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Zusammenfassung

Seit der Beobachtung von Flavor-Oszillationen zwischen den drei Generationen
von Neutrinos sind teilchenphysikalische Modelle mit masselossen Neutrinos nicht
mehr mit experimentellen Daten vereinbar. Eine vielversprechende Möglichkeit,
die benötigten sehr kleinen Massen zu erklären, ist der Seesaw-Mechanismus, der
zusätzliche schwere Teilchen einführt. Diese können als Eichsingulett (Seesaw Typ
I), skalares Eichtriplett (Typ II) oder fermionisches Eichtriplett (Typ III) unter der
elektroschwachen SU(2)L Eichgruppe realisiert werden. Der letztergenannte Fall wird
in dieser Arbeit behandelt.

Im experimentell gut bestätigten Standardmodell der Teilchenphysik treten aller-
dings noch weitere Schwierigkeiten auf, wozu unter anderem das Hierarchieproblem,
die Vereinigung der Eichkopplungen sowie die Problematik der Dunklen Materie
zählen. Ein viel diskutierter Ansatz zur Lösung dieser Probleme ist die Supersym-
metrie, die in ihrer minimalen Realisierung zu jedem Teilchen des Standardmodells
einen supersymmetrischen Partner mit unterschiedlichem Spin postuliert. In der
vorliegenden Arbeit wird die Einbettung des Seesaw Mechanismus Typ III in dieses
minimale supersymmetrische Standardmodell diskutiert.

Dabei werden besonders die phänomenlogischen Eigenschaften im Hinblick auf
Lepton-Flavor verletzende Prozesse untersucht. Die Verzweigungsraten für solche
Zerfälle im Niederenergiebereich sind stark beschränkt durch die bisher erfolglose Su-
che in entsprechenden Experimenten. Unter Berücksichtigung dieser Beschränkungen
wird zunächst der Parameterraum des Modells untersucht. Im zweiten Schritt werden
für geeignete Parameterkonstellationen die Lepton-Flavor verletzenden Zerfälle der
supersymmetrischen Teilchen – besonders des zweitleichtesten Neutralinos – betrach-
tet und ihr Entdeckungspotential am derzeit leistungsstärksten Teilchenbeschleuniger
LHC diskutiert.
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Chapter 1

Introduction

At the present time promising progress is taking place in particle physics, especially
due to new experimental explorations in energy ranges never reached before which
are being performed by the Large Hadron Collider (LHC) [1] at CERN in Geneva,
Switzerland. In the first run, it collides protons at total center of mass energies of√
s = 7 TeV and 8 TeV, while in the second period from late 2014 on it will be

run at
√
s = 14 TeV with the aim to collect data up to an integrated luminosity

of 100 fb−1. The motivation to explore these energy ranges is, on the one hand, to
complete the picture of the well-tested Standard Model (SM) of particle physics
by the discovery of the Higgs boson. On the other hand, since this model still has
some theoretical problems, different extensions are under discussion. The search for
physics beyond the Standard Model is the second main purpose of the LHC and
of the two universal detectors ATLAS [2] and CMS [3]. In particular, a promising
candidate for this extension is supersymmetry (SUSY), which relates fermionic and
bosonic degrees of freedom, postulating superpartners with different spin properties
to the SM particles, and provides a solution to many open questions. Among these
are the hierarchy problem, the unification of gauge couplings and the dark matter
issue [4].

Besides the LHC, other experiments are in search of new physics, too: Since the
first observation of neutrino flavor oscillations by several experiments [5–9], neutrinos
cannot be considered massless anymore. To describe neutrino masses within the
context of the SM or minimal realizations of SUSY, these models have to be extended.
A natural way to explain the tiny neutrino masses is the so-called seesaw mechanism
[10–13], which introduces additional heavy particles. One of the three possible
realizations is the seesaw type III [14] where these new particles are fermionic triplets
under the SU(2)L gauge group.

In general, there is no reason why such flavor mixing should not appear among
the charged leptons since they are isodoublet partners of the neutrinos. However,
when we implement neutrino masses into the SM, only the neutrinos carry the flavor
mixing information. Therefore, the rare lepton decays like µ→ eγ are proportional to
the small neutrino masses over the masses of the W bosons, leading to tiny branching
ratios. In supersymmetric models, the situation is different: The diagrams including
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Chapter 1. Introduction

superpartners of leptons enhance these branching ratios drastically, since their mass
parameters can obtain flavor violating entries induced by the seesaw mechanism.

The rare lepton decays are probed by several experiments [15–18] which have
not found any signal yet, so that there are strong constraints on models where large
branching ratios appear. If the ongoing searches for such lepton flavor violating (LFV)
decays find events and determine the branching ratios, this would be a considerable
hint to physics beyond the SM. In seesaw models, the specific input parameters could
be determined more precisely, since the branching ratios depend on these quantities.
If the searches remain unsuccessful, there will be even tighter constraints leading to
strong limitations right up to exclusions of some of the models.

In this thesis we consider an implementation of the type III seesaw mechanism into
a minimal supersymmetric framework. Inspired by [19], we study the parameter space
to find regions in accordance with the experimental low energy constraints. After this,
we look at possible lepton flavor violating decays of the supersymmetric particles.
Finally, we check interesting parameter points with respect to their phenomenology
to get an estimate on whether such decays can be seen at the LHC.

The work is organized as follows: Chapter 2 shows the current status of neutrino
oscillation data. In chapter 3, the main aspects of supersymmetry are summarized
and all relevant parameters of our model are introduced. Chapter 4 shows the
implementation of the seesaw mechanism within this model and the influence on the
mass spectrum, while chapter 5 treats the current experimental constraints from
rare lepton decays as well as an approximate description of them. The results of the
extensive parameter study are exhibited in chapter 6; the final chapter 7 discusses
possible lepton flavor violating processes and their LHC phenomenology.
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Chapter 2

Neutrino physics

2.1 Neutrino masses and flavor oscillations

To receive conservation of energy and momentum in the description of the radioactive
β-decay, W. Pauli postulated the existence of the neutrinos in 1930. From measure-
ments ot these decays, only an upper mass limit could be determined. In 1957, B.
Pontecorvo proposed for the first time the idea of neutrino flavor oscillations [20],
which are explained by the existence of the neutrinos in three mass eigenstates νi
(i = 1, 2, 3) and three different flavor eigenstates να (α = e, µ, τ). If the leptonic
Yukawa matrix Ye (cf. Eq. 3.12) is diagonal, we can write the unitary transformation
relating these bases as

|να〉 = U−1
αi |νi〉 and |νi〉 = Uiα|να〉. (2.1)

The matrix U is usually parametrized in the following way [21]:

U =

1 0 0
0 c23 −s23e

iδ

0 s23 c23

×
 c13 0 −s13

0 1 0
s13e

−iδ 0 c13

×
c12 −s12 0
s12 c12 0
0 0 1

× A
=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

× A (2.2)

with the majorana phase matrix

A =

e−iα1/2 0 0
0 e−iα2/2 0
0 0 1

 (2.3)

where cij = cos(θij), sij = sin(θij). The Dirac phase δ contains information about CP
violation, α1 and α2 are Majorana phases that only appear in the case of Majorana
neutrinos. U is the so-called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
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Chapter 2. Neutrino physics

2.2 Neutrino oscillation experiments

Beginning in the late 1960s, several experiments started exploring neutrino physics.
One of the first was the Homestake experiment [5], which measured the solar neutrino
flux arriving at the earth and observed only a fraction of the predicted value. Other
experiments also measured the flux of atmospheric [6], reactor [7] and accelerator [9,
22] neutrinos and obtained similar results. From a fit to the measured neutrino fluxes,
only the squared mass differences ∆m2

ij = m2
i −m2

j are accessible with additional
hints on the Dirac phase δ. The latest best-fit values are listed in Tab. 2.1. θ12

is the solar neutrino mixing angle, θ23 the atmospheric angle and θ13 the reactor
angle, as they appear in the PMNS matrix (Eq. 2.2), ∆m2

21 = ∆m2
sol is the solar,

∆m2
32 = ∆m2

31 −∆m2
21 = ∆m2

atm the atmospheric squared mass difference.

Parameter Best-fit ±1σ

sin2(θ12) 0.312+0.017
−0.015

sin2(θ23) 0.52+0.06
−0.07 [ 0.52± 0.06 ]

sin2(θ13) 0.013+0.007
−0.005 [ 0.016+0.008

−0.006 ]

∆m2
21/(10−5eV2) 7.59+0.20

−0.18

∆m2
31/(10−3eV2) 2.50+0.09

−0.16 [ −(2.40+0.08
−0.09) ]

δ (−0.61+0.75
−0.65)π [ (−0.41+0.65

−0.70)π ]

Table 2.1: Experimental best-fit values of global neutrino data from ref. [23]; see
also [24]. The values in brackets are deviations for inverse mass hierarchy.

There are two possible hierarchies for the neutrino mass spectrum: The normal
hierarchy m1 < m2 < m3 and the inverse hierarchy m3 < m1 < m2 (Fig. 2.1).
Furthermore, the value of the smallest neutrino mass is not determined yet, so that,
depending on the hierarchy, m1 = 0 resp. m3 = 0 is still possible. As we will see
later on, this case allows different physical descriptions because only two massive
neutrinos have to be considered.

Assuming a small m1 ≈ 0, this results in neutrino masses

m2 =
√

∆m2
21 ≈ 8.71 · 10−3 eV, m3 =

√
∆m2

31 ≈ 5.00 · 10−2 eV, (2.4)

for normal hierarchy. Using m3 ≈ 0, we get

m2 =
√

∆m2
21 −∆m2

31 ≈ 4.98 · 10−2 eV, m1 =
√
−∆m2

31 ≈ 4.90 · 10−2 eV, (2.5)

for inverse hierarchy.

4
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normal hierarchy inverse hierarchy

m
as
s

electron neutrino flavour

muon neutrino flavour

tau neutrino flavour

νe

ν1

ν2

ν3
ν1

ν2

ν3

ν
ν
µ

τ

Figure 2.1: The possible neutrino mass hierarchies and their flavor composition [25].

2.3 The tri-bi-maximal mixing matrix

Before recent experimental hints to a non-zero reactor mixing angle θ13 were published
in June 2011 [22, 23], there had only been an upper limit to that angle. Hence, the
tri-bi-maximal form of the PMNS matrix given by Eq. 2.6 had been a promising
realization:

Utbm =


√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6
− 1√

3
1√
2

 (2.6)

This specific form was first proposed in [26] and is the probably most interesting
one of various special PMNS matrix realizations. There might be fundamental
symmetries that generate this structure of the PMNS matrix which hopefully will be
tested in the near future by experiments [27]. We will use the respective values of
the mixing angles for most of the later calculations.
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Chapter 3

Supersymmetry

3.1 Motivation

The SU(3)C × SU(2)L × U(1)Y Standard Model of particle physics achieved large
succcess in explaining fundamental particle physics in the last decades. It consists of
a combination of quantum chromodynamics to describe the strong interaction in the
SU(3)C gauge group picture and the Glashow-Salam-Weinberg-Theory [28–30] for
the description of the electroweak interactions according to the SU(2)L×U(1)Y gauge
group. However, there are a couple of problems left which require an extension. One
of the most convincing arguments is the so called hierarchy problem [31]: To explain
the masses of the SM particles a non-vanishing vacuum expectation value (VEV)
of the neutral Higgs component is required, which is experimentally determined by
the W boson mass to 〈H〉 ≈ 174 GeV [31]. The 1-loop diagram in Fig. 3.1 of a
fermionic particle f coupling to the Higgs field by the Langrangian term −λfHf̄f
yields potentially large corrections to the Higgs squared mass. These corrections are
proportional to an ultraviolet momentum cutoff Λ squared which is at least at a
scale where new physcis appears:

∆m2
H ∝ −

|λf |2
8π2

Λ2 + ... (3.1)

To avoid this problem without the requirement of any special fine tuning of the
counter terms, a scalar particle S coupling to the Higgs field like λS|H|2|S|2 could

H

f

H

S

Figure 3.1: One-loop graphs for the quantum corrections to the Higgs squared mass
by a fermion f (left) resp. a scalar S (right).
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3.2. Basic concepts

be introduced producing a correction

∆m2
H ∝

λS
16π2

Λ2 + ... (3.2)

A symmetry with λS = |λf |2 which introduces a bosonic partner to every SM fermion
and vice versa is called a supersymmetry (SUSY) and provides a natural cancellation
of the loop corrections of order Λ2 [4].

Another deficiency of the SM is the absence of a candidate particle to explain the
nature of dark matter. Assuming a special symmetry called R-Parity (cf. 3.3) that
forbids the decay of the lightest supersymmetric particle (LSP), one can construct
supersymmetric theories containing a neutral and stable dark matter candidate. One
additional appealing feature of SUSY is the ability to construct grand unification
theories (GUT) where all gauge couplings g1, g2, g3 meet at a specific GUT scale
MGUT, which is in the minimal models usually of order O(1016 GeV).

A profound discussion of the basic properties of SUSY as well as the formalism
of Weyl spinor objects can be found in many basic works like [31–35] and will not be
repeated in this thesis. In the following only the features and formulas relevant for
our discussions are mentioned, mostly following [31, 36]. Moreover, we will specify
the precise model and the SUSY breaking mechanism used in this work and motivate
the relevant parameters which will be of importance later.

