the corresponding diagrams from (3.32) at places where boxes with two field
derivatives appear. Thus, we find

= +
1

2 V
(4)

+
1

2
+

1

4

V
(4)

+
1

4
+

1

8

V
(4)

+
1

8
+

1

16 V
(4)

+ +
1

2

V
(4)

+
1

2
+

1

4 V
(4)
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+ +
1

2 V
(4)

+
1

2
+

1

4

V
(4)

+
1

4
+

1

8 V
(4)

+ +
1

2

V
(4)

. (3.33)

3.2 Hartree Approximation
Although the Hartree approximation has been treated in literature already several times
[68–70], we will reconsider it in order to exemplify some of the details involved. As
mentioned before, we will focus mainly on results in the broken phase. Consider now
the interacting part of the 2PI effective action, in momentum space, normalised to the
space-time volume (as discussed in Sec. 2.4)

Γ̂2PI,int[φR, GR] =
(δZφ,2 p

2 − δm2
2)

2
φ2R − (λR + δλ4)

4!
φ4R +

δZφ,0
2

∫
p
p2GR(p)

− 1

2

[
δm2

0 +
(λR + δλ2)

2
φ2R

] ∫
p
GR(p)−

(λR + δλ0)

8

(∫
p
GR(p)

)2

. (3.34)

Note that here we have made the assumption that we are close to the minimum of the
potential and taken φR to be constant, which we will continue to do so for the other
truncations of the 2PI effective action we will discuss.
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3.2. Hartree Approximation

p1

p2

p3

p4

V
(4) =

p1

p2

p3

p4

λ
λ

+

p1

p2

p3

p4

λ V
(4)

q + p

q

λ

Figure 3.2: Illustration of the BSE in the Hartree approximation. Here, the convention is p1,2
are incoming four-momenta and p3,4 are outgoing, with p = p1 + p2.

We first obtain the four-point kernel

Λ
(4)

= 4
δ2Γ̂2PI,int

δGR(k)δGR(q)
= −(λR + δλ0) , (3.35)

which is evidently independent of the (external) momentum. Thus, the Bethe-Salpeter
equation (3.16) can be considerably simplified within the Hartree approximation. As the
vertex function is an infinite resummation of iterations of this kernel, stitched together by
loops with two propagators (see Fig. 3.2), the only origin of a momentum dependence in
V

(4) is from the loop function depending on the sum of external momenta p = p1 + p2.
Hence, we arrive at

V
(4)

(p) = −(λR + δλ0) − i

2
(λR + δλ0)V

(4)
(p)

∫
q
GR(q)GR(p+ q) . (3.36)

At this point, it is convenient to calculate p2 in the center of mass (COM) system. This
gives the familiar result

p2 = p21 + p22 + 2p1 · p2 = 4E2
∗ , (3.37)

where E∗ is the COM energy. In the COM system, there are two variables that play a
role, the three-momentum in the COM frame1, ~p, and the scattering angle, θ. Fixing these
quantities amounts to fixing the renormalisation condition. Let p2∗ = 4m2

R be the renor-
malisation point corresponding to the COM three-momentum |~p∗|= 0 and the scattering
angle θ∗ = π. At this renormalisation point, let

V (p∗) = −λR . (3.38)

This allows us to solve exactly for the counterterm

δλ0 = −λR +
λR

1− 1
2λRI(p2∗)

with I(p2) = i

∫
q
GR(q)GR(p+ q) , (3.39)

which we can insert in (3.36) to obtain the vertex function

V
(4)

(p) = − λR

1− λR
2 (I(p2∗)− I(p2))

. (3.40)

From this, we can immediately observe that V (4)
(p) is finite as any potential divergences

present in the loop integral I(p2) cancels in the difference I(p2∗) − I(p2). Furthermore,
1We have identical particles in the initial and final state, so the modulus of the three-momentum in the
initial and final state are equivalent.
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Chapter 3. On-shell Renormalisation

the renormalisation of the auxiliary vertex V (p) proceeds along similar lines as

Λ(4) = 2
δ3Γ2PI,int

δ2φR δGR(q)
= −(λR + δλ2) . (3.41)

Using this in (3.16) and the result (3.40), along with the renormalisation condition (3.38),
we obtain

δλ2 = δλ0 and V (4)(p) = V
(4)

(p) . (3.42)

We have made a choice to implement the same renormalisation conditions for both vertex
functions. We will later do the same for the propagator and the two-point function of
the scalar field, as in [70, 71], as well for the physical n-point functions of the scalar
fields corresponding to the vertex functions. One may also choose to renormalise these
functions to different parameters, such as in [60], but these correspond to shifts in the
various counterterms.

The determination of these counterterms via the BSEs allows us to treat the sub-
divergences, which are not accounted for by the usual BHPZ procedure, that would appear
in the renormalisation of the two-point function [65, 69], for which we now turn to the
gap equation

iG−1
R (p) = (p2 −m2

R)− iΠ(p2)

= (p2 −m2
R) + (δZφ,0 p

2 − δm2
0)−

(λR + δλ2)

2
φ2R − (λR + δλ0)

2

∫
q
GR(q) ,

(3.43)

where p here is the external momentum. Having determined δλ0 and δλ2, we seek the
counterterms δZφ,0 and δm2

0 which can be used to treat the divergences that can be
accounted for by the BHPZ procedure. Enforcing the following on-shell renormalisation
conditions, we have

iG−1
R (p)

∣∣∣∣
p2=m2

R

= −iΠ(p2)

∣∣∣∣
p2=m2

R

!
= 0 , (3.44)

i
∂

∂p2
G−1
R (p)|p2=m2

R
= 1− i

∂

∂p2
Π(p2)|p2=m2

R

!
= 1 . (3.45)

which defines mR as a physical mass corresponding to the pole of the propagator, like in
standard QFT [2, 3]. From (3.45), we have

δZφ,0 = 0 (3.46)

and then (3.44) gives

δm2
0 = −λR + δλ2

2
φ2R − λR + δλ0

2

∫
q
GR(q) . (3.47)

If we substitute this back into (3.43), we obtain

iG−1
R (p2) = p2 −m2

R , (3.48)
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3.2. Hartree Approximation

or, in other words, the full propagator is identically the bare one. Consequently, all
integrals over propagators can be expressed in terms of the well-known Passarino-Veltman
functions, which we review and document in Appendix A.

We now apply the known form of the propagator (3.48) to obtain the coupling constant
counterterms first, as these will be needed to obtain the mass counterterm δm2

0. Using
(3.39), we can determine

δλ0 = −λR +
λR

1− 1
2λRI(p2∗)

= −λR +
λR

1− λR
32π2B0(p2∗,m

2
R,m

2
R)

= −λR − 32π2ε+O(ε2) ,

(3.49)

where 2ε = 4− d, and we have identified

I(p2) ≡ i

∫
q
GR(q)GR(p+ q) ≡

B0(p
2,m2

R,m
2
R)

16π2
.

These coupling constant counterterms are evidently finite. Now, we can determine the
counterterm δm2

0 explicitly,

δm2
0 = −λR + δλ2

2
φ2R − λR + δλ0

2

∫
q
GR(q)

= (16π2ε)φ2R + (16π2ε)
A0(m

2
R)

16π2
+O(ε2) = −m2

R +O(ε) , (3.50)

where we have used that δλ0 = δλ2 in the Hartree approximation, c.f. (3.42). Note that we
have determined (3.50) for any φR, so this holds true in the unbroken and broken phases.
This counterterm also turns out to be finite. Furthermore, in the unbroken phase, we can
exploit the Z2 symmetry of the Hartree approximation and make use of the identity [65]

δ2Γ2PI,int
δφ2R

∣∣∣∣
φR=0

+ (δZφ,2 p
2 − δm2

2) = 2
δΓ2PI,int
δGR

∣∣∣∣
φR=0

+ (δZφ,0 p
2 − δm2

0) (3.51)

to relate the counterterms for the propagator and the field

δZφ,2 = δZφ,0 and δm2
0 = δm2

2 . (3.52)

We now demonstrate explicitly that these relations do not hold for φR 6= 0. To this
end, we will examine the two-point function pertaining to the fields. Going forward, we
would require the vertex function which, from (3.40) and using (3.48), we can write down
as

V
(4)

(p) = − λR

1− λR
32π2

[
B0(p2∗,m

2
R,m

2
R)−B0(p2,m2

R,m
2
R)
] . (3.53)

We use (3.23) to obtain in momentum space

Γ(2)(p) = (p2 −m2
R) + (δZφ,2 p

2 − δm2
2)−

1

2
(λR + δλ4)φ

2
R − 1

2
(λR + δλ2)

∫
q
GR(q)

− 1

8
(λR + δλ2)

2
[
I(p2)

]
φ2R +

1

16
(λR + δλ2)

2
[
I(p2)

]2
V

(4)
(p)φ2R

=
[
(1 + δZφ,2)p

2 − 2m2
R − δm2

2

]
− 1

2
(λR + δλ4)φ

2
R
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+
λRφ

2
R

4

{
1− λR

32π2
[
B0(p

2
∗,m

2
R,m

2
R)−B0(p

2,m2
R,m

2
R)
]}−1

+O(ε) . (3.54)

Imposing the same renormalisation conditions as for GR, c.f. (3.44) and (3.45), this yields

δZφ,2 =
λ2Rφ

2
R

128π2
Ḃ0(m

2
R,m

2
R,m

2
R)

{
1− λR

32π2
[
B0(p

2
∗,m

2
R,m

2
R)−B0(m

2
R,m

2
R,m

2
R)
]}−1

(3.55)

δm2
2 = −m2

R +m2
RδZφ,2 −

(λR + δλ4)φ
2
R

2

+
λRφ

2
R

4

{
1− λR

32π2
[
B0(p

2
∗,m

2
R,m

2
R)−B0(m

2
R,m

2
R,m

2
R)
]}−1

, (3.56)

where
Ḃ0(p

2,m2
R,m

2
R) =

∂B0(q
2,m2

R,m
2
R)

∂q2

∣∣∣∣
q2=p2

.

One recovers the equality with the corresponding counterterms for GR in (3.52) when
φR = 0, as claimed in [65]. Note that we are still missing δλ4 to fully determine δm2

2. We
thus need to examine the three- and four-point functions for the fields.

Let us first consider the three-point function. Based on the discussion in Sec. 3.1.2,
we can write down the following diagrammatic expansion,

Γ(3) = +
1

2
+

+
1

2
, (3.57)

where we have retained those topologies that do not vanish after appropriate differentiation
w.r.t. φR and GR. We need to replace the second derivative of Π,

= +
1

2
V

(4)

+

+
1

2

V
(4)

.

Even though many of the diagrams vanish in the Hartree approximation, there are still
quite a few to evaluate, which we will become more apparent when we consider Γ(4).
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3.2. Hartree Approximation

However, before doing so explicitly, one can show that some of them only contribute at
O(ε). This is because potential topologies that can contribute in any of the Γ2PI, int blobs
that appear in loops and do not vanish are ∼ (λR + δλn), with n = 0, 2. These give a
factor that is always O(ε), as discerned from (3.49) and observed in (3.50). The one- and
two-point loop integrals are O(ε−1), but the three- and four-point ones are O(1), being
finite. Finally, the vertex function V (4) is finite and hence O(1). Thus, one can count the
powers of ε for each diagram and it turns out that many diagrams only contribute at O(ε)
to the total four-point function. We apply this same analysis to (3.58) and then find that
only the second and fourth topologies are finite contributions.

Working with the convention that p1 is the incoming four-momentum and p2 and p3
are outgoing, one obtains the final expression

Γ(3)(p1, p2, p3) = −(λR + δλ4)φR +
1

2
λR φR [J(p1) + J(p2) + J(p3)]

− 1

2
λ3R φ

3
R J(p1)J(p2)J(p3)

[C0(p1, p2) + C0(p1, p3)]

16π2
+O(ε) , (3.58)

where the three-point loop integral function C0 is introduced in Appendix A, but adopt
the notation here,

C0(r, l) = (16π2)

∫
q
GR(q)GR(q + r)GR(q + l) . (3.59)

We have also introduced

J(p) ≡
[
1− λR

32π2
(
B0(p

2
∗,m

2
R,m

2
R)−B0(p

2,m2
R,m

2
R)
)]−1

(3.60)

which originates from the vertex function, c.f. (3.53). One can observe that the three-point
function vanishes in the unbroken phase, i.e. φR = 0, as expected due to the Z2 symmetry
of the Hartree approximation. Furthermore, the renormalisation of Γ(3) is determined by
δλ4, for which we turn to Γ(4).

For Γ(4), the contributing topologies are

Γ(4) = + +

+
1

2
+

+
1

2
, (3.61)
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and then insert the required instances of (3.32) and (3.33), the former of which have been
written and the latter of which we

= +
1

2 V
(4)

+ +
1

2

V
(4)

.

Performing the same analysis as in Γ(3) to identify the finite contributions, we assemble
these to obtain

Γ(4)(p1, p2, p3, p4) = −(λR + δλ4) + λR [J(p1 + p2) + J(p1 − p3) + J(p1 − p4)]

+
λ3Rφ

2
R

16π2
[J(p1 + p2)J(p3)J(p4)C0(p1 + p2, p4) + J(p1 − p3)J(p2)J(p4)C0(p1 − p3, p4)

+ J(p1 − p4)J(p2)J(p3)C0(p1 − p4, p3) + J(p1)J(p2)J(p3 + p4)C0(p1, p3 + p4)

+ J(p1)J(p3)J(p2 − p4)C0(p1, p2 − p4) + J(p1)J(p4)J(p2 − p3)C0(p1, p2 − p3)]

−
λ4Rφ

4
R

16π2
J(p1)J(p2)J(p3)J(p4)[D0(p2, p1 + p2, p3) +D0(p2, p2 − p3, p3) +D0(p2, p2 − p4, p4)]

+
λ5Rφ

4
R

(16π2)2
J(p1)J(p2)J(p3)J(p4)[J(p1 + p2)C0(p1, p1 + p2)C0(p3 + p4, p4)

+ J(p1 − p3)C0(p1, p1 − p3)C0(p4 − p2, p4) + J(p1 − p4)C0(p1, p1 − p4)C0(p3 − p2, p3)] ,
(3.62)

with the momentum assignments p1,2 incoming and p3,4 outgoing. Again, the four-point
loop integral function D0 is defined in Appendix A, and the notation here is

D0(k, r, l) = (16π2)i

∫
q
GR(q)GR(q + k)GR(q + r)GR(q + l) . (3.63)

The counterterm, δλ4 can then easily be obtained through an appropriate renormalisation
condition,

Γ(4)(p1∗, p2∗, p3∗, p4∗) = −λR (3.64)
where the pi∗ are chosen to adhere to the renormalisation condition p2∗ = 4m2

R for |~p∗|= 0
and θ∗ = 0. Note that δλ4 would also be finite, as the quantities appearing in (3.62) are
all finite. With this, we can then fully determine δm2

2 from (3.56), which, on close exam-
ination, would also be finite. Evidently, in the Hartree approximation all counterterms
turn out to be finite.
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3.3. Scalar Sunset Approximation

3.3 Scalar Sunset Approximation
In the broken phase, there exists a trilinear coupling ∼ λRφR, which thus naturally pro-
duces the scalar sunset diagram. Secondly, the inclusion of an additional trilinear coupling
α can be thought of arising from integrating out heavy fermions. Thus, we write down
the following 2PI functional,

Γ̂2PI,int[φR, GR] = −δt1 φR +
(δZφ,2 p

2 − δm2
2)

2
φ2R − (αR + δα3)

3!
φ3R − (λR + δλ4)

4!
φ4R

+
δZφ,0
2

∫
p
p2GR(p)−

1

2

[
δm2

0 + (αR + δα1)φR +
(λR + δλ2)

2
φ2R

] ∫
p
GR(p)

− (λR + δλ0)

8

(∫
p
GR(p)

)2

+
i [(αR + δα0) + (λR + δλ1)φR]

2

12

∫
p

∫
q
GR(p)GR(q)GR(p+ q) . (3.65)

We mention here that we cannot really speak of an “unbroken phase”, as there is no corre-
sponding symmetry that is broken; hence we proceed by carrying out our renormalisation
at non-zero φR, assuming that it is a minima of the potential.

We may set the counterterms, δα0 = δλ1 = 0, which is possible as they amount to finite
renormalisations at this level of the 2PI truncation; more specifically, the first non-trivial
contribution to these are obtained when one includes the basketball diagram [71–73]. We
then obtain the following four-point kernels according to (3.15) and (3.18), which are now
momentum dependent

Λ
(4)

(p1, p2, p3, p4) = −(λR + δλ0) + 2i(αR + λRφR)
2GR(p3 − p1) , (3.66)

Λ(4)(p1, p2, p3, p4) = −(λR + δλ2) + iλ2R

∫
q
GR(q)GR(p+ q)

≡ −(λR + δλ2) + λ2R I(p) . (3.67)

where p = p1 + p2. In addition, we also define the following three-point kernel

Λ(3)(p1, p2, p3) = 2
δ2Γ2PI,int

δφR δGR(p1)
= −(αR + δα1) + λR(αR + λRφR) I(p1) . (3.68)

The corresponding BSE for its resummation is

V (3)(p1, p2, p3) = Λ(3)(p1, p)

+
i

2

∫
q
Λ(3)(p1, p2, p3)GR(q)GR(p1 + q)V

(4)
(q + p1,−q, p2, p3) . (3.69)

We now implement appropriate renormalisation conditions in order to determine the
various coupling constant counterterms. For the four-point vertices, we continue to work
with the convention that the we have p1,2 as incoming and p3,4 as outgoing momenta. We
first have from (3.16),
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V
(4)

(p1, p2, p3, p4) = Λ
(4)

(p1, p2, p3, p4)

+
i

2

∫
q
Λ
(4)

(p1, p2, q + p,−q)GR(q)GR(p+ q)V
(4)

(q + p,−q, p3, p4) . (3.70)

Let us set the renormalisation condition,

V
(4)

(p1∗, p2∗, p3∗, p4∗) = −λR + 2i(αR + λRφR)
2GR(p3∗ − p1∗) , (3.71)

which accounts for the fact that four scalars may scatter directly via the quartic coupling,
or by a scalar exchange through two trilinear couplings. Like in the Hartree approximation,
we work in the COM system, which is characterised by a COM momentum and scattering
angle. In this case, as one might encounter infrared (IR) divergences on account of three-
and four-point loop integrals generated from the kernel (3.66), we set |~p∗|= mR and θ∗ = π.
Using (3.71) and solving for δλ0, we obtain

δλ0 = −λR +
λR − (αR + λRφR)

2 I2(p∗, p2∗, p3∗, p4∗)

1 + 1
2I1(p∗, p3∗, p4∗)

, (3.72)

where we have defined the following integrals over the vertex functions,

I1(p, k, r) = i

∫
q
GR(q)GR(p+ q)V

(4)
(q + p,−q, k, r) , (3.73)

I2(p, k, r, l) =

∫
q
GR(q)GR(q + p)GR(q + k)GR(q + r)V

(4)
(q + p,−q, r, l) . (3.74)

Note that the functions I1 and I2 are at most logarithmically divergent and finite re-
spectively, which we can ascertain by counting the number of propagators involved. The
counterterm δλ0 from (3.72) is hence discerned as finite. Plugging this back into (3.66)
and (3.70), we obtain the following expression for the four-point function

V
(4)

(p1, p2, p3, p4) = −λR

(
1 + 1

2I1(p, p3, p4)

1 + 1
2I1(p∗, p3∗, p4∗)

)
+ 2i(αR + λRφR)

2GR(p3 − p1)

+ (αR + λRφR)
2

[
I2(p, p2, p3, p4)− I2(p∗, p3∗, p4∗)

(
1 + 1

2I1(p, p3, p4)

1 + 1
2I1(p∗, p3∗, p4∗)

)]
, (3.75)

which is discerned to be finite from the arguments related to the loop integrals presented
above.

As our model does not possess the Z2 symmetry in the Hartree case, our starting point
to determine the counterterm δλ2 is the following BSE

V (4)(p1, p2, p3, p4) = Λ(4)(p1, p2, p3, p4)

+
i

2

∫
q
Λ(4)(p1, p2, q + p,−q)GR(q)GR(q + p)V

(4)
(q + p,−q, p3, p4) . (3.76)

From the definition (3.67), Λ(4) does not depend on the integrating loop momentum, which
simplifies matters. We impose the renormalisation condition

V (4)(p1∗, p2∗, p3∗, p4∗) = −λR (3.77)
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and this leads to the following result

δλ2 = −λR + λ2R I(p∗) +
λR

1 + 1
2I1(p∗, p3∗, p4∗)

. (3.78)

Firstly, we notice that, δλ2 6= δλ0 unlike in the Hartree approximation, even if we set
α = 0. This is because, in the scalar sunset approximation, the effective trilinear coupling
∼ λRφR gives a contribution which is the second term of (3.78). The very same term
introduces a divergence in δλ2 due to the loop integral I(p) = i

∫
q GR(q)GR(q + p).

We now examine the three-point function (3.69), which has a similar structure to V (4).
Firstly let us describe the kinematics: we take two of the scalars with p2 and p3 to be
on-shell. By the conservation of four-momentum, we can calculate p1 as

p21 = (p2 + p3)
2 = 4(|~p|2+m2

R) , (3.79)

where we work in the COM frame for p2 and p3 so that these scalars are produced back-
to-back. We then set |~p∗|= mR to fix the renormalisation condition as

V (3)(p1∗, p2∗, p3∗) = −αR . (3.80)

This gives us the following relation

δα1 = −αR + λR(αR + λRφR) I(p21∗) +
αR

1 + 1
2I1(p1∗, p2∗, p3∗)

. (3.81)

This counterterm is also divergent for the same reason as δλ2.
We note here that, for the moment, we have given explicit expressions to calculate the

counterterms via a numeric implementation (which we will shortly discuss in the context of
the gap equation), and discussed their possible divergent structures. We will, in Chapter
4, determine analytic expressions in terms of expansions of ε for these counterterms, when
we consider our MS scheme.

Turning now to the gap equation, with p being the external momentum, this reads

iG−1
R (p) = (p2 −m2

R) + (δZφ,0 p
2 − δm2

0)− (αR + δα1)φR − (λR + δλ2)

2
φ2R

− (λR + δλ0)

2
T +

(αR + λRφR)
2

2
I(p) , (3.82)

where we have the one-point integral

T =

∫
q
GR(q) . (3.83)

Using the same on-shell renormalisation conditions in the Hartree approximation, as de-
fined in (3.44) and (3.45), we first pick up a finite contribution to the wave function
renormalisation given by

δZφ,0 = −(αR + λRφR)
2

2

∂I(p)
∂p2

∣∣∣∣
p2=m2

R

. (3.84)

The derivative eliminates any divergence present and therefore, δZφ,0 is finite in the scalar
sunset approximation. We can then determine the mass counterterm
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δm2
0 = δZφ,0m

2
R − (αR + δα1)φR − (λR + δλ2)

2
φ2R − (λR + δλ0)

2
T

+
(αR + λRφR)

2

2
I(p)|p2=m2

R
. (3.85)

This counterterm is no longer finite like in the Hartree approximation: the reason for this
is that we have noted that the counterterms δλ2 and δα1 are divergent. We plug back δm2

0

and δZφ,0 into (3.82) to obtain the following integral equation to ascertain the propagator

iG−1
R (p) = (p2 −m2

R)

[
1− (αR + λRφR)

2

2

∂I(q)
∂q2

∣∣∣∣
q2=m2

R

]

+
(αR + λRφR)

2

2

[
I(p)− I(q)|q2=m2

R

]
. (3.86)

In this form, the propagator is manifestly finite, due to potential divergences dropping out
in the difference of the loop integral I or in its differentiation. However, GR cannot be
given in an explicit form but needs to be determined by solving (3.86), for which we use
an iterative approach, described as follows:

1. Initialising with the free propagator, we evaluate the loop integrals in (3.86) to yield
the first iteration of the propagator in terms of Passarino-Veltman functions

i(G−1
R (p))(0) = (p2 −m2

R)

[
1− (αR + λRφR)

2

32π2
Ḃ0(m

2
R,m

2
R,m

2
R)

]

+
(αR + λRφR)

2

32π2
[
B0(p

2,m2
R,m

2
R)−B0(m

2
R,m

2
R,m

2
R)
]
. (3.87)

2. For the next iteration, convert (3.87) to Euclidean space, most easily done by p2 =
−p2E . Then, use a numerical implementation of the loop integral I(p) 2 which we
have described at the end of Appendix A. In the course of the evaluation in Euclidean
space, we set a UV cutoff that needs to be sufficiently large. We set this as Λ =
105 GeV.

3. Generate a set of points for this iteration of the propagator and interpolate these to
obtain the propagator at this iteration.

4. Repeat now from step (2) till convergence to desired accuracy. We define this as the
relative difference between successive iterations getting smaller.

Our results in Fig. 3.3 show that there is indeed convergence for this iterative procedure as
relative differences between successive iterations continue to get smaller for the very large
couplings chosen. It would suffice, for smaller couplings hence, to use the first iteration of
the propagator for practical purposes. We also observe a slight “kink” at |pE |= 200GeV
in the same figure. In Minkowski space, we would interpret this as the on-shell production
of two scalars (mR = 100GeV), but as we are in Euclidean space, this might be the result
of the loop contributions cancelling out, so that the various iterations match at this point.
2We have checked that the numeric implementation reproduces the correct values for the first iteration
when compared to (3.87), in terms of Passarino-Veltman functions converted to Euclidean space.
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3.3. Scalar Sunset Approximation

Furthermore, we check the dependence on the UV cutoff, Λ in Fig. 3.4. We find the
dependence to be rather small, with the relative difference being at most O(10−5), even
when choosing a cutoff two orders of magnitude higher.

10 100 1000 104 105
p [GeV]

5.×10-5

1.×10-4

5.×10-4

0.001

0.005

0.010

G(n)-Gn-1

Gn-1

n = 1

n = 2

n = 3

Figure 3.3: The relative difference between successive iterations of the scalar propagator for
parameter choices of mR = 100GeV, αR = 200GeV and λR = 4, leading to φR ≈ 70GeV for a
range of the norm of the Euclidean four-momentum p. We have the UV cutoff, Λ = 105 GeV,
required during the course of the numeric integration, as explained in the text.

10 100 1000 104 105
p [GeV]

10-8

10-7

10-6

10-5

G (Λn)-G (Λ1)

G (Λ1)

Λ2 = 10
6 GeV

Λ3 = 10
7 GeV

Figure 3.4: The relative difference between the second iteration of the scalar propagator evaluated
with different cutoffs Λ2 = 106 GeV and Λ3 = 107 GeV, and the one evaluated at Λ1 = 105 GeV
for a range of the norm of the Euclidean four-momentum p. The parameters are taken to be
mR = 100GeV, αR = 200GeV and λR = 4 which lead to φR ≈ 70GeV.
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Chapter 3. On-shell Renormalisation

10 100 1000 104 105
|p| [GeV]

0.005

0.010

0.015

0.020

0.025

V (1) (p) -V (0) (p)

V (0) (p)

-3 -2 -1 1 2 3
θ

0.022

0.023

0.024

0.025

0.026

V (1) (θ) - V (0) (θ)

V (0) (θ)

Figure 3.5: Top: The relative difference between the first and zeroth iteration of V (4) as a
function of the modulus of the COM three-momentum |~p|at fixed COM angle θ = 0. Bottom: The
relative difference between the first and zeroth iteration of V (4) as a function of the COM angle for
|~p|= 1000GeV. The parameters chosen are mR = 100GeV, αR = 75GeV and λR = 0.8, leading to
φR ≈ −450GeV.

Having found the numerical solution to the gap equation, i.e. knowing the form of
the propagator, one then proceeds to evaluate the loop integrals relevant to find the
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3.3. Scalar Sunset Approximation

counterterms δλ0, δλ2 and δα1, c.f. (3.73) and (3.74). As these involve convolution with
the vertex function, one proceeds in a similar iterative manner for the vertex as we have
outlined for the gap equation. Starting with the zeroth iteration of the vertex function
V

(4), we have (
V

(4)
)(0)

(p1, p2, p3, p4) = −λR + 2i(αR + λR)
2G

(0)
R (p3 − p1) , (3.88)

and calculate the first iteration(
V

(4)
)(1)

(p1, p2, p3, p4) = −λR + 2i(αR + λR)
2G

(0)
R (p3 − p1)

− (αR + λR)
2 λR

16π2
[C0(p1∗, p3∗)− C0(p1, p3)] +

(αR + λR)
2

8π2
[D0(p1∗, p2∗, p3∗)−D0(p1, p2, p3)] .

(3.89)

In Fig. 3.5, we show the relative differences for a range of momentum and the angular
variation.

For the determination of the remaining counterterms, we examine various derivatives
of the 2PI effective potential. For example, the tadpole counterterm is straightforwardly
obtained by taking a single derivative of the effective action w.r.t. φR. The stationarity
condition then gives

Γ(1) =
δΓ̂2PI
δφR

∣∣∣∣
p2=0

= −δt1 − (m2
R + δm2

2)φR − (αR + δα3)

2
φ2R − (αR + δλ4)

6
φ2R

− 1

2
[(αR + δα1) + (λR + δλ4)φR] T +

λR (αR + λRφR)

6
S !
= 0 , (3.90)

where
S = i

∫
p

∫
q
GR(p)GR(q)GR(p+ q) . (3.91)

The tadpole counterterm cannot be determined without first ascertaining the missing field
counterterms. The easiest of this to find is δm2

2, for which we look at Γ(2). Using equations
(3.27) and (3.28) we obtain

Γ(2) = (p2 −m2
R) + (δZφ,2p

2 − δm2
2)− (αR + δα3)φR − 1

2
(λR + δλ4)φ

2
R

− 1

2
(λR + δλ2)T +

λ2R
6

S

− 1

8

[
(αR + δα1) + (λR + δλ2)φR − λR(αR + λRφR)

3
I(p)

]2
I(p)

+
1

16

{[
(αR + δα1) + (λR + δλ2)φR − λR(αR + λRφR)

3
I(p)

]2
∫
q

∫
k
GR(p+ q)GR(q)V

(4)
(p+ q,−q, p+ k,−k)GR(p+ k)GR(k)

}
, (3.92)

39



Chapter 3. On-shell Renormalisation

where the terms in parenthesis for the third and last lines appear from the replacement
of the various building blocks in (3.27) and (3.28). The earlier analysis in the Hartree
approximation does not carry over as δλ2 6= δλ0, and moreover, δλ2 is now contains
a divergent part. We can determine the counterterms δZφ,2 and δm2

2 with the on-shell
renormalisation conditions, to give

δZφ,2 =
1

8

[
(αR + δα1) + (λR + δλ2)φR − λR(αR + λRφR)

3
I(p)|p2=m2

R

]
{{

− λR(αR + λRφR)

3
I(p)|p2=m2

R

∂I(p)
∂p2

∣∣∣∣
p2=m2

R

+

[
(αR + δα1) + (λR + δλ2)φR − λR(αR + λRφR)

3
I(p)|p2=m2

R

]
∂I(p)
∂p2

∣∣∣∣
p2=m2

R

}

+
1

2

{
− λR(αR + λRφR)

3
I(p)|p2=m2

R

∂IV (p)
∂p2

∣∣∣∣
p2=m2

R

+

[
(αR + δα1) + (λR + δλ2)φR − λR(αR + λRφR)

3
I(p)|p2=m2

R

]
∂IV (p)
∂p2

∣∣∣∣
p2=m2

R

}}
,

(3.93)

δm2
2 = m2

R δZφ,2 − (αR + δα3)φR − 1

2
(λR + δλ4)φ

2
R − 1

2
(λR + δλ2)T +

λ2R
6

S

− 1

8

[
(αR + δα1) + (λR + δλ2)φR − λR(αR + λRφR)

3
I(p)|p2=m2

R

]2
I(p)|p2=m2

R

+
1

16

[
(αR + δα1) + (λR + δλ2)φR − λR(αR + λRφR)

3
I(p)|p2=m2

R

]2
IV (p)|p2=m2

R
, (3.94)

where

IV (p) =
∫
q

∫
k
GR(p+ q)GR(q)V

(4)
(p+ q,−q, p+ k,−k)GR(p+ k)GR(k) . (3.95)

On close inspection, we can discern that these counterterms would not be finite like in
the Hartree approximation, due to the coupling constant counterterms being O(ε−1). Fur-
thermore, it is also obvious that the equalities δZφ,2 = δZφ,0 and δm2

2 = δm2
0 no longer

hold true, as we had in the Hartree approximation.
Finally, the only undetermined counterterms are δα3 and δλ4, which are needed to

completely express δt1 and δm2
2. Based on our diagrammatic approach, the structures

that do not vanish after successive differentiation w.r.t. φR and/or GR are

Γ(3) ≡ δ3Γ

δφ3
= +

1

2
+

1

4
+
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+
1

2
. (3.96)

Γ(4) ≡ δ4Γ

δφ4
= +

1

4
+

1

8

+ +
1

2
+

+
1

2
+

1

4
+

+
1

2
. (3.97)

Referring now to (3.32) and (3.33), we first enlist the various non-vanishing contributions
of the derivative of the self-energy w.r.t. φR that would be required.

= +
1

2
V

(4)

+
1

2
+

1

4

V
(4)

+
1

4
+

1

8

V
(4)
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+ +
1

2

V
(4)

(3.98)

= +
1

4
+

1

8

V
(4)

+
1

8
+

1

16 V
(4)

+ +
1

2

V
(4)

+
1

2
+

1

4 V
(4)

+ +
1

2 V
(4)
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+
1

2
+

1

4

V
(4)

+
1

4
+

1

8 V
(4)

+ +
1

2

V
(4)

. (3.99)

While performing the analysis of the diagrams, one may note the following: δλ0 is still
finite and differentiation w.r.t. to three propagators yields ∼ (αR + λRφR)

2 which is also
finite. However, all other counterterms, besides δλ0 are not finite, and hence one needs to
be careful when such quantities multiply loop integrals, as they would introduce (sub-)di-
vergences. The counterterms δα3 and δλ4 are then obtained by placing the renormalisation
conditions

Γ(3)(p1∗, p2∗, p3∗) = −αR , Γ(4)(p1∗, p2∗, p3∗, p4∗) = −λR . (3.100)

The full determination of these counterterms in the on-shell scheme involve resolution of
the various diagrams that we have presented. These lead to lengthy expressions which we
do not list here; instead, in the next Chapter 4, we obtain analytic expressions for these
in terms of expansions in ε, through an alternate approach. The presence of counterterms
that are not finite after resummation in the 2PI formalism may seem strange, but we will
show also in the next chapter of this thesis that this is not really an issue, as the 2PI
effective potential remains finite.

3.4 Fermionic Sunset Approximation

Finally, introducing fermions into the theory, we can write down at two-loop order

Γ̂2PI,int[φR, GR, DR] = −δt1 φR +
(δZφ,2 p

2 − δm2
2)

2
φ2R − (αR + δα3)

3!
φ3R − λR + δλ4)

4!
φ4R

+

∫
p

δZφ,0
2

∫
p
p2GR(p)−

1

2

[
δm2

0 + (αR + δα1)φR +
(λR + δλ2)

2
φ2R

] ∫
p
GR(p)
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Λψψ =

p1

p2

p3

p4

Λ
(4)
ψφ =

p1

p2

p3

p4

Λ
(3)
ψφ =

Figure 3.6: Illustration of the various kernels in the fermionic sunset approximation. Red lines
indicate the fermionic propagator DR.

+

∫
p
tr
[(
δZψ,2/p− δM0

)
D(p)

]
− (gR + δg1)φR

∫
p
tr[DR(p)]

− (λR + δλ0)

8

(∫
p
GR(p)

)2

+
i (αR + λRφR)

2

2

∫
p

∫
q
GR(p)GR(q)GR(p+ q)

− i(gR + δg0)
2

2

∫
p

∫
q
GR(p) tr[DR(q)DR(p+ q)] , (3.101)

where we have already set the corresponding coupling counterterms for the scalar sunset
contribution to 0. We retain the counterterm for the Yukawa coupling corresponding to
the fermionic sunset diagram, δg0, for the moment. Note that as long as the fermionic
mass, MR 6= 0, we require an additional trilinear coupling αR, to account for potential
divergences in scalar three-point functions with a fermionic loop. We can then obtain the
following additional four-point kernels involving fermions and scalars

Λψψ(p1, p2, p3, p4)ab,cd ≡ −
δ2Γ2PI,int

δDba
R (p) δDcd

R (q)
= i(gR + δg0)

2 δdbGR(p3 − p1) δac , (3.102)

Λ
(4)
ψφ(p1, p2, p3, p4)ab ≡ −2

δ2Γ2PI,int

δDba
R (p) δGR(q)

= 2i(gR + δg0)
2DR(p1 − p3)ab , (3.103)

(
Λ
(3)
ψφ

)
ab

≡ −
δ2Γ2PI,int

δφR δDba
R (p)

= −(gR + δg1)δab , (3.104)

alongside the scalar kernels that we had in the scalar sunset approximation, c.f. (3.66),
(3.67) and (3.68). For now, we have indicated the spinor indices in lowercase Latin alpha-
bets. The Kronecker deltas refer to the identity matrix in spinor space.

We proceed by defining first the governing BSE for the kernel Λψψ as

Vψψ(p1, p2, p3, p4)ab,cd = Λψψ(p1, p2, p3, p4)ab,cd

+ i

∫
q
Λψψ(p1, p2, q + p,−q)ab,efDR(q)egVψψ(q + p,−q, p3, p4)gh,cdDR(p+ q)hf

= i(gR + δg0)
2δdbGR(p3 − p1) δac

− (gR + δg0)
2

∫
q
GR(q + p2)DR(q)aeVψψ(q + p,−q, p3, p4)ef,cdDR(p+ q)fb , (3.105)
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and p = p1 + p2. This vertex function is essentially a resummation of ladder diagrams
contributing to t-channel ψψ → ψψ scattering via the exchange of a scalar propagator. On
inspection, we can easily discern that Vψψ is finite by counting the number of propagators.
The counterterm δg0 hence accounts for a finite renormalisation which we determine using
the condition

Vψψ(p1∗, p2∗, p3∗, p4∗)ab,cd = ig2R δdbGR(p3∗ − p1∗) δac . (3.106)

where we continue to work in the COM frame to give the renormalisation conditions.
Imposing this and appropriately contracting the spinor indices, with

∑
a

δaa = 4, we

obtain the following expression for δg0

δg0 = −gR +
gR√

1− 1
4G

−1
R (p3∗ − p1∗)F2

(3.107)

where

F2 = i

∫
q
GR(q + p2∗)DR(q)aeVψψ(q + p∗,−q, p3∗, p4∗)ef,abDR(p∗ + q)fb . (3.108)

Note that δg0 is a finite renormalisation, i.e. O(1) and therefore, does not modify divergent
structures. Thus, for convenience, we choose to set δg0 = 0 from this point onward.

Consider the BSE for the kernel Λ(4)
ψφ,

V
(4)
ψφ (p1, p2, p3, p4)ab = Λψφ(p1, p2, p3, p4)ab

+ i

∫
q
Λ
(4)
ψφ(p1, p2, q + p,−q)aeDR(q)efV

(4)
ψφ (q + p,−q, p3, p4)fbGR(p+ q) (3.109)

This is again finite by power counting. We will use this now for the three-point kernel
Λ
(3)
ψφ to define a BSE of the form

V
(3)
ψφ (p1, p2, p3)ab =

(
Λ
(3)
ψφ

)
ab

+ i
(
Λ
(3)
ψφ

)
ac

∫
q
DR(q)cdV

(4)
ψφ (q + p1,−q, p2, p3)dbGR(p1 + q) .

(3.110)

We will make use of this now to determine the counterterm δg1. With the renormalisation
condition,

V
(3)
ψφ (p1∗)(αβ) = −gR δαβ . (3.111)

We then obtain
δg1 = −gR +

gR

1 + 1
4F3

, (3.112)

where
F3 = i

∫
q

tr
[
DR(q)V

(4)
ψφ (q + p1∗,−q, p2∗, p3∗)

]
GR(q + p1∗) , (3.113)

where appropriate contraction of the spinor indices leads to the resultant trace.
In dealing with the scalar four-point vertex functions, we have to treat the possibility

of divergences introduced by fermionic loops. To this end, with Λ
(4) as the base, we build

the following “modified scalar kernel” using Λ
(4)
ψφ and the four-point vertex Vψψ [66]
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V
(4)
ψφ

q + p

q

Figure 3.7: Illustration of BSE for the resummation of the three-point vertex V
(3)

ψφ using the
four-point vertex V (4)

ψφ.

