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Kurzzusammenfassung

In dieser Arbeit beschäftigen wir uns mit dem Zusammenhang von Gammablitzen
(GRBs) und ultra-hochenergetischer kosmischer Strahlung (UHECR) sowie mit den
Möglichkeiten, wie dieser Zusammenhang überprüft werden kann. Der zur Zeit er-
folgsversprechendste Ansatz basiert auf der Detektion von hochenergetischen Neu-
trinos, die mit der Beschleunigung von kosmischer Strahlung assoziiert werden.
Wir zeigen detailiert, wie die prompte Emission im Bereich der Gammastrahlung
mit der Voraussage eines Neutrinosignals zusammenhängt. Ein besonderes Augen-
merk legen wir hierbei auf die Wechselwirkung von Photonen und Protonen. Am
Beispiel der aktuellen Analyse des ANTARES Neutrinoteleskops zu Neutrinos von
Gammablitzen zeigen wir, wie sich numerische Voraussagen von älteren analytis-
chen Methoden unterscheiden. Des Weiteren diskutieren wir Möglichkeiten, wie
die Teilchen der kosmischen Strahlung aus einem Gammablitz entkommen können,
wenn die ultra-hochenergetische kosmische Strahlung nur aus Protonen bestehen
würde. Wir vergleichen dazu das meistens angenommene Entkommen in Form von
Neutronen mit einer neuen Komponente von direkt ausströmenden Protonen. Auch
zeigen wir, dass die unterschiedlichen Komponenten, die zur kosmischen Strahlung
beitragen, stark von den verwendeten Parametern der Gammablitze abhängen, und
überprüfen die Modelle an einigen ausgewählten Gammablitzen. In einem weiteren
Schritt führen wir die Überlegungen zu dem Zusammenhang von Gammablitzen
und ultra-hochenergetischer kosmischer Strahlung fort, in dem wir mittels eines
einfachen Propagationscodes für kosmische Strahlung eine Verbindung zwischen
dem Quellmodell für Gammablitze und den Beobachtungsdaten der kosmischen
Strahlung herstellen. Wir überprüfen, inwieweit sich die beobachteten Energiedichten
der kosmischen Strahlung mittels unseres einfachen Modells realisieren lassen und
welche Konsequenzen dies für die Voraussagen der prompten Neutrinoemission von
Gammablitzen sowie den kosmogenischen Neutrinos hat. Außerdem gehen wir der
Frage nach, wie die vorausgesagten prompten Neutrinoflüsse von einer endlichen
Lebenszeit der Neutrinos beeinflusst werden würden. In einem letzten Kapitel über-
tragen wir das verwendete grundlegende Quellmodell mit photohadronischen Wech-
selwirkungen auf eine andere Klasse von Quellen, am Beispiel von Voraussagen für
den Mikroquasar Cygnus X-3.
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Abstract

In this work, we take a look at the connection of gamma-ray bursts (GRBs) and
ultra-high-energy cosmic rays (UHECR) as well as the possibilities how to verify
this connection. The currently most promising approach is based on the detection
of high-energy neutrinos, which are associated with the acceleration of cosmic rays.
We detail how the prompt gamma-ray emission is connected to the prediction of a
neutrino signal. We focus on the interactions of photons and protons in this regard.
At the example of the current ANTARES GRB neutrino analysis, we show the dif-
ferences between numerical predictions and older analytical methods. Moreover, we
discuss the possibilities how cosmic ray particles can escape from GRBs, assuming
that UHECR are entirely made up of protons. For this, we compare the commonly
assumed neutron escape model with a new component of direct proton escape. Addi-
tionally, we will show that the different components, which contribute to the cosmic
ray flux, strongly depend on the burst parameters, and test the applicability on some
chosen GRBs. In a further step, we continue with the considerations regarding the
connection of GRBs and UHECR by connecting the GRB source model with the
cosmic ray observations using a simple cosmic ray propagation code. We test if it is
possible to achieve the observed cosmic ray energy densities with our simple model
and what the consequences are regarding the prompt GRB neutrino flux predictions
as well as the cosmogenic neutrinos. Furthermore, we consider the question of neu-
trino lifetime and how it affects the prompt GRB neutrino flux predictions. In a
final chapter, we show that it is possible to apply the basic source model with photo-
hadronic interactions to other types of sources, using the example of the microquasar
Cygnus X-3.
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“Dicebat Bernardus Carnotensis nos esse quasi nanos gigantum umeris insidentes,
ut possimus plura eis et remotiora videre, non utique proprii visus acumine, aut

eminentia corporis, sed quia in altum subvehimur et extollimur magnitudine
gigantea”

“Bernhard von Chartres sagte, wir seien gleichsam Zwerge, die auf den Schultern
von Riesen sitzen, um mehr und Entfernteres als diese sehen zu können – freilich

nicht dank eigener scharfer Sehkraft oder Körpergröße, sondern weil die Größe der
Riesen uns emporhebt.”

– Johannes von Salisbury: Metalogicon 3,4,46-50
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1. Introduction

Even though it has already been more than 100 years since the discovery of the
cosmic rays through Rudolph Hess [1], the question of their origin still remains.
Different experiments over the years have refined the picture of the (nearly) unper-
turbed power-law extending over more than 12 orders of magnitude, see Fig. 1.1
as well as discussion in, e.g., Ref. [2]. Even the theoretically predicted cutoff [3, 4]
(“GZK-cutoff”) at energies beyond 1011 GeV is now considered to have been observed
as recent updates from air shower experiments, see in Ref. [5] and references therein,
suggest. There is now the accepted view that there are two distinct components:
a galactic and an extra-galactic. The lower energies are assumed to be dominated
by galactic sources, while the highest energies can only be reached on scales be-
yond the size of our galaxy, see, e.g., Ref. [6]. However, the actual sources of the
ultra-high-energy cosmic rays (UHECR) have so far not been identified. There are
several models for known source classes based on their observation in photons. Some
of these models include the acceleration of charged particles, such as electrons and
protons, to the observed energies. Still, the mere existence of promising candidate
models is not sufficient. A clear correlation of a charged cosmic ray and such a
suggested source is still an open issue, which is complicated by the deflection of
the charged particles in the intergalactic as well as galactic magnetic fields. Hence,
we (so far) cannot identify the sources of cosmic rays based on the observations in
photons.

To overcome this problem, current searches for astrophysical sources are being
extended to include new messengers which are connected to the“classic”messengers,
photons and CR. Here, the most promising new messengers are neutrinos, with
the properties of neutrinos being their main advantage. Neutrinos are electrically
neutral and nearly massless particles which only interact via weak interactions. Due
to these properties, they can travel unperturbed over long distances through space.
Other than the charged cosmic rays, they are not deflected by magnetic fields. Also,
they do not get absorbed by matter, such as intergalactic dust, which is a major
advantage over photons of various frequencies. In astrophysical sources, there are
several mechanisms considered which can lead to the production of neutrinos. One
is of course the production of neutrinos during the fusion processes inside stars.
These neutrinos from fusion processes are at an energy of eV to MeV, depending
on the actual process. At slightly higher energies, still several MeV, there are the
supernova neutrinos, such as the ones detected from SN1987A [8, 9]. However,
when discussing even higher energies, generally two possibilities to produce UHE
neutrinos are considered. The first possibility is the interaction of two protons (pp
interactions) leading to the production of pions and subsequent decay into neutrinos.
For energies close to (but not directly at) the threshold of inelastic scattering, the
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Figure 1.1.: The cosmic ray flux over energy. The graph shown here was created by W. Hanlon [7],
based on the famous Swordy-plot [2].

pp interaction cross section is dominated by

p+ p→ p+ ∆+ →
{
p+ n+ π+ 1/3 of all cases
p+ p+ π0 2/3 of all cases

, (1.1)

with additional processes such as fragmentation into multiple pions gaining impor-
tance at higher energies, see, e.g., discussion in Ref. [10]. The high-energy processes
lead to a roughly equal number of π+ to π−, which is not given for the ∆+-resonance.
These kinds of interactions are thought to be the dominant type of interaction
in some active galaxy nuclei (AGN) or in some supernova remnants (SNR). Even
though most the of the observed spectra suggest a leptonic jet according to current
emission models, there are also some examples for hadronic dominated jets. On the
other hand, there is always the possibility of interactions of protons and photons as
long as both types of particles are present at sufficiently high energies and densities.
These photohadronic (pγ) interactions are most of the time approximated by the
dominating ∆(1232)-resonance, leading to the simple reaction chain:

p+ γ → ∆+ →
{
n+ π+ 1/3 of all cases
p+ π0 2/3 of all cases

. (1.2)

In both pp and pγ interactions, the neutrinos are produced in the decay of the
charged pions, i.e. in the formulas shown above due to π+. This leads to a basic
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Figure 1.2.: This sketch depicts the basic concept of current multi-messenger physics. Currently,
the triangle of cosmic rays (CR), photons (γ), and neutrinos (ν) is a popular picture in the lit-
erature. Due to the first detection of cosmic neutrinos, see Refs. [12, 13], the idea of combining
several types of messengers has gotten a huge boost. Especially, the connection of the “classical”
messengers CR and several wavelengths of γ with “new” messengers, such as ν, is currently a field
of great research interest. However, to also pay respect to the work done in connection with short
GRB, the depiction here is extended by the gravitational waves (GW).

connection neutrinos, photons, and cosmic rays, as depicted schematically in Fig. 1.2.
In said figure, each type of messenger is represented by a circle, with the arrows
representing the connection based on the (particle) physics involved in the source
model. This interplay of the three different messengers is often depicted as a triangle.
Here, we have however chosen an extended version which also includes gravitational
waves (GW), due to recent work in this field, see, e.g., Ref. [11] for a review. The
connection of GW to the other messengers is a bit more complicated and ambiguous,
which is represented by the dashed arrows. We will, nonetheless, focus only on the
neutrinos in following.

To detect these high-energy neutrinos, gigantic neutrino telescopes, such as ANTA-
RES [14] or the first O(1 km3)-telescope IceCube [15], are needed. Especially, the
possible detection of the first 28 ultra-high-energy cosmic neutrino events, recently
reported by the IceCube collaboration, see Refs. [12, 13], has sparked lots of interest
in the community, see e.g. Refs. [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].
However, as Lipari pointed out in Ref. [28], one of the main challenges for the detec-
tion of astrophysical neutrinos remains the separation of the signal neutrinos from
the background of so-called atmospheric muons and neutrinos, which are created
in shower events in the Earth’s atmosphere. These backgrounds can however be
reduced by cuts on the recorded data. Especially information on incident direction
as well as the expected timing of an event can help to distinguish a neutrino sig-
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1. Introduction

nal from the atmospheric background. Here, transient events are one possibility to
obtain both information on the direction as well as the timing. Examples for tran-
sient sources are flares of active galaxy nuclei (AGN) or microquasars (MQ), and
gamma-ray bursts (GRBs). In the work presented here we will focus on GRBs.

In the about 50 years since their discovery, GRBs have been a mystery. They were
only discovered by chance by the American VELA satellites, which were designed
to monitor nuclear tests on Earth. Due to the confidentiality of the data, it took
years till this discovery was made public [29]. In the subsequent time, a plethora of
possible models for GRBs was created and numerous satellite missions were launched
to study these phenomena. Based on the isotropic distribution of the recorded data,
it could be deduced that these events could be of extragalactic origin. This was later
confirmed by optical afterglow measurements, which allowed for the calculation of
the bursts redshift. Today, there is the consensus that there are at least to distinct
types of burst which can be be differentiated based on their spectral properties
in photons. On the one hand, there are the so-called “long-soft” bursts (LSB),
which have a long duration and relatively soft spectra (= comparably steep dropping
spectra with few high-energy photons). Their duration was set to be longer than
2 seconds based on the BATSE data. On the other hand, there are “short-hard”
bursts (SHB), which have a shorter duration but have a higher contribution from
high-energy photons to the total spectrum. The current view is that the LSB are
connected to the collapse of a massive star, supported by the connection of GRB
to core-collapse supernovae (SN), see Refs. [30, 31]. The low number of observed
afterglows for SHB is currently one of the limiting factors for identifying the source
of these events, see Refs. [32, 33]. The currently most accepted theory is that
short bursts are connected the merger of two compact objects, such as as neutron
start-neutron star (NS-NS) merger or a black hole-neutron star (BH-NS) merger.
Due to the assumed nature of these events, they are a prime target as sources of
gravitational waves, and extended multi-messenger searches. We will however focus
on long bursts due to the more established nature of their progenitors, with recent
work indicating a common progenitor for LSBs up to z ' 8 [34].

From a neutrino astrophysics point of view, the currently most popular model is
the so-called fireball model. It describes a GRB as the result of the relativistic ex-
pansion of a plasma (fire-)ball [35, 36, 37]. Based on ideas developed for expanding
radio sources, this models gives a relatively simple description of how the observed
radiation is enhanced due to relativistic boosting. What exactly produces the ra-
diation is not fixed in the most generic version of this model. There are however
extensions of the fireball model such as the internal shock model which introduces
the collision of ejected shells among themselves [38, 39, 40]. These collisions lead to
the creation of collision-less shocks and give rise to Fermi acceleration of the charged
particles inside the shell. The accelerated electrons then promptly lose their gained
energy in form of synchrotron radiation which is then observed as the gamma-rays
here on Earth. This description of the creation mechanism of the gamma-rays has
however several caveats and does not describe all features seen in GRB light curves.
Hence, there are several other models, such as photospheric emission models or mag-
netic reconnection models, see, e.g., Refs. [41, 42] for reviews. Each model has its
own advantages, with no model totally convincing the community at this stage.
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1.1. Gamma-ray bursts

1.1. Gamma-ray bursts

In the following sections, we will take a closer look at GRBs in general as well as
their models. We will first go into the history of GRBs, and will review what is so
far known about these objects. We will then have a closer look at the internal shock
model for GRB fireballs. We also include a table of the commonly used quantities
at the end of this section.

1.1.1. Historical overview and basic models

Of the different objects and events in the universe, gamma-ray bursts (GRBs) are
among the most mysterious. Even though they are quite short lived compared to the
lifetime of stars, they manage to outshine most known objects in that short time.
Similar like supernovae can outshine their host-galaxy, GRBs outshine everything,
including active galaxy nuclei (AGN). Their (isotropic equivalent) energy output
over the few seconds of their prompt emission phase is of about the same order as a
solar mass M�(∼ 2 · 1054erg). Nonetheless, nearly 50 years after the initial discovery
of these bursts of gamma-radiation, we still do not know how these cataclysmic
events are formed.

The initial detection of a GRB happened by chance through a satellite program of
the US Department of Defense in 1967. The so-called Vela satellites were designed
to monitor the abidance of the Nuclear Test Ban Treaty. For this purpose, they
had omni-directional gamma-ray detectors to notice any nuclear explosions down
on Earth. Even though the focus of the satellites was to monitor Earth, some
detected signals could be identified as coming from outer space. Since the military
could not identify the origin of these mysterious, short blips, the results were finally
made public in 1973, see Ref. [29], six years after the initial detection. During that
stage, the investigation of GRBs had two key issues, which limited the directional
information: On the one hand, GRBs are quite rare and detection only happens
by chance. This together with the short duration of the bursts make extensive
measurements impossible. And on the other hand, it is impossible to focus gamma-
rays with current technology in a way such as we can focus optical light. Even
now, more than 40 years after the first detection, there are no sharp “images” in
gamma-rays of the bursts. The ambiguity led to a plethora of models which tried
to describe and in a sense explain the origin of GRBs, see e.g. Ref. [43]. However,
it should take more than 25 years till astrophysicists could make another significant
step deciphering these strange events.

The launch of the Compton Gamma-Ray Observatory (CGRO) in 1991 marked
the start of a further important mission in the process of understanding GRBs. For a
summary of the mission’s results, see Ref. [44]. Especially the all-sky survey for the
BATSE instrument was of great interest, as the distribution of bursts across the sky
was nearly isotropic with next-to-no dipole or quadrupole moments [45]. This was a
clear indication that GRBs are not of galactic origin, with an origin from an extended
galactic halo or even from cosmological distances possible. Moreover, the latter
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1. Introduction

possibility indicated that the energy output of the source must be enormous during
a very short period of time. Based on the measured short-scale variations of the
measured gamma-ray fluxes, it was deduced that also the interaction volume must
be comparably small. One of the conclusions drawn from this observation was the
consideration that GRBs must be related to relativistic effects, or more precisely with
the formation of a relativistically expanding e±-γ-fireball, similar to the relativistic
expanding radio sources proposed by Rees in Ref. [46]. Due to several problems
of this basic model, from the energy distribution over the actual duration1 of a
burst to the rapid variability of the observed light curves, an additional ingredient
in the form of shocks needed to be introduced. The main motivation for this was
the non-thermal energy distribution of the observed photons. In this “fireball shock
scenario”, there are two possible reasons for the shocks: either the ejected material
runs into the surrounding medium, as proposed by Meszaros and Rees [36], or the
ejected material is made up of several components which can collide among each
other, leading to the formation of internal shocks. As long as the densities of the
colliding material is low enough that the shock region can be considered as optically
thin, it is possible that the radiation can simply escape the source. An overview of
these kinds of models can be found in reviews, such as Refs. [41, 42], and references
therein.

A further step was done when the existence of lower energetic afterglows, a con-
sequence of the external shocks in the generic fireball shock model, could be ex-
perimentally proven in 1997. The Italian-Dutch satellite Beppo-SAX was able to
detect fading X-ray images connected to GRBs, see Ref. [48]. These X-ray images
allowed for the extraction of the burst’s position after 4 to 6 hours of processing
time. Hence it was possible to do follow-up observations in the optical or other
wavelength bands, see e.g. Ref. [49]. The additional information gained from these
multi-wavelength observations enabled the identification of possible host galaxies as
well as the derivation of the burst’s redshift, thereby confirming the cosmological
nature of the bursts, see Refs. [50, 51]. The next generation of satellites after the end
of the CGRO and Beppo-SAX missions brought a further piece to the picture, by
allowing even more accurate GRB afterglow measurements. The HETE-2 satellite
managed the first unambiguous association of a GRB with a SN, even though the
delay between the initial detection of a burst and the afterglow measurements was
still some hours. Nonetheless, GRB030329 could clearly be correlated to SN2003dh,
see Refs. [30, 31].

Another significant wave of advances started with the launch of the Swift multi-
wavelength afterglow satellite in 2004, see e.g. Ref. [52] and references therein. The
great breakthrough of the mission was the capability to measure the afterglow within
minutes of the initial detection of a burst. This finally enabled the measurement
of the light curves during the transition phase between prompt emission and the

1The definition of the duration T90 which we use in this work is taken from the Fermi Catalog [47]:
“The 90% burst duration, in seconds. T90 measures the duration of the time interval during
which 90% of the total observed counts have been detected. The start of the T90 interval is
defined by the time at which 5% of the total counts have been detected, and the end of the T90
interval is defined by the time at which 95% of the total counts have been detected.”
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1.1. Gamma-ray bursts

afterglow. Also, due to the different instruments on board the satellite, a burst could
be simultaneously measured in gamma-rays, X-rays, and in the optical. This feature
led to the detection afterglows of short bursts, as it greatly enhanced the response in
different wavelengths to a trigger, see Refs. [32, 33]. Moreover, the bursts detected
by Swift broke through the symbolic barrier of z = 6 in redshift. Even though
the number of bursts detected from redshifts z ≥ 6 is quite small, the frontier has
gradually shifted to higher values. Nowadays, with the Fermi satellite providing
most of the data, the record stands at a redshift of z = 9.35 for GRB090429B, see
Ref. [53]. While the Swift satellite was focused on connecting the gamma-rays to the
lower-energetic photons, Fermi again focuses more on the gamma-rays themselves.
The two instruments on board the satellite can detect bursts over nearly seven orders
of magnitude, with nearly seamless transition among energy bands. The lower energy
range from < 10 keV up to > 25 MeV is covered by the Gamma-ray Burst Monitor
(GBM), which scans the whole sky at all times (minus the part occulted by Earth),
taken from Ref. [47]. The upper part of the energy spectrum is covered by the
second instrument, the Large Area Telescope (LAT). The LAT can detect events
in the range from from 20 MeV up to 300 GeV, however, the field-of-view of the
instrument is restricted to about 2 sr (20% of the full sky). Hence, the GBM is used
to record pre-trigger information as well as acting as an “alert monitor” for the LAT.
Depending on signals detected in the GBM, the whole satellite can be repositioned,
allowing the LAT to detect the burst as well. Furthermore, the angular resolution
of the LAT is much better than the one of the GBM (< 0.5′ to ∼ 3◦), taken from
Ref. [47]. Therefore the repositioning additionally helps with the localization of a
burst. A current problem is, however, that the number of bursts actually detected in
the LAT is quite low (∼ 7%), see Ref. [54]. It is currently discussed if this is due to
the spectra of most GRBs not extending to as high energies as initially thought or if
this discrepancy is of other origin. One possible source of improved detection could
come from the new PASS8 data analysis algorithm for the event reconstruction, see
discussion in Ref. [55]. In a first analysis, this significantly increased the number of
photon events for a limited sample of bursts detected in the LAT.

Based on the information gained from the different satellite experiments (and
connected ground based measurements) mentioned in the previous paragraphs, it is
now firmly believed that bursts are connected to the end of the life of certain kinds of
stars and that there are at least two distinct populations of bursts, see reviews such
as Refs. [41, 42]. The “long soft” bursts are considered to be connected to the core
collapse of a massive star (m & 30M�) to a black hole, based on the correlation to
core-collapse supernovae, see Refs. [56, 37]. Recent work indicates that these bursts
have a common type of progenitor up to z ' 8, see discussion in Ref. [34]. These
bursts are generally identified to have a duration longer than 2 s. The bursts with
a shorter duration are mostly “short hard” bursts, and are assumed to be connected
to the merger of two compact objects. This can be either the merger of neutron
star binaries (NS-NS) or neutron star-black hole (NS-BH) mergers which lead to the
release of the observed radiation, see e.g. Refs. [57, 58] for model descriptions. The
separation based on the duration is unfortunately not very accurate, depends on the
chosen energy band, and also on the instrument doing the measurement. The value of
2 s was derived from the population studies done with the BATSE catalog, as detailed
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1. Introduction

in Ref. [59], and was still valid for newer BATSE catalogs such as Ref. [60]. This
value unfortunately differs for other instruments, especially with different energy
ranges. A nice comparison of this can be seen in Fig. 7 of Ref. [61]. Therefore,s
the duration may not be the best identifier of the two burst populations. However,
the multi-wavelength data which is now available has introduced the spectral shape
as an additional identifier. Depending on the amount of high-energy gamma-rays
compared to the amount of low energy gamma-rays, bursts can also be classified as
“soft”(most energy in lower energy ranges) or as“hard”(more high-energy emission).
Still, the details of the models are still unclear apart from this. One important recent
addition to the models was the introduction of jets. Especially for long bursts this
feature helped to resolve problems with the energy budget of the fireball model.
Compared to the previously assumed isotropic emission, the actual energy release
significantly decreased when assumed to be coming from a jet. This assumption
of GRBs being connected to jets is backed by observations of afterglows in X-rays
as well as the optical. Several light curves in these energy bands show a break or
steepening of the spectrum. This feature is interpreted as an edge effect as the ejecta
slow down in the external medium. Due to relativistic beaming, it is not relevant
if the emission is actually from a sphere or from a jet, as long as the jet opening
angle θj > 1/Γ, with Γ being the bulk Lorentz factor of the jet. When the jet slows
down and Γ decreases, a point is reached where the light cone from the relativistic
boosting is larger than the actual jet. At this stage, there is an observable difference
between a sphere and a jet. In case of the sphere, it would be possible to “see”
more parts of the sphere’s surface, partially countering the loss due to the lower Γ
through a higher emission area. For a jet, these contributions from fainter outer
parts are missing. The result is expected to be a break towards a steeper decline in
the afterglow spectrum. The inferred jet opening angles of long GRBs are suspected
to be in the range of θj = 5◦ − 20◦, which would be sufficient for assumed boost
factors of about Γ = 300. A problem with obtaining these values is always that the
actually correct description of a GRB jet is so far unknown, and that several models
are still viable. Inside the relativistically boosted light cone the boost factor can
actually vary by a factor of two based on the viewing angle. As already detailed by
Meszaros in his review [42], Doppler boosting and Doppler factors should actually be
used instead of the simple Lorentz factors. On top of that, the jet may be structured
in one way or the other. However, for sake of simplicity we will assume a uniform
jet and neglect the variation of the Doppler factor due to the viewing angle, using
the Lorentz factors as done in the literature.

Nonetheless, there are currently three classes of models which are being discussed
as the origin of the prompt gamma-ray emission of the bursts. There are the in-
ternal shock models, which we will focus on during this work and will be discussed
in the next subsection, but there are also photospheric models as well as mag-
netic reconnection models, which all have there advantages and disadvantages. For
photospheric emission models, the radiation is assumed to originate from thermal
electrons inside the plasma, which was already part of the original fireball mod-
els, see Refs. [35, 62, 63]. As the fireball expands and the plasma heats up due
to energy redistribution, the electrons also emit photons, see, e.g., Ref. [64] for a
current model. These thermal photons can again interact with the electrons via
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Figure 1.3.: Neutrino flux predictions for different GRB models taken from Zhang and Ku-
mar [68]. Depicted are the color-coded predictions for a photospheric model (“ph”), an internal
shock model (“IS”), and for the ICMART model. The prediction for each model is distinctly
different.

Compton scattering. Especially Inverse Compton scattering can lead to high-energy
photons. When the density of the plasma further decreases, the fireball reaches the
so-called photospheric radius Rph where the photons decouple from the plasma. This
photospheric radius can actually be dependent on the wavelength of the photons.
Multi-wavelength measurements indicate a delayed onset of the high-energy emis-
sion, as can be seen from e.g. the multi-wavelength observation of GRB110731A in
Ref. [65]. Hence, it might be the case that the highest energy photons can only es-
cape when the density of the burst has decreased due to the expansion of the burst.
The production of neutrinos would also happen near this photospheric radius, which
is smaller than the radius at which internal collisions are expected to happen, as
discussed in Ref. [66]. On the other hand, the jet could also be powered by magnetic
reconnection processes, such as in the Internal-Collision-Induced Magnetic Recon-
nection and Turbulence (ICMART) model by Zhang and Yan [67]. In these models,
the turbulent reconnection of magnetic fields inside the plasma lead to an additional
acceleration while also Inverse Compton scattering and internal collisions also play
a role. The radius at which the photohadronic interaction happen here are expected
to be larger than for the internal shock model. Moreover, the particle as well as
energy densities for all three models are different, hence all three models give dif-
ferent predictions in neutrinos, as discussed by Zhang and Kumar [68], see Fig. 1.3.
In said figure, the neutrino flux predictions for a photospheric model (“ph”, green
curves), an internal shock model (“IS”, blue curves), and for the ICMART model
(red curves). The prediction for the photospheric model is the highest in flux level,
but at the lowest neutrino energies. The prediction for the internal shock model is
only slightly lower, but at significantly higher energies. The ICMART model pre-
dicts even higher energies for the neutrinos, but the flux is lower. It should therefore
be possible to distinguish the different models based on the neutrino observations.

9



1. Introduction

1.1.2. The internal shock model

In the internal shock model, the radiation is assumed to come from shock accelerated
electrons which lose their energy due to synchrotron radiation. The acceleration of
the electrons is assumed to occur due to the collision of different matter shells, which
in turn had been ejected by a central engine. Based on the geometry of a burst and
several general considerations, it is possible to derive most of the parameters which
are connected to this model. While basic forms of the internal shock model were
proposed in Refs. [38, 39, 40], we use the basic description and considerations given
in Ref. [69] as well as Ref. [70].

The basic assumption of the fireball model is that a central engine ejects shells of
a certain thickness. These shells all have different bulk velocities Γ, with the range
of variation among Lorentz factors being of the order of ∆Γ/Γ ∼ 1. Technically,
the shells get accelerated till they reach their maximal velocity at their photospheric
radius and then start to coast with a constant bulk velocity. At a later stage, the
shells start to overtake each other giving rise to collisions. The distance from the
central engine where this happens is called the collision radius R′c (in the shock
rest frame (SRF)). The value of this radius can be calculated from the observed
variability time tv of the light curves, as explained in Refs. [69, 70]:

R′c ' 2Γ2 c
tv

1 + z
. (1.3)

In the formula shown above, we have already extended the original formula by the
contribution of the redshift z. We will include the redshift in all necessary formulas
and we give a quick review why this is necessary in Appendix B. For the currently
inferred values of the Lorentz factor Γ together with the obtained values of z, it can
be assumed that R′c ' 1013 − 1014 cm, with c in Eq. (1.3) being the speed of light.
Before continuing with the description of the internal shock model, we first want
to explain why R′c is primed, while other units, such as tv, are not. In this work,
we will be using a number of different frames of reference, which we will denote
distinctly. The first frame is the aforementioned shock rest frame (SRF), denoted
by primed units; x′. As the name suggests, it is the frame in which the shock,
which is assumed to effectively give rise to the gamma-rays, is at rest. Moreover,
an important property of this frame is that the emitted photon spectrum as well
as other particle spectra are isotropic. This will become relevant, when we discuss
the particle physics in more detail in Sec. 2.3. The second frame is the observer’s
frame, which is the frame in which the actual observations are done. Unprimed units
denote quantities in the observer’s frame; x. Since we also need to take into account
the effects of the cosmological expansion, we additionally need a third frame, which
connects the other two frames. For this we use the so-called source frame. It is
connected to the SRF through Lorentz transformations, while the observer’s frame
and the source frame are connected via z. We denote quantities in the source frame
with a tilde; x̃.

The thickness of a shell can also be estimated based on causality, with the short
scale variations being assumed to reflect the size of a causally connected region,

10



1.1. Gamma-ray bursts

namely a shell. Hence, the size of a shell can be estimated to be

∆R′ ' Γ c
tv

1 + z
, (1.4)

which is similar to the collision radius. A basic depiction (and description) of how
these quantities are derived can be found in, e.g., Ref. [71]. For all basic (neutrino)
calculations, as in Ref. [70], it has been assumed that these quantities are fixed and
do not evolve with time. For the following description of the other quantities, we will
assume that these parameters do not evolve. We will, however, discuss in Sec. 3.2
how our picture changes when parameters can evolve with time.

The two aforementioned length scales both depend on the so-called variability
time tv. In theory, a relatively simple connection between the observed variability
and the geometry of the burst exists. However, it is most of the time not as certain
what actually is the fastest variation or if the variations are really induced by the
geometry or not. In the picture of the prompt emission coming from a larger number
of shells, it might also be possible that the observed variations are due to different
shell thicknesses, different distances between shells, or due to collisions with different
relative velocities. Hence, this temporal variation of the spectrum is different for
each burst, and can even differ among energy bands. These differences among energy
bands might be due to an effect introduced by the measurement process or some
aspect of the emission process which is not understood yet. In summary, one has to
admit that there is no clear definition of tv so far, but work is currently being done
on this aspect, see e.g. Ref. [72]. Typical values for tv are normally cited to range
from ∼ 10−3 s up to 1 s, see Ref. [73].

The second parameter defining the two length scales given in Eqs. (1.3) and (1.4)
is the bulk Lorentz factor Γ. Similar to the group velocity in a wave packet, the
Lorentz factor Γ describes the collective motion of the ejecta. Depending on the
scale that is considered, the equivalent to the phase velocity is now either the veloc-
ities of the different particles or even the velocities of individual shells. According
to Ref. [69], the ejecta are assumed to be accelerated due to energy transfer between
the photon and the particle fields, until a maximum is reached. The upper bound
for this acceleration is normally estimated by assuming that all energy has been
transfered to kinetic energy. At this stage, it is assumed that the photons decou-
ple from the plasma, at the so-called photospheric radius Rph. Beyond this point,
the shells are assumed to coast with constant velocity (or Γ). During this coasting
phase, the shells start to collide, which is assumed to start at the aforementioned
collision radius Rc from Eq. (1.3). The shells can further collide during propagation
until they get decelerated when running into the external medium, at a radius Rext;
Rext � Rc � Rph. For simplicity reasons, it is normally assumed that all collisions
happen at the fixed radius Rc, which we will also adopt for the most part of this
work. As mentioned before, we will briefly discuss the effect of the propagation in
Sec. 3.2, but more realistic models in the future should incorporate this evolution.
Nonetheless, deriving values of Γ from the available photon data is somewhat prob-
lematic. Even though there are a number of methods which attempt to derive Γ from
observations, none has fully convinced so far. The usually used method is founded
on the constraints due to the pair creation threshold for high-energy emission, based
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on Ref. [74]. In said reference, it is discussed that a Lorentz factor Γ & 100 is needed
to ensure that the source is optically thin to non-thermal high-energy photons. This
estimate facilitates the consideration that the calculation simplifies when boosting
to the SRF. Hence, it is possible to estimate the minimal Γ needed to just reach the
threshold for e±-pair production inside the source using the highest observed photon
energy of a burst. We will discuss this pair creation cutoff in a bit more detail in
Appendix C, however in the context of the maximal escaping photon energy, not for
the estimation of the Lorentz factor. On the other hand, Γ can also not be much
higher than 1000 as it would lead to significant synchrotron losses of the protons, see
Ref. [75]. Other methods which try to derive Γ from the observational data are the
afterglow onset method [76], the early external forward emission method [77], as well
as the attempt of deriving a correlation of Γ and Lγ,iso for a simpler determination
of Γ, see Ref. [78]. In the influential GRB neutrino paper by Guetta et al. [70], a
method similar to the pair creation cutoff from Ref. [74] is used. Instead of focusing
on the not well known maximal escaping photon energy, the method in Ref. [70]
utilizes the observed break energy of the photon spectrum. With their approach the
authors obtained that the most common Lorentz factor is Γ ' 300.2 This value of
Γ ' 300 (or Γ ' 102.5) has been adopted as the standard value of the Lorentz factor
in the literature, see e.g. Refs. [42, 70, 73, 75].