3.2 Basic concepts

In order to describe SUSY, one introduces an operator Q (in general N distinct
copies) that generates supersymmetry transformations of the form

Q|Boson〉 = |Fermion〉, Q|Fermion〉 = |Boson〉. (3.3)

which fulfill the following algebra [34]{
Qα, Q

†
β̇

}
= 2σµ

αβ̇
Pµ

{Qα, Qβ} =
{
Q†α̇, Q

†
β̇

}
= 0

[Qα, Pµ] =
[
Q†
β̇
, Pµ

]
= 0. (3.4a)

with σµ = (1, σi) where σi are the Pauli matrices and α, β, α̇, β̇ ∈ {1, 2} if Q is a
2-component Weyl spinor. A supermultiplet contains corresponding single particle
states which are irreducible representations of the SUSY algebra. Since Q commutes
with the four-momentum squared generator P µPµ, all states within a supermultiplet
– called superpartners – have the same masses as long as SUSY is unbroken. In N = 1
SUSY, Q also commutes with the generators of the SM gauge transformations; in
this case the superpartners carry the same gauge quantum numbers. One can show

7



Chapter 3. Supersymmetry

that for each supermultiplet the number of bosonic and fermionic degrees of freedom
must be equal [31]. The simplest realization is a chiral supermultiplet containing
a two-component Weyl fermion ψi and two real scalars or one complex scalar φi.
Additionally, an auxiliary field Faux is required so that the SUSY algebra closes
off-shell. The other relevant type is a vector supermultiplet with a spin-1 vector
boson Aaµ and a spin-1/2 Weyl fermion λa. This case also requires an auxiliary field
Da

aux is necessary.
We introduce the superpotential

W =
1

2
M ijφiφj +

1

6
yijkφiφjφk (3.5)

with the fermion mass matrix M ij, the Yukawa couplings yijk and the derivatives

W ij =
δ2

δφiδφj
W, W i =

δ

δφi
W (3.6)

which can in a more general way also be expressed as the same function of the
superfields Φi instead of the scalar fields φi. For details concerning the common
superfield formalism see e. g. [33–35].

Using the equations of motions for the auxiliary fields

Fi = −W ∗
i , F ∗i = −W i, Da = −g(φ∗T aφ) (3.7)

the Langrangian for a renormalizable supersymmetric theory can be written in the
following way according to [31]:

L = Lchiral + Lgauge + Lextra = (3.8a)

(Dµφi)
†(Dµφi) + iψ†iσ̄µDµψi −

1

2
(W ijψiψj +W ∗ijψ†iψ

†
j)−W iW ∗

i (3.8b)

− 1

4
F a
µνF

aµν + iλa†σ̄µDµλ
a − 1

2
g2(φ∗iT aφi)(φ

∗jT aφj) (3.8c)

−
√

2g(φ∗iT aψi)λ
a −
√

2gλ†a(ψ†iT aφi) (3.8d)

Here, Dµ is the covariant derivative for the respective fields and T a are the gauge
group generators.

3.3 The MSSM

The Minimal Supersymmetric Standard Model (MSSM) is minimal in the sense that
there is exactly one superpartner to each SM particle. To obtain an anomaly free
electroweak theory, at least two Higgs doublets Hu and Hd are necessary, which after
electroweak symmetry breaking give the masses to the up-type and the down-type
fields, respectively. The VEVs of their neutral components are used in the convention

〈H0
u〉 =

vu√
2
, 〈H0

d〉 =
vd√

2
(3.9)

8



3.3. The MSSM

and related to the Z mass and the electroweak gauge couplings as [35]

v2
u + v2

d = v2 =
2m2

Z

g2 + g′2
≈ (246 GeV)2; (3.10)

their ratio is written as

tan(β) =
vu
vd
. (3.11)

In the superfield formalism the superpotential of the MSSM is given by

WMSSM = U cYuQ ·Hu −DcYdQ ·Hd − EcYeL ·Hd + µHu ·Hd (3.12)

where A · B = A1B2 − A2B1 is the SU(2) invariant product and the summations
over family and color indices are suppressed. Yf are the respective Yukawa couplings
and µ is the mass parameter of the higgs doublets. Tab. 3.1 shows the chiral
supermultiplets corresponding to the chiral superfields in Eq. 3.12. In Tab. 3.2 the
gauge supermultiplets of the MSSM are listed.

Name spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6
)

(3 families) U c ũ∗R u†R ( 3, 1, −2
3
)

Dc d̃∗R d†R ( 3, 1, 1
3
)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2
)

(3 families) Ec ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2
)

Hd (H0
d H−d ) (H̃0

d H̃−d ) ( 1, 2 , −1
2
)

Table 3.1: Chiral supermultiplets in the MSSM [31].

Name spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B̃0 B0 ( 1, 1 , 0)

Table 3.2: Gauge supermultiplets in the MSSM [31].
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Chapter 3. Supersymmetry

3.4 Supersymmetry breaking and unification

The fact that mass degenerate superpartners of the SM particles have not been found
indicates that SUSY has to be broken spontaneously in the vacuum state. Claiming
SUSY to be a solution to the hierarchy problem, only couplings of positive mass
dimension are allowed in the Lagrangian, and the soft breaking terms have to be at a
typical mass scale msoft not higher than of TeV range. They are given for the MSSM
as [33, 36]

−LMSSM
soft =

1

2
(M1B̃B̃ +M2W̃

aW̃ a +M3g̃
ag̃a + h.c.)

+m2
Q(ũ∗LũL + d̃∗Ld̃L) +m2

uũ
∗
RũR +m2

dd̃
∗
Rd̃R

+m2
L(ẽ∗LẽL + ν̃∗Lν̃L) +m2

eẽ
∗
RẽR

+m2
Hu
|Hu|2 +m2

Hd
|Hd|2 + (BµHuHd + h.c.)

+ (AuHuũ
∗
Rq̃L + AdHdd̃

∗
Rq̃L + AeHdẽ

∗
R l̃L + h.c.) (3.13)

with complex parameters M1, M2, M3, B, real parameters m2
Hu

, m2
Hd

, Hermitian
3 × 3 matrices m2

Q, m2
u, m

2
d, m

2
L, m2

e and complex matrices Au, Ad, Ae in family
space. All of the scales are roughly of the order msoft.

After redefining the phases and the flavor basis for the multiplets, there are
more than 100 new parameters – a number that makes general studies impossible.
To reduce this number we restrict all parameters to be real and all matrices to be
diagonal, assuming only small CP violation and flavor changing effects. Furthermore
it is common to choose a specific breaking scheme where the origin of SUSY breaking
takes place in a hidden sector by the VEV of an auxiliary field F and is mediated to
the visible sector by flavor-blind interactions. In the case of the minimal supergravity
(mSUGRA) scheme used in this work these interactions are of gravitational strength
yielding the rough approximation

msoft ≈
〈F 〉

MPlanck

(3.14)

with the Planck scale MPlanck = O(1019 GeV).
A nice property of supersymmetric models is the unification of the SM gauge

couplings g1, g2, g3 due to the running of the renormalization group equations (RGEs).
Compared to the SM they have larger coefficients ba because of the additional particles
in the loops. At 1-loop level they are given by [31]

βga ≡
d

dt
ga =

1

16π2
bag

3
a

with (b1, b2, b3) =

(
33

5
, 1,−3

)
and t = ln

(
Q

Q0

)
(3.15)
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3.5. Particle content

with the renormalization group (RG) scale Q. In our model, the gauge groups unify
to a SU(5) which is broken to SU(3)C × SU(2)L × U(1)Y below the GUT scale
MGUT = O(1016 GeV). In a minimal realization of mSUGRA, we also assume a
unification of several soft breaking parameters and thus postulate a common gaugino
mass m1/2, a common scalar mass m0 as well as the trilinear coupling parameter A0.
Together with tan(β) specified in Eq. 3.11, the parameter space is defined by four
real parameters and the sign of the µ parameter sgn(µ):

M1 = M2 = M3 = m1/2

m2
Hu

= m2
Hd

= m2
0

m2
Q = m2

u = m2
d = m2

L = m2
e = m2

01

Au = A0Yu , Ad = A0Yd , Ae = A0Ye (3.16)

3.5 Particle content

Since the MSSM contains two Higgs doublets, the generation of masses by electroweak
symmetry breaking becomes more complicated than in the SM. This will not be
discussed in this work, for further information see e. g. [33–35]. In this section, only
the mixings of the fields with identical quantum numbers will be introduced, with a
focus on the particles relevant for the following considerations.

3.5.1 Neutralinos

The neutral higgsinos and the neutral gauginos mix to form four neutralino mass
eigenstates. From the superpotential Eq. 3.12 one can derive the neutralino mass
matrix in the basis ψ0 = (B̃0, W̃ 0, H̃0

d , H̃
0
u) as

Mχ̃0 =


M1 0 −g′vd/2 g′vu/2

0 M2 gvd/2 −gvu/2
−g′vd/2 gvd/2 0 −µ
g′vu/2 −gvu/2 −µ 0

 (3.17)

where M1 and M2 are the gaugino mass parameters from Eq. 3.13 and the products
of the electroweak couplings and the Higgs VEVs can be expressed in terms of the
Weinberg angle θW , β and the Z boson mass mZ . Diagonalizing Mχ̃0 by the unitary
mixing matrix N provides mass eigenstates

χ̃0
i = Nijψ

0
j (3.18)

yielding
N∗Mχ̃0N−1 = diag(mχ̃0

1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
). (3.19)

In many supersymmetric models and also in most regions of the parameter
space of the model under consideration, the lightest neutralino χ̃0

1 is the lightest
supersymmetric particle (LSP). This will play an important role in the later chapters.
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Chapter 3. Supersymmetry

3.5.2 Charginos

In a similar way, also the charged higgsino and wino components are mixing to the
two chargino mass eigenstates. In the basis ψ± = (W̃+, H̃+

u , W̃
−, H̃−d ), the mass

matrix is given by

Mχ̃± =

 0 XT

X 0

 with X =

 M2 gvu/
√

2

gvd/
√

2 µ

 (3.20)

and can be diagonalized asχ̃+
1

χ̃+
2

 = V

W̃+

H̃+
u

 ,

χ̃−1
χ̃−2

 = U

W̃−

H̃−d

 , (3.21)

providing mass eigenstates χ̃±i so that

U∗XV −1 = diag(mχ̃±
1
,mχ̃±

2
). (3.22)

3.5.3 Sleptons and squarks

Via the soft breaking terms, in general all the up-type resp. down-type squarks as
well as the charged sleptons resp. sneutrinos can mix with each other, obtaining
their mass eigenstates by diagonalizing three 6× 6 matrices and one 3× 3 matrix.
However, we assume most of the mixing angles to be small due to the flavor-blindness
of the soft parameters specified in Eq. 3.16, so that in a good approximation only
the third-family sparticles show a left-right mixing in pairs, originating from their
large Yukawa and soft couplings.

In our mSUGRA scenario specified in section 3.4 all scalar sparticles have the
common squared mass m2

0 at the GUT scale. The squared masses at the electroweak
scale are determined by the RGE running which provides contributions proportional
to the gaugino squared mass m2

1/2 [31]. Since these contributions depend on the
relative size of the gauge couplings, the squarks are in general expected to be heavier
than the sleptons because of the contributing RGE effects of the strong coupling.

The equations for the first and second generation masses can be looked up in [31,
33], for instance. For the aforementioned left-right coupling of the stau, the squared
mass matrix is given by [33]

m2
τ̃ =

 m2
τ̃L

+m2
τ + ∆τ̃L mτ (Aτ − µ tan(β))

mτ (Aτ − µ tan(β)) m2
τ̃R

+m2
τ + ∆τ̃R

 (3.23)

with ∆τ̃L =

(
−1

2
+ sin2(θW )

)
m2
Z cos(2β) (3.24)

and ∆τ̃R =
1

3
+ sin2(θW )m2

Z cos(2β) (3.25)

12



3.5. Particle content

Similar squared mass matrices can be specified for the top and the bottom squarks.
They can be diagonalized by unitary matrices to generate mass eigenstates. Since the
MSSM does not contain right-handed neutrinos, of course there are no superpartners
to them. Therefore, a left-right mixing is not possible for sneutrinos. However, like
for the squarks and charged sleptons, the first- and second-generation particles of
the sneutrinos ν̃e and ν̃µ are nearly degenerate, while ν̃τ can be significantly lighter
[31]. The introduction of the seesaw mechanism can change this situation because
of the additional heavy particles and the corresponding neutrino Yukawa couplings.
Furthermore, it will lead to larger off-diagonal entries in the charged slepton and
sneutrino mass matrices. These effects will be discussed in chapter 5.

3.5.4 Gluino

Together with its superpartner, the gluino, the gluon forms the only color octet
supermultiplet in the MSSM. Therefore no mixing with other particles is possible.
The gluino mass parameter M3 specified in Eq. 3.13 is determined at the GUT scale
by Eq. 3.16 and driven by the RG evolution similar to the bino and wino mass
parameters M1, M2. Using these relations one can show that, at the TeV scale, the
parameters behave roughly like

M3 : M2 : M1 ≈ 6 : 2 : 1. (3.26)

Thus we suspect the gluino to be among the heaviest sparticles.