Λ̃φφ(p1, p2, p3, p4) = Λ
(4)

(p1, p2, p3, p4)

− i

∫
q
DR(p+ q)db Λ

(4)
ψφ(q + p,−q, p3, p4)baDR(q)ac Λ

(4)
ψφ(p1, p2, p+ q − q)cd

+ i

∫
q

∫
r

{
DR(q + p)fb Λ

(4)
ψφ(p1, p2, p+ q,−q)baDR(q)ae

V ψψ(p+ q,−q, r + p,−r)ef,ghDR(r)gc Λ
(4)
ψφ(r + p,−r, p3, p4)cdDR(r + p)dh

}

= Λ
(4)

(p1, p2, p3, p4)− 4ig4R

∫
q

tr [DR(q + p)DR(q + p1)DR(q)DR(q + p3)]

+ 4ig4R

∫
q

∫
r

tr
[
DR(q + p)DR(q + p1)DR(q)V

ψψ(p+ q,−q, r + p,−r)

DR(r)DR(r + p3)DR(r)

]
, (3.114)

where in the second equality, we have contracted the spinor indices to obtain the trace.
We can now iterate this four-point scalar kernel via its usual BSE

V
(4)

(p1, p2, p3, p4) = Λ̃φφ(p1, p2, p3, p4)

+
i

2

∫
q
Λ̃φφ(p1, p2, q + p,−q)GR(q)GR(p+ q)V

(4)
(q + p,−q, p3, p4) .

(3.115)

The quartic scalar coupling divergences generated will then be absorbed into the coun-
terterm δλ0. Imposing the same renormalisation condition as in the scalar sunset approx-
imation, c.f. (3.71), we solve for the counterterm to obtain

δλ0 = −λR +
λR − (αR + λRφR)

2 I2

1 + 1
2I1

+ 4g4R

[
F4 − 1

2F4V

1 + 1
2I1

]
− 4g4R

[
FV − 1

2FV V

1 + 1
2I1

]
, (3.116)

where I1,2 are the same integrals in (3.73) and (3.74), defined at the renormalisation point,
and the following notation has been introduced for the new loop integrals pertaining to
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the fermions

F4 = i

∫
q

tr [DR(q + p∗)DR(q + p2∗)DR(q)DR(q + p4∗)] , (3.117)

F4V =

∫
q

∫
r

tr [DR(q + p∗)DR(q + p2∗)DR(q)DR(q − r)]GR(r)GR(p∗+ r)V
(4)

(r+p∗, p3∗),

(3.118)

FV = i

∫
q

∫
r

tr
[
DR(q + p∗)DR(q + p2∗)DR(q)Vψψ(p∗ + q, r + p∗)

DR(r)DR(r + p4∗)DR(r + p∗)

]
, (3.119)

FV V =

∫
k

∫
q

∫
r

{
tr
[
DR(q + p∗)DR(q + p2∗)DR(q)Vψψ(p∗ + q, r + p∗)

DR(r)DR(r − k)DR(r + p∗)

]
GR(k)GR(k + p∗)V

(4)
(k + p∗, p3∗)

}
. (3.120)

Note that FV and FV V are both finite, whereas F4 and F4V are logarithmically divergent.
The remaining counterterms are δλ2 and δα1 are obtained in the exact same manner as in
the scalar sunset case, and the expressions are the same (3.78) and (3.81), with the vertex
function function now being defined with the modified four-point scalar kernel to include
the contributions from fermions.

We can now turn to the formulation of the gap equations to determine the form of the
fermionic and scalar propagators. These are given by

iG−1
R (p) = p2 −m2

R − iΠ(p)

= (p2 −m2
R) + (δZφ,0 p

2 − δm2
0)− (αR + δα1)φR − (λR + δλ2)

2
φ2R

− (λR + δλ0)

2
T +

(αR + λRφR)
2

2
I(p)− ig2R

∫
q
tr[DR(q)DR(p+ q)]

≡ (p2 −m2
R) + (δZφ,0 p

2 − δm2
0)− (αR + δα1)φR − (λR + δλ2)

2
φ2R

− (λR + δλ0)

2
T +

(αR + λRφR)
2

2
I(p)− g2R

[
p2F1(p) + F2(p)

]
(3.121)

iD−1
R (p) = /p−MR − iΣ(/p)

= /p−MR + (δZψ,0 /p− δM0)− (gR + δg1)φR − ig2R

∫
q
DR(p+ q)GR(q)

≡ /p−MR + (δZψ,0 /p− δM0)− (gR + δg1)φR − g2R
[
X(p)/p+ Y (p)

]
, (3.122)

and are evidently coupled. For the loop integrals related to fermions, we have decomposed
them into the forms based on possible Lorentz structures. We now impose the appropriate
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on-shell renormalisation conditions to obtain the counterterms related to the propagators.
For the scalar propagator, we have

δZφ,0 = −(αR + λRφR)
2

2

∂I(p)
∂p2

∣∣∣∣
p2=m2

R

+ g2R

[
F1(p) +m2

R

∂F1(p)

∂p2
+
∂F2(p)

∂p2

] ∣∣∣∣
p2=m2

R

,

(3.123)

δm2
0 = δZφ,0m

2
R − (αR + δα1)φR − (λR + δλ2)

2
φ2R − (λR + δλ0)

2
T

+
(αR + λRφR)

2

2
I(p)|p2=m2

R
− g2R

[
m2
RF1(p) + F2(p)

]
|p2=m2

R
, (3.124)

and for the fermionic propagator

δZψ,0 = g2RX(p)|p2=M2
R
+ 2g2RMR

[
MR

∂X(p)

∂p2
+
∂Y (p)

∂p2

] ∣∣∣∣
p2=M2

R

, (3.125)

δM0 = δZψ,0MR − (gR + δg1)φR − g2R[MRX(p) + Y (p)]|p2=M2
R
. (3.126)

Note that the counterterms for the scalar and fermionic wave function renormalisations
are not finite, due to the loop integrals not always being subtracted.

We proceed now in the same manner as in the scalar sunset approximation: we sub-
stitute these counterterms into the gap equations to obtain the following coupled integral
equations to solve for the propagators

iG−1
R (p) = (p2 −m2

R)

[
1− (αR + λRφR)

2

2

∂I(q)
∂q2

+ g2R

(
m2
R

∂F1(q)

∂q2
+
∂F1(q)

∂q2

)] ∣∣∣∣
q2=m2

R

+
(αR + λRφR)

2

2

[
I(p)− I(q)|q2=m2

R

]
− g2R

[
p2
(
F1(p)−F1(q)|q2=m2

R

)
+
(
F2(p)−F2(q)|q2=m2

R

)]
, (3.127)

iD−1
R (p) = (/p−MR)

[
1 + 2g2RMR

(
MR

∂X(q)

∂q2
+
∂Y (q)

∂q2

)] ∣∣∣∣
q2=M2

R

− g2R

[
/p
(
X(p)−X(q)|q2=M2

R

)
+
(
Y (p2)− Y (q)|q2=M2

R

)]
≡W (p)/p− Z(p) . (3.128)

These are manifestly finite due to divergences dropping out due to the subtraction from a
fixed point or differentiation of the divergent functions. In the last step for the fermionic
propagator, we have defined the following quantities

W (p) = 1− g2R

(
X(p)−X(q)|q2=M2

R

)
+ 2g2RMR

(
MR

∂X(q)

∂q2
+
∂Y (q)

∂q2

) ∣∣∣∣
q2=M2

R

, (3.129)

Z(p) =MR − g2R

(
Y (p)− Y (q)|q2=M2

R

)
− 2g2RM

2
R

(
MR

∂X(q)

∂q2
+
∂Y (q)

∂q2

) ∣∣∣∣
q2=M2

R

,

(3.130)
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according to which we can explicitly write down the expressions for X(p) and Y (p),

X(p) = i

∫
q
W (p+ q)GR(q) , Y (p) = i

∫
q
Z(p+ q)GR(q) . (3.131)

For the trace that appears in the scalar propagator, we resolve this as

Tr[DR(q)DR(p+ q)] = Tr
{

i

W (q)/q − Z(q)

i

W (p+ q)(/p+ /q)− Z(p+ q)

}

=
Tr
{
[W (q)/q + Z(q)][W (p+ q)(/p+ /q) + Z(p+ q)]

}
[W 2(q)q2 − Z2(q)] [W 2(p+ q)(p+ q)2 − Z2(p+ q)]

= 4
(p · q + q2)W (q)W (p+ q) + Z(q)Z(p+ q)

[W 2(q)q2 − Z2(q)] [W 2(p+ q)(p+ q)2 − Z2(p+ q)]

= p2
{

−2W (q)W (p+ q)

[W 2(q)q2 − Z2(q)][W 2(p+ q)(p+ q)2 − Z2(p+ q)]

}

+ 2

{
((p+ q)2 − q2)W (q)W (p+ q) + Z(q)Z(p+ q)

[W 2(q)q2 − Z2(q)][W 2(p+ q)(p+ q)2 − Z2(p+ q)]

}
(3.132)

where in the second last step we have used 2p · q = (p + q)2 − p2 − q2. This finally gives
the expressions for the functions F1 and F2

F1(p) = −2i

∫
q

W (q)W (p+ q)

[W 2(q)q2 − Z2(q)][W 2(p+ q)(p+ q)2 − Z2(p+ q)]
, (3.133)

F2(p) = 2i

∫
q

((p+ q)2 − q2)W (q)W (p+ q) + Z(q)Z(p+ q)

[W 2(q)q2 − Z2(q)][W 2(p+ q)(p+ q)2 − Z2(p+ q)]
. (3.134)

We know have the entire setup to solve the gap equations, which we approach in the
same iterative manner outlined for the scalar sunset approximation, beginning with the
free propagators. This yields,

X(1)(p2) =
1

16π2
[
B1(p

2,m2
R,M

2
R) +B0(p

2,m2
R,M

2
R)
]
, (3.135)

Y (1)(p2) =
1

16π2
[
MRB0(p

2,m2
R,M

2
R)
]
, (3.136)

i(G−1
R (p))(0) = p2

{
1−

g2R
8π2

[
B0(p

2,M2
R,M

2
R)−B0(m

2
R,M

2
R,M

2
R)
]

−
g2R
4π2

(
M2
R −

m2
R

2

)
Ḃ0(m

2
R,M

2
R,M

2
R)−

(αR + λRφR)
2

32π2
Ḃ0(m

2
R,m

2
R,m

2
R)

}

−m2
R

{
1−

g2R
8π2

M2
R

m2
R

[
B0(p

2,M2
R,M

2
R)−B0(m

2
R,M

2
R,M

2
R)
]

−
g2R
4π2

(
M2
R −

m2
R

2

)
Ḃ0(m

2
R,M

2
R,M

2
R) +

(αR + λRφR)
2

32π2
Ḃ0(m

2
R,m

2
R,m

2
R)

}

+
(αR + λRφR)

2

32π2
[
B0(p

2,m2
R,m

2
R)−B0(m

2
R,m

2
R,m

2
R)
]
, (3.137)
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which are converted to Euclidean space for the next iteration. We focus on the case of a
large Yukawa coupling, gR = 2, and set smaller couplings pertaining to scalars. We again
see that the relative difference between successive iterations drops by about two orders
of magnitude for the scalar propagator (Fig. 3.8) and the functions W (p) (Fig. 3.9) and
Z(p) (Fig. 3.10), showing that this iterative approach does appear to converge. We point
out that certain spurious points where the relative difference between the second and first
iterations appear to go to 0 in the various plots are not physical; these are purely numeric
effects and these would smooth out when sets a higher accuracy for the integrations.

10 100 1000 104 105
p [GeV]

10-6

10-4

0.01

G(n)-Gn-1

Gn-1

n = 1, MR = 60 GeV

n = 2, MR= 60 GeV

n = 1, MR = 210 GeV

n = 2, MR = 210 GeV

Figure 3.8: The relative difference between the two successive iterations of the scalar propagator
for two choices of the renormalised fermionic mass, MR. We have set gR = 2 , λR = 0.5 , αR =
50GeV, φR ≈ 227.5GeV and mR = 100GeV in all cases. The UV cutoff was taken to be Λ =
105 GeV.
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W (n)-W n-1

W n-1
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n = 1, MR=210 GeV

n = 2, MR=210 GeV

Figure 3.9: The relative difference between the two successive iterations of the function W (p)
for two choices of the renormalised fermionic mass, MR. We have set gR = 2 , λR = 0.5 , αR =
50GeV, φR ≈ 227.5GeV and mR = 100GeV in all cases. The UV cutoff was taken to be Λ =
105 GeV.
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10 100 1000 104 105
p [GeV]

10-8

10-6

10-4

0.01

Z(n)-Zn-1

Zn-1

n = 1, MR=60 GeV

n = 2, MR=60 GeV

n = 1, MR=210 GeV

n = 2, MR=210 GeV

Figure 3.10: The relative difference between the two successive iterations of the function Z(p)
for two choices of the renormalised fermionic mass, MR. We have set gR = 2 , λR = 0.5 , αR =
50GeV, φR ≈ 227.5GeV and mR = 100GeV in all cases. The UV cutoff was taken to be Λ =
105 GeV.

We now outline the procedure to obtain the remaining counterterms, which pertain to
the scalar field. We must start with the generic expression involving field derivatives of
the effective action and include the relevant modifications due to the presence of fermions.
However, simplifications occur if we treat the fermions are treated as background fields
which cannot acquire VEVs, motivated by the fact that these break Lorentz invariance.

Starting with the scalar one-point function, we have

δΓ2PI
δφR(x1)

=
δΓ2PI
δφR(x1)

+

∫
y1,y2

δΓ2PI
δGR(y1, y2)

δGR(y1, y2)

δφR(x1)
+

∫
y1,y2

tr
{

δΓ2PI
δDR(y1, y2)

δDR(y1, y2)

δφR(x1)

}
where the second and third terms are obtained from the chain rule. The stationarity
conditions of Γ2PI,

δΓ2PI
δGR

∣∣∣∣
φR, GR, DR

=
δΓ2PI
δDR

∣∣∣∣
φR, GR, DR

!
= 0 , (3.138)

cause these to drop out. We thus obtain, by converting to momentum space,

Γ(1) =
δΓ̂2PI
δφR

∣∣∣∣
p2=0

= −δt1 − (m2
R + δm2

2)φR − (αR + δα3)

2
φ2R − (λR + δλ4)

6
φ3R

− 1

2
[(αR + δα1) + (λR + δλ2)φR] T +

λR (αR + λRφR)

6
S − (gR + δg1)

∫
q

tr [DR(q)]
!
= 0 ,

(3.139)

which is the same minimisation condition as in the scalar sunset, but with a new contri-
bution from the fermionic tadpole, which is the last term in the second line.

Consider the physical two-point function of the scalar field,

Γ(2)(x1, x2) ≡
δ2Γ2PI

δφ(x1)δφ(x2)

=
δ2Γ2PI

δφR(x1)δφR(x2)

∣∣∣∣
φR, GR, DR

+

∫
y1,...,y4

δ2Γ2PI
δφR(x1)δGR(y1, y2)

∣∣∣∣
φR, GR, DR

δGR(y1, y2)

δφR(x2)
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+

∫
y1,...,y4

Tr
{

δ2Γ2PI
δφ(x1)δDR(y1, y2)

∣∣∣∣
φR, GR, DR

δDR(y1, y2)

δφR(x2)

}

= iG−1
0,R +

δ2Γ2PI,int
δφR(x1)δφR(x2)

∣∣∣∣
φR, GR, DR

+

∫
y1,...,y4

δ2ΓRint
δφR(x1)δGR(y1, y2)

∣∣∣∣
φR, GR, DR

GR(y1, y3)
δΠ(y3, y4)

δφR(x2)
GR(y4, y2)

+

∫
y1,...,y4

tr
{

δ2Γ2PI,int
δφR(x1)δDR(y1, y2)

∣∣∣∣
φR, GR, DR

DR(y1, y3)
δΣ(y3, y4)

δφR(x2)
DR(y4, y2)

}
.

(3.140)

The last line gives explicit fermionic contributions by virtue of δΣ/δφR. In a similar
manner to (3.28), it can be expanded out using the following diagrammatic equation

δΣ(x1, x2)

δφR(x3)
≡ 1

2
3 =

1
2

3 + Vψψ
1
2

3 + V
(4)
ψφ

1
2

3

(3.141)
where we have the new building blocks involving fermions. Red lines indicate fermionic
propagators. Note the appearance of the vertex functions Vψψ and Vψφ now, which appear
as a solution to the self-energy equation of δΣ/δφR, in the similar manner that V (4)

appeared as solution to δΠ/δφR. We stress that the V (4) used is (3.115), with the modified
four-point scalar kernel. Furthermore, note that correspondingly δΠ/δφR is modified from
(3.28), and gains the additional part

1
2

3 =
1
2

3 + V
(4)1

2
3 + V

(4)
φψ

1
2

3 (3.142)

where V (4)
φψ is the transpose of the vertex function V

(4)
ψφ . We continue now with the dia-

grammatic analysis and look at the 3-point and 4-point functions, required to obtain the
counterterms δα3 and δλ4. Besides the scalar contributions in (3.96) and (3.97), we have
the following new topologies from the fermions

Γ(3)

∣∣∣∣
fermions

= + , (3.143)

Γ(4)

∣∣∣∣
fermions

= + + . (3.144)
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3.4. Fermionic Sunset Approximation

A factor of 1
2 does not appear for the fermionic self-energy insertions as this quantity is

not defined with a factor of 2 (compare (2.36) and (2.52)). Now, we list the non-vanishing
fermionic contributions to the derivatives of the scalar self-energy which would be inserted
in to the above equations

∣∣∣∣∣
fermions

= + +

V
(4)
φψ

(3.145)

∣∣∣∣∣
fermions

= + V
(4)
φψ

+ +

V
(4)
φψ

, (3.146)

and finally, those of the fermionic self-energy

= +

Vψψ

+

V
(4)
ψφ

(3.147)

= + Vψψ + V
(4)
ψφ

. (3.148)

With these, one can analyse the scalar n-point functions with fermionic contributions and
obtain the field counterterms. Moreover, we note that these diagrammatic tools extend to
higher truncations of the 2PI effective action involving fermions.
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3.5 Summary
In this chapter, we focused on the renormalisation of the 2PI effective action in the broken
phase, φR 6= 0. By first defining the renormalised effective action up to two-loop order
and presenting the tools required, we proceeded to systematically analyse three differ-
ent truncations of the 2PI effective action: the Hartree approximation, the scalar sunset
approximation and the fermionic sunset approximation, the last of which involves a sys-
tematic treatment of fermions in the 2PI formalism. We used an on-shell scheme to obtain
the various counterterms.

In the Hartree approximation, we saw that all results could be obtained analytically due
to the fact that the renormalised propagator corresponded to the bare one. Furthermore,
all counterterms were finite and relations existed between the various quartic coupling
and vertex counterterms, as well as the mass ones. This was not the case, however, in the
scalar sunset approximation, as many of the counterterms were not finite. The propaga-
tor could now only be determined via a numerical solution to the gap equation. To this
end, we utilised an iterative approach which we showed converges rapidly, even with large
couplings. We then extended our techniques to fermions, by defining an arsenal of addi-
tional kernels and vertex functions. To treat the system of coupled gap equations for the
fermionic and scalar propagator, we reduced the system to a set of self-consistent equations
for the scalar functions W (p) and Z(p), to which we applied our iterative procedure. We
again saw that this converges. Lastly, we extended our diagrammatic analysis to include
fermions and obtain the various scalar n-point functions with fermionic contributions.

The importance of determining these counterterms is that they appear in the renor-
malised equations of motion (EOMs) to describe the evolution of the scalar field and
propagator, and fermionic propagators. The scalar EOMs can be used to study phenom-
ena such as bubble evolution during phase transitions, where as the inclusion of fermions
serves as the starting point for the transport equations to investigate electroweak baryo-
genesis (see for e.g. [74, 75]).

We have presented thus a consistent way to renormalise the 2PI effective action in our
on-shell scheme, and our numeric approach can also be extended to obtain the effective
potential. However, we note that going beyond Hartree implies a loss of analytic insights
in the approach we have presented; for example, we could not write down explicit expres-
sions for the counterterms. Thus, in the next chapter, we renormalise the 2PI effective
action through an alternative method and obtain, where possible, useful expansions of the
counterterms in terms of ε in dim. reg., and correspondingly the 2PI improved effective
potential.
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Chapter 4

MS Renormalisation and the 2PI
Effective Potential

In this chapter, we reconsider the renormalisation of the 2PI effective potential in the
MS scheme according to the various truncations of the 2PI effective action studied in the
previous chapter. Closely following the approach in [72], we will obtain field-independent
counterterms without reference to the various 2PI kernels and Bethe-Salpeter equations
(BSEs) described in the previous chapter. Furthermore, as in [67], we express, when pos-
sible, the counterterms in expansions of ε in dimensional regularisation and subsequently
determine the 2PI improved effective potential in a transparent manner. Both these points,
to our knowledge, have not yet been reported in the literature. For comparison, we verify
that the coupling constant counterterms obtained match in the Hartree and the scalar
sunset approximations when one considers an MS scheme analysis of the 2PI BSEs in
Appendix B. Finally, for the fermionic sunset approximation, we show that although one
arrives at equations to solve for the counterterms, exact solutions cannot be found as the
loop integrals cannot be evaluated analytically.

4.1 Hartree Approximation
As mentioned in the previous chapter, the Hartree approximation has been treated widely
in the literature; specifically, the effective potential has been calculated in [76] and more
recently in [60]. Hence, we will use the Hartree approximation as a stepping stone to
outline the method involved in obtaining the counterterms and effective potential. Our
starting point is the gap equation (3.43), obtained from the 2PI effective action in the
Hartree approximation, c.f. (3.34),

iG−1
R (p2) = p2 −m2

R − iΠ(p2)

= p2 −
[
m2
R + δm2

0 +
λR + δλ2

2
φ2 +

λR + δλ0
2

∫
q
GR(q)− p2δZ0

]
, (4.1)

according to which, we may parameterise the renormalised propagator as

iG−1
R (p2) = p2 −M2(φ; p2) , (4.2)
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where we have the field- and momentum-dependent (squared) mass

M2(φ; p2) = m2
R + δm2

0 +
λR + δλ2

2
φ2 +

λR + δλ0
2

∫
q
GR(q)− p2δZ0 . (4.3)

We use the following condition to obtain the wave-function renormalisation,

i
∂G−1

R (p2)

∂p2

∣∣∣∣
p2=0, φ=vR

= 1 , =⇒ δZ0 = 0 , (4.4)

where vR is the renormalised VEV and we choose the renormalisation point at p2 = 0, as
this is where the effective potential is evaluated. We thus have

M2(φ; p2) ≡ m2(φ) ,

and can evaluate all loop integrals in dimensional regularisation. Using the results in
Appendix A, we have

T =

∫
q
GR(q) ≡

A0(m
2(φ))

16π2
= −m

2(φ)

16π2ε︸ ︷︷ ︸
Tdiv.

+
m2(φ)

16π2
{
log
[
m2(φ)

]
− 1
}

︸ ︷︷ ︸
Tfin.[φ]

, (4.5)

where Tdiv. denotes the UV divergent piece, signified by the ε−1 pole, and Tfin.[φ] refers to
the remaining UV finite part. The log[...] is as defined in Appendix A. Substituting (4.5)
in (4.3)

m2(φ) = m2
R +

λR
2
φ2 +

λR
2
Tfin.[φ] + δm2

0 +
δλ2
2
φ2 +

λR + δλ0
2

Tdiv. +
δλ0
2

Tfin.[φ] . (4.6)

The first three terms are explicitly finite, and give the following renormalised quantity.

m2(φ) = m2
R +

λR
2
φ2 +

λR
2
Tfin.[φ] , (4.7)

and the following cancellation condition to determine the counterterms

δm2
0 +

δλ2
2
φ2 +

λR + δλ0
2

Tdiv. +
δλ0
2

Tfin.[φ]
!
= 0 . (4.8)

We now use the definition of Tdiv. from (4.5), and substitute (4.7). This allows us to isolate
the pieces proportional to φ0, φ2 and Tfin.[φ] as follows[
δm2

0 −
(λR + δλ0)m

2
R

32π2ε

]
+

[
δλ2 −

(λR + δλ0)λR
32π2ε

]
φ2

2
+

[
δλ0 −

(λR + δλ0)λR
32π2ε

]
Tfin.[φ]

2

!
= 0 .

To fulfil this condition for any φ, it is required that each of these coefficients vanish
individually. Thus, we obtain the counterterms as

δλ0 =
(λR + δλ0)λR

32π2ε

=⇒ δλ0 =
λR

32π2ε

λR(
1− λR

32π2ε

) = −λR − 32π2ε− (32π2ε)2

λR
−O(ε3) , (4.9)
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δλ2 =
(λR + δλ0)λR

32π2ε
= δλ0 , (4.10)

δm2
0 =

(λR + δλ0)m
2
R

32π2ε
=
m2
R

λR
δλ0 = −m2

R −
m2
R

λR
(32π2ε)−O(ε2) . (4.11)

These counterterms match the ones we obtained in our on-shell scheme and also see again
the peculiar feature of the Hartree approximation that δλ2 = δλ0.

The remaining counterterms required for the effective potential are δm2
2 and δλ4, for

which we use the stationarity condition

δΓ2PI
δφ

∣∣∣∣
φ=vR , p2=0

!
= 0 . (4.12)

This gives us the following equation

m2
R + δm2

2 +
λR + δλ4

6
v2R +

λR + δλ2
2

T = 0

=⇒ m2
R +

λR
6
v2R +

λR
2
Tfin.[vR] + δm2

2 +
δλ4
6
v2R +

λR + δλ2
2

Tdiv. +
δλ2
2

Tfin.[vR]︸ ︷︷ ︸
=0

= 0 ,

(4.13)

where we demand, as before, that the parts containing divergences and counterterms
vanish. The remaining finite parts give, after a slight manipulation,

m2
R+

λR
2
v2R +

λR
2
Tfin.[vR] +

λR
6
v2R − λR

2
v2R = 0

=⇒ m2(vR) =
λR
3
v2R (4.14)

which is nothing but the tree-level relation between the quartic coupling, the VEV and a
physical mass defined at the VEV. Returning to the cancellation condition obtained from
the minimisation requirement, we substitute again the definition of Tdiv. and m2(vR) and
isolate the various pieces[

δm2
2 −

(λR + δλ2)m
2
R

32π2ε

]
+

[
δλ4
3

− (λR + δλ2)λR
32π2ε

]
v2R
2

+

[
δλ2 −

(λR + δλ2)λR
32π2ε

]
Tfin.[vR]

2

!
= 0 . (4.15)

These are actually three equations to determine the two unknown ones; the equation
arising from the requirement that the coefficient of Tfin.[vR] vanishes actually serves as a
consistency check for the counterterm δλ2. Using the fact that δλ2 = δλ0, we now obtain
the unknown counterterms

δm2
2 = δm2

0 and δλ4 = 3δλ2 = 3δλ0 . (4.16)

Evidently, we again obtain the result δm2
0 = δm2

2, which we saw is valid in the unbroken
phase in the previous chapter (see (3.52)).
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Figure 4.1: The relative difference between successive iterations of m2(φ) versus the field value
φ. The parameters are λR = 0.8 and |mR|= 100GeV, leading to vR ≈ 274GeV.

Effective Potential

The 2PI effective potential is given by (see Sec. 2.4)

V2PI(φ) = −Γ̂2PI[φ]

∣∣∣∣
K.E. =0

= V0(φ)−
i

2V
Tr
[
logG−1

R

]
− i

2V
Tr
[
G̃−1
φ GR

]
− 1

V
Γ2 , (4.17)

where V is the space-time volume. Based on our earlier calculations, we know

G−1
R (p) = p2−

[
m2
R +

λR
2
φ2 +

λR
2
Tfin.[φ]

]
︸ ︷︷ ︸

≡ m2(φ)

, with Tfin.[φ] =
m2(φ)

16π2
{
log
[
|m2(φ)|

]
− 1
}
.

(4.18)
We use the absolute value of m2(φ) to account for the region where the argument of the
logarithm is negative. Note that Tfin. is defined implicitly by m2(φ); therefore, we solve
this iteratively, as we approached the gap equation in Chapter 4, beginning with

m2
(0)(φ) = m2

R +
λR
2
φ2

and then use this to obtain Tfin. and then the first iteration m2
(1)(φ), and so on. Fig.

4.1 shows that this converges rather quickly, with the relative error between successive
iterations decreasing by two orders of magnitude. We thus make use of the first iteration
from now onward in the corresponding numerics.

For the first two parts of (4.17), we have

V0(φ) ≡
(m2

R + δm2
2)

2
φ2 +

(λR + δλ4)

4!
φ4 = −λR

12
φ4 +O(ε) (4.19)

− i

2
Tr
[
logG−1

R

]
≡ V i

∫
p
logG−1

R (p) = V
{
−m

4(φ)

64π2ε
+
m4(φ)

64π2

{
log
[
|m2(φ)|

]
− 3

2

}
+O(ε)

}
(4.20)
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4.1. Hartree Approximation

where for the second part, we have used the formula described in Appendix A. For the
third term of (4.17), we use

G̃−1
φ (p) = G−1

R (p) + Π(p) ≡ G−1
R (p) + 2i

δΓ2

δGR(p)

=⇒ G−1
0 (p)GR(p) = 1 + 2i

δΓ2

δGR(p)
GR(p) ,

and therefore, in the Hartree approximation, with

Γ2 = −V
8
(λR + δλ0)

[∫
q
GR(q)

]2
, (4.21)

we have

i

2
Tr
[
G̃−1
φ GR

]
= −V

∫
p

δΓ2

δGR(p)
GR(p) + const.

=
V
4
(λR + δλ0)

[∫
q
GR(q)

]2
+ const. , (4.22)

where the “const.” is a vacuum term, removed by appropriate subtraction. Adding (4.22)
with the last term of (4.17), we have

− i

2
Tr
[
G̃−1
φ GR

]
− Γ2 = −V

8
(λR + δλ0)

[∫
q
GR(q)

]2

=
V
8

[
32π2ε+

(32π2ε)2

λR
+O(ε3)

] [
−m

2(φ)

16π2ε
+
m2(φ)

16π2
{
log
[
|m2(φ)|

]
− 1
}]2

= V
{
m4(φ)

64π2ε
+
m4(φ)

2λR
− m4(φ)

64π2
[
log
[
|m2(φ)|

]
− 1
]}

. (4.23)

We observe that the divergences from (4.20) and (4.23) cancel between each other. Thus,
the effective potential in the Hartree approximation is given by

V2PI(φ) = −λR
12
φ4 +

m4(φ)

2λR
− m4(φ)

64π2

{
log
[
|m2(φ)|

]
− 1

2

}
. (4.24)

In Fig. 4.2, we show the 2PI effective potential along with the tree-level potential,

Vtree(φ) =
m2
R

2
φ2 +

λR
4!
φ4 . (4.25)

and the Coleman-Weinberg potential [2, 3] corresponding to this,

VCW(φ) = Vtree(φ) +
1

64π2

(
∂2Vtree(φ)

∂φ2

)2{
log

(∣∣∣∣∂2Vtree(φ)

∂φ2

∣∣∣∣)− 3

2

}
(4.26)

for comparison. To allow for a symmetry-breaking, bounded tree-level potential, we choose
m2
R < 0 and λR > 0. For a fair comparison, we choose the renormalisation scale as the
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Chapter 4. MS Renormalisation and the 2PI Effective Potential

physical (renormalised) mass at the VEV for V2PI and VCW, and define all parameters
at this scale. We see that for our choices λR = 0.8 and |mR|= 100GeV, we obtain
vR ≈ 274GeV, which is approximately the same for all three potentials. This leads to a
physical mass of about 200GeV at the VEV. The correction VCW more or less coincides
with the tree-level potential, i.e. the corrections are small, and V2PI provides a noticeable
correction, more prevalent at field values beyond the VEV.

100 200 300 400
ϕ [GeV]

-2×108

-1×108

1×108

2×108

3×108

4×108
V(ϕ) [GeV4]

Tree

Coleman-Weinberg

Hartree Approximation

Figure 4.2: The 2PI improved effective potential in the Hartree approximation (red curve) against
the field value, with the tree-level (black curve) and Coleman-Weinberg (blue curve) potentials for
comparison. The parameters are λR = 0.8 and |mR|= 100GeV, leading to vR ≈ 274GeV.

4.2 Scalar Sunset Approximation

From the 2PI functional (3.65), we obtain the following field and momentum dependent
mass from the gap equation (3.82)

M2(φ; p2) = m2
R + δm2

0 + (αR + δα1)φ+
(λR + δλ2)

2
φ2 +

λR + δλ0
2

∫
q
GR(q)

− i [(λR + δλ1)φ+ (αR + δα0)]
2

2

∫
q
GR(p+ q)GR(q)− p2δZφ,0 (4.27)

Based on our discussions in the previous chapter, we set δα0 = δλ1 = 0. To extract the
divergences in the various loop integrals that appear, it is convenient to define a Pauli-
Villars-type auxiliary propagator

iG−1
a (p) = p2 −m2

0 (4.28)

where m0 is an auxiliary mass parameter. In general, this corresponds to a renormalisation
scale, but foreshadowing of what is to come, we have chosen it to be the physical mass at
the VEV. Now, we parameterise GR as

iG−1
R (p) ≡ p2 −M2(φ; p2) ≡ p2 −

[
m2(φ) + Π2(p

2;φ)
]
, (4.29)

i.e. we split the self-energy into a manifestly momentum-independent part, akin to
the field-dependent mass in the Hartree approximation, and an explicitly momentum-
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4.2. Scalar Sunset Approximation

dependent part, which behaves as

lim
p2→∞

Π2(p
2;φ)

p2
−→ 0 .

For brevity, we will suppress the field-dependence in the argument of Π2 in the following
equations. Let us now obtain the expansion for the renormalised propagator,

GR(p) =
i

p2 − [m2(φ) + Π(p2)]
− i

p2 −m2
0

+
i

p2 −m2
0

=
i

p2 −m2
0

+ i

[
m2(φ)−m2

0 +Π2(p
2)

(p2 −m2
0)(p

2 −M2(φ; p2))

]
= Ga(p)− iGa(p)

[
m2(φ)−m2

0 +Π2(p
2)
]
GR(p)

≡ Ga(p) + δG(p) . (4.30)

In the third equality, we may iterate GR as needed to extract divergences in loop integrals,
according to power counting arguments. For the loop integral over two renormalised
propagators, this amounts to

I = i

∫
q
GR(p+ q)GR(q) = i

∫
q
G2
a(q)

∣∣∣∣
div.

+ Ifin.(p
2) ≡ T

(0)
d + Ifin.(p

2) (4.31)

With this, we can determine the wave function renormalisation,

δZφ,0 =

{[
(αR + λRφ)

2

2

∂

∂p2
(T

(0)
d + Ifin.(p

2))

] ∣∣∣∣
p2=0,φ=vR

}∣∣∣∣
div.

=

{[
(αR + λRφ)

2

2

∂Ifin.(p
2)

∂p2

] ∣∣∣∣
p2=0,φ=vR

}∣∣∣∣
div.

= 0 , (4.32)

due to the fact that the divergent part has no momentum dependence.
Next, we have the integral over a single propagator

T =

∫
q
GR(q)

=

∫
q
Ga(q)

∣∣∣∣
div.

−
[
m2(φ)−m2

0

]
i

∫
q
G2
a(q)

∣∣∣∣
div.

− i

∫
q
G2
a(q)Π2(p

2)

∣∣∣∣
div.

+ Tfin. (4.33)

where the Tfin. encompasses the finite parts of the marked divergent loop integrals and the
remaining finite integrals due to simple power counting (three or more propagators are
involved). Inserting these expressions into (4.27),

M2(φ; p2) = m2
R + αRφ+

λR
2
φ2 +

λR
2
Tfin. −

(α2
R + 2αRλRφ+ λ2Rφ

2)

2
Ifin.(p

2)

+ δm2
0 + δα1φ+

δλ2
2
φ2 +

(λR + δλ0)

2
Tdiv. +

δλ0
2

Tfin. −
(α2

R + 2αRλRφ+ λ2Rφ
2)

2
T
(0)
d

(4.34)
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Chapter 4. MS Renormalisation and the 2PI Effective Potential

The first line of the above equation allows us to identify the manifestly finite quantities
based on the parameterisation in (4.29)

m2(φ) = m2
R + αRφ+

λR
2
φ2 +

λR
2
Tfin. , Π2(p

2) = −(αR + λRφ)
2

2
Ifin.(p

2) . (4.35)

Having determined Π2, we can insert this into (4.33), and identify the divergent pieces

T = T
(2)
d −

[
m2(φ)−m2

0

]
T
(0)
d +

(αR + λRφ)
2

2
T
(I,0)
d︸ ︷︷ ︸

Tdiv.

+Tfin. , (4.36)

where we have defined the following quantities

T
(2)
d =

∫
q
Ga(q)

∣∣∣∣
div.

(4.37)

T
(I,0)
d = i

∫
q
G2
a(q) Ifin.(q

2)

∣∣∣∣
div.

= i

∫
q
G2
a(q) Ia,fin.(q

2)

∣∣∣∣
div.

=

{
i

∫
q
G2
a(q)

[
i

∫
k
Ga(k + q)Ga(k)−G2

a(k)

]} ∣∣∣∣
div.

(4.38)

where, for T (I,0)
d , the replacement Ifin. → Ia,fin. involves replacing all renormalised prop-

agators of (4.31) with auxiliary propagators. This suffices as we intend to extract the
divergent part of the loop integral.

As in the Hartree approximation, the cancellation condition obtained from the last
line of (4.34) yields the following equations to determine the unknown counterterms

δλ0
2

+
λR + δλ0

2

(
−λR

2
T
(0)
d

)
= 0 , (4.39)

δα1 +
λR + δλ0

2

(
−αR T (0)

d + αRλR T
(I,0)
d

)
− αRλR T

(0)
d = 0 , (4.40)

δλ2
2

+
λR + δλ0

2

(
−λR

2
T
(0)
d +

λ2R
2
T
(I,0)
d

)
−
λ2R
2
T
(0)
d = 0 , (4.41)

δm2
0 +

λR + δλ0
2

[
T
(2)
d − (m2

R −m2
0)T

(0)
d +

α2
R

2
T
(I,0)
d

]
−
α2
R

2
T
(0)
d = 0 . (4.42)

Using the results from Appendix B, we obtain the counterterms as

δλ0 = −λR − 32π2ε− (32π2ε)2

λR
+O(ε3) , (4.43)

δα1 =
αRλR
32π2ε

− 2αR +
αRλR
32π2

+ αR

(
1− 64π2

λR

)
ε+

32π2αR
λR

(
1− 64π2

λR

)
ε2 +O(ε3) ,

(4.44)

δλ2 =
λ2R

32π2ε
− 2λR +

λ2R
32π2

+ λR

(
1− 64π2

λR

)
ε+ 32π2

(
1− 64π2

λR

)
ε2 +O(ε3) , (4.45)

δm2
0 =

3α2
R

32π2ε
−m2

R +
α2
R

32π2
+O(ε) . (4.46)
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4.2. Scalar Sunset Approximation

We notice that δλ0 is the same as we had obtained in the Hartree approximation, c.f.
(4.9). Furthermore, we observe that δλ2 6= δλ0 as we had in the on-shell scheme; besides,
it is not finite and neither are δα1 and δm2

0. Finally, in the case of αR = 0, we find that
δm2

0 matches its value in the Hartree approximation, (4.11).
We now need the counterterms related to the fields. For this, we need to extract

the divergences present in the scalar sunset integral. We approach this by replacing all
propagators according to (4.30), and identifying, using power counting arguments, the
divergent pieces.

S = i

∫
q

∫
k
GR(q)GR(k)GR(k + q)

= i

∫
q

∫
k
Ga(q)Ga(k)Ga(k + q) + 3

∫
q
δG(q)

[
i

∫
k
Ga(k)Ga(k + q)

]
︸ ︷︷ ︸
= Ia(p2) = T

(0)
d +Ia,fin.(p2)

+ 3i

∫
q
δG(q)

∫
k
δGa(k)Ga(k + q) + i

∫
q
δG(q)

∫
k
δGa(k)δGa(k + q)︸ ︷︷ ︸

S(1)
fin.

= Sa
∣∣∣∣
div.

+ Sa,fin. − 3
(
m2(φ)−m2

0

) (
T
(0)
d

)2
− 3T

(0)
d i

∫
q
G2
a(q)Π2(q

2)

− 3T
(0)
d

∫
q
G2
a(q)

[
m2(φ)−m2

0 +Π2(q
2)
]2
GR(q)

−3

∫
q
G2
a(q)

[
m2(φ)−m2

0 +Π2(q
2)
]2
GR(q)Ia,fin.(q

2)︸ ︷︷ ︸
S(2)

fin.