Apart from Γ and tv, there are a number of other quantities which can be derived
from the observed light curve. In Table 1.1, we have listed most of the commonly
used quantities together with a short definition of each quantity. The different
parameters listed in the table also have (if known) their“standard”values listed, such
as Γ = 300 or tv = 10−2 s. For most bursts, the observed photon spectrum follows
the so-called Band functions [80] which is essentially a broken power-law. Therefore,
the properties of the photon spectrum can be defined by the break energy ε′γ,b (in the
SRF), and the lower and the upper photon spectral index αγ and βγ, respectively.
These quantities can be found in Table 1.1 as well as the (photon) flux Fγ and the
fluence Fγ, which normalize the spectra. As is detailed in the descriptions inside
Table 1.1, there are several possibilities to define the flux. Essentially, the flux is
the amount of energy detected per unit time per unit area. However, depending on
the chosen energy range as well as the time interval, the result can vary. Due to the
variation in time, it is sometimes of interest to have knowledge of the highest (“peak”)
flux Fγ,p during the whole duration T of a burst. On the other hand, sometimes the
time variations are not of interest at all and the total energy deposited per unit area
during the duration is needed. This is given by the fluence Fγ and is essentially just
Fγ integrated over time. The effect of the energy range is either treated by specifying
the energy range or by using a bolometric value, such as Fγ,bol, which is defined over
the whole energy range. When additionally the distance to the GRB is known
(via the redshift z, see discussion in Appendix B), Fγ can be used to calculate the

2On a only partially related note, it is quite peculiar that the actual distribution of the Lorentz
factors of GRBs obtained in Ref. [70] and the distribution of Doppler factors of AGN jets shown
in Fig. 3 of Ref. [79] are of similar shape. This might be a hint towards a basic underlying
concept for all relativistic jets, and that the actual boost factors involved in GRB observations
should be Doppler factors, not pure Lorentz factors. Unfortunately, at this stage this is pure
speculation.
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1.1. Gamma-ray bursts

luminosity Lγ,iso for an assumed isotropic source. Moreover, the isotropic equivalent
energy Eγ,iso can be calculated with this approach. As stated before, the isotropic
equivalent energy should be corrected by the size of the jet (compared to a full
sphere), but this can be neglected for general calculations due to the relativistic
boosting. During this work, we will regularly refer to the values found in Table 1.1
to describe our basic internal shock fireball model.

With the knowledge of the energy Eγ,iso or the luminosity Lγ,iso of a burst as well
as the volume of the shells, based on the collision radius and the shell thickness, it is
also possible to calculate the energy density inside the burst. Even though we only
have observation data in photons, it is possible to derive estimates for other energy
densities such as the protons, which are assumed to carry the bulk of the (kinetic)
energy. Another important component is, however, the magnetic field B. There is
currently still some debate about the values of the magnetic field inside the shock
regions of a burst. It was suggested in Ref. [81] that values in the range from 104 to
107 G should be expected for GRBs. As we discussed in Ref. [82], a detailed detection
of the neutrino flux shape could give insight on the magnetic field values. As this
is not yet possible, partition arguments are normally used to estimate the magnetic
field. Based on afterglow measurements, equipartition between the photons and the
magnetic field is assumed, see Refs. [83, 84]. With this approach, it is possible to
estimate that the energy density in electrons and/or photons U ′γ should be roughly
the same as the energy density of the magnetic field U ′B. In turn, the energy density
in [erg cm−3] can be used to calculate the magnetic field strength (in [G])3:

U ′B =
B′2

8π
. (1.5)

One of the further results which can be derived from the connection of GRBs and
core-collapse SN is that the distribution of GRBs in z should follow roughly the star
formation history. Even though it is not clear what fraction of stars actually results
in GRBs or if that fraction changes in z, it is much easier to obtain the star formation
rate (SFR) compared to the GRB rate, solely based on observation statistics. Of the
different existing SFR models, we will be using the parameterization suggested by
Hopkins and Beacom [85], based on the initial mass function proposed by Baldry and
Glazebrook, see Ref. [86]. In the work by Hopkins and Beacom, the star formation
rate density ρ̇∗ (in M�Mpc−3 yr−1) is given to be

ρ̇∗ ∝


(1 + z)3.44 0 < z ≤ 0.97
101.09 · (1 + z)−0.26 0.97 < z ≤ 4.48
106.66 · (1 + z)−7.8 4.48 < z ≤ 6

, (1.6)

where we left out the actual normalization constant ρ̇∗(0) on purpose, as it is effec-
tively irrelevant for the GRB rate. The cutoff introduced by Hopkins and Beacom
for the SFR at zmax = 6 is due to the lack of statistics at higher redshifts. Even

3We will use Gaussian cgs-units throughout this work, if not noted otherwise. This has the
advantage that we can use relations such as 1 G = 1

√
erg cm−3. Moreover, we will be using

the relation 1 erg = 624.15 GeV.
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though there are some bursts with higher measured z, it is still hard to probe regions
beyond z = 6. Therefore, we will keep this cutoff in the work presented here. For the
translation from SFR to number of GRBs in z, we will use the approach suggested
by Kistler et al. [87], which is a continuation of Ref. [85]:

dṄ

dz
= F (z)

E(z) ρ̇∗(z)

〈fbeam〉
dV/dz

1 + z
. (1.7)

In this approach, several factors are incorporated, which can change the observed
number of bursts from the actual distribution. The factor F (z) represents the frac-
tion of bursts which are either too faint to be observed or for which it is not possible
to obtain a redshift value. For simplicity reasons, we will assume that this factor is
one, as it is also has been discussed by the authors in Ref. [87]. The authors rea-
soned that for a high enough luminosity Lγ,iso all bursts should be visible over the
whole z range, which is being observed. Hence, F (Z) would be just a constant, and
only set by the probability to derive a z value for a burst. The factor 〈fbeam〉 takes
into account the fraction of bursts which are not observable due to beaming effects.
Moreover, Kistler et al. introduced the factor E(z) to parameterize the number of
stars resulting in GRBs. By comparing a sample of GRBs to the result expected
from Ref. [85], they concluded that E(z) = E0(1 + z)1.2 is the best correction to the
SFR to describe the observational data up to z = 4, but should also be applicable to
higher redshifts, see Ref. [87]. Note that even in said reference E0 is not determined
and kept as a free parameter, as we do as well. Nonetheless, this correction factor
effectively implicates that the amount of star deaths resulting in GRBs is higher
at high values of z. For the pure SFR, given in Eq. (1.6), the peak corresponds to
the “typical value” of redshift for a GRB, z = 1 − 2, as stated in Ref. [73]. For the
strong evolution case (with the correction factor E(z)), the peak number of GRBs,
however, shifts to z = 2−3. The last factor is the comoving volume correction given
by

dV/dz

1 + z
=

4π dH d
2
com(z)

(1 + z)
√

Ωm(1 + z)3 + ΩΛ

, (1.8)

which is a consequence of the cosmological model. Here, we use the Hubble distance
dH ≈ 4.26 Gpc, the comoving distance dcom (as defined in Eq. (B.8) in Appendix B),
and the densities Ωm = 0.27 and ΩΛ = 0.73, as given in Table B.1. An explanation
of the different factors can be found in Appendix B. Moreover, it is useful for
several calculations to define an adimensional redshift evolution function H(z) by
normalizing the GRB rate density, from Eq. (1.6), with the local rate density, leading
to

H(z) = (1 + z)α
ρ̇∗(z)

ρ̇∗(0)
, (1.9)

where the additional factor (1 + z)α is also included, to allow for different redshift
scaling, as in Ref. [87]. As stated earlier, when using this function, the local rate
ρ̇∗(0) is not needed, as it drops out through the normalization H(z = 0) = 1.
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1.1. Gamma-ray bursts

Name Symbol Units Definition

Fluence Fγ erg cm−2 time integrated radiative flux
(depends on energy band); en-
ergy per unit area

Fluence 25 1000 F25 erg cm−2 time integrated radiative flux
in the 25 − 1000 keV energy
band; energy per unit area

Bolometric fluence Fγ,bol (or Sbol) erg cm−2 time integrated radiative flux
integrated over whole energy
range (or summed over all en-
ergy bands); energy per unit
area

Flux Fγ erg s−1 cm−2 radiative flux; energy per unit
area and unit time

Peak flux Fγ,p erg s−1 cm−2 highest radiative flux in a
one second interval (during a
burst)

Bolometric isotropic
equivalent energy

Eγ,iso,bol erg equivalent energy of an emit-
ting sphere derived from the
observed bolometric photon
fluence (integrated number of
particles over energy)
typical value: 1053 erg

Total isotropic equiva-
lent energy

Eiso,tot erg equivalent energy of an emit-
ting sphere in all“kinds”of en-
ergies, i.e. in e±, p, B, or any
other possible contribution

lower photon spectral
index

αγ 1 lower spectral index of the ob-
served photon spectrum, as-
suming a broken power law or
a Band function
typical value: 1

upper photon spectral
index

βγ 1 upper spectral index of the
observed photon spectrum,
assuming a broken power law
or a Band function
typical value: 2

photon break energy ε′γ,b keV energy of the break in the
power law spectrum (in the
SRF), or peak energy in case
of the Band function
typical value: 1 keV

Continued on next page
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Name Symbol Units Definition

Burst duration T s time between first and last
recorded photon event of a
burst

T-90 (T-45) T90 (T45) s time during which 90% (45%)
of the total energy are ob-
served
typical value: 10 s

Variability time tv s time of variation in (time
resolved) flux spectrum (de-
pends on energy band)
typical value: 10−2 s

Isotropic equivalent lu-
minosity

Liso erg s−1 isotropic energy output
through a sphere per unit
time (nature of energy output
not specified)
typical value: Lγ,iso = 1052 erg s−1

L-90 (L-45) L90 (L45) erg s−1 isotropic energy output
through a sphere per unit
time during period in which
90% (45%) of the total en-
ergy are observed (nature of
energy output not specified)

Peak luminosity Lp erg s−1 isotropic energy output
through a sphere per unit
time during highest flux pe-
riod (nature of energy output
not specified)

Photon energy density Uγ erg cm−3 energy density in photons

Energy density of the
magnetic field

UB erg cm−3 energy density in the mag-
netic field

Redshift z 1 cosmological distance mea-
sure
typical value: 2

Lorentz factor Γ 1 boost factor due to relativistic
motion
typical value: 300 (or 102.5)

Table 1.1.: The commonly used quantities in the internal shock model for GRB fireballs with
their symbols, their generally used units, and a short definition. The quoted typical values are
all for long GRBs only. Moreover, the conversion 1 erg = 624.15 GeV is usually used to connect
particle energies with energies of cosmic objects.
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1.2. High-energy neutrinos

In the following sections, we want to discuss the neutrinos as particles themselves.
We will first review the basic properties of neutrinos. We will give a short historical
overview, followed by a brief introduction to neutrino mixing with its parameters. In
a second section, we will discuss how neutrinos can actually be detected in telescopes
and how the different flavors can be distinguished.

1.2.1. Properties of neutrinos

The neutrino, as a new particle, was proposed by W. Pauli in 1930 to resolve con-
ceptual problems with the interpretation of the results of detailed radioactive decay
measurements [88]. The term “neutrino” itself was only coined later by E. Fermi
in 1934 to describe that the particle is electrically neutral (“neutr-”) while having a
tiny interaction cross-section or mass (“-ino”, from Italian), see Ref. [89]. In princi-
ple, this already summarizes the most important properties of the neutrinos. Even
though it took decades after the initial proposition of the neutrinos, we now know
that they are spin-1/2 leptons associated with the three known lepton families; νe
(discovered in 1956, see Ref. [90]), νµ (discovered in 1962, see Ref. [91]), and ντ
(discovery finally announced in July 2000 by the DONUT collaboration [92]). The
magnitude of the interaction cross-section can be attributed to the property of only
being subject to weak interactions. Moreover, the Wu-experiment showed in 1956
that weak decays are maximally parity violating [93]. Only a year later, it was
shown by the group of M. Goldhaber that the helicity of neutrinos is always left-
handed, while anti-neutrinos are right-handed, see Ref. [94]. However, these results
are nowadays causing problems as measurements of solar, atmospheric, reactor, and
accelerator neutrinos in the last two decades have shown that there are discrepancies
between the theoretical prediction and the actually measured fluxes.

The idea for resolving this discrepancies was proposed by B. Pontecorvo in 1957,
see Refs. [95, 96], long before there was actual experimental proof of neutrino os-
cillations. However, similar to N. Cabbibo trying to preserve universality of weak
interactions [97], Z. Maki, M. Nakagawa, and S. Sakata proposed a difference be-
tween the mass-eigenstates and the weakly interacting flavor-eigenstates to resolve
problems with the observed leptonic decay rates of hyperons (baryons with at least
one strange quark) [98]. Even though their initial proposal was only for two states,
it is nowadays assumed that the flavor states |να〉 with α = e, µ, τ are connected to
the mass eigenstates |νj〉 via a mixing matrix, see e.g. Ref. [99],

|να〉 =
∑
j

U∗αj|νj〉 . (1.10)

The entries for the mixing matrix Uαj can be derived from neutrino oscillation exper-
iments, with the actual size of the matrix also being subject of discussion. Current
cosmological data, see e.g. Ref. [100], as well as the electroweak precision measure-
ments of the Z-boson width (see Ref. [101] and references therein for current status)
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suggest that there are only three “active” (weakly interacting) neutrino species, the
aforementioned νe, νµ, and ντ . For these three active states, most of the neutrino
oscillation data4 can be described with help of three mass eigenstates νj, e.g. ν1,
ν2, and ν3. These mass eigenstates must be light,

∑
mi < 0.85 eV (conservative

estimate from Planck -CMB data [100]) or m < 2 eV (taken from Ref. [101], from
tritium decay), and not equal, m1 6= m2 6= m3. Even though the exact mass of
the different mass states is unknown, there is already quite a good handle on the
mass squared difference ∆m2, taken from Ref. [101], based on the 3-neutrino mixing
scheme described in said review,

∆m2
21 = m2

2 −m2
1 = (7.50± 0.20) · 10−5 eV2 ,

|∆m2
31| = |m2

3 −m2
1| = (2.32+0.12

−0.08) · 10−3 eV2 . (1.11)

The first mass difference, ∆m2
21, is derived from the comparison of the measured

solar neutrino flux to detailed theoretical calculations. Our model of the fusion
chains inside the Sun predicts only the production of νe, while the measured νe
flux here on Earth is significantly below the predicted amount. This discrepancy
can however be resolved with the aforementioned mixing of the neutrino states,
which allows for transitions among the flavor states during flight. The second mass
difference, |∆m2

31|, can be related to the flux of neutrinos produced by cosmic rays
hitting the Earth’s atmosphere. In these interactions, mainly νµ are produced. Note
that for this mass difference the sign is so far unknown. Due to this, there are two
possible ordering schemes: one with ν3 being the heaviest state (“normal hierarchy”),
and one with ν3 being the lightest one (“inverted hierarchy”).

Even though the experimental data has shown that neutrinos must have a mass,
there is still the unknown element of how this mass is obtained. This problem is
closely related to the fundamental question about the “nature” of neutrinos, i.e. if
neutrinos are Dirac or Majorana fermions. In theory, the electric neutrality of neu-
trinos allows them to be their own anti-particle, based on the definition that anti-
particles are the electric charge conjugate of a particle, such as the positron e+

being the anti-particle of the electron e−. If neutrinos are actually their own anti-
particles, then they would be classified as Majorana fermions χ. This would allow for
the neutrino masses to be generated by so-called Majorana mass terms; basic form in
Lagrangian: mLχ̄

c
LχL. However, there are also considerations claiming that leptons

carry a quantum number L, which represents the lepton number. This lepton num-
ber L is assumed to be conserved in particle interactions, with neutrinos να carrying
L = +1 and antineutrinos ν̄α L = −1. Hence, mass generation using Majorana
mass terms would no longer be possible as particles and anti-particles are distinctly
different. In this case, the left-handed neutrinos νL and right-handed antineutrinos
ν̄R need to be complemented by right-handed neutrinos νR and left-handed antineu-
trinos ν̄L. This scenario applies to Dirac fermions, which generate the mass by the
interaction of left- and right-handed particles; basic form in Lagrangian: mDν̄LνR.

4There are some experiments, such as LSND [102], see also overview in Ref. [101], which hint
at the possible existence of sterile neutrinos, and/or some additional heavy mass eigenstates.
However, we will not discuss these more general concepts in the context of this work.
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1.2. High-energy neutrinos

Parameter best fit mixing angle derived value
sin2 θ12 0.307+0.018

−0.016 θ12 0.587

sin2 θ23 0.386+0.024
−0.021 θ23 0.670

sin2 θ13 0.0241+0.0025
−0.0025 θ13 0.156

δCP 1.08π

Table 1.2.: The first two columns represent the best fit values with 1σ errors for the three-
flavor neutrino oscillation parameters, taken from Ref. [106]. These results are derived from global
data including solar, atmospheric, reactor (including Daya Bay, Double Chooz, and RENO) and
accelerator (e.g. T2K and MINOS) experiments, according to Ref. [106]. The last two columns,
however, are the values for the mixing angles we use in our work. These values are derived from
the best fit values in the second column. As it was discussed in Ref. [107], the uncertainties of these
mixing parameters have a relatively small effect on the neutrino flux predictions (from GRB). For
comparison reasons, see how the uncertainty bounds in Fig. 1.4 have decreased from the beginning
of this work (left plot) to the end of this work (right plot).

In the work presented here, we will treat the neutrinos as Dirac fermions with
three flavor and three mass eigenstates, neglecting any additional sterile states.
This choice of neutrino nature gives rise to the following neutrino mixing matrix
Uαj, which is commonly called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
UPMNS:

UPMNS =

 c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13e−iδCP c12c23 − s12s23s13e−iδCP s23c13

s12s23 − c12c23s13e−iδCP −c12s23 − s12c23s13e−iδCP c23c13

 .

(1.12)
In this representation of the matrix, the rows stand for the flavors e, µ, and τ , while
the columns do so for the mass eigenstates 1, 2, and 3, taken from Ref. [101] (without
Majorana phases). Moreover, the mixing matrix shown above uses the short hand
notation cij = cos(θij) and sij = sin(θij) with θij being the neutrino mixing angle
among mass eigenstates i, j = 1, 2, 3. The Dirac CP-violating phase is denoted as
δCP. Since recent measurements by Daya Bay [103], Double Chooz [104, 105], and
RENO [104] have ruled out the possibility of θ13 = 0, δCP now also needs to be
considered when discussing the current mixing parameters. If not noted otherwise,
the current mixing angles for normal hierarchy, as derived in Ref. [106], are used.
The best fit values are given in Table 1.2 with 1σ errors, as in Ref. [106], together
with the actual values for the parameters used in our calculations.

When considering the evolution of a flavor state in time, we can factorize a phase

based on the energy Ej =
√
~p2c2 +m2

j , giving

|να(t)〉 =
∑
j

e−iEαtU∗αj|νj〉 . (1.13)

Since the energies Ej are different for unequal masses mj (assuming that ~p is the
same for all mass eigenstates), the superposition of the different mass eigenstates
changes with time. When we calculate the probability to observe a neutrino of flavor
β after a time t from a neutrino which was initially of flavor α from the absolute
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square of the amplitude, Pαβ = |〈νβ|να(t)〉|2, we obtain an oscillation term from the
time evolution. As neutrinos are for all our purposes ultra-relativistic particles, we
can approximate Ej ≈ |~p|c+m2

j/(2 |~p|c), and derive an oscillation length

Lαβ ≡
4π E c

∆m2
αβ

, (1.14)

when using the energy E = |~p|c and changing the variable to the length x = ct.
∆m2

αβ is the difference of the mass squares as given in Eq. (1.11). The important
aspect of this oscillation length is that depending on the neutrino energy and the
length traveled, the probability to detect a certain neutrino flavor changes. These
are the so-called flavor oscillations. In case of cosmological sources, the neutrino
flavor oscillations simplify to an averaged neutrino mixing since distances are long
enough (x � Lαβ) for decoherence to take effect (and prevent further oscillations).
Hence, the probability for a neutrino of flavor α being detected as a neutrino of
flavor β is given by

Pαβ =
3∑
j=1

|Uαj|2|Uβj|2 , (1.15)

taken from Ref. [108]. As long as three flavor states and three stable mass eigenstates
are assumed, the Uαj are just the entries of UPMNS from Eq. (1.12). Using these
mixing probabilities Pαβ, one can easily calculate the expected flux φ in flavor α
based on the predicted fluxes without mixing,

φνα =
∑

β=e,µ,τ

Pαβφνβ . (1.16)

Note that the fluxes φνβ are subject to other propagation effects such as adiabatic
losses, which are discussed in Appendix B.

1.2.2. Detection methods for astrophysical neutrinos

Once the neutrinos reach Earth there is still the issue of the detection. While
during propagation through space the small interaction cross-section of neutrinos is
a valuable advantage, it is a hindrance when it comes to the detection of neutrinos.
The possible number of processes used for the detection is small, limited by the
nature of the weak interactions. The currently used methods utilize the detection
of secondary leptons through characteristic photons of annihilation processes (low
energy range), via the detection of Cherenkov radiation (high-energy range), or from
the material response to the passing lepton (Askaryan effect; very high energies).
The first positive neutrino detection was achieved using a β-capture (or inverse
β-decay) set-up to detect low energy (reactor) neutrinos, see Ref. [90],

ν̄e + p+ → e+ + n . (1.17)

The experimental verification was based on the coincidental detection of a flash
from a e+e−-pair annihilation together with a signal from a slow neutron. At higher
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1.2. High-energy neutrinos

energies, as expected for astrophysical neutrinos, this method of coincident detection
is no longer sufficient and other means needed to be introduced.

As stated before, the high-energy neutrinos are nowadays mostly detected through
the Cherenkov radiation of the secondary leptons. Note, that the definition of “high-
energy” for astrophysical neutrinos is Eν ≥ 100 MeV, according to Ref. [109]. At
these energies, the secondary particles are still highly relativistic and can be de-
tected by various event topologies. In case of charged current (CC) interactions,
the associated products of the neutrino collision with a nucleus are the appropriate
charged leptons, e.g. a muon µ− for a νµ. When these secondary particles are still
highly relativistic while they travel through the medium and their velocity exceeds
the speed of light inside the material, they induce a characteristic blueish radiation
in the material by polarization (and subsequent relaxation) of the atoms along the
path of the particles (Cherenkov radiation). This radiation can be detected inside
the medium itself with optical modules, if the medium is transparent in the optical
band. An example for optical modules in general are the Digital Optical Modules
used in IceCube, which consist of a photomultiplier tube and a single board data
acquisition computer (for digitizing the data). Instrumenting a large volume of
O(1 km3) and more is currently one of the main limiting factors for the sensitivity of
current experiments, as already pointed out in Ref. [109]. Depending on the lifetime
of the secondary particle and the further interactions with the medium, different
event topologies are obtained. Here, the aforementioned muons present a special
case as they live long enough (compared to taus) and do not lose energy too rapidly
(compared to electrons). Hence, the path of the muons through the (optically trans-
parent) medium can be reconstructed as a track with adequate instrumentation.
These tracks have the major advantage that one can obtain additional directional
information on the incident neutrino. Even though the nature of particle interac-
tions always introduces a certain irreducible uncertainty on the reconstruction of
the neutrinos, current neutrino telescopes have now reached accuracies of about
1◦. The IceCube collaboration can reconstruct tracks with an angular resolution
better than 0.2◦ (for the 40- and 59-string configurations of IceCube), taken from
Ref. [110], while the ANTARES collaboration is down to 0.5◦ for reconstructions in
the Mediterranean Sea, see Ref. [111]. These accuracies are nowhere near the ones
obtained with measurements in optical or radio astronomy, especially radio interfer-
ometry, but can already give a valuable indication of the direction. This directional
information most of the time comes at the expense of an accurate energy reconstruc-
tion of the muon, since the muon tracks are rarely fully contained in the detector.
Moreover, fluctuations in the radiation processes additionally lead an uncertainty
on the correlation of observed photons and lost muon energy. The muon energy re-
construction is therefore always only a lower estimate. On the other hand, electrons
and taus are mainly detectable through particle showers, when produced through CC
interactions. Electrons quickly lose their energy in the formation in an electromag-
netic shower, which induces a nearly spherical glow of Cherenkov radiation. When
these shower events are fully contained inside the detector, they allow for much bet-
ter energy reconstruction than muon tracks. However, directional information on
the incident neutrino is much harder to obtain. For tau leptons, hadronic showers
accompany their production in CC interactions as well as their decay into a muon.
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The main difference between hadronic and electromagnetic showers is the presence
of further particles, such as muons and different kinds of mesons, in hadronic showers
while electromagnetic showers are only made out of electrons/positrons and photons.
Depending on the decay length of the tau, it is now possible to detect either one
or two showers, with the decay path length of taus given by Γcττ ∼ 50(Eτ/PeV) m,
with ττ the lifetime of the tau, taken from Ref. [112]. For energies below a few PeV,
the decay length of the tau is so short that the tau track cannot be distinguished
from the hadronic shower, and only the track of the muon (from the tau decay) can
be detected apart from the shower. This topology is called a lollipop event. For
even higher tau energies, the two showers can be distinguished and are connected by
a tau track, giving rise to a so-called double-bang event, see Ref. [112] for a discus-
sion. Even though cascades do have the advantage of the better energy resolution
for events which are fully contained in the detector, they actually have several draw-
backs apart from the worse directional information. Since the cascades need to be
close5 to or at least partially inside the actually instrumented volume, the effective
volume for cascades is much smaller than for muon tracks. Additionally, it is cur-
rently only partially possible to distinguish hadronic from electromagnetic showers.
Due to this, most of the analyses do not separate electromagnetic from hadronic
showers, but only report the sum of all shower events, e.g. Refs. [12, 13]. Moreover,
cascades have the problem that they have the additional background from neutral
current (NC) interactions of all flavors producing hadronic showers. Hence, shower
events are affected by a contamination from NC interactions. On the other hand,
neutrino induced showers can (in theory) be also detected as nearly horizontal (or
up-going) extensive air showers (EAS) inside the atmosphere for neutrino energies
above EeV. These EAS can be measured by cosmic ray detectors, such as the Pierre
Auger Observatory, or by monitoring the dark night sky for nitrogen fluorescence
with pixelated optical detectors, as done by the Fly’s Eye group, see discussion in
Ref. [109]. As a rule of thumb, it is expected that it is more likely to detect a track
event than a shower event. For the next generation of telescopes, the Askaryan
effect is being considered as a viable alternative to allow for even larger effective
volumes, as this effect allows for detection in the radio window (below 100 MHz)
or via acoustic waves. The Askaryan effect itself is similar to the Cherenkov effect,
as it is described to be due to the polarization/energy deposition of the secondary
particles. However, the response of the material is at much lower frequencies. Dif-
ferent experiments, such as ANITA [113, 114], RICE [115, 116], or the up-coming
ARA [117], facilitate this effect to detect high-energy neutrinos.

Nonetheless, the two different event topologies allow for additional observables,
which should fulfill the following two requirements, according to Ref. [118]:

1. They take into account the unknown flux normalization.

2. They take into account the detector properties.

A simple solution to fulfill the first requirement are so-called flavor ratios. Flavor
ratios are ratios of the measured neutrino fluxes of different flavors. Since shower

5As a rough estimate for a shower, we can assume a sphere with a ∼ 100 m radius for a TeV
parent particle.
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events represent νe+ντ and (muon) tracks νµ (neglecting backgrounds), it is possible
to interpret the ratio of shower events to tracks as the flavor ratio

R̂ =
φν̄µ+νµ

φν̄e+νe + φν̄τ+ντ

, (1.18)

with φ being the summed neutrino and antineutrino flux at the detector, taken
from Ref. [119].6 This definition has the advantage that it is independent of the
unknown flux normalization, as it cancels in the ratio. An example for the predicted
flavor ratio for neutrino emission from a GRB can be seen in Fig. 1.4. As stated
before, it is currently difficult to distinguish electromagnetic and hadronic showers
in neutrino telescopes. Therefore it is better to treat νe and ντ equally. Nonetheless,
the interpretation of these flavor ratios also needs to be done with great care as they
are somewhat idealized quantities. In case of the showers, the backgrounds from
NC-induced shower events need to be taken into account, while the muon tracks
can also be induced by atmospheric muons or atmospheric neutrinos as well as a
possible misidentification of tau events. Another problem is the different statistics
of track and shower events — even though the statistics of UHE neutrino events are
currently still very low in general. Still, flavor ratios can be a useful tool for the
search for new physics effects, see Ref. [121] for a review.

6There has been a recent publication that suggests a slight redefinition of the flavor ratio R̂, which
would be better suited for the highest energies according to the authors of Ref. [120]. Still, for
now the separation into tracks and showers is the best we can do.

23



1. Introduction

102 103 104 105 106 107 108 109 1010
0.2

0.4

0.6

0.8

1.0

1.2

EΝ�GeV

R`

Current 3 Σ range

3 Σ range 2015
3 Σ range 2025

Pion beam

Muon damped

Neutron beam

WB plateau

NeuCosmA 2011

102 103 104 105 106 107 108 109 1010
0.2

0.4

0.6

0.8

1.0

1.2

EΝ�GeV

R`
Updated 3 Σ range

Pion beam

Muon damped

Neutron beam

WB plateau

old result

NeuCosmA 2013

Figure 1.4.: As an example for the flavor ratio R̂ from Eq. (1.18), we show the predicted flavor
ratio at the observer for a numerical reproduction of the Waxman-Bahcall (WB) GRB neutrino
spectrum; details on calculation can be taken from chapter 2. The left plot is taken from Ref. [107]
and depicts the result after neutrino mixing on basis of data from 2010, including θ13 = 0. The
thick blue solid curve depicts the result for the best-fit values, while the shaded regions depict
the 2010 (“current”) as well as two predicted uncertainties, see labels in plot. The right plot is
an updated version of the previous plot, using the values from Table 1.2. Since θ13 > 0 is now
experimentally verified, we have an additional parameter in flavor mixing with the CP-phase δCP.
The additional parameter as well as fewer years of data lead to the uncertainty in the right plot
being not yet as low as the prediction for 2015, shown in the left plot. However, during the progress
of this work, the uncertainty on the flavor ratio has already been greatly reduced; compare the
“current” (left plot) and the “updated” uncertainty (right plot). Due to the update of the mixing
parameters, all curves, including the reference sources, have been shifted up by about a factor of
0.04.
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2. Neutrino flux predictions based on GRB
data

In case of GRBs, the photohadronic interactions are considered to be the main
production mechanism of neutrinos. The ∆-resonance approximation proposed by
Waxman and Bahcall (WB) [122, 123] is normally used to calculate the production of
neutrinos in GRBs, with the decay of the charged pions giving rise to the neutrinos,
see Eq. (1.2). For this reason, we will first review the original GRB flux model
as proposed by Waxman and Bahcall. We will then discuss how this model was
extended for an application to real burst-by-burst analyses. As a third step, we
will show how our detailed treatment of the particle physics involved (as well as
corrections to the analytical formulas) change the neutrino flux prediction. Then, in
a fourth section, we will discuss how statistics and unknown parameters introduce
an additional uncertainty on the neutrino flux predictions. In a final section, we
will introduce an application of our approach to actual data at the example of the
current ANTARES GRB analysis.

2.1. The Waxman-Bahcall approach for neutrino
spectra from GRBs

As mentioned before, the calculation of the GRB neutrino flux as proposed by
Waxman and Bahcall [122, 123] is a simple estimation of the (muon) neutrino flux
based on general GRB properties. The key ingredients for the calculation are the
knowledge of the proton and the photon spectra as well as that the ∆-resonance
is the dominant contribution to the photohadronic interaction cross section. Based
on the two flux shapes and the kinematics of resonant interactions, it is possible to
predict the flux shape of the neutrino spectrum. The resulting flux prediction can
be seen as a thin black dashed curve in Fig. 2.2. In general, the proton spectrum is
considered to be a steady target spectrum in the rest frame of the source, and can
be written as in Ref. [124] as

N ′p(E
′) = C ′p ·

{
E
′−αp · exp

(
− E

′2

E′2p,max

)
ε′p,min ≤ E ′

0 else
(2.1)

with the cutoff energy E ′p,max being derived by balancing acceleration gains and
dominant losses, see Eq. (2.31) later this section. The low energy cutoff ε′p,min (in
the shock rest frame) is normally set to 1 GeV(≈ mpc

2). The actual value of the
minimal energy of the proton spectrum is still a point of discussion in the literature,
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but assuming that the protons have at least Γmpc
2 after boosting can be considered

a conservative estimate. The factor C ′p is the normalization of the proton spectrum,
which will be kept free for the moment. According to Ref. [125], the shape of the
proton spectrum is derived from the observed cosmic ray spectrum in the energy
range between 1010 and 1012 GeV. This power-law shape is typical for non-thermal
spectra, which are associated with shock acceleration. For simplicity reasons, it
is normally assumed that the proton spectral index αp ' 2. However, it should
be noted that plasma physics calculations indicate that shock acceleration should
actually lead to αp ' 2.2 − 2.3, see discussion in Ref. [126]. The target photon
spectrum N ′γ(ε

′) is obtained from GRB observations. The photon spectra in the
calculations by Waxman and Bahcall are considered to be broken power-laws or
parameterized by the Band function1, see Ref. [80]:

N ′γ(ε
′) = C ′γ ·


(
ε′/ε′γ,break

)−αγ
ε′γ,min ≤ ε′ < ε′γ,break(

ε′/ε′γ,break

)−βγ
ε′γ,break ≤ ε′ < ε′γ,max

0 else

. (2.2)

As for the proton spectrum, the factor C ′γ represents the (so far free) normalization of
the photon spectrum. Unnormalized, the spectrum is fixed to 1 at the break energy
ε′γ,break. Below this break, the photon spectrum has the index αγ and above it follows
the index βγ. Waxman and Bahcall assume that the standard values for these are
αγ ' 1 and βγ ' 2. Additionally, the parameterization given in Eq. (2.2) already
includes (arbitrary) high- and low-energy cutoffs, ε′γ,max and ε′γ,min. The reason for
these is two-fold: On the one hand, there is so far no experimental evidence that
the photon spectra extend to arbitrarily high or low energies, so the cutoffs actually
have physical reason. On the other hand, we will later need them for the numerical
calculations, since numerical calculations are always only discrete approximations
of continuous problems. For the general discussion done by Waxman and Bahcall,
these factors are, however, not needed.