13



Chapter 3. Supersymmetry

3.6 R-parity

In general it is possible to introduce terms into the superpotential given by Eq. 3.12
that violate baryon number B or lepton number L. Since this has not been observed
by experiment yet – e. g. in the case of proton decay – , an additional symmetry is
necessary to forbid these terms while still permitting the terms of WMSSM. This is
usually done by defining a multiplicative quantum number

R = (−1)3(B−L)+2S (3.27)

with the spin S. This discrete symmetry is called R-parity and has the nice feature
that all SM particle carry R = +1 while their superpartners carry R = −1.

In the MSSM, we assume conservation of R-parity. This leads to interesting
phenomenological consequences:

• The lightest supersymmetric particle (LSP) is stable. In many regions of the
mSUGRA parameter space, this is the lightest neutralino χ̃0

1, which is neutral,
massive and only weakly interacting, thus constituting an interesting candidate
to solve the dark matter problem.

• The number of supersymmetric particles in any interaction vertex must be
even, so that sparticles can only be produced in pairs at collider experiments.
Moreover they can decay only into an odd number of sparticles generating final
states with an even number of LSPs in the collider processes.

14



Chapter 4

The supersymmetric seesaw
mechanism

Neither the Standard Model nor the MSSM allow the neutrinos to be massive.
However, as the experimental results point to at least two non-zero neutrino masses,
one has to include a theoretical framework to explain these small masses. This can
be done in an elegant way via the seesaw mechanism [10–13] by introducing new
mediator particles at a very high scale that couple to the left-handed lepton fields as
well as to the Higgs fields via neutrino Yukawa couplings. If implemented in a non-
supersymmetric model there will arise another hierarchy problem because of radiative
corrections to the Higgs mass [37]. Since in a supersymmetric framework also the
superpartners of the new particles with a similar mass couple to the Higgs field, this
problem is avoided naturally. Furthermore, all the nice features of supersymmetry as
discussed in chapter 3 are maintained. The common derivation of the typical SUSY
seesaw properties presented in the following is in accordance with [19, 36–38].

As neutrinos do not carry electric charge they can possibly be Majorana particles.
In this case tiny neutrino masses can be obtained by introducing the effective
dimension-5 Weinberg operator [39–41]:

fαβ
Λ

(HuLα)(HuLβ) ⇒ (mν)αβ =
fαβv

2
u

2Λ
(4.1)

Λ is at the scale of the mediator particles M , and fαβ is a combination of different
Yukawa couplings and thus can go up to O(1), requiring Λ . O(1015) GeV to obtain
the neutrino masses predicted by experiment. This principle clarifies the name
“seesaw”. Fig. 4.1 shows the possible realizations of the effective Weinberg operator
which is obtained by integrating out the heavy degrees of freedom.

Since two doublets can be decomposed into a triplet and a singlet as 2⊗2 = 3⊕1,
the gauge structure only allows three ways to obtain the Weinberg operator at tree-
level [10] because the symmetry properties at the vertices of the right diagram in
Fig. 4.1 do not allow the realization with a scalar singlet mediator. The three possible
types of seesaw mechanisms will be presented in the following sections.
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Chapter 4. The supersymmetric seesaw mechanism

H H
H H H H

L L
L L L L

M
M

Figure 4.1: Principle of the seesaw mechanism [41].

As gauge coupling unification is one of the most interesting properties of super-
symmetric theories (cf. section 3.4), we will take care to maintain this quality while
introducing the new states. This will be done by embedding them in complete SU(5)
representations [41–43].

4.1 Seesaw type I

In the seesaw type I, the left-handed leptons couple to the higgs field by the exchange
of a heavy virtual fermion [12, 13, 44]. This right-handed neutrino N c is a singlet
under all Standard Model gauge groups. We postulate three of them to generate
three light neutrino masses.

H
u

H
u

N c
YνYν

+

L L

Figure 4.2: Seesaw type I.

After the SU(5) breaking at the GUT scale one obtains the superpotential [19,
37, 41]

WI = WMSSM +Wν (4.2)

with the usual MSSM part shown in Eq. 3.12 and the additional part

Wν = N cYνL ·Hu +
1

2
N cMRN

c (4.3)

where MR is the 3× 3 mass matrix of the heavy right-handed neutrino and Yν the
neutrino Yukawa coupling. Below the scale of the lightest N c, all the heavy fields
are integrated out, yielding an effective superpotential [37]

WI,eff = WMSSM +
1

2
(YνL ·Hu)

TM−1
R (YνL ·Hu). (4.4)
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4.1. Seesaw type I

Electroweak symmetry breaking leads to the following mass matrix for the light
neutrinos:

mν = −v
2
u

2
Y T
ν M

−1
R Yν (4.5)

This is the famous seesaw formula which like Eq. 4.1 clearly shows the seesaw principle.
As it is complex and symmetric the neutrino mass matrix mν can be diagonalized in
flavor space by the already known 3× 3 PMNS matrix U (Eq. 2.2):

m̂ν = UTmνU (4.6)

Additionally, we can choose to work in a basis of the right-handed neutrinos where
MR is also diagonal:

M̂R = diag (M1,M2,M3) := MR (4.7)

Thus it is possible to invert Eq. 4.5 in the following way [37]:

m̂ν = −v
2
u

2
UTY T

ν M
−1
R YνU (4.8)

Multiplication from both sides by the matrix√
m̂−1
ν = diag

(
1√
m1

,
1√
m2

,
1√
m3

)
(4.9)

yields

1 = −v
2
u

2

(√
M−1

R YνU
√
m̂−1
ν

)T (√
M−1

R YνU
√
m̂−1
ν

)
= RTR (4.10)

where we introduced the complex orthogonal matrix

R = −i vu√
2

√
M−1

R YνU
√
m̂−1
ν (4.11)

which expresses our ignorance of which right-handed neutrino generates the mass of
which left-handed neutrino. With this matrix we can express the Yukawa couplings
as

Yν = i

√
2

vu

√
MRR

√
m̂νU

† (4.12)

Further properties of R like a possible parametrization will be discussed in section
4.3 for the similar type III case.
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Chapter 4. The supersymmetric seesaw mechanism

4.2 Seesaw type II

In the case of type II seesaw the coupling of the leptons to the Higgs field is realized by
the exchange of a scalar SU(2)L triplet T [45, 46]. As the leptons L carry hypercharge
−1

2
the scalar T carries hypercharge 1 and thus must be embedded in a 15-plet to

obtain a complete SU(5) representation. After breaking SU(5), it decomposes under
SU(3)C × SU(2)L × U(1)Y to [42, 47]

15 = S + T + Z ∼
(

6, 1,−2

3

)
+ (1, 3, 1) +

(
3, 2,

1

6

)
. (4.13)

To explain the light neutrino masses and to avoid chiral anomalies, two 15-plets
15 and 15 are necessary.

H
u

H
u

L L

T

λ
T

Y
T

Figure 4.3: Seesaw type II.

Below the GUT scale the parts of the superpotential needed for the implementation
of the seesaw in the MSSM reads1

WII = WMSSM +
1√
2

(
LYTTL+ λTHdTHd + λTHuTHu

)
+MTTT (4.14)

which after integrating out the heavy states and electroweak symmetry breaking
yields

mν =
v2
u

2

λT
MT

YT . (4.15)

Like in type I, mν and thus also YT are diagonalized by the matrix U . This means
that the Yukawa couplings are fixed at known neutrino data up to a constant. The
other components of the 15-plet also lead to additional Yukawa couplings YS and
YZ which in principle also contribute. At the GUT scale they are all required to be
equal. As the seesaw type II is not of main interest in this work, further properties
of this mechanism are not discussed here.

1For the full operator and field content, see appendix E of [41] and [42].
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4.3. Seesaw type III

4.3 Seesaw type III

The third possible realization of the seesaw mechanism is the seesaw type III which
is in general very similar to type I. In this scenario the fermionic SU(2)L singlet is
replaced by a fermionic triplet ΣR with zero hypercharge belonging to the adjoint
representation of SU(2)L [14].

H
u

H
u

Σ
R

YΣYΣ
+

L L

Figure 4.4: Seesaw type III.

To maintain gauge coupling unification, we embed the new fermions in a 24-plet
obtaining a complete SU(5) representation. The decomposition under the Standard
Model gauge group SU(3)C × SU(2)L × U(1)Y after breaking the SU(5) is [19]

24M = BM +WM +GM +XM +XM

∼ (1, 1, 0) + (1, 3, 0) + (8, 1, 0) +

(
3, 2,−5

6

)
+

(
3∗, 2,

5

6

)
. (4.16)

As the quantum numbers of the first two parts are the same as in the fermionic
SU(2)L singlet N c and the triplet ΣR, respectively, in the 24M always appears a
combination of seesaw type I and type III.

Breaking SU(5) leads to the following superpotential below the GUT scale [19,
41]:

WIII = WMSSM +Hu

(
WMYW −

√
3

10
BMYB

)
L+HuXMYXD

c

+
1

2
BMMBBM +

1

2
GMMGGM +

1

2
WMMWWM +XMMXXM (4.17)

Since we want to achieve unification the boundary conditions MB = MW = MG =
MX and YB = YW = YX are used at the GUT scale. For the implementation of the
seesaw in the MSSM, only BM and WM fields are necessary. By integrating out the
mediators at the seesaw scale we obtain the effective superpotential

WIII,eff = WMSSM +
1

2

(
3

10
(YBL ·Hu)

TM−1
B (YBL ·Hu)

+
1

2
(YWL ·Hu)

TM−1
W (YWL ·Hu)

)
. (4.18)
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Chapter 4. The supersymmetric seesaw mechanism

By electroweak symmetry breaking we obtain the neutrino mass matrix

mν = −v
2
u

2

(
3

10
Y T
BM

−1
B YB +

1

2
Y T
WM

−1
W YW

)
. (4.19)

Unlike the type I seesaw formula Eq. 4.5, the type III equivalent has two con-
tributions, originating from the SU(2)L singlet and the SU(2)L triplet part of the
superpotential, respectively. In this situation, the calculation of the Yukawa cou-
plings becomes more complicated in general. It can be simplified by the following
approximation: As we postulate identical masses and couplings at the GUT scale
and the seesaw scale still is quite high, we can assume that MB

∼= MW and YB ∼= YW
is still approximately true at O(Mseesaw). In this case Eq. 4.19 reduces to

mν = −2

5
v2
uY

T
WM

−1
W YW (4.20)

which coincides with the type I seesaw formula 4.5 up to a factor 4
5
. Thus we can

make the same inversion as in the type I case to express the Yukawa couplings. In
the following, this will be done both for the case of three as well as for the case of
two generations of the 24-plet.

4.3.1 Three 24-plets

To describe three non-zero neutrino masses, we have to introduce three copies of the
24-plet corresponding to three right-handed neutrinos in the seesaw type I. mν can
then be diagonalized in the same way by the 3× 3 PMNS matrix U (Eq. 2.2):

m̂ν = UTmνU (4.21)

With a chosen MW -diagonal basis for the 24-plets

M̂W = diag(M1,M2,M3) := MW , (4.22)

Eq. 4.20 can be inverted according to Eqs. 4.8 and 4.10 [37]:

m̂ν = −2

5
v2
uU

TY T
WM

−1
W YWU, (4.23)

1 = −2

5
v2
u

(√
M−1

W YWU
√
m̂−1
ν

)T (√
M−1

W YWU
√
m̂−1
ν

)
= RTR, (4.24)

with
√
m̂−1
ν like in Eq. 4.9 and the corresponding R matrix

R = −i
√

2

5
vu

√
M−1

W YWU
√
m̂−1
ν . (4.25)

By inverting this formula, the Yukawa couplings can be expressed as

YW =

√
5

2

i

vu

√
MWR

√
m̂νU

†. (4.26)
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4.3. Seesaw type III

Like in type I, R is a complex orthogonal matrix. It is conveniently parametrized
[37] by three complex angles φ1, φ2, φ3 with ci = cos(φi), si = sin(φi) which gives

R =


c2c3 −c1s3 − s1s2c3 s1s3 − c1s2c3

c2s3 c1c3 − s1s2s3 −s1c3 − c1s2s3

s2 s1c2 c1c2

 . (4.27)

This is just a product of three rotation matrices (no reflections):

R =


1 0 0

0 c1 −s1

0 s1 c1

×

c2 0 −s2

0 1 0

s2 0 c2

×

c3 −s3 0

s3 c3 0

0 0 1

 (4.28)

There is no specification about the masses Mi of the three 24-plet copies. They
can be chosen to be either degenerate M1 = M2 = M3 = Mseesaw or hierarchical
in any possible ordering. Changing this ordering has the same effect as changing
the multiplication sequence in Eq. 4.28. In this work we always fix R to the
aforementioned parametrization and vary only the order of the heavy masses.

So, there are several (free) parameters in addition to the MSSM parameters: The
neutrino mixing angles θ12, θ23, θ13, the Dirac phase δ (real); the R parametrization
angles φ1, φ2, φ3 (complex) and the three 24-plet masses M1, M2, M3; further the
choice of the neutrino mass hierarchy (normal or inverse) and the mass of the lightest
neutrino.