+ S(1)
fin. − 3

(
m2(φ)−m2

0

)
i

∫
q
G2
a(q) Ia,fin.(q

2)− 3i

∫
q
G2
a(q)Π2(q

2) Ia,fin.(q
2)

= Sa
∣∣∣∣
div.

+ 3Tfin. T
(0)
d − 3

(
m2(φ)−m2

0

) [(
T
(0)
d

)2
+ T

(I,0)
d

]

+
3(αR + λRφ)

2

2

[
T
(0)
d T

(I,0)
d + T

(I,I)
d

]
− 3(m2(φ)−m2

0)T
(I,0)
fin. + 3

(αR + λRφ)
2

2
T
(I,I)
fin. + S(1)

fin. + S(2)
fin.

≡ Sdiv. + Sfin. . (4.47)

Note that we continue to carefully tracked the explicitly finite loop integrals and extracted
the finite parts of divergent integrals. We have made the replacements Ifin. → Ia,fin. when-
ever needed to extract the divergent parts and along the way, have defined the quantity

T
(I,I)
d = i

∫
q
G2
a(q) I2

a,fin.(q
2)

∣∣∣∣
div.

, (4.48)
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and its finite part is defined accordingly as T (I,I)
fin. . Armed with this, we can now examine

the minimisation condition

m2
RvR +

αR
2
v2R +

λR
6
v3R +

αR
2
Tfin. +

λR
2
vRTfin. −

λR(αR + λRvR)

6
Sfin.

+ δt1 + δm2
2vR +

δα3

2
v2R +

δλ4
6
v3R +

αR + δα1

2
Tdiv. +

λR + δλ2
2

vRTdiv.

+
δα1

2
Tfin. +

δλ2
2
vRTfin. −

λR(αR + λRvR)

6
Sdiv. = 0 (4.49)

whereby the last two lines give the necessary cancellation condition to obtain the following
equations to determine the remaining counterterms

δt1 +
αR + δα1

2

[
T
(2)
d − (m2

R −m2
0)T

(0)
d +

α2
R

2
T
(I,0)
d

]

− λRαR
6

{
Sa

∣∣∣∣
div.

− 3
(
m2
R −m2

0

) [(
T
(0)
d

)2
+ T

(I,0)
d

]
+

3

2
α2
R

[
T
(0)
d T

(I,0)
d + T

(I,I)
d

]}
= 0 ,

(4.50)

δm2
2 +

αR + δα1

2

[
−αR T (0)

d + αRλR T
(I,0)
d

]
+
λR + δλ2

2

[
T
(2)
d − (m2

R −m2
0)T

(0)
d +

α2
R

2
T
(I,0)
d

]

− αRλR
6

{
− 3αR

[(
T
(0)
d

)2
+ T

(I,0)
d

]
+ 3αRλR

[
T
(0)
d T

(I,0)
d + T

(I,I)
d

]}

−
λ2R
6

{
Sa

∣∣∣∣
div.

− 3
(
m2
R −m2

0

) [(
T
(0)
d

)2
+ T

(I,0)
d

]
+

3

2
α2
R

[
T
(0)
d T

(I,0)
d + T

(I,I)
d

]}
= 0 ,

(4.51)

δα3

2
+
αR + δα1

2

[
−λR

2
T
(0)
d +

λ2R
2
T
(I,0)
d

]
+
λR + δλ2

2

[
−αR T (0)

d + αRλR T
(I,0)
d

]
− αRλR

6

{
− 3

λR
2

[(
T
(0)
d

)2
+ T

(I,0)
d

]
+ 3

λR
2

[
T
(0)
d T

(I,0)
d + T

(I,I)
d

]}

−
λ2R
6

{
− 3αR

[(
T
(0)
d

)2
+ T

(I,0)
d

]
+ 3αRλR

[
T
(0)
d T

(I,0)
d + T

(I,I)
d

]}
= 0 , (4.52)

δλ4
6

+
λR + δλ2

2

[
−λR

2
T
(0)
d +

λ2R
2
T
(I,0)
d

]

−
λ2R
6

{
− 3

λR
2

[(
T
(0)
d

)2
+ T

(I,0)
d

]
+ 3

λ2R
2

[
T
(0)
d T

(I,0)
d + T

(I,I)
d

]}
= 0 . (4.53)
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We solve these using results of Appendix B to obtain

δt1 =
α3
RλR

2(32π2)3ε3
−
α3
R − 2αRλRm

2
R

2(32π2)2ε2

−
αR
(
α2
Rλ

2
R − 2(32π2)λR

(
α2
R + λRm

2
R

)
+ 2(32π2)2

(
α2
R + λRm

2
R

))
2λR(32π2)3ε

−
αR
(
2(32π2)− λR

) (
32π2

(
α2
R + 2λRm

2
R

)
− α2

RλR
)

2λ2R(32π
2)2

+O(ε) , (4.54)

δm2
2 =

3α2
Rλ

2
R

2(32π2)3ε3
+
λR
(
2λRm

2
R − α2

R

)
2(32π2)2ε2

−
3α2

Rλ
2
R + 2(32π2)λR

(
4α2

R + λRm
2
R

)
+ 2(32π2)2

(
4α2

R + λRm
2
R

)
2(32π2)3ε

−
(
2(32π2)− λR

) (
32π2

(
5α2

R + 2λRm
2
R

)
− 3α2

RλR
)

2λR(32π2)2
+O(ε) , (4.55)

δα3 =
3αRλ

3
R

(32π2)3ε3
−

3αRλR
(
λ2R − 3(32π2)λR + 3(32π2)2

)
(32π2)3ε

−
3αR

(
λR − 2(32π2)

)2
(32π2)2

+O(ε) ,

(4.56)

δλ4 =
3λ4R

(32π2)3ε3
−

3λ2R
(
λ2R − 3(32π2)λR + 3(32π2)2

)
(32π2)3ε

−
3λR

(
λR − 2(32π2)

)2
(32π2)2

+O(ε) .

(4.57)

None of the determined counterterms are finite once the sunset diagram is included, save
for δλ0, which matches its value in the Hartree approximation. Another remark is that
δm2

2 6= δm2
0, which is what we noted during the renormalisation in the on-shell scheme.

This happens due to the sunset diagram contributing to the minimisation condition.

Effective Potential

Within the scalar sunset approximation, we see that the propagator contains an explicitly
momentum-dependent piece, Π2(p

2), due to which we cannot evaluate the loop integrals
using the usual results of dimensional regularisation, as in the Hartree approximation.
However, having carefully tracked the explicitly finite integrals in (4.36) and (4.47), we
may evaluate them (numerically) and add the finite pieces from the divergent loop integrals
(see Appendix B) to obtain the full finite parts of the one-point and Sunset integrals.

We have not yet examined the integral Tr
[
logG−1

R

]
; we proceed by using (4.30)

− i

2V
Tr
[
logG−1

R

]
≡ i

2

∫
q
logGR(q) =

i

2

∫
q
logGa(q) +

i

2

∫
q
log
[
1 +G−1

a (q) δG(q)
]

=
i

2

∫
q
logGa(q) +

i

2

∫
q

{
G−1
a (q) δG(q)− 1

2

[
G−1
a (q) δG(q)

]2}
+ Finite

=
i

2

∫
q
logGa(q)

∣∣∣∣
div.

+
1

2

∫
q
Ga(q)

[
m2(φ)−m2

0 −
(αR + λRφ)

2

2
Ia,fin.(q

2)

] ∣∣∣∣
div.
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− i

4

∫
q
G2
a(q)

[
m2(φ)−m2

0 −
(αR + λRφ)

2

2
Ia,fin.(q

2)

]2 ∣∣∣∣
div.

+

{
− i

2
Tr
[
logG−1

R

]} ∣∣∣∣
fin.

=
i

2

∫
q
logGa(q)

∣∣∣∣
div.

+

(
m2(φ)−m2

0

)
2

T
(2)
d − (αR + λRφ)

2

2
T
(I,2)
d −

(
m2(φ)−m2

0

)2
4

T
(0)
d

+

(
m2(φ)−m2

0

)
(αR + λRφ)

2

4
T
(I,0)
d − (αR + λRφ)

4

16
T
(I,I)
d +

{
− i

2V
Tr
[
logG−1

R

]} ∣∣∣∣
fin.

(4.58)

where, in the third line, we have expanded the logarithm and kept the terms that are
divergent. The step afterwards, we define the finite part of Tr

[
logG−1

R

]
as the parts from

the expansion of the logarithm and the finite parts from the marked divergent integrals.
Finally, in the last step, we have identified the integrals according to our previous notation
and also introduced

T
(I,2)
d =

∫
q
Ga(q)Ia,fin.(q

2)

∣∣∣∣
div.

. (4.59)

For the various parts of the effective potential (4.17), we have from the following part,

1

V
Γ2 = −1

8
(λR + δλ0)

[∫
q
GR(q)

]2
+
i(αR + λRφ)

2

12

∫
q

∫
k
GR(q)GR(k)GR(k + q) . (4.60)

We use the same “trick” as in the Hartree approximation for the following part of the
effective potential

i

2V
Tr
[
G̃−1
φ GR

]
= −

∫
p

δΓ2

δGR(p)
GR(p) + const.

=
1

4
(λR + δλ0)

[∫
q
GR(q)

]2
− i(αR + λRφ)

2

4

∫
q

∫
k
GR(q)GR(k)GR(k + q) + const. ,

(4.61)

giving us in total

− i

2V
Tr
[
G̃−1
φ GR

]
− 1

V
Γ2 = −(λR + δλ0)

8
T 2 +

(αR + λRφ)
2

6
S . (4.62)

We already know how to express the divergences and finite pieces of T and S, c.f.(4.33)
and (4.47). We analyse the Hartree part using

− (λR + δλ0)

8
T 2 =

1

8

(
32π2ε+

(32π2ε)2

λR
+

(32π2ε)3

λ2R
+

(32π2ε)4

λ3R

)[
T 2

div. + 2Tdiv.Tfin.
]
+O(ε) . (4.63)

We then have the first term of (4.17) as

V0(φ) ≡ δt1φ+
(m2

R + δm2
2)

2
φ2 +

(αR + δα3)

3!
φ3 +

(λR + δλ4)

4!
φ4 , (4.64)

which requires the results from (4.54)-(4.57).
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4.2. Scalar Sunset Approximation

At this point, we are ready to discuss the issue of infinite counterterms in the 2PI
formalism. We see divergent pieces littered throughout (4.64), (4.58) and (4.62). However,
in what transpires, all divergences cancel when one sums over these pieces to arrive at the
2PI effective potential. This is not so surprising as we had seen a similar occurrence in the
Hartree approximation. The scenario is more complicated in the sunset approximation,
but once a careful book-keeping of the divergent pieces is done in the manner we have
shown, this boils down to an algebraic exercise. One can also think that the result is not
unexpected as the counterterms have been determined from various divergent parts of the
integrals appearing in the effective potential, so it is indeed likely that the divergences
cancel when put back.

We thus write down the finite 2PI effective potential as

V2PI(φ) =

[
−
αR
(
2(32π2)− λR

) (
32π2

(
α2
R + 2λRm

2
R

)
− α2

RλR
)

2λ2R(32π
2)2

]
φ

+

[
m2
R −

(
2(32π2)− λR

) (
32π2

(
5α2

R + 2λRm
2
R

)
− 3α2

RλR
)

2λR(32π2)2

]
φ2

2!

+

[
αR −

3αR
(
λR − 2(32π2)

)2
(32π2)2

]
φ3

3!
+

[
λR −

3λR
(
λR − 2(32π2)

)2
(32π2)2

]
φ4

4!

+

{
− i

2
Tr
[
logG−1

R

]} ∣∣∣∣
fin.

+

[
m4(φ)

2λR
− m2(φ) Tfin.

2
− (αR + λRφ)

2 Tfin.
2λR

+
(αR + λRφ)

2m2(φ)

2λ2R
+

(αR + λRφ)
4

8λ3R

− (αR + λRφ)
2m2(φ)

64π2
+

(αR + λRφ)
2 Tfin.

128π2
+

(αR + λRφ)
4

128π2λ2R
+

(αR + λRφ)
4

8λR(32π2)2

]

+
(αR + λRφ)

2

6
Sfin. . (4.65)

The tree-level potential in this case is

Vtree(φ) =
m2
R

2!
φ2 +

αR
3!
φ3 +

λR
4!
φ4 . (4.66)

We choose the parameters such that m2
R < 0 and αR, λR > 0. Finally, to ensure we are

comparing MS quantities, we calculate Tfin. as follows in the numerics

Tfin. =

∫
q

{
GR(q)−Ga(q) + iG2

a(q)

[
m2(φ)−m2

0 +
(αR + λRφR)

2

2
Ia,fin.(q

2)

]}

− m2
0

16π2
+

(αR + λRφR)
2

2
T
(I,0)
fin. , (4.67)

where we introduce the extra finite terms (see Appendix B) to compensate the fact we
cannot subtract strictly the divergent pieces when we adopt a numeric implementation.
Furthermore, for the numerics, we convert to Euclidean space and calculate all integrals
using a cutoff, Λ, as in Chapter 3. We also implement the same iterative approach used in
the Hartree approximation and find that the first iteration of the propagator is sufficient,
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Chapter 4. MS Renormalisation and the 2PI Effective Potential

similar to what we had found in the previous chapter when solving the gap equation in
the scalar sunset approximation. In our numerical approach, we first calculate the VEV
using the tree-level potential, with a given choice of parameters. From this, we obtain the
tree-level mass at this VEV and this sets our m0. With m0, we proceed to numerically
evaluate various finite quantities in (4.65) and ultimately, the effective potential.

The 2PI improved effective potential within the scalar sunset approximation is shown
in Fig. 4.3, and compared to the tree-level and CW potentials for a choice of parameters.
We also examine closely the two minima in Fig. 4.4. At the true minimum, vR ≈ −450GeV
and at which have performed the renormalisation to define m0, the 2PI effective potential
drives the potential slightly deeper. At the secondary minimum, φ ≈ 170GeV, we see that
the 2PI effective potential pushes this minimum slightly away from the tree-level minimum
and drives the potential deeper here as well.

-600 -400 -200 200 400
ϕ [GeV]

-5×108

5×108

1×109

V(ϕ) [GeV4]

Tree

Colemann-Weinberg

Scalar Sunset

Figure 4.3: The 2PI effective potential in the scalar sunset approximation (red curve) against
the field value, with the tree-level potential (4.66) (black curve) and Coleman-Weinberg potential
from (4.66) (blue curve) for comparison. The parameters are λR = 0.8, αR = 75GeV and |mR|=
100GeV. We have set the auxiliary mass parameter m0 = 271.36GeV. We find the true minimum
of the 2PI effective potential at vR ≈ −450GeV. All relevant integrals were calculated with a
cutoff of 105 GeV.
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Figure 4.4: Top: A zoomed-in view of Fig. 4.3 at the true minimum vR ≈ −450GeV. Bottom:
A zoomed-in view of Fig. 4.3 at the secondary minimum vR ≈ −450GeV. Curves are coloured as
in Fig. 4.3, with the same choice of parameters.

In Fig. 4.5, we set αR = 0, meaning we only retain the scalar sunset diagram in the
broken phase, with the effective trilinear coupling λRφ. We compare this to our result in
the Hartree approximation, (4.24) and find that this about only a 10% change. To gain
more insight on this, we examine the various contributions to (4.65) in Fig. 4.6. We see
that the sunset diagram, by order of magnitude, has the least contribution to the effective
potential, and the Hartree diagram has the largest. This appears to be counterintuitive as
both are two-loop diagrams; however, the Hartree contribution comes with the coupling
(λR + δλ0) ≈ O(ε). The finite pieces eventually obtained in (4.65) had terms free of
loop factor suppressions of 16π2. In contrast, the sunset diagram does not come with
such a coupling combination, and therefore feels the suppression of a two-loop diagram
by (16π2)2. This reasoning is also somewhat enforced by the fact that the Tr logGR,
contribution is about an order of magnitude larger, being essentially “one-loop”.
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Hartee Only

Hartree + Scalar Sunset

Figure 4.5: Comparisons between 2PI effective potential within the Hartree approximation (solid,
black line) and including the sunset diagram (dashed, black line) with coupling λ2Rφ2. The param-
eters are αR = 0, λR = 0.8 and |mR|= 100GeV, leading to vR ≈ 274GeV. We have accordingly
set m0 = 200GeV.
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ϕ [GeV]

1

1000
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109

V(ϕ) [GeV4]
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TrLogG

Hartree Diagram

Scalar Sunset Diagram

Figure 4.6: The various contributions to the 2PI effective potential within the truncation till
sunset diagram with coupling λ2Rφ2. The parameters are λR = 0.8 and |mR|= 100GeV, leading to
vR ≈ 274GeV. We have accordingly set m0 = 200GeV. Note that what is shown is the absolute
value of the contributions, in this logarithmic plot.

As a final check, we examine the cutoff dependence of the effective potential, arising
from our numeric evaluation the various loop integrals. Fig. 4.7 shows that this effect is at
most O(10−5) from choosing a cutoff even two orders of magnitude higher. We conclude
that the 2PI effective potential is hence cutoff independent, as it should be, in our numeric
implementation.
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Figure 4.7: The relative difference between the 2PI effective potential evaluated with UV cutoff
Λ1 = 105 GeV and Λ2 = 106 GeV (solid, black line) and Λ3 = 107 GeV (dashed, black line). The
parameters are λR = 0.8, αR = 75GeV and |mR|= 100GeV. We have set the auxiliary mass
parameter m0 = 271.36GeV.

4.3 Fermionic Sunset Approximation
As seen in the previous chapter, there are now two gap equations, one each for the scalar
and fermionic propagators. We set here MR = 0, so that the fermions acquire a mass
at non-zero φ, via the Yukawa coupling. This is similar to the Standard Model (SM),
where the SM fermions acquire masses when the Higgs gains a VEV. This assumption
also allows us to set αR = 0, so our theory has three parameters: the quartic coupling
λ, the Yukawa coupling g and the scalar mass m. We have thus the following field and
momentum dependent masses from (3.121) and (3.122)

M2(φ; p) = m2
R + δm2

0 +
(λR + δλ2)

2
φ2 +

λR + δλ0
2

∫
q
GR(q)

−
iλ2Rφ

2

2

∫
q
GR(p+ q)GR(q) + ig2R

∫
q

tr [DR(p+ q)DR(q)]− p2δZφ,0

≡ m2(φ) + Πa(p;φ) + Π2(p;φ) (4.68)

Mψ(φ; p) = I4(gR + δg1)φ+ ig2R

∫
q
DR(p+ q)GR(q)− /pδZψ,0

= I4mψ(φ) + Σa(p;φ) + Σ2(p;φ) (4.69)

where we have already set δλ1 = δg0 = 0, as these are finite renormalisations, as men-
tioned in Chapter 3. The situation is now complicated by the fact that the wave function
renormalisations for both the fermionic and scalar propagators are not finite, as noted in

71



Chapter 4. MS Renormalisation and the 2PI Effective Potential

(3.123) and (3.125), which have led us to the parameterisations for (4.68) and (4.69). The
self-energy pieces behave as

lim
|p|→∞

Πa(p;φ)

p2
∼ log p, lim

|p|→∞

Π2(p;φ)

p2
−→ 0 ,

lim
|p|→∞

Σa(p;φ)

/p
∼ log p, lim

|p|→∞

Σ2(p;φ)

/p
−→ 0 ,

which is a feature we noted in (3.121) and (3.122). This implies that an expansion of the
form (4.30) for the scalar propagator (and correspondingly, for the fermionic propagator)
is not appropriate as the series would not converge. This can be illustrated as follows: we
would obtain using

Ga(p) =
i

p2 −m2
0

,

the following expansion

GR(p) = Ga(p)− iGa(p)
[
m2(φ)−m2

0 +Πa(p;φ) + Π2(p;φ)
]
GR(p)

= Ga(p)− iGa(p)Πa(p;φ)GR(p)− iGa(p)
[
m2(φ)−m2

0 +Π2(p;φ)
]
GR(p) ,

and as Πa(p) ∼ p2 log
(
p2
)
, the second term in the second line is of the same order as

the first term in the same line. This would persist (as we iterate GR further) and hence
this is not a convergent expansion. The way out would be to now define the auxiliary
propagators in the following form,

iG−1
a (p) = p2 −m2

0 −Πa(p;φ) , iD−1
a (p) = /p−M0 − Σa(p;φ) , (4.70)

where we have introduced a auxiliary mass M0 for the auxiliary fermionic propagator,
Da(p). We would, in the same vein as for the auxiliary scalar mass m0, choose it to be
the fermionic mass at the VEV. Equation (4.70) ensures now that the expansions of the
renormalised propagators about these auxiliary ones would converge, as we would now
obtain

GR(p) = Ga(p)− iGa(p)
[
m2(φ)−m2

0 +Π2(p;φ)
]
GR(p) , (4.71)

DR(p) = Da(p)− iDa(p) [mψ(φ)−M0 +Σ2(p;φ)]DR(p) . (4.72)

There is a caveat: identification of the divergent parts of the various loop integrals over
these auxiliary propagators is no longer straightforward. Essentially, we cannot use the
usual results of dimensional regularisation like in the scalar sunset approximation, as the
divergences are not simply given in the form of ε−n poles. Consequently, we cannot also
separate out the finite pieces from these loop integrals and this proves to be a major
hurdle in calculating the effective potential. Nevertheless, it is possible indeed to obtain
equations similar to (4.39)−(4.42) and (4.50)−(4.53) for the various counterterms, but
the technical challenge now lies in obtaining solutions to these. Thus, in the following, we
outline the method to extract the divergences from the various loop integrals to obtain
the cancellation conditions to determine the counterterms.
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Fermionic Propagator

Beginning with the fermionic propagator, we first examine the relevant loop integral

i

∫
q
DR(q + p)GR(q) = i

∫
q
Da(p+ q)Ga(q)

∣∣∣∣
div.

+

∫
q
Ga(q)Da(p+ q) [mψ(φ)−M0 +Σ2,a(p+ q;φ)]Da(p+ q)

∣∣∣∣
div.

+ /pXfin.(p) + I4Yfin.(p) , (4.73)

where we have used (4.71) and (4.72) to identify the various divergent loop integrals. Note
that Σ2,a refers to the fermionic self-energy Σ2 but calculated with auxiliary propagators.
The wave function renormalisation is determined from the following condition

i
∂D−1

R (p)

∂/p

∣∣∣∣
/p=0, φ=vR

= 1 =⇒ δZψ,0 = ig2R

{[
∂

∂/p

∫
q
DR(q + p)GR(q)

] ∣∣∣∣
/p=0, φ=vR

}∣∣∣∣
div.

,

(4.74)
and we can use this to remove the momentum dependent divergent part (proportional to
/p) of this loop integral. We can substitute now

i

∫
q
DR(q + p)GR(q)−

/p

g2R
δZψ,0 = i

∫
q
Da(q)Ga(q)

∣∣∣∣
div.

+

∫
q
Ga(q)Da(q) [mψ(φ)−M0 +Σ2,a(q;φ)]Da(q)

∣∣∣∣
div.

+ /pXfin.(p;φ) + I4Yfin.(p;φ) ,

(4.75)

and examine (4.69)

Mψ(φ; p) = I4gRφ+ g2R
[
/pXfin.(p) + I4Yfin.(p)

]
+ δg1φ+ ig2R

∫
q
Da(q)Ga(q)

∣∣∣∣
div.

+ g2R

∫
q
Ga(q)Da(q) [mψ(φ)−M0 +Σ2(q;φ)]Da(q)

∣∣∣∣
div.

.

(4.76)

This allows us to identify the following finite quantities,

mψ(φ) = gRφ , Σa(p;φ) = g2R /pXfin.(p;φ) , Σ2,a(p;φ) = g2R I4Yfin.(p;φ) (4.77)

and gives the last line of (4.76) gives the cancellation condition for the counterterm δg1. It
may appear, a priori, that this counterterm would be field dependent, and would depend on
the auxiliary parameterM0, which would make our renormalisation procedure inconsistent,
but we will demonstrate later, using the first iteration of the propagators, that this is not
the case.

Scalar Propagator

For the scalar propagator, the integrals involving only scalar propagators are resolved in
a similar manner as in the scalar sunset approximation. The easiest is the loop integral
over two propagators

I = i

∫
q
GR(p+ q)GR(q) = i

∫
q
G2
a(q)

∣∣∣∣
div.

+ Ifin.(p
2) (4.78)
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where we mention again, for clarity, the auxiliary propagators defined in (4.70) from now
onward, which means we cannot use the results of Appendix B to extract the divergent
pieces. The integral over a single scalar propagator has the form

T =

∫
q
GR(q)

=

∫
q
Ga(q)

∣∣∣∣
div.

−
[
m2(φ)−m2

0

]
i

∫
q
G2
a(q)

∣∣∣∣
div.

− i

∫
q
G2
a(q)Π2,a(q

2)

∣∣∣∣
div.

+ Tfin. , (4.79)

where Π2,a refers to the scalar self-energy Π2 but calculated with auxiliary propagators.
Finally, we have the integral over the trace of two fermionic propagators,

i

∫
q

tr [DR(q + p)DR(q)] = i

∫
q

tr [Da(q + p)Da(q)]

∣∣∣∣
div.

+

∫
q

tr {Da(p+ q)Da(q) [mψ(φ)−M0 +Σ2,a(q;φ)]Da(q)}
∣∣∣∣
div.

− i

∫
q

tr
{
Da(p+ q)Da(q) [mψ(φ)−M0 +Σ2,a(q;φ)]

Da(q) [mψ(φ)−M0 +Σ2,a(q;φ)]Da(q)

}∣∣∣∣
div.

+

∫
q

tr {Da(p+ q) [mψ(φ)−M0 +Σ2,a(p+ q;φ)]Da(p+ q)Da(q)}
∣∣∣∣
div.

− i

∫
q

tr{Da(p+ q) [mψ(φ)−M0 +Σ2,a(p+ q;φ)]

Da(p+ q) [mψ(φ)−M0 +Σ2,a(p+ q;φ)]Da(p+ q)Da(q)}
∣∣∣∣
div.

− i

∫
q

tr
{
Da(p+ q) [mψ(φ)−M0 +Σ2,a(p+ q;φ)]Da(p+ q)

Da(q) [mψ(φ)−M0 +Σ2,a(q;φ)]Da(q)

}∣∣∣∣
div.

+ p2F1,fin.(p) + F2,fin.(p) . (4.80)

We determine the wave function renormalisation for the scalar,

i
∂G−1

R (p)

∂p2

∣∣∣∣
p2=0, φ=vR

= 1

=⇒ δZφ,0 = ig2R

{[
∂

∂p2

∫
q

tr [DR(q + p)DR(q)]

] ∣∣∣∣
p2=0, φ=vR

}∣∣∣∣
div.

, (4.81)

where we note that this is divergent only due to the fermionic contribution. We use this,
like for the fermionic propagator, to eliminate the momentum dependent divergent part
(proportional here to p2) of this loop integral
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i

∫
q

tr [DR(q + p)DR(q)]−
p2

g2R
δZφ,0 =

i

∫
q

tr
[
D2
a(q)

] ∣∣∣∣
div.

+ 2

∫
q

tr
{
D3
a(q) [mψ(φ)−M0 +Σ2,a(q;φ)]

} ∣∣∣∣
div.

− 3i

∫
q

tr
{
D4
a(q) [mψ(φ)−M0 +Σ2,a(q;φ)]

2
} ∣∣∣∣

div.
+ p2F1,fin.(p

2) + F2,fin.(p
2) . (4.82)

We are now ready to examine (4.68) to identify the finite quantities and obtain the can-
cellation condition,

M2(φ; p) = m2
R +

λR
2
φ2 +

λR
2
Tfin. −

λ2Rφ
2

2
Ifin.(p

2) + g2R
[
p2F1,fin.(p

2) + F2,fin.(p
2)
]

δm2
0 +

δλ2
2
φ2 +

δλ0
2

Tfin. +
λR + δλ0

2

{∫
q
Ga(q)

∣∣∣∣
div.

−
[
m2(φ)−m2

0

]
i

∫
q
G2
a(q)

∣∣∣∣
div.

− i

∫
q
G2
a(q)Π2,a(q

2)

∣∣∣∣
div.

}
−
λ2Rφ

2

2

{
i

∫
q
G2
a(q)

} ∣∣∣∣
div.

+ g2R

{
i

∫
q

tr
[
D2
a(q)

] ∣∣∣∣
div.

+ 2

∫
q

tr
{
D3
a(q) [mψ(φ)−M0 +Σ2,a(q;φ)]

} ∣∣∣∣
div.

− 3i

∫
q

tr
{
D4
a(q) [mψ(φ)−M0 +Σ2,a(q;φ)]

2
} ∣∣∣∣

div.

}
(4.83)

The first line gives us the following finite quantities

m2(φ) = m2
R +

λR
2
φ2 +

λR
2
Tfin. (4.84)

Πa(p;φ) = g2R p
2F1,fin.(p

2;φ) , Π2(p
2;φ) = −

λ2Rφ
2

2
Ifin.(p

2) + g2R F2,fin.(p
2;φ) (4.85)

and the last line of (4.83) gives the cancellation condition for the counterterms when
equated to zero.

Minimisation Condition

The minimisation condition with fermions is given by (3.139). With αR = 0 and MR = 0
(implying that δt1 = 0), we have

− (m2
R + δm2

2)vR − λR + δλ4
6

v3R

− (λR + δλ2)

2
vR T +

λ2RvR
6

S − (gR + δg1)

∫
q

tr [DR(q)]
!
= 0 , (4.86)

where we have the scalar sunset integral S, which we decompose into its divergent and
finite parts as in Sec. 4.2
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S = i

∫
q

∫
k
GR(q)GR(k)GR(k + q)

= Sa
∣∣∣∣
div.

+ 3Tfin.

{
i

∫
q
G2
a(q)

} ∣∣∣∣
div.

− 3
(
m2(φ)−m2

0

) [{
i

∫
q
G2
a(q)

∣∣∣∣
div.

}2

+

{
i

∫
q
G2
a(q)Ia,fin.(q

2)

} ∣∣∣∣
div.

]

− 3

[{
i

∫
q
G2
a(q)

} ∣∣∣∣
div.

{∫
k
iG2

a(k)Π2,a(k
2)

} ∣∣∣∣
div.

+

{∫
k
iG2

a(k)Π2,a(k
2)Ia,fin.(k

2)

} ∣∣∣∣
div.

]
+ Sfin.

≡ Sdiv. + Sfin. . (4.87)

We also have to treat the “fermionic tadpole integral”∫
q

tr [DR(q)] =

∫
q

tr [Da(q)]

∣∣∣∣
div.

− i

∫
q

tr
{
D2
a(q) [mψ(φ)−M0 +Σ2,a(q;φ)]

} ∣∣∣∣
div.

−
∫
q

tr
{
D3
a(q) [mψ(φ)−M0 +Σ2,a(q;φ)]

2
} ∣∣∣∣

div.

+

∫
q

tr
{
D4
a(q) [mψ(φ)−M0 +Σ2,a(q;φ)]

3
} ∣∣∣∣

div.
+

∫
q

tr [DR(q)]

∣∣∣∣
fin.

≡
∫
q

tr [DR(q)]

∣∣∣∣
div.

+

∫
q

tr [DR(q)]

∣∣∣∣
fin.
. (4.88)

Substituting this into (4.86), we obtain the following relation linking the various parame-
ters and the VEV

m2
RvR +

λR
6
v3R +

λR
2
vR Tfin. + gR

∫
q

tr [DR(q)]

∣∣∣∣
fin.

−
λ2RvR
6

Sfin.
!
= 0 (4.89)

and the following cancellation condition to obtain the remaining counterterms

− δm2
2vR − δλ4

6
v3R +

δλ2
2
vR Tfin. −

(λR + δλ2)

2
vR Tdiv. +

λ2RvR
6

Sdiv.

− (gR + δg1)

∫
q

tr [DR(q)]

∣∣∣∣
div.

− δg1

∫
q

tr [DR(q)]

∣∣∣∣
fin.

!
= 0 (4.90)

We would now like to understand how various contributions feed into the counterterms.
To this end, it is instructive to consider our iterative approach.

Iterating the Gap Equations

Beginning with the free propagators,

G
(0)
R (p) =

i

p2 −m2(φ)
, G(0)

a (p) =
i

p2 −m2
0

, (4.91)
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D
(0)
R (p) =

i

/p−mψ(φ)
, D(0)

a (p) =
i

/p−M0
, (4.92)

we can evaluate the relevant integrals using dim. reg.

i

∫
q
D

(0)
R (q + p)G

(0)
R (q) = /p

[
B1(p

2,m2
(0)(φ),m

2
ψ(φ)) +B0(p

2,m2
(0)(φ),m

2
ψ(φ))

16π2

]

+ I4mψ(φ)

[
B0(p

2,m2
(0)(φ),m

2
ψ(φ))

16π2

]
(4.93)

∫
q
G

(0)
R (q) =

A0(m
2
(0)(φ))

16π2
(4.94)

i

∫
q
G

(0)
R (q + p)G

(0)
R (q) =

B0(p
2,m2

(0)(φ),m
2
(0)(φ))

16π2
(4.95)

i

∫
q

tr
[
D

(0)
R (q + p)D

(0)
R (q)

]
= −2p2

[
B0(p

2,m2
ψ(φ),m

2
ψ(φ))

16π2

]

+ 4m2
ψ(φ)

[
B0(p

2,m2
ψ(φ),m

2
ψ(φ))

16π2

]
+ 4

A0(m
2
ψ(φ))

16π2

(4.96)

which gives us the following wave function counterterms

δZ
(0)
ψ,0 = g2R

{
∂

∂/p

[
i

∫
q
D

(0)
R (q + p)G

(0)
R (q)

] ∣∣∣∣
/p=0,φ=vR

}∣∣∣∣
div.

=

[
B1(0,m

2
0,M

2
0 ) +B0(0,m

2
0,M

2
0 )

16π2

] ∣∣∣∣
div.

=
1

2

g2R
16π2ε

. (4.97)

δZ
(0)
φ,0 = g2R

{
∂

∂p2

[
i

∫
q

tr
[
D

(0)
R (q + p)G

(0)
R (q)

]] ∣∣∣∣
/p=0,φ=vR

}∣∣∣∣
div.

= −2

[
B0(0,M

2
0 ,M

2
0 )

16π2

] ∣∣∣∣
div.

= −2
g2R

16π2ε
. (4.98)

Note that we have used m2(vR) = m2
0 and mψ(vR) =M0.

Examining the various cancellation conditions, we see for the counterterm δg
(0)
1 we

obtain

δg
(0)
1 φ+ ig2R

∫
q
D(0)
a (q)G(0)

a (q)

∣∣∣∣
div.

+ g2R [mψ(φ)−M0]

∫
q
G(0)
a (q)(D(0)

a (q))2
∣∣∣∣
div.

= φ

[
δg

(0)
1 + g3R

∫
q

−i(/q +M0)
2

(q2 −m2
0)(q

2 −M2
0 )

2

∣∣∣∣
div.

]
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− ig2R

[∫
q

/q +M0

(q2 −m2
0)(q

2 −M2
0 )

∣∣∣∣
div.

−M0

∫
q

(/q +M0)
2

(q2 −m2
0)(q

2 −M2
0 )

2

∣∣∣∣
div.

]

= φ

[
δg

(0)
1 − ig3R

∫
q

q2

(q2 −m2
0)(q

2 −M2
0 )

2

∣∣∣∣
div.

]

− ig2R

[∫
q

M0

(q2 −m2
0)(q

2 −M2
0 )

∣∣∣∣
div.

−M0

∫
q

q2

(q2 −m2
0)(q

2 −M2
0 )

2

∣∣∣∣
div.

]

= φ

[
δg

(0)
1 − ig3R

∫
q

1

(q2 −m2
0)(q

2 −M2
0 )

2

∣∣∣∣
div.

]

− ig2RM0

[
�������������∫
q

1

(q2 −m2
0)(q

2 −M2
0 )

∣∣∣∣
div.

−
�������������∫
q

1

(q2 −m2
0)(q

2 −M2
0 )

∣∣∣∣
div.

]
!
= 0 , (4.99)

where, along the way, we have used

(/q +M0)
2 = /q/q + 2M0/q + I4M2

0 = I4q2 + 2M0/q + I4M2
0

and the integrals with /q in the numerator vanish as the denominators of (4.99) are sym-
metric under q → −q. The finite parts of the loop integrals then give the self-energy
functions at the first iteration

Σ(1)
a (p) =

/p g
2
R

{B1(p
2,m2

(0)(φ),m
2
ψ(φ))−B1(0,m

2
0,M

2
0 )

16π2

+
B0(p

2,m2
(0)(φ),m

2
ψ(φ))−B0(0,m

2
0,M

2
0 )

16π2

}
, (4.100)

Σ
(1)
2 (p) = g2Rmψ(φ)

{
B0(p

2,m2
(0)(φ),m

2
ψ(φ))−B0(0,m

2
0,M

2
0 )

16π2

}
. (4.101)

Notice that Σ2 is proportional to the (φ−dependent) fermion mass, which is as expected
from usual QFT [2, 3].

Let us now look at the cancellation conditions arising from the scalar gap equation

δλ
(0)
0

2
+
λR + δλ

(0)
0

2

(
− λR
32π2ε

)
= 0 , (4.102)

δλ
(0)
2

2
+
λR + δλ

(0)
0

2

(
− λR
32π2ε

)
+

λ2R
32π2ε

+
12g4R
16π2ε

= 0 , (4.103)

(δm2
0)

(0) +
λR + δλ

(0)
0

2

(
−

m2
R

16π2ε

)
= 0 . (4.104)

Notice how δλ0 is essentially equivalent to its value in the Hartree approximation, c.f.
(4.9). It is δλ2 that takes on a fermionic contribution which is proportional to g4R; this
corresponds to the fermion box diagram that contributes to the quartic coupling. From
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the finite parts of the loop integral, we obtain the scalar self-energy functions

I(1)
fin.(p

2) =

{
B0(p

2,m2
(0)(φ),m

2
(0)(φ))−B0(0,m

2
0,m

2
0)

16π2

}
, (4.105)

F (1)
1,fin.(p

2;φ) = −2

{
B0(p

2,m2
ψ(φ),m

2
ψ(φ))−B0(0,M

2
0 ,M

2
0 )

16π2

}
, (4.106)

F (1)
2,fin.(p

2;φ) = 8m2
ψ(φ)

{
B0(p

2,m2
ψ(φ),m

2
ψ(φ))−B0(0,M

2
0 ,M

2
0 )

16π2

}

− 4

A0(m
2
ψ(φ))−A0(M

2
0 ) +

[
m2
ψ(φ)−M2

0

]
B0(0,M

2
0 ,M

2
0 )

16π2

 , (4.107)

where we see the function F2 is proportional to the (φ-dependent) fermionic mass squared.
To properly consider the 2PI formalism, one needs to include the self-energy, which

why we skip examination of the minimisation condition with “free” propagators (4.91) and
(4.92). Having calculated the self-energy functions, at the first iteration, the propagators
are now given by

G
(1)
R (p) =

i

p2 −
[
m2(φ) + Π

(1)
a (p) + Π

(1)
2 (p)

] , G(0)
a (p) =

i

p2 −m2
0 −Π

(1)
a (p)

, (4.108)

D
(1)
R (p) =

i

/p−
[
mψ(φ) + Σ

(1)
a (p) + Σ

(1)
2 (p)

] , D(0)
a (p) =

i

/p−M0 − Σ
(1)
a (p)

. (4.109)

which we will use to demonstrate the technical challenges in solving for the counterterms
and evaluating the effective potential.

Re-examining the various cancellation conditions, we now have

δg
(1)
1 − g3R

{∫
q
G(1)
a (q)(D(1)

a (q))2
[
1 +

(
B0(q

2,m2
0,M

2
0 )−B0(0,m

2
0,M

2
0 )

16π2

)]} ∣∣∣∣
div.

= 0

(4.110)

δλ
(1)
0

2
+
λR + δλ

(1)
0

2

[
−λR

2

∫
q
i(G(1)

a (q))2
] ∣∣∣∣

div.
= 0 , (4.111)

δλ
(1)
2

2
+
λR + δλ

(1)
0

2

{
−
[
λR
2

∫
q
i(G(1)

a (q))2
] ∣∣∣∣

div.

+

∫
q
i(G(1)

a (q))2
[
λ2R
2

B0(q
2,m2

0,m
2
0)−B0(0,m

2
0,m

2
0)

16π2

− 8g4R
B0(q

2,M2
0 ,M

2
0 )−B0(0,M

2
0 ,M

2
0 )

16π2

]∣∣∣∣
div.