What is actually needed for the calculation from Ref. [122] is the kinematic treat-
ment of the ∆-resonance. Based on the fixed requirement to the center-of-mass
energy for the production of a ∆(1232)-resonance, it is possible to calculate the
needed proton and photon energies using the formula

E ′γE
′
p ≥

m2
∆ −m2

p

2 (1− cos θ′pγ)
. (2.3)

As can be expected from the name ∆(1232)-resonance, the mass of the resonance is
m∆ ' 1232 MeV [101]. Accordingly, mp ' 938 MeV is the mass of the proton, while
θ′pγ is the angle between the proton and photon momenta in the center-of-mass frame.
Based now on the break in the photon spectrum ε′γ,break, it is possible to calculate at
which energy the neutrino spectrum would also have a break. This is considered to be
the first break of the neutrino spectrum, εbν . Moreover, the fixed energy of a resonant

1Note that the original Band function has an additional exponentially decaying component above
the photon break. We neglect this feature only for the sake of a better recalculation of the WB
flux shape. This is not needed for a calculation to be successful, but purely cosmetic.
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interaction also leads to the connection of the low-energy photons to the high-energy
protons, and vice versa. Additionally, Waxman and Bahcall reason that the charged
pions would also be subject to synchrotron losses, due to the magnetic fields present
inside the GRB. Since the magnetic fields are needed for the acceleration, this effect
is also always present. Hence, it is possible that the pions actually lose energy before
they decay. This leads to a further break in the expected neutrino spectrum, εsν .
Based on these considerations, Waxman and Bahcall derive a power-law spectrum
with two breaks for the neutrinos, see Ref. [123] for a depiction. The assumed values
for the breaks are given in the literature as εbν ≈ 105 GeV and εsν ≈ 107 GeV, see
Ref. [73, 122]. We will discuss the calculation of both break energies in more detail
in Sec. 2.3. For now, we only want to mention that the analytical parameterization
of this spectrum (in the observer’s frame) is given in Ref [73] to be

E2
ν

dNν

dEν
= Cν ·


(Eν/ε

b
ν)
−αν for Eν < εbν

(Eν/ε
b
ν)
−βν for εbν ≤ Eν < εsν

(Eν/ε
b
ν)
−βν (Eν/ε

s
ν)
−2 for Eν ≥ εsν

. (2.4)

In this representation, dNν/dEν is the observed neutrino spectrum with Eν being
the neutrino energy at the observer. The spectral indices αν and βν can be calculated
based on the proton and photon spectral indices, leading to αν = αp − βγ − 1 ≈ −1
and βν = αp − αγ − 1 ≈ 0, see e.g. Ref. [73]. Moreover, Cν is the normalization
of the neutrino spectrum at the lower break εbν . Waxman and Bahcall estimate
what the upper bound on Cν would be for neutrinos from GRB [123]. For this,
they assumed that GRBs are the only source of UHECR in the range of 1010 to
1012 GeV. By using the observational data and estimates about the mean free path
of cosmic rays in the universe, they obtain that the total energy injection from GRB
would have to be about 1044 erg Mpc−3 yr−1 [123].2 If now all of these cosmic rays
are made up of protons3 and the protons all interact via photohadronic interactions,
then this would give the upper bound for neutrinos based on CR observations. In
Ref. [123], Waxman and Bahcall actually derive two bounds: one independent of
the actual source models and one for GRBs. The general model uses the age of the
universe, the fraction of proton energy obtained by the neutrinos, and the cosmic
source evolution as parameters. Moreover, Waxman and Bahcall include that only
about half the pions produced in photohadronic interactions are charged in form of
an additional factor. They also include basic flavor mixing considerations. With
the (more or less known) age of the universe and two different source evolution
models, they obtain Cν ' 0.9 · 10−8 GeV cm−2 s−1 sr−1 (4.5 · 10−8 GeV cm−2 s−1 sr−1)
as the upper bound for no evolution (evolution with the star formation rate), if the
neutrinos obtain all the proton energy. This is, of course, only a theoretical upper
bound, which is already above current sensitivity limits of neutrino telescopes. A
more realistic bound is the one for GRBs as it uses particle physics considerations
on the fraction of energy obtained by the neutrinos. Based on the π+ production

2We will revisit the calculation of this bound again in Sec. 4.2, when we discuss the CR propagation
code.

3Note that the composition of UHECR is still unclear. There are experimental hints for a“heavier”
composition (with nuclei as CRs), see, e.g., Ref. [127], as well as theoretical arguments, such
as photodisintegration of nuclei, see, e.g., Refs. [128, 129], that UHECR need to be protons.

27



2. Neutrino flux predictions based on GRB data

and decay via the ∆-resonance, they estimate that the neutrinos would obtain about
1/20 of the initial proton energy, with the π+ getting about 0.2 of the initial proton
energy and the νµ getting about 1/4 of the energy of the intermediate π+. With
this the upper bound of Cν ≈ 3 · 10−9 GeV cm−2 s−1 sr−1 is obtained, see Ref. [123].
A slightly different method to normalize the predicted neutrino spectra is proposed
by Mannheim, Protheroe, and Rachen (MPR) in Ref. [130]. As done by Waxman
and Bahcall, the authors of Ref. [130] derived source independent as well as source
dependent bounds on the neutrino flux. One important difference is that they tried
to make the calculation as self-consistent as possible with regards to gamma-ray and
CR data by directly incorporating precomputed results from SOPHIA [131, 132].4

MPR also only discuss the escape of neutrons from the source, while protons are
considered to be confined. Moreover, the observed CR spectrum is assumed to be
the result of a large number of sources. The assumed trial spectra for the protons are
∝ E−1, as opposed to E−2 for the WB bound. Their main criticism towards WB is
that the WB calculation is only valid for optically thin to neutron escape sources and
only uses cosmic rays above 1010 GeV. They themselves claim that the extragalactic
component of CRs starts at 3 · 106 GeV and that there is no GZK cutoff. This leads
to two significant changes, as the authors themselves admit: On the one hand, the
CRs with energies below 1010 GeV lead to an increase of the predicted neutrinos
below 107 GeV. On the other hand, the increase of the neutrino prediction above
109 GeV is due to the CR spectrum extending unperturbed even though the CRs
interact with the CMB (no cutoff). Hence, more CRs need to be injected which
also leads to more neutrinos. As it was shown by recent CR data, this latter part
is not true, since the GZK-cutoff has been observed, see discussion in Ref. [5]. The
former part about what CR energies need to be considered is an open issue, even
though the range above 1010 GeV seems a bit more conservative. Still, the WB
bound and the MPR bound agree at an energy of about 109 GeV, which is also the
point of the lowest neutrino flux prediction in the MPR case. Hence, both of these
generic models are already ruled out from neutrino observations, even though the
basic concept is still applicable. Moreover, the idea of applying the neutrino bounds
to specific source models, to AGN in case of MPR [130] or to GRB for WB [123], is
currently the most promising approach for theoretical neutrino bounds.

2.2. The Guetta et al. model and its extensions

Historically, the next step was the transition from normalizing over the whole (as-
sumed) population of GRB via the UHECR observations to a calculation of the
neutrino spectra on a burst-by-burst basis. For this, it is essential that something
else than the cosmic rays is used for the normalization. Hence, under consideration
of the energy equipartition arguments, which are based on afterglow observations,
Guetta et al. [70] proposed a normalization using the observed gamma-ray spectra.
One important aspect is also that the calculations presented in Ref. [70] already

4This is a subtle difference to our approach: We compute the photohadronic interactions during
the calculation, while MPR used precalculated photohadronic results on the (energy) relations
to draw their conclusions.
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include the boosting from the observer’s frame to the SRF and back. Moreover, the
calculations also (partially) include the losses due to the expansion of the universe.
Consequently, the observed first neutrino break energy, based on the observed pho-
ton energy, can be calculated with the phenomenological formula given in Ref. [70]:

εbν = 7 · 105 Γ2
2.5

(1 + z)2 εγ,break,MeV

GeV . (2.5)

The notation used for this formula includes that the parameters are expressed in
units of their standard value; Γ = 102.5 Γ2.5, εγ,break = 1 MeV εγ,break,MeV. Note again,
the primed quantities are considered to be in the SRF while unprimed quantities
are considered to be in the observer’s frame. Moreover, it is detailed in Ref. [70]
how the synchrotron loss rate as well as the pion decay rate can be calculated based
on the observed parameters, such as the luminosity Lγ,iso, the Lorentz factor Γ, or
the variability time tv. The resulting formula for the second break due to the pion
synchrotron losses as given in Ref. [70] is

εsν =
108

1 + z
ε1/2e ε

−1/2
B L

−1/2
γ,iso,52 Γ4

2.5 tv,−2 GeV . (2.6)

Here, εe is the fraction of the total energy in electrons/photons and εB the corre-
sponding fraction of energy stored in the magnetic field. The other quantities are
again given in units of the standard value; Lγ,iso = 1052 ergLγ,iso,52, tv = 10−2 s tv,−2.
Also, it can be inferred that there should be a second break one order of magnitude
below the break given in Eq. (2.6) due to the different properties of the µ+ (com-
pared to the parent π+). The authors also argue, how the fraction of energy a proton
loses to pions fπ could be different from the average energy lost to pions per inter-
action, 〈xp→π〉, based on the possibility of multiple interactions. Hence, an energy
dependent version of fπ is given in Ref. [70]. Together with an suggested approach
of how to estimate the Lorentz factor Γ, it is possible calculate the normalization of
the neutrino spectra based on the observed photon fluence Fγ, see Ref. [70]:

Cν ≈
1

8

1

εe

Fγ
ln(10)

0.2
Lγ,iso,52

Γ4
2.5 tv,−2 εγ,break,MeV

. (2.7)

For actual GRB neutrino searches, this formula is only slightly changed, to allow
for a better integral definition of the different energies, as detailed by the IceCube
collaboration in Ref. [133]. Instead of using Eq. (2.7) for the normalization, the
calculation was changed to

∫ ∞
0

dEν EνFν(Eν) =

xπ→ν = 1
2
· 1
4︷︸︸︷

1

8

(
1− (1− 〈xp→π〉)∆R/λpγ

)︸ ︷︷ ︸
fπ

energy in protons︷ ︸︸ ︷
1

fe

∫ 10 MeV

1 keV

dEγ EγFγ(Eγ) .

(2.8)
The factor of 1/8 in both equations represents the energy transfered from the pion to
the neutrino. It consists of two factors: 1/2 since only about 50% of all pions from
the decay of the ∆-resonance are actually charged, and 1/4 is again the average
amount a neutrino inherits from its parent pion. The fraction of proton energy
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2. Neutrino flux predictions based on GRB data

lost due to pion production fπ has been changed in Eq. (2.8) to never be larger
than 1, based on the reasoning that a proton can only lose all its energy due to
photohadronic interactions.

Also, the energy in protons is now calculated by integrating over a certain energy
range instead of using the (ambiguous) value of Lγ,iso. Guetta et al. [70] already
mention that their derivation as in Eq. 2.7 suffers from the empirical derivation of
the luminosity when the redshift is unknown, and additionally introduce an estimate
without Lγ,iso. This approach without needing empirical formulas is applied to obtain
the newer formula given by Eq. (2.8). Based on this model, the IceCube collaboration
has published several studies in the last few years, which should have already given
a signal according to the approach described above, see Refs. [134, 135]. Especially,
it was stated in Ref. [135] that GRBs were excluded from being the sources of
UHECR based on neutrino observations. However, as we show in Ref. [136] and as
has been independently confirmed by other groups, see Refs. [137, 138], the analytical
calculation described in this section still has several inaccuracies. These inaccuracies
lead to an overestimation of the neutrino flux prediction. In the next section, we will
detail how the calculation of the neutrino flux is correctly done in a self-consistent
way for the internal shock model of GRB fireballs.

2.3. The NeuCosmA model

In this section, we want to detail how the neutrino spectra from a GRB are correctly
calculated based on the particle physics involved. We will first take a closer look
at the particle physics involved, and reason why numerical calculations are needed.
We will also review the process of normalizing the different spectra, and point out
how the calculation can be done in a self-consistent way for GRB fireballs in the
internal shock model.

Even though the ∆-resonance, see Eq. (1.2), is the leading contribution to the
photohadronic interaction cross-section, accelerator experiments on deep inelastic
scattering have shown that the full photohadronic interaction cross-section consists
of more than the ∆(1232)-resonance, see Ref. [101] and references therein. As can be
seen from Fig. 2.1, taken from Ref. [139], there are several additional contributions
to the full cross-section, such as direct production of pions (t-channel processes),
higher resonances, and high-energy processes leading to the production of several
pions. Especially these high-energy processes lead to a near constant interaction
cross-section at higher energies. Additionally, these high-energy processes lead to
π−, even in the case for pγ interactions (and vice versa to π+ in case of nγ).5 The
energies achieved in the interactions can be so high that also kaons can be produced,
with K+ being considered to be the dominant mode, see discussion in Ref. [140].
Moreover, one should not forget that free neutrons are actually unstable and decay,

5It needs to be considered that neutrons can also interact with photons, leading to the production
of π−. Due to isospin symmetry, the interaction cross-section for nγ is the same as for pγ. This
is especially important for systems with a high photohadronic interaction rate, as half the
protons go to neutrons, which can interact again.
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Figure 2.1.: The total photohadronic interaction cross section σpγ (blue solid curve; 1µbarn =
10−30 cm2) as a function of photon energy in the proton rest frame εr, taken from Ref. [139]. The
dots represent experimental data, as can be found in Ref. [101] (or earlier versions). Additionally,
the contributions from baryon resonances (red dashed curve), direct pion production (t-channel;
green dotted curve), and high-energy processes leading to multi-pion production (brown solid
curve) are shown separately. The highest peak (at εr ≈ 0.3 GeV) is the ∆-resonance. However,
the non-vanishing cross section at values far above the ∆-resonance energy shows that a treatment
using only the dominant resonance is not sufficient.

even though their lifetime (at rest) is comparably long with τn = (880.1± 1.1) s, see
Ref. [101].6 We consider the following decays leading to neutrinos:

π+ → µ+ + νµ ,

µ+ → e+ + νe + ν̄µ , (2.9)

π− → µ− + ν̄µ ,

µ− → e− + ν̄e + νµ , (2.10)

K+ → µ+ + νµ , (2.11)

n → p+ e− + ν̄e , (2.12)

π0 → γ + γ . (2.13)

When we want to compute the result for actual particle spectra, the interactions of
protons and photons need to be simulated or at least approximated. One possibility
is the already mentioned ∆-resonance approximation of Waxman and Bahcall. This
allows for an analytical, and therefore fast, calculation of the resulting spectra. As
we recapped in Sec. 2.1, it is even possible to predict the flux shape by general
considerations, see Eq. (2.4). Apart from the fixed energy of the ∆-resonance, an
additional assumption is the usage of only head-on collisions, i.e. assuming that
θ′pγ = π in Eq. (2.3). Another possibility is to use a numerical code for the calculation
of the photohadronic interactions. The currently most commonly used code is the

6For the calculations presented in this work, we are still using the old value of τn = (885.7 ±
0.8) s [141], since the change presented by the Particle Data Group in July 2012 is less than
1%, which is negligible for current astrophysical standards.
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2. Neutrino flux predictions based on GRB data

Monte-Carlo algorithm SOPHIA, see Ref. [131]. It is able to simulate the interactions
of the particles using the full interaction cross-section as well as correctly reproducing
the angular distributions of collisions at arbitrary collision angle θ′pγ. Even though
the SOPHIA algorithm yields far more detailed results than the basic analytical
approach — for a predefined set of types of input photon spectra — it has two
major disadvantages. First of all SOPHIA is a Monte-Carlo-algorithm, which means
that the outcome is probabilistic, and a larger number of runs is needed to get an
idea of a common result. And secondly, intermediate particles are integrated out by
SOPHIA, and losses of secondary particles are not treated individually. In recent
years, in an attempt to combine the advantages of the analytical (WB) and the
numerical (SOPHIA) approaches, a third option has been developed in form of
semi-analytical numerical calculations. One example for this new approach is the
NeuCosmA-code, see Refs. [107, 142] for a basic description, which incorporates the
model Sim-B of Ref. [139] for the interaction cross-section. Said model is based on a
novel approach, which combines the factorization of the interaction cross-section into
different interaction types (see, e.g., Refs. [143, 144]) with an analytical approach
similar to the one used in Ref. [145], to reproduce the numerical results of SOPHIA
for power-law and black body spectra, see Ref. [139].7 It is, however, extended in
the aspect of treating the intermediate particles individually, which allows for the
calculation of energy losses of the secondary particles, see Ref. [142]. Moreover,
effects such as flavor mixing of the neutrinos or the helicity dependent decay of
muons (based on Ref. [124]) are directly treated by the code. The main idea of the
code is effectively solve the interaction rate formula, take from Ref. [139],

t′−1
pγ (E ′p) =

∫
dε′γ

+1∫
−1

d cos θpγ
2

(1− cos θpγ) n
′
γ(ε
′
γ, cos θpγ)σpγ(εr) . (2.14)

Here, n′γ(ε
′
γ, cos θpγ) is the density of target photons as a function of the pho-

ton energy ε′γ, while σpγ(εr) is the photohadronic interaction cross-section as a
function of the photon energy in the nucleon/parent rest frame, given by εr =
E ′pε

′
γ/mp (1 − cos θpγ). By employing several simplifications, it is possible to ef-

ficiently calculate the interaction rate using this equation. The most important
simplification is the parameterization of the interaction cross-section into the dif-
ferent interaction channels, with the full rate given by the sum over several partial
rates; see Ref. [139] for details. In Fig. 2.2, we depict how different parts of the
full interaction cross-section contribute to the neutrino flux prediction. In said plot,
the contributions are grouped into the ∆(1232)-resonance, higher resonances, direct
production of pions (t-channel processes), and the contribution from high-energy
processes leading to multiple pions, see labels in plot. Compared to the analytical
flux prediction by Waxman and Bahcall from Eq. (2.4) (thin dashed curve), espe-
cially the high-energy processes lead to a change in the flux shape, i.e. a rising slope
instead of a plateau between the first and the second break. Moreover, we have
included the result for the numerical calculation based on the parameters of the
∆-resonance specified by Waxman and Bahcall in Ref. [122] (thick dashed curve).
As this curve shows, this parameterization is actually already equivalent to the

7The decay of the π0 into two photons is similar to Ref. [146].
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Figure 2.2.: The contributions of the full photohadronic interaction cross-section to the neutrino
flux from π±-decay as function of neutrino energy. The contributions are divided into the ∆(1232)-
resonance, higher resonances, direct production of pions (t-channel processes), and the contribution
from high-energy processes leading to multiple pions (see labels in plot). Additionally, the analytical
WB flux shape from Eq. (2.4) (thin dashed curve) as well as the semi-analytical result (thick dashed
curve) for the parameters of the WB ∆-resonance approximation, given in Ref. [122], are depicted.
The figure is taken from Ref. [82].

∆(1232)-resonance plus higher resonances, and even includes a low-energy contribu-
tion from the direct pion production. The WB ∆-resonance is therefore more than
just ∆(1232), even though the analytical calculations do not consider this in their
decays. The second important simplification compared to SOPHIA is that averaging
is used to reduce the angular distribution to the most probable collision angle θpγ
instead of simulating interactions with the full kinematics. This, however, implies
that the calculations with NeuCosmA are done in a frame where the photon spectra
are isotropic, so that the approximation 〈θ〉 = π/2, or 〈cos(θ)〉 = 0, is actually valid.
This should always be the case in the SRF of the GRB, as the proton as well as the
photon spectrum should be isotropic in this frame. In summary, NeuCosmA repre-
sents a trade-off of accuracy and speed by using the full photohadronic interaction
cross-section with a deterministic kinematics treatment. See Appendix A for a more
detailed explanation.

A detailed treatment of the particle physics is, however, not done with the dif-
ferent contributions to the full photohadronic interaction cross-section. For a full
description, also the added decay modes given in Eqs. (2.9)–(2.12) have to be in-
cluded. Hence, we need to revisit the origin of the second break. It was already
stated in Ref. [122] that this break is due to the synchrotron losses of the secondary
particles. However, as mentioned in Ref. [70], it is not sufficient to only consider
pions when calculating this break. The base logic of comparing the synchrotron loss
rate t′−1

syn to the decay rate τ ′−1 applies to all kinds of charged particles. Hence, we
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2. Neutrino flux predictions based on GRB data

need to calculate the critical energy, where decay and synchrotron losses balance,
for each particle species individually. For this reason, we need the synchrotron loss
rate (in Gaussian cgs units)

t
′−1
syn (E ′) =

4 c q4B
′2E ′

9m4
(2.15)

with m being the rest mass of the charged particle (in [erg], using the relation 1 erg =
624.15 GeV)8, E ′ the particle’s energy (in [erg]), q the particle charge (in [Fr]9; for
most particles this is just the elementary charge e ' 4.803 · 10−10 Fr) and B′ the mag-
netic field (in [G]). The speed of light c is needed here as c = 29 979 245 800 cm s−1.
This needs to be compared to the decay rate

τ
′−1(E ′) = τ−1

0

m

E ′
, (2.16)

with τ−1
0 being the decay rate in the rest frame of the particle. The values for

different particles can be taken from, e.g., Ref. [101]. By assuming equality of the
two rates, it is possible to obtain a critical energy ε′c for each particle species:

ε′c =

√
9m5

c τ0

· 1

2 q2B′
. (2.17)

This break in the spectrum of the secondary particle species directly translates into a
break in the neutrino spectrum. It is, of course, not exactly at the same energy in the
neutrino spectrum, since the neutrino only inherits a certain fraction of the parent
particle’s energy, e.g. about 1/4 in case of charged pions. Note that the critical
energy given in Eq. (2.17) is insensitive to the sign of the charge of the particle,
only the species is relevant. As we showed in Ref. [82] and can be seen in Fig. 2.3,
the different parent particles in the detailed particle physics calculation lead to a
splitting of the neutrino spectrum, resulting in a double peak with an additional
high-energy component due to kaons. The total muon neutrino flux (solid blue
curve) is the result of contributions from muon decays (thin green dashed curve),
pion decays (thin yellow dotted curve), and kaon decays (thin gray dash-dotted
curve). Each of these individual contributions has a similar shape to the one shown
in Fig. 2.2, i.e. said figure shows the contribution from pion decays. However, the
contributions have different critical energies based on their parent particles. The
one for muons is at lower energies compared to the result for pions while the one for
kaons is significantly higher, as can be easily verified by inserting the corresponding
particle properties into Eq. (2.17). Moreover, the distribution for kaons is shifted
to higher energies since kaons are only produced in high-energy processes while the
pions and the muons are the result of the same decay chain.

Additionally, the flux shape is only marginally affected by flavor mixing. The
produced electron neutrinos are mainly due the contribution from muon decays with

8We will use this conversion frequently throughout this work. In all plots, energies are given in
[GeV], however, for the formulas these energies need to be converted to [erg].

91 Fr = 1
√

erg cm
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the component from neutron decays only dominating at low energies (not shown in
plot). As a result, the muon peak in the double peak shape is slightly enhanced
when flavor mixing is considered.10 While the classical WB model assumed a flavor
composition (νe : νµ : ντ ) of (1 : 2 : 0) at the production site leading to (1 : 1 : 1)
at the observer, NeuCosmA allows for an energy-dependent treatment of the flavor
composition, in accordance with results presented by Murase and Nagataki [81],
Lipari et al. [124], Kashti and Waxman [148], and others.

An example for the energy dependent flavor ratios R̂ (after flavor mixing) as a
function of observed neutrino energy Eν can be seen in Fig. 1.4, with the nominal
prediction being depicted as a solid blue curve. Each of the two plots includes the
flavor ratios for certain types of sources as dotted horizontal lines, with the definition
for the sources as in Ref. [142]. The aforementioned standard case is denoted as“pion
beam” (neutrinos from whole pion decay chain, as in Eq. (2.9)), while for the “muon
damped” case only the muon neutrinos from the pion decays contribute since the
muons lose energy through synchrotron losses before decaying. The value of the
“neutron beam” is derived from the initial production of only one electron neutrino
per neutron decay, see Eq. (2.12). When going down in energy, the flavor ratio
starts at the level of the “muon damped” source as the contributions from muons are
suppressed above about 106 GeV, compare to the contributions shown in left plot of
Fig. 2.3. Below 106 GeV, the flavor ratio is consistent with the “pion beam” source.
Only at the lowest energies (below 103 GeV) do the neutrinos from neutron decays
gain importance and the flavor ratios drops towards a pure “neutron source”. The
difference between the left plot and the right plot of Fig. 1.4 is the date when they
were created. The left plot is from 2010, taken from Ref. [107], and still uses mixing
angles from said year including θ13 = 0. The uncertainties on the different mixing
angles were still quite high at that stage, as can be seen from the large shaded
are labeled “Current 3σ range”. Also, estimated uncertainties for the improving
experimental precision in 2015 and 2025 (based on 2010 predictions) are included
as gradually darker shaded bands.11 The right plot, on the other hand, is the result
of the same plot with the current (2013) mixing parameters as listed in Table 1.2.
The nominal prediction (solid blue curve) is shifted up by about a factor of 0.04
compared to the old values (dashed blue curve). The same applies to the flavor
ratios of the source types (dotted horizontal lines). The reason for this is mainly
due to the measurement of θ13 > 0. Moreover, the uncertainty band depicted as

10In the right plot of Fig. 2.3, the normalization of the muon neutrinos is still set to match the
analytical WB flux prediction (thin dashed curve), as shown in Fig. 2.2. When we however
use the integrated neutrino energy as the criterion for the normalization, the prediction is
significantly lower (thin solid curve, labeled “total flux rescaled”). As can be seen from the
yellow IceCube sensitivity limit, even the lower prediction should still have given a signal in
IceCube. This issue is resolved when we introduce the self-consistent normalization based on
the observed gamma rays later in this section. Finally, the differential sensitivity of Auger was
included due to its capability to detect high-energy tau neutrino events [147], which could be
visible due to the kaon component (plus flavor mixing).

11The according uncertainties on the neutrino flux prediction are depicted as gray-shaded bands
in the right plot of Fig. 2.3. Only the 2010 uncertainty is visible while the estimated ones for
2015 and 2025 are so small that they are below the thickness of the depicted curve. Hence, this
uncertainty is negligible for astrophysical standards.
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Figure 2.3.: In these two plots, taken from Ref. [82], we show how the predicted flux shape of
the muon neutrino spectrum (thick solid blue curve) is changed due to the detailed particle physics
treatment. In the left plot, it is detailed how the contributions from different parent particles,
muons (dashed green curve), pions (dotted yellow curve), and kaons (gray dash-dotted curve), lead
to the double peak structure with a high-energy component (due to kaons). The right plots shows
that the general flux shape (solid blue curve) is unchanged when flavor mixing is included.

a shaded area along the nominal prediction is updated to the current uncertainties
listed Table 1.2. Even though the uncertainty has significantly decreased compared
to the 2010 values, it is still somewhat larger than the predicted 2015 uncertainty.
This is not surprising as θ13 > 0 directly leads to the CP-phase δCP being needed as
an additional mixing parameter which again increases the uncertainty. For θ13 = 0,
as in the left plot, δCP could be treated as an arbitrary parameter.

To finally obtain a meaningful prediction of the neutrino flux, we still need to
ensure that the spectra are correctly normalized. Since our code needs the particle
(energy) densities, we first of all need to know what the actual energy output is.
In this regard, it helps that due to the relativistic boosting, we can assume that
the emission from the burst is isotropic, and not coming from a jet. Even though
the actual energy output may actually be lower, we cannot tell from observations in
gamma-rays, if the source is isotropic or not. Hence, we can use a simple isotropic
formula, such as Eq. (B.12), which connects the observed flux with the luminosity.
One important aspect of Eq. (B.12) is that it connects a quantity in the observer’s
frame (the flux Fγ) with one in the source frame (the luminosity Liso)12. Hence, if
we now want to use Lγ,iso to calculate the energy Ẽγ,iso, we need to be aware that
this calculation needs to be done in the source frame. It is therefore not possible to
use the observed timescale, but the one corrected for the cosmic expansion. In case
of neutrino flux predictions, it is normally assumed that it is sufficient to use average
quantities, since the detection statistics in neutrino flux measurements are not high
enough to give meaningful information on the temporal structure of the neutrino

12The luminosity is always in the source frame even though we do not denote it as L̃. This is only
to match the convention in the literature.
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flux. Therefore, instead of using the integrated luminosity over the duration T̃90 of
the burst, we assume that it is sufficient to multiply the average luminosity with the
duration. Consequently, the formula giving the energy Ẽγ,iso in the source frame is

Ẽγ,iso = Lγ,iso ·
T90

1 + z
, (2.18)

which already includes the transformation of the observer’s frame duration T90 to
the source frame

T̃90 =
T90

1 + z
. (2.19)

As mentioned before, these formulas are only valid if we assume that Lγ,iso is constant
over T90. This is, of course, not the case in reality. Real GRB light curves are rapidly
varying, with the scale of these variations given by tv, see discussion in Sec. 1.1.2.
A naive estimate based on the variation is to assume that the burst consists of N
identical shells, with the number of shells being calculated as

N =
T90

tv
. (2.20)

As can be easily imagined, this assumption of N identical shells giving rise to the
burst is only a zeroth order approximation. A more realistic model would be to have
different parameters for the different shells. There exist a number of models that
allow for the calculation of artificial light curves based on several shells, see, e.g.,
Refs. [39, 149]. In principle, it is possible to adapt these models to calculate the
neutrino emission on a shell-per-shell-basis for a more detailed neutrino flux predic-
tion from a (theoretical) burst. Nonetheless, for the calculations presented here, it is
sufficient to assume that a burst consists of N identical shells. An additional aspect
is the ambiguity of the luminosity/energy. As discussed in Sec. 1.1.2, there are sub-
tle differences in the obtained results for the luminosity and/or energy depending
on the energy range chosen for the calculation. For example, in Eq. (2.8), only the
energy range from 1 keV to 10 MeV is used for the calculation of the energy in pho-
tons. This however neglects contributions from photons of higher or lower energy
outside the specified range which can also contribute to the total energy. Bolometric
quantities, such as the bolometric photon luminosity Lγ,iso,bol or the corresponding
bolometric energy Eγ,iso,bol, are defined to include the whole spectrum and not just a
certain range. These should be used to calculate the total energy output of a burst.
For this calculation of the total energy, it needs to be considered that Eγ,iso,bol is
only the energy in photons, which is only a certain fraction of the total energy.
It is commonly assumed that in the internal shock model the emitted photons are
directly connected to the electrons inside the fireball, either through synchrotron
emission or through some other form of interaction. Hence, when we assume that
the electrons lose all their energy as photons, then do the photons carry the fraction
εe of the total energy Eiso,tot, and we can calculate Eiso,tot using the formula, taken
from Ref. [107],

Eiso,tot = ε−1
e ·Eγ,iso,bol . (2.21)

As discussed earlier in this section, our calculation of the photohadronic interactions
needs to be done in the SRF, where both the photon and the proton densities are
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isotropic. Based on basic considerations of relativistic boosting, we know that we
can easily transform the energy to the SRF by E ′iso,tot = Eiso,tot/Γ. Since we however
need the energy densities for our calculations, see e.g. Eq. (1.5), we also need the
isotropic volume V ′iso (of a shell). Assuming that we have an observed burst, we can
use the collision radius R′c from Eq. (1.3) and the width of a shell ∆R′ from Eq. (1.4)
to estimate the volume

V ′iso ' 4π R′2c ·∆R′ (2.22)

' 4π

(
2 Γ2 c

tv
1 + z

)2

·
(

Γ c
tv

1 + z

)
∝ Γ5 , (2.23)

assuming we have a thin shell (R′c � ∆R′), as discussed in Ref. [107]. While
Eq. (2.22) is the general formula for any thin shell with a certain radius and a
certain shell width, Eq. (2.23) only applies when the quantities are assumed to be
fixed in the observer’s frame. Especially, the strong dependence of V ′iso on Γ is a
consequence of the choice to use observed timescales. Still, with these quantities we
can now calculate the total energy density (per shell)

U ′tot =
E ′iso,tot

N V ′iso
. (2.24)

From this total energy density, it is now possible to derive different contributing
energy densities, such as the energy density of the protons or the one of the magnetic
field. As mentioned before, most of the time energy (equi-)partition arguments are
used to compare the different parts to the total energy to another. In case of the
magnetic field B, the corresponding fraction is εB. When we now want to use this
to calculate the magnetic field strength B′ from Eq. (1.5), we can directly relate the
magnetic energy density to the energy density in photons giving

U ′B =
εB
εe
·
E ′γ,iso,bol

N V ′iso
or B′ =

√
8π

εB
εe
·
E ′γ,iso,bol

N V ′iso
. (2.25)

As stated before, typical values for the energy fractions found in the literature are
εB ∼ εe ' 0.1, see, e.g., Ref. [133]. For observed bursts, we can even derive a
phenomenological formula for B′ by inserting Eq. (2.23) and the standard values for
the GRB parameters, already mentioned in Table 1.1, into Eq. (2.25), giving

B′ ' 220

(
εB
εe

) 1
2
(
Eγ,iso,bol

1053 erg

) 1
2
(

Γ

102.5

)−3 (
tv

0.01 s

)−1 (
T90

10 s

)− 1
2
(

1 + z

3

) 3
2

kG ,

(2.26)
taken from Ref. [107] and in consistency with Refs. [70, 116]. For a self-consistent
model of a burst, it is essential that also the magnetic field inside the shock is known.
In principle, plasma physics simulations can be done based on the magnetic field
and the particle input to obtain the actual photon spectra (including synchrotron
emission and Inverse Compton effect) as well as the maximal proton energy. A
detailed calculation of these processes is needed for a final complete model of a
GRB. However, for the sake of simplicity, we will not consider what the actual
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processes are which lead to the acceleration of the electrons/photons as well as the
protons. We will only use the heuristic argument that the particle spectra need to
be there since we can detect them (or at least the photons). We will also assume
that the observed photons are directly connected to the photons in the SRF, so that
we can normalize the photon spectrum from Eq. (2.2) with the formula∫

ε′N ′γ(ε
′) dε′ =

E ′γ,iso,bol

N V ′iso
. (2.27)

Note, that the normalization factor C ′γ is in
[
GeV−1 cm−3

]
; 1 erg = 624.15 GeV. For

the proton spectrum, we can use a similar approach as for the photons, by comparing
the electron/photon energy to the energy in protons. Normally, the ratio fe is used
in the literature for this purpose, which is the ratio of energy in electrons to energy
in protons (f−1

e : baryonic loading).13 Using the proton spectrum from Eq. (2.1), we
obtain ∫

E ′pN
′
p(E

′
p) dE ′p =

1

fe

E ′γ,iso,bol

N V ′iso
, (2.28)

with the normally assumed value of fe ' 0.1. While, however, the parameters of the
photon spectrum are known from measurements, we need to make assumptions on
the parameters of the proton spectrum. As stated before in Sec. 2.1, it is normally
assumed that αp ' 2. For the full spectrum, as in Eq. (2.1), we nonetheless still need
the maximal proton energy E ′p,max before we can calculate the normalization factor
C ′p. In principle, the calculation can be done in a similar fashion as the one for the
critical energy of the secondaries, see Eq. (2.17). However, instead of comparing the
decay and the synchrotron loss rate, we need to compare the acceleration rate with
the dominant loss rate. Assuming efficient particle acceleration, the acceleration
rate can be estimated based on the formulas from Ref. [6] as

t
′−1
acc = η

c q B′

E ′
, (2.29)

where η is the acceleration efficiency, and q the particle charge. Of course, the
formula given in Eq. (2.29) is only an effective description of the acceleration via
statistical processes (Fermi acceleration). As stated in Ref. [6], it only applies if
the mean free path of the particles which should get accelerated is larger than their
Larmor radius. A more detailed discussion of the said acceleration approach, as in
Ref. [150], or of UHECR acceleration in plasmas in general, see, e.g., the book by
Schlickeiser [151], shows that such a treatment is a bit too simplistic. Nonetheless,
we will use the aforementioned formula, since a more detailed treatment of the
acceleration would include 3D simulations of the plasma, which is a different field
by itself and goes beyond the scope of this work. Still, the acceleration rate needs
to be compared to the different loss rates, such as the synchrotron loss rate t′−1

syn (see
Eq. (2.15)), the photohadronic interaction rate t′−1

pγ (see Eq. (2.14)), and dynamical

13This definition of fe is somewhat inconsistent with the definition of the other energy fractions
εe and εB . The sum of all ε fractions should always give 1. However, for the standard values of
fe ∼ εe ' 0.1 the resulting εp would already be 1 and the sum larger than the plausible value.
At some point in the future, this needs to be addressed, but for now we will keep the standard
values as assumed in the literature.
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2. Neutrino flux predictions based on GRB data

rate of proton escape t′−1
dyn. The dynamical escape rate is just the (inverse) time it

takes an ultra-relativistic proton to cross the shell of width ∆R′,

t′−1
dyn =

c

∆R′
. (2.30)

This can easily be solved, when we assume that we can calculate the width using
Eq. (1.4). Hence, E ′p,max is obtained by solving the equation (see Ref. [152])

t′−1
acc

(
E ′p,max

)
= max

[
t′−1
dyn, t

′−1
syn

(
E ′p,max

)
, t′−1
pγ

(
E ′p,max

)]
. (2.31)

For most GRBs, it is sufficient to use t′−1
dyn and t′−1

syn for the calculation of E ′p,max,
neglecting the effect of t′−1

pγ . In the end, the important part is that target spectra
from Eqs. (2.2) and (2.1) are correctly normalized.