4.3.2 Two 24-plets

If the lightest neutrino mass is zero (i.e. m1 = 0 for normal hierarchy, m3 = 0 for
inverse hierarchy; cf. section 2.2), the seesaw type III is also possible with only two
copies of the 24-plet, as well as type I with two right-handed neutrinos – also called
3 × 2 seesaw [48]. For the type I model this was discussed in [49–51]. In this case
MW is a 2× 2 matrix. Of course we can choose a basis with diagonal MW again:

M̂W = diag(M1,M2) := MW (4.29)

The diagonalized neutrino mass matrix Eq. 4.23 now has one diagonal entry zero
and thus is not invertible anymore. However, we can do a similar inversion as in
sections 4.1 and 4.3.1 by multiplying this equation from both sides with the matrix(√

m̂−1
ν

)′
norm

= diag

(
0,

1√
m2

,
1√
m3

)
(4.30)

for normal hierarchy (m1 = 0) and(√
m̂−1
ν

)′
inv

= diag

(
1√
m1

,
1√
m2

, 0

)
(4.31)
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for inverse hierarchy (m3 = 0), respectively. Then, we obtain

1′ = −2

5
v2
u

(√
M−1

W YWU
(√

m̂−1
ν

)′)T (√
M−1

W YWU
(√

m̂−1
ν

)′)
= RTR (4.32)

with the matrix

1′ = diag(1, 1, 0) resp. 1′ = diag(0, 1, 1) (4.33)

for normal (inverse) hierarchy. In this case, the Yukawa matrix and thus also the R
matrix are of 2× 3 size

R = −i
√

2

5
vu
√

2
√
M−1

W YWU
(√

m̂−1
ν

)′
=

r11 r12 r13

r21 r22 r23

 , (4.34)

yielding again

YW =

√
5

2

i

vu

√
MWR

(√
m̂−1
ν

)′
U †. (4.35)

As a 2× 3 matrix R can be parametrized by only one complex angle φ and written as
a product of a 2× 2 rotation matrix and a kind of 2× 3 “unity matrix” that depends
on the chosen hierarchy.2 Thus, we get for normal hierarchy (m1 = 0)

Rnorm =

cos(φ) − sin(φ)

sin(φ) cos(φ)

×
0 1 0

0 0 1

 (4.36)

and for inverse hierarchy (m3 = 0)

Rinv =

cos(φ) − sin(φ)

sin(φ) cos(φ)

×
1 0 0

0 1 0

 . (4.37)

Now, of course, R is not orthogonal anymore, but we obtain

RTR = 1′ , RRT = 12×2. (4.38)

On the one hand, in this two 24-plet realization of the seesaw mechanism type
III the number of free parameters is reduced as there are only two seesaw masses M1,
M2 and thus two possible orderings as well as only one complex angle φ left. On the
other hand, this case has further nice features which will be discussed in section 6.1.

It is also possible to treat this scenario as a limit of the three generation case
where one of the heavy masses is infinite. For type I, this was done in [49, 50].

2Since m2 = 0 is excluded by experiment the third possibility of this “unity matrix” with the
middle column entries all zero cannot be realized.
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4.4. Effects on the mass spectrum

4.4 Effects on the mass spectrum

The additional particles of the seesaw mechanism also affect the mass spectrum of the
model. As already mentioned in section 3.4 the 1-loop RGEs for the gauge couplings
are given by Eq. 3.15 with the coefficents

(b1, b2, b3) =

(
33

5
, 1,−3

)
. (4.39)

Adding a 24-plet to the spectrum produces a shift of ∆ba = 5. Thus the overall
contribution in the two 24-plet case is ∆ba = 10, in the three 24-plet case ∆ba = 15.
These enhanced RGE coefficients also lead to changes in the evolution of the mass
parameters m0 and m1/2 yielding a lighter sparticle spectrum [43, 47]. The scalar
masses also can be modified by some of the Yukawa couplings getting large. Compared
to the other seesaw scenarios, these effects are largest in the type III case, although
they depend considerably on the high scale values of m0 and m1/2. But especially
the value of the seesaw scale has an important influence, enhancing the effects the
smaller it is. Illustrations and further reflections on this can be found in [19]. In the
two 24-plet case, the effects are smaller due to the smaller ∆ba.

The large beta functions also restrict the allowed range for Mseesaw: The gauge
couplings at the GUT scale get large (Landau pole), leading to the break down of
pertubation theory below a certain value. In the seesaw type III, the effects of the
2-loop RGEs are also very important due to their large coefficients. They can be
found e. g. in appendix A 4 of [19] where also possible shifts of the GUT scale are
discussed. Another limit which can shift the lower limit for Mseesaw towards higher
values than the occurence of the Landay pole is the possible appearance of negative
squared masses for the scalars. This problem is avoided or at least reduced as we
increase the mSUGRA parameters.
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Chapter 5

Rare lepton decays

5.1 Experimental low energy constraints

Since in the Standard Model neutrinos and charged leptons are isodoublet partners
with identical flavor quantum numbers, flavor violation is expected to appear also
in the charged lepton sector as soon as we introduce a mechanism that generates
neutrino flavor mixing. This leads to new possible rare decay processes like the
two-body decays li → ljγ and the three-body decays li → 3lj [48]. From low energy
experiments performed by the MEG collaboration [15], the BELLE collaboration
[16] and others [17, 18], the branching ratios (BRs) for these decays are constrained
to the very small values listed in Tab. 5.1. Especially the branching ratio of the LFV
decay µ→ eγ constitutes a strong constraint on many models where a sensitivity of
O(10−13) is expected in the near future.

BR current bound

µ→ eγ 2.4 · 10−12 [15]

τ → eγ 1.2 · 10−7 [18]

τ → µγ 4.5 · 10−8 [18]

BR current bound

µ→ 3e 1.0 · 10−12 [52]

τ → 3e 2.7 · 10−8 [18]

τ → 3µ 2.1 · 10−8 [18]

Table 5.1: Current experimental bounds for the BRs of low energy two-body (left)
and three-body (right) LFV decays.

Implementing neutrino masses in the SM yields only tiny values for these BRs
since they are suppressed by the neutrino masses over the W boson masses as
shown in the diagram of Fig. 5.1. In a supersymmetric scenario, the situation is
different because new particles with lepton flavor appear; in the MSSM case these
are the sleptons (cf. section 3.5.3). The mass ratios of the sparticles involved in the
contributing SUSY 1-loop diagrams (Fig. 5.2) are, in general, clearly larger than the
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5.2. Lepton flavor violation in the slepton sector

l
i

l
j

γ

ν

W +−

Figure 5.1: SM 1-loop graph for BR(li → ljγ) mediated by neutrinos and W bosons.

one in Fig. 5.1. Since the seesaw mechanism can induce flavor violating entries in
the slepton mass parameters, this can result in strongly enhanced branching ratios
for the rare lepton decays [48, 53]. This is a typical property of the SUSY seesaw
models and constrains them strongly, especially in the seesaw type III model as will
be seen later on.

5.2 Lepton flavor violation in the slepton sector

Depending on the realized supersymmetry breaking mechanism there are different
possible sources of flavor violation or combinations of these sources. In mSUGRA
scenarios without additional seesaw particles we can choose to work in a basis where
the 6× 6 squared mass matrix of the charged sleptons M2

L and the 3× 3 sneutrino
squared mass matrix M2

ν are flavor diagonal (cf. section 3.5.3). This is motivated by
the assumption of flavor-blind mSUGRA mediation of SUSY breaking introduced in
section 3.4. The additional particles and neutrino Yukawa couplings of the seesaw
mechanism change this situation: In our seesaw type III model, the non-trivial flavor
structure of the Yukawa couplings YW induces off-diagonal entries in the slepton
squared mass matrices that cannot be rotated away. Through the running of the
RGEs down from the GUT scale to the seesaw scale the flavor mixing is communicated
to the low energy fields [54].
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Figure 5.2: 1-loop graphs dominating BR(li → ljγ) via lepton flavor violation in the
slepton sector.

The LFV in the rare lepton decays occurs in the slepton sector, either generated
via charged slepton mixing and mediated by neutralinos or caused by sneutrino

25



Chapter 5. Rare lepton decays

l
i

l
jν~

γ
l
j

l
j

χ~+−

l
i

l
j

χ~ 0

γ
l
j

l
j

l~

Figure 5.3: The analogon to Fig. 5.2 for the three-body decays.

mixing involving charginos in the loop. The 1-loop diagrams are shown in Fig. 5.2
for the two-body and Fig. 5.3 for the three-body decays. Like for the superpartners
the sneutrino mixing is in general large compared to the charged slepton mixing, so
that the diagrams including sneutrinos give the dominant contributions.

5.3 Mass insertion approximation

Assuming the off-diagonal entries to be small compared to the diagonal ones, the flavor
mixing can be parametrized at the low scale via the mass insertion approximation,
independently from the exact source. As we will see later on, this allows to do
analytical calculations using a simplified approach. The Feynman graphs in this
approximation are shown in Fig. 5.4, the three-body decays are analogous.
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Figure 5.4: Dominating 1-loop graphs for BR(li → ljγ) corresponding to Fig. 5.2;
the LL type mass insertion is denoted by a cross.

The mass insertions
(∆m2

L)ij = m̃2δlij (5.1)
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5.3. Mass insertion approximation

with the mass insertion factor δlij and the average slepton mass m̃ are the off-diagonal
entries in the left slepton squared mass matrix (m2

L)ij. As long as |δ| < 1 the mass
insertion approximation works well. According to the chirality of the respective
superpartners of the sleptons, there are LL, LR, RL and RR type mass insertions.
The dominant part for the considered processes is the LL mass insertion, especially
the diagram including charginos, leading to the following rough scaling of the rare
lepton decays [19, 48]:

BR(li → ljγ) ≈ α3

G2
F

∣∣δlij∣∣2
m4

SUSY

tan2 β ≈ α3

G2
F

|(∆m2
L)ij|2

m8
SUSY

tan2 β (5.2)

α is the electroweak coupling constant and GF the Fermi constant. mSUSY is a typical
SUSY breaking mass like the slepton or gaugino masses; so we assumed m̃ ≈ mSUSY.
Since these masses enter here in high inverse powers and the seesaw type III has
a lighter sparticle spectrum (cf. section 4.4) this – together with typically larger
Yukawa couplings (from the larger seesaw scale) – leads to larger LFV branching
ratios compared to the type I model [54]. For the complete computation we have
to take into account also the other types of mass insertions – especially the RR
type. There could basically exist regions in the parameter space with accidental
cancellations between these terms [48]. However, in this work the focus is only on the
effects of the dominating LL type insertions; the topic of chapter 6 is the search after
such suppressed regions only by cancellations between different terms within that
type. The numerical calculations will show that this is a well-working approximate
description of LFV in our models.

Via a one-step integration of the RGEs in the leading log approximation we get
for the mass insertions in the slepton squared mass and the trilinear coupling matrices
the following expressions with the mSUGRA parameters specified in chapter 3 [19]

(∆m2
L)ij ∼= −

9

5

1

8π2
(3m2

0 + A2
0)(Y †WLYW )ij (5.3)

(∆Ae)ij ∼= −
9

5

3

16π2
A0(YeY

†
WLYW )ij (5.4)

Here we used a basis where the leptonic Yukawa coupling Ye is diagonal. L is a
diagonal matrix specified by

L = diag

(
ln

(
MGUT

M1

)
, ln

(
MGUT

M2

)
, ln

(
MGUT

M3

))
(5.5)

for three generations resp.

L = diag

(
ln

(
MGUT

M1

)
, ln

(
MGUT

M2

))
(5.6)

for two generations of 24-plets with the masses M1, M2, M3 and the GUT scale
MGUT.
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Chapter 5. Rare lepton decays

Like in the other seesaw types the flavor violation in the right-slepton sector is
negligible:

(∆m2
e)ij
∼= 0 (5.7)

The previous approximations work quite well for the seesaw type I. For types II
and III, especially for regions with low m0 and large m1/2 that we will use later on,
they are bad approximations concerning the absolut scale of the matrix elements
[48]. However, the general behavior and the cancellation points are described very
good by these formulae.

Since in this approximative description both the li → ljγ and the li → 3lj decays
are driven by the same mass insertions (cf. Figs. 5.2, 5.3 and 5.4) they are expected
to show a similar behavior in the parameter scans. There are also other processes
that are dominated by this effect. At the LHC for example the lepton flavor violating
decays of the next-to-lightest neutralino χ̃0

2 → χ̃0
1lilj are interesting phenomena. The

investigation of these decays and their phenomenological properties at the LHC will
be the subject of chapter 7.
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Chapter 6

Studies of the parameter space

To get a first overview of the regions in the parameter space where the branching ratios
of the lepton flavor violating µ- and τ -decays are compatible with the experimental
constraints, we do at first some analytical studies of the LFV branching ratios, that
allow us to check the influence of different parameters quickly without calculating the
whole spectrum for every point. Of course this can only be done in an approximative
way which was motivated in chapter 5.3, using Eq. 5.2 with (∆m2

L)ij expressed by
Eq. 5.4 leading to the proportionality

BR(li → ljγ) ∝
∣∣(∆m2

L)ij
∣∣2 ∝ ∣∣∣(Y †WLYW )ij

∣∣∣2 ≡ ∆2
ij. (6.1)

The Yukawa couplings YW are expressed by the Casas-Ibarra [37] formula Eq. 4.26
(or Eq. 4.35 for the two 24-plet case) in terms of the R matrix, the neutrino and
24-plet masses and the PMNS matrix U .

