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Zusammenfassung

In unserer Arbeit haben wir einen Ansatz von Giddingset al. [1] aufgegriffen, um Observablen in effek-
tiven Quantengravitationstheorien zu definieren und zu untersuchen. In der oben genannten Arbeit wurde
gezeigt, dass die lokalen Observablen der Feldtheorie keine sinnvollen Größen in Quantengravitations-
theorien sind, man aber durch Integration über die gesamteRaumzeit sinnvolle Observablen konstru-
ieren kann. Diese integrierten Observablen sind zwar invariant unter den Eichsymmetrien der Gravitation,
d.h. den lokalen Koordinatentransformationen, aber sie sind offensichtlich nicht lokal.

Der zweite Schritt ist es nun, geeignete Variablen des Systems als Uhr- und Maßstabvariablen zu
verwenden, um relativ zu ihnen Lokalität beschreiben zu k¨onnen. Diese Variablen müssen ebenfalls in
geeigneten Zuständen vorliegen, damit man sie zur Lokalisierung verwenden kann. Durch diesen Begriff
der relationalen Lokalität erkennt man, dass die Lokalisierung von Observablen ein dynamisches Problem
darstellt, und somit unverweigerlich über die Gravitationswechselwirkung auf die Geometrie zurückwirkt.
Je präziser wir die Observablen auf der Raumzeit auflösen möchten, desto höhere Energien sind notwendig,
und desto mehr Rückwirkung entsteht.

Wir werden in dieser Arbeit im Rahmen der perturbativen Quantengravitation die Rückwirkung der dy-
namischen Lokalisierung auf die Geometrie untersuchen. Diese Theorien liefern eine intrinsische Grenze
an die Lokalität, welche durch den Zusammenbruch der Störungsreihe gegeben ist. Diese Untersuchungen
geben zwar keine Auskunft über die Lokalisierung in nichtperturbativen Quantengravitationstheorien, sie
geben jedoch Aufschlüsse über die sogenannte semiklassische Lokalität. Doch genau diese semiklassische
Interpretation der Lokalität über eine fixierte Hintergrundgeometrie ist zur Zeit notwendig, da die meis-
ten Hochenergieexperimente Streuexperimente sind, für deren Interpretation durch heutige Theorien man
noch einen fixierten Hintergrund benötigt. Somit ist die semiklassische Lokalität auch die Grenze, bis zu
welcher wir heute die lokale Physik verstehen können.

Wir werden im folgenden zuerst kurz in die Grundlagen der effektiven Quantengravitation und deren
Beschreibung auf fixierten Hintergründen eingehen. Es werden die Konzepte von relationalen Dirac-
Observablen und den damit zusammenhängenden Uhr-und Maßstabvariablen eingeführt. Danach werden
wir zwei explizite quantenfeldtheoretische Modelle untersuchen, welche solche integrierten Observablen
beinhalten, die in geeigneten lokalisierten Wellenpaket-Zuständen von skalaren Uhr- und Maßstabvariablen
dynamisch lokalisiert werden können. Diese Observablen werden als pseudo-lokal bezeichnet, da sie aus
nichtlokalen Operatoren unter der Anwendung geeigneter lokalisierter Zustände entspringen. Es werden
die Grenzen der Lokalisierung mithilfe dieser beiden Modelle untersucht und diese miteinander verglichen.

Am Ende widmen wir uns der Frage, welche Effekte stärker denZusammenbruch der perturbativen
Quantengravitation beeinflussen, die klassischen oder diequantentheoretischen Geometrieeffekte. Hierzu
werden wir die pseudo-lokale Selbstgravitation zweier sich kreuzender skalarer Wellenpakete sowohl klas-
sisch als auch quantenfeldtheoretisch bestimmen und miteinander vergleichen.
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Chapter 1

Introduction

The understanding of space and time was revolutionized by Einstein with the development of the general
theory of relativity. This theory is different from most of the others, since it does not only give some
new dynamics or interactions, but also posits the nature as awhole to be invariant under a new kind of
spacetime symmetry, the diffeomorphisms of the spacetime manifold. Because of this symmetry, nature
has to be described in a background independent way, which means that we do not introduce a background
on which we describe dynamics, but we have to describe geometry together with its matter content as a
whole.

The assumption of diffeomorphism invariance of the whole system has striking consequences. For
example every dynamical degree of freedom introduced to thesystem will interact with the geometry
through gravitational interactions, since any kind of energy is a source of gravity. Moreover this interaction
can not be screened, such that it is always present.

Another effect which directly follows from diffeomorphisminvariance is that parameterizing the theory,
that is using parameter coordinates, does not work anymore,since the diffeomorphisms are a gauged sym-
metry and hence these parameter coordinates are unphysical. Because of this we can not use the “local”
observables we know from local field theory any longer and have to think about other observables, which
are gauge invariant under the symmetries of the system.

In particular, if we want to construct a diffeomorphism invariant framework based on local field theory,
we have somehow to “remove” the dependence on the parameter spacetime from “local” observables. One
way to achieve this is to integrate over the whole parameter spacetime and therefore mapping “local”
observables to nonlocal ones [1]. This technique can be understood as a kind of group averaging over the
group of spacetime diffeomorphisms, with the natural invariant measuredµ = d4x

√−g.
At this point a very serious problem occurs. Since one can show that every diffeomorphism invariant

observable must not depend on parameter spacetime [1] we have either observables constant over spacetime
or integrated ones, which includes theS-matrix, if it exists. With none of them the description of local
physics is possible at a first sight. This fact would have serious consequences since we are definitely local
observers and measure local quantities in experiments. Andthe main purpose of a theory is to predict
measurable quantities. Is therefore general relativity nophysical theory?

The answer is no, since there is an elegant and very natural way out of this problem by defining relational
observables [1]. The main idea of this approach is to choose some dynamical variables as clocks and rods
and measure space and time with respect to them. This approach is even very natural in classical general
relativity, since there one always talks about space and time with respect to some ideal clock located at some
preferred position, e.g. an ideal clock at the desk in my office. We now just have to specify the measurement
of “reading the clock” in order to talk about time. It was already Einstein and later also DeWitt who have
noticed the fact that “the description of the flow of time requires a self-consistent inclusion of the actual
dynamical degrees of freedom that register this flow” [1], which means that time has to emerge from the
dynamical theory itself and is no external parameter.

In the case of quantum general relativity the definition of relational observables is a sensible approach
too, see e.g. [1, 2] and references therein. For relational quantum observables it is also very important
that only the interplay between specially prepared quantumstates and specially chosen operators leads
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to a sensible definition of “locality”. These special operators, which in specially prepared states can be
interpreted as “local” ones are from now on called pseudo-local.

Since the clock and rod variables are dynamical variables, i.e. some matter fields or part of the metric
field, the localization of pseudo-local observables is a dynamical problem. If we take the clock and rod
variables to be some matter fields, we could for example thinkabout localizing some observables with
particle excitations of these fields. More specifically we could localize some spacetime pointx if we
generate a two particle wave packet state with wave packets only overlapping in a region aroundx.

It now becomes clear that any kind of localization has to be anexcitation of the ground state and there-
fore will cause backreaction on the geometry through the gravitational interaction. This fact has dramatic
consequences on the limits on localization, since the theory will have some “internal cutoff” to localization,
which is an effect quite natural in quantum gravity.

In order to interpret locality we will assume that the state of the universe is sufficiently semiclassical
to separate off a background geometry. In this case the concept of locality is understood. If we now
localize with a higher and higher precision the state will become more and more non-semiclassical, for
example a black hole, because backreaction will be very strong. If the state is so far from semiclassicality
that a background can not be extracted anymore, we loose the interpretation of locality. We interpret this
transition from a semiclassical to a non-semiclassical state as the limit on localization, since at this stage
we loose our conceptional understanding of locality.

The framework in which we will study the dynamical process oflocalization will be quantum field
theory on a fixed background. Here the assumption of a semiclassical quantum state is used in order to
separate off the background and describe only the fluctuations on it dynamically. This effective approach
to quantum gravity has the advantage that we can describe thedynamics with methods from perturbative
quantum field theory on fixed backgrounds. In this formalism the breakdown of the theory can come
from two different sources. First, quantum geometry effects could enter such that no classical background
can be extracted any longer. But second, also classical curvature effects would lead to the breakdown of
the theory defined on a fixed background, since we do not include the classical dynamics of the classical
background and neglect classical geometry changes. The question which effects will be stronger will be
further discussed at the end of this work.

Another totally different point of view on the breakdown of perturbative gravity is the following. Since
most present small scale experiments are performed by scattering of particles, our understanding of small
scale physics relies on scattering theory, which today necessarily requires a fixed background. Hence the
breakdown of the perturbation theory including gravitons reflects the breakdown of the understanding of
locality in today’s picture. In other words, a full theory ofquantum gravity with the possibility to enter
smaller scales does not necessarily improve our understanding of locality, because we do not know yet how
to interpret the scattering experiments testing these small scales. This motivates the investigation of the
perturbative limits on locality.

This work is devoted to the investigation of the localization of a certain class of pseudo-local observables
on a flat background. We will restrict ourselves to bosonic matter fields, where by matter we mean every
nongravitational field, including photons for example. Thereason for that is that fermions would require a
reformulation of metric variable gravity into vielbein andconnection variables, which would unnecessarily
complicate the technical part of our work. We assume that thebasic features of dynamical localization can
also be studied in bosonic theories.

In chapter 2 we will introduce the necessary mathematical basics in geometry and (constraint) quan-
tization. We will keep this chapter rather short because we assume the reader to be familiar with these
topics.

In chapter 3 we give a short introduction to effective quantum gravity and possible Dirac observables
in it. In particular we will describe how in situations when the universe is in a suitable semiclassical state
we can separate off a background and describe only metric fluctuations dynamically. Furthermore we will
show that even if a background is fixed there remains a residual gauge symmetry for the gravitons.

In chapter 4 we perform the canonical quantization of linearized gravity using BRST methods in Fock
space. We will work out the physical Hilbert space for the gravitons using cohomology methods and
determine the physical graviton polarizations.

In chapter 5 we investigate a definite model on Minkowski background which gives rise to pseudo-local
observables of a scalar field which are localized with respect to other scalar fields through matter three
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point interactions [1]. For a suitable localization we haveto prepare tight wave packets for the clock and
rod field, which include high energy and momentum states. Higher energies will lead to more and more
graviton loop contributions to the process of localization, such that at a certain ratio of loop corrections
the theory breaks down. This energy scale where the theory breaks down will be interpreted as the limit
on localization. The inverse scale therefore will be the smallest length scale up to which we can use our
semiclassical picture of locality, using the above defined clocks and rods.

As a kind of crosscheck to the results of chapter 5 we investigated in chapter 6 a model with a Yang-
Mills gauge field coupled to scalar matter field in the presence of gravitons on a flat background. This
theory contains a three point interaction vertex as well, sothat there exist similar pseudo-local observables
as in chapter 5. We have performed the same analysis as for thepure scalar model in order to find out if
there is some universality of the results.

In chapter 7 we will approach the question what kind of effectis dominant to the breakdown of perturba-
tive quantum gravity, the quantum or the classical geometryeffects. We will investigate the self-gravitation
of two crossing wave packets in perturbative quantum and classical gravity and compare the results.

Finally chapter 8 concludes this work by a compact summary ofthe results.
Additional (interesting) insights gained throughout thiswork as well as rather lengthy expressions and

calculations were put into the appendix. It also contains the instruction how one can modify FeynArts and
FormCalc [3] in order to include gravitons.

3



Chapter 2

Physical and mathematical basics

2.1 Notation and conventions

This chapter is devoted to introducing the necessary conventions used throughout this work. The Minkowski
metric is given byηµν = ηµν = diag(1,−1,−1,−1). Greek indicesα, β, ... are used to label indices of
Riemann or Minkowski tensors. Latin indicesi, j, k, ... are used to label spacelike indices of tensors. We
have the identityvi = −vi for any 3-vectorv, and the positive definite Euclidean scalar product is defined
between vectors with either both upper or both lower indices, i.e. (v, w)euclid := viwi = viwi = −viwi.
We use Einstein’s summation convention, but sometimes write explicitly the sums when it helps to avoid
confusion. The symmetrization and antisymmetrization of atensorT is given by round and square brackets
respectively

T(µν) :=
1

2
(Tµν + Tνµ) (2.1)

T[µν] :=
1

2
(Tµν − Tνµ) . (2.2)

We sometimes write partial/covariant derivatives as comma/semicolon operation in order to get more com-
pact expressions. The following definitions apply to the derivatives of some fieldV

V,µ := ∂µV and V;µ := DµV . (2.3)

When we work on a general 4-dimensional manifoldM, we always assume that it is globally hyperbolic,
i.e. the manifold can be topologically decomposed asM = R × Σ, whereΣ is a spacelike 3-dimensional
submanifold. A spacetime point is denoted byx ∈ M, and its spacelike part in boldface letters byx ∈ Σ.
The smearing of an operator densityO(x) onΣ by a functionf : Σ→ C is defined by

O(f) :=

∫

Σ

d3x
√−gΣ f(x) O(x) , (2.4)

if not stated otherwise. HeregΣ is the subspace metric onΣ.
Working on Minkowski spaceM4 := (R4, η), we use as wave packets the positive frequency square

integrable functionsL2(M4) solving the Euler Lagrange equations together with the covariant scalar prod-
uct

(f, g)cov := i

∫
d3x(f∗(x)∂tg(x)− ∂tf∗(x)g(x)) =: i

∫
d3xf∗(x)

↔
∂t g(x) . (2.5)

We will use natural units, i.e.~ = c = 1.
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2.2 Riemannian geometry

In this section we will introduce the general definitions in differential and Riemannian geometry we use
throughout this work. We assume the reader to be familiar with these ideas and therefore state the defini-
tions and formulas without explanation. For further information see e.g. [4].

The basic object in the following is am-dimensional differential manifoldM, which is a topological
space with a collection of charts{(Ui, φi)} such that

⋃
Ui =M andφi homeomorphisms betweenUi and

a subset ofRm. Having overlapping sets, i.e.Ui∩Uj 6= ∅, the chart exchangesφi ◦φ−1
j should be bijective

and smooth.
Given some smooth map between two manifoldsf : M → N there exists a natural functor to an

induced map between the tangential spaces and a cofunctor toa map between the cotangential spaces,
called thepushforward andpullback, respectively. The coordinate representation of these maps are given
by the Jacobian or inverse Jacobian matrix of the mapf .

A diffeomorphism f :M→N is defined as a homeomorphism betweenM andN with the property
that its chart representation is infinitely differentiable, i.e.C∞.

A (0, 2) tensor fieldg onM is called apseudo-Riemannian metricif it satisfies(i.) gp(U, V ) =
gp(V, U) for any pointp ∈ M andU, V ∈ Tp(M) and(ii.) if gp(U, V ) = 0 for anyU ∈ Tp(M) then
V = 0. HereTp(M) denotes the tangential space in the pointp ∈ M.

Using the coordinate representation of the metric and assuming a torsion-free manifold we can give
expressions for theconnectionsymbols (here Christoffel symbols), theRiemann tensorand theRicci
tensor. They are given by

Γαµν :=
1

2
gαβ(gµβ,ν + gνβ,µ − gµν,β) (2.6)

Rαµνβ := Γαµβ,ν − Γαµν,β + ΓανλΓ
λ
βµ − ΓλµνΓ

α
λβ (2.7)

Rµν := Rαµνα = Γλµλ,ν − Γλµν,λ + ΓσνλΓ
λ
σµ − ΓσµνΓ

λ
λσ , (2.8)

wheregαβ is the inverse metric, i.e. the(2, 0) tensor satisfyinggαβgβγ = δαγ .
The unique metric compatiblecovariant derivative, i.e.Dµgαβ = 0, is given by the following abstract

expression

Dµ := ∂µ + ωµ , (2.9)

whereω is an abstract connection, which can be expressed through a sum of Christoffel symbols when
acting on a tensor expression on the right. For example the covariant derivative of a vector and covector
field is given by

DµA
ν := ∂µA

ν + ΓνµαA
α (2.10)

DµBν := ∂µBν − ΓαµνBα , (2.11)

and for general(p, q) tensor fields it is given by using Leibniz’s rule for the abstract connectionω.
Working on a (pseudo)-Riemannian manifold there is a natural diffeomorphism invariantvolume ele-

ment given by
∫
dµ :=

∫
dmx

√
|g| . (2.12)

2.3 Basics in cohomology

Since we will later use some terminology of the theory of cohomology we will briefly give the required
definitions, without going too much into details.

For our purpose cohomology is the investigation of some nilpotent linear operationdi : Vi → Vi+1 (not
necessarily an automorphism) between some vector spacesVi. By nilpotency we mean that acting with the
operator twice on an element is zero, i.e.di+1(di v) = 0 ∀v ∈ Vi.

This fact leads to the following natural classification of those elements inv ∈ Vi with di v = 0:
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1. v is called acocycleor closed, if di v = 0

2. v is called acoboundaryor exact, if there exists aw ∈ Vi−1 with v = di−1 w

Note that every exact vector is closed by using the nilpotency.
A natural question which always arises in such context is thefollowing: Is every closed vectorv ∈ Vi

exact? This information is contained in the so calledi-th cohomology group defined by the factor space

Hi := Ker(di)/Im(di−1) , (2.13)

whereKer is the kernel andIm is the image of the operator.
At this point it makes sense to give some examples of physicalimportance. Assume as spaceVi the

space ofi-forms on a manifold and asdi = d the exterior derivative. It holdsd2 = 0 because of antisym-
metrization and therefore we have a system to which we can apply cohomology. The Lemma of Poincaré,
see e.g. [4], in particular states that every cohomology group is trivial in the caseM = Rm. One physical
implication for example is the fact that onR3 every rotation-free vector field is given by the gradient of
some scalar field.

In our case cohomology is used to classify physical operators and states in the presence of BRST sym-
metry. Physical quantities must be BRST closed, but are non-unique since the addition of exact quantities
does not change physics. Therefore the physical information is encoded in cohomology groups.

2.4 Classical dynamical systems

In this chapter we give the basics of classical dynamical systems in order to define some notation. We do
not distinguish between finite dimensional systems and infinite dimensional ones. A dynamical system, for
our purpose, is defined as follows.

Definition 1. A dynamical system is a topological manifoldΓ (with an even or infinite number of dimen-
sions), the so called phase space, together with a symplectic 2 formΩ and some given dynamical function
H : Γ→ R, sometimes called the Hamiltonian.
A symplectic 2 form is a non degenerate 2 form that is closed, i.e. the outer derivative vanishesdΩ = 0.

In such a system the algebra of all smooth functions from the phase space to complex numbers contains
the observables of the theory. This algebra has some extra structure coming from the symplectic formΩ
and is defined as follows.

Definition 2. A Poisson algebra is the associative and involutive⋆-algebra (Apoisson, ·) of all smooth
functions from the phase space to complex numbers together with an antisymmetric bilinear map{·, ·} :
Apoisson ×Apoisson → Apoisson called the Poisson bracket, which satisfies the Jacobi identity and Leibniz
rule. The multiplication operation in this algebra is defined by pointwise multiplication of the functions,
i.e. (f · g)(x) := f(x)g(x) for all x ∈ Γ, and therefore is commutative.

The nice thing about the symplectic form defined above is thatit gives a natural definition of the Poisson
bracket by

{A,B} := Ωab∂aA ∂bB , (2.14)

whereΩab is the inverse of the symplectic form, which exists because of the nondegeneracy ofΩ.
The dynamics of the system is given by the one parameter groupdefined from the Hamilton vector field

of the Hamiltonian, which is given by

XH := {·, H} : Apoisson → Apoisson . (2.15)

But we can also generate other flows by defining the Hamilton vector fields of the corresponding conserved
charges of the flow. The infinitesimal change of an observableO by the group action of some conserved
chargeG with parameterǫ is given by

δǫO := ǫ{O,G} . (2.16)
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At least locally the symplectic form can always be expressedin position and momentum variables as [4]

Ω := dqa ∧ dpa (2.17)

which leads to the following Poisson bracket

{A,B} =
∑

a

∂A

∂qa
∂B

∂pa
− ∂B

∂qa
∂A

∂pa
, ∀A,B ∈ Apoisson . (2.18)

The translation of this result to the field theoretic case is straightforward by identifyingqa → φ(x), pa →
π(x) and

∑
a →

∫
d3x
√−gΣ.

Finally we give the fundamental Poisson brackets between position and momentum variables for infinite
dimensional systems. They are given by

{φ(f), φ(g)} = {π(f), π(g)} = 0 (2.19)

{φ(f), π(g)} =

∫
d3x
√−gΣf(x)g(x) . (2.20)

2.5 Constrained systems and BRST formalism

A constrained dynamical system is defined to be a dynamical system together with a set of constraints
{χa : χa ∈ Apoisson andχa ≈ 0 for all a = 1, ...,m}, wherem is the number of constraint(densitie)s and
≈ denotes a weak equality, which is defined as follows

Definition 3. Two functionsF (q, p), G(q, p) ∈ Apoisson are called weakly equal, i.e.F ≈ G, if they
coincide on the constraint surface. They are called strongly equal, i.e.F = G, if they coincide on the
whole phase space. In particular, weakly vanishing functions can have nontrivial Poisson brackets on the
reduced phase space.

In this work we assume all constraints to be first class, i.e. the Poisson bracket of two constraints or
one constraint and the Hamiltonian is given by a linear combination of only the constraints. Second class
constraints do not appear in this work and therefore do not have to be defined. The interested reader is
referred to [5, 6].

Since we have first class constraints, we can in general write

{χa, χb} := Uabcχc (2.21)

{H,χa} := V abχb , (2.22)

whereUabc andV ab are assumed to be constants.
We assume that the set of constraints generates gauge transformations by their Hamilton vector fields,

which is given in most first class constraint systems, in particular in all the systems of physical relevance
known to us. But as a remark, there are also systems which violate this so called “Dirac conjecture”, which
is discussed in [6].

The gauge transformations are therefore induced by a linearcombination of the constraints with some
parametersǫa, which acts on an observableO by

δǫO = {O,χa[ǫa]} , (2.23)

whereχa[ǫa] =
∑
a ǫ

aχa in the case of finite dimensional systems and the sum of smeared constraints
χa[ǫa] =

∑
a χ

a(ǫa) in the field theoretic case.
In the presence of gauge symmetries we do not expect the wholePoisson algebraApoisson to be phys-

ical observables, since it contains elements which change under gauge transformations and therefore are
unphysical. The physical observables should be invariant under all gauge transformations. This idea can
be used to define physical observables in the following way [5].
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Definition 4. The physical observables, sometimes called Dirac observables, are exactly the observables
that have weakly vanishing Poisson brackets with all constraints. They form a Poisson sub-algebra of
Apoisson called the physical observable algebraAphys.

The reason whyAphys is a sub-algebra of the Poisson algebra is because if some observables have
vanishing Poisson brackets with the constraints, the finitesums and products also have vanishing Poisson
brackets by using the properties of definition 2. This sub-algebra is a Poisson algebra in its own right, since
the Jacobi identity guarantees that it is closed under Poisson brackets.

In the following we will discuss a certain method for investigating constrained systems, the BRST
method, which provides a powerfull tool especially for investigations of Yang-Mills theories [7, 8]. The
advantage of this method is that it naturally can be applied to perturbative quantum gauge field theories.
In this part we will follow [7] and refer to this work for further information and details. Furthermore we
restrict ourselves to bosonic phase space variables and therefore fermionic ghost variables.

The first step of this method is to introduce a phase space extension by fermionic variablesηa, called the
ghost variables, together with their conjugate momentaη̄a for every constraintχa, a = 1, ...,m. The spin
of the ghost variables has to be chosen such that the smeared constraintsχa[ηa] are scalars. In general this
results in a violation of the spin statistics theorem, whichis not problematic if we can show that ghosts do
not show up in the physical world. Since fermionic degrees offreedom are described by using Grassmann
numbers, we have to define a generalized Poisson bracket, theso called graded Poisson bracket, which is
given by [7]

{A,B}gr :=
∂rA

∂za
Cab

∂lB

∂zb
, (2.24)

wherez = (q, p, η, η̄) are the coordinates of the phase space andCab = {za, zb}gr are the fundamental
brackets which have to be defined.l andr indicates the derivative from the left or right, which is different
for Grassmann numbers. A natural definition of the fundamental brackets is so that they later, in quantum
theory, are given by commutators for bosons and anticommutators for fermions. Hence a possible choice
is that the ordinary bosonic coordinatesq andp have the same graded brackets as normal Poisson brackets
and the brackets for the ghost coordinates are given by

{η̄a, ηb}gr = −δab (2.25)

{ηa, η̄b}gr = −δab (2.26)

{η̄a, η̄b}gr = {ηa, ηb}gr = {ηa, bv}gr = {η̄a, bv}gr = 0 , (2.27)

wherebv denotes some bosonic variable. In the following we will omitthe subscriptgr and assume every
Poisson bracket to be graded.

For a consistent formalism we have to define the behavior of the ghost variables under complex conju-
gation. A possible definition, according to [7], is given by

ηa∗ = ηa (2.28)

η̄a∗ = −η̄a . (2.29)

Fundamental in the BRST formulation of a constrained systemis the definition of the generator of BRST
transformations which is given by

ΩBRST := χa[ηa]− 1

2
ηbηaUabcη̄c . (2.30)

It can be shown thatΩBRST is a fermionic, real and nilpotent generator, i.e.{ΩBRST,ΩBRST} = 0, which
generates gauge transformations with ghosts as “parameters” acting on bosonic variables [7].

With this new symmetry we can systematically definestrongly BRST invariant observablesOBRST out
of weakly gauge invariant observablesO by the extension

OBRST = O + (−)ǫ(O)ηaV abO η̄b + {ΩBRST,Ψ} , (2.31)
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whereǫ(O) denotes the Grassmann parity of the observableO andΨ is a general function of the variables
of the form

Ψ := ψa(1)[η̄
a] + higher powers of ghosts (2.32)

andV abO is defined by

{O,χa} := V abO χb (2.33)

which holds true, sinceO was defined to be a Dirac observable, i.e.{O,χa} ≈ 0.
Furthermore one can show that [7]

OBRST|ηa=η̄a=0 ≈ O|ηa=η̄a=0 (2.34)

and

{O(1)
BRST, O

(2)
BRST}|ηa=η̄a=0 ≈ {O(1), O(2)}|ηa=η̄a=0 . (2.35)

Hence the BRST invariant extension of an observable is well defined, since in the final result it is equivalent
to the canonical method, at least at classical level.

The main advantage of BRST symmetry does not lie in its classical formulation, but in its quantization.
The extra termΨ introduced in (2.31) can be used to fix the gauge and thereforechange the equations of
motion of the unphysical parts. This can be used to modify theequations of motion in order to perform
the Fock quantization, see e.g. [7] for quantum electrodynamics. Furthermore the BRST generatorΩBRST

together with the strongly BRST invariant Hamiltonian willbe used to define the physical states, i.e. the
physical Hilbert space of the theory, and their dynamics.

2.6 Canonical quantization

Throughout this work we will quantize our theories by using canonical quantization. This chapter is de-
voted to remind the reader of the basics of canonical quantization from an algebraic point of view [9].
We will give the necessary conventions and formulas for Fockspace representations, since we will use
them heavily in the following. Finally we will introduce theBRST method applied to constrained quantum
theories [7].

2.6.1 Generalities

Since Heisenberg’s uncertainty principle shows us that physics at small distances has some inherent com-
plementarity in measuring certain observables, we have to think about how one can integrate these facts
into a redefinition of dynamical systems. The most natural method for implementing complementarity is to
perform a deformation of the classical Poisson algebra intoa noncommutative algebra [10], the so called
quantum algebra, since complementarity can only hold in noncommutative algebras. Measurements in the
quantum algebra are described by acting with appropriate states (positive functionals) on its elements.

Practically one does not generate the quantum algebra by deformation but by relating some elementary
classical observables of the system to some abstract operators and generate the quantum algebra as the free
associative algebra from them [9]. The information about the classical system is transfered to the quantum
algebra by defining commutation relations among the elementary observables of the form that for two

elementary quantum observablesÂ, B̂ the identity[Â, B̂] = i~{̂A,B} holds true. We also encode reality
conditions into the quantum algebra by defining an involution ⋆ in the quantum algebra with the property
thatÂ∗ = Â⋆.

If the classical phase space of the theory is a linear space, anatural choice of elementary observables
are the position variablesqa and momentum variablespa. Since the Poisson brackets close in the vector
spaceS := Span{1, qa, pa} it is sufficient to quantizeS and identify the free generated associative algebra,
with imprinted commutation relations, as quantum algebra.More precisely we generate the free associative
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⋆-algebra fromS and factor out the ideal generated by the relations coming from reality conditions and
commutation relations. The generalization to field theory is straightforward.

For completeness and to fix the convention we give the fundamental commutation relations in the case
of a theory with linear phase space for infinite dimensional systems. They are given by

[φ̂(f), φ̂(g)] = [π̂(f), π̂(g)] = 0 (2.36)

[φ̂(f), π̂(g)] = i~

∫
d3x
√−gΣf(x)g(x) 1̂ . (2.37)

From now on we omit the hat above operators if it does not causeconfusion, and we set~ = 1.
The next step is to find representations of the abstract quantum algebra discussed above as operator

algebras on Hilbert spaces. We will only consider the case offield theories, since finite dimensional systems
will not occur in the following. The problem with representing quantum algebras on Hilbert spaces is that in
general one can only construct the Hilbert spaces for free quantum field theories, except for some special
cases. Therefore, in the following we will constrain ourselves to representations of free field theories.
Interacting quantum field theories are for our purpose sufficiently well defined by defining the asymptotic
free Hilbert space to be the Hilbert space of the theory and representing the operators in the interaction
picture [11], since we just treat them perturbatively. Other problems in field theory, like the nonvalidity of
Stone and von Neumann’s theorem and others are not considered in this work.