Using all these ingredients, it is now possible to calculate a neutrino flux prediction
based on the observed photon spectra. Based on the calculation of the photohadronic
interactions and the weak decays, NeuCosmA returns the injection spectra Q′ of the
secondary particles (in [GeV−1 s−1 cm−3]), including the ones for the neutrinos, see
Appendix A for details. These need to be translated into an observable (neutrino)
fluence F sh (in

[
GeV−1 cm−2

]
, see Ref. [152]):

F sh = tv V
′

iso

(1 + z)2

4π d2
L

Q′ . (2.32)

As stated before, this can be related to the fluence of a whole burst by multiplying
F sh with the number of shells N from Eq. (2.20).

An interesting aspect of this approach with a detailed particle physics treatment
is that the new prediction is significantly lower than the one from the analytical
approach described in Sec. 2.2. As we detailed in Ref. [136], several factors in the
analytical approach lead to an overestimation of the neutrino flux prediction. The
counterintuitive part in this regard is fact that our detailed particle physics treatment
in NeuCosmA actually should lead to an enhancement of the neutrino production.
However, as can be seen from Fig. 2.4, the enhancement of the flux prediction due
to the detailed particle physics treatment (red arrow, labeled 2) is smaller than the
correction on the neutrino flux normalization (blue arrow, labeled 1). It is curious
that all the small inaccuracies of the analytical approach, such as the neglect of
the energy losses of the secondaries in Eq. (2.8), add up to a large error instead
of averaging out, see Ref. [136] for more details. Nonetheless, the experimental
collaborations have picked up on this problem, and, with our help, ANTARES has
published its first GRB neutrino results using a search optimized for a neutrino
flux prediction obtained with NeuCosmA [153]. There are, however, additional
uncertainties on the flux prediction which we want to discuss in the following section.

As a final remark, another advantage of the numerical treatment compared to
analytical models is the possibility of using arbitrary spectra. Even though the
GRB calculations in Refs. [107, 136] only use power-laws as input, it is in principle
possible for the NeuCosmA code to calculate interactions with any kind of spectrum.

40



2.4. Statistical effects affecting neutrino flux predictions

Figure 2.4.: Here we show how the analytical flux prediction, based on Refs. [70, 133], is first
reduced due to corrections to the analytical model (blue arrow), and then again enhanced due to
the detailed particle physics treatment (red arrow), as detailed in Sec. 2.3. The depicted figure is
based on Ref. [136], were also more details on the analytical corrections can be found.

As has been shown in Ref. [154], it is feasible to use observed photon spectra as
input for calculations. The neutrino flux can be calculated for any kind of target
(photon) spectrum, as we can see later in chapter 6 when discussing neutrinos from
microquasars.

2.4. Statistical effects affecting neutrino flux
predictions

Even though we have now discussed the calculation of a single burst spectrum in
detail in the previous sections, there are still several issues we need to discuss when
we really want to understand diffuse flux bounds, such as the ones given in the
experimental analyses in Refs. [133, 135, 153]. Apart from the open question what
the actually correct model for GRBs is, there are even additional uncertainties inside
the internal shock model. Moreover, it is common practice in astrophysics to perform
stacking analyses, when single sources are not sufficient. This stacking is also used
to obtain an estimate for the diffuse flux of a whole class of sources. Instead of
the flux from very large number of unresolved sources (“diffuse flux”), a finite set
of resolved sources is used to estimate the flux from all, resolved and unresolved,
sources. The result of this estimate is a “quasi-diffuse flux” prediction. In this
section, we want to take a brief look at the different kinds of effects, which complicate
the process of predicting neutrino fluxes. First, we will discuss how the standard
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2. Neutrino flux predictions based on GRB data

parameters affect the prediction and how changing them alters the result. Then, we
will extend the thought of the parameter values and discuss how distributions change
the predictions. Especially, how the combined variation of redshift z and luminosity
Lγ,iso alters the shape and the normalization of the prediction. And finally, we will
review the process of going from a limited set of bursts to a quasi-diffuse flux limit,
which additionally introduces an uncertainty based on the choice of the sample.

As we discussed in the previous sections, the prediction of the neutrino flux de-
pends on the parameters we can obtain from the measurements in gamma-rays and
other wavelengths. From these we can obtain the observed duration T90, the recorded
variability timescale tv, several types of the flux Fγ (or the fluence Fγ, when we in-
tegrate over the burst) as well as the spectral parameters of the observed photon
spectrum. Using various methods, it is possible to even derive the redshift z of the
burst (or of its host galaxy). Afterwards, we can calculate derived quantities such
as the luminosity Lγ,iso, as in Eq. (B.12), or the Lorentz factor Γ, see, e.g., Ref. [70].
But at the latest, with the derived parameters the problems start. Even when all
the properties of the light curve can be obtained from the recorded light curves, it
is not possible to give an exact value for Γ. Other than for AGN jets, where the
relativistic motion of blobs can be tracked, GRBs are only point-like events. For
GRBs, all the limits on Γ are based on basic considerations on the geometry, the pair
creation cutoff, or other connections to the relativistic beaming. In any case, all the
calculations of bounds on Γ of a burst depend on several other parameters, which all
are only known with a certain error. These errors are inherited by the Lorentz fac-
tor, and, finally, the neutrino flux prediction. As we showed in the previous section,
especially the volume of the burst depends on Γ, see Eq. (2.23). As a consequence,
the neutrino flux prediction goes with Γ−4 when the calculation is done for observed
parameters, as we discuss in Ref. [107]. Hence, even small variations of Γ lead to a
big difference in the neutrino flux prediction. The choice to use standard values for
missing parameters is therefore a source of large uncertainties on flux predictions,
be it the Lorentz factor Γ, the redshift z, or any of the other parameters of a GRB,
see discussion in Refs. [107, 136]. In Fig. 2.5, taken from Ref. [136], the large band
around the nominal flux prediction (black solid curve) depicts the uncertainty of the
prediction when the GRB standard values were changed when using the 117 bursts
of the IceCube 40-string configuration (IC40) sample [134]. For the band shown
here, the Lorentz factor Γ was varied between 200 and 500, the variability time tv
between 10−3 s and 10−1 s, the proton spectral index αp between 1.8 and 2.2, and
the energy in electrons versus the magnetic field energy εe/εB from 0.1 to 10. As
can be seen from the extrapolated sensitivity of IC86 (long dashed blue curve), it
will take 10 years (or more) of measurements with the full IceCube telescope to
rule out all the considered choices of the parameters in the internal shock model.
Others, such as low factors of Γ, are already excluded by current bounds (solid blue
curve for IC40 [134], dashed blue curve for IC40+59 [135]). This band would be
reduced, if the uncertainties on the burst parameters were smaller or if only bursts
with measured parameters were used.

Moreover, not all of the detected bursts are well enough documented/recorded
in different wavelengths to obtain a value for z. As discussed by the authors of
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Figure 2.5.: The uncertainties on the updated quasi-diffuse neutrino flux prediction based on the
117 bursts of the IC40 GRB sample, taken from Ref. [136]. The nominal prediction is depicted as
a solid black curve. The parameter uncertainty is from varying some of the standard parameters of
the GRB (pink band), i.e. Γ, tv, αp, and εe/εB (see text for details). This band could be reduced
by a conservative flux prediction based only on bursts with measured parameters. Following the
idea of only using burst with measured parameters, we have depicted the flux prediction based on
all bursts with measured redshift of the IC40 sample (dashed black curve). Additionally, the plot
includes the statistical uncertainty as a green band, which arises from the extrapolation from the
discrete sample of 117 bursts to a (quasi-)diffuse flux. As can be seen from the depicted IceCube
bounds, some ranges of the parameter space are already excluded, while others need 10 more years
(or more) of measurements until they are ruled out.

Ref. [155], only about 50% of the bursts in the Swift sample actually have a detected
afterglow and only 30% of the sample have actually measured redshifts. And even
in this comparably large sample — Swift has till now detected nearly 900 GRBs in
total [156] — there are still too many open questions about the distribution in z for
any clear conclusion. As detailed in Ref. [155], there seems to be a bias towards high
redshifts, and general selection effects seem to have an effect on the results. Also,
even though the theoretical connection of SFR and GRB rate seems reasonable, we
cannot neglect the fact that there is still lots of discussion about what the actual
GRB rate is. The approach we are using, see Eq. (1.7), is based on an approach
to minimize the detector bias by using a certain minimal luminosity, see Ref. [87].
However, the authors of Ref. [157] obtain a different result by already taking into
account that Lγ,iso as well as z need to be varied simultaneously. This has two
consequences: First of all, the assumed standard value of z may be wrong. This,
of course, affects the flux predictions as they use standard values when a parameter
is not measured. Therefore, conservative predictions can only be obtained with
measured parameters, such as a prediction based on all bursts with measured z,
depicted as a black dashed curve in Fig. 2.5. Secondly, when one actually wants to
obtain the most probable value of z for a burst, not only the source distribution in
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z is needed, but also the distribution in Lγ,iso. Considering this the total differential
in z should be a combination of a redshift part and a luminosity part, which are
connected through the measured Fγ, see Eq. (B.12). The simplest approach is to
assume that these two parts factorize and the probability distribution is given by

∂2P (z, Lγ,iso)

∂z ∂Lγ,iso
=
∂P1(z)

∂z
· ∂P2(Lγ,iso)

∂Lγ,iso
. (2.33)

We can now use theoretical considerations to obtain models for the individual parts
∂P1(z)/∂z and ∂P2(Lγ,iso)/∂Lγ,iso. These parts should be connected to the derived
redshift and luminosity distributions of GRBs. As before, we will use the approach
proposed by Kistler et al. [87] of connecting the long GRB rate to the SFR together
with a redshift dependent correction to match the GRB evolution to the star forma-
tion rate for ∂P1(z)/∂z, see Eq. (1.7). Be aware that it is not important that some
normalization factors are not explicitly known, since most factors cancel in the end
when the whole distribution is normalized to 1. Still, in principle any distribution
in redshift can be used as ∂P1(z)/∂z. The only constraint is that the function needs
to be normalized to run from 0 to 1 for redshift values from zmin to zmax.

Similar to this, we also need a distribution of bursts in luminosity. We here use
the luminosity distribution obtained by Wanderman and Piran [157], even though
other distributions such as the one from Ref. [158] can also be used. The authors of
Ref. [157] assumed that the distribution in luminosity is a broken power law on a
logarithmic scale of the form

∂P2

∂ log10 (Lγ,iso)
∝


(
L
L∗

)−α
L < L∗ ,(

L
L∗

)−β
L ≥ L∗ ,

(2.34)

with the parameters L∗ = 1052.5 erg s−1, α = 0.2, and β = 1.4 being proposed in
Ref. [157], see Eq. (17) of said reference. Depending on the actual sample, the
numbers may vary, but the principle concept may be applied to any distribution,
just as for the redshift distribution.

Using the connection given by Eq. (B.12), we can combine the two parts of the
probability distribution to one total differential in z for known Fγ. As long as the
individual parts are correctly normalized, the total differential can be obtained from

dP

dz

∣∣∣∣
Fγ

=
dP (z, Lγ,iso(z, Fγ))

dz
=
∂P

∂z
+

∂P

∂ log10 (Lγ,iso)

∂ log10 (Lγ,iso)

∂z

∣∣∣∣
Fγ

=
∂P1(z)

∂z
P2(Lγ,iso) + P1(z)

∂P2(Lγ,iso)

∂ log10 (Lγ,iso)

2

ln(10) dL(z)

∂dL(z)

∂z
.(2.35)

When the partial functions ∂P1(z)/∂z and ∂P2(Lγ,iso)/∂ log10 (Lγ,iso) are already
normalized, it is relatively easy to obtain the according functions P1(z) and P2(Liso)
by integration. There is, unfortunately, one subtlety to this integration, which we
cannot quite explain mathematically. The integration needs to be from the current
value to infinity to conserve the normalization, and not from zero to the current
value as one might expect.
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P1(z) =

∞∫
z

∂P1(z̃)

∂z̃
dz̃ (2.36)

P2(Lγ,iso) =

∞∫
log10(Lγ,iso)

∂P2(L̃iso)

∂ log10

(
L̃γ,iso

) d log10

(
L̃γ,iso

)
(2.37)

The integrated functions control the weighting of the two distributions in Eq. (2.35).
Remember that we have chosen two independent distributions in z and Lγ,iso. For
instance, P2(Lγ,iso) parameterizes for which fraction of the parameter space (in Lγ,iso)
the redshift distribution can be applied. In a way, it represents how many bursts are
luminous enough to be detected from a certain redshift z. If the needed Lγ,iso for
that specific value of z is small, the redshift distribution can be applied over a wide
range of z values, whereas for Lγ,iso � L? in Eq. (2.34), it is unlikely that a burst is
luminous enough to be detected from said z or beyond. Therefore, it is the integral
from Lγ,iso to∞ which needs to be used, as it vanishes above the cutoff. In practice,
the luminosity cutoff translates then in a z cutoff z? by Eq. (B.12) for large Fγ.

It can also be easily checked that Eq. (2.35) is normalized to one if integrated over
z, i.e.,

∞∫
0

dP

dz

∣∣∣∣
Fγ

dz = 1 , (2.38)

which is a consequence and a self-consistency check. Note that for calculation pur-
poses a cutoff at a maximal redshift zmax is introduced, even though the GRB rate is
actually non-vanishing. However, with the correct choice of the two weighting func-
tions P1 and P2 in Eq. (2.35) it is possible to satisfy Eq. (2.38) for zmax. Examples
for how the flux affects the total differential can be seen in Fig. 2.6, where we have
depicted the total differentials dP/dz from Eq. (2.35) as a function of z for different
values of Fγ in the range from 10−5.5 to 10−8 erg s−1 cm−2, see legend in plot. The
shown functions are calculated from the redshift distribution given in Eq. (1.7) with
an assumed zmax = 6 and the luminosity distribution given in Eq. (2.34). As can be
seen from the plot, the most probable redshift, obtained from the total differential,
can vary strongly depending on the observed flux. The result, that the total differ-
ential looks quite different than the pure distribution in redshift, is quite remarkable,
but not very surprising. Especially bursts with high measured flux Fγ are now way
more likely to originate from lower values of z. This is reasonable since the much
larger distances for higher redshifts would need to be countered by higher luminosi-
ties Lγ,iso. These values of Lγ,iso quickly reach unreasonably high values as z grows.
Therefore, it should be more likely that a burst originates at lower z. As always,
these result depend on the choice of the parameters, or in this case, on the choice
of the parameterization of ∂P1(z)/∂z and ∂P2(Lγ,iso)/∂ log10 (Lγ,iso). One caveat of
this approach is, however, that the distributions we used strictly only apply to long
GRBs and not short GRBs. This can lead to a significant error in actual samples
of bursts. Short GRBs have their own luminosity and redshift distributions which
should be used to obtain the correct values.
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Figure 2.6.: The different functions are the probabilities dP/dz to detect a burst from certain
redshift z, based on the flux Fγ . The total differential is calculated as detailed in Eq. (2.35), with
the redshift distribution from Eq. (1.7) and the luminosity distribution from Eq. (2.34). Depending
on the flux with which a burst is detected, the most probable value for z can be constrained to a
very narrow range. Especially high observed values of Fγ lead to a high probability at low z.

A further effect is the statistical uncertainty when extrapolating from a small
number of bursts to a quasi-diffuse limit, as discussed in Ref. [107]. Given that the
parameters follow certain probability distributions, it is possible to do Monte-Carlo-
sampling to generate a theoretical sample. If we now try to recreate the analytical
input distribution based on the sampled values, we get different results depending
on the sample size n as well as statistical fluctuations. This kind of extrapolation
is however needed for all types of stacking analyses. Hence, the systematical error
coming from the summation over a small number of bursts n due to statistical
fluctuations is present in all estimates of quasi-diffuse fluxes. It is therefore not
possible to neglect this when discussing bounds for neutrino telescopes, such as the
Waxman-Bahcall bound [123]. In the following, we want to quantify this effect by
varying the bursts in redshift z, assuming that the bursts are all alike and only
at a different distance to the observer, as in Ref. [107].14 We will use the result
obtained by sampling 100 000 bursts using the GRB rate from Eq. (1.7) as the
diffuse reference limit, while using smaller samples of n bursts to quantify the effect
of the extrapolation. Even though we will only discuss the effect of the variation of
z, this applies to all kinds of parameters.

14For theoretical purposes, it is better to assume that the bursts are alike in the source frame
and NOT the observer’s frame. This allows for a discussion to be reduced to the effect of the
different distance, leading to a different flux. Otherwise each flux value would lead to different
parameters values such as for the luminosity depending on the choice of z. The deconvolution
of the different effects due to the change of nearly all parameter is expectedly more complicated.
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Figure 2.7.: This figure shows how a low number (n = 100) sample effects the result of the
extrapolation to a quasi-diffuse flux. In the left plot, the histogram represents the number of
GRBs in each redshift bin, while the dashed curve is the (normalized) probability function for
a burst to be originating from a certain redshift, based on Eq. (1.7). The solid curve is the
(theoretical) contribution of bursts from a redshift z to the total neutrino flux. This contribution
from each z is calculated by folding the burst probability with the distance scaling d−2

L . The right
plot shows the resulting quasi-diffuse flux prediction based on the depicted sample as a solid thick
curve. Even though the depicted sample gives a prediction close to the nominal one (thick dashed
curve), there are still possibilities to obtain significantly different results. There are still extreme
samples possible, such as the “high sample” and the “low sample”, represented by thin solid curves.
These kinds of samples can still occur with a 0.1% probability. For comparison reasons, the classic
WB flux shape is also included as a thin black dashed curve. Plots taken from Ref. [107].

A small sample of 100 randomly picked bursts, as depicted as a histogram in
Fig. 2.7 (left panel), does not reproduce the initial function well (dashed curve). As
can be seen from the comparison between the histogram and the dashed curve rep-
resenting the distribution of bursts in z, there is quite some discrepancy. Moreover,
when we consider that the flux of a burst of fixed luminosity from a certain redshift
z is additionally suppressed by d−2

L (z), we can obtain the contribution of a certain
redshift to the total flux by folding the GRB rate with the aforementioned suppres-
sion factor (solid curve). By comparing the peak of this curve to the histogram, it is
obvious that only a small number of bursts will be responsible for the major part of
the total flux. Hence, the fluctuations induced by some variation of the number of
bursts at low z is quite strong. In the right panel of Fig. 2.7, we depict the resulting
quasi-diffuse flux for the sample from the left panel (thick solid curve). This, how-
ever, deviates somewhat from the diffuse high statistics limit (dashed curve) due to
the statistical fluctuations mentioned before. The fluctuations on the quasi-diffuse
prediction can, nonetheless, be even higher, with the curves for two extreme exam-
ples of 100 burst samples depicted as thin solid curves. The probability for such
extreme cases is, however, quite low with about 0.1%. Also, one has to remember
that this result is for the variation of one parameter only. For more parameters, the
errors should add up, in possibly Gaussian manner.
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Figure 2.8.: Probability that the quasi-diffuse flux result from a small sample of n bursts is
equal or larger than the fraction f of the diffuse limit. The different values of n can be taken
from the legend inside the plot. The depicted function is equivalent to (one minus) the cumulative
probability density function. The shown curves are calculated using the distribution in redshift
based on Eq. (1.7). Taken from Ref. [107].

As we detailed in Ref. [107], it is not sufficient to show that such an effect de-
pending on the sample size n exists, as done in Fig. 2.7, we also need to quantify
the problem. For this, the following approach was used: We pick a large number
of samples of size n and check what fraction f of the diffuse flux is obtained when
extrapolating to the quasi-diffuse limit. Then we plot the probability to obtain a
certain fraction f . By definition, the diffuse flux limit is a step function in this prob-
ability plot, see Fig. 2.8. For details on the approach, please refer to Ref. [107]. As
can be expected, the smaller the size of the sample, the larger are the fluctuations.
To give some numbers, assuming n = 5, the probability to obtain f ≤ 0.2, which
is equivalent with 20% of the nominal diffuse flux, is about 1 − 0.89 = 0.11, while
the probability of obtaining a result giving f ≥ 5.0 (five times the diffuse flux) is
less than 0.01. Even though Fig. 2.8 might be a bit complicated to read, it already
contains all the information for the following discussions, and we will try to explain
how to extract various forms of information from this figure.

For example, it is possible to determine how high the probability is that the quasi-
diffuse flux prediction based on n bursts is within a certain range of the diffuse
limit. This information is given in the left table of Table 2.1, with the upper left
plot detailing how this information can be derived from Fig. 2.8. By defining a
certain interval around the diffuse flux, it is possible to read of the probability as
the range on the vertical axis. The table shows the results for several sizes, with
n = 10 000 giving the results closest to the diffuse limit. This number of 10 000 bursts
is relevant for long-term GRB limits, e.g. assuming 1000 bursts per year over ten
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n ±10% ±20% ±50%
5 0.07 0.14 0.40

10 0.09 0.18 0.52
50 0.14 0.30 0.82

100 0.17 0.37 0.91
300 0.23 0.50 0.96

1000 0.30 0.69 0.98
10000 0.48 0.97 0.99

n Rel. error 90% CL Rel. error 3σ
5 0.15− 2.45 0.09− 20.89

10 0.23− 2.22 0.13− 19.05
50 0.44− 1.72 0.30− 10.28

100 0.53− 1.57 0.39− 8.78
300 0.64− 1.38 0.53− 6.53

1000 0.72− 1.25 0.64− 5.15
10000 0.83− 1.08 0.78− 2.62

Table 2.1.: The left column shows how to obtain the probability that the quasi-diffuse flux
limit based on a sample of size n is within a certain range of the nominal diffuse limit. The actual
probabilities for a set of values of n can be found in the lower left table. The right column represents
the possibility how to obtain the systematical error on the extrapolation of the quasi-diffuse flux
based on the sample size n for different confidence levels. Again, the lower right table contains
actual values for different n. The depicted examples in the upper row are for the n = 100 result
from Fig. 2.8. As for said figure, all the results are based on a variation in z following Eq. (1.7).
Taken from Ref. [107].

years of operation of IceCube. From a purely statistical point of view, the probability
for a prediction based on 10 000 bursts to be within ±20% of the actual diffuse limit
is 97%. Hence, even after such a long time still some fluctuations are to be expected.
For current analyses with n = O(100) bursts, the probability is still quite low to
be within ±20%. For the IC40 analysis [134] with its 117 bursts, the probability is
only about 0.37, while newer analysis, such as the current ANTARES analysis [153]
based on 296 burst, should already have a 50% chance. Yet, for stacking analyses
to be reliable, samples with n = O(1000) bursts are needed.

Another possibility to look at the probability plot is to ask what the variation in
a certain probability window is. This is shown in the right column of Table 2.1. By
fixing the probability to 90% (99.73% ≡ 3σ) of all cases, we can use the curve to
determine the range of f on the horizontal axis, see upper right plot in Table 2.1. The
numbers derived with this method can therefore be used to estimate the systematical
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2. Neutrino flux predictions based on GRB data

error of the quasi-diffuse flux predictions on the according level of confidence. As can
be seen from the results in the lower right table of Table 2.1, the systematical error
for a quasi-diffuse flux based on 100 bursts is about 50%, 35% for 300 bursts, and still
25% for 1000 bursts at 90% CL. For comparison reasons, one needs to consider that
the naive statistical estimate for the 1σ (90%) relative error from an extrapolation
based on 100 bursts is only 1/

√
100 ' 0.1 (0.16), assuming that all bursts are at

the same z. To correctly represent this systematical error in our prediction, we have
included the green band in Fig. 2.5, based on our result for n = 100 bursts from
Ref. [107]. Moreover, one needs to consider that the errors quoted here are for the
variation of one parameter only. As soon as more parameters are varied, the error
grows as well.

To conclude this section, we now want to use the statistical considerations we
discussed so far to conduct a gedankenexperiment. Namely, how probable is it to
actually detect a single burst based on a (detectable) diffuse flux in ten years of
IceCube operation? Again, this is solely based on the strong evolution case of the
redshift distribution, given in Eq. (1.7). Assuming that the diffuse GRB neutrino
flux leads to O(100) events in the full IC86 detector during 10 years of operation,
it may be possible to associate a certain number of neutrino events with a single
burst. If, say, at least three events can be associated with a burst, a detection in
gamma-rays would no longer be necessary to claim a detection. The probability for
this to happen is dependent on the actual level of the diffuse flux. If the diffuse
flux actually saturates the original WB flux bound [123], the burst only needs to
contribute about 1/30 to the total diffuse flux. Correspondingly, when the diffuse
flux is one order of magnitude below the WB flux bound, the burst already needs
to contribute 1/3 of the total flux. As detailed in Ref. [107], we can use this to
derive that the maximal redshift for the bright bursts, i.e. obtaining zmax,1 ' 0.14
for the first and zmax,2 ' 0.05 for the second case. Based on Eq. (2.36), we can now
obtain that the integrated probability in the two cases is P (z ≤ 0.14) = 5 · 10−5 and
P (z ≤ 0.05) = 2 · 10−6, respectively. Now, considering that we expect O(10 000)
bursts during the ten years of IceCube operation, we can calculate the probability
that a burst is close enough to be detected in neutrinos without needing the gamma-
ray counterpart. The probability for at least one burst being close enough is given
by 1− [1− P (z ≤ zmax)]n with n = 10 000, leading to a 40% chance in the case the
WB bound is saturated, while it drops to 2% when the diffuse neutrino flux is one
order of magnitude smaller. Hence, depending on the actual value of the neutrino
flux from GRBs, there might still be the possibility of detecting a single burst in
neutrinos.

2.5. The current ANTARES GRB neutrino analysis

After having discussed how the neutrino fluxes from individual bursts are actually
calculated based on the gamma-ray observations, we now want to come to one recent
example of the application of our NeuCosmA-model. As mentioned before, the
current ANTARES GRB neutrino analysis [153] is the first experimental search
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for GRB neutrinos which utilizes an updated model for the prompt neutrino flux
prediction. While the current results by IceCube [133, 135] still use the analytical
Guetta et al.-model and its extensions, which we discussed in Sec. 2.2, and have
been rightfully criticized for this aspect [136, 137, 138], the ANTARES collaboration
has already decided to adapt their search strategy based on our revised theoretical
calculations. In the following, we want to detail how the theoretical flux prediction
from 296 GRBs is obtained for said search.

ANTARES [14] is an underwater neutrino telescope in the Mediterranean Sea,
which gives it a complementary field of view to IceCube at the South Pole. However,
due to the smaller instrumented volume (∼ 0.01 km3 with the 12 current strings)
and different backgrounds, e.g. bioluminosity inside the sea water, it does not reach
the sensitivity of IceCube yet. For the current GRB analysis, neutrino data from
the end of 2007 to 2011 has been used, spanning the end of the commissioning phase
(December 6, 2007 till May 28, 2008) as well as time with the full detector until
(and including) 2011. The amount of data from those nearly four years is then
reduced based on timing and other cuts, to only contain data which coincides with
an appropriate GRB. This reduces the data applicable for the search to a total of
6.6 hours of integrated live-time, which is already a significant cut on the amount of
data. While details on the process of the data reduction can be taken from Ref. [153],
we want to focus on the other selection process: the one for the GRBs. In the period
from the end of 2007 to 2011, the different satellite experiments detected a total of
1110 GRBs of which only 942 are actually long GRBs. As discussed in Sec. 1.1.1,
the internal shock fireball model only applies to long GRBs, and not to short ones.
Hence, all short GRBs need to be excluded. For 930 of the 942 long GRBs, the
observed photon data is sufficient to derive a spectrum and its parameters. Since
atmospheric background events limit the detection of cosmic neutrinos in ANTARES
to up-going events, only about 50% of the bursts are actually in the field of view
of ANTARES, further reducing the number of bursts to 508. Finally, due to the
detector only running a limited period of time and also needing stable data-taking
conditions, the GRB sample is reduced to 296 bursts, see Fig. 2.9 for a distribution
of the bursts in equatorial coordinates.

The data for these 296 bursts is taken from different catalogs, which need to be
carefully combined. Since the instruments on Swift15, Fermi16, and the satellites
of the Galactic Coordinates Network (GCN)17 all have different energy ranges, res-
olutions, and sensitivities, the data processing before the actual calculation of the
neutrino flux prediction is vital. In case one of the burst parameters cannot be ob-
tained from the observed data, we again use standard values, as done in the IceCube
analyses [133, 135]. The used standard values can be found in Table 2.2. They are
essentially the same as the ones used in the IceCube analysis, to ensure that the
results are comparable. As we already discussed in Sec. 2.4, using standard values

15Swift catalog: http://swift.gsfc.nasa.gov/docs/swift/archive/grb table.html,
BAT2 catalog: http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=J/ApJS/195/2,
see also Ref. [61]

16Fermi GBM catalog: http://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html
17GCN: http://gcn.gsfc.nasa.gov/gcn3 archive.html
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Figure 2.9.: Distribution of the 296 GRBs of the ANTARES GRB analysis in equatorial coordi-
nates, taken from Ref. [153].