The physically cleanest way of analytical studies is the consideration of the
squared ratios of the BRs as this was done in [55]. The favorable feature of this
quantity is the independence of the SUSY parameters and other prefactors, which
do not cause any problems because of the division. However, for our investigations it
seems to be easier to consider the corresponding off-diagonal entries of the slepton
mass matrix |(∆m2

L)ij|2 or, without prefactors, the ∆2
ij itselves, since they correspond

directly to the branching ratios of BR(li → ljγ) and other processes with the same
flavor change. As long as the mass insertion approximation works well, we state good
accordance in the behavior of these quantities. Of course, the absolute size of the
∆2
ij is no longer an experimentally approachable physical value; but for the search

for cancellations and the observation of general properties as a first hint for further
numerical studies prefactors are not of major interest.

After receiving an overview of the interesting regions, the second step is to
calculate the exact values numerically to get the absolut size of the branching ratios
to compare them with the experimental constraints presented in section 5.1. These
calculations have been done with the LFV version of the program package SPheno [56,
57] in a numerical procedure as done e. g. in [19]. At first we use the Yukawa couplings
calculated like before from the inverted seesaw formulae Eq. 4.26 and Eq. 4.35. They
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Chapter 6. Studies of the parameter space

are inserted at the seesaw scale and also affected by the RGE running to the low
energy scale where neutrino data is measured. The neutrino masses and mixing
angles obtained this way usually deviate from the current experimental values (cf.
chapter 2). To fit them to data, we vary the input values for the Yukawas in a simple
iteration that converges in a few steps if they are small compared to 1. Because of
the stronger RGE running already mentioned in section 4.4 the differences can be
larger in type II and type III seesaws and thus in general more steps are required
than in type I. This neutrino data fit is implemented in the front end program
FrontEndSPheno [58], that was used to scan over various input parameters. We use
2-loop RGES unless stated otherwise, calculated with the package SARAH [59–61].

If not specified otherwise, the PMNS matrix is taken in the tri-bi-maximal form
(Eq. 2.6), the 24-plet masses degenerate and the R matrix as the unity matrix R = 1

to calculate the input values for the Yν . In many scans both possible neutrino mass
hierarchies (cf. chapter 2) have been tested; if not stated explicitly the calculations
are for normal hierarchy. In all our studies the Majorana phases α1 and α2 are
assumed to be zero. Based on the studies done in [19], the mSUGRA parameter are
taken at

m0 = m1/2 = 1000 GeV, A0 = 0 GeV, tan(β) = 10, sgn(µ) = +1. (6.2)

Of course, the following plots depend on these parameters. However, the main prop-
erties investigated in this chapter are effects of the neutrino and seesaw parameters,
whereas the mSUGRA parameters change the scale only weakly. Their influence is
considered in chapter 7.

6.1 Effects of the seesaw scale

In section 4.4 we stated the large effects on the mass spectrum produced by the seesaw
particles and their dependence on the seesaw scale. Fig. 6.1 shows this compared to
type I for some mass parameters of the MSSM, without fixing neutrino data. Since
the branching ratios of the LFV decays scale like the SUSY masses to the inverse
power eigth, the mass spectrum and thus Mseesaw must have substantial impact on
BR(µ → eγ) etc. This was tested numerically to compare the different types of
seesaw mechanism (Fig. 6.2), each with a degenerate spectrum of the seesaw particles.
The viable range of Mseesaw is restricted from below by the effects mentioned in
section 4.4. The upper limit is given by the fact that for larger seesaw scales the fit
to neutrino data does not converge. However, a hierarchy between the heavy masses
can shift this limit.

As already mentioned, the seesaw type III has a lighter sparticle spectrum, leading
with Eq. 5.2 to larger BRs. The allowed range of Mseesaw strongly depends on the
seesaw type, with a quite short interval for the seesaw III model. Comparing this to
the low energy constraints stated in section 5.1, we see that the type III model in
this configuration is not compatible because the predicted value for BR(µ→ eγ) is
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6.1. Effects of the seesaw scale
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Figure 6.1: Mass parameters M1 (blue), M2 (red), M3 (yellow) on the left resp. |MQ|
(blue), |ML| (red), |ME| (yellow) on the right panel versus the seesaw
scale for the type III (solid lines) compared to type I (dashed lines). The
mSUGRA parameter are as given in Eq. 6.2, neutrino data is not fitted.
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Figure 6.2: BR(µ→ eγ) versus the seesaw scale for the seesaw type I (dashed), type
II (dotted) and type III (solid).

above the limit of 2.4 · 10−12 everywhere. Therefore, we have to go to special regions
in the parameter space where this value is suppressed.

Also the two and the three 24-plet case have been compared (Fig. 6.3). Here
one can clearly see the advantages of the two 24-plet scenario: the viable range of
Mseesaw is considerably larger than in the three generation case due to the smaller
RGE coefficients; the size of the BRs is also reduced because of the heavier mass
spectrum. This means that the reduction to the two generation scenario is one
possibility to reach viable regions of the parameter space. Since the dependence is
nearly linear, the seesaw scale can be used to fit BR(µ→ eγ) to a certain value by a
simple iteration, which will be done in chapter 7.

In section 4.4 we noted the important 2-loop effects in this model. Thus, we
also compared also the calculations at 1-loop and 2-loop level (Fig. 6.4). The 2-loop
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Figure 6.3: BR(µ→ eγ) versus the seesaw scale for the two (dashed) and the three
(solid) 24-plet scenario; mSUGRA parameters like in Eq. 6.2.
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Figure 6.4: BR(µ→ eγ) versus the seesaw scale calculated with 1-loop (dashed) and
2-loop (solid) RGEs.

effects do have an important impact and lead both to larger BRs because of the
stronger RGE runnings as well as to a shift and a decrease of the viable range for
the fit to neutrino data.

6.2 The reactor angle θ13 and the Dirac phase δ

The first studies are treating the neutrino mixing parameters. Starting from tri-
bi-maximal mixing (Eq. 2.6) we fix the solar and the atmospheric mixing angle
to

cos(θ12) =

√
2

3
, cos(θ23) =

1

2

√
2 (6.3)
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6.2. The reactor angle θ13 and the Dirac phase δ

and observe the influence of the variation of the reactor angle from θ13 = 0 as this
was done in [19].

As stated in chapter 2, there are recent hints to a non-zero reactor angle from
the T2K experiment [22]. However, since this is only a first evidence which is yet to
be confirmed by other experiments in the near future, studies varying this angle are
certainly of major interest, so that the range investigated in this section is from zero
to the 3σ limit given in [24] (0 < sin2(θ13) < 0.035). Furthermore, the value of the
Dirac phase δ is important which can also cause complex parameters (if δ 6= n ∗ π,
n ∈ N) in the neutrino mixing matrix U . Since the experimentally allowed range
for δ is quite large (see Tab. 2.1), we will not constrain our studies of this phase.
The mSUGRA parameters are chosen as in Eq. 6.2, and R = 1. In this section we
consider only normal neutrino mass hierarchy.

The results in Fig. 6.5 show a good agreement between the ∆ij and the branching
ratios calculated by numerics, only slightly changing the point of the cancellation
at about sin(θ13)

2 = 7 · 10−3. Taking the prefactors into account can change the
relation between the absolute sizes of the different BRs. For a Dirac phase δ = 0
we observe a cancellation in BR(τ → eγ). Changing δ to π switches the behavior of
∆2

12 and ∆2
13 resulting in a cancellation for BR(µ → eγ). When going to complex

parameters, i.e. for values δ = 3π/4, we see these cancellations turning incomplete.
Because of this complementary behavior, a cancellation in µ → eγ and τ → eγ is
not possible at the same time by varying the reactor angle; of course the bound for
the latter process is clearly weaker. The process τ → µγ is evidently insensitive to
variations of θ13 for all Dirac phases δ.

Considering the absolute size of BR(µ → eγ), we state that there are regions
around the cancellation point for δ = π that are in agreement with the experimental
constraint of 2.4 · 10−12. The θ13 value at this point is nearly at the lower end of the
1σ region given in Tab. 2.1. Further experimental results on this issue are expected
soon.

Apart from this, there is an interesting possibility to move the cancellation point
if we go to parameter points with non-degenerate 24-plet masses (see Fig. 6.6).
Proceeding from the point shown in Fig. 6.5 with δ = π, changing M1 has no effect,
whereas the hierarchy between M2 and M3 is quite important: Setting M3 > M2

shifts the cancellation to higher sin2(θ13) values, while M2 > M3 does the opposite.
The overall scaling of M2 and M3 shifts the absolute value of ∆2

12 in a way similar to
Fig. 6.3 and does not affect the position of the cancellation.

For the two 24-plet scenario, it is also possible to achieve cancellations by
variation of the reactor angle. Numerical scans on this issue are shown in Fig. 6.7.
As in the other case, the cancellation point can also be shifted by varying the mass
hierarchy between the two masses M1 and M2. However, in this model the search
for cancellation points is not that important, because it is already possible to reach
viable ranges of BR(µ→ eγ) by pushing the seesaw scale to sufficiently low values
(cf. Fig. 6.3).
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Figure 6.5: ∆2
12 (blue), ∆2

13 (red), ∆2
23 (yellow) to the left and the corresponding

BR(µ→ eγ) (blue), BR(τ → eγ) (red) and BR(τ → µγ) (yellow) to the
right over the reactor angle θ13 for real parameters with Dirac phases
δ = 0 (upper panels), δ = π (mid panels) and δ = 3π/4 (lower panel). The
MW are degenerate at M1 = M2 = M3 = 1014 GeV. Small fluctuations
in the BRs arised due to numerical effects.
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Figure 6.6: BR(µ → eγ) for three 24-plets and δ = π with different hierarchies
M1 = M2 = 1014 GeV, M3 = 2 · 1014 GeV (solid), M3 = 1 · 1014 GeV
(dashed) and M3 = 5·1013 GeV (dotted); other parameters like in Fig. 6.5.

10-3 10-2 10-1
10-15

10-13

10-11

10-9

sin2HΘ 13L

B
R

Hl
i®

l j
Γ

L

Figure 6.7: BR(µ → eγ) (blue), BR(τ → eγ) (red) and BR(τ → µγ) (yellow) at
two 24-plets and δ = π for degenerate masses M1 = M2 = 1014 GeV,
(solid lines) and hierarchical masses M1 = 2 ·1014 GeV, M2 = 1014 GeV,
(dashed lines).

6.3 Influence of the R matrix

Since the reactor angle θ13 will be measured or at least constrained to a smaller region
in the near future and additionally a CP violating phase δ = π is required to produce
a BR(µ→ eγ) cancellation, it is of particular interest to find such cancellations also
by varying other (seesaw) parameters. For this, especially the R matrix introduced
in Eq. 4.25 (resp. Eq. 4.34 for two 24-plets) is a promising candidate, as it is not
specified by experimentally approachable neutrino data and only restrained by the
condition RTR = 1. This can be realized, for example, with the parametrizations
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presented in section 4.3, depending on three complex angles in the three 24-plet
scenario and one complex angle in the two 24-plet scenario.

Though R is not a mixing matrix of the seesaw masses, changing the R angles
produces such an effect on the product

ρ = R†
√
MWL

√
MWR (6.4)

appearing in the approximative formula Eq. 6.1

BR(li → ljγ) ∝ 5

2v2
u

U
√
m̂ν

(
R†
√
MWL

√
MWR

)√
m̂νU

†, (6.5)

and thus on the ∆2
ij. For s1 = s2 = s3 = 0 it is given by

ρ = diag

(
M1 ln

(
MGUT

M1

)
,M2 ln

(
MGUT

M2

)
,M3 ln

(
MGUT

M3

))
. (6.6)

Changing one of the si from 0 to 1 yields a flip between the other two diagonal
entries; in case of s1 = 1 this looks like

ρ = diag

(
M1 ln

(
MGUT

M1

)
,M3 ln

(
MGUT

M3

)
,M2 ln

(
MGUT

M2

))
. (6.7)

Setting s1 = s2 = s3 = 1 acts on the ∆2
ij like inverting the ordering of the three

24-plet masses. Correspondingly, values of the si different from 0 or 1 provide mixings
of the MW contributions in this matrix. Therefore, as the R matrix produces flippings
or mixings, variations of the φ angles will change the branching ratios only if the MW

are non-degenerate. On the other hand, with three 24-plet masses there are even
six possible mass hierarchies which in general have to be tested. In the two 24-plet
scenario the situation is sizably easier because of only two possible hierarchies.

6.3.1 Real case

At first we consider real values for the φ angles only; complex ones are treated in
section 6.3.2. The neutrino mixing angles are fixed to tri-bi-maximal values from
Eq. 2.6 and for the time being also the Dirac phase δ is set to zero. The neutrino
masses are set to the best fit values given in Tab. 2.1 with a small but non-zero
m1 = 10−4 eV < 1% ·m3, which may be of important impact as we will see later on.
Here we start with the seesaw III model with two 24-plets where the situation is less
complicated since there is only one angle φ parametrizing the 2 × 3 R matrix (cf.
section 4.3.2), together with two possible neutrino mass hierarchies and two possible
orderings of the MW,i. Fig. 6.8 shows the ∆2

ij and the corresponding BR(li → ljγ)
for normal hierarchy. The expected accordance of the behavior up to overall scalings
motivates the study of the first quantity instead of calculating the whole BRs and
spectra for every case. Fig. 6.9 shows these elements for inverse hierarchy where the
quantities ∆2

12 and ∆2
13 are degenerate. Certain symmetries which show the effect

of φ as a kind of mixing angle between the heavy masses can be realized. We find
cancellations for the µ–e as well as for the τ–e combination in different constellations.
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Figure 6.8: ∆2
12 (blue), ∆2

13 (red) and ∆2
23 (yellow) compared to the corresponding

BR(li → ljγ) (lower panels) for two 24-plets by variation of sin(φ)
at normal neutrino mass hierarchy, Dirac phase δ = 0 and a 24-plet
hierarchy M1 > M2 and the two possible 24-plet mass orderings.
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Figure 6.9: Like Fig. 6.8 for inverse hierarchy.