}
−
λ2R
2

∫
q
i(G(1)

a (q))2
∣∣∣∣
div.
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− 3g4R

∫
q

tr

{
(D(1)

a (q))4

[
1 + g4R

(
B0(q

2,m2
0,M

2
0 )−B0(0,m

2
0,M

2
0 )

16π2

)2
]} ∣∣∣∣

div.
= 0 ,

(4.112)

(δm2
0)

(1) +
λR + δλ

(1)
0

2

[∫
q
G(1)
a (q)

∣∣∣∣
div.

− (m2
R −m2

0)

∫
q
i(G(1)

a (q))2
∣∣∣∣
div.

]
= 0 . (4.113)

From the minimisation condition we obtain,

(δm2
2)

(1) +
λR + δλ

(1)
2

2

[∫
q
G(1)
a (q)

∣∣∣∣
div.

− (m2
R −m2

0)

∫
q
i(G(1)

a (q))2
∣∣∣∣
div.

]

−
λ2R
6

{
Sa

∣∣∣∣
div.

− 3
(
m2
R −m2

0

) [(∫
q
i(G(1)

a (q))2
∣∣∣∣
div.

)2

+

∫
q
i(G(1)

a (q))2
(
B0(q

2,m2
0,m

2
0)−B0(0,m

2
0,m

2
0)

16π2

) ∣∣∣∣
div.

]}
= 0 , (4.114)

δλ
(1)
4

6
+
λR + δλ

(1)
2

2

{
−
[
λR
2

∫
q
i(G(1)

a (q))2
] ∣∣∣∣

div.

+

∫
q
i(G(1)

a (q))2
[
λ2R
2

B0(q
2,m2

0,m
2
0)−B0(0,m

2
0,m

2
0)

16π2

− 8g4R
B0(q

2,M2
0 ,M

2
0 )−B0(0,M

2
0 ,M

2
0 )

16π2

]∣∣∣∣
div.

}

−
λ2R
6

{
− 3

λR
2

[(∫
q
i(G(1)

a (q))2
∣∣∣∣
div.

)2

+

∫
q
i(G(1)

a (q))2
(
B0(q

2,m2
0,m

2
0)−B0(0,m

2
0,m

2
0)

16π2

) ∣∣∣∣
div.

]

− 3

[(∫
q
i(G(1)

a (q))2
)2(B0(q

2,m2
0,m

2
0)−B0(0,m

2
0,m

2
0)

16π2

)]
[
λ2R
2

B0(q
2,m2

0,m
2
0)−B0(0,m

2
0,m

2
0)

16π2

− 8g4R
B0(q

2,M2
0 ,M

2
0 )−B0(0,M

2
0 ,M

2
0 )

16π2

]}∣∣∣∣
div.

= 0 . (4.115)

The equations that have been obtained for the counterterms are entirely in terms of di-
vergent parts of integrals over the auxiliary propagator, like in the scalar sunset approx-
imation, but the difference lies in the fact that we no longer can evalaute the integrals
analytically, making us unable to solve for the counterterms, such as in (4.50)−(4.53).
Furthermore, we note that we cannot obtain the 2PI effective potential with the fermionic
contribution, as in our approach, we would require also the finite pieces of the aforemen-
tioned integrals.

80



4.4. Summary

We reiterate that these problems arose due to requiring expansions of the renormalised
propagators in the form (4.71) and (4.72), stemming from the fact that the auxiliary prop-
agators need to to be defined as (4.70). We stress that this is because the fermionic sunset
diagram in the 2PI effective action modifies the behaviour of the propagators in the UV.
In fact, we note that we would have a similar scenario in the case of only scalars, once one
includes the so-called basketball diagram [72] and postulate that this is a generic feature in
any truncation of the 2PI formalism featuring an infinite wave-function renormalisation.

4.4 Summary
We re-examined the various truncations of the 2PI effective action introduced in the pre-
vious chapter by carrying out the renormalisation in the MS scheme. To this end, we
presented an alternate method of obtaining the various resummed counterterms, based on
[72], which did not rely on the Bethe-Salpeter equations and 2PI kernels introduced in
the previous chapter. This was especially powerful when we considered the scalar sunset
approximation, where we could circumvent the lengthier diagrammatic analysis and we
were able to write down analytic expressions for the counterterms in terms of expansions
in powers of ε in dim. reg. Consequently, in our analysis, we were able to keep track of
finite quantities and eventually assemble the 2PI effective potential for the Hartree approx-
imation and scalar sunset approximation. We emphasise that, to our knowledge, exact
expressions for the counterterms and a determination of the 2PI improved effective poten-
tial in a transparent way for the scalar sunset approximation has not been reported in the
literature. We observed that the 2PI induced corrections were not too large when com-
pared to the tree-level potential; this is expected as we are working with a zero temperature
field theory and loop effects have a tendency to dominate at higher temperatures. In fact,
it has been reported in [60] that the Hartree approximation has the feature of generating
a stronger phase transition in comparison to the Coleman-Weinberg (one-loop) potential.
Thus, the next natural step would be to consider finite temperature in our analysis of the
scalar sunset approximation. This would serve as an excellent tool to investigate models
with additional scalars, useful in examining scenarios such as non-perturbative reheating
after inflation and modifications to phase transitions.

We extended our techniques analysis in an analogous manner to examine the fermionic
sunset approximation. However, we could only arrive at equations to obtain the coun-
terterms in terms of loop integrals over the appropriately defined auxiliary propagators.
The challenge lies in the fact that these integrals cannot be evaluated analytically, making
it unable to piece together the effective potential. The determination of fermionic con-
tribution to the 2PI effective potential, at zero temperature, would help us in answering
questions such as vacuum stability of the SM [77–81]. Finally, if one extends our analysis
to include gauge bosons, then the full 2PI effective potential would provide a framework
to study the electroweak phase transition.

81



PART II



Chapter 5

Leptogenesis

In its simplest form, leptogenesis [82] is similar to baryogenesis in Grand Unified Theories
(GUTs) [6]. Analogously, one has Sakharov’s conditions for leptogenesis, which are
realised as follows:

• The deviation of the number density of newly-introduced heavy neutrinos from their
equilibrium distributions provides the necessary departure from thermal equilibrium.
This out-of-equilibrium process can be studied by the means of Boltzmann equations
[83].

• Interactions involving Yukawa couplings of these heavy neutrinos provide the neces-
sary new sources of C and CP violation.

• Lepton number violation is fulfilled via their mass terms.

In this manner, a lepton asymmetry is generated, which is then converted into a baryon
asymmetry via the sphaleron process. Finally, successful leptogenesis yields stringent
constraints on the masses of the SM and heavy neutrinos.

Since its inception, leptogenesis has been studied with increasing developments through-
out the years, such as including flavour effects [84], resonant leptogenesis [85, 86], thermal
effects in plasma [87, 88] and so on. In this chapter, we recapitulate some of the essential
features in order to study thermal leptogenesis, which we will apply in Chapter 6 to study
leptogenesis in a specific model. For comprehensive reviews on leptogenesis, one may refer
to [89, 90].

For illustrative purposes, we will often use the Lagrangian of the Type-I Seesaw model
throughout various discussions in the following sections. This can be written down as
follows

LN ⊃ −1

2

∑
i

MiN c
iNi −

∑
α, i

yαiL̄αH̃Ni + h.c. (5.1)

where Ni refers to the heavy right-handed neutrinos (RHNs), Lα refers to the (left-handed)
SM lepton doublets with α referring to the flavour and H̃ = iσ2H

∗ where H is the SM
Higgs doublet. We have N c

i = C(Ni)
T where C is the charge conjugation matrix. The

RHNs are Majorana fermions, with Majorana mass terms Mi and gauge singlets under
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the SM gauge group. The yαi refer to the Yukawa couplings of the RHNs with the SM
Higgs and SM leptons, some or all of which are complex numbers.

It is often convenient to assign lepton number (L) to the fields in order to identify
parameters that break lepton number. The choices are arbitrary but need to be done in a
consistent manner. We start with the obvious choice of assigning lepton number +1 to Lα.
By then requiring that the scalar H does not carry lepton number, we proceed to determine
the remaining assignments by demanding the Yukawa terms do not break lepton number.
This leads to the RHNs being assigned lepton number +1, and we can easily identify that
the Majorana mass terms Mi break lepton number by two units. For completeness’ sake,
we mention that there are no other parameters breaking lepton number, which can be
checked by using the assignment we have described.

5.1 CP Violation
The CP violation generated in a lepton flavour α, from the decays of the heavy neutrinos,
can be quantified through the CP asymmetry parameter

εiα =
Γ (Ni → LαH)− Γ

(
Ni → L̄αH

†)∑
β

[
Γ (Ni → LβH) + Γ(Ni → L̄βH

†)
] (5.2)

where Γ refers to the partial decay widths of the Ni into the mentioned states. At tree-
level, we have

Γ (Ni → LαH) = |yαi|2 Ftree = |y∗αi|2 Ftree = Γ
(
Ni → LαH

†
)

(5.3)

where Ftree arises from integrating the (squared and summed) kinematic part of the tree-
level amplitude over the final state phase space, and hence εiα = 0. Thus, the CP asym-
metry arises at lowest order from the interference of tree-level and one-loop amplitudes,
the diagrams for which are described in Fig. 5.1.

The width arising from the interference terms, Γint., are of the form

Γint. (Ni → LαH) =
∑
β, k

[
y∗αi yαk yβk y

∗
βi Fint. +

(
y∗αi yαk yβk y

∗
βi Fint.

)∗]
Γint.(Ni → LαH

†) =
∑
β, k

[
yαi y

∗
αk y

∗
βk yβi Fint. +

(
yαi y

∗
αk y

∗
βk yβi Fint.

)∗]
,

where Fint. refers to the function obtained from integrating the product of the kinematic
parts of the tree-level and one-loop level amplitudes over the two-body phase space, i.e.

Fint. =

∫
Atree A†

loopdΠ2 .

Note that, in our convention, the kinematic part of the tree-level amplitude is real and for
the the one-loop amplitude can be complex as it would contain the various loop functions
(see Appendix A). Now, evaluating the numerator of (5.2), we obtain
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Ni

Lα

H

Ni

H

Lβ

Nk

Lα

H

Ni

H

Lβ

Nk

Lα

H

Ni

Lα

H

H

Nk

Lβ

Figure 5.1: First row: the tree-level decay of the Ni into Lα and H. Second row: the corre-
sponding one-loop diagrams for the decay into the same final states. Arrows indicate the flow of
lepton number. Crosses on lines indicate mass insertions. The internal lepton flavour β and the
internal RHN k are always summed over. Note that the first of the loop diagrams in the second
row (one of the “self-energy” diagrams) contributes to a CP asymmetry in the flavour, but not the
total asymmetry [91] where as the remaining two loop diagrams (the last of which is often called
the “vertex diagram”) violate both lepton flavour and lepton number [91–93].

Γ (Ni → LαH)− Γ(Ni → LαH
†)

=
∑
β, k

{
2i y∗αi yαk yβk y

∗
βiIm [Fint.]− 2i yαi y

∗
αk y

∗
βk yβiIm [Fint.]

}
= −4

∑
β, k

Im
[
y∗αi yαk yβk y

∗
βi

]
Im [Fint.] , (5.4)

whereby in the first equality, the tree-level parts of the widths cancel. This is then nor-
malised to the total decay width, where it may be assumed that the tree-level partial
widths dominate, as the loop-level widths are suppressed by additional couplings and loop
factors. Equation (5.4) implies that the CP asymmetry is non-zero only for complex
couplings and when the loop amplitude acquires an imaginary part, due to intermediate
particles going on-shell as dictated by the Cutkosky rules [94]. Finally, if one seeks only the
total CP asymmetry (essentially, the “total lepton number violation”), then one performs
the sum over the flavours in the final state, i.e.

εi ≡
∑
α

εiα =

−2
∑
α, β, k

Im
[
y∗αi yαk yβk y

∗
βi

]
Im [Fint.]∑

γ

|yγi|2 Ftree
. (5.5)
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5.2 Boltzmann Equations
The evolution of the number density of the RHNs can be tracked by the Boltzmann
equations (BEs), written as

L̂ [fNi ] = C [fNi ] , (5.6)

where the i index implies an individual equation for the phase space distribution of each
RHN. Here, C is the collision operator, which encodes the particle physics information (in
this case the decays of the RHNs), and L̂ is the Liouville operator, which in covariant and
relativistic form, can be expressed as

L̂ = pα
∂

∂xα
− Γαβγp

βpγ
∂

∂pα
, (5.7)

where Γαβγ are the Christoffel symbols and xα (pα) are the coordinate (momentum) four-
vectors. The Liouville operator hence describes the effect of the expansion of the universe
on the RHNs’ phase space distribution. The early universe is usually modelled on the
Friedmann-Lemâitre-Robertson-Walker (FLRW) metric which is based on the assumption
of homogeneity and isotropy1, which implies,

fNi ≡ fNi(E, t) , L̂ [fNi ] = E
∂fNi

∂t
− ȧ

a
|~p|2 ∂fNi

∂E
,

where a ≡ a(t) is the scale factor in the FLRW metric and ȧ ≡ da/dt. At this point, it is
convenient to define the Hubble parameter

H ≡ ȧ

a
=

√
8π3g∗
90

T 2

MPl
(5.8)

where the equality holds for the radiation-dominated era [6, 95, 96], which is when lep-
togenesis occurs. The quantity g∗ refers to the effective number of relativistic degrees of
freedom which in the SM is gSM

∗ = 106.75 [6]. Defining now the number density of the
RHNs as

nNi(t) =
gNi

(2π)3

∫
d3p fNi ,

where gNi refers to the relativistic degrees of freedom of the Ni (gNi = 2 as they are
Majorana fermions), one inserts this into the Boltzmann equation and integrates by parts
to arrive at

ṅ+ 3Hn =
gNi

(2π)3

∫
C [fNi ]

d3p

E
. (5.9)

Now, to treat the collision term, we analyse the decays RHNs, Ni → LH , LH†. The
squared amplitudes for which can be written in the form

|MNi→LH |2 = |MLH→Ni |2 =
1

2
(1 + εi)|M0|2

|MNi→LH† |2 = |MLH†→Ni
|2 =

1

2
(1− εi)|M0|2 .

where we drop the lepton flavour index, as we will be treating only the total CP asymmetry
in what follows. The collision term is hence

1For a comprehensive reviews on cosmology, one may refer to [95, 96].
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gNi

(2π)3

∫
C [fNi ]

d3p

E

= −
∫
dΠNi dΠL dΠH (2π)4δ(4) (pNi − pLα − pH)

{
|MNi→LH |2 fNi(1− fL)(1 + fH)

− |MLH→Ni |2fLfH(1− fNi) + |MNi→LH† |2 fNi(1− fL)(1 + fH)− |MLH†→Ni
|2fLfH(1− fNi)

}
= −2

∫
dΠNi dΠL dΠH (2π)4δ(4) (pNi − pLα − pH) |M0|2

{
fNi − f eq.

Ni

}
(5.10)

where dΠ refers to the phase space of the particle species, but with the degrees of freedom
included, i.e.

dΠX =
gX

(2π)3
d3pX
2EX

,

and the δ-function ensures four-momentum conservation. In the second equality of (5.10),
we have used the following simplifications

• The use of Maxwell-Boltzmann statistics in place of Fermi-Dirac/Bose-Einstein statis-
tics, i.e. we ignore Fermi blocking and Bose-Einstein enhancement to write 1±fX ≈ 1

and fX = exp
(
−EX

T

)
where T is the temperature.

• The leptons and Higgs are much lighter than the RHNs and still in equilibrium
with the thermal plasma allowing us to use their equilibrium distributions. Energy
conservation then ensures EL + EH = ENi , which implies

fLfH = exp

(
−(EL + EH)

T

)
= exp

(
−ENi

T

)
= f eq.

Ni
.

Thus, one arrives at the final form for the Boltzmann equations to track the decays of the
RHNs

ṅNi + 3HnNi = −〈Γi〉
(
nNi − neq.

Ni

)
. (5.11)

Here, 〈Γi〉 represents the thermally averaged decay rate over the tree-level decay width
Γi ≡ Γtree(Ni → LH), given by [6, 90]

〈Γi〉 = −2

∫
dΠNi dΠL dΠH (2π)4δ(4) (pNi − pLα − pH) |M0|2 exp

(
−ENi

T

)
=
gNi

2π2
M2
i

T
K1

(
Mi

T

)
Γi (5.12)

where Kn refer to the modified Bessel functions of the second kind. We also have their
equilibrium number density, given by

neq.
Ni

=
gNiMi T

2π2
K2

(
Mi

T

)
.

The decays of the heavy RHNs produce a lepton asymmetry as discussed earlier, and
therefore in B − L where B is the baryon number. Again, for simplicity, we will consider
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Ni

Lα

H

Ni

Lα

H Lα

H†

H

NiLα

qR qL

Figure 5.2: Examples of washout processes, with arrows representing the flow of lepton number.
From the left to right, we have the inverse decay, an example of a ∆L = 2 process and finally, an
example of a ∆L = 1 process, where qL,R represents the left (right)-handed quarks. The dominant
contribution to the ∆L = 1 process would come in the case of a top-quark, due to the relevant
Yukawa coupling. Note that in the ∆L = 2 process, the intermediate Ni can go on-shell, and
thus one needs to subtract the relevant contribution from the cross-section; otherwise, one double
counts the decays of the Ni in the BEs.

only the total lepton asymmetry and hence will sum over the flavours. To track the
asymmetry in B − L, we can write down the following BE

ṅB−L + 3HnB−L = −
∑
i

εi 〈Γi〉
(
nNi − neq.

Ni

)
−

[∑
i

neq.
Ni

neq.
L

+ 2〈σ v〉∆L6=0

]
nB−L , (5.13)

where the terms proportional to nB−L are the washout terms, which reduce the fi-
nal asymmetry. The contributions to these come from the inverse decays (production
of the Ni) and the scattering terms (quantified by the thermally averaged cross-section
〈σ v〉∆L6=0) that violate lepton number [6, 97]. Examples of various washout processes
are described in Fig. 5.2. Note that one needs to retain only the non-resonant part of
the scattering processes, such as an s-channel process with the Ni as propagator. This is
because the on-shell decays of the RHNs have already be considered in the BEs and hence
one would “double count” the decays. Finally, from (5.13), we can deduce that nB−L 6= 0
only if εi 6= 0 and nNi 6= neq.

Ni
, which is essentially a quantitive formulation of Sakharov’s

conditions.
To scale out the expansion of the universe, one defines co-moving number densities

NNi = nNi a
3 , NB−L = nB−L a

3 ,

and for convenience one defines dimensionless variables zi =Mi/T . Note that the variables
can be related to each other by zi =Mi/M1 z1, where M1 is the mass of the lightest RHN,
so one typically chooses z1 to solve the resulting equations. This also allows one to recast
the Hubble parameter as

H(zi) =
H(T =Mi)

z2i
. (5.14)

With these transformations, one arrives at the following differential equations for lep-
togenesis [98, 99]

dNNi

dz1
= −Di(zi)

(
NNi −N eq.

Ni

)
, (5.15)

dNB−L
dz1

= −
∑
i

εiDi(zi)
Mi

M1
Ki (NNi −N eq.

Ni
)−

∑
i

(
W

(i)
ID +W

(i)
S

)
NB−L , (5.16)
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where we have defined the following rescaled interaction rates for the decays, inverse decays
and scatterings

Di(zi) = Ki
Mi

M1

ziK1(zi)

K2(zi)
, W

(i)
ID =

1

4

Mi

M1
Ki z

3
i K2(zi) , W

(i)
S =

Mi

M1

2〈σ v〉∆L6=0

H(zi) zi
,

(5.17)
where we stress again that the equations are solved in terms of z1, with replacements of
zi =Mi/M1 z1 in order to be consistent.

In order to have successful leptogenesis, the decays of the RHNs must go out out of
equilibirum and at the same time, washout processes must “freeze out”. A naïve estimate
for this is

Di(zi = 1) < 1 , (W
(i)
ID +W

(i)
S )

∣∣∣∣
zi=1

< 1 .

However, a convenient tool to answer the question regarding the washout of the generated
asymmetry are the decay parameters

Ki ≡ Γi
H(T =Mi)

, (5.18)

which we have marked in bold in (5.17). Based on the values of the decay parameter,
one classifies various regimes that determine the effectiveness of the washout terms [89,
90]. For Ki . 1, one realises the weak washout regime, where the inverse decays freeze
out first, and the asymmetry generated in the decays of the Ni is reduced by the ∆L 6= 0
scatterings. One is then left with a B−L asymmetry after the scatterings have frozen out.
There is then an intermediate regime, until one reaches Ki & 3, which is classified as the
strong washout regime. Here, scatterings freeze-out before when the RHNs remain in
equilibrium, and the inverse decays freeze out last, and one can thus neglect the effects of
the former in the BE. The final B−L asymmetry is generated after the inverse decays are
no longer effective. Thus, the Ni “decouple” from the thermal plasma and their remaining
number density decays to source NB−L. Thus, in the strong washout regime, leptogenesis
is essentially described by competition between decays and inverse decays of the RHNs
[89].

One (numerically) solves the set of equations (5.15) and (5.16) together with a set of
initial conditions2 typically chosen as

NNi(z1 � 1) = N eq.
Ni
, NB−L(z1 � 1) = 0 , (5.19)

and tracks these number densities down to low temperatures, i.e. z1 � 1, until one
obtains3 the final (or present-day) value Nfin.

B−L.

2In [97, 99], it has been shown that, deep in equilibrium, one could even start with an initial condition of
NNi(z1 � 1) = 0, and this has no impact on the asymmetry. This is because processes in equilibrium are
so rapidly occurring that the Ni are quickly driven to their equilibrium number distributions.

3For example, for the initial condition, one could choose z1 = 10−4 and solve the set of equations till
z1 = 103.

89



Chapter 5. Leptogenesis

Figure 5.3: Depiction of the EW vacuum, from [6], with the various vacua. The free energy, F ,
is plotted against the gauge-field and Higgs-field configurations. Between adjacent vacua, B and
L change by Nf units (here, it is 3 as in the SM). The sphalerons (S) are represented by the path
which moves over the barrier, from one vacuum to another.

5.3 Sphalerons: Converting Leptons to Baryons
To compare to observations, one needs to convert the obtained value of the B − L asym-
metry, from the Boltzmann equations, into the baryon asymmetry. This is facilitated by
the sphaleron process that exists in the SM.

Baryon and lepton numbers are accidental symmetries in the SM, meaning that, al-
though they are preserved at the classical level, quantum effects may break these symme-
tries leaving them anomalous [2, 3]. In the electroweak theory, the anomalous current is
given by [3, 6]

∂µJ
µ
B,L = Nf

g22
32π2

W a
µνW̃

aµν , (5.20)

where Wµν (W̃
a
µν) is the SU(2)L (dual) field strength tensor, g2 is the corresponding gauge

coupling and Nf is the number of generations of the fermions (3 in the SM). This current
leaves B−L conserved, but breaks B, L and B+L. By integrating the anomalous current,
one can obtain the change in B and L as [100]

∆B = ∆L =

∫
d4x ∂µJ

µ
B,L ≡ Nf ∆NCS . (5.21)

Here, ∆NCS = ±1, ±2 , ... denotes the change of the Chern-Simons number, which arises
from a transition from one electroweak vacuum to another, which mediated by the sphalerons
[15] (see Fig. 5.3). At low temperatures, this is exponentially suppressed due to energy
barriers between vacuum states. However, at temperatures T & 100GeV, the transition
becomes very efficient and results in a violation of B and L in multiples of Nf units, while
conserving B − L. Hence, the sphalerons allow conversion of lepton number into baryon
number, with a conversion factor estimated via [101]

Csphal. =
8Nf + 4ND

22Nf + 13ND
(5.22)
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where ND is the number of scalar SU(2)L doublets in the model. Thus, to obtain the final
baryon asymmetry from the B − L asymmetry we get from the Boltzmann equations, we
may use

ηB ≡ nB
nγ

≈ 3

4
Csphal.

g0∗
g∗

|Nfin.
B−L| (5.23)

where g0∗ = 43/11 is the present value of the number relativistic degrees of freedom.
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Chapter 6

Phenomenology of a Scotogenic
Model

In this chapter, we extend the Standard Model (SM) through the framework of a scotogenic
model. Such models generate masses for the SM neutrinos radiatively, through newly
introduced particles running in the loops. The SM neutrino masses are hence additionally
suppressed by loop factors and couplings to this newly introduced sector. At the same
time, if the new particles are electrically neutral and stable, they can serve as good dark
matter (DM) candidates.

After the first works on a minimal scotogenic realisation [102–106], more complex mod-
els have emerged in recent years, studied mainly at the level of dark matter phenomenology
and lepton flavour violating (LFV) observables, such as [103, 107–111]. A general classi-
fication of viable scotogenic frameworks can be found in [112]. We note for completeness
that the model we consider in this chapter is the “T1-2-A” model [112, 113] with an ex-
tra fermionic singlet. Although the T1-2-A model features a very predictive dark matter
phenomenology and can explain the SM neutrino masses, it cannot account for the recent
measurements of the anomalous magnetic moment of the muon without being in tension
with constrains on LFV decays. Furthermore, leptogenesis cannot be achieved in this
setup, as the single fermionic singlet in this model never goes out of equilibrium with the
thermal plasma.

We will show that the T1-2-A model with the extra fermionic singlet, introduces enough
degrees of freedom to allow for generation of neutrino masses compatible with neutrino
oscillation data, while being consistent with the bounds on lepton flavour violating de-
cays. Furthermore, certain couplings can be chosen such that the deviation related to
the anomalous magnetic moment of the muon can be accommodated. Finally, we study
leptogenesis within this model, to account for the baryon asymmetry of the Universe. This
chapter is based on the results of [1].

6.1 Model

The SM is extended with two Weyl fermion SU(2)L doublets, Ψ1 and Ψ2, two Majorana
fermion singlets, F1 and F2, a scalar SU(2)L doublet, η, and a real scalar singlet, S.
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6.1. Model

Ψ1 Ψ2 F1 F2 η S

SU(2)L 2 2 1 1 2 1

U(1)Y -1 1 0 0 1 0

Table 6.1: BSM field content of the scotogenic model under consideration and their representa-
tions/charges.

However, these additional fields are singlets with respect to SU(3)C . In addition, we
assume a Z2-symmetry under which the SM fields are even and the newly introduced ones
are odd, as per the scotogenic framework. This ensures neutrino mass generation at loop
level and stability of potential DM candidates. The new field content, with their respective
representations under SU(2)L × U(1)Y , is summarised in Table 6.1. We will now describe
the various sectors, with their corresponding Lagrangians and set the notation.

6.1.1 Scalar Sector

The scalar sector of the model consists of the SM Higgs doublet H, an additional real
singlet S, and a SU(2)L doublet η. Upon electroweak symmetry breaking (EWSB), the
doublets are conveniently expanded into components according to

H =

(
G+

1√
2
[v + h0 + iG0]

)
, η =

(
η+

1√
2
[η0 + iA0]

)
. (6.1)

Here, h0 is the physical SM Higgs boson, G0 and G+ are the would-be Goldstone bosons,
and v =

√
2〈H〉 ≈ 246 GeV denotes the vacuum expectation value (VEV) acquired by the

Higgs. η0 and A0 are CP -even and CP -odd neutral scalars, and η+ is a charged scalar.
The assumed Z2-symmetry forbids η and S from acquiring a VEV. The scalar potential
of the model is hence given by

Vscalar = M2
H |H|2 + λH |H|4 + 1

2
M2
SS

2 +
1

2
λ4SS

4 +M2
η |η|

2 + λ4η|η|4

+
1

2
λSS

2|H|2 + 1

2
λSηS

2|η|2 + λη|η|2|H|2 + λ′η|Hη†|
2

+
1

2
λ′′η

[
(Hη†)2 + h.c.

]
+ α

[
SHη† + h.c.

]
(6.2)

The first two terms form the usual SM Higgs potential. We assume here for simplicity that
λ′′η and α are real. During EWSB, the neutral CP -even component of the Higgs doublet
acquires a VEV, leading to the usual minimisation relation,

m2
h0 = − 2M2

H = 2λHv
2 , (6.3)

allowing one to eliminate the mass parameter M2
H in favour of the Higgs self-coupling λH .

Imposing mh0 ≈ 125 GeV leads to a tree-level value of λH ≈ 0.13. Further, after EWSB,
the neutral components of η and S can mix according to the mass matrix

M2
φ =

M2
S + 1

2v
2λS vα 0

vα M2
η + 1

2v
2λL 0

0 0 M2
η + 1

2v
2λA

 , (6.4)
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where we work in the basis {S, η0, A0}. Here, we have defined λL,A = λη + λ′η ± λ′′η. The
mass eigenstates are ordered according to

(φ01, φ
0
2, A

0)T = Uφ (S, η
0, A0)T . (6.5)

where Uφ is an orthogonal matrix. The corresponding squared masses at tree-level read
as

m2
φ01,2

=
1

2

M2
S +M2

η +
1

2
v2 (λS + λL)∓

√[
M2
S −M2

η +
1

2
v2 (λS − λL)

]2
+ 4v2α2

 ,

m2
A0 = M2

η +
1

2
v2λA , (6.6)

where mφ01
< mφ02

. The tree-level mass of the charged scalars is given by

m2
η± = M2

η +
1

2
v2λη . (6.7)

6.1.2 Fermionic Sector

The Lagrangian for the BSM fermions in Table 6.1 can be written down in two-component
form as

Lfermion = i
(
Ψjσ

µDµΨj +
1

2
F jσ

µ∂µFj

)
− 1

2
MiFiFi −MΨΨ1Ψ2

− y1iΨ1HFi − y2iΨ2H̃Fi − gkΨΨ2LkS − gkFj
ηLkFj − gkR e

c
k η̃Ψ1 + h.c. (6.8)

with i, j = 1, 2 and k = 1, 2, 3. Lk and eck denote the left-handed and right-handed leptons
and φ̃ = iσ2φ

∗ for φ = H, η. For the singlet fermions, we have chosen a basis such that
their mass matrix is diagonal, with |M1|≤ |M2|. Finally, we take the phase-convention
Ψ1 = (Ψ0

1,Ψ
−
1 ) and Ψ2 = (Ψ+

2 ,−Ψ0
2) for the SU(2)L doublets.

After EWSB, we have a charged heavy Dirac state Ψ+ with mass MΨ and four neutral
Majorana fermions. Their mass matrix, in the basis {F1, F2,Ψ

0
1,Ψ

0
2}, is given as

Mχ0 =


M1 0 v√

2
y11

v√
2
y21

0 M2
v√
2
y12

v√
2
y22

v√
2
y11

v√
2
y12 0 MΨ

v√
2
y21

v√
2
y22 MΨ 0

 . (6.9)

This matrix is diagonalised by a unitary matrix Uχ according to

diag(mχ0
1
,mχ0

2
,mχ0

3
,mχ0

4
) = UχMχ0U−1

χ , (6.10)

with the convention mχ0
i
≤ mχ0

j
for i < j.

6.2 SM Neutrino Mass Generation
Majorana mass terms are generated at one-loop level for the SM neutrinos, after EWSB,
through diagrams of the following form

Fk (Ψ
0
2)

η0 (S)

νi νj ≡ (νj)
T (Mν)ji νi , (6.11)
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where the particles in the loop are in the gauge eigenstate bases. The SM neutrino mass
matrix (Mν)ji can be expressed in the following form

Mν = GT ML G , (6.12)

where G is the “coupling matrix” according to (6.8), ordered as

G =

g
1
Ψ g2Ψ g3Ψ
g1F1

g2F1
g3F1

g1F2
g2F2

g3F2

 . (6.13)

Note that the masses for the SM neutrinos are generated after EWSB, so it is more
convenient to work in the mass eigenstate basis in what follows; the mixings in the neutral
scalar and fermion sectors are defined in (6.5) and (6.10). Now, ML is a 3× 3 symmetric
matrix containing the loop functions, evaluated using dimensional regularisation, whose
components are given explicitly as

(ML)11 =
∑
k,n

bkn(U
†
χ)

2
4k(U

T
φ )

2
1n ,

(ML)22 =
1

2

∑
k,n

bkn(U
†
χ)

2
1k

[
(UTφ )

2
2n − (UTφ )

2
3n

]
,

(ML)33 =
1

2

∑
k,n

bkn(U
†
χ)

2
2k

[
(UTφ )

2
2n − (UTφ )

2
3n

]
,

(ML)12 = (ML)21 =
1√
2

∑
k,n

bkn(U
†
χ)1k(U

†
χ)4k(U

T
φ )1n(U

T
φ )2n ,

(ML)13 = (ML)31 =
1√
2

∑
k,n

bkn(U
†
χ)2k(U

†
χ)4k(U

T
φ )1n(U

T
φ )2n ,

(ML)23 = (ML)32 =
1

2

∑
k,n

bkn(U
†
χ)2k(U

†
χ)1k

[
(UTφ )

2
2n − (UTφ )

2
3n

]
,

where k = 1, 2, 3, 4 and n = 1, 2, 3, and the coefficients bkn are given by

bkn =
1

16π2

mχ0
k

m2
φ0n

−m2
χ0
k

[
m2
χ0
k
log

(
m2
χ0
k

Q2

)
−m2

φ0n
log

(
m2
φ0n

Q2

)]
,

where Q is the renormalisation scale. However, one can exploit the unitarity and orthog-
onality of the Uχ and Uφ to show that this drops out in the end.

Next, we make use of the Casas-Ibarra parametrisation [114, 115] to express the cou-
plings in (6.13) in terms of neutrino oscillation data [38, 39], according to

G = ULD
−1/2
L RD1/2

ν U∗
PMNS , (6.14)

where DL is a diagonal matrix defined as

DL = UTL ML UL , (6.15)
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and Dν is the diagonal matrix containing the neutrino mass eigenvalues. Finally, UPMNS

is the usual Pontecorvo-Maki-Nakagawa-Sakata (PMNS) unitary matrix relating neutrino
flavours to their mass eigenstates, assuming that the charged leptons are already in their
mass eigenbasis, i.e. νeνµ

ντ

 =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


︸ ︷︷ ︸

UPMNS

ν1ν2
ν3

 . (6.16)

Here, the column vector on the left of the equality represents the SM neutrinos in their
flavour eigenstate basis and the column vector on the right of the equality represents the
SM neutrinos in their mass eigenstate basis.

As G is not uniquely defined from all parameters and observables in ML and Mν , the
extra degrees of freedom have been encoded in a complex, orthogonal 3 × 3 matrix R,
parameterised as

R =

c2c3 − c1s3 − s1s2c3 s1s3 − c1s2c3

c2s3 c1c3 − s1s2s3 − s1c3 − c1s2s3

s2 s1c2 c1c2

 , (6.17)

which depends on three complex angles θi with si = sin θi and ci =
√
1− s2i .

6.3 Anomalous Magnetic Moment of the Muon
The SM is challenged by precision measurements of the anomalous magnetic moment of the
muon [116, 117]. This deviation persists between the SM prediction and the experimental
value of the anomalous magnetic moment of the muon, defined as aµ = (g − 2)µ/2. The
discrepancy amounts to a significance of 4.2σ, and leads to the following range for the new
physics contribution to aµ [117, 118],1

aBSM
µ = aexpµ − aSMµ = (251± 59)× 10−11 . (6.18)

In general, every scotogenic-like model will contribute to the anomalous magnetic mo-
ment of leptons at one-loop level. These contributions can be encoded in the effective
electromagnetic (EM) dipole moment operator cijR ¯̀

iσµνPR`jF
µν [125] where the contribu-

tion to (g − 2) and the electric dipole momentum of a lepton is given through ciiR, where
as cijR , (i 6= j) gives information about charged lepton flavour violating (cLFV) processes
[125, 126].

The contribution to (g − 2)µ is generally suppressed by the muon mass. As the EM
dipole operator connects the left- and right-handed parts of the leptons, while neutrino
mass models contain typically couplings of BSM fields to only left-handed parts, this
leads to this operator being chirally suppressed. This pushes new physics explanations
of (g − 2)µ to low mass scales and large, non-perturbative couplings. One way to avoid
this, is to introduce extra fields outside the neutrino mass mechanism, coupling to µR, in
order to enhance the contribution to (g−2)µ and simultaneously fit to the anomaly within
1We note here that the SM calculation is currently under discussion due to recent lattice results that weaken
the anomaly [119–121]. However, these results are still in tension with e+e− → hadrons cross-section data
and EW precision observables [122–124].
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Figure 6.1: Dominant one-loop contributions to (g−2) and charged LFV processes before EWSB.
Arrows indicate the flow of quantum numbers and couplings are specified for clarity. A photon
should be attached to the respective charged components.

a phenomenologically reasonable parameter space [127]. This solution is realised in this
model, through the coupling gR of the lepton singlets to η and Ψ1, c.f. (6.8). The latter
two fields also participate in the generation of SM neutrino masses, and thus, no extra
fields are needed besides those involved in the neutrino mass mechanism to have a chirally
enhanced contribution to (g − 2)µ, the new leading contributions to which are shown in
Fig. 6.1.

Charged lepton flavour violating decays rank among the most stringent constraints
for neutrino mass models, as fitting the neutrino mixing angles, in general, requires non-
diagonal Yukawa matrices that connect also to the charged leptons and allow for transi-
tions between different lepton flavours. While the limits to the branching ratios of these
processes are already remarkable, especially for the limit on the decay µ → eγ from the
MEG collaboration [128], there is a renovate interest with new experiments expected to
take place in the near future, such as MEGII [129], Mu3e [130], or COMET [131], with
an expected improvement on the sensitivity of even four orders of magnitude for certain
processes like µ→ 3e, or Belle and Belle II for the tau decays [132–134].

Both diagrams depicted in Fig. 6.1 generate sizeable contributions to strongly con-
strained cLFV processes, in particular µ→ eγ, which has an upper limit of 4.2×10−13 on
its branching ratio [128]. Although these large contributions seem unavoidable, one can
somewhat circumvent this problem by realising that the off-diagonal part of the Yukawa
matrix G is connected to neutrino mixing, see (6.14). This means we can assume certain
flavour structures for the Yukawa couplings which suppress the off-diagonal components
in favour of the diagonal ones [135], thus enhancing contributions to (g−2)µ while keeping
contributions to cLFV processes under control.

With this in mind, we focus on a region of the parameter space where the left diagram
in Fig. 6.1 dominates, as the flavour structure of the diagram is simpler, with just two
three-component Yukawa vectors involved. To do so, we consider y1,2 to be small and push
the trilinear coupling α to larger values. This also indirectly suppresses gF and enhances
gΨ through the neutrino fit, c.f. (6.14). However, the components of gR are free, which
allows us to fit the value of (g − 2)µ while keeping the contributions to the cLFV decays,
µ→ eγ and τ → µγ, under control.

For completeness, we note that we focus on a particular region of parameter space.
However, given the complexity of the system, we were not able to find a more general
approach that could deliver results within reasonable computing time. This region of
parameter space has interesting consequences for leptogenesis (see later in Sec. 6.5).
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6.4 Markov chain Monte Carlo Scan

6.4.1 Constraints and Observables

Similar to the analysis in [113], a Markov chain Monte Carlo (MCMC) scan [136] was
implemented, based on the Metropolis-Hastings algorithm [137, 138] to efficiently scru-
tinise the parameter space of this scotogenic model in view of the numerous constraints
discussed earlier. Essentially, this technique explores the parameter space iteratively, with
restrictions imposed by a set of constraints, through the computation of the likelihood.
For further details on the implementation of the MCMC, see [1, 113].

In addition to the implicit constraints from neutrino masses and the anomalous mag-
netic moment of the muon, we explicitly impose constraints coming from the following
sectors: DM observables, cLFV processes and the mass of the Higgs boson. These are
summarised in Table 6.2, along with their associated experimental limits and uncertain-
ties2. We also ensure that the lightest Z2-odd particle is electrically neutral in order to
have a stable neutral DM candidate and avoid stable charged relics [8, 144–146].

Observable Constraint
mH 125.25 ± 1.0 GeV

ΩCDMh
2 0.120 ± 0.012

BR( µ− → e−γ ) < 4.2× 10−13

BR( τ− → e−γ ) < 3.3× 10−8

BR( τ− → µ−γ ) < 4.2× 10−8

BR( µ− → e−e+e− ) < 1.0× 10−12

BR( τ− → e−e+e− ) < 2.7× 10−8

BR( τ− → µ−µ+µ− ) < 2.1× 10−8

BR( τ− → e−µ+µ− ) < 2.7× 10−8

BR( τ− → µ−e+e− ) < 1.8× 10−8

BR( τ− → µ−e+µ− ) < 1.7× 10−8

BR( τ− → µ+e−e− ) < 1.5× 10−8

Observable Constraint
BR( τ− → e−π ) < 8.0× 10−8

BR( τ− → e−η ) < 9.2× 10−8

BR( τ− → e−η′ ) < 1.6× 10−7

BR( τ− → µ−π ) < 1.1× 10−7

BR( τ− → µ−η ) < 6.5× 10−8

BR( τ− → µ−η′ ) < 1.3× 10−7

CRµ→e(Ti) < 4.3× 10−12

CRµ→e(Pb) < 4.3× 10−11

CRµ→e(Au) < 7.0× 10−13

BR( Z0 → e±µ∓ ) < 7.5× 10−7

BR( Z0 → e±τ∓ ) < 5.0× 10−6

BR( Z0 → µ±τ∓ ) < 6.5× 10−6

Table 6.2: Constraints considered in the MCMC analysis: Higgs mass and charged LFV observ-
ables [8] and the DM relic density [11]. The limits from XENON1T [147] to the direct detection
cross-section are also taken into account.