αγ = 1 βγ = αγ + 1 εγ,peak = 200 keV
z = 2.15 Lγ,iso = 1052 erg s−1

Γ = 316 εe = 0.1 εB = 0.1
fe = 0.1 〈xp→π〉 = 0.2 tv = 0.01 s

Table 2.2.: The standard values for possibly unknown parameters, which are used in the
ANTARES analysis. These are essentially the same values as used in the IceCube analy-
ses [133, 135], based on comparability reasons. Other than in most of the previous discussions,
the values here are fixed in the observer’s frame, since we use real observed bursts as basis for the
calculations. The burst duration is not listed, because it is always measured.

introduces an uncertainty on the flux prediction as well as the extrapolation to the
quasi-diffuse limit. Therefore, all the limits shown in the analysis are also subject
to these uncertainties, as depicted in Fig. 2.5. Especially, all bursts are assumed to
have the same Lorentz factor, as none of the used catalogs contained information
on this quantity. As we already detailed, the neutrino flux predictions are very sen-
sitive to the chosen value of this parameter. Moreover, since not all redshifts are
known, we cannot always calculate the actual burst luminosity from the observed
flux. However, instead of calculating the luminosity from the standard value for z
and the observed flux, a standard value for Lγ,iso is used. While neither of the ap-
proaches gives the most probable result, as discussed in Sec. 2.4, the first approach
would be preferable, as it is at least self-consistent. Since the approach with fixed
luminosity has so far been used in neutrino flux predictions, see Refs. [133, 135] as
well as the re-analysis with NeuCosmA from Ref. [136], we choose to keep this for
now. The only parameter, which is always measured, is the duration of the burst.
Either by the difference of the start and stop time of the gamma-ray observations,
or a value for T90 was directly given in one of the catalogs.

For the calculation of the neutrino spectra of the different bursts, we use an
adapted version of the code used in Ref. [136]. Said code allows for an automatic
calculation of the individual neutrino spectra as well as the summed spectra over
all bursts. Based on the parameters of the 296 bursts, we calculate the neutrino
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spectra at the observer, including all the effects mentioned in Sec. 2.3. The resulting
νµ + ν̄µ fluence can be seen in Fig. 2.10. The summed fluence prediction (thick
curve in lower plot of Fig. 2.10) is dominated by a few very energetic bursts. In
the interesting range above 106 GeV, it is GRB110918 [159] which is predicted to
dominate the neutrino fluence (highest one of the thin curves in the lower plot,
also depicted individually in upper plot). This again stresses that we can have
high fluctuations, based on the actual sample, as previously discussed in Fig. 2.7.
Without the exceptional burst GRB110918, the result would be very different. The
reason for this dominance can be found in the relatively low redshift z = 0.982 as
well as the high-energy output of Eγ,iso = 1.9 · 1054 erg. This energy leads to an
average luminosity of Lγ,iso = 5.5 · 1052 erg s−1, assuming an observed duration of
T100 = 69.4 s. Hence, the luminosity is only higher by a factor of five than assumed
for a standard burst, however, the combination of the higher luminosity and the
longer duration (usually assumed duration is T = 10 s) leads to the high neutrino
fluence. It is not due to the Lorentz factor, which normally is expected to have
the biggest effect on the neutrino flux prediction, since Γ = 316 is fixed for all
bursts of the sample. Moreover, at the example of GRB110918, we can again see the
differences between the analytical prediction based on Guetta et al. (blue curve) and
the numerical NeuCosmA prediction (red curve), see upper plot of Fig. 2.10. The
NeuCosmA prediction is about one order of magnitude lower than the analytical
one at the lower break of the analytical model. However, due to the added effects
through the more detailed particle physics treatment, the difference gets smaller at
higher energies. Even with the extended model with two breaks (blue dashed curve),
the qualitative difference does not change. The NeuCosmA prediction only exceeds
the analytical prediction above 107 GeV (above ∼ 108 GeV for the extended model),
due to the kaon contribution. As stated several times before, it is not possible to
make a general statement such as “the revised models reduce the flux prediction by
one order of magnitude”.

Since the unblinding of the data after background subtraction and similar tests did
not bring any associated neutrino events, see Ref. [153] for details, again only flux
limits can be set. The summed neutrino spectra are transformed to a quasi-diffuse
neutrino flux prediction using the assumption of 667 long GRBs per year:

E2φν =
296∑
i=1

E2
i Fν,i ·

1

4π
· 1

NGRB

· 667 yr−1 , (2.39)

where ν stands for νµ + ν̄µ, and the input fluence E2
i Fν,i is in [GeV cm−2] and

the output flux E2φν in [GeV cm−2 s−1 sr−1]. In principle, the calculation does the
following: First, the average fluence per burst is obtained. Then, it is scaled with
the assumed burst rate to obtain a flux. Finally, the division with 4π gives the
average flux per solid angle, assuming an isotropic flux. As shown in the discussion
around Table 2.1, this approach still has a relative error of ±35% at 90% C.L. (solely
based on the variation of z). Therefore, as can be seen from Fig. 2.11, the current
flux limits only start to cut into the possible range of the diffuse GRB neutrino flux.
Moreover, it again shows that the flux limits themselves are not so much affected
by the change from analytical to numerical calculations, see lower plot in Fig. 2.11.
Here, the ANTARES limit for NeuCosmA (red dashed curve) and the ANTARES
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Figure 2.10.: (a): The expected muon neutrino (νµ+ ν̄µ) spectra for the dominating GRB110918.
The solid blue curve represents the analytical calculation based on Guetta et al., with the break
based on the critical energy for muons. The extended model (dashed blue curve) also includes
the second break based on the critical energy of pions. The red curve represents the NeuCosmA
prediction for GRB110918. As discussed before, the NeuCosmA prediction is lower than the
analytical prediction, and also changes the predicted shape of the neutrino spectrum.
(b): The summed muon neutrino spectra of the 296 bursts of the full sample (thick red curve).
Additionally, the predictions for the individual bursts have been included as thin red curves. The
highest of the thin curves corresponds to GRB110918 from the upper panel. Plots taken from
Ref. [153].

limit for Guetta et al (blued dashed curve) differ only by a small margin. What
changes is the interpretation of these limits. While the current IceCube (IC40+59)
bounds (black dashed curve) already rule out the analytical neutrino flux prediction,
the NeuCosmA prediction is still not touched. The ANTARES bounds are so far not
as strict as the ones from IceCube. Still, considering that the instrumented volume
of ANTARES is smaller by about a factor of 100, it is remarkable that the sensitivity
of the current ANTARES GRB search is only one order of magnitude worse than the
one of IceCube. Additionally, when using the flux bounds on GRB110918 (upper
plot in Fig. 2.11), it shows that ANTARES GRB searches are still two orders of
magnitude away from detecting a single bright burst. Accordingly, the sensitivity
of IceCube would currently still need to improve by one order of magnitude for a
single burst detection. Nonetheless, with IceCube now running with 86 strings and
the prospect of KM3NeT taking over for ANTARES, it should only be a matter of
time until the sensitivity of the neutrino telescopes is high enough to really start to
rule out models. Not only on the basis of the quasi-diffuse flux (which should take
the full IceCube detector about 10 years of operation, see Fig. 2.5), but also on the
possible observations of single bursts.
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Figure 2.11.: (a): Predicted muon neutrino spectra for GRB110918 (solid curves) together with
the 90% C.L. flux limits (dashed curves) based on the ANTARES sensitivity. The result for the
analytical prediction based on Guetta et al. (blue curves) as well as for the NeuCosmA prediction
(red curves) are shown.
(b): Quasi-diffuse neutrino flux prediction using Eq. (2.39) for the analytical (solid blue curve)
and the NeuCosmA prediction (solid red curve). The according ANTARES diffuse flux limits are
included as color-coded dashed curves. Moreover, the current IceCube IC40+59 limit (black dashed
curve) from Ref. [135] and the limit of the first ANTARES GRB analysis [160] (gray dash-dotted
curve) are shown.
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The ultimate goal of multi-messenger physics is to obtain as much information as
possible about a source from all the different particles (messengers) which can origi-
nate from said source. With a knowledge of all possible messengers, it is feasible
to gain an even greater amount of information from observed data. By combining
the datasets of different messengers, such as gamma-rays, neutrinos, and cosmic
rays, a more detailed picture of a source can be obtained. In the case of GRBs,
this multi-messenger aspect can be used in various ways. One of the basic aspects
quoted for the sake of neutrino searches is the possibility of GRBs accelerating
protons to the highest energies. If this assumption is true, then a prompt neutrino
flux is a direct consequence of the simultaneous presence of protons and photons in
the source. As has been discussed in chapter 2, we can estimate the neutrino flux
based on the observed gamma-ray (photon) spectrum. By using timing information
and measurements in different wavebands, we can obtain the parameters of a burst
needed for the calculation of the prompt neutrino flux. However, we can also get a
neutron flux in the same calculation leading to the neutrinos, see Eq. (1.2). If we now
consider that these neutrons, as opposed to protons, are not magnetically confined
inside the shell (or the jet in general), we can deduce that there must be a cosmic
ray component due to the escaping neutrons, which decay outside the source via
Eq. (2.12). This is the standard (optically thin) neutron escape model, as discussed
in, e.g., Refs. [135, 161]. In the following section, we will review this model based
on parameters normally assumed for the internal shock GRB fireball model. We
will discuss how the neutron flux may be limited depending on the assumed particle
densities inside the shells, and how this affects the neutrino flux in relation. We will
compare to current neutrino bounds based on CR calculations and will discuss their
applicability. In a second section, we will look into the expansion of the shell and how
it affects the particle spectra. Based on these considerations, we will introduce an
additional component of escaping cosmic ray protons, which may help to circumvent
current observational bounds. We will dedicate one section on the discussion how
the GRB parameters determine the dominating CR escape mechanism. In a final
section, we will test our theoretical CR escape model on actually measured bursts.

3.1. The classic neutron escape model for CR escape

In the current IceCube GRB neutrino analysis, see Ref. [135], GRB models are
constrained using two different approaches. The first one is based on the neutrino
flux prediction based on the observed gamma-ray data, based on Refs. [70, 133].
As mentioned before, the results of this analysis are shown to be flawed based on
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the theoretical model used for the calculation, see Refs. [136, 137, 138]. However,
the second approach utilizes the connection of the neutrinos and the cosmic rays.
Here, the argumentation is based on the one-to-one correlation of escaping neutrons
to neutrinos from π+-decays. In the ∆-resonance approximation, a π+ is always
accompanied by a n, see Eq. (1.2). While the decay of the π+ leads to one νµ (see
Eq. (2.9) and after flavor mixing), the one of the neutron leads to the production
of a proton (see Eq. (2.12)), which can contribute to the CRs. As has been done
in various publications, this correlation can be used to calculate upper bounds for
the neutrinos, which additionally constrain the GRB models. Or, as it is claimed in
Refs. [135, 161], it is already doubtful that GRBs can actually be the main source
of the extra-galactic cosmic rays.

As stated before, the principle idea for comparing the neutrino and the cosmic
ray data is due to the connection of these two messengers, established by the ∆-
resonance decaying into a neutron and a charged pion. An important aspect of this
approach is that the particles can escape from the source. In general, it is assumed
that the neutrons can escape from the source and decay afterwards while the pions
decay inside the source and only the neutrinos escape. Then, after applying the
appropriate losses and scaling, it is possible to calculate the amount of neutrinos and
cosmic rays reaching Earth. With the results, a normalized neutrino flux prediction
can be directly obtained by rescaling the CR prediction to the measured CR flux.
Using this approach, the authors of Refs. [161, 162] as well as others already obtained
results which question the possibility of GRBs being the source of the UHECR. These
results consistently show that the expected neutrino flux would have to be so high,
that neutrinos from GRB would have already been detected [135]. Unfortunately,
there is one aspect which actually limits the applicability of these results, namely
it is only applicable to sources which are optically thin to neutron escape. Since
photohadronic interactions also apply to neutrons due to isospin symmetry, it needs
to be considered that the interaction length for neutrons changes depending on the
burst parameters. For our purposes, we define the optical thickness to neutron
escape as done in Ref. [152] as

τn ≡
t′−1
pγ

t′−1
dyn

∣∣∣∣∣
E′p,max

(3.1)

directly at the maximal proton energy E ′p,max, using the timescales from Eqs. (2.14)
and (2.30). With this definition it is possible to calculate the ratio of escaping to
photohadronically interacting particles. Hence, in a simplistic approach, τn ≥ 1 de-
fines if a source can be considered to be optically thick. More detailed calculations
of the electromagnetic cascades and related processes actually show that a value of
τn ≥ 2/3 might already be sufficient that particles do not escape, see Ref. [163].
However, for the calculations in this work, as in Ref. [152], we will use the value
1 as the border between optically thin and thick. As soon as the photohadronic
interaction length is shorter than the dynamical escape length, it is more proba-
ble for a particle to interact than to escape from the burst. Hence, the neutrino
production will be enhanced compared to the neutron escape. Therefore, the one-
to-one correspondence of neutrinos to cosmic rays does not hold for optically thick
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sources. Still, the obtained neutrino bounds in the optically thick case should actu-
ally be stronger. We will discuss this in detail in Sec. 3.3 when we also include the
additional component introduced in the next section.

3.2. Possible leakage of CR protons from GRBs

Another aspect of the approach used to relate CR to ν is that the protons are as-
sumed to be trapped inside the source. When the target protons now were able to
escape after acceleration without interacting photohadronically, then the resulting
CR flux would no longer be accompanied by a neutrino signal. If such a CR compo-
nent existed, then the neutrino bounds derived in Refs. [135, 161] would no longer
be in contradiction to the UHECR data. As was discussed in the previous section,
it is normally assumed that neutrons as well as neutrinos can escape from the shell
unhindered. This whole approach can however be generalized to be applicable to all
kinds of particles. On a microphysics level, all particles can travel a certain distance
without interacting. The distance a particle can travel on average is given by the
mean free path λ′mfp, which depends on various limiting factors. The particle prop-
erties as well as the density of background fields of photons or other particles lead
to different possibilities of interactions.

For protons, we can assume that the following three length scales can limit λ′mfp:
the size of the shell ∆r′ given by Eq. (1.4), the photohadronic interaction length
ct′pγ, and the Larmor radius R′L. The size of the shell is needed to normalize λ′mfp,
since we are only interested in particles which can travel from one side of the shell
to the other without interacting, which is equivalent to always escaping. As we have
discussed for the neutrons in the previous section, the photohadronic interactions
can also be very high for the protons, hence the second factor. Additionally, as
protons carry a net charge, they are subject to deflections in magnetic fields. Using
the Larmor radius to estimate λ′mfp is a rough approximation, which is valid in lowest
order. This of course neglects all forms of turbulence and assumes that the magnetic
field is homogeneous. Detailed modeling of the plasma physics involved should give
shorter length scales, but for our purposes R′L is sufficient and directly obtainable
from the burst parameters. The general equation for the Larmor radius is given by

R′L =
E ′

q cB′
(3.2)

where E ′ is the charged particles energy in the SRF, q is the particle charge, e.g. q = e
for protons or electrons, and B′ is the magnetic field. With this formula it is possible
to calculate the mean free path of the protons as well as the neutrons based on their
energy, as

λ′mfp (E ′) = min
[
∆r′, R′L (E ′) , ct′pγ (E ′)

]
. (3.3)

When we now want to know what fraction of particles fesc can actually escape,
we need to compare the “edge” region, from which particles can escape without
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interacting, to the size of the whole shell. Therefore, the fraction of escaping particles
fesc can be estimated as

fesc ≡
V ′direct

V ′iso
'
λ′mfp

∆r′
, (3.4)

as we discuss in detail in Ref. [152]. Even though the final fraction contains several
approximations, it is a good estimate for the amount of escaping particles. What
we, however, so far have neglected is the evolution of the source.

Since not all collisions occur at the same fixed radius, and not all shells are ex-
pected to have the same width, it should be considered where the particles actually
escape. Or, if the particles might escape at some later point after the acceleration.
For this, we have to consider how the quantities scale as the burst expands. To
quantify these effects, we will use the scaling given in Ref. [69]. The key aspect of
this approach is that the shell width ∆R′ can no longer be assumed to be fixed be-
yond a certain point, which roughly coincides with the collision radius. Beyond this
point, ∆R′ ∝ r with r being the radius from the central engine, or, in other words,
grows linearly with time (∆R′ ∝ t). Since the photospheric radius is considered to
be smaller than the collision radius, it normally is assumed that the electrons and
protons inside the plasma have already decoupled from the photons. Due to this
decoupling and the expansion, it is assumed that the particles are subject to adia-
batic losses. Based on the assumed densities and neglecting coupled plasma effects,
the particle density can be considered to be a relativistic gas, with the relation of
energy and volume given by

E ′ ∝ V ′−γ̂−1 ∝ r−1 . (3.5)

In this formula, γ̂ is the adiabatic index, which we assume to be γ̂ = 4/3 (relativistic
gas). Moreover, we can use this formula to derive the scaling of the magnetic field
B′, since we know that it is related to the total energy and the volume as in Eq. (1.5),
giving

B′ ∝
√
E ′

V ′
∝ r−2 . (3.6)

As we discussed in Ref. [152], it is possible to also obtain conclusions for individual
particles. The main assumption is that the energy of a single particle scales in the
same way as the energy of the whole gas/plasma. Since the Larmor radius R′L scales
with the particle energy and the magnetic field, see Eq. (3.2), we can now derive how
said radius evolves with distance from the central engine. By plugging Eqs. (3.5)
and (3.6) into Eq. (3.2), we obtain

R′L ∝
E ′

B′
∝ r . (3.7)

Hence, if our scaling applies, then R′L grows with the radius, just as the width of
the shell.1 When we now assume that λ′mfp of the protons is limited by said Larmor

1We have here only discussed the case of a relativistic gas. For a discussion of different types of
adiabatic scaling, e.g. for a mono-atomic gas, please refer to the more detailed discussion in
Ref. [152].
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3.2. Possible leakage of CR protons from GRBs

radius, e.g. as in the optically thin neutron escape case, then the escaping fraction
of particles fesc is independent of the radius. Nonetheless, one should be aware that
all these considerations are only true if the assumed scaling assumptions hold. For
example, in plasma physics there is a significant difference between the magnetic
field perpendicular and parallel to the shock. While the magnetic fields parallel to
the relativistic shock decrease as B′‖ ∝ r−2, as we obtain from Eq. (3.6), the ones

perpendicular to the relativistic shock front are assumed to change with B′⊥ ∝ r−1,
see Ref. [164]. However, we are not discussing the plasma physics effects at this stage,
but should be incorporated in the future similar to the expansion approach presented
in Ref. [165]. We are, however, assuming that the adiabatic index is γ̂ = 4/3, and
that the result calculated at Rc is valid even when considering expansion.

When we now want to calculate the amount of escaping particles from a GRB
based on different parameter sets, we need to define the direct component in a way
that matches the quantities used in the NeuCosmA code. Therefore, we need to
define a proton “injection” spectrum Q′p,direct for the direct escaping protons. Using
an effective approach, we can use the steady state spectrum N ′p together with the
dynamical time-scale of particle escape t′dyn and the fraction of escaping particles,
see Eq. (3.4), giving

Q′p,direct =
N ′p
t′dyn

· fesc =
N ′p
t′eff,dir

, (3.8)

with the effective direct escape rate t′−1
eff,dir ≡ t′−1

dyn · fesc. This new CR component can
be added to our standard GRB neutrino code to directly calculate all the different
contributions to CR escape in one run.

We compute the spectra for four example bursts with a set of “standard” param-
eter values from Table 1.1, with only the luminosity being changed among the four
examples. We assume that all stable particles including the CR protons are only
subject to the losses due to the cosmic expansion. The losses due to interactions
with the photons of the CMB or CIB will only be discussed in chapter 4. We also
set the acceleration efficiency to η = 1. As we will see later, a high acceleration
efficiency η is needed for acceleration to high enough energies. The luminosity range
we are interested in is Lγ,iso = 1050–1053 erg s−1. These values are in the range of the
luminosities observed for real bursts. Based on these parameters, we individually
calculate the proton as well as photon density at our collision site, and then the
cosmic ray and neutrino spectra with the help of our interaction code.

In the upper row of Fig. 3.1, we depict the resulting spectra as expected to escape
from a single shell. The shown spectra are in the observer’s frame, when assuming
only the adiabatic losses due to the cosmic expansion apply, see Appendix B. The
input proton density (thin dashed curve), the escaping neutrons (solid blue curve),
the (new) direct escape component (solid green curve, defined in Eq. (3.8)), and the
muon neutrino (and antineutrino) spectrum (thin orange curve) are shown. The
left column represents the results for Lγ,iso = 1050 erg s−1, while the right one is for
1051 erg s−1. As can be seen from the denoted values of the optical depth to neu-
tron escape τn, see Eq. (3.1), both of these examples are optically thin (τn < 1).
Moreover, the direct escape component dominates at the highest energies in both
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3. Models for UHECR escape from GRBs

of the depicted cases. In regard of the highest energies, the energy Ep,max (in the
observer’s frame), depicted through the vertical black line, is of special interest.
This maximal proton energy is derived by comparing the different proton loss rates
t′−1
loss (in SRF) to the acceleration rate, see lower row of Fig. 3.1. Here, the dynam-

ical escape rate t′−1
dyn is the dominating loss rate, and as a consequence the direct

escaping protons dominate at the highest energies. However, an important change
from Lγ,iso = 1050 erg s−1 to 1051 erg s−1 is that the photohadronic interaction rate
increases compared to the other loss rates. Therefore, the neutron component is
enhanced due to the higher amount of photohadronic interactions.

When we increase the luminosity even further, this leads to an even stronger
photohadronic interaction rate. For Lγ,iso = 1052 erg s−1, the direct escape compo-
nent no longer surpasses the neutron component, even at Ep,max, see left column of
Fig. 3.2. The photohadronic interaction rate in this example is already so high that
it limits Ep,max. Even though the synchrotron loss rate dominates at energies much
larger than Ep,max, the photohadronic interaction rate is still the loss rate which
initially counters the acceleration. As a consequence, we already obtain values for
τn which are larger than one, i.e. τn = 3.37. Moreover, even though we increase the
luminosity of the burst, the value of Ep,max no longer grows at this point. While
it grows (with some power of) the luminosity in the optically thin range, it actu-
ally starts to shrink again in the optically thick regime. Compared to the value of
Ep,max(Lγ,iso = 1051 erg s−1), the one for Lγ,iso = 1052 erg s−1 is slightly lower. And
finally, for the highest assumed value Lγ,iso = 1053 erg s−1, the direct component is
only subdominant over the whole energy range. The dynamical loss rate is always
lower than the other loss rates, and, consequently, direct escape does not play an
important role. Also, the optical thickness τn = 35.6 is now much larger than one,
which also leads to an increase of the neutrino emission (thin solid orange curve)
compared to the cosmic ray emission (here: thick solid blue curve). The maximal
achievable energy Ep,max is further decreased, since the photohadronic interaction
rate increases faster than the growth of the acceleration rate. In summary, it can
clearly be seen that the results for CR and neutrino escape from a GRB depend
strongly on the parameters. It is possible to either enhance the amount of CR com-
pared to the amount of prompt neutrinos (direct escape dominated scenario, see left
column of Fig. 3.1), or to have significantly more prompt neutrinos from a burst
compared to the CR (optically thick neutron escape scenario, see Fig. 3.2). The
standard case of optically thin neutron escape is limited to a range between the
two aforementioned cases. However, these results discussed in the previous para-
graphs are all for an acceleration efficiency η = 1.0. As soon as η is assumed to be
lower, e.g. η = 0.1, the amount of direct escaping particles is significantly reduced.
Moreover, the values for Ep,max are also lower. This is mainly due to the effect η
has on t′−1

acc , see Eq. (2.29). Instead of obtaining the maximal energy in one cycle,
the particles now need to run through η−1 cycles to gain the maximal energy. The
acceleration length is therefore larger by about the same factor of η−1. Since the
size of the region is not changed, and we have assumed that particles can escape
after one cycle, only a fraction of about η of all particles are able to directly escape
from the source. Put simply, the mean free path for direct escape is smaller than
the acceleration scale, and only a fraction of the accelerated particles can escape.
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Figure 3.1.: These plots show the results of the calculations for the emission from a single shell,
taken from Ref. [152]. The upper row shows the predicted particle spectra in the observer’s frame.
The thin dashed curve represents the initial proton spectrum, if all protons could escape. The
actually escaping components are depicted by the blue curve in case of CR escape via neutrons
and by the green curve for direct escaping protons. Additionally, the muon neutrinos are depicted
as a thin orange curve. The lower row depicts the different rates associated with the sets of
parameters. The acceleration rate (green dotted curve) needs to be compared to the different
loss rates (see legend inside lower left plot). In case of t′−1

pγ , the interaction rate is shown, not
the somewhat lower photohadronic loss rate. Each column is one set of parameters with only the
luminosity Lγ,iso changed.
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3. Models for UHECR escape from GRBs

Nonetheless, to fully understand the effect of the different parameters on the results,
parameter scans are needed. For this reason, we will do these scans to identify the
regions in which the CR escape is dominated by which escape mechanism.

3.3. Identifying different CR escape regimes

As we have stated earlier, the dominating contribution to the cosmic rays at the
highest energies is a result of the burst parameters. In the internal shock model
that we are using, parameters such as the Lorentz factor Γ or the variability time
scale tv have a significant effect on the result of the simulations. Additionally, the
assumed redshift z also changes the result, when the parameters are assumed to be
fixed in observer’s frame. In Ref. [152], we only discussed these three parameters
apart from the luminosity Lγ,iso. In the work presented here, we will additionally
show the effect of the photon break energy ε′γ,b. As we have detailed in the previous
section, there are three possibilities of how the UHECR could escape from the source
in our discussed model, with the descriptions taken from our Ref. [152]:

Optically thin to neutron escape regime This is the usual scenario discussed in
the literature: the cosmic rays are produced as neutrons and can escape the
source (“neutron model”). Additional escape components are negligible, and
the “one (muon) neutrino per cosmic ray” paradigm applies. Note that the
optical thickness in our calculations includes the high-energy processes leading
to multiple pions instead of just the ∆-resonance.

Optically thick to neutron escape regime Here the protons and neutrons interact
multiple times, and only protons and neutrons on the outer edges of the shell
can (directly) escape. The neutrinos, however, can escape from everywhere
within the shell, which leads to more neutrinos per cosmic ray than in the
optically thin case. See Sec. 3.1.

Direct escape regime Here, the cosmic rays from direct escape dominate at least at
the highest energy. Since the neutron production by photohadronic processes
is sub-dominant, the one neutrino per cosmic ray relationship does not hold,
and more cosmic rays than neutrinos will be produced. See Sec. 3.2.

When we now want to quantify a point in the parameter space, and characterize
it based on the associated emission, we need a point-of-reference. We do this by
comparing if the maximal fluence in E2F comes from direct escape or from neu-
tron escape. When this test shows that the maximal fluence does come from direct
escape, we assign this point to the direct escape regime. In case the neutron es-
cape dominates, we need the additional test of the optical thickness, as defined in
Eq. (3.1). We will use the τn = 1 to discriminate between optically thin and thick,
even though smaller values might already be sufficient to hinder the escape, as dis-
cussed in Ref. [163]. This discrimination is already sufficient to ensure a unique
classification of each point in the parameter space (neglecting minor overlaps), see
Figs. 3.3 and 3.4.
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Figure 3.2.: The particle spectra as function of particle energy (upper row) and the relevant
rates (lower row) for Lγ,iso = 1052 erg s−1 (left column) and 1053 erg s−1 (right column), similar
to Fig. 3.1, also taken from Ref. [152]. The assumed values of Lγ,iso are now so high that the
neutrons (blue curves in upper plots) at Ep,max (thin vertical line) are more likely to interact with
the photon field than escape from the shell. As can be seen from the lower plots, the photohadronic
interaction rate (orange dash-dotted curve) is above the dynamical escape rate (solid red curve) at
Ep,max. Hence, these examples are considered to be optically thick; τn > 1. Moreover, the direct
proton escape component (green curves in upper plots) is only subdominant while the neutrinos
(thin orange curves in upper plots) are enhanced compared to the CR components.
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Figure 3.3.: Parameter scans over 2D planes of the parameter space. Here, the different regimes
of CR escape (for definitions see text) are color-coded as follows: the direct escape regime is
depicted blue, the standard optically thin neutron escape is depicted as yellow, while the optically
thick neutron escape is depicted as red. The dashed curves represent the borders between the
optically thin and thick regimes, with the thin curve representing the numerical result for the full
photohadronic interaction cross section, and the thick curve being the analytical estimation when
using the WB approximation of the interaction rate [122]. The black points represent the four
example bursts from the previous section. Moreover, the dark-shaded region is the “LAT invisible”
range, in which gamma-rays of 30 MeV or more can no longer escape from the source, based on
the pair-creation cutoff. The plots are an extended version of the ones from Ref. [152].
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In the parameter scans depicted in Figs. 3.3 and 3.4, we always vary two of the
different principal parameters of a burst, with the luminosity Lγ,iso always being on
the horizontal axis. When we now take a closer look at the scans with η = 1.0
(efficient acceleration), which are depicted in Fig. 3.3, there is the surprising ob-
servation that the optically thin neutron escape regime (yellow shaded region) is
only applicable to a very limited range in the parameter space. As in the example
plots in Figs. 3.1 and 3.2, we either have the case that the direct escape compo-
nent dominates at Ep,max (direct escape regime, blue shaded region), or the photon
density is so high that the optical thickness for neutron escape is already τn > 1
(optically thick neutron escape, red shaded region). This vanishing of the standard
optically thin neutron escape is a consequence of the high acceleration efficiency. As
mentioned before, for this value of η all protons can either escape at the highest
energy, or the photon density is already so high that the source is optically thick.
Only when we lower η, it is possible to have a larger region in which not all protons
directly escape and, also, the photohadronic interaction does not limit the escape
of neutrons significantly. This can be seen in our scans with moderate acceleration
efficiency (η = 0.1), see Fig. 3.4. Here, the standard optically thin neutron escape
regime is a clearly visible region around the aforementioned standard parameters
of GRBs, such as Lγ,iso = 1051 erg s−1 and Γ = 300. As can be expected by the
lower amount of direct escaping protons at the highest energies, this growth of the
optically thin neutron escape regime comes mainly at the cost of the direct escape
regime, compare scans in Fig. 3.4 to those in Figs. 3.3. Still, it can clearly be seen
that the standard assumption of one neutrino per cosmic ray only applies to a lim-
ited range of the parameter space. Depending on the acceleration efficiency η, this
region can actually grow for smaller values of η, however, this comes at the cost of
lower maximal proton energies Ep,max.

To better understand how the different regimes depend on the used parameters, we
now want to give a sketch how to derive the contours using analytical estimates. This
also allows us to better compare our current work to earlier works in the literature.
Especially, for the calculation of the border between the optically thin and optically
thick regime, we can use the ∆-resonance approximation from Ref. [122] to estimate
the photohadronic interaction rate, see Eq. (3) of said reference.2 By plugging this
into Eq. (3.1) (and setting τn ≡ 1), we can obtain an estimate for the transition.
The analytical term of the border to the optically thick regime is

Lopt. thick
γ,iso . 1.1 · 1052 erg s−1 ·

(
Γ

102.5

)5

·
(

tv
0.01 s

)
·
(

1 + z

3

)−1

·
(
ε′γ,break

1 keV

)
.

(3.9)
For comparison reasons, this formula above is depicted as the thick dashed curve
in the scans of Figs. 3.3 and 3.4. As always with approximations, these formulas
only have a limited applicability. The visible difference between the numerical result
(thin dashed curve) and the analytical estimate is due to the additional contributions
to the interaction cross section, that are used in the numerical calculation. Still,
the principle strong dependence of the border on Γ can be mainly traced back

2Note, however, that the rate from said reference needs to be increased by a factor of two, since
we need to use the full interaction rate and not just the pion production rate.
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Figure 3.4.: These scans are the same as in Fig. 3.3, however with a moderate acceleration
efficiency of η = 0.1. The most striking difference to the result with η = 1.0 is the clearly visible
region of optically thin neutron escape (yellow shaded region). This region is now found around
the standard values for GRBs, such as Lγ,iso = 1051 erg s−1 and Γ = 300. While the optically thick
neutron escape region (red shaded region) is nearly unchanged by the lower acceleration efficiency,
the direct escape regime (blue shaded region) is significantly reduced compared to the scans in
Fig. 3.3. The scans shown here are an extended version of the ones from Ref. [152].
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to the Γ-dependence of the volume, see Eq. (2.23). Since the volume affects the
photon density which in turn specifies the photohadronic interaction rate, the strong
Γ-dependence is inherited by each subsequent calculation. The reasoning for the
dependence on z is essentially the same as most observed quantities always need to
be corrected for the cosmic expansion, even though the resulting dependence is a
bit weaker than for Γ (as in the definition of the volume). The proportionality to
ε′γ,break is also inherited from the photon density. On the other hand, the dependence
from the variability time tv is due to the combination of the total volume (from t′−1

pγ )

being divided by the size of the shell (from t′−1
dyn).

Moreover, we can obtain the interface between the direct escape and the (optically
thin) neutron escape regime by comparing the maximal proton energy for the two
different limiting scenarios. When the dynamical timescale is dominant, then all
protons can escape at the highest energies (for η = 1) and we are in the direct
escape regime. If the escape is limited by the synchrotron losses, then neutron
escape will be the dominant escape mechanism. By considering these two types of
losses for the calculation of the maximal proton energy, and correctly including η,
one obtains

Ldirect
γ,iso . 3.6 · 1051 erg s−1 · η

2
3 ·
(

Γ

102.5

) 14
3

·
(

tv
0.01 s

) 2
3

·
(

1 + z

3

)− 2
3

·
(
εB
εe

)−1

(3.10)
as the border of the direct escape regime. As can be seen from the deviation inside
the Lγ,iso-ε′γ,break-scan from the (in-)dependence from ε′γ,break suggested by the above
formula, this simple approach leading to Eq. (3.10) is not sufficient to describe all
parameter dependencies of the border. However, it is a good “zeroth order” estimate
for the parameter dependencies in a multi-dimensional parameter space, despite
its obvious shortcomings. The parameter dependencies for this border are a bit
less intuitive as they are obtained from the analytical formulas for synchrotron loss
limited and for adiabatic loss limited maximal proton energy. Those energies mainly
depend on the magnetic field B′ which in turn also depends on the energy density,
see Eq. (2.25). Hence, one again has the strong dependence on Γ and a somewhat
weaker dependence on z. The other proportionalities are as well mainly derived
from the calculation of the energy densities. Moreover, the acceleration efficiency
η affects the time needed to reach the maximal energy. Hence, a lower value of η
makes it more likely that the protons are limited by synchrotron losses, as can be
seen by the shift of the border of the direct escape region to lower luminosities when
comparing Fig. 3.3 to Fig. 3.4.

