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Abstract
In this work we will discuss flavor violating squark and gluino decays. At three
of the most typical data points, we will add flavor violating, soft-SUSY breaking
offdiagonal elements to the squark masses and trilinear couplings. At first, only
one of the parameters is varied - we then use low energy observables originating
in the B physics sector to constrain this parameter and illustrate its effects on the
branching ratios of flavor violating squark and gluino decays in the allowed region
of parameter space. Exemplary for these decays are ũ1 → χ̃0

1c with 30%, ũ2 → χ̃0
1c

and d̃1 → χ̃0
1s with 10%, all at the γ data point, and d̃2 → χ̃0

1s with 30% at the
SPS1a’ data point. Considering gluino decays, we have g̃ → ũ1c with 10%, to give
an example.

Furthermore, the flavor violating parameters will be combined in pairs to probe
their interference effects and to further constrain the parameter space of the nMFV
MSSM. In these parameter planes, we look for significant increases in the branch-
ing ratios of flavor violating decays. Especially the decays d̃2 → χ̃−1 c and d̃2 →
χ̃0

2s in the MQ23/TD23 and MQ23/TU23 parameter planes, in which the trilin-
ear couplings affect the allowed region of MQ23, show large branching ratio in-
creases.

The results could be interesting to identify SUSY signals in future experiments at
the LHC.

Kurzfassung
In der vorliegenden Arbeit werden flavorverletzende Squark- und Gluinozerfälle
untersucht. Dazu werden zu drei der typischsten Datenpunkten flavorverletzende,
soft-SUSY brechende offdiagonale Elemente der Squarkmassen und trilinearen Kop-
plungen addiert. Zunächst wird jeweils ein Parameter variiert und Niederenergieob-
servablen aus der B-Physik verwendet, um den erlaubten Bereich des Parameter-
raumes einzuschränken. Im Anschluß werden die Auswirkungen der Parameter
auf flavorverletzende Squark- und Gluinozerfälle untersucht, um die Größenord-
nung der Verzweigungsverhältnisse jener Zerfälle im erlaubten Bereich bestimmen
zu können. Beispiele hierfür sind ũ1 → χ̃0

1c mit 30%, ũ2 → χ̃0
1c und d̃1 → χ̃0

1s mit
je 10% ,alle am γ Datenpunkt, sowie d̃2 → χ̃0

1s mit 30% am SPS1a’ Datenpunkt,
an Gluinozerfällen z.B. g̃ → ũ1c mit 10%.

Darüber hinaus werden die flavorverletzenden Parameter auch in Paaren kom-
biniert, um die gegenseitige Wechselwirkung zur weiteren Einschränkung des nMFV
MSSM Parameterraumes zu verwenden. In diesen Parameterebenen wird nun nach



starken Erhöhungen der Verzweigungsverhältnisse jener flavorverletzenden Zerfälle
gesucht. Gefunden wurden diese insbesondere bei den Zerfällen d̃2 → χ̃−1 c und d̃2 →
χ̃0

2s in den Ebenen MQ23/TD23 und MQ23/TU23, in welchen die trilinearen Kop-
plungen den erlaubten Bereich von MQ23 verschieben.

Die Ergebnisse könnten in zukünftigen Experimenten am LHC von Bedeutung sein,
um SUSY-Signale zu identifizieren.
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1 Introduction

1.1 SUSY and B-physics
motivation

Supersymmetric extensions of the standard model became very popular in the
last decades, especially due to their ability to directly or indirectly solve some
of the most critical issues with the SM. The core concept of SUSY is a space-
time symmetry between bosonic and fermionic states. For such a symmetry, we
need half-integer spin operators which obey a lorentz-invariant anticommutation
relation:

{Qα, Q
†
β} = 2σµαβP

µ (1.1)

As an anticommutator matrix with positive diagonal elements, it cannot vanish and
P µ is a positive, conserved vector quantity. Extensions oft the Coleman-Mandula-
Theorem tell us that in more than two dimensions, the only conserved vector quan-
tity is the energy-momentum 4-vector, and the operators Qi cannot have higher
spin than 1/2, or else any scattering is ruled out. Since the symmetry involves
P µ, every field in the theory is affected and gets a new supersymmetric partner
assigned to it, i.e. the particle content is (at least) doubled with respect to the
SM.

Since we do not observe any mass-degenerate SUSY partners of known particles, the
symmetry has to be broken. If one assumes an energy difference of a few hundred
GeV to the SM particles, he would also find a Higgs particle of the correct mass
size.

The most striking effects appear in renormalizations of the theories: the scalar
self-energy is cancelled by the fermion loop contribution to this energy; a symme-
try between bosons and fermions protects the scalar masses from divergent loop
corrections, thus giving a solution to the famous hierarchy problem. Furthermore,
the new particles would affect the running coupling constants, which - as a not
suspected side-effect - leads to a better unification of the couplings at very high
energy scale. It is even possible to include gravity in this kind of theory, partnering
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the force-mediating graviton with a fermionic gravitino and generalizing Einstein’s
theories to this new field.

Given all these exciting prospects and the ability to verify supersymmetric the-
ories in experiment by the next few years, it is worth exploring the details of
SUSY.

Some of the main questions in our search after SUSY particles includes the ability
to constrain the parameter space by the phenomenology of the theory, thus being
able to tell if a signal can be a SUSY particle at all - and if yes, having options
on the details. Rare decays of K and B mesons already are an important tool in
checking the standard model, and can also be used to constrain the parameter space
of SUSY.

This work will apply known experimental bounds from (very) rare b→ s decays and
B meson mixing to the next-to-minimal flavor violating minimal supersymmetric
standard model (nMFV MSSM) and constrain the parameter space in respect to
off-diagonal squark mass matrix entries. It will check how large branching ratios
of flavor violating squark and gluino decays in allowed regions of the parameter
space can become, and investigate dependencies on and interferences of the flavor
violating parameters. There are three common data points used - SPS1a’ , γ, and
I” [1,2] - which main difference is a dissimilar value of tanβ, the ratio of the Higgs
VEVs in SUSY.

2



2 SUSY basics

This introduction will mainly follow [3] and give a short insight into the underlying
theory, as well as the theoretical basics for the vertex calculations.

2.1 Weyl and Dirac Spinors

In SUSY, fermionic particle states are represented by (usually) left-handed Weyl
spinors rather than Dirac spinors, which then partner a bosonic state and build up
a so-called supermultiplet. A Dirac spinor is written as

Ψ(e−) =

(
χ

(e−)
Lα

ψ
(e−)
Rα

)
=

(
χ

(e−)
Lα

iσ2ψ
(e+)∗
Lα

)
≡
(
χα

ψ
α̇

)
(2.1)

and thus as a combination of the left handed particle Weyl spinor and the charge
conjugate of the left-handed antiparticle field. iσ2 = εαβ is a factor ensuring Lorentz
invariance of spinor products and can be used to raise the spinor index α. The last
step in the above equation is a plausible definition due to the same transformation
behavior of ψ∗α and ψα̇. In summary, spinors transforming according to SU(2)L
have a lower, undotted spinor index and spinors transforming according to SU(2)R
a high, dotted index. For notation issues, one should consult [3]. In a similar
way, one could also use right-handed Weyl spinors to represent the whole particle
content; in literature, usually left handed spinors are used due to their unique
relationship to SU(2). There are various different notations in literature, and can
sometimes be confusing. For better comparison with similar results, we will largely
adapt the notations and conventions of [3] and [4].

Some useful relations between Weyl and Dirac spinors are presented for later
use:

3



2 SUSY basics

ΨD =

(
χα

ψ
β̇

)
ΨD =

(
(ψα)T (χβ̇)T

)
ΨDΨD = (ψα)Tχα + h.c. = ψχ+ h.c.

Ψ1Ψ2 = ψα1χ2α + χ1β̇ψ
β̇

2 = ψ1χ2 + χ1ψ2

Ψ1γ5Ψ2 = −ψ1χ2 + χ1ψ2

Ψ1γ
µΨ2 = χ1σ

µχ2 − ψ2σ
µψ1

Ψ1γ
µγ5Ψ2 = −χ1σ

µχ2 − ψ2σ
µψ1

Ψ1γ
µ∂µΨ2 = χ1σ

µ∂µχ2 − ψ2σ
µ∂µψ1

(2.2)

Defining the usual left- and righthanded projection operators, we can also write
Weyl spinor expressions as Dirac spinors.

PL =
1

2
(1− γ5) PR =

1

2
(1 + γ5)

ψ1χ2 = Ψ1PLΨ2 χ1ψ2 = Ψ1PRΨ2

χ1σ
µχ2 = Ψ1γ

µPLΨ2 ψ2σ
µψ1 = −Ψ1γ

µPRΨ2

χ1σ
µ∂µχ2 = Ψ1γ

µPL∂µΨ2 ψ2σ
µ∂µψ1 = Ψ1γ

µPR∂µΨ2

(2.3)

2.2 Supersymmetry operators

The operator Q transforming bosons into fermions and vice versa has to be an
anticommutating spinor object, together with its hermitian conjugate. One can
construct supersymmetric theories with more than one unconjugated operator, but
without compactified dimensions, these theories are ruled out by not allowing right-
and lefthanded particles to be treated in a different way. So, when speaking of
SUSY, one usually means ”N = 1” supersymmetry, meaning the number of uncon-
jugated operators.

4



2.3 Supermultiplets

Spacetime symmetries using spin-1
2

operators in more than two dimensions are heav-
ily restricted by extensions of the ”Coleman-Mandula-Theorem” [5], the so-called
”Haag-Sohnius-Lopuszanski-Theorem” [6] for the S-Matrix, ruling out any scatter-
ing if the operators don’t obey the schematic commutation relations

{Q,Q†} = 2σµαα̇Pµ

{Q,Q} = {Q†, Q†} = 0

[P µ, Q] = [P µ, Q†]

(2.4)

Thus supersymmetry is the largest allowed symmetry leading to a nontrivial S-
matrix. Supersymmetry operators do not only commute with the squared mass op-
erator (P µ)2, leading to degenerate masses (at least in an unbroken symmetry), but
also with all standard model gauge operators, leading to the exact same quantum
numbers of SM particle and its supersymmetric partner.

2.3 Supermultiplets

Irreducible representations of the Susy algebra are called supermultiplets and
contain - in N=1 SUSY - two particles of same quantum numbers, same amount
of degrees of freedom [3], but spin differing by 1

2
. The easiest way to construct a

multiplet with these properties is with complex spin-0 bosons and spin-1
2

fermions,
called chiral, matter or scalar multiplet. The next possibility of constructing a
multiplet is of spin-1

2
fermions and massless spin-1 vector bosons, called vector or

gauge supermultiplet. Excluding gravity, every possible higher supermultiplet can
be written as a combination of these two kinds of multiplets, at least if the theory
is renormalizeable.

Since gauge bosons transform in the adjoint representation of the gauge group,
their partnering fermions must also. But the adjoint representation does not make
any difference between left- and right chiral states, and thus the fermions part-
nering standard model gauge bosons, the so-called gauginos (wino, bino...), can
not be identified as SM fermions. The latter have to be in chiral multiplets, ac-
companied by a new boson each, denoted by a praefix ”s” (selectrons, squarks,
sneutrinos...).

5



2 SUSY basics

2.3.1 Higgs multiplets

The Higgs sector in supersymmetry needs to be extended in respect to the SM. Since
the SM Higgs boson is a spin-0-particle, it should be part of a chiral supermultiplet,
accompanied by a spin-1

2
fermion, a higgsino. But several issues arise here: one

single higgsino spoils the anomaly cancellation of the SM, and in supersymmetric
theories, there are two Higgs multiplets with Y = ±1

2
needed to give mass to all the

quarks and leptons. Therefore, we have to introduce a second chiral supermultiplet
containing a Higgs and a higgsino. The weak isospin states of these particles contain
a neutral and charged particle each, so 8 in total (see table ”particle content” at
the end of the chapter [Fig.2.1.]).

2.3.2 Auxiliary fields

When trying to create supersymmetric lagrangians out of the components of chiral
supermultiplets, one encounters a problem: for lagrangians containing chiral super-
multiplets, supersymmetry seems only to be valid on-shell, because off-shell, Weyl
fermions recieve two more degrees of freedom, spoiling the equivalence to the com-
plex bosons - in SUSY, bosons and fermions are required to have the same number
of degrees of freedom. The solution is to add a non-propagating, complex auxiliary
field F of mass dimension 2, which affects supersymmetric transformations, but
vanishes when going on-shell.

Something similar has to be done for gauge/vector supermultiplets. The degrees
of freedom off-shell differ by 1 ins respect to on-shell, thus a real bosonic auxiliary
field D has to be added. Auxiliary fields do not have a kinetic term and therefore
no propagator.

The components of a chiral or vector supermultiplet together with their auxiliary
field are called component fields.

2.4 The SUSY group

2.4.1 Supersymmetric translations

Since supersymmetry is a space-time symmetry, it enlarges space-time to super-
space. It is mathematically convenient to introduce new fermionic spinor ”degrees
of freedom”, θα and θα̇, which components are Grassmann numbers with θ2

i = 0.
The effect of a general SUSY transformation on the new space-time coordinates can

6



2.4 The SUSY group

be seen by multipling two general elements U(x, θ, θ) and U(x, ξ, ξ) of the SUSY
group:

U(x, ξ, ξ)U(x, θ, θ) = eix ·P eiξ ·Qeiξ ·Qeix ·P eiθ ·Qeiθ ·Q (2.5)

After some simplifications, one then sees that the above product induces the fol-
lowing transformations:

0⇒ θ ⇒ θ + ξ

0⇒ θ ⇒ θ + ξ

0⇒ xµ ⇒ xµ + aµ − iθα(σµ)αβξ
β∗

(2.6)

2.4.2 Superfields

We will briefly explain the superfield formalism, which is a more sophisticated way
to calculate supersymmetric vertices [4]. A superfield is a linear representation of
the SUSY algebra and an object containing the same information as a set of compo-
nent fields describing either a gauge or chiral multiplet, and called chiral superfield
or gauge/vector superfield. A superfield explicitly depends on location x and at least
one of the fermionic parameters - there are two irreducible representations of this
algebra, in the sense that a set of components only transform among themselves:
they are called right- and lefthanded representations. One can also find an enlarged
superfield explicitly depending on both fermionic parameters, but this turns out to
be a reducible representation of the algebra. Therefore, it is sufficient to take fields
only depending on θ, which are left chiral superfields.