Parameter Interval
λH [0.1; 0.4]

λ4S , λ4η [10−7; 1]
λSη, λS [-1; 1]
λη, λ′η, λ′′η [-1; 1]

α [−104; 104]

Parameter Interval
M2
S , M2

η [5× 105; 5× 106]
M1, M2 [100; 2× 104]
MΨ [700; 2000]

y11, y12, y21, y22 [−10−4; 10−4]
mν1 [10−32; 10−10]

Table 6.3: Input parameters for the MCMC scan, with dimensionful quantities given in GeV.

In total, the MCMC scan runs over 20 free parameters: 8 couplings in the scalar poten-
tial, 6 Yukawa couplings, 5 masses, the lightest SM neutrino mass and the unconstrained
2Note that for the Higgs mass, mH , and the DM relic density, ΩCDMh2, we apply the theory uncertainties
[139–143] as these are larger than the experimental ones. We estimate those on mH to be of similar size
as those in supersymmetric models due to electroweak corrections.
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angle of the rotation matrix R, which is assumed to be real. The ranges of the scalar and
fermion mass parameters are chosen allowing them to (in principle) be in the reach of the
high luminosity LHC. For the singlet fermions, we allow for a larger range, in view of lep-
togenesis. The sign of the quartic couplings λH , λ4S and λ4η is fixed from the requirement
that the scalar potential is bounded from below. The input parameters are summarised
in Table 6.3, and the details on the setup and implementation of the scan are described
in [1]. For completeness, we mention that the model was implemented in SARAH-4.14.
[148] and generate code for SPheno-4.0.4 [149], FlavorKit [150] and micrOMEGAS-5.2.7
[151]. The former two compute the mass spectrum and low energy observables, while the
latter evaluates the DM relic density and the direct detection (DD) cross-sections. In the
end, about 12000 points in parameter space were generated.

6.4.2 Results of the Scan

Couplings

Firstly, we examine the Yukawa couplings connecting the SM particles to the BSM fields,
i.e. giF1

, giF2
, giΨ, and giR, as these turn out to be relevant for leptogenesis. These are all

three-component vectors and relevant for neutrino masses, the (g − 2)µ and LFV decays.
Fig. 6.2 shows the correlations among the different components for each coupling vector,
whereas Fig. 6.3 shows the correlation between selected components and the trilinear
coupling α.

We clearly see that all components of gF1,2 behave in a similar manner, with an ap-
proximate upper limit of |giF1,2

|. 10−3 for i = 1, 2, 3. As already explained in Sec. 6.3,
this upper limit is a result of our requirement to fit neutrino masses along with (g − 2)µ,
and adhering to constraints from µ→ e transitions. At the same time, the overall scaling
behaviour of all the components of gF1 is caused by the trilinear coupling α, which can be
discerned from the left plot of Fig. 6.3. We find an analogous behaviour for gF2 . Larger
values of α imply larger scalar mixing, which then suppresses the scale of gF1,2 via the
neutrino mass fit.

As already described in Sec. 6.3, gΨ requires a specific hierarchy among its components
is realised to fit (g − 2)µ, while being below the limits of cLFV searches. This hierarchy
is reflected in gR, as both these couplings contribute to these processes. This results in
g2Ψ and g2R being large to fit (g − 2)µ, where as g1,3Ψ and g1,3R need to remain small to not
exceed the current limit on branching ratios of µ→ eγ and τ → µγ. Furthermore, fitting
(g−2)µ links g2R and g2Ψ with the trilinear coupling α, as shown in the plot of Fig. 6.3. As
discussed in Sec. 6.3, the dominant contribution to (g− 2)µ and cLFV decays comes from
the left diagram in Fig. 6.1, which is proportional to α. This implies that smaller values
of α require larger values of g2Ψ and g2R to fit (g− 2)µ. The perturbativity requirement for
both these Yukawa couplings and α requires3 30 GeV . α . 4mφ01

.

DM Observables

The Z2-odd parity of the BSM particles allows for three viable DM candidates: the lightest
neutral fermion χ0

1, the lightest scalar φ01, and the pseudo-scalar A0, depending on the mass
hierarchies in a given parameter configuration.

3Note, that the upper bound is actually given for α/Mφ where Mφ is the average masses of the scalars
involved in this coupling.
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Chapter 6. Phenomenology of a Scotogenic Model

Figure 6.2: Distributions of the absolute values of the components of the Yukawa couplings gF1

(upper left), gF2 (upper right), gΨ (lower left) and gR (lower right) obtained from the MCMC scan.
The plots corroborate the hierarchy among the components, as enforced by the neutrino mass fit,
accommodating (g − 2)µ, and the constraints coming from cLFV processes.

Figure 6.3: Correlation of selected Yukawa couplings with the trilinear coupling α. The couplings
gΨ and gF1 are connected to the trilinear couplings α through the fit of the neutrino masses, while
the connection of g2Ψ and g2R with α stems from the fit of the anomalous magnetic moment (g−2)µ.
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500 600 700 800 900 1000 1100 1200 1300 1400
mDM [GeV] 

0
1 : 61.66%
0
1 : 38.34%

Figure 6.4: Histograms of the mass and nature of the DM candidate. The separation into
fermionic and scalar DM clearly exhibits a preference for fermionic DM with a mass around 1100
GeV.

Fig. 6.4 shows the obtained distribution for the DM mass, separating fermionic (χ0
1)

and scalar (φ01) DM, which is similar to the behaviour found in [113] for the T1-2-A
scotogenic model. We observe that fermionic DM dominates the model parameter space,
with a preferred mass of around 1100 GeV. Scalar DM accounts for about 38% of the
viable parameter points, with preferred masses of about 600 to 1000 GeV.

Figure 6.5: Left: Distribution of the masses in case of fermionic DM candidates, separating the
scenarios where the DM candidate is doublet-dominated (blue line) from those where it is singlet-
dominated (orange line). Right: singlet content of the DM candidate as a function of the DM
mass.

Fig. 6.5 shows the that DM is essentially doublet-dominated, which can be traced
to necessary co-annihilations [152] occurring naturally between the doublet-dominated
state χ0

1 and χ± and χ0
2, due to the very small mass splitting between these states. As

already mentioned, sizeable Yukawa couplings to the muons are necessary to explain the
potential deviation of its anomalous magnetic moment. This gives additional annihilation
channels into muons via scalars, stemming from the doublet η in the t-channel. In case
χ0
1 is singlet-dominated, it is harder to satisfy the DM relic density [104]. While singlet

fermions Fi are produced thermally, they can annihilate only via the Yukawa gFi or through
the mixing with Ψ1,2. Both these couplings are small because of cLFV constraints and
accommodating (g − 2)µ. In the case of scalar DM, the doublet-like states also dominate
the phenomenologically viable parameter regions for similar reasons. Finally, we note that
we do not find any pseudo-scalar DM in this model. The reason for this can be discerned by
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Chapter 6. Phenomenology of a Scotogenic Model

Figure 6.6: Left: Distribution of the masses in case of scalar DM candidates, separating the
scenarios where the DM candidate is doublet-dominated (blue line) from those where it is singlet-
dominated (orange line). Right: singlet content of the DM as a function of the DM mass.

Figure 6.7: Contributions to the scalar mass matrix in equation (6.4).

inspecting the mass matrix given in (6.4). The mass splitting between the scalar doublet
component and the pseudo-scalar is given by 1

2λ
′′
ηv

2 and the mixing between the doublet
scalar and the singlet is given by |αv|. For pseudo-scalar DM, one needs the doublet to
be lighter than the singlet, which is not the case as can be seen in Fig. 6.7, implying that
the scalar will always be lighter than the pseudo-scalar.

In Fig. 6.8, we show the results for the spin-independent DD cross-section for the
scalar DM case. As mentioned earlier, the XENON1T [147] limit is taken as a constraint,
such that points not satisfying the current limits are excluded. Most of the remaining
viable points can be tested by future experiments like DARWIN [154].

In both cases, the direct detection cross-section is mainly dominated by Higgs exchange,
since we actually have an inelastic dark matter candidate. Inelastic dark matter refers to
DM candidates with a mass splitting between the CP -even and CP -odd components of a
neutral state. As the Z-boson couples between the CP -even and CP -odd components, for
the part of the parameter space where the mass splitting between these two states is larger
than the kinetic energy of the DM, the contribution from Z channel to the DD cross-section
is kinematically forbidden. Since the coupling of DM to the Z-boson is proportional to
the gauge coupling, if it is active, then it will be excluded by direct detection. We note
here that this contribution had to be calculated separately, as outlined in Appendix D,
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Figure 6.8: Spin-independent DD cross-section versus the mass of the DM in the scalar case,
differentiating between singlet (blue) and double-like (orange). The current limit from XENON1T
[147], as well as the future limits from XENONnT [153] and DARWIN [154] are given, as well as
the corresponding line for the neutrino floor [155]. The fermionic DM case is not shown as the DD
cross-section lays below the neutrino floor, around 10−60 cm2.

as micrOMEGAS does not include inelastic channels. Nevertheless, this excluded very few
points, as in practice given the typical DM average relative velocity, the mass splitting
needs to be only larger than O(100) keV to kinematically close the Z-channel [156].

As the dominant channel for scattering is via Higgs exchange, we hence do not find
any constraints in the case of fermionic DM. The reason for this is that our scan requires
the modulus of the relevant Yukawa couplings, |yij |, to be smaller than 10−4. The spin-
independent cross section is hence suppressed and pushed well below the neutrino floor.

6.5 Leptogenesis

In order to study leptogenesis, we first identify sources of lepton number violation in this
model. To this end, we assign lepton number to fields in this model, in a manner similar
to the Type-I Seesaw model in Chap. 5. We start with the obvious choice of assigning
lepton numbers +1 and −1 to the Li and eci . Requiring that the scalars H, η and S
are not assigned lepton number, we proceed to determine the rest of the assignments by
demanding the Yukawa terms, as far as possible, do not break lepton number. Looking
at (6.8), this leads to assignments of −1 to the Fi and +1 to Ψ1,2. As a consequence,
this means that the parameters that break lepton number are the Majorana mass terms
M1,2, the Dirac mass term MΨ and the Yukawa coupling gΨ. Lepton number violation can
hence essentially be switched off by setting all these parameters to 0. Our chosen lepton
number assignments are summarised in Table 6.4.

Due to the large number of free parameters in this model, we will not attempt a scan
of the parameter space. Instead, we focus on the region of parameter space outlined at
the end of Sec. 6.3. Based on this, we note that we are in the region of parameter space
where the couplings yij , which determine the mixing between the SU(2)L doublet and
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Li eci H Ψ1 Ψ2 Fi η S

Lepton No. 1 −1 0 1 1 −1 0 0

Table 6.4: Summary of lepton number assignments to the fields in the model.

singlet fermions in (6.9), are small. Thus, in practice, only the singlet-like fermions will
contribute to a possible lepton asymmetry. Further, we observed that there appears to
be a preference for doublet-like DM (recall that this would be mixtures of neutral parts
of Ψ1,2) in this model, which provides more reason to focus on this region of parameter
space, where (at least one of) the Fi can decay on-shell via its dominant decay modes
Fi → Lη (Lη†) and Fi → ΨH (ΨH†) and produce a leptonic asymmetry.

As leptogenesis occurs above EWSB, it is more convenient to work in the gauge eigen-
state basis. The tree-level decay widths for the aforementioned modes are given by

Γtree(Fi → Lη) = Γtree(Fi → Lη†) =
∑
j

|gjFi
|2

32π
Mi

(
1−

M2
η

M2
i

)2

(6.19)

Γtree(Fi → ΨH) = Γtree(Fi → ΨH†) =

Mi

32π

{
(|y1i|2+|y2i|2)

[
1−

(
M2

Ψ

M2
i

)2
]
− 4Re[(y1i)∗y2i]

MΨ

Mi

(
1−

M2
Ψ

M2
i

)}
,

(6.20)

where we have neglected the masses of the SM leptons and Higgs boson. Note the mass
insertion of the Mi in the decay width; as mentioned earlier, this is a parameter breaking
lepton number, so it is natural for it to appear in these expressions. For later convenience,
we define at this point

Γitot. = Γtree(Fi → Lη) + Γtree(Fi → Lη†) + Γtree(Fi → ΨH) + Γtree(Fi → ΨH†) . (6.21)

6.5.1 CP Violation

The contributing diagrams to CP violation necessary for leptogenesis are displayed in
Fig. 6.9. Similar to the Type-I seesaw model [89, 91], we have the typical wave-function
and vertex diagrams depicted in the upper row involving the other singlet fermion in the
loop. However there are additional possible vertex diagrams, which are depicted in the
lower row, featuring the couplings gR (left diagram) and gΨ and the trilinear coupling α
(right diagram). Recall that these couplings played an important role in contributions to
(g − 2)µ, as discussed in Sec. 6.3.

The CP asymmetry parameter in this model is given by

εi =
Γ(Fi → Lη) + Γ(Fi → ψH)− Γ(Fi → L̄ η†)− Γ(Fi → ψ̄ H†)

Γ(Fi → Lη) + Γ(Fi → ψH) + Γ(Fi → L̄ η†) + Γ(Fi → ψ̄ H†)

≈ Γ(Fi → Lη) + Γ(Fi → ψH)− Γ(Fi → L̄ η†)− Γ(Fi → ψ̄ H†)

Γtot.
, (6.22)

where in the second step, we neglect the loop-level decay widths in the denominator. Note
that we have summed over the flavours of the final state leptons, and hence focus on the
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Figure 6.9: Diagrams contributing to the CP asymmetry generated in the decays of Fi (i = 1, 2).
Upper row: diagrams that are similar to the ones obtained in the type-I seesaw model. The arrows
indicate the flow of lepton number. Note that another self-energy diagram exists with the mass
insertion of Fi instead, by reversing the arrow of Lm (Ψ). Lower row: Additional vertex diagrams
contributing to the CP asymmetry generated in the decays of the singlet fermions Fi.

“total lepton number violation”. Obtaining the different contributions to the εi leads to
rather cumbersome expressions and thus, these are delegated to Appendix E, where an
outline of the calculation and a compilation of these expressions can be found.

6.5.2 Washout

Having determined the asymmetry, we now need to determine to what extent it survives
till present date, for which we examine the decay parameters of the Fi. Using (5.18), we
have for this model,

Ki ≡
Γitot.

H(T =Mi)
' 7× 106

(
max{|gFi |}

10−3

)2(TeV
Mi

)
, (6.23)

where in the second part of the above equation, we refer to the discussion in the beginning
of Sec. 6.4.2, where the MCMC yielded that in general, either max(|gkFi

|) � max(|yij |)
or they are of equal size. Thus, we may take the decay Fi → Ljη, via the gFi coupling,
to be the dominant decay mode for the Fi. Furthermore, based on the parameter space
discussed in Sec. 6.4.2, we are always in the strong washout regime (see Sec. 5.2), evident
from the second part of (6.23). As an example, we display K1 in (6.10). For completeness,
we note that, although we based our estimations on gFi , all parameters were properly
taken into account in the numerics. These large values of the decay parameter allow us to
neglect washout through scattering processes, as the inverse decays are the main sources
of the washout.
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6.5.3 Results

Figure 6.10: Left: resulting baryon-to-photon ratio ηB plotted against the mass of the lighter
singlet fermion driving leptogenesis. The solid grey line denotes the observed value of ηB from
Planck. The CP asymmetry generated in the decays of the singlet fermion is indicated by the hue.
Right: Decay parameter K1 of the lighter singlet fermion versus the absolute value of the trilinear
coupling α. The value of ηB is indicated by the hue. The points in red are within the grey band
on the plot to the right.

We solve numerically the corresponding Boltzmann equations given in Sec. 5.2 with the
following initial conditions at T = 104M2 implying z1 � 1

NF1 = N eq.
F1
, NF2 = N eq.

F2
, NB−L = 0 , (6.24)

and track these number densities down to lower temperatures, z1 = 200. Unlike usual
thermal leptogenesis implemented in Seesaw models, we do not assume a large hierarchy
between the masses of F1 and F2, meaning we account for the decays of both in our
Boltzmann equations [99].

As mentioned in Sec. 5.3, we need the inverse decays of the singlet fermions to freeze-
out at a temperature before the sphalerons fall out of equilibrium (T ∼ 100 GeV); other-
wise, the leptonic asymmetry generated in their decays is not converted into a baryonic
asymmetry. As we are in the strong washout regime, we can estimate the freeze-out
temperature for the inverse decays as [157],

T ID
F.O. ≈ Mi

5
√
log(Ki)

. (6.25)

This gives an approximate lower bound on the mass of the lightest decaying singlet Mi &
2TeV for which the sphalerons remain active.

At lower temperatures, T � min{M1,M2}, we obtain the final B −L number density
Nfin.
B−L, which is converted to the baryon-to-photon ratio, ηB, via the sphaleron process

ηB ≈ 3

4

(
8

23

)
43/11

122.25
|Nfin.

B−L|' 8× 10−3 |Nfin.
B−L| , (6.26)

where the sphaleron conversion factor, c.f. (5.23), was calculated with Nf = 3 and ND = 2
and g∗ = 122.25 due to the additional particle content of the model.

Fig. 6.10 depicts the final baryon-to-photon ratio obtained from solving the Boltzmann
equations, using the sets of parameters mentioned before, against the mass of the singlet
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fermion driving leptogenesis. We observe that in contrast to the typical case of strong
washout in the Type-I Seesaw model and the “classic” scotogenic model [158], the final
value of ηB has a tendency to decrease with increasing M1. Besides, we also find that the
CP asymmetries generated in the decays of lighter F1 are much larger. We note large
contributions to εi come from the loop diagrams in the lower row of Fig. 6.9.

In the minimal scotogenic model, it is possible to express the decay parameter (5.18)
as a function of the lightest neutrino mass and the λ′′η parameter [158]. In our model, the
link is not so direct due to the additional couplings and particle states present. Moreover,
the requirement to explain the potential deviation of the (g − 2) of the muon while being
consistent with the bounds on the LFV decays requires, for example, larger values of the
trilinear coupling α. As can be seen from the left plot in Fig. 6.10, the decay parameter
decreases with increasing |α|. While this coupling does not appear directly in the cal-
culation of the decay parameter (6.23), it reduces the value of the coupling gFi through
the neutrino fit, which in turn decreases the tree-level decay width and, hence, lowers the
value of Ki.

From the right plot in Fig. 6.10, there are 25 points able to explain the observed baryon
asymmetry, within the observed limit [11]. We also observe that all these points feature
doublet-dominated χ0

1 as a DM candidate, except for one which has singlet dominated φ01
as a DM candidate.

6.6 Summary and Outlook
In this chapter, we studied a scotogenic model with a very rich phenomenology. We
presented a numerical analysis of the associated parameter space, taking into account
constraints from SM neutrino masses sector, LFV processes, the muon anomalous magnetic
moment and DM observables.

Neutrino data governed the couplings of the new particles to the left-handed leptons
and the requirement of explaining the observed deviation of the anomalous magnetic mo-
ment of the muon (g− 2)µ required sizeable couplings to muons. Imposing the constraint
of the dark matter relic density led to a preference of fermionic dark matter, which is
doublet-like in the mass range 1 to 1.2 TeV, and whose cross-sections were well below the
neutrino floor. However, scenarios featuring scalar dark matter can be tested by future
direct detection experiments like XENONnT or DARWIN.

Finally, requiring successful leptogenesis in addition resulted in the available parameter
space being severely constrained. Almost all the viable points in the parameter space
featured a fermionic dark matter candidate. This specific region of parameter space may
be scrutinised further, and improvements may be made along the lines of tracking the
asymmetry along leptonic flavours, as our requirements of fitting (g−2)µ resulted in larger
couplings to muons. Thus, this may have an impact in the production of an asymmetry
in the muon flavour, and ultimately the baryon asymmetry.
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Chapter 7

Conclusion and Outlook

Based on observations, we are convinced that the observable Universe presently consists
primarily of matter, with little to no anti-matter. To resolve this mystery of “missing”
anti-matter, we require an asymmetry between the baryons and anti-baryons before the
onset of proton formation. Within the Standard Model (SM) of particle physics there
exists no feasible mechanism to dynamically generate this baryon asymmetry, and hence
demands new physics. In this thesis, we considered two approaches aimed at addressing
this long standing issue in particle physics.

The first approach was presented in Part I, where we introduced the two-particle
irreducible (2PI) formalism in Chapter 2, as a means to study non-equilibrium phenomena.
After motivating and establishing the framework, we arrived at the 2PI effective action
and the corresponding equations of motion (EOMs) to describe the evolution of the one-
point function and the propagators. In order to obtain self-consistent results, these must
be renormalised.

With this task in mind, we began Chapter 3 by describing the complexities of renor-
malisation arising due to the resummed nature of the propagator in the 2PI formalism.
We proceeded to write down the renormalised 2PI effective action and outlined the tools
required to obtain the counterterms in an on-shell scheme. As an application of our meth-
ods, we considered three separate truncations, up to two-loop order, namely the Hartree
approximation, the scalar sunset approximation and the fermionic sunset approximation.
We focused on obtaining the counterterms and renormalised quantities in the broken phase.
For the Hartree approximation, we found that the renormalised propagator was identical
to the bare one and all counterterms were finite. In the scalar sunset approximation, we
found that the inclusion of the scalar sunset diagram led to many of the counterterms no
longer being finite. Moreover, the propagator could only be determined through a numeri-
cal solution to the gap equation, for which we used an iterative scheme. We demonstrated
that even for the choice of large couplings, our iterative scheme converges rapidly and
one could, for practical purposes, use the solution obtained at the first iteration. Finally,
we extended our toolkit to include fermions in the 2PI formalism, when considering the
fermionic sunset approximation. To our knowledge, renormalisation of the 2PI effective
with fermions has not been treated extensively in the literature, and our techniques are im-
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mediately applicable to higher-loop truncations involving fermions. Using our techniques,
we found that none of the counterterms were finite. Moreover, we obtained a coupled
system of gap equations to determine the form of the fermionic and scalar propagators,
for which we again applied our iterative approach. For a large Yukawa coupling, we still
observed convergence for successive iterations.

The application of our methods would be to obtain the counterterms for the renor-
malised EOMs, which can be used to study bubble evolution during a phase transition.
Furthermore, the techniques for renormalisation in the 2PI formalism involving fermions
that we have outlined allow one to consistently include their effects in the renormalised
EOMs. The renormalised EOMs with fermions provide an excellent starting point to
study electroweak baryogenesis, as they feature in the transport equations. Furthermore,
we propose that our analysis can be analogously performed to extend the renormalisation
toolkit to consider gauge bosons, through careful tracking of Lorentz indices. With this,
we would have the full setup to investigate the electroweak phase transition (EWPT).

In Chapter 4, we presented an alternative method to renormalise the 2PI effective
action in an MS scheme, which is more suitable to calculate the 2PI effective potential.
This method was based on identifying manifestly finite quantities in the gap equation and
obtaining the counterterms from cancellation conditions derived from equations involving
divergent parts of various loop integrals. We considered the same truncations that we had
in the previous chapter. For the Hartree approximation, the procedure was simplified due
to the fact that the propagator was identically the bare one. The counterterms obtained
also matched the ones determined from our on-shell scheme. Subsequently, we obtained the
effective potential in the Hartree approximation and compared it to the Coleman-Weinberg
(CW) effective potential and tree-level potential. We observed that the CW potential
offers a very small correction to the tree-level potential, whereas the 2PI effective potential
provides a more pronounced correction. The vacuum expectation value (VEV) for all three
potentials occurred at nearly the same field value. We next considered the scalar sunset
approximation, which was more involved due to the fact established in Chapter 3, that
the propagator needs to be determined through a numerical solution to the gap equation.
To this end, we used an auxiliary Pauli-Villars propagator to extract divergences from the
various loop integrals. This allowed us to obtain the required cancellation conditions to
determine the counterterms in terms of divergent parts of loop integrals over the auxiliary
propagator. As these loop integrals involving the auxiliary propagator could be evaluated
analytically using dimensional regularisation, we were able write down explicit expressions
for the counterterms. Having carefully tracked and pieced together the finite contributions,
we were subsequently able to evaluate the 2PI effective potential in the scalar sunset
approximation in a transparent manner, which, as far as we know, has not been reported
in the literature and constitutes a novel result. Finally, we attempted a similar analysis
for the fermionic sunset approximation, where complications arose due to the presence of
infinite wave-function renormalisations, which led to modifications in the UV behaviour
of both the scalar and fermionic propagators. We attempted a similar analysis using
appropriately defined auxiliary propagators, which allowed us to obtain the cancellation
conditions. Although the divergent structures of these integrals are known, they cannot
be evaluated analytically like in the scalar sunset approximation, owing to which we could
not give explicit expressions for the counterterms. Consequently, we could not calculate
the effective potential, because the finite parts required from the very same integrals could
not be extracted.

The 2PI effective potential with fermionic contributions would allow one to address
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Chapter 7. Conclusion and Outlook

issues such as vacuum stability of the SM. Also, we have noted that in the Hartree and the
scalar sunset approximations that the corrections to the tree-level potential appear to be
small. This is because we have restrained ourselves to the zero temperature field theory;
the next natural step would be to include finite temperature effects, where we would expect
the loop-level effects to be more prominent. With this, one could immediately study phase
transitions in models with additional scalars and other non-equilibrium phenomena, such
as reheating after inflation. Finally, having worked out the fermionic contribution, the full
temperature corrected 2PI effective potential would provide an insight in the case of very
strong transitions, and in particular when there are strongly interacting relatively heavy
states contributing to dynamics. This is relevant in the SM, where we know the top quark
is much more massive than the SM Higgs. This would thus offer a a self-consistent tool
to investigate the electroweak phase transition.

Progressing to Part II, we presented in Chapter 5 our second approach through lep-
togenesis. We described the essential features of leptogenesis, using the Type-I Seesaw
Lagrangian as a pedagogical example. We showed that lepton number violation, CP vi-
olation and out-of-equilibrium decays of newly introduced heavy neutrinos, tracked by
Boltzmann equations, lead to a lepton asymmetry. This lepton asymmetry is then con-
verted into the required baryon asymmetry through the sphaleron process in the SM.

In Chapter 6, we extended the Standard Model through the framework of a scotogenic
model, characterised by radiative generation of SM neutrino masses along with a suitable
dark matter (DM) candidate due to an imposed Z2 symmetry on the new fields. After
describing the full model in detail, we considered various constraints on the couplings
coming from neutrino oscillation data, limits on branching ratios of charged lepton flavour
violating processes, electroweak and dark matter (DM) observables. Using the the results
of a Markov Chain Monte Carlo scan to obtain the parameter space consistent with these
constraints and adhering to the observed value of the anomalous magnetic moment of the
muon, (g−2)µ, we examined the various couplings relevant for leptogenesis. For DM phe-
nomenology, we observed the parameter space favoured primarily fermionic doublet-like
DM. This ascertained parameter space was used to examine the impact on leptogenesis in
this model. The heavy Majorana fermionic singlets, decaying out-of-equilibrium, sourced
the required lepton asymmetry, for which we numerically solved a set of Boltzmann equa-
tions. This was converted appropriately into the baryon asymmetry and compared with
the observed limit from Planck. We found that very few points in the parameter space
could explain the baryon asymmetry of Universe. This specific region of parameter space
may be scrutinised further, and improvements may be made along the lines of tracking
the asymmetry along leptonic flavours, as our requirements of fitting the observed value of
(g−2)µ resulted in larger couplings to muons. Further, we observed a correlation between
couplings required to explain (g− 2)µ value and the decay parameter, which governed the
efficiency of out-of-equilibrium decays of the fermionic singlets.

To summarise, this thesis offered insights into avenues through which the problem of
the matter asymmetry of the Universe can be addressed. This was through two different
approaches: (i) using 2PI methods to ultimately study the electroweak phase transition
and electroweak baryogenesis in a consistent manner and (ii) through the viewpoint of
model building, describing the interplay between leptogenesis and various other unresolved
phenomena in the Standard Model of particle physics.
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Appendix A

Loop Integrals 101

In this appendix, we will go through the methods required to resolve the various loop
integrals that appear throughout this thesis. We first outline the procedure to handle loop
integrals in the framework of dimensional regularisation (dim. reg.) and discuss various
examples of Passarino-Veltman functions that appear throughout this thesis. Finally, we
describe the numerical implementation of these integrals in four dimensional Euclidean
space.

A.1 Dimensional Regularisation
Note that we will work primarily in four-dimensional Minkowski space-time for this section,
with the metric signature. Quantities in Euclidean coordinates will be explicitly specified
with a subscript E. We will also typically use the shorthand notation

∫
l =

∫
ddl

(2π)d
.

The following tools are useful in dimensional regularisation
• Feynman Parameters: Typically, to combine multiple propagator denominators

appearing in the loop integrals, one makes use of Feynman parameters.
1

Aa11 A
a2
2 ... Aann

= (A.1)

Γ(a1 + a2 + ...+ an)

Γ(a1)Γ(a2) ...Γ(an)

∫ 1

0
dx1dx2 ... dxn

δ(1− x1 − x2 − ...− xn)x
a1−1
1 xa2−1

2 ... xan−1
n

[A1x1 +A2x2 + ... +Anxn](a1+a2+ ...+an)
.

(A.2)
Note the δ−function which results in the variables not being linearly independent of
each other. Specifically, for two denominators, with a1 = a2 = 1 we end up with

1

A1A2
=

∫ 1

0
dx

1

[A1x+A2(1− x)]2
(A.3)

• Gamma Function Expansions: The following expansion of the Gamma function,
Γ(n), about its poles are useful in extracting divergent parts:

Γ(x− n) =
(−1)n

n!

(
1

x
+ ψ(n+ 1) +O(x)

)
, for n ≥ 0 (A.4)
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A.1. Dimensional Regularisation

where ψ(z) is the Euler digamma function, with the following properties

ψ(n+ 1) =
1

n
+ ψ(n) , ψ(1) = −γE .

Here, γE is the Euler-Mascheroni constant.

A.1.1 Scalar Integrals

Using the Feynman parameters, we obtain a structure of the form (l2 − κ)−n, after ap-
propriately completing the square and shifting variables to l for the loop momentum. To
progress, we perform a Wick rotation l0 = il0E , such that l2 = −l2E . After these transfor-
mations, the resulting integral may be evaluated by converting to n-dimensional spherical
polar coordinates, where we may make use of the following results:

• the angular integration over the solid angle of a d-dimensional unit sphere∫
dΩd =

2π
d
2

Γ
(
d
2

) (A.5)

• to resolve the radial integral, we make use of the following special integral

∫ ∞

0
dz

za

(z2 + 1)b
=

Γ
(
a+1
2

)
Γ
(
b− (a+1)

2

)
2Γ (b)

(A.6)

We now apply all of this to the following scalar integral∫
l

1

(l2 − κ)n
= i

∫
ddlE
(2π)d

1

(−l2E − κ)n
=

(−1)ni

(2π)d

∫ ∞

0
dlE

ld−1
E

(l2E + κ)n

∫
dΩd

=
(−1)ni

(2π)d

[∫ ∞

0
dz

zd−1

(z2 + 1)n

] [∫
dΩd

] (
1

κ

)n− d
2

, where z2 =
l2E
κ

=
(−1)ni

(2π)d

[
Γ
(
d
2

)
Γ
(
n− d

2

)
2Γ (n)

][
2π

d
2

Γ
(
d
2

)] (1

κ

)n− d
2

=
(−1)ni

(4π)
d
2

Γ(n− d
2)

Γ(n)

(
1

κ

)n− d
2

. (A.7)

To regulate UV divergences, one sets d = 4 − 2ε, where ε > 0. In the limit of ε → 0,
one recovers four spacetime dimensions, and hence the UV divergences are captured in
poles of the form ε−n.

Consider now the scalar one-point integral, denoted as A0(m
2) in the notation of

Passarino and Veltman,

A0(m
2) ≡ (2πQ)4−d

iπ2

∫
ddq

1

(q2 −m2)
=

(2πQ)4−d

iπ2
(2π)d

[
− i

(4π)
d
2

Γ(1− d
2)

Γ(1)

(
1

m2

)1− d
2

]

= m2
[
−(4πQ2)ε Γ(ε− 1) (m2)−ε

]
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Appendix A. Loop Integrals 101

= m2

[
1

ε
+ 1− γE +O(ε)

] [
1 + log

(
4πQ2

m2

)
+O(ε)

]

= m2

[
1

ε
− γE + 1 + log

(
4πQ2

m2

)
+O(ε)

]
≡ m2

[
1

ε
+ 1 + log

(
Q

2

m2

)
+O(ε)

]
(A.8)

where we have used (A.4) and ax = 1 + x log(a) +O(x2) in the third step. Here, Q2 is a
factor that arises typically from ensuring the various couplings remain dimensionless when
one goes to d dimensions [2, 3]; it is typically related to a renormalisation scale. We have
additionally defined the quantity Q2

= 4πe−γEQ2 in the last step.
Next, we take a look at the two-point function B0,

B0(p
2,m2

1,m
2
2) ≡

(2πQ)4−d

iπ2

∫
ddq

1

(q2 −m2
1)[(q + p)2 −m2

2]

=
(2πQ)4−d

iπ2
(2π)d

∫ 1

0
dx

∫
l

1

(l2 − κ(x))2
, where l = q + px

=

∫ 1

0
dx

[
Γ(ε)

(
4πQ2

κ(x)

)ε]
=

1

ε
+

∫ 1

0
dx log

(
Q

2

κ(x)

)
+O(ε) (A.9)

where we have made use of the Feynman parameter x to combine the denominators as in
(A.3). Note that p is the external momentum and hence, a constant with respect to the
q integration. This allows us to perform the described linear shift to l in the second step.
On appropriately completing the square, one obtains the following quantity

κ(x) = m2
1 x+m2

2 (1− x)− p2x(1− x) . (A.10)

We also define the scalar three-point function C0,

C0(p
2
1, p

2
2, p1 · p2;m2

1,m
2
2,m

2
3) =

(2πQ)4−d

iπ2

∫
ddq

1

(q2 −m2
1)[(q + p1)2 −m2

2][(q + p2)2 −m2
3]

=
(2πQ)4−d

iπ2
(2π)d 2

∫ 1

0

∫ 1−x

0
dy

∫
l

1

(l2 − α(x, y))3
where l = q + p1x+ p2y

= 2

∫ 1

0
dx

∫ 1−x

0
dy

[
Γ(ε+ 1)

Γ(3)

(
4πQ2

α(x, y)

)ε
1

α(x, y)

]
(A.11)

where x and y are the two Feynman parameters required to combine the denominators,
and α(x, y) is the quantity

α(x, y) = m2
1 (1− x− y) +m2

2 x+m2
3 y − p21x(1− x)− p22y(1− y) + 2p1 · p2xy . (A.12)

Note that the C0 function does not diverge for ε → 0, so we may take this limit safely.
This gives us the following UV finite expression

C0(p
2
1, p

2
2, p1 · p2;m2

1,m
2
2,m

2
3)

=

∫ 1

0

∫ 1−x

0

dx dy

m2
1 (1− x− y) +m2

2 x+m2
3 y − p21x(1− x)− p22y(1− y) + 2p1 · p2xy

.

(A.13)
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A.1. Dimensional Regularisation

One can similarly define the scalar D0 function, involving four propagators, which is also
UV finite. For completeness’ sake, we note that there may be infrared (IR) divergences in
the C0 and D0 functions, in various kinematic limits.

The last scalar integral we discuss is rather important in the context of the effective
potential

(2πQ)4−d

iπ2

∫
ddq logG−1 =

(2πQ)4−d

iπ2

∫
ddq log

(
q2 −m2

)
=

(2πQ)4−d

iπ2

∫
ddq

[
−
∫
dm2 1

q2 −m2

]

= −
∫
dm2A0(m

2) = −m
4

2

[
1

ε
+

3

2
+ log

(
Q

2

m2

)
+O(ε)

]
+ const.

(A.14)

A.1.2 Tensor Integrals and Passarino-Veltman Reduction

By using Lorentz covariance in d dimensions, it is possible to reduce tensor integrals in
terms of scalar integrals [159]. The simplest example, which has been used in this thesis,
in the context of loop integrals involving fermionic propagators, is given by

Bµ(p2,m2
1,m

2
2) =

(2πQ)4−d

iπ2

∫
ddq

qµ

(q2 −m2
1)[(q + p)2 −m2

2]
. (A.15)

We can then use Lorentz covariance to write

Bµ(p2,m2
1,m

2
2) = pµB1(p

2,m2
1,m

2
2) (A.16)

and then contract both sides with pµ to yield

p2B1(p
2,m2

1,m
2
2) = pµB

µ(p2,m2
1,m

2
2) =

(2πQ)4−d

iπ2

∫
ddq

p · q
(q2 −m2

1)[(q + p)2 −m2
2]
.

(A.17)
We can then use the identity

p · q = (p+ q)2 − p2 − q2

2
=

[
(p+ q)2 −m2

2

]
− (q2 −m2

1)− p2 +m2
2 −m2

1

2

to separate out the various integrals. Dividing out both sides of (A.17) by p2 gives us

B1(p
2,m2

1,m
2
2) =

1

2p2

[
(2πQ)4−d

iπ2

∫
ddq

1

(q2 −m2
1)

− (2πQ)4−d

iπ2

∫
ddq

1

(p+ q)2 −m2
2)

−
[
p2 −m2

2 +m2
1

] (2πQ)4−d

iπ2

∫
ddq

1

(q2 −m2
1)[(p+ q)2 −m2

2)]

]

=
A0(m

2
1)−A0(m

2
2) + (m2

2 −m2
1)B0(p

2,m2
1,m

2
2)

2p2
− B0(p

2,m2
1,m

2
2)

2
.

(A.18)
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We use the fact that the difference of two A0 functions can actually be written as a B0 at
zero external momentum

A0(m
2
1)−A0(m

2
2) =

(2πQ)4−d

iπ2

∫
ddq

(−m2
2 +m2

1)

(q2 −m2
1)(q

2 −m2
2)

= −(m2
2 −m2

1)B0(0,m
2
1,m

2
2) ,

(A.19)
so the B1 can be re-expressed as

B1(p
2,m2

1,m
2
2) =

(m2
2 −m2

1)

2p2
[
B0(p

2,m2
1,m

2
2)−B0(0,m

2
1,m

2
2)
]
− B0(p

2,m2
1,m

2
2)

2
.

(A.20)

Similar techniques can be used to re-express three-point tensor integrals. For example,
one can express

Cµ(p21, p
2
2, p1 · p2;m2

1,m
2
2,m

2
3) =

(2πQ)4−d

iπ2

∫
ddq

qµ

(q2 −m2
1)[(q + p1)2 −m2

2][(q + p2)2 −m2
3]

= pµ1 C1(p
2
1, p

2
2, p1 · p2;m2

1,m
2
2,m

2
3) + pµ2 C2(p

2
1, p

2
2, p1 · p2;m2

1,m
2
2,m

2
3)
(A.21)

This can then be reduced to scalar integrals by appropriate contractions of the external
momenta p1 and p2 to find the coefficient functions C1 and C2.

A.2 Numerical Evaluation in Euclidean Space
In this section, we directly evaluate the loop integrals for one- and two-points in four
space-time dimensions after converting to Euclidean space through an appropriate Wick
rotation. These methods were made use of extensively in Chapter 3 to iteratively solve
the gap equation, where we do not work with the free propagator. We will make use
of the fact that the propagator is a function of the Euclidean norm of the (Euclidean)
four-momentum, i.e. G(pE) ≡ G(|pE |).

The integration element over the Euclidean momentum is given by∫
d4kE
(2π)4

=
1

(2π)4

∫ Λ

0
dkE k

3
E

∫
dΩ4 =

1

(2π)4

∫ Λ

0
dkE k

3
E

∫ π

0
dθ sin2 θ

∫ π

0
dψ sinψ

∫ 2π

0
dφ .

(A.22)
To evaluate the radial integral, we have defined an appropriate cutoff, denoted as Λ. The
UV divergences are captured in the limit Λ → ∞. Thus, Λ should be chosen to be
significantly larger than all the mass scales in the system. Finally, when considering the
differences of these loop integrals, the cutoff dependence should vanish.

