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Zusammenfassung

Die vorliegende Diplomarbeit beschäftigt sich mit einem supersymmetrischen higgslosen Model
mit einer gekrümmten Extradimension. In Modellen mit kompakten zusätzlichen räumlichen Di-
mensionen kann die elektroschwache Eichsymmetrie ohne ein Higgs-Feld, wie es vom Standard-
modell der Elementarteilchenphysik vorhergesagt wird, durch Randbedingungen gebrochen wer-
den. Die Erforschung dieser Modellen stellt daher einen alternativen Zugang zum Verständnis
der elektroschwachen Symmetriebrechung dar, deren zugrundeliegender Mechanismus bisher
experimentell noch nicht bestimmt werden konnte.

Modelle mit einem exponentiell gekrümmten Randall-Sundrum Raumzeithintergrund, haben
sich in den vergangenen Jahren als besonders vielversprechend erwiesen. In einer Erweiterung
[1] des ursprünglichen Modells [2] werden gekrümmte Extradimensionen mit Supersymmetrie
(SUSY) verbunden. Der Schwerpunkt dieser Arbeit liegt auf der Untersuchung einer neuen und
vergleichsweise sanften Art der SUSY-Brechung auf einer getrennten infraroten

”
Brane“ in der

neuen Dimension.
Die Arbeit ist wie folgt aufgebaut: Zunächst werden in Kapitel eins und zwei die notwendigen

Grundlagen zu Extradimensionen und Supersymmetrie besprochen, um das Modell im dritten
Kapitel einführen zu können. Der Aufbau des Modells auf zwei

”
back-to-back“ Intervallen und

das resultierende Massenspektrum bilden den Ausgangspunkt für alle weiteren Untersuchungen.
Die konkrete Wahl der Randbedingungen und Modellparameter wird in den anschliessenden
Kapiteln vier und fünf für den Eich- und den Materiesektor getrennt diskutiert und konkret
begründet. Wir untersuchen die Kaluza-Klein Wellenfunktionen und geben Näherungslösungen
für die leichtesten Moden des Spektrums an. Zusätzlich zu den Standardmodellteilchen (mit
Ausnahme des Higgs) enthält unser Modell supersymmetrische Teilchen. In unserem Setup ist
das Neutralino mit einer Masse von 80− 95 GeV das leichtesteste supersymmetrische Teilchen
(LSP). Als Folge der SUSY Brechung auf einer separaten infraroten Brane sind im Materiesektor
supersymmetrische Teilchen mit geringeren Massen als der typischen Skala der Kaluza-Klein-
Anregungen von ungefähr 1 TeV möglich. Prinzipiell könnten daher auch die Sneutrinos als
alternative LSP Kandidaten dienen.

In Kapitel sechs berechnen wir die elektroschwachen Präzisionsobservablen S und T und
weisen nach, dass realistische Werte für diese Parameter im Rahmen unseres Modells möglich
sind. In extradimensionalen Modellen ist die Masse eines Teilchens mit einer geometrischen
Interpretation verbunden. Konkret bestimmt die Krümmung der Kaluza-Klein Wellenfunktion
in dem zusätzlichen räumlichen Interval die Masse eines Teilchens. Um das schwere Top Quark
zu reproduzieren, müssen sich die Kaluza-Klein Funktionen der dritten Quarkgeneration stark
von denen der leichten Fermionen unterscheiden, was effektiv zu einer Abweichung der Kopp-
lung führt. Im siebten Kapitel gehen wir auf dieses sogenannte Zblbl Problem ein. Es lässt sich
lösen, indem man die dritte Quarkgeneration in eine erweiterte Repräsentation der SU(2) ein-
bettet, sodass die Kopplung duch Symmetrien geschützt ist. In Kapitel acht untersuchen wir die
Eignung des Neutralino LSP als Kandidat für dunkle Materie. Wir finden, dass die Reliktdich-
te sehr empfindlich von der Neutralinomasse abhängt und mit dem experimentell bestimmten
Wert nur für Neutralinos kurz oberhalb der W -Masse reproduziert werden kann. Als Abschluss
diskutieren wir im neunten Kapitel mögliche Collidersignaturen des skalaren Σ0 Teilchens.
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Introduction

The standard model of elementary particles has certainly earned its current status by its as-
tonishing experimental success. It has predicted W and Z bosons as well as gluons, the top
and the charm quark before these particles were experimentally observed. Also, it is in agree-
ment with remarkable accuracy with almost all presently available data. Including the hitherto
experimentally unconfirmed Higgs boson, electroweak symmetry breaking is realized with the
minimal additional field content of one scalar Higgs.

Despite the success of the standard model, there are strong indications that it is not complete.
In particular, it offers no explanation for dark matter. Non-relativistic dark matter is by indirect
experiments confirmed to contribute to the total energy density of the universe about four times
more than ordinary baryonic matter. Another limitation is the still unanswered question for
the mechanism of electroweak symmetry breaking (EWSB).
Obviously, there is the need for experimental evidence of the presence of the predicted Higgs
boson. If a Higgs boson exists, it most probably will be detected at the LHC. However, the
standard model mechanism is problematic to some extend. The catch phrase here is “hierarchy
problem”: It is known that in order to incorporate gravity, physics at energy scales of the order
of 1019 GeV has to be included into a complete theory. The problem is that a standard model
Higgs field acquires quantum corrections which are quadratically divergent with the cutoff scale.
If that cutoff is at the Planck scale, an incredibly finetuned counterterm would be required to
keep it below the upper bound of mH = 1 TeV, which is necessary to insure unitarity.

The problems of many theorists to accept an unexplained finetuning over nineteen digits
is reflected by the number of alternative suggestions for EWSB mechanisms. Examples are
large extra dimensions [3], Randall-Sundrum models [4], little Higgs [5], fat Higgs [6] and gauge
extensions of the Minimal Supersymmetric Standard Model (MSSM) [7]. All these models
feature a light Higgs field. Supersymmetry (SUSY) stands out for the mathematical significance
of its algebra. The supersymmetric algebra is the only graded Lie algebra consistent with
relativistic quantum field theory [8].

A more radical idea is, instead of taming quantum corrections, to completely abandon the
concept of an elementary Higgs field breaking electroweak symmetry. The earliest represen-
tative of this class of models are technicolor (TC) [9] and its extensions (ETC) [10]. How-
ever, these models suffer from severe phenomenological problems concerning the realization of
fermion masses and flavor changing neutral currents. A further completely higgsless approach
to EWSB are extra dimensions. Especially models of warped extra dimensions with underlying
Randall-Sundrum metric [4] have come into the focus of interest within the last years. The five
dimensional spacetime with one compact extra dimension proposed by the authors of [4] is a
slice of AdS5, which is on one hand a possible solution to Einstein equations with a cosmologi-
cal constant and on the other hand interesting in the context of the AdS/CFT correspondence.
The setup is such that the theory is weakly coupled and Kaluza-Klein excitations appear at
scales within the reach of the LHC. The model is nonrenormalizable, but valid up to about
10 TeV. Electroweak symmetry can be broken by boundary conditions without a Higgs field in
a way that preserves unitarity [11].

A first model including a matter sector with a realistic fermion spectrum, has been proposed
in [2]. Combining higgsless EWSB with one of the most elegant idea of mathematical physics,
a supersymmetric extension of the warped higgsless model was proposed in [1]. The main
motivation was to furnish the model with a viable dark matter candidate. The nature of dark
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Introduction

matter is among the most pressing questions of elementary particle physics.
The non-trivial supersymmetric extension to 5D was realized with the minimal additional

particle content. Analogous to electroweak symmetry breaking, SUSY breaking is done by
boundary conditions. First calculations of LHC signals of this model have been carried out in
[12]. However, the SUSY breaking in [1, 12] is located at the high energy brane which is a rather
brute-force method. Moreover it is entangled with the SU(2)R × U(1)X → U(1)Y breaking,
also located at the UV brane.

In this work, we want to test a more systematic way of supersymmetry breaking by construct-
ing the model upon two AdS5 slices. We have to introduce a couple of new parameters, but
it turns out that most of these parameters, apart from the fermion localizations in the second
interval, are either equivalent to parameters of the original setup with a single AdS5 slice, or
else unimportant for physical observables considered in this work.

The structure of this diploma thesis is as follows: We start by introducing extra dimensional
field theory in chapter one and proceed to Supersymmetry in extra dimensions in the second
chapter. These chapters focus on the concepts necessary for the extended supersymmetric
higgsless model which will be presented in chapter three. Chapter four and five are dedicated to
a detailed discussion of the gauge and the matter sector, explaining the assignment of boundary
conditions and the mass spectrum of the model. We investigate the electroweak precision
observables S and T in chapter six and show that our model passes these first tests of validity.
In the following chapter we discuss the Zblbl problem and a possible solution. In chapter
eight we investigate the neutralino as possible dark matter candidate. Further on we discuss a
possible light scalar particle Σ0 appearing in the supersymmetric spectrum. We conclude this
work summarizing our results.
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1 Extra dimensions

In this chapter, we will discuss extra dimensions. Starting with the flat case, we will then
proceed to warped extra dimensions, which are the foundation of the model investigated in this
thesis.

1.1 Motivation

Kaluza and Klein were considering the possibility of extra dimensions already in 1921 [13] and
1926 [14]. This was only a couple of years after the centuries old concept of three dimensional
Newtonian space had been replaced by the four dimensional Minkowski spacetime. Their main
motivation was to unify electromagnetism with gravity. Later on, in the context of string
theory, extra dimensions1 entered the game again. In our case, extra dimensions are of interest
because on one hand they can solve the problem of hierarchy and scales in a very elegant way
[4]. On the other hand, they give a direct geometrical interpretation of quantities like mass and
couplings, which in the 4D picture are merely parameters.

Obviously, if extra dimensions are present, they must be different from the four we observe.
The reason why they are hidden could be for example that they are finite and sufficiently small
to lie beyond the so far experimentally accessible energy range. Whether or not the presence of
extra dimensions would be detectable does not only depend on the size of the extra dimension.
For example, one could allow only a few particles to travel along the additional dimension.

Randall and Sundrum introduced an exponentially curved extra dimension in [4] and showed
how the exponential can be used for explaining widely separated energy scales quite naturally.

In the following sections, we will discuss, using simple examples, the features of extra dimen-
sions and the field theoretical approach to them.

1.2 Flat extra dimensions

Let us start with an additional flat spacetime coordinate confined to an interval [0, πR]. The
new coordinate is embedded by defining

(xµ, y) = xM ∈ R
4 × [0, πR] , (1.1)

where M runs over 0, 1, 2, 3, 5. The flat 5D metric with one additional spacelike dimension
reads ηMN = diag(1,−1,−1,−1,−1). We will use µ, ν = 0, 1, 2, 3 when referring to 4D
Lorenz indices.

1.2.1 Kaluza-Klein decomposition

Any field φ(x, y) is now a function of all 5 dimensions. We make the ansatz:

φ(x, y) =

∞∑

n=0

φn(x)fn(y), (1.2)

1And at least six of them.

3



1 Extra dimensions

because we know from Fourier analysis that, due to the compact interval, the y-dependence
can be described by a complete, countably infinite tower of linearly independent functions
fn(y). In the context of extra dimensions, the Fourier approach is called Kaluza-Klein (KK)
decomposition. Throughout this work, we will refer to the fn(y) as KK functions. The 4D
fields φn(x) will be called coefficient functions. The explicit form of the KK functions on the
compact interval can be determined by the dynamics and boundary conditions on the branes
which are limiting the extra dimension.

1.2.2 Nonrenormalizability

In five dimensions, the action reads S =
∫

dx5L instead of S =
∫

dx4L. Therefore the 5D fields
necessarily have a mass dimension 1/2 higher than 4D fields. Consequently, operators which
are renormalizable in four dimension in become non-renormalizable in higher dimensions. To
give an example, the familiar interaction ΨAΨ is of mass dimension 4 in the 4D theory but
of dimension 5 1/2 in the 5D theory. It has to be multiplied with Λ-1/2

c , where Λc defines the
relevant scale and is of mass dimension one. Therefore, the interaction is non-renormalizable.

In the following we will mostly integrate over the fifth dimension and consider the result-
ing effective 4D theory. In this picture, the resulting infinite tower of Fourier modes leads to
an infinite number of corrections which cannot be absorbed with a finite number of countert-
erms. Thus, an extra dimensional model cannot describe the complete physics but has to be
interpreted as an effective theory, valid only below a cutoff scale Λc.

1.2.3 Fields in extra dimensions

The generalization of the Langrangian to 5D is straightforward. In the case of scalar fields, the
derivatives ∂µ are replaced by ∂M . In the following, we will start with the simplest example
of a scalar field and afterwards discuss gauge fields in a flat compact extra dimension. The
treatment of spinor fields will be postponed until warped extra dimensions have been discussed.

Scalar field

The free action of a scalar field in 5D is

S =
1

2

∫

d4x

∫ πR

0

dy ∂Mφ∂
Mφ . (1.3)

Using the KK expansion (1.2) and integration by parts, this can be written as

S =
1

2

∑

m,n

∫

d4x







∂µφ

m∂µφn
∫ πR

0

fmfndy

︸ ︷︷ ︸

Zmn

−φmφn
∫ πR

0

fn∂5∂5f
mdy

︸ ︷︷ ︸

Mmn

+φnφm · [fm∂5f
n]πR0

︸ ︷︷ ︸

Bmn




 . (1.4)

We see that the scalar field, which is massless in the 5D picture, obtains a mass term Mnm

when integration over the extra dimension is performed. We define the operator Ô := ∂2
5 and

choose the fn to be orthogonal eigenfunctions satisfying

Ôfn = −m2
nf

n. (1.5)

4



1.2 Flat extra dimensions

Canonical normalization is then obtained by rescaling the already orthogonal eigenfunctions
such that

Zmn = δmn .

Brane localized terms B, arising from integration by parts, will modify the 5D dynamics via
the equations of motion (e.o.m. ) on the boundaries. To make the action (1.4) independent of
these terms, it is necessary to choose boundary conditions such that Bmn vanishes for all m, n.
In this case we say the boundary conditions are compatible with the variation of the action.

Once compatible boundary conditions on both ends of the interval have been imposed, the
differential equation (1.5) can be solved leading to the explicit expressions for the tower of KK
functions.

Gauge field

For gauge fields some specific subtleties regarding gauge fixing arise, which are worthwile to
discuss. We will at first constrain ourselves to the abelian case. The generalization to the
non-abelian case is straightforward. In five dimensions, the gauge action can be rewritten as

S4D = −1

4

∫

d4xFµνF
µν → S5D = −1

4

∫

d5xFMNF
MN . (1.6)

For brevity we used
∫
d5x instead of the more explicit

∫
d4x
∫ πR

0 dy.
Due to the extra dimension, the 5D vector field gains an additional component A5. The KK
expansion reads:

Aµ(x, y) =
∑

n

Anµ(x)f
n(y)

A5(x, y) =
∑

k

Ak5(x)gk(y)
(1.7)

To expand the parts containing this additional field we rewrite the action as

S = −1

4

∫

d5x
(
FµνF

µν + 2∂µA5∂µA
5 + 2∂5Aµ∂

5Aµ − 4∂5A
µ∂µA5

)
. (1.8)

Variation with respect to A5 leads to the equation of motion

�Ak5(x) · gk(y)− ∂µAµ, k(x) · ∂5f
k(y) = 0 , (1.9)

where we have used the separation ansatz of (1.2) and orthogonality of the mass eigenfunctions.
In order to satisfy this equation, we require

∂5f
k(y) = gk(y). (1.10)

As fk and gk are both eigenfunctions to Ô, it is straightforward to show that their eigenvalue
spectrum is identical. In the case of mn = 0, either fk(y) or gk(y) vanishes, while the other
takes a constant value.

To avoid the last term in (1.8) which mixes Aµ and A5, we choose the gauge fixing:

Lgf = − 1

2ξ

(
∂µA

µ + ξ∂5A
5
)2

(1.11)

Since the extra dimension is compact and the Minkowski space is not, in principle there is
no symmetry under 5D Lorentz transformations. This is also reflected in the different KK

5



1 Extra dimensions

expansions. So we lose nothing by choosing a gauge fixing term where the fifth component of
the gauge fields is explicitly treated in a different way than the other four.As combined action
of (1.8) and (1.11) we finally obtain

S =

∫

d5x
[1

2
Aµ

(

�gµν − (1 − 1

ξ
)∂µ∂ν − ∂5∂5η

µν
)

Aν −
1

2
A5 (�− ξ∂5∂5)A5

]

=

∫

d5x
∑

n

[1

2
Anµ

(

(� +m2
n)η

µν − (1− 1

ξ
)∂µ∂ν

)

Anν

−
∑

k

1

2
Ak5
(
� + ξm̃2

k

)
Ak5

]

,

(1.12)

where we have assumed canonical normalization and vanishing boundary action. We identify
this as the action of a tower of vector fields Anµ with masses mn and another tower of scalar

fields An5 with masses
√
ξm̃k. As we have discussed above, mn = m̃n is satisfied because the

gauge fields are connected by equations of motion. Thus, the unphysical part in the gauge
propagator of Aµ cancels with the scalar contribution of A5, analogous to the cancellations
with the Goldstone bosons in the SM.

1.3 Boundary conditions

In extra dimensional models the masses of 4D fields stem, like in (1.4), from integrals over
∂5 derivatives which we name M. Therefore, masses are determined by the form of the KK
functions, which in turn are fixed by imposing boundary conditions. In particular, massless
fields requireM = 0 and therefore have flat KK wave functions.

First of all, boundary conditions should of course be chosen to be compatible with the sym-
metries imposed on the Lagrangian for physical reasons. Additionally, the conditions have to be
assigned in a way that the boundary action term, stemming from integration by parts, vanishes
in the variation. As can be seen in (1.4), the resulting boundary action B is of the general form
f∂5f . For a single field the simplest solution is to impose either

a Neumann ∂5f(y)|y=0,πR = 0

or a Dirichlet f(y)|y=0,πR = 0

boundary condition. In the case of Dirichlet boundary conditions the flat KK functions of mass-
less fields have to be zero in the entire extradimensional interval such that the corresponding
field is removed from the theory. In contrast, Neumann boundary conditions allow massless
solutions.

1.3.1 Coupled boundary conditions

In the case of coupled boundary conditions only the sum of boundary action terms has to vanish
and not the individual parts. Assume for instance that symmetries allow a coupled boundary
condition:

AL − AR|y=y0 = 0 (1.13)

As the boundary condition has to be satisfied at all spacetime points xµ, the coefficient functions
have to be identical

A
(k)
L (x) = A

(k)
R (x) =: A(k)(x), (1.14)

and (1.13) reduces to the condition

f
(k)
R (y0) = f

(k)
L (y0). (1.15)
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1.4 Warped extra dimensions

The brane localized action from integration by parts is:

B = AL∂5AL +AR∂5AR
(1.14)
= A2(x)

(

fL(y0)f
′
L(y0) + fR(y0)f

′
R(y0)

)

(1.15)
= A2(x)fL(y0)

(

f ′
L(y0) + f ′

R(y0)
)

(1.16)

To make it vanish, the second boundary condition on that brane has to be f ′
L(y0) = −f ′

R(y0).
A very elegant method for solving a system of fields coupled by boundary conditions at an
arbitrary number of branes, using a matrix mechanism, has been developed by A. Knochel [15].

In the case of fields connected by equations of motion (e.o.m.), like e. g. Aµ = Aµ(x)f(y) and
A5 = A5(x)g(y), the boundary conditions for one field automatically determine the boundary
conditions for the other field. As we have discussed, ∂5f

k(y) = gk(y) is required by the e.o.m. for
all y. So when we assign a Neumann boundary condition to a Aµ field, for consistency A5 has
to be assigned a Dirichlet boundary condition and vice versa.

1.3.2 Brane localized terms

A possibility to modify boundary conditions and therefore the corresponding mass spectrum and
couplings are brane localized terms. These are additional local contributions to the Lagrangian
added at y = y0, where y0 is the position of a brane limiting the extradimensional interval.
Generally one distinguishes between localized mass terms of the form

Ly0,mass =
1

2
Mijφiφjδ(y − y0)

and kinetic terms with the structure

Ly0,kin = κ∂µφ∂
µφδ(y − y0).

In the e.o.m., localized terms lead to an additional contribution proportional to δ(y− y0). This
causes a discontinuity of either φ or φ′, thus modifying either the Dirichlet or the Neumann
boundary condition.

1.4 Warped extra dimensions

After this warm-up, let us proceed to warped extra dimensions. It turns out that models of
warped extra dimensions have attractive phenomenological properties that flat extra dimen-
sions cannot provide.

As before in the case of flat extra dimensions, the Lorentz indices running over 0, 1, 2, 3, 5
will be named M,N and the ones going 0, 1, 2, 3 are named µ, ν. To distinguish warped and flat
objects it will be sufficient to explicitly refer to the warped Randall-Sundrum metric as gMN

and to the flat 5D Minkowski metric as ηMN . The corresponding 4× 4 subtensors are gµν and
ηµν . Similarly, we will denote the warped Dirac matrices γ̂M (γ̂µ) and the flat ones γM (γµ).
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1 Extra dimensions

1.4.1 The Randall-Sundrum metric

The most promising realization of a warped space known today was proposed by Randall and
Sundrum in 1999 [4]. They introduced an exponentially curved background metric:

gMN =











e−2Rky 0 0 0 0

0 −e−2Rky 0 0 0

0 0 −e−2Rky 0 0

0 0 0 −e−2Rky 0

0 0 0 0 −R2











(1.17)

The parameter k denotes the curvature and Rk the size of the extra dimension. The exponential
is the key to solve the problem of widely separated scales. A Planck scale mass of Mpl ≈
1019 GeV, located at y = 0, will be weighted by a factor of e−Rkπ at the other end of the
extradimensional interval, y = π. So, when Rkπ is chosen appropriately (Rkπ ≈ 37), the
Planck mass parameter is “redshifted” to the TeV scale. The warped spacetime described by
(1.17) is a slice of AdS5. Randall and Sundrum showed that such a slice with two branes and
suitable cosmological constants is a solution to Einstein equations with a cosmological constant
in 5D. The AdS5 slice is especially interesting because of the AdS/CFT correspondence [16].
The correspondence establishes a relation between the Randall-Sundrum (RS) extradimensional
setup and conformal field theories, where symmetry is dynamically broken by strong interaction.

1.4.2 Warped spacetime

For clarity, in this subsection we will introduce additional Lorentz indices a, b running over
0, 1, 2, 3, 5. While the Riemann indices M,N denote the warped spacetime coordinates, a, b
explicitly refer to flat coordinates.

When leaving the usual flat spacetime, we need to define what is meant by covariant derivative
in curved spacetime and generally understand how the underlying metric affects the fields living
on it. On an arbitrary manifold, one can define a tangent space at each point spanned by
orthonormal vectors.

In general, it is not possible to compare vectors at two points of the manifold, because they
are elements of two different tangent spaces. To define the covariant derivative, one requires
a map which defines the connection between corresponding tangential spaces. The generators
of the parallel transport of a vector from one spacetime point to another are the Christoffel
symbols ΓPMN . Using the Christoffel symbols, one can define the covariant derivative of a vector
AN by

DMAN ≡ ∂MAN − ΓPMNAP , (1.18)

where, in addition to the usual ∂MAN , we take parallel transport into account as well.
Parallel transport has to fulfill metricity:

DMgNP = ∂MgNP − ΓQMNgQP − ΓQMP gNQ = 0 (1.19)

It also has to be symmetric, i.e. torsion-free:

ΓPMN − ΓPNM = 0 (1.20)

These two requirements lead to the recipe how the Christoffel symbols are derived from the
metric, given by

ΓPMN ≡
1

2
gPL (∂MgNL + ∂NgML − ∂LgMN ) . (1.21)
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1.4 Warped extra dimensions

To be in agreement with general relativity, our theory needs to be invariant under general
coordinate transformations (diffeomorphisms). Thus, we need to quantify how diffeomorphisms
act on the fields. This is trivial for scalar fields and we also know that the behavior of vector
fields under a general coordinate transformation is described by the usual Jacobian. It is not
so intuitive to define how spinor fields transform.