If a chiral superfield Φ is expanded in powers of θ, the expansion has to end after
second order, since θ2

1 = θ2
2 . The expansion coefficients of this left chiral superfield

can be interpreted as the component fields ψ, a left chiral field, its partner-boson
φ, and the auxiliary field F.

Φ(y, θ) = φ(y) + θ ·χ(y) +
1

2
θ · θF (y)

yµ = xµ + iθσµθ

(2.7)

A chiral superfield always has the mass dimension of its lower spin component field,
and superfields in general offer a compact formulation of interaction terms, so-called
superpotentials and more.

7



2 SUSY basics

2.4.3 SUSY transformations and algebra

The group algebra is defined by a series of (anti)commutation relations of the
supersymmetric operators Q and differential operators D inducing the same trans-
formations and obeying the same relations. Barred operators represent, as in [4],
hermitian conjugates of the operators and fields.

{Qα, Q̄α̇} = 2σµαα̇Pµ

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = [Pµ, Qα] = [Pµ, Q̄ᾱ] = [Pµ, Pν ] = 0

Dα =
∂

∂θα
− iσµαα̇θ

α̇
∂µ Dα̇ = − ∂

∂θα̇
+ iθασµαα̇∂µ

(2.8)

Futhermore, any supersymmetric langrangian needs to be invariant under the
following supersymmetry transformations of the fields. In this nomenclature,
Aaµ are SM vector bosons, λaα denote gaugino fields, Da the auxiliary field of
vector supermultiplets, and F µν is the field tensor of the corresponding gauge
group.

δθφ =
√

2θψ

δθψ = i
√

2σµθ∂µφ+
√

2θF

δθF = i
√

2θσµ∂µψ

δθA
a
µ = θσµλ

a + λ†aσµθ

δθλ
a
α =

i

2
(σµσνθ)αF

a
µν + θαD

a

δθD
a = i(θσµDµλ

a −Dµλ
†aσµθ)

(2.9)

2.5 Supersymmetric Lagrangian

Before we start, there is one serious notational issue here when looking at interaction
terms regarding gauginos. Neutral gauginos mix, together with neutral higgsinos,
to physical particles called neutralinos χ̃0

i , charged gauginos and higgsinos to

8



2.5 Supersymmetric Lagrangian

charginos χ̃±i . The definition of gaugino/higgsino gauge eigenstates is often taken
to be

ψC =


−iω̃+

h̃+
2

−iω̃−
h̃−1

 ψN =


−ib̃
−iω̃
h̃0

1

h̃0
2

 (2.10)

with an additional complex factor -i for electroweak gauginos. Some SUSY intro-
duction scripts like [4] do this without telling the reader and introduce gauginos
which are already multiplied by this complex factor. Thus, there is a danger that un-
aware readers might do this definition a second time when trying to compare results
with another script, spoiling the results. To avoid confusion when comparing to [3]
and [4],we write redefined gauginos using capital letters:

ψC =


W̃+

H̃+
2

W̃−

H̃−1

 =


−iω̃+

h̃+
2

−iω̃−
h̃−1

 ψN =


B̃

W̃

H̃0
1

H̃0
2

 =


−ib̃
−iω̃
h̃0

1

h̃0
2

 (2.11)

these fields have to be rotated into mass eigenstates to describe physical parti-
cles.

2.5.1 Superpotential and the MSSM

The main input defining the exact SUSY model we are working with is the men-
tioned ”superpotential”. We are working within the ”MSSM”, the ”minimal su-
persymmetric standard model”, using the following superpotential. It is very im-
portant to check the conventions of this potential, since it is defined slightly different
in the various scripts and papers. We adopt the convention of ”SUSY Les Houches
accord” [7, 8], a paper trying to set a standard and common interface for pro-
grams/tools calculating MSSM spectra. The program used lateron, ”SPheno” [9],
also uses these conventions.

WMSSM = εab[(YE)ijH
a
i ·LbiEj + (YD)ijH

a
1 ·Qb

iDj + (Yu)ijH
b
2 ·Qa

iU j − µHa
1 ·Hb

2]
(2.12)

Here, unbarred superfields transform left-handed, barred superfields right-handed
[10]. Left-handed superfields also include right-handed antiparticle fields. It is

9



2 SUSY basics

important to see that bars over superfields are part of their name and tell something
about their transformation behaviour, while bars and conjugations over particle
fields denote antiparticles.

εab is the antisymmetric symbol used to create SU(2) invariant products, with ε12 =
ε12 = 1 in our convention. YI are the Yukawa matrices, sometimes transposed in
other definitions. Furthermore, H1 = Hd and H2 = Hu, here expressed in numbers
to write the Higgs superfields with ij-indices. µ is the only ”new” parameter in
unbroken SUSY (although it appears in the SM in another context) and describes
the inter-Higgs coupling.

In the table at the end of this chapter [Fig.2.1], you can look up the particle content
of the MSSM written in superfields. The table was taken out of ref. [10], whose
conventions on superfields are used in this work.

2.5.2 Complete unbroken lagrangian

The complete L of SUSY is very complicated (especially in the broken symmetry)
and can be looked up in [10], for example. The author used the superfield formal-
ism to calculate all terms, while we will try the task of calculating the relevant
vertices without it. We will split L in parts, according to the type of multiplets
interacting.

Lchiral = (Dµφi)
†Dµφi + ψ†i iσ

µDµψi + F †i Fi + [
∂W
∂φi

Fi −
1

2

∂2W
∂φiφj

ψi ·ψj + h.c.]

− 1

4
Fα
µνF

µνα + iλα†σµ(Dµλ)α +
1

2
DαDα

−
√

2g[(φ†iT
αψi) ·λα + λα† · (ψ†iTαφi)]− g(φ†iT

αφi)D
α

(2.13)

This first part mainly includes the interaction of squarks with gauge bosons and
Higgs particles, and involves the important quantityW , the superpotential, which
ultimatively defines the supersymmetric model used (see section ”superpotential”),
and is used here in a form where all fermionic parts are equal to zero. Dµ is a
covariant derivative with DµXj = ∂µXj + igAαµ(TαX)j.

λ in the second line is representing a gaugino already redefined (see above),
F µν the field tensor of the corresponding gauge group, and
Dµλ

α = ∂µλ
α − gfαβγW β

µ λ
γ a covariant derivative, where fαβγ are the structure

constants of the gauge group.

10



2.5 Supersymmetric Lagrangian

The third line governs the decays of squarks into quarks and gauginos. Tα are the
corresponding group generators. If the supermultiplets in the first interaction are
the two Higgs multiplets, higgsino-gaugino mixing will occur as a consequence of
EWSB (mentioned above, ”neutralinos/charginos”).

2.5.3 The scalar potential

In the above, the auxiliary fields can be eliminated. From the Euler-Lagrange
equations for F [4] we get F †i = −∂W

∂φi
, for D we get Dα = g

∑
i(φ
†
iT

αφi). Inserting
these identities in the lagrangian, we can extract the scalar potential V in L = T −V
as

V(φi, φ
†
i ) =

∑
i

‖∂W
∂φi
‖2 +

1

2

∑
G

∑
α

∑
i,j

g2
G(φ†iT

α
Gφi)(φ

†
jT

α
Gφj) (2.14)

The first term is called ”F-Term”, the second ”D-Term”.

2.5.4 Soft SUSY breaking

Since particles and their SUSY partners are degenerate in mass, it is obvious SUSY
has to be broken. There are numerous, more or less convincing approaches to the
exact mechanism, but as we simply don’t know what causes the breaking, it is the
most useful way to parameterize it by adding explicit SUSY-breaking terms to the
lagrangian. For the MSSM, the common terms used are

Lsoft = −1

2
Maλ

aλa +miφiφ
†
i +

1

6
aijkφiφjφk +

1

2
bijφiφj + c.c. (2.15)

i.e. gaugino and squared scalar mass terms as well as three-scalar-couplings. There
are other terms/couplings, like so-called ”tadpole”-couplings, but for the specific
case of the MSSM, they aren’t allowed due to the lack of a gauge singlet. It is easy
to see that Lsoft is breaking SUSY, since it involves terms with only one part of
each supermultiplet. Gaugino and scalar masses are always allowed when this Lsoft
is used, no matter if their superpartners are masseless. Applying the above to the
MSSM, we explicitly get

11



2 SUSY basics

LsoftMSSM =− 1

2
(M1B̃B̃ +M2W̃W̃ +M3g̃g̃ + h.c)

− εab
∑
ij

[(Te)ijH
a
1L

b

iLẽ
∗
jR + (TD)ijH

a
1Q

b

iLd̃
∗
jR

+(TU)ijH
b
2Q

a

iLũ
∗
jR] + h.c.

−Q∗iLa(m2
Q

)ijQ
a

jL − L
∗
iLa(m

2
L
)ijL

a

jL

− uiR(m2
u)iju

∗
jR − diR(m2

d
)ijd

∗
jR − eiR(m2

e)ije
∗
jR

−m2
H1H

∗
1aH

a
1 −m2

H2H
∗
2aH

a
2 + (m2

3εabH
a
1H

b
2 + h.c.)

(2.16)

This notation is according to ”SUSY Les Houches Accord” SLHA [7,8]. The gaug-
ino masses M1 to M3, the explicit Higgs masses m2

H1 and m2
H2, as well as the Higgs

mixing mass parameter m2
3 are scalars (in this notation, be careful about confusing

m3 and M3), but the mass terms for sleptons and squarks are symmetric matrices
with theoretically unconstrained elements. Unbroken SUSY only provides a new
context for the standard model µ-parameter, but the soft breaking and Higgs sec-
tors consist of over 100 of new parameters, and constraining them is a real challenge.
This work will try to constrain the off-diagonal elements of the breaking matrices
in the squark mass matrices by looking at rare b → s decays, since they can be
responsible for much too large CP-violating and flavor violation effects and huge
regions of parameter space are excluded by phenomenology. The scenario in which
flavor violation not only resides in the entries of the Yukawa matrices (minimal fla-
vor violation), but also in arbitary off-diagonal entries of the squark mass matrices,
is called next-to-minimal flavor violation (nMFV)

Instead of m2
3, usually the pseudoscalar Higgs parameter m2

A =
m2

3

sinβ cosβ
is used (see

below). Here, β is a higgs mixing angle, and tanβ describes the ratio of the Higgs
VEVs). If you ever see matrices Aij, they are usually used for a decomposition of the
trilinear coupling matrices Tij, together with the corresponding Yukawa matrices.
In order to construct the Aij-matrices, one has to assume that the trilinear couplings
are proportinal to the Yukawa couplings - a simplification we won’t work with
here.

Aij =
Tij
Yij

(2.17)
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2.6 Higgs sector

2.6 Higgs sector

2.6.1 Higgs potential

Due to having two Higgs multiplets, this sector is much more complicated than
in the SM. We will restrict ourselves mainly to the results of the discussions in
[3], [4] etc. - first of all, EWSB can’t take place in an unbroken MSSM. The
complete Higgs potential, consisting of F-, D-, and SUSY-breaking terms looks
like

VHiggs = (|µ|2 +m2
H2)(

∣∣H+
2

∣∣2 +
∣∣H0

2

∣∣2) + (|µ|2 +m2
H1)(

∣∣H0
1

∣∣2 +
∣∣H−1 ∣∣2)

+ [
sin 2βm2

3

sin β cos β
(H+

2 H
−
1 −H0

2H
0
1 ) + h.c.]

+
g2 + g′2

8
(
∣∣H+

2

∣∣2 +
∣∣H0

2

∣∣2 − ∣∣H0
1

∣∣2 − ∣∣H−1 ∣∣2)2

+
g2

2

∣∣∣H+
2 H

0†
1 +H0

2H
−†
1

∣∣∣2
(2.18)

A minimum for this potential can be found [3], although only for a restricted region
of parameter space: a small m2

A0 , a small |µ| and a large negative m2
H2

help to
archieve the condition for a minimum in the potential. If EWSB takes place, both
neutral Higgs aquire a VEV:

ν2 = ν2
1 + ν2

2 =
4M2

W

g2
≈ 250GeV tan(β) =

ν2

ν1

(2.19)

ν being the SM Higgs VEV and tan(β) a new parameter needed for the
description of the Higgs sector, which is theoretically unbounded for β ∈ [0, π

2
].

2.6.2 Physical Higgs particles

The Higgs multiplets can be split into parts by

(
H0

1

H−1

)
=

( 1√
2
(ν1 + iχ1 + φ1)

φ−1

)
(
H+

2

H0
2

)
=

(
φ+

2
1√
2
(ν2 + iχ2 + φ2)

) (2.20)
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2 SUSY basics

After EWSB, the imaginary, neutral parts create the longitudinal mode for the Z-
boson and a new particle, the pseudoscalar (CP-odd) neutral Higgs field A0, with
mixing angle β.