A further plausibility check for our scans is to make sure that the bursts are
actually visible in a certain photon energy for the parameters we choose. One
example would be to check if a burst is visible in the Fermi -LAT energy range. As
described in Appendix C, it is possible to calculate the region in which photons of
30 MeV or more can no longer escape the source due to the pair creation threshold.
These regions are the dark-shaded “LAT invisible” areas in Figs. 3.3 and 3.4. As the
name states, there should not be any detectable emission in the LAT energy range
from bursts within the dark-shaded region, while outside of it a detection in the
whole GBM range as well as even some events in LAT may be possible. Therefore,
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the fourth example burst (the one with the highest optical thickness) should not be
visible in the LAT, as the dot representing this burst is already in the shaded region
(dot on the furthest right in Figs. 3.3 and 3.4). As we discussed in Ref. [152], τn
(for neutrons) and τγγ (for photons) do not follow the exact same parameter scaling.
Note, however, that the actual photon emission at the LAT energies may come
from a different radius than the lower emission components, see, e.g., Ref. [166].
As we mentioned earlier, this may be due to the evolution of the optical thickness
of the burst plasma. As a result, a burst would have a certain trajectory through
the parameter space instead of just one point. This issue can be addressed in the
future by the assumption of different shells and modeling the collisions of these shells
individually to obtain the real burst spectrum.

An additional aspect of the scan we have so far not discussed is the possibility
to also obtain the maximal proton energy Ẽp,max in the source frame (cosmologi-
cally comoving frame). Before we discuss the CR propagation with all its losses in
chapter 4, we first need to know if it is even possible to obtain the needed ener-
gies with our GRB model. For this, we need the aforementioned maximal proton
energy, however boosted to the source frame after calculating it in the SRF. This

can easily be done during our scans and we show log10

(
Ẽp,max/GeV

)
as an ad-

ditional set of contours on top of the regimes we previously discussed in Fig. 3.5.
As can be seen from said figure, the regimes discussed in Fig. 3.3 also affect the
maximal proton energy. Especially, the transition from the optically thin to the
optically thick regime, depicted as a solid red curve in Fig. 3.5, functions as a kind
of symmetry axis for the behavior of Ẽp,max in the parameter space. This is due
to the change of the maximal proton energy being limited by the photohadronic
losses or one of the other mechanisms (dynamical losses or synchrotron losses). The
highest energies can actually be obtained along this curve. The actual values of
Ẽp,max which can be obtained highly depend on η. While for η = 1, as depicted in
Fig. 3.5, energies above 1011 GeV are possible, a change to η = 0.1 also reduces the
maximal energies by about one order of magnitude, see Fig. 3.6. Another aspect,
which needs to be considered, is the mean free path of a CR proton while travel-
ing through space. The interactions with the cosmic microwave background (CMB)
as well as the cosmic infrared background (CIB) limit the distance a UHECR can
travel, see Sec. 4.1. Due to these, a UHECR with Ẽ ' 1010 GeV can only travel
about 1 Gpc (z ' 0.25) without interacting, while at Ẽ ' 1011 GeV this range is
reduced to 100 Mpc (z ' 0.024). This clearly limits the range in redshift from
where the GRBs can originate to give rise to the observed UHECR. Moreover, this
limits the parameter space region which can produce UHECR to a certain range.
For η = 1, as can be seen in the upper left plot of Fig. 3.5, all bursts within the
depicted range of Lγ,iso can lead to values of Ẽp,max ≥ 1010 GeV. However, bursts
with the potential to accelerate to Ẽp,max ≥ 1011 GeV can only be found in the range
6 · 1050 erg s−1 . Lγ,iso . 1053 erg s−1. In case of a more moderate acceleration effi-
ciency, such as η = 0.1 depicted in Fig. 3.6, these high energies are difficult to reach
(or in the shown case, not possible at all). Even energies of Ẽp,max ≥ 1010 GeV can
only be found between Lγ,iso ' 6 · 1050 erg s−1 and 1053 erg s−1. Hence, as we also
discuss in Ref. [152], it is unlikely that GRB are the sources of UHECR when assum-
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Figure 3.5.: Depicted here are the same scans as in Fig. 3.3 (η = 1), however now with the
additional contours for the maximal proton energy in the source frame (cosmologically comoving

frame), given as log10

(
Ẽp,max/GeV

)
. As can be seen from the labels of the black dashed contours,

the maximal energy for this η reaches more than 1011 GeV, which is near the maximal observed
energy in cosmic rays. Moreover, the maximal possible energies seem to be symmetric towards
the border of optically thin and thick regimes (red solid curve). As an additional feature, we
have included the mean free path of CR protons with certain energies into the scan over z. For
Ẽ ' 1010 GeV, it is of the order of 1 Gpc (z ' 0.25), while for Ẽ ' 1011 GeV it is about 100 Mpc
(z ' 0.024). Based on plots from Ref. [152].
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3. Models for UHECR escape from GRBs

ing standard parameters. The acceleration efficiency must either be high, or only
very few bursts contribute significantly at the highest energies. Moreover, this whole
discussion is based on assuming that all but two parameters are fixed to standard
values in the observer’s frame. This too affects the results. As real bursts might
not be located on the exact planes shown in the scans so far, we will now turn to
actually observed bursts to test our model.

3.4. Application to specific GRBs

After having discussed how the cosmic rays escape from a single GRB would look
like in the parameter space when assuming fixed parameters in the observer’s frame,
we now want to test how the model applies to real bursts. For this, we need the
actually observed parameters, such as the fluence/flux, the redshift, the variability
timescale, and the duration, of specific bursts to correctly calculate the neutrino
flux prediction. While we used the luminosity Lγ,iso in the previous section as one
of the basic parameters, we will now have to derive it using the parameters and
Eq. (B.12). The parameters for the four bursts, we want to discuss in the light of
cosmic ray escape from a single source, can be found in Table 3.1. Note that we
again use the simplification that even these observed bursts consist of N = T90/tv
identical shells/collisions, as has been used in Refs. [134, 135, 136].

The four bursts we picked for this small sample have been chosen for various
reasons. The (standard) burst “SB” has the specific parameters to numerically re-
produce the WB GRB neutrino flux shape and normalization from Refs. [122, 123].
This is actually only a theoretical burst, while the other three burst have been ob-
served by various satellites. GRB080916C is one of the most luminous bursts ever
recorded. Its high redshift as well as its detection well into the Fermi -LAT range
make it one of the best studied and most energetic events known; especially, note
the recent result of data re-analysis in Ref. [55]. GRB090902B has a peculiarly
steep drop in the photon spectrum, while still having a quite high Lorentz factor Γ
(from a single zone model). Due to these features, this Fermi -LAT burst is actually
considered a prime candidate for photospheric emission, see Refs. [167, 168]. We
will nonetheless use the internal shock model for the calculations. The last burst,
GRB091024, can be regarded a typical example of a Fermi -GBM burst, based on the
catalog compiled in Ref. [169]. The discussion of these bursts is based on Ref. [152].

The resulting cosmic ray and neutrino spectra can be seen in Fig. 3.7, which
are calculated based on the parameters given in Table 3.1. As for previous figures,
blue curves represent the CR component from neutron escape, green curves the
component from direct escaping protons while the thin orange curves depict the
muon neutrinos. Also, the initial proton component is once again depicted as a
thin dashed curve. Note that we use the more realistic mild acceleration efficiency
η = 0.1 for these calculations. As discussed before, this leads to lower maximal
proton energies as well as less efficient direct proton escape. Hence, with a higher
acceleration efficiency the direct escape component would be even more pronounced.
Apart from the different particle spectra we also include the optical thickness for
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Figure 3.6.: The scans show the maximal proton energy log10

(
Ẽp,max/GeV

)
(in the source

frame) as contours overlayed on to of the regimes from Fig. 3.4. Here, the assumed acceleration
efficiency only has a moderate value, η = 0.1. Due to this, the resulting values for the maximal
energy are somewhat smaller than for the efficient acceleration case from Fig. 3.5. Still, even when
changing η, the border between the optically thin and the optically thick regime (solid red curve)
functions as a divider between different parameter dependencies of Ẽp,max. Based on plots from
Ref. [152].
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3. Models for UHECR escape from GRBs

SB GRB080916C GRB090902B GRB091024
αγ 1 0.91 0.61 1.01
βγ 2 2.08 3.80 2.17
εγ,break [MeV] 1.556 0.167 0.613 0.081
Γ 102.5 1090 1000 195
tv [s] 0.0045 0.1 0.053 0.032
T90 [s] 30 66 22 196
z 2 4.35 1.822 1.09
Fγ,bol [erg cm−2] 1 · 10−5 1.6 · 10−4 3.3 · 10−4 5.1 · 10−5

Lγ,iso [erg s−1] 1052 4.9 · 1053 3.6 · 1053 1.7 · 1051

Table 3.1.: The properties of the four real GRB which we will use for our discussion. The
“Standard Burst”(SB) is taken from Ref. [82] (similar to analytical prediction from Refs. [122, 123]).
Parameters for the very energetic GRB080916C are taken from Refs. [169, 170], the ones for the
candidate for photospheric emission, GRB090902B, are from Refs. [169, 171], and the typical
Fermi -GBM burst GRB091024 is based on Refs. [169, 172]. The luminosity is calculated with
Lγ,iso = 4π d2

L · Fγ,bol/T90, with Fγ,bol the fluence in the (bolometrically adjusted) energy range
1 keV–10 MeV. Adopted from Ref. [173].

neutron escape τn as well as the optical thickness for photon escape τγγ with an
observed energy of 30 MeV. The burst SB, which was chosen to reproduce the
standard WB GRB neutrino flux, is a typical example for a burst with optically
thin neutron escape. The basic relationship of one neutrino per cosmic ray holds for
this burst, and we also have a significant amount of prompt neutrinos. The direct
escape component is suppressed, due to the value of the acceleration efficiency. The
two Fermi -LAT bursts GRB080916C and GRB090902B, however, show a distinct
direct escape component which dominates at the highest energies. Based on the
parameter scans we did in Sec. 3.3, it is clear that this is a consequence of the high
values of Γ (both Γ ≥ 1000), compare to Fig. 3.4. It is obvious that these LAT bursts
need to be left of the dark-shaded (LAT invisible) region. A higher choice for the
detected photon energy (εγ > 30 MeV) will move the exclusion region further to the
left, till only the direct escape regime is still viable. Hence, bursts which emit in the
LAT range favor the direct emission of UHECR — at least during the phase during
which they emit the high-energy gamma-rays. Our typical Fermi -GBM is, however,
again more like the SB, as can be seen be the lower right panel of Fig. 3.7. Even
though it is already on the edge to the optically thick regime, it still is dominated by
neutron escape and the neutrino production is given by the standard assumption.

As an additional feature of the photon spectrum from Eq. (2.2), which we so far
have not discussed, we also include the effect of the minimal and the maximal pho-
ton energy, ε′γ,min and ε′γ,max, respectively, to these plots. Since the values for the
observed fluence Fγ,bol is only detected in (or in some cases adjusted to) the range
from 1 keV to 10 MeV, we cannot exclude that the photon spectrum actually extends
to higher or lower energies. These missing photons could either not have been de-
tected, or could have not left the source at all. If we now assume that the observed
spectrum can actually be extended by linear extrapolation, we obtain a “bolometric
correction” to the previously calculated spectra, which we depict as (color-coded)
shaded regions in Fig. 3.7. For the calculation of this bolometric correction, we first
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3.4. Application to specific GRBs

normalize the photon spectra in the observed energy range based on the observed
fluence. We then extend the spectrum by shifting the minimal and maximal photon
energy to ε′γ,min = 0.2 eV (in SRF) and εγ,max = 100 MeV (in the observer’s frame).
The former value is chosen to ensure that the high-energy protons have enough
low energy photons to interact with, while the latter value is phenomenologically
motivated to be a typical Fermi -LAT energy. In case of the correction, the normal-
ization of the proton spectrum is then calculated on the extended photon spectrum
(instead of only the observed range), using Eq. (2.28). As can be seen from Fig. 3.7,
the bolometric correction always increases the normalization due to the additional
photons now being taken into account, which can best be seen in the “initial pro-
tons”. Yet, the actual size of the increase depends on the burst parameters, with
the upper spectral index βγ being the most important one in this respect. In case of
SB with βγ = 2, the energy in photons is logarithmically dependent on the maximal
photon energy. For values of βγ > 2, the dependence is weaker and the effect of the
bolometric correction is smaller. From the three other bursts GRB080916C gets the
biggest correction due to βγ = 2.08 ≈ 2. Accordingly, if a burst had an upper index
βγ < 2, then the correction would gain even more importance. Moreover, extending
the photon spectra to higher energies leads to a decrease of the threshold for pho-
tohadronic interactions, which can be seen as an extension of the neutron spectra
to lower energies. This increase of the photohadronic interactions can, of course,
also affect the maximal proton energy, as can be seen in the lower right panel of
Fig. 3.7. This is the same effect as we have discussed for the optically thick examples
in Fig. 3.2. As an additional test, we checked if the gamma-rays from π0-decays are
consistent with current Fermi -LAT bounds and/or observations of this burst.

To summarize, the examples we discussed indicate that Fermi -LAT bursts should
have a strong direct escape component. This component may not be dominant
during the whole duration of the emission, however, while the highest energy gamma-
rays escape from the source the direct component should be present as well. For
a typical GBM burst, it is less likely that a direct escape component dominates,
but this depends on the parameters, especially the acceleration efficiency η. Hence,
conclusions on the claim that GRB are the sources of the UHECR can only be
drawn from samples, and not from individual bursts. The evolution of a burst in
time should also affect this, even though results on this are not part of this work.
Moreover, detected bursts might be subject to a bolometric correction, since the
energy range in which they are detected is only limited. Still, the effect of this
correction is expected to be small as long as βγ & 2. In the following chapter, we
now want to take a look at what is needed to really obtain the cosmic ray spectra
at Earth based on a distribution of GRBs.
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Figure 3.7.: The neutrino (solid orange curves) and cosmic ray spectra as a function of energy
for the four bursts from Table 3.1. We again show the contributions to the cosmic rays via neutron
escape (solid blue curves) as well as the direct escape components (solid green curves). As can be
seen from the plots, the direct component actually dominates at Ep,max (vertical line) for two of the
four bursts, namely GRB080916C and GRB090902B. Also, the initial proton spectra are depicted as
a thin dashed curves. The shaded areas depict the effect of extending the observed photon spectrum
from the initial range of 1 keV−10 MeV to ε′γ,min = 0.2 eV (in SRF) and εγ,max = 100 MeV (in the
observer’s frame). This can change the normalization of the initial protons (through the energy
density), the threshold energy for photohadronic interactions (lower energy protons can interact),
as well as also lower the maximal proton energy due to the increased photohadronic interactions.

76



4. Probing GRBs as the sources of UHECR

When comparing the predictions for UHECR from GRBs to current observational
data, we need to take into account that CRs still interact during propagation. As
discussed in the “GZK” papers, the cosmic ray protons can only travel a certain
distance before interacting with cosmic background fields such as the cosmic mi-
crowave background (CMB), see Refs. [3, 4]. We will first discuss what types of
interactions are considered to dominate during the propagation of CRs over large
distances. We will compare these losses to the gains through injection of CRs from
GRBs. Based on the GRB source model from the previous chapter, we will identify
the different factors going into the calculation of the injection of CRs from GRBs.
Using a simple CR propagation code, we will obtain a realistic UHECR prediction
from a distribution of GRBs, which we normalize to current UHECR data, together
with two neutrino flux components, the prompt GRB neutrinos and the cosmogenic
neutrinos (from interactions during propagation). We will show how these three
types of messengers — UHECR, prompt GRB neutrinos, and cosmogenic neutrinos
— can be used to constrain models of GRBs as sources of UHECR.

4.1. A simple framework for CR injection and
propagation

On cosmological scales, there are always losses due to the expansion of the universe,
see Appendix B. Hence, these losses do also affect CRs on their journey from
source to observer. Additionally, as was already discussed by Greisen [3], Zatsepin
and Kuzmin [4], interactions with cosmic background photon fields, i.e. the CMB
and, also, the cosmic infrared background (CIB), are an important source of losses
during propagation for CRs. The CMB is considered to be totally isotropic and, in
a way, defining the universe’s rest frame. In this frame, also the CIB is assumed
to be isotropic. For the CMB photon spectrum, being a near perfect black-body
spectrum (observed deviations are only O(10−5)), the photon number density nCMB

γ

in [GeV−1 cm−3] is given by

nCMB
γ (ε, z = 0) =

1

π2

1

(~c)3

ε2

exp (ε/(kBT ))− 1
. (4.1)

Here ε is the photon energy, T the present-day CMB temperature (T = 2.725 K;
kBT ≈ 0.23 meV), and the rest of the variables are natural constants, as found in
Ref. [101]. From the scaling in z for energy and distances, see Appendix B, it is
possible to derive that for the definition given in Eq. (4.1) the density needs to scale
in z as

nCMB
γ (ε, z) = (1 + z)2 nCMB

γ (ε/(1 + z), 0) . (4.2)
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4. Probing GRBs as the sources of UHECR

The second component for the background photon fields, the CIB, is modeled
using the approach from Ref. [174]. While we can use simple scaling for the CMB,
we assume that the CIB follows the SFR, hence needing an additional factor. The
scaling of the CIB photon density is implemented as described in Appendix C of
Ref. [162].

The presence of these background photon fields leads to photohadronic interac-
tions, which have already been discussed in detail in Sec. 2.3. To obtain the photo-
hadronic interaction rates, we will need the photon densities we previously defined.
However, instead of using the usual interaction rates, such as t−1

pγ from Eq. (2.14),
we will need energy loss rates b = dE/dt in this chapter. In general, the energy loss
rate due to some interactions b is given by

b(E, z) = −Et−1
loss(E, z) , (4.3)

which is in the units [GeV s−1]. The loss rate t−1
loss is the product of the interaction

rate and the fraction of energy lost per interaction, e.g. t−1
pγ · 〈xp→π〉. As a note on the

notation: be aware that in case of the photon spectra discussed during CR propaga-
tion, the unprimed cosmologically comoving frame (what we called source frame for
an individual GRB) is the frame in which the photon spectra are isotropic. Hence,
here the calculations need to be done in this frame, as opposed to the calculations
for individual GRBs, which are done in the primed rest frame of the shocks. Apart
from the photohadronic interactions, also e+e−-pair creation processes can occur due
to interactions with the two background photon fields. We will treat the processes
of pair creation on nuclei, A+ γ → A+ e+ + e−, as discussed in Refs. [175, 176].1

Apart from these three types of losses, adiabatic losses, photohadronic losses, and
losses due to e+e−-pair creation processes, we will not consider any other types of
losses for our propagation approach. In case of synchrotron losses, this assumption
is justified since synchrotron losses are only subleading compared to pair production
and photohadronic losses, even in the UHECR range. This is a result of the current
data on the intergalactic magnetic field, which indicates values below 10 nG, see,
e.g., Ref. [177]. For comparison reasons, we have plotted the pair production and
the photohadronic loss times in the UHECR range due to the CMB (at z = 0) to-
gether with the synchrotron loss times for two different values for the intergalactic
magnetic field, see Fig. 4.1. In the energy range from 108 to more than 1012 GeV, the
loss times due to pair production (blue dashed curve) as well as photohadronic in-
teractions (orange dashed curve) are always shorter than the synchrotron loss times
for a 1 nG (10 nG) intergalactic magnetic field, depicted as a thin solid red curve
(thin dashed red curve). The total loss time (thick solid curve) is dominated by the
pair production below about 7 · 1010 GeV, and above said energy by photohadronic
interactions. However, at energies below 108 GeV the synchrotron losses gain impor-
tance with respect to the total loss rate. We also apply an additional simplification
by neglecting the creation and/or decay of neutrons during propagation. Again, due
to the large scales being considered, it is most of the time sufficient to assume that
the neutrons decay before they interact again. As can be seen from Fig. 4.1, the
neutron lifetime (thin solid green curve) is always shorter than the loss timescales.

1Protons are assumed to be nuclei with Z = 1.
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Figure 4.1.: The plot is a reproduction of the loss times due to interactions with the CMB
photons (for z = 0). The total loss time (thick solid curve) consists of the losses due to pair
creation (dashed blue curve) and the photohadronic losses (dashed orange curve), which are derived
from Eq. (2.14) and the energy loss per interaction 〈xp→π〉, based on the spectrum from Eq. (4.1).
For comparison reasons, we have also included the synchrotron loss time from Eq. (2.15) for an
assumed intergalactic magnetic field of 1 nG (10 nG) as a thin red solid curve (thin red dashed
curve). As can be seen from this plot, the loss time due to synchrotron losses on the intergalactic
magnetic field are much longer than any of the other losses, even at z = 0. At higher redshifts,
the losses due to the CMB are even higher due to the scaling of the photon density. Moreover,
we have included the decay rate of neutrons (solid green curve) to show that the treatment of a
coupled proton-neutron system is valid. As can be seen from the plot, the lifetime of neutrons is
always shorter than the loss timescales, apart from energies beyond 1012 GeV.

Only at energies beyond 1012 GeV do the neutron live long enough to interact before
decaying. In those energy ranges, a mixed proton-neutron system is to be expected.
However, due to isospin symmetry, it is possible to treat the protons and neutrons
effectively as one species of particles, which simplifies the calculations.

For the actual calculation of the CR propagation, we are more interested in the
development of the CR density as a whole and not in the propagation of individual
particles. Hence, instead of using a stochastic treatment to model the propaga-
tion of individual particles, as done by several other CR propagation codes such
as GalProp [178] or CRPropa [179], we will apply a propagation approach using
a Boltzmann transport equation together with the continuous loss approximation,
suggested by Ahlers et al. [161, 162]. Since the extra-galactic CR component is
considered to be isotropic, we can assume that anisotropies are smeared out during
the propagation of the CR and can be neglected. Moreover, we assume that the
cosmic ray spectrum is stationary. Thanks to these assumptions a propagation ap-
proach using a single Boltzmann equation is viable. The according equation for the
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4. Probing GRBs as the sources of UHECR

(comoving) number density Yp, as given in Ref. [162], is

Ẏp = ∂E (H E Yp) + ∂E (be+e− Yp) + ∂E (bpγ Yp) + LCR , (4.4)

with E being the energy at the according point in time/redshift, what we call the
source frame. The comoving number density Yp (in

[
GeV−1 Mpc−3

]
) is related to

the “real” number density np as

Yp (E, z) = a3(z)np (E, z) =
np (E, z)

(1 + z)3 (4.5)

with the relation of scale factor a and redshift z as in Eq. (B.7). Note that we
here use a slightly different scaling than in case of Eq. (4.2) as we treat the energy
losses due to the cosmic expansion in the Boltzmann equation itself. Specifically,
the first term on the r.h.s. of Eq. (4.4) accounts for the (continuous) energy losses
due to the adiabatic cosmological expansion, with H being the Hubble parameter
for the according time-step. The second and the third term account for the e+e−-
pair production and photohadronic losses, respectively. Moreover, since we are more
interested in the evolution in redshift than actually in time, we can use the relation
dz = −dt (1 + z)H(z) to change the Boltzmann equation from Eq. (4.4) to one in
z. The resulting differential equation in z is given by

−∂zYp (E, z) =
1

(1 + z)H(z)
{∂E [H(z)E Yp(E, z)] + ∂E [be+e−(E, z)Yp(E, z)]

+∂E [bpγ(E, z)Yp(E, z)] + LCR} , (4.6)

with the redshift dependent Hubble parameter as in Eq. (B.9). The redshift and
energy dependent energy loss rates be+e− and bpγ are calculated based on the photon
densities, with the definition of the energy loss rates as described in Eq. (4.3). For
both types of processes, the contributions from the CMB and the CIB are combined
to give a total rate.

The last term of Eq. (4.4), LCR, represents the cosmic ray injection rate. This
quantity quantifies how much cosmic rays of a certain energy are injected at a certain
redshift. In principle, this term needs to include the injections from all (relevant)
sources or source classes, which can evolve in z. The aforementioned evolution in
z can include the evolution of the number of sources in z as well as the model of
the sources in z, similar to the different populations of stars. In this work we will,
however, use the simplest possible model of only one source class, namely GRBs,
which does not evolve in z. The only distribution in z will be due to the different
number of source at a certain redshift. Hence, the cosmic ray injection rate factorizes
as

LCR (E, z) = HCR(z) · QCR(E) (4.7)

with the distribution of the sources in redshift HCR(z), as defined in Eq. (1.9),
and the cosmic ray injection spectrum of a single source QCR(E). For the sake
of simplicity, we will assume that the sources are only GRBs and that all bursts
are identical. Both LCR and QCR are in

[
GeV−1 Mpc−3 s−1

]
. In principle, QCR
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is a combination of the CR injection spectrum Q′CR(E) from the photohadronic
interaction calculation and the local GRB rate density ρ̇GRB(z = 0), namely

QCR =
Q′CR(E) ·V ′iso ·T ′90

Γ
· ρ̇GRB(z = 0) . (4.8)

The first factor is the energy spectrum in the source frame of a burst (in
[
GeV−1

]
),

while the second term is here in
[
Mpc−3 s−1

]
. Again, we will not specify the exact

value of ρ̇GRB(z = 0) here, but use it as a free parameter to normalize the final
result. However, it should be possible to obtain the local GRB rate from this type
of calculation. More precisely, we can relate it to another commonly used quantity:
the number of (long) bursts per year.

The observed number of bursts per year is normally given to be about Ṅ = 1000,
with 2/3 of these bursts being assumed to be long. This number can be related to
the distribution in redshift from Eq. (1.7) by defining that

Ṅ =

∞∫
0

dṄ

dz
dz . (4.9)

In Eq. (1.7), there are now several factors which need to be discussed in the context
of the emission from the whole sample of GRBs. First of all, there is the beaming
correction 〈fbeam〉, which incorporates the limited possibility to actually see a burst
depending in which direction the jet, or the emission from the jet, is beamed. If
we include this factor, which increases the total number of bursts compared to the
observed one (0 < 〈fbeam〉−1 < 1), we also need to reduce the emission from a single
source to actually include the emission from a jet (instead of isotropic emission).
Hence, in our CR calculation the beaming factor cancels out. The second factor is
the function E(z) which connects the GRB rate with the SFR; ρ̇GRB(z) = E(z) ρ̇∗(z).
The third factor is the function F (z), which essentially accounts for bursts which
are too faint to be observed. Only a fraction 0 < F (z) < 1 of all bursts is bright
enough to be detected on Earth. Therefore, it is possible to define a total number
of bursts as

Ṅtot =

∞∫
0

1

F (z)

dṄ

dz
dz . (4.10)

By comparing Ṅ and Ṅtot, we can define a redshift independent ratio

fthresh ≡
Ṅ

Ṅtot

(4.11)

due to detector threshold. Assuming the luminosity distribution from Wanderman
and Piran, see Eq. (2.37), and the redshift distribution from Kistler et al., see
Eq. (2.36), we obtain fthresh ' 0.51 for a detector threshold of 1.75 · 10−8 erg s−1 cm−2

and luminosities ranging from 1050 to 1054 erg s−1. As always, this depends on the
chosen parameters and distributions, e.g. changing the minimal assumed luminosity
to 1049 erg s−1 leads to a ratio of 0.29.
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When we now rewrite Ṅtot from Eq. (4.10) with the help of Eq. (1.7) and use
ρ̇GRB(z) = H(z) · ρ̇GRB(z = 0), we obtain

Ṅtot = ρ̇GRB(z = 0) ·
∞∫

0

H(z)
dV/dz

1 + z
dz ≡ ρ̇GRB(z = 0) · 4π d3

H · fz , (4.12)

with fz being the result of the integral divided by 4π d3
H , and dH being the Hubble

length, see Eq. (B.10). In principle, fz quantifies how well the “local GRB rate”
ρ̇GRB(z = 0), which is often referred to in the literature, describes the whole redshift
range for a given distribution in z. To give some numbers for fz: For the strong
evolution as proposed by Kistler et al. [87], we obtain fz = 25.15, which signifies
a high contribution from larger redshifts. Finally, we can solve Eq. (4.12) together
with Ṅ = 1000 and fthresh = 0.5 (and the aforementioned fz) to obtain a value for
the local GRB rate of ρ̇GRB(z = 0) = 0.08 Gpc−3 s−1. This is comparable with the
results obtained in previous analyses, such as in Ref. [157], but also see the works
by Schmidt on how the result can vary [180, 181]. Moreover, chocked or “dark”
GRBs could also contribute to the CR and neutrino fluxes without emitting any
gamma-rays, which could be accounted for by a further correction factor.

Now, after having discussed the different loss mechanisms and possible corrections
to the distribution in z, we can apply these local (z = 0) loss timescales for some
general considerations. As done by Waxman in Ref. [182], we can utilize these
timescales to estimate what the actually needed local cosmic ray energy injection
rate is. However, since the result from Ref. [182] is nearly 20 years old, we will
incorporate current cosmic ray data from Ref. [5]. We will only use the data in
the range from 1010 to 1012 GeV, which is the UHECR energy range as defined
by Waxman. With this approach and the new data, we obtain a local cosmic ray

injection rate ε̇
[1010,1012]
CR = 1.5 · 1044 erg Mpc−3 yr−1, which is compatible with the

original result of (4.5±1.5) · 1044 erg Mpc−3 yr−1. Hence, for GRBs to be the sources
of UHECR, we need at least this energy injection in said energy range.

When we now compare this needed injection rate to the energy released by a single
GRB, we (again) need to consider a few aspects beforehand. For one, the luminosity
of the prompt emission is normally calculated from the observed emission in gamma-
rays. As we detailed in chapter 2, this luminosity is then related to the energy in
protons with help of the “baryonic loading” f−1

e , with the usually assumed value
f−1
e = 10. Additionally, the energy release is only needed in the energy range of

the UHECR, and not over the whole energy range, as done in Eq. (2.28). This can
be corrected using a bolometric correction fbol, which compares the energy in the
range from 1010 to 1012 GeV to the one in the whole energy range. For αp = 2.0,
the UHECR only have about a fifth of the total energy, or fbol ' 0.2. Moreover,
not all protons can escape as cosmic rays, as we discussed in chapter 3. Even in the
simplest case of neutron escape, only the fraction fCR ' 0.4 of the proton energy
inside the burst is released as cosmic rays. This follows the logic that about half
the photohadronic interactions produce neutrons and the neutrons obtain all the
parent proton energy apart from the amount lost to pions; fCR ' 0.5 · (1− fπ) with
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fπ ≈ 0.2. Hence, the energy ejected by a burst as UHECR can be calculated as

E
[1010,1012]
CR = fCR

fbol

fe
Eγ,iso . (4.13)

As can be seen from the previous discussion, there are a lot of factors which
are not yet experimentally determined and we need to make some assumptions
concerning them, when we want to interpret the results in the following section.
For comparability reasons, we will assume that the number of observed bursts is
Ṅ = 1000, fthresh = 0.5, and no contribution from dark bursts. We will continue
to use the strong evolution case by Kistler et al., as in Eq. (1.7), hence fz = 25.15.
The fractions fCR and fbol are automatically fixed by our code and our choice of
αp, respectively.2 As a consequence, we will use the baryonic loading as the free
parameter for the normalization of the CR prediction.

4.2. The combined results for UHECR, prompt GRB
neutrinos, and cosmogenic neutrinos

For the following analysis, we will use a two step calculation. The first step is to
calculate the neutrino and cosmic ray spectra, as described in chapter 3. In the
second step, we will use the propagation code described in the previous section to
“transport” the particles from a certain redshift down to Earth (z = 0). As stated
before, we will assume that all bursts are identical in the source frame, as we want
our result for a single GRB to be independent of z. We will, again, assume standard
parameters for the burst, as given in Table 1.1. For the Lorentz factor, we will use
two values: Γ = 300 for a classical neutron escape burst (with no direct component),
and Γ = 800 for a burst which is direct escape dominated, compare to upper right
plot in Fig. 3.3. Moreover, since we want to have a chance of actually reaching the
highest CR energies, we will assume efficient acceleration (η = 1); compare to values
in upper right scan of Fig. 3.5. The resulting particle spectra for these two source
models can be seen in Fig. 4.2. The left plot shows the spectra for the classical
neutron escape source, from which only the neutron component (solid blue curve)
is considered for CR injection. For the direct escape dominated source, both the
neutron component as well as the direct escape component (solid green curve) are
used, see right plot of Fig. 4.2. For the source distribution, we will again assume
the strong evolution approach suggested by Kistler et al. [87]. Hence, HCR is given
by Eq. (1.9).