In the next step we treat the realization with three generations of 24-plet. Their
masses are chosen for different hierarchies, but the heaviest one will always take
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1015 GeV, the mid-one 1014 GeV and the lightest one 1013 GeV.1 Here, only normal
neutrino mass hierarchy is considered. As in the previous case, we assume good
accordance between ∆2

ij and BR(li → ljγ), which was probed numerically for different
parameter combinations. Examples for scans over the φ1 and the φ3 angle are shown
in 6.10. Large deviations in the general behavior as well as in the positions of the
cancellation points have not been found. Therefore we only show ∆2

ij in the following.
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Figure 6.10: Comparison of analytical ∆2
12 and numerical BR(µ→ eγ) calculation,

respectively, for variation of sin(φ1) (solid) and sin(φ3) (dashed) with
the other angles set to zero, for normal neutrino mass hierarchy, Dirac
phase δ = 0 and a 24-plet hierarchy M1 > M2 > M3.

Varying initially only one of the φi with the other ones set to zero, one will
already have 6 · 3 = 18 plots considering all possible hierarchies and angles. Figures
6.11 and 6.12 show 9 selected ones, three for each φi angle.

1Note that the observations of section 6.1 are only for degenerate MW,i; in the non-degenerate
case also values outside the given ranges are allowed if the mean value is roughly within the viable
range.
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Figure 6.11: ∆2
12 (blue), ∆2

13 (red) and ∆2
23 (yellow) versus sin(φ1) and sin(φ2),

respectively, with real φ1 values for different hierarchies of the 24-plet
masses M1, M2 and M3.
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There are several combinations of mass hierarchies and φi angle variations shown
in the plot that provide cancellations in the ∆2

ij; for ∆2
12 corresponding to µ→ eγ,

one can find them e. g. for M1 < M3 < M2 or M3 < M2 < M1 by varying φ1.
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Figure 6.12: Like Fig. 6.11 for variation of φ3.

To generate these cancellations, variation of the φ3 angle seems to be less inter-
esting. In total, the situation does not show any obvious systematics as especially
the hierarchy of the MW,i plays an important role.

Of course, in general all φi angles must be considered to be non-zero. To study
this issue, we built 3-dimensional plots by variation of two angles φi, φj while holding
φk at a fixed value. A few selected of the many possible combinations are shown
in Fig. 6.13 where one indeed can see interesting cancellation regions with more
than one angle not equal zero. Since it will not be a study of manageable size to
check every possible combination of φi values and no evident systematics could be
identified, we confine ourselves to demonstrating the possibility of such cancellation
regions. Of course, we can do the numerical BR(µ→ eγ) calculation also for these
3-dimensional plots. However, to reach a satisfying resolution, this requires quite
time- and data-consuming scans so that we probed that for selected cases only.
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Figure 6.13: 3-dimensional graphs of ∆2
12 by varying two φi angles at a fixed value

of the third one for different mass hierarchies of the 24-plets.
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Figure 6.14: ∆2
12 for different m1 values from 0 GeV (green) to 10−12 GeV (violet)

on the left panel resp. as contour plot on the right panel.

In section 2.2 we remarked the uncertainty of the absolute value of the smallest
neutrino mass. In a few special graphs a striking deviation for m1 = 0 (resp. m3 = 0)
could be determined. One of these cases for the three 24-plet model and normal
hierarchy is shown in Fig. 6.14 where the cancellation depends strongly on m1 and
only appears for a non-zero value. Hence, one has to check also for the influence of
this value in general.
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6.3. Influence of the R matrix

6.3.2 Complex case

For general situations one has to consider the angles parametrizing the R matrix to be
complex. However, for the case of three seesaw particles this means an observation of
six φ parameters (three angles and three phases) together with the already mentioned
six possible hierarchy combinations; additionally, the two possible neutrino mass
hierarchies as well as the neutrino mixing parameters – especially the reactor angle
θ13 and the Dirac phase δ – have to be considered. Thus, a complete study of all
different parameter combinations would hardly be of manageable size. In [62], an
overview of many parameter combinations was given for the seesaw type I.
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Figure 6.15: Complex parameter scans of ∆2
12 over modulus A(φ1) and phase P (φ1)

of the R parametrization angle φ1 at normal (left panel) resp. inverse
(right panel) neutrino mass hierarchy, tri-bi-maximal neutrino mixing
and M3 > M2 > M1.

As we already demonstrated in the previous sections, there are many potential
parameter combinations to produce cancellations in the LFV decays. Therefore, we
will restrict ourselves to only show the possibility to generate such cancellations for
complex angles. Indeed, a certain selection of analytical parameter studies including
complex R matrix entries was done, but without finding any systematics in the
behavior. Generally, the scenarios with inverse neutrino mass hierachy are somewhat
more interesting to find cancellation at complex R parameters. Two exemplary
graphs for the three 24-plet scenario are shown in Fig. 6.15
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Chapter 6. Studies of the parameter space

6.4 Three-body decays

So far we have only discussed the lepton flavor violating two-body decays li → ljγ.
However, there are other low energy processes concerning the lepton sector which
are constrained by experiments. In chapter 5.1 we already mentioned the three-body
decays li → 3lj which also need to be tested in general. Nevertheless, as stated in
section 5.3, the decays li → ljγ and li → 3lj in the mass insertion approximation are
driven by the same mass insertion factor (m2

L)ij, given by Eq. 5.4. So we expect the
three-body decays to behave roughly like the two-body analogs under variation of
the neutrino mixing or the seesaw parameters. This was tested by several numerical
scans.
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Figure 6.16: Comparison of the two-body decays li → ljγ (left panel) and the-three
body decays li → 3lj (right panel) for variation of sin(φ1) at normal
neutrino mass hierarchy, Dirac phase δ = 0 and a 24-plet hierarchy
M1 > M2 > M3; li, lj = µ, e (blue); τ , e (red); τ , µ (yellow).

One example is shown in Fig. 6.16 where this assumption is confirmed distinctly.
Hence we also conclude that possible contributions from box diagrams including
either neutralinos and charged sleptons or charginos and sneutrinos are negligible.
These and other diagramms contributing to LFV three-body decays are discussed in
[63]. Since the absolute size of the branching ratios in Fig. 6.16 is more than two
orders of magnitude smaller than for the corresponding two-body decays and the
scaling is quite similar, we do not run into problems with the experimental bounds
given in Tab. 5.1 as long as our model agrees with the BR(µ→ eγ) bound.
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6.5. Other low energy observables

6.5 Other low energy observables

Further experimental constraints on low energy observables related to lepton flavor
violation have also been tested by the numerical calculations. One of particular
interest is the electric dipole moment of the electron, which appears if we go to
complex Yukawa couplings like in section 6.3.2. We found that it is roughly correlated
to BR(µ → eγ). However, at all tested parameter points, this value was smaller
than O(10−33) e cm and thus is far below the current experimental bound of 10.5 ·
10−28 e cm given in [64].

The overall result of the parameter studies does not show any striking systematics
concerning the appearance of accidental cancellations and the number of parameters
makes it difficult to study all possible combinations in a comprehensive way. Hence,
we conclude that the realization with two 24-plets is the more interesting scenario,
not only because of the reduced number of input parameters, but especially from
the fact that, in the case of an appropriate seesaw scale, no cancellation is required
as long as BR(µ→ eγ) will not be constrained to even smaller values of O(10−13)
in the near future. Nevertheless, if three massive neutrinos are realized in nature,
this model is no longer a valid description. Then we will have to consider three
generations of the 24-plet in which case the situation is more complicated because
of the larger number of parameters. Still we found various possibilities to generate
cancellations for both models by variation of neutrino mixing parameters like θ13 or
the neutrino mass hierarchy as well as seesaw specific quantities like the R matrix or
the 24-plet masses. Moreover, interesting tendencies produced by shifting the seesaw
scale or varying the hierarchy of the heavy masses could be identified and used to
move the cancellation points to other parameter values which will be interesting if
certain quantities will be measured or more constrained in the future. So, even if
in some cases a special fine-tuning should be required, there are several methods to
find parameter regions in accordance with experimental constraints.
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Chapter 7

LHC phenomenology of lepton
flavor violating decays

The LFV processes discussed in the previous chapters take place at low energies.
However, we expect such flavor mixing effects to also arise at the high energy scale
where the masses of supersymmetric particles supposedly are located. The aim of
this work is therefore to identify LFV decays within a SUSY seesaw III scenario,
which are in accordance with the low energy constraints and measurable in the 14
TeV run at the LHC [1]. For this, we will mainly treat the seesaw III model with two
24-plet generations where the branching ratios of all rare lepton decays are below
the respective constraints at certain values of Mseesaw without the requirement of any
special cancellation regions in the parameter space.

7.1 Lepton flavor violating decays of the χ̃0
2

Since the sparticle mass spectrum is quite heavy and we presume a proton-proton
center of mass energy

√
s = 14 TeV at the LHC, which is of course reduced at the

parton level, it is clear that the probability to see sparticles and their decays is largest
for the lightest sparticles. In section 3.6 we already mentioned the special impact
of the LSP – in our case the lightest neutralino χ̃0

1 – in R-parity conserving models.
For this reason, the most interesting processes should be LFV decays of other light
sparticles into the LSP and other products, including two leptons of different flavor.
As neutrinos cannot be detected directly by the LHC experiments (especially [2, 3]),
only charged leptons in the final state are considered. In this work, we study the
decay of the next-to-lightest neutralino χ̃0

2 into the LSP χ̃0
1 and two charged leptons

l±i , l∓j with distinct flavor and opposite charge. This process is mediated by charged
sleptons, given at tree level by the Feynman graph shown in Fig. 7.1. We use the
narrow-width-approximation [65, 66] to factorize the BRs of the cascade decays. In
general the contributions of all six sleptons have to be considered. However, if some
of them are off-shell, i.e. heavier than the neutralino χ̃0

2, the respective diagrams will
be strongly suppressed, leading to a reduced branching ratio BR(χ̃0

2 → χ̃0
1lilj). This
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7.1. Lepton flavor violating decays of the χ̃0
2

quantity is summed over all intermediate sleptons and charges, including also the
BR of the direct three-body decay:

BR(χ̃0
2 → χ̃0

1lilj) = 2 · BR(χ̃0
2 → χ̃0

1l
+
i l
−
j )

+ 2 ·
6∑

k=1

(
BR(χ̃0

2 → l+i l̃
−
k )BR(l̃−k → l−j χ̃

0
1) + BR(χ̃0

2 → l−j l̃
+
k )BR(l̃+k → l+i χ̃

0
1)
)
.

(7.1)

l
i

l
j

χ
2

0~

χ
1

0~
l~

Figure 7.1: Tree-level diagram for the process χ̃0
2 → χ̃0

1lilj, mediated by charged
sleptons.

In the mass insertion approximation introduced in section 5.3, this graph can be
described like in Fig. 7.2. Of course, the mass insertion (∆m2

L)ij in this diagram is
the same as in the low energy processes of Fig. 5.4:
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Figure 7.2: The diagram of Fig. 7.1 in the mass insertion approximation.

Thus we expect BR(χ̃0
2 → χ̃0

1lilj) to scale roughly like the branching ratios of
the rare lepton decays li → ljγ and li → 3lj. This was probed numerically by
various scans, varying different parameters like in chapter 6. Figs. 7.3, 7.4 and 7.5
show this behavior for various scenarios. One can see that the general trend is the
same; however, the ratios between the different flavor combinations as well as the
overall scales behave in a distinct way. The small magnitude of BR(χ̃0

2 → χ̃0
1lilj)

originates from the fact, that for the chosen mSUGRA parameters all sleptons are
off-shell. Also for complex φ angles in the R matrix the cancellations are similar.
This behavior restricts us to get regions with small BR(µ→ eγ) as long as we like
to achieve large branching ratios for the LFV neutralino χ̃0

2 decay or at least at the
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Chapter 7. LHC phenomenology of lepton flavor violating decays

µ-e-version of this decay. Nevertheless, one could use some of the cancellation points
in the parameter space to get a sufficiently small BR(µ→ eγ) together with an also
small BR(χ̃0

2 → χ̃0
1µe), but, at the same time, sizable branching ratios of the other

LFV χ̃0
2 decays.
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Figure 7.3: BR(li → ljγ) (left panel) and BR(χ̃0
2 → χ̃0

1lilj) (right panel) versus the
real R parametrization angle φ for two 24-plets; mSUGRA parameters
as given by Eq. 6.2, M2 > M1, U tri-bi-maximal, CP phase δ = 0 and
normal neutrino mass hierarchy. i, j = µ, e (blue); τ, e (red), τ, µ (yellow).
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Figure 7.4: Like Fig. 7.3 for three 24-plets with M3 > M2 > M1, m0 = 250 GeV and
m1/2 = 1800 GeV and variation of φ3 while φ1 = φ2 = 0.