However, since our spacetime locally has Minkowski metric, we can go into the local Lorentz-
frame, where we are familiar with spinors. We define as orthogonal basis vectors the vielbeins
eaN . These connect the local Minkowski metric ηab with the warped metric tensor gMN through

gMN = ηabe
a
Ne

b
M . (1.22)

Note that this expression is invariant under local Lorentz transformations acting on a, b. Now, a
spinor should be independent of the specific choice of the local Lorentz-frame. This is equivalent
to requiring local gauge invariance, and so the covariant derivative reads

DMΨi = ∂MΨi + ω j
M iΨj. (1.23)

The gauge field for the Lorentz group, ωM , is called the spin connection. As in the case of
the Christoffel symbol, consistency arguments determine how it is derived from the underlying
metric. By requiring

DMe
a
N = ∂Me

a
N + ΓLMNe

a
L + ω a

M be
b
N = 0 , (1.24)

we find
ωaM b = eaNe

P
b ΓNMP − (∂M e

a
N)eNb . (1.25)

We see that in flat spacetime, where the vielbeins eaN are constant, the spin connection vanishes.
One can check that

DMγ
N
ij = ∂Mγ

N
ij + ΓNMLγ

L
ij + ω k

M iγ
N
kj + ω k

M jγ
N
ik = 0 (1.26)

is satisfied.
The ωM ij carrying spinor indices are related to the ωM ab via the Lorentz generators by

ωMij = − i
4
ωMab Λabij = − i

4
ωMab

i

2

[
γa, γb

]

ij
. (1.27)

In the case of the RS metric (1.17) we use µ, ν and an explicit fifth coordinate. The only
nonvanishing Christoffel symbols are

Γ5
µν = − k

R
gµν and Γµ5ν = Γνµ5 = −RkδMN . (1.28)

The fünfbeins are given by

eaµ = e−Rkyδaµ, e55 = R, (1.29)

eµa = eRkyδµa e5
5

= 1/R, (1.30)

where we have denoted the index of the flat fifth component with a bar. There are two non-
vanishing spin connection coefficients

ωµ5a = −ωµa5 = ke−Rkyηµνδ
ν
a , (1.31)

hence the spin connection corresponding to the Randall-Sundrum metric is

ωµij = −1

8
ke−Rkyηµνδ

ν
a(
[
γ5, γa

]

ij
−
[
γa, γ5

]

ij
) =

1

2
ke−Rkyηµνγ

5γa . (1.32)
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1 Extra dimensions

1.4.3 Spinor fields in warped space

Fermions in five dimensional spacetime form representations of the 5D Lorentz group. The
smallest irreducible representation is a Dirac fermion with four components, while in the usual
4 dimensions the smallest representation of the 4D Lorentz group is a Weyl fermion with two
components. The 5D action of a fermion is:

S =

∫

dx5√g
[
i

2

(
Ψγ̂M (DMΨ)− (DMΨ)γ̂MΨ

)
−MbulkΨΨ

]

(1.33)

To make the action diffeomorphism-invariant, it always has to be equipped with a factor√
g :=

√
detg which is

√
g = Re−4Rky for the RS metric.

It can be checked using (1.19) and (1.26), that by performing integration by parts we can
rewrite (1.33) as

S =

∫

dx5√gΨ
[
iγ̂MDM −Mbulk

]
Ψ +

[∫

dx4√gΨγ̂MΨ

]π

0
︸ ︷︷ ︸

B

. (1.34)

With

Ψγ̂MDMΨ = Ψ

[

eRkyγµ∂µ + γ5 ∂5 − 2Rk

R

]

Ψ (1.35)

and expressing the bulk mass in units of the RS curvature c := Mbulk/k, the fermionic action
up to boundary terms is:

∫

dx5√gΨ

[

ieRkyγµ∂µ +
1

R

(

−∂5 + (2 − c)Rk
∂5 − (2 + c)Rk

)]

Ψ (1.36)

Writing Ψ = (η, χ)T in components, we obtain the equations of motion

−eRkyi σµ∂µη +
∂5 − (2 + c)Rk

R
χ = 0

and − eRkyiσµ∂µχ+
−∂5 + (2 − c)Rk

R
η = 0 .

(1.37)

Using KK decomposition

Ψ =

( ∑

n η
n(x)fnη (y)

∑

n χ
n(x)fnχ (y)

)

and the 4D e.o.m.

iσ̄µ∂µη
n −mnχ̄

n = 0 ,

iσµ∂µχ̄
n −mnη

n = 0 ,
(1.38)

this leads to the coupled equations for the KK functions:

−eRkymnf
n
η +

1

R
(∂5 − (2 + c)Rk)fnχ = 0

−eRkymnf
n
χ +

1

R
(−∂5 + (2 − c)Rk)fnη = 0

(1.39)
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1.4 Warped extra dimensions

Writing down the derivatives of (1.39) and plugging in the equations themselves again, one
obtains the decoupled differential equations

(
∂2
5

R2
− 5k

∂5

R
+ (m2

ne
2Rky − (c2 + c− 6)k2)

)

fnη = 0 ,

(
∂2
5

R2
− 5k

∂5

R
+ (m2

ne
2Rky − (c2 − c− 6)k2)

)

fnχ = 0 .

(1.40)

The solutions are

fnη (y) = e5Rky/2
[

anJc+1/2

(mn

k
eRky

)

+ bnYc+1/2

(mn

k
eRky

)]

,

fnχ (y) = e5Rky/2
[

anJc−1/2

(mn

k
eRky

)

+ bnYc−1/2

(mn

k
eRky

)] (1.41)

where Ji and Yi are the Bessel functions.

1.4.4 Gauge fields in warped space

In warped spacetime, the action (1.8) is replaced by

S =

∫

dx5√g
[

−1

4
gMNgOPFMOFNP

]

=

∫

dx5 R

[

−1

4
ηµνηωρFµωFνρ +

1

2R2
e−2RkyηµνFµ5Fν5

] (1.42)

and the gauge fixing (1.11) in warped space reads

Sgf = −
∫

dx5 R

2ξ

(

ηµν∂µAν − ξ
e−2Rky

R
(∂5 − 2Rk)A5

)2

. (1.43)

By variation we obtain the equation of motion:

�Aµ −
(

1 − 1

ξ

)

∂µ∂νA
ν − e−2Rky

R2
(∂5 − 2Rk)∂5Aµ = 0 . (1.44)

Making use of the KK decomposition (1.7) and the usual 4D e.o.m.

�Aµ,n −
(

1 − 1

ξ

)

∂µ∂νA
ν
n = −m2

nAµ,n , (1.45)

we end up with the differential equation

e−2Rky

R2

(
∂2
5f

n − 2Rk∂5f
n
)

+ m2
nf

n = 0. (1.46)

Again, the solutions are combinations of Bessel functions

fn(y) = eRky
[

anJ1

(mn

k
eRky

)

+ bn Y1

(mn

k
eRky

)]

. (1.47)

1.4.5 Scalar fields in warped space

The Lagrangian of a scalar field on a RS background is:

L =
1

2

∫

dy
√
g
[
gMN∂Nφ∂Mφ−M2

bulkφ
2
]

= −1

2

∫

dy
√
g

[

e2Rkyφ�φ− φ
(
∂5∂5

R2
− 4k

∂5

R
−M2

bulk

)

φ

]

+
1

2

[

−e
−4Rky

R
φ∂5φ

]π

0
︸ ︷︷ ︸

B

(1.48)
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1 Extra dimensions

Using KK decomposition (1.2) and �φn = −m2
nφ

n, we find

fn(y) = e2Rky
[

anJ√4+(Mbulk/k)2

(mn

k
eRky

)

+ bnY√4+(Mbulk/k)2

(mn

k
eRky

)]

. (1.49)

The correct bulk mass term will be determined by the respective supersymmetric partner fields.
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2 Supersymmetry in 5D warped space

Supersymmetry (SUSY) is probably the best investigated theory of physics beyond the standard
model. It postulates a relationship between elementary particles of different quantum nature,
bosons and fermions, and nontrivially links spacetime and internal symmetries. Supersymmetry
was first discovered around 1970/71. Then in 1973, J. Wess and B. Zumino extended the two-
dimensional Supersymmetry discovered in string theory to four dimensional field theories and
thus laid the foundation for supersymmetric models of elementary particles. The Wess-Zumino
model proposed in 1974 is still popular as toy model to understand properties of supersymmetric
field theory. H. Georgi and S. Dimopoulos finally constructed the first realistic supersymmetric
version of the standard model in 1981, the minimal supersymmetric standard model (MSSM).
Since in this model supersymmetric particles are expected in the mass range of 100 GeV to
1 TeV, there is a good chance that, if Supersymmetry is realized in nature, the LHC will
find the first experimental signs of these particles. Supersymmetry provides a solution of the
hierarchy problem, which is based on cancellation of divergencies between loops containing
standard model particles and the according graphs containing their supersymmetric partners.
It also offers stable dark matter candidates as required by cosmology.

The most general Lie algebra of symmetries of the S-Matrix consistent with relativistic quan-
tum field theory is constrained by the powerful no-go theorem of Coleman and Mandula. The
Coleman-Mandula theorem is relaxed somehow by the generalization of Lie algebras to graded
Lie algebras, including anticommutators {, } in addition to the usual commutator [, ]. A graded
Lie algebra schematically takes the form:

{Q,Q′} = X , [X,X ′] = X ′′ , [Q,X ] = Q′′ (2.1)

where Q, Q′ and Q′′ represent the anticommuting or odd part of the algebra and X , X ′ and
X ′′ the commuting (even) part.

Haag, Sohnius and Lopuszanski proved that of all graded Lie algebras, only the Supersym-
metry algebras generate symmetries of the S-matrix consistent with relativistic quantum field
theory [8].

2.1 A brief introduction to 4D SUSY

In this section the basics of superfields in the usual 4 dimensional flat space will be briefly intro-
duced. This should serve to fix the notation before discussing SUSY in warped 5D spacetime.
A comprehensive and detailed description of constructing a supersymmetric field theory can be
found in [17].

2.1.1 Supersymmetric algebra

In addition to the well-known Poincaré algebra, defined by

[Pµ, Pν ] = 0 (2.2)

[Mµν ,Mρσ] = i(gµρMµσ − gµσMνρ − gµρMνσ − gνσMµρ) (2.3)

[Mµν , P ρ] = i(gνρPµ − gµρP ν) (2.4)
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2 Supersymmetry in 5D warped space

the most general supersymmetric algebra contains:
[
Pµ, Q

L
α

]
=
[
Pµ, Q̄α̇L

]
= 0

[Pµ, Bl] =
[

Pµ, X
dLM
]

= 0

{QL
α , Q̄α̇M} = −2σµαα̇Pµδ

L
M ,

{QL
α , Q

M
β } = εαβX

dLM

{Q̄α̇L, Q̄β̇M} = εα̇β̇X
+
dLM ,

[

X
dLM , Q̄α̇K

]

=
[

X
dLM , QK

α

]

= 0
[

X
dLM , X

dKN
]

=
[

X
dLM , Bl

]

= 0

[Bµ, Bν ] = ic ρµνBρ
[
QL
α , Bµ

]
= S Lµ MQ

M
α

[
Q̄α̇L, B

µ
]

= −S∗µ M
L Q̄α̇M

X
dLM = aµ,

dLMBµ

(2.5)

QL
α is the SUSY generator. Greek indices α, β denote two-component Weyl spinors and take

the values 1, 2. Capital letters L, M correspond to an inner space and run from 1 to N . SUSY
algebras with N > 1 are called extended SUSY algebras.

According to the Coleman-Mandula theorem all even generators are either part of the Poincaré
algebra P = span(Pµ,Mµν) or belong to a compact Lie algebra A. A is the direct sum of a
semisimple Lie algebra A1 and an abelian Lie algebra A2. Thus, Bµ is a scalar Lorentz operator

from A1⊕A2. X
dLM is called central charge. The hat on the indices indicates antisymmetricity:

X
dLM = −XdML. It can be showed that X

dLM ∈ A2 and that central charges, if present, must

be of the form X
dLM = aµ,

dLMBµ. The aµ are the “intertwiners” between the representations
Sµ and −S∗µ. S LµM is a hermitian matrix from A1 ⊕A2.

2.1.2 Superfields

Introducing anticommuting Grassmann parameters ξ, the SUSY algebra (2.5) can be rewritten
in terms of commutators only. The N = 1 SUSY algebra without central charges reads:

[
ξQ, ξ̄Q̄

]
= −2ξσµξ̄Pµ

[ξQ, ξQ] =
[
ξ̄Q̄, ξ̄Q̄

]
= 0

[Pµ, ξQ] =
[
Pµ, ξ̄Q̄

]
= 0

(2.6)

The infinitesimal SUSY transformation δξ of a field A is defined as

δξA = (ξQ+ ξ̄Q̄)A . (2.7)

From (2.6) it follows directly that the commutator of two SUSY transformations has to close
irrespectively of the field

(δηδξ − δξδη)A = 2i(ησµξ̄ − ξσµη̄)∂µA
=⇒ [δη, δξ] = −2(ησµξ̄ − ξσµη̄)PµA .

(2.8)

The group element of the SUSY algebra (2.6) is defined as

G(xµ, θ, θ̄) = ei(x
µPµ+θQ+θ̄Q̄) . (2.9)
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2.1 A brief introduction to 4D SUSY

Using the Haussdorff formula it can be showed that

G(0, ξ, ξ̄)G(xµ, θ, θ̄) = G(xµ + iθσµξ̄ − iξσµθ̄, θ + ξ, θ̄ + ξ̄) .

The motion in the parameter space induced by multiplication of two group elements g(ξ, ξ̄) :
(xµ, θ, θ̄)→ (xµ + iθσµξ̄ − iξσµθ̄, θ + ξ, θ̄ + ξ̄) can be generated by ξQ+ ξ̄Q̄. Hence, one finds
the explicit differential operators Q and Q̄:

Qα =
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ

Q̄α̇ =
∂

∂θ̄α̇
+ iθασµ

αβ̇
ǫβ̇α̇∂µ

(2.10)

Considering right multiplication instead of left multiplication, we find the induced motion to
be generated by the differential operators D and D̄, which read:

Dα =
∂

∂θα
− iσµαα̇θ̄α̇∂µ

D̄α̇ = +
∂

∂θ̄α̇
− iθασµαα̇∂µ

By definition they satisfy the anticommutation relations

{Dα, D̄α̇} = −2iσµαα̇∂µ ,

{Dα, Dβ} = {D̄α̇, D̄β̇} = 0 , (2.11)

and anticommute with Q

{Dα, Qβ} = {Dα, Q̄β̇} = {D̄α̇, Qβ} = {D̄α̇, Q̄β̇} = 0 . (2.12)

The general superfield F is a function of the superspace denoted by z = (x, θ, θ̄) and can be
written as a fourth order expansion in θ

F (x, θ, θ̄) = f1(x) + θf2(x) + . . .+ θθθ̄θ̄f9(x) . (2.13)

Since Grassmann variables anticommute, all orders higher than θθθ̄θ̄ must vanish.

Superfields form linear representations of the Supersymmetry algebra. These representa-
tions are in general highly reducible. The problem to find supersymmetric representations is
equivalent to find covariant constraints for the superfields, eliminating extra component fields.

Chiral superfields

Chiral superfields are defined by the constraint

D̄α̇Φ = 0 . (2.14)

In the coordinates yµ = xµ + iθσµθ̄, the chiral multiplet takes a particularly simple form

Φ = φ(x) + iθσµθ̄∂µφ(x) − 1

4
θθθ̄θ̄�φ(x) +

√
2θΨ(x)− i√

2
θθ∂µΨ(x)σµθ̄ + θθF (x)

x→y
= φ(y) +

√
2θΨ(y) + θθF (y) .

(2.15)
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2 Supersymmetry in 5D warped space

Vector superfields

The vector superfields are defined by another constraint

V = V † (2.16)

Obviously, V − (Γ + Γ†) is again a vector superfield for every superfield Γ. If Γ is a chiral field
satisfying (2.14), one can explicitly write down the transformations induced by

V → V − (Γ + Γ†) (2.17)

on the component fields. One will find that the θσµθ̄ coefficient field Aµ transforms like

Aµ → Aµ + i∂µ (φ− φ∗) = Aµ − 2∂µ Imφ.

The similarity to standard gauge transformation is the motivation to define (2.17) to be the
supersymmetric generalization of a gauge transformation. In the Wess-Zumino gauge, all com-
ponents affected by this gauge transformation, except of Aµ, are zero. Then we are left with

V = −θσµθ̄Aµ + iθθθ̄λ̄− iθ̄θ̄θλ+
1

2
θθθ̄θ̄D. (2.18)

One can check that λ and D are invariant under (2.17).

2.1.3 SUSY Lagrangian

A supersymmetric Lagrangian of course has to be invariant under SUSY transformations,
i.e. SUSY transformation may only give total (spacetime) derivatives. To be renormalizable,
the Lagrangian has to be of mass dimension 4.

Chiral part of the Lagrangian

Without proof we state that the most general renormalizable Lagrangian which can be con-
structed using only chiral superfields is given by:

L = Φ†
iΦj

∣
∣
∣
θθθ̄θ̄

+

[(
1

2
mijΦiΦj +

1

3
gijkΦiΦjΦk + λiΦi

)∣
∣
∣
∣
θθ

+ h.c.

]

= −i∂µΨ̄iσ̄
µΨi − φ∗�φi −

1

2
mikΨiΨk −

1

2
m∗
ikΨ̄iΨ̄k

− gijkΨiΨjφk − g∗ijkΨ̄iΨ̄jφ
∗
k − V(φi.φ

∗
j ),

(2.19)

with mij and gijk being symmetric in their indices. When inserting the explicit expression for
a chiral superfield (2.14) into the first line of (2.19), one sees that the component F is not a
dynamical field and can be eliminated. Therefore, the second line of (2.19) does not contain
the auxiliary field F but only the (non-negative) potential V = F ∗

kFk = V(φi.φ
∗
j ).

Gauge part of the Lagrangian

To construct the gauge part of the Lagrangian, one defines the supersymmetric field strength
tensors

Wα = −1

4
D̄D̄DαV ,

W̄α̇ = −1

4
DDD̄α̇V ,

(2.20)
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2.1 A brief introduction to 4D SUSY

which are just chiral fields and invariant under gauge transformations (2.17). Then

L =
1

4

(
WαWα|θθ + W̄α̇W̄

α̇
∣
∣
θ̄θ̄

)
=

(
1

2
D2 − 1

4
FµνFµν + iλσµ∂µλ̄

)

(2.21)

is the supersymmetric gauge invariant generalization of the Lagrangian of a free vector field.
Fµν is the familiar field strength tensor. Again, D is an auxiliary field which can be eliminated.

Gauge invariant interactions

Finally, we need to define the gauge interactions between the chiral fields Ψ and the vector
fields V . The gauge transformations of chiral fields are

Φ→ Φ′ = eΓΦ and Φ† → Φ′† = Φ†eΓ†

, (2.22)

where Γ again is a chiral field. Thus, the kinetic part of (2.19) transforms like

Φ†Φ→ Φ′†Φ′ = Φ†eΓ†

eΓΦ (2.23)

and can be rendered gauge invariant by introducing a term eV which transforms like

eV → eV
′

= e−Γ†

eV e−Γ . (2.24)

It is not by chance that we have denoted the exponent in (2.24) with V for vector field. It is
easy to see that in the abelian case (2.24) reduces to the gauge transformation of a vector field
(2.17), defined in the previous section. The object eV is sensible when writing both V and Γ
as matrices

Vij ≡ V aT aij and Γij ≡ ΓaT aij ,

where T a are the generators of the gauge group in question with normalization Tr[T a, T b] =
1
2δ
ab. At this point, the gauge coupling is still absorbed in the fields. It should be mentioned

that eV is not as complicated as one might think, because due to the anticommuting Grassmann
numbers, the exponential series terminates. In Wess-Zumino gauge, the powers of V are given
by

V = −θσµθ̄vµ + iθθθ̄λ̄− iθ̄θ̄θλ+
1

2
θθθ̄θ̄D

V 2 = −1

2
θθθ̄θ̄AµA

µ

V n = 0 for all n ≥ 3

and the series eV = 1+V + V 2

2 terminates at the second order. The non-abelian supersymmetric
field strength Wα is generalized from (2.20) to

Wα = −1

4
D̄D̄e−VDαeV , (2.25)

transforming like
Wα → W ′

α = eΓWαe−Γ . (2.26)

The most general supersymmetric Lagrangian reads:

L =
1

8g2
Tr[WαWα|θθ + W̄α̇W̄

α̇
∣
∣
θ̄θ̄

] + Φ†eVΦ
∣
∣
θθθ̄θ̄

+

[(
1

2
mijΦiΦj +

1

3
gijkΦiΦjΦk

)∣
∣
∣
∣
θθ

+ h.c

]

(2.27)
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2 Supersymmetry in 5D warped space

2.2 Supersymmetry in extra dimensions

2.2.1 Flat 5D SUSY

In the case of one flat and infinite extra dimension, one simply uses the 5D Dirac matrices
fulfilling the Clifford algebra {γM , γN} = 2ηMN to straightforwardly generalize the SUSY
algebra to

{Q, Q̄} = −2γMPM . (2.28)

The commutator of two infinitesimal SUSY transformations then reads

[δη, δξ] = −2(η̄γMξ − ξ̄γMη)PM . (2.29)

When explicitly writing out (2.28), using Q = (Q1, Q̄2)
T and Q̄ = (Q2, Q̄1)

T , we obtain:

(

{Q1,α, Q
α
2 } {Q1,α, Q̄1,α̇}

{Qα2 , Q̄α̇2 } {Q̄α̇2 , Q̄1,α̇}

)

=

(

−2iP5 −2σµαα̇Pµ

−2σ̄µ,α̇αPµ 2iP5

)

(2.30)

In this explicit expression of (2.28), we see that N = 1 SUSY in 5D is equivalent to a 4D N = 2
SUSY with a central charge iP5.

The qauge multiplet

It is well known that one 5D N = 1 SUSY multiplet has the same field content as one 4D gauge
and one 4D chiral multiplet1. In that notion, since A5 is a real scalar, we require an additional
real scalar field Σ to construct the complex scalar within the chiral multiplet. Therefore, we
write out the gauge multiplet as:

V = −θσµθ̄Aµ − iθ̄θ̄θλ1 + θθθ̄λ̄1 +
1

2
θθθ̄θ̄D ,

χ =
1√
2

(Σ + iA5) +
i√
2
θσµθ̄∂µ (Σ + iA5)−

1

4
√

2
θθθ̄θ̄� (Σ + iA5)

+
√

2θλ2 −
i√
2
θθ∂µλ2σ

µθ̄ + θθF

(2.31)

Although we separate the A5 component from the 4D Aµ components, we want to keep the
5D gauge structure of AM . For the 4D part, transforming like (2.24), we find

Aaµ −→ Aaµ − 2∂µα
a + fabcαbAcµ , (2.32)

where α = Imφ and φ is the scalar component of Γ. By imposing χ to transform like

χ −→ χ′ = eΓ(χ−
√

2∂y)e
−Γ , (2.33)

we obtain
Aaµ −→ Aa5 − 2∂5α

a + fabcαbAc5 (2.34)

which is consistent with (2.32). This consistency is also the reason why A5 was chosen to be
the imaginary part within the scalar field 1/2 (Σ + iA5) of the gauge sector chiral multiplet χ

1A vector multiplet contains a vector A and a spinor field λ. In 5D the vector acquires an additional component
A5. While λ in 4D is a Weyl spinor, in 5D it will be a Dirac spinor with the same degrees of freedom as two
Weyl spinors λ1 and λ2. As a 4D chiral multiplet contains a scalar and a (Weyl) spinor, it can absorb the
additional degrees of freedom of a 5D vector multiplet compared to a 4D one.
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2.2 Supersymmetry in extra dimensions

in (2.31) in the first place.

The chiral multiplet has to be implemented in the Lagrangian in a gauge and SUSY invariant
way. Additionally it has to provide the fifth component of the gauge field necessary to obtain
the complete FMNF

MN QED part. The solution is [18]:

Sg(V, χ) =

∫

d5x

∫

d2θ
R

8g2
Tr[WαWα] + h.c.

+

∫

d5x

∫

d4θ
1

2Rg2
Tr[(
√

2∂y + χ)e−V (−
√

2∂y + χ)eV + ∂ye
−V ∂ye

V ] (2.35)

The hypermultiplet

To obtain the chiral multiplet in five dimensions, we need two chiral fermions. Therefore the
fields

H = h+ iθσµθ̄∂µh−
1

4
θθθ̄θ̄�h+

√
2θΨ− i√

2
θθ∂µΨσ

µθ̄ + θθF

Hc = hc + iθσµθ̄∂µh
c − 1

4
θθθ̄θ̄�hc +

√
2θΨc − i√

2
θθ∂µΨ

cσµθ̄ + θθF c ,

(2.36)

are introduced. They transform like

H −→ H ′ = eΓH and Hc −→ e−ΓHc . (2.37)

Using the gauge transformation (2.24) and the expressions in (2.36), it can be showed that

Sh(H,H
c, V, χ) =

∫

d5xR

∫

d4θ

[

He−VH +HceVH
c

]

+

∫

d5xR

∫

d2θHc

[

∂y/R−
1√
2R

χ−M5D

]

H + h.c. (2.38)

is gauge invariant and leads to the correct action of the 5D standard model spinors.