2.6.2 Fock representation

In this section we will present the basics of Fock space representations using the example of a free real
scalar fieldφ on 4 dimensional Minkowski space in order to give the main ideas and to fix the notation.

The starting point for constructing a Fock space is noting that there exists an isomorphismIt0 be-
tween the classical phase space of the theory at some timet0 and the solution space of the Euler La-
grange equations. This can be seen as follows. Given a phase space point(φ(x), π(x)) at a timet0 it
can be used as initial conditions to solve the Euler Lagrangeequations for the fieldφ(x) by identifying
π(x) = φ̇(x)|t=t0 . Thus we have enough initial conditions to solve the second order differential equations.
The inverse mapI−1

t0 is also well defined, since given a solutionφ(x) to the Euler Lagrange equations we
can defineI−1

t0 (φ(x)) = (φ(t0,x), φ̇(t0,x)).
The main idea now is to perform a quantization of the solutionsφ(x) and construct a one particle Hilbert

space from them, which is the basic ingredient for the Fock space.
If the theory has linear Euler Lagrange equations, which is the case in free field theories as in our

example, we can write the most general solution of them in terms of Fourier decomposition as

φ(x) =

∫
d̃3k(ake

−ikx + a∗ke
ikx) , (2.38)

whereak is the Fourier coefficient and̃d3k = d3k
(2π)32k0 . There has been an explicit distinction between

positive and negative frequency solutions, which can be done in the case of a free scalar field and is very
essential for further investigations.

Now we perform the quantization by assigning everyak an operator with the properties that

[ak, ap] = [a†k, a
†
p] = 0 (2.39)

[ak, a
†
p] = (2π)32k0δ(p− k) , (2.40)

wherea† is the adjoint operator ofa defined by quantizinga∗.
It can be shown that using the isomorphismIt0 we can recover the fundamental commutation relations

(2.36) of the ordinary variables.
The Fock vacuum|0〉 ∈ HFock can be defined by a state with the property

ak|0〉 = 0 ∀k ∈ R
3 . (2.41)
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Given this definition we can define the one particle wave packet creation operators by

a†f := −(f∗, φ)cov = −i
∫
d3xf(x)

↔
∂t φ(x) (2.42)

wheref(x) is some wave packet with only positive frequency parts on Minkowski spaceM4.
The one particle Hilbert spaceH1 can now be constructed out of theL2(M4) space with the scalar

product(f, g)cov, which can be shown to induce a positive definite norm for solutions to the Euler Lagrange
equations with either positive or negative frequency. It isgiven as follows

H1 := {a†f |0〉 : f ∈ L2(M4) ∧ f is pos. freq. solution to E-L eq.} , (2.43)

with a scalar product given by〈f |g〉 = (f, g)cov, which can be seen by using the commutators (2.39).
In analogy, then particle Hilbert space can be constructed by acting withn wave packet creation oper-

ators on the vacuum and therefore is given by

Hn :=

n⊗

s

H1 , (2.44)

wheres denotes the symmetrized tensor product. The scalar productonHn is induced by the one particle
scalar product by using the commutators (2.39). Finally theFock space is given by

HFock := C|0〉 ⊕
∞⊕

n=1

Hn , (2.45)

with the naturally induced scalar product from its summands.
This Hilbert space naturally supports a representation of the quantum algebra generated by the elemen-

tary observablesφ andπ, since they can be expressed in terms of the creation and annihilation operators
a†k andak by means of Fourier transformation.

2.6.3 Quantum BRST formalism

In this section we assume that we deal with a constrained quantum field theory with bosonic field variables
A and fermionic ghostsη. We also assume that the phase space of the theory is a linear space so that we
can perform quantization by quantizing the linear functions of the phase space variables.

We assume that we have found some pre-Hilbert space that is a vector space, not necessarily complete,
in which the norm may not be positive definite, on which we can represent the field operators together with
their (anti-)commutation relations. A natural candidate for this pre-Hilbert space is the product of some
pre-Hilbert space forA calledVA and some pre-Hilbert space for the ghosts and antighostsVη given by
V = VA ⊗ Vη. In order to find these (pre-) Hilbert spaces we have the freedom to manipulate the classical
equations of motion by adding BRST invariant terms to the Hamiltonian so that even Fock representations
can exist.

Like in the Dirac programme of quantization we now want to represent the gauge transformations,
which are here extended to the BRST transformations, on the pre-Hilbert spaceV and use their action on
the auxiliary states in order to define physical states. Therefore we need to representΩBRST as a hermitian,
nilpotent operator onV , which has to be checked explicitly to exist in every theory under consideration. As
a remark, there exist theories in which the operator ordering prevents this representation, like in the case of
string theories with a nonmatching number of dimensions.

Having a representation ofΩBRST, we can use the condition that physical states should be BRSTinvari-
ant, which is given by the action of the BRST generator

ΩBRST|phys〉 = 0 . (2.46)

The problem with this definition is that not every state satisfying (2.46) can be interpreted as a physical
state, since all states|ψ〉 ∈ Im(ΩBRST) := {|ψ〉 : ∃|φ〉 ∈ V , |ψ〉 = ΩBRST|φ〉} will satisfy this equation

11



too, but have zero norm, because of the nilpotency ofΩBRST. Hence they can not be interpreted as physical
states, which have to be normalized to some finite positive value.

A possible and sensible physical Hilbert space would be the completion of the factor space given by

Hphys := Ker(ΩBRST)/Im(ΩBRST) , (2.47)

on which the physical observable algebra, i.e. the algebra of BRST invariant observables can be represented.
A natural representation of this algebra can be induced fromthe representation on the pre-Hilbert spaceV
by

O[|ψ〉] := [O|ψ〉] , for |ψ〉 ∈ Ker(ΩBRST) , (2.48)

which is well defined since[O,ΩBRST] = 0 and hence the action ofO can be shifted from the physical
Hilbert spaceHphys to the pre-Hilbert spaceV . The state[|ψ〉] ∈ Hphys denotes the equivalence class to
which the state|ψ〉 ∈ V belongs.

The scalar product onHphys can be naturally induced by the scalar product onV by

([|ψ〉], [|φ〉])phys := 〈ψ|φ〉 (2.49)

which is well defined, since every state in Im(ΩBRST) has vanishing scalar product with a state in Ker(ΩBRST),
so that it does not depend on the representative of the equivalence class we choose on the r.h.s. of (2.49).
The positive definiteness of the norm induced by the scalar product onHphys has to be checked for the
system under consideration. For the case of Yang - Mills theories this was done by Kugo and Ojima [12]
using BRST cohomology methods.

In a perturbative treatment of interacting gauge theories it would be somehow nicer if we could avoid
working in the factor spaceHphys explicitly and work consistently in the pre-Hilbert space instead, since
the states in the auxiliary Hilbert space are easier to handle. The good thing about the BRST approach is
that we can do so. For theS-matrix the identity

[〈ψ|]S[|φ〉] = 〈ψ|S|φ〉 , for|ψ〉, |φ〉 ∈ Ker(ΩBRST) (2.50)

holds true, sinceS = exp(−i
∫∞
−∞ dtHBRST) is a physical operator. So we can specify our initial and

final states by some representative of the equivalence classes with some subsidiary condition, e.g. that
it contains no ghosts and no unphysical polarizations, and calculateS-matrix elements from them. In
intermediate steps of the time evolution, i.e. in loop diagrams, we can use representatives in which ghosts
and unphysical polarizations areboth contained and therefore simplify polarization sums as usual.

2.7 LSZ formalism for in-out matrix elements

In this section we will give the necessary formulae for a perturbative investigation of in-out matrix elements
in interacting quantum field theories on flat spacetime. Their derivation can be found in nearly every
introductory textbook on quantum field theory, e.g. [11].

The basic observables we are interested in are matrix elements of some time ordered operatorO :=
T {∏iOi} between asymptotic states. Letfa andgb be wave packets for alla, b then these matrix elements
are given by

〈f1, ..., fn; out|O|g1, ..., gm; in〉 = (iZ− 1
2 )n+m

×
∏

a,b

(∫
d4xad

4ybf
∗
a (xa)gb(yb)(�xa

+m2)(�yb
+m2)

)
〈0; out|T {φ(x1)...φ(ym)O}|0; in〉

+ nonconnected terms, (2.51)

whereZ denotes the wave function renormalization,m the mass of the particle, and the nonconnected
terms will vanish if(fa, gb)cov = 0 for all a, b.
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The operatorsOi we are interested in will be given by integrated local operatorsOi(x), i.e.

Oi :=

∫
d4x Oi(x) (2.52)

and therefore do not depend onx. It is natural to write the general formula (2.51) in Fourierspace as

〈f1, ..., fn; out|O|g1, ..., gm; in〉 =

∫ ∏

a,b

d4pa
(2π)4

d4kb
(2π)4

∏

a,b

B(fa, pa)
∗B(gb, kb) G̃(p1, ..., km) , (2.53)

whereB(f, p) :=
∫
d4xf(x)eipx andG̃ is given by

G̃ :=
∏

a,b

(p2
a −m2)

i

(k2
b −m2)

i
∫ ∏

a,b

d4xad
4ybe

ipaxae−ikbybZ−n+m
2 〈0; out|T {φ(x1)...φ(ym)O}|0; in〉 . (2.54)

Formula (2.53) can be further simplified by using the on-shell spectral representation off(x) which
reducesB(f, p) to

B(f, p) =

∫
d4xeipx

∫
d̃3kf̃(k)e−ikx =

π

p0
f̃(p)δ(p0 −

√
p2 +m2) . (2.55)

Putting the result into (2.53) we arrive at the final result

〈f1, ..., fn; out|O|g1, ..., gm; in〉 =

∫ ∏

a,b

d̃3pad̃3kb
f̃a(pa)

∗

2

g̃b(kb)

2
G̃(p1, ..., km) , (2.56)

whereG̃ is now on-shell.
If the operatorsOi(x) are polynomials in the fields we can apply Gell-Mann and Low’sformula and

Wick’s theorem and reduce the problem of determining matrixelements of operators to Feynman diagram
calculations. In this casẽG can be interpreted as some part of the amputated, renormalizedn + m point
Green function in momentum space.

If one of theOi is not polynomial there is no natural access to this problem by Feynman diagram
methods. Because of this we will restrict ourselves to the case of polynomial operators, in particular vertex
operators occurring in the action.

2.8 Schwinger-Keldysh formalism for in-in matrix elements

As we will see below, using in-out matrix elements of pseudo-local operators will just give access to a
limited class of observables. In particular the possible pseudo-local observables which are accessible by
in-out matrix elements and which can be interpreted physically in terms of scattering matrix elements will
strongly depend on the chosen dynamics of the system.

Another kind of observables, which are very different from in-out matrix elements, are expectation
values of some operatorO(t) at some timet in the state of the system|ψ〉, i.e. matrix elements like
〈ψ|O(t)|ψ〉. Writing this expectation value in the interaction picturewe get

〈ψ|O(t)|ψ〉 = int〈ψ, t|Oint(t)|ψ, t〉int , (2.57)

where|ψ,−∞〉int = |ψ〉 andOint(t) is the operator in the interaction picture.
Using the interaction picture time evolution operator, (2.57) reads

〈ψ|O(t)|ψ〉 = int〈ψ,−∞|T̄{exp (i

t∫

−∞

dt′Hint(t
′))} Oint(t) T {exp (−i

t∫

−∞

dt′Hint(t
′))}|ψ,−∞〉int ,

(2.58)
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whereHint is the interaction Hamiltonian in the interaction picture andT andT̄ denote time and anti-time
ordering, respectively.

The basic formula (2.58) can be evaluated perturbatively byusing some modified diagrammatic rules.
This formalism is known as the Schwinger-Keldysh or in-in formalism, see [13] and references therein. In
the following we will summarize the basic diagrammatic formalism:

• Since the expansion in the coupling constant leads to time and anti-time ordered terms, we have to
distinguish between “left” and “right” vertices, where left and right means anti-time ordered and
time ordered, respectively. The right vertex comes with a factor of i and the left vertex with a factor
of−i in Lagrangian field theory.

• A line connecting a left vertex with a left vertex orOint(t) is given by the anti-Feynman propagator
〈0|T̄{φ(x)φ(y)}|0〉.

• A line connecting a right vertex with a right vertex orOint(t) is given by the Feynman propagator
〈0|T {φ(x)φ(y)}|0〉.

• A line connecting a left vertex with a right vertex is given bythe two-point Wightman function
〈0|φ(x)φ(y)|0〉, whereφ(x) is associated to the left andφ(y) is associated to the right vertex.

• A line connecting an external fielda(f) = (f, φ)cov from the asymptotic stateint〈ψ,−∞| with an
internal fieldφ(x) (left vertex, right vertex orOint(t)) is given by[a(f), φ(x)] = f∗(x), wheref(x)
is the wave packet associated to the particlea(f).

• A line connecting an external fielda†(f) = −(f∗, φ)cov from the asymptotic state|ψ,−∞〉int with
an internal fieldφ(x) (left vertex, right vertex orOint(t)) is given by[φ(x), a†(f)] = f(x), where
f(x) is the wave packet associated to the particlea†(f).

• All time parameters associated to the vertices have to be integrated over the range(−∞, t].

• Symmetry factors are included.

Furthermore it can be shown [13] that the vacuum to vacuum diagrams, i.e. disconnected loops, do not
contribute.

Within this formalism we can, in principle, evaluate expectation values of operators at fixed timet up to
the desired order in perturbation theory. In order to obtaindiffeomorphism invariance we have to integrate
the resulting matrix elements over allt, i.e.

Odiff inv =

∞∫

−∞

dt〈ψ|O(t)|ψ〉 . (2.59)
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Chapter 3

Effective theory of quantum general
relativity (QGR)

In this chapter we introduce the basic framework of effective QFT applied to gravity. This approach has
been applied to different problems in the existing literature, for example [14, 15]. We will also discuss
the sensible definition of relational observables in gravity in the sense of [1]. One other point is the in-
vestigation of the classical gauge structure of the theory on a fixed background. Therefore we will define
useful classical gauge transformations which will remain asymmetry of the system, even after a classical
background is fixed. At the end of this section we will discussthe interpretation of dynamical localization
on fixed backgrounds.

3.1 QGR as low-energy effective theory

Because we do not yet know the microscopic degrees of freedom(d.o.f.) of spacetime, we are forced
to work within an effective description of quantum gravity in order to make predictions. Therefore and
for many other reasons, effective field theory methods were developed which provide a controlled way of
investigating the low-energy behavior of quantum gravity.In order to formulate an effective field theory
of quantum gravity we first have to identify possible low-energy d.o.f. and their (gauge) symmetries. As
low-energy d.o.f. we choose the metric fieldg, which classically describes spacetime very well and define
the theory to be invariant under the gauge symmetry induced by classical diffeomorphisms.

With this choice we can write down the most general action fora theory respecting these conditions as

S =

∫
d4x
√−g

(
Λ +

2

κ2
R+ aR2 + bRµνR

µν + cRµναβR
µναβ

+dDµDνR
µν + e�R+

f

M2
R3 + . . .

)
, (3.1)

whereκ =
√

32π/Mpl, Λ is the cosmological constant,M ≤ Mpl is an energy scale larger than typical
energies of the problem, and all other constants are dimensionless. Because of experimental observations
we know that the cosmological constant is very small. For ourpurpose we can assume its renormalized
value to vanish. The other constantsa, b, c, ... are assumed not to be unnaturally large in order to avoid
conflicts with existing experiments.

These are only some of the operators one can write down in the action. We see that higher order operators
like e.g.R3 come with a suppression factor1Mn , wheren is some positive integer, while the operator used
in the Einstein Hilbert action gets enhanced by a factor ofM2

pl.
In classical GR one now argues that if the curvatureR is small compared to the scaleM2 and does

not vary fast, i.e.DµR
µν ≪ M3 in some appropriate way, one can neglect the higher order terms and the

Einstein Hilbert action is a good approximation to the problem. The higher order terms just give corrections

of orderR/M2
pl orDR/

(
M2

plM
)

, where byDR we mean some derivatives ofR.
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In our work we do not describe the dynamics of the metric field itself, but only describe small fluctuations
around some fixed background. We will see later that in this case we can also identify relevant and irrelevant
terms of the action, where the irrelevant terms will be suppressed by powers ofE/Mpl, whereE is the
graviton energy.

3.2 Pseudo-local observables in QGR from clock and rod variables

Because of the symmetries of our effective theory the low-energy observations should also be invariant
under these symmetries. The problem is that diffeomorphisminvariance prohibits the straightforward
definition of local observables, because any local scalar observableO (x) will in general change under
diffeomorphisms and therefore is not a Dirac observable. One way out is to integrate local or multilo-
cal observables over the whole spacetime which can be shown to be diffeomorphism invariant neglecting
boundary terms [1].

The problem with these integrated observables is that we loose the concept of locality. This leads to
a serious problem, since our theory should be capable to explain experiments in laboratories which are
definitely local.

There have been many attempts to restore locality in an appropriate sense by defining relational observ-
ables, see [1] and references therein. The basic idea of relational observables is as follows:

Since general relativity describes the universe as a closedsystem, the emergence and definition of space
and time has to be intrinsic. We will therefore use dynamicalvariables of the system, like for example
metric or matter d.o.f., in order to define spatial locationsand time relative to them. These variables will
from now on be called clock and rod variables.

For a classical example assume a wooden rod and a mechanical clock. If these variables are in an appro-
priate state, e.g. the clock performs periodic oscillations, we can define time distances by counting these
oscillations and space distances by using the rod. Local observations now can be performed by combining
clocks and rods with a suitable subsystem on which we will perform measurements. For a classical example
assume another oscillator with some time dependent frequency located at some spatial position relative to
the rod. We are interested in the frequency of this oscillator averaged over some finite time interval. Using
parameter time leads to a gauge variant observable and is therefore useless. But we can use our mechan-
ical clock and rod and build some gauge invariant observablelike O :=

∫
d4x
√−gOclock(x)Odevice(x),

whereOdevice(x) is a function depending on rod and observed system andOclock(x) is dependent on the
clock variable. Now assume thatOclock(x) is 1 if the clock is switched on and0 else and thatOdevice(x)
gives delta functions on the parameter coordinates when themaximal amplitude of the observed oscillator
is reached. ThenO gives the number of oscillations of the investigated subsystem during the time interval
defined by the number of oscillations of the clock, which is the averaged frequency, in a diffeomorphism
invariant and relative way. Since the observableO defines a local quantity through a nonlocal observable
by applying a suitable state, it is called a pseudo-local observable.

But now let us turn to quantum physics. In scenarios where thequantum nature of space and time plays a
role we do not expect classical clocks and rods to be appropriate candidates for clock and rod variables. We
expect more suitable candidates to be matter quantum fields or metric d.o.f.. The definition of pseudo-local
observables by using these quantum clocks and rods works in the same way.

At this point it is useful to give an example of such a clock variable in a simple quantum system. We use
the minisuperspace model of isotropic and homogeneous cosmology, in which the variable to be quantized
is the scale factor operatorâ of the universe. In our toy universe there has to be some matter too in order to
register the evolution of the universe. We see easily thatâ is not invariant under diffeomorphisms, which are
reduced to time reparametrizations because of isotropy andhomogeneity. But under certain circumstances
we can usêa as a clock variable relative to which one can describe the flowof time.

If the state of the universe|ψ〉 is such that it can be interpreted as monotonically growing we can use
â for defining time, because our intuition would say that big values ofâ correspond to late times at least
classically. If we now are interested in some observableO (t) at the “time” when〈ψ|â|ψ〉 reaches a value
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τ , we can define it in a diffeomorphism invariant way by some operator like

O =

∫
dt O (t) δ (â (t)− τ) . (3.2)

By the Diracδ-function we mean an appropriate regularization of it, maybe through a Gaussian function
with small width. Thisδ-function acts as a projection operator onto the eigenstateof â corresponding to
the eigenvalueτ .

In a state|ψ〉 with the properties described above the expectation value of O will be

〈ψ|O|ψ〉 ≃ 〈O(τ)〉 , (3.3)

where〈O(τ)〉 is the expectation value of the system observable in the system state encoded in|ψ〉 at the
time the universe has a scale factorτ .

The important point is that the interpretation of locality depends on both, the state and the observable
under consideration.

In this work we will use wave packet states of matter clock androd fields in order to perform localization.
In this approach the basic idea is to construct diffeomorphism invariant operators

O =

∫ N∏

i=1

d4xi
√−g Osystem(x1, ..., xN ) Oclock−rod(x1, ..., xN ) , (3.4)

such that taking matrix elements between suitable states|ψ1〉 and|ψ2〉 leads to

〈ψ1|O|ψ2〉 ∼
∫

V

N∏

i=1

d4xi
√−g〈Osystem(x1, ..., xN )〉 . (3.5)

HereV denotes some region in the product manifoldMN defined through the wave packets of the clock
and rod fields contained in the states|ψ1〉 and|ψ2〉, and〈Osystem〉 is the expectation value of the system
observable in the system state, which is also encoded in|ψ1〉 and|ψ2〉.

Since localization always requires energy, and since energy causes backreaction on the metric, there are
restrictions on how precise localization can be performed until the quantum nature of spacetime and/or
strong curvature effects set a cutoff. There are several ways to address the issue of localization from which
we use the perturbative formulation of quantum gravity on a fixed background. In this framework we can
give an estimation of the limits on localization by calculating the backreaction during localization. More
details about the interpretation of dynamical localization on a fixed background are given in section 3.6.

As a final remark, the idea of integrating over the whole spacetime with the diffeomorphism invariant
measure is equivalent to applying group averaging over the group of four-diffeomorphisms. This is how
this idea of defining observables connects to a general treatment of gauge theories, where group averaging
is one specific method to generate gauge invariant expressions out of gauge variant ones.

3.3 QGR with fixed background

The most intuitive access to quantum gravity from a particlephysicists point of view is to describe it as the
propagation of perturbative gravitons on a fixed, classicalbackground. This approximation can of course
only be done if there is a well defined distinction between a classical background and quantum fluctuations
on it, which is not always the case. For example in scenarios where strong curvature effects and small
distances come into play, like in the vicinity of black holesor the big bang, a separation between classical
background and quantum fluctuations is not possible anymore. For these problems one requires a more
fundamental theory of quantum gravity.

For the application of quantum gravity in nonsingular systems, like e.g. colliders if there are large extra
dimensions, we expect that a separation of background and gravitons can be done until some threshold
energy is reached where nonperturbative effects come into play. The background in these cases is assumed
to be a smooth manifold, in particular a Minkowski space in our case.
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In the following part of this chapter we present the method ofhow this separation can be done and which
are the relevant terms for low-energy effective field theories. The energy scaleM defined above will from
now on be set toMpl, because we expect the scale of new physics connected to quantum gravity to be the
Planck mass.

The starting point is the expansion of the classical metric field g and its inverseg−1 around a classical
backgroundη, which is not necessarily flat. This expansion is given by

gµν = ηµν + κhµν (3.6)

gµν = ηµν − κhµν + κ2hµλh
λν +O

(
κ3
)
, (3.7)

whereh denotes the graviton field andκ is used in this expansion in order to giveh the dimension of a
bosonic field. It is important to note that the indices of tensors on a fixed background are raised and lowered
by the background metric. It can be seen that if we want to avoid inverse powers of theh field, which will
cause problems during quantization, the expansion of the inverse metric includes terms of all orders inκ.

Since this expansion is systematic inκ we can calculate low-energy effective theories by collecting all
terms up to a given order inκ from the general action (3.1) by inserting the expansion of the metric. The
order inκ used for defining the effective field theory will depend on theproblem and the precision one
requires, because higher orders inκ are suppressed by powers ofE/Mpl, whereE is a typical energy of
the problem we describe.

The required quantities for theκ expansion of the action (3.1) are the square root of the metric
√−g, the

Christoffel connectionΓµαβ and the Riemann tensorRµναβ together with its contractions. These quantities
can be calculated up to arbitrary order by inserting the expansion (3.6) into the definition of these geometric
objects given in (2.6). This expansion and the expansion of the graviton action itself will be explicitly
performed in section 3.5.

3.4 Gauge transformations with fixed background

When we fix a background and describe only fluctuations on it asthe dynamical variables we manifestly
break the usual diffeomorphism invariance. But there remains a residual gauge symmetry of the theory on
a fixed background which we can identify if we reformulate thediffeomorphism transformation.

The usual symmetry transformation of the metric fieldg is given by the pullbacks of the infinitesimal
diffeomorphisms

xµ → x̃µ = xµ − κǫµ (x) , (3.8)

where we usedκ in order to make the vector fieldǫ (x) =
∑
ǫα∂α dimensionless. The induced transfor-

mation on the chart representation of the metric is given by the pullbacks

gµν (x)→ g̃µν (x̃) =
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ (x)

= gµν (x) + κ
(
gµαǫ

α
,ν + gανǫ

α
,µ

)
+O

(
ǫ2
)
, (3.9)

and in a similar way the one of the inverse metric by the pushforwards

gµν (x)→ g̃µν (x̃) =
∂x̃µ

∂xα
∂x̃ν

∂xβ
gαβ (x)

= gµν (x)− κ
(
gµαǫν,α + gανǫµ,α

)
+O

(
ǫ2
)
. (3.10)

Fixing the background in these equations by inserting the expansion (3.6) will cause problems, because
this symmetry transformation directly acts on spacetime bytransforming the argumentx too. A better
suited transformation which can be fixed on a background is the one where we remove the spacetime
dependent part by defining thẽδ gauge transformation as

δ̃O := Õ (x)−O (x) = δO + κ O,αǫ
α , (3.11)
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whereO is some function of the variables (metric or matter fields) and δO is its transformation induced by
diffeomorphisms.

With this definition we get thẽδ gauge transformations of the backgroundη and the fluctuationsh as

δ̃ηµν = 0 (3.12)

δ̃ηµν = 0 (3.13)

δ̃hµν = ηµαǫ
α
,ν + ηανǫ

α
,µ + ηµν,αǫ

α + κ
(
hµαǫ

α
,ν + hανǫ

α
,µ + hµν,αǫ

α
)

(3.14)

δ̃hµν = ηµαǫν,α + ηανǫµ,α − ηµν,αǫα + κ
(
hµβη

ναǫβ,α + h νβ η
µαǫβ,α + ηµαηνβhαβ,γǫ

γ
)
. (3.15)

One easily sees from a short calculation that these transformations respect the background structure, i.e.

δ̃hµν = ηµαηνβ δ̃h
αβ (3.16)

δ̃hµν = ηµαηνβ δ̃hαβ , (3.17)

and therefore are well defined.
The next step is to work out thẽδ transformation for matter field. Since we do not need fermionic

matter in the following, and fermionic matter requires a reformulation of gravity in the sense of vielbein
variables, we do not need to work out their gauge transformations. Hence a general matter fieldV , for our
purpose, is a(p, q)-tensor field and transforms under the diffeomorphisms (3.8) as given by the pullbacks
and pushforwards, i.e.

V
α1...αp

β1...βq
(x)→ Ṽ

α1...αp

β1...βq
(x̃) =

∂x̃α1

∂xµ1
...
∂x̃αp

∂xµp

∂xν1

∂x̃β1
...
∂xνq

∂x̃βq
V µ1...µp

ν1...νq
(x) . (3.18)

The definition of thẽδ transformation is according to (3.11) and given by

δ̃V
α1...αp

β1...βq
(x) := Ṽ

α1...αp

β1...βq
(x)− V α1...αp

β1...βq
(x) = δV

α1...αp

β1...βq
(x) + κǫµ∂µV

α1...αp

β1...βq
(x) , (3.19)

where the indices are taken with respect to the background.
For completeness we give the explicit form of theδ̃ gauge transformation for a scalar fieldφ and a vector

fieldA =
∑
Aµ∂µ. They read

δ̃φ = κǫν∂νφ (3.20)

δ̃Aµ = −κǫµ,νAν + κǫν∂νA
µ . (3.21)

It can be shown that thẽδ gauge transformations commute with the background covariant derivatives.
This is required for representing this symmetry transformation in the Poisson algebra. It shows that theδ̃
transformations are more natural for the investigation of theories on a fixed background than the usualδ
transformations, since these do not have this important property.

As a final step in this section we can state the following

Proposition 1. LetS =
∫
d4x
√−gL̂ be a diffeomorphism invariant action for the metric fieldg and some

matter fields. Then the theory on a fixed backgroundη is invariant under the isometrics of the backgroundη
and theδ̃ gauge transformations of the fluctuationsh and matter fields, if appropriate boundary (or falloff)
conditions hold true. The background fixed Lagrangian is given byL =

√−g/√−ηL̂.

Proof. The proof of the isometric invariance is trivial since the theory on a fixed background inherits this
structure from the former theory. Thẽδ invariance of the fluctuations can be proven by a short calculation

0 = δS =

∫
δ
(
d4x

) √−gL̂+

∫
d4x δ

(√−gL̂
)

=

∫
d4x

(
−κǫµ,µ

√−gL̂+ δ
(√−gL̂

))
=P.I.

∫
d4x

(
κǫµ

(√−gL̂
)
,µ

+ δ
(√−gL̂

))

=

∫
d4x δ̃

(√−gL̂
)

=

∫
d4x
√−η δ̃

(√−g/√−η L̂
)

= δ̃S , (3.22)
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where P.I. denotes integration by parts and we have usedδ̃η = 0 in the last line. The technical assumption
of appropriate boundary conditions was in order to avoid boundary terms while performing integration by
parts.