Since the LHC is a proton collider, the preferred particles produced in the collisions
are colored particles. Among the sparticles of the MSSM only squarks and the gluino
show this characteristic. Neutralinos are mainly produced in squark decays like

q̃ → qχ̃0
2, (7.2)

leading to final states with the particles of Fig. 7.1 plus a jet. Gluinos decay only into
quark-squark-pairs where the squarks again can decay into neutralinos, including
one more jet in the final state. Since we postulate R-parity conservation, sparticles
can be produced only in pairs, and so at least two jets are required; even more jets
might appear in decay chains including gluinos.
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Figure 7.5: 3-dimensional plot for BR(µ → eγ) (left panel) and BR(χ̃0
2 → χ̃0

1µe)
(right panel) by variation of φ1 and φ3.

7.2 Parameter scans at fixed BR(µ→ eγ)

In the previous section we have seen that the branching ratios of the LFV neutralino
χ̃0

2 decays scale very similarly to the rare lepton decays. Hence, we can conclude that
regions with small BR(li → ljγ) are not interesting for phenomenological studies
on the resp. neutralino decays. So, we took the strongest of these constraints,
namely the one on BR(µ→ eγ) and fixed this quantity to a short interval below the
experimental constraint given in Tab. 5.1:

2.2 · 10−12 < BR(µ→ eγ) < 2.4 · 10−12 (7.3)

This was done by varying the seesaw scale using a simple Newton iteration, imple-
mented in the FrontEnd program [58]. Since the dependence of BR(µ → eγ) on
Mseesaw is nearly linear, convergence is usually reached within a few steps.

We already mentioned that BR(χ̃0
2 → χ̃0

1lilj) depends on the mass spectrum,
especially on the relation between the neutralino and the slepton masses. To find
regions in the parameter space where the contribution of the sleptons and thus the
whole branching ratio is largest, we performed parameter scans over the m0-m1/2-
plane while fixing BR(µ→ eγ). The results of this scans are shown in Fig. 7.6 for
BR(χ̃0

2 → χ̃0
1µe), Fig. 7.7 for BR(χ̃0

2 → χ̃0
1τe) and Fig. 7.8 for BR(χ̃0

2 → χ̃0
1τµ). We

see that there is a clear threshold where the branching ratios come up to sizable
orders of magnitude in the range of a few percent. The reason for that one finds by
looking at the mass spectrum: When the left charged sleptons become lighter than
the neutralino χ̃0

2 and thus get on-shell in the diagram of Fig. 7.1, the branching ratio
for the decay becomes large. This level crossing effect is illustrated in Fig. 7.9. Here
we see that the critical influence comes from the left sleptons which go on-shell at
m1/2 values of about 1550 GeV – exactly the point where the LFV branching ratios
become sizable. This confirms the assumption of section 5.3 where we considered in
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Figure 7.6: BR(χ̃0
2 → χ̃0

1µe) at fixed BR(µ→ eγ) for variation of m0 and m1/2. The
neutrino mixing parameters are at tri-bi-maximal values, A0 = 0 GeV,
tan(β) = 10, sgn(µ) = +1, R = 1. The contour levels from red to yellow
are (0.00, 0.01, 0.02, 0.03, 0.04). The black region in the contour plot is
excluded by a charged LSP.
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Figure 7.7: BR(χ̃0
2 → χ̃0

1τe) corresponding. Fig. 7.6. The contour levels from red to
yellow are (0.00, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035).

a first approximation only the LL type mass insertions for the left-handed sleptons.
The masses of the involved particles at an examplary mSUGRA point are shown in
Tab. 7.1 where one can see that the left sleptons are significantly heavier than the
right ones, carrying very similar masses among themselves, respectively.

From Figs. 7.6, 7.7 and 7.8 we notice that the threshold depends strongly on the
gaugino mass parameter m1/2 but varies only slightly with the scalar mass parameter
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Figure 7.8: BR(χ̃0
2 → χ̃0

1τµ) corresponding. Fig. 7.6. The contour levels from red to
yellow are (0.00, 0.02, 0.04, 0.06, 0.08, 0.1).
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Figure 7.9: BR(χ̃0
2 → χ̃0

1lilj) (left panel) for m0 = 250 GeV compared to the mass
spectrum of the neutralinos χ̃0

2 (orange), χ̃0
1 (red) and the charged sleptons

(dashed lines); the right sleptons l̃1, l̃2, l̃3 (blue) are lighter than the left

ones l̃4, l̃5, l̃6 (green). The neutrino parameters are at tri-bi-maximal
values, normal neutrino mass hierarchy and R = 1; Mseesaw varies to fit
BR(µ→ eγ) to the bound.

m0. Especially the asymmetric regions in the m0-m1/2-plane are interesting, preferring
large m1/2 and rather small m0 values. After crossing this limit, the branching ratios
aproach some kind of saturation, i.e. they increase only slightly with larger m1/2,
so we reach up to 4% for BR(χ̃0

2 → χ̃0
1µe), 3% for BR(χ̃0

2 → χ̃0
1τe) and 8% for

BR(χ̃0
2 → χ̃0

1τµ). However, at m1/2 values this large, the right sleptons do soon
become lighter than the neutralino χ̃0

1. Therefore it is no longer the LSP, but one of
the charged leptons takes its place, and so these regions are no longer interesting
(cf. 3.6). Therefore, we assume the most promising parameter points to be close to
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sparticle mass [GeV] main character

χ̃0
1 484.58 B̃0

l̃1 539.64 τ̃R

l̃2 549.78 µ̃R

l̃3 549.82 ẽR

l̃4 839.53 τ̃L

l̃5 847.54 µ̃L

l̃6 849.59 ẽL

χ̃0
2 906.38 W̃ 0

Table 7.1: Masses of the sleptons and lighter neutralinos for an exemplary point of
Fig. 7.9: m0 = 250 GeV, m1/2 = 1800 GeV, Mseesaw = 6.57 · 1013 GeV
and BR(µ→ eγ) = 2.25 · 10−12. The right column gives the dominating
particle character of each mass eigenstate as given by the respective mixing
matrices.

the thresholds. The regions excluded by featuring a charged slepton LSP are drawn
black in the contour plots.

Since the influence of the mass spectrum is crucial, the variation of the trilinear
coupling parameter A0 has also been tested. In Fig. 7.10 the contour plot of Fig. 7.6
for BR(χ̃0

2 → χ̃0
1µe) is repeated twice for A0 = −1000 GeV and A0 = +1000 GeV,

respectively. The limit is shifted to higher m1/2 values in both cases, though only
slightly for positive A0 and clearly more for negative A0. Here, the maximum BR
values after crossing the threshold hardly change; only BR(χ̃0

2 → χ̃0
1τµ) increases at

A0 = +1000 GeV up to 12%. Indeed, this effect is small and does not change the
overall order of magnitude compared to the values at A0 = 0 GeV, but it also has
effects on the mass spectrum, allowing also regions that are excluded for A0 = 0 GeV
because of a slepton LSP. Fig. 7.11 displays the variation of the BR(χ̃0

2 → χ̃0
1lilj)

with A0, reaching a maximum at about 300 GeV.
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Figure 7.10: Contour plots like in Fig. 7.6 for various A0 parameter values: A0 =
−1000 GeV (left panel) and A0 = +1000 GeV (right panel). The
contour levels from red to yellow are (0.00, 0.01, 0.02, 0.03, 0.04, 0.05)
for the left and (0.00, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03) for the right
plot.
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Figure 7.11: BR(χ̃0
2 → χ̃0

1µe) (blue), BR(χ̃0
2 → χ̃0

1τe) (red) and BR(χ̃0
2 → χ̃0

1τµ)
(yellow) versus the trilinear mSUGRA parameter A0 for two 24-plets,
m0 = 250 GeV, m1/2 = 1800 GeV and the basic tri-bi-maximal neutrino
mixing parameters.

7.3 Branching ratios and cross sections

In the next step we calculated the production cross section σ of the neutralino
χ̃0

2 for a
√
s = 14 TeV proton-proton collision times the branching ratio of the
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respective LFV decay for promising regions of the parameter space. In the narrow-
width-approximation [65, 66], one can to this to simplify the complexity of scattering
amplitudes by assuming that the cross section for a process factorizes into a production
cross section of an unstable particle and the branching ratio of its decay into the
final state particles:

σ = σprod ×
Γ

Γtot

= σprod × BR (7.4)

The calculation of the production cross section of the neutralino χ̃0
2 was done in

the same way as in [67] using the package LHC FASER [68]. This program interpolates
for a given spectrum the production cross sections of the colored sparticles between
certain points that have been calculated before with PROSPINO [69] at 1-loop order.
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Figure 7.12: Grid calculation of σ(χ̃0
2)× BR(χ̃0

2 → χ̃0
1µe) (blue), σ(χ̃0

2)× BR(χ̃0
2 →

χ̃0
1τe) (red) and σ(χ̃0

2) × BR(χ̃0
2 → χ̃0

1τµ) (yellow) in femtobarn over
m1/2 for different values of m0; all other parameters are fixed at the
values of e. g. Fig. 7.11. The edges arise from a finite resolution.

Fig. 7.12 shows this calculation for variation of m1/2 and three different fixed
m0 values. Obviously, σ×BR gets into sizable orders of magnitude at the same
thresholds as observed in the previous section. For m0 = 50 GeV and m0 = 100 GeV
one can state a sudden decrease above a certain m1/2 value where the neutralino
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χ̃0
1 becomes heavier than the lightest slepton, leading to a charged LSP, which is

excluded by dark matter constraints. σ×BR is largest for the decay χ̃0
2 → χ̃0

1τµ with
values up to a few femtobarn. With

n = σ(χ̃0
2)× BR(χ̃0

2 → χ̃0
1lilj) · L (7.5)

we get the result that, with an expected luminosity of L = 100 fb−1 for the
√
s =

14 TeV LHC run, at least a few hundred events could be seen. We suspect that the
observed points with the highest σ×BR are near to the maximum. With an even
finer and more extensive parameter study these values could be increased a little bit.
However, since the calculation of the production cross sections has an uncertainty up
to 20%, this effort is not appropriate.

The appearance of a large τ–µ flavor violation could be observed in many models
that include LFV [70]. Of course it arises mainly from the fact that the other flavor
combinations (especially µ–e) are constrained strongly from low energy data. As
shown in the previous sections, these constraints also lead to suppressed neutralino
decays with the same flavor violation. However, since the τ leptons decay already
in the detector, they cannnot be measured as good as muons or electrons, so the
potential to find χ̃0

2 → χ̃0
1eµ may be higher than for the decays including τ leptons

in the final state.

7.4 Monte Carlo study

For the last step of our phenomenological studies we chose the most promising
parameter point from the previous studies (cf. Fig. 7.12)

m0 = 50 GeV, m1/2 = 1484 GeV, A0 = 0 GeV, tanβ = 10 and µ > 0 (7.6)

and performed a Monte Carlo simulation for the LFV χ̃0
2 decays using the program

WHIZARD [71, 72]. The WHIZARD model file for the seesaw III as well as the parameter
input file were generated with SARAH [59–61] resp. SUSY Tool Box [73]. A Les
Houches Accord input file to calculate the spectrum for this point is shown in the
appendix A. From the calculations in section 7.3 we obtained for this point the values

σ(χ̃0
2)× BR(χ̃0

2 → χ̃0
1µe) = 1.35037 fb⇒ nµe = 135 events (7.7a)

σ(χ̃0
2)× BR(χ̃0

2 → χ̃0
1τe) = 0.79119 fb⇒ nτe = 79 events (7.7b)

σ(χ̃0
2)× BR(χ̃0

2 → χ̃0
1τµ) = 3.83413 fb⇒ nτµ = 383 events (7.7c)

for a luminosity L = 100 fb−1. These cross sections are calculated at 1-loop level,
whereas the Monte Carlo study only considers tree-level diagrams. However, since
we also know the tree-level cross section from the PROSPINO interpolation, we can
scale the simulation results by the so-called K factor

K =
σNLO

σLO

(7.8)
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to get an approximation for the 1-loop values. Since the K factor depends on
the colored particles involved in the cascade, it is equal for the different lepton
combinations in the final state and given by

K ≈ 1.18. (7.9)

For each process we simulated the number of events given by Eq. 7.7 as expected
from the 1-loop calculations. However, for these numbers of events the expected edge
structure [74] could not be observed well because of large statistical fluctuations. So
we increased them by a factor 3, assuming a high-luminosity LHC run with 300 fb−1

that is still under discussion.
The detector signal is specified by two leptons with distinct flavor and charge l±i ,

l∓j , two hadronic jets from the squark decays Eq. 7.2 and missing transverse energy
/ET from the escaping neutralino LSPs χ̃0

1. Assuming narrow width approximation,
we considered only the cascade decays

pp→ q̃L/Rq̃L/R → qχ̃0
1 + qχ̃0

2 → qqχ̃0
1χ̃

0
1lilj (7.10)

and neglected the small contributions from gluino pair or gluino-squark pair produc-
tion. We summed over all charges and flavors expect for top quarks in the final states
since they have to be reconstructed in a special way. For the last step of Eq. 7.10, we
did not use narrow width approximation but considered all contributing diagrams.
Therefore, also off-shell particles are allowed, with the respective consequences for
kinematics.