(
G0

A0

)
=

(
cos β sin β
− sin β cos β

)(
χ1

χ2

)
(2.21)

The charged parts of the multiplets mix to physical charged Higgs bosons with
equal mass and longitudinal modes for the W±-bosons, again with mixing angle β
and a mass mH± =

√
m2
W +m2

A0 .(
G±

H±

)
=

(
cos β sin β
− sin β cos β

)(
φ±1
φ±2

)
(2.22)

Last but not least, the neutral scalar parts φi mix to two physical particles with dif-
ferent mass, the lighter one usually referred to as ”little Higgs” h0.

(
H0

h0

)
=

(
cosα sinα
− sinα cosα

)(
φ1

φ2

)
(2.23)

m2
h0 =

1

2

√
m2
A0 +m2

Z − [(m2
A0 +m2

Z)2 − 4m2
A0m2

Z cos2 2β]

m2
H0 =

1

2

√
m2
A0 +m2

Z + [(m2
A0 +m2

Z)2 − 4m2
A0m2

Z cos2 2β]

(2.24)

It is worth mentioning that according to [11], the little Higgs mass has
to be smaller than 140GeV and thus is an important test for the validity
of the MSSM. This concludes our review of the Higgs sector,
for details check [3, 4, 10].

2.7 Mass eigenstates of SUSY
particles

2.7.1 Sfermion mixing

For this work, the physical squark eigenstates are obviously of great importance.
Sfermions form the largest collection of new particles in the MSSM, and it is crucial
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2.7 Mass eigenstates of SUSY particles

to realize that we need a new boson for each chirality of the corresponding SM
fermions, for example ẽL and ẽR. These are different particles without chirality,
which carry ”L” and ”R” only in their names. The SUSY breaking terms allow
interfamily mixing of particles with same color and charge [4], so we get (6x6)
mixing matrices for u-squarks, d-squarks and sleptons, as well as a (3x3) mass
matrix for sneutrinos. We will only discuss the squark mixing sector here. It can
be seen that this sector allows new sources of flavor violation and even FCNCs at
tree-level, in contrast to the SM.

We use the so-called super-CKM basis, in which all fields have been rotated in a
way the Yukawa matrices are diagonal. The rotation matrices are, as in the SM,
defined

q0
Lj

= (UqL)jkqLk q0
Lj

= qLk(U
†
qL

)kj

q0
Rj

= (UqR)jkqRk q0
Rj

= qRk(U
†
qR

)kj

U †uLUdL = VCKM

(2.25)

The mass matrices are then defined as

Lq̃M = −Φ†uM2
ũΦu − Φ†dM

2
d̃
Φd (2.26)

with Φu = (ũL, c̃L, t̃L, ũR, c̃R, t̃R) and Φd = (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R).

Collecting all these terms (see [10] for example), we obtain mass matrices of the
form

M2
ũ =

(
V †CKMm̂

2
Q̃
VCKM +m2

u +DuLL
ν2√

2
T̂ †U − µmu cot β

ν2√
2
T̂U − µ∗mu cot β m̂2

u +mu +DuRR

)
(2.27)

M2
d̃

=

(
m̂2
Q̃

+m2
d +DdLL

ν1√
2
T̂ †D − µmd tan β

ν1√
2
T̂D − µ∗md tan β m̂2

d +md +DdRR

)
(2.28)
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DuLL = cos(2β)m2
Z [

1

2
− 2

3
sin2(θW )]1

DuRR = −2

3
sin2(θW ) cos(2β)m2

Z1

DdLL = cos(2β)m2
Z [−1

2
+

1

3
sin2(θW )]1

DdRR = +
1

3
sin2(θW ) cos(2β)m2

Z1

(2.29)

m̂2
Q̃
≡ U †dLm

2
Q̃
UdL m̂2

ũ ≡ U †uRm
2T

ũ UuR m̂2
d̃
≡ U †dRm

2T

d̃
UdR

T̂U = U †uRT
T
U UuL T̂D = U †dRT

T
DUdL

(2.30)

The 6x6 mass matrices are now diagonalised using Mathematica, the four resulting
6x3 mixing matrices RqL,qR are defined by

q̃Lg = (UqL)gf (RqL)fiq̃i q̃∗Lg = q̃∗i (R
†
qL)if (U

†
uL)fg

q̃Rg = (UqR)gf (RqR)fiq̃i q̃∗Rg = q̃∗i (R
†
qR)if (U

†
uR)fg

(2.31)

The mass eigenstates q̃i are ordered by mass withmqi ≤ mqj , i ≤ j.

2.7.2 Neutralino mixing

As mentioned above, interactions between chiral supermultiplets and gauginos of
the form

Lφψλ = −
√

2g[(φ†iT
αψi) ·λα] (2.32)

lead to a mixing between higgsinos and gauginos, if the chiral supermultiplet con-
sists of Higgs particles and its boson can acquire a VEV in consequence of EWSB.
The resulting eigenstates of the neutral higgsinos and the neutral gauginos, namely
wino W̃ 0 and bino B̃, are four physical particles called ”neutralinos” χ̃i, again
ordered in mass from i=1 to i=4. The lightest one of these is a candidate for
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2.7 Mass eigenstates of SUSY particles

non-baryonic dark matter. In the following neutralino mass matrix, there are con-
tributions from the breaking masses of W̃ and B̃ and the Higgs mixing term in the
superpotential:

MN =


M1 0 −cβsWmZ sβsWmZ

0 M2 cβcWmZ −sβcWmZ

−cβsWmZ cβcWmZ 0 −µ
sβsWmZ −sβcWmZ −µ 0

 (2.33)

This mass matrix is diagonalized and the mixing matrix Nij is defined as fol-
lows:

B̃ = N1jC̃
0
j B̃ = N∗1jC̃

0

j

W̃3 = N2jC̃
0
j W̃ 3 = N∗2jC̃

0

j

H̃0
1 = N3jC̃

0
j H̃

0

1 = N∗3jC̃
0

j

H̃0
2 = N4jC̃

0
j H̃

0

2 = N∗4jC̃
0

j

(2.34)

Please note that the neutralino Weyl spinors are denoted C̃0
i here, as we use χ̃0

i for
Majorana spinors only.

2.7.3 Chargino mixing

In a similar way, the charged higgsinos and gauginos mix to charginos. Of course,
only particles of same charge quantum numbers can mix, so we get two different
kinds of charginos χ̃±, one for each pair of gaugino/higgsino sharing the same
charge. The diagonalisation is slightly more complicated - we can write the mass
terms for the charged particles in this way:

−1

2
[
(
W̃+, H̃+

2

)
XT ·

(
W̃−

H̃−1

)
+
(
W̃−, H̃−1

)
X ·

(
W̃+

H̃+
2

)
] (2.35)

Collecting terms (same as in the neutralino case),
we obtain

X =

(
M2

√
2sβmW√

2cβmW µ

)
(2.36)
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As we can see, X is not necessarily symmetric, which implies the need of two mixing
matrices, V and U. We used matrices called Uindex for the quark rotations as well,
but as they cancel out in the lagrangian or are compactified to VCKM , this shouldn’t
be too confusing. The replacements

W̃+ = V †1jC̃
+
j W̃+ = C̃+

jVj1

W̃− = U †1jC̃
−
j W̃− = C̃−jUj1

H̃+
2 = V †2jC̃

+
j H̃+

2 = C̃+
jVj2

H̃−1 = U †2jC̃
−
j H̃−1 = C̃−jUj2

(2.37)

reveal the chargino Weyl spinors in mass eigenstates, C̃±j . V und U diagonalise the
mass matrices:

U∗XV −1 =

(
mχ̃±1

0

0 mχ̃±2

)
(2.38)

V X†UT =

(
mχ̃±1

0

0 mχ̃±2

)
(2.39)

2.7.4 Gluinos

Gluinos can’t mix, since they are octet fermions. They are massive, and decays of
squarks into gluinos are, if kinematically allowed, dominating because the relevant
interaction vertices have QCD strength.
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2.7 Mass eigenstates of SUSY particles

Figure 2.1: MSSM particle content and auxiliary fields, taken from [10]
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3 B-Physics

The sector of B meson and Kaon physics has been very successful in testing the SM
and its possible extensions. Since the b quark was revealed in 1977, B physics is a
relatively new discipline. Interesting aspects are low energy observables, meaning
branching ratios of rare to very rare decays, and meson mixing. Most extensions
of the SM would affect these observables as well as their flavor and CP violating
consequences. We can learn alot about what is possible in new theories by looking
at experimental data constraining these effects. In this work, we use rare b → s
transitions and B meson mixing to learn about the parameter space of SUSY and
to examine squark/gluino decays in the allowed region.

This section will give a very brief introduction into the observables needed and
an idea of the underlying theory. But since we are not interested in very precise
experimental and theoretical bounds, but try to get a general overview about the
impact of rare decay constraints in the nMFV MSSM, the reader will have to look
in other excellent reports (like [12]) for details.

3.1 Penguin diagrams

The rare flavor violating decays in the B and K sector have contributions from so-
called ”penguin” diagrams: as we know, FCNC processes in the SM are forbidden
at tree level, and the simplest loop inducing flavor violation looks like [Fig.3.1.]
[13]:

Figure 3.1: self-energy graph, the simplest off-shell flavor violating transition
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In this self-energy graph, the VCKM is involved into the b → s transition via the
interaction with the top quarks and leads to flavor violation. Of course, on-shell it
isn’t complete, because an additional particle has to be emitted to get 4-momentum-
conservation straight. Diagrams of this kind were named ”penguins” when the
loop emits a particle (see below), for reasons which will become apparent lateron.
For FCNC b decays, penguins are of critical importance, since there are large
contributions from new physics, and penguins are theoretically easy to calculate.
The penguin loops involve heavy particles and and are therefore sensitive to new,
very heavy particles predicted by NP theories.

3.1.1 SM penguins

Electromagnetic penguins

For b→ sγ, the penguin loop emits a real, hard photon, which provides an excellent
experimental signal. The decay can be used to probe the CKM (|Vtd

Vts
|) and is one of

the most important and researched transitions [Fig.3.2].

Figure 3.2: electromagnetic penguins (radiating a real photon) [14]

Electroweak penguins

Instead of a real photon, the penguin loop can also produce virtual photons and
Z bosons which decay into pairs of leptons, thus governing the process b → sl+l−,
together with electroweak box diagrams [Fig.3.3]. These diagrams are important
for the b → sνν transition as well - excluding the virtual photon diagram, since
neutrinos don’t couple to photons.
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3.1 Penguin diagrams

Figure 3.3: Examples for electroweak penguins and box diagrams [14]

Annihilation penguins

For Bq → l+l− decays, like Bs → µ+µ− used in this work, there is a similar set
of penguins annihilating both particles of the meson to either photons or a pair of
leptons [Fig.3.4]. Penguins with internal photons do not contribute to the lepton
pair generation, because a lepton-antilepton pair with zero angular momentum has
C = 1, while a photon has C = -1.

Figure 3.4: Examples for annihilation penguins [13]

There is also a box diagram with two W bosons contributing to this decay, yet it
is supressed in respect to the penguins.

Hadronic final states

For interactions involving mesons, there are contributions from penguin diagrams
which create a pair of quarks out of the internally emitted photon, Z, or gluon
(gluonic or QCD penguins). The latter are not easily accessible, because they have
only hadronic final states, but these final states aren’t excusively created by gluonic
penguins.
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Figure 3.5: Typical penguins with hadronic final states (For these diagrams, you
have to imagine a happy penguin in order to understand the outgoing lines.)

3.2 Theoretical Considerations

3.2.1 Effective penguin theory

The above diagrams govern the quark decays at a low energy scale. In theory,
you calculate the diagrams at 80 GeV and scale down to 5 GeV to obtain in-
formation about low energy observables. An effective theory with point-like in-
teractions can be expressed as an expansion in local, scale(µ)-dependant opera-
tors Qi(µ) weightened by so-called Wilson coefficients Ci(µ) and multiplied by the
relevant CKM matrix elements - here an example for exclusive b → s penguin
decays:

Heff = −4GF√
2
VtbV

∗
ts

10∑
i=1

Ci(µ)Qi(µ) (3.1)

TheQi are current-current operators, EW penguins and QCD penguins: [14]
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QCC1 = (sαuβ)V−A(uβdα)V−A QCC2 = (su)V−A(ud)V−A

QQCD3 = (sd)V−A
∑

q=u,d,s

(qq)V−A QQCD4 = (sαdβ)V−A
∑

q=u,d,s

(qβqα)V−A

QQCD5 = (sd)V−A
∑

q=u,d,s

(qq)V+A QQCD6 = (sαdβ)V−A
∑

q=u,d,s

(qβqα)V+A

QEW7 =
3

2
(sd)V−A

∑
q=u,d,s

eq(qq)V+A QEW8 =
3

2
(sαdβ)V−A

∑
q=u,d,s

eq(qβqα)V+A

QEW9 =
3

2
(sd)V−A

∑
q=u,d,s

eq(qq)V−A QEW10 =
3

2
(sαdβ)V−A

∑
q=u,d,s

eq(qβqα)V−A

(3.2)

The Wilson coefficients of the above operators represent the influence of heavy
degrees of freedom (t, Z, W), which are integrated out in the rescaling process. In
practice, the calculation takes place at 80 GeV and is run down by RGEs, which
effective couplings and running masses are also affected by the heavy particles.
The RGEs mix the Wilson coefficients, but there is usually still a typical set of
relevant coefficients for each decay, like C7 for b→ s γ or C7, C9, C10 for b→ sl+l−.
Theoretically, the scale-dependence of the operators and their coefficients should
cancel out exactly, but due to the pertubative nature of the calculations, there is
always a small leftover and thus, a theoretical error. The observables also depend
on the renormalization scheme used, so it is important to have access to higher
order (NNLO) calculations.

Unlike the Wilson coefficients, the matrix elements of the operators can’t be calcu-
lated pertubatively due to confinement - one has to use lattice calculations or other
non-pertubative approaches to calculate decay rates of mesons, and this results in
the dominant uncertanties for the amplitudes of exclusive decays.

