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Zusammenfassung

Diese Arbeit untersucht ein bestimmtes Modell im Rahmen des Little Higgs Mecha-

nismus. Dieser Mechanismus bietet eine realistische Lösung des Hierarchieproblems

im Standardmodell, alternativ zur Supersymmetrie. Ausgehend von einem 5D La-

grangian mit einer diskretisierten Dimension wird ein effektives 4D Modell mit zwei

nicht-linear realisierten Linkfeldern mit der Symmetriegruppe SU(n) × SU(n) betra-

chtet. Die Invarianz des Lagrangian unter BRS Transformation wird explizit gezeigt

und dessen Feynmanregeln werden abgeleitet. Die quadratisch und logarithmisch di-

vergenten Anteile sämtlicher Selbstenergien werden in Rξ-Eichung in dimensionaler

Regularisierung berechnet. Zur Überprüfung der Ergebnisse wird die Gültigkeit von

Slavnov-Taylor Identitäten gezeigt. Mittels der Hintergrund-Feld Methode wird die

β-Funktion der Eichkopplungskonstante des Modells berechnet.

iii
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1 Introduction

The Standard Model (SM) has shown a remarkable success in describing physics at
length scales ranging from atomic scales all the way down to the shortest currently
probed scales of about 10−18m. Experimental data is in very good agreement at
least up to an energy scale of a few hundred GeV. Therefore, it may appear strange
that so much work is devoted to discovering physics beyond the SM. However, there
are questions, which are not answered by the SM, e.g. can its 19 free parameters
(couplings, masses and mixing angles) be reduced and why is the gauge group of the
SM the direct product of SU(3) × SU(2) × U(1)? This leads to GUT’s which unify
the weak, electro-magnetic and strong force at energies of 1015 GeV. Gravity is also
not included which introduces another energy scale, the Planck scale at 1019 GeV.

Due to the great success of the SM, one might be tempted to postulate a minimal sce-
nario: the LHC will discover the last missing particle in the SM, the Higgs boson with
a mass somewhere between the current lower bound of 114 GeV and the upper bound
of approximately 500 GeV, and there will be no additional new physics discovered at
the LHC. This implies a very delicate and unnatural fine tuning of parameters, as we
will see below. The LHC will probe the SM in the energy scale of 1-10 TeV. Let us
assume that the SM is valid up to a cut-off scale of Λ = 10 TeV. At higher energies
new physics may take over, which implies that we don’t know how to calculate loop
diagrams with momenta larger than Λ. Thus we cut off such loops at this scale. The
hierarchy problem arises from the fact that quadratically divergent loop contributions
drive the Higgs mass up to unacceptably large values unless the tree level mass pa-
rameter is finely tuned to cancel the large quantum corrections. The most significant
of these divergences come from three sources. They are one-loop diagrams involving
the top quark, the SU(2)× U(1) gauge bosons W±, Z, γ and the Higgs itself.

∆m2
H =

t

t

+

W±, Z, γ

+

H

(1.1)

All other quadratically divergent diagrams involve small coupling constants and do
not contribute significantly at 10 TeV. The contributions are

• 3
8π2λtΛ

2 ∼ −(2TeV)2 from the top loop,
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1 Introduction

• 1
16π2 g

2Λ2 ∼ (700GeV)2 from the gauge loops, and

• 1
16π2λ

2Λ2 ∼ (500GeV)2 from the Higgs loop,

where λt ∝ mt/v is the top quark Yukawa coupling, g the coupling constants of the
group SU(2) × U(1) and λ the unknown self-coupling of the Higgs boson, which is
assumed to be of O(1). In order to add up to a Higgs mass between 100 and 500
GeV as required in the SM, a fine tuning on the level of one percent is necessary (see
figure 1.1). This is called the hierarchy problem. It arises already at a cut-off scale
at 10 TeV which can be probed in the near future (If we assume the GUT scale as
cut-off, the fine tuning has to be done to about 13 orders of magnitude). If we set

higgs

tree

(200 GeV)
2

~2
hm

gaugetop

loops

Figure 1.1: required fine tuning in the SM with a cut-off of 10 TeV, from [Sch02]