The advantage of our simple CR propagation code is that we can now directly
calculate the cosmogenic neutrinos (also called GZK neutrinos). Based on the initial
prediction of the suppression of the cosmic rays at high energies, see Refs. [3, 4], there
have been several predictions on the level of this neutrino flux, see, e.g., Ref. [183].
Hence, when we normalize our spectra after propagation with help of the cosmic

2Technically, the other burst parameters apart from αp indirectly affect fbol as well, since we
calculate Ep,max self-consistently.
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Figure 4.2.: The predicted particle spectra for the two source models used for the CR propagation
simulation. The left plot shows the spectra used for the neutron escape model (Γ = 300), while
the right plot depicts the direct escape dominated one (Γ = 800). For the neutron model, only the
neutrons (blue solid curve) are considered for the CR injection. In the direct escape dominated
model, the neutrons as well as the direct component (solid green curve) are considered.

ray data, we can use the level of the cosmogenic neutrino flux as a cross-check. We
used a χ2-fit to match our CR flux prediction to the UHECR data from the HiRes
experiment [184], with the results depicted in the left plot of Fig. 4.3. As long as we
consider only the UHECR energy range from 1010 to 1012 GeV (gray-shaded energy
range), both models are viable, with the neutron escape model fitting the data a bit
better, i.e. we obtain a χ2/d.o.f.-value of 1.99 for the neutron escape model while for
the direct escape dominated one it is 5.25. The cosmogenic neutrinos (blue curves
in right plot of said figure) are also both consistent with older predictions, such
as from Ref. [183]. As expected, as long as we fit the cosmic ray to the observed
data, the cosmogenic neutrinos do not change drastically. The predictions shown in
Fig. 4.3 are also consistent with current ultra-high-energy neutrino data. Based on
the effective area from Ref. [12] (thin solid black curve), it is possible to estimate that
about one neutrino event should have been detected so far, which is still consistent
with current data; Nν = 0.81 for the neutron only model, and Nν = 0.80 for the
direct escape model. The much stronger constraints are, however, obtained from
the prompt neutrino emission, as discussed in Refs. [135, 161]. As can be seen
from the right plot, the prompt GRB neutrino flux in the neutron escape model
(orange solid curve) is already above current GRB neutrino sensitivity limits, based
on the model-independent IC40+59 GRB neutrino effective area from Ref. [135]
(thin dashed black curve). This confirms the results from Refs. [135, 161], which
claim that GRB models are severely constrained. However, for the direct escape
model, the prompt GRB neutrino flux (dashed orange curve) is about one order of
magnitude below the prediction for the neutron escape model. This confirms our
previous conclusions that prompt neutrinos are expected to be reduced compared
to the cosmic rays in the direct escape case, see discussion in Sec. 3.2, while the

84



4.2. The combined results for UHECR, prompt GRB neutrinos, and cosmogenic
neutrinos

107 108 109 1010 1011
100

101

102

103

104

E�@GeVD

E
3
J C

R
�@G

eV
2

×c
m

-
2

×s
-

1
×s

r-
1

D

CR Hwith direct escapeL fe
-1

> 433
Χ2�d.o.f. = 5.25

CR Hneutron modelL
Χ2�d.o.f. = 1.99

fe
-1

> 394

NeuCosmA 2013

Αp=2.0 & HB SFR w� Kistler et al.

103 104 105 106 107 108 109 1010 1011
10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

E�@GeVD

E
2
J Ν

�@G
eV

×c
m

-
2

×s
-

1
×s

r-
1

D IC40+59 stacking
GRB limit

IC H2010-12L
diffuse UHE all
flavor limit�3

prompt GRB ΝΜ+ΝΜ
cosmogenic ΝΜ+ΝΜ

NeuCosmA 2013

Αp=2.0 & HB SFR w� Kistler et al.

Figure 4.3.: The cosmic ray (left plot) and neutrino flux predictions (right plot) for GRBs
following the redshift distribution from Eq. (1.9). The two results here are both for an assumed
proton spectral index of αp = 2. The difference between the two results comes from the choice of
Γ. For the “neutron only”-case, the standard value of Γ = 300 is assumed (solid curves), while for
the direct escape dominated model a Lorentz factor Γ = 800 is assumed (dashed curves). Both
results were normalized to UHECR data from the HiRes experiment, with only the data from
1010 to 1012 GeV being used (gray-shaded region in left plot). While the prompt neutrinos of the
neutron escape model (solid orange curve) already violate current IceCube GRB neutrino bounds,
shown as model-independent IC40+59 GRB sensitivity limit from Ref. [135] (thin dashed black
curve), the prediction for the direct escape dominated model is still one order of magnitude below
current sensitivity. The cosmogenic neutrinos, depicted as blue curves in the right plot, are nearly
at the same level for both CR escape models. The high-energy neutrino sensitivity is based on the
effective area shown in Fig. 3 of Ref. [12].

cosmogenic neutrinos are unaffected as they are related to the CR propagation. The
direct escape model is therefore not ruled out yet based on the neutrino observations,
as opposed to the neutron model.

Another aspect is, however, the normalization itself. As we discussed in the
previous section, we have chosen the burst parameters as well as the observed number
of bursts Ṅ fixed, leaving only the baryonic loading f−1

e as a free parameter. Recall
that it was initially assumed that a value of fe = 0.1 (or f−1

e = 10) is a realistic
fraction of energy in electrons compared to energy in protons. If we now deconvolve
the normalization factor obtained by fitting the CR prediction to the HiRes data,
we obtain quite different values. In case of the neutron model, a baryonic loading of
f−1
e ' 394 is needed, while for the direct escape model f−1

e ' 433 is obtained. Hence,
the needed baryonic loading is significantly higher than initially assumed. It needs
to be determined, how realistic such high amounts of baryons actually are. Also, the
importance of pp-interactions, which have so far been neglected, increases with the
rise of the amount of baryons. A more realistic study of the acceleration inside GRBs
is needed to clarify this aspect, but has to be done at some future point. In general,
it is once again a question of the parameters as well as the actually used distribution
functions, if GRBs can be ruled out as the sources of UHECR. To understand the
effects of the different parameters on the neutrino and CR flux predictions, a more
extended study of these parameters is needed and will be presented elsewhere [185].
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One further question in neutrino physics is the question of neutrino lifetime. While
the mass of neutrinos can already be considered an effect beyond the current stan-
dard model, further “new physics effects” could still be a possibility in nature. The
stability of the mass eigenstates is one of the issues which are discussed, while
others are things such as additional “sterile” neutrino states. In this chapter, we
will discuss the possibility of the neutrino mass states being unstable. The simple
heuristic reason for the instability of the neutrino mass eigenstates is that only the
lightest particles are considered stable by current standards, e.g. only electrons are
considered stable charged leptons while muons and taus decay. Hence, there is no
(theoretical) reason why all mass eigenstates should be stable, even though there are
so far only observational bounds on neutrino decay. We will discuss the decays while
obeying the lifetime bounds from SN1987A [8, 9] of τ/m & 105 s eV−1. These lifetime
bounds are however connected to specific decay models, see, e.g., Refs. [121, 186] for
an overview. Radiative decays are strongly limited by solar neutrinos [187], while
Majoron models [188, 189] can be limited by neutrino-less double-beta decay and
supernovae [190]. Moreover, there are even models of decay into un-particles, see
Refs. [191, 192, 193, 194]. Recently, there have been quite a number of publications
discussing neutrino decay once again, see, e.g., Refs. [195, 196], based on the current
GRB neutrino data and the detection of the first UHE neutrino events. In the follow-
ing chapter, we also want to test the effect of neutrino lifetime on the GRB neutrino
flux prediction by assuming an effective decay of neutrinos into invisibles, without
specifying the exact decay mechanism. Also, as discussed in Sec. 1.2.1 before, we
will assume that neutrinos are Dirac particles.

5.1. The redshift-dependent decay framework

Mathematically, the decay of a mass eigenstate νi can be described by the usual
differential equation for decay:

dNi

dt
= −λiNi , (5.1)

with the decay rate (inverse lifetime) λi. This rate is given as

λi =
mi

E

1

τi,0
≡ κi
E

, (5.2)

where we use the particle Lorentz factor γi = E/mi to boost the rest frame lifetime
τi,0 to the observer’s frame. Since the actual lifetime is hardly measurable, be it in
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Figure 5.1.: The luminosity distance dL and the light-travel distance dlight as a function of
redshift, see legend inside plot. The solid curves represent the values used for the calculations in
this work, while the dashed curves represent the updated values from Planck, see discussion around
Table B.1. As can be seen from the plot, the light-travel distance is limited to the Hubble distance
dH , which is equivalent to requirement that the universe has a finite age, and, therefore, accessible
size. As stated before, we are using the old WMAP results for our cosmological parameters.
However, when comparing the WMAP (solid) to the Planck (dashed) curves, one can see that
there are only very limited changes due to the update of the parameters.

the rest or observer’s frame, the actual lifetime bounds of a neutrino mass eigenstate
νi are typically given in κ−1

i = τi,0/mi

[
s eV−1

]
.

Since we want to discuss the decay on cosmological scales, we need to consider
what the actual time t a particle has traveled is. More precisely, the distance d a
particle needs to travel grows during propagation due to the expansion of the uni-
verse. Hence, the time traveled cannot be derived by simply dividing the distances
defined in Appendix B with c, as they are fixed at a certain times during the ex-
pansion, compare Eqs. (B.8) and (B.13). For the decay, an integral definition over
the whole propagation and expansion between production and detection is needed.
This requirement is fulfilled by the light-travel or lookback distance. It is defined as

dlight = dH

z∫
0

dz′

(1 + z′)
√

Ωm(1 + z′)3 + ΩΛ

(5.3)

with dH ≈ 4.26 Gpc being the Hubble length, see Eq. (B.10). As can be seen from
Fig. 5.1, the light-travel distance is limited by the Hubble length dH , which is the
maximal distance an ultra-relativistic particle can travel in the whole age of the
universe tH . This has one significant, and for theorists unwanted, consequence,
namely that the maximal distance is in fact not infinite and complete decay is
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not always given even at highest redshifts, as we discuss in more detail in Ref. [197].
While a naive guess would be to just adapt the solution for Eq. (5.1) to accommodate
redshift, it is actually needed to adapt the whole differential equation to redshift.
For this, we again need to use dz = −dt (1 + z)H(z) as in Sec. 4.1 and change
Eq. (5.1) to

dNi

dz
=

κi
E (1 + z)H(z)

Ni . (5.4)

This equation can be solved by simple separation of variables, together with the def-
inition that the current epoch of z = 0 is the point-of-reference for the calculation,
i.e. by also inserting E(z) = E0 (1 + z). Using this, it is possible to obtain an sup-
pression factor Di(E0, z), which compares the initial number of neutrinos Ni(E0, z)
to the final number of neutrinos Ni(E0, 0), giving

Di(E0, z) ≡
Ni(E0, 0)

Ni(E0, z)
= exp

−κi dH
E0

z∫
0

dz′

(1 + z′)2
√

Ωm(1 + z′)3 + ΩΛ


= [Z(z)]

−κi dH
E0 . (5.5)

Note that the Z(z) used here is the same as Z2(z) from Ref. [197]. In said reference,
there is also a more detailed discussion of the different functions as well as the pos-
sibly obtainable bounds from cosmic neutrino observations. Here, however, we want
to focus on the effect of the decay on the GRB calculations. For this reason, we need
an effective representation of the decay factor for our numerical calculations. For
this reason, we will use the analytical approximation for Z(z) proposed in Ref. [197].
This is given to be

Z(z) ' a+ be−c z (5.6)

with the constants

a ' 1.71 ,

b = 1− a ' −0.71 , (5.7)

c ' 1.27 .

The damping factor Di can now be used to extend the oscillation probability from
Eq. (1.15) to also include the effect of decay, giving

P decay
αβ (E0, z) =

3∑
i=1

|Uαj|2|Uβj|2Di(E0, z) . (5.8)

This definition is similar to the one used in Ref. [198]. In the next section, we will
discuss the impact of the decay first using the four standard bursts from Table 3.1,
and then we will discuss how the decay would effect the prediction for actual GRB
neutrino searches.
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5.2. The effect of decay on GRB neutrino fluxes

When we discuss the effect on the actual flux prediction, we will first of all take a
look at some example bursts with known redshift. For this purpose, we will use two
of the four bursts, which we already discussed in Sec. 3.2. We will, for now, use a
hypothetical model with all neutrino states having the same lifetime, with several
different values for this lifetime. Even though some of the chosen values actually
violate bounds set by the SN1987A observation, we will use this approach for the
sole reason that it is the simplest version of decay and leads to extreme effects on
the neutrino flux prediction. Shown in Fig. 5.2 are the results for two of the four
bursts, namely the standard burst “SB” and the very energetic burst GRB080916C.
The lifetimes used for the calculations are shown in the legend inside the plots.

As for all the neutrino flux predictions from individual bursts, the shape of the
flux prediction depends on the burst parameters. The results for the stable case
(“no decay”, solid red curves in Fig. 5.2) are the same as the flux predictions (orange
curves) from Fig. 3.7. The decay itself leads to a suppression of the neutrino flux
below a certain energy. This can be derived by some considerations about Di(E0, z)
and when this factor goes to zero (complete decay). For a large enough decay rate
κi � E0/dH , the integral over z in Eq. (5.5) is no longer relevant. Moreover, since
the maximal distance is limited to the Hubble distance, the function Z has an
asymptotic limit. Using these considerations for Di(E0, z) → 0, we can obtain the
condition for complete decays as κi dH/E0 � 1, or

E0 [TeV]� 4 · 105

κ−1
i

[
s eV−1

] . (5.9)

Due to the limit on the actually traveled distance, all decays over distances of z & 1
can be considered “complete”, as can be seen from how the light-travel distance is
limited to dH in Fig. 5.1. At these redshifts, it only depends on the energy and not
on the distance traveled, if a neutrino is expected to have decayed or not. Hence,
as all the bursts from Table 3.1 have z > 1, they all should be affected by complete
decays. Additionally, it is possible to estimate the value for E0 at which the flux
is suppressed based on the lifetime, e.g. for κ−1 = 100 s eV−1 the flux is suppressed
below 4 PeV, see left panel of Fig. 5.2. For smaller redshifts, this suppression shifts
to lower energies, as the function Z has not fully reached its asymptotic limit yet
and the damping is weaker.

Since we have obtained that decays from z ' 1 can be considered complete, it
is interesting to test what the effect on the diffuse flux would be in this simple
scenario. As discussed in Ref. [107], bursts from z ' 1 should dominate the diffuse
flux prediction. If we now test an energy E0 ' 106 GeV, which is roughly the
energy of peak sensitivity of most large neutrino telescopes, we obtain that we
need a lifetime κ−1 . 400 s eV−1 for complete decays from Eq. (5.9). For these
values, the convolution of GRB rate, flux scaling, and damping shifts the peak of
the contribution to low z ' 0. From a conceptual point of view, this means that the
neutrinos from closer bursts did not have the time to decay, while neutrinos from
some distance are suppressed. On the other hand, for κ−1 > 400 s eV−1, the diffuse
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Figure 5.2.: These plots show the effect of decay on the neutrino flux from two of the four burst
from Table 3.1. The stable curves (“no decay”, red solid curves) correspond to the neutrino curves
from Fig. 3.7. We have assumed complete decay of all three mass eigenstates, when we assume the
neutrinos to be unstable, with the different lifetimes stated in the legend. As discussed in the text,
the decay is considered to be “complete”, which means that it only depends on the energy and not
the distance traveled. The energy below which the neutrino flux is suppressed can be estimated
with Eq. (5.9). Figure based on one from Ref. [197].

flux is still dominated by bursts from z ' 1. Finally, we can use the lifetime bound
from SN1987A, which is even higher than the lifetimes shown in Fig. 5.2, to show
that a phenomenologically viable model would not have these extreme effects. One
way to accommodate the SN1987A bound would be to assume different lifetimes for
the different mass eigenstates, with the key assumption being that ν1 is stable. In
the following, we will use a model with only ν2 and ν3 unstable.

Thanks to the observation of νe from SN1987A, we more or less know that at
least ν1, which is the main contributing mass eigenstate of νe, should have a quite
long lifetime, i.e. about κ−1

1 & 105 s eV−1. The experimental bounds on the other
two mass eigenstates are, however, much weaker. Since ν2 also contributes to νe,
choosing it unstable will also affect the νe flux to some extend. Yet, as long as ν1

is stable, it is sufficient for the νe fluxes to fulfill the SN1987A bounds based on
the uncertainties of the supernova neutrino models. The effect of an unstable ν3

is hardly visible on the νe flux, even though there is a small contribution due to
θ13 6= 0. Hence, when we assume that ν2 and ν3 are unstable, we will have effects
on the flavor states based on the mixture of each mass eigenstate. ν2 is roughly an
equal mixture of νe, νµ, and ντ , while ν3 consists mainly of νµ and ντ , with only a
small contribution of νe. When we now apply this scenario to the standard burst
SB, as discussed in Ref. [197], we see that the flavors are differently suppressed by
the decay of ν2 and ν3. We depict the decay results for this scenario as thick solid
curves in Fig. 5.3, with each panel representing a different lifetime. The different
neutrino flavors are color-coded with the blue curves representing νe+ ν̄e, the orange
curves νµ + ν̄µ, and the green curves ντ + ν̄τ . In the stable case (upper left plot),
all flavors have roughly the same observed flux level at the first peak (between
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5. Effect of neutrino lifetime

105 and 106 GeV); the stable case is depicted as a thin dashed color-coded curve
for each flavor in every other panel. However, as soon as we assume that only ν1

remains stable, the neutrino fluxes get suppressed below a certain energy, just as
discussed before. Again, the value below which the flux is suppressed is determined
by the lifetime, as in Eq. (5.9). For example, an energy E0 ' 4 · 108 GeV is obtained
for κ−1 = 1 s eV−1, below which ν2 and ν3 have completely decayed (lower left
plot). This leads to an enhancement of the kaon peak, which coincides with the
aforementioned energy, in the muon and tau neutrino spectra. The effect on the
electron neutrinos is milder. As can be seen from the most extreme depicted case,
in the the lower right panel of Fig. 5.3, the decay leads to the electron neutrino
flux being enhanced compared to the muon and tau neutrino flux. The lifetime
κ−1 used in said case corresponds to ν2 and ν3 decaying with the current κ−1

2 bound
(& 10−4 s eV−1), taken from Refs. [199, 200, 201]. Moreover, the asymmetry between
νµ and ντ is due to the choice of θ13, θ23, and CP-violation phase δCP, see values
given in Table 1.2. A consequence of this “enhancement” of νe is that the amount of
electromagnetic cascades in large neutrino telescopes, such as IceCube, is expected
to be increased compared to the muon tracks or hadronic showers. For a detailed
discussion of the changes of the expected events in a neutrino telescope, please refer
to Ref. [197]. Nonetheless, this scenario predicts more cascades than muon tracks,
which incidentally fitted the detection of the first two events which passed all of the
background cuts, see Ref. [12]. These two events were cascade events which indicated
neutrino energies of about 1 PeV, with no muon tracks being detected/passing the
cuts. More recent data, however, does not have this excess of cascades over muon
tracks, but no additional events in the PeV-range have been detected so far, see
Ref. [13].

Since we already discussed the different possibilities how to bound GRBs as
sources of UHECR using the neutrino flux prediction in the previous chapters, we
now want to discuss why decay can also be a possibility to circumvent current
bounds. For this reason, we will apply the decay scenario from the previous para-
graph — ν1 assumed to be stable, only ν2 and ν3 can decay — to the recalculation
of the IC40 prediction from Ref. [136]. Using the same parameters and calculation
approach as in said reference, we only extend the flavor mixing to also include the
redshift-dependent damping term, as in Eq. (5.8). The result for the muon neutrinos
(left plot) as well as electron neutrinos (right plot), based on the stacking of the 117
bursts of the IC40 sample, can be seen in Fig. 5.4. For the muon neutrinos, the
red solid curve (“no decay” case) corresponds to the prediction given in Fig. 3 of
Ref. [136]. The blue solid curve in the right plot is the corresponding “no decay”
prediction for νe. The normalization of all the predictions are based on the observed
gamma-rays of each burst, as detailed in Ref. [136]. As discussed in Sec. 2.4, the
quasi-diffuse flux is still subject to some statistical uncertainties as well as the im-
pact of the choice of the standard parameters. Since the standard parameters include
z = 2, all bursts without measured redshift will be subject to complete decay. As
a consequence, when the assumed lifetime is low enough, κ−1 . 1 s eV−1, the muon
neutrino flux prediction gets suppressed below the ten year IC86 sensitivity limit, see
left plot in Fig. 5.4 (solid gray and dotted black curves). Compared to the original
prediction, the decay decreases the muon neutrino flux by another order of magni-
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Figure 5.3.: Prediction for the neutrino spectra of the different flavors as a function of energy,
based on the SB for the decay scenario with ν1 assumed stable with neutrinos and antineutrinos
summed over. The different panels represent different lifetimes κ, which is assumed to be associated
with ν2 and ν3. The lifetime values, given in each panel, are all consistent with the SN1987A decay
bound. The color-coded thick curves (see legend in upper left plot) represent the results for the
stated lifetime value, while the thin dashed curves represent the stable case from the top left panel.
Depending on κ−1, all ν2 and ν3 are considered to have decayed at energies below E0, see Eq. (5.9).
For example, in case of κ−1 = 1 s eV−1, this energy is E0 ' 4 · 108 GeV, and effectively leads to an
enhancement of the kaon peak. Figure taken from Ref. [197].
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tude. On the other hand, the electron neutrino flux is only mildly affected. Here,
the decrease is only by about a factor of two.1 Hence, even if no muon tracks are
expected, there still should be a contribution from electromagnetic cascades. The
effective area for electron neutrinos is normally assumed to be slightly lower than
the one for muon neutrinos, but has the advantage of an increased effective area at
the Glashow-resonance, see, e.g., Fig. 3 in Ref. [12]. Said increase of the effective
area is the result of the resonant production (and subsequent decay) of a W−-boson
when ν̄e interact with e−, as described by Glashow in Ref. [202]. When the elec-
trons are at rest, the antineutrinos need an energy Eν,0 = m2

W/ (2me) ' 6.3 PeV for
the resonant interaction. Moreover, in case of the aforementioned search for UHE
neutrinos [12], the effective area for νe at about 1 PeV is actually higher by a factor
of a few than the one for νµ (or ντ ). This might also be the reason why the first
detected events were actually cascades and not muon track events. However, since
we do not have data on the actual νe effective area for the GRB searches, we cannot
include a limit in the νe plot. Nonetheless, even though the current results on the
astrophysical neutrinos do not indicate a suppression of muon tracks below a certain
energy, neutrino decay would also affect the interpretation of the CR bounds we
discussed in Sec. 4.2. With neutrino decay, the cosmic rays would stay at the same
level while the neutrino fluxes, especially the prompt neutrinos, would be decreased.
Therefore, it would even be possible to fulfill the cosmic ray bounds discussed in
Refs. [135, 161], without changing the source distribution or the spectral index.
Nonetheless, current data is in no way sufficient to claim or rule out neutrino decay.
The first positive results presented in Ref. [12] as well as the information obtained
with new search methods, as done be Whitehorn et al. [13], show that it should be
possible to gain more insight soon. Surprisingly, the best data may actually come
from cascade events, as the experimental cuts lead to higher effective areas for νe in
the range around 1 PeV.

1On a related note, the decay spectra for κ−1 = 102 s eV−1 are actually slightly higher than the
original (“no decay”) prediction in both plots. This is due to an update of the mixing parameters,
which are used for calculation. The original calculation uses the same mixing angles as we state
in Ref. [107], the decay calculations are, however, done with the values stated in Table 1.2.
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Figure 5.4.: Flux predictions for the muon neutrinos (left plot) and the electron neutrinos (right
plot), based on the stacking of the 117 bursts of the IC40 flux sample. The calculation method is
the same as in Ref. [136], however, extended to also include neutrino decay. Apart from the original
(“no decay”) prediction (colorful solid curves; muon neutrinos are red, electron neutrinos are blue),
each plot also includes the result for three different lifetimes (black dashed, black dotted, and gray
solid curves). The used decay scenario for these predictions is, again, to assume that ν1 is stable,
while both ν2 and ν3 decay with κ (obeying the SN1987A bound). The depicted IC40+59 flux
limit is taken from Ref. [135], while the extrapolation of the IC86 (after ten years of operation) is
based on scaling up the IC40 effective area up by a factor of three, as suggested in, e.g., Ref. [203].
Figure taken from Ref. [197].
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6. An example for neutrinos from
microquasars

As we have stressed in the initial discussion of neutrinos from GRBs, see chapter 2,
the particle physics involved in the production of neutrinos are independent of the
astrophysical source model. Hence, it is possible to apply similar photohadronic in-
teraction calculations to other sources, as long as it is possible to derive the proton
and photon densities. One possibility, which is very similar in its principle setup to
the GRB internal shock fireball model, is the neutrino production in internal shocks
of microquasars as suggested by Levinson and Waxman [204]. Opposed to GRBs,
microquasars (MQs) are galactic binary sources, which have been detected in var-
ious wavelengths, including gamma-rays as well as radio. Especially, the detection
in radio confirmed that MQs also exhibit relativistic radio jets, see Refs. [205, 206].
Hence, it is possible to obtain more information on the source itself than in the case
of GRBs. The inferred boost factors are, however, much milder than in the case
of GRBs. Nonetheless, there have already been studies on the possible neutrino
emission from a number of MQs, with the one by Distefano et al. [207] based on
the analytical model from Ref. [204] leading to the result that the largest number
of neutrinos is to be expected from the MQs Cyg X-3 and XTE J1118+480. Anal-
ogous to how we extended the Waxman-Bahcall GRB neutrino model to a detailed
numerical calculation, see Sec. 2.3, we now want to detail how to similarly extend
the Levinson-Waxman model for neutrinos from MQs at the example of the bright
MQ Cyg X-3, based on our Ref. [154].

Similar to the calculation on GRBs detailed in Sec. 2.3, we will normalize the
different particle densities based on observed photon spectra. As suggested in
Ref. [204], we will calculate the photon energy density inside the jet U ′γ (in the
SRF) based on the luminosity Lγ passing through the surface of the jet, giving

U ′γ =
Lγ

4π
(
l2 sin2(θj)

)
cD2

. (6.1)

In this formula, l is the distance of the emission region from the central object, D is
the inferred Doppler factor of the jet, and θj is the jet’s opening angle. This photon
energy density can then be used to normalize the photon spectrum inside the jet,
similar to Eq. (2.27): ∫

ε′N ′γ(ε
′) dε′ = U ′γ . (6.2)

Moreover, the energy density can be used to calculate the value of the magnetic field
B′, as described in Eqs. (1.5) and (2.25), as well as normalizing the proton energy
density

U ′p =
εp
εe
U ′γ . (6.3)
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Here, εp and εe are the fraction of the total jet energy carried by protons and elec-
trons, respectively. These energy fractions as well as εB are considered to be of the
order of 0.1, taken from Refs. [204, 207]. As for the proton spectrum in GRBs,
we assume that protons have a spectrum of the form ∝ E−αp , extending up to a
maximal energy, see Eq. (2.1). With the size of the jet known as well as the value
of the magnetic field B′, we can self-consistently derive the maximal proton energy
E ′p,max, similar to Eq. (2.31).1 With E ′p,max known, the normalization of the proton
spectrum can be obtained as for the photon spectrum in Eq. (6.2).

As stated before, the parameters of Cyg X-3 are quite well documented, especially
compared to those of a GRB. For our calculations, we adopt the following parameters
of the source:

dL = 7.2 kpc ,

D = 2.74 ,

θj = 12◦ ,

l = 108 cm .

The value of the distance dL is taken from Ref. [208]. The Doppler factor D is cal-
culated from the Lorentz factor Γ = 1.70 (from radio observations) and the viewing
angle θ = 14◦, as described in Refs. [207, 209]. The jet opening angle θj was also
taken from Ref. [209]. In contrast to these previous parameters, the distance l from
the central engine is not the result of an observation, but an assumption taken from
Ref. [204]. This is due to the lack of spectroscopic measurements in wavelengths
shorter than radio. Hence, l is the parameter which introduces the largest uncer-
tainty on the neutrino flux prediction, as it could be significantly different from
the assumed value of 108 cm. Nonetheless, with the parameters above, we can use
Eq. (2.3) to estimate what the needed energy in photons is to interact with protons
with an observed2 energy Ep = 108 GeV. For said energy, we can derive that X-ray
photons with several keV energy are needed. This is one important difference to
GRBs, since for GRBs the gamma-rays are assumed to be the relevant target pho-
tons in internal shocks. However, due to the lower boost factors, the target photons
needed in case of MQs are of considerably lower energy in the observer’s frame.
In the SRF, the needed photon energies are nonetheless comparable for MQs and
GRBs, with values of O(keV). For this reason, we use the different X-ray states
of Cyg X-3 from Ref. [210], with special emphasis on the so-called hypersoft state,
which is assumed to be associated with gamma-ray flares detected from Cyg X-3,
see discussion in Refs. [211, 212, 213]. Based on the hypersoft state from Ref. [210],

1In the example discussed here, we only consider synchrotron and adiabatic losses for the maximal
energy. However, depending on the photon and the proton density, also pγ- as well as pp-
interactions could limit E′p,max.

2For galactic sources, we do not have the adiabatic energy loss due to the expansion of the
universe and the distances are much shorter than the interaction length for interactions with
cosmic background fields (for Ep = 108 GeV), compare to Fig. 4.1. The magnetic field inside our
galaxy is significantly higher than the intergalactic magnetic field, but for the sake of simplicity
we will neglect this, since we are only interested in the needed photons for photohadronic
interactions.
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Figure 6.1.: In the left plot, we show the muon neutrino (and antineutrino) flux prediction for
Cyg X-3 based on the hypersoft state from Ref. [210]. While the solid blue curve depicts the
nominal prediction for an assumed distance from the central object l = 108 cm, the gray-shaded
area represents the uncertainty induced by varying l by one order of magnitude up or down. The
right plot depicts the neutrino flux predictions for the different flux states from Ref. [210] (see legend
inside plot). The variation between the highest neutrino flux prediction (for hypersoft state) to
the lowest prediction (for quiescent state) is only of the order of two, and much smaller than the
variation due to the uncertainty on l. For comparison reasons, the (extrapolated) differential flux
limits for two experimental setups are included in both plots (see labels in plots). The differential
limits are based on the solid-angle-averaged effective areas at final cut level of the time-integrated
point-like source search from Ref. [214]. Plots taken from Ref. [154].

we obtain Lγ = 3.77 · 1037 erg s−1 (integrated over range from 3.5 up to 102 keV),
B′ = 8.8 · 105 G, and E ′p,max = 5.5 · 107 GeV.

Using the aforementioned simplistic jet model for MQs together with our photo-
hadronic interaction code, we can calculate the muon neutrino (and antineutrino)
flux prediction for the hypersoft state of Cyg X-3. As can be seen from Fig. 6.1, the
flux shape is similar to the one for GRBs, which is a consequence of the similar model
and magnetic fields. An important difference compared to the prediction for GRBs
is that the peak of the neutrino flux prediction is no longer between 105 and 107 GeV,
but now between 103 and 105 GeV. In this energy range, the atmospheric neutrino
background is higher, but still manageable. We can estimate that the IceCube point
source neutrino flux limits of the full detector start to probe this type of neutrino
flux after a few years, as detailed in Ref. [154] and can be seen from the estimated
5 yr IC86 limit (dashed black curve) in Fig. 6.1. The (extrapolated) neutrino flux
limits depicted in Fig. 6.1 are based on the declination band for δ = (30◦, 60◦) of the
solid-angle-averaged effective areas at final cut level of the time-integrated point-like
source search from Ref. [214], since a declination of δ = 40◦57′ is given for Cyg X-3.
The result shown in Fig. 6.1 is somewhat reassuring as the neutrino flux predictions
are sufficiently below the IC59 flux limit (solid black curve) to be consistent with cur-
rent point source searches by IceCube [215]. However, with the improved cuts based
in flares, suggested in Ref. [215], it should be possible to actually probe this type of
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emission model for MQs. It actually helps that the variation among different (X-ray)
flux states, which is shown in the right plot of Fig. 6.1, is only of the order of two
as long as the distance to the central engine l is fixed. When said distance, which is
the equivalent to the collision radius Rc from the internal shock GRB fireball model,
is varied, then the neutrino flux prediction is strongly affected, see shaded area in
left plot of Fig. 6.1. An additional test which can be applied for photohadronic
interactions is to compare the observed gamma-rays to the predicted amount of en-
ergy released by π0-decay, as in Eq. (2.13). As we have described in Ref. [154], it is
possible to estimate that we would have already expected a neutrino signal in Ice-
Cube, if gamma-ray flares detected by AGILE [213] were induced by π0-decays from
photohadronic interactions. This conclusion is obtained from energy conservation
arguments in the range of the gamma-rays. This (multi-messenger) result has two
important consequences: The first consequence is that the simple jet model for MQs
is not sufficient for a realistic description of all observations from Cyg X-3. This
was to be expected as the used jet model does not include a self-consistent calcu-
lation of the photon spectrum. Other models to describe the gamma-ray emission
are either Inverse Compton scattering, as suggested in Ref. [216], or pp-collisions, as
in Refs. [217, 218].3 Especially, the pp-interaction models are quite popular as they
are closer to AGN. There has already been a quite detailed study on neutrinos from
MQs in case of pp-interactions by Romero and Reynoso [143], which also includes
similar effects from magnetic fields as obtained from our analysis. The second, and
more basic, consequence is that this result proves (again) that multi-messenger ap-
proaches are very well suited to obtain stronger bounds on models in general. Even
though we used a model which was originally designed for GRBs, and only slightly
adapted it, we were able to obtain neutrino predictions for a MQ, Cyg X-3.

3Note that it was pointed out in Ref. [219] that there is a mistake in the boost factors in Ref. [217].
This needs to be considered for accurate calculations.
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We are currently living through great times for multi-messenger astrophysics and,
especially, neutrino astrophysics, with advances on the technological side through
O(km3)-neutrino telescopes, such as IceCube or the up-coming KM3NeT, and the
first detection of cosmic neutrinos, see Refs. [12, 13]. With this progress on the
experimental side, it is now time again for the theoretical calculations to catch up.
One of the prime examples for this are the models for cosmic ray acceleration in
GRBs. Different approaches have started to rule out certain internal shock fireball
models as the sole sources of UHECR, either based on the observation in gamma-
rays [135], or through the “one neutrino per cosmic ray”-paradigm [161]. During the
progress of this thesis, we have shown that the aforementioned results are actually
weaker than initially thought or that it is possible to circumvent certain constraints.