3.2.2 Penguin-Box Expansion

The SM meson decays can also be expressed by a similar expansion of the amplitude,

using a set of process-independent universal functions Fr(
m2
t

m2
W

) [14] :

A(M → F ) = P0(M → F ) +
∑
r

Pr(M → F )Fr(
m2
t

m2
W

) (3.3)

25



3 B-Physics

The coefficients P0 and Pr depend on the process, on hadronic matrix elements of
local operators and CKM factors. If any new particles exchange in the penguin and
box loops, these coefficients would only change considerably if new local operators
contribute. Otherwise, the only change happens in the universal functions, which
now depend on the masses of new particles - therefore, we could see new physics

as a change in Fr(
m2
t

m2
W

). P0 describes mainly the contributions from internal charm

quark loops and is often negligible.

3.2.3 Universal functions

The universal functions governing our rare decays are listened below, whereas the
subscript 0 indicates that QCD corrections are not (yet) included. [14]

B0(mt) ∆F = 1 box diagram

C0(mt) ∆F = 1 Z0-penguin

D0(mt) ∆F = 1 γ-penguin

X0(mt) C0 − 4B0 gauge invariant combination

Y0(mt) C0 −B0 gauge invariant combination

Z0(mt) C0 +
1

4
D0 gauge invariant combination

S0(mt) ∆F = 2 box diagram with tt-exchange

E0(mt) QCD penguin with off-shell gluon

E ′0(mt) QCD penguin with on-shell gluon

D′0(mt) γ-penguin with on-shell photon

(3.4)

Rare decays used in this work depend on the following functions:

B → Xsγ D′0(mt), E
′
0(mt)

B → Xsµ
+µ− Y0(mt), Z0(mt), E0(mt), D

′
0(mt), E

′
0(mt)

B → Xd,sνν X0(mt)

(3.5)

26



3.3 Rare decays and meson mixing

3.3 Rare decays and meson mixing

3.3.1 B → Xsγ

Theory

For the inclusive decay rate, meaning a summation over all final states,

A(B → X)incl =
GF√

2

∑
f∈X

V i
CKMCi(µ) < f |Qi(µ)|B > (3.6)

the amplitude can be approximated by a spectator model of a pertubative b quark
decay plus nonperturbative corrections [15–21]. Radiative B decays in general are
heavily affected by pertubative QCD corrections, where we now have access to
NNLO calculations [22–34]:

Γ(B̄ → Xsγ)Eγ>E0 = Γ(b→ Xpartons
s γ)Eγ>E0 +O(

Λ2

m2
b

,
Λ2

m2
c

,
Λαs
mb

) (3.7)

Λ is of the order of ΛQCD. There may be additional non-pertubative corrections to
this decay rate when the photon energy cut is chosen too large or too small [35–39].
The leading order for the pertubative part is represented by one-loop diagrams
with, for example, internal top-quark exchanges, then followed by NLO and NNLO
contributions and QCD corrections. Expanding the pertubative part in αs, one has

to resum over large logarithms ln(
m2
W

m2
b

) - in order to do that, one uses the effective

low-scale (≈ mb) theory in which the top-quarks and the electroweak bosons are
decoupled. The Wilson coefficients for the local operators are evaluated at a scale
of the order mt and then scaled down to the effective theory, finally the matrix
elements of the local operators are computed. This has been done up to next-
to-next-to-leading-log [22], with the following result for a photon energy cut of
Eγ > 1.6GeV :

B(B̄ → Xsγ)theo = (3.15± 0.23) · 10−4 (3.8)

The error consists of the non-pertubative effects (5%), errors from input parame-
ters (3%), higher-order effects (3%) and mc-interpolation (3%). The biggest error
emerges from the non-pertubative Λαs

mb
-part on four-quark-operators [16].
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3 B-Physics

Experiment

This mode has been measured by pseudoinclusive and fully inclusive methods
(BaBar, BELLE, Cleo) [40–43]. Altough each experiment has its own methods,
restrictions and errors, the results agree quite well and are summarized by the
world average,

B(B̄ → Xsγ)exp = (3.55± 0.30) · 10−4 (3.9)

yet one always has to ask how well theoretical errors can be compared to experi-
mental errors, and thus we will work with much broader error bars of (3.5 ± 0.8)
in this work, assuming SUSY effects of roughly the same order as the SM errors,
which will already constrain the flavor parameter space well enough, while being
relatively sure that no information is lost.

The current world average is limited by mainly systematic errors, the loss of Xs

fractions for pseudoinclusive methods as well as background effects for fully inclusive
methods.

3.3.2 B̄ → Xsl
+l−

This electroweak penguin decay consists only of one-loop contributions and is there-
fore very useful to probe NP effects. As stated earlier, it is sensitive to Q7, Q9 and
Q10, but radiative corrections add partly process-independent dependencies to the
remaining seven operators, which can also be expressed by the penguin-box expan-
sion.

The experimental probing of these decays is difficult due to their small branching
ratios, and only few exclusive decays are accessible, like b → sµ+µ−, (which we
will use) b → se+e− and the simplest hadronic final states. However, future B
factories are capable of significantly improving the experimental data. With the
newest NNLO corrections, the decay is theoretically clean - however,we won’t look
into the details, because we aren’t interested in precise theoretical errors. We will
just cite [12] and choose much larger error bars:

B(B̄ → Xsµ
+µ−)theo = (1.59± 0.11) · 10−6

B(B̄ → Xsµ
+µ−)here = (1.59± 0.55) · 10−6 (3.10)
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3.3 Rare decays and meson mixing

3.3.3 Bs → µ+µ−

This very rare leptonic decay is a smoking gun for neutral Higgs effects in SUSY with
large tanβ and is useful for constraining parameters in many models, and testing
the SM. On the loop level, both SUSY Higgs doublets can couple to any fermion,
with couplings proportional to a breaking term and µ. The loop contribution
suppression factors are compensated by a factor of tanβ, thus, in models with
large tanβ, the branching ratio can exceed SM expectations by 103 [12], scaling
like:

B(Bs → µ+µ−)SUSY ∝
m2
bm

2
l (tan β)6

M4
A0

(3.11)

In the SM, the theoretical predicitions suffer from uncertancies, roughly in the
order of 20% (see below). Here, fBs and τBs are decay constant and lifetime of the
Bs-meson.

B(Bs → µ+µ−)SM = (3.86± 0.15) · 10−9 × τBs
1.527ps

[
|Vts|

0.0408
][

fBs
240MeV

] (3.12)

From the experimental side, we only have upper bounds on this class of very rare
decays. Regarding Bs → µ+µ−, the strongest bound is from the D0-experiment
using 2 fb−2 of pp̄ data [44]:

(Bs → µ+µ−)exp ≤ 93 · 10−9 @95%CL (3.13)

The bound can vary depending on the amount of data used, luminosity etc., and
we will assume a more generous bound of (2 · 10−8) including SUSY effects. In
near future, the LHC experiments will improve this bound with several different
approaches - the main problem hereby is having to deal with a massive back-
ground.
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3 B-Physics

3.3.4 B̄s −Bs mixing

Out of the many possible observables in this sector, we will only look at the mass
difference ∆mBs of the two Bs meson mass eigenstates (particle/antiparticle) os-
cillating into each other. The mass difference depends on the 12-entry of the mass
matrix between B̄s and Bs:

∆ms = 2|M s
12| (3.14)

Pertubative NLO corrections to these matrix elements have been computed in [45],
the resulting SM prediction is obtained from the CKMfitter collaboration [46].
Experimental data comes from the CDF collaboration [47], which used semilep-
tonic and hadronic decay modes with improved particle identification and a neural
network for the event selection. The results are consistent with the SM predic-
tion.

∆msSM = (18.9+5.7
−2.8)ps−1

∆msexp = (17.77± 0.010± 0.07)ps−1
(3.15)

The possible effects of new physics are parametrized in respect to the SM value by
CBs below, citing ref. [48], while some regions seem to be excluded if the underlying
error analysis is correct. To get a general idea about the constraints by Bs mixing,
we use a looser bound:

CBs =
|M s

12|SM+NP

|M s
12|SM

= 1.03± 0.29

∆mshere = (17.3± 3.8)ps−1

(3.16)

3.4 SUSY penguins/boxes

As stated earlier, SUSY changes the Wilson coefficients by adding diagrams with
heavy particles in the loops. There are numerous possibilities with squarks, gluinos,
higgsinos and gauginos - the resulting diagrams are called ”super-penguins”[Fig.3.6]:
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3.4 SUSY penguins/boxes

Figure 3.6: Standard model penguins and penguins involving SUSY particles [49]

In order to find all contributions, one has to look through all possible interactions
between quarks, since every class of SUSY particle is heavy enough to appear in such
a loop. The new penguin graphs look like [Fig.3.7], while the number represents
the ”penguin legs”[Fig.3.8] below that fit the graph.

Figure 3.7: new SUSY contributions to the b→ s transistions
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3 B-Physics

Figure 3.8: The above diagrams can be combined with these penguin legs

There are similar box diagrams exchanging the same particles, here are some ex-
amples [Fig.3.9]:

Figure 3.9: Examples for box diagrams involving supersymmetric particles

The effects of these diagrams were not explicitly calculated in this work, we use
results from other publications [50–52] integrated in SPheno [9] to obtain theoretical
values for the decays and compare them to experimental results.
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4 Lagrangian for squark decays

Starting in gauge eigenstates and rotating to mass eigenstates, all vertices governing
two-body decays of squarks will be calculated in the following sections. Using
these results, we can then evaluate squark decay rates. We will later probe the
behaviour of u1,u2, d1 and d2 decay rates when sweeping off-diagonal mass matrix
elements.

4.1 LI in gauge eigenstates

As stated above, the interaction term between chiral and gauge supermultiplets
reads (in the given gaugino definition!):

LI |Φiλ = −
∑
i

√
2g[(φ†iT

αψi) ·λα + λα† · (ψ†iTαφi)]

=
∑
f

−
√

2

2
g[(ũ∗fLτ

ad0
fL)W̃ a + W̃ a(u0

fLτ
ad̃fL) + (d̃∗fLτ

au0
fL)W̃ a + W̃ a(d0

fLτ
aũfL)]

−
√

2g′[
1

6
ũ∗fLB̃u

0
fL +

1

6
u0

fLB̃ũfL −
2

3
ũ∗fRB̃u

0
fR −

2

3
u0

fRB̃ũfR

1

6
d̃∗fLB̃d

0
fL +

1

6
d0
fLB̃d̃fL +

1

3
d̃∗fRB̃d

0
fR +

1

3
d0
fRB̃d̃fR]

− g3√
2

[ũ∗fLλ
a
GMu

0
fLG̃

a + u0
fLλ

a
GM ũfLG̃

a − ũ∗fRλaGMu0
fRG̃

a − u0
fRλ

a
GM ũfRG̃

a

+d̃∗fLλ
a
GMd

0
fLG̃

a + d0
fLλ

a
GM d̃fLG̃

a − d̃∗fRλaGMd0
fRG̃

a − d0
fRλ

a
GM d̃fRG̃

a]

(4.1)

When writing down the interaction lagrangian, we have to take into account that
right handed particles like q̃R transform as an antitriplet under SU(3), which leads
to an additional minus sign in the corresponding group generator.
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4 Lagrangian for squark decays

Together with the corresponding terms in the MSSM superpotential,

WMSSMSquarks
= εab[(YD)ijH

a
1 ·Qb

iDj + (Yu)ijH
b
2 ·Qa

iU j] (4.2)

LSuperpot =− εab[(YD)ijH
a
1 ·Qb

iDj + (Yu)ijH
b
2 ·Qa

iU j] + h.c.

=− (YD)ij(H̃
0
1 d̃Lid

0
Rj − H̃−1 ũLid0

Rj) + (YU)ij(H̃
+
2 d̃Liu

0
Rj − H̃0

2 ũLiu
0
Rj)

− (YD)ij(H̃
0
1d

0
Li
d̃∗Rj − H̃

−
1 u

0
Li
d̃∗Rj) + (YU)ij(H̃

+
2 d

0
Li
ũ∗Rj − H̃

0
2u

0
Li
ũ∗Rj)

− (YD)∗ji(H̃
0
1 d̃
∗
Lj
d0
Ri
− H̃+

1 ũ
∗
Lj
d0
Ri

) + (YU)∗ji(H̃
−
2 d̃
∗
Lj
u0
Ri
− H̃0

2 ũ
∗
Lj
u0
Ri

)

− (YD)∗ji(H̃
0
1d

0
Lj d̃Ri − H̃+

1 u
0
Lj d̃Ri) + (YU)∗ji(H̃

−
2 d

0
LjuRi − H̃0

2u
0
Lj ũRi)

(4.3)

we get the interaction in gauge eigenstates responsible for the decay of a squark
into one quark and higgsinos. Interactions of squarks with gauge bosons are
governed by the same covariant derivative as in the standard model (please note
that we will not discuss decays into photons and gluons, because these decays can
never be flavor violating):

LΦV =
∑
i

(Dµφi)
†Dµφi

= (∂µ + ig
τa

2
W µa + ig′

Y

2
Bµ)φ†(∂µ − ig

τa

2
W a
µ − ig′

Y

2
Bµ)φ

(4.4)

4.1.1 Interactions with gauginos/gauge
bosons

Now we can start collecting terms for charginos, neutralinos and gluinos. Regarding
EWSB, the winos behave like the W-bosons:

W̃± =
1√
2

(W̃ 1 ∓ iW̃ 2) (4.5)
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4.1 LI in gauge eigenstates

Charginos q̃ → χ̃± + q

Terms including charged winos and higgsinos:

LI |q̃qχ̃± = −
3∑

f=1

g[ũ∗fLd
0
fLW̃

+ + d̃∗fLu
0
fLW̃

− + W̃−u0
fLd̃fL + W̃+d0

fLũfL]

+ (YD)ij[H̃
−
1 ũLid

0
Rj + H̃−1 u

0
Li
d̃∗Rj ] + (YU)ij[H̃

+
2 d̃Liu

0
Rj + H̃+

2 d
0
Li
ũ∗Rj ]

+ (YD)∗ji[H̃
+
1 ũ
∗
Lj
d0
Ri

+ H̃+
1 u

0
Lj d̃Ri ] + (YU)∗ji[H̃

−
2 d̃
∗
Lj
u0
Ri

+ H̃−2 d
0
Lj ũRi ]

(4.6)

Neutralinos q̃ → χ̃0 + q

Terms including the neutral wino, the bino and neutral higgsinos:

LI |q̃qχ̃0 =
3∑

f=1

−
√

2g′[
1

6
ũ∗fLB̃u

0
fL +

1

6
u0

fLB̃ũfL −
2

3
ũ∗fRB̃u

0
fR −

2

3
u0

fRB̃ũfR

+
1

6
d̃∗fLB̃d

0
fL +

1

6
d0
fLB̃d̃fL +

1

3
d̃∗fRB̃d

0
fR +

1

3
d0
fRB̃d̃fR]

− 1√
2
g[ũ∗fLW̃

3u0
fL + d̃∗fLW̃

3d0
fL + u0

fLW̃ 3ũfL + d0
fLW̃ 3d̃fL]

− (YD)ij[H̃
0
1 d̃Lid

0
Rj + H̃0

1d
0
Li
d̃∗Rj ]− (YU)ij[H̃

0
2 ũLiu

0
Rj + H̃0

2u
0
Li
ũ∗Rj ]

− (YD)∗ji[H̃
0
1 d̃
∗
Lj
d0
Ri

+ H̃0
1d

0
Lj d̃Ri ]− (YU)∗ji[H̃

0
2 ũ
∗
Lj
u0
Ri

+ H̃0
2u

0
Lj ũRi ]

(4.7)

Gluinos q̃ → g̃ + q

Terms including gluinos:
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4 Lagrangian for squark decays

LI |q̃qG̃ =
3∑

f=1

− g3√
2

[ũ∗fLλ
a
GMu

0
fLG̃

a + u0
fLλ

a
GM ũfLG̃

a

−ũ∗fRλaGMu0
fRG̃

a − u0
fRλ

a
GM ũfRG̃

a

+d̃∗fLλ
a
GMd

0
fLG̃

a + d0
fLλ

a
GM d̃fLG̃

a

−d̃∗fRλaGMd0
fRG̃

a − d0
fRλ

a
GM d̃fRG̃

a]

(4.8)

Gauge Bosons q̃ → q̃ + V

We need the terms of (Dµφ)†Dµφ which contribute to (q̃q̃V ) vertices, and apply
EWSB.

L|φφV = −∂µφ†ig τ
a

2
W a
µφ+ ig

τa

2
W a
µφ
†∂µφ− ∂µφ†ig′Y

2
Bµφ+ ig′

Y

2
Bµφ

†∂µφ

= (−ig τ
a

2
W a
µ − ig′

Y

2
Bµ)[(∂µφ†)φ− φ†(∂µφ)]

= (−ig τ
a

2
W a
µ − ig′

Y

2
Bµ)[φ†∂µ↔φ]

L|q̃q̃V =
3∑

f=1

−i g√
2
ũ∗fL∂

µ
↔d̃fLW

+
µ − i

g√
2
d̃∗fL∂

µ
↔ũfLW

−
µ

−i g
cW

(
1

2
− 2

3
s2
W )ũ∗fL∂

µ
↔ũfLZµ − i

g

cW
(−1

2
+

1

3
s2
W )d̃∗fL∂

µ
↔d̃fLZµ

−i g
cW

(
1

3
s2
W )d̃∗fR∂

µ
↔d̃fRZµ + i

g

cW
(
2

3
s2
W )ũ∗fR∂

µ
↔ũfRZµ

(4.9)
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4.2 Rotation into physical fields

4.2 Rotation into physical fields

4.2.1 LI in mass eigenstates

We use the transformations from section [2.7] to rotate the fields into mass eigen-
states. Only the results are given here, you can find the complete calculation in
the appendix.

We introduce the Dirac spinors of the Charginos and Quarks, as well as the Majo-
rana spinors for Gluons and Neutralinos

χ̃+
j =

(
C̃+
j

C̃−j

)
χ̃−j =

(
C̃−j
C̃+
j

)

χ̃+
j =

(
C̃−j C̃+

j

)
χ̃−j =

(
C̃+
j C̃−j

)

χ̃0
j =

(
C̃0
j

C̃0
j

)
χ̃0
j =

(
C̃0
j C̃0

j

)

g̃ =

(
G̃

G̃

)
g̃ =

(
G̃ G̃

)

Ψu =

(
uL
uR

)
Ψd =

(
dL
dR

)

Ψu =
(
uR uL

)
Ψd =

(
dR dL

)

(4.10)

and use them to write down the Lagrangians in dirac notation. We also replace
1
ν1

= g
2mW cβ

and 1
ν2

= g
2mW sβ

.
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4 Lagrangian for squark decays

Charginos

LI = Ψu[P̂L(
g√

2mW sβ
V ∗2jm̂uVCKMRdL)

+P̂R(
g√

2mW cβ
U2jVCKMm̂dRdR − gU1jVCKMRdL)]χ̃+

j
~̃d

+ Ψd[P̂L(
g√

2mW cβ
U∗2jm̂dV

†
CKMRuL)

+P̂R(
g√

2mW sβ
V2jV

†
CKMm̂uRuR − gV1jV

†
CKMRuL)]χ̃−j

~̃u

+h.c.

(4.11)

Neutralinos

LI = Ψu[P̂L(
2
√

2g′

3
N∗1jRuR −

m̂ug√
2mW sβ

N∗4jRuL)

+P̂R(−
√

2g′

6
N1jRuL −

√
2g

2
N2jRuL −

m̂ug√
2mW sβ

N4jRuR)]χ̃0
j
~̃u

+ Ψd[P̂L(
−
√

2g′

3
N∗1jRdR −

m̂dg√
2mW cβ

N∗3jRdL)

+P̂R(
−
√

2g′

6
N1jRdL +

√
2g

2
N2jRdL −

m̂dg√
2mW cβ

N3jRdR)]χ̃0
j
~̃d

+h.c.

(4.12)

Gluinos

LI = Ψu[P̂L(
g3√

2
λGMRuR) + P̂R(− g3√

2
λGMRuL)]g̃~̃u

+ Ψd[P̂L(
g3√

2
λGMRdR) + P̂R(− g3√

2
λGMRdL)]g̃~̃d

+h.c.

(4.13)
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5 Decay rates Γ

5.1 Transition amplitudes

We are interested in the decay rates of squarks governed by the above lagrangian.
For these, we need the transition amplitude for each decay. All possible two-
body squark decays at tree-level can be arranged into three classes, each of them
sharing the same general structure in amplitude, kinematics - and thus, decay
rate:

5.1.1 Higgs boson radiation

Being the simplest decay mode (at least in structure), the squared transition ampli-
tude of this all-bosonic coupling only depends on the coefficients in the correspond-
ing interaction Lagrangian, so with Lint = aijkq̃

∗
i q̃jHk we get

|Mijk|2 = |aijk|2 (5.1)

5.1.2 Decay into two fermions

The amplitude of this general coupling will be explicitly calculated via elemen-
tary dirac algebra, listed in the appendix. Given the structure of the interaction,
with P̂L = 1−γ5

2
and P̂R = 1+γ5

2
being the projection operators on the left- and

righthanded helicity states, respectively,

Lint =
∑
k

−fk(aijkP̂L + bijkP̂R)fiq̃
∗
j + h.c. (5.2)

suppressing spin indices.The amplitude, still carrying spin information, reads
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5 Decay rates Γ

Mijk = ui(pf )(aijkP̂L + bijkP̂R)vk(pf ) (5.3)

Using the spin sum relations
∑

spins uu = /p+mf for fermions and
∑

spins vv = /p−mf

for antifermions, we elaborate

∑
spins

|Mijk|2 =
1

4
tr[(/pf +mf )(aijkP̂L + bijkP̂R)(/pf −mf )(a

∗
ijkP̂R + b∗ijkP̂L)]

=
1

4
tr[((pf )µγ

µaijk(
1− γ5

2
) + (pf )µγ

µbijk(
1 + γ5

2
)

+1mfaijk(
1− γ5

2
) + 1mfbijk(

1 + γ5

2
))

(pf )νγ
νa∗ijk(

1 + γ5

2
) + (pf )νγ

νb∗ijk(
1− γ5

2
)

−1mfa
∗
ijk(

1 + γ5

2
)− 1mfb

∗
ijk(

1− γ5

2
))]

=
1

4
tr[(pf )µγ

µ(pf )µγ
µ|aijk|2(

1− γ5

2
)

+
1

4
tr[(pf )µγ

µ(pf )µγ
µ|bijk|2(

1 + γ5

2
)

− 1mfaijk(
1− γ5

2
)1mfb

∗
ijk − 1mfa

∗
ijk(

1 + γ5

2
)1mfbijk

=
1

2
(pf · pf )(|aijk|2 + |bijk|2)− 1

2
mfmf (aijkb

∗
ijk + a∗ijkbijk)

(5.4)

Thus, the final squared transition amplitude reads

|Mijk|2 = 2(pf · pf )(|aijk|2 + |bijk|2)− 2mfmf (aijkb
∗
ijk + a∗ijkbijk) (5.5)

5.1.3 Gauge boson radiation

The interaction with gauge bosons leads to numerous possible decay channels, gov-
erned by Lagrangians of the form

Lint =
∑

aijk(q̃
∗
i ∂

µq̃j − ∂µq̃∗i q̃j)Vkµ (5.6)

in mass eigenstates. Using gauge eigenstates, one has to add another squark index
representing the position in the corresponding fermion doublet. Now, taking ad-
vantage of the gauge boson spin sum relation

∑
spins ε

∗
µεν = (−gµν +

pV µpV ν
m2
V

) and

P µ = i∂µ, we evaluate
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5.2 Two-body decays in general

Lint =
∑

i(pin + pout)
µaijkq̃

∗
i q̃jVkµ (5.7)

which leads to

Mijk = −iaijk(pin + pout)
µε∗µ (5.8)

1

2

∑
spins

|Mijk|2 = |aijk|2(pin + pout)
µ(pin + pout)

ν(−gµν +
pV µpV ν
m2
V

)

= |aijk|2(−(pin + pout) · (pin + pout) +
1

m2
V

((pin + pout) · pV )2)

(5.9)

and a final transition amplitude of

|Mijk|2 = 2|aijk|2[−(pin + pout)
2 +

1

m2
V

((pin + pout) · pV )2] (5.10)

5.2 Two-body decays in general

The differential decay rate is given by

dΓ =
(2π)4

2E
|M|2 δ4(P − p1 − p2)

d3p1

(2π)32E1

d3p2

(2π)32E2︸ ︷︷ ︸
differential phase spase factor

(5.11)

while P = (E, ~P ) is the 4-momentum of the mother particle and pi = (Ei, pi) of the
daughter particles, respectively. The main task is now to integrate the differential
decay rate over all components of p1 and p2. In the simplest case of two-body decay,
the spin-averaged square of the invariant matrix element M is a constant which
simplifies the integration considerably.

If one integrates over one of the 4-momenta, for example p2, the three-dimensional
delta function δ(~P − ~pi) vanishes and only energy conservation remains:
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dΓ =
(2π)4

2E
|M|2δ(E − E1 − E2)

d3p1

4(2π)6E1E2

(5.12)

Due to the lorentz invariance of the phase space factor, we can enter the rest frame
of the mother particle, which simplifies the energies to E = M , E1 =

√
p2

1 +m2
1,

E2 =

√
(~P − ~p1)2 +m2

2 =
√
p2

1 +m2
2. Furthermore, the integration over d3p1 can

be written in polar coordinates as p2dpdΩ:

Γ =
1

32π2M
|M|2

∫
δ(M − E1 − E2)

p2
1dp1dΩ

E1E2

(5.13)

We now need to express our results for the invariant matrix elements by parti-
cle masses, using 4-momentum-conversation to obtain inner products of particle
momenta, for example

P 2 = M2 = (pf + pf )
2 = m2

f + 2(pf · pf ) +m2
f

⇒ (pf · pf ) =
1

2
(M2 −m2

f −m2
f
)

(5.14)

and the corresponding equations for the squared masses of other particles.

Since the above integrand has no angular dependence, integration over dΩ simply
gives a factor of 4π. We can now do a substitution by E1dE1 = p1dp1 to only have
energies to be integrated:

dΓ =
1

8πM
|M|2

∫
δ(M − E1 − E2)

p1dE1

E2

(5.15)

Due to momentum conservation, E2 = p1 =
√
E2

1 −M2. If we now denote f(E1) =
M − E1 − E2 and use the identity f(E1) = |f ′(E0)|−1δ(E1 − E0), the decay rate
becomes

Γ =
1

8πM2
|M|2|p1| =

1

8πM2
|M|2

√
[M2 − (m1 −m2)2][M2 − (m1 +m2)2]

2M
(5.16)
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5.3 Squark decay rates

5.3 Squark decay rates

By using four-momentum-conservation, we replace all momenta with particle
masses and calculate the total decay rates.

Decay into Neutralinos, Charginos and Gluinos

All the gauginos in mass eigenstates are denoted χ̃ in the following equation, as-
suming real vertex coefficients aijk and bijk.