Λ = 1 TeV, which is probed with current accelerators no fine-tuning is necessary.
The biggest contribution from the top quark then is about (200GeV)2, so the SM is
perfectly natural at the current energy scale.
We can turn the argument around and use the hierarchy problem to predict new
physics. If we want a natural cancellation of the divergences, we predict new particles
in the mass range of 2-10 TeV which are related to the particles that produce the
quadratic divergences. These particles must be related by symmetry.
One approach for solving the hierarchy problem is supersymmetry (SUSY). There,
every particle has a superpartner with opposite statistics. These form loop diagrams
with quadratic divergences which cancel the divergences of the SM particles exactly,
due to a relative minus sign. If SUSY were exact, the diagrams would cancel com-
pletely. Since we do not see superparticles, it must be (at least) softly broken. The
cancellation takes place only above the mass scale of the superpartners, below only
the SM particles exist. Thus, the cutoff Λ is replaced by MSUSY.
For long, it was offen stated in the literature that quadratic divergences in realistic
theories only cancel between fermion and boson loops. However, this is wrong. The
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cancellation between particles with the same spin already occurs in the Higgs sector
in the supersymmetric SM (MSSM), but this was offen ignored.

Aside from SUSY, there are two ways how one can get a naturally light boson: spon-
taneously broken global symmetries that can produce massless Goldstone bosons and
gauge symmetries that protect vector boson masses. Both of them seem not to be
relevant, since the Higgs doesn’t look like a boson with spin. Neither does it look
like a Goldstone boson, since the Goldstone mechanism only allows derivative cou-
plings of the Goldstone boson. Non-derivative quartic couplings, Yukawa and gauge
couplings are not allowed1. However, there is a way how to combine these two ideas.
These models are inspired by extra dimensions and revive the idea that the Higgs is
a pseudo-Goldstone boson resulting from a spontaneously broken approximate sym-
metry.

Consider a five dimensional SU(n) gauge theory where the fifth dimension is put on
a lattice with N sites. This can be illustrated by the following moose diagram (cf.
[Geo86]):

U1

UN

U5

U4

U3

U2

A2

A1AN

A5

A4 A3

Figure 1.2: moose diagram

To derive the corresponding Lagrangian it is useful to briefly introduce the geomet-
rical interpretation of gauge invariance, see [Pes] or [Böh] for further details. Field
equations connect the fields ψ (e.g. a Dirac field) at different space time points x
and x + dx (if derivatives of ψ are involved in the Lagrangian). The corresponding

1This can be seen by considering a complex scalar field φ(x) with a potential that preserves a
global symmetry, e.g. U(1) in the simplest case. If symmetry is spontaneously broken (the
potential induces a vev for φ), we have to expand the scalar field about one of the ground states
φ0(x) = veiΘ. We use the parametrization φ(x) = (v + η(x))ei(Θ+ξ(x)), where η and ξ are real
fields and insert this in the Lagrangian. We find that ξ is massless and couples to η only with
derivative couplings.
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1 Introduction

infinitesimal parallel displacement U(x, x + dx) of the field ψ(x) is described by a
connection, in physics it is called a gauge field Aµ(x). The Wilson link is defined by

U(xa, xb) = exp

(

i

∫ xb

xa

dxµAµ(x)

)

= U(xb, xa)
† = 1 + iAµ(x)dx

µ. (1.2)

where the last equality holds for infinitesimal displacements. Imposing local gauge
invariance, the covariant derivative of ψ can be defined which transforms as the field
ψ itself and the transformation law for the connections can be found. For a locally
invariant Lagrangian, we also have to find kinetic terms for Aµ, which involve terms
depending on Aµ and its derivatives, but not on ψ. One way to find these is by linking
four Wilson links around a small square in four-dimensional spacetime:

x1

x4

x2

x3

(1.3)