To distinguish the signal from possible background processes it is convenient to
look at the mass distribution of the two leptons in the final state. The invariant
mass is given by

m2
lilj

= (pli + plj)
2. (7.11)

Considering the kinematics of such two body decays as was done in [74], we expect
characteristic edges in the invariant di-lepton mass spectra. Their positions depend
on the mass of the intermediate slepton l̃k(

medge
lilj

)2

=
(m2

χ̃0
2
−m2

l̃k
)(m2

l̃k
−m2

χ̃0
1
)

m2
l̃k

. (7.12)

For the spectrum at the chosen point we get the values listed in Tab. 7.2 where
also the neutralino masses are shown. From Tab. 7.1 and Fig. 7.9 we know that the
contributions from the right sleptons can be neglected, since the channels including
these particles have tiny BRs. We expect the main edge at about 140 GeV; here the
differences between the medge

lilj
of the different channels including left sleptons can

lead to a less sharp edge. However, statistics can produce single events between this
threshold and the medge

lilj
value of the right sleptons at about 230 GeV.

For τ leptons in the final state, we have to consider the effects of subsequent
decays: Since the neutrinos cannot been seen in the detector, leptonic decay channels
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sparticle mass [GeV] medge
lilj

[GeV]

χ̃0
1 344.58

l̃1 376.92 213.07

l̃2 385.95 233.86

l̃3 385.98 232.93

l̃4 621.94 148.32

l̃5 625.05 139.27

l̃6 625.89 136.72

χ̃0
2 646.96

Table 7.2: Mass spectrum of the involved neutralinos and the sleptons at the chosen
parameter point Eq. 7.6; the right column shows the respective values of
medge
lilj

for the different slepton channels.

cannot be distinguished from primary electrons or muons. Thus, only the hadronic
jet-like τ decays can be considered to detect it. For this reason the edges will become
less sharp for the final states including τ leptons. This smearing arises from neutrino
emission. Therefore, the process with µ–e in the final state is very interesting in
spite of the fact that less events are expected than for τ–µ.

Figs. 7.13, 7.14 and 7.15 show the results of the signal studies where one can state
the characteristic edges in the distribution over the invariant mass of the leptons.
For µ–e in the final state, we observe these edges at the expected values. As we
expected, the main contributions stem from l̃5 and l̃6 which are mainly µ̃- and ẽ-like,
respectively. The τ–e case shows a similar behavior but is harder to evaluate due
to the smaller number of events. We state that the mostly τ̃ -like slepton l̃4 gives a
small contribution compared to l̃6. For τ–µ scenario, we can guess the characteristic
double edge structure. The first edge stems from cascades including l̃5, whereas the
other one at about 148 GeV comes from the l̃4 contribution. A few events exceed
this threshold; this effect arises due to the off-shell particles.

To estimate the potential for the discovery of the LFV χ̃0
2 decays, we need the

ratio of signal to possible background events. In this work, this could not be done in
a satisfactory manner. However, when we set suitable cuts for the search – especially
for missing transverse energy /ET –, we strongly can reduce the SM background that
arises mostly from neutrinos escaping the detector. This was discussed in [70] for
τ–µ in the final state where also a detector simulation for the ATLAS experiment [2]
can be found. For our simulation we chose a cut of

/ET > 75 GeV. (7.13)

Together with a limit on the detection angle θ between the beam axis and the
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Figure 7.13: Invariant mass distributions for χ̃0
2 → χ̃0

1µe for 405 simulated events
assuming a luminosity of 300 fb−1; 378 events passed the cuts.

momentum direction of the respective particle

|η| = |− ln tan(θ/2)| < 2.5, (7.14)

this cut only threw away less than 7% of the simulated signal events leading to the
total numbers of events shown in the respective figures.

The largest SM contributions stem from tt production. Nevertheless, a more
important issue are the background reactions from the decay of supersymmetric
particles, arising from different decay cascades of the squarks and the gluino. In
particular, the production of chargino pairs that decay into pairs of W bosons and
neutralinos can generate a sizable number of background events, since the W bosons
can decay into l±i ν

∓
i with different flavor. Stemming from different decay chains,

the charged leptons in such processes are uncorrelated. Therefore, we expect the
invariant mass distributions of the charged leptons in these processes to be relatively
flat or even slightly decreasing with increasing mlilj [74]. Hence, there is a justified
hope that the triangular edge structure of the LFV signal can still be observed over
this flat background, but this needs to be tested in the future.
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Figure 7.14: Invariant mass distributions for χ̃0
2 → χ̃0

1τe for 237 simulated events;
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Figure 7.15: Invariant mass distributions for χ̃0
2 → χ̃0

1τµ for 1149 simulated events;
1099 events passed the cuts.
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Chapter 8

Summary and outlook

In this work we have studied the phenomenological properties of the supersymmetric
seesaw type III. This mechanism introduces at least two heavy fermionic triplets
belonging to the adjoint representation of SU(2)L to the particle spectrum of the
MSSM. These new states generate the neutrino masses and mixings required to
explain neutrino oscillation measurements. To maintain gauge coupling unification,
the triplets are embedded in 24-plets under SU(5). After breaking this symmetry
to the SM gauge group at the scale MGUT, these 24-plets decompose into different
representations of SU(3)C × SU(2)L × U(1)Y . Two of these components have the
same quantum numbers as the aforementioned fermionic triplet and the singlet
right-handed neutrino. Therefore, the 24-plet always produces a combination of type
I and type III seesaw.

According to present data one massless or very light neutrino is still possible. For
that case, the realization with two 24-plets also leads to a viable model. To describe
three similar neutrino masses, we need three generations of 24-plets in general. Since
the new particles are charged under the SM gauge group, they also contribute to the
β coefficients of the RGEs, leading to a stronger running of the gauge couplings and
thus a lighter sparticle spectrum than in the type I model. The new heavy states also
induce off-diagonal entries in the left slepton squared mass matrix. This can produce
large contributions to the branching ratios of rare lepton decays like li → ljγ and
li → 3lj via 1-loop diagrams including charged sleptons and sneutrinos. Compared
to the seesaw type I, these BRs are increased in the type III for similar mSUGRA
parameters: On the one hand, this is due to the lighter sparticles, since the BRs scale
like high inverse powers of SUSY masses. The other reason is that the off-diagonal
entries induced by the seesaw mechanism are larger in the type III model.

However, these branching ratios are constrained to tiny values by direct searches,
especially BR(µ → eγ) where the current experimental bound is 2.4 · 10−12. So,
the first aim of this work was to study the parameter space with respect to these
experimental constraints. In order to do so, we have used the mass insertion
approximation which allowed us to calculate first estimates to understand the behavior
of the BRs. Then we have tested these results by numerically calculating the spectra
and branching ratios. Indeed, we found that the BRs behave in the same way as the
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mass insertions.

For two generations of 24-plets, we obtain a working model by choosing a
sufficiently low seesaw scale. However, we have shown that a higher Mseesaw also
can be realized as soon as we achieve special cancellations arising between different
contributions to the off-diagonal entries in the slepton squared mass matrix. These
cancellations appear for various combinations of mass hierarchies and mixing angles.
In the three-generation model we find a different situation: As long as no accidental
cancellation arises, we find BR(µ → eγ) to be above the experimental bound in
general – for all allowed values of the seesaw scale. Nevertheless, we have found that
such cancellations appear in distinct parameter constellations. We have investigated
them for both real and complex non-zero values of the seesaw specific parameters and
the neutrino mixing parameters within the range allowed by experiment. Another
important role is played by the hierarchies of the heavy masses (degenerate or
hierarchical) and of the neutrino masses and the value of the lightest neutrino mass.
Altogether, there are many different parameter points where the three 24-plet model
has not yet been excluded by experiment, even if BR(µ → eγ) is constrained to
values a few orders of magnitude smaller than the current bound. Then, of course,
an even more precise fine tuning is required. The bounds for other LFV decays
like li → 3lj do not produce additional strong constraints on our models: We have
investigated these decays and stated that their BRs behave similarly to BR(li → ljγ),
thus not leading to further conflicts with data as long as the latter ones are sufficiently
suppressed.

In the next step we have considered lepton flavor violating decays of the super-
symmetric particles that can potentially be observed at the LHC, with a focus of the
decay of the next-to-lightest neutralino χ̃0

2 into two leptons with different flavor and
the lightest neutralino χ̃0

1, in regions where χ̃0
1 is the LSP. This process is mediated

by sleptons and thus its branching ratio becomes large as soon as they are the only
on-shell particles. In general, we have found that these decays behave similarly to
the rare lepton decays mentioned above, especially concerning the cancellation points.
Therefore, we have used an iterative calculation to fix BR(µ→ eγ) to values close
to the experimental bound by varying the seesaw scale. With this procedure we
have tested the influence of the mSUGRA parameters on the LFV χ̃0

2 decay in the
two 24-plet model. We could identify regions where the branching ratios are in
the order of several percent – up to 10% for BR(χ̃0

2 → χ̃0
1τµ). For these interesting

points we have estimated the cross sections (resp. σ×BR) for the flavor violating
cascade decays with the result that at least a few hundred events can be found at
a
√
s = 14 TeV LHC with a luminosity of L = 100 fb−1. Finally, we have done

a Monte Carlo simulation on this issue for three different lepton signals. Studies
on possible background processes, especially on SUSY background reactions, still
have to be done. Also signals including more than two jets in the final state arising
from cascades including gluinos have to be tested. In total, we expect that there
is a good chance to see flavor violating processes at the LHC if a scenario of the
supersymmetric seesaw type III is realized in nature.
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For further studies it would be interesting to check the LHC phenomenology
also for the three-generation model. To do this, one has to consider a cancellation
point where BR(µ→ eγ) is suppressed, followed by a search for the most suitable
mSUGRA parameters to achieve large BRs for the LFV neutralino decays, at least
for BR(χ̃0

2 → χ̃0
1τe) and BR(χ̃0

2 → χ̃0
1τµ). Similar to the case of two 24-plets where

µ → eγ was suppressed naturally for a suitable seesaw scale, we also expect large
BR(χ̃0

2 → χ̃0
1µe) if we go near a cancellation so that BR(µ→ eγ) is below but close

to the bound again.
If µ→ eγ or other rare lepton decays could be measured in the near future, the

parameter space of the model could be determined more precisely. On the other
hand, if the bound should be shifted to even lower values, special cancellations would
turn out to be even more necessary.
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Appendix A

Input file

SUSY Les Houches Accord input file LesHouches.in for the data point Eq. 7.6 to run
the program SPheno [56, 57].

Block MODSEL # Select model

3 10 # mSugra

5 2 # CP violation

6 1 # switching on flavour violation

12 1000 # Q Scale

Block SMINPUTS # Standard Model inputs

2 1.166390E-05 # G_F, Fermi constant

3 1.190000E-01 # alpha_s(MZ) SM MSbar

4 9.118760E+01 # Z-boson pole mass

5 4.200000E+00 # m_b(mb) SM MSbar

6 1.712000E+02 # m_top(pole)

7 1.777000E+00 # m_tau(pole)

Block MINPAR # Input parameters

1 5.000000000E+01 # m0

2 1.48421050E+03 # m12

4 1 # sign(mu)

5 0.000000E+00 # A0

Block EXTPAR # Input parameters

25 1.000000E+01 # tanb

Block SPhenoInput # SPheno specific input

1 -1 # error level

2 1 # SPA conventions

11 1 # calculate branching ratios

12 1.00000000E-04 # write only branching ratios larger than this value

21 0 # calculate cross section

38 2 # gives loop level used in the RGEs

39 1 # writes additional SLHA file SPheno_1.spc

Block YB3IN #

1 1 -5.25194830E-02 # Re[Y_(b,1,1)]

1 2 -5.25194830E-02 # Re[Y_(b,1,2)]

1 3 5.25194830E-02 # Re[Y_(b,1,3)]

2 1 0.00000000E+00 # Re[Y_(b,2,1)]

2 2 -1.54748190E-01 # Re[Y_(b,2,2)]

2 3 -1.54748190E-01 # Re[Y_(b,2,3)]

3 1 6.00000000E-06 # Re[Y_(b,3,1)]

3 2 0.00000000E+00 # Re[Y_(b,3,2)]

3 3 0.00000000E+00 # Re[Y_(b,3,3)]
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Appendix A. Input file

Block ImYB3IN #

1 1 0.00000000E+00 # Re[Y_(b,1,1)]

1 2 0.00000000E+00 # Re[Y_(b,1,2)]

1 3 0.00000000E+00 # Re[Y_(b,1,3)]

2 1 0.00000000E+00 # Re[Y_(b,2,1)]

2 2 0.00000000E+00 # Re[Y_(b,2,2)]

2 3 0.00000000E+00 # Re[Y_(b,2,3)]

3 1 0.00000000E+00 # Re[Y_(b,3,1)]

3 2 0.00000000E+00 # Re[Y_(b,3,2)]

3 3 0.00000000E+00 # Re[Y_(b,3,3)]

Block MWMIN #

1 1 2.50113000E+13 #

2 2 2.50113000E+13 #

3 3 1.00000000E+17 #
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