A.2.1 One-Point Scalar Integral

Converting to Euclidean momentum, we have∫
d4qE
(2π)4

G(|qE |) =
1

(2π)4

∫ Λ

0
dqE q

3
E G(|qE |)

∫
dΩ4 =

1

8π2

∫ Λ

0
dqE q

3
E G(|qE |) (A.23)

where we have used the fact that the integrand has no angular dependence, so we can
directly integrate over the solid angle. Explicitly for the free propagator, we have

1

8π2

∫ Λ

0
dqE

q3E
q2E +m2

=
1

16π2

[
Λ2 −m2 log

(
1 +

Λ2

m2

)]
. (A.24)
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The result is quadratically divergent as Λ → ∞ as expected from power counting argu-
ments.

A.2.2 Two-Point Scalar Integral

In this case, there is an external momentum involved, so the evaluation of the angular in-
tegration is not straightforward as an angular dependence arises due to the angles between
the external and integrating momenta. With this in mind, we have∫

dq4E
(2π)4

G(|qE |)G(|qE + pE |)

=
1

(2π)4

∫ Λ

0
dqE q

3
E G(|qE |)

∫ π

0
dθ sin2 θ G(|qE + pE |)

∫ π

0
dψ sinψ

∫ 2π

0
dφ

(A.25)

and now define
u2 ≡ |qE + pE |2= q2E + p2E + 2qE pE cos θ , (A.26)

where we have chosen the coordinate system such that the dot product between the vectors
qE and pE depends only on the angle θ. This variable transformation gives

sin θ =

√
4q2E p

2
E − (u2 − q2E − p2E)

2

2qE pE
, dθ sin θ = − u du

qE pE sin θ
. (A.27)

Substituting this in (A.25), and integrating over the remaining angles, we obtain∫
dq4E
(2π)4

G(|qE |)G(|qE + pE |)

=
1

8π3 p2E

∫ Λ

0
dqE qE G(|qE |)

∫ |qE+pE |

|qE−pE |
duu

√
4q2E p

2
E − (u2 − q2E − p2E)

2G(|u|)

≡ 1

8π3 p2E

∫ Λ

0
dqE qE G(|qE |)

∫ |qE+pE |

|qE−pE |
duu

√
−λ(u2, q2E , p2E)G(|u|) , (A.28)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx is the Källén function.
Note that for the case of p2E → 0, it is easier to directly perform the integration, like

for the scalar one-point function, as there is no angular dependence in the integrand, i.e.∫
d4qE
(2π)4

G2(|qE |) =
1

8π2

∫ Λ

0
dqE q

3
E G

2(|qE |) . (A.29)

For free propagators, one obtains the following result

1

8π2

∫ Λ

0
dqE

q3E
(q2E +m2)2

=
1

16π2

[
log

(
1 +

Λ2

m2

)
− Λ2

m2 + Λ2

]
, (A.30)

which is logarithmically divergent as Λ → ∞.
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Appendix B

Integrals for the Scalar Sunset
Approximation

In this appendix, we calculate and give explicit expressions for the divergent and finite
parts of various loop integrals encountered in Chapter 4, when one includes the sunset
diagrams in the computation of the 2PI effective potential. Recall that the relevant loop
integrals involved the auxiliary propagator iG−1

a (q) = q2 −m2
0, so we can make use of the

results of dimensional regularisation. We work in d = 4− 2ε, and as such, the divergences
are expressed in terms of poles of the form ε−n with n > 0.

We begin with the easier one-loop integrals, the first of which is

T (2) =

∫
q
Ga(q) = − m2

0

16π2ε︸ ︷︷ ︸
T

(2)
d

+
m2

0

16π2
[
log(m2

0)− 1
]
+O(ε) (B.1)

where we have identified the divergent piece and use the notation log(x) = log
(
x

Q
2

)
where

Q is defined as in Appendix A. We eventually set Q2
= m2

0, essentially carrying out the
renormalisation at the VEV, so we will use this throughout, as this leads to easier to
handle expressions for the counterterms and finite parts. We thus have,

T (2) = T
(2)
d − m2

0

16π2
+O(ε) . (B.2)

The finite piece here is precisely one of those added back to the integral Tfin. in (4.67), when
defining the MS renormalised one-point integral. For the integral over two propagators,
we have

T (0) =

∫
q
G2
a(q) =

1

16π2ε
− log(m2

0) +O(ε)
Q

2
= m2

0= T
(0)
d +O(ε) . (B.3)

Now, we will tackle the two-loop integrals. We introduce some notation, similar to
[160], for definite integrals that appear in the determination of finite parts,

Ls2 ≡ −
∫ 2π

3

0
dx log

[
sin
(x
2

)]
, Ls3 ≡ −

∫ 2π
3

0
dx log2

[
sin
(x
2

)]
. (B.4)
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Let us now look at

T (I,2) ≡
∫
q
Ga(q) Ia,fin.(q

2) =

∫
q
Ga(q)

∫
k
i
[
Ga(k + q)Ga(k)−G2(k)

]
=

∫
q
Ga(q) i

∫
k
Ga(k + q)Ga(k)︸ ︷︷ ︸
Sa

−
∫
q
Ga(q) i

∫
k
G2
a(k) . (B.5)

We evaluate each two-loop integral separately; the second one is easier as it “factorises”
into two separate integrals. This gives∫
q
Ga(q) i

∫
k
G2
a(k)

=
m2

0

(16π2)2

[
− 1

ε2
−
(
1− 2log(m2

0)
)

ε
+
(
−1− ζ(2) + 2log(m2

0)− 2log
2
(m2

0)
)]

+O(ε) ,

where ζ is the Riemann-zeta function, with ζ(2) = π2/6. The sunset integral with auxiliary
propagators, Sa, has the following result [160]

Sa =
3m2

0

(16π2)2

{
− 1

2ε2
+

1

ε

[
−1

2
+
(
log(m2

0)− 1
)]

− 1

2

[
7− 8

√
3Ls2 +

π2

6
− 6log(m2

0) + 2log
2
(m2

0)

]}
+O(ε) . (B.6)

Putting these together yields the result

T (I,2) Q
2
= m2

0=
m2

0

(16π2)2

{
− 1

2ε2
− 7

2ε
−
[
19

2
− 12

√
3Ls2 +

π2

12

]}
+O(ε) ≡ T

(I,2)
d + T

(I,2)
fin. .

(B.7)

The integral T (I,0) is then closely related as

T (I,0) ≡
∫
q
G2
a(q) Ia,fin.(q

2) =

∫
q
G2
a(q)

∫
k
i
[
Ga(k + q)Ga(k)−G2(k)

]
= −1

3

∂Sa
∂m2

0

∣∣∣∣
Q

2
=m2

0

− 1

(16π2)2

[
1

ε2
− 2log(m2

0)

ε
+
π2

6
+ 2log

2
(m2

0) +O(ε)

] ∣∣∣∣
Q

2
=m2

0

=
1

(16π2)2

{
− 1

2ε2
+

1

2ε
+

[
1

2
− π2

12
− 4

√
3Ls2

]}
+O(ε) ≡ T

(I,0)
d + T

(I,0)
fin. . (B.8)

T
(I,0)
fin. is the other finite part added to (4.67), to render it MS renormalised.

The only three-loop integrals encountered are in T (I,I),

T (I,I) ≡ i

∫
q
G2
a(q) I2

a,fin.(q
2) = i

∫
q
G2
a(q)

∫
k

{
i
[
Ga(k + q)Ga(k)−G2(k)

]}2
= i

∫
q
G2
a(q) i

∫
k
Ga(k + q)Ga(k) i

∫
r
Ga(r + q)Ga(r)
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Appendix B. Integrals for the Scalar Sunset Approximation

− 2i

∫
q
G2
a(q) i

∫
k
Ga(k + q)Ga(k) i

∫
r
G2
a(r) + i

∫
q
G2
a(q) i

∫
k
G2
a(k) i

∫
r
G2
a(r)

(B.9)

The integrals in the last line are easier to treat; the results for these are

i

∫
q
G2
a(q) i

∫
k
G2
a(k) i

∫
r
G2
a(r)

Q
2
= m2

0=
1

(16π2)3

[
1

ε3
+
π2

4ε
− ζ(3)

]
+O(ε)

i

∫
q
G2
a(q) i

∫
k
Ga(k + q)Ga(k) i

∫
r
G2
a(r)

Q
2
= m2

0=

1

(16π2)3

[
1

2ε3
+

1

2ε2
+

1

ε

(
1

2
− 4

√
3Ls2 ++

π2

8

)

+

(√
3

2
Ls2(log 9− 2)− 1

2

(
2
√
3Ls3 + ζ(3)− 1

)
−

√
3π3

18
+
π2

8

)]
+O(ε)

To treat the first integral, we Wick rotate

i

∫
q
G2
a(q) i

∫
k
Ga(k + q)Ga(k) i

∫
k
Ga(r + q)Ga(r)

=

∫
qE

∫
kE

∫
rE

1

(q2E +m2
0)

2
[
(kE + qE)2 +m2

0

]
(k2E +m2

0)
[
(rE + qE)2 +m2

0

]
(r2E +m2

0)

=
1

(16π2)3
T(2,1,1,1,1,0)(m2

0,m
2
0,m

2
0,m

2
0,m

2
0,m

2
0) ,

whereby, in the last line, we adopt the notation in [160]. We then perform a reduction
to so-called “master integrals” via integration-by-parts (IBP) identities (see, for e.g.,[161])
using the program FIRE6 [162]. This yields

T(2,1,1,1,1,0)(m2
0,m

2
0,m

2
0,m

2
0,m

2
0,m

2
0)

(16π2)3
= −(3d− 8)

6m4
0

[
E(m2

0,m
2
0,m

2
0,m

2
0)

(16π2)3

]

+
2(d− 2)

3m4
0

[
A(m2

0)

16π2

] [
I(m2

0,m
2
0,m

2
0)

(16π2)2

]
− (d− 6)

6m2
0

[
G(m2

0,m
2
0,m

2
0,m

2
0,m

2
0)

(16π2)3

]
,

(B.10)

where we continue with the notation for the integrals as in [160]. Gathering all the various
pieces, we obtain

T(2,1,1,1,1,0)(m2
0,m

2
0,m

2
0,m

2
0,m

2
0,m

2
0)

(16π2)3

∣∣∣∣
Q

2
=m2

0

=

1

(16π2)3

[
1

3ε3
+

2

3ε2
+

1

ε

(
1− 4

√
3Ls2

)
+

(
1

3

(
6
√
3Ls2 log(3) + 5ζ(3)− 2

)
− 2

√
3Ls3 +

π2

18

(
3− 2

√
3
))]

+O(ε) (B.11)
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Putting together everything, we finally arrive at

T (I,I) =
1

(16π2)3

[
1

3ε3
− 1

3ε2
+

(
2
√
3Ls2 +

5

3
(ζ(3)− 1) +

π3

9

√
3− π2

36

(
4
√
3 + 3

))]
+O(ε)

= T
(I,I)
d + T

(I,I)
fin. . (B.12)
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Appendix C

MS Renormalisation with 2PI
Kernels

In Chapter 4, we obtained counterterms for the various coupling constants in the Hartree
and scalar sunset approximations in the MS scheme, by extracting divergent parts from
the various loop integrals and identifying parts of these as contributions to renormalised
quantities. This led to cancellation conditions (see (4.8) and (4.15) for the Hartree ap-
proximation and (4.34) and (4.49) for the scalar sunset approximation) to determine these
counterterms. In this appendix, we would like to reconcile this with the approach of using
Bethe-Salpeter equations (BSEs) introduced and used in Chapter 3 to determine the very
same coupling constant counterterms.

C.1 Hartree Approximation

Our starting point is (3.36), which gives

V
(4)

(p) = −(λR + δλ0) − 1

2
(λR + δλ0)V

(4)
(p)
[
I(p2)

]
(C.1)

where in the Hartree approximation, we have

iG−1
R = p2 −m2(φ) .

Therefore, we can evaluate the loop integral in dim. reg.

I(p2) = i

∫
q
GR(p+ q)GR(q) ≡

B0(p
2,m2(φ),m2(φ))

16π2

=
1

16π2ε
− 1

16π2

∫ 1

0
dx log

[
m2(φ)− p2x(1− x)

]
︸ ︷︷ ︸

Ifin.(p2)

+O(ε) . (C.2)

Substituting this into (C.1), we get

V
(4)

(p) = −λR − λR
2
V

(4)
(p) Ifin.(p

2)− δλ0 −
(λR + δλ0)

32π2ε
V

(4)
(p)− δλ0

2
V

(4)
(p) Ifin.(p

2)

(C.3)
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C.2. Scalar Sunset Approximation

Using now the same idea as in (4.7), we define the vertex function from the first explicitly
finite terms

V
(4)

(p) = −λR − λR
2
V

(4)
(p) Ifin.(p

2) =⇒ V
(4)

(p) = − λR

1 + λR
2 Ifin.(p2)

. (C.4)

This can be compared to (3.53) if we set p2∗ = 0. Now, we also have a cancellation condition
from the remaining terms of (C.3),

δλ0 +

[
(λR + δλ0)

32π2
+
δλ0 Ifin.(p

2)

2

]
V

(4)
(p) = 0 (C.5)

Substituting (C.4), and solving for δλ0, we end up with the following result

δλ0 =
λ2R

32π2ε

1(
1− λR

32π2ε

) , (C.6)

which is exactly the same result as (4.9).
Now, for the counterterm δλ2, we use the auxiliary kernel and BSE

V (4)(p) = −(λR + δλ2) − 1

2
(λR + δλ2)V

(4)
(p)
[
I(p2)

]
= −λR − λR

2
V

(4)
(p) Ifin.(p

2)−
{
δλ2 +

[
(λR + δλ2)

32π2
+
δλ2 Ifin.(p

2)

2

]
V

(4)
(p)

}
.

(C.7)

In an analogous manner, we obtain

V (4)(p) = −λR − λR
2
V

(4)
(p) Ifin.(p

2) = − λR

1 + λR
2 Ifin.(p2)

= V
(4)

(p) (C.8)

and the counterterm
δλ2 =

λ2R
32π2ε

1(
1− λR

32π2ε

) = δλ0 , (C.9)

which, again, matches the result (4.10).

C.2 Scalar Sunset Approximation

We begin with (3.70),

V
(4)

(p1, p2, p3, p4) = −(λR + δλ0) + 2i(αR + λRφ)
2GR(p3 − p1)

− i

2
(λR + δλ0)

∫
q
GR(p+ q)GR(q)V

(4)
(p+ q,−q, p3, p4)

− (αR + λRφ)
2

∫
q
GR(p+ q)GR(q)GR(p1 + q)V

(4)
(p+ q,−q, p3, p4) . (C.10)

Here, the analysis is not so straightforward as the propagator is now of the form (see
(4.29)) ,

iG−1
R = p2 −M2(φ; p2) , (C.11)
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Appendix C. MS Renormalisation with 2PI Kernels

so we cannot evaluate the integrals in dim. reg. Furthermore, the vertex function, V (4),
also has a momentum dependence so it cannot be “pulled” out of the integrals like in the
Hartree approximation. However, we can still use power counting arguments to identify
divergent quantities. The propagator is of course finite and so is V (4), which imply that
the loop integral in the second line of (C.10) is divergent and the one in the last line is
not. This means that we can express the divergent loop integral as

I1(p, p3, p4) ≡ i

∫
q
GR(p+q)GR(q)V

(4)
(p+q,−q, p3, p4) = I1,div.+I1,fin.(p, p3, p4) , (C.12)

where we have used the fact that V (4) is dimensionless, and there are two propagators
involved in the loop integral. This allows us to identify the divergent piece when the
momenta are 0. With this, we can re-write (C.10) as

V
(4)

(p1, p2, p3, p4) =

− λR + 2i(αR + λRφ)
2GR(p3 − p1)−

λR
2
I1,fin.(p, p3, p4)− (αR + λRφ)

2I2(p, p3, p4)

− δλ0 −
(λR + δλ0)

2
I1,div. −

δλ0
2
I1,fin.(p, p3, p4) . (C.13)

where we adhere to the notation in (3.73) and (3.74). The first term defines the finite
vertex function via an implicit, integral equation

V
(4)

(p1, p2, p3, p4) =

− λR − λR
2
I1,fin.(p, p3, p4) + 2i(αR + λRφ)

2GR(p3 − p1)− (αR + λRφ)
2I2(p, p2, p3, p4)

(C.14)

On comparison with (C.4), we can see that the first two terms of (C.14) are essentially the
Hartree contribution and the other two terms are the pieces we get due to the inclusion
of the scalar sunset diagram in the 2PI effective action.

We now examine the cancellation condition

δλ0 +
(λR + δλ0)

2
I1,div. +

δλ0
2
I1,fin.(p = 0, p3 = 0, p4 = 0) = 0 , (C.15)

where this is at zero momentum as this is where the effective potential is evaluated. This is
similar to (C.5), except now we need to analyse the divergences in the integral I1 carefully,

I1,div. = i

∫
q
G2
R(q)V

(4)
(q,−q, 0, 0)

∣∣∣∣∣
div.

= i

∫
q
G2
R(q)

[
− λR − λR

2
I1,fin.(0, 0, 0) + 2i(αR + λRφ)

2GR(q)

− (αR + λRφ)
2I2(0,−q, 0, 0)

]∣∣∣∣∣
div.

= − λR
16π2ε

[
1 +

I1,fin.(0, 0, 0)

2

]
. (C.16)
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C.2. Scalar Sunset Approximation

Substituting this into (C.15), we obtain[
δλ0 −

λR (λR + δλ0)

32π2ε

] [
1 +

I1,fin.(0, 0)

2

]
= 0 . (C.17)

This is only possible if

δλ0 =
λR (λR + δλ0)

32π2ε
=⇒ δλ0 =

λ2R
32π2ε

1(
1− λR

32π2ε

) (C.18)

which is the result found in (4.43). Note that this counterterm matches its value in the
Hartree approximation, c.f. (4.9) and also the previous section in this appendix.

Next, we seek the counterterms δλ2 and δα1. Starting with the auxiliary four-point
vertex function (3.76), we have

V (4)(p) = −(λR + δλ2) + λ2RI(p2)

+
i

2

[
−(λR + δλ2) + λ2RI(p2)

] ∫
q
GR(q)GR(q + p)V

(4)
(q + p,−q, p3, p4)

= −λR − λR
2
I1(p, p3) + λ2RIfin.(p

2) +
λ2R
2
Ifin.(p

2)I1,fin.(p, p3, p4)

− δλ2 + λ2RT
(0)
d − (λR + δλ2)

2
I1,div. +

λ2R
2
T
(0)
d I1,div. +

λ2R
2
Ifin.(p

2)I1,div.

− δλ2
2
I1,fin.(p, p3, p4) +

λ2R
2
T
(0)
d I1,fin.(p, p3, p4) , (C.19)

where the last two lines of the second equality gives the cancellation condition required
when setting the momenta to zero,

−δλ2 + λ2RT
(0)
d − (λR + δλ2)

2
I1,div. +

λ2R
2
T
(0)
d I1,div. +

λ2R
2
Ifin.(0)I1,div.

− δλ2
2
I1,fin.(0, 0, 0) +

λ2R
2
T
(0)
d I1,fin.(0, 0, 0) = 0 ,

(C.20)

where T (0)
d = 1/16π2ε, as determined in Appendix B. This then gives us

δλ2 =

[
3λR
32π2ε

−
λ2R

(32π2ε)2

] [
1− λR

32π2ε

]−1

=
λ2R

32π2ε
− 2λR +

λ2R
32π2

+ λR

(
1− 64π2

λR

)
ε+ 32π2

(
1− 64π2

λR

)
ε2 +O(ε3) (C.21)

which reproduces the result (4.45) after the expansion in ε in the second step.
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Appendix C. MS Renormalisation with 2PI Kernels

Finally, the counterterm δα1 is obtained similarly, as the structure of the 3-point vertex
function (3.69) is similar to the auxiliary four-point vertex. The result is

δα1 =

[
3αR
32π2ε

− αRλR
(32π2ε)2

] [
1− λR

32π2ε

]−1

=
αRλR
32π2ε

− 2αR +
αRλR
32π2

+ αR

(
1− 64π2

λR

)
ε+

32π2αR
λR

(
1− 64π2

λR

)
ε2 +O(ε3)

(C.22)

which matches (4.44) after expanding in powers of ε.
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Appendix D

Dark Matter Inelastic Scattering

We present here a calculation of the spin-independent cross-section for inelastic nucleon-
dark matter scattering. This is relevant when considering DM-nucleon interactions via
Z-boson exchange, which couples between CP -even and CP -odd states. In the context of
the scotogenic model considered in Chapter 6, for which the calculation in this appendix is
done, this could be between one of the scalars φ0n and the pseudo-scalar A0, or between two
Majorana fermions χm and χn. For completeness, we note that this channel is active only
when the CP -odd state is produced on-shell, which is when the DM candidate acquires
enough kinetic energy. As the mass difference between the two states is typically small,
our calculation will proceed along the lines of the usual DM-nucleon elastic scattering for
direct detection [33, 163–167].

D.1 Fermionic Dark Matter

Here ,we consider χ0
1 to be the DM candidate and χ0

m to be the other state. As the mass
splitting is very small, we may take mχ0

1
≈ mχ0

n
. Our starting point is the matrix element

for the process given in Fig. D.1

iMferm. = ū(p3)

[
− i g2 γµ(a1m − b1mγ

5)

cos θW

]
u(p1)

[
− i

q2 −M2
Z

(
ηµν +

qµqν

M2
Z

)]
ū(p4)

[
− i g2
cos θW

γν(c
q
V − cqAγ

5)

]
u(p2)

= i

(
− g22
M2
Z cos θW

)
ū(p3)

[
γµ(a1m − b1mγ

5)
]
u(p1) ū(p4)

[
γµ(cqV − cqAγ

5)
]
u(p2) ,

where we have used the couplings from the SM of the quarks to the Z-boson and work
in unitarity gauge to write down the propagator for the Z-boson [168]. The coefficients
a1m and b1m contain components of the unitary matrix Uχ (c.f. (6.10)). In going from the
first to the second step, we have used that the momentum transfer −q2 ≈ |~q|2�M2

Z . We
now map the above matrix element, as outlined in [165, 166], onto the following Wilson

127



Appendix D. Dark Matter Inelastic Scattering

Z0

χ0
mχ0

1

q q

Figure D.1: Inelastic scattering between two Majorana fermions, the DM candidate χ0
1, and a

heavier state χ0
m, via Z-boson exchange. q refers to up and down quarks in a nucleon.

coefficients times effective operators describing DM-quark interactions∑
q=u, d

[
cq5 (χ1γ

µχm) (qγ
µq) + cq6

(
χ1γ

µγ5χm
)
(qγµq)

+ cq7
(
χ1γ

µγ5χm
)
(qγµq) + cq8

(
χ1γ

µγ5χm
) (
qγµγ5q

)
+ h.c.

]
where, for this model, the couplings are given as

cq5 = −
g22 a1m c

q
V

M2
Z cos θW

, cq6 =
g22 b1m c

q
V

M2
Z cos θW

,

cq7 =
g22 a1m c

q
A

M2
Z cos θW

, cq8 = −
g22 b1m c

q
A

M2
Z cos θW

.

This induces the following effective Lagrangian at the nucleon level

Leff. =
∑

N=p, n

8∑
i=5

cNi ON
i (D.1)

where we defined the following operators

ON
5 = (χ1γ

µχm)
(
NγµN

)
, ON

6 =
(
χ1γ

µγ5χm
) (
NγµN

)
,

ON
7 =

(
χ1γ

µγ5χm
) (
NγµN

)
, ON

8 =
(
χ1γ

µγ5χm
) (
Nγµγ5N

)
,

and the nucleon-DM couplings are

cp5,6 = 2cu3 + cd3 , cn5,6 = cu3 + 2cd3 , cN7,8 =
∑
q=u,d

cq7,8∆
(N)
q ,

where ∆
(N)
q is associated to the quark spin content of the nucleon, and hence the con-

tributions from these operators eventually go to spin-dependent cross-section. For the
remaining operators, we evaluate the nucleon-DM matrix element by expanding out the
spinors in the non-relativistic limit [166]. We find that the operator ON

6 is velocity-
suppressed, and hence the dominant contribution comes from the ON

5 . We thus obtain
the final cross-section as

σinelastic S.I.
fermion =

1

π

(
MN mχ0

1

MN +mχ0
1

)2

|cN5 |2 . (D.2)
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Not that for m = 1, i.e. when the final state is the same as the initial one, the operator
vanishes as Majorana fermions cannot carry a vector current; this is easily verified by
explicitly writing down a1m

a1m = (Uχ)
∗
m2 (Uχ)12 − (Uχ)

∗
m3 (Uχ)

∗
13 − (Uχ)

∗
12 (Uχ)m2 + (Uχ)

∗
13 (Uχ)m3 .

D.2 Scalar Dark Matter

Z0

A0φ01

q q

Figure D.2: Inelastic scattering between the scalar DM candidate, φ01, and the pseudo-scalar A0

via Z-boson exchange.

In this case, we take m2
φ01

≈ m2
A0 and our analysis proceeds along similar lines to fermionic

DM. The matrix element for the process given in Fig. D.2 is

iMscalar =

[
−g2 U (p1 + p3)µ

2 cos θW

] [
−i

q2 −M2
Z

(
ηµν +

qµqν

M2
Z

)]
ū(p4)

[
−i g2
cos θW

γν(c
q
V − cqAγ

5)

]
u(p2)

=

[
− g22
2 cos θW M2

Z

]
(p1 + p3)µ ū(p4)

[
γµ(cqV − cqAγ

5)
]
u(p2) .

This translates to the following effective Wilson coefficients times quark-DM operators∑
q=u, d

[
cq3

(
iφ∗

↔
∂µA

0

)
q̄γµq + cq4

(
iφ∗

↔
∂µA

0

)
q̄γµγ5q

]

where X
↔
∂µY = X∂µY − Y ∂µX. The couplings are now given as

cq3 = −
g22 (Uφ)12 c

q
V

2 cos θW M2
Z

, cq4 = −
g22 (Uφ)12 c

q
A

2 cos θW M2
Z

.

The effective Lagrangian induced at nucleon level is then given by

Leff. =
∑

N=p, n

[
cN3

(
iφ∗

↔
∂µA

0

)
NγµN + cN4

(
iφ∗

↔
∂µA

0

)
Nγµγ5N

]

where the couplings at this level are given by

cp3 = 2cu3 + cd3 , cn3 = cu3 + 2cd3 , cN4 =
∑
q=u,d

cq4∆
(N)
q . (D.3)
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Thus, ON
4 would contribute to the spin-dependent cross section, so we use ON

3 to obtain
the final spin-independent cross-section as

σinelastic S.I.
scalar =

1

π

(
MN Mφ

MN +Mφ

)2

|cN3 |2 . (D.4)
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Appendix E

Calculation of the CP Asymmetry
Parameters

In this appendix, we outline the calculations and collect the expressions for the various
diagrams that contribute to the CP asymmetry parameter εi in the model described in
Chapter 6. The basis of the calculation is the following formula obtained in Chapter 5

εi =
∑
α

εiα =

−2
∑
α, β, k

Im
[
y∗αi yαk yβk y

∗
βi

]
Im [Fint.]∑

γ

|yγi|2 Ftree
. (E.1)

The total CP asymmetry generated in the decay of one of the Majorana fermions Fi is
the sum of all possible Wave Function (WF) and Vertex (V) diagrams

εi =
∑
j

WF(i)
j +

∑
j

V(i)
j . (E.2)

To deal with the loop integrals, we work in dimensional regularisation, and make use
of the Passarino-Veltman functions discussed in Appendix A. Along the way, we would
require the evaluation of Dirac traces, as well as reduction of tensor integrals, both of
which were carried out conveniently using FeynCalc [169–171]. Further, we would require
the imaginary parts of the various loop functions. For the B0 function, this is given by

Im
[
B0(p

2,m2
1,m

2
2)
]

= π
λ

1
2

(
p2,m2

1,m
2
2

)
p2

Θ
(
p2 − (m1 +m2)

2
)
, (E.3)

where λ(x, y, z) is the Källén function and Θ(x) is the Heaviside-step function, which
enforces the fact that the imaginary part exists only when particles in the loop can go on-
shell. The imaginary part of the C0 function was calculated numerically using PackageX
[172], as analytic expressions exist only for particular cases.

Finally, as it is customary to normalise the asymmetry to the total decay width into
leptonic and anti-leptonic state, we define

Γitot. = Γ(Fi → Lη) + Γ(Fi → ψH) + Γ(Fi → L̄ η†) + Γ(Fi → ψ̄ H†) (E.4)

where the decay widths of the Fi are defined in (6.19).
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p

Fi

q

η

q + p

Lm

p

Fk

p1

p2

Lj

η

p

Fi

q + p

η

q

Lm

p

Fk

p1

p2

Lj

η

Figure E.1: Examples of one-loop wave function diagrams for the decays of Fi. Note the flow of
lepton number, and the ‘clash’ on the line of the F , indicating the mass insertion.

E.1 Wave Function Diagrams

For the wave-function diagrams, one should carefully take into account the flow of lepton
number and observe the various mass insertions. To this end, we use the prescription
outlined in [173] for the Feynman rules when writing down the amplitude. Thus, we will
explicitly calculate the diagrams in Fig. E.1 to demonstrate the procedure of obtaining
the expression for the CP asymmetry.

For the left diagram, we obtain as matrix element

iM1 =
∑
k 6=i

3∑
m=1

ū(p1)

[
−i(gjFk

)∗
(1 + γ5)

2

]
i(/p+Mk)

p2 −M2
k

[
−igmFk

(1− γ5)

2

]
{∫

q

i(/q + /p)

(q + p)2

[
−i(gmFi

)∗
(1 + γ5)

2

]
i

q2 −M2
η

}
u(p)

=
∑
k 6=i

3∑
m=1

(gjFk
)∗ gmFk

(gmFi
)∗

4
ū(p1)(1 + γ5)

/p

p2 −M2
k{

i
[
B1(p

2,M2
η , 0) +B0(p

2,M2
η , 0)

]
/p

16π2

}
(1 + γ5)u(p)

=
∑
k 6=i

3∑
m=1

iM2
i

M2
i −M2

k

(gjFk
)∗ gmFk

(gmFi
)∗

32π2[
B1(M

2
i ,M

2
η , 0) +B0(M

2
i ,M

2
η , 0)

] [
ū(p1)(1 + γ5)u(p)

]
. (E.5)

where in the last step we used the fact that the spinors are on-shell so

/pu(p) =Miu(p) , and p2 =M2
i .

For the right diagram, where the lepton flow in the loop is reversed, we have

iM2 =
∑
k 6=i

3∑
m=1

ū(p1)

[
−i(gjFk

)∗
(1 + γ5)

2

]
i(/p+Mk)

p2 −M2
k

[
−i(gmFk

)∗
(1 + γ5)

2

]
{∫

q

−i/q
q2

[
−igmFi

(1− γ5)

2

]
i

(q + p)2 −M2
η

}
u(p)
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= −
∑
k 6=i

3∑
m=1

(gjFk
)∗ (gmFk

)∗ gmFi

4
ū(p1)(1 + γ5)

Mk

p2 −M2
k

∫
q

/q

q2
[
(q + p)2 −M2

η

](1− γ5)u(p)

= −
∑
k 6=i

3∑
m=1

iMiMk

M2
i −M2

k

(gjFk
)∗ (gmFk

)∗ gmFi

32π2
[
B1(M

2
i , 0,M

2
η )
] [
ū(p1)(1 + γ5)u(p)

]
.

(E.6)

We then take the sum of both loop-level amplitudes to get the total CP asymmetry for
this process. Taking the interference of the sum with the tree-level amplitude and mapping
this to (E.1), we obtain the following expression

2

32π2

∑
k 6=i

3∑
m=1

Mi

M2
i −M2

k

{
Mi Im

[
(gjFk

)∗ gmFk
(gmFi

)∗ gjFi

]
Im
[
B1(M

2
i ,M

2
η , 0) +B0(M

2
i ,M

2
η , 0)

]
−Mk Im

[
(gjFk

)∗ (gmFk
)∗ gmFi

gjFi

]
Im
[
B1(M

2
i , 0,M

2
η )
]}

tr
[
/p1(1 + γ5)(/p+Mi)(1− γ5)

]

=
1

16π

∑
k 6=i

Mi

M2
i −M2

k

(
1−

M2
η

M2
i

)2

Θ
(
M2
i −M2

η

)
{
Mi Im

[
(gjFk

)∗ gmFk
(gmFi

)∗ gjFi

]
+Mk Im

[
(gjFk

)∗ (gmFk
)∗ gmFi

gjFi

]}
(8p1 · p) ,

(E.7)

where the factor 2 in the first line accounts for all possible SU(2)L doublet combinations
in the loop. Note for k = i, where the internal F is degenerate with the decaying one, the
asymmetry vanishes as one obtains the following combination

(gjFi
)∗ (gmFi

)∗ gmFi
gjFi

= |gmFi
|2 |gjFi

|2

which is real. Secondly, we sum over the final leptonic states and thus, the term pro-
portional to Mi vanishes as the combination of couplings is again purely real. This may
contribute to a CP asymmetry in a particular lepton flavour, however [84, 90, 91] Finally,
we perform the phase space integral, and normalise this to the total decay width to obtain
the final result

WF(i)
1 =

1

128π2
Mi

Γitot.

(
1−

M2
η

M2
i

)4

Θ
(
M2
i −M2

η

)∑
k 6=i

Im

 3∑
j=1

gjFi
(gjFk

)∗

2 MiMk

M2
i −M2

k

.

(E.8)
Similarly, one may treat the other possible particles in the loop and final states. We

enlist the expressions as below.

WF(i)
2 =

1

128π2

Mi

(
1− M2

η

M2
i

)2
Γitot.

(
1−

M2
Ψ

M2
i

)
Θ
(
M2
i −M2

Ψ

)
∑
k 6=i

3∑
j=1

1

M2
i −M2

k

{
M2
i

[
Im
[
gjFi

(gjFk
)∗ y1k y

∗
1i

](
1 +

M2
Ψ

M2
i

)
+ Im

[
gjFi

(gjFk
)∗ y1k y

∗
2i

]MΨ

Mi

]
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+MiMk

[
Im
[
gjFi

(gjFk
)∗ y2k y

∗
2i

](
1 +

M2
Ψ

M2
i

)
+ Im

[
gjFi

(gjFk
)∗ y2k y

∗
1i

]MΨ

Mi

]

+M2
i

[
Im
[
gjFi

(gjFk
)∗ y2k y

∗
2i

](
1 +

M2
Ψ

M2
i

)
+ Im

[
gjFi

(gjFk
)∗ y1k y

∗
2i

]MΨ

Mi

]

+MiMk

[
Im
[
gjFi

(gjFk
)∗ y1k y

∗
1i

](
1 +

M2
Ψ

M2
i

)
+ Im

[
gjFi

(gjFk
)∗ y2k y

∗
1i

]MΨ

Mi

]}
(E.9)

WF(i)
3 =

1

128π2
Mi

Γitot.

(
1−

M2
Ψ

M2
i

)2

Θ
(
M2
i −M2

Ψ

)
∑
k 6=i

1

M2
i −M2

k

{
M2
i

[
Im [y1i y2i y

∗
1k y

∗
2k]

(
1 +

M2
Ψ

M2
i

)
− 2 Im

[
(y21i + y22i) y

∗
1k y

∗
2k

]MΨ

Mi

]

+MΨMi

[
Im
[
(y21i + y22i) y

∗
1k y

∗
2k

](
1 +

M2
Ψ

M2
i

)
− 2 Im [y1i y2i y

∗
1k y

∗
2k]

MΨ

Mi

]

+MkMi

[
Im
[
y21i (y

∗
1k)

2 + y21i (y
∗
2k)

2
](

1 +
M2

Ψ

M2
i

)
− 2 Im

[
[(y∗1k)

2 + (y∗2k)
2] yi1 y

i
2

]MΨ

Mi

]

+MkMΨ

[
Im
[
[(y∗1k)

2 + (y∗2k)
2] y1i y2i

](
1 +

M2
Ψ

M2
i

)
− 2 Im

[
y21i (y

∗
1k)

2 + y21i (y
∗
2k)

2
]MΨ

Mi

]}
(E.10)

WF(i)
4 =

1

128π2

Mi

(
1− M2

Ψ

M2
i

)
Γitot.

(
1−

M2
η

M2
i

)2

Θ
(
M2
i −M2

η

)
∑
k 6=i

3∑
j=1

1

M2
i −M2

k

{
M2
i

[
Im
[
gjFk

(gjFi
)∗ y1i y

∗
1k

](
1 +

M2
Ψ

M2
i

)
− 2 Im

[
gjFk

(gjFi
)∗ y2i y

∗
1k

]MΨ

Mi

]

+MiMk

[
Im
[
gjFk

(gjFi
)∗ y2i y

∗
2k

](
1 +

M2
Ψ

M2
i

)
− 2 Im

[
gjFk

(gjFi
)∗ y1i y

∗
2k

]MΨ

Mi

]

+M2
i

[
Im
[
gjFi

(gjFk
)∗ y1i y

∗
1k

](
1 +

M2
Ψ

M2
i

)
− 2 Im

[
gjFi

(gjFk
)∗ y2i y

∗
1k

]MΨ

Mi

]

+MiMk

[
Im
[
gjFi

(gjFk
)∗ y2i y

∗
2k

](
1 +

M2
Ψ

M2
i

)
− 2 Im

[
gjFi

(gjFk
)∗ y1i y

∗
2k

]MΨ

Mi

]}
(E.11)

E.2 Vertex Diagrams
An example of such a process is given in Fig. E.2, which we will calculate for demonstrative
purposes. Note that, unlike the self-energy diagram, there is no second diagram involved,
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p

Fi

p1

Lj

p2

η

q

η

q + p1Fk

q + p

Lm

Figure E.2: Example of a one-loop vertex diagram for the decays of Fi.

in which the internal lepton line is reversed. The matrix element is given by

iM = ū(p1)

[
−i(gjFk

)∗
(1 + γ5)

2

]{∫
q

i(/q + /p1 +Mk
N )

(q + p1)2 −M2
k

[
−i(gkmF )∗

(1 + γ5)

2

]
i(/q + /p)

(q + p)2[
−igmFi

(1− γ5)

2

]
i

q2 −M2
η

}
u(p)

=
(gjFk

)∗(gkmF )∗gmFi

2
Mk
N ū(p1)

{∫
q

/q + /p

(q −M2
η ) [(q + p1)2 − (Mk

N )
2) (q + p)2

}
(1− γ5)u(p)

=
(gjFk

)∗(gkmF )∗gmFi

2
Mk
N ū(p1)

{
i
[
/p1C1(p1, p2,M

2
η , (M

k
N )

2, 0) + /p2C2(p1, p2,M
2
η , (M

k
N )

2, 0)
]

16π2

+
i/pC0(p1, p2,M

2
η , (M

k
N )

2, 0)

16π2

}
(1− γ5)u(p)

=
i(gjFk

)∗(gkmF )∗gmFi

32π2
MiMk

[
C0(p1, p2,M

2
η , (M

k
N )

2, 0) + C2(p1, p2,M
2
η , (M

k
N )

2, 0)
]

[
ū(p1)(1 + γ5)u(p)

]
(E.12)

where the C1 function does not contribute as the SM fermions are massless above EWSB.
We now calculate the relevant interference term, while summing over the leptons in the
loop and final state, to obtain

1

16π2

∑
k 6=i

Im

 3∑
j=1

gjFi
(gjFk

)∗

2 MkMi Im
{[
C0(p1, p2,M

2
k ,M

2
η , 0) + C2(p1, p2,M

2
k ,M

2
η , 0)

]}
tr
[
/p1(1 + γ5)(/p+mF )(1− γ5)

]
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=
1

16π

∑
k 6=i

Im

 3∑
j=1

gjFi
(gjFk

)∗

2 MkMi

{
Θ
(
M2
i −M2

η

)
M2
i

−
M2
η −M2

k

M2
i −M2

η

Θ
(
M2
η −M2

k

)

+

[
1 +

M2
k −M2

η

M2
i −M2

η

]
Im
{
1

π
C0(p1, p2,M

2
k ,M

2
η , 0)

}}
(8p1 · p)

(E.13)

As before, states degenerate with the initial state in the loop, do not contribute to the
CP asymmetry. Again, we perform the phase space integral, and after normalising to the
total decay width, we obtain the final expression as

V(i)
1 =

1

128π2

Mi

(
1− M2

η

M2
i

)2
Γitot.∑

k 6=i
Im

 3∑
j=1

gjFi
(gjFk

)∗

2MkMi

{
Θ
(
M2
i −M2

η

)
M2
i

−
M2
η −M2

k

M2
i −M2

η

Θ
(
M2
η −M2

k

)
M2
η

+ 2

(
1−

M2
η −M2

k

M2
i −M2

η

)
Im

[
C0(0,M

2
η ,M

2
i ,M

2
η ,M

2
k , 0)

π

]}
. (E.14)

The result for the other diagram involving the other state F is given by

V(i)
2 =

1

128π2

Mi

(
1− M2

Ψ

M2
i

)
Γitot.