The plaquette action is defined by

L(x1, x2, x3, x4) = tr (U(x1, x2)U(x2, x3)U(x3, x4)U(x4, x1)) . (1.4)

Now we assume that the points x1, x2, x3, x4 are infinitesimally separated by dx and
dy. Then we expand the Wilson links and keep terms up to O(dxdy). Integrating
over the surface results in the well-known field strength tensor (Fµν)

2. Now we apply
this method to a 5-D Lagrangian where we carry out the continuum limit only in four
directions. The displacement in the fifth direction is kept finite.

xn
xn + ae(µ)

xn+1

xn+1 + ae(µ)

(1.5)

Using the notation

U(xn) = U(xn, xn+1), (1.6a)

U †(xn) = U(xn+1, xn), (1.6b)

the Wilson loop around the fifth dimension is given by

L(xn, xn+1, xn+1 + ae(µ), xn + ae(µ))

= tr
(
U(xn)e

iaAµ(xn+1)U †(xn + ae(µ))e−iaAµ(xn)
)

= tr
(
U(xn)e

aDµU †(xn)
)

(1.7)
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with the covariant derivatives

DµU(xn) = ∂µU(xn) + iAµ(xn)U(xn)− iU(xn)Aµ(xn+1), (1.8a)

DµU
†(xn) = ∂µU

†(xn) + iAµ(xn+1)U
†(xn)− iU †(xn)Aµ(xn). (1.8b)

We expand the exponentiated derivative up to O(a2). A careful consideration shows
that only DU(DU)† remains; the other terms are surface terms and cancel. Thus, we
arrive at the low-energy Lagrangian for a generalized N -sided polygon,

L =
N∑

i=1

v2

4
tr
(
(Di,µUi)

†Di
µUi
)
− 1

8
tr
(
F µν,iFµν,i

)
+ . . . . (1.9)

On each site there is an SU(n) gauge group and on the link pointing from the i’th
to the (i + 1)’th site, we have the field Ui which is represented by a nonlinear sigma
model field. They transform as Ui → GiUi(G

i−1)† under the SU(n)N gauge symmetry.

Let’s consider the symmetries. If the gauge couplings are turned off, there is no cou-
pling between the U ’s at different sites and the theory has a large SU(n)2N accidental
global ‘chiral’ symmetry

Ui → LiUiR
†
i+1 (1.10)

where Li, Ri are independent SU(n) matrices. By the gauge interactions this is
spontaneously broken down at the scale Λ = 4πv to SU(n)N , which results in N
Goldstone bosons. Now, the gauge couplings preserve only the SU(n)N gauge group
where Li = Ri. Using the gauge freedom, we can go to unitarity gauge where we
can gauge N − 1 Ui’s to one. Thus, N − 1 Goldstone bosons are eaten by gauge
bosons. The remaining Goldstone boson is classically massless. It is associated with
the product U1U2 · · ·UN which transforms homogeneously under the diagonal sum of
all Gi’s and cannot be transformed to unity. This operator is the discretization of the
Wilson line in the continuum case. The linear combination φ = (π1 + π2 . . . πN)/

√
N

(‘little Higgs’) corresponds to the zero mode of A5 and transforms under the surviving
diagonal subgroup SU(n). It is essential that no one operator alone breaks the global
symmetry protecting the mass of the remaining Goldstone. The light scalar is a
‘chain’ of nonlinear sigma models, a ‘non-local’ object in the fifth dimension. Above
the symmetry breaking scale Λ, the description with nonlinear sigma models is no
longer valid and a UV completion is needed2. However, the mass of φ is insensitive
to the physical details at Λ, so we don’t need to care about this. As a consequence of
this special symmetry breaking mechanism, no quadratically divergent contributions
to the little Higgs exist at one loop. The necessary cancellations come from loops with
the same spin.