We started our calculations by introducing an efficient way to calculate the neu-
trino spectra from individual GRBs based on the photohadronic interactions in-
volved in the neutrino production. Our approach is based on a semi-analytical
approximation of the pγ interaction cross section, model Sim-B from Ref. [139],
which is able to reproduce the photohadronic interaction results gained with the
Monte-Carlo-code SOPHIA [131]. Our numerical approach allows for an individ-
ual treatment of secondary particles (including losses on the secondaries), magnetic
field effects, helicity-dependent muon decays, and neutrino mixing during propaga-
tion, see Refs. [139, 142]. Based on this treatment of the particle physics, we could
show that the neutrino flux shape changes from a plateau (Waxman-Bahcall spec-
trum [122, 123]) to a double peak with a high-energy component from kaon decays,
see discussion in chapter 2. In a next step, we applied the numerical model to the
IC40 GRB analysis, and showed that the (re-calculated) neutrino flux prediction is
actually one order of magnitude lower than initially thought [136], which was inde-
pendently confirmed by other groups, see Refs. [137, 138]. Additionally, we discussed
the uncertainties introduced by using fixed “standard burst parameters” as well as
the statistical uncertainty from extrapolating to a quasi-diffuse flux limit [107]. Es-
pecially, the uncertainty on the parameters can affect the nominal flux prediction
by orders of magnitude, with the Lorentz factor Γ having the greatest effect on the
normalization. Unfortunately, the Lorentz factor is one of the hardest to obtain
parameters of a GRB, and current predictions based on observational data will al-
ways suffer from this uncertainty. A recent consequence of the aforementioned work
is the current ANTARES GRB analysis, for which we provided the neutrino flux
prediction using our NeuCosmA code and helping adapt the search strategy based
on said prediction [153].

In chapter 3, we addressed the additional constraint which arises from the con-
nection of cosmic ray and neutrino escape from a GRB. We discussed, that we can
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identify three distinct CR escape regimes based on a microphysics treatment of es-
cape [152]. We showed that the commonly used paradigm of one neutrino per cosmic
ray [135, 161] holds only in the optically thin neutron escape regime. This regime
is, however, limited to a small region of the parameter space, sandwiched between
the direct escape regime (with more CRs than neutrinos) and the optically thick
neutron escape regime (with more neutrinos than CRs). Additionally, we tested our
CR escape model on four actually measured bursts, showing that the direct escape
can play a role for actual bursts. Hence, the cosmic ray flux from a GRB could
be enhanced due to this additional component, while the neutrinos would remain
unchanged. Nonetheless, the accelerated protons must first of all reach at least the
observed UHECR energies. For this, either a high acceleration efficiency, e.g. η = 1,
is needed, or few bursts with specific parameters need to dominate.

To really quantify how many UHECR would actually reach us from a theoretical
distribution of GRBs, we then used our photohadronic interaction code to create a
simple large scale CR propagation code. In chapter 4, we first discussed the losses
due to interactions with the cosmic background photon fields, namely the CMB and
the CIB. For the propagation itself, we included an approach which describes the
propagation with its losses as a Boltzmann equation, as proposed in Refs. [161, 162].
With this approach, we were able to simultaneously calculate the UHECR, the
prompt GRB neutrinos, as well as the cosmogenic neutrinos. We could normalize
the spectra by fitting our CR prediction to the publicly available HiRes UHECR
data. Consistency checks comparing our cosmogenic neutrino prediction to previ-
ous predictions, such as from Ref. [183], confirmed the validity of our approach.
Moreover, we tested two scenarios of the cosmic ray escape: one with only the stan-
dard CR escape via neutrons, and a second one which included the direct escape of
protons. We could show that the direct escape dominated model is, as opposed to
the neutron escape model, not yet ruled out based on neutrino data. However, by
normalizing to the HiRes UHECR data, we needed to increase the baryonic loading
by about a factor of 40, which is somewhat in contrast to existing models. There
are, nonetheless, still a lot of uncertainties regarding the parameters going into the
model. One of our current projects is to test the viability of the approach when
changing certain parameters or taking a different evolution in redshift [185]. Also,
first simulations indicate that a change of the spectral proton index has a significant
effect on the CR results. Therefore, more work in this regard needs to be done to
better understand the underlying connections of multi-messenger observations.

As an additional possibility to extend our numerical calculation, we discussed the
possibility of including neutrino lifetime effects in chapter 5. We tested a simple
decay model of neutrinos into invisibles, without going into the details of the decay
process. This effective treatment allowed us to focus on the effect the finite neutrino
lifetime has on the neutrino spectra. First, we tested the general effect based on
the decay of all three mass eigenstates. The surprising result was that the decay is
always complete below a certain critical energy, which solely depends on the lifetime
κ−1 of the neutrino mass eigenstates. These basic considerations, however, did not
obey the current lifetime bounds set by the neutrino observation from SN1987A,
which suggest that ν1 is stable, while ν2 and ν3 can decay. Using this modified
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scenario of stable ν1 and decaying ν2 and ν3, we discussed the effect of decay on
the neutrino flux predictions, based on a single burst as well as the re-calculated
quasi-diffuse flux prediction from the IC40 GRB sample [136]. We could derive that
the muon and tau neutrino flux predictions get suppressed by about one order of
magnitude. The electron neutrinos, however, were only slightly affected. As a result,
the expected ratio of muon tracks to cascade events shifts towards the amount of
cascades. We could show that the muon neutrino flux prediction could drop below
the sensitivity of the full IceCube detector after ten years of operation, depending
on the lifetime. However, cascade events would still give a significant signal. This
approach obtained some justification, when the first neutrino events passing all
background cuts were actually cascades [12]. However, newer results with lower
energy data do not indicate an enhanced amount of cascades [13], which indicates
that the discussed decay scenarios are not able to describe the observations. Even
though decay is now again not likely, it is nonetheless a possibility to resolve the
constraints on GRB neutrino data coming from the normalization to the UHECR.
As for the additional cosmic ray component, decay would change the relative level
of CRs to neutrinos, breaking the paradigm of one neutrino per cosmic ray.

Finally, we showed that we can even apply similar calculations as in the GRB
internal shock fireball model to different objects, such as microquasars. At the
example of the MQ Cyg X-3, we showed how to calculate the neutrinos based on
the observed X-rays. The predicted neutrino spectra for a simple internal shock
scenario for MQ peak at a lower energy than the ones from GRBs, however, as MQs
are galactic objects, it is more likely to obtain a signal from a single source. Still,
as for GRBs, the predictions are subject to large uncertainties.
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8. Outlook

On the base of what we described in this work regarding neutrino and cosmic ray
production in GRBs, there are still numerous ways to further investigate the multi-
messenger connection, and GRBs in general. We only briefly touched the subject
of the different correction factors going into the calculations in chapter 4. We still
need to test, how a different distribution in redshift affects the prediction [185]. For
example, a strong evolution as proposed by Kistler et al. leads to a high value of
fz, while the prediction for a pure SFR would be significantly lower. If there are
more bursts at low redshift, these would have to contribute less on average than in
the strong evolution case, and the needed baryonic loading f−1

e would be lower as
well. Then, there are always ways to tweak the parameters of the bursts to somehow
still be viable. We therefore need to start excluding parameter space regions based
on the available data, such as combining the bounds on prompt GRB neutrinos,
cosmogenic neutrinos, and UHECR to obtain exclusion limits. It would be nice
to know if certain CR escape models such as the neutron escape model are really
ruled out already for this (simple) internal shock fireball model. Also, we have so
far only distributed the GRBs in redshift, while a distribution in several, if not all,
other parameters is more realistic. As opposed to, e.g., type Ia SN [220], GRBs
are no standard candles, and have large variation among their parameters. This
variation among the parameters can introduce additional unexpected effects such
as the luminosity distribution has on the effective cosmic ray index, as discussed in
Ref. [221]. Still, in the future, we can expect to have more data on GRBs, be it
through more data from satellites or new techniques, such as detection of afterglows
in the radio band [222], which will additionally improve neutrino predictions.

Apart from the on-going work on the different aspects which affect the CR prop-
agation, there are also several possible aspects of the individual burst that need to
be discussed in the future. For one, it is known from observations that the GRB
light curves are violently varying. Hence, even though the approximation of using
time-averaged quantities is justified by the statistically limited neutrino detection
rate, a more realistic model would be to include these variations also in the neutrino
flux calculations. One approach for this could be to treat the individual collisions
of two shells as a burst of its own and calculate the neutrino spectra on a collision
basis. Similar models, used to create artificial light curves, already exist, see, e.g.,
Refs. [39, 149]. These would have to be adapted to give the photon and proton
spectra for each collision, and then using our photohadronic interaction code to cal-
culate the neutrino spectra for each collision. Of course, a drawback of this more
detailed model will be that the simulation of a single burst will take much longer
compared to the simple time-averaged model. The result should, however, be closer
to reality. Also, this approach would allow for a discussion of the connection of the
active time of the engine (which emits the shells) and the observed duration of a
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8. Outlook

burst (which is a result of the collisions), similar to the discussion in Ref. [223]. The
higher luminosities over shorter timescales could actually help to improve the cuts
in the neutrino searches. That is, whatsoever, assuming that there are no Lorentz
violation effects or any other additional processes happening during propagation.
Also, it would give a first possibility to also include a photon prediction into the
analyses, together with the prompt neutrinos, cosmogenic neutrinos, and UHECR.
As a goal for the (maybe distant) future, a full magnetohydrodynamical simulation
of the jet of a GRB, including the calculation of neutrinos, cosmic rays, and pho-
tons, would be useful. Currently, these types of simulations are being developed for
AGN. An application to GRBs is as of now still hindered by the high Lorentz factors
Γ of GRBs. Based on the progress in simulations of SN, binary mergers, and jet
simulations, this should nonetheless be possible in the future.

Moreover, one could also apply our photohadronic interaction code to other GRB
models, such as photospheric models or magnetic reconnection models. As analytical
estimates have shown, each model should have a different signal, see Ref. [68]. A
more detailed study, similar to our work on the effects in the internal shock model,
see Refs. [82, 136], would give insight on how these different scenarios could be
distinguished using data from a neutrino telescope. There has been a recent work
by Asano and Meszaros [224] on the photon and neutrino spectra of time-dependent
photospheric models, which could be extended similar to the models for the artificial
light curves in the internal shock model. It might also be interesting to model the
different stages of a GRB, such as an acceleration phase similar to a choked GRB, as
in, e.g., Ref. [225], a decoupling phase similar to the photospheric models, a coasting
phase with internal shocks, and then a final phase when the ejecta start to collide
with the external medium. In general, more observational data on GRBs is needed.
Currently we just do not know enough about these events to really prefer one model
over the other. An additional advantage would be that the uncertainty due to the
standard burst parameters would shrink, which in turn would help to clarify if a
model is ruled out or not.

Furthermore, it may even be possible to apply the photohadronic interactions to
other source classes (instead of applying other types of simulations to GRBs). For
example, AGN and MQs are also interesting sources with respect to cosmic ray accel-
eration and neutrino astronomy. For AGN, detailed numerical models of the jets are
needed, as for these the jet structures can be resolved. On the other hand, for MQs it
might be sufficient to also apply an internal shock model, similar to the one used for
GRBs. As we showed in the context of the microquasar Cygnus X-3, it is possible to
obtain similar neutrino flux predictions from the X-ray data of the MQs (assuming
the internal shock model is applicable for MQs), see Ref. [154]. Apart from that,
it might also be interesting to have a code similar to the photohadronics treatment
in NeuCosmA for pp-interactions. Proton-proton collisions are thought to be the
main source of pion production in AGN jets. Hence, depending on the jet composi-
tion, they may also apply to GRBs. Moreover, our results for the baryonic loading
needed to fit the UHECR data indicate a higher baryon amount inside the jet than
initially thought. Therefore, pp-interactions would gain importance, if the values we
obtained are applicable to real bursts. Based on LHCf data, see, e.g., Ref. [226],
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it should be possible to write a similar code for these complimentary interactions.
With such a code it should even be possible to test how the relative contribution of
neutrinos from pp-collisions is compared to those from pγ-interactions.

In the end, the ultimate goal of multi-messenger physics remains to obtain a
consistent model containing all the different messengers, for either a certain source
or even a source class. Thanks to the detection of the first cosmic high-energy
neutrinos, we will (hopefully) soon gain more insight on the different objects in space
and what processes are relevant for them. And finally, it might even be possible to
solve the 100 year old question “Where do UHECR come from?”.
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A. NeuCosmA

The C-code NeuCosmA (“Neutrinos from Cosmic Accelerators”) is designed to effi-
ciently calculate photohadronic interactions and weak decays. It uses the factoriza-
tion of the photohadronic interactions of the model “Sim-B” from Ref. [139], which
is based on the physics of SOPHIA [131] and accurately reproduces the results by
SOPHIA for power law-like spectra. The code itself is split into several modules
for the different types of effects, e.g. for photohadronic interactions, weak decays,
relativistic boosts, or steady state calculations. The whole calculation is divided
into several steps, which can be turned on and off individually. We will give a short
description of them, with more details on each step to be found in Ref. [142]. The
basic calculation flow can seen in Fig. A.1.

To start our photohadronic interaction calculation, our code needs steady spectra
which are isotropic in the frame of calculation. Hence, to be consistent with our
description of the GRB model in chapter 2, we denote these spectra as N ′p and N ′γ.
These are then used to calculate the injection spectra of secondary mesons Q′b(E

′
b)

(in [GeV−1 cm−3 s−1]), using

Q′b(E
′
b) =

∞∫
E′b

dE ′p
E ′p

N ′p(E
′
p)

∞∫
εthmpc

2

2E′p

ε′N ′γ(ε
′)Rb(x, y) . (A.1)

In this formula, the variable x = E ′b/E
′
p is the fraction of proton energy going into

the secondaries, while y ≡
(
E ′pε

′) / (mp) is related to the center of mass energy.
The energy εth is the threshold photon energy in the proton rest frame above which
photohadronic interactions can occur, compare to Fig. 2.1. The response function
Rb(x, y) is what factorizes the interaction cross section into different interaction
types, for details see Ref. [139].

Since most of the secondary particles are charged and strong magnetic fields are
assumed to be present inside the source, the secondary particles can actually lose
energy due to synchrotron cooling (or other processes) before decaying. Assuming
continuous energy losses, the kinetic equation for particle spectra is given by (see,
e.g., Ref. [227])

∂N ′(E ′)

∂t′
=

∂

∂E ′
(−b(E ′)N ′(E ′))− N ′(E ′)

t′esc

+Q′(E ′) , (A.2)

where t′esc is the characteristic escape time, b is the energy loss rate, and N ′ and Q′

are the steady and the injection spectra, respectively. In principle, this approach is
quite similar to the one used to model CR propagation in Eq. (4.4). For the particle
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Figure A.1.: Basic calculation flow of the NeuCosmA code. The spectra denoted with N ′(E′)
are steady spectra in [GeV−1 cm−3], while Q′(E′) denote (injection) spectra per unit time (in
[GeV−1 cm−3 s−1]). The photohadronic interactions and the weak decays always need steady spec-
tra as input, and return injection spectra; depicted as solid arrows. By balancing the injection
against the losses as in Eq. (A.3), these injection spectra are in turn used to calculate new steady
spectra; depicted as dashed arrows. The different neutrino spectra resulting from this calculation
are highlighted with yellow boxes.

spectra, we however assume the special case of balance between losses (including es-
cape) and gains through injection, leading to ∂N ′(E ′)/∂t′ = 0. The kinetic equation
from Eq. (A.2) then simplifies to

Q′(E ′) =
∂

∂E ′
(b(E ′)N ′(E ′)) +

N ′(E ′)

t′esc

, (A.3)

and we can easily obtain the steady state spectra N ′ from the injection spectra Q′.
This also allows us to treat the losses of the secondary particles individually; see
dashed arrows in Fig. A.1. Moreover, in our calculation, steady spectra are always
needed as inputs for photohadronic interaction calculations or the calculation of weak
decays (solid arrows in Fig. A.1). Hence, this additional step to obtain N ′ is always
needed between the results of photohadronic interactions and weak decays. While
more details on this can be found in Ref. [142], there is one important difference to
the approach from said reference. Here, in the case of GRBs, we do not discuss where
the steady spectra for protons and photons actually come from or how realistic it
is that these spectra are steady, since we are more interested in the neutrino results
of the calculation. This need of steady spectra is, however, a major drawback. A
realistic simulation would have to self-consistently solve the kinetic equation for the
particles, as in Eq. (A.2), even for protons and photons. On the other hand, the
additional requirement helps to speed up the code. Since neutrino measurements so
far do not have the same time resolution as measurements in photons, it is sufficient
to choose speed over accuracy.
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The weak decays of the secondary particles are considered in additional steps of
our calculation. For our code, we have implemented a scaling approach, based on
Lipari et al. [124], which is generally applicable for the decay of ultra-relativistic
parents of type a into daughter particles of type b. The resulting energy spectra of
particle b

Q′b(E
′
b) =

∑
a

∞∫
E′b

dE ′aN
′
a(E

′
a) t
′−1
a,dec(E

′
a)

1

E ′a
Fa→b

(
E ′b
E ′a

)
(A.4)

is a sum over all parents a using the scaling functions Fa→b. The different functions
for pions, kaons, and helicity-dependent muons are taken from Ref. [124], comple-
mented by the scaling of π0-decay from Ref. [146] and neutron decay based on
Ref. [228].
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B. Cosmology and special relativity effects

In this section, we will take a look at the mathematical framework, currently used
to describe our universe. More precisely, we will focus on the cosmological model
which is currently used, based on field equations and the concept of general relativity
which A. Einstein derived in 1916 [229]. With the appropriate metric, these field
equations can be solved to give comparably simple solutions. Based on astronomical
observations, it can be inferred that on large scales (above 100 Mpc) the universe is
homogeneous and isotropic. To fulfill these attributes the metric of choice for our
universe is the so-called Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric

ds2 = c2 dt2 − a(t)2
[
dr2 + Σ(r)2 dΩ2

]
. (B.1)

In this representation, the factor a(t) is the “scale factor”, which allows space of
the universe to grow (or theoretically shrink) over the time t, as already observed
by Hubble in 1929 [230]. Also, the differential of the solid angle can be expressed
as dΩ2 = dθ2 + sin2 θ dφ2. Furthermore, the metric includes a factor to allow the
spacetime to be curved, namely through Σ(r). The values for Σ(r) depend on the
sign and value of the curvature, and, using the same hyperspherical coordinates as
for the metric in Eq. (B.1), can be expressed as

Σ(r) =


√
−k sinh(r/

√
−k) for k < 0

r for k = 0√
k sin(r/

√
k) for k > 0

(B.2)

with k being associated with the curvature radius squared.1

The FLRW metric can be used to solve the Einstein field equations. The solutions
obtained for the metric lead to the Friedmann equations(

ȧ

a

)2

=
8π G

3
ρ− k c2

a2
+

Λ c2

3
, (B.3)

2
ä

a
= −8π G

c2
p− k c2

a2
+ Λ c2 −

(
ȧ

a

)2

. (B.4)

In these equations, the homogeneous density ρ and pressure p of the universe are
used as parameters. Moreover, the equations include Newton’s constant of gravity,
given by G, as well as Λ, which is a relic quantity once introduced by Einstein himself
to obtain a static universe. Once considered by Einstein as his “greatest blunder”,

1Technically the choice of units for k also effects the units of the other parameters. When k is
assumed to be a length−2, then r has the unit length and a(t) is unitless, which is the physically
intuitive choice. However, if k ∈ {+1, 0,−1} (and unitless), then r is unitless as well and a(t)
has to be a length.
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Description Symbol WMAP+BAO+H0 Planck
Hubble constant H0 70.4+1.3

−1.4 km s−1 Mpc−1 67.4± 1.4 km s−1 Mpc−1

Baryon density Ωb 0.0456± 0.0016 0.04858± 0.00073
Dark matter density Ωc 0.227± 0.014 0.2633± 0.0068
Dark energy density ΩΛ 0.728+0.015

0.016 0.686± 0.020

Total density Ωtot 1.0023+0.0056
−0.0054

Table B.1.: Excerpt of the used cosmological parameters taken from Ref. [232], the WMAP seven-
year report. The Planck data [235] is given for comparison reasons, to quantify the experimental
progress during the time of this thesis. Except for Hubble’s constant all quantities are dimension-
less. The first four values are obtained for a flat (k = 0) universe while the last entry, Ωtot, is
obtained with the possibility of k 6= 0. The Planck results do not include the total density as a
parameter, but only state that the curvature is consistent with a flat spacetime on the percent level.
For details on the acquisition, see Refs. [232, 235] and references therein. We will use simplified
values derived from the WMAP values above. We set H0 = 70.5 km s−1 Mpc−1, the matter density
Ωm = Ωb + Ωc = 0.27 and ΩΛ = 0.73. As can be seen from Fig. 5.1, the distances are hardly
affected by the change of parameters, and the error from using the older values is not too high.

it is still used in current cosmological models since fits to the cosmic microwave
background (CMB) give the best results with models including this Λ component.
Due to this, the Λ is the namesake for current models. The so-called ΛCDM-model
is the currently favored model, which includes “cold” (non-relativistic) dark matter
apart from the Λ term. Normally, the Friedmann equations are re-written to define a
model by a set of energy densities and Hubble’s constant H, i.e. the first Friedmann
equation, given in Eq. (B.3), can be transformed to include the (vacuum) energy
density ρΛ. Using ρΛ = Λ c2/(8π G), the equation can be simplified to(

ȧ

a

)2

=
8π G

3
(ρ+ ρΛ)− k c2

a2
. (B.5)

In the above equation, the density ρ is short-hand for the matter (ρm) as well as the
radiation density (ργ). Note, however, that all densities can have a time dependence
and only today’s values can be obtained from measurements, see Ref. [231]. The
radiation density ργ is proportional to t4 when going back in time, while the matter
density ρm is ∝ t3 and ρΛ is constant. Another step to improve the readability of the
densities is to express everything in units of the critical density ρ0,crit = 3H2

0/(8π G),
where the index 0 denotes today’s (t = t0) values. The dimensionless densities
are normally denoted by Ω, and results from the satellite experiments Wilkinson
Microwave Anisotropy Probe (WMAP) and Planck have set quite firm boundaries
on the current densities. In our work, we used the results obtained by WMAP after
7 years of operation [232], neglecting the final update after 9 years of operation, see
Refs. [233, 234], and also the recently published first Planck results, see Ref. [100]
for an overview. This was done mainly due to consistency reasons, as only the 7 yr
data of WMAP was available at the beginning of our work in 2010. In Table B.1,
we give an excerpt of the values derived from the seven-year data of WMAP (and
other experiments), as well as the results for Planck data for comparison reasons.
The effect of using the slightly changed cosmological values is rather small. As
can be seen from the values given in Table B.1, the energy density in the universe
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is dominated by “dark energy” (ΩΛ ≈ 0.73) and matter (Ωm = Ωb + Ωc ≈ 0.27).
Note that these values are obtained for a flat spacetime, leading to k = 0 and
Ωtot = 1. For our simulations, we will use the aforementioned approximated values,
and not the ones from the table itself. Compared to the other two densities the
radiation density Ωγ is negligible. For this reason, we have omitted this density
from Table B.1. Additionally, note that the best-fit value of Ωtot is obtained by
relaxing the constrains on k, hence adding an additional degree of freedom. Still,
the resulting best-fit is still close enough to unity to claim that our spacetime is flat.

An additional effect of the cosmic expansion is a shift in energy. Photons, for
example, are observed at a lower frequency than they were emitted. As lower fre-
quencies/longer wavelengths in the optical band mean shifting photons towards the
“red” part of the spectrum, this whole process is considered to be a “red-shift”.
Hence, as this principle of shifting photons to lower energies can be applied to all
energy ranges, the redshift z was defined as

z =
λobs − λemit

λemit

(B.6)

with the observed wavelength given by λobs, and the emitted one by λemit. The scale
factor a(t) can be connected to z in our expanding spacetime by

a(t) =
1

1 + z
, (B.7)

assuming that a(t = t0) = 1. When the redshift z can be measured, it is possible to
calculate the distance between the observer and an object by utilizing the flat ΛCDM
cosmology framework. Considering that the spacetime is expanding with a(t), it
is useful to have a distance measure2 which already corrects for the cosmological
expansion. Using these requirements as a starting point, the so-called comoving
distance dcom is defined with respect to z as

dcom(z) =
c

H0

∫ 1

1
1+z

da√
Ωma+ ΩΛa4

. (B.8)

Here, c is the speed of light in vacuum, while the other factors are taken from
Table B.1. Note that we use the rounded values, Ωm = 0.27 and ΩΛ = 0.73, for
the densities in our actual calculations. Moreover, from this definition of dcom we
can extract two definitions around the Hubble constant. On the one hand, we can
extract the Hubble parameter depending on redshift3

H(z) = H0

√
Ωm(1 + z)3 + ΩΛ . (B.9)

2A very nice overview of the different distance measures in cosmology can be found in Ref. [236].
Even though it is mostly for older cosmological parameters and “only” an online publication,
it is still very useful resource for understanding why several different distance measures are
actually needed in cosmology.

3This is done by substituting the integration over da with one over dz, and then combining H0

with the denominator inside the integral.

126



On the other hand, we can also define the prefactor of the integral as the Hubble
length

dH =
c

H0

' 4255 Mpc . (B.10)

Due to the expansion of space as well as the energy shift described in Eq. (B.6),
objects seem further away than they actually are according to dcom, when observed
in photons. Hence, the classic relation of luminosity Liso (in [erg s−1]) and flux F (in
[erg s−1 cm−2]),

Liso = 4π d2 ·F , (B.11)

needs to be adapted to accommodate the additional effects of an expanding space-
time. The main reasoning behind this formula is that a source radiating at a lumi-
nosity Liso should give rise to a flux F at distance d. Since photons additionally lose
energy due to the cosmological redshift as well as being affected by (cosmic) time
dilation, the formula needs to be modified when using dcom as distance measure:

Liso = 4π d2
com (1 + z)2 ·F . (B.12)

To return to the initial form of the equation, given in Eq. (B.11), it is possible to
define a “luminosity distance” dL as

dL = (1 + z) dcom

= (1 + z)
c

H0

∫ 1

1
1+z

da√
Ωma+ ΩΛa4

. (B.13)

As a final remark on this topic, it should be noted the above mentioned calcula-
tions and distance measures only hold true on large scales. As mentioned during the
introduction of the FLRW metric, the universe is assumed to be homogeneous and
isotropic, which is not the case on scales below about 100 Mpc. The stars are not
distributed evenly as can be seen by a simple observation such as looking into the
night sky. Structures such as galaxies or even clusters of galaxies are anisotropic.
They are gravitationally bound and move towards (or sometimes away from) one
another, leading to Doppler shifts superposing the cosmological redshift. However,
deep sky surveys, such as the Sloan Digital Sky Survey (SDSS) [237], have shown
that on scales above 100 Mpc the universe is isotropic. This distance corresponds to
a minimal redshift of about z ' 0.024, and no lower redshifts should be considered
when discussing isotropic distributions.

Additionally, Einstein also discussed how quantities should transform from one
frame of reference to another in 1905 [238]. Based on the two postulates that the
speed of light is independent of the frame of reference and that physical laws and
their effects are unchanged by the choice of the reference frame, the so-called theory
of special relativity was developed. In said theory, changes of the frame reference
are described by Lorentz boosts, which is especially important for the change of
frames when one frame is moving (nearly) at the speed of light c relative to the
other frame. In this case, additional effects, such as (relativistic) time dilation or
length contraction, are the result of the Lorentz transformations. Since GRBs are
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considered to be connected to ultra-relativistic shocks, these transformations are
needed and a nice introduction into what transformations are relevant in case of
GRBs can be found in the review by Meszaros [42].

We implicitly use the following boosts of time t, length (along the boost direction)
r, and energy E throughout the work presented here:

dt̃ = Γ dt′ (time dilation), (B.14)

δr̃ = Γ−1 δr′ (length contraction), (B.15)

Ẽ = ΓE ′ . (B.16)

Note that lengths perpendicular to the boost direction are unchanged. Hence, the
volume is boosted as dṼ = Γ−1 dV . All other boosts can be derived from these basic
relations.

Moreover, the measurement principles such as two photons need to be detected at
the same time introduce an additional effect on the change of reference frame since
there is no absolute simultaneity. Two photons which are emitted simultaneously in
one frame are not necessarily observed simultaneously in the other frame. This effect
is dependent on the viewing angle of the observer onto the boost. Said dependence
can be expressed by a Doppler factor D, which is calculated as

D =
1

Γ(1− β cos θ)
. (B.17)

Here, β is the velocity v in units of c, β = v/c, and θ is the viewing angle towards
the direction of the boost. For GRBs with highly boosted jets (θ ≤ Γ), D is roughly
equivalent to Γ, i.e. it ranges from D(θ = Γ) = Γ to D(θ = 0) = 2Γ. Hence,
even though Doppler factors are actually needed for observed objects, plain Lorentz
factors are still sufficient in case of GRBs as the error is at most only a factor two.
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Since the resulting spectra from photohadronic interactions are closely related to the
target photon spectra, a few general considerations on the photon spectra and the
escape of high-energy photons are also needed for a self-consistent multi-messenger
approach. In the following, we will discuss how the usage of a given spectrum affects
the prediction of the resulting (secondary) spectra.

In principle, the maximal photon energy has a significant effect on photohadronic
interactions. This is due to the photohadronic interaction cross-section only being
non-zero above the threshold of 200 MeV photon energy in the proton rest frame.
Hence, the maximal energy of the photon spectrum defines the minimal energy of
the secondary spectrum, such as the neutrons or the neutrinos. While most stud-
ies with generic bursts normally assume an arbitrary cutoff, it is actually better to
calculate the maximal photon energy based on the parameters of a burst. For ac-
tual observations, this problem is somewhat reduced by the observation of photons
up to a certain maximum. For theoretical considerations, it is however essential to
understand how the maximal photon energy is limited. In this respect, the pair
production due to photon-photon interactions is normally used as the indicator to
evaluate the possibility of photons to escape a source. The basic formula for the (in-
verse) γγ interaction length l′−1

γγ can be derived in the same way as the photohadronic
interaction length ct′pγ, see Eq. (2.14), as

l′−1
γγ (ε′t) =

+1∫
−1

d cos θ

2
(1− cos θ)

∞∫
0

dε′γ σγγ(ε
′
γ) ·n′γ(ε′γ, cos θ) (C.1)

where ε′t is the energy of the test photon and ε′γ the energy of a target photon.
The density of target photons in given by n′γ, while θ is the incident angle between
the test photon and a target photon. The photon-photon interaction cross-section
σγγ already includes the contribution from the integration over φ. Moreover, all
quantities are primed as they are in the SRF. This has the major advantage that
the target photon density can be considered to be isotropic, removing the cos θ-
dependence from n′γ. Additionally, it is normally assumed that even though the
interaction cross-section σγγ first drops ∝ log(ε)/ε above threshold and then rises
slightly again, see Ref. [101], the drop-off of the target spectrum dNγ/dE ∝ E−α is
considered “fast enough” for σγγ to be assumed to be constant, as in Ref. [69]. As
stated in said reference, the constant value is assumed to be σγγ = 3/16σT with
σT = 0.665 245 8734(13) · 10−24 cm2, the Thompson cross-section. Therefore, we can
insert the following parameterization of σγγ into Eq. (C.1):

σγγ(ε
′
γ) =

{
0 ε′γ < ε′th

3
16
σT ε′γ ≥ ε′th

, (C.2)
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where ε′th is the threshold energy for γγ pair creation interactions, based on kine-
matics given by

ε′th =
2m2

e

ε′t (1− cos θ)
. (C.3)

Even though it is theoretically possible to calculate the interaction length for arbi-
trary spectra with a numerical code, we will, for the sake of simplicity, still incor-
porate a further set of analytical tweaks. Namely, we will assume that the photon
density n′γ can be approximated by only the high-energy part, because the break
energy ε′γ,break � me(= 511 keV). Furthermore, we will assume that the standard
upper photon index is βγ = 2, which allows us to perform the integration over ε′γ
analytically. Because of this choice of βγ the result will no longer be applicable to
a realistic calculation with a distribution of the spectral indices, or for a calculation
with actually observed parameters. However, for our calculations done in this work
the result is sufficient. Moreover, the simplified result shown in Eq. (C.4), which is
obtained using these steps, is similar to the analytical result from Ref. [69]. And
finally, we do not include the assumed maximal photon energy of the spectrum, but
keep the upper integration bound at ∞. Technically, the spectrum of the test and
the target photons is the same, and we are dealing with a self-absorption effect. Now,
if the spectrum extended only to photon energies below 511 keV, there would be no
self-absorption whatsoever, since the threshold energy would never be reached. Yet,
since we do not know what the actual maximal energy inside the shock is (before
absorption effects) we can leave it at ∞. We know that the maximal photon energy
must be limited from acceleration considerations/plasma physics, but this can be
safely ignored as the result with ∞ is actually more conservative on the escaping
maximal energy. With all these simplifications Eq. (C.1) can be reduced to the form

l′−1
γγ (ε′t) '

1

8
σTC

′
γ · ε′2γ,break ·

ε′t
m2
e

(C.4)

with C ′γ being the normalization constant of the photon density. By comparing this
interaction length to the size of the region from Eq. (1.4), it is possible to estimate
if photons of an energy ε′t can escape or not. When we now assume equality of both
length scales, it is possible to obtain

ε′t, max = 8
(1 + z) m2

e

Γ c tv ·σTC ′γε
′2
γ,break

, (C.5)

which can now be used to calculate the threshold energy for photohadronic interac-
tions using Eq. (2.3). Note that tv is in the observer’s frame. Moreover, the result
obtained through Eq. (C.5) can be used to estimate, if the assumed parameters al-
low for bursts which are visible in a certain energy range, e.g. the Fermi LAT range
(more than 30 MeV) or above 100 MeV.
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