∑
k 6=i

1

(M2
i −M2

Ψ)
2

{(
1 +

M2
Ψ

M2
i

)
(F1a + F1b) + 2

MΨ

Mi
(F2a + F2b)

}
(E.15)

where

F1a =

−
(
1−

M2
Ψ

M2
i

)
Θ
(
M2
i −M2

Ψ

){
− 2M2

kMiMΨ Im
[
y1i y2i (y

∗
2k)

2
]
−MkMi

(
M2
i +M2

Ψ

)
Im
[
y21i (y

∗
1k)

2
]

−M4
i Im [(y1i y2i y

∗
1k y

∗
2k)]−M3

iMΨ Im
[
y21i y

∗
1k y

∗
2k

]
+ 3M2

iM
2
Ψ Im [y1i y2i y

∗
1k y

∗
2k]

+ 2MiM
3
Ψ Im

[
y21i y

∗
1k y

∗
2k

]}

+

(
1−

M2
k

M2
Ψ

)
Θ
(
M2

Ψ −M2
k

){
−MkMΨ

(
M2
i +M2

Ψ

)
Im [y1i y2i y

∗
2k y

∗
2k]− 2MkMiM

2
Ψ Im

[
y21i (y

∗
1k)

2
]

−M3
i MΨ Im

[
y21i y

∗
1ky

∗
2k

]
+ 3MiM

3
Ψ Im

[
y21i y

∗
1k y

∗
2k

]
+ 2M4

Ψ Im [y1i y2i y
∗
1k y

∗
2k]

}

+ Im
[
C0(M

2
Ψ, 0,M

2
i , 0,M

2
k ,M

2
Ψ)

π

]{
−MkMΨ

(
−2
(
M2
k −M2

Ψ

)
−M4

i +M4
Ψ

)
Im
[
y1i y2i (y

∗
2k)

2
]
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+M2
kM

4
i Im [y1i y2i y

∗
1k y

∗
2k]−M2

kM
3
iMΨ Im

[
y21i y

∗
1k y

∗
2k

]
+M2

kM
3
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y21i y

∗
1k y

∗
2k

]
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kM
2
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2
Ψ Im [y1i y2i y

∗
1k y

∗
2k] +M2

kM
2
iM

2
Ψ Im [y1i y2i y

∗
1k y

∗
2k]

−MkMi
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M2
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Ψ

) (
−M2
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Ψ

)
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∗
1k)

2
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Ψ
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M4
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2
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)
Im [y1i y2i y

∗
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Ψ
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∗
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∗
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ΨIm [y1i y2i y

∗
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]
+M6
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F1b =(
1−
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Ψ

M2
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)
Θ
(
M2
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Ψ
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MkMi
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Ψ
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Next, there are set of vertex diagrams with the SM lepton-Higgs yukawa couplings,

ySM, which do not involve the other F state. The final expressions for these, which are
calculated in a similar manner, are given by
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Finally, there are vertex diagrams featuring the scalar trilinear coupling α,
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As a final note, we have checked that the expressions WF(i)
1 and V(i)

1 reproduce the
known results [91] in the limiting case of Mη → 0.

141



Bibliography

[1] A. Alvarez et al. Accommodating muon (g − 2) and leptogenesis in a scotogenic
model. JHEP 06 (2023) 163. doi: 10.1007/JHEP06(2023)163. arXiv: 2301.08485
[hep-ph].

[2] M. Peskin and D. V. Schroeder. An Introduction to Quantum Field Theory. Reading,
USA: Addison-Wesley, 1995. isbn: 978-0-201-50397-5.

[3] M. Schwartz. Quantum Field Theory and the Standard Model. Cambridge University
Press, 2014. isbn: 978-1-107-03473-0.

[4] [Pierre Auger Collab.], A. Aab, et al. Combined fit of spectrum and composition
data as measured by the Pierre Auger Observatory. JCAP 04 (2017). [Erratum:
JCAP 03, E02 (2018)] 038. doi: 10 . 1088 / 1475 - 7516 / 2017 / 04 / 038. arXiv:
1612.07155 [astro-ph.HE].

[5] G. Steigman. Observational tests of antimatter cosmologies. Ann. Rev. Astron.
Astrophys. 14 (1976) 339–372. doi: 10.1146/annurev.aa.14.090176.002011.

[6] E. W. Kolb and M. S. Turner. The Early Universe. Vol. 69. 1990. isbn: 978-0-201-
62674-2. doi: 10.1201/9780429492860.

[7] B. D. Fields, K. A. Olive, T.-H. Yeh, and C. Young. Big-Bang Nucleosynthesis
after Planck. JCAP 03 (2020). [Erratum: JCAP 11, E02 (2020)] 010. doi: 10.
1088/1475-7516/2020/03/010. arXiv: 1912.01132 [astro-ph.CO].

[8] [Particle Data Group Collab.], R. L. Workman, et al. Review of Particle
Physics. PTEP 2022 (2022) 083C01. doi: 10.1093/ptep/ptac097.

[9] [WMAP Collab.], C. L. Bennett, et al. Nine-Year Wilkinson Microwave Anisotropy
Probe (WMAP) Observations: Final Maps and Results. Astrophys. J. Suppl. 208
(2013) 20. doi: 10.1088/0067-0049/208/2/20. arXiv: 1212.5225 [astro-ph.CO].

[10] [Planck Collab.], P. A. R. Ade, et al. Planck 2015 results. XIII. Cosmologi-
cal parameters. Astron. Astrophys. 594 (2016) A13. doi: 10.1051/0004-6361/
201525830. arXiv: 1502.01589 [astro-ph.CO].

[11] [Planck Collab.], N. Aghanim, et al. Planck 2018 results. VI. Cosmological param-
eters. Astron. Astrophys. 641 (2020). [Erratum: Astron.Astrophys. 652, C4 (2021)]
A6. doi: 10.1051/0004-6361/201833910. arXiv: 1807.06209 [astro-ph.CO].

142

https://doi.org/10.1007/JHEP06(2023)163
https://arxiv.org/abs/2301.08485
https://arxiv.org/abs/2301.08485
https://doi.org/10.1088/1475-7516/2017/04/038
https://arxiv.org/abs/1612.07155
https://doi.org/10.1146/annurev.aa.14.090176.002011
https://doi.org/10.1201/9780429492860
https://doi.org/10.1088/1475-7516/2020/03/010
https://doi.org/10.1088/1475-7516/2020/03/010
https://arxiv.org/abs/1912.01132
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1088/0067-0049/208/2/20
https://arxiv.org/abs/1212.5225
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://arxiv.org/abs/1502.01589
https://doi.org/10.1051/0004-6361/201833910
https://arxiv.org/abs/1807.06209


Bibliography

[12] D. Baumann. Inflation. Theoretical Advanced Study Institute in Elementary Par-
ticle Physics: Physics of the Large and the Small. 2011 523–686. doi: 10.1142/
9789814327183_0010. arXiv: 0907.5424 [hep-th].

[13] [BICEP2 Collab] and CERN and NASA. https://home.cern/news/series/
lhc-physics-ten/recreating-big-bang-matter-earth.

[14] A. D. Sakharov. Violation of CP Invariance, C asymmetry, and baryon asymme-
try of the universe. Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32–35. doi: 10.1070/
PU1991v034n05ABEH002497.

[15] V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov. On the Anomalous Elec-
troweak Baryon Number Nonconservation in the Early Universe. Phys. Lett. B 155
(1985) 36. doi: 10.1016/0370-2693(85)91028-7.

[16] G. ’t Hooft. Symmetry Breaking Through Bell-Jackiw Anomalies. Phys. Rev. Lett.
37 (1976). Ed. by M. A. Shifman 8–11. doi: 10.1103/PhysRevLett.37.8.

[17] M. Kobayashi and T. Maskawa. CP Violation in the Renormalizable Theory of Weak
Interaction. Prog. Theor. Phys. 49 (1973) 652–657. doi: 10.1143/PTP.49.652.

[18] C. Jarlskog. Commutator of the Quark Mass Matrices in the Standard Electroweak
Model and a Measure of Maximal CP Nonconservation. Phys. Rev. Lett. 55 (1985)
1039. doi: 10.1103/PhysRevLett.55.1039.

[19] M. B. Gavela, M. Lozano, J. Orloff, and O. Pene. Standard model CP violation and
baryon asymmetry. Part 1: Zero temperature. Nucl. Phys. B 430 (1994) 345–381.
doi: 10.1016/0550-3213(94)00409-9. arXiv: hep-ph/9406288.

[20] M. B. Gavela et al. Standard model CP violation and baryon asymmetry. Part
2: Finite temperature. Nucl. Phys. B 430 (1994) 382–426. doi: 10.1016/0550-
3213(94)00410-2. arXiv: hep-ph/9406289.

[21] V. A. Rubakov and M. E. Shaposhnikov. Electroweak baryon number nonconserva-
tion in the early universe and in high-energy collisions. Usp. Fiz. Nauk 166 (1996)
493–537. doi: 10.1070/PU1996v039n05ABEH000145. arXiv: hep-ph/9603208.

[22] M. Trodden. Electroweak baryogenesis. Rev. Mod. Phys. 71 (1999) 1463–1500. doi:
10.1103/RevModPhys.71.1463. arXiv: hep-ph/9803479.

[23] K. Kajantie, M. Laine, K. Rummukainen, and M. E. Shaposhnikov. Is there a hot
electroweak phase transition at mH & mW ? Phys. Rev. Lett. 77 (1996) 2887–2890.
doi: 10.1103/PhysRevLett.77.2887. arXiv: hep-ph/9605288.

[24] K. Kajantie, M. Laine, K. Rummukainen, and M. E. Shaposhnikov. A Nonpertur-
bative analysis of the finite T phase transition in SU(2) x U(1) electroweak theory.
Nucl. Phys. B 493 (1997) 413–438. doi: 10.1016/S0550-3213(97)00164-8. arXiv:
hep-lat/9612006.

[25] F. Csikor, Z. Fodor, and J. Heitger. Endpoint of the hot electroweak phase transition.
Phys. Rev. Lett. 82 (1999) 21–24. doi: 10.1103/PhysRevLett.82.21. arXiv: hep-
ph/9809291.

[26] T. S. van Albada, J. N. Bahcall, K. Begeman, and R. Sancisi. Distribution of dark
matter in the spiral galaxy NGC 3198. Astrophysical J., Pt. 1 295 (1985) 305–313.
doi: 10.1086/163375.

[27] C. J. Peterson, V. C. Rubin, W. K. Ford, and M. S. Roberts. Extended rotation
curves of high-luminosity spiral galaxies. III - The spiral galaxy NGC 7217. Astro-
physical J., Pt. 1 226 (1978) 770–776. doi: 10.1086/156658.

143

https://doi.org/10.1142/9789814327183_0010
https://doi.org/10.1142/9789814327183_0010
https://arxiv.org/abs/0907.5424
https://home.cern/news/series/lhc-physics-ten/recreating-big-bang-matter-earth
https://home.cern/news/series/lhc-physics-ten/recreating-big-bang-matter-earth
https://doi.org/10.1070/PU1991v034n05ABEH002497
https://doi.org/10.1070/PU1991v034n05ABEH002497
https://doi.org/10.1016/0370-2693(85)91028-7
https://doi.org/10.1103/PhysRevLett.37.8
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1103/PhysRevLett.55.1039
https://doi.org/10.1016/0550-3213(94)00409-9
https://arxiv.org/abs/hep-ph/9406288
https://doi.org/10.1016/0550-3213(94)00410-2
https://doi.org/10.1016/0550-3213(94)00410-2
https://arxiv.org/abs/hep-ph/9406289
https://doi.org/10.1070/PU1996v039n05ABEH000145
https://arxiv.org/abs/hep-ph/9603208
https://doi.org/10.1103/RevModPhys.71.1463
https://arxiv.org/abs/hep-ph/9803479
https://doi.org/10.1103/PhysRevLett.77.2887
https://arxiv.org/abs/hep-ph/9605288
https://doi.org/10.1016/S0550-3213(97)00164-8
https://arxiv.org/abs/hep-lat/9612006
https://doi.org/10.1103/PhysRevLett.82.21
https://arxiv.org/abs/hep-ph/9809291
https://arxiv.org/abs/hep-ph/9809291
https://doi.org/10.1086/163375
https://doi.org/10.1086/156658


Bibliography

[28] V. C. Rubin, W. K. Ford, and N. Thonnard. Extended rotation curves of high-
luminosity spiral galaxies. IV - Systematic dynamical properties, SA through SC.
Astrophysical J., Pt. 2 - Lett. to Ed. 225 (1978) L107–L111. doi: 10.1086/182804.

[29] K. G. Begeman, A. H. Broeils, and R. H. Sanders. Extended rotation curves of
spiral galaxies: Dark haloes and modified dynamics. Mon. Not. Roy. Astron. Soc.
249 (1991) 523.

[30] D. Clowe, A. H. Gonzalez, and M. Markevitch. Weak-Lensing Mass Reconstruction
of the Interacting Cluster 1E 0657-558: Direct Evidence for the Existence of Dark
Matter. The Astrophysical J. 604.2 (2004) 596–603. doi: 10.1086/381970.

[31] D. Clowe, M. Bradač, A. H. Gonzalez, M. Markevitch, et al. A Direct Empirical
Proof of the Existence of Dark Matter. The Astrophysical J. 648.2 (2006) L109–
L113. doi: 10.1086/508162.

[32] R. Massey, T. Kitching, and J. Richard. The dark matter of gravitational lensing.
Rept. Prog. Phys. 73 (2010) 086901. doi: 10.1088/0034-4885/73/8/086901.
arXiv: 1001.1739 [astro-ph.CO].

[33] G. Jungman, M. Kamionkowski, and K. Griest. Supersymmetric dark matter. Phys.
Rept. 267 (1996) 195–373. doi: 10.1016/0370-1573(95)00058-5. arXiv: hep-
ph/9506380.

[34] G. Bertone, D. Hooper, and J. Silk. Particle dark matter: Evidence, candidates and
constraints. Phys. Rept. 405 (2005) 279–390. doi: 10.1016/j.physrep.2004.08.
031. arXiv: hep-ph/0404175.

[35] J. L. Feng. Dark Matter Candidates from Particle Physics and Methods of Detection.
Ann. Rev. Astron. Astrophys. 48 (2010) 495–545. doi: 10.1146/annurev-astro-
082708-101659. arXiv: 1003.0904 [astro-ph.CO].

[36] G. Bertone and D. Hooper. History of dark matter. Rev. Mod. Phys. 90.4 (2018)
045002. doi: 10 . 1103 / RevModPhys . 90 . 045002. arXiv: 1605 . 04909 [astro-
ph.CO].

[37] M. Drees. Dark Matter Theory. PoS ICHEP2018 (2019) 730. doi: 10.22323/1.
340.0730. arXiv: 1811.06406 [hep-ph].

[38] P. F. de Salas et al. 2020 global reassessment of the neutrino oscillation picture.
JHEP 02 (2021) 071. doi: 10.1007/JHEP02(2021)071. arXiv: 2006.11237 [hep-
ph].

[39] M. C. Gonzalez-Garcia, M. Maltoni, and T. Schwetz. NuFIT: Three-Flavour Global
Analyses of Neutrino Oscillation Experiments. Universe 7.12 (2021) 459. doi: 10.
3390/universe7120459. arXiv: 2111.03086 [hep-ph].

[40] J. M. Cornwall, R. Jackiw, and E. Tomboulis. Effective Action for Composite Op-
erators. Phys. Rev. D 10 (1974) 2428–2445. doi: 10.1103/PhysRevD.10.2428.

[41] E. Braaten and R. D. Pisarski. Soft Amplitudes in Hot Gauge Theories: A General
Analysis. Nucl. Phys. B 337 (1990) 569–634. doi: 10.1016/0550-3213(90)90508-
B.

[42] J. P. Blaizot, E. Iancu, and A. Rebhan. Selfconsistent hard thermal loop thermo-
dynamics for the quark gluon plasma. Phys. Lett. B 470 (1999) 181–188. doi:
10.1016/S0370-2693(99)01306-4. arXiv: hep-ph/9910309.

144

https://doi.org/10.1086/182804
https://doi.org/10.1086/381970
https://doi.org/10.1086/508162
https://doi.org/10.1088/0034-4885/73/8/086901
https://arxiv.org/abs/1001.1739
https://doi.org/10.1016/0370-1573(95)00058-5
https://arxiv.org/abs/hep-ph/9506380
https://arxiv.org/abs/hep-ph/9506380
https://doi.org/10.1016/j.physrep.2004.08.031
https://doi.org/10.1016/j.physrep.2004.08.031
https://arxiv.org/abs/hep-ph/0404175
https://doi.org/10.1146/annurev-astro-082708-101659
https://doi.org/10.1146/annurev-astro-082708-101659
https://arxiv.org/abs/1003.0904
https://doi.org/10.1103/RevModPhys.90.045002
https://arxiv.org/abs/1605.04909
https://arxiv.org/abs/1605.04909
https://doi.org/10.22323/1.340.0730
https://doi.org/10.22323/1.340.0730
https://arxiv.org/abs/1811.06406
https://doi.org/10.1007/JHEP02(2021)071
https://arxiv.org/abs/2006.11237
https://arxiv.org/abs/2006.11237
https://doi.org/10.3390/universe7120459
https://doi.org/10.3390/universe7120459
https://arxiv.org/abs/2111.03086
https://doi.org/10.1103/PhysRevD.10.2428
https://doi.org/10.1016/0550-3213(90)90508-B
https://doi.org/10.1016/0550-3213(90)90508-B
https://doi.org/10.1016/S0370-2693(99)01306-4
https://arxiv.org/abs/hep-ph/9910309


Bibliography

[43] J.-P. Blaizot, E. Iancu, and A. Rebhan. Thermodynamics of the high temperature
quark gluon plasma. Mar. 2003 60–122. doi: 10.1142/9789812795533_0002. arXiv:
hep-ph/0303185.

[44] J. P. Blaizot, E. Iancu, and A. Rebhan. Approximately selfconsistent resummations
for the thermodynamics of the quark gluon plasma. 1. Entropy and density. Phys.
Rev. D 63 (2001) 065003. doi: 10 . 1103 / PhysRevD . 63 . 065003. arXiv: hep -
ph/0005003.

[45] J. O. Andersen and M. Strickland. Three-loop Phi-derivable approximation in QED.
Phys. Rev. D 71 (2005) 025011. doi: 10.1103/PhysRevD.71.025011. arXiv: hep-
ph/0406163.

[46] J. Berges, S. Borsanyi, U. Reinosa, and J. Serreau. Renormalized thermodynamics
from the 2PI effective action. Phys. Rev. D 71 (2005) 105004. doi: 10.1103/
PhysRevD.71.105004. arXiv: hep-ph/0409123.

[47] E. Calzetta and B. L. Hu. Nonequilibrium quantum fields: Closed-time-path effective
action, Wigner function, and Boltzmann equation. Phys. Rev. D 37 (10 1988) 2878–
2900. doi: 10.1103/PhysRevD.37.2878.

[48] Y. B. Ivanov, J. Knoll, and D. N. Voskresensky. Selfconsistent approximations to
nonequilibrium many body theory. Nucl. Phys. A 657 (1999) 413–445. doi: 10.
1016/S0375-9474(99)00313-9. arXiv: hep-ph/9807351.

[49] J. Berges. Introduction to nonequilibrium quantum field theory. AIP Conf. Proc.
739.1 (2004). Ed. by M. Bracco, M. Chiapparini, E. Ferreira, and T. Kodama 3–
62. doi: 10.1063/1.1843591. arXiv: hep-ph/0409233.

[50] J. Berges. Nonequilibrium Quantum Fields: From Cold Atoms to Cosmology (Mar.
2015). arXiv: 1503.02907 [hep-ph].

[51] J. Berges. N-particle irreducible effective action techniques for gauge theories. Phys.
Rev. D 70 (2004) 105010. doi: 10 . 1103 / PhysRevD . 70 . 105010. arXiv: hep -
ph/0401172.

[52] J. Berges. Controlled nonperturbative dynamics of quantum fields out-of-equilibrium.
Nucl. Phys. A 699 (2002) 847–886. doi: 10.1016/S0375-9474(01)01295-7. arXiv:
hep-ph/0105311.

[53] G. Aarts et al. Far from equilibrium dynamics with broken symmetries from the
2PI - 1/N expansion. Phys. Rev. D 66 (2002) 045008. doi: 10.1103/PhysRevD.
66.045008. arXiv: hep-ph/0201308.

[54] A. Arrizabalaga, J. Smit, and A. Tranberg. Equilibration in phi**4 theory in 3+1
dimensions. Phys. Rev. D 72 (2005) 025014. doi: 10.1103/PhysRevD.72.025014.
arXiv: hep-ph/0503287.

[55] J. Berges and S. Roth. Topological defect formation from 2PI effective action tech-
niques. Nucl. Phys. B 847 (2011) 197–219. doi: 10.1016/j.nuclphysb.2011.01.
024. arXiv: 1012.1212 [hep-ph].

[56] U. Reinosa and J. Serreau. 2PI effective action for gauge theories: Renormalization.
JHEP 07 (2006) 028. doi: 10 . 1088 / 1126 - 6708 / 2006 / 07 / 028. arXiv: hep -
th/0605023.

[57] U. Reinosa and J. Serreau. Ward Identities for the 2PI effective action in QED.
JHEP 11 (2007) 097. doi: 10.1088/1126-6708/2007/11/097. arXiv: 0708.0971
[hep-th].

145

https://doi.org/10.1142/9789812795533_0002
https://arxiv.org/abs/hep-ph/0303185
https://doi.org/10.1103/PhysRevD.63.065003
https://arxiv.org/abs/hep-ph/0005003
https://arxiv.org/abs/hep-ph/0005003
https://doi.org/10.1103/PhysRevD.71.025011
https://arxiv.org/abs/hep-ph/0406163
https://arxiv.org/abs/hep-ph/0406163
https://doi.org/10.1103/PhysRevD.71.105004
https://doi.org/10.1103/PhysRevD.71.105004
https://arxiv.org/abs/hep-ph/0409123
https://doi.org/10.1103/PhysRevD.37.2878
https://doi.org/10.1016/S0375-9474(99)00313-9
https://doi.org/10.1016/S0375-9474(99)00313-9
https://arxiv.org/abs/hep-ph/9807351
https://doi.org/10.1063/1.1843591
https://arxiv.org/abs/hep-ph/0409233
https://arxiv.org/abs/1503.02907
https://doi.org/10.1103/PhysRevD.70.105010
https://arxiv.org/abs/hep-ph/0401172
https://arxiv.org/abs/hep-ph/0401172
https://doi.org/10.1016/S0375-9474(01)01295-7
https://arxiv.org/abs/hep-ph/0105311
https://doi.org/10.1103/PhysRevD.66.045008
https://doi.org/10.1103/PhysRevD.66.045008
https://arxiv.org/abs/hep-ph/0201308
https://doi.org/10.1103/PhysRevD.72.025014
https://arxiv.org/abs/hep-ph/0503287
https://doi.org/10.1016/j.nuclphysb.2011.01.024
https://doi.org/10.1016/j.nuclphysb.2011.01.024
https://arxiv.org/abs/1012.1212
https://doi.org/10.1088/1126-6708/2006/07/028
https://arxiv.org/abs/hep-th/0605023
https://arxiv.org/abs/hep-th/0605023
https://doi.org/10.1088/1126-6708/2007/11/097
https://arxiv.org/abs/0708.0971
https://arxiv.org/abs/0708.0971


Bibliography

[58] U. Reinosa and J. Serreau. 2PI functional techniques for gauge theories: QED.
Annals Phys. 325 (2010) 969–1017. doi: 10.1016/j.aop.2009.11.005. arXiv:
0906.2881 [hep-ph].

[59] O. Oliveira and R. C. Terin. The Dyson-Schwinger equations and the non-perturbative
solution of QED: exploring the two-photon-two-fermion irreducible vertex (Apr.
2022). arXiv: 2204.04197 [hep-ph].

[60] K. Kainulainen and O. Koskivaara. Non-equilibrium dynamics of a scalar field with
quantum backreaction. JHEP 12 (2021) 190. doi: 10.1007/JHEP12(2021)190.
arXiv: 2105.09598 [hep-ph].

[61] M. Laine. Effective theories of MSSM at high temperature. Nucl. Phys. B 481
(1996). [Erratum: Nucl.Phys.B 548, 637–638 (1999)] 43–84. doi: 10.1016/S0550-
3213(96)90121-2. arXiv: hep-ph/9605283.

[62] K. Kainulainen et al. On the validity of perturbative studies of the electroweak phase
transition in the Two Higgs Doublet model. JHEP 06 (2019) 075. doi: 10.1007/
JHEP06(2019)075. arXiv: 1904.01329 [hep-ph].

[63] L. V. Keldysh. Diagram technique for nonequilibrium processes. Zh. Eksp. Teor.
Fiz. 47 (1964) 1515–1527.

[64] R. Jackiw. Functional evaluation of the effective potential. Phys. Rev. D 9 (1974)
1686. doi: 10.1103/PhysRevD.9.1686.

[65] J. Berges, S. Borsanyi, U. Reinosa, and J. Serreau. Nonperturbative renormalization
for 2PI effective action techniques. Annals Phys. 320 (2005) 344–398. doi: 10.
1016/j.aop.2005.06.001. arXiv: hep-ph/0503240.

[66] U. Reinosa. Nonperturbative renormalization of phi-derivable approximations in
theories with fermions. Nucl. Phys. A 772 (2006) 138–166. doi: 10 . 1016 / j .
nuclphysa.2006.03.014. arXiv: hep-ph/0510119.

[67] A. Banik, H. Hinrichsen, K. Kainulainen, and W. Porod. Aspects of renormalisation
in the 2PI formalism (2023). arXiv: 23XX.XXXXX.

[68] J.-P. Blaizot, E. Iancu, and U. Reinosa. Renormalizability of Phi derivable ap-
proximations in scalar phi**4 theory. Phys. Lett. B 568 (2003) 160–166. doi:
10.1016/j.physletb.2003.06.008. arXiv: hep-ph/0301201.

[69] J.-P. Blaizot, E. Iancu, and U. Reinosa. Renormalization of Phi derivable approxi-
mations in scalar field theories. Nucl. Phys. A 736 (2004) 149–200. doi: 10.1016/
j.nuclphysa.2004.02.019. arXiv: hep-ph/0312085.

[70] A. Pilaftsis and D. Teresi. Exact RG Invariance and Symmetry Improved 2PI Ef-
fective Potential. Nucl. Phys. B 920 (2017) 298–318. doi: 10.1016/j.nuclphysb.
2017.04.015. arXiv: 1703.02079 [hep-ph].

[71] A. Pilaftsis and D. Teresi. Symmetry Improved CJT Effective Action. Nucl. Phys.
B 874.2 (2013) 594–619. doi: 10.1016/j.nuclphysb.2013.06.004. arXiv: 1305.
3221 [hep-ph].

[72] A. Patkos and Z. Szep. Counterterm resummation for 2PI-approximation in con-
stant background. Nucl. Phys. A 811 (2008) 329–352. doi: 10.1016/j.nuclphysa.
2008.08.001. arXiv: 0806.2554 [hep-ph].

146

https://doi.org/10.1016/j.aop.2009.11.005
https://arxiv.org/abs/0906.2881
https://arxiv.org/abs/2204.04197
https://doi.org/10.1007/JHEP12(2021)190
https://arxiv.org/abs/2105.09598
https://doi.org/10.1016/S0550-3213(96)90121-2
https://doi.org/10.1016/S0550-3213(96)90121-2
https://arxiv.org/abs/hep-ph/9605283
https://doi.org/10.1007/JHEP06(2019)075
https://doi.org/10.1007/JHEP06(2019)075
https://arxiv.org/abs/1904.01329
https://doi.org/10.1103/PhysRevD.9.1686
https://doi.org/10.1016/j.aop.2005.06.001
https://doi.org/10.1016/j.aop.2005.06.001
https://arxiv.org/abs/hep-ph/0503240
https://doi.org/10.1016/j.nuclphysa.2006.03.014
https://doi.org/10.1016/j.nuclphysa.2006.03.014
https://arxiv.org/abs/hep-ph/0510119
https://arxiv.org/abs/23XX.XXXXX
https://doi.org/10.1016/j.physletb.2003.06.008
https://arxiv.org/abs/hep-ph/0301201
https://doi.org/10.1016/j.nuclphysa.2004.02.019
https://doi.org/10.1016/j.nuclphysa.2004.02.019
https://arxiv.org/abs/hep-ph/0312085
https://doi.org/10.1016/j.nuclphysb.2017.04.015
https://doi.org/10.1016/j.nuclphysb.2017.04.015
https://arxiv.org/abs/1703.02079
https://doi.org/10.1016/j.nuclphysb.2013.06.004
https://arxiv.org/abs/1305.3221
https://arxiv.org/abs/1305.3221
https://doi.org/10.1016/j.nuclphysa.2008.08.001
https://doi.org/10.1016/j.nuclphysa.2008.08.001
https://arxiv.org/abs/0806.2554


Bibliography

[73] A. Pilaftsis and D. Teresi. Symmetry Improved 2PI Effective Action and the Infrared
Divergences of the Standard Model. J. Phys. Conf. Ser. 631.1 (2015). Ed. by N. E.
Mavromatos, V. A. Mitsou, D. Skliros, and A. Di Domenico 012008. doi: 10.1088/
1742-6596/631/1/012008. arXiv: 1502.07986 [hep-ph].

[74] H. Jukkala, K. Kainulainen, and P. M. Rahkila. Flavour mixing transport theory
and resonant leptogenesis. JHEP 09 (2021) 119. doi: 10.1007/JHEP09(2021)119.
arXiv: 2104.03998 [hep-ph].

[75] K. Kainulainen. CP-violating transport theory for electroweak baryogenesis with
thermal corrections. JCAP 11.11 (2021) 042. doi: 10.1088/1475-7516/2021/11/
042. arXiv: 2108.08336 [hep-ph].

[76] G. Amelino-Camelia and S.-Y. Pi. Selfconsistent improvement of the finite tem-
perature effective potential. Phys. Rev. D 47 (1993) 2356–2362. doi: 10.1103/
PhysRevD.47.2356. arXiv: hep-ph/9211211.

[77] P. Q. Hung. Vacuum Instability and New Constraints on Fermion Masses. Phys.
Rev. Lett. 42 (1979) 873. doi: 10.1103/PhysRevLett.42.873.

[78] M. Sher. Electroweak Higgs Potentials and Vacuum Stability. Phys. Rept. 179
(1989) 273–418. doi: 10.1016/0370-1573(89)90061-6.

[79] J. A. Casas, J. R. Espinosa, and M. Quiros. Improved Higgs mass stability bound in
the standard model and implications for supersymmetry. Phys. Lett. B 342 (1995)
171–179. doi: 10.1016/0370-2693(94)01404-Z. arXiv: hep-ph/9409458.

[80] G. Isidori, G. Ridolfi, and A. Strumia. On the metastability of the standard model
vacuum. Nucl. Phys. B 609 (2001) 387–409. doi: 10.1016/S0550-3213(01)00302-
9. arXiv: hep-ph/0104016.

[81] G. Degrassi et al. Higgs mass and vacuum stability in the Standard Model at NNLO.
JHEP 08 (2012) 098. doi: 10.1007/JHEP08(2012)098. arXiv: 1205.6497 [hep-
ph].

[82] M. Fukugita and T. Yanagida. Baryogenesis Without Grand Unification. Phys. Lett.
B 174 (1986) 45–47. doi: 10.1016/0370-2693(86)91126-3.

[83] E. W. Kolb and S. Wolfram. Baryon Number Generation in the Early Universe.
Nucl. Phys. B 172 (1980). [Erratum: Nucl.Phys.B 195, 542 (1982)] 224. doi: 10.
1016/0550-3213(82)90012-8.

[84] S. Davidson. Flavoured Leptogenesis. 12th International Workshop on Neutrinos
Telescopes: Twenty Years after the Supernova 1987A Neutrino Bursts Discovery.
May 2007 531–545. arXiv: 0705.1590 [hep-ph].

[85] A. Pilaftsis and T. E. J. Underwood. Resonant leptogenesis. Nucl. Phys. B 692
(2004) 303–345. doi: 10 . 1016 / j . nuclphysb . 2004 . 05 . 029. arXiv: hep - ph /
0309342.

[86] P. C. da Silva, D. Karamitros, T. McKelvey, and A. Pilaftsis. Tri-resonant lepto-
genesis in a seesaw extension of the Standard Model. JHEP 11 (2022) 065. doi:
10.1007/JHEP11(2022)065. arXiv: 2206.08352 [hep-ph].

[87] T. Hambye. Leptogenesis: beyond the minimal type I seesaw scenario. New J. Phys.
14 (2012) 125014. doi: 10.1088/1367-2630/14/12/125014. arXiv: 1212.2888
[hep-ph].

147

https://doi.org/10.1088/1742-6596/631/1/012008
https://doi.org/10.1088/1742-6596/631/1/012008
https://arxiv.org/abs/1502.07986
https://doi.org/10.1007/JHEP09(2021)119
https://arxiv.org/abs/2104.03998
https://doi.org/10.1088/1475-7516/2021/11/042
https://doi.org/10.1088/1475-7516/2021/11/042
https://arxiv.org/abs/2108.08336
https://doi.org/10.1103/PhysRevD.47.2356
https://doi.org/10.1103/PhysRevD.47.2356
https://arxiv.org/abs/hep-ph/9211211
https://doi.org/10.1103/PhysRevLett.42.873
https://doi.org/10.1016/0370-1573(89)90061-6
https://doi.org/10.1016/0370-2693(94)01404-Z
https://arxiv.org/abs/hep-ph/9409458
https://doi.org/10.1016/S0550-3213(01)00302-9
https://doi.org/10.1016/S0550-3213(01)00302-9
https://arxiv.org/abs/hep-ph/0104016
https://doi.org/10.1007/JHEP08(2012)098
https://arxiv.org/abs/1205.6497
https://arxiv.org/abs/1205.6497
https://doi.org/10.1016/0370-2693(86)91126-3
https://doi.org/10.1016/0550-3213(82)90012-8
https://doi.org/10.1016/0550-3213(82)90012-8
https://arxiv.org/abs/0705.1590
https://doi.org/10.1016/j.nuclphysb.2004.05.029
https://arxiv.org/abs/hep-ph/0309342
https://arxiv.org/abs/hep-ph/0309342
https://doi.org/10.1007/JHEP11(2022)065
https://arxiv.org/abs/2206.08352
https://doi.org/10.1088/1367-2630/14/12/125014
https://arxiv.org/abs/1212.2888
https://arxiv.org/abs/1212.2888


Bibliography

[88] T. Hambye and D. Teresi. Higgs doublet decay as the origin of the baryon asymmetry.
Phys. Rev. Lett. 117.9 (2016) 091801. doi: 10.1103/PhysRevLett.117.091801.
arXiv: 1606.00017 [hep-ph].

[89] W. Buchmüller, P. Di Bari, and M. Plümacher. Leptogenesis for pedestrians. Annals
Phys. 315 (2005) 305–351. doi: 10 . 1016 / j . aop . 2004 . 02 . 003. arXiv: hep -
ph/0401240.

[90] S. Davidson, E. Nardi, and Y. Nir. Leptogenesis. Phys. Rept. 466 (2008) 105–177.
doi: 10.1016/j.physrep.2008.06.002. arXiv: 0802.2962 [hep-ph].

[91] L. Covi, E. Roulet, and F. Vissani. CP violating decays in leptogenesis scenarios.
Phys. Lett. B 384 (1996) 169–174. doi: 10.1016/0370-2693(96)00817-9. arXiv:
hep-ph/9605319.

[92] J. Liu and G. Segre. Reexamination of generation of baryon and lepton number
asymmetries by heavy particle decay. Phys. Rev. D 48 (1993) 4609–4612. doi:
10.1103/PhysRevD.48.4609. arXiv: hep-ph/9304241.

[93] J. Liu and G. Segre. Unstable particle mixing and CP violation in weak decays.
Phys. Rev. D 49 (1994) 1342–1349. doi: 10.1103/PhysRevD.49.1342. arXiv:
hep-ph/9310248.

[94] R. E. Cutkosky. Singularities and discontinuities of Feynman amplitudes. J. Math.
Phys. 1 (1960) 429–433. doi: 10.1063/1.1703676.

[95] S. Dodelson. Modern Cosmology. Amsterdam: Academic Press, 2003. isbn: 978-0-
12-219141-1.

[96] D. Baumann. Cosmology. Cambridge University Press, July 2022. isbn: 978-1-108-
93709-2. doi: 10.1017/9781108937092.

[97] W. Buchmuller, P. Di Bari, and M. Plumacher. Cosmic microwave background,
matter - antimatter asymmetry and neutrino masses. Nucl. Phys. B 643 (2002).
[Erratum: Nucl.Phys.B 793, 362 (2008)] 367–390. doi: 10.1016/S0550-3213(02)
00737-X. arXiv: hep-ph/0205349.

[98] M. A. Luty. Baryogenesis via leptogenesis. Phys. Rev. D 45 (1992) 455–465. doi:
10.1103/PhysRevD.45.455.

[99] M. Plümacher. Baryogenesis and lepton number violation. Z. Phys. C 74 (1997)
549–559. doi: 10.1007/s002880050418. arXiv: hep-ph/9604229.

[100] V. A. Rubakov and D. S. Gorbunov. Introduction to the Theory of the Early Uni-
verse: Hot big bang theory. Singapore: World Scientific, 2017. isbn: 978-981-320-
987-9. doi: 10.1142/10447.

[101] J. A. Harvey and M. S. Turner. Cosmological baryon and lepton number in the
presence of electroweak fermion number violation. Phys. Rev. D 42 (1990) 3344–
3349. doi: 10.1103/PhysRevD.42.3344.

[102] E. Ma. Verifiable radiative seesaw mechanism of neutrino mass and dark matter.
Phys. Rev. D 73 (2006) 077301. doi: 10 . 1103 / PhysRevD . 73 . 077301. arXiv:
hep-ph/0601225.

[103] T. Toma and A. Vicente. Lepton Flavor Violation in the Scotogenic Model. JHEP
01 (2014) 160. doi: 10.1007/JHEP01(2014)160. arXiv: 1312.2840 [hep-ph].

148

https://doi.org/10.1103/PhysRevLett.117.091801
https://arxiv.org/abs/1606.00017
https://doi.org/10.1016/j.aop.2004.02.003
https://arxiv.org/abs/hep-ph/0401240
https://arxiv.org/abs/hep-ph/0401240
https://doi.org/10.1016/j.physrep.2008.06.002
https://arxiv.org/abs/0802.2962
https://doi.org/10.1016/0370-2693(96)00817-9
https://arxiv.org/abs/hep-ph/9605319
https://doi.org/10.1103/PhysRevD.48.4609
https://arxiv.org/abs/hep-ph/9304241
https://doi.org/10.1103/PhysRevD.49.1342
https://arxiv.org/abs/hep-ph/9310248
https://doi.org/10.1063/1.1703676
https://doi.org/10.1017/9781108937092
https://doi.org/10.1016/S0550-3213(02)00737-X
https://doi.org/10.1016/S0550-3213(02)00737-X
https://arxiv.org/abs/hep-ph/0205349
https://doi.org/10.1103/PhysRevD.45.455
https://doi.org/10.1007/s002880050418
https://arxiv.org/abs/hep-ph/9604229
https://doi.org/10.1142/10447
https://doi.org/10.1103/PhysRevD.42.3344
https://doi.org/10.1103/PhysRevD.73.077301
https://arxiv.org/abs/hep-ph/0601225
https://doi.org/10.1007/JHEP01(2014)160
https://arxiv.org/abs/1312.2840


Bibliography

[104] A. Vicente and C. E. Yaguna. Probing the scotogenic model with lepton flavor
violating processes. JHEP 02 (2015) 144. doi: 10.1007/JHEP02(2015)144. arXiv:
1412.2545 [hep-ph].

[105] S. Fraser, E. Ma, and O. Popov. Scotogenic Inverse Seesaw Model of Neutrino Mass.
Phys. Lett. B 737 (2014) 280–282. doi: 10.1016/j.physletb.2014.08.069. arXiv:
1408.4785 [hep-ph].