2In the original paper [ArH014] this is done in the same way as QCD completes the theory of pions.
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1 Introduction

This work studies a special Little Higgs Lagrangian and is organized as follows:
Chapter 2 introduces the concept of spontaneously broken theories. Nonlinear sigma
models are shown to be very useful tools to describe effective field theories where only
the pattern of symmetry breaking is known.
The specific Little Higgs Lagrangian with N = 2 sites and two link fields U1 and U2

is considered in chapter 3. A low-energy expansion is made and the Lagrangian is
rewritten in terms of fields in the mass eigenbasis. Feynman rules and transformation
properties of the involved fields are derived. The Lagrangian is quantized with the BRS
method in chapter 4. The nilpotence of the Lagrangian under BRS transformation is
explicitly shown, and the Feynman rules for the ghosts are obtained.
Chapter 5 discusses the background field method, where the gauge field A is split into
a quantum field A and a classical background field Â. This method allows one to
fix a gauge without loosing explicit gauge invariance with respect to the background
field Â. Relevant Feynman rules are derived in this gauge.
The quadratically and logarithmically divergent parts of the self-energies for all fields
are calculated in a general Rξ-gauge in chapter 6. The cancellation of quadratic
divergences in the self-energy of the Little Higgs can be seen in detail.
In chapter 7, the correctness of the obtained results is checked by verifying a Slavnov-
Taylor identity at one loop for Green functions involving the massive gauge boson.
The validity of the Goldstone boson equivalence theorem is also shown for a tree level
process.
Some remarks on the renormalization program and renormalization group equations
are found in chapter 8. The β-function is obtained with the background field method
by the calculation of the self-energy of the background field Â. The thesis is concluded
in chapter 9.
All Feynman rules and important relations for dimensional regularization can be found
in the appendices. Additionally, scalar contributions to the self-energy of a massive
gauge boson are calculated in a linear sigma model and can be found in appendix B.
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2 Spontaneously Broken Symmetries

One of the most important principles in building models for quantum field theories is
that the action S is invariant under local gauge transformations. These symmetries
generate dynamics, called gauge interactions. The prototype of such a gauge theory is
QED and it is now believed that all fundamental interactions are described by gauge
theories. However, this implies that all vector particles have to be massless, since
mass terms are not gauge invariant. But massive vector bosons, like the Z and W±

bosons in the Standard Model are observed. If we want to avoid this contradiction
between theory and experiment, we have to break the gauge invariance of the theory
somehow. Introducing explicit breaking terms in the form of gauge-boson masses
leads to nonrenormalizable theories. However, if only the ground state is not invariant
under gauge transformations we can have masses and constrain the interactions by the
underlying gauge symmetry. This situation is called spontaneous symmetry breaking.

2.1 Linear Sigma Model

As an example, consider a complex scalar field coupled to itself and to an electromag-
netic field:

L = −1

4
(Fµν)

2 + |Dµφ|2 − V (φ) (2.1)

with Dµ = ∂µ + ieAµ and V (φ) = −µ2

2
φ†φ + λ

4
(φ†φ)2. This Lagrangian is invariant

under local U(1) transformations

φ(x)→ eiα(x)φ(x), Aµ(x)→ Aµ(x)−
1

e
∂µα(x). (2.2)

For µ2 > 0, the minimum of the potential occurs at

〈φ〉 = φ0 =

(
µ2

λ

)1/2

:=
v√
2
. (2.3)

So, the field φ gets a vacuum expectation value (vev).

Plotting the potential as a function of Reφ and Imφ we see that the potential is
minimal on the whole circle with radius v/

√
2. In (2.3) we made an explicit choice for

7



2 Spontaneously Broken Symmetries

a vacuum state. While the Lagrangian is invariant under U(1) gauge transformations,
the vacuum state is not. We have a spontaneously broken or ‘hidden’ symmetry.