Γijkχ̃ =
1

16πM3
q̃i

[(M2
q̃i
−m2

qk
−m2

χ̃j
)(|aijk|2 + |bijk|2)− 4mqkmχ̃j(aijkbijk)]

·
√

[M2
q̃i
− (mqk −mχ̃j)

2][M2
q̃i
− (mqk +mχ̃j)

2]

(5.17)

Decay into Vector Bosons

ΓijkV =
|aijk|2

8πM3
q̃i

[
(M2

q̃i
−m2

q̃j
)2

m2
Vk

− (2M2
q̃i

+ 2m2
q̃j
−m2

Vk
)]

·
√

[M2
q̃i
− (mq̃j −mVk)

2][M2
q̃i
− (mq̃j +mVk)

2]

(5.18)

Decay into Higgs Bosons

Γ =
1

16πM3
q̃i

|aijk|2
√

[M2
q̃i
− (mq̃j −mHk)

2][M2
q̃i
− (mq̃j +mHk)

2] (5.19)
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6 Evaluation and Results

6.1 SPheno

SPheno (SUSY Phenomenology) [9] is a Fortran program written to calculate super-
symmetric spectra using high scale input in the SLHA standard [7, 8]. It supports
nMFV and calculates two- and three-body branching ratios of supersymmetric par-
ticles, Higgs bosons, rare decays in the B sector, B meson mixing, other observables
like the anomalous magnetic moment of the muon. This work uses SPheno for all
spectra calculations and the CAS Mathematica as an interface and visualisation
device.

6.2 Parameters and conventions

In detail, only the breaking parameters appearing in offdiagonal-elements of the
squark mass matrices are probed, and exclusively for the 2 → 3 sector, since it is
the least constrained. These parameters include m̂2

Q23
, m̂2

d23
, m̂2

u23
, T̂U23 , T̂U32 ,

T̂D23 and T̂D32 , where you have to take into account that the soft SUSY breaking
squared mass matrices are hermitean.

It is convenient to normalize the off-diagonal elements by the diagonal ones. The
m̂2
i23

are divided by the trace of their matrix, the off-diagonal trilinear couplings
are normalized by the trace of m̂2

Q:

δMQ23 =
3m̂2

Q23∑3
i=1 m̂

2
Qii

δMD23 =
3m̂2

d23∑3
i=1 m̂

2
dii

δMU23 =
3m̂2

u23∑3
i=1 m̂

2
uii

δTU23,32 =
3ν2T̂

2
U23,32√

2
∑3

i=1 m̂
2
Qii

δTD23,32 =
3ν1T̂

2
D23,32√

2
∑3

i=1 m̂
2
Qii

(6.1)

Using these definitions, we will analyze the interplay between pairs of the above pa-
rameters and their impact on the flavor violating branching ratios of the first- and
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6 Evaluation and Results

second-lightest squarks as well as gluinos. We will then check how large flavor viola-
tion transistions in the allowed region of parameter space can become.

6.3 Parameter interplay

In the following subsections, we will probe all relevant combinations of two distinct
nMFV parameters and probe their interference effects. The parameter planes would
be affected if we added a third parameter, resulting in a complex three-dimensional
structure. It is next to impossible to get an idea of the complete interplay between
all parameters, but for a rough estimate of the constraints, it is suitable to limit the
observations to two interacting parameters. The region of parameter space allowed
by the low energy observables is shown in red color.

6.3.1 MQ23 / MD23

Figure 6.1: MQ23/MD23 parameter plane at γ

We use the γ data point here to illustrate the dependencies [Fig.6.1]. For SPS1a’,
the picture looks very similar, apart from missing constraints by Bs → µ+µ− in
the chosen region, and a more bended b → sγ band resulting in a slightly more
constrained MD23. You can see that MD23 is in general poorly constrained, which
changes a bit when MQ23 varies from zero. MQ23 itself has a strong effect on the
calculated low energy observables and the allowed values are therefore confined to
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6.3 Parameter interplay

a small region of parameter space. For I”, the allowed region is even more narrow,
resulting in higher constraints on MQ23.

6.3.2 MQ23 / TD23

Figure 6.2: MQ23/TD23 parameter plane at γ

Figure 6.3: MQ23/TD23 parameter plane at SPS1a’

Again, there are strong Bs → µ+µ− constraints in γ missing in SPS1a’[Fig.6.3],
which now heavily affects the shape of the allowed region. It is interesting to see
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that for γ [Fig.6.2], TD23 is fixed to a very limited range, whereas in SPS1a’, its
allowed range scales with MQ23.

6.3.3 MQ23 / TD32

Figure 6.4: MQ23/TD32 parameter plane at SPS1a’

Figure 6.5: MQ23/TD32 parameter plane at SPS1a’

As in almost all pictures, b → sγ is the dominant constraining decay. We have a
bended band in SPS1a’ [Fig.6.4] fitting well in the ∆MBs figure and giving TD32 a
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6.3 Parameter interplay

lot of freedom. It is striking that for γ [Fig.6.5], the picture is similar, but with more
straight lines instead of bended bands and figures. This leads to an allowed region
smaller than in SPS1a’, but there is still enough room to vary TD32 independent
of MQ23.

6.3.4 MD23 / TD23

Figure 6.6: MD23/TD23 parameter plane at SPS1a’

Figure 6.7: MD23/TD23 parameter plane at γ
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Figure 6.8: MD23/TD23 parameter plane at I”

When looking at graphs like the above [Fig.6.6-6.8], one should remember that the
TD23 and TD32 normalizations depend on ν1, which varies by roughly a factor of
two between SPS1a’ and γ, and a factor of four between SPS1a’ and I”. This leads
to differently ”zoomed in” graphs and allowed regions. We can again see that our
bound on Bs → µ+µ− does not apply constraints on SPS1a’, but is very important
for data points with higher tanβ

6.3.5 MD23 / TD32
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6.3 Parameter interplay

Figure 6.9: MD23/TD32 parameter plane at SPS1a’

Figure 6.10: MD23/TD32 parameter plane at γ

Figure 6.11: MD23/TD32 parameter plane at I”

In all data points [Fig.6.9-6.11], we have an asymmetrical allowed region, preferring
negative values of TD32 and positive values of MD23. Each parameter slightly
affects the allowed range of the other one shown, given mostly by ∆MBs , with
growing effect in the extreme regions.
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6.3.6 TD23 / TD32

Figure 6.12: TD23/TD32 parameter plane at SPS1a’

The most striking effect of this graph [Fig.6.12] is that higher values of TD23 affect
the usually poorly constrained TD32, thus leading to almost unconstrained MD23 in
these regions (in the approximation of no 3-parameter-interplay).

6.3.7 Up-Sector
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6.3 Parameter interplay

Figure 6.13: Example for MU23 effects on the constraining bands

The bounds from our low energy observables on the U-sector are, except for TU23,
very loose. MU23 and TU32 lead to small changes in the bending of the constraining
bands [Fig.6.13], but there is no serious information gained looking at them. For the
I” data point, the bending of b→ sγ is big enough to actually apply constraints on
MU23, but they are still very loose (δMU23 = −0.5...0.5).

At all data points, b→ sγ is the observable eventually constraining the TU parame-
ters [Fig.6.14]. Unlike other interplays, decays like Bs → µ+µ− do not add any addi-
tional constraints at the γ and I” data points, compared to SPS1a’.

Figure 6.14: b → sγ constraints on TU parameters. They look very similar at all
data points and represent the only important constraints
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The most interesting interplay happens between MQ23 and TU23 [Fig.6.15]. Due
to its small allowed area, the induced band shift by TU23 is of importance for the
constraints on MQ23. Because multiple squark and gluino decays are senstitive
to the latter, we can expect to find considerable changes in the branching ratios
of interesting decays when taking into account the interplay between MQ23 and
TU23.

Figure 6.15: MQ23 / TU23 interplay at the γ data point. At SPS1a’, the constraints
by Bs → µ+µ− are missing in this case, but this doesn’t alter the allowed region

6.4 Squark and gluino decays

In this section, we will give examples of flavor violating decays of the two light-
est up- and down-squarks, as well as light gluinos. We show that the mixing in
the allowed regions of parameter space can be significant by switching on flavor
violating parameters, and give insight into the underlying mixing matrices. All
FV decays are discussed, provided the mixing is large enough to induce branching
ratios roughly in the same order of magnitude for the the flavor conserving decay
on the one hand, and the flavor violating decay on the other hand. In the following
mixing matrix pictures, Ru/Rd means u/d-squark mixing matrix, the first number
represents the mass eigenstate, the second number the squark family index (1..3
lefthanded, 4..6 righthanded) and the letters are abbreviations for the shape of the
graph (S = solid line, D = dashed, PD = point-dashed, P = points only). If the
graphs for the three data points are very similar, one out of them is taken as an
example.
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6.4 Squark and gluino decays

For the correct understanding of the following flavor violating decays, it is im-
portant to look at the mixing matrix elements which - besides gauge and Yukawa
couplings - govern the decays. Since the physical particles are a mixture of left- and
right-squarks, they also have mixed decay preferences, depending on which gauge
eigenstate they are alike.

Right-squark-like eigenstates almost exclusively decay into a bino and a quark,
while left-squark-like eigenstates predominantly decay into charged winos (≈ 60%),
neutral winos (≈ 30%) and more rarely a bino (≈ 10%). Usually, one can assume
that χ̃1 are bino-like particles, and χ̃2 wino-like. If either of these two become
too higgsino-like, other effects like strong Yukawa couplings need to be taken into
account, and the above percentages can change.
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6.4.1 ũ1 decays

decay data point SPS1a’ data point γ data point I”

ũ1 → χ̃0
1t 0.224 0.209 0.201

ũ1 → χ̃0
2t 0.0580 0.137 0.147

ũ1 → χ̃+
1 b 0.717 0.403 0.457

ũ2 → χ̃0
1c 0.987 ≤1% ≤1%

ũ2 → χ̃0
1t ≤1% 0.0238 0.0273

ũ2 → χ̃0
2t ≤1% 0.0979 0.0806

ũ2 → χ̃0
3t ≤1% 0.0913 0.0855

ũ2 → χ̃0
4t ≤1% 0.242 0.237

ũ2 → χ̃+
1 b ≤1% 0.261 0.214

ũ2 → χ̃+
2 b ≤1% 0.237 0.241

ũ2 → ũ1Z ≤1% 0.0325 0.0886
ũ2 → ũ1h0 ≤1% 0.0126 0.0218

Figure 6.16: branching ratios (larger than 1%) of the two lightest up-squarks, when
all flavor violating parameters are switched off.

The most important parameters for these decays are MU23, TU23 and TU32, while
MQ23 has almost no effect, mainly due to its small allowed region confined by the
low energy observables. When all FV parameters are switched off, we have roughly
20% of ũ1 → χ̃0

1t and no decay into charm quarks at all data points. When switching
on MU23 [Fig.6.17], mixing occurs and we observe branching ratios for ũ1 → χ̃0

1c
up to 30 % for γ and SPS1a’, 15% for I”. At MU23 = 0, the ũ1 is completely
stop-like with a small LR-mixing. With growing MU23, RR-mixing induces decays
into χ̃0

1c. The sum of the right-like parts becomes larger at the cost of the t̃L-
like part of the ũ1. leading to increased branching ratios of both ũ1 → χ̃0

1c and
ũ1 → χ̃0

1t.

Figure 6.17: ũ1 decays depending on MU23, γ data point. left : solid line: FV decay
into charm quarks, dashed line: decay into top quarks. right : corresponding
mixing matrix entries
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6.4 Squark and gluino decays

TU23 leads to flavor violation via ũ1 → χ̃0
2c and ũ1 → χ̃+

1 s [Fig.6.18]. At γ and
I”, these decays look very similar while at SPS1a’, the branching ratio for the
decay into the second lightest neutralinos is about half as large, and the decay into
charginos is almost doubled. We here have an example of additional kinematic
and gaugino/higgsino interference effects. The very dominating decay into χ̃+

1 at
SPS1a’ is also a consequence of the strong top-Yukawa-coupling to the higgsino-like
parts of the chargino.

Figure 6.18: effect of TU23 on the ũ1 sector. left : The solid lines are FV decays
into second generation squarks, the dashed lines into third generation quarks.
right : corresponding mixing matrix elements

When switching on TU32, we observe flavor violation via ũ1 → χ̃0
1c [Fig.6.19].

At first, the ũ1 is (as expected) completely stop-like with considerable LR-mixing.
TU32 induces a change in the hierarchy and the increasing c̃R-like parts decay
almost completely into χ̃0

1c, resulting - together with the decrease of decays into
tops - in a large increase of its branching ratio. Again, at γ and I”, these decays
are almost identical, while at SPS1a’, we observe even larger branching ratios for
ũ1 → χ̃0

1c.
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Figure 6.19: ũ1 flavor violation induced by TU32. left : The solid line represents FV
decays into charm quarks, the dashed line is the flavor conserving decay.(valid
until BR ≈10%, where their roles begin to switch) right : corresponding mixing
matrix elements

6.4.2 ũ2 decays

MQ23, TU32 and MU23 do affect this sector slightly. MQ23 doesn’t induce large
mixings in general, due to its small region allowed by the low energy observables.
With FV turned off, we have roughly 3% ũ2 → χ̃0

1t, 10% ũ2 → χ̃0
2t and 25-30%

ũ2 → χ̃+
1 b for I” and γ.

TU32 induces flavor violating decays into charm quarks (ũ2 → χ̃0
1c) at I” and γ

[Fig.6.20], and into top quarks (ũ2 → χ̃0
1t) at SPS1a’[Fig.6.21], respectively. Since

the ũ2 is - at γ and I” - predominantly t̃L-like, these decays are not very important
without flavor violating parameters. Now, a change in TU32 results in rapidly
growing right-like parts and thus, increasing branching ratios of the mentioned
decays. At SPS1a’ though, the ũ2 is nearly 100% c̃R-like and stop-like parts grow
with TU32.