[106] S. Baumholzer, V. Brdar, P. Schwaller, and A. Segner. Shining Light on the Sco-
togenic Model: Interplay of Colliders and Cosmology. JHEP 09 (2020) 136. doi:
10.1007/JHEP09(2020)136. arXiv: 1912.08215 [hep-ph].

[107] P. Rocha-Moran and A. Vicente. Lepton Flavor Violation in the singlet-triplet sco-
togenic model. JHEP 07 (2016) 078. doi: 10 . 1007 / JHEP07(2016 ) 078. arXiv:
1605.01915 [hep-ph].

[108] I. M. Ávila, V. De Romeri, L. Duarte, and J. W. F. Valle. Phenomenology of
scotogenic scalar dark matter. Eur. Phys. J. C 80.10 (2020) 908. doi: 10.1140/
epjc/s10052-020-08480-z. arXiv: 1910.08422 [hep-ph].

[109] A. Ahriche, A. Jueid, and S. Nasri. A natural scotogenic model for neutrino mass &
dark matter. Phys. Lett. B 814 (2021) 136077. doi: 10.1016/j.physletb.2021.
136077. arXiv: 2007.05845 [hep-ph].

[110] V. De Romeri, M. Puerta, and A. Vicente. Dark matter in a charged variant of the
Scotogenic model (June 2021). arXiv: 2106.00481 [hep-ph].

[111] B. B. Boruah, L. Sarma, and M. K. Das. Lepton flavor violation and leptogenesis
in discrete flavor symmetric scotogenic model. Nucl. Phys. B 969 (2021) 115472.
doi: 10.1016/j.nuclphysb.2021.115472.

[112] D. Restrepo, O. Zapata, and C. E. Yaguna. Models with radiative neutrino masses
and viable dark matter candidates. JHEP 11 (2013) 011. doi: 10.1007/JHEP11(2013)
011. arXiv: 1308.3655 [hep-ph].

[113] M. Sarazin, J. Bernigaud, and B. Herrmann. Dark matter and lepton flavour phe-
nomenology in a singlet-doublet scotogenic model. JHEP 12 (2021) 116. doi: 10.
1007/JHEP12(2021)116. arXiv: 2107.04613 [hep-ph].

[114] J. A. Casas and A. Ibarra. Oscillating neutrinos and µ → e, γ. Nucl. Phys. B 618
(2001) 171–204. doi: 10.1016/S0550-3213(01)00475-8. arXiv: hep-ph/0103065.

[115] L. Basso et al. Proposal for generalised Supersymmetry Les Houches Accord for
see-saw models and PDG numbering scheme. Comput. Phys. Commun. 184 (2013)
698–719. doi: 10.1016/j.cpc.2012.11.004. arXiv: 1206.4563 [hep-ph].

[116] [Muon g-2 Collab.], G. W. Bennett, et al. Final Report of the Muon E821 Anoma-
lous Magnetic Moment Measurement at BNL. Phys. Rev. D 73 (2006) 072003. doi:
10.1103/PhysRevD.73.072003. arXiv: hep-ex/0602035.

[117] [Muon g-2 Collab.], B. Abi, et al. Measurement of the Positive Muon Anomalous
Magnetic Moment to 0.46 ppm. Phys. Rev. Lett. 126.14 (2021) 141801. doi: 10.
1103/PhysRevLett.126.141801. arXiv: 2104.03281 [hep-ex].

[118] T. Aoyama et al. The anomalous magnetic moment of the muon in the Standard
Model. Phys. Rept. 887 (2020) 1–166. doi: 10.1016/j.physrep.2020.07.006.
arXiv: 2006.04822 [hep-ph].

149

https://doi.org/10.1007/JHEP02(2015)144
https://arxiv.org/abs/1412.2545
https://doi.org/10.1016/j.physletb.2014.08.069
https://arxiv.org/abs/1408.4785
https://doi.org/10.1007/JHEP09(2020)136
https://arxiv.org/abs/1912.08215
https://doi.org/10.1007/JHEP07(2016)078
https://arxiv.org/abs/1605.01915
https://doi.org/10.1140/epjc/s10052-020-08480-z
https://doi.org/10.1140/epjc/s10052-020-08480-z
https://arxiv.org/abs/1910.08422
https://doi.org/10.1016/j.physletb.2021.136077
https://doi.org/10.1016/j.physletb.2021.136077
https://arxiv.org/abs/2007.05845
https://arxiv.org/abs/2106.00481
https://doi.org/10.1016/j.nuclphysb.2021.115472
https://doi.org/10.1007/JHEP11(2013)011
https://doi.org/10.1007/JHEP11(2013)011
https://arxiv.org/abs/1308.3655
https://doi.org/10.1007/JHEP12(2021)116
https://doi.org/10.1007/JHEP12(2021)116
https://arxiv.org/abs/2107.04613
https://doi.org/10.1016/S0550-3213(01)00475-8
https://arxiv.org/abs/hep-ph/0103065
https://doi.org/10.1016/j.cpc.2012.11.004
https://arxiv.org/abs/1206.4563
https://doi.org/10.1103/PhysRevD.73.072003
https://arxiv.org/abs/hep-ex/0602035
https://doi.org/10.1103/PhysRevLett.126.141801
https://doi.org/10.1103/PhysRevLett.126.141801
https://arxiv.org/abs/2104.03281
https://doi.org/10.1016/j.physrep.2020.07.006
https://arxiv.org/abs/2006.04822


Bibliography

[119] S. Borsanyi et al. Leading hadronic contribution to the muon magnetic moment from
lattice QCD. Nature 593.7857 (2021) 51–55. doi: 10.1038/s41586-021-03418-1.
arXiv: 2002.12347 [hep-lat].

[120] M. Cè et al. Window observable for the hadronic vacuum polarization contribution
to the muon g-2 from lattice QCD. Phys. Rev. D 106.11 (2022) 114502. doi: 10.
1103/PhysRevD.106.114502. arXiv: 2206.06582 [hep-lat].

[121] C. Alexandrou et al. Lattice calculation of the short and intermediate time-distance
hadronic vacuum polarization contributions to the muon magnetic moment using
twisted-mass fermions (June 2022). arXiv: 2206.15084 [hep-lat].

[122] A. Keshavarzi, W. J. Marciano, M. Passera, and A. Sirlin. Muon g − 2 and ∆α
connection. Phys. Rev. D 102.3 (2020) 033002. doi: 10.1103/PhysRevD.102.
033002. arXiv: 2006.12666 [hep-ph].

[123] A. Crivellin, M. Hoferichter, C. A. Manzari, and M. Montull. Hadronic Vacuum
Polarization: (g−2)µ versus Global Electroweak Fits. Phys. Rev. Lett. 125.9 (2020)
091801. doi: 10.1103/PhysRevLett.125.091801. arXiv: 2003.04886 [hep-ph].

[124] G. Colangelo et al. Data-driven evaluations of Euclidean windows to scrutinize
hadronic vacuum polarization. Phys. Lett. B 833 (2022) 137313. doi: 10.1016/j.
physletb.2022.137313. arXiv: 2205.12963 [hep-ph].

[125] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek. Dimension-Six Terms in
the Standard Model Lagrangian. JHEP 10 (2010) 085. doi: 10.1007/JHEP10(2010)
085. arXiv: 1008.4884 [hep-ph].

[126] A. Crivellin, M. Hoferichter, and P. Schmidt-Wellenburg. Combined explanations
of (g − 2)µ,e and implications for a large muon EDM. Phys. Rev. D 98.11 (2018)
113002. doi: 10.1103/PhysRevD.98.113002. arXiv: 1807.11484 [hep-ph].

[127] C. Arbeláez, R. Cepedello, R. M. Fonseca, and M. Hirsch. (g − 2) anomalies and
neutrino mass. Phys. Rev. D 102.7 (2020) 075005. doi: 10.1103/PhysRevD.102.
075005. arXiv: 2007.11007 [hep-ph].

[128] [MEG Collab.], A. M. Baldini, et al. Search for the lepton flavour violating decay
µ+ → e+γ with the full dataset of the MEG experiment. Eur. Phys. J. C 76.8 (2016)
434. doi: 10.1140/epjc/s10052-016-4271-x. arXiv: 1605.05081 [hep-ex].

[129] [MEG II Collab.] MEG II experiment status and prospect. PoS NuFact2021
(2022) 120. doi: 10.22323/1.402.0120. arXiv: 2201.08200 [hep-ex].

[130] A. Blondel et al. Research Proposal for an Experiment to Search for the Decay
µ→ eee (Jan. 2013). arXiv: 1301.6113 [physics.ins-det].

[131] [COMET Collab.], R. Abramishvili, et al. COMET Phase-I Technical Design
Report. PTEP 2020.3 (2020) 033C01. doi: 10.1093/ptep/ptz125. arXiv: 1812.
09018 [physics.ins-det].

[132] K. Hayasaka et al. Search for Lepton Flavor Violating Tau Decays into Three
Leptons with 719 Million Produced Tau+Tau- Pairs. Phys. Lett. B 687 (2010)
139–143. doi: 10.1016/j.physletb.2010.03.037. arXiv: 1001.3221 [hep-ex].

[133] [Belle Collab.], A. Abdesselam, et al. Search for lepton-flavor-violating tau-lepton
decays to `γ at Belle. JHEP 10 (2021) 19. doi: 10.1007/JHEP10(2021)019. arXiv:
2103.12994 [hep-ex].

150

https://doi.org/10.1038/s41586-021-03418-1
https://arxiv.org/abs/2002.12347
https://doi.org/10.1103/PhysRevD.106.114502
https://doi.org/10.1103/PhysRevD.106.114502
https://arxiv.org/abs/2206.06582
https://arxiv.org/abs/2206.15084
https://doi.org/10.1103/PhysRevD.102.033002
https://doi.org/10.1103/PhysRevD.102.033002
https://arxiv.org/abs/2006.12666
https://doi.org/10.1103/PhysRevLett.125.091801
https://arxiv.org/abs/2003.04886
https://doi.org/10.1016/j.physletb.2022.137313
https://doi.org/10.1016/j.physletb.2022.137313
https://arxiv.org/abs/2205.12963
https://doi.org/10.1007/JHEP10(2010)085
https://doi.org/10.1007/JHEP10(2010)085
https://arxiv.org/abs/1008.4884
https://doi.org/10.1103/PhysRevD.98.113002
https://arxiv.org/abs/1807.11484
https://doi.org/10.1103/PhysRevD.102.075005
https://doi.org/10.1103/PhysRevD.102.075005
https://arxiv.org/abs/2007.11007
https://doi.org/10.1140/epjc/s10052-016-4271-x
https://arxiv.org/abs/1605.05081
https://doi.org/10.22323/1.402.0120
https://arxiv.org/abs/2201.08200
https://arxiv.org/abs/1301.6113
https://doi.org/10.1093/ptep/ptz125
https://arxiv.org/abs/1812.09018
https://arxiv.org/abs/1812.09018
https://doi.org/10.1016/j.physletb.2010.03.037
https://arxiv.org/abs/1001.3221
https://doi.org/10.1007/JHEP10(2021)019
https://arxiv.org/abs/2103.12994


Bibliography

[134] S. Banerjee. Searches for Lepton Flavor Violation in Tau Decays at Belle II. Uni-
verse 8.9 (2022) 480. doi: 10.3390/universe8090480. arXiv: 2209.11639 [hep-
ex].

[135] M. Cannoni, J. Ellis, M. E. Gomez, and S. Lola. Neutrino textures and charged
lepton flavour violation in light of θ13, MEG and LHC data. Phys. Rev. D 88.7
(2013) 075005. doi: 10.1103/PhysRevD.88.075005. arXiv: 1301.6002 [hep-ph].

[136] A. A. Markov. Extension of the limit theorems of probability theory to a sum of
variables connected in a chain. reprinted in Appendix B of: R. Howard, Dynamic
Probabilistic Systems, volume 1: Markov Chains, John Wiley and Sons, 1971.

[137] N. Metropolis et al. Equation of state calculations by fast computing machines. J.
Chem. Phys. 21 (1953) 1087–1092. doi: 10.1063/1.1699114.

[138] W. K. Hastings. Monte Carlo Sampling Methods Using Markov Chains and Their
Applications. Biometrika 57 (1970) 97–109. doi: 10.1093/biomet/57.1.97.

[139] B. C. Allanach et al. Precise determination of the neutral Higgs boson masses in
the MSSM. JHEP 09 (2004) 044. doi: 10.1088/1126-6708/2004/09/044. arXiv:
hep-ph/0406166.

[140] P. Slavich et al. Higgs-mass predictions in the MSSM and beyond. Eur. Phys. J. C
81.5 (2021). Ed. by P. Slavich and S. Heinemeyer 450. doi: 10.1140/epjc/s10052-
021-09198-2. arXiv: 2012.15629 [hep-ph].

[141] F. Boudjema, G. Drieu La Rochelle, and S. Kulkarni. One-loop corrections, uncer-
tainties and approximations in neutralino annihilations: Examples. Phys. Rev. D 84
(2011) 116001. doi: 10.1103/PhysRevD.84.116001. arXiv: 1108.4291 [hep-ph].

[142] F. Boudjema, G. Drieu La Rochelle, and A. Mariano. Relic density calculations
beyond tree-level, exact calculations versus effective couplings: the ZZ final state.
Phys. Rev. D 89.11 (2014) 115020. doi: 10.1103/PhysRevD.89.115020. arXiv:
1403.7459 [hep-ph].

[143] J. Harz et al. Theoretical uncertainty of the supersymmetric dark matter relic density
from scheme and scale variations. Phys. Rev. D 93.11 (2016) 114023. doi: 10.1103/
PhysRevD.93.114023. arXiv: 1602.08103 [hep-ph].

[144] T. K. Hemmick et al. A Search for Anomalously Heavy Isotopes of Low Z Nuclei.
Phys. Rev. D 41 (1990) 2074–2080. doi: 10.1103/PhysRevD.41.2074.

[145] A. Kudo and M. Yamaguchi. Inflation with low reheat temperature and cosmological
constraint on stable charged massive particles. Phys. Lett. B 516 (2001) 151–155.
doi: 10.1016/S0370-2693(01)00938-8. arXiv: hep-ph/0103272.

[146] M. Taoso, G. Bertone, and A. Masiero. Dark Matter Candidates: A Ten-Point Test.
JCAP 03 (2008) 022. doi: 10.1088/1475-7516/2008/03/022. arXiv: 0711.4996
[astro-ph].

[147] [XENON Collab.], E. Aprile, et al. Dark Matter Search Results from a One
Ton-Year Exposure of XENON1T. Phys. Rev. Lett. 121.11 (2018) 111302. doi:
10.1103/PhysRevLett.121.111302. arXiv: 1805.12562 [astro-ph.CO].

[148] F. Staub. SARAH 4: A tool for (not only SUSY) model builders. Comput. Phys.
Commun. 185 (2014) 1773–1790. doi: 10.1016/j.cpc.2014.02.018. arXiv:
1309.7223 [hep-ph].

151

https://doi.org/10.3390/universe8090480
https://arxiv.org/abs/2209.11639
https://arxiv.org/abs/2209.11639
https://doi.org/10.1103/PhysRevD.88.075005
https://arxiv.org/abs/1301.6002
https://doi.org/10.1063/1.1699114
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1088/1126-6708/2004/09/044
https://arxiv.org/abs/hep-ph/0406166
https://doi.org/10.1140/epjc/s10052-021-09198-2
https://doi.org/10.1140/epjc/s10052-021-09198-2
https://arxiv.org/abs/2012.15629
https://doi.org/10.1103/PhysRevD.84.116001
https://arxiv.org/abs/1108.4291
https://doi.org/10.1103/PhysRevD.89.115020
https://arxiv.org/abs/1403.7459
https://doi.org/10.1103/PhysRevD.93.114023
https://doi.org/10.1103/PhysRevD.93.114023
https://arxiv.org/abs/1602.08103
https://doi.org/10.1103/PhysRevD.41.2074
https://doi.org/10.1016/S0370-2693(01)00938-8
https://arxiv.org/abs/hep-ph/0103272
https://doi.org/10.1088/1475-7516/2008/03/022
https://arxiv.org/abs/0711.4996
https://arxiv.org/abs/0711.4996
https://doi.org/10.1103/PhysRevLett.121.111302
https://arxiv.org/abs/1805.12562
https://doi.org/10.1016/j.cpc.2014.02.018
https://arxiv.org/abs/1309.7223


Bibliography

[149] W. Porod and F. Staub. SPheno 3.1: Extensions including flavour, CP-phases and
models beyond the MSSM. Comput. Phys. Commun. 183 (2012) 2458–2469. doi:
10.1016/j.cpc.2012.05.021. arXiv: 1104.1573 [hep-ph].

[150] W. Porod, F. Staub, and A. Vicente. A Flavor Kit for BSM models. Eur. Phys. J.
C 74.8 (2014) 2992. doi: 10.1140/epjc/s10052-014-2992-2. arXiv: 1405.1434
[hep-ph].

[151] G. Bélanger et al. micrOMEGAs5.0 : Freeze-in. Comput. Phys. Commun. 231
(2018) 173–186. doi: 10.1016/j.cpc.2018.04.027. arXiv: 1801.03509 [hep-ph].

[152] K. Griest and D. Seckel. Three exceptions in the calculation of relic abundances.
Phys. Rev. D 43 (1991) 3191–3203. doi: 10.1103/PhysRevD.43.3191.

[153] [XENON Collab.], E. Aprile, et al. Projected WIMP sensitivity of the XENONnT
dark matter experiment. JCAP 11 (2020) 031. doi: 10.1088/1475-7516/2020/
11/031. arXiv: 2007.08796 [physics.ins-det].

[154] [DARWIN Collab.], J. Aalbers, et al. DARWIN: towards the ultimate dark matter
detector. JCAP 11 (2016) 017. doi: 10.1088/1475-7516/2016/11/017. arXiv:
1606.07001 [astro-ph.IM].

[155] C. A. J. O’Hare. New Definition of the Neutrino Floor for Direct Dark Matter
Searches. Phys. Rev. Lett. 127.25 (2021) 251802. doi: 10.1103/PhysRevLett.
127.251802. arXiv: 2109.03116 [hep-ph].

[156] S. Bottaro et al. The last complex WIMPs standing. Eur. Phys. J. C 82.11 (2022)
992. doi: 10.1140/epjc/s10052-022-10918-5. arXiv: 2205.04486 [hep-ph].

[157] G. F. Giudice et al. Towards a complete theory of thermal leptogenesis in the SM
and MSSM. Nucl. Phys. B 685 (2004) 89–149. doi: 10.1016/j.nuclphysb.2004.
02.019. arXiv: hep-ph/0310123.

[158] T. Hugle, M. Platscher, and K. Schmitz. Low-Scale Leptogenesis in the Scotogenic
Neutrino Mass Model. Phys. Rev. D 98.2 (2018) 023020. doi: 10.1103/PhysRevD.
98.023020. arXiv: 1804.09660 [hep-ph].

[159] D. Ross. Veltman Passarino Reduction. https://www.southampton.ac.uk/~doug/
mhv/vp.pdf. 2007.

[160] S. P. Martin and D. G. Robertson. Evaluation of the general 3-loop vacuum Feyn-
man integral. Phys. Rev. D 95.1 (2017) 016008. doi: 10.1103/PhysRevD.95.
016008. arXiv: 1610.07720 [hep-ph].

[161] S. Weinzierl. Feynman Integrals. Jan. 2022. doi: 10.1007/978-3-030-99558-4.
arXiv: 2201.03593 [hep-th].

[162] A. V. Smirnov and F. S. Chuharev. FIRE6: Feynman Integral REduction with
Modular Arithmetic. Comput. Phys. Commun. 247 (2020) 106877. doi: 10.1016/
j.cpc.2019.106877. arXiv: 1901.07808 [hep-ph].

[163] M. Drees and M. Nojiri. Neutralino - nucleon scattering revisited. Phys. Rev. D 48
(1993) 3483–3501. doi: 10.1103/PhysRevD.48.3483. arXiv: hep-ph/9307208.

[164] J. R. Ellis, A. Ferstl, and K. A. Olive. Reevaluation of the elastic scattering of
supersymmetric dark matter. Phys. Lett. B 481 (2000) 304–314. doi: 10.1016/
S0370-2693(00)00459-7. arXiv: hep-ph/0001005.

152

https://doi.org/10.1016/j.cpc.2012.05.021
https://arxiv.org/abs/1104.1573
https://doi.org/10.1140/epjc/s10052-014-2992-2
https://arxiv.org/abs/1405.1434
https://arxiv.org/abs/1405.1434
https://doi.org/10.1016/j.cpc.2018.04.027
https://arxiv.org/abs/1801.03509
https://doi.org/10.1103/PhysRevD.43.3191
https://doi.org/10.1088/1475-7516/2020/11/031
https://doi.org/10.1088/1475-7516/2020/11/031
https://arxiv.org/abs/2007.08796
https://doi.org/10.1088/1475-7516/2016/11/017
https://arxiv.org/abs/1606.07001
https://doi.org/10.1103/PhysRevLett.127.251802
https://doi.org/10.1103/PhysRevLett.127.251802
https://arxiv.org/abs/2109.03116
https://doi.org/10.1140/epjc/s10052-022-10918-5
https://arxiv.org/abs/2205.04486
https://doi.org/10.1016/j.nuclphysb.2004.02.019
https://doi.org/10.1016/j.nuclphysb.2004.02.019
https://arxiv.org/abs/hep-ph/0310123
https://doi.org/10.1103/PhysRevD.98.023020
https://doi.org/10.1103/PhysRevD.98.023020
https://arxiv.org/abs/1804.09660
https://www.southampton.ac.uk/~doug/mhv/vp.pdf
https://www.southampton.ac.uk/~doug/mhv/vp.pdf
https://doi.org/10.1103/PhysRevD.95.016008
https://doi.org/10.1103/PhysRevD.95.016008
https://arxiv.org/abs/1610.07720
https://doi.org/10.1007/978-3-030-99558-4
https://arxiv.org/abs/2201.03593
https://doi.org/10.1016/j.cpc.2019.106877
https://doi.org/10.1016/j.cpc.2019.106877
https://arxiv.org/abs/1901.07808
https://doi.org/10.1103/PhysRevD.48.3483
https://arxiv.org/abs/hep-ph/9307208
https://doi.org/10.1016/S0370-2693(00)00459-7
https://doi.org/10.1016/S0370-2693(00)00459-7
https://arxiv.org/abs/hep-ph/0001005


Bibliography

[165] A. L. Fitzpatrick et al. The Effective Field Theory of Dark Matter Direct Detection.
JCAP 02 (2013) 004. doi: 10.1088/1475-7516/2013/02/004. arXiv: 1203.3542
[hep-ph].

[166] M. Cirelli, E. Del Nobile, and P. Panci. Tools for model-independent bounds in
direct dark matter searches. JCAP 10 (2013) 019. doi: 10.1088/1475-7516/2013/
10/019. arXiv: 1307.5955 [hep-ph].

[167] F. Bishara, J. Brod, B. Grinstein, and J. Zupan. From quarks to nucleons in dark
matter direct detection. JHEP 11 (2017) 059. doi: 10.1007/JHEP11(2017)059.
arXiv: 1707.06998 [hep-ph].

[168] J. C. Romao and J. P. Silva. A resource for signs and Feynman diagrams of
the Standard Model. Int. J. Mod. Phys. A 27 (2012) 1230025. doi: 10 . 1142 /
S0217751X12300256. arXiv: 1209.6213 [hep-ph].

[169] R. Mertig, M. Bohm, and A. Denner. FEYN CALC: Computer algebraic calculation
of Feynman amplitudes. Comput. Phys. Commun. 64 (1991) 345–359. doi: 10.
1016/0010-4655(91)90130-D.

[170] V. Shtabovenko, R. Mertig, and F. Orellana. New Developments in FeynCalc 9.0.
Comput. Phys. Commun. 207 (2016) 432–444. doi: 10.1016/j.cpc.2016.06.008.
arXiv: 1601.01167 [hep-ph].

[171] V. Shtabovenko, R. Mertig, and F. Orellana. FeynCalc 9.3: New features and im-
provements. Comput. Phys. Commun. 256 (2020) 107478. doi: 10.1016/j.cpc.
2020.107478. arXiv: 2001.04407 [hep-ph].

[172] H. H. Patel. Package-X 2.0: A Mathematica package for the analytic calculation of
one-loop integrals. Comput. Phys. Commun. 218 (2017) 66–70. doi: 10.1016/j.
cpc.2017.04.015. arXiv: 1612.00009 [hep-ph].

[173] A. Denner, H. Eck, O. Hahn, and J. Kublbeck. Feynman rules for fermion number
violating interactions. Nucl. Phys. B 387 (1992) 467–481. doi: 10.1016/0550-
3213(92)90169-C.

153

https://doi.org/10.1088/1475-7516/2013/02/004
https://arxiv.org/abs/1203.3542
https://arxiv.org/abs/1203.3542
https://doi.org/10.1088/1475-7516/2013/10/019
https://doi.org/10.1088/1475-7516/2013/10/019
https://arxiv.org/abs/1307.5955
https://doi.org/10.1007/JHEP11(2017)059
https://arxiv.org/abs/1707.06998
https://doi.org/10.1142/S0217751X12300256
https://doi.org/10.1142/S0217751X12300256
https://arxiv.org/abs/1209.6213
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/j.cpc.2016.06.008
https://arxiv.org/abs/1601.01167
https://doi.org/10.1016/j.cpc.2020.107478
https://doi.org/10.1016/j.cpc.2020.107478
https://arxiv.org/abs/2001.04407
https://doi.org/10.1016/j.cpc.2017.04.015
https://doi.org/10.1016/j.cpc.2017.04.015
https://arxiv.org/abs/1612.00009
https://doi.org/10.1016/0550-3213(92)90169-C
https://doi.org/10.1016/0550-3213(92)90169-C


List of Figures

1.1 Illustration of the history of the Universe, from [13], starting from t = 0
till today at t0 = 13.8 billion years, depicting various events in its thermal
evolution. After the Big Bang at t = 0, observations of homogeneities of the
CMB suggest a period of inflation. The small baryon asymmetry is believed
to have been generated before the proton formation era and resulted in an
elimination of anti-baryons. BBN takes place during the era where nuclear
fusion begins. After nuclear fusion ends, electrons and atomic nuclei become
bound to form neutral atoms (recombination) and photons start to go out
of thermal equilibrium with matter. The photons of the CMB originate
from this time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 The Keldysh contour in the complex time plane, running from some initial
time to an arbitrary future time and back again. The contour is shifted
slightly away from the real axis for clarity. . . . . . . . . . . . . . . . . . . . 8

3.1 Graphical representation of basic building blocks . . . . . . . . . . . . . . . 22

3.2 Illustration of the BSE in the Hartree approximation. Here, the convention
is p1,2 are incoming four-momenta and p3,4 are outgoing, with p = p1 + p2. . 27

3.3 The relative difference between successive iterations of the scalar propagator
for parameter choices of mR = 100GeV, αR = 200GeV and λR = 4, leading
to φR ≈ 70GeV for a range of the norm of the Euclidean four-momentum
p. We have the UV cutoff, Λ = 105 GeV, required during the course of the
numeric integration, as explained in the text. . . . . . . . . . . . . . . . . . 37

3.4 The relative difference between the second iteration of the scalar propagator
evaluated with different cutoffs Λ2 = 106 GeV and Λ3 = 107 GeV, and the
one evaluated at Λ1 = 105 GeV for a range of the norm of the Euclidean
four-momentum p. The parameters are taken to be mR = 100GeV, αR =
200GeV and λR = 4 which lead to φR ≈ 70GeV. . . . . . . . . . . . . . . . 37

154



List of Figures

3.5 Top: The relative difference between the first and zeroth iteration of V (4)

as a function of the modulus of the COM three-momentum |~p|at fixed COM
angle θ = 0. Bottom: The relative difference between the first and zeroth
iteration of V (4) as a function of the COM angle for |~p|= 1000GeV. The
parameters chosen are mR = 100GeV, αR = 75GeV and λR = 0.8, leading
to φR ≈ −450GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Illustration of the various kernels in the fermionic sunset approximation.
Red lines indicate the fermionic propagator DR. . . . . . . . . . . . . . . . . 44

3.7 Illustration of BSE for the resummation of the three-point vertex V (3)
ψφ using

the four-point vertex V (4)
ψφ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 The relative difference between the two successive iterations of the scalar
propagator for two choices of the renormalised fermionic mass, MR. We
have set gR = 2 , λR = 0.5 , αR = 50GeV, φR ≈ 227.5GeV and mR =
100GeV in all cases. The UV cutoff was taken to be Λ = 105 GeV. . . . . . 50

3.9 The relative difference between the two successive iterations of the function
W (p) for two choices of the renormalised fermionic mass, MR. We have set
gR = 2 , λR = 0.5 , αR = 50GeV, φR ≈ 227.5GeV and mR = 100GeV in all
cases. The UV cutoff was taken to be Λ = 105 GeV. . . . . . . . . . . . . . . 50

3.10 The relative difference between the two successive iterations of the function
Z(p) for two choices of the renormalised fermionic mass, MR. We have set
gR = 2 , λR = 0.5 , αR = 50GeV, φR ≈ 227.5GeV and mR = 100GeV in all
cases. The UV cutoff was taken to be Λ = 105 GeV. . . . . . . . . . . . . . . 51

4.1 The relative difference between successive iterations of m2(φ) versus the
field value φ. The parameters are λR = 0.8 and |mR|= 100GeV, leading to
vR ≈ 274GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 The 2PI improved effective potential in the Hartree approximation (red
curve) against the field value, with the tree-level (black curve) and Coleman-
Weinberg (blue curve) potentials for comparison. The parameters are λR =
0.8 and |mR|= 100GeV, leading to vR ≈ 274GeV. . . . . . . . . . . . . . . . 60

4.3 The 2PI effective potential in the scalar sunset approximation (red curve)
against the field value, with the tree-level potential (4.66) (black curve) and
Coleman-Weinberg potential from (4.66) (blue curve) for comparison. The
parameters are λR = 0.8, αR = 75GeV and |mR|= 100GeV. We have set
the auxiliary mass parameter m0 = 271.36GeV. We find the true minimum
of the 2PI effective potential at vR ≈ −450GeV. All relevant integrals were
calculated with a cutoff of 105 GeV. . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Top: A zoomed-in view of Fig. 4.3 at the true minimum vR ≈ −450GeV.
Bottom: A zoomed-in view of Fig. 4.3 at the secondary minimum vR ≈
−450GeV. Curves are coloured as in Fig. 4.3, with the same choice of
parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Comparisons between 2PI effective potential within the Hartree approxi-
mation (solid, black line) and including the sunset diagram (dashed, black
line) with coupling λ2Rφ2. The parameters are αR = 0, λR = 0.8 and |mR|=
100GeV, leading to vR ≈ 274GeV. We have accordingly set m0 = 200GeV. 70

155



List of Figures

4.6 The various contributions to the 2PI effective potential within the trunca-
tion till sunset diagram with coupling λ2Rφ2. The parameters are λR = 0.8
and |mR|= 100GeV, leading to vR ≈ 274GeV. We have accordingly set
m0 = 200GeV. Note that what is shown is the absolute value of the con-
tributions, in this logarithmic plot. . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 The relative difference between the 2PI effective potential evaluated with
UV cutoff Λ1 = 105 GeV and Λ2 = 106 GeV (solid, black line) and Λ3 =
107 GeV (dashed, black line). The parameters are λR = 0.8, αR = 75GeV
and |mR|= 100GeV. We have set the auxiliary mass parameter m0 =
271.36GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 First row: the tree-level decay of the Ni into Lα and H. Second row: the
corresponding one-loop diagrams for the decay into the same final states.
Arrows indicate the flow of lepton number. Crosses on lines indicate mass
insertions. The internal lepton flavour β and the internal RHN k are always
summed over. Note that the first of the loop diagrams in the second row
(one of the “self-energy” diagrams) contributes to a CP asymmetry in the
flavour, but not the total asymmetry [91] where as the remaining two loop
diagrams (the last of which is often called the “vertex diagram”) violate
both lepton flavour and lepton number [91–93]. . . . . . . . . . . . . . . . . 85

5.2 Examples of washout processes, with arrows representing the flow of lepton
number. From the left to right, we have the inverse decay, an example of a
∆L = 2 process and finally, an example of a ∆L = 1 process, where qL,R
represents the left (right)-handed quarks. The dominant contribution to the
∆L = 1 process would come in the case of a top-quark, due to the relevant
Yukawa coupling. Note that in the ∆L = 2 process, the intermediate Ni

can go on-shell, and thus one needs to subtract the relevant contribution
from the cross-section; otherwise, one double counts the decays of the Ni

in the BEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Depiction of the EW vacuum, from [6], with the various vacua. The free

energy, F , is plotted against the gauge-field and Higgs-field configurations.
Between adjacent vacua, B and L change by Nf units (here, it is 3 as in
the SM). The sphalerons (S) are represented by the path which moves over
the barrier, from one vacuum to another. . . . . . . . . . . . . . . . . . . . 90

6.1 Dominant one-loop contributions to (g − 2) and charged LFV processes
before EWSB. Arrows indicate the flow of quantum numbers and couplings
are specified for clarity. A photon should be attached to the respective
charged components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Distributions of the absolute values of the components of the Yukawa cou-
plings gF1 (upper left), gF2 (upper right), gΨ (lower left) and gR (lower
right) obtained from the MCMC scan. The plots corroborate the hierarchy
among the components, as enforced by the neutrino mass fit, accommodat-
ing (g − 2)µ, and the constraints coming from cLFV processes. . . . . . . . 100

6.3 Correlation of selected Yukawa couplings with the trilinear coupling α. The
couplings gΨ and gF1 are connected to the trilinear couplings α through the
fit of the neutrino masses, while the connection of g2Ψ and g2R with α stems
from the fit of the anomalous magnetic moment (g − 2)µ. . . . . . . . . . . 100

156



List of Figures

6.4 Histograms of the mass and nature of the DM candidate. The separation
into fermionic and scalar DM clearly exhibits a preference for fermionic DM
with a mass around 1100 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 Left: Distribution of the masses in case of fermionic DM candidates, sep-
arating the scenarios where the DM candidate is doublet-dominated (blue
line) from those where it is singlet-dominated (orange line). Right: singlet
content of the DM candidate as a function of the DM mass. . . . . . . . . . 101

6.6 Left: Distribution of the masses in case of scalar DM candidates, separating
the scenarios where the DM candidate is doublet-dominated (blue line) from
those where it is singlet-dominated (orange line). Right: singlet content of
the DM as a function of the DM mass. . . . . . . . . . . . . . . . . . . . . . 102

6.7 Contributions to the scalar mass matrix in equation (6.4). . . . . . . . . . . 102
6.8 Spin-independent DD cross-section versus the mass of the DM in the scalar

case, differentiating between singlet (blue) and double-like (orange). The
current limit from XENON1T [147], as well as the future limits from XENONnT
[153] and DARWIN [154] are given, as well as the corresponding line for the
neutrino floor [155]. The fermionic DM case is not shown as the DD cross-
section lays below the neutrino floor, around 10−60 cm2. . . . . . . . . . . . 103

6.9 Diagrams contributing to the CP asymmetry generated in the decays of Fi
(i = 1, 2). Upper row: diagrams that are similar to the ones obtained in
the type-I seesaw model. The arrows indicate the flow of lepton number.
Note that another self-energy diagram exists with the mass insertion of Fi
instead, by reversing the arrow of Lm (Ψ). Lower row: Additional vertex
diagrams contributing to the CP asymmetry generated in the decays of the
singlet fermions Fi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.10 Left: resulting baryon-to-photon ratio ηB plotted against the mass of the
lighter singlet fermion driving leptogenesis. The solid grey line denotes
the observed value of ηB from Planck. The CP asymmetry generated in
the decays of the singlet fermion is indicated by the hue. Right: Decay
parameter K1 of the lighter singlet fermion versus the absolute value of the
trilinear coupling α. The value of ηB is indicated by the hue. The points
in red are within the grey band on the plot to the right. . . . . . . . . . . . 106

D.1 Inelastic scattering between two Majorana fermions, the DM candidate χ0
1,

and a heavier state χ0
m, via Z-boson exchange. q refers to up and down

quarks in a nucleon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
D.2 Inelastic scattering between the scalar DM candidate, φ01, and the pseudo-

scalar A0 via Z-boson exchange. . . . . . . . . . . . . . . . . . . . . . . . . 129

E.1 Examples of one-loop wave function diagrams for the decays of Fi. Note
the flow of lepton number, and the ‘clash’ on the line of the F , indicating
the mass insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

E.2 Example of a one-loop vertex diagram for the decays of Fi. . . . . . . . . . 135

157



List of Tables

6.1 BSM field content of the scotogenic model under consideration and their
representations/charges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Constraints considered in the MCMC analysis: Higgs mass and charged
LFV observables [8] and the DM relic density [11]. The limits from XENON1T
[147] to the direct detection cross-section are also taken into account. . . . . 98

6.3 Input parameters for the MCMC scan, with dimensionful quantities given
in GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Summary of lepton number assignments to the fields in the model. . . . . . 104

158



Acknowledgements

Now comes possibly the hardest part: thanking everyone over the last 3 years without
missing out. I shall try to mention as many as I can for who I am grateful, but if I leave
someone out, I do apologise and hope that I can make amends.

I’d firstly like to thank Prof. Haye Hinrichsen and Prof. Werner Porod. I am very
grateful for the mentorship provided throughout this PhD. Their doors were always open,
whether it be for physics discussions, general guidance about my career or just to alleviate
my worries about the future. Next, I would like to thank Prof. Kimmo Kainulainen for
his wisdom and insight that steered me towards a better understanding of my work. I
look forward to continue working with all of you. Last but not least, I would like to thank
Prof. Raimund Ströhmer for immediately agreeing to join my doctoral committee.

The members (old and current) at TP2 all deserve a shout-out for the discussions
(physics and otherwise) that made coming to the office hardly a routine. Especially thanks
to Alex, Benjamin, Ricardo, and Yang for all the fun times we had. I would like to
thank Karina and Nelly for helping me avoid the troubles of bureaucracy, especially with
my broken German. I’d also like to thank Björn and Maud for the interesting physics
discussions during my visits in Annecy.

From back home, Arnav, Sidhant and Vivasvaan, I am very grateful for the regular
video calls on the weekend, and the memories of “heavy driving” whenever I was in Delhi.
My friends from back in Bonn (even though some are no longer in Bonn): Srijan, Aish-
warya, Yong, Lina and Janak, thank you for the occasional check-ins. To Saniya, I am
very grateful for taking the time out to bear my ranting and being there to cheer me up
during my lows. I would like to mention Deeksha; we haven’t known each other long but
thank you for all the care and support over the last couple of months.

Finally, I’d like to close by thanking my wonderful parents; Mum and Dad, I would
not have realised this journey without your love and support.


	Introduction
	PART I
	The 2PI Formalism
	Properties of the 2PI and nPI Formalisms
	Review of the 1PI Effective Action
	2PI Effective Action
	Salient Features of the 2PI Effective Action
	A Pedagogical Example
	Including Fermions

	Effective Potential

	On-shell Renormalisation
	Tools for Renormalisation
	2PI Kernels and Bethe-Salpeter Equations
	Diagrammatic Treatment of Integral Equations

	Hartree Approximation
	Scalar Sunset Approximation
	Fermionic Sunset Approximation
	Summary

	MS Renormalisation and the 2PI Effective Potential
	Hartree Approximation
	Scalar Sunset Approximation
	Fermionic Sunset Approximation
	Summary

	PART II
	Leptogenesis
	CP Violation
	Boltzmann Equations
	Sphalerons: Converting Leptons to Baryons

	Phenomenology of a Scotogenic Model
	Model
	Scalar Sector
	Fermionic Sector

	SM Neutrino Mass Generation
	Anomalous Magnetic Moment of the Muon
	Markov chain Monte Carlo Scan
	Constraints and Observables
	Results of the Scan

	Leptogenesis
	CP Violation
	Washout
	Results

	Summary and Outlook

	Conclusion and Outlook
	APPENDICES
	Loop Integrals 101
	Dimensional Regularisation
	Scalar Integrals
	Tensor Integrals and Passarino-Veltman Reduction

	Numerical Evaluation in Euclidean Space
	One-Point Scalar Integral
	Two-Point Scalar Integral


	Integrals for the Scalar Sunset Approximation
	MS Renormalisation with 2PI Kernels
	Hartree Approximation
	Scalar Sunset Approximation

	Dark Matter Inelastic Scattering
	Fermionic Dark Matter
	Scalar Dark Matter

	Calculation of the CP Asymmetry Parameters
	Wave Function Diagrams
	Vertex Diagrams

	Bibliography
	List of Figures
	List of Tables