With the tools developed in this section we can define theories of metric fluctuations and matter fields
on a fixed background and investigate them like usual gauge theories..

3.5 Graviton expansion of geometric quantities and the Einstein-
Hilbert action

This section is devoted to theκ expansion of the geometric quantities and the graviton action around a flat
Minkowski background. Since the required calculations arestraightforward we will only state the results
without explanations.

The expansion of the geometric quantities up to the requiredorder inκ are given by

√−g = 1 +
κ

2
h− 1

4
κ2hαβh

β
α +

1

8
κ2h2 +O

(
κ3
)

(3.23)

Γλαβ =
κ

2

(
hλβ,α + hλα,β − h ,λ

αβ

)
− κ2

2
hλσ

(
hβσ,α + hασ,β − hαβ,σ

)
+O

(
κ3
)

(3.24)

R := R(0) + κR(1) + κ2R2 +O
(
κ3
)

(3.25)

R(0) = 0 (3.26)

R(1) = h ,µ
,µ − h ,µ,ν

µν (3.27)

R(2) =
1

2

(
hλσ

(
2h ,µ

µσ − h,σ
))
,λ
− 1

2

(
hλσhλσ,µ

),µ

+
1

4

(
−hµν,λhµν,λ + 2hµν,λh

µλ,ν − 2h,νh
νµ
,µ + h,µh

,µ − 2hµνh,µ,ν

−2hµνh ,λ
µν,λ + 4hµνh ,λ

µλ,ν

)
. (3.28)

The graviton action can be calculated from the Einstein-Hilbert action by using (3.6), (3.23) and (3.25).
In the following we require this action only up to orderκ0. It is given by

S =

∫
d4x

(
1

2
hµν,λh

µν,λ − 1

2
h,µh

,µ + h,µh
µν
,ν − hµν,λhµλ,ν

)
+O (κ) . (3.29)

This action agrees with the result of [16] and it can be shown to be invariant under thẽδ gauge transforma-
tions (3.12) in this particular order inκ.

The ghost and gauge fixing Lagrangian for the de Donder (or harmonic) gauge are given by

Lghost = −C̄µC ,λ
µ,λ (3.30)

LGF =

(
h ,ν
µν −

1

2
h,µ

)(
hµλ,λ −

1

2
h,µ
)
, (3.31)

whereCµ andC̄µ are the hermitian ghosts and antihermitian antighosts, respectively. Furthermore the sum
Lghost + LGF is invariant under the BRST transformations

δBRSTC
µ = 0 (3.32)

δBRSTC̄
µ = hµν,ν −

1

2
h,µ (3.33)

δBRSThµν = C(µ,ν) . (3.34)

More details on the BRST formulation and gauge fixing of linearized gravity will be given in chapter 4.
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If we turn on graviton-matter interactions there will occurdivergences coming from graviton induced
matter tadpoles. In order to absorb these divergences we require an additional cosmological constant action
given by

SΛ =
κ

2
Λ

∫
d4x h+O(κ2) . (3.35)

It will be used to eliminate graviton tadpoles by renormalizing the cosmological constant as shown in the
appendix C.

The graviton expanded matter actions will be given in the corresponding chapters where they are re-
quired.

3.6 Dynamical localization of pseudo-local operators on semiclassi-
cal fixed backgrounds

In this thesis we work on a fixed background and describe dynamical gravity as fluctuations around the
background metric in terms of gravitons. In this picture we can apply standard quantum measurement
theory in terms of a semiclassical apparatus and a quantum system on which measurements are performed.
This section is devoted to explain qualitatively the emergence and breakdown of this semiclassical approach
to geometry and how this breakdown is related to dynamical localization.

Assume an early universe in a full quantum state of matter andgeometry. In this region in spacetime
the definition and interpretation of locality, in particular local measurements, is not possible in the sense of
standard quantum measurement theory, since there is no separation between a sufficiently large semiclassi-
cal apparatus, the measuring device, and the subsystem on which measurements are performed. Hence our
formalism can not be applied to this region.

Now assume that through some mechanism like e.g. decoherence the universe evolves into some state
which contains a sufficiently large semiclassical subsystem. Assume further that this subsystem also con-
tains the metric d.o.f. which is in agreement with the cosmological observation that the geometry of the
universe became classical at a very early stage. This state now can be approximated by a classical back-
ground state and some matter and graviton quantum state on it. The classical background state can contain
classical matter d.o.f. too, e.g. an apparatus producing and measuring quantum matter wave packet states.

In this work we assume for simplicity that the classical metric state is a flat Minkowski space. But in
principle the classical metric state can be any smooth manifold. Furthermore we assume the quantum fields
on this background to be in their vacuum state.

This classical region in spacetime can now be used in order toperform and interpret local experiments
using some classical apparatus and wave packet states defining locality relative to them. Increasing the
resolution is associated to increasing the energy of the wave packets, such that at some threshold energy the
backreaction of the wave packet states on the geometry will destroy the semiclassicality of this spacetime
region. This will be the worst at energies when the overlapping wave packets will create a black hole which
is a non-classical geometry state because of the singularity. In this interpretation the limit on localization
is reached when the geometry gets too fuzzy. But there is a second slightly different interpretation based
on scattering theory.

Since most of today’s small scale experiments are scattering experiments which are theoretically de-
scribed on a fixed background we will not be able to measure thefuzziness of the geometry directly. What
we will measure are gravitational effects in loop contributions to scattering processes. These contributions
have their origins in quantum and classical geometry effects, but can also depend on the dynamics. Since
we are restricted to the description of scattering experiments on a fixed background, the important scale set-
ting the limits on our understanding of locality is the scalewhere perturbation theory on fixed backgrounds
breaks down. This scale can of course be different from the scale mentioned above.

In this work we will follow the second interpretation. Additionally we try to relate the two approaches
by studying geometry observables which contain information on pseudo-local geometry. With these ob-
servables we try to find out the nature of backreaction of wavepackets, in particular if it is a classical or
quantum effect.
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Chapter 4

Canonical BRST formulation of
linearized QGR on a flat background

In this chapter we study the canonical BRST formulation of linearized gravity on a flat background in
order to compare it with existing results from path integralquantization [17]. We will study the constraint
structure of the theory and perform the BRST extension of thephase space. The resulting classical BRST
invariant system will be quantized using an auxiliary Fock space and afterwards reduced to the physical,
i.e. BRST invariant, degrees of freedom. In particular we will focus on the cohomological aspects of the
one- and multi-graviton Hilbert space.

Additionally we have investigated the physical states in the presence of classical matter. The result is
given in appendix B, since it is not directly connected to this work. It shows connections to Newton’s
gravitational potential.

4.1 Hamiltonian and constraint algebra

Performing theκ expansion of the general action (3.1) to lowest order inκ on flat Minkowski background
one gets

S =

∫
d4x

(
1

2
hµν,λh

µν,λ − 1

2
h,µh

,µ + h,µh
µν
,ν − h ,ν

µν h
µλ
,λ

)
. (4.1)

Since there are only quadratic terms, this action describesa free spin 2 particle propagating on a flat
background neglecting the graviton selfinteraction. The action (4.1) can be shown to be invariant under the
δ̃ gauge transformations given by (3.12) up to orderκ0.

In order to perform the Legendre transformation we need to calculate the conjugate momentaπµν of the
variableshµν . Therefore we use the symmetrized functional derivatives defined by

δhµν(x)

δhαβ(y)
:= δα(µδ

β
ν) δ(x− y) =

1

2
(δαµδ

β
ν + δβµδ

α
ν ) δ(x− y) . (4.2)

The momenta corresponding tohµν are given by

π00 = h0j,j (4.3)

π0i = −1

2
(h00,i − hjj,i)− hij,j (4.4)

πij = hij,0 + δij(h0k,k − hkk,0) . (4.5)

Solving them for the time derivatives ofh we get primary constraints, because the system of equations
(4.3) and (4.4) can not be solved forh00,0 andh0i,0. Therefore we get the solutions

hij,0 = πij − 1

2
δij(π

kk − h0k,k) (4.6)
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and the smeared primary constraints

χ(0)(f) =

∫
d3x f(x) (π00 − h0j,j)(x) (4.7)

χ(i)(f) =

∫
d3x f(x) (π0i +

1

2
h00,i −

1

2
hjj,i + hij,j)(x) . (4.8)

Performing the Legendre transformation of the Lagrangian we arrive at the following Hamiltonian

H =

∫
d3x

(
1

2
(πij)2 − 1

4
(πkk)2 +

1

2
πjjh0k,k +

1

4
(h0k,k)

2 − (h0j,k)
2 +

1

2
(hij,k)

2

−1

2
(hjj,i)

2 + h00,ihjj,i − h00,ihij,j + hkk,ihij,j − (hij,j)
2

)
. (4.9)

Having the Hamiltonian of the system we can calculate the time evolution of the constraints in order to
get possible secondary constraintsχs. For the time evolution we omit the addition of the constraints with
Lagrange multipliers to the Hamiltonian, since the primaryconstraints have vanishing Poisson brackets
so that additional gauge transformations will not contribute to the secondary constaints. The secondary
constraints are given by

χ(0)
s (f) := χ̇(0)(f) = {χ(0)(f), H} =

∫
d3x f(x) (△hjj − hij,i,j)(x) (4.10)

χ(i)
s (f) := χ̇(i)(f) = {χ(i)(f), H} =

∫
d3x f(x) (πij,j −△h0i)(x) . (4.11)

The tertiary constraints are given by

χ̈(0)(f) =

∫
d3x ∂if(x) χ(i)

s (x) (4.12)

χ̈(i)(f) = 0 (4.13)

and do not give rise to new constraints, since they can be expressed in terms of the other constraints. Given
all 8 constraints of our system we arrive at10− 8 = 2 physical d.o.f. which can be interpreted as the two
helicity states of the graviton.

Calculating the Poisson brackets between the constraints one obtains that our system has an abelian
constraint algebra, i.e.

{χa, χb} = 0 ∀a, b , (4.14)

wherea, b are indices labeling the whole set of constraints, i.e. primary and secondary. This and the fact that
we are dealing with a free field theory will simplify the application of the BRST formalism, in particular
its quantization, in a dramatic manner.

4.2 Algebraically generated gauge transformations

Given the constraints (4.7) and (4.10) we can study the gaugetransformations that they generate by their
Hamilton vector fields on the subspace of configuration variables. Therefore we calculate the Poisson
brackets of the smeared constraints with the graviton fieldh. We arrive at

{hµν(t0,x), χ(0)(f)} = δ0µδ
0
νf(x) (4.15)

{hµν(t0,x), χ(i)(fi)} = δ0(µδ
i
ν)fi(x) (4.16)

{hµν(t0,x), χ(0)
s (g)} = 0 (4.17)

{hµν(t0,x), χ(i)
s (gi)} = −δi(µδjν)∂jgi(x) . (4.18)
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Comparing the result with (3.12) we see that the constraintsgenerate the desired gauge transformations up
to orderκ0 by identifying

f(x) = 2ǫ0,0(t0,x) (4.19)

fi(x) = 2ǫ0,i(t0,x) + 2ǫi,0(t0,x) (4.20)

gi(x) = −2ǫi(t0,x) , (4.21)

wheret0 is the time when we perform the gauge transformations.
So we have shown that up to leading order inκ the gauge transformations (3.12) defined from purely

geometrical assumptions can be induced out of the Poisson algebra. This will be necessary for later repre-
senting the gauge transformations as operators on some Hilbert space.

4.3 BRST charge and minimal BRST invariant Hamiltonian

By knowing the constraint structure of our system we can calculate the BRST charge and the minimal
BRST invariant extension of the Hamiltonian. Since we have an abelian constraint algebra the BRST
charge (2.30) has an easy form given by

ΩBRST = χa[ηa] , (4.22)

wherea is an index running over all constraints andηa are the corresponding ghost fields.
In order to get the minimal BRST invariant Hamiltonian one has to calculate the coefficientsV ab defined

in (2.21). For our system the minimal BRST invariant extension of the Hamiltonian (2.31) is given by

Hmin = H − η(0)[η̄(0)
s ]− η(i)[η̄(i)

s ] + η(0)
s [∂iη̄

(i)
s ] . (4.23)

The next step is to use the freedom of adding an exact functional to the Hamiltonian in order to manipu-
late the dynamics of the gauge variant parts. This addition of an exact functional does not change physics,
i.e. the gauge equivalence classes, due to a theorem by Henneaux [18].

4.4 Exact functionals for extending the Hamiltonian

In this chapter we will construct the most general exact functional for extending the minimal BRST in-
variant Hamiltonian and therefore gauge fixing it suitably for our purposes. The conditions for possible
Hamiltonian extensionsO are as follows:

• O has dimension1, since the Hamiltonian is the energy functional

• O has to be local

• O has to be real

• O has to be invariant under spatial SO(3) rotations

• O has to be bosonic, i.e. no odd powers of ghost fields are allowed

• O has to be of ghost number0, i.e. the power of ghost and antighost fields in each summand must
agree

• O has to be quadratic in the fields in order to introduce no unphysical couplings which would com-
plicate our problem.

Now assumeO to be an exact functional, i.e.O := {ΩBRST,Ψ}. Then the conditions posed above lead
to the following expression

Ψ := ψ(0)[η̄(0)] + ψ(i)[η̄(i)] + ψ(0)
s [η̄(0)

s ] + ψ(i)
s [η̄(i)

s ] , (4.24)
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where allψa are real and linear in the bosonic fields. Another restriction is that the dimension ofΨ is 0
such that{ΩBRST,Ψ} has dimension1. This constrains the dimension of the primaryψ to [ψ(a)(x)] = 2

and of the secondaryψ to [ψ
(a)
s (x)] = 1. Since all bosonic field variables and derivatives have dimension

1 and we have no natural energy scale in linearized pure gravity, the following expressions hold true

ψ(0) = c1h0j,j + c2π
00 + c3π

jj (4.25)

ψ(i) = c4h00,i + c5hjj,i + c6hij,j + c7π
0i (4.26)

ψ(0)
s = c8h00 + c9hjj (4.27)

ψ(i)
s = c10h0i , (4.28)

whereci are real dimensionless constants. This leads to the following expression for the10 parameter
family of exact functionals

{ΩBRST ,Ψ} = −ψa[χa] + (c4 −
c7
2

)η(0)[∂iη̄
(i)]− c8η(0)[η̄(0)

s ] +
1

2
(c1 + c2 − c3)η(i)[∂iη̄

(0)]

− c10
2
η(i)[η̄(i)

s ] + 2c3η
(0)
s [△η̄(0)] +

1

2
(c6 − c7)η(i)

s [△η̄(i)] + (c5 +
c6
2

)η(i)
s [∂i∂j η̄

(j)]− c9η(i)
s [∂iη̄

(0)
s ]

(4.29)

with

− ψa[χa] =

∫
d3x(−c2(π00)2 − (c1 − c2)h0j,jπ

00 − c3π00πjj − c7(π0i)2

− (c4 +
c7
2

)h00,iπ
0i − (c5 −

c7
2

)hjj,iπ
0i − (c6 + c7)hij,jπ

0i + c3h0j,jπ
kk + c10h0i,jπ

ij

+ c1(h0k,k)
2 − c10(h0i,j)

2 − c4
2

(h00,i)
2 − (

c5 − c4
2

− c8)h00,ihjj,i − (c4 + c8 +
c6
2

)h00,ihij,j

+ (c9 +
c5
2

)(hjj,i)
2 − c6(hij,j)2 − (c5 + c9 −

c6
2

)hjj,ihik,k) . (4.30)

From these expressions we see that the vector space of exact functionals is10 dimensional. This is a
proper subspace of the closed functionals, which can be determined to be12 dimensional.

4.5 Equations of motion and gauge fixing conditions

In this chapter we will determine the set of parametersci such that we arrive at a covariant dynamics for
the gravitons and the ghost fields, i.e. we want the followingequations of motion (EOM) to hold

�(hµν −
1

2
ηµνh) = 0 (4.31)

�ηsµ = 0 (4.32)

�η̄µ = 0 , (4.33)

where we have identified the configuration variables of the ghosts and antighosts which are common in
Lagrangian methods. The choice of these variables is governed by dimensionality arguments, spacelike
rotational covariance and hermiticity assignments.

Using the full HamiltonianHBRST = Hmin + {ΩBRST,Ψ} we can calculate the gauge fixed EOM by
evaluating the required Poisson brackets. These EOM are given in appendix A.

Demanding the covariant EOM (4.31) for the gravitons and forthe covariant ghost fields leads to a set
of algebraic equations for theci. This set is underdetermined so that we can impose further restrictions.

Since we want to construct the Fock space representation of this theory and determine the tensor struc-
ture of the graviton propagator, we will get some more restrictions by demanding a manifestly covariant
graviton propagator. In order to achieve this covariant tensor structure we have four possible real solutions
for ci from which we choose the one leading to the simplest Hamiltonian. This solution is given by:
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c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

− 1
4 − 1

4 − 1
2 − 1

2
1
2 −1 1 0 0 0

This choice even leads to the covariant graviton EOM�hµν = 0, which implies (4.31) and the following
expressions for the time derivatives of the graviton

ḣ00 =
1

2
π00 +

1

2
πjj (4.34)

ḣ0i = −π0i (4.35)

ḣij = πij +
1

2
(π00 − πkk)δij . (4.36)

and the following time derivatives of the ghosts and antighosts

η̇(0)
s = −η(0) , η̇(i)

s = −η(i) − ∂iη(0)
s (4.37)

˙̄η(0) = η̄(0)
s + ∂iη̄

(i) , ˙̄η(i) = η̄(i)
s . (4.38)

These equations give relations among the time derivatives of the variables and the variables themselves,
i.e. they can be used to express some variables through theirsolved dynamics. This will be fundamental in
defining the BRST charge in a suitable form and performing theFock quantization of the theory.

The only small drawback of this formulation, so far, is that some of the time derivatives of the ghost fields
(4.37) come with an additional term which would not be present using standard Lagrangian methods and
de Donder gauge fixing. But this problem can be solved by applying a suitable canonical transformation
on the ghost sector as shown in the next section.

4.6 Canonical transformation to suitable ghost variables

In this chapter we briefly give the canonical transformationon the ghost sector which cancels the undesired
terms in (4.37). Consider the following transformation of the ghost fields and their momenta

η(i) →Υ(i) = η(i) + ∂iη
(0)
s (4.39)

η̄(0)
s →Ῡ(0)

s = η̄(0)
s + ∂iη̄

(i) , (4.40)

where the rest of the variables remain untransformed. It canbe shown by a short calculation that this
transformation conserves the Poisson bracket and therefore is a canonical transformation.

Using the new variables, the time derivatives of the energy dimension 1 ghost fields are given by

η̇(0)
s = −η(0) , η̇(i)

s = −Υ(i) (4.41)

˙̄η(0) = Ῡ(0)
s , ˙̄η(i) = η̄(i)

s , (4.42)

which is nicer than (4.37) since it is in accordance to the full covariant ghosts from Lagrangian methods.
The new dimension1 ghost fields also acquire a free covariant EOM by acting a second time derivative on
them.

In the following we will always use the new ghost variablesΥ and therefore will rename them back to
η again. But we have to be careful since we must always keep in mind that in the formulas derived in the
sections above the “old” ghost variables appear such that they have to be expressed in terms of the new
variables before proceeding.

To be specific and in order to avoid confusion we insert the derived constantsci into the Hamiltonian
HBRST = Hmin + {ΩBRST,Ψ} and simplify it using the relations between old and new ghosts. This leads
to

HBRST = Hgrav +Hghost (4.43)
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with

Hgrav =

∫
d3x

(
1

2
(πij)2 − 1

4
(πjj)2 +

1

4
(π00)2 − (π0i)2 +

1

2
π00πjj

+
1

4
(h00,i)

2 +
1

2
h00,ihjj,i −

1

4
(hjj,i)

2 +
1

2
(hij,k)

2 − (h0i,j)
2

)
(4.44)

and

Hghost =

∫
d3x

(
−η(0)η̄(0)

s − η(i)η̄(i)
s − η(0)

s △η̄(0) − η(i)
s △η̄(i)

)
. (4.45)

It can be seen that the ghost fields decouple from the gravitons, as expected, since we investigate the
free theory of the graviton. Furthermore it can be checked explicitly that the Poisson bracket between the
BRST charge and the Hamiltonian is0, i.e. the Hamiltonian is strongly BRST invariant. The result for
the graviton Hamiltonian and (after the canonical transformation) also the result for the ghost part is in
accordance with the result one gets by first applying the harmonic gauge fixingLGF = (h ,ν

µν − 1
2h,µ)

2 at
Lagrangian level and then performing the Legendre transformation.

4.7 Covariant expression of the BRST charge

The BRST charge of our system reads after the insertion of thenew ghost variables

ΩBRST = χ(0)[η(0)] + χ(i)[η(i)] + (χ(0)
s + ∂iχ

(i))[η(0)
s ] + χ(i)

s [η(i)
s ] . (4.46)

It can be simplified by using the gauge fixed dynamics to the form

ΩBRST = i(χ(0), η(0)
s )cov + i(χ(j), η(j)

s )cov . (4.47)

Here we have used that the gauge fixed time evolution of the theory leads to the following time derivatives
of the primary constraints

χ̇(0) = {χ(0), HBRST} = χ(0)
s + ∂iχ

(i) (4.48)

χ̇(i) = {χ(i), HBRST} = χ(i)
s , (4.49)

while the time derivatives in the ghost sector are given by (4.41) in term of the new ghost variables.
In order to achieve a full covariant form of the BRST charge, i.e. express the constraints and ghosts in

terms of 4-(co)vectors, we defineηsµ := (η
(0)
s , η

(i)
s ) to be a 4-covector. This is in accordance to the symme-

tries in Lagrangian methods, what can be seen by an inverse Legendre transformation of the Hamiltonian.
Note that this only holds after the canonical transformation on the ghost sector.

Furthermore it can be checked explicitly thatχµ := (χ(0),−χ(i)) is a 4-covector too, by either rep-
resenting the Noether charge of Lorentz transformations inthe Poisson algebra and showing that it leads
to a covariant transformation property of the constraint vector or using the EOM to express the constraint
vector in an explicit covariant form.

For the first method we have constructed the Noether charge ofthe Lorentz transformations by Noether’s
theorem. It is given by the antisymmetric tensorial functional on phase spaceQµν(h, π) with the compo-
nents

Q0i =

∫
d3x

(
4π[0βh

β
i] − x0π

αβhαβ,i +
xi
2

(παβπαβ + hαβ,ih
αβ,i − 1

2
π2 − 1

2
h,jh

,j)

)
(4.50)

Qij =

∫
d3x

(
4π[iβh

β
j] − 2x[iπ

αβhαβ,j]

)
, (4.51)

where[. . . ] denotes antisymmetrization. With this charge it can be shown thatχµ transforms as a 4 -
covector.
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The second method is somewhat easier since the constraint vector can be expressed as

χµ = h ,ν
µν −

1

2
h,µ (4.52)

by using the EOM and therefore is obviously a Lorentz covector. Note that the constraint vectorχµ is
exactly the harmonic gauge fixing condition from the Lagrangian approach. This will be used later in order
to compare the BRST approach with the Gupta-Bleuler approach and show their equivalence.

Hence we have the following expression for the BRST charge

ΩBRST = i(χµ, η
µ
s )cov , (4.53)

which is a scalar under Lorentz transformations.
This completely covariant form has two advantages. First wecan simultaneously diagonalize the BRST

charge and the Lorentz group generators such that we can assign a BRST quantum number to representa-
tions of the Lorentz group. This will be necessary if we want to investigate the representations of the BRST
charge on one particle states. Second, when we quantize thischarge it will obviously annihilate the Fock
vacuum since the covariant scalar product projects onto thecombination of positive-negative frequency
solutions and therefore picks out one annihilation operator in each summand.

4.8 Auxiliary Fock space representation

In this section we construct the kinematical Fock space together with a representation of the (auxiliary)
observable algebra in terms of the generated associative⋆-algebra of linear variables.

Since we have used the freedom of adding BRST invariant terms{ΩBRST,Ψ} to the Hamiltonian in
order to achieve a free and covariant dynamics given by the Hamiltonian (4.43) we can perform the iso-
morphism from the canonical phase space to the covariant oneby the following equations

hµν(t,x) =

∫
d̃3k

(
aµν(k)e−ikx + a†µν(k)eikx

)
(4.54)

ηsµ(t,x) =

∫
d̃3k

(
cµ(k)e−ikx + c†µ(k)eikx

)
(4.55)

η̄µ(t,x) =

∫
d̃3k

(
c̄µ(k)e−ikx − c̄†µ(k)eikx

)
, (4.56)

where the operatorsaµν , cµ and c̄µ together with their adjoints represent the annihilation and creation
operators. The minus sign in the definition ofη̄µ is due to its antihermiticity.

There are similar expressions for the field momenta in terms of the creation and annihilation operators
which can be calculated by inverting the time derivatives ofthe fields (4.34). We do not specify them here
since we only require their existence.

The Fock vacuum|0〉 is defined by

aµν(f)|0〉 = cµ(f)|0〉 = c̄µ(f)|0〉 = 0 ∀wave packetsf ∈ L2(M4) (4.57)

and the wave packet creation and annihilation operators canbe expressed as

aµν(f) = (f, hµν)cov , a†µν(f) = −(f∗, hµν)cov (4.58)

cµ(f) = (f, ηsµ)cov , c†µ(f) = −(f∗, ηsµ)cov (4.59)

c̄µ(f) = (f, η̄µ)cov , c̄†µ(f) = (f∗, η̄µ)cov (4.60)

wheref is a wave packet, i.e. it has a positive frequency spectrum.
Using (4.58) we can determine the (anti-) commutators between the creation and annihilation operators

using the canonical (anti-) commutators between the fields and their momenta. They are given by

[aµν(f), a†αβ(g)] = (f, g)cov
1

2
(ηµαηνβ + ηµβηνα − ηµνηαβ) (4.61)

{cµ(f), c̄†ν(g)} = (f, g)covηµν (4.62)

{c̄µ(f), c†ν(g)} = −(f, g)covηµν (4.63)
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and0 for other (anti-) commutators. Here we have used the fact that (f, g∗)cov = (f∗, g)cov = 0 for
two wave packetsf andg, because the complex conjugation changes the positive frequency into negative
frequency and therefore the scalar product vanishes because of orthogonality. Since these relations are
Lorentz covariant, they will lead to a Lorentz covariant tensor structure of the propagators. The propagators
will be constructed later in this chapter, but before we haveto construct the Hilbert space and the algebra
of observables.

Using the graviton and ghost wave packet creators (4.58), wecan construct the one particle (pre) Hilbert
space for the gravitons and the one for the ghosts and hence the Fock space by tensor producting them
with symmetrization for the graviton multiparticle Hilbert spaces and antisymmetrization for the ghosts.
The scalar product on Fock space induced from the covariant scalar product on the one particle states does
not induce a positive definite norm. Therefore we must investigate the action of the BRST operator on the
auxiliary Hilbert space and identify the physical subspacein order to construct a Hilbert space of positive
norm states.

The Heisenberg algebra can be constructed since we have representations of the field and conjugate
momentum variables through the annihilation and creation operators. The algebra of BRST closed opera-
tors of ghost number0 can be found by demanding invariance under BRST transformations. This algebra
also contains exact operators. In classical physics the algebra of Dirac observables is isomorphic to the
cohomology of the ghost number0 observables [18]. In quantum theory there is no rigorous proof for this
isomorphism to exist, but it is guaranteed that for each Dirac observable there exists a BRST invariant ex-
tension which is in our case given by (2.31), such that the cohomology of ghost number0 operators at least
contains the Dirac observables. Using this fact we can map every Dirac observable to a strongly BRST
invariant operator, like we have done it for example with theHamiltonian.

Next we have to discuss the operator ordering. In our case we have linear constraints so that we do not
have to specify an operator ordering for the constraints. The same holds true for the BRST operator since
the ghost and graviton variables commute. The quantum Hamiltonian is defined through normal ordering
in terms of creation and annihilation operators. This fixes the operator ordering for the operators required
in the following.

4.9 Graviton propagator in harmonic gauge

The graviton propagator in position space is defined as

G(x, y)µναβ := 〈0|T {hµν(x)hαβ(y)}|0〉 . (4.64)

Using the mode expansion (4.54) and the commutators (4.61) we get

G(x, y)µναβ =
1

2
(ηµαηνβ+ηµβηνα−ηµνηαβ)

∫
d̃3k

(
Θ(x0 − y0)e−ik(x−y) + Θ(y0 − x0)eik(x−y)

)

=
1

2
(ηµαηνβ + ηµβηνα − ηµνηαβ)

∫
d4k

(2π)4
i

k2 + iǫ
e−ik(x−y) . (4.65)

This expression for the propagator is in accordance with existing results [15, 17, 16].