Now we expand the Lagrangian about the vacuum state, parametrize the field φ as

φ(x) =
1√
2
(v + σ(x) + iπ(x)) (2.4)

and rewrite the Lagrangian as

L =
1

2
(∂µσ∂

µσ − µ2σ2) +
1

2
(∂µπ∂

µπ)− 1

4
(Fµν)

2 +
1

2
e2v2AµA

ν + evAµ∂
µπ

+ cubic and quartic terms.
(2.5)

The π is the massless scalar Goldstone boson for a spontaneously broken global sym-
metry, predicted by the Goldstone theorem. However, there is a problem when inter-
preting the mixing term between Aµ and π and also when we count the number of
degrees of freedom: massless vector bosons have two degrees of freedom (two physical
polarization states), while massive vector bosons have three. So we have four degrees
of freedom before symmetry breaking and five afterwards, which doesn’t make much
sense. However with a special gauge transformation, leading to the so-called ‘unitarity
gauge’, we can show that the massless scalar field is unphysical. We chose α(x) such
that φ(x) is real-valued at every point x. Thus, the π-field is removed from the theory,
and so one degree of freedom and the mixing between π and Aµ. The acquiring of
one extra degree of freedom for the gauge boson by ‘eating’ the unphysical Goldstone
boson (would-be Goldstone boson) is called the ‘Higgs mechanism’. So, the particle
content is one scalar particle with mass µ, the σ, and one massive vector boson with
mass ev, the Aµ, although there were a massless vector boson and a complex scalar
before symmetry breaking. The advantage of this gauge is that only physical parti-
cles appear and thus the theory is manifestly unitary. However, the propagator of the
massive gauge boson has a bad high energy behaviour and the theory is not manifestly
renormalizable. To show renormalizability, it is better to use the so-called Rξ-gauges.

2.2 Nonlinear Parametrization

Let’s consider a model in which the mass of the σ-particle is much bigger than the
energy where the theory is probed. Then we can take the limit µ→∞, λ→∞ while
keeping the vev unchanged. The potential becomes infinitely steep, so the dynamics
happens only on the circle

|φ(x)| = v√
2
. (2.6)

8



2.3 Perturbation Theory

The σ boson can therefore be removed from the theory if we maintain the constraint
(2.6). A suitable representation is the exponential representation

φ(x) =
v√
2
eiζ(x)/v :=

v√
2
U (2.7)

where (2.6) is fulfilled automatically. The Lagrangian in this parametrization reads

L =
v2

2
(DµU)†(DµU)− 1

4
(Fµν)

2. (2.8)

All other terms are constants which do not depend on the fields and thus can be
ignored.

2.3 Perturbation Theory

The nonlinear Lagrangian is no longer a polynomial in the fields. After a series ex-
pansion we find an infinite number of interacting terms and thus an infinite number
of Feynman rules. How can we perform meaningful calculations in perturbation the-
ory? Well, we also couldn’t do that before the reparametrization, since we had sent
the coupling constants to infinity. After the reparametrization the couplings µ and λ
are no longer present in the Lagrangian and only derivative coupling appear. So, all
vertices are proportional to powers of p/v, where p is the momentum. In this way we
can make a perturbation theory in powers of the momentum. As long as |p| < v1 this
yields meaningful results.

Renormalizability

The Lagrangian has dimension 4, since the action S is dimensionless (in natural units)
and the four-volume element has dimension -4. Since scalar and gauge bosons have
dimension 1 (this can be seen from the kinetic part in the Lagrangian), a term with n
Goldstone fields and p derivatives has dimension p+n and its coupling constant there-
fore has dimension 4− p−n. Power counting arguments show that only theories with
non-negative coupling constants are renormalizable. That is all divergences occurring
in higher order perturbation theory can be absorbed by a redefinition of a finite num-
ber of parameters of the theory. Additionally, we also need boson propagators which
behave as k−2 and fermion propagators with k−1 for large momenta k.