Figure 6.20: Consequences of TU32 on ũ2 decays. left solid line: decay into charm,
left dashed line: decay into top
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6.4 Squark and gluino decays

Figure 6.21: Effects of TU32 at SPS1a’. left solid line: decay into charm, left
dashed line: decay into top

Figure 6.22: ũ2 decay with MQ23 switched on. left solid line: decay into charm,
left dashed line: decay into top

Figure 6.23: Examples of ũ2 decays at I”, solid line: decays into second generation
quarks. dashed line: decay into third generation quarks
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6.4.3 d̃1 decays

decay data point SPS1a’ data point γ data point I”

d̃1 → χ̃0
1b 0.0346 0.0692 0.06906

d̃1 → χ̃0
2b 0.295 0.281 0.282

d̃1 → χ̃0
3b ≤1% 0.0819 0.0808

d̃1 → χ̃0
4b ≤1% 0.0484 0.0479

d̃1 → χ̃−1 t 0.366 0.413 0.412

d̃1 → χ̃−2 t ≤1% 0.105 0.101

d̃1 → ũ1W
− 0.296 ≤1% ≤1%

d̃2 → χ̃0
1b 0.256 0.190 0.0182

d̃2 → χ̃0
2b 0.105 0.0592 0.0547

d̃2 → χ̃0
3b 0.0342 0.137 0.129

d̃2 → χ̃0
4b 0.0438 0.152 0.143

d̃2 → χ̃−1 t 0.136 0.0794 0.0730

d̃2 → χ̃−2 t ≤1% 0.495 0.462

d̃2 → ũ1W
− 0.426 0.0583 0.0120

Figure 6.24: branching ratios (larger than 1%) of the two lightest down-squarks,
when all flavor violating parameters are switched off.

Looking into the down sector, we observe that MQ23, TD32 and especially MD23
induce significantly large flavor violating decays, while the largest are found at
the SPS1a’ data point. Without any perturbation, d̃1 → χ̃0

1b contributes 5-8 %,
d̃1 → χ̃−1 t about 35 %. The flavor violating d̃1 → χ̃−1 c becomes large enough only
at SPS1a’ by altering MQ23. A considerable change in MD23 leads to very large
FV decays for all three data points [Fig.6.25] - the larger tan β, the smaller the
branching ratio. (up to 12 % at SPS1a’)

Figure 6.25: d̃1 decays at γ, with corresponding mixing matrix elements left solid
line: decay into strange quarks, left dashed line: decay into bottom quarks
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At first, we only have LR-mixing, and with growing MD23, the lighter mixed right-
like state becomes comparable in mass with the left-like, and eventually we find
near 45 degree mixing in the RR part and vanishing left-like contributions. Since
the d̃1 consists almost 100% of right-like parts at large MD23, decays into χ̃0

1s and
χ̃0

1b strongly increase.

6.4.4 d̃2 decays

Without perturbation, we have 2% d̃2 → χ̃0
1b for I”, 12 % for γ and 25 % for SPS1a’.

6 % d̃2 → χ̃0
2b for I” and γ,10 % for SPS1a’, as well as 8-15 % d̃2 → χ̃−1 t for all data

points. With turned on FV, we can see a larger effect of MQ23 at SPS1a’ for the
first time [Fig.6.26]: s̃L-like parts appear, slowly taking the place of the b̃L-like parts
in decays into charginos. For large TD32, the very b̃R-like d̃2 switches into being s̃R-
like [Fig.6.27], massively increasing d̃2 → χ̃0

1s, again at SPS1a’. In the well-defined
regions of flavor violation, we observe a branching ratio of ≈ 30%. At higher TD32,
d̃2 → χ̃0

1s becomes the flavor conserving decay. The flavor violating effects on the
d̃2 squark decays are much less significant at I”.

Figure 6.26: d̃2 MQ23 decays and mixing matrix elements. left solid line: decay
into strange quark. left dashed line: decay into bottom quark

61



6 Evaluation and Results

Figure 6.27: d̃2 TD32 decays and mixing matrix elements. left solid line: decay
into strange quark. left dashed line: decay into bottom quark

Figure 6.28: d̃2 MD23 decays and mixing matrix elements. left solid line: decay
into strange quark. left dashed line: decay into bottom quark

6.4.5 Gluino decays

decay data point SPS1a’ data point γ data point I”

g̃ → ũ1t 0.0983 0.0673 0.0778
g̃ → ũ2c 0.0421 ≤1% ≤1%
g̃ → ũ3u 0.0422 ≤1% ≤1%
g̃ → ũ3c ≤1% 0.0401 0.0385
g̃ → ũ4u ≤1% 0.0401 0.0385
g̃ → ũ4c 0.0217 ≤1% ≤1%
g̃ → ũ5u 0.0216 0.0218 0.0211
g̃ → ũ6c ≤1% 0.0217 0.0208

g̃ → d̃1b 0.110 0.124 0.124

g̃ → d̃2b 0.0453 0.0601 0.0598

g̃ → d̃3s 0.0426 0.0414 0.0398

g̃ → d̃4d 0.0426 0.0414 0.0398

g̃ → d̃5s 0.0150 0.0181 0.0175

g̃ → d̃6d 0.0150 0.0181 0.0175

Figure 6.29: branching ratios (larger than 1%) of gluinos, when all flavor violating
parameters are switched off.

For flavor violating gluino decays, MQ23 is of minor importance, and we only
present MU23 and MD23 sweeps for the u- and d-sector respectively, as well as
TU23 and TU32. You can see the comparison of the FV decay modes into down
squarks at γ and I” below [Fig.6.30], as well as a typical FV decay in the u-sector,
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g̃ → ũ1c [Fig.6.31], which looks very similar at all data points. The SPS1a’ decays
into down squarks are also compareable to I”. The TU23/TU32 dependant gluino
decays are also very similar at all data points, the only noteable difference is at I”,
where the allowed parameter region is shifted almost completely towards negative
values of the parameter.

Figure 6.30: comparison between γ and I” gluino decays sensitive to MD23, left
solid line: decay into strange quarks, left dashed line: decay into bottom quarks.

Figure 6.31: typical decay in the u-sector, here shown at γ.left solid line: decay
into strange quarks, left dashed line: decay into bottom quarks.
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Figure 6.32: Gluino decays depending on TU23/TU32. left solid line: decay into
charm quarks. left dashed line: decay into top quarks.

6.5 Squark and gluino decay
maxima

In this section, we check if the discussed flavor violating decays can become sig-
nificantly (factor three or above) larger when adding a second parameter. Each
interesting decay was probed in every possible parameter interplay. There were few
suprising results, yet we did find a change in the branching ratio of some decays up
to the factor of five.

At SPS1a’, there was a striking discrepancy between the sweep of MQ23 alone and
its parameter interplay with TD23 [Fig.6.33]. The branching ratios of the decays
d̃1 → χ̃−1 c, d̃2 → χ̃−1 c and d̃2 → χ̃0

2s vastly increased by a factor 3 up to factor
6. The reason for this becomes clear if we again take a look at the parameter
interplay between MQ23 and TD23: MQ23 is confined by b→ sγ to a narrow band
in the parameter space. Yet, TD23 determines where the allowed region of MQ23
is located, and allows for significantly larger values of MQ23. When the latter
is switched off, d̃1 is mainly b̃L-like, d̃2 is mainly b̃R-like. With increasing MQ23,
both particles slowly become more s̃L-like, predominantly decaying into charginos
and wino-like neutralinos, together with strange or charm quarks. Although only
a small absolute fraction of the down-squarks is s̃L-like, the increase due to the
enlarged allowed area of MQ23 is significant. Especially for the d̃1, the partner
decay into bottom/top is only slightly affected.
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Figure 6.33: left: parameter interplay MQ23/TD23 right: example of the strong
MQ23 dependence near the absolute allowed maximum TD23 = 0.019

At γ and I”, the above isn’t observed due to the additional confinement of TD23 by
Bs → µ+µ−. There is a very similar effect in the MQ23/TU23 plane, where TU23
influences the b→ sγ constraints on MQ23 and extends its allowed region in a way
that roughly doubles some of the MQ23-dependant branching ratios like ũ1 → χ̃+

1 b.
Since the effect is much smaller than in the MQ23/TD23-plane and essentially the
same, we won’t discuss it here.

Apart from that,we found an anomaly in the parameter plane MQ23/MD23 com-
pared to the MQ sweep alone, affecting the decays d̃2 → χ̃−1 t and d̃2 → χ̃0

2b at
all three data points, roughly by a factor of four at I”/γ and a factor of three at
SPS1a’.[Fig.6.34]
Looking at the parameter plane and the parameter dependencies, we find a rea-
son. MD23 is strongly affecting the above decays, because at MD23 = 0, the d̃2

is almost completely b̃R-like. When switching on MD23, it rapidly induces a large
RR-mixing, leading to flavor violation via d̃2 → χ̃0

1s/b. When MD23 continues
to grow, the d̃2 quickly becomes almost exclusively b̃L-like, which - as we know -
predominantly decays into charginos and wino-like neutralinos (exactly the above
decays). In consequence, d̃2 → χ̃0

1s/b vanishes and the branching ratios of the above
decays increase. Therefore we find the maxima for these in the high MD23 regions.
From the perspective of flavor violation, this effect isn’t too interesting, since in
the high MD23 regions, the partner decays d̃2 → χ̃−1 c and d̃2 → χ̃0

2s become very
small. At SPS1a’, the change in branching ratios is smaller than at the other two
data points, since it provides a larger allowed region for MQ23 and, consequently,
larger branching ratios in the sweep of MQ23 alone.
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Figure 6.34: left: parameter interplay MQ23/MD23. top right: example of the
MD23 at MQ23 = 0. bottom right: MD23 dependence at MQ23 = 0.5, near the
absolute maximum

Figure 6.35: mixing matrix elements for the above discussions. S=solid, D=dashed,
P=points, PD=point-dashed
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7 Summary and Outlook

We showed that in the given nMFV scenarios, we can induce large flavor violation
in the area of parameter space allowed by low energy observables by switching
on off-diagonal elements of the soft SUSY breaking squark masses and trilinear
couplings. At all data points, we observed considerable flavor violation by squark
and gluino decays, for example ũ1 → χ̃0

1c with 30% at γ, ũ2 → χ̃0
1c and d̃1 → χ̃0

1s,
both 10% at γ, and d̃2 → χ̃0

1s with 30% at SPS1a’. An example for FV gluino
decays is g̃ → ũ1c with about 10% at all datapoints.

We investigated the interplay between pairs of flavor violating parameters and
strongly constrained the parameter space by using low energy observables in the B
physics sector. With the help of these interplay observations, we then checked if
the branching ratios of the discussed decays can be significantly larger when manip-
ulating two parameters at once - especially in the MQ23/TD23 and MQ23/TU23
plane at the SPS1a’ data point, this indeed was the case for d̃2 → χ̃−1 c and
d̃2 → χ̃0

2s.

These results gave a first insight in how the possible parameter combinations can
affect each other, and which regions of nMFV MSSM can be excluded by phe-
nomenology. The next step would be to combine the above considerations to cas-
cade decays like g̃ → d̃1b with d̃1 further decaying into sχ̃0

1. One would then look
at differential distributions of jets at the LHC zu extract information about the
underlying parameters.
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8 Appendix

8.1 Rotation into physical fields -
calculations

8.1.1 LI in mass eigenstates

In the first step of the calculation, we use the transformations from section [2.7]
to rotate the fields into mass eigenstates. In each line with Yukawa matrices, an
identity U †qLUqL = U †qRUqR = 1 is added to contract some of the rotation and the
Yukawa matrices to the diagonal quark mass matrices m̂q and the VCKM in the
second step.

Charginos

First step:

LI |q̃qχ̃± = −g[ũ∗p(R
†
uL)pg(U

†
uL)gf (UdL)fkdLkV

†
1nC̃

+
n

+d̃∗p(R
†
dL)pg(U

†
dL)gf (UuL)fkuLkU

†
1nC̃

−
n

+C̃−n Un1uLk(U
†
uL)kf (UdL)fg(RdL)gid̃i

+C̃+
n Vn1dLk(U

†
dL)kf (UuL)fg(RuL)giũi]

(8.1)

+ U †2nC̃
−
n dRk(U

†
dR)kj(Y

T
D )ji(UdL)il(U

†
dL)lm(UuL)mo(RuL)opũp

+ V †2nC̃
+
n uRk(U

†
uR)kj(Y

T
U )ji(UuL)il(U

†
uL)lm(UdL)mo(RdL)opd̃p

+ U †2nC̃
−
n d̃
∗
p(R

†
dR)po(U

†
dR)oj(Y

T
D )ji(UdL)il(U

†
dL)lm(UuL)mkuLk

+ V †2nC̃
+
n ũ
∗
p(R

†
uR)po(U

†
uR)oj(Y

T
U )ji(UuL)il(U

†
uL)lm(UdL)mkdLk

(8.2)
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+ C̃−n Un2ũ
∗
p(R

†
uL)po(U

†
uL)oj(UdL)jl(U

†
dL)lm(Y ∗D)mi(UdR)ikdRk

+ C̃+
n Vn2d̃

∗
p(R

†
dL)po(U

†
dL)oj(UuL)jl(U

†
uL)lm(Y ∗U )mi(UuR)ikuRk

+ C̃−n Un2uLk(U
†
uL)kj(UdL)jm(U †dL)mo(Y

∗
D)oi(UdR)il(RdR)lpd̃p

+ C̃+
n Vn2dLk(U

†
dL)kj(UuL)jm(U †uL)mo(Y

∗
U )oi(UuR)il(RuR)lpũp

(8.3)

Second step:

LI |q̃qχ̃± = −g[ũ∗p(R
†
uL)pg(VCKM)gkdLkV

†
1nC̃

+
n

+d̃∗p(R
†
dL)pg(V

†
CKM)gkuLkU

†
1nC̃

−
n

+C̃−n Un1uLk(VCKM)fg(RdL)gpd̃p

+C̃+
n Vn1dLk(V

†
CKM)fg(RuL)gpũp]

(8.4)

+

√
2

ν1

U †2nC̃
−
n dRk(m̂d)kl(V

†
CKM)lo(RuL)opũp

+

√
2

ν2

V †2nC̃
+
n uRk(m̂u)kl(VCKM)lo(RdL)opd̃p

+

√
2

ν1

U †2nC̃
−
n d̃
∗
p(R

†
dR)po(m̂d)oi(V

†
CKM)ikuLk

+

√
2

ν2

V †2nC̃
+
n ũ
∗
p(R

†
uR)po(m̂u)oi(VCKM)ikdLk

(8.5)

+

√
2

ν1

C̃−n Un2ũ
∗
p(R

†
uL)po(VCKM)ol(m̂d)lkdRk

+

√
2

ν2

C̃+
n Vn2d̃

∗
p(R

†
dL)po(V

†
CKM)ol(m̂u)lkuRk

+

√
2

ν1

C̃−n Un2uLk(VCKM)km(m̂d)ml(RdR)lpd̃p

+

√
2

ν2

C̃+
n Vn2dLk(V

†
CKM)km(m̂u)ml(RuR)lpũp

(8.6)
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Neutralinos

The neutralinos are a bit more work, but also easier due to absence of VCKM .