4.10 Cohomology of the one graviton subspace

In this chapter we want to study the action of the BRST operator on the auxiliary Fock space constructed
in the last section. In particular we are interested in its action on one particle states with0 ghosts and
antighosts, since we suppose that physical free graviton states will lie in this sector in the Fock space.
Since we can decompose the Fock space asHFock := Hgraviton ⊗Hghost ⊗Hantighost, where the factors
are the Fock spaces for gravitons, ghosts and antighosts, weare interested in the closed and exact states
in H1

graviton ⊗ H0
ghost ⊗ H0

antighost. Here the upper indices refer to the particle number of the different
particle species.
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By taking the full covariant form of the BRST charge (4.53) and the mode expansion (4.54) we arrive at
the following BRST operator represented in terms of annihilation and creation operators

ΩBRST = −
∫
d̃3k

(
(kνa

µν†(k) − 1

2
kµa†(k))cµ(k) + (kνa

µν(k) − 1

2
kµa(k))c†µ(k)

)
, (4.66)

wherea := ηµνaµν .
When restricting the BRST operator to definite particle number states we see that it is given by a sum of

operatorsΩBRST = Ω1 + Ω2 with the following domains and co-domains

Ω1 : Hngraviton ⊗Hmghost ⊗Hlantighost → Hn+1
graviton ⊗Hmghost ⊗Hl−1

antighost (4.67)

Ω2 : Hngraviton ⊗Hmghost ⊗Hlantighost → Hn−1
graviton ⊗Hm+1

ghost ⊗Hlantighost . (4.68)

By knowing the (co-) domains of the restricted BRST operatorwe can simply show the following propo-
sition for the exact states.

Proposition 2. All exact states inH1
graviton⊗H0

ghost⊗H0
antighost have their preimage underΩBRST in the

sub-vectorspaceH0
graviton ⊗H0

ghost ⊗H1
antighost. Every exact state can be written asΩBRSTc̄

†
µ(f

µ)|0〉 =
− 1

2

∫
d̃3k

(
kµf̃ν(k) + kν f̃µ(k) − kf̃(k)ηµν

)
a†µν |0〉, where f̃µ is the spectrum of an antighost wave

packet.

Proof. Use the specification of the restricted (co-) domains above with (n,m, l) = (0, 0, 1) for Ω1. Ω2

does not contribute to the desired states, since it requires(n, l,m) = (2,−1, 0) which does not exist. The
expression of the image of an antighost wave packet can be determined by a short calculation as above.

The next step is to investigate the subspace of closed one graviton states. The following proposition
holds.

Proposition 3. The subspace of closed states inH1
graviton ⊗ H0

ghost ⊗ H0
antighost is given by the states

a†µν(f
µν)|0〉 with a spectrum satisfyingkµf̃µν(k) = 0 ∀k ∈ R3.

Proof. Demanding the restriction0 = ΩBRSTa
†
µν(f

µν)|0〉 leads directly to
∫
d̃3k kµf̃

µν(k)c†ν(k)|0〉 = 0

by using the commutators (4.61). This identity holds true ifand only ifkµf̃µν(k) = 0 ∀k ∈ R3, since the
0 state has an unique spectrum given by0. This is because there is an isomorphism between position space
and momentum space representations of the wave packets.

It can be checked explicitly that the exact states are closedsince we have12kµ(k
µf̃ν(k) + kν f̃µ(k) −

kf̃(k)ηµν) = 1
2k

2fν(k) = 0 by using the graviton on-shell conditionk2 = 0.
In the following we investigate explicitly the case of planewave states withk = (k, 0, 0, k), i.e. we

will use spectra of the form̃fµν(p) = (2π)32p0 δ(p − k)Aµν . This helps us to determine explicitly
the polarization tensorsAµν of the physical, i.e. closed but non-exact states. For the case of a general
momentum we have to perform a Lorentz transformation by using for example (4.50).

For a closed state the polarization tensor must be of the following form

Aµν =




A00 A01 A02 A00

A01 C B A01

A02 B D A02

A00 A01 A02 A00



, (4.69)

where the6 constants are arbitrary and lead to6 linearly independent states.
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Among these 6 states we find 4 exact states given by

Aµνex 1 ∼




1 0 0 1

0 1 0 0

0 0 1 0

1 0 0 1




, Aµνex 2 ∼




0 1 0 0

1 0 0 1

0 0 0 0

0 1 0 0




Aµνex 3 ∼




0 0 1 0

0 0 0 0

1 0 0 1

0 0 1 0




, Aµνex 4 ∼




1 0 0 1

0 −1 0 0

0 0 −1 0

1 0 0 1



. (4.70)

The remaining2 linearly independent states are closed and non-exact and therefore physical. Their
polarizations are given by

Aµνphys 1 ∼




0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0




, Aµνphys 2 ∼




0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0



, (4.71)

which is in agreement with Veltman and van Dam’s results [19].
The norm of the physical states is given by

〈Aphys 1, k|Aphys 1, k〉 = 2 (2π)3 2k0 δ(0) (4.72)

〈Aphys 2, k|Aphys 2, k〉 = 2 (2π)3 2k0 δ(0) , (4.73)

and such they are distributional states of positive norm, which can be “normalized” canonically by a factor
of 1√

2
in the polarization tensor.

4.11 Structure of the physical multi-graviton space

In this section we will investigate the general structure ofmultiparticle subspaces in free gauge theories
with decoupling ghosts. This will give the structure of the entire physical Fock space. In particular we are
interested if in this (very) restrictive case the physicaln particle Hilbert space is isomorphic to then-th
product of the physical1 particle space.

Because we deal with a free QFT we can decompose the BRST operator into

ΩBRST = Ω1 + Ω2 , (4.74)

whereΩ1 increases the number of particles by 1 and decreases the antighosts by1, andΩ2 decreases the
number of particles by 1 and increases the ghosts by 1.

The action of the BRST operator on then particle space is given by the partΩ2, sinceΩ1 annihilates
this state. The most generaln particle state can be written as

|ψ;n〉 := a†(f1)a
†(f2) . . . a

†(fn)|0〉 , (4.75)

wherea† is the creation operator of the particles andfj are wave packets.
The condition for closed states is given by the action ofΩ2 on |ψ;n〉

0 =
∑

j

a†(f1) . . . [Ω2, a
†(fj)] . . . a

†(fn)|0〉 . (4.76)
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The problem with exactn particle states is thatΩBRST can not be simply restricted to the domain
Hn−1

particle⊗H0
ghost ⊗H1

antighost in order to produce exactn particle states, because the image ofΩ2 would

be a subset ofHn−2
particle ⊗H1

ghost ⊗H1
antighost and hence non particle state. Therefore exact states in the

n particle Hilbert space have their preimage inHn−1
particle|closed⊗H0

ghost⊗H1
antighost, since now the action

of Ω2 leads to the zero vector.
In order to solve the main problem we require the following lemmas.

Lemma 1. A state in then particle Hilbert space is closed if and only if it is a productof closed 1 particle
states.

Proof. The reverse direction is trivial since if every 1 particle state is closed then every commutator van-
ishes and equation (4.76) is satisfied.

The other direction is proved by contraposition. Let{a†(fj)|0〉 : j ∈ J} be a set of non-closed 1 particle
states. Then their commutator withΩ2 leads to ghost creation operators with some wave packet determined
by fj. Equation (4.76) then is given by

0 =
∑

j∈J
a†(f1) . . . c

†(gj) . . . a
†(fn)|0〉 , (4.77)

wherec† is the ghost creator andgj the wave packet determined byfj .
If the fj are linearly independent the equation can not hold true. Even if somefj are linearly dependent

these contributions come with the same sign and therefore can not cancel. This completes the proof.

The next lemma is devoted to the exactn particle states.

Lemma 2. A state in then particle Hilbert space is exact if and only if its preimage underΩBRST lies in
Hn−1

particle|closed ⊗H0
ghost ⊗H1

antighost.

Proof. The reverse direction is trivial since for any state in|φ〉 ∈ Hn−1
particle|closed⊗H0

ghost⊗H1
antighost we

have

ΩBRST|φ〉 = Ω1|φ〉 ∈ Hnparticle ⊗H0
ghost ⊗H0

antighost .

Let now|ψ〉 = ΩBRST|φ〉 be an particle state and|φ〉 /∈ Hn−1
particle|closed⊗H0

ghost⊗H1
antighost. Because of

the restricted domains and co-domains of the BRST operator it holds true that|φ〉 ∈ Hn−1
particle ⊗H0

ghost ⊗
H1

antighost. In order forΩBRST|φ〉 to be an particle state the sum

n−1∑

j=1

a†(f1)a
†(f2) . . . [Ω2, a

†(fj)] . . . a
†(fn−1)c̄

†(fn)|0〉

must vanish, where we have written|φ〉 in terms of creation operators. This is only possible if all com-
mutators are0, because of the same linear independence and/or same sign arguments as in the lemma
above.

The main statement of this section is the following

Proposition 4. Assume a free QFT in which the BRST operator takes the formΩBRST = χa[ηa] = Ω1+Ω2,
whereχa are first class constraints,ηa are the ghost variables andΩi as above. Then the physicaln
particle Hilbert space for the ordinary variables is isomorphic to then-th symmetrized product of the
physical1 particle space, i.e.

Hnphys ≃
n⊗

s

H1
phys .

If the physical1 particle Hilbert space consists of positive norm states, all physical multiparticle states will
have positive norm, too.
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Proof. Using lemma 1 and 2 and the definition of the physicaln particle space we see that

Hnphys := Ker(ΩBRST)|n/Im(ΩBRST)|n ≃
n⊗

s

Ker(ΩBRST)|1/Im(ΩBRST)|1 =

n⊗

s

H1
phys ,

where|n denotes the restricted action of the BRST operator onn particle states.
The positivity of the norm gets inherited by the canonical definition of the scalar product on the multi-

particle Hilbert spaces in terms of the annihilation and creation operators.

4.12 Equivalence to Gupta-Bleuler method

Gupta and Bleuler’s method of quantizing abelian gauge theories can be roughly described as follows.
First of all we need to perform a gauge fixing of the Lagrangianby some gauge conditionG = 0. This

gauge conditions enters the Lagrangian in the following way:

L gauge fixing−→ L+G2 (4.78)

The gauge fixed theory can now be quantized canonically without the appearance of constraints, since
the gauge freedom is fixed. By investigating the resulting (pre) Hilbert space one obtains in general that
there are also unphysical d.o.f., so that we have to use some subsidiary condition in order to eliminate them.
As subsidiary condition we use the gauge fixing, more precisely the annihilating part, and define physical
states according to

G(+)|phys〉 = 0 , (4.79)

where the superscript+ denotes the positive frequency part.
The (pre) Hilbert space of physical statesVphys has in general a positive semidefinite norm, because

additional norm zero states solve the subsidiary condition. That is why factoring out the norm zero states
V0 ⊂ Vphys is required.

We arrive at the physical Gupta - Bleuler Hilbert space

HGB := Vphys/V0 . (4.80)

To compare this method with our BRST approach we just have to note that the gauge fixingG defined
above is nothing else but the constraint covectorχµ and the subsidiary condition is equivalent to the action
of the BRST operator on zero ghost and antighost states. Furthermore the BRST exact states are exactly
the norm zero states so that we have

HBRST ≃ HGB . (4.81)

The advantage of the BRST approach compared to Gupta - Bleuler’s formalism in free and abelian
theories is that we get a constructive method for finding normzero states in the graviton Fock space by
applying the BRST operator on states containing one antighost. This leads to exact graviton states which
are (in well behaved cases) the only norm zero states inVphys.
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Chapter 5

Pseudo-local matter observables with
matter clocks and rods

In this chapter we will investigate a model proposed by Hartle, Giddings and Marolf [1] in the framework
of perturbative effective quantum gravity on a fixed flat background. In the original version of this so-called
ψ2φmodel one uses one scalar fieldψ as clock and rod variable for localizing observables of another scalar
field φ. For reasons explained later we will use four clock and rod fieldsψi, i = 1, 2, 3, 4. In this model
gravity just acts as a perturbation on the localization through radiative corrections. The main goal of this
chapter is to define this model and give constraints on the localization of the two point correlation function
of theφ field.

5.1 Definition of the theory and observables

It is instructive to first define the desired observables and then the dynamical part of the theory, since by
choosing this order we can argue which terms of the effectiveaction will contribute to our problem.

As mentioned above the theory to be defined should contain thefive scalar fieldsψi andφ interacting
through some three point vertex of the formV ijψiψjφ, whereV ij is some symmetric4 × 4 matrix to be
defined later. Now we define the integrated interaction operatorOψ2φ :=

∫
d4x
√−gV ijψiψjφ which is

obviously diffeomorphism invariant and identify it with a part of the action. This operator, and in particular
powers of it, will be used as Dirac observables in this chapter.

Given such an operator we can in analogy to [1] investigate matrix elements of products of these oper-
ators in specially prepared states and identify them as pseudo-local observables. In the following we are
only interested in the square of the operator and we will restrict ourselves to this case.

The pseudo-local structure of a product ofOψ2φ operators can be seen in the following way. Assume
that we have prepared some states|f1, f2〉 and|f3, f4〉, wherefi is a wave packet state for the particleψi
such that there is no overlap among these wave packets, except for f1 andf2 overlapping around some
spacetime pointx andf3 andf4 are overlapping aroundy. We can understand by using (2.56) that the
matrix element of the time ordered operator squared at tree-level is given by

〈f3, f4; out|T {Oψ2φOψ2φ}|f1, f2; in〉 ∼ V 12V 34〈0|Tφ(x)φ(y)|0〉 , (5.1)

which is local relative to the wave packets.
We assume the index of theψi fields to be a quantum number of a conserved current transmitted through

theφ particles such that gravity only couples to singlets. This allows us to avoid tree-level diagrams in-
cluding gravitons in the scattering matrix〈f3, f4; out|f1, f2; in〉. In this case the the matrix elements of our
pseudo-local operator (5.1) can be measured directly through the scattering of the four different clock and
rod particles without further effort of extracting the information about our observable from the scattering
process. The scattering experiment of wave packet states requires some nonstandard experimental setup
which is not practically available today. We will discuss this topic in appendix E.2. It has to be stated
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Figure 5.1: Tree-level localization graphs. They coindicewith theS-matrix element forψ1 ψ2 → ψ3 ψ4

scattering, if theψ fields carry quantum numbers of some conserved current.

again that the main purpose of this work is to perform a Gedankenexperiment and not a detailed technical
description of a realistic experimental setup.

In the following part of this section we will collect the required terms from the effective action in order
to study this matrix element up to orderλ2κ2, whereλ := λ̃mψ is a dimensionful coupling defining the
overall strength of the three point scalar couplings andλ̃ is dimensionless. We assume the right energy
scale for the constantλ to be the particle massmψ, since this interaction is assumed to be independent of
gravity and should only be defined from the particle properties. But in the presence of gravity the form of
the interaction will receive correction terms, where the natural scale is the Planck scale.

Focussing the problem we have to think about to which order inκ we need the action of the gravitons
and the scalars. Since the observable we want to calculate isbased on the Feynman diagrams shown in
fig. 5.1 plus the associated graviton loop contributions, effective vertices and the real emission of one soft
graviton, we see that even at tree-level we already are at orderλ2 so that virtual scalars can be neglected
since they come with a factor ofλ. We also see that the effective three point scalar vertex is limited by
κ2. The four point scalar interaction naturally comes with a factorλ2κ2, if we assume this operator to be
induced from the three point interactions and gravity. Hence it has to be included into the next to leading
order corrections in the following too. Furthermore there are effective scalar two point operators which are
of orderκ2.

Since we calculate the matrix element of the squared operator in ψi particle states the gravitons only
contribute as virtual particles in loop diagrams or as soft real emission. In the case of the virtual corrections
every emitted graviton must connect somewhere to the graph again. This sets the limit for a scalar-scalar-
graviton and scalar-scalar-scalar-graviton vertex to order κ1. The same holds true for soft real graviton
emission. Double graviton emission is forbidden in our desired order, since every graviton comes with at
least a factor ofκ and has to connect to some other leg of the graph with another factor ofκ. The only
exceptions are graviton tadpole loop diagrams, but these diagrams vanish in dimensional regularization,
because gravitons are massless.

Next we write down the most general diffeomorphism invariant action for the scalars respecting the
conditions posed above on the order ofκ and respecting the quantum number conservation of theψi fields.
It is given by

Sm =

∫
d4x
√−g

(
1

2

(
gµν∂µφ∂νφ−m2

φφ
2 + aRφ2

)
+

Ξφ
2
κ2

�φ�φ

+
1

2

(
gµν∂µψi∂νψi −m2

ψψiψi + bRψiψi
)

+
Ξψ
2
κ2

�ψi�ψi

+
λ

2
(V ijψiψjφ+ cij κ2gµν∂µψi∂νψjφ+ dij κ2ψiφ�ψj + eij κ2ψiψj�φ)

)

− λ4λ
2κ2M ijklψiψjψkψl , (5.2)

wherea, b, c, d ande are dimensionless constants and the matrix structure ofc, d ande has to be chosen
such that the action is aψ quantum number singlet. FurthermoreΞψ andΞφ are dimensionless constants
parameterizing the effective scalar two point interactions. The four point scalar interaction comes with
some tensor structureM and is parameterized by the dimensionless constantλ4. In this action we have
omitted redundant operators like e.g.�(ψiψj)φ, since they can be expressed through the other ones by
using integration by parts and do not contribute to the Feynman rules.
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Expanding this action using (3.6), (3.23) and (3.25) we get the following action on a flat background

Sm =

∫
d4x

(
L(0)
m + κL(1)

m + κ2L(2)
m

)
+O

(
κ3
)

(5.3)

L(0)
m =

1

2

(
∂µφ∂

µφ−m2
φφ

2 + ∂µψi∂
µψi −m2

ψψiψi + λV ijψiψjφ
)

(5.4)

L(1)
m = −1

4
hµν

(
2∂µφ∂νφ− ηµν

(
∂λφ∂

λφ−m2
φφ

2
)

+ 2∂µψi∂νψi − ηµν
(
∂λψi∂

λψi −m2
ψψiψi

))

+
1

2
(h ,µ
,µ − h ,µ,ν

µν )(aφ2 + bψiψi) +
λ

4
hV ijψiψjφ (5.5)

L(2)
m =

Ξφ
2

�φ�φ+
Ξψ
2

�ψi�ψi − λ4λ
2M ijklψiψjψkψl +

1

2
hµλh

λν(∂µφ∂νφ+ ∂µψi∂νψi)

+
1

2
R(2)(aφ2 + bψiψi) +

λ

2
(cij ∂µψi∂

µψjφ+ dij ψiφ�ψj + eij ψiψj�φ)

+
h

4

(
−hµν(∂µφ∂νφ+ ∂µψi∂νψi) +R(1)(aφ2 + bψiψi)

)
+

1

4
(
1

2
h2 − hαβhβα)L(0)

m , (5.6)

which can be shown to be invariant under theδ̃ gauge transformations given by (3.12) and (3.20) up to
orderκ2. Although the quadratic graviton terms of this action will not directly contribute to our problem
we will keep them in order to have a manifestly gauge invariant Lagrangian.

Given the action (5.2) we can identify the most general diffeomorphism invariant three point scalar
operator as

Oψ2φ :=

∫
d4x
√−gλ

2
(V ijψiψjφ+cij κ2gµν∂µψi∂νψjφ+dij κ2ψiφ�ψj+e

ij κ2ψiψj�φ) . (5.7)

The expansion of this operator around a fixed flat background in orderκ2 is given by

Oψ2φ =

∫
d4x

λ

2

(
V ijψiψjφ+

κ

2
hV ijψiψjφ−

κ2

4
(hαβh

β
α −

1

2
h2)V ijψiψjφ

+cij κ2ηµν∂µψi∂νψjφ+ dij κ2ψiφ�ψj + eij κ2ψiψj�φ
)

+O(κ3) . (5.8)

This expression can be shown to be invariant under theδ̃ gauge transformations up to orderκ2.
The expansion of the graviton action in the required order has already been performed in section 3.5 and

is given by (3.29).
The goal of the following part of this chapter is to find limitations on the localization of the two point

correlator of theφ fields in the presence of gravity. Therefore we will first calculate the localization process
to orderκ0λ4 in order to get some insights into the dynamics of this process. Then the radiative corrections
up to orderκ2λ4 are calculated, which give bounds on localization.

5.2 Feynman rules

In this section the relevant Feynman rules are derived from the Langrangian using standard methods. We
can summarize the general method in the following steps:

• every field in the interaction Lagrangian gets replaced by the corresponding external leg

• the prefactors are multiplied byi

• every derivative∂µ gets replaced by−ipµ, wherep is the incoming momentum of the corresponding
field

• permutation symmetry factors are included

Performing these steps for the Lagrangians (5.3) and (3.29)we arrive at the Feynman rules given in fig. 5.2,
omitting the parts we do not require for our problem, like forexample the two graviton emission from
scalars. The graviton propagator was derived in the section4.9 above and is given by (4.65).
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=
i

p2 −m2
ψ

δij

=
i

p2 −m2
φ

=
i

2

ηµαηνβ + ηµβηνα − ηµνηαβ
p2

k
p

q

= iλ

(
V ij − κ2

2
(2cij pq + dij(p2 + q2) + 2eij k2)

)

k
p

q

=
iκ

2
δij
(
pµqν + pνqν − ηµν

(
pq +m2

ψ

)
+ 2bkµkν − 2bηµνk

2
)

k
p

q

=
iκ

2

(
pµqν + pνqν − ηµν

(
pq +m2

φ

)
+ 2akµkν − 2aηµνk

2
)

=
iλκ

2
V ijηµν

= i Ξψκ
2p4δij

= i Ξφκ
2p4

= −iλ4λ
2κ24!M (ijkl)

Figure 5.2: Required Feynman rules for theψ2φ model. All momenta are flowing into the vertex. We did
not have to include the indices of the graphs, since they are understood.
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5.3 Tree-level localization

In this section we will calculate the pseudo-local observable defined above in orderλ2κ0 through the
corresponding tree-level Feynman diagrams, see fig. 5.1. Therefore we will use the LSZ reduction formula
(2.56) in order to relate the matrix element to the Green functions. The matrix element will be squared,
since this is the quantity which is measured.

Using the Feynman rules we obtain for the Green function

Mtree = −iλ2

(
V 13V 24

T −m2
φ

+
V 14V 23

U −m2
φ

+
V 12V 34

S −m2
φ

)
, (5.9)

whereS = (k1 + k2)
2, T = (k1 − k3)

2 andU = (k1 − k4)
2 are the standard Mandelstam variables

dependent on the momentaki of the particlesψi.
According to the LSZ formula (2.56) we have to perform the following integral in order to get the matrix

element

〈f3, f4; out|T {Oψ2φOψ2φ}|f1, f2; in〉 = −iλ2

∫ 4∏

i=1

d̃3kif̃1(k1)f̃2(k2)f̃
∗
3 (k3)f̃

∗
4 (k4)

π4δ(k1 + k2 − k3 − k4)

(
V 13V 24

T −m2
φ

+
V 14V 23

U −m2
φ

+
V 12V 34

S −m2
φ

)
, (5.10)

wheref̃i are the spectra of the wave packetsfi. As a remark we do not have to take into account the
nonconnected terms of the LSZ formula, since the initial andfinal state particles are distinct.

Now we want to interpret the individual contributions to (5.10). Using the relation

i

p2 −m2
φ + iǫ

=

∫
d4xeipx〈0|T {φ(x+ y)φ(y)}|0〉 (5.11)

we can find for each individual term

∫ 4∏

i=1

d̃3kif̃1(k1)f̃2(k2)f̃
∗
3 (k3)f̃

∗
4 (k4)π

4δ(k1 + k2 − k3 − k4)
1

S −m2
φ

= − i

24

∫
d4xd4yf1(x)f2(x)f

∗
3 (y)f∗

4 (y)〈0|T {φ(x)φ(y)}|0〉 (5.12)

∫ 4∏

i=1

d̃3kif̃1(k1)f̃2(k2)f̃
∗
3 (k3)f̃

∗
4 (k4)π

4δ(k1 + k2 − k3 − k4)
1

T −m2
φ

= − i

24

∫
d4xd4yf1(x)f2(y)f

∗
3 (x)f∗

4 (y)〈0|T {φ(x)φ(y)}|0〉 (5.13)

∫ 4∏

i=1

d̃3kif̃1(k1)f̃2(k2)f̃
∗
3 (k3)f̃

∗
4 (k4)π

4δ(k1 + k2 − k3 − k4)
1

U −m2
φ

= − i

24

∫
d4xd4yf1(x)f2(y)f

∗
3 (y)f∗

4 (x)〈0|T {φ(x)φ(y)}|0〉 , (5.14)

where we have used translation invariance for theφ two point function.
We now see that we can choose the relevant scattering channelby choosing the overlaps among the wave

packets, since the integrals above will only contribute if there is some pairwise spacetime overlap among
the wave packets. We call the localizationS-type if there is overlap between wave packets 1,2 and 3,4,
T -type if there is overlap between 1,3 and 2,4 and finallyU -type, if 1,4 and 2,3 overlaps.
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In the following we will investigate the different types of localization. We will restrict ourselves to theS-
andT -type localizations, sinceT andU are related by interchanging the center of mass system scattering
angleθ with π− θ and therefore are not independent. When we investigate e.g.S-type localization we will
switch off all couplingsV ij except forV 12 andV 34, since they will not contribute.

In S-type localization we use products of the first order approximated Gaussian wave packets given in
appendix E.1 such thatf1 is moving inz-direction,f2 in −z-direction,f3 in y-direction andf4 in −y-
direction. The overlap off1 andf2 should be w.l.o.g. aroundx0 = (tx0

,x0) and the overlap off3 andf4
around 0. Note that due to translation invariance only the distance between these points is relevant. This
leads to the following result

〈f3, f4; out|T {Oψ2φOψ2φ}|f1, f2; in〉 = −Nsλ2

∫
d4xd4y exp

(
−q

4

4
((x − x0)

2 + (tx − tx0
)2)

)

× exp

(
−q

4

4
(y2 + t2y)

)
〈0|T {φ(x)φ(y)}|0〉 , (5.15)

whereNs is some complex prefactor coming from the normalization of the wave packets. This shows that
we can increase the resolution by increasing the momentumq = ‖q‖. Since we have not included higher
order corrections we have no upper bound forq, so that at this stage the resolution can be arbitrarily high.
This of course does not hold true in the presence of gravity, as we will show it in the following sections.
Finally we can square the amplitude (5.15) in order to relateit to a cross section.

In T -type localization we can use the same Gaussian wave packets, but with different overlap proper-
ties. Since this requires the multiplication of non-anti-parallel moving wave packets, some corrections are
present in their product, see (E.10). But these slightly deformed Gaussian functions describing the overlap
can also be adjusted to an arbitrary small width by increasing the momentumq. HenceT -type localization
behaves in the same way asS-type localization, at least at leading order.

5.4 One loop corrections and counterterms

In this section we will discuss the one loop corrections inκ to the matrix element. They are part of the
next to leading order (NLO) corrections to the process. For their evaluation we have used theMathematica
packagesFeynArts, FormCalcandLoopTools, see e.g. [3] and references therein. These tools can be used
for diagram generation, analytical simplifications and numerical evaluation of loop integrals. But in order to
apply FeynArts and FormCalc we had to modify the packages to include spin 2 particles. This modification
is described in appendix F.

The regularization of the UV divergent integrals is automatically performed by dimensional regulariza-
tion in LoopTools, where we use the conventiond = 4− ǫ. As renormalization scheme we choose theMS
scheme in which the counterterms are calculated by modified minimal subtraction, i.e. the counterterms
are given by2

ǫ + log 4π − γE times some diagram dependent prefactors and tensor structure, whereγE is
the Euler gamma. The divergences for the individual diagrams occurring in our problem are given later.

Since gravitons are massless, we have to take care of the occurring IR divergences. This is done by in-
troducing a small graviton mass as IR cutoff which is later removed by taking into account Bremsstrahlung
corrections. This IR regularization is performed automatically for the loop amplitudes by FormCalc and
LoopTools, but the soft real emission diagrams had to be regularized by hand. This will be explained in
more detail in the next section.

Now we will discuss the loop contributions to our process andgive the required counterterms. There-
fore we will divide the loop diagrams according to FeynArts into the diagram typesboxes, self energies,
triangles, tadpolesandwavefunction corrections. We will only investigateS-type graphs, since they are
isomorphic to theT -type graphs by crossing.

In our model all orderκ2 tadpole graphs vanish, since there are no scalar tadpoles and the graviton
induced tadpoles are renormalized to 0 by a renormalized cosmological constant, see appendix C.

The wavefunction renormalization graphs are given by the tree diagram with renormalized external legs.
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They will enter the amplitude through the following relation coming from LSZ formula

(
Z

1
2

ψ

)4

Mtree = (1 + 2δZψ)Mtree +O(κ3) =:Mtree +MWF +O(κ3) , (5.16)

whereZψ = 1 + δZψ is the renormalized wavefunction renormalization, i.e. the residuum of the one loop
ψ propagator inMS scheme. The calculation ofZψ can be performed automatically in FormCalc, but we
will also give the required off-shell one loop divergence, i.e. the counterterm, for the scalar propagator
explicitly

= i
κ2

8π2ǫ

(
b

2
k4 − k2m2

ψ(1 +
3

2
b− 3

2
b2) +m4

ψ(1 + 3b+
3

2
b2)

)
+ finite . (5.17)

In the category of self energy corrections there is only one diagram given by

2

1

4

3

(5.18)

The counterterm for the divergent subdiagram is given by (5.17) withmψ replaced bymφ andb replaced
by a. Hence this diagram is renormalized by the propagator counterterm.