2.2.2 Warped 5D SUSY

In the case of a 5D Minkowski space the metric is invariant under SUSY transformations2

and therefore, according to [19], 5D SUSY3 is a global symmetry. This is no longer true for
the warped compact extra dimension we are interested in. In order to find the global SUSY
transformations in warped space, we have to find the transformations which leave the RS metric
gMN unchanged. This is equivalent to demand the SUSY transformations to close into a Killing
vector v of the background metric

[δη, δξ] = −2(η̄γ̂Mξ − ξ̄γ̂Mη)PM = vNPN , (2.39)

where v is defined by the Killing equation

vM∂MgAB + gAM∂Bv
M + gBM∂Av

M = 0 . (2.40)

2Note that usual translation is also part of the general SUSY transformation.
3or equivalently both 4D SUSYs
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2 Supersymmetry in 5D warped space

Here γ̂M are the warped Dirac matrices satisfying {γ̂M , γ̂N} = 2gMN . We find that (2.39) and
(2.40) are satisfied, if the SUSY transformations are generated by the SUSY parameters

ξ(x, y) = e−Rky/2

(

ξ0α
0

)

and η(x, y) = e−Rky/2

(

η0
α

0

)

, (2.41)

where ξ0α, η0
α are independent of xM . Since the admissible SUSY transformations are parame-

terized by a single Weyl spinor, we find that in warped space only one SUSY survives in 4D.

However, we can still write down the Lagrangian of the supersymmetric theory on a Randall-
Sundrum background by just equipping (2.35) and (2.38) with the density factors and according
fünfbeins. We obtain for the gauge action

Sg(V, χ) =

∫

d5x

∫

d2θ
R

8g2
Tr[WαWα] + h.c.

+

∫

d5x

∫

d4θ
e−2Rky

2Rg2
Tr[(
√

2∂y + χ)e−V (−
√

2∂y + χ)eV + ∂ye
−V ∂ye

V ] (2.42)

and for the hypermultiplet action

Sh(H,H
c, V, χ) =

∫

d5xR

∫

d4θ e−2Rky

[

He−VH +HceVH
c

]

+

∫

d5xR

∫

d2θ e−3RkyHc

[

∂y/R−
1√
2R

χ− (
3

2
− c)k

]

H + h.c. . (2.43)

Redefinitions

At last, we want to introduce redefinitions which will make life much easier later on. First of
all, to make the gauge transformations (2.32) and (2.34) take the usual form

AaM −→ AaM −
1

g
∂Mα

a + fabcαbAcM (2.44)

we will scale all fields from the gauge multiplet by a factor 2g. Furthermore, we want all
fermionic fields, including superfields, to take the form of (1.41), all bosonic fields the form of
(1.47), and all scalar fields the form of (1.49). Therefore, some of the fields have to be rescaled

by powers of e−
1
2Rky . Finally, to end up with correct units, all component fields of the gauge

sector chiral field χ are scaled with an additional factor R. The redefinitions can be summarized
as:

ψ −→ e−
1
2Rkyψ ψc −→ e−

1
2Rkyψc

Aµ −→ 2gAµ λ1 −→ 2ge−
3
2Rkyλ1

A5 −→ 2gRA5 λ2 −→ −2igRe−
1
2Rkyλ2 Σ −→ 2gRΣ

(2.45)
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3 The model

In this chapter, we want to present the model of higgsless electroweak symmetry breaking which
gives this thesis its title.

3.1 Principles

3.1.1 Higgsless electroweak symmetry breaking

UV Brane IR Brane

z = 1/k z = 1/ΛIR

SU(3)C × SU(2)L × U(1)Y SU(3)C × SU(2)D × U(1)X

SU(3)c × SU(2)L × SU(2)R × U(1)X

z →

Bulk

Fig. 3.1: An illustration of the two brane model setup.

Before discussing the mechanism of symmetry breaking, one has to define the symmetry
groups present in our model. As the SM field content has to be reproduced, we start with a
SU(3)C in the strong and a SU(2)L×U(1)Y in the electroweak sector. The idea of electroweak
symmetry breaking in extra dimensions is to impose different boundary conditions at the branes
to the respective gauge component fields. These boundary conditions are in agreement with
the boundary conditions that would arise if a Higgs field was located at each brane in the limit
of infinite Higgs vacuum expectation values (VEVs). In that limit the Higgs fields decouple.
The authors of [11] have demonstrated that by this approach unitarity is insured as long as
the KK excitations W (1) and Z(1) are not too heavy. Still, for an infinite VEV, from SU(2)
and U(1) one would obtain W± and Z gauge bosons degenerate in mass. By constructing the
electroweak gauge sector from a SO(4)×U(1) ∼ SU(2)L×SU(2)R×U(1)X on a compactified
interval, this degeneracy is lifted and the mass shift between charged and neutral vector bosons
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3 The model

is determined by the gauge couplings. Hence our final gauge structure reads

G = SU(3)C × SU(2)L × SU(2)R × U(1)X , (3.1)

where X is the B-L quantum number. The full gauge symmetry will be kept in the bulk.
Using the intrinsic hierarchy of the background metric, we break the two SU(2)s and thus
electroweak symmetry down to a custodial SU(2)D at the IR brane:

SU(2)L × SU(2)R −→ SU(2)D .

The custodial symmetry has the generator T3D = T3L + T3R. This symmetry protects the ρ
parameter, which states that mW = cosΘWmZ at tree level.
On the Planck brane, we break the PLR symmetry between the two SU(2) groups. The breaking
pattern is

SU(2)R × U(1)X −→ U(1)Y ,

where Y is the Hypercharge. The generator is Y = T3R + X . In the end, only a U(1)Q
corresponding to electromagnetism with Q = T3L + T3R + X , remains unbroken. This is in
agreement with the AdS/CFT correspondence, which requires that a global symmetry of the
strongly coupled CFT corresponds to a gauge symmetry in AdS.

3.1.2 Unitarity in higgsless models

Within the SM, the scattering amplitude of longitudinal components of massive vector bosons
would spoil the unitarity of the S-matrix, were it not for the presence of the Higgs boson. At first
sight, scattering of longitudinal vector bosons with polarization vectors ǫ = (p/m, 0, 0, E/m)
is of the energy behavior M = a + bE2 + cE4. It can be showed that the part proportional
to E4 cancels out once the correct couplings are inserted [20]. The component proportional
to E2 cancels when taking into account additional diagrams containing the Higgs boson. The
requirement for this cancellation to occur and therefore the requirement for unitarity is a Higgs
mass mH < 1 TeV. Obviously, a higgsless model needs a new mechanism to preserve unitarity.
In our extra dimensional approach, the Kaluza-Klein resonances are found to be responsible for
the cancellation and thus for the consistency of the whole model. Due to Ward identities and
5D BRST invariance1, cancellation rules among triple and quartic vector boson couplings are
fulfilled, hence

c ∝
(

gnnnn −
∑

k

g2
nnk

)

= 0 , b ∝
(

4

3
m2
ngnnnn −

∑

k

g2
nnkm

2
k

)

= 0,

where n, m are the KK indices. Similarly to the upper the Higgs mass bound in the SM, the
KK resonances W (1) and Z(1) have to be lighter approximately 1.4 TeV.

3.1.3 SUSY breaking on a new IR brane

Supersymmetry must be broken because, beautiful as the idea may be, supersymmetric particles
have not been detected up to now and therefore cannot be degenerate in mass with the known
SM particles. The straightforward and to a certain extend brute-force method, used in [1]
within a model with two branes, is to break SUSY at the Planck brane by giving the SM fields
different boundary conditions than their supersymmetric partners. Breaking SUSY at the high
energy brane projects the light supersymmetric modes out of the spectrum. The remaining

1In the previous chapters we have only mentioned gauge symmetry in 5D. As usual, gauge symmetries in
perturbative quantum field theory are replaced by the corresponding BRST extension, in order to perform
quantization. BRST invariance follows from gauge invariance.
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3.1 Principles

supersymmetric fields are KK excitations with masses of approximately 1.4 TeV, thus widely
avoiding trouble with experimental bounds. However, other desirable properties of SUSY like
the taming of loop corrections, are lost in this approach. A logical consequence, when extending
the extradimensional model outlined in [2] to be supersymmetric, would be to separate SUSY
breaking from EWSB. Models living on two “back-to-back” AdS5 slices with a shared Planck
brane have been considered before, within the AdS/CFT interpretation [21], as well as for
phenomenological reasons [22]. The new interval leads to new effects in the SM as well as the
SUSY sector. The new way of SUSY breaking at the IR brane of the new interval could for
example give a comparatively light scalar Σ0 field.

3.1.4 Two AdS5 Slices

SB Brane UV Brane EWSB Brane

z = 1/ΛII ← z z = 1/k z → z = 1/ΛI

SU(3)C × SU(2)L×
SU(2)R × U(1)X

SU(3)C×
SU(2)L × U(1)Y

SU(3)C×
SU(2)D × U(1)X

SU(3)C×
SU(2)L × SU(2)R × U(1)X

SU(3)C×
SU(2)L × SU(2)R × U(1)X

Bulk Bulk

Fig. 3.2: An illustration of the three brane model setup: Two back-to-back slices of AdS5, sharing one UV
brane.

The situation of two “back-to-back” AdS5 slices, glued together at the Planck brane, is de-
picted in fig. 3.1.4. Throughout this thesis, the first interval where electroweak symmetry is
broken on the IR brane at z = ΛI, is called interval I. Similarly, the second interval, where we
break Supersymmetry, is referred to as interval II. The high energy brane is called the UV brane
and the two IR branes are named after the corresponding symmetry breaking. The IR brane
in interval I is the EWSB (elektroweak symmetry breaking) brane and the other IR brane in
interval II the SB (Supersymmetry breaking) brane.

The model lives on a Randall-Sundrum background with the metric (1.17). It is often use-
ful when handling two AdS5 slices, to work in conformal coordinates. These are obtained
substituting y by

z =
eRky

k
, (3.2)

where R = RI in the first (EWSB) interval and R = RII in the new (SUSY) interval. The
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metric in conformal coordinates reads

gMN =
1

(k z)2
ηMN . (3.3)

When introducing a second warped extradimensional interval, one has to define how fields
are connected at the UV brane where the two intervals meet. Take as example fermionic fields.
At the IR branes, the requirement for the brane localized contribution ⌊ to the action to vanish

B =
√
gΨγ̂MΨ

∣
∣
z=1/ΛI,II

= 0 (3.4)

is equivalent to
f I,II

η

∣
∣
z=1/ΛI,II

= 0 or f I,II

χ

∣
∣
z=1/ΛI,II

= 0 . (3.5)

The fields from both intervals meet at the Planck brane and the localized part of the action
reads: √

gΨγ̂MΨ
∣
∣
z=1/k

= (ηIχI + ηIIχII)|z=1/k (3.6)

The natural generalization of condition (3.5), making (3.6) vanish, is then:

t f I

η − f II

η

∣
∣
z=1/k

= 0

f I

χ + t f II

χ

∣
∣
z=1/k

= 0
(3.7)

We call t the transition coefficient. It parameterizes how the KK wave function coming from
one side of the Planck brane is continued at the other side.

The size of the second interval is constrained. The requirement for W (1) and Z(1) to be light
enough to insure unitarity leads to an upper bound ΛII . 4000 GeV. This bound is relaxed
when introducing the kinetic term to split the chargino and the W± mass. The lower bound
however is fixed by imposing that the gluinos in our model are above the detection bound of
308 GeV [23]. This requires ΛII & 2500 GeV.

3.1.5 Twisted Boundary Conditions

Although there are a lot of fields, there are not too many combinations of possible boundary
conditions. The fields are closely interlinked and when choosing a boundary condition for one
field, the conditions for many other fields are automatically determined by that choice. The
first and rather trivial principle of assigning boundary conditions is to impose for all fields of an
unbroken symmetry group the same boundary conditions. It is a bit more work to determine
the relations for the boundary conditions of fields coupled by their equations of motion. We
have demonstrated at the end of chap. 1 that all KK wave functions are of the form

fx(z) = (k z)(exp)
[
axJ(order)(mz) + bx Y(order)(mz)

]
, (3.8)

where we have suppressed the KK indices. Aµ and A5 fields are coupled by an e.o.m. which we
have derived for the flat case in (1.9). The fermion fields are coupled by (1.37). Corresponding
e.o.m. are obtained for the respective superpartner fields, λ1, λ2 and h, hc. Also in chap. 1, we
have derived the solutions for the KK fields. Coupled KK functions fx and fy have identical
mass eigenstates and –up to a sign choice– identical coefficients ax = ±ay and bx = ±by.
We have to make sure the e.o.m. and our choice of boundary conditions for fx and fy are in
agreement with each other.
The “twisted boundary condition” that follows for a KK function fx, when assigning fy a
Dirichlet boundary condition, can be determined either directly from the e.o.m connecting fx
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3.2 Setup

KK field Structure Boundary conditions

fAµ
(k z)J1 ⊖ : fAµ

|z0=0 = 0 ⇒ ⊕ : ∂z(z
−2fA5)|z0=0 = 0

fA5 (k z)2J0 ⊖ : fA5 |z0=0 = 0 ⇒ ⊕ : ∂zfAµ
|z0=0 = 0

fλ1 (k z)J1 similar to the case

fλ2 (k z)2J0 of fAµ
and fA5 above

fη (k z)2Jc+1/2 ⊖ : fη|z0=0 = 0 ⇒ ⊕ : ∂z(z
−3/2−cfχ)|z0=0 = 0

fχ (k z)2Jc−1/2 ⊖ : fχ|z0=0 = 0 ⇒ ⊕ : ∂z(z
−3/2+cfη)|z0=0 = 0

fh (k z)2Jc+1/2 similar to the case

fhc (k z)2Jc−1/2 of fη and fχ above

Tab. 3.1: Overview over the structure of KK fields before redefinition of the fields and the resulting relations
between boundary conditions.

and fy or from the KK solutions (3.8). For the latter, one uses the identities of the Bessel
functions J :

∂z(z
1/2+cJ1/2+c(mz)) =m(z1/2+cJ−1/2+c(mz)) ,

∂z(z
1/2−cJ−1/2+c(mz)) =−m(z1/2−cJ1/2+c(mz)).

(3.9)

Analogous relations hold for Y .
Generally, the twisted boundary condition corresponding to a Dirichlet condition

⊖ : fx|z0=0 = 0,

is always a Neumann-like condition

⊕ : ∂z(z
(...)fy)|z0=0 = 0

and vice versa.
The structure of the KK wave functions and the resulting twisted boundary conditions before

and after the field redefinition (2.45) are given in tab. 3.1 and tab. 3.2.

3.2 Setup

3.2.1 The Lagrangian

The Lagrangian, containing all fields of our model and determining their interactions, is the
supersymmetric Lagrangian on a warped background worked out in the previous chapter. It is
given by (2.42) and (2.43), together with the gauge fixing term (1.43).
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3 The model

KK field Structure Boundary conditions

fλ1 (k z)5/2J1 ⊖ : fλ1 |z0=0 = 0 ⇒ ⊕ : ∂z(z
−3/2fλ2)|z0=0 = 0

fλ2 (k z)5/2J0 ⊖ : fλ2 |z0=0 = 0 ⇒ ⊕ : ∂z(z
−5/2fλ1)|z0=0 = 0

fη (k z)2Jc+1/2 ⊖ : fη|z0=0 = 0 ⇒ ⊕ : ∂z(z
−2−cfχ)|z0=0 = 0

fχ (k z)2Jc−1/2 ⊖ : fχ|z0=0 = 0 ⇒ ⊕ : ∂z(z
−2+cfη)|z0=0 = 0

Tab. 3.2: Overview over the structure of KK fields after redefinition of the fields and the resulting relations
between boundary conditions.

For clarity, we assemble these expressions and write the complete Lagrangian for the three
brane setup in conformal coordinates:

L = Lh(H,Hc, V, χ) + Lg(V, χ) + Lgf

=

∫

d4θ
1

(k z)3

[

He−VH +HceVH
c
]

+

∫

d2θ
1

(k z)4
Hc
[

(k z)∂z −
1√

2RI,II

χ− (
3

2
− c)k

]

H + h.c.

+

∫

d2θ
1

8(k z)g2
Tr[WαWα] + h.c.

+

∫

d4θ
1

2kz3g2
Tr
[

(
√

2z∂z +
χ

RI,IIk
)e−V (−

√
2z∂z +

χ

RI,IIk
)eV + z∂ze

−V z∂ze
V
]

− 1

2(k z)ξ

(

ηµν∂µAν − ξ
1

(k z)2
(k z∂z − 2k)A5

)2

(3.10)

The coupling constants corresponding to the gauge groups SU(3)C , SU(2)L, SU(2)R and
U(1)X are g5C

, gL, gR and g5X . From here on, we set gL = gR = g5. Although it is not
mandatory to have equal couplings for SU(2)L and SU(2)R, the general case of gL 6= gR has
turned out to be not useful when it comes to phenomenology, and is potentially problematic
for perturbative unitarity [24].

3.2.2 Field content

Matter fields are implemented in the model as two doublets for each standard model fermion,
transforming under SU(2)L and SU(2)R, respectively:

ΨL = (ηuL, χ̄
u
L, η

d
L, χ̄

d
L)T

ΨR = (ηuR, χ̄
u
R, η

d
R, χ̄

d
R)T

(3.11)

In order to satisfy Q = T3L + Y , quarks will be assigned the U(1) quantum numbers X = 1/6
and leptons carry X = −1/2.

An overview of the final field content of our model, taken from [12], is presented in the
appendix in tab. B.1, tab. B.2 and tab. B.3.
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3.2 Setup

3.2.3 Boundary conditions

We conclude this chapter stating the boundary conditions for the fields present in our model.
The reasoning for this choice of conditions will follow in chap. 4 and chap. 5, where we discuss
the gauge and the matter sector of our model in detail.

Boundary conditions for the gauge multiplet

To present the boundary conditions assigned to the fields from the gauge sector in a compact
form, we write them in terms of the gauge multiplet. In order to work with the multiplets, we
understand λ1, λ2 as the gaugino fields before the redefinitions (2.45), hence they come with the
same power of (k z) as the Aµ, A5 fields. The vector multiplet V is coupled to the chiral multiplet
χ by the e.o.m. between Aµ and A5 as well as between λ1 and λ2. Therefore, when assigning
boundary conditions to the vector multiplet V , we have fully defined the gauge multiplet. The
chiral multiplet χ will be assigned the corresponding twisted boundary conditions.

• On the EWSB brane
[

1 −1

∂z ∂z

] [

V IL

V IR

]∣
∣
∣
∣
∣
z=1/ΛI

= 0

∂zV
IX
∣
∣
z=1/ΛI

= 0

∂zV
IC
∣
∣
z=1/ΛI

= 0

(3.12)

• On the UV brane
This is the brane where the fields from the two intervals meet. We choose a continuous
transition from the interval I to the interval II.

V I (L,R,X)

(
1

k

)

= V II (L,R,X)

(
1

k

)

(3.13)

This is equivalent to transition coefficients t = 1.
Furthermore we impose five boundary conditions:

[

g5X∂z g5∂z

−g5 g5X

] [

V IR3 + V IIR3

V IX + V IIX

]∣
∣
∣
∣
∣
z=1/k

= 0

∂z
(
V IL + V IIL

)∣
∣
z=1/k

= 0
(
V IR1,R2 + V IIR1,R2

)∣
∣
z=1/k

= 0

∂z
(
V IC + V IIC

)∣
∣
z=1/k

= 0

(3.14)

The direction of the coordinate z of the extra dimension is defined as from the UV brane
towards the IR branes, c.f. fig. 3.1.4.

• On the SB brane
The choice of SUSY breaking boundary conditions will be discussed in chap. 4. While
Supersymmetry within the multiplets is broken, the coupling of boundary conditions by
e.o.m. remains untouched.

– Gauge bosons
The SU(2)R and U(1)X fields are assigned Neumann (⊕) boundary conditions:

∂zA
IIR
µ

∣
∣
z=1/k

= 0

∂zA
IIX
µ

∣
∣
z=1/k

= 0
(3.15)
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3 The model

while the ⊕ boundary condition of the SU(2)L fields is modified by a brane kinetic
term proportional to κ:

(

∂z − κ
m2

ΛII

kπR2

)

AIIL
µ

∣
∣
∣
∣
z=1/k

= 0 (3.16)

The A5 fields are assigned the corresponding twisted boundary conditions.

– Gauginos
All λ1 fields are assigned ⊕ boundary conditions

∂zλ
IIL
1

∣
∣
z=1/k

= 0

∂zλ
IIR
1

∣
∣
z=1/k

= 0

∂zλ
IIX
1

∣
∣
z=1/k

= 0

(3.17)

The above equations refer to the gaugino fields before the field redefinition (2.45).
Afterwards, they have to be replaced by ∂zλ1 → ∂z(k z)

−3/2λ1. Again, the λ2 fields
receive twisted boundary conditions.

Boundary conditions for fermions and sfermions

Again, we write the boundary conditions in terms of the full multiplet. Using the e.o.m., it is
sufficient to specify half of the boundary conditions, the other half being automatically defined
as the respective twisted conditions.
The assignment of boundary conditions to the matter fields is analyzed in chap. 5.

• On the EWSB brane

H I

R −
MD

ΛI

H I

L|z=1/ΛI
= 0

H I c
L +

MD

ΛI

H I c
R |z=1/ΛI

= 0

(3.18)

• On the UV brane

– Charged fermions and sfermions:

H I

R + tRH
II

R|z=1/k = 0

tRH
I c
R −H II c

R |z=1/k = 0

H I c
L + tLH

II c
L |z=1/k = 0

tLH
I

L −H II

L |z=1/k = 0

(3.19)

In contrast to the gauge fields, we do not always impose continuous transition where
the two intervals meet. We still choose tL = 1, but use tR 6= 1 to realize the mass
splitting between u- and d-type quarks.

– Neutrinos and sneutrinos:

H I

R + tRH
II

R −
MM

k
(H I c

R +
1

tR
H II c
R )|z=1/k = 0

tRH
I c
R −H II c

R |z=1/k = 0

H I c
L + tLH

II c
L |z=1/k = 0

tLH
I

L −H II

L |z=1/k = 0

(3.20)
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3.2 Setup

• On the SB brane

– fermions

ηII

R|z=1/ΛII
= 0

χII

L|z=1/ΛII
= 0

(3.21)

– sfermions

hII

L|z=1/ΛII
= 0

hc,IIR |z=1/ΛII
= 0

(3.22)

The boundary conditions, which were used in the original two brane setup of [12, 15] with
just one AdS5 slice, are given in App. C.1.
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4 Gauge sector

This chapter is dedicated to the gauge sector of our model, containing the fields from the
vector multiplet V and from the chiral multiplet χ defined in (2.31). In particular we discuss
SUSY breaking. Charginos and neutralinos constitute the lightest and phenomenologically
most interesting supersymmetric particles within our model setup, therefore we will analyze
their interactions at the end this chapter.

4.1 Boundary conditions

4.1.1 Boundary conditions at the UV and the EWSB brane

The authors of [11] have demonstrated that electroweak symmetry can be broken without
violating unitarity in extradimensional higgsless models on a Randall-Sundrum background.
For a non-supersymmetric model in a single AdS5 slice with two branes, they have derived the
following boundary conditions for the gauge fields:

[

1 −1

∂z ∂z

] [

ALµ
ARµ

]∣
∣
∣
∣
∣
z=1/ΛIR

= 0 ∂zA
X
µ

∣
∣
z=1/ΛIR

= 0 ∂zA
C
µ

∣
∣
z=1/ΛIR

= 0 (4.1)

[

g5X∂z g5∂z

−g5 g5X

] [

AR3
µ

AXµ

]∣
∣
∣
∣
∣
z=1/k

= 0

∂zA
L
µ

∣
∣
z=1/k

= 0 AR1,R2
µ

∣
∣
z=1/k

= 0 ∂zA
C
µ

∣
∣
z=1/k

= 0

(4.2)

This boundary conditions can be interpreted within the context of orbifold projections,
where at the end point y = 0 a localized SU(2)R scalar doublet acquires a VEV and breaks
SU(2)R × U(1)X down to U(1)Y [11]. One can send the VEV to infinity without spoiling the
high energy behavior. In that limit, the Higgs field decouples. In the picture of brane local-
ized Higgs fields it is also understandable why gauge couplings g5 and g5X enter the boundary
conditions. To be precise, the ratio

gr :=
g5X
g5

(4.3)

is the relevant magnitude in the boundary conditions (4.2).
For our supersymmtric model, we use the same mechanism and generalize (4.1) and (4.2)

to contain complete supersymmetric vector and chiral gauge multiplets. On the UV brane,
we additionally have to specify the transition to the second AdS5 slice. The transitions has
to be compatible with vanishing boundary action in analogy1 to (3.7). We choose continuous
transition AI|y=0 = AII|y=0. Thereby, we have derived the boundary conditions at the EWSB
and UV brane (3.12) and (3.14) which we have stated in the previous chapter.