LI |q̃qχ̃0 =−
√

2g′[
1

6
ũ∗p(R

†
uL)pg(U

†
uL)gf (UuL)fkuLkN1nC̃

0
n

+
1

6
d̃∗p(R

†
dL)pg(U

†
dL)gf (UdL)fkdLkN1nC̃

0
n

+
1

6
uLk(U

†
uL)kf (UuL)fg(RuL)gpũpN

∗
1nC̃

0
n

+
1

6
dLk(U

†
dL)kf (UdL)fg(RdL)gpd̃pN

∗
1nC̃

0
n

(8.7)

−2

3
ũ∗p(R

†
uR)pg(U

†
uR)gf (UuR)fkuRkN

∗
1nC̃

0
n

+
1

3
d̃∗p(R

†
dR)pg(U

†
dR)gf (UdR)fkdRkN

∗
1nC̃

0
n

−2

3
uRk(U

†
uR)kf (UuR)fg(RuR)gpũpN1nC̃

0
n

+
1

3
dRk(U

†
dR)kf (UdR)fg(RdR)gpd̃pN1nC̃

0
n]

(8.8)

− 1√
2
g[d̃∗p(R

†
dL)pg(U

†
dL)gf (UdL)fkdLkN2nC̃

0
n

+ũ∗p(R
†
uL)pg(U

†
uL)gf (UuL)fkuLkN2nC̃

0
n

+uLk(U
†
uL)kf (UuL)fg(RuL)gpũpN

∗
2nC̃

0
n

+dLk(U
†
dL)kf (UdL)fg(RdL)gpd̃pN

∗
2nC̃

0
n]

(8.9)

−N3nC̃
0
ndRk(U

†
dR)kj(Y

T
D )ji(UdL)ig(RdL)gpd̃p

−N4nC̃
0
nuRk(U

†
uR)kj(Y

T
U )ji(UuL)ig(RuL)gpũp

−N3nC̃
0
nd̃
∗
p(R

†
dR)pg(U

†
dR)gj(Y

T
D )ji(UdL)ikdLk

−N4nC̃
0
nũ
∗
p(R

†
uR)pg(U

†
uR)gj(Y

T
U )ji(UuL)ikuLk

(8.10)
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−N∗3jC̃0
nd̃
∗
p(R

†
dL)pg(U

†
dL)gj(Y

∗
D)ji(UdR)ikdRk

−N∗4jC̃0
nũ
∗
p(R

†
uL)pg(U

†
uL)gj(Y

∗
U )ji(UuR)ikuRk

−N∗3jC̃0
ndLk(U

†
dL)kj(Y

∗
D)ji(UdR)ig(RdR)gpd̃p

−N∗4jC̃0
nuLk(U

†
uL)kj(Y

∗
U )ji(UuR)ig(RuR)gpũp

(8.11)

Second step:

LI |q̃qχ̃0 =−
√

2g′N1nC̃
0
n[

1

6
ũ∗p(R

†
uL)pkuLk +

1

6
d̃∗p(R

†
dL)pkdLk

−2

3
uRk(RuR)kpũp +

1

3
dRk(RdR)kpd̃p]

(8.12)

−
√

2g′N∗1nC̃
0
n[−2

3
ũ∗p(R

†
uR)pkuRk +

1

3
d̃∗p(R

†
dR)pkdRk

+
1

6
uLk(RuL)kpũp +

1

6
dLk(RdL)kpd̃p]

(8.13)

− 1√
2
gN2nC̃

0
n[ũ∗p(R

†
uL)pkuLk + d̃∗p(R

†
dL)pkdLk ]

− 1√
2
gN∗2nC̃

0
n[uLk(RuL)kpũp + dLk(RdL)kpd̃p]

−
√

2

ν1

N3nC̃
0
n(dRk(m̂d)kg(RdL)gpd̃p + d̃∗p(R

†
dR)pg(m̂d)gkdLk)

−
√

2

ν2

N4nC̃
0
n(uRk(m̂u)kg(RuL)gpũp + ũ∗p(R

†
uR)pg(m̂u)gkuLk)

−
√

2

ν1

N∗3nC̃
0
n(d̃∗p(R

†
dL)pg(m̂d)gkdRk + dLk(m̂d)kg(R

†
dR)gpd̃p)

−
√

2

ν2

N∗4nC̃
0
n(ũ∗p(R

†
uL)pg(m̂u)gkuRk + uLk(m̂u)kg(R

†
uR)gpd̃p)

(8.14)
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Gluinos

The color indices are supressed:

LI |q̃qG̃ = − g3√
2

[ũ∗p(R
†
uL)pg(U

†
uL)gfλ

a
GM(UuL)fkuLkG̃

a

+uLk(U
†
uL)kfλ

a
GM(UuL)fg(RuL)gpũpG̃a

+d̃∗p(R
†
dL)pg(U

†
dL)gfλ

a
GM(UdL)fkdLkG̃

a

+dLk(U
†
dL)kfλ

a
GM(UdL)fg(RdL)gpd̃pG̃a

(8.15)

−ũ∗p(R
†
uR)pg(U

†
uR)gfλ

a
GM(UuR)fkuRkG̃

a

−uRk(U
†
uR)kfλ

a
GM(UuR)fg(RuR)gpũpG̃

a]

−d̃∗p(R
†
dR)pg(U

†
dR)gfλ

a
GM(UdR)fkdRkG̃

a

−dRk(U
†
dR)kfλ

a
GM(UdR)fg(RdR)gpd̃pG̃

a]

(8.16)

Second step:

LI |q̃qG̃ = − g3√
2

[ũ∗p(R
†
uL)pkλ

a
GMuLkG̃

a + uLkλ
a
GM(RuL)kpũpG̃a

+d̃∗p(R
†
dL)pkλ

a
GMdLkG̃

a + dLkλ
a
GM(RdL)kpd̃pG̃a

−ũ∗p(R
†
uR)pkλ

a
GMuRkG̃

a − uRkλaGM(RuR)kpũpG̃
a]

−d̃∗p(R
†
dR)pkλ

a
GMdRkG̃

a − dRkλaGM(RdR)kpd̃pG̃
a]

(8.17)
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Vector Bosons

L|q̃q̃V = −i g√
2

[ũ∗p(R
†
pg)(U

†
uL)gf∂

µ
↔(UdL)fl(RdL)lkd̃kW

+
µ

+d̃∗p(R
†
pg)(U

†
dL)gf∂

µ
↔(UuL)fl(RuL)lkũkW

−
µ ]

−i g

2cW
[(ũ∗p(R

†
uL)pg(U

†
uL)gf∂

µ
↔(UuL)fl(RuL)lkũkZµ

−d̃∗p(R
†
dL)pg(U

†
dL)gf∂

µ
↔(UdL)fl(RdL)lkd̃kZµ]

(8.18)

+ig
2s2

W

3cW
[ũ∗p(R

†
uL)pg(U

†
uL)gf∂

µ
↔(UuL)fl(RuL)lkũkZµ

+ũ∗p(R
†
uR)pg(U

†
uR)gf∂

µ
↔(UuR)fl(RuR)lkũkZµ]

−ig s
2
W

3cW
[d̃∗p(R

†
dL)pg(U

†
dL)gf∂

µ
↔(UdL)fl(RdL)lkd̃kZµ

+d̃∗p(R
†
dR)pg(U

†
dR)gf∂

µ
↔(UdR)fl(RdR)lkd̃kZµ]

(8.19)

In the second step, we use (R†uL)pl(RuL)lk + (R†uR)pl(RuR)lk = 1. Please note that
RqL and RqR alone are NOT unitary matrices.

L|q̃q̃V = −i g√
2

[ũ∗p(R
†
pg)∂

µ
↔(VCKM)gl(RdL)lkd̃kW

+
µ

+d̃∗p(R
†
pg)(V

†
CKM)gl∂

µ
↔(RuL)lkũkW

−
µ ]

(8.20)

−i g

2cW
[(ũ∗p(R

†
uL)pg∂

µ
↔(RuL)gkũkZµ − d̃∗p(R

†
dL)pg∂

µ
↔(RdL)gkd̃kZµ]

+ig
2s2

W

3cW
[ũ∗p∂

µ
↔ũpZµ + ũ∗p∂

µ
↔ũpZµ]− ig s

2
W

3cW
[d̃∗p∂

µ
↔d̃pZµ + d̃∗p∂

µ
↔d̃pZµ]

(8.21)

74



8.1 Rotation into physical fields - calculations

8.1.2 Dirac notation

We introduce the Dirac spinors of the Charginos and Quarks, as well as the Majo-
rana spinors for Gluons and Neutralinos

χ̃+
j =

(
C̃+
j

C̃−j

)
χ̃−j =

(
C̃−j
C̃+
j

)

χ̃+
j =

(
C̃−j C̃+

j

)
χ̃−j =

(
C̃+
j C̃−j

)

χ̃0
j =

(
C̃0
j

C̃0
j

)
χ̃0
j =

(
C̃0
j C̃0

j

)
(8.22)

g̃ =

(
G̃

G̃

)
g̃ =

(
G̃ G̃

)

Ψu =

(
uL
uR

)
Ψd =

(
dL
dR

)

Ψu =
(
uR uL

)
Ψd =

(
dR dL

)
(8.23)

and use them to write down the Lagrangians in dirac notation. We also replace
1
ν1

= g
2mW cβ

and 1
ν2

= g
2mW sβ

.

Charginos

LI = −g[~̃u∗R†uL(V †1jχ̃
−
j )VCKM P̂LΨd + ~̃d∗R†dL(U †1jχ̃

+
j )V †CKM P̂LΨu

+ΨuP̂R(χ̃+
j Uj1)VCKMRdL

~̃d + ΨdP̂R(χ̃−j Vj1)V †CKMRuL
~̃u]

(8.24)

+
g√

2mW sβ
[ΨuP̂L(V †2jχ̃

+
j )m̂uVCKMRdL

~̃d + ~̃u∗R†uRm̂uVCKM(V †2jχ̃
−
j )P̂LΨd

+ΨdP̂R(χ̃−j Vj2)V †CKMm̂uRuR
~̃u + ~̃d∗R†dLV

†
CKMm̂u(χ̃

+
j Vj2)P̂RΨu]

(8.25)
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+
g√

2mW cβ
[ΨdP̂L(U †2jχ̃

−
j )m̂dV

†
CKMRuL

~̃u + ~̃d∗R†dRm̂dV
†
CKM(U †2jχ̃

+
j )P̂LΨu

+ΨuP̂R(χ̃+
j Uj2)VCKMm̂dRdR

~̃d + ~̃u∗R†uLVCKMm̂d(χ̃
−
j Uj2)P̂RΨd]

(8.26)

= Ψu[P̂L(
g√

2mW sβ
V ∗2jm̂uVCKMRdL)

+P̂R(
g√

2mW cβ
U2jVCKMm̂dRdR − gU1jVCKMRdL)]χ̃+

j
~̃d

+ Ψd[P̂L(
g√

2mW cβ
U∗2jm̂dV

†
CKMRuL)

+P̂R(
g√

2mW sβ
V2jV

†
CKMm̂uRuR − gV1jV

†
CKMRuL)]χ̃−j

~̃u

+h.c.

(8.27)

Neutralinos

LI = Ψu[P̂L(
2
√

2g′

3
N∗1jRuR −

m̂ug√
2mW sβ

N∗4jRuL)

+P̂R(−
√

2g′

6
N1jRuL −

√
2g

2
N2jRuL −

m̂ug√
2mW sβ

N4jRuR)]χ̃0
j
~̃u

(8.28)

+ Ψd[P̂L(
−
√

2g′

3
N∗1jRdR −

m̂dg√
2mW cβ

N∗3jRdL)

+P̂R(
−
√

2g′

6
N1jRdL +

√
2g

2
N2jRdL −

m̂dg√
2mW cβ

N3jRdR)]χ̃0
j
~̃d

+h.c.

(8.29)

Gluinos

LI = Ψu[P̂L(
g3√

2
λGMRuR) + P̂R(− g3√

2
λGMRuL)]g̃~̃u

+ Ψd[P̂L(
g3√

2
λGMRdR) + P̂R(− g3√

2
λGMRdL)]g̃~̃d

+h.c.

(8.30)
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