The triangle diagrams are given by all possible permutations of the following basic diagram types

2

1

4

3

+

2

1

4

3

+

2

1

4

3

+

2

1

4

3

(5.19)

These diagrams have subdivergences which have to be renormalized by the three point scalar interaction
counterterm. The off-shell divergence of the sum of all scalar three point diagrams is given by

k1

k3

k2

∣∣∣∣∣
1PI

= −iλV ij κ2

4π2ǫ

(
m2
ψ(1 +

3

2
a+

3

2
ab+ 3b+

3

2
b2) +

m2
φ

2
(1 +

3

2
a+ 3ab+ 3b)

−k
2
1

4
(1 − 3ab+ 3b+

3

2
b2)− k2

2 + k2
3

4
(1 +

3a+ 3b

2
− 3b2

2
)

)
+ finite . (5.20)

We obtain that the divergences have the same coupling matrixV ij like in the original definition of the
theory. This is because gravitons do not change the quantum numbers, so that graviton loop corrections are
the same for all combinations ofij, of course weighted byV ij .

The last type of contributions are the boxes given by all possible permutations of the following diagrams

2

1

4

3

+

2

1

4

3

+

2

1

4

3

(5.21)
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The divergence of the sum of all box diagrams is given by

2

1

4

3
∣∣∣∣∣
1PI

= iV 12V 34λ
2κ2

8π2ǫ
(1 + 6b+ 6b2) + finite, (5.22)

where we have restricted ourselves toS-type localization as mentioned above, i.e. onlyV 12 andV 34 are
nonzero. We see that the prefactor of the divergence is in general nonzero, so that we will have an induced
effective four point interaction.

This completes the list of all occurring one loop divergences forS-type localization and by crossing also
for T -type localization. The next step was to square the renormalized matrix elements, i.e. multiplying the
loop matrix element with the tree level matrix element. Since we integrate the matrix elements themselves
over the external wave packets, the following formula holdstrue

∣∣∣〈f3, f4; out|T {Oψ2φOψ2φ}|f1, f2; in〉
∣∣∣
2

=

∫
dkdpF(k)F∗(p)M(k)M∗(p)

=

∫
dkdpF(k)F∗(p)

(
Mtree(k)M∗

tree(p) +Mtree(k)M∗
loop(p) +Mloop(k)M∗

tree(p)
)

+ higher orders , (5.23)

wherek andp label collectively all four 4-momenta of the2→ 2 process, andF is defined as follows:

F(k) = π4 f̃1(k1)f̃2(k2)f̃
∗
3 (k3)f̃

∗
4 (k4)δ (k1 + k2 − k3 − k4) . (5.24)

Next we can express the NLO corrections to the wave packet process in terms of the corrections to the

momentum eigenstate scattering process given by2Re
(
Mtree(k)M∗

loop(k)
)

. For this we have to use the

phase information aboutF(k) andMtree(k).
As we have seen in section 5.3 above, the tree-level matrix element has a trivial phase which is inde-

pendent of the momenta. The collective wave packetF(k) has a nontrivial,k dependent phase due to the
phases of the wave packet spectra. For Gaussian wave packetswe have found in appendix E.1 that the
phase of the spectrum is given byeikx0 , wherex0 is the spacetime position of the narrowest spatial wave
packet. This specific phase is quite natural for more generallocalized states.

To see this we use the spectral representation of the wave packet f(x) =
∫
d̃3k e−ikxf̃(k). Since the

localized wave packet contains some preferred positionx0 around which it is localized with the smallest
width, this position must be encoded in the spectrum. Assumesome translationx→ x+δ. This translation
transforms the wave packet localized aroundx0 to the same wave packet localized aroundx0 + δ. Since
the translation acts as a multiplication in momentum space we have the following relation

f̃x0+δ(k) = eikδ f̃x0
(k) . (5.25)

Therefore the only information about the pointx0 is contained in the phase factoreikx0 .
There can be additional phases depending only on the momentak. But these phases are quite unnatural

if we use the following natural construction for localized states:
We take a real spectrum for assigning the relevant momenta. This real spectrum gets multiplied by the min-
imal phase, which contains the information about the preferred spacetime pointx0, i.e. the real spectrum
gets multiplied byeikx0 .

With this natural restriction on the spectra we can show thatthe corrections to our process can in general
be calculated from the momentum eigenstate process corrections.

In our specific case we have the preferred positionsx0 and0, such that the phase factor is given by
F(k) = |F(k)|ei(k1+k2)x0 . Furthermore we use the following identity for the time-ordered two point
function

〈0|T {φ(x)φ(0)}|0〉 = 〈0|T {φ(0)φ(x)}|0〉 = 〈0|T {φ(−x)φ(0)}|0〉 , (5.26)
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where we have used translation invariance. Applying these two relations we can average (5.23) usingx0

and (5.23) using−x0 (they are the same) and obtain

∣∣∣〈f3, f4; out|T {Oψ2φOψ2φ}|f1, f2; in〉
∣∣∣
2

=

∫
dkdpF(k)F∗(p)Mtree(k)M∗

tree(p)

×
(
1 +
R(k)

2
+
R(p)

2

)
+ higher orders . (5.27)

In this expression we have identified the relative corrections to the momentum eigenstate scattering process
defined by

R(k) :=
Mtree(k)M∗

loop(k) +Mloop(k)M∗
tree(k)

|Mtree(k)|2
. (5.28)

The condition for the perturbative theory to be valid is

|R(k)| ≪ 1 (5.29)

for all k which contribute to the wave packet process, i.e. for allk for which the wave packet does not
vanish (or at least is very small).

Because of this insight we can study the phenomenology of thesimpler case of a momentum eigenstate
scattering process in the following sections and therewithderive the phenomenology of the localization
process.

5.5 Bremsstrahlung corrections

In this section we give a short introduction into how one can compute Bremsstrahlung corrections in general
and in our specific case. We will restrict ourselves to the momentum eigenstate scattering process, since we
only require the Bremsstrahlung corrections in order to render the loop corrections IR finite and therefore
well defined.

The physical idea behind considering the emission of an on-shell Bremsstrahlung particle is as follows.
Since the Bremsstrahlung particles under consideration are massless, they can in principle be generated
without being detected in the detector if they carry very little energy. So we can not distinguish between a
n tom process and the corresponding process with an additional soft Bremsstrahlung particle in the final
state, if it is soft enough. Thus we have to calculate the transition probability for an tom process by using
the formula

|Mtot|2 = |Mn→m|2 +

∞∑

i=1

∫

soft

dΦi|Mn→m+i|2 , (5.30)

where the sum goes over the emission ofi massless particles andΦi denotes the phase space of them. The
integration range denoted by “soft” will be specified later.

In a perturbative framework it is sufficient to includen particle emission if we restrict ourselves ton
loop diagrams, since they are of the same order in the perturbation series.

Including the Bremsstrahlung corrections is very important, since they will cancel the IR divergences
coming from the massless particles in loop diagrams [20, 21]. To check the cancellation the divergences
are in general regularized by introducing small massesmg for the massless particles. The result|Mtot|2
must be verified to be cutoff independent and therefore well defined in the limit of vanishing cutoff in order
to be physically sensible.

The last task of this section is to define the integration range for the Bremsstrahlung corrections. Since
we are interested in soft emission we approximately neglectthe recoil of the emitted quanta and do not
include the soft particle in the energy-momentum conservation for the remaining particles. This will sim-
plify the phase space integration in a dramatic way. Moreover we have to put a cutoff to the energy of the
emitted quanta in order to stay “soft”. The choice of this cutoff energy is specific to the detector in use,
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but we assume it to be
√
S/10, which is a typical value suitable for purely theoretical investigations, like

in this work. The precise knowledge of this cutoff energy is not necessary at all, since the result will only
depend logarithmically on it so thatO(1) prefactors do not matter.

The natural volume element for one particle emission together with the integration range is given by
∫

soft

dΦ :=

∫

|k|<
√
S/10

d̃3k , (5.31)

wherek is the four momentum of the emitted quanta and is on-shell, ofcourse.
Our phase space integration is performed by using the Monte Carlo integration packageCUBA [22]. To

arrive at more stable results it is convenient to use spherical coordinates together with some importance
sampling for the radial integrationdk. The integration before the importance sampling is given by

√
S/10∫

0

∫

Ω

dΩdk
k2

(2π)32k0
|Mn→m+1|2 (5.32)

wherek = ‖k‖ andΩ is the solid angle. Since thek dependence of the squared amplitude can be roughly
estimated as

|Mn→m+1|2 ∼
1

k2
for k ≫ mg ⇔

∫
d̃3k|Mn→m+1|2 ∼

∫
dk

k
for k ≫ mg (5.33)

it is natural to perform importance sampling by a coordinatetransformationk → x = log(k/Mpl), where
we useMpl as a natural dimension. The integration element in the new variables is given by

log(
√
S/(10Mpl))∫

−∞

∫

Ω

dΩdxM3
pl

e3x

(2π)32k0(x)
|Mn→m+1|2k→k(x) . (5.34)

At first sight this reparametrization does not help since we receive a noncompact integration range for
x. But it can be shown that forx→ −∞ the integrand vanishes asexp 2x since the estimation (5.33) only
holds true fork ≫ 0 and for smallk we have an approximately constant squared amplitude. Hencewe can
insert a lower bound to the integral range without affectingthe results too much. We have found a suitable
bound to be2 log(mg/Mpl), wheremg is the mass of the emitted particle, i.e. the IR regulator. This bound
is motivated by the fact that the squared amplitude has a local maximum atx ≈ log(mg/Mpl) because of
collinear effects and decreases sufficiently fast for smallerx to a constant value. Thex dependence of the
integrand in the smallx region is determined byexp 2x. Figure 5.3 shows this rapid falloff in the example
of our problem for some set of parameters. This falloff property is universal, i.e. it does not dependent on
the parameters we use.

To calculate the one particle emission we have to sum over itspolarizations. The polarization sum can
for example be performed by using the formula [19]

2∑

i=1

ǫ(i)µνǫ
(i)∗
αβ =

1

2
(η̄µαη̄νβ + η̄µβ η̄να − η̄µν η̄αβ) , (5.35)

whereη̄µν := ηµν − (k̄µkν + kµk̄ν)/k̄k andk̄ is the space reflected graviton four momentum.
Evaluating this expression leads to

2∑

i=1

ǫ(i)µνǫ
(i)∗
αβ =

1

2
(ηµαηνβ + ηµβηνα − ηµνηαβ) + terms prop. tok (5.36)

so that we can neglect the additional terms proportional tok if we can show that the QED-like on-shell
Ward identitykµMµν = 0 holds true for our amplitudeMµν .
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Figure 5.3: The Bremsstrahlung integrand expressed in the new variablex = log(k/Mpl) for some set of
parameters. The plateau has been normalized to1. The vanishing forx < log(mg/Mpl) < 0 is universal,
but the largerx part, where the integral is evaluated, of course depends on the parameters we use.

Another way of performing the polarization sum is to multiply the matrix elements directly with the
two physical polarization tensors from (4.71) after suitable rotations and summing them up. This second
method has three advantages. First, it can be applied even ifthe QED-like Ward identitykµMµν = 0 does
not hold true. As we will see in section 5.7 this can in principle be the case in perturbative gravity, because
of some additional terms in the Ward identity. Second, the direct method leads to a faster numerical in-
tegration of the Bremsstrahlung phase space due to a more compact expression of the squared amplitude.
And third, since we work in soft approximation, the amplitude is not in a physical configuration, i.e. the
QED-like Ward identity will not exactly hold and there are additional small contributions from the unphys-
ical d.o.f. in the polarization sum (5.36). But we have seen that for our processes both methods lead to
approximately the same results, in particular both methodslead to the cancellation of the IR divergences.
In the following we will restrict ourselves to the numericalfaster one, i.e. using only physical polarizations,
and do not use (5.36) anymore.

5.6 Effective vertices

The general matter action (5.3) contains several effectiveinteractions of orderκ2 which have to be included
in the framework of effective quantum field theory.

A second approach to effective theories is writing down the most simple action we require for our prob-
lem and calculating the required process to the desired order in the perturbation series. This action should
of course be compatible with the symmetries of our system. Ifthe divergences of the fundamental interac-
tion operators can not be renormalized by counterterms having the same structure as the interactions itself,
we include additional operators having this structure to the Lagrangian. These operators are called induced
interactions and carry some prefactor including inverse powers of the new physics scale, i.e.Mpl in our
case, and a dimensionless constant which has to be fixed by experiment. In order to avoid inconsistencies
one assumes that all dimensionless constants are of order one or smaller [23].

In our example one would start with a minimal theory with an interaction termλV ijψiψjφ. The graviton
loop corrections in orderκ2 to this operator can not be renormalized by using a counterterm with the same
structure. As we have seen in section 5.4, the one loop corrections will induce the operatorsκ2V ij�ψiψjφ
andκ2V ijψiψj�φ. These operators are of course part of the general action (5.3), but they are motivated
additionally by being induced dynamically.

Next we give the relative NLO corrections to theS-type process due to the effective three point operators.
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Therefore we assume that the matrix structure of the constant matrices is the same asV ij , i.e.cij = c V ij ,
dij = d V ij andeij = e V ij , since this is motivated by the one loop counterterms. The relative NLO
corrections are given by

M3pointM∗
tree +M∗

3pointMtree

|Mtree|2
= −2κ2

(
S(c+ 2e) + 2m2

ψ(d− c)
)
. (5.37)

We see that there are two types of contributions, the ones proportional tom2
ψ which are irrelevant for the

high energy limit, and the ones proportional toS which are relevant. Taking only the induced operators
into account also leads to relevant and irrelevant contributions. Furthermore we see that we can adjust the
sign and magnitude of the relevant NLO contributions of the effective vertices by the parameterc+ 2e.

The relative contribution of the effective four point interaction to the squared amplitude is given by

M4pointM∗
tree +M∗

4pointMtree

|Mtree|2
= 2λ4κ

2(S −m2
φ) . (5.38)

We see that it also has relevant contributions to the high energy limit through the linearS dependence.
Finally we discuss the contributions due to effective scalar two point operators. These operators can

either appear in the wavefunction renormalization or as correction to the internalφ propagator. The con-
tributions to the wavefunction renormalization will be irrelevant in the high energy limit, so that we can
neglect them. The contributions to the internalφ propagator will contain relevant terms, so that we have to
include them. They are given by

M2pointM∗
tree +M∗

2pointMtree

|Mtree|2
= −2 Ξφκ

2 S2

S −m2
φ

, (5.39)

which is proportional toS in the high energy limitS ≫ m2
φ.

When we sum up all NLO contributions from the scalar effective vertices we arrive at a total contribution
which we can be parameterized as

MtotaleffM∗
tree +M∗

totaleffMtree

|Mtree|2
≈ Aκ2S +Bκ2m2

φ + Cκ2m2
ψ for S ≫ m2

φ, (5.40)

whereA,B andC are dimensionless constants which can be expressed throughthe fundamental parameters
of the effective interactions. Note that this formula only applies to the high energy limit, since we had to
use the approximation S

2

S−m2
φ

≈ S +m2
φ, for S ≫ m2

φ, in order to expand the contributions from the two

point operators. We will neglectB andC, since they do not contribute in the high energy limit, and wewill
only discuss the dependence of the results on the effective parameterA in the following without resolving
the individual contributions (5.37), (5.38) and (5.39) anymore.

The phenomenology of the effective scalar-scalar-graviton couplings parameterized bya andb is harder
to investigate, since this interaction occurs in loop diagrams. We will discuss it later numerically.

5.7 On-shell Ward identity

Since the Bremsstrahlung diagrams come with an external graviton, we are in the position to check the
validity of the on-shell Ward identity. The Ward identity expresses gauge invariance on amplitude level
and therefore is a good check to find possible calculational errors. The problem with the gravitational
Ward identity is that at a first sight only

∂

∂xµ
〈0|hµν(x)Φ1Φ2 . . .Φn|0〉 =

1

2

∂

∂xν
〈0|h(x)Φ1Φ2 . . .Φn|0〉 (5.41)

holds true, because the BRST transformation of the antighost is given byδBRSTC̄µ = h ,ν
µν − 1

2h,µ. Here
Φi denotes some other fields and the amplitudes are assumed to beon-shell and amputated.
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Figure 5.4: Numerically determined values of the Ward identity. The peak at0 has a height of around
40000.

But we have found out that for our processes both sides vanishindependently, i.e. the QED-like Ward
identity

∂

∂xµ
〈0|hµν(x)Φ1Φ2 . . .Φn|0〉 = 0 (5.42)

holds true. Since we can not prove this statement, we have to check (5.42) in every process under consid-
eration in order to have the possibility to apply simplified polarization sums.

We have automatized the calculations which are required forchecking the existence of Ward identities
by using FeynArts, FormCalc and some additional small programs and Mathematica notebooks we have
written by ourselves. This routine generates all graph topologies and field insertions by using FeynArts.
The amplitude is calculated by using FormCalc and the graviton polarization tensors occurring in the ana-
lytical expressions of the amplitudes are replaced by the corresponding graviton momenta. The next part
is to generate physical configurations, i.e. generating a physical combination of the external particles mo-
menta. Since we have a2 → 3 process, we have generated the configurations by a numericalprocedure
using theMAMBOalgorithm [24], since it is easier than an analytical study of the three (massive) particle
final state phase space.

The numerical procedure works as follows:

• generate a random set of physical momenta for the external particles

• calculate the value ofkµMµν for the desired amplitudeMµν

• calculate the value of the amplitudeMµνǫ
µν , whereǫ are physical polarization tensors

• verify that|kµMµν/Mαβǫ
αβ| ≈ 0 ∀ν

It has to be mentioned here that the Ward identity was checkedfor massless gravitons, since for massive
ones it does not hold. Since the only artifact of the mass regulator in the Ward identity is the on-shell
conditionk2 = m2

g, we have a smooth limit formg → 0 and it is justified to restrict ourselves to the
massless graviton case.

The histogram 5.4 shows the distribution of the ratios|kµMµν/Mαβǫ
αβ | for 10000 physical combina-

tions of momenta and allν. For this calculation we have used theS-type localization graphs. The results
for T -type graphs are similar. It can be seen that within the numerical precision the Ward identity holds
true. The maximal deviation from0 was only1 out of40000 events with a ratio of about−4.5 · 10−9.
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Figure 5.5: IR cutoff (in)dependence of the result. The reference value for the particle masses ismψ =
mφ = 10−15 Mpl, i.e. in the TeV range. The cutoff independence is not dependent on the choice of
parameters and kinematic quantities.

5.8 Results and interpretation

5.8.1 IR cutoff independence of the results

Since we had to introduce a small graviton massmg as an IR regulator, we have to study the (in)dependence
of the results under variations of this mass in order to perform the limit of vanishingmg. Figure 5.5
shows themg (in)dependence of the relative NLO corrections with and without adding the Bremsstrahlung
contributions. We see that the corrections without Bremsstrahlung show a logarithmic dependence onmg,
while the inclusive NLO correction are rather independent over a wide range of the regulator. This result is
universal, i.e. it is not dependent on the parameters we choose, such as masses, couplings and kinematical
quantities.

In the following we will setmg = 10−20 Mpl which is also far below the assumed particle mass and
study the individual parts of the relative NLO contributions for this particular value of the cutoff.

5.8.2 Relative NLO contributions for S-type localization

In this section we will discuss the parameter dependence of the NLO corrections forS-type localization.
In particular we are interested in the dependence on the center of mass energy

√
S, the scattering angleθ

and the particle masses. For these basic investigations we will set the effective coupling constantsa and
b to zero and assume natural values forV , i.e. V 12 = V 21 = 1, V 34 = V 43 = 1 andV ij = 0 else.
The effective interactions will be included through the relevant effective coupling constantA, for which
we choose the natural valueA = 1. Variations of this parameter, in particular changing the sign, will be
discussed later.

Furthermore we will use the graviton massmg = 10−20 Mpl and our particular gauge fixing for compar-
ing the individual NLO contributions. Of course only the total NLO contributions including Bremsstrahlung
are IR cutoff independent and gauge invariant, and therefore physical, but it is also useful to understand
which individual diagrams have large contributions and findout if there are any cancellations between
different contributions.

The relative NLO contributions will not depend on the couplingλ since both, the NLO and the squared
tree amplitude, are of orderλ4, such that this dependency cancels in the ratio.

Figure 5.6 shows the angular dependence of the NLO corrections at a center of mass energy
√
S =

0.01 Mpl using particle massesmψ = mφ = 10−16 Mpl, i.e. TeV particles. One sees that there is
very little angular dependence and the largest NLO corrections are forθ = π/2 scattering. This very
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Figure 5.6: Angular dependence of the relative NLO corrections forS-type localization. The center of mass
energy was chosen as

√
S = 0.01Mpl. We have chosen the particle massesmψ = mφ = 10−16 Mpl.

little angular dependence is natural for models with three point scalar couplings inS-channel scattering,
since the scalar vertices are independent from the angles. The only contributions showing some angular
dependencies are the boxes and the Bremsstrahlung. This canbe understood since the boxes are the only
diagrams connecting in and out lines with some angular dependent vertex, the graviton emission, and thus
depend on the scattering angle. The Bremsstrahlung angulardependence is due to the interference between
initial and final state Bremsstrahlung diagrams.

Furthermore one obtains that the main contributions are coming from triangles, boxes and effective
vertices. The self energies, Bremsstrahlung and especially wavefunction corrections are only marginal
contributions, at least for this particular choice of the IRcutoff. But it has to be mentioned that the self
energy diagrams are IR independent and therefore have only small contributions compared to the total NLO
for every IR regulator.

Moreover we see that the boxes and effective vertices come with a different sign than the triangles
and therefore lower the absolute value of the NLO contributions. But the contribution from the effective
vertices can have also a negative sign by assigning the effective constantA a negative value.

Figure 5.7 shows the energy dependence forθ = π/2 scattering and particle massesmψ = mφ =
10−16 Mpl. We obtain again that triangles, boxes and effective vertices give the main contributions. Fur-
thermore one sees that the NLO corrections exceed10% at energies of aboutMpl/100 and grow to nearly
50% at

√
S = Mpl/50. This shows that we can not use the effective theory for higher energies than around

Mpl/100, since the result will then also depend on the higher loop corrections and the higher order op-
erators. This specific scale will also set a limit on localization, as we will discuss below. Note that the
particular choice of the critical value of the relative NLO is a very subjective task. We choose10% as a
sensible value throughout this work. Different choices like e.g.50% will only give order one prefactors
which do matter in our discussion.

Next we will investigate the particle mass dependence of theNLO corrections. Therefore we will not
resolve the NLO corrections into their individual terms anymore, but we will only consider the total NLO.
We will vary theψ particle mass from10−16 Mpl to 10−8 Mpl and theφ particle mass from0 to 10−8 Mpl.
The reason why we can not choosemψ = 0 is the emergence of collinear divergences in this limit.

Figure 5.8 shows the mass dependence of the inclusive NLO corrections. As expected they decrease
by increasing the particle masses. The pictorial reason forthis is that loops are suppressed if they contain
heavy particles, because of the denominators1/(k2 − m2) of the massive propagators. This means that
we can enhance the validity of our theory by using heavier particles. Furthermore the dependence on the
internal field massmφ is stronger than on the clock and rod field massmψ. As a note, we noticed that the
relevance of the Bremsstrahlung contributions increases by increasing the particle masses.
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Figure 5.7: Center of mass energy dependence of the relativeNLO corrections forS-type localization. The
scattering angle was chosen asΘ = π
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Since the angular dependence with different particle masses behaves as expected, i.e. it decreases like
shown in figure 5.8 without changing its form, we do not have toshow the graphs.

Next we investigate the dependence of the results on the effective coupling parametersa andb which
give additional terms to the graviton-scalar-scalar vertex. Figure 5.9 shows the angular dependence of the
total NLO corrections for differenta andb. One obtains that in particular for small or large angle scattering
the effective interactions have large effects ifb does not vanish. These large effects come from the box
diagrams, where the new kinematical structure of the graviton-scalar-scalar vertex leads to an enhanced
foreward and backward scattering. Furthermore we see that the scale where the effective theory breaks
down will depend strongly on the choice ofa and especiallyb. Moreover if we assume the effective
interaction to be of the natural order of the standard interaction, i.e.a = b = 1/2, we have20% NLO
corrections at

√
S = 0.004 Mpl for θ = π/2 scattering ofmψ = mφ = 10−16 Mpl particles. This

becomes even worse for smaller and larger angles. We will further discuss this feature in the following
sections.

Finally we discuss the dependence of the results on the effective scalar vertices. We have chosen the
effective parameter describing the total effective vertexcontributions asA = 1 and we have obtained that
this particular choice helps to lower the NLO contributionsa little bit, see fig. 5.7. By interchanging the
sign ofA we would have slightly larger NLO corrections. But if the effective constantA has a magnitude
smaller than around1 its contributions are only marginal compared to the boxes and triangles, at least for
TeV particles. Heavier particles will be more affected by the effective vertex contributions, since these
contributions do not decrease by increasing the masses, like e.g. the loops. But in most scenarios the
breakdown of the effective theory is not strongly affected by the effective scalar vertices.

5.8.3 Relative NLO contributions for T -type localization

In this section we perform the same analysis as above for the phenomenology ofT -type localization.
For this purpose we will chooseV 13 = V 31 = V 24 = V 42 = 1 andV ij = 0 else. Again we will
choosemg = 10−20 Mpl for the IR cutoff andA = 1 for the effective scalar vertices. We will start our
investigations witha = b = 0 for the general discussion and will study thea andb dependence separately
later.

Figure 5.10 shows the angular dependence of the relative NLOcorrections. The relevance of the indi-
vidual contributions is the same as inS-type localization, i.e. the triangles, boxes and effective vertices
give the main contributions and self energies, wavefunction corrections and Bremsstrahlung are marginal.
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Figure 5.10: Angular dependence of the relative NLO corrections forT -type localization. The center of
mass energy was chosen as

√
S = 0.01Mpl. We have chosen the particle massesmψ = mφ = 10−16 Mpl.
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Figure 5.11: Center of mass energy dependence of the relative NLO corrections forT -type localization.
The scattering angle was chosen asΘ = π

2 . We have chosen the particle massesmψ = mφ = 10−16 Mpl.

One sees that the NLO corrections increase by increasing thescattering angle. This is natural since the
squared tree amplitude decreases roughly as1/T 2 such that for large angles it becomes small. Therefore
also small absolute corrections at large angles will be large relative corrections.

Figure 5.11 shows the energy dependence ofθ = π/2 scattering formψ = mφ = 10−16 Mpl particles.
The10% NLO corrections are reached at

√
S = 0.015Mpl which is similar toS-type localization.

The mass dependence of the NLO corrections is the same as in the case ofS-type localization, i.e. in-
creasing the masses leads to decreasing NLO contributions.The dependence of the internal massmφ is
stronger than the dependence on the clock and rod field massmψ. We omit a figure showing this depen-
dence since the behavior is very similar toS-type localization.

The dependence of the results on the effective scalar vertices can again be described by an effective
parameter, like in the case ofS-type localization. Variations of this parameter in the range[−1, 1] do only
lead to small changes in the total NLO contributions. Hence the value ofA does not affect strongly the
breakdown of the effective theory. This is exactly like in the case ofS-type localization.
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Figure 5.12: Angular dependence of the relative NLO corrections forT -type localization with different
effective couplingsa andb. The center of mass energy was chosen as

√
S = 0.01 Mpl. We have chosen

the particle massesmψ = mφ = 10−16 Mpl.

Finally we investigate the dependence on the effective graviton couplingsa andb. Again the box diagram
contributions will lead to large effects by a change in especially b. This is shown in figure 5.12. The large
effects on variations ofb is predominantly for large angle scattering and confirms oursuspicion that through
the modified coupling structure there is a strongly enhancedscattering in tree-level suppressed regions
in phase space through the box diagrams. The same effect occurs also forS-type scattering, where we
have enhancements in both, the small and large angle region of phase space due to the forward-backward
symmetry.

To conclude we have found out that there are no striking differences in using eitherS- or T -type lo-
calization. Both models suffer from a strong dependence on the effective graviton-scalar-scalar coupling
parameterized byb.

5.8.4 Physical implications to the problem of dynamical localization

As we have seen in section 5.4, the corrections to the localization process are related to the corrections of
the momentum eigenstate scattering process, see (5.27). Inthis section we will use the results obtained
above about the NLO corrections to the momentum eigenstate scattering processes in order to estimate a
maximal spacetime resolutions by this kind of model. For this estimation we will use the Gaussian wave
packets discussed in appendix E.1.

Focussing on (5.27) and (5.29) we see that for the NLO corrections to the localization process we have
to integrate the corrections to the momentum eigenstate process over the momentum range defined by
the momentum space wave packets. Therefore we have to assurethat the effective theory is well defined
over this range. Assume that all four wave packets have a central 3-momentum of magnitudeq. Then, as
explained in appendix E.1, we can use the maximal widthσ = q/2 for each of the wave packets. Since
the spectra drop off quickly outside the range defined by the width, the main contributions come from the

inside. We can estimate the highest energy which contributes to the intergal byEmax ≈
√

(3
2q)

2 +m2
ψ.