On the SB brane, where the full bulk symmetry SU(2)L × SU(2)R × U(1)X is kept, we
have to specify the boundary conditions for each symmetry group. The boundary conditions
at the EWSB and UV brane defined so far leave one single massless fields corresponding to
(AL3

µ + AR3
µ ) + grA

X
µ . In order to keep this massless solution and to later identify it with

1The boundary action is B ∝ Aµ∂zAµ, so just replace fη by fAµ and fχ by ∂zfAµ .
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4.1 Boundary conditions

the physical photon, we are forced to choose Neumann boundary conditions ⊕ for all three
symmetry groups at the SB brane:

AIILi
µ AIIRi

µ AIIX
µ

⊕ ⊕ ⊕ (4.4)

For gauge bosons, the two intervals act like an enlarged single interval. The mass terms M
of the W± and Z bosons are generated in the EWSB interval, where the KK wave functions
are curved in order to fulfill the boundary conditions, compare fig. 4.1 and fig. 4.2. The correct
masses are obtained by adjusting the mass scales of the two extradimensional intervals, ΛI being
the dominating parameter.

4.1.2 SUSY breaking

Sticking to our concept of Supersymmetry breaking, the gauginos receive on the SB brane
different boundary conditions than the gauge bosons.

If we constrain ourselves to Neumann (⊕) and Dirichlet (⊖) conditions at first, there are
8 possibilities to assign boundary conditions to the gauginos at the SB brane. The scenarios
are listed in tab. 4.1. It is understood that the λ2 automatically receive the respective twisted
boundary conditions.

charged neutral

λLi1 λRi1 λX1 mλ1 = 0? mλ2 = 0? mλ1 = 0? mλ2 = 0?

1
a

b
⊕ ⊕ ⊕

⊖ no no
yes

no

no

no

2
a

b
⊕ ⊖ ⊕

⊖ no yes
no

no

no

yes

3
a

b
⊖ ⊕ ⊕

⊖ no yes
no

no

no

yes

4
a

b
⊖ ⊖ ⊕

⊖ no yes
no

no

yes

yes

Tab. 4.1: Possible assignments of boundary conditions at the SUSY breaking brane to the charginos and neu-
tralinos. Setup 1b is the only one which prohibits all massless solutions.

The only setup in tab. 4.1 without massless chargino or neutralino modes, neither in λ1 nor
in λ2, is 1b. However, in this scenario, the chargino boundary conditions are the same as the
one for the W±. Therefore, the two fields are degenerate in mass. This is not compatible with
the current bound of mχ± ≥ 95GeV [23].
Obviously, we need to extend our setup of boundary conditions to contain more than just
Neumann and Dirichlet conditions.

For the scalar field Σ from the chiral part of the gauge multiplet χ a similar discussion applies.
The KK wave function of the Σ is, apart from redefinition factors, the same as the KK functions
of the fields within the same SUSY multiplet, A5 and λ2. It is however not connected with
fields from the vector multiplet V , and therefore massless modes for Σ± and Σ0 are absent in
scenario 1a and scenario 1b. The neutral Σ0 is of particular interest due to a curious similarity
to the SM Higgs boson. This will be discussed in chap. 9. However, as there is no symmetry
protecting the masses of the scalar, significant corrections to the tree level mass are expected.
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4 Gauge sector

4.1.3 Brane kinetic terms

We will, as in [1], use a brane localized kinetic term to split the chargino andW± mass. Different
to that approach, we will add the localized term on the new IR brane instead of the Planck
brane. In chap. 6 we will discuss kinetic terms in the context of the Peskin-Takeuchi parameter
S. The corresponding localized action term is:

Skin = −κπ
∫

d5x
1

(k z)
δ
(
z − Λ−1

II

)
(

1

4
ηMOηNPLMNLOP

)

(4.5)

where LMN is the field strength tensor of the SU(2)L vector field. The presence of (4.5) deforms
the original Neumann boundary condition to:

∂zA
IIL
µ

∣
∣
z=1/ΛII

−→
(

∂z − κ
m2

ΛII

kπRII

)

AIIL
µ

∣
∣
∣
∣
z=1/ΛII

(4.6)

Note that for the massless photon the brane kinetic term affects only the normalization. It is
also a characteristic for these terms, that κ as introduced in (4.5) has to be positive or else
tachyonic solutions appear. This could be tolerable as long as these solutions stay above the
cutoff, but it seems safer to just avoid that situation. Later on, we will see that brane kinetic
terms with κ > 0 lower the mass eigenvalue. This is the reason why we assigned the localized
term to the boson and not to the gaugino fields in the first place.

4.2 Mass spectrum

Let us now explicitly solve the boundary conditions.

4.2.1 Bosonic Kaluza-Klein wave functions

We start with writing out the KK expansion of the 5D gauge fields in terms of the physical 4D
fields

AL3
µ (x, z) =

a0

g5
γµ(x) +

∑

k

f
(k)
L3 (z)Z(k)

µ (x) , (4.7a)

AR3
µ (x, z) =

a0

g5
γµ(x) +

∑

k

f
(k)
R3 (z)Z(k)

µ (x) , (4.7b)

AXµ (x, z) =
a0

g5X
γµ(x) +

∑

k

f
(k)
X (z)Z(k)

µ (x) , (4.7c)

AL±µ (x, z) =
∑

k

f
(k)
L±(z)W (k)±

µ (x) , (4.7d)

AR±
µ (x, z) =

∑

k

f
(k)
R±(z)W (k)±

µ (x) , (4.7e)

where we used the fact that the massless photon has a flat KK function fγ(z) = a0.
The general form of the bosonic KK wave function as derived in (1.47) is

fki (z) = z (cki J1(mkz) + dki Y1(mkz)) . (4.8)

Using Taylor expansion for light modes with m≪ ΛI,ΛII this can be approximated by:

fi(z) ≈ ai + m2z2
(

bi −
ai
2

log(zk)
)

+ m4z4

(

−bi
8
− 3ai

64
+
ai
16

log(zk)

)

+ O(m6z6) (4.9)
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Fig. 4.1: Wavefunction of the W boson in the extra dimension with κ > 0 (solid line) compared to the case
of κ = 0 (dashed line). As κ increases the wave function normalization, the length of the IR interval has to be
decreased in order to reproduce the correct value of MW .

The coefficients bi are of order O(ai log(k/Λ)) and the masses are of the order of m2
W ,m

2
Z ≈

Λ2/ log(k/Λ). With k = 1019 GeV and ΛI,ΛII of the order of 102 . . . 104 GeV, we typically have
log(k/ΛI,II) = kπRI,II = 30 . . .40. We define x, the expansion parameter, and fR, relating the
sizes of the two intervals, as

x =
1

kπ(RI +RII)
and fR =

RII

RI +RII

, (4.10)

where x ≈ 1/72 and fR ≈ 1
2 .

By solving the system of coupled boundary conditions we obtain the coefficients ai, bi. The
approximate coefficients in leading x order are listed in App. B.2. The resulting wave functions
are showed in fig. 4.1 and fig. 4.2.

4.2.2 Gauge boson and chargino masses

The solution for the W± mass is given by:

m2
W =

x

1 + fR κ
Λ2

I

1 + 3
8

(
x

1+fR κ

)

1 + 1
2

(
fR κ

1+fR κ
ΛI

ΛII

)2 +O(x2) (4.11)

Observe that the mass eigenvalue is lowered by the brane kinetic term proportional to κ. This
is due to the increased wave function normalization. To simplify the expression for the Z boson
mass, we define

Cκ =
1 + g2

r(2 + fR κ)

(1 + g2
r)(1 + fR κ)

. (4.12)

Then, the Z mass is given by:

m2
Z = Cκ xΛ2

I

(

1 +
3

8
xCκ +O(x2)

)

(4.13)
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Fig. 4.2: Wavefunction of the Z boson in the extra dimension with κ > 0 (solid line) compared to the case of
κ = 0 (dashed line). For κ > 0 the length 1

ΛI
decreases in order to reproduce the correct W mass. In comparison

to the case for κ = 0, a smaller value for gr is needed to obtain the correct Z mass, such that Φx(z) is lowered
accordingly.

For a given κ, the mass ratio mZ/mW is defined by the relative coupling gr. To leading order
in x we exactly reproduce the SM mass relations and couplings. This is a consequence of the
custodial symmetry SU(2)D.

The superpartners of the gauge bosons, the chargino and the neutralino, are not affected
by the brane kinetic term (4.5). In order to avoid massless solutions, they receive boundary
conditions ⊕ ⊕ ⊖ at the SB brane, according to scenario 1b. Since the chargino and W±

boundary conditions are identical up to the brane kinetic term, the chargino mass is given by
(4.11) for κ→ 0 as:

m2
χ± = xΛ2

I

(

1 +
3

8
x+O(x2)

)

(4.14)

We find that κ & 0.8 is required to make mχ ≥ 95GeV. The neutralino in scenario 1b is
degenerate in mass with the chargino up to order O(x2):

m2
χ0 = xΛ2

I

(

1 +
3

8
x+O(x2)

)

(4.15)

Numerically, the neutralino turns out to be slightly lighter than the chargino, c.f. fig. 4.3.

4.2.3 Neutralino masses

One could ask why we have not introduced a localized mass term to raise the chargino mass
instead of lowering the W± mass.
As the symmetries on the SB brane forbid L-R mixing, the only possible mass term would be
a Majorana mass term. Such a term couples the KK wave functions of λ1 and λ2, which are of
the form:

fλ1(z) = (k z)5/2 [aλ1J1(mz) + bλ1 Y1(mz)]

fλ2(z) = (k z)5/2 [aλ2J0(mz) + bλ2 Y1(mz)]
(4.16)

The e.o.m. connecting fλ1 and fλ2 requires that aλ1 = ±aλ2 and bλ1 = ±bλ2 . The boundary
condition modified by the presence of a brane Majorana mass term contains fλ1 and fλ2 and
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Fig. 4.3: Gaugino mass spectrum as a function of the Majorana mass term.

therefore lifts the degeneracy between the sign choices. Therefore, two solutions will arise, one
with a larger and one with a smaller mass eigenvalue compared to the case without the brane
localized Majorana mass term. As light charginos are experimentally excluded, Majorana mass
terms are not useful for constructing a convincing spectrum for the charged gauginos.

Still, they become interesting in order to control neutralino masses. We assign a Majorana
mass term proportional to Mm to the λX field, therefore only acting on the neutralinos without
affecting the charginos. The localized term reads

SMm
= −1

2

∫

dx5 1

(k z)4
· Mm

z

(

λX1 λ
X
1 + λ

X

1 λ
X

1

)

δ
(
z − Λ−1

II

)
(4.17)

and modifies the Dirichlet boundary condition to

λX1
∣
∣
z=1/ΛII

= 0 → λX1 −
Mm

ΛII

λX2

∣
∣
∣
∣
z=1/ΛII

= 0 .

The solutions belonging to the two possible sign choices aλ2a
= aλ1a

and aλ2b
= −aλ1b

are given
by the following implicit expressions:

For the heavy neutralino:

m2
χ0

a
= xΛ2

I

1 +m2
χ0

a

1
xΛ2

II

(
Mm/mχ0

a
− 1

2

)
(1 + 2g2

r)

1− 3
8x+m2

χ0
a

1
xΛ2

II

(
Mm/mχ0

a
− 1

2

)
(1 + g2

r)
(4.18a)

And for the light neutralino:

m2
χ0

b
= xΛ2

I

1−m2
χ0

b

1
xΛ2

II

(

Mm/mχ0
b
+ 1

2

)

(1 + 2g2
r)

1− 3
8x−m2

χ0
b

1
xΛ2

II

(

Mm/mχ0
b
+ 1

2

)

(1 + g2
r)

(4.18b)

The gaugino mass spectrum as a function of the Majorana mass Mm is showed in fig. 4.3. The
mass spectrum of the entire gauge sector is presented in fig. 4.4.
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4 Gauge sector

Fig. 4.4: Mass spectrum of the gauge sector. From left to right: γ and Z, neutralinos, Σ0, W±, charginos,
Σ±. The scalars Σ0 and Σ±, not protected by a symmetry, are expected to be shifted by loop corrections. The
neutralinos are split into a light (χ0

b) and a heavy neutralino (χ0
a) by the localized Majorana mass term from

(4.17). The gaugino mass spectrum as function of this term is separately showed in fig. 4.3.
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4.3 Interactions

4.3 Interactions

Having implemented the gaugino sector, let us take a closer look at the corresponding interac-
tions. We focus on the gaugino interactions which will be needed later.
In agreement to [15], we define the chargino mass eigenstates as:

χ+
a =

1√
2

(

λ1
1 − iλ2

1

λ
1

2 − iλ
2

2

)

χ+
b =

1√
2

(

λ1
2 − iλ2

2

λ
1

1 − iλ
2

1

)

(4.19a)

Their charge conjugates are defined as:

χ−
a =

1√
2

(

λ1
2 + iλ2

2

λ
1

1 + iλ
2

1

)

χ−
b =

1√
2

(

λ1
1 + iλ2

1

λ
1

2 + iλ
2

2

)

(4.19b)

Here, λ1
i stands for the 4D KK coefficient function λ1

i (x) of the 5D fields λL1

i (x, z) and λRI

i (x, z).

Analogously, λ2
i labels the KK coefficients of λL2

i (x, z) and λRII

i (x, z). For the sake of shortness,
we have neither written out the dependence on the Minkowski coordinate xµ nor the KK index.
The next KK mode of the chargino appears at ≈ 2 TeV, and we do not need to consider it in
the further course of this work.

The neutralino mass eigenstates read:

χ0
a(x) =

1√
2

(

λ0
1 + λ0

2

λ0
1 + λ0

2

)

χ0
b(x) =

i√
2

(

λ0
1 − λ0

2

λ0
2 − λ0

1

)

(4.20)

Again, λ0
i stands for the KK coefficient function to the neutral 5D fields coupled by boundary

conditions which are λL3
i , λR3

i and λXi .
Observe that the neutralinos are Majorana spinors and that the indices a, b correspond to the
sign choice between the fλ1 and fλ2 KK wave functions discussed before.

4.3.1 Gaugino interactions with gauge bosons

Within the gauge part Lg(V, χ) of the full Lagrangian (3.10), we identify the pieces describing
the gaugino interaction:

LG,int,λ =
ig

(k z)4

[

fabcAaµλ
b
1σ

µλ
c

1 + fabcAaµλ
b
2σ

µλ
c

2

]

− ig

(k z)5

[

fabcΣa(λ
b

2λ
c

1 − λb2λc1) + ifabcAa5(λ
b

2λ
c

1 + λb2λ
c
1)
]

(4.21)

Here we have already carried out the redefinitions (2.45). The fields are the complete 5D fields
φ = φ(x)fφ(z).

W± – neutralino – chargino interactions

The charged current interaction Lagrangian from the first line of (4.21) can be rewritten using
the Fierz transformation formula

χσµφ = −φσµχ ,
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4 Gauge sector

as

LG,int,λ = −g5
2

(A1
µ − iA2

µ)fW±

[
(

(λ1
2 + iλ2

2)fλ±
2
, (λ

1

1 + iλ
2

1)fλ±
1

)

γm

(

λ0
1fλ0

1

λ
0

2fλ0
2

)

+
(

(λ1
1 + iλ2

1)fλ±
1
, (λ

1

2 + iλ
2

2)fλ±
2

)

γm

(

λ0
2fλ0

2

λ
0

1fλ0
1

)]

+ h.c. ,

(4.22)

where we have explicitly separated 4D coefficient fields and KK fields. Next we have to sum
over SU(2)L and SU(2)R fields. This is simple, because the 4D fields are identical:

AL1,L2
µ (x, z) +ARI,RII

µ (x, z) = A1,2
µ (x)fWL± +A1,2

µ (x)fWR±

. The same holds true the λ(x, z) fields. Integrating over the extra dimension, the KK wave
functions are absorbed into overlap integrals which we define as:

〈W±λiλj〉 =

∫ 1/ΛI

1/k

dz(k z)−4f I

W±(z)f I

λi
(z)f I

λj
(z)

+

∫ 1/ΛII

1/k

dz(k z)−4f II

W±(z)f II

λi
(z)f II

λj
(z) (4.23)

With this definition, we can write (4.22) as effective 4D interaction of the bosonic eigenstates
W± = 1√

2
(A1

µ ∓ iA2
µ) and the chargino and neutralino eigenstates (4.19a) and (4.20) as

LG,int,λ = − 1√
2
W+
µ

[

χ+
a Γµa

(
χ0
a − iχ0

b

)
+ χ+

b Γµb
(
χ0
a + iχ0

b

)]

+ h.c. , (4.24)

where the corresponding coupling matrices Γµa,b are:

Γµa = g5γ
µ
[
P−(〈WL±λL±2 λL3

2 〉+ 〈WR±λR±
2 λR3

2 〉)
+P+(〈WL±λL±1 λL3

1 〉+ 〈WR±λR±
1 λR3

1 〉)
]

Γµb = Γµa(P
+ ↔ P−) .

The vertex diagrams are showed in fig. 4.5. The vector coupling is given by

gA = −1

2
g5
(
〈WL±λL±1 λL3

1 〉+ 〈WR±λR±
1 λR3

1 〉+ 〈WL±λL±2 λL3
2 〉+ 〈WR±λR±

2 λR3
2 〉
)

and the axial-vector coupling by

gA = −1

2
g5
(
−〈WL±λL±1 λL3

1 〉 − 〈WR±λR±
1 λR3

1 〉+ 〈WL±λL±2 λL3
2 〉+ 〈WR±λR±

2 λR3
2 〉
)
.

The coupling strength depends on the Majorana mass term Mm modifying the neutralino wave
function and indirectly on the neutralino mass.

In fig. 4.6, we show at the left hand side the light neutralino couplings gbA and gbB in depen-
dence of mχ0

b
. At the right hand side, similarly gaA and gaB are showed in dependence of mχ0

a
.

We observe that the coupling depends only weakly on the mass2.
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χ+
a W+

χ0
a

= i√
2
γµ(gaA + iγ5gaB)

χ+
a W+

χ0
b

= 1√
2
γµ(gbA + iγ5gbB)

χ+
b W+

χ0
a

= i√
2
γµ(gaA − iγ5gaB)

χ+
b W+

χ0
b

= − 1√
2
γµ(gbA − iγ5gbB)

Fig. 4.5: The vertices of the charged current coupling.
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Fig. 4.6: Left: Strength of the charged coupling in dependence of light neutralino χ0
b mass. Right: Strength

of the charged coupling in dependence of heavy neutralino χ0
a mass. ga,b

A denotes the vector coupling, ga,b
B the

axial-vector coupling.

Z/γ–chargino interactions

The neutral current interaction, obtained in a similar way as the charged current interaction,
reads

L = γµ(x)
[

χ+
a Γµγaχ

+
a + χ+

b Γµγbχ
+
b

]

+ Zµ(x)
[

χ+
a ΓµZaχ

+
a + χ+

b ΓµZbχ
+
b

]

, (4.25)

where the corresponding vertex expressions are

ΓµZa = g5γ
µ
[
P+(〈ZL3λL±1 λL±1 〉+ 〈ZR3λR±

1 λR±
1 〉)

+P−(〈ZL3λL±2 λL±2 〉+ 〈ZR3λR±
2 λR±

2 〉)
]

(4.26a)

ΓµZb = ΓµZa(P
+ ↔ P−) . (4.26b)

The photon vertices are obtained in a similar way. They simplify drastically, taking into account
canonical normalization of the charginos and a0 = e, c.f. the matching conditions in (6.25).

2This is an effect of the “soft” SUSY breaking at the second IR brane. In [1], SUSY breaking was done on the
UV brane, which suppressed the 〈W±λ±

1 λ0
1〉 overlaps and effectively decreased the coupling strength.
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χ+
a Z

χ+
a

= iγµ(gC + iγ5gD)

χ+
b Z

χ+
b

= iγµ(gC − iγ5gD)

χ+
a γ

χ+
a

= ieγµ

χ+
b γ

χ+
b

= ieγµ

Fig. 4.7: The vertices of the neutral current coupling.

Especially, the coupling is entirely vector-like:

Γnγa = a0γ
n
[
P+(λL±1 λL±1 〉+ 〈λR±

1 λR±
1 〉)

+P−(〈λL±2 λL±2 〉+ 〈λR±
2 λR±

2 〉)
]
,

= eγn (4.26c)

Γnγb = Γnγa (4.26d)

The vertices are showed in fig. 4.7. The coupling strength obtained from the overlaps intergals
in units of

√
4πα sin−1 ΘW is

gC = 0.396 and gD = −0.188 .

Note there is no Zχ0χ0 interaction because of the antisymmetric tensor fabc in (4.21) which
forbids the interaction between three neutral gauge fields.

4.3.2 Neutralino interactions with matter

The interactions of gauginos with matter are encoded in the Lh(H,Hc, V, χ) part of (3.10). The
expansion into the multiplet fields leads to the following terms containing λ1 and λ2:

Lh,int,λ =
ig

(k z)5

[√
2λ

l

1ψT
lh−

√
2h†T lψλl1 −

√
2hcT lψ

c
λ
l

1 +
√

2λl1ψ
cT lhc†

√
2λ

l

2ψT
lhc† +

√
2h†T lψ

c
λ
l

2 −
√

2hcT lψλl2 −
√

2λl2ψ
cT lh

]

(4.27)

Concentrating only on the neutralino interaction, we obtain as 4D effective Lagrangian:

Lh,int,λ0 = hji Ψ
i

iiΓij(χ
0
a + iχ0

b) + hc†i ΨiiΓ
c
ij(χ

0
a − iχ0

b) + h.c. . (4.28)

with the coupling matrices

Γij = g5δij

[

T3L

[
P−〈λL3

1 ψLihLj〉 − P+〈λL3
2 ψcLihLj〉

]

+ T3R

[
P−〈λR3

1 ψRihRj〉 − P+〈λR3
2 ψcRihRj〉

]

+ grX
[
P−〈λX1 ψLihLj〉 − P+〈λX2 ψcLihLj〉

]

+ grX
[
P−〈λX1 ψRihRj〉 − P+〈λX2 ψcRihRj〉

]

]
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4.3 Interactions

Γcij = g5δij

[

T3L

[
P−〈λL3

2 ψLih
c
Lj〉+ P+〈λL3

1 ψcLih
c
Lj〉
]

+ T3R

[
P−〈λR3

2 ψRih
c
Rj〉+ P+〈λR3

1 ψcRih
c
Rj〉
]

+ grX
[
P−〈λX2 ψLih

c
Lj〉+ P+〈λX1 ψcLih

c
Lj〉
]

+ grX
[
P−〈λX2 ψRih

c
Rj〉+ P+〈λX1 ψcRih

c
Rj〉
]

]

.

This time, the overlap integrals contain the metric factor (k z)−5:

〈λψh〉 =

∫ 1/ΛI

1/k

dz(k z)−5f I

λ(z)f
I

ψ(z)f I

h(z)

+

∫ 1/ΛII

1/k

dz(k z)−5f II

λ (z)f II

ψ (z)f II

h (z) (4.29)

The quantum numbers are T 3L,R = ± 1
2 and X = − 1

2 ,
1
6 and the index i runs over the fermion

types and generations. The couplings, calculated using the parameter set we will present in the
next chapter, are all smaller than 10−2 ·

√
4πα/ sinΘW .
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In this chapter we want to discuss how fermions and their supersymmetric partner fields are
implemented into our model and illustrate the reasons for assigning to them the boundary
conditions listed in chap. 3. We conclude this chapter presenting a possible parameter set for
the matter sector and discussing the resulting mass spectrum.

5.1 Implementation

We assume that the left handed standard model fermions form SU(2)L doublets and the right
handed SM fermions, including a right handed neutrino, form SU(2)R doublets [25]. As dis-
cussed in subsection 1.4.3, 5D bulk spinors are of Dirac type and contain two 4D Weyl spinors.
By boundary conditions, one has to insure that within every 5D fermion only one single mass-
less 4D Weyl fermion exists. The zero modes will be identified with the SM fermions.
The overall bulk symmetry is

SU(3)C × SU(2)L × SU(2)R × U(1)X .

The leptons are in the representation

LL ∼ (1,2,1,−1) LR ∼ (1,1,2,−1) (5.1)

and the quarks are in

QL ∼ (3,2,1, 1/3) QR ∼ (3,1,2, 1/3) . (5.2)

Writing each Dirac spinor in terms of a pair of two-component spinors (η, χ̄)T , the doublets
constituting a fermion generation are

ΨL = (ηuL, χ̄
u
L, η

d
L, χ̄

d
L)T ,

ΨR = (ηuR, χ̄
u
R, η

d
R, χ̄

d
R)T .

(5.3)

The superscript u stands either for a neutrino or a quark of electric charge 2/3 (u-type) with
T3D = T3L + T3R = 1/2. Similarly, d denotes either a charged lepton or a quark with charge
-1/3 (d-type) and T3D = −1/2.

In the supersymmetric extension of the model, the lefthanded η spinors are embedded into
the H part of the hypermultiplet (2.36) and the righthanded χ spinors into the Hc part. This
means that for each SM fermion doublet one set of (HL, H

c
L, HR, H

c
R) is added to our model.

5.2 Matter

We start with describing how the standard model matter content is reproduced.
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5.2 Matter

5.2.1 Massless fermions

Consider the following boundary conditions:

SB brane UV brane EWSB brane

ηL ⊕ ⇔ ⊕
χR ⊕ ⇔ ⊕
ηR ⊖ ⇔ ⊖
χL ⊖ ⇔ ⊖

(5.4)

The “⇔” symbolizes a transition condition of the form (3.7). The corresponding KK towers
of ηL and χR will each contain a zero mode, while for ηR and χL there will be no massless
solutions.