This maximal energy is the same for all four particles, sincewe assume all central momenta to be of the
same magnitude. With the maximal particle energy we can estimate the maximal center of mass energy as√
Smax = 2Emax ≈ 3q for the high energy limit, wheremψ ≪ q.
Next we have to find out which angular range contributes to theprocess of localization. The central

momenta are chosen such that they correspond toπ/2 scattering. Using again the width of the wave
packets we identify the relevant angular range to beθ ∈ [π/2 − 2arctan(1/2), π/2 + 2arctan(1/2)].
Using thecos θ variable this becomescos θ ∈ [−0.8, 0.8].
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If we now assume that the effective theory breaks down at about 10% NLO corrections, we see that in
S-type localization with TeV mass particles and zero effective couplinga andb the maximal center of mass
energy is given by

√
Smax = 0.01 Mpl for the whole angular range, see fig. 5.6 and 5.7. Hence we can

estimate an maximal resolution of
√

2/q = 3
√

2/
√
Smax = 300

√
2/Mpl by using the resolution properties

of overlapping Gaussian functions discussed in appendix E.1.
This resolution can be enhanced by increasing the particle masses, see fig. 5.8, but it could also be

decreased if there are effective couplingsa and especiallyb, see fig. 5.9.
This result is rather independent on the scattering channelwe use for the localization process. Figure

5.10 shows that despite of the fact that the NLO corrections for T -type localization are a little bit smaller
than forS-type localization atπ/2-scattering (see also fig. 5.11), the growing NLO corrections for large
angles will lead to a maximal center of mass energy of about

√
Smax = 0.01 Mpl too, since the theory

has to be defined for the whole angular rangecos θ ∈ [−0.8, 0.8]. By increasing the mass we can increase
the resolution like inS-type localization. Switching ona and especiallyb will degrade the validity and the
resolution of the theory, see fig. 5.12.

Alltogether we see that the results forS- andT -type localization are very similar, and in particular that
the maximal resolution of both processes can be spoiled in the presence of effective graviton interactionsa
andb.
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Chapter 6

Pseudo-local Yang-Mills observables
with matter clocks and rods

In this chapter we will discuss an explicit realization of the type of model discussed in the last chapter
through a SU(N) Yang-Mills theory coupled to scalar fields serving as clocks and rods. The advantage
of this theory is that it is a non-super-renormalizible matter model which has stronger connections to
nature than the pure scalar model investigated in the last chapter. Furthermore the additional SU(N) gauge
invariance will constrain the structure of effective interactions.

6.1 Definition of the theory and observables

In our new model we use two distinct complex scalar fields,ψ1 andψ2, which live in the fundamental
representation of the SU(N) gauge group, i.e. they transform as

ψ1 → eiαψ1 , ψ2 → eiαψ2 , (6.1)

whereα = αaT a are the generators of the SU(N) gauge transformations in thefundamental representation
andαa are the corresponding scalar parameters fields.

The gauge algebra is given by

[T a, T b] = ifabcT c , tr(T aT b) =
1

2
δab , (6.2)

wherefabc are the SU(N) structure constants. Note that all gauge indices will appear as upper indices.
The action of the gauge covariant derivatives on the scalarsis defined by

Dµψi = ∂µψi − igsAµψi , for i = 1, 2 , (6.3)

wheregs is the Yang-Mills coupling andAµ = AaµT
a is the gauge connection one-form transforming

under gauge transformations as

Aµ → eiα(Aµ +
i

gs
∂µ)e

−iα . (6.4)

The SU(N) gauge transformation property of the covariant derivative is given by

Dµψi → eiαDµψi . (6.5)

The gauge curvature, or field strength, corresponding to thegauge connection is defined as

Fµν := ∂µAν − ∂νAµ − igs[Aµ, Aν ] (6.6)
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and it transforms under the SU(N) gauge transformations as

Fµν → eiαFµνe
−iα . (6.7)

With these ingredients we can construct the familiar SU(N) Yang-Mills action for scalar matter fields
coupled to the gauge fieldA, which is given in the presence of an arbitrary smooth metricg as

SYM :=

∫
d4x
√−g

(
−1

2
gµαgνβtrFµνFαβ +

2∑

i=1

gµν(Dµψi)
†Dνψi

−
2∑

i=1

m2ψ†
iψi +

2∑

i=1

aRψ†
iψi − λ̃4M

ijklψ†
iψjψ

†
kψl
)
. (6.8)

This action is also invariant under diffeomorphisms. Note that the derivatives in the field strength (6.6)
are ordinary partial derivatives, becauseF is constructed as the exterior derivative of the one-formA and
hence is independent of the metric connection. Furthermorethe covariant derivatives on the scalar fields
include only gauge connections and no metric connections. This means that in the action (6.8) the metric,
i.e. gravity, just enters through

√−g andgµν and not through Christoffel connections.
The action above is incomplete since the one-form gauge fieldis a constrained dynamical system which

has to be gauge fixed. We can think about different realizations of gauge fixing, e.g. we can use the minimal
diffeomorphism invariant extension of the Feynman gauge fixing action given by

Scov
YM−GF := −tr

∫
d4x
√−ggµνDµAνg

αβDαAβ , (6.9)

where now the metric covariant derivatives enter and the trace is over the gauge group. Another possibility
is to choose the non-covariantized version of this gauge fixing given by

SYM−GF := −tr

∫
d4xηµν∂µAνη

αβ∂αAβ , (6.10)

where only the flat background enters. If we include the corresponding ghost action too, the choice of
the gauge fixing is irrelevant in physical observables like cross sections, since both combinations, the
covariantized gauge fixing together with the covariantizedghosts or the non-covariantized combination,
will only be an additional Yang-Mills BRST exact term in the action and therefore does not effect physical
quantities. We will choose the non-covariantized version of the gauge fixing in the following, since with
this choice the off-shell Ward identity of the gluon propagator will hold true after including the graviton
corrections at one loop level. The covariantized version ofthe gauge fixing will have a different off-shell
behavior, because of the additional nonlinear terms. We do not need to compute the explicit form of the
ghost action since it does not contribute to our process in the desired order.

In this model there are also effective operators which contribute to our process. They will be discussed
later in the corresponding section on effective vertices below.

Now we can expand the metric around the flat Minkowski spacetime and describe only gravitons dynam-
ically. Inserting the metric expansion into the action (6.8) and (6.10) will lead to interaction terms among
scalars, vectors and gravitons. We will not give the expanded action here for reasons of compactness. We
will only give the collection of the required Feynman rules in the next section. The graviton action has
been derived in section 3.5 above and is given by (3.29).

We now proceed with the definition of a possible pseudo-localobservable in this model. Assume the
following operator

OYM := igs

2∑

i=1

∫
d4x
√−g(ψ†

iAµ∂
µψi − ∂µψ†

iAµψi) , (6.11)

which is obviously diffeomorphism invariant but not Yang-Mills gauge invariant. Now assume two scalar
two-particle states|f red

1 , f̄blue
1 〉 and|f red

2 , f̄blue
2 〉, wheref color

i is a wave packet state of the particle species
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Figure 6.1: Tree-level localization graph forS-type localization in Yang-Mills theory. It coindices withthe
S-matrix element forψred

1 ψ̄blue
1 → ψred

2 ψ̄blue
2 scattering, if̃λ4 = 0.

i with generalized color, i.e. SU(N) quantum number, and·̄ denotes the antiparticle. The wave packets
should have similar overlapping properties as in the chapter above forS-type localization, i.e. the two
in-state wave packets should overlap around some spacetimepointx0 and the two out-state wave packets
w.l.o.g. around0. Note that the states are not SU(N) gauge invariant either.

If we now take the in-out matrix element of the time ordered square of this operator between the two
states at tree-level, see fig. 6.1, we obtain

〈f red
2 , f̄blue

2 ; out|T {OYMOYM}|f red
1 , f̄blue

1 ; in〉 =
g2
s

16

∫
d4xd4y

(
f̄blue
1

↔
∂µ f red

1

)
(x)
(
f̄blue
2

↔
∂ν f red

2

)∗
(y)
∑

a∈A
〈0|TAa(µ(x)Aaν)(y)|0〉 . (6.12)

This is the correlation function of the gauge fields summed over all gauge fields which contribute to the
particular transition denoted byA ⊆ {1, 2, ..., N2 − 1}. The Lorentz indices of the correlation function
are projected on the left-right derivatives on the wave packets. For first order Gaussian wave packets these
projectors are given by

(
fi

↔
∂µ fj

)
(x) =

(
−i(qµj − qµi )− σ2(~ξj∂

µ~ξj − ~ξi∂µ~ξi)
)
fi(x)fj(x) , (6.13)

whereqi are the central four-momenta offi andξi := x − v − qi

Eqi

(t − v0), with (v0,v) = x0 for the

incoming states and(v0,v) = 0 for the outgoing ones. Therefore the left-right derivatives of the Gaussian
wave packets have similar locality properties as the wave packets themselves.

In order to interpret the matrix element of the pseudo-localoperators directly as a scattering matrix
element the four point interaction given in the action (6.8)has to vanish, or at least to be very small so that
we can neglect it. This is the same problem as in the pure scalar model, where we have circumvented it
by the assumption that the four point interaction operator is induced from the three point interactions and
gravity. Here we have to use some other arguments, since we have no second dimensionful coupling in this
model.

Assume that the interactioñλ4 is 0 at one particular scale. Then the gluon corrections to this coupling
constant are at least of orderg4

s and gravitons will not induce this operator through radiative corrections at
all, if the scalars are massless (or at least very light compared toMpl). This is because internal graviton
exchanges lead only to contributions to non-renormalizible operators by using power counting. Therefore
the four point contact interaction is of orderg4

s and negligible compared to theg2
s diagrams if we choose

gs to be very small.
Another motivation for dropping this kind of interaction isthat we want to model matter clocks and

rods, which are in general fermions. The only reason why we use scalars is that in this case we can
describe gravity through metric variables which simplifiesthe calculations. Fermionic fields can not have
renormalizible four point interactions, so that for them this kind of problem does not occur. Thus we can
also motivate the vanishing of̃λ4 by arguing that we do not want to introduce interactions to the action
which differ fundamentally from fermion interactions.

It has to be mentioned that the vanishing of the four point coupling λ̃ is not fundamental for our model.
We could also extract the desired observable from the scattering process with four point interactions in-
cluded. But we will nevertheless demand it to vanish, because in this case the desired observable is directly
given by the scattering process without performing furthercalculations.
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Since the tree-level observable is given by theS-matrix element for vanishing̃λ4, it is invariant under
the SU(N) gauge transformations. Even if the four point coupling is nonvanishing the results are gauge
invariant. This is because the scalar contact terms are gauge invariant in their own right.

This shows that this model offers us a pseudo-local observable which is accessible by scattering of
differently colored particles. By using different states given by |f red

1 , fblue
2 〉 and|fblue

1 , f red
2 〉 we can also

performT -type localization as in the model above.
We could now perform a similar analysis as in section 5.3 in order to investigate tree-level localization

in bothS andT channel. The result would be again that at tree-level we could have an arbitrary high
spacetime resolutions by using very small width wave packets. Since this analysis is the same as in section
5.3 we do not have to repeat it here.

The next step is to include the NLO contributions due to gravity and discuss the phenomenology of
localization in the Yang-Mills model and compare it to the pure scalar model. In the following, in particular
for the phenomenology, we will constrain ourselves to the case of SU(3) Yang-Mills theory since this
gauge group is already included in FeynArts and FormCalc so that we do not have to perform any other
modifications in these codes. We will from now on call the one-form gauge field gluon.

The problem of the non-existence of asymptotic colored states in conventional QCD, because of con-
finement, can be avoided by including sufficiently many massless (or at least very light) colored scalar and
fermionic particles to our model, which do not couple to our process in the desired order, but do change
the sign of the QCDβ-function, such that there is no more asymptotic freedom. Weassume the reader to
be familiar with renormalization group, anomalous dimensions andβ-functions such that we only give the
result for the SU(3) Yang-Millsβ-function, if there areNs scalars andNf fermions in the fundamental
representation, without explaining the required calculations. It is given by

βQCD = − g3
s

96π2
(66− 4Nf −Ns) . (6.14)

It has to be mentioned that this calculation has been performed using FormCalc in order to determine the
required UV divergences and therewith the anomalous dimensions.

6.2 Feynman rules

We give the required Feynman rules for the Yang-Mills model including scalar matter and linearized grav-
ity. We will use the convention that all momenta flow into the vertex. The scalar and graviton propagator
are the same as given in fig. 5.2, as well as the scalar-scalar-tensor interaction. The gluon propagator in
Feynman gauge is given by

= − i

p2
ηµνδ

ab . (6.15)

The gluon-scalar interactions are given by the following three and four point interactions for both species
of matter

a, µ

p, j

k, i

= igsT
a
ji(kµ − pµ) (6.16)

b, ν

a, µ

j

i

= ig2
s(T

aT b + T bT a)jiηµν (6.17)
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The three point gluon self interaction is also required for our process and is given by

a, k, µ

b, p, ν

c, q, ρ

= −gsfabc ((k − q)νηµρ + (p− k)ρηµν + (q − p)µηρν) . (6.18)

We do not require the gluon four point interaction in our process.
The scalar-scalar-gluon-graviton interaction is given by

ρ, a

µν

j, p

i, k

= i
gsκ

2
((k − p)ρηµν − (k − p)νηµρ − (k − p)µηνρ)T aji (6.19)

The last required interaction is the gluon-gluon-gravitonvertex. It is given by

k, µν

p, α, a

q, β, b

= −iδabκ
2

(
(ηµαηνβ + ηµβηνα − ηµνηαβ)pq + pβqαηµν + 2p(µqν)ηαβ

−2q(µην)αpβ − 2p(µην)βqα
)

+ iλgf δ
ab κ

2

(
ηµν(pαkβ + pαqβ + kαqβ) + 2p(µην)βpα + 2q(µην)αqβ

)
,

(6.20)

whereλgf = 1 for the covariantized andλgf = 0 for the non-covariantized gauge fixing, i.e.λgf = 0 in the
following.

This completes the set of required Feynman rules for investigating the matrix elements in orderg2
sκ

2

and also the soft real graviton and gluon emission.

6.3 One loop corrections and counterterms

In this section we perform a similar discussion of the one loop divergences and the required counterterms to
cure them like in section 5.4. Again we use theMS renormalization scheme to determine the counterterms.
Thus we only require the divergences of the one loop diagramsoccurring in our process at orderg2

sκ
2.

We will divide the diagrams into the diagram classestadpoles, wavefunction corrections, self energies,
trianglesandboxes.

In our particular order there are no nonvanishing tadpole diagrams, since the graviton induced tadpoles
are renormalized to0 by an effective cosmological constant and the gluon tadpoles vanish because of
Lorentz invariance.

The wavefunction corrections can be determined by the renormalized wavefunction renormalization,
i.e. the residuum of the one loop propagator, by using the relationMWF = 2δZψMtree. The one loop
divergence of the scalar propagator is given by

= iδij
κ2

8π2ǫ

(
a

2
k4 − k2m2(1 +

3

2
a− 3

2
a2) +m4(1 + 3a+

3

2
a2)

)
+ finite . (6.21)
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This is of course exactly the same result as in the pure scalarmodel. There is no difference betweenψ1 and
ψ2 and different colors. Because of this we can call the renormalized wavefunction renormalizationZψ for
both particle species and all colors.

There is one self energy correction diagram given by

red

blue

red

blue

(6.22)

which is renormalized through the gluon propagator counterterm. The required divergence is given by

= iδab
κ2

48π2ǫ
k2(k2ηµν − kµkν) + finite . (6.23)

Note that the Lorentz tensor structure of the propagator corrections is exactly the one demanded by the
off-shell Ward identity. This is only the case if we use the non-covariantized gauge fixing (6.10).

The triangle diagrams are given by all possible permutations of the following basic diagrams

red

blue

red

blue

+

red

blue

red

blue

+

red

blue

red

blue

+

red

blue

red

blue

(6.24)

They are renormalized by the counterterm to the scalar-scalar-gluon coupling, which is identical forψ1 and
ψ2 and can be calculated from the following divergence

k1, a

k3, j

k2, i
∣∣∣∣∣
1PI

= −iT aji
gsκ

2

4π2ǫ

(
1

2
(k2 − k3)µm

2 + a(k2 − k3)µ(
3

4
m2 − 1

3
k2
1)

+ ak3µ(
7

12
k2
2 −

1

12
k2
3)− ak2µ(

7

12
k2
3 −

1

12
k2
2)

− a2

4
(k2 − k3)µ(3m

2 − k2
1

2
) +

a2

8
k3µ(k

2
3 − k2

2)−
a2

8
k2µ(k

2
2 − k2

3)

)
+ finite .

(6.25)

This divergence leads to induced effective interactions tobe discussed later.
And finally the box diagrams are given by all permutations of the following basic diagrams

red

blue

red

blue

+

red

blue

red

blue

+

red

blue

red

blue

(6.26)
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The on-shell divergence of the sum of all box diagrams is given by

red,k1

blue,k2

red,k3

blue,k4

∣∣∣∣∣
1PI

= i
3g2
sκ

2

16π2ǫ
(3a2 + 2a− 1)(k1k3 − k2k3) + finite , (6.27)

where all momenta are flowing into the vertex. This shows thatthere is in general an induced effective four
point scalar interaction due to this counterterm.

Note that this model has the same diagrammatic structure as the scalar model in chapter 5 before. The
diagrams of this model can be constructed by interchanging theφ scalars by the gluons. Of course the
Feynman rules, and therewith the results of the process, arechanged due to the difference in the interaction
terms.

6.4 Graviton and Yang-Mills Bremsstrahlung

Since there are IR divergences coming from the gravitons andgluons in loop diagrams we have to include
the Bremsstrahlung for both, gravitons and gluons, in our calculation in order to achieve IR finiteness.
The soft graviton emissions are taken into account by the same method as in section 5.5, but the gluon
emissions require some more effort. The problem with massless particles carrying quantum numbers, like
the gluons, is that we have to treat the color quantum number inclusively. For curing soft divergences an
inclusive treatment of the final state is sufficient, since only collinear divergences require a summation over
degenerate initial states.

As discussed in the appendix D, the Kinoshita-Lee-Nauenberg theorem is compatible with our color
flip process inS channel, since the non-inclusive squared amplitude for thecolored processψred

1 ψ̄blue
1 →

ψred
2 ψ̄blue

2 is the same as the non-inclusive squared amplitude of the final state color summed process
ψred

1 ψ̄blue
1 → ψcol1

2 ψ̄col2
2 .

If we now take the soft gluon emissions into account, i.e. we consider the final state summed process
ψred

1 ψ̄blue
1 → ψcol1

2 ψ̄col2
2 Aa, whereAa is the gluon with quantum numbera, the orderκ2g4

s terms of the
squared amplitude will cancel the gluon IR divergence.

As a note, the same approach works also by using the color summed initial state instead of the final state
and taking into account only the initial state gluon Bremsstrahlung while holding the final states at some
fixed color. This is due to the crossing relations among amplitudes.

For completeness we mention that in the gluon emission process only the color combinations(col1, col2) ∈
{(red, red), (blue, blue), (green, green)} contribute to our desired order in the coupling constants.

In the case ofT -type localization the final state color summed process doesnot agree with the colored
processψred

1 ψblue
2 → ψblue

1 ψred
2 at tree-level. But since all diagrams for this process can beconstructed

by crossing ofS-type diagrams, we can get an IR finite result by summing the color quantum number of
only particle species (1 or 2) and keeping the other particle’s color quantum numbers fixed. We can use for
example the processψred

1 ψcol1
2 → ψblue

1 ψcol2
2 , which is the crossed process to the final state color summed

S-type process.
This will give us IR finite inclusive cross sections in bothS- andT -type localization.

6.5 Effective vertices

In this section we will discuss the effective interaction operators, which contribute to our process in order
g4
sκ

2. The possible effective operators occurring in our problemcan be divided into the following classes

(i) higher derivative scalar two point operators

(ii) higher derivative gluon two point operators
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(iii) higher derivative scalar-scalar-gluon operators

(iv) higher derivative four point scalar operators coupling particle species1 and2

Note that the operator classes are not gauge invariant in their own right, but we will of course construct
them from SU(N) gauge invariant operators working on a flat background. This will lead to relations among
the coupling constants, as we will see below. These relations will assure that gauge invariance is manifest
in the process in our desired order in the coupling constants. The effective scale will be set byκ.

The contributions for (i) can be constructed from all possible contractions of the following Lorentz
tensor operator with the Minkowski metric

O1
µναβ :=

2∑

j=1

∫
d4xψ†

jDµDνDαDβψj . (6.28)

We have used the identity
←−
D†
µ = Dµ, which holds true under the integral because one can integrate

by parts. Performing all contractions will lead to redundant operators, because we can use the relation
[Dµ, Dν ] = igsFµν in order to perform simplifications. By using this commutator relation it can be shown

that the tensor operatorO(1)
µναβ gives only one independent contribution to the required Feynman rules.

This interaction is given by the contraction

O1 := ηµνηαβO1
µναβ = c1κ

2
2∑

j=1

∫
d4x(D2ψj)

†D2ψj , (6.29)

wherec1 is a dimensionless effective coupling constant parameterizing this operator. For the operator class
(i) it is sufficient to include the partial derivative parts of the covariant derivatives, i.e. the most general
effective operator in this class is given by

O(i) := c1κ
2

2∑

j=1

∫
d4x�ψ†

j�ψj . (6.30)

Note that this reduced operator is not gauge invariant anymore, but it will lead to gauge invariant contri-
butions to the process in our desired order. This is because the terms missing for formal gauge invariance,
i.e. the connection parts of the derivatives, will either contribute through the scalar-scalar-gluon vertex (iii)
or will be of higher order in the process.

To operator class (ii) contractions of the following kind oftensor operator will contribute

O2
µνραβγ := tr

∫
d4xFµνDρDαFβγ , (6.31)

where we also have to allow permutations in the sequence of the individual terms. But since we only require
the partial derivative part of the covariant derivatives for the Feynman rules, only two of the permutations
will contribute. Therewith the most general non-redundantcontracted operator of class (ii) is given by

O(ii) := κ2tr

∫
d4x
(
c2∂µFαβ∂

µFαβ + c3∂µF
µν∂αF

α
ν

)
, (6.32)

where we have inserted dimensionless constants for the purpose of parameterization and used only partial
derivatives.

For the operator class (iii) we have contributions from (6.29). Additional operators which could have
contributions are contractions of e.g. the following operator

O3
µναβ :=

2∑

j=1

∫
d4xψ†

jDµDνFαβψj , (6.33)
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or similar operators with exchanged positions of the covariant derivatives. But those contributions vanish
since we only require the partial derivative parts from the covariant derivatives such that we have com-
muting derivatives and thus only one nontrivial metric contractions remains. The remaining operator is
anti-hermitian and therefore does not contribute to the action. This shows that all operators of class (iii) are
included in (6.29). The terms which are relevant for operator class (iii) are given by

O(iii) := −ic1gsκ2
2∑

j=1

∫
d4x�ψ†

j

(
∂µAµ + 2Aµ∂

µ
)
ψj + h.c. (6.34)

Note that in order to assure gauge invariance the coupling constant of the (i) and (iii) operators have to be
the same.

The class (iv) operators can be constructed from the renormalizible four point scalar operator by mak-
ing all possible insertions of two Lorentz contracted covariant derivatives and assuring hermiticity of the
operator by adding the hermitian conjugate. Since we require only the partial derivatives for our problem,
we will neglect the additional gluon terms in order to arriveat a shorter expression. There are10 possible
insertions of the two partial derivatives from which4 are redundant by integration by parts and3 of the re-
maining6 are constrained by the hermiticity of the operator. One possible parameterization of this operator
is given by

O(iv) := κ2g2
s

∫
d4x
(
c4∂µψ

†
1∂
µψ2ψ

†
2ψ1 + c5∂µψ

†
1ψ2∂

µψ†
2ψ1 + c6∂µψ

†
1ψ2ψ

†
2∂
µψ1 + h.c.

)
. (6.35)

In the remaining part of this section we will present the Feynman rules corresponding to these operators
and their contributions to the process.

The expression for the effective scalar two point vertex is for both particle species given by

= i c1κ
2p4δij . (6.36)

The effective gluon two point interaction yields

= i (2c2 + c3)κ
2p2(ηµνp

2 − pµpν)δab . (6.37)

It obeys the off-shell Ward identity. Moreover we see thatc2 or c3 is redundant on the level of Feynman
amplitudes. A distinction between thec2 andc3 operator may get important at higher orders, when the
gluon emitting terms of these operators become important. For our case we can set w.l.o.g.c2 = 0.

The effective scalar-scalar-gluon interaction is given by

a, µ

p, j

k, i

= ic1gsκ
2T aji(k

2 + p2)(k − p)µ (6.38)

and the effective four point vertex by the following Feynmanrule

k2, i2

k1, i1

k4, i4

k3, i3

= −iκ2g2
sδi1i3δi2i4

(
c4(k1k2 + k3k4) + c5(k1k3 + k2k4) + c6(k1k4 + k2k3)

)
.

(6.39)
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Figure 6.2: IR cutoff (in)dependence of the result. Both cutoffs, the gluon and graviton mass, are chosen
to be the same. The reference value for the particle mass ism = 10−15 Mpl, i.e. in the TeV range. The
cutoff independence is not dependent on the choice of parameters and kinematical quantities.

When we compare the operators with the structure of the counterterms (see section 6.3) we see that the
counterterms can be expressed through gauge invariant operators, at least when we take the on-shell limit.
We see that the three point scalar-scalar-gluon interaction has additional terms which cancel only in the
on-shell limit. In this limit the relations from gauge invariance, i.e. the equality of the prefactor labeled
above byc1 of the scalar self energies and the scalar-gluon interaction holds true for the counterterms as
well. This shows that we can renormalize the on-shell amplitudes in a gauge invariant way. As a note, the
off-shell amplitudes are not physical and can be gauge dependent. This is exactly what we obtain, since
the off-shell self energy of the gluon and the scalar-scalar-gluon counterterms depend on which gauge we
choose, e.g. the covariantized or non-covariantized one. Only in the on-shell limit this dependence cancels.

With the Feynman rules for the effective vertices above we can calculate the NLO contributions from
the effective vertices. They are given by

MeffM∗
tree +MtreeM∗

eff

MtreeM∗
tree

= 8c1κ
2m2 + 2c3κ

2S

− 2κ2−(c4 − c5 − c6)S + (c4 + c5 − c6)T + (c4 − c5 + c6)U

T − U . (6.40)

In the following we assume that the form of the four point interaction is the same as estimated from
the induced interactions, i.e. the numerator in (6.40) should cancel the denominatorT − U and lead to
an angular independent relative correction proportional to S. This is achieved by choosingc4 = 0 and
c5 = −c6. We can parameterize the relevant high energy contributions of the effective interactions by one
parameter for which we can use e.g.c3.

The dependence on the effective graviton coupling parameter awill later be discussed numerically, since
these couplings are included in the one loop calculations and lead to rather long expressions.

6.6 Results and comparison to the pure scalar model

6.6.1 IR cutoff independence of the results

As we have mentioned above the inclusion of graviton and gluon Bremsstrahlung will render our inclusive
squared amplitude IR finite. This is shown in fig. 6.2, where wehave displayed the individual contributions
coming from graviton and gluon Bremsstrahlung. We have usedonly one IR regulator for regularizing
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Figure 6.3: Angular dependence of the relative NLO corrections forS-type localization. We show only the
cos θ > 0 part, since the result is symmetric. We leave outcos θ = 0, since at this angle the tree-level cross
section (i.e. the denominator) is0 and the numerical errors blow up. The center of mass energy was chosen
as
√
S = 0.01 Mpl and the particle massm = 10−16 Mpl.

both, the gluon and graviton IR divergences. We have chosen particle masses ofm = 10−15 Mpl, i.e. TeV
particles. The IR independence holds irrespective on the scattering angle, the center of mass energy and
the particle masses.

In the following we will set the IR regulator, i.e. the gluon and graviton mass, tomglu = mgrav =
10−20 Mpl in order to resolve the individual contributions as in the analysis above. This is far below the
assumed particle masses.

6.6.2 Relative NLO contributions for S-type localization

In this section we perform a similar analysis as in section 5.8.2. We will investigate the center of mass
energy dependence, the angular dependence and the mass dependence of the relative NLO corrections
in S-channel. TheT -type process will be discussed in the next section. At the end we will discuss the
dependence of the results on variations of the effective graviton coupling parametera. The particle mass
was chosen asm = 10−16 Mpl, i.e. TeV particles. The values for the effective scalar andscalar-gluon
interactions are chosen asc3 = 1 andc1 = c2 = c4 = c5 = c6 = 0. The high energy behavior of the
effective interactions is therefore parameterized by one parameterc3. We will later discuss the behavior
of the results under variations of this parameter. As mentioned above the gluon and graviton mass will be
chosen asmglu = mgrav = 10−20 Mpl in order to display the individual contributions. But againonly the
inclusive NLO corrections are IR independent and thereforephysical.

Figure 6.3 shows the angular dependence of the NLO corrections at
√
S = 0.01 Mpl. We have plotted

only the rangecos θ > 0, since the result is symmetric in this variable. We have leftout cos θ = 0, where
the denominator, i.e. the tree-level squared amplitute goes to 0 and numerical errors blow up. As in the
pure scalar model there is only a very small dependence on theangle. We see that the boxes, triangles
and effective vertices give the main contributions, and theself energies, Bremsstrahlung and especially the
wavefunction corrections are only marginal contributions. Furthermore we see that the combined NLO
contributions are below5% over the whole angular range at this energy. This is roughly half of the NLO
corrections in the pure scalar model at this particular center of mass energy, see fig. 5.6.

Figure 6.4 shows the center of mass energy dependence of the NLO corrections atθ = π/4. The
reason why we do not chooseθ = π/2 as in the scalar model is that the tree-level process has a zero at
this scattering angle. We see that boxes, triangles and effective vertices are the relevant contributions and
the others are irrelevant. This agrees with the pure scalar model. We furthermore see that the10% NLO
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Figure 6.4: Center of mass energy dependence of the relativeNLO corrections forS-type localization. The
scattering angle was chosen asΘ = π

4 . We have chosen the particle massm = 10−16 Mpl.
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Figure 6.5: Angular dependence of the relative NLO corrections forS-type localization with different
effective couplinga. We show only thecos θ > 0 part, since the result is symmetric. We leave out
cos θ = 0, since at this angle the tree-level cross section (i.e. the denominator) is0 and the numerical errors
blow up. The center of mass energy was chosen as

√
S = 0.01Mpl and the particle massm = 10−16 Mpl.

corrections are reached at nearly
√
S = 0.02Mpl. This is roughly twice as high as in the pure scalar model,

see fig. 5.7.
Performing variations of the clock and rod mass parameterm we see that there is no noticeable change

in the relative NLO corrections. Even if the individual parts vary, their sum does not change. This property
has been tested for masses in the rangem ∈ [10−20 Mpl, 10−4 Mpl]. We see that the parts relevant at high
energies are independent of the particle mass and only the irrelevant parts, which contribute withm2/M2

pl

show dependencies. This is a very nice property of the theory, since it leads to an universal high energy
behavior, independent of the masses. Moreover the results are mass independent even if the effective
couplinga is switched on. We conjecture that the mass independence is aconsequence of the additional
SU(N) gauge invariance, since the mass dependences cancel between different diagram types, in particular
box and triangle contributions.
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Figure 6.6: Angular dependence of the relative NLO corrections forT -type localization. The center of
mass energy was chosen as

√
S = 0.01Mpl. We have chosen the particle massm = 10−16 Mpl.

Next we study the dependence on the effective graviton coupling parametera. The results are shown in
fig. 6.5 and show a strong dependence ona. This dependence is not as strong as in the case of the pure
scalar model, but we see that we can even switch the sign of therelative NLO contributions by tuning the
effective coupling to e.g.a = 1/2. Note that the absolute value of the NLO corrections stays ofthe same
order of magnitude in presence of the effective couplinga. Thus the validity of the theory is not as much
affected by the parametera as in the pure scalar model.

Finally we have to mention that by varying the scalar-gluon effective vertices we can also switch the
sign of the NLO corrections, but the results remain in the same order of magnitude for not too unnatural
values of the effective coupling constants.

6.6.3 Relative NLO contributions for T -type localization

In this section we investigateT -type localization in the Yang-Mills model. As typical for aT -type model,
the relative NLO corrections increase by increasing the scattering angle due to the decreasing tree-level
cross section. This is shown in fig. 6.6 for a center of mass energy

√
S = 0.01 Mpl and a particle mass

m = 10−16 Mpl. The relevant contributions are again boxes, triangles andeffective vertices and the
remaining individual parts are only marginal, at least at the IR cutoffmgrav = mglu = 10−20 Mpl. There
are again cancellations between boxes and triangles.

The center of mass energy dependence of the NLO corrections is shown in figure 6.7 at a scattering
angle ofθ = π/2 and particle massm = 10−16 Mpl. It reaches10% at

√
S = 0.02 Mpl, which is around

twice as high as in the pure scalar model.
This natural bound is, as in the case of theS-type process, independent on the particle mass, and hence

sets an universal bound for this model.
The dependence on the effective graviton couplinga is shown in fig. 6.8 and shows again a rather strong

dependence, in particular at large angles. But the dependence is not as dramatic as in the case of the pure
scalar model since in the Yang-Mills model the magnitude of the relative NLO corrections stays in the
same range for natural values ofa. This is an advantage of the Yang-Mills model since its validity does not
get spoiled in the presence ofa.

The dependence on the scalar-gluon effective couplings hadbeen estimated analytically in section 6.5.
We can change the sign of the effective vertex contributionsby changing the sign ofc3. This can lower
the relative NLO corrections and prolong the validity of thetheory. For example in the case of vanishing
effective vertex contributions the10% bound is reached at

√
S = 0.04Mpl.
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Figure 6.7: Center of mass energy dependence of the relativeNLO corrections forT -type localization. The
scattering angle was chosen asΘ = π

2 . We have chosen the particle massm = 10−16 Mpl.
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Figure 6.8: Angular dependence of the relative NLO corrections forT -type localization with different
effective couplinga. The center of mass energy was chosen as

√
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particle massm = 10−16 Mpl.
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6.6.4 Implications to localization and comparison to the pure scalar model

In the sections above we have obtained that the results of theYang-Mills model have some advantages
compared to the pure scalar model. Even if the maximal resolution is in general not considerably enhanced
(approximately a factor of2 for TeV particles) the results of this model are independenton the clock and
rod field mass. Moreover the results are more stable under variations of the graviton effective couplinga.
Alltogether the Yang-Mills model leads to more universal results and is therefore a more sensible model
for our purpose.
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Chapter 7

Pseudo-local geometry observables with
matter clocks and rods

In this section we will investigate a pure gravity observable, the pseudo-local curvature scalar induced
by two crossing particles in small width wave packet states.The overlapping region of the particle wave
packets will serve as clock and rod. The construction and calculation of this observable is performed in the
in-in formalism. We will only study the effect of two high energetic particles on local curvature and we
do not define an experimental realization of the experiment of measuring the local curvature, i.e. we only
investigate the preparation of the experiment and not the execution itself. A full description of the quantum
field theoretical measurement process is in this case a highly nontrivial task, since local curvature is not an
operator which is easily measured by scattering. We would have to think about a different measurement if
we would be interested in the phenomenology of this experiment. But in this section we only want to study
the difference between the quantum field theoretical backreaction on local curvature and the classical one.
We try to get insights into the nature of the backreaction induced by wave packet states. In particular we
are interested in the question if the backreaction is dominated by classical or quantum geometry effects.

7.1 Definition of the pseudo-local curvature observable

Assume two free complex scalar quantum fieldsψ1 andψ2 on a generic background. If we fix the back-
ground to be flat Minkowski space and describe gravitons dynamically on it, we get the following action
for the matter fields

S =

∫
d4x

2∑

i=1

(
∂µψ

†
i ∂
µψi −m2ψ†

iψi −
κ

2
hµν
(
2∂µψ

†
i ∂νψi − ηµν(∂λψ†

i ∂
λψi −m2ψ†

iψi)
))
. (7.1)

Assume the following state|f1, f2〉, wheref1 is a wave packet state of the particleψ1 andf2 is a wave
packet state ofψ2 overlapping around the spacetime position0. Moreover assume the following operator

O := :

∫
d4x
√−gR(x)ψ†

1(x)ψ1(x)ψ
†
2(x)ψ2(x) : , (7.2)

which is the normal ordered spacetime integrated curvaturescalarR together with a quartic scalar operator.
Now consider the following in-in matrix element in the Heisenberg picture

〈f1, f2; in|O|f1, f2; in〉 . (7.3)

By switching off the couplingκ it is very easy to see that this matrix element is the expectation value of the
curvature operator in the graviton state integrated over the overlapping region defined by the wave packets.
This is of course0 in the zero coupling limit since the gravitons will be alwaysin their ground state. They
can not be excited without scalar-graviton couplings.
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If we now allow interactions between gravity and matter, theasymptotic graviton vacuum state will be
filled with virtual gravitons due to emission of gravitons from the particles and the expectation value of
the spacetime integrated curvature scalar will not vanish any longer. Therefore we can measure the local
selfgravitation of two crossing wave packet state particles with this kind of observable. As mentioned
above we will not attempt a dynamical description of the measurement of this value, since it is not required
for our purposes.

We proceed by first giving a semiclassical computation of thepseudo-local curvature operator in the
framework of quantum fields coupled to classical gravity by using the semiclassical linearized Einstein
equations. Then after this calculation we compute this observable in the in-in formalism using quantum
field theory for both, matter and gravity. We have chosen thisparticular order because the quantum calcu-
lation requires some low-energy data from the classical calculation in order to renormalize the occurring
divergences.

7.2 Classical computation

As mentioned above we use semiclassical linearized Einstein equations in order to compute the classical
backreaction induced by matter quantum fields. The equations of motion for the metric fluctuations read

�

(
hµν −

ηµν
2
h
)

= 〈Tµν〉 , (7.4)

where〈Tµν〉 is the expectation value of the energy momentum tensor operator in the matter state defined
above. It can be explicitly expressed through the wave packets by doing some algebra and is given by

〈Tµν〉 = −κ
2∑

i=1

(
∂(µf

∗
i ∂ν)fi −

ηµν
2

(∂λf
∗
i ∂

λfi −m2f∗
i fi)

)
. (7.5)

The metric fluctuations now can be determined by using the retarded Green function of the equations of
motion and are given by

hµν(x) = Pµναβ

∫
d4yGret(x− y)〈Tαβ(y)〉 , (7.6)

whereGret(x − y) is the scalar Green function of the box operator, and the tensor structure is given by

Pµναβ :=
1

2

(
ηµαηνβ + ηµβηνα − ηµνηαβ

)
. (7.7)

With these ingredients we can express the induced curvaturescalar trough the energy momentum tensor.
At lowest order it is given by

R(x) = κ
(
�h− h ,µ,ν

µν

)
= −κ

2
〈T (x)〉 , (7.8)

where we had to use the equations of motion for the Green function and the energy momentum conservation
∂α〈Tαβ〉 = 0.

By inserting (7.5) into the expression for the curvature we obtain

R = −κ
2

2

2∑

i=1

(
∂αf

∗
i ∂

αfi − 2m2f∗
i fi

)
. (7.9)

For the further evaluation we assumef1(x) andf2(x) to be first order Gaussian wave packets with
q1 = (0, 0, q) andq2 = (0, 0,−q), see appendix E.1. With this specific choice we can evaluate (7.9)
and arrive at the following expression for the classical expectation value of the pseudo-local curvature
observable

Oclass =
κ2

2

∫
d4x
(
σ4(x2

1 + x2
2) +m2

) (
|f1|4|f2|2 + |f1|2|f2|4

)
, (7.10)
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wherexi are the components of the spatial vectorx.
We see that only the densities|fi|2 enter this expression which is quite natural for a classicalcomputa-

tion, since there are no interferences. This integral now can be evaluated by inserting the first order wave
packets, see (E.6). The result in the limitm→ 0 and with the specific widthσ = q/2 is given by

Oclass =
κ2q4

18432
√

2π
5
2

, (7.11)

where we have used the first order normalization of the wave packets given by

N(q,σ) = (4
√
qπ

9
4σ

3
2 )−1 . (7.12)

This normalization comes from the condition

(fi, fi)cov = 1 (7.13)

for the first order wave packets. It differs from the normalization of the non-approximated wave packets
(E.3) by5% for maximal width wave packetsσ = q/2.

7.3 Quantum computation

For quantum backreaction we use the in-in formalism, see section 2.8. We will formulate the amplitudes
by using position-space Feynman rules, since with this formalism we can better understand the vanishing
of several terms.

The interaction vertex is given by the following bi-differential operator

1

3

2

= ∓iκ
2

(
2∂2

(µ∂
3
ν) − ηµν(∂2

λ∂
3λ −m2)

)
, (7.14)

where the numbers on the partial derivatives indicate the leg they are acting on and− is for the right and
+ for the left vertex.

The graphical representation of the pseudo-local curvature scalar has the following analytical expression

= κ(ηµν�
h − ∂hµ∂hν ) , (7.15)

where there is no distinction between left and right, since this operator is no interaction vertex.h indicates
the action of the derivatives on the gravitons.

If we assume the vanishing of graviton tadpoles by either normal ordering the interaction or renormaliz-
ing the cosmological constant to zero, there are the following four leading order in-in diagrams contributing
to our observable

+ + + . (7.16)

Note that the disconnected diagrams vanish because of the normal ordering of the operatorO. It has to be
mentioned that due to the in-in Feynman rules we have to sum upleft and right vertices together with the
corresponding anti-propagators and propagators.
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Since all four diagrams are related by crossing we will compute the one where the graviton gets emitted
from thef1 particle in the ket-state explicitly in the following. Using the diagrammatic rules we arrive at

M := = −iκ
2

2

∞∫

−∞

dx0

x0∫

−∞

dy0

∫
d3xd3yf∗

1 (x)f∗
2 (x)f2(x)

(
f1(y)

(
2
←−
∂ y(µ
−→
∂ yν) − ηµν(

←−
∂ yλ
−→
∂ yλ −m2)

)
Pµναβ

(
∆m
yx∆

0
yx − ∆̄m

yx∆̄
0
yx

)(←−
�
xηαβ −

←−
∂ xα
←−
∂ xβ
))
, (7.17)

where∆m
yx is the Feynman propagator with massm and∆̄m

yx denotes the anti-Feynman propagator. Note
that they0 integral is restricted byx0. Since we have the inequalityy0 < x0, the time ordering is not
required and we can use the equations of motion

�
y∆0

yx = �
x∆0

yx = �
y∆̄0

yx = �
x∆̄0

yx = 0 , for y0 < x0 . (7.18)

Therefore the box operators annihilate the (anti-) propagators.
If we substitute the spectral representations of the wave packets we can perform the required integrals

for plane waves. We had to solve the energy integrals by usingcomplex contour integration. Since our
integrand falls off sufficiently fast in both, the positive and negative complex axis, we have chosen the
contour which includes the lowest number of poles. At the endwe arrive at the following expression

M =

∫
d̃3krd̃3prd̃3kld̃3plf̃1(kr)f̃2(pr)f̃

∗
1 (kl)f̃

∗
2 (pl)δ(kr + pr − kl − pl) I(kr) , (7.19)

where the remaining integral is given by

I(k) := −κ2π

∫
d3q

EqEq+k + q(q + k)

EqEq+k
(
(Eq + Eq+k)2 − E2

k

)(E2
kEq + kq(Eq + Eq+k)

)
. (7.20)

Summing up the contributions from the four different graphsand transforming to position space we
arrive at the following formula for the expectation value ofthe pseudo-local curvature observable

〈O〉 =

∫
d4x

(2π)4

(
fmod∗
1 f1f

∗
2 f2 + f∗

1 f
mod
1 f∗

2 f2 + f∗
1 f1f

mod∗
2 f2 + f∗

1 f1f
∗
2 f

mod
2

)
, (7.21)

wherefi are the position space wave packets andfmod
i the “modified” wave packets defined by

fmod
i (x) :=

∫
d̃3kf̃i(k)I(k)e−ikx . (7.22)

When we compare the structure of the result with the classical one, see (7.10), we see that as expected the
quantum calculation affects the wave packets themselves, while the classical one only affects the densities
|fi|2.

Next we have to calculate the integral (7.20), where we againrestrict ourselves to the massless limit
m = 0. The problem with this integral is that it is quadratically divergent, so that we have to renormalize
its value. As a counterterm to the integrand we use the secondorderk expanded integrand and subtract it.
We will investigate below if there are some nonzero contributions from zeroth, first and second order ink

by matching the results to the classical one in the IR limit‖k‖ → 0. In this limit we expect both results to
agree.

Furthermore we use spherical coordinates and perform first the angularΩq integration and afterwards
the radial one. The dependence of the spherically integrated integrand shows a sufficiently fast fall-off
in the remaining variableq = ‖q‖ and it can be integrated analytically as well. After the angular Ωq
integration we see that the functionI(k) is only dependent on the norm ofk.

The result is thatI(k) is a polynomial ink = ‖k‖ given by

I(k) = αk2 + βk4 , (7.23)
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whereα has to be determined by the matching with the classical computation and

β =
2π2

15
. (7.24)

The modified wave packet is given by

fmod
i (x) = (−α△+ β△2)fi(x) (7.25)

and with it the expectation value is

〈O〉 = κ2 187βq4 + 96αq2

16384π5
, (7.26)

where we have used the widthσ = q/2.
Next we have to compare the classical and quantum result in order to determineα. Since we are in-

terested in the relative difference between classical and quantum pseudo-local curvature, we have to relate
their difference to some natural pseudo-local curvature. The problem is that the relation to the induced
curvature itself is not sensible, since it is of the same order as the difference and vanishes in the IR. A more
sensible natural quantity to which we can relate the difference is the pseudo-local Planck curvature defined
by

Opl := κ−2〈
∫
d4xψ†

1ψ1ψ
†
2ψ2〉 =

κ−2

64π
, (7.27)

where we have usedR = κ−2 as a natural curvature scale.
We now see that the relative difference between the quantum and classical result compared to the pseudo-

local Planck curvature is given by

〈O〉 −Oclass

Opl
= κ4q4

561− 10
√

2π

5760π2
≈ 0.0094κ4q4 , (7.28)

where we have fixedα = 0 by demanding the vanishing of the quadratic terms in the limit of q → 0 and
thus matching the quantum quadratic term to the classical one.

We see that in the limitq → 0 the classical and quantum field theoretical result agrees and the quantum
result receives relative corrections proportional to(κq)4. Furthermore the quantum pseudo-local curvature
is larger than the classical one at every energy scale.

7.4 Comparison between the quantum and classical results and out-
look

As we see from (7.28), the classical and quantum result for the pseudo-local curvature scalar are very
similar compared to the Planck scale curvature for energiesq < Mpl. Hence the original question of
which effects contribute stronger to the breakdown of the perturbative treatment of quantum gravity can
not be answered through this calculation. The problem is that the quantum fluctuations in the curvature
scalar seem to be quite symmetric around the classical value, so that we can not estimate them from the
expectation value of the local curvature alone.

In the remaining part of this section we define another observable which has good chances to give
a deeper insight into the question of how quantum the backreaction effects are. Its evaluation requires
further investigations and is not presented in this work. The remaining part is intended as an outlook on
future work.

Assume the following second pseudo-local operator

O2 := :

∫
d4x
√−gR2ψ†

1ψ1ψ
†
2ψ2 : , (7.29)
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where now the quadratic scalar curvature enters. If we calculate the quantum expectation value of this
operator in the the two-particle state defined above, we arrive at the pseudo-local squared curvature, which
can be used to extract information from the relative fluctuation

√
〈O2〉 − 〈O〉2
〈O〉 . (7.30)

This fluctuation is very sensitive to quantum effects, sincein a classical calculation it is obvious zero
and it becomes only nonzero in presence of quantum effects. If this ratio is larger than1, it would indicate
that the quantum effects are dominant. If it is smaller than one, the classical curvature effects would be
more relevant. This means that if this ratio would be large, the perturbative description of quantum gravity
breaks down because of quantum geometry effects and this breakdown can not be cured by e.g. adjusting
a better suited classical background. In the case of a small ratio this would be different, since we could
enhance the validity of the perturbative theory by adjusting the classical background if the energies are too
high.

The evaluation of the expectation value ofO2 in the in-in formalism is rather demanding because of
the appearance of two loop calculations with incomplete time integrations at the vertices. Because of this
the standard Feynman integrals known fromS-matrix calculations can not be used anymore and every
integral has to be evaluated by hand. This requires further investigations, in particular whether one could
automatize these calculations.
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Chapter 8

Conclusions

We have studied several pseudo-local observables in effective quantum gravity. Based on the proposal
of Giddingset al. [1] we have constructed Dirac observables in quantum gravity from local field theory
observables by integration over the whole spacetime manifold. Afterwards we have used suitable wave
packet states of the clock and rod variables in order to localize these nonlocal observables in the sense of
relational locality.

The explicit calculations were performed using methods of perturbative quantum gravity. Therefore we
have assumed geometry to be in a suitable semiclassical state, such that we can extract a smooth background
geometry. This geometry was chosen to be a flat Minkowski spacetime for two reasons. First we assume
that the basic features of dynamical localization are also present on a Minkowski spacetime and second
this choice of background simplifies the application of perturbation theory in a dramatic manner. We have
interpreted the breakdown of perturbation series as the limit on locality in this approach. This perturbative
limit on locality is also related to our conceptional limit on locality, since most small scale experiments
performed today involve scattering of particles. But the scattering of particles is nowadays only understood
when performed on a fixed classical background.

The first explicit model we have investigated consits of one scalar fieldφ, which is localized with respect
to four scalar clock and rod fields. The observable we were interested in was the two point correlation of
theφ fields localized at a pair of points defined in a relational wayby using the clock and rod fields. We
used the proposal of [1] to define a diffeomorphism invariantobservable from which we could extract this
information by taking matrix elements between suitable states. These states were chosen to be in and
out two-particle wave packet states of the clock and rod fields with carefully chosen overlap properties.
We have used the overlap region of respectively two wave packets in order to localize the two spacetime
points required for the correlator. We constructed the model in such a way that the information about the
correlator is encoded in the two-particle wave packet scattering matrix element. This scattering process
was calculated at tree and one loop level (together with softreal emissions). With the tree level result we
proved that the desired information about the correlation is encoded in the scattering of two clock and rod
fields. The NLO corrections were used in order to estimate themaximal spacetime resolution possible in
this model. It was shown that the minimal length accessible by this model is about several hundred inverse
Planck masses, dependent on the masses of the fields.

In order to check the universality of the results gained through the first model we defined a second
model with similar properties. This model contains a SU(N) Yang-Mills field localized with respect to
colored scalar clock and rod fields. We could define a similar pseudo-local observable as in the model
above and therewith extract information about the local Yang-Mills correlation function. In this model we
have again calculated the NLO corrections and estimated themaximal resolution. The results agree with
the ones from the pure scalar model, but there are some advantages of the Yang-Mills model. First, there
is no dependence of the clock and rod field mass in this model, which leads to more universal results, and
second the dependence of this model on the effective graviton-scalar couplings is weaker than in the first
model.

In the last part we addressed the question if the backreaction of the quantum scalar wave packet states on
geometry is more of a classical or a quantum effect. In order to answer this question we defined a pseudo-
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local curvature observable which we localize using wave packets. We investigated the expectation value
of the pseudo-local curvature observable in lowest order. We compared the result with the full classical
evaluation of this observable and we found out that there is not much difference. Hence the curvature
observable alone could not answer our question. We proposeda second operator which could be used
to determine the fluctuations of the pseudo-local curvature. Its expectation value will require a two-loop
calculation in the in-in (Schwinger-Keldysh) formalism and is left to future work.
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Appendix A

General gauge fixed BRST invariant
equations of motion

In this appendix we give the full expressions for the EOM of gravitons, ghosts and antighosts in a general
linear gauge fixing. This gauge fixing is given by (4.29) and isparameterized by10 parametersci.

The first and second time derivatives of the ghost fields are given by

η̇(0) = −1

2
(c1 + c2 − c3)∂iη(i) + 2c3△η(0)

s (A.1)

η̇(i) = −(c4 −
c7
2

)∂iη
(0) + (c5 +

c6
2

)∂i∂jη
(j)
s +

c6 − c7
2
△η(i)

s (A.2)

η̇(0)
s = −(1 + c8)η

(0) + c9∂iη
(i)
s (A.3)

η̇(i)
s = −(1 +

c10
2

)η(i) − ∂iη(0)
s (A.4)

and

η̈(0)
s = − (2c3(1 + c8) + c9)△η(0)

s +

(
1

2
(c1 + c2 − c3)(1 + c8)− c9(1 +

c10
2

)

)
∂iη

(i)

η̈(i)
s = −c6 − c7

2
(1 +

c10
2

)△η(i)
s +

(
1 + c8 + (1 +

c10
2

)(c4 −
c7
2

)
)
∂iη

(0)

−
(
c9 + (c5 +

c6
2

)(1 +
c10
2

)
)
∂i∂jη

(j)
s . (A.5)

Here we have omitted the second derivatives of the primary ghost fields, since we do not need them in this
work.

Since the canonical momenta of the ghost fieldsη̄a have their independent EOM we have to investigate
them too. They are given by

˙̄η(0) = (1 + c8)η̄
(0)
s − (c4 −

c7
2

)∂iη̄
(i) (A.6)

˙̄η(i) = (1 +
c10
2

)η̄(i)
s −

1

2
(c1 + c2 − c3)∂iη̄(0) (A.7)

˙̄η(0)
s = −∂iη̄(i)

s − 2c3△η̄(0) (A.8)

˙̄η(i)
s = −(c5 +

c6
2

)∂i∂j η̄
(j) − c6 − c7

2
△η̄(i) + c9∂iη̄

(0)
s (A.9)
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and

¨̄η(0) =

(
−(1 + c8)2c3 +

1

2
(c4 −

c7
2

)(c1 + c2 − c3)
)
△η̄(0) −

(
1 + c8 + (c4 −

c7
2
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(A.10)
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2
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2
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)
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(0)
s . (A.11)

The equations of motion for the graviton field and its conjugate momenta using the full Hamiltonian
HBRST = Hmin + {ΩBRST,Ψ} are given by

ḣ00 = −2c2π
00 − (c1 − c2)h0j,j − c3πjj (A.12)

ḣ0i = −c7π0i − 1

2
(c4 +

c7
2

)h00,i −
1

2
(c5 −

c7
2

)hjj,i −
c6 + c7

2
hij,j (A.13)

ḣij = πij + c10h0(i,j) −
(
c3π

00 +
1

2
πkk − (c3 +

1

2
)h0k,k

)
δij (A.14)

π̇00 = −c4△h00 + (1 +
c4 − c5

2
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c6
2

+ c4 + c8)hij,i,j − (c4 +
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,i (A.15)
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4
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and

ḧ00 = △h00
1

4
(2(c1 + 3c2)c4 + (c1 − c2)c7 − 2c3(c4 − 3c5 − c6 + 4c8 + 4))

+△hjj
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4
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+ h0j,j,i
1
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1
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1
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4
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4
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Appendix B

BRST invariant states for effective
quantum gravity coupled to classical
matter

In this appendix we investigate the structure of the BRST operator when we include matter. Therefore we
assume the following interaction term

Sint = −κ
∫
d4x hµνT

µν , (B.1)

whereT µν is the energy momentum tensor of some matter and does not depend onh.
For this kind of single graviton emission the primary constraints remain the same as in the free case,

since the graviton couples without derivatives toT µν . But the secondary constraints change into

χ̃(0)
s = χ(0)

s − κT 00 (B.2)

χ̃(i)
s = χ(i)

s − κT 0i , (B.3)

where the untilded constraints are the constraints from thefree theory.
If there is energy momentum current conservation, i.e.∂µT

µν = 0, the time derivatives of the secondary
constraints are given by

˙̃χ(0)
s = −∂iχ̃(i)

s − κ∂µT µ0 +O(κ2) = −∂iχ̃(i)
s +O(κ2) (B.4)

˙̃χ(i)
s = −κ∂µT µi +O(κ2) = 0 +O(κ2) . (B.5)

This means in particular that the constraint structure, i.e. the number of constraints and their algebra, is not
changed by the introduction of this kind of interaction if werestrict ourselves to orderκ1. Hence the BRST
invariant extension of the Hamiltonian is equal to the free case, since it depends only on the algebra and
the BRST charge is forminvariant, i.e.

Ω̃BRST = χ̃a[ηa] = ΩBRST − κT 0µ[ηsµ] +O(κ2) . (B.6)

Changing to interaction picture we can evaluate the free part of the BRST charge, i.e.ΩBRST, as in the
free case and arrive at

Ω̃BRST = i(χµ, η
µ
s )cov − κT 0µ[ηsµ] . (B.7)

Because of the additional term in the BRST operator, we see that the only physical state of definite
particle number is the Fock vacuum. This is clear, because inthe presence of interactions it is not the free
particle alone which is physical, but the particle togetherwith its “quantum cloud” of gravitons and other
particles.
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Since the investigation of gravitons coupled to quantum matter is rather hard, we will study only the
coupling of gravitons to classical matter. In this case we can construct closed expressions for physical states
for given classical matter distributions. Even if the givenassumptions of classical matter in the presence of
quantized gravity has no direct application in our specific world, since there the quantum aspects of matter
occur on larger scales then these of gravity, it is in principle interesting how the “graviton cloud” of a point
particle would look like.

Before we give the closed expression of the graviton cloud, we first have to decompose our BRST
operator into terms with specific domains and co-domains again. SinceT µν is classical and therefore a
C-number, the following decomposition holds true

Ω̃BRST = Ω1 + Ω2 − κT 0µ[η+
sµ]− κT 0µ[η−sµ] , (B.8)

where+/− denotes positive and negative frequency parts andΩi is defined as in (4.66). The individual
domains and co-domains are

Ω1 : Hngraviton ⊗Hmghost ⊗Hlantighost → Hn+1
graviton ⊗Hmghost ⊗Hl−1

antighost (B.9)

Ω2 : Hngraviton ⊗Hmghost ⊗Hlantighost → Hn−1
graviton ⊗Hm+1

ghost ⊗Hlantighost (B.10)

T 0µ[η+
sµ] : Hngraviton ⊗Hmghost ⊗Hlantighost → Hngraviton ⊗Hmghost ⊗Hl−1

antighost (B.11)

T 0µ[η−sµ] : Hngraviton ⊗Hmghost ⊗Hlantighost → Hngraviton ⊗Hm+1
ghost ⊗Hlantighost . (B.12)

We now make the following ansatz for the graviton cloud state

|ψ〉 := G†|0〉 :=
∞∑

n=0

wn(A†)n|0〉 , (B.13)

wherewn are some weights andA† := a†µν(f
µν) is the creation operator for some wave packetf , which

we have to determine now.
Acting with Ω̃BRST on the state|ψ〉 and demanding it to be invariant we get the following equation

0 = Ω̃BRST|ψ〉 = (Ω2 − κT 0µ[η−sµ])|ψ〉 = ([Ω2, G
†]− κG†T 0µ[η−sµ])|0〉 , (B.14)

which has the solutions

[Ω2, A
†] = κT 0µ[η−sµ] ∧ (n+ 1)wn+1 = wn (B.15)

or

[Ω2, A
†] = −κT 0µ[η−sµ] ∧ (n+ 1)wn+1 = −wn (B.16)

which are equivalent.
Choosingw0 = 1 we arrive at a coherent state

|ψ〉 =
∞∑

n=0

1

n!
(A†)n|0〉 = eA

† |0〉 (B.17)

with the following condition for the spectrum of the wave packet

kν f̃
µν(k) =

∫
d3xκT 0µeikx ∀k ∈ R

3. (B.18)

As an example we assume a point particle with massm located atx = 0. Then the energy momentum
tensor is given byT µν = δµ0 δ

ν
0mδ(x) and the condition for the wave packet (B.18) is for example fulfilled

by using

f̃00(k) =
κm

k0
eik

0t , f̃µν(k) = 0 for (µ, ν) 6= (0, 0) . (B.19)
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This spectrum leads to the following position space wave packet

f00(x) =

∫
d̃3pf̃00(p)e−ipx =

κmπ2

r
, (B.20)

wherer = |x| is the spatial distance. This result is in agreement with theclassical result that nonrelativistic
matter changes the00 component of the metric by adding a Newtonian potential. Thequantum state
corresponding to the Newtonian potential is therefore given by a coherent state ofh00 particle states with
wave packets decreasing as1/r. This solution can be boosted in order to get the graviton cloud for a
moving point mass.