Of course we do not really want massless fermions, but considering the relevant mass scale of
KK excitations of approximately 1 TeV, they are a good start. The analytic expressions of the
massless KK wavefunctions can easily be obtained by solving the differential equations (1.40)
for the massless case. The KK wave functions are given in tab. 5.1. To satisfy the boundary

z ∈ [ 1
k ,

1
ΛI

] z ∈ [ 1
k ,

1
ΛII

]

f0ηL(z) = A0ηL(kz)2−cLI tL A0ηL(kz)2−cLII

f0ηR(z) = tR A0ηR(kz)2−cRI −A0ηR(kz)2−cRII

f0χL(z) = tL A0χL(kz)2+cLI −A0χL(kz)2+cLII

f0χR(z) = A0χR(kz)2+cRI tR A0χR(kz)2+cRII

Tab. 5.1: KK functions of massless fermions.

conditions given in sec. 3.2.3, A0ηR = A0χL = 0 is required. The remaining normalizations
A0ηL and A0χR are found by the normalization condition:

∫ 1/ΛI

1/k

dz

(k z)4
(f I

0)
2 +

∫ 1/ΛII

1/k

dz

(k z)4
(f II

0 )2 = 1

The metric factor (k z)−4 results from the density factor
√

g = (k z)−5 and from the inverse
fünfbein eMa coming along with the Dirac matrix in the spinor field kinetic term in (1.33). The
normalizations read:

A0ηL =
√
k

(

1− (ΛI

k )2cLI−1

2cLI − 1
+ t2L

1− (ΛII

k )2cLII−1

2cLII − 1

)−1/2

A0χR =
√
k

(

1− (ΛI

k )−2cRI−1

−2cLI − 1
+ t2R

1− (ΛII

k )−2cRII−1

−2cRII − 1

)−1/2
(5.5)

Since Λ/k is a very small number of O(10−16), we find a kind of seesaw behavior depending on
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whether the exponents are positive or negative. It is useful to define:

αLI,II := cLI,II −
1

2
(5.6a)

αRI,II := −cRI,II −
1

2
(5.6b)

and A0L,R :=

(

1− (ΛI

k )2αLI,RI

αLI,RI

+ t2L,R
1− (ΛII

k )2αLII,RII

αLII,RII

)−1/2

(5.6c)

Then
A0χR =

√
2kA0R and A0ηL =

√
2kA0L .

In proper distance coordinates, the normalized KK wavefunctions
√
Re−3/2Rkπfηχ0 are Planck

localized if αL, αR > 0 and IR localized if αL, αR < 0, c.f. tab. 5.1.

5.2.2 Massive fermions via Dirac mass terms

At the EWSB brane, the remaining unbroken symmetry is SU(2)D and the theory is non-chiral.
Therefore, we can add a localized Dirac mass term

SMD
= −

∫

dx5 1

(k z)4
δ(z − z0)

MD

ΛI

(

HRH
c
L +H

c

LHR +HLH
c
R +H

c

RHL

)

, (5.7)

where z0 = Λ−1
I

is the position of the EWSB brane. The localized term (5.7) leads to a δ-shaped
modification of the original e.o.m. of the fermions given in (1.37). The deformed e.o.m. for ηL
in the interval I is

−i σµ∂µηI

L + ∂zχ
I

L −
(2 + c)

z
χI

L −
MD

ΛI

χI

Rδ(z − z0 + ε) = 0 , (5.8)

where we have shifted the localized term by an infinitesimal amount ε away from the brane.
By integrating (5.8) one finds that χI

L undergoes a jump:

[χI

L]z0−ε = −MD

ΛI

χI

R|z0−ε

If χI

L previously has satisfied a Dirichlet boundary condition χI

L|z0 = 0, we now obtain in the
limit of ε→ 0 the modified condition

χI

L|z0 = −MD

ΛI

χI

R|z0 . (5.9)

Analogously, the Dirichlet boundary condition of the ηR field in the presence of the Dirac mass
term (5.7) is modified to

ηI

R|z0 =
MD

ΛI

ηI

L|z0 . (5.10)

These are just the boundary conditions we have specified in (3.18). Note that they still eliminate
the boundary term

B =
1

(k z)4
(ηI

Lχ
I

L + ηI

Rχ
I

R)|z=z0 =
1

(k z)4

(

ηI

Lχ
I

L

[

1 +
MD

ΛI

(

− ΛI

MD

)])

= 0 .

Solving the modified system of boundary conditions for the fermions, using
mf ≪ ΛI,ΛII, finally gives the approximate expression

mf ≈ 2MD

(
ΛI

k

)αL1
(

ΛI

k

)αRI

A0L · A0R (5.11)
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for the fermion mass. Even for the top quark with mt = 171 GeV (5.11) is still a good
approximation. By numerically solving the boundary conditions and plugging the obtained
mass solution back into the fermionic KK wavefunctions, one can check that the light fermions
predominantly1 live in the formerly massless KK wave functions fηL and fχR. This justifies
the appearance of the massless normalization terms A0L and A0R in (5.11).

Observe that the fermion mass mf depends mainly on the localization within the I interval.
The localization parameters of the II intervalαLII and αRII enter only via the normalization
terms A0L andA0R. In particular, the mass will be suppressed if the fermion is Planck localized
(αLI, αRI > 0). The fermion becomes heavy if is located near the EWSB brane (αLI, αRI < 0).
Since the mass is the effect of the EWSB localized Dirac mass term, this is the behavior one
would expect.

5.2.3 Mass splitting

So far, neutrinos and charged leptons, as well as u- and d-type quarks, are degenerate due to
unbroken global SU(2)R symmetry. To obtain a realistic spectrum, we have to break SU(2)R
by boundary conditions. According to our symmetry breaking pattern, this is done at the
Planck brane. The simplest possibility is to change the transition parameter tR, defining the
connection between fηR

, f I
χR

and fηR
, f II

χR
. The “⇔” condition at the Planck brane (3.19)

reads:

f II

χR
= tRf

I

χR

f II

ηR
= − 1

tR
f I

ηR

(5.12)

By choosing a larger value of tR for the lighter part of the SU(2)R doublet, the proportion
of f II

χR
/f I
χR

is increased, effectively weakening the influence of the Dirac term at the EWSB
brane. This is how we will generate the mass splitting in the quark sector. We choose the other
transition parameter tL = 1 for all leptons and quarks.

In the two brane model, the splitting is achieved by an additional UV localized 4D spinor,
coupling only to the u-type part [25]. Solving the e.o.m., this looks like an additional kinetic
term for the u-quarks, effectively decreasing the mass. The resulting boundary conditions can
be found in the appendix in C.1. The mechanism of mass splitting is similar to the three brane
case in the sense that the mass shift is obtained by changing the normalization of the lighter
quarks.

5.2.4 Neutrinos

At first sight, one could try to implement the neutrino similarly. The mass splitting has to be
various orders of magnitude, because the neutrino is much lighter than the charged leptons,
and would require an enormously large tR value. However, the neutrino is not just light, it is
also different from the charged fermions because there are no (observed) righthanded neutrinos.
Therefore, let us consider the case of adding a localized Majorana mass term at the Planck
brane, reading

SMM
=

1

2

∫

dx5 1

(k z)4
δ(z − z0)

MM

k

(

Hc
RH

c
R +H

c

RH
c

R

)

, (5.13)

where z0 = 1/k. The analysis of the e.o.m. leads to the deformed boundary condition

ηI

R + tRη
II

R −
MM

k
(χI

R +
1

tR
χII

R)|z=1/k = 0 , (5.14)

1For example in case of the electron 99.99996% of the normalization is generated by the formerly massless KK
wave functions.
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which is the same we stated in (3.20). We discussed in sec. 4.2.3 of the previous chapter, that a
localized Majorana term lifts the degeneracy of the mass eigenstates corresponding to the two
possible sign choices of the coefficients (aη, bη) = ±(aχ, bχ). Since the Majorana mass term is
assigned on the UV brane, it has a very strong effect and leads to a seesaw mechanism, giving
rise to one very light solution and another heavy one which is pushed out of the spectrum. For
further details on Majorana masses and the seesaw mechanism see [26]. The light solution is
given by

mν ≈
M2
D

MM
A2

0L

(
ΛI

k

)2(αLI+αRI)

=
1

4

m2
f

MMA2
0R

. (5.15)

The required very small neutrino mass can be achieved by a Majorana mass term of the order
MM ≈ 1011 GeV. Despite the large number, this is rather small compared to the relevant scale
at the Planck brane of k = 1019 GeV.
The Majorana mass term MM couples fχR

and fηR
. Due to the choice of the boundary con-

ditions on the EWSB and the SB brane, fηR
is zero in the massless case, or very close to zero

for MD 6= 0. Therefore, fχR
will be strongly suppressed. Due to the IR boundary conditions,

also fχL
is suppressed. So ultimately, we find the right handed modes to vanish. Thus, we have

achieved the right handed neutrino to be sterile as required by (the absence of) experimental
observation.

5.3 Smatter

Due to unbroken Supersymmetry, the entire multiplet is assigned the same boundary conditions
on the EWSB and Planck brane and the same localization parameters αLI, αLII, αRI and αRII.
SUSY is broken on the remaining IR brane in the second interval.

5.3.1 Charged sfermions

We choose to break Supersymmetry by simply giving the sfermion fields boundary conditions
opposite to the ones we have defined for fermions in (5.4) at the SB brane:

SB brane UV brane EWSB brane

hL ⊖ ⇔ ⊕(MD)

hcR ⊖ ⇔ (tR, MM ) ⊕(MD)

hR ⊕ ⇔ (tR, MM ) ⊖(MD)

hcL ⊕ ⇔ ⊖(MD)

(5.16)

We have indicated the modifications to the “massless” boundary conditions on the EWSB and
the UV brane in brackets.
Note that at the Planck brane, it is not mandatory to assign the hc field twisted boundary
conditions compared to those assigned to h. However, it is useful, because that choice leaves
the mass eigenstates to h and hc degenerated. The conditions (5.16) forbid massless solutions,
regardless of whether a Dirac mass term MD is present or not. The sfermion mass is generated
predominantly within the SB interval. Neglecting the Dirac mass term MD leaves us with
boundary conditions symmetric under the simultaneous exchange of

fηL
←→ fχR

and fχL
←→ fηR

.

Therefore, we find two approximately independent solutions for the mass of the charged sfermion,
one predominantly consisting of ΨL fields (carrying SU(2)L quantum numbers) and the other
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Fig. 5.1: Contour plot of Log10(m
f̃
/GeV) for t = 1 in dependence of αI (horizontal) and αII (vertical). There are

two charged sfermions with masses approximately described by m
f̃ ,L

(αLI, αLII, tL) and m
f̃ ,R

(αRI, αRII, tR).

predominantly consisting of ΨR fields. These are described by two similar expressions:

mf̃ ,L ≈ 2ΛII

(
ΛII

k

)αLII
(

1 + αLII

A−2
0L − t2L

(
ΛII

k

)2αLII

)1/2

tL

mf̃ ,R ≈ 2ΛII

(
ΛII

k

)αRII
(

1 + αRII

A−2
0R − t2R

(
ΛII

k

)2αRII

)1/2

tR

(5.17)

The assignment to either (L) or (R) can be validated determining the relative contributions of
the respective ΨL or ΨR modes to the field normalization Z, which are typically about more
than 99.95%. Depending on the choice of parameters, the solutions can be light. However,
they can also be in the range of typical KK excitations with more than 1 TeV. The approxi-
mate expressions hold for small L-R mixing at the EWSB brane. In the case the third quark
generation, where a large mixing is required in order to obtain a heavy top quark, the above
expressions get large corrections and the classification into (L) and (R) modes becomes diffuse.
The qualitative behavior of the sfermion mass is demonstrated in fig. 5.1, where we show a
contour plot of Log10(mf̃/GeV) for t = 1 in dependence of αI and αII.
Comparison of (5.17) with (5.11) shows that sfermion and fermion masses qualitatively have an
opposite characteristic. Light sfermions and heavy fermions are obtained for αI < 0, αII > 0,
while we get heavy sfermions and light fermions for αI > 0, αII < 0.
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5 Fermions and sfermions

5.3.2 Sneutrinos

The neutrino superpartners are also affected by the Majorana mass term on the UV brane.
They are found to obey the implicit approximate expression

mν̃ ≈ 2ΛII

(
ΛII

k

)αRII




1 + αRII

A−2
0R − t2R

(
ΛII

k

)2αRII
+ 4MM

mñ





1/2

tR . (5.18)

In order to keep them sufficiently heavy to avoid detection bounds, we choose tR > 1 for the
second and third lepton generation. Generally, the large mass splitting within the SU(2) SM
doublet causes also a large splitting in the corresponding sfermionic sector. As this splitting is
achieved by different boundary conditions on the Planck brane to the ΨR doublet the modes,
the corresponding sfermion (R) modes in the doublet are widely separated, c.f. tab. 5.2. The
same reasoning applies for the different masses of the stop and sbottom (R) modes, which is a
consequence of the large mass splitting between top and bottom quark.

5.4 Discussion of the spectrum

In tab. 5.2 and fig. 5.2, we show the tree level mass spectrum of the matter sector of our model.
The parameter set leading to this spectrum is given in tab. 5.3 and tab. 5.4.

The parameter set in tab. 5.3 and tab. 5.4 is intended to serve as example. In the absence
of definite physical restrictions on all the parameters, it did neither seem worth the effort nor
possible to investigate the effectively eight (leptons) or seven (quarks) dimensional parameter
space in a systematical way. However we want to discuss the guidelines we followed for choosing
our parameter set and the fingerprints of this choices. The resulting mass spectrum is showed
in fig. 5.2.

The principal requirement of course was to correctly reproduce the masses of leptons and
quarks as given in [23]. Furtheron, we insured that the electrons are localized such that the S
parameter does not deviate. The issue of electroweak precision observables will be discussed in
chap. 6. The mass splitting via Majorana mass terms MM between leptons and neutrinos was
choosen only as strong as necessary to stay below the upper mass bounds for neutrinos. As the
electron is already very light, not more than a Majorana mass of the order of MM = 104 GeV
is needed for a realistic νe mass. This is miniscule compared to the relevant scale at the Planck
brane which is determined by k = 1019 GeV. Therefore, the seesaw effect discussed in sec. 5.2.4
is not very strong and the heavy solution appears at 896 GeV. For µ and τ , the mass difference
between charged leptons and neutrinos and therefore the necessary Majorana mass is larger.
Hence the heavy seesaw solution is projected out of the spectrum. It has to be noted, that if we
had made all the neutrinos lighter all heavy seesaw solutions would have been above the cutoff.

Further on, we choose the parameters in a way that all sfermion masses are above 200 GeV
and avoiding current detection bounds. Similarly to other supersymmetric models, light SM
particles tend to have heavy supersymmetric partners and vice versa. In general, the KK
spectrum above 1 TeV is rather degenerate and only weakly affected from SUSY breaking.
Note that according to (5.17), we find sfermions which are predominantly localized either in
the ΨL or in the ΨR doublet. Our criterion for “predominantly” is a that more than 99.5%
of the normalization is generated either by fηL, fχL alone for a (L) mode or by fηR, fχR
for a (R) mode. For most indicated modes, this preference for (L) or (R) is even stronger,
with contributions to the normalization from the dominant doublet which are about six to
eight orders of magnitude larger than from the other doublet. As the couplings are defined by
overlap integrals, we would find an (R) mode to couple in a different way than an (L) mode. An
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5.4 Discussion of the spectrum

4D first mode(s) KK excitations

field m/GeV m/GeV

e− 5.11 · 10−4 1170 2784

ẽ 521 (R) 801 (L) 1170 2784

νe 2.91 · 10−10 896 1170 2784

ν̃e 238 (R) 801 (L) 1170 2784

µ− 0.105 1213 2554

µ̃− 397 (L) 2707 (R) 1214 2554

νµ 1.91 · 10−9 1213 2554

ν̃µ 228 (R) 397 (L) 1213 2554

τ− 1.77 1186 2571

τ̃− 218 (L) 1563 (R) 1185 2571

ντ 1.89 · 10−9 1186 2571

ν̃τ 214 (R) 218 (L) 1186 2571

u 2.31 · 10−3 1226 2709

ũ 512 (L) 556 (R) 1226 2709

d 5.33 · 10−3 1226 2709

d̃ 512 (L+R) 1226 2709

c 1.27 1258 2561

c̃ 442 (L+R) 1259 2561

s 0.108 1257 2560

s̃ 443 (L) 565 (R) 1257 2560

t 173 1300 2718

t̃ 217 (75% R) 1613 (86% L) 1141 2760

b 4.20 1021 2471

b̃ 884 (83%L) 2268 (R) 1534 2516

Tab. 5.2: Mass spectrum of the matter sector. We include all KK modes below 3000 GeV. Sfermions which
live predominantly in ΨL or ΨR we have indicated with (L), (R). As the mass splitting between elektron and
elektron neutrino is comparatively small, the heavy seesaw solution is not projected out of the spectrum as it
is for the other two generations. Further one observes how the large L-R necessary for a sufficiently heavy top
distorts the sfermion solutions.

example is the coupling to W bosons, which would be suppressed for (R) sfermions because the
fWR± KK wave function is zero over almost the entire extra dimension, c. f. fig. 4.1. The (L) or
(R) modes acquire their masses mainly within the second interval. The resulting mass depends
on the choice of the parameters, c.f. fig. 5.1, and can be quite light (like the ν̃τ with 214 GeV)
or as heavy as for example the (R) mode of the µ̃ with 2707 GeV. First KK excitation modes
typically appear in the mass range of 1100 GeV to 1300 GeV.

For d̃ and c̃, the L-set of parameters αLI, αLII and tL is idential to the R-set, consisting of
αRI, αRII and tR. Therefore, the expressions (5.17) give mf̃ ,L = mf̃ ,R and we find a single mode
which is equally distributed over ΨL and ΨR. Observe further that due to unbroken SU(2)L,
the (L) modes within one sfermion doublet are degenerate. In contrast, the (R) modes are quite
strongly affected by the splitting, which is realized via a different choice of tR or by using the
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5 Fermions and sfermions

αLI αLII αRI αRII tL tR MM/GeV MD/ΛI
(

e−/ẽ

νe/ν̃e

)

0.15 0.00 0.15 0.02 1

(

1

1

) (

0

1.0 · 104

)

1.24

(

µ−/µ̃−

νµ/ν̃µ

)

0.02 0.02 0.02 -0.14 1

(

1

15

) (

0

2.2 · 1011

)

0.97

(

τ−/τ̃−

ντ/ν̃τ

)

0.02 0.04 0.02 -0.05 1

(

1

400

) (

0

3.3 · 1011

)

1.015

Tab. 5.3: Model parameters for the fermions and their superpartners.

αLI αLII αRI αRII tL tR MD/ΛI

(

u/ũ

d/d̃

)

0.12 0.02 0.12 0.02 1

(

2.5

1

)

1.1

(

c/c̃

s/s̃

)

0.04 0.02 0.04 0.02 1

(

1

15

)

0.93

(

t/t̃

b/b̃

)

-0.10 -0.10 -0.20 -0.10 1

(

1

1505

)

1.14

Tab. 5.4: Model parameters for the quarks and their superpartners.

localized Majorana mass term MM . For the third quark generation, the L-R mixing induced
at the EWSB brane in order to achieve heavy enough top quarks is strong and the assumption
of independent L and R boundary conditions in (5.17) does not hold any longer. The top mf̃ ,L

is predicted at 251 GeV but the solution is found at 217 GeV. Therefore, stop and sbottom do
not show preferences for ΨL or ΨR stronger than about 75% and do not qualify as (L) and (R)
solutions according to our definition. The distortion is still visible in the first KK excitations.
Another consequence of strong L-R mixing regarding the quark sector is the severe problem of
the Zbb̄ coupling. This will be discussed separately in chap. 7.
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5.4 Discussion of the spectrum

Fig. 5.2: Mass spectrum of the matter sector for the parameter sets tab. 5.3 and tab. 5.4. The first modes, for
which the above derived approximate expressions hold, are indicated in red (fermions) and orange (sfermions).
The degenerate modes are denoted (L+R). As a consequence of the mass splitting in the SM sector, some (R)
modes become very heavy. The KK excitations in black are, apart from the distorted third quark sector, almost
degenerate.
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6 Electroweak precision observables

A very convenient method to probe BSM models are the famous electroweak precision observ-
ables S and T , introduced by Peskin and Takeuchi [27] in 1991. Having built the supersymmetric
extradimensional model and discussed the mass spectra, we can test the viability of our model
and constrain its parameter space by means of these parameters.

6.1 The Peskin-Takeuchi parameters S and T

The procedure of renormalization in perturbation theory leads to different kinds of corrections.
Direct vertex corrections are absorbed in the couplings. There are so-called “oblique” correc-
tions which arise due to vacuum polarization diagrams and affect the gauge boson propagators.
More corrections exist, fore example those corresponding to box or pentagon diagrams. How-
ever, the first two types are the dominant ones for the relevant e+e− → Z → ff processes at
LEP, which have been measured at the Z-pole with astonishing precision.

It turns out that the oblique corrections to most weak interaction observables can be described
in terms of only two parameters defined from vacuum polarization amplitudes.

Generally speaking, the S parameter is a measure for the number of degrees of freedom of the
particles participating in the electroweak sector. The value of this parameters is inferred from
measurements of the magnitude of parity violation in atomic physics and from weak interaction
asymmetries ALR and AFB at the Z-Peak. While the S parameter is isospin-symmetric, the
T parameter quantifies the strength of weak isospin breaking through radiative corrections.
There is also a third parameter U . It parameterizes a dimension-eight operator, while S and T
correspond to dimension-six operators and usually contributions to U from new physics models
are very small. As in most publications, we restrict ourselves to S and T . They are defined [27]
as:

S ≡ 16π(Π′
33 −Π′

3Q) (6.1)

T ≡ 4π

sin2 ΘW cos2 ΘWm2
Z

(Π11(0)−Π33(0)) (6.2)

where the Π are the vacuum polarization amplitudes we will discuss in the next section. The
authors of [27] showed that most contributions from vacuum polarization can be parameterized
in terms of S and T .
Their values are usually extracted from measurement data assuming of a standard model Higgs
of a certain mass. So it is not a priori clear how they should be compared with values calculated
in a model without a Higgs. According to the picture of our higgsless model corresponding to
the limit of a Higgs field with VEV → ∞, one usually takes as reference a fit that assumes a
large Higgs mass value, namely with mH above the cutoff.

S and T can be found in [23] and turn out to be strongly correlated (87%). For a Higgs mass
of mH = 117 GeV, S should be within −0.20 ≤ S ≤ 0.10 and T within −0.10 ≤ T ≤ 0.15. For
a heavy Higgs of mH = 1000 GeV, which would the closest to an “Higgs above the cutoff”, the
boundaries are shifted to −0.35 ≤ S ≤ 0.00 and 0.10 ≤ T ≤ 0.40 . While the T parameter is
protected by custodial symmetry, the main problem for extradimensional models usually have
been large positive values of S.
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6.2 Oblique corrections in the standard model

6.2 Oblique corrections in the standard model

In this section we want to give a qualitative description of how oblique corrections to gauge
boson propagators arise from vacuum polarization diagrams and how they are taken into ac-
count within the renormalization procedure. Firstly, we describe the procedure of renormalized
perturbation theory using the simple example of a scalar φ4 theory with the Lagrangian

L =
1

2
(∂µφ0∂

µφ0 −m2
0φ

2
0) + λ0

φ4
0

4!
, (6.3)

which can be rewritten using

φ0 =:
√

ZRφR m0 =: ZmmR and λ0 = ZλλR (6.4)

as

L =
1

2
(ZR∂µφR∂

µφR − ZRZ2
mm

2
Rφ

2
R) + Z2

RZλλR
φ4
R

4!

=
1

2
(∂µφR∂

µφR −m2
Rφ

2
R) + λR

φ4
R

4!
︸ ︷︷ ︸

LR

+
1

2
(δZR∂µφR∂

µφR − δm2φ2
R) + δλR

φ4
R

4!
︸ ︷︷ ︸

LCT

, (6.5)

with δZR = (ZR − 1), δm2 = (ZRZ
2
m − 1)m2

R and δλR = (ZλZ
2
R − 1)λR.

The bare fields, couplings and masses are replaced by renormalized quantities, multiplied by
renormalization constants as in (6.4). In (6.5), these multiplicative renormalization constants
are then split into canonical normalizations plus counterterms. On the level of Feynman am-
plitudes these counterterms are just a set of additional Feynman rules, which can be used to
absorb the divergencies occurring in loop diagrams. For example, the scalar propagator can be
rewritten as:

= O(g0)

+ + O(g)

+ . . . higher orders

(6.6)

In order for the left hand side to be physically sensible, the divergencies in the loop on the
right hand side have to be cancelled by the counterterm. The counterterms are determined
by suitable renormalization conditions, which in general depend on the renormalization scheme
(MS, on-shell). A more detailed introduction to renormalized perturbation theory can be found
e.g. in [28]. Let us proceed to the oblique corrections in the standard model. The boson
propagator can diagrammatically be represented as:

= O(g0)

+ + O(g2)

+ . . . higher orders

(6.7)
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6 Electroweak precision observables

The vacuum polarization amplitude ΠXY is defined as the one-particle irreducible self energy,
which at leading order written with Feynman graphs is:

g2ΠXY = X Y = X Y + X Y (6.8)

Considering gauge bosons from the electroweak sector, the indices (XY) are placeholders for
(11), (22), (33), (3Q) and (QQ). To split the momentum independent from the momentum
dependent part, one defines

ΠXY (q2) = : ΠXY (0) + q2Π′
XY (q2) . (6.9)

For small momenta, this is just a Taylor expansion with Π′
XY (q2) = d

dp2 ΠXY |p2=0. The physical

propagator at O(g2) is given by the Dyson series:

G = + + + . . .

= G0 + G0gΠgG0 + G0gΠgG0gΠgG0 + . . .

(6.10)

Since Π, as defined above, is finite and in particular g2Π is small at relevant energies of s ∼ m2
Z ,

the series converges and (6.10) reduces to

G = G0
∞∑

n=0

(g2ΠG0)n = G0 1

1− g2ΠG0
=

1

(G0)−1 − g2Π
. (6.11)

The propagator at leading order O(g0) is just

G0,µν =
igµν

q2 −m2
R

+ terms in qµqν ,

and finally we obtain

Gµν =
igµν

q2(1− g2Π′)− (m2
R + g2Π(0))

+ terms in qµqν . (6.12)

The pole is shifted by an amount ∆m2 = g2Π(0). The residuum of the pole is equivalent to the
wave function renormalization1 Z = 1−g2Π. Let us apply this to the physical mass eigenstates
γ, W± and Z. The vacuum polarization corrections to their propagators are depicted in fig. 6.1.
Due to unbroken U(1)em it is guaranteed that Π11 = Π22. Also, Π3Q(0) = ΠQQ(0) = 0 due to
the QED Ward identity. The relations between the renormalized magnitudes and the vacuum
amplitudes read [27]:

ZZ = 1− g2

cos2 ΘW
(Π′

33 − 2 sin2 ΘWΠ′
3Q + sin4 ΘWΠ′

QQ) (6.13a)

ZW = 1− g2Π′
11 (6.13b)

m2
Z = m2

0Z +
g2

cos2 ΘW
(Π33 − 2 sin2 ΘWΠ3Q + sin4 ΘWΠQQ) (6.13c)

m2
W = m2

0W + g2Π11 (6.13d)

1This Z is not the same as the ZR from (6.4), which in particular is not finite.
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6.3 Tree level calculation of S and T parameter

γ γ + γ γ + . . . = G0
γγ +G0

γγ g
2 sin2 ΘWΠQQG

0
γγ + . . .

Z γ + . . . = G0
ZZ g

2 sin ΘW

cosΘW
(Π3Q − sin2 ΘWΠQQ)G0

γγ + . . .

Z Z + Z Z + . . . = G0
ZZ +G0

ZZ g
2 sin2 ΘW

cos2 ΘW

(

Π33

−2 sin2 ΘWΠ3Q + sin4 ΘWΠQQ

)

G0
ZZ + . . .

W W + W W + . . . = G0
WW +G0

WW g2Π11G
0
WW + . . .

Fig. 6.1: Definition of the vacuum amplitudes, c.f. [27].

6.3 Tree level calculation of S and T parameter

Let us now come to the explicit calculation of the precision observables within our model. As
we have discussed in chap. 1, wave function normalization terms Z and mass terms M arise
automatically when integrating out the extra dimension. These are defined by the geometry,
i.e. by the KK solutions in the extra dimensional interval with boundary conditions. In general
Z will be different from one, in contrast to the SM, where Z 6= 1 arises only at loop level.
Thus, the effective tree level Lagrangian2 obtained from a 5D theory can also be written as
L5D = L0,4D + LCT and we can at leading order identify Z and M with the renormalized
magnitudes Z and m from (6.13) in the 4D SM picture. Note that, as there is no Higgs VEV,
the entire boson mass stems from Π(0), as happens in technicolor models as well.

As a consequence of the unbroken U(1)em, it is always possible to canonically normalize the
photon wave function, hence Π′

QQ = 0. At tree level Π′
3Q = 0 holds as well because there is no

Z-γ mixing. With these simplifications, we obtain from (6.13) the relations:

ZZ = 1− g2

cos2 ΘW
Π′

33 (6.14a)

MZ =
g2

cos2 ΘW
Π33(0) (6.14b)

MW = g2Π11(0) (6.14c)

Inverting these relations and plugging them into the definitions of S and T we finally obtain:

S = 16π
cos2 ΘW

g2
(1−ZZ) (6.15)

T =
4π

g2 sin2 ΘW cos2 ΘWm2
Z

(MW −MZ cos2 ΘW ) (6.16)

We can immediately read of from (6.15) that the S parameter will be positive for ZZ < 1 and
negative for ZZ > 1.

For the calculation of ZZ , MZ and MW we require the KK wave functions of the gauge
bosons which have been discussed in chap. 4. The KK expansion of the physical bosons is given

2Of course, also in the 5D theory there are loop contributions at higher orders. In the 5D picture, these con-
tributions lead to additional brane localized operators, modifying the KK functions. We constrain ourselves
to the leading (tree level) contributions to S and T .

55



6 Electroweak precision observables

by (4.7). As mentioned before, the photon wave function is flat and can always be canonically
normalized

a2
0 ·

1

g2
5

(

π(RI + RII)
2g2
r + 1

g2
r

+ πRIIκ

)

= 1 . (6.17)

The KK wave functions of the massive bosons can be approximated by (4.9)

f0
i (z) = z (c0i J1(mz) + d0

i Y1(mz))

≈ ai +m2z2
(

bi −
ai
2

log(zk)
)

+m4z4

(

−bi
8
− 3ai

64
+
ai
16

log(zk)

)

+O(m6z6) .

To calculate the overlap integrals, we need the coefficients ai, bi which are obtained by solv-
ing the respective boundary conditions. The approximate analytical expressions are listed in
App. B.2. The resulting KK wave functions of the W and the Z boson are showed in fig. 4.1
and fig. 4.2.

The explicit expressions for the normalizations Z in terms of the KK wave functions are

ZW =

∫ 1/ΛI

1/k

dz

(
1

kz

)
(
[f I

L1]
2 + [f I

R1]
2
)

+

∫ 1/ΛII

1/k

dz

(
1

kz

)
(
[f II

L2]
2 + [f II

R2]
2 + κ kπRII[f

II

L2(0)]2
)

(6.18)

and

ZZ =

∫ 1/ΛI

1/k

dz

(
1

kz

)
(
[f I

L3]
2 + [f I

R3]
2 + [f I

X ]2
)

+

∫ 1/ΛII

1/k

dz

(
1

kz

)
(
[f II

L3]
2 + [f II

R3]
2 + [f II

X ]2 + κ kπRII[f
II

L3(0)]2
)
. (6.19)

The integrals M over the ∂z-derivatives of the mode functions, acting like mass terms in the
4D Lagrangian, are

MW =

∫ 1/ΛI

1/k

dz

(
1

kz

)
(
[∂zf

I

L1]
2 + [∂zf

I

R1]
2
)

+

∫ 1/ΛII

1/k

dz

(
1

kz

)
(
[∂zf

II

L2]
2 + [∂zf

II

R2]
2
)

(6.20)

and

MZ =

∫ 1/ΛI

1/k

dz

(
1

kz

)
(
[∂zf

I

L3]
2 + [∂zf

I

R3]
2 + [∂zf

I

X ]2
)

+

∫ 1/ΛII

1/k

dz

(
1

kz

)
(
[∂zf

II

L3]
2 + [∂zf

II

R3]
2 + [∂zf

II

X ]2
)
. (6.21)

Observe that the brane kinetic term κ increases the wave function normalizations Z. The 5D
model parameters a0, aZ , aW , gr and g5 can now be fixed by requiring that the 4D couplings
are correctly reproduced.

For the calculation, we assume gauge bosons to couple to massless fermions. Apart from the
third quark generation which will be discussed separately in chap. 7, the mass is sufficiently
small that fermions can be described by the massless KK functions f0ηL and f0χR. Since the
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6.4 Results

electroweak parameters have been measured in e+ e− collisions, the assumption of massless test
fermions is valid. The analytical expression for the lefthanded KK wave function is (c.f. tab. 5.1):

fη0L(z) =

{√
2k AL0 (kz)3/2−αLI z ∈ [ 1

k ,
1
ΛI

]√
2k tL AL0 (kz)3/2−αLII z ∈ [ 1

k ,
1

ΛII
]

(6.22)

The normalization AL0 is given by (5.5). Using (4.7), the interaction term of two lefthanded
fermions with a gauge boson reads

Lff̄A = η2
L(x)

[

a0Qγµ + g5〈η0Lη0LAL±〉TL∓W±
µ

+ g5〈η0Lη0LAL3〉
(

T3L + gr
〈η0Lη0LAX〉
〈η0Lη0LAL3〉

Y

)

Zµ(x)

]

, (6.23)

where the overlap integrals are defined as

〈η0Lη0LAi〉 =

∫ 1/ΛI

1/k

dz(k z)−4(f I

η0L)2f I

Ai(z) +

∫ 1/ΛII

1/k

dz(k z)−4(f II

η0L)2f II

Ai(z) . (6.24)

The matching conditions are (c.f. [29]):

a2
0 = g2 sin2 ΘW (6.25a)

g5〈η0Lη0LAL±〉 = g (6.25b)

g5〈η0Lη0LAL3〉 = g cosΘW (6.25c)

−gr
〈η0Lη0LAX〉
〈η0Lη0LAL3〉

= tan2 ΘW (6.25d)

The fact that the 5D parameters, fixed by the couplings, lead to the correct mW /mZ ratio is
due to the custodial symmetry in our model.

6.4 Results

6.4.1 The S parameter without a brane kinetic term

In the absence of a brane kinetic term (κ = 0), the wave function normalization of the Z boson
is given by

ZZ = a2
Z

C0

kx
(1− 3

8
xC0) +O(x), (6.26)

where C0 = (1 + 2g2
r)/(1 + g2

r), c.f. 4.12. In the simplest case of UV localized fermions (large
αL), the overlap integrals (6.24) reduce to

〈η0Lη0LAi〉 → fAi|z=1/k.

This situation was discussed for the 2 brane setup in [24]. The S parameter turned out to
be S ≈ 1.15, which is alarmingly large. The qualitative reason for this is the following: A
Planck localized SU(2)L fermion “sees” an fL3 value larger than the average over the whole
extra dimension. In order to get the correct T3L coupling, the Z wave function normalization
has to be lowered. This effectively results in a very large S parameter.
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6 Electroweak precision observables

When the second interval is introduced, the average value of fL3 increases and thus the S
parameter is reduced. For Planck localized test fermions we find:

a2
0 =

g2
5 g

2
r

π(RI +RII)(2g2
r + 1)

(6.27a)

〈η0Lη0LAL3〉 = aZ +O(x) (6.27b)

〈η0Lη0LAX〉 = − gr
1 + g2

r

aZ +O(x) (6.27c)

Using the matching conditions (6.25), the 5D parameters are found to be constrained by:

g2
5 g

2
r

π(RI +RII)(2g2
r + 1)

= g2 sin2 ΘW (6.28a)

g5aZ = gcosΘW (6.28b)

g2
r

1 + g2
r

= tan2 ΘW (6.28c)

Using these equations, we obtain ZZ = (1− 3
8

x
cos2 ΘW

) +O(x2) and finally with (6.15):

S =
6πx

g2
≈ 0.6 .

This is still way too large.

To obtain a realistic value of S, the fermions need to be delocalized towards the IR brane,
in order to decrease their overlap with fL3. Therefore, we have to choose αLI ∼ 0. As the fL3

and the fX wave functions are approximately flat in the second (SB) interval, the localization
parameter αLII does not have much effect at all, c.f. fig. 6.4. The photon coupling is not affected
by fermion localization and (6.27a) remains unchanged. For the overlap integrals we find:

〈η0Lη0LAX〉 = −aZ
gr

1 + g2
r

+O(x) (6.29)

〈η0Lη0LAL3〉 = aZ ·
(

1− C0 A
2
0L

(
ΛI

k

)2αLI

2(1− αLI)

)

+O(x) (6.30)

We determine the three 5D parameters gr, g5 and aZ , now depending on the fermion localization,
from (6.27a), (6.29) and (6.30). By plugging them into (6.26), we obtain ZZ(αLI). Finally
inserting this expression into (6.15) gives the result:

S =
16π

g2

(

3

8
x− A2

0L

2(1− αLI)

(
ΛI

k

)2αLI
)

+O(x2) (6.31)

To obtain a realistic S parameter, the fermion localization is required to be αLI ≈ −0.007 in
the case of three branes or respectively αL ≈ −0.013 in the two brane setup. This means the
fermions have to be almost completely delocalized within the extra dimension.

6.4.2 The S parameter with a brane kinetic term

The normalization of the photon in the case of κ 6= 0 is

a2
0 = g2

5

(

π(RI +RII)
2g2
r + 1

g2
r

+ πRIIκ

)−1

, (6.32)
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Fig. 6.2: Zoom on the f II
L3(z) wave function of the Z boson in the SB interval: The kinetic term κ > 0 (solid

line) induces an upward bending, which is not present for κ = 0 (dashed line). The f I,II

L±
(z) which corresponds

to the W boson looks similar in the SB interval.

And the overlaps change to:

〈η0Lη0LAX〉 = −aZ ·
gr

1 + g2
r

(1 + fR κ) +O(x) (6.33)

〈η0Lη0LAL3〉 = aZ ·
(

1− CκA2
0L

(
ΛI

k

)2αLI

2(1− αLI)
(1 + fR κ)

+Cκ

(
ΛI

ΛII

)2

t2LA
2
0L

(
ΛII

k

)2αLII

2(1− αLII)
fR κ+O(x)

)

(6.34)

Observe that 〈η0Lη0LAX〉 is, compared to (6.29), multiplied by a factor (1 + fR κ). The wave
function normalization is

ZZ = a2
Z

Cκ
kx

(1 + fR κ)
2

(

1− 3

8
xCκ +

(
fR κ

1 + fR κ

ΛI

ΛII

)2 [

1 + x

(
1

fR κ
+

3

8
Cκ

)])

+O(x). (6.35)

The negative contribution proportional to 3
8xCκ is similar to the one in (6.26). In addition, we

find a positive contribution proportional to

(
fR κ

1 + fR κ

ΛI

ΛII

)2

.

This contribution is an effect of the brane kinetic term, which induces an upward bending in
f II

L3 (c.f. fig. 6.2). Depending on κ and the ratio ΛI/ΛII we thus are able to fix S without having
to delocalize the test fermion. Again, S is obtained from (6.1), (6.14), (6.25) and from (6.32)
to (6.35).

In fig. 6.3, the S parameter is showed in dependence of the localization of the massless test
fermion within the EWSB interval for different values of κ = 0. As long as the test fermion
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Fig. 6.3: The S parameter for κ = 0 (black), κ = 0.85 (red) and κ = 0.95, 1.1, 1.2 (green) corresponding to
chargino masses of mχ = 80.4, 95.9, 97.5 , 100.0 and 101.6 GeV. We have fixed αLII = 0.15

within the EWSB interval is not too strongly localized towards the IR brane, its overlap with
the Z boson is approximately constant and so is S. However, S decreases drastically once αLI

becomes small.Note how the kinetic term lowers the S parameter. This enables us to choose κ
in a way that S is in the realistic range (equal to zero or slightly negative), not only for one
fixed value of αLI but for the entire plateau.

6.4.3 The T parameter

The procedure to calculate the T parameter at tree level is analogous to the calculation of the
S parameter. Again, we use the matching conditions (6.25) to fix the 5D parameters a0, aZ ,
gr and g5. The parameters are then plugged into the expressions forMZ andMW from which
then T is obtained by using (6.14).

The T parameter turns out to be protected to a certain extent by the custodial symmetry.
As long as the massless test fermion is not too strongly delocalized towards the IR brane3,
T ≈ 0. In fig. 6.5, we show the T parameter in dependence of the localization of the massless
test fermion within the EWSB interval for κ = 0 (dashed) and κ = 0.85 (solid line).

The qualitative explanation of fig. 6.5 is as follows: If the test fermion is strongly delocalized
towards the EWSB brane by choosing αLI large and negative, 〈η0Lη0LAL3〉 decreases while
〈η0Lη0LAX〉 remains unchanged. The ratio of these overlap integrals is used to fix gr, which in
turn sets the m2

z/m
2
W ratio. For large negative αLI, gr becomes small and thus the Z boson

becomes too light. Both ρ and T parameter are spoiled simultaneously.

A brane kinetic term induces a bending of f II

L3 near the SB brane, which increases bothMZ

and MW . That enhancement is bigger for MW than for MZ , leading to a larger value of T .
Still, this particular effect is very tiny4. For κ 6= 0, the overlap 〈η0Lη0LΦL3〉 receives a small

positive contribution ∝
(

fR κ
1+fR κ

)2 (
ΛI

ΛII

)2

, c.f. (6.34). This is the reason why the T parameter

3Too strong delocalization is already forbidden because it leads to a large negative S, compare fig. 6.3
4Note the zoom in fig. 6.2. The curvature of f II

L3 is nearly invisible in fig. 4.2.
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Fig. 6.4: For αLI = 0.15, the S parameter for κ = 0 (black), κ = 0.85 (red) and κ = 0.95, 1.1, 1.2 (green). The
S parameter depends only weakly on αLII.

increases slowlier if the test fermion is delocalized towards the EWSB brane as it does without
a brane kinetic term.

Taking as reference value bounds for T from [23]for mH = 1000 GeV, we find that T is
too small. Although the brane kinetic terms shifts it a bit towards the optimal region of
0.10 ≤ T ≤ 0.4, it is too well protected by custodial symmetry. A significant deviation from
T = 0 for αLI may only arise at next-to-leading order in perturbation theory, where vacuum
polarization diagrams containing top and bottom quarks violate custodial symmetry.

6.5 Discussion

Within our extra dimensional model we have determined the parameter space, where the elec-
troweak precision observables are in a realistic range. For example, for κ = 0.85, ΛI = 815 GeV,
ΛII = 3500 GeV, an electron with αLI = 0.15 and αLII = 0 would have S = −0.0057 and
T = 0.0003. To obtain the correct electron mass, the remaining parameters could be chosen to
be αRI = 0.15, αRII = 0.02 together with a Dirac mass of MD = 1011 GeV.

Fermion localization

Note that the combination of the second interval and brane kinetic term allows a realistic value
of S at αLI > 0.1. This is a good feature since in that case the small masses for light fermions
then appear quite naturally.
For a single extradimensional interval without brane kinetic term, we would need αLI ≈ −0.013
[24]. Even with an extreme choice of the other localization parameters αi, we would require
a Dirac mass term of the order of MD ∼ 10−5 ΛI to make the electron sufficiently light. One
would consider MD as “natural” for MD ∼ ΛI.
In the two brane model, a brane kinetic term on the Planck brane would lead to an even smaller
value of αLI. The additional interval [ 1k ,

1
ΛII

] in the extra dimension alone does not solve the
problem either. It just slightly increases the value of αLI required to make S vanish. This is
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Fig. 6.5: For αLII = 0, the T parameter for or κ = 0 (black), κ = 0.85 (red) and κ = 0.95, 1.1, 1.2 (green).

due to the fact that with two intervals, the order of typical corrections is x = 1
kπ(RI+RII)

instead

of x = 1
kπR . However, that effect is too small to solve the problem of a realistic parameter set

for light fermions.

Although introduced for other reasons, we find that the combination of the brane kinetic
term and the new IR brane where to put this term allows to implement light fermions without
having to choose unnaturally small Dirac mass terms.

Restrictions on the brane kinetic term

We find that the precision observables give a restriction on the value of κ.
For small κ the S parameter will be too large for Planck localized fermions. We will then

find one single value of αLI, where the fermion is sufficiently localized towards the IR brane to
give a realistic S. Via the brane kinetic term, we can decrease the S parameter such that the
entire plateau in S(αLI) comes to lie within experimentally allowed range. For ΛI = 815 GeV
and ΛII = 3500 GeV this is the case at κ = 0.85. Then, the fermion localization is not restricted
to one specific value of αLI.

For large values of κ, S will be too small for all localizations. This gives an upper bound
on κ, which depends on the size of the second interval. The lower limit for κ is given by the
minimal chargino mass necessary for avoiding detection bounds.

The brane kinetic term is a good example for the general interdependence of the parameters
in our setup. This interdependence can be seen both as an advantage or disadvantage. On
one hand it is quite cumbersome to change a parameter without rendering the model to be
in disagreement with experimental bounds. On the other hand, the parameter space can be
strongly restricted.
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7 The Zblb̄l problem

A characteristic problem of higgsless models of electroweak symmetry breaking arises for the
third quark generation. The question is how to obtain a sufficiently large top quark mass
without distorting the gauge coupling of the lefthanded bottom quark or the W and Z masses
themselves [22]. In the literature, this is referred to as the Zblb̄l problem.

7.1 Origin of the Zblb̄l problem

We have discussed in chap. 5 how chiral fermions are constructed from two bulk fermions,

ΨL =

(

tL

bL

)

∼ (2,1)1/6 and ΨR =

(

tR

bR

)

∼ (1,2)1/6 , (7.1)

where the fields tL, tR, bL and bR are Dirac spinors of the form (η, χ)T . The coupling of the
left handed fermions η to the Z boson is given in terms of overlap integrals by

gZff̄ = g5

(

T3L〈ηLηLAL3〉+ T3R〈ηRηRAR3〉+ grX〈(ηLηL + ηRηR)AX〉
)

. (7.2)

For light fermions this can be approximated by

gZflf̄l
≈ g5T3L〈η0Lη0LAL3〉+ grX〈η0Lη0LAX〉 , (7.3)

where f0ηL, f0χR are the massless KK modes. The relative corrections result from L-R mixing,
which can be quantified in terms of

Cη :=
〈ηRηR〉

〈ηLηL〉+ 〈ηRηR〉
. (7.4)

For the electron we find Cη < 10−4%. Thus the ηR contributions are completely negligible.
For the tauon, which is the heaviest fermion next to top and bottom quarks, the corrections
are with Cη < 0.4% still moderate. However, the top is so heavy that significant corrections
arise in the third quark generation. Therefore, when matching the 5D parameters to reproduce
the correct couplings for light fermions, namely electrons, the couplings for the third quark
generation cannot simultaneously be reproduced.

The top quark is made heavy either by localizing its KK wave function near the EWSB brane1

or via a large Dirac mass term MD. Both is problematic for the coupling strength. The W
and Z wave functions are distorted by electroweak symmetry breaking at the EWSB brane and
therefore the couplings of any field nearby are modified. In particular, the lefthanded coupling
to the Z (7.3) is too small since fL3 decreases near the EWSB brane, c.f. fig. 4.2. Additional
negative contributions come from the Dirac mass term MD inducing L-R mixing.

Furthermore, one needs to split the bottom quark mass from the top mass by about two
orders of magnitude. The symmetries of our setup require the parameters αLI, αLII, αRI, αRII,
MD and tL to be identical within the (tL, bL)T doublet. Only tR is allowed to vary, due to
broken SU(2)R at the Planck brane. By choosing a large value of tR, the normalization

Z = 〈ηLηL〉+ 〈ηRηR〉 = 〈χLχL〉+ 〈χRχR〉 (7.5)

1This translates into choosing small values for αLI, αRI.
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Fig. 7.1: The Zblb̄l coupling is way too small. We have fixed αLII = αRII = 0 and scan through αLI = αRI,
automatically adopting MD and TR to correctly reproduce top and bottom masses.

is increased. Qualitatively, the bottom mass suppression can be understood as “diluting” M
by enhancing Z. In the original two brane setup of [2], the analogous effect is realized using a
brane kinetic term ρ, which effectively increases the normalization

Z = 〈ηLηL〉+ 〈ηRηR〉 = 〈χLχL〉+ 〈χRχR〉+ ρ2 〈χRχR〉|y=0 .

Since the mass splitting is done by increasing the relative weight of SU(2)R parts, Cη is
increased further. In our example setup presented in chap. 5, we find Cη = 1.9% for the top
quark but Cη = 8.5% for the bottom. Consequently, the value of gZblb̄l

is almost 20% too small2,
c.f. fig. 7.1. From experiments, we know that the deviation has to be smaller than 0.25%. Note
that in contrast to Zblb̄l, the ZbRb̄R coupling is not problematic: The righthanded coupling of
massless fermions

gZfr f̄r
≈ g5T3R〈χ0Rχ0RAR3〉+ grX〈χ0Rχ0RAX〉 (7.6)

acquires corrections proportional to

Cχ :=
〈χLχL〉

〈χLχL〉+ 〈χRχR〉
. (7.7)

When enhancing the SU(2)R contributions in order to do mass splitting, Cχ will be suppressed.
While for the top quark we find Cχ = 18.9%, for the bottom the corrections Cχ = 0.01% are
negligible.