It has to be mentioned that this state is only one representative of a whole equivalence class of states we
get by adding exact states to it. Since our state is not of normzero, it is not equivalent to the trivial state.

We now stop at this point without investigating, for example, the space of exact states or other physical
states including physical gravitons. This is because our main goal was to show the similarity between the
graviton cloud and Newton’s potential. To understand this similarity we did not require a full understanding
of the exact states as well as possible other physical statesincluding physical gravitons. We also do not
expect to gain much more insight by doing these additional investigations.
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Appendix C

Renormalization of graviton induced
tadpoles

Nonvanishing one point functions of massless particles generate serious divergences and render a theory
inconsistent, if they can not be absorbed into the renormalization of some parameter. Therefore it must to
be checked that all one point functions behave like this.

In “standard theories” the only massless particles are vector bosons, such that the vanishing of one point
functions is guaranteed by Lorentz covariance, since it holds that

∼
∫
d4xeipx〈0|jµ(x)|0〉 = 0 . (C.1)

In the case of gravitons it looks quite different, since we have

∼
∫
d4xeipx〈0|T µν(x)|0〉 6= 0 , (C.2)

because a general energy momentum tensorT µν has a trace nonequal zero and therefore scalar components.
Since such tadpoles come with a graviton propagator denominator1/p2 in the on-shell limitp2 → 0,

divergences will occur in some Feynman diagrams at NLO. But these divergences can be absorbed by
renormalizing the cosmological constant as it has been shown in [25]. We will now briefly show how this
works.

Since the most general action in general relativity also contains a cosmological constant term, we have
in principle to include it. This additional action is of the form

SΛ =

∫
d4x
√−gΛ =

∫
d4x

κ

2
Λ h+O(κ2) , (C.3)

where we used theκ expansion on flat background and neglected the constant termin the action, since it
does not contribute.
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In terms of Feynman diagrams this additional action can be interpreted with the following “vertex”

= i
κ

2
Ληµν (C.4)

describing the “interaction” between graviton and the vacuum expectation value of the graviton traceh.
This does not spoil Lorentz invariance, since the trace ofh is a scalar.

Working now explicitly in theψ2φ model with the Feynman rules from fig. 5.2 the amplitudes for the
one loop renormalization of the cosmological constant are given by

Mµν := +

4∑

i=1

+

= i
κ

2
Ληµν + 4

κ

2

∫
d4k

(2π)4
2kµkν − ηµν(k2 −m2

ψ)

k2 −m2
ψ

+
κ

2

∫
d4k

(2π)4
2kµkν − ηµν(k2 −m2

φ)

k2 −m2
φ

. (C.5)

Since the problematic part of this amplitude is its trace, weapplyηµν and therefore get

M = 2iκΛ− κ
∫

d4k

(2π)4

(
4
k2 − 2m2

ψ

k2 −m2
ψ

+
k2 − 2m2

φ

k2 −m2
φ

)
. (C.6)

Next we have to evaluateM in some regularization scheme. Since this is a trivial task,we assume that
this had been done and simply demand the following renormalization condition

Λr :=M = 0 , (C.7)

which relates the bare cosmological constantΛ to the renormalized oneΛr. Therefore the additional bare
cosmological constant action can be used as a counterterm for renormalizing the cosmological constant to
0 in order to avoid problems coming from graviton tadpoles.

With the cosmological constant counterterm it now holds true

∣∣∣∣∣
r

= 0 . (C.8)

Since the renormalized one point function does not depend onthe external momenta (there is no incoming
momentum) all Feynman diagrams containing graviton induced tadpoles as subdiagrams will vanish. Thus
we will neglect them in our calculations.
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Appendix D

Colored processes, gluon
Bremsstrahlung and IR finiteness in
Yang-Mills theory

In this work we require rather untypical QCD cross sections,which are not averaged (summed) over color in
the initial (final) state. Since the cancellation of IR divergences in QCD is usually discussed with summed
and averaged color, we have to discuss the topic of fixed external color here in this work. We will make
use of the Kinoshita-Lee-Nauenberg (KLN) theorem [20, 21],optical theorem and unitarity cuts in order
to discuss the IR behavior of colored processes.

The KLN theorem guarantees by using unitarity that physicalprocesses, i.e. processes summed (av-
eraged) over all degenerate final (initial) states, are freeof IR divergences. Since unitarity is related to
the optical theorem and unitarity cuts, there is a diagrammatic formalism to check the IR finiteness. We
will briefly explain this formalism by using the most simple IR divergent process of an off-shell photon
decaying into electron and positron in QED.

The incomplete square of the sum of the tree-level and one loop diagrams is given by all cuts, which do
not cut through the internal photon line, of the following diagrams

+ + + . (D.1)

But since the optical theorem requires all possible cuts, wehave even to cut through the photon line and
arrive at the diagrams of the final state Bremsstrahlung, i.e.

+ . (D.2)

Therefore we have also to include processes with degeneratefinal states, i.e. photon to electron, positron
and soft photon in this case, in order to arrive at IR finiteness of the inclusive cross section.

In the case of massless matter or gauge bosons with self interaction there occur also collinear diver-
gences. These divergences require an additional inclusivetreatment of the initial state. This can be achieved
by crossing all initial states to the final state. For an → m process this would lead to0 → n + m am-
plitudes. Gluing these amplitudes together, i.e. performing an operation which is inverse to the cuts, we
arrive at0→ 0 amplitudes as a starting point for our investigations.

The problem with colored amplitudes in Yang-Mills theory isthat if we construct the0 → 0 amplitude
from the color fixed tree and loop amplitudes, it does not agree with the full 0 → 0 amplitude, since
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the matter legs are held at fixed color in the first case and the internal color is summed in the second
case. This leads to the question if the KLN theorem applies tothe case of color restricted processes and
if they can be rendered IR finite by a physically sensible inclusive treatment of color. Now there are two
possibilities. First it could happen that the KLN theorem does not apply to restricted0 → 0 amplitudes,
so that the treatment of colored cross section is not sensible at all. Second, it could be that applying all
possible cuts to the restricted0 → 0 amplitude will lead to an IR finite cross section. In this caseit has
to be checked if the cuts give rise to additional physically sensible inclusive cross sections, which cure the
IR divergences. Independent of which of the two scenarios hold true, we will see that the straightforward
definition of colored cross section is not possible in general. In the following we will, in particular, describe
why the second possibility will not work either. We will use the example of scalar QED-QCD theory (or
equivalently the Yang-Mills model from chapter 6), in whichwe investigate the one loop cross section for
ψred

1 ψ̄blue
1 → ψred

2 ψ̄blue
2 scattering at ordere2g4

s .
From the tree and loop amplitudes we can, similar to the QED case described above, construct the re-

stricted0→ 0 amplitude. Performing all additional cuts, we recognize the expected photon Bremsstrahlung
and the inclusive gluon Bremsstrahlung, which we expect by using physically motivated inclusive gluon
processes. The physically motivated inclusive processes are those which we get by substituting consecu-
tively every external particle of colori by a particle of colorj plus a gluon performing theij-transition.
But there are also some additional contributions, which do not fit into this picture. To see this, consider the
glued0→ 0 amplitude constructed in the following way

red

blue

red

blue

×

red

blue

red

blue

−→ (D.3)

We can cut the scalar lines in such a way that the following diagrams emerge

blue

blue

blue

blue

blue

blue

blue

blue

, (D.4)

where the internal lines in the box diagram are held fixed at color red. The problem is that there are no cuts
in the resticted0 → 0 amplitude, which can be related to these diagrams with otherinternal colors. But a
physical definition of the cross section is only possible if we do not restrict internal d.o.f..

There are now two “physical” possibilities. Either we take the exceptional processes into account by in-
cluding also all other d.o.f. contributing to this kind of scattering, or we leave them out. Both methods lead
to a non-vanishing of the IR divergences, because of either too much IR contributions from the additional
inclusive processes or too little.

This shows that there is no consistent way of performing color fixed processes in general. We also have
the conjecture that by a systematic completion of the incomplete processes followed by including the new
additional cuts we would arrive at a initial and final state summed process in the end, if we built up the
formalism on cuts of0→ 0 amplitudes.

For our work we can use a trick in order to arrive at sensible cross sections for colored external particles.
This trick only works if we have massive scalars, such that itis sufficient to include only the degenerate
final states. In chapter 6 we are interested inψred

1 ψ̄blue
1 → ψred

2 ψ̄blue
2 scattering in the framework of scalar

gravity Yang-Mills theory. The trick now is to notice that inour desired order the color fixed non-inclusive
process is given by the same diagrams as the non-inclusiveψred

1 ψ̄blue
1 → ψcol1

2 ψ̄col2
2 process with summed
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final state colors. But now for the final state color summed process we can construct the non-restricted
2 → 2 glued amplitude, which we can cut and cure the soft IR divergences in a consistent way. Because
of the massive matter fields we do not require to work within cuts of the0→ 0 amplitude. This leads to a
well defined and IR finite inclusive process related to our tree and loop amplitudes.

It has to be mentioned that we can not use this approach to calculate fixed color processes with massless
matter fields. This is because massless matter fields lead to collinear divergences and therefore require a
summation over degenerate states of the finaland initial state. But when using a summed initial and final
state, no color information can possibly be left over. This subject requires further investigations.
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Appendix E

Localized wave packet states

This appendix is devoted to localized wave packet states. First, we discuss the mathematical description of
wave packet states. Therefore we use wave packets with Gaussian spectra and give approximations to study
their spacetime representation. Second, we will discuss the problem of performing wave packet scattering
processes. In particular the projection of the final state onwave packets will require a different setup than
used in conventional colliders.

E.1 Gaussian wave packets

Throughout this work we frequently use wave packets localized in space for describing our particle states.
A general wave packet for a scalar particle is given by

f(x) :=

∫
d̃3kf̃(k)e−ikx , (E.1)

wheref̃(k) denotes the spectrum, which has to be normalized by the condition (f, f)cov =
∫
d̃3kf̃∗(k)f̃ (k) =

1. Obviouslyf(x) is a solution to the Klein-Gordon equation.
Since we perform integrations involving wave packets we decided to use the most simple localized states

given by the family of wave packets with a Gaussian spectrum,i.e.

{
f̃(q,σ,χ)(k) : f̃(q,σ,χ)(k) = N(q,σ) (2π)32k0 exp (− (k− q)2

2σ2
) eikχ ,q ∈ R

3, σ ∈ (0,∞), χ ∈ R
4

}
,

(E.2)

whereN(q,σ) is a normalization constant,σ the width,q the central momentum vector andk0 =
√

k2 +m2

is on-shell. Furthermoreχ is the spacetime position of the tightest spacelike wave packet, as we will see
below.

The only drawback of the family of Gaussian wave packets is that it is not closed under Lorentz boosts,
sincef̃(q,σ,χ)(k) receives some non-Gaussianities when boosted. But this problem is not too dramatic,
since performing a boost the wave packet will still remain localized and therefore is applicable to our
problems. In the following we will choose the wave packets tobe Gaussian in the frame where we naturally
perform our calculations and interpret the results, e.g. the center of mass system.

Next we are interested in the explicit value ofN(q,σ). This can be derived for massless particles by a
short calculation as

N(q,σ) =

{
(2π)3πe−( q

σ
)2σ3q

(
2
σ

q
+ e(

q
σ

)2√π(2 +
σ2

q2
) erf

( q
σ

))}− 1
2

, (E.3)

whereerf(x) := 2√
π

x∫
0

dt exp (−t2) denotes the error function andq = ‖q‖ is the norm of theq vector.
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Furthermore we are interested in the covariant overlaps(f(q1,σ1,χ1), f(q2,σ2,χ2))cov among two wave
packetsf(q1,σ1,χ1) andf(q2,σ2,χ2), since they will give upper bounds on the widthσ. For our problem
we will always prepare two incoming particles (and also sometimes two outgoing particles), which, in the
center of mass system, will be given byf(q,σ,χ) andf(−q,σ,χ), respectively. Note that we have chosen
the widthσ and offsetχ to be equal for both wave packets. The width is constrained bythe condition
that we want to interpret one of the particles as left moving and one as right moving, i.e. the overlap
(f(q,σ,χ), f(−q,σ,χ))cov must be sufficiently small.

The overlap can be derived by a short calculation as

(f(q,σ,χ), f(−q,σ,χ))cov = 2N2
(q,σ)(2π)4e−( q

σ
)2σ4 . (E.4)

By inserting (E.3) it can be shown that this overlap only depends on the ratioqσ and becomes smaller than
0.01 if σ ≤ q

2 . Therefore we will always setσ = q
2 , which on one hand reduces the number of parameters

by one and on the other hand gives the broadest momentum spacewave packet, i.e. the narrowest position
space wave packet, at givenq, which is exactly the wave packet we require in the following.

For massive particles we have calculated the normalizationnumerically and found out that it differs less
than1% for mq ≤ 1

2 . This means that we can apply the massless normalization (E.3) in the following, since
m will always be much smaller thanq.

This concludes the discussion of the Gaussian wave packets in momentum space. But we also have to
investigate the wave packets in position space in order to understand their dynamics and learn to control
them. For this purpose we will construct the spacetime representation of the wave packets using some
approximations and investigate products of different wavepackets, since they always occur in problems of
dynamical localization using wave packets.

The position representation (E.1) involves an integral which we can not solve directly, because of the
exponentiated non-polynomial dispersion relationk0 =

√
k2 +m2 of the particles. As an approximation

we have performed the Taylor expansion of the energy aroundk = q, which is given by

k0 = Eq +
q(k − q)

Eq
+

1

2Eq

(
(k − q)2 − (qk− qq)2

E2
q

)
+ Eq O

((
k

q

)3
)
, (E.5)

whereEq =
√

q2 +m2 andO
((

k
q

)3
)

represents some corrections which become small in the limit

‖k‖ ≪ ‖q‖. The zeroth order just leads to a phase, the first order fixes the velocity of the wave and the
second order describes dispersion.

The position representation of the wave packet using the first order approximation is given by

f(q,σ,χ)(x) =
√

2π
3
σ3N(q,σ) e

−iq(x−χ) exp

(
−σ

2

2
~ξ 2

)
, (E.6)

where~ξ := x− ~χ− q

Eq
(t− χ0) is the time dependent spatial center of the wave packet. Thiswave packet

describes a dispersion-free propagating Gaussian shape ofwidth 1/σ.
In second order approximation we get

f(q,σ,χ)(x) =

√
2π

3
N(q,σ)

α
√
α− i(t− χ0) q2

E3
q

e−iq(x−χ) exp

(
−
~ξ2

2α
− i(t− χ0)(q~ξ)2

2α(αE3
q − i(t− χ0)q2)

)
, (E.7)

whereα := 1
σ2 + i (t−χ

0)
Eq

. This wave packet describes a propagating and dispersing Gaussian shape with
a time dependent width. This time dependent width is given by

σ⊥(t) =

√
1 + σ4(t−χ0)2

Eq2

σ
(E.8)
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for directions perpendicular toq and

σ‖(t) = σ⊥(t)

(
1 +

q2(t− χ0)2(2E2
q − q2)

E6
q

σ4 + E4
q (t− χ0)2 + q4(t− χ0)2

)− 1
2

(E.9)

for the direction parallel toq. It can be shown that this packet has its smallest width att = χ0 and
σ⊥(t) ≥ σ‖(t) because of length contraction. This shows that one can control the spacetime position at
which the smallest width is reached by the parametersχ. This is the key to control the wave packets.

Next we are interested in products of crossing wave packets,since such expressions will always occur
in problems where one performs dynamical localization using wave packets. We will investigate first and
second order wave packets.

Using two first order wave packets (E.6) with‖q1‖ = ‖q2‖ = q crossing w.l.o.g. atχ = 0, and using
the relationσ1 = σ2 = q

2 for both of them, their product is given by

f(q1, q
2
,0) f(q2, q

2
,0) = (2π)3(

q

2
)6N2

(q, q

2
) e

−2iEqt exp

(
−q

2

4
(x2 +

q2

E2
q

t2)

)
exp

(
q2t

4Eq
x(q1 + q2)

)
,

(E.10)

which is a nonsymmetric localized function on spacetime centered atx = χ = 0 with a width proportional
to q. For the special case of anti-parallel moving particles, i.e. q2 = −q1, the overlap is a spacelike

symmetric Gaussian function with spatial width
√

2
q and timelike width

√
2Eq

q2 . For sufficiently fast particles
we haveEq ≈ q, this means that the spatial and timelike width are nearly equal.

Products of crossing second order wave packets have a similar shape for the spatial coordinates with the
time dependent width and non-Gaussian corrections to the time direction. We have investigated the product
of two second order wave packets usingMathematicaand found out that for sufficiently fast particles,
i.e. q ≈ Eq, the overlapping region does not differ too much from the first order result. In particular first
and second order overlaps have nearly the same width. In thiswork we will use the compact result for
the first order wave packets (E.10) in order to estimate the spacetime resolution due to two crossing wave
packets.

E.2 Scattering of wave packets

Usual scattering experiments are performed by producing aninitial state, which is approximately a four-
momentum eigenstate. This state is transformed by the interactions into the outgoing state. Finally, the
outgoing state is projected onto four-momentum eigenstates again by a detector.

The wave packets required for our kind of processes are widely spread over the momentum space and
therefore can not be prepared and detected with today’s colliders. The preparation and detection of these
states is very important in order to resolve the positions ofthe correlation function.

The preparation of localized wave packet states can for example be performed by semiclassical accel-
eration in electric fields. We could first prepare some localized state in a trap and then accelerate it with
electric fields. Since the electric force,F = eE, does not depend on the momentum of the particle, it
accelerates a charged particle without projecting onto momentum eigenstates. As a note, this acceleration
has to be performed in a linear accelerator, since ring accelerators would project out specific momentum
eigenstates by the magnetic field, which forces the beam ontoorbit motion.

The second step is to find a device projecting the final state onto wave packet states. This can not be
done in conventional colliders too, since these resolve themomentum of the particle. This would destroy
the information about locality in our case. From a mathematical point of view, we would have to find
measurement devices which correspond to the projection operatorsPψ = |ψ〉〈ψ| on wave packet states
|ψ〉. We can not give an experimental realization of such a devicein this work and leave it as an open
problem for e.g. experimentalists.

To conclude this section we explain why we can not extract ourdesired information by projecting
the final state onto momentum eigenstates. Assume the matrixelement of some Hermitian operatorO
in some desired states|a〉 and |b〉. We are interested in the square of the matrix element|〈b|O|a〉|2 =
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〈a|O|b〉〈b|O|a〉. Now we insert the representation of the identity operator in terms of eigenstates of some
operator which we know how to measure, e.g. the momentum operator. The result is

|〈b|O|a〉|2 =
∑

n,n′

〈a|O|n〉〈n|b〉〈b|n′〉〈n′|O|a〉 . (E.11)

We obtain that we can not extract the desired information about |〈b|O|a〉|2 by measuring the projected
squared matrix elements|〈n|O|a〉|2, if the coefficient〈n|b〉〈b|n′〉 6= δnn′ . This shows that we really
require a device projecting onto the wave packet states.

As a final remark, the purpose of our work is to perform a Gedankenexperiment in order to understand
dynamical localization. We do not intend to describe the experimental realization of these Gedankenexper-
iments.
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Appendix F

Implementation of gravitons in
FeynArts and FormCalc

In order to perform our calculations using FeynArts and FormCalc we had to include the graviton field
into the codes, since their field content is originally limited to scalars, fermions and vector bosons. In this
chapter we briefly summarize which modifications have been performed in which parts of the code. The
reason why we give this summary is to pass on the knowledge we have, such that it can be used by others
who want to perform calculations including gravitons usingFeynArts and FormCalc.

We have performed our changes using the versions FeynArts 3.2. and FormCalc 5.3..

Modifications in FeynArts

The first file we had to modify was the main fileFeynArts.m. The line907 which reads

P$Generic = F|S|V|U|SV

was extended to

P$Generic = F|S|V|U|SV|T

in order to define a generic field calledT for tensor field.
The propagator, vertices and polarization of the new tensorfieldT can be defined in an extended generic

model file, which we callGravity.gen. This file contains the following source code

ReadModelFile["Lorentz.gen"]

KinematicIndices[ T ] = {Lorentz, Lorentz}

M$GenericPropagators = Flatten @ {M$GenericPropagators,
AnalyticalPropagator[External][ s1 T[j1, mom, {li1, li2} ] ] ==

PolarizationTensor[T[j1], mom, li1, li2],

AnalyticalPropagator[Internal][ s1 T[j1, mom, {li1, li2} -> {li3, li4}] ] ==
I PropagatorDenominator[mom, Mass[T[j1]] ] *

(MetricTensor[li1, li3] MetricTensor[li2, li4] +
MetricTensor[li2, li3] MetricTensor[li1, li4] -
MetricTensor[li1, li2] MetricTensor[li3, li4])/2

}

M$GenericCouplings = Flatten @ {
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DeleteCases[M$GenericCouplings, _[_. _S, _. _S, _. _S] == _ ],

( * S-S-S: * )

AnalyticalCoupling[ s1 S[j1, mom1], s2 S[j2, mom2], s3 S[j3 , mom3] ] ==
G[1][s1 S[j1], s2 S[j2], s3 S[j3]] .

{ 1,
ScalarProduct[mom1, mom2],
ScalarProduct[mom2, mom3],
ScalarProduct[mom1, mom3],
ScalarProduct[mom1, mom1],
ScalarProduct[mom2, mom2],
ScalarProduct[mom3, mom3]},

( * T-S-S * )

AnalyticalCoupling[ s1 T[j1, mom1, {li1, li2}], s2 S[j2, mo m2],
s3 S[j3, mom3] ] ==

G[1][s1 T[j1], s2 S[j2], s3 S[j3]] .
{ FourVector[mom2, li1] FourVector[mom3, li2] +

FourVector[mom2, li2] FourVector[mom3, li1] -
MetricTensor[li1, li2] ScalarProduct[mom2, mom3],
-MetricTensor[li1, li2] ScalarProduct[mom1, mom1]
+ FourVector[mom1, li1] FourVector[mom1, li2],
MetricTensor[li1, li2] },

( * T-S-S-S * )

AnalyticalCoupling[ s1 T[j1, mom1, {li1, li2}], s2 S[j2, mo m2],
s3 S[j3, mom3], s4 S[j4, mom4] ] ==

G[1][s1 T[j1], s2 S[j2], s3 S[j3], s4 S[j4]] .
{ MetricTensor[li1, li2] } ,

( * T-V-V * )

AnalyticalCoupling[ s1 T[j1, mom1, {li1, li2}], s2 V[j2, mo m2, {li3}],
s3 V[j3, mom3, {li4}] ] ==

G[1][s1 T[j1], s2 V[j2], s3 V[j3]] .
{- ScalarProduct[mom2,mom3] (MetricTensor[li1, li3] Met ricTensor[li2,li4]
+ MetricTensor[li1,li4]MetricTensor[li2,li3]
- MetricTensor[li1,li2]MetricTensor[li3,li4])
- FourVector[mom2,li4]FourVector[mom3,li3] MetricTens or[li1,li2]
- (FourVector[mom2,li1]FourVector[mom3,li2]
+ FourVector[mom2,li2]FourVector[mom3,li1])MetricTen sor[li3,li4]
+ FourVector[mom2,li1]FourVector[mom3,li3] MetricTens or[li2,li4]
+ FourVector[mom2,li2]FourVector[mom3,li3] MetricTens or[li1,li4]
+ FourVector[mom2,li4]FourVector[mom3,li1] MetricTens or[li2,li3]
+ FourVector[mom2,li4]FourVector[mom3,li2] MetricTens or[li1,li3],
MetricTensor[li1,li2] (FourVector[mom2,li3] FourVecto r[mom1,li4]
+ FourVector[mom2,li3] FourVector[mom3,li4]
+ FourVector[mom1,li3] FourVector[mom3,li4])
+ MetricTensor[li1,li4] FourVector[mom2,li2] FourVecto r[mom2,li3]
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+ MetricTensor[li1,li3] FourVector[mom3,li2] FourVecto r[mom3,li4]
+ MetricTensor[li2,li4] FourVector[mom2,li1] FourVecto r[mom2,li3]
+ MetricTensor[li2,li3] FourVector[mom3,li4] FourVecto r[mom3,li1] },

( * T-S-S-V * )

AnalyticalCoupling[ s1 T[j1, mom1, {li1, li2}], s2 V[j2, mo m2, {li3}],
s3 S[j3, mom3], s4 S[j4, mom4] ] ==
G[1][s1 T[j1], s2 V[j2], s3 S[j3], s4 S[j4]] .

{ FourVector[mom3-mom4, li3] MetricTensor[li1,li2]
- FourVector[mom3-mom4,li2] MetricTensor[li1,li3]
-FourVector[mom3-mom4,li1] MetricTensor[li2,li3]}

}

M$LastGenericRules = Flatten @ {M$LastGenericRules,
PolarizationTensor[p_, _. mom:FourMomentum[Outgoing, _ ], li__] :>

Conjugate[PolarizationVector][p, mom, li]
}

In this file we have defined the required interaction verticesfor graviton couplings to scalars and vectors.
Together with this generic model file we have used several specific model files for our different models.

For example the source code for theψ2φ model is given by

M$ClassesDescription = {
S[1] == {

SelfConjugate -> True,
Mass -> Mpsi,
PropagatorLabel -> "psi1",
PropagatorType -> Straight,
PropagatorArrow -> None },

S[2] == {
SelfConjugate -> True,
Mass -> Mpsi,
PropagatorLabel -> "psi2",
PropagatorType -> Straight,
PropagatorArrow -> None },

S[3] == {
SelfConjugate -> True,
Mass -> Mpsi,
PropagatorLabel -> "psi3",
PropagatorType -> Straight,
PropagatorArrow -> None },

S[4] == {
SelfConjugate -> True,
Mass -> Mpsi,
PropagatorLabel -> "psi4",
PropagatorType -> Straight,
PropagatorArrow -> None },

S[5] == {
SelfConjugate -> True,
Mass -> Mphi,
PropagatorLabel -> "phi",
PropagatorType -> ScalarDash,
PropagatorArrow -> None },

T[1] == {
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SelfConjugate -> True,
Mass -> 0,
PropagatorLabel -> "g",
PropagatorType -> Sine,
PropagatorArrow -> None }

}

M$CouplingMatrices = {
( * T-S-S * )

C[ T[1], S[1], S[1] ] == I kap/2 {{1}, {2 bbb}, {-Mpsiˆ2}},
C[ T[1], S[2], S[2] ] == I kap/2 {{1}, {2 bbb}, {-Mpsiˆ2}},
C[ T[1], S[3], S[3] ] == I kap/2 {{1}, {2 bbb}, {-Mpsiˆ2}},
C[ T[1], S[4], S[4] ] == I kap/2 {{1}, {2 bbb}, {-Mpsiˆ2}},
C[ T[1], S[5], S[5] ] == I kap/2 {{1}, {2 aaa}, {-Mphiˆ2}},

( * S-S-S * )
C[ S[1], S[2], S[5] ] == I lam {{1}, {-kapˆ2 ccc }, {0}

, {0}, {-kapˆ2 ddd/2}, {-kapˆ2 ddd/2}, {-kapˆ2 eee}},
C[ S[3], S[4], S[5] ] == I lam {{1}, {-kapˆ2 ccc }, {0}

, {0}, {-kapˆ2 ddd/2}, {-kapˆ2 ddd/2}, {-kapˆ2 eee}},

( * T-S-S-S * )
C[ T[1], S[1], S[2], S[5] ] == I kap/2 lam {{1}},
C[ T[1], S[3], S[4], S[5] ] == I kap/2 lam {{1}}

}

M$LastModelRules = {}

These (generic) model files now can be used in order to deal with internal gravitons. External gravitons
require some changes in FormCalc, to be discussed now.

Modifications in FormCalc

The modifications inFormCalc.mare much more complicated than these in FeynArts, so that a complete
listing of all modifications is not sensible. The reason for this is that FormCalc uses the symbolic pro-
gramming languageform, which requires a precise declaration of the variables and therefore has problems
with the new variablePolarizationTensor. The main task was to declare the new variable and perform the
necessary manipulations, like for example polarization sums over graviton polarizations. The source code
of FormCalc.mhas over4000 lines and hence it was too for us to find the required sections to be modified.
Therefore we convinced its inventor Thomas Hahn to help us tomodify FormCalc. A copy of the modified
version of FormCalc is made available in the internet [26] asdownload.

The second file to be modified was the filePolarizationSum.frm, where we have defined the sum over
graviton polarizations.

With these modifications we could use FeynArts and FormCalc in order to calculate amplitudes includ-
ing internal as well as external gravitons.
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