Note that the Zblb̄l problem goes back to the mechanism of creating fermion masses and
EWSB in the interval I, thus it cannot be cured by the extension of our model to contain the
new interval II.3

2In the setup of [30], the deviations are ≈ 40%, because the UV scale was set to 108 GeV only.
3One could of course implement a lefthanded bottom living predominantly in SU(2)L acquiring its mass,

similar to a SU(2)L sfermion, within the second interval. But then the mass would be independent of tR
and one would have no instrument to split the top and bottom masses.
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7.2 An alternative representation of custodial symmetry

7.2 An alternative representation of custodial symmetry

A possible solution to the Zblb̄l problem was proposed in [22]. The authors introduced an
additional Randall-Sundrum throat and made the light fermions and the third generation couple
separately to EWSB on two different IR branes. Note that apart from the existence of two AdS
slices this has nothing in common with our extension of the higgsless model: We do not break
electroweak symmetry at z = ΛII. However, in the approach of [22], the top is necessarily
strongly coupled to a Higgs and/or resonances localized on the new IR brane, which renders
the top sector non-perturbative.

Later, in [30], the same authors adopted the idea of [31] to solve the Zblb̄l problem based
on an enlarged representation for the third generation. The idea is as follows: The BSM
sector is built upon SU(2)c×U(1)X and two SU(2) groups, which are broken with the pattern
SU(2)L×SU(2)R → SU(2)D×PLR. PLR is the discrete parity interchanging symmetry L↔ R.
The crucial point is that if the fermion is a (+1) eigenstate of PLR, the coupling is protected.
Therefore, the bulk fields

ΨL =

(

tL XL

bL TL

)

∼ (2,2)2/3 ΨR =






XR

TR

bR




 ∼ (1,3)2/3 tR ∼ (1,1)2/3 (7.8)

are implemented [30]. The assignment of quantum numbers to the bulk fields is displayed in
tab. 7.1. Note that X = 2/3 instead of 1/6 in order to reproduce the correct charges. The
lefthanded b quark is embedded in a bi-doublet of SU(2)L × SU(2)R and carries T3L = T3R.
Therefore, it is a PLR eigenstate, coupling to L+R instead of only to L. The coupling strength
is stabilized by custodial symmetry. Note that due to SU(2)R×U(1)X → U(1)Y at the Planck
brane, PLR is an approximate symmetry only. We come back to this later. In the representation

bulk fields T3L T3R X Q

XL

TL

tL

bL

(αLI , αLII)

1/2

−1/2

1/2

−1/2

1/2

1/2

−1/2

−1/2

2/3

5/3

2/3

2/3

−1/3

XR

TR

bR

(αRI , αRII)

0

0

0

1

0

−1

2/3

5/3

2/3

−1/3

tR (α∗
RI
, α∗

RII
) 0 0 2/3 2/3

Tab. 7.1: Quantum numbers of the fermionic bulk fields in the enlarged representation. The corresponding
localization parameters α are given in brackets.

(7.8), two different Dirac mass terms M1 and M3 can be assigned to the singlet 1√
2
(tL − TL)

and to the triplet (XL,
1√
2
(tL + TL) , bL) at the EWSB brane:

LDirac = e−4kπRI
M3

ΛI

[
1√
2
TR(tL + TL) + bLbR +XRXL

]

+e−4kπRI
M1

ΛI

1√
2
tR(tL−TL)+h.c. .

(7.9)

In this way, the SM bottom mass can be reproduced by a moderate M3, while the top mass is
generated mainly via the mass term M1. The complete set of boundary conditions to the bulk
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7 The Zblb̄l problem

fields can be found in the appendix in tab. C.1. In particular, the additional fields are assigned
boundary conditions of Neumann type (⊖) at the UV brane. Therefore, no zero modes of these
fields survive and the first KK modes are heavy. In fig. 7.2 to the left, the effect of the custodial
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Fig. 7.2: The deviation of the Zblb̄l coupling from the SM value, where αLII = αRII = 0 and αLI = αRI. Left: For
a massless d-type quark in the original (blue) and the alternative (red) realization of custodial symmetry. Right:
Zblb̄l coupling of the massless quark in the enlarged representation. The value is in agreement with experimental
bounds. However, it can be observed that it is not exactly constant, because PLR is an approximate symmetry.

symmetry is showed. In the original representation the coupling of massless fermions suffers
from severe corrections as soon as the fermion has significant overlap with fL3 near the EWSB
brane. The coupling is protected in the enlarged representation by custodial symmetry. Note
that the massless quark coupling in the enlarged representation is correct and therefore one
could uniformly embed all quarks into the representations (7.8). This is an improvement to
[30], where the Z coupling of the light quarks in the enlarged representation differed by 4-5%,
which is experimentally excluded. This is just another nice effect of the brane kinetic term κ,
deforming the fL3 KK wave function in a way that a massless test fermion does not have to be
delocalized in order to reproduce a realistic value of S. Observe further in fig. 7.2 to the right
that the coupling in the enlarged representation depends very slightly on the localization. This
is because PLR is an approximate symmetry only, as mentioned above.

Let us consider massive b quarks. Deviations to the Z coupling arise as soon as the Dirac
term M3 is switched on, because bL mixes with the bR from the SU(2)R triplet, coupling
with T3R = −1. The resulting coupling strength is plotted for two different fixed values of
αLII = αLI = 0 as a function of αRII = αRI = 0 in fig. 7.3. For custodial symmetry to protect
all the b fields, one would need to complete ΨR to (3,1)2/3 ⊕ (1,3)2/3. Then nothing would
change with respect to M3 = 0. In our case, this means that gZbl b̄l

would be correct for all
localizations, while in the original setup [30] an overall deviation of around 4-5% persists.

However, we see from fig. 7.3 that we do not require to further increase the field content by
again enlarging the representation. For example with the parameter set:

αLI = αLII = −0.2 αRI = αRII = 0.03 α∗
RI

= 0 α∗
RII

= −0.25

M1/ΛI = 0.164 and M3/ΛI = 0.840

we obtain the correct quark masses and the additional Q field in the EWSB interval is heavy
mI

Q = 1702 GeV. The additional fields in the SB interval appear only at mII

Q = mII

T = 7309 GeV.
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Fig. 7.3: For fixed values of αLI = αLII = −0.2 (red) and αLI = αLII = −0.3 (blue), the ratio of gZbl b̄l
to gSM

for massive bottom quarks in the alternative representation. M3 is adjusted to obtain mb = 4.2 GeV.

The deviations of the resulting couplings from the standard model are:

gZblb̄l
/gSM = 1.001

gZbr b̄r
/gSM = 0.984

While the Z couplings of the bottom are protected by custodial symmetry, the couplings of the
top are not. Ztt̄ and Wtb̄ turn out to have sizable deviations from the SM predictions, in our
example:

gZtl t̄l/gSM = 0.814

gZtr t̄r/gSM = 1.275

gWtlb̄l
/gSM = 0.927

gWtr b̄r
/gSM = 0.002

The recent bounds from single top production at Tevatron for the coupling of t , b are |Vtb| >
0.71% from CDF [32] and |Vtb| > 0.78% from DO [33], both at 95% confidence level. Our value
for the lefthanded coupling gWtlb̄l

/gSM = 0.927 would be in agreement with these bounds.
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8 Dark matter

The standard model, although extremely successful in describing the presently available data,
lacks explanation both for the mechanism of electroweak symmetry breaking and for the pres-
ence of dark matter in the universe. While EWSB can be done in the standard model –
unsatisfactorily or not – via the Higgs mechanism, there is no explanation for dark matter. All
particles known so far are excluded as dark matter candidates. Although unexplained, the exis-
tence of dark matter is experimentally well confirmed, for example by measurements of galactic
rotation curves, galaxy clusters or the anisotropy in the cosmic microwave background.

The issue of dark matter is among the most important motivations for BSM physics as such.
Studying the relic density in a model in question is among the first things under investigation.
If or if not the parameter space allows a result compatible with experimental data is crucial
for the attractivity of the model. The current experimental value for the density of cold dark
matter in the universe based on the WMAP five year data is Ωh2 = 0.1099± 0.0062 [34].

Even if no dark matter particle has ever been observed directly, there are very strong clues re-
garding its properties. Structure formation simulations favor non-relativistic cold dark matter1.
Thus, promising candidates for dark matter are neutral, stable and weakly interacting massive
particles (WIMPs). The sought-after particle has to be stable at cosmological scales. This
means, if that particle is coupled to the SM sector, there must be a symmetry that prohibits
decays into light SM particles. In supersymmetric theories, the symmetry in question is usually
R-parity. So in supersymmetry, as long as R-parity is conserved, the lightest supersymmetric
particle (LSP) is protected against decay. The LSP in most scenarios is the neutralino, a neutral
spin 1/2 particles originating from the electroweak sector of the Lagrangian. The neutralino
can be seen as a superposition of the fermionic superpartners of the gauge bosons2.The LSP is a
typical WIMP. In models with universal extra dimensions, the protecting symmetry could also
be KK-parity3. However in higgsless models of EWSB, the symmetry breaking terms on the
branes, the existence of branes themselves and the warp factors break translational invariance
and thus KK-parity.

8.1 Calculation of the relic density

In our calculation of the relic density we follow [35, 36]. The idea to solve the relic abundance
of a WIMP dark matter candidate is the following: In the early universe a particle is in thermal
equilibrium with the rest of the spectrum as long as the temperature T exceeds its mass. Due
to expansion the universe cools down, and not enough energy is available to produce particles
with m ≫ T . Protected by the symmetry, the WIMP cannot decay directly. So its number
can be decreased only by annihilation processes. The probability of scattering decreases as the
universe expands. At a certain point, the WIMPs hardly find each other to annihilate and their
number density per comoving volume remains constant. One says the particle “freezes out”.

1Would dark matter consist of light and fast particles, i.e. hot dark matter, the universe would have formed
in a top-down process. This means that large structures (galaxy clusters) would have preceded the small
structures (stars). It is generally accepted that the story went the other way around and structure for-
mation happened in a hierarchical (bottom-up) way. Thus, hot dark matter can make –if any– only small
contributions to the total the dark matter content.

2In models with a Higgs field, also Higgs superpartners contribute to the neutralino.
3For example, the lightest Kaluza-Klein particle (LKP) in UED models has been investigated regarding its

suitability as dark matter candidate in [35].
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8.1 Calculation of the relic density

The evolution of the number density of the particle is described by the Boltzmann equation

dn

dt
+ 3Hn = −〈σv〉

(
n2 − n2

eq

)
, (8.1)

where H is the Hubble parameter, neq the number density at thermal equilibrium and 〈σv〉 the
thermally averaged cross section multiplied by the relative velocity.

8.1.1 Annihilation

To solve the Boltzmann equation for a particle species Z0, one needs to calculate the complete
annihilation cross section σ =

∑

i σ(Z0Z0 → All). Then 〈σv〉 is obtained by a non-relativistic
expansion. The center-of-mass energy in the total cross section is replaced by s = 4m2

0 +m2
0v

2,
where m0 is the mass of the dark matter candidate4. This leads to σv ≈ a + bv2 + O(v4).
The expansion contains only orders of v2, because the cross section is defined as scattering
probability divided by the flux. So, 〈σv〉 is directly proportional to the scattering probability,
and has to be Lorentz invariant. In the non-relativistic limit 〈v2〉 = 6T/m holds, where v is the
relative velocity (or two times the CMS velocity of an individual particle). Defining x := m/T ,
the expansion reads

〈σv〉 ≈ a+ 6
T

m
b = a+ 6b/x . (8.2)

Solving the Boltzmann equation analytically using appropriate approximations [35, 37] leads
to the expression

Ωh2 =
1.04 · 109 GeV−1

Mpl

xf√
g∗

1

a+ 3b/xf
, (8.3)

where xf = m/Tf is the ratio of the mass to the freeze out temperature Tf , h stands for
the normalized expansion rate (H0 = 100h km s−1Mpc−1), and g∗ is the number of effective
degrees of freedom in the thermal bath at freeze out.

We see from (8.3) that the relic density is roughly proportional to the inverse cross section and
to xf . The dependence on the cross section is easy to understand, because the more effective the
annihilation, the less relic particles are left. The dependence on xf , denoting the inverse freeze
out temperature in units of the mass of the relic particle, can also be understood qualitatively:
The lower the freeze out temperature, the longer the relic particle has been produced thermally
and the less time it has had to annihilate before the the universe reached its present temperature
of 2.7K. Therefore, the number of relic particles present in the universe is proportional to the
freeze out temperature Tf or inversely proportional to xf .

By integrating the Boltzmann equation [35], the parameter xf = m/Tf is found to obey the
implicit equation

xf = log

(

5

4

√

45

8

g

2π3

m0Mpl(a+ 6b/xf)√
g∗ xf

)

, (8.4)

which is solved iteratively. Note that g∗ has to be chosen in consistence with the result of
(8.4), as it is a function of the freeze out temperature. Describing the degrees of freedom in
the thermal bath, it is given by the sum of d.o.f. of all particles with m < Tf . Due to the
Fermi-Dirac statistics, fermionic degrees of freedom will be weighted with a relative factor of

∫ ∞

0

dǫ
ǫ3

(eǫβ + 1)

/∫ ∞

0

dǫ
ǫ3

(eǫβ − 1)
= 7/8. (8.5)

4When it comes to coannihilation processes with two particles of unequal mass this expansion reads
s = (mi + mj)

2 + mimjv2.
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8 Dark matter

8.1.2 Coannihilation

In the case of the relic particles not only interacting among themselves but also with particles
of higher mass, one speaks of coannihilation. If the spectrum contains particles with masses not
much heavier than the relic particle, these are thermally accessible as well and coannihilation
processes will also affect the relic abundance. Let us assume the relic particle is denoted Z0

and has the mass m0 = m. To include the effects of other particles Zi with mass mi, one needs
to calculate the total cross sections of σ(ZiZj → All). After all heavier modes have decayed

into the relic particle, its the number density is n =
∑N

i=0 ni. An effective cross section

σeff(x) =

N∑

i,j=0

σij
gigj
g2
eff

(1 + ∆i)
3/2 (1 + ∆j)

3/2e−x(∆i+∆j) , (8.6)

with

geff(x) =

N∑

i=0

gi(1 + ∆i)
3/2e−x∆i and ∆i =

mi −m
m

(8.7)

is used, where gi is the number of d.o.f. of Zi. The Boltzmann equation then is rewritten as

dn

dt
+ 3Hn = −〈σeffv〉

(
n2 − n2

eq

)
. (8.8)

The freeze out temperature xf is determined using (8.4) with the replacements a → aeff(x),
b→ beff(x). The relic abundance finally reads:

Ωh2 =
1.04 · 109 GeV−1

Mpl

xf√
g∗

1

Ia + 3Ib/xf
(8.9a)

where Ia and Ib are defined as:

Ia = xf

∫ ∞

xf

x−2aeff(x)dx (8.9b)

Ib = 2x2
f

∫ ∞

xf

x−3beff(x)dx (8.9c)

Contrary to the first intuition, coannihilation processes do not necessarily decrease the relic
density. Additional decay channels are available, but also the relative freeze out xf increases.

8.2 Neutralino dark matter in our model

In our model, the lightest new physics particle and therefore the dark matter candidate is
the neutralino. Still, it has to be emphasized that the neutralino is not the only and not
necessarily the best dark matter candidate. Firstly, the masses of the matter superpartners
are to a certain extent arbitrary and could be different from the example given in tab. 5.3 and
tab. 5.4 for another parameter set. We show in the following section, that sfermion masses are
unimportant for the neutralino relic density because the corresponding processes are suppressed
by the coupling strength. Still, in a setup where a sneutrino acts as dark matter particle the
widely unconstrained smatter spectrum should lead a certain freedom to obtain a realistic relic
density. Secondly, one should keep gravitinos in mind. We have not included supergravity so
far, but there are indications [38] that an answer to the dark matter problem could be found
in that sector, too.

Nevertheless, we concentrate in the following on the neutralino relic density. Its setup in our
extradimensional model has been carefully discussed in chap. 4 and we concluded that it can
be described sensibly in terms of one parameter, namely the Majorana mass term in (4.17) set
to the λX field.
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8.2 Neutralino dark matter in our model

8.2.1 Annihilation
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Fig. 8.1: The graphs contributing to annihilation of the light neutralino at tree level.
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Fig. 8.2: Left: Annihilation into W± (above) and fermion pairs (below). Right: Both annihilation channels
combined.

The annihilation channels for the light neutralino are annihilation into W± pairs via chargino
exchange and into fermions via sfermion exchange. We find that the latter is suppressed and
does almost not contribute. The annihilation processes are drawn in fig. 8.1.

The neutralino mass depends on the value of the Majorana mass set to the λX fields at the
SB brane. This mass term also lifts the degeneracy between the two Majorana neutralino χ0

a

and χ0
b .

Annihilation into W
± pairs

The coupling of the neutralino to W± and chargino is given by overlap integrals. As can
be seen in fig. 4.6, the strength of the coupling decreases slightly with the Majorana mass
parameter. We calculated the annihilation cross section and did a phase space integration,
using that the polar angle can always be expressed in terms of the Mandelstam variable t. The
total cross section, depending only on the CMS energy s, was expanded in the limit of small
relative velocities. Thus we obtained the coefficients a and b. The freeze out temperature was
calculated iteratively using (8.4) and was found to lie in the range of 3.4 GeV ≤ Tf ≤ 3.8 GeV.
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8 Dark matter

Thus, we have:

bosonic d.o.f. (weight 1):

{

2 photon

2× 8 gluon

fermionic d.o.f. (weight 7/8):







3× 2 neutrino

3× 4 charged leptons

4× 4× 3 quarks without t and b

=⇒ g∗ = 75
3

4

Although we said m < Tf to be the criterion for whether a particle contributes to g∗ or not,
one should understand this as orientation rather than to take the formula literally. The bottom
quark mass is not that far away from the freeze out temperature. So we did each of our
calculations twice: with g∗ = 75 3/4 and, including the bottom d.o.f., with g∗ = 86 1/2. We
find the result to be quite independent of this choice.

This was done for a range of Majorana mass parameters, giving light neutralinos masses
between 80.397 GeV (W mass) and 95.874 GeV (the chargino mass in our setup). The result
is plotted in fig. 8.2 to the left. We find that the cross section is too large to give a relic
density compatible with experimental data in most of the investigated neutralino mass range.
A realistic relic density is only found when the cross section is suppressed kinematically. That
means, the neutralinos in our model are an explanation for dark matter only if their mass is
close to the mass the W bosons into which they decay.

Annihilation into fermion pairs

The second annihilation channel is found to give negligible contributions. It is not obvious
from the start why this observation, which was already made in [1], remains true in our case.
This is because the exchanged sfermions are much lighter than in the two brane model. There,
the sfermions have masses mf̃ ≥ 1200 GeV [15], while in our setup msf ≥ 200 GeV. However,
the suppression due to small neutralino-fermion-sfermion couplings is so strong that also with
lighter sfermions the contributions from the last two graphs in fig. 8.1 are negligible compared
to the contributions from the first two graphs.

We find that the largest contribution comes from the decay into bottom quarks. This fits
into the general picture of the third quark generation being special [22]. But even if all leptons
and quarks gave contributions as if they were bottom replica, the annihilation cross section
into fermion pairs would still be really small and would not change the resulting relic density.
On the other hand, we know from the difficulties when establishing an example of a reasonable
parameter set in chap. 5, how closely these are related. So even if our choice of parameters
(αLI , αLII, αRI , αRII , tL and tR) is not unique, we do not expect drastic deviations, because
that would most certainly spoil the mass spectra completely. With that reasoning we feel save
to state that our result is general.

The inverse relic density of the annihilation channels into W and fermion pairs combined is
showed in fig. 8.2. Fermionic contributions being so small and the matter couplings being rather
laborious to calculate for the sheer number of overlap integrals, we have done the calculation
of the relic density for this process only for 8 different values of the Majorana mass parame-
ter.We also calculated two example values in the range of mχ0

b
< mW , where the dominating

annihilation channel is closed. While a realistic value for the inverse relic density would be
1/Ωh2 = 9 . . . 11, we found 1/Ωh2 < 0.3 for annihilation into fermions alone.
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8.2.2 Coannihilation
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Fig. 8.4: Tree level graphs of coannihilation processes with smallest (first line) and next to smallest (second
line) Boltzmann suppression.

Let us discuss the contributions from coannihilation. As mentioned in sec. 8.1.2, these contri-
butions are Boltzmann suppressed. The suppression is given by exp(−x∆i), where x = m/T ≈
20 at freeze out and ∆i = (mi−m)/m. m is the mass of the dark matter candidate and mi the
mass of the next heavier particles. In our case, the next heavier particles are the charginos χ±

a,b

and the heavy neutralinos χ0
a. We have depicted the Boltzmann suppression for coannihilation

processes with these particles in fig 8.3. The coannihilation channels with the smallest Boltz-
mann suppression are showed in fig. 8.4. The contributions of the first coannihilation process
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are showed in fig. 8.5. The contribution decreases when the mass difference between neutralino
and chargino increases. In the interesting region aroundmχ0

b
& mW , despite the mass difference

is larger than 15 GeV, we still have a correction of about 8%.

The contribution of heavy neutralino coannihilation only (without chargino coannihilation)
is showed in fig. 8.6. We see this process does not appreciably contribute in the interesting
mass region. This is even more the case for the doubly Boltzmann suppressed channel of to
heavy neutralinos decaying into a W pair. It is not important but interesting to see in the
left picture of fig. 8.6 that taking into account coannihilation can both increase and decrease
the relic density as we have stated before. While coannihilation of one light and one heavy
neutralino increases the relic density in the region of small mass splittings, coannihilation of
two heavy neutralinos gives a contribution in the opposite direction. Both contributions become
negligibly small in the region of mχ0

b
& mW .

As we found out that the processes depicted in the second line of fig. 8.4 do not change the
relic density in the interesting part of the neutralino mass region, we can safely assume that
higher order processes will be negligible, too.

Finally, in fig. 8.7, we show the complete result, including annihilation and chargino and
heavy neutralino coannihilation. The value of the relic density is very sensitive to the mass
of the light neutralino. A realistic relic density requires a neutralino slightly heavier than
the W boson. The light neutralino is a realistic dark matter candidate only if its mass is
mχ0

b
= 80.426 ± 0.004 GeV, which translates in our setup into a localized Majorana mass

parameter of Mm = 955.7± 0.3 GeV.

In the case of taking into account the bottom quark d.o.f. as well, which is slighly heavier but
than the freeze out temperature, the qualitative conclusion that the neutralino mass is heavily
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constrained remains unchanged.
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9 Outlook: Collider signatures of a neutral
scalar field

We want to conclude this work discussing a particularly interesting possible signal of our model
at colliders.

As mentioned above in chap. 4, a neutral scalar particle Σ0 from the gauge multiplet is present
in our model. The boundary conditions on the EWSB and UV brane are the multiplet boundary
conditions (3.12) and (3.14). At the SB brane, in order to avoid zero modes, we can assign either

ΣII

Li
ΣII

Ri
ΣII

X

⊖ ⊖ ⊕ or
ΣII

Li
ΣII

Ri
ΣII

X

⊖ ⊖ ⊖

The first choice would make Σ0 degenerate with the neutralinos, c. f. tab. 4.1. The second choice
leads to a lightest mode with a tree level mass of

m2
Σ0

= C0 xΛ2
I (1 +

3

8
C0 x)

which for κ = 0.85 corresponds to
mΣ0 = 105 GeV .

As there is no Higgs VEV, the Σ0 does not couple to gauge bosons. Therefore, there is neither
the vector boson fusion nor the Higgsstrahlung channel present for Σ0 production and the LEP
detection bounds for the Higgs mass do not apply. Mass corrections arise from the loop graphs

χ+(n)

χ+(m)

Σ+(n)

A
+(m)
µ

A
+(n)
µ ǫ+

A
+(n)
5 ≃π(n)

+
f

(n)
i

f
(m)
i f̃

(n)
i

Fig. 9.1: Contributions to the self energy of the scalar Σ. Quadratic divergencies are extracted by going to
d → 2. Therefore contributions of the epsilon scalars, which provide the missing two vector degrees of freedom,
are needed. Summation over the Kaluza-Klein indices m and n is implied.

shown in fig. 9.1, which in case of Σ0 contain fermions, sfermions, vector bosons, a scalar A5

and additional scalars ε, acting as substitutes for the missing vector degrees of freedom. In the
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absence of SUSY these corrections are quadratic in Λc, while for unbroken SUSY they cancel
with the additional superfield graphs. The procedure of renormalization in 5D SUSY is by no
means trivial and beyond the scope of this work. However, we can expect corrections in the
order of the mass difference of the SM fields and their supersymmetric partners. In our scheme
of SUSY breaking, which is comparatively soft, the lightest supersymmetric partnerfields are
of masses around 200 GeV, instead of approximately 1.5 TeV as in the setup [1] where SUSY
breaking is done at the Planck brane. The spectrum of light supersymmetric modes is highly
non-degenerate, c.f. 5.2, and it is difficult to estimate the size of the mass corrections. However,
unlike in [1], in our setup there is the possibility, perhaps requiring an adjustment of our example
sfermion spectrum, that the Σ0 mass corrections are moderate. A Σ0 of about 100-300 GeV
would be the same mass range where the SM Higgs boson is searched.

The coupling to the fermions is determined by the interaction from the chiral part of the
vector multiplet:

LΣff̄ = g
1

(k z)5
(Σ + iA5)

lχT lη + h.c. (9.1)

and the resulting Yukawa couplings are

y0
eff = g5

(

T3L〈ΣL3
0 ηLχL〉+ T3R〈ΣR3

0 ηRχR〉+ grX
(
〈ΣX0 ηLχL〉+ 〈ΣXηRχR〉

))

(9.2)

It is curious that because Σ0 couples to the combination η · χ, the coupling y0
eff depends indi-

rectly on the mass of the fermions. For massless fermions with f0ηR = f0χL = 0 the Yukawa
coupling y0

eff vanishes. The couplings are listed in tab. 9.1, where we denote the top and a
bottom quark in the enlarged representation with t∗ and b∗. Observe that the y0

eff is roughly

Particle y0
eff m/y0

eff

u 9.58 · 10−6 241 GeV

d 2.21 · 10−5 241 GeV

c 5.24 · 10−3 242 GeV

s 4.45 · 10−4 243 GeV

t∗ 0.61 281 GeV

b∗ 1.67 · 10−2 251 GeV

t 0.53 326 GeV

(b 1.58 · 10−2 265 GeV)

Tab. 9.1: Yukawa couplings of the neutral Σ0 with the quarks in our model. The bottom of in the original
representation b is given in brackets, as it is in conflict with experiment due to the Zblb̄l problem.

proportional to the mass similar to the SM Higgs Yukawa couplings yH . The coupling strength
is somewhat smaller than in the standard model where m/yH ∼ 174.5 GeV. Therefore, the Σ0

could be produced similar to the SM Higgs via gluon fusion:

t

t

t

Σ0

t

Σ0

t

t

where the process to the right is disfavored because of the large top mass. The cross section
would be the same as in the SM but suppressed by a factor (yΣ/yH)2.
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9 Outlook: Collider signatures of a neutral scalar field

Fig. 9.2: Higgs production via gluon fusion at leading order as function of the Higgs mass MH [39]. The authors
fixed the renormalization and the factorization scale to µR = µF = MH and used as input: mt = 178 GeV,
mb = 4.88 GeV, set of PDFs: CTEQ.

For the t∗ the suppression factor is 1/2.6. The top-gluon coupling does not depend on the choice
of the representation and is identical to the SM coupling. The production of Σ0 therefore can
be estimated by simply scaling the SM cross section with the suppression factor. The Higgs
production cross section via gluon fusion from [39] is shown in fig. 9.2. Neglecting vertex correc-
tions, we expect for an integrated luminosity of 100 fb−1 about 115 events for mΣ ≈ 100 GeV
and still approximately 30 events if mass corrections shift the neutral scalar to mΣ ≈ 200 GeV.
The gluon fusion process suffers from high QCD corrections and uncertainties due to the gluon
structure functions. Comparing with the signal significance graphic from [40] to the left in

Fig. 9.3: Left: The integrated luminosity needed for the 5σ discovery of the inclusive Higgs boson production
pp → H + X with the decay modes H → γγ (gluon fusion), H → ZZ → 4l and H → WW → 2l2ν [40]. Right:
The signal significance of Higgs production channels at the LHC depending on the Higgs boson mass, assuming
an integrated luminosity of 30 fb−1 [41].

fig. 9.3, an integrated luminosity of about 50 fb−1 will be needed for a 5σ discovery of a light
Σ0 (around mΣ ≈ 130 GeV) at the hadron collider. In the case of large mass corrections to the
Σ0, it will be more difficult to find. In the SM vector boson fusion processes become dominant
for a Higgs mass above mH = 150 GeV. These channels are not present for the Σ0. Further
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studies of allowed processes such as Σ0 → γγ, Σ0 → τ τ̄ , Σ0 → bb̄ and (for a very heavy Σ0

scalar) Σ0 → tt̄ would be required to make a prediction.

In the original representation of the third quark generation the suppression would have been
with 1/3.5 a bit stronger but of the same order. Apart from the slightly different suppression
factor the same collider signature would be expected. However, the corresponding bottom quark
would be in conflict with experiment due to the Zblb̄l problem.
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Conclusion

The precise mechanism of electroweak symmetry breaking is still an open question of elemen-
tary particle physics. Additional to the standard model, predicting a scalar Higgs field, there
is a wide range of BSM models proposing alternative mechanisms. Models with a 5D warped
background metric offer a completely new approach to EWSB. Abandoning the concept of a
Higgs field, electroweak symmetry is broken by boundary conditions. The geometrical inter-
pretation leads to new insights into parameters of the 4D theory such as masses and couplings.

In this work we have investigated a higgsless supersymmetric model, where supersymmetry
breaking was systematically done on a separate IR brane. No additional fields are required. The
number of model parameters is increased only by the additional fermion localization parameters
α in the second AdS5 slice. For the topics covered in this work, these parameters are of limited
influence. On the other hand, we find additional restrictions on the SUSY spectrum, because
the entire bulk symmetry is kept on the SUSY breaking brane.

We have implemented a realistic gauge and matter sector. Special attention was paid to the
assignment of boundary conditions and a qualitative understanding of the mechanisms creating
particle masses. We also have elaborated approximate analytical expressions. As first validity
check for our model, we have investigated the electroweak precision observables S and T . It
turned out that a brane kinetic term κ, originally introduced to split the masses within of
the supersymmetric gauge spectrum, has a positive influence in that context. In particular,
this term leads to a realistic S parameter without the need to delocalize the massless fermions
towards the EWSB brane. We showed that realistic values of S and T are obtained for an
appropriate choice of model parameters. Furthermore, we examined the Zblb̄l problem. This
problem arises as a consequence of the generic mechanism for fermion masses and has been
addressed e. g. in [22, 30]. It can be solved extending the representation for the third quark
generation in a way that the coupling is protected by custodial symmetry [31]. We find that in
our setup this mechanism is to some extend more attractive than in [30], because in principle
it could also be applied to the light quarks.

We also have investigated the neutralino as dark matter candidate. We find that the neu-
tralino relic density is extremely sensitive to the neutralino mass and a realistic value requires
mχ0

b
= 80.426± 0.004 which translates in our setup into a localized Majorana mass parameter

of Mm = 955.7± 0.3. This is at one hand rather unattractive in comparison to [1], where a
realistic neutralino relic density emerged for a wide neutralino mass range. On the other hand,
it is a definite prediction which is easy to verify or contradict. Generally, one has to keep in
mind that there are further potential dark matter particles, such as sneutralinos or gravitinos.

To conclude and as possible outlook, we discuss an interesting feature of the supersymmetric
model namely the presence of a light scalar field Σ0. Since thousands of physicists are searching
for the Higgs particle, the presence of a different light scalar field would be particularly interest-
ing. The Higgs field and the scalar Σ0 field in our model could experimentally be distinguished,
for example by the absence of vector boson fusion and Higgsstrahlung processes.
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A Notation, conventions and abbreviations

A.1 Notations and conventions

In this work the Minkowski metric in the “mostly -” convention is used where

ηMN = diag(+,−,−,−,−) .

We use two coordinate systems, the proper distance coordinates and the conformal coordinates.
A spacetime point in proper distance coordinates is specified by:

xM = (xµ, y) with y ∈ [0, π] (A.1)

In conformal coordinates the notation is:

xM = (xµ, z) with z ∈
[

1

k
,

1

ΛIR

]

(A.2)

Conformal coordinates have the advantage that the spacetime curvature is encoded in an overall
factor. Thus, instead of µ, ν = 0, 1, 2, 3 and an explicit fifth component, one can use indices
M,N = 0, 1, 2, 3, 5. The relation between the two coordinates is given through

z =
eRky

k
and ΛIR =

k

eRkπ
. (A.3)

The Randall-Sundrum metric in proper distance coordinates reads

gMN =











e−2Rky 0 0 0 0

0 −e−2Rky 0 0 0

0 0 −e−2Rky 0 0

0 0 0 −e−2Rky 0

0 0 0 0 −R2











(A.4)

or respectively

gMN =
1

(k z)2
ηMN (A.5)

in conformal coordinates.

Flat and curved ones vectors are connected by fünfbeins

V µ = eµ,5a V a ,

where a, b explicitly refer to flat objects. The fünfbeins in proper distance coordinates are

eaµ = e−Rkyδaµ, e55 = R . (A.6)

In conformal coordinates the fünfbeins read

eaM =
1

(k z)
δaM . (A.7)
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The flat Dirac matrices are given by

γµ = −
(

0 σµ

σµ 0

)

γ5 =

(

i1 0

0 −i1

)

, (A.8)

where σ0 = σ0 = −1 and −σi = σi are the Pauli matrices, satisfying σiσj = δij + iεijkσk.
Note that the fifth Dirac matrix in (A.8) is defined by γ5 = γ0γ1γ2γ3 in order to satisfy
{γ5, γ5} = η55 = −1.

This is different to the usual definition [28] where an additional factor i appears: γ5 =
iγ0γ1γ2γ3. The projectors, expressed in terms of γ5 as defined in (A.8), then read:

P+ =
1

2
(1− iγ5) and P− =

1

2
(1 + iγ5) (A.9)

For the Dirac spinors we write

Ψ =

(

ηα

χ̄α̇

)

and Ψ̄ = Ψ†γ0 = (χα, η̄α̇) . (A.10)

The Dirac matrices in warped spacetime, denoted by a hat, read:

γ̂µ = gµν γ̂
ν = e−Rky γµ

γ̂5 = −R2 γ̂5 = Rγ5

}

in proper distance coordinates (A.11a)

γ̂M = gMN γ̂N =
1

(k z)
γM in conformal coordinates (A.11b)

Of course, in both coordinate systems the Dirac matrices satisfy the 5D Clifford algebra
{γ̂M , γ̂N} = 2 gMN .

The model is extended to have an additional IR brane, where SUSY breaking is located.
Therefore, we have two IR scales ΛI and ΛII. It is usually convenient to work in conformal
coordinates. Thee fifth spacetime component z is:

z ∈
[

1

k
,

1

ΛI

]

or z ∈
[

1

k
,

1

ΛII

]

in interval I in interval II

In proper distance coordinates, the size of the two extradimensional intervals is determined by

RI =
1

kπ
ln

(
k

ΛI

)

and RII =
1

kπ
ln

(
k

ΛII

)

.

A.2 Definitions and abbreviations

The SU(2) coupling constants are

g5 = g5L = g5R (A.12a)

and the U(1) coupling constant is g5X . We abbreviate the ratio by

gr =
g5X
g5

. (A.12b)
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The expansion parameter x in the two brane setup is

x =
1

kπR
, (A.13a)

while in the three brane setup the expansions parameter x is given by

x =
1

kπ(RI +RII)
. (A.13b)

Further on we define the following abbreviations:

A0L =

(

1− (ΛI

k )2αLI

αLI

+ t2L
1− (ΛII

k )2αLII

αLII

)−1/2

(A.14a)

A0R =

(

1− (ΛI

k )2αRI

αRI

+ t2R
1− (ΛII

k )2αRII

αRII

)−1/2

(A.14b)

fR =
RII

RI +RII

≈ 1

2
(A.14c)

C0 =
1 + 2g2

r

1 + g2
r

(A.14d)

Cκ =
1 + g2

r (2 + fR κ)

(1 + g2
r) (1 + fR κ)

(A.14e)

αLI,LII = cLI,LII −
1

2
(A.14f)

αRI,RII = −cRI,RII −
1

2
(A.14g)
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B Fields

B.1 Overview

The fields in the supersymmetric higgsless model are elements of SUSY multiplets. The gauge
multiplet consists of a vector multiplet

V = −θσµθ̄Aµ − iθ̄θ̄θλ1 + θθθ̄λ̄1 +
1

2
θθθ̄θ̄D , (B.1a)

and a chiral multiplet

χ =
1√
2

(Σa + iA5) +
i√
2
θσµθ̄∂µ (Σ + iA5)−

1

4
√

2
θθθ̄θ̄� (Σ + iA5)

+
√

2θλ2 −
i√
2
θθ∂µλ2σ

µθ̄ + θθFχ . (B.1b)

The matter fields are part of the Hypermultiplet which contains

H = h+ iθσµθ̄∂µh−
1

4
θθθ̄θ̄�h+

√
2θΨ− i√

2
θθ∂µΨσ

µθ̄ + θθF (B.1c)

and

Hc = hc + iθσµθ̄∂µh
c − 1

4
θθθ̄θ̄�hc +

√
2θΨc − i√

2
θθ∂µΨ

cσµθ̄ + θθF c . (B.1d)

D, Fχ, F and F c are auxiliary fields which can be eliminated through their equations of motion.
In order to obtain the proper units and canonical kinetic terms, we perform the following
redefinitions of the fields from the SUSY multiplets

ψ −→ e−
1
2Rkyψ ψc −→ e−

1
2Rkyψc

Aµ −→ 2gAµ λ1 −→ 2ge−
3
2Rkyλ1

A5 −→ 2gRA5 λ2 −→ −2igRe−
1
2Rkyλ2 Σ −→ 2gRΣ .

(B.2)

In tab. B.1, tab. B.2 and tab. B.3 the final field content after EWSB is displayed.
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SU(2)L × SU(2)R × U(1)X after EWSB name

A
(n)
L1,L2

, A
(n)
R1,R2

W±(n) KK W -Boson

A
(n)
L3

, A
(n)
R3

, A
(n)
X γ(n), Z(n) KK photon, KK Z-Boson

A
(n)
5, L1,L2

, A
(n)
5, R1,R2

A
±(n)
5 would-be KK Goldstone

A
(n)
5L3

, A
(n)
5R3

, A
(n)
5X A

0(n)
5 would-be KK Goldstone

λ
1 (n)
L1,L2

, λ
1 (n)
R1,R2

, λ
2 (n)
L1,L2

, λ
2 (n)
R1,R2

λ±(n) KK chargino

λ
1 (n)
X , λ

2 (n)
X λ

0(n)
a , λ

0(n)
b

KK neutralino
λ

1 (n)
L3

, λ
1 (n)
R3

, λ
2 (n)
L3

, λ
2 (n)
R3

Σ
(n)
L1,L2

, Σ
(n)
R1,R2

Σ±(n) KK schargino

Σ
(n)
L3

, Σ
(n)
R3

, Σ
(n)
X Σ0(n) KK sneutralino

Tab. B.1: The left column lists the component fields of the SU(2)L, SU(2)R and U(1)X 5D gauge multiplet,
where the fermionic fields are Weyl spinors. The middle column shows the particle content after the EWSB. In

this notation λ±(n) is a Dirac spinor, while λ
0(n)
a and λ

0(n)
b

are Majorana spinors.

SU(3)C name

Aa(n) KK gluon

A
a(n)
5 would-be KK Goldstone

λ
a(n)
1 , λ

a(n)
2 KK gluino

Σa(n) KK sgluino

Tab. B.2: The left column lists the component fields of the SU(3)C 5D gauge multiplet. The fermionic fields in
the left column are all Weyl spinors and the upper index denotes the SU(3) gauge index. λa

(n)
is a Dirac spinor.

ΨL ΨR after EWSB

ηuL, χ̄uL ηuR, χ̄uR u, c, t, νe, νµ, ντ

ηdL, χ̄dL ηdR, χ̄dR d, s, b, e, µ, τ

huL, hc uL huR, hc uR ũi, c̃, t̃, ν̃e, ν̃µ, ν̃τ

hdL, hc dL hdR, hc dR d̃, s̃, b̃, ẽ, µ̃, τ̃

Tab. B.3: The left column lists the component fields of 5D hypermultiplet transforming under SU(2)L and
SU(2)R. The fermionic fields in the left column are Weyl spinors. The right column shows the particle content
after EWSB. Here, we have suppressed KK indices. The quarks are represented as Dirac spinors and the
neutrinos as Majorana spinors. The index i of the charged sleptons and squarks runs from 1 to 2.

The KK wave functions of the fields on the warped Randall-Sundrum background take the
form

f(z) = (k z)(exp)
[
aJ(order)(mz) + b Y(order)(mz)

]
,

where we have suppressed the KK indices. In tab. B.4, we show the structure of the KK
functions, abbreviated by (k z)(exp)J(order), of the fields in our model before and after the
redefinitions.
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KK field before redefinition after redefinition

fAµ
(k z)J1

fA5 (k z)2J0

fΣ (k z)2J0

fλ1 (k z)J1 (k z)5/2aJ1

fλ2 (k z)2J0 (k z)5/2J0

fη (k z)2Jc+1/2 (k z)5/2Jc+1/2

fχ (k z)2Jc−1/2 (k z)5/2Jc−1/2

fh (k z)2Jc+1/2

fhc (k z)2Jc−1/2

Tab. B.4: Overview over the structure of KK fields before and after redefinition of the fields. Fields coupled by
e.o.m. are not separated by horizontal lines.

B.2 Gauge bosons

For light modes with m≪ ΛI,ΛII the bosonic KK wave functions can be approximated by:

fi(z) ≈ ai +m2z2
(

bi −
ai
2

log(zk)
)

+ m4z4

(

−bi
8
− 3ai

64
+
ai
16

log(zk)

)

+ O(m6z6) . (B.3)

The coefficients ai, bi are obtained by solving the system of coupled boundary conditions. The
approximate coefficients in leading x order are listed below.

W
± coefficients

aW ≡ aI

L± (B.4a)

TL± component:

aI

L± = 1

aII

L± = 1

bIL± =
1

4

(

−2
fR
x

(1 + κ) + 1

)

bIIL± =
1

4

(

+2
fR
x

(1 + κ) + 1

)







· aW +O(x) (B.4b)

TR± component

aI

R± = 0

aII

R± = 0

bIR± =
1 + fR κ

2x
bIIR± = 0







· aW +O(x) (B.4c)
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Z
0 coefficients

aZ ≡ aI

L3 (B.5a)

T3L component

aI

L3 = 1

aII

L3 = 1

bIL3 =
1

4

(

−2
fR
x

(1 + κ) + 1

)

bIIL3 =
1

4

(

+2
fR
x

(1 + κ) + 1

)







· aZ +O(x) (B.5b)

T3R component

aI

R3 = gr2

aII

R3 = gr2

bIR3 =
1

4

(

2
1 + fRg

2
r

x
− g2

r

)

bIIR3 =
1

4
g2
r

(

2
fR
x
− 1

)







· −aZ ·
(1 + fR κ)

1 + g2
r

+O(x) (B.5c)

U(1)X component

aI

X = aZ

aII

X = aZ

bIX = aZ ·
1

4

(

1 + 2
1− fR
x

)

bIIX = aZ ·
1

4

(

1 + 2
fR
x

)







· −gr(1 + fR κ)

1 + g2
r

+O(x) (B.5d)
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C Boundary conditions

C.1 Boundary conditions for the two brane model

Gauge multiplet

The boundary conditions on the EWSB brane are

[

1 −1

∂z ∂z

] [

V L

V R

]∣
∣
∣
∣
∣
z=1/ΛIR

= 0

∂zV
X
∣
∣
z=1/ΛIR

= 0 , ∂zV
C
∣
∣
z=1/ΛIR

= 0 . (C.1)

The corresponding twisted boundary conditions for the chiral multiplet are

[

∂z −∂z
1 1

](
1

kz

)2
[

χL

χR

]∣
∣
∣
∣
∣
z=1/ΛIR

= 0

χX
∣
∣
z=1/ΛIR

= 0 . , χC
∣
∣
z=1/ΛIR

= 0 (C.2)

The boundary conditions on the UV brane are given by

[

g5X∂z g5∂z

−g5 g5X

] [

V R3

V X

]∣
∣
∣
∣
∣
z=1/k

= 0

∂zV
L
∣
∣
z=1/k

= 0 , V R1,R2
∣
∣
z=1/k

= 0 , ∂zV
C
∣
∣
z=1/k

= 0

and correspondingly for the chiral multiplet by

[

g5X g5

−g5∂z g5X∂z

](
1

kz

)2
[

χR3

χX

]∣
∣
∣
∣
∣
z=1/k

= 0

χL
∣
∣
z=1/k

= 0 , ∂z

(
1

kz

)2

χR1,R2
∣
∣
z=1/k

= 0 , χC
∣
∣
z=1/k

= 0 . (C.3)

Hypermultiplet

For the matter sector the boundary conditions on the IR brane are

ΨR −
MD

Λ1
ΨL

∣
∣
∣
∣
z=1/ΛIR

= 0

Ψc
L +

MD

Λ1
Ψc
R

∣
∣
∣
∣
z=1/ΛIR

= 0 . (C.4)
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On the UV brane the boundary conditions read:

- Quarks: The u- and d-type quarks are split introducing additional localized fermions
which couple only to righthanded fermions. This term acts like a kinetic term proportional
to ρ.

HR − mf ρ
2Hc

R

∣
∣
z=1/k

= 0

Hc
L|z=1/k = 0 (C.5)

- Leptons
Charged leptons:

HR|z=1/k = 0

Hc
L|z=1/k = 0 (C.6)

Neutrinos:

HR −
MM

k
Hc
R

∣
∣
∣
∣
z=1/Λ1

= 0

Hc
L|z=1/k = 0 (C.7)

SUSY breaking

The SUSY breaking is done rather brutally on the UV brane. The scalars are removed from
the spectrum by imposing the boundary conditions:

ΣL(1/k) = ΣR(1/k) = ΣX(1/k) = ΣC(1/k) = 0

hiL(1/k) = hc,iR (1/k) = 0 (C.8)
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C.1.1 Boundary conditions for top and bottom quark in the enlarged representation

bulk field SUSY brane z0 = 1
ΛII

UV brane z0 = 1
k

EWSB brane
(without LDirac)

z0 = 1
ΛI

zero modes
EWSB brane
(with LDirac)

z0 = 1
ΛI

bL χII b
L

∣
∣
z0

= 0
ηII b
L − ηI b

L

∣
∣
z0

= 0

χII b
L + χI b

L

∣
∣
z0

= 0
χI b
L

∣
∣
z0

= 0 ηbL χI b
L + M3

ΛI
χI b
R

∣
∣
z0

= 0

bR ηII b
R

∣
∣
z0

= 0
χII b
R − χI b

R

∣
∣
z0

= 0

ηII b
R + ηI b

R

∣
∣
z0

= 0
χI b
L

∣
∣
z0

= 0 χbR ηI b
R + M3

ΛI
ηI b
L

∣
∣
z0

= 0

tL χII t
L

∣
∣
z0

= 0
ηII t
L − ηI t

L

∣
∣
z0

= 0

χII t
L + χI t

L

∣
∣
z0

= 0
χI t
L

∣
∣
z0

= 0 ηtL χI t
L + 1√

2ΛI

(
M3χ

IT
R +M1χ

I t
R

) ∣
∣
z0

= 0

tR ηII t
R

∣
∣
z0

= 0
χII t
R − χI t

R

∣
∣
z0

= 0

ηII t
R + ηI t

R

∣
∣
z0

= 0
χI t
L

∣
∣
z0

= 0 χtR ηI t
R − M1√

2ΛI

(
ηI t
L − ηIT

L

) ∣
∣
z0

= 0

TL χIIT
L

∣
∣
z0

= 0
ηIIT
L

∣
∣
z0

= 0

ηIT
L

∣
∣
z0

= 0
χIT
L

∣
∣
z0

= 0 — χIT
L + 1√

2ΛI

(
M1χ

I t
R −M3χ

IT
R

) ∣
∣
z0

= 0

TR ηIIT
R

∣
∣
z0

= 0
χIIT
R

∣
∣
z0

= 0

χIT
R

∣
∣
z0

= 0
χIT
L

∣
∣
z0

= 0 — ηIT
R − M3√

2 ΛI

(
ηI t
L + ηT I

L

) ∣
∣
z0

= 0

XL χIIX
L

∣
∣
z0

= 0
ηIIX
L

∣
∣
z0

= 0

ηIX
L

∣
∣
z0

= 0
χIT
L

∣
∣
z0

= 0 — —

XR ηIIX
R

∣
∣
z0

= 0
χIIX
R

∣
∣
z0

= 0

χIX
R

∣
∣
z0

= 0
χIX
L

∣
∣
z0

= 0 — —

Tab. C.1: Boundary conditions in the enlarged representation. We choose continous transition at the UV brane for bL,R and tL,R. XL,R and TL,R receive ⊖⊖
conditions at the Planck brane. Therefore,XII

L,R and T II
L,R in the SUSY interval decouple.
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