An example for an interaction term in the nonlinear sigma model (NLSM) is (π∂π)2,
and its coupling constant has dimension -2. All other terms are even worse. So, the
NLSM is not renormalizable. But we do not care much about this: we do not claim

1Or more exactly |p| < 4πv, since in loop calculations always characteristic denominator factors of
16π2v2 appear.
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2 Spontaneously Broken Symmetries

that our theory is valid up to the highest energies; it will breakdown at energies near
the symmetry-breaking scale 4πv.
Nonlinearly realized symmetries are excellent tools to describe unknown theories where
the pattern of symmetry breaking is known, since the (unknown) details of the in-
teractions do not enter the Lagrangian. All interactions depend only on the pattern
of symmetry breaking and appear as derivative couplings, where we can make a low
energy expansion. To derive the effective Lagrangian, we have to write down all terms
consistent with the symmetry. Terms with 2n derivatives, like

(

(DµU)†(DµU)
)2n

(2.9)

have to be added. The general Lagrangian can be organized by the dimensionality of
the operators,

L = L2 + L4 + L6 + L8 + . . . (2.10)

The important point is that almost all terms are small at low energies, since each
derivative comes with a factor of the momentum p. Therefore terms involving more
than two derivatives are suppressed. For the lowest energies, only the Lagrangian
with two derivatives has to be considered. We call this an ‘O(E2)’ contribution.
When including loops it would appear that the perturbation theory in powers of p/v
would break down. This might happen when two of the momentum factors of an
O(E4) Lagrangian are involved in the loop and thus are proportional to the loop
momentum. Integrating over the loop momentum apparently leaves only two factors
of the ‘low’ energy variable p. It would therefore seem that for certain loop diagrams,
an O(E4) Lagrangian could behave as if it were O(E2). This would be disastrous,
because arbitrarily high order terms in the Lagrangian would contribute at O(E2)
when loops were calculated. But the reverse happens. This can be shown in general
with Weinberg’s power counting theorem, cf. [Wei79]. The idea is that higher order
loop diagrams need more vertices and each vertex in a diagram contributes powers of
1/v. Thus, the overall momentum power of an amplitude will increase rather than
decrease, when loops are formed. The end result is very simple for counting the order of
the energy expansion. The lowest order (E2) is given by the two-derivative Lagrangian
at tree-level. There are two sources at the next order (E4): (i) amplitudes with two
insertions of O(E2) and (ii) the tree-level O(E4) amplitudes. Finite predictions result
after renormalizing the coefficients of the E4 Langrangians.

10



3 Gauged Sigma-Models

3.1 Lagrangian

U1

UN

U5

U4

U3

U2

A2

A1AN

A5

A4 A3

Figure 3.1: moose diagram

As already explained in chapter 1 the above figure is a pictorial representation of a
compactified fifth dimension, called a moose diagram. On each site there is an SU(n)
gauge group and on the link pointing from the i’th to the (i + 1)’th site, there is a
nonlinear sigma model field Ui. The low-energy effective Lagrangian for the Little-
Higgs model is

L =
N∑

i=1

v2

4
tr
(
(Di,µUi)

†Di
µUi
)
− 1

8
tr
(
F µν,iFµν,i

)
+ . . . (3.1)

with the nonlinear sigma model fields

Ui(x) = eiπi(x)/v, π(x) = λaπai (x) (3.2)

and the covariant derivative

Di
µUi = ∂µUi − igiA

i
µUi + igi−1UiA

i−1
µ . (3.3)

Ui and DµUi transform covariantly under the gauge groups L
×N

Ui → LiUi(L
i−1)† (3.4a)

11



3 Gauged Sigma-Models

Di
µUi → Li(Di

µUi)(L
i−1)† (3.4b)

provided that the gauge fields transform as

Aiµ → LiAiµ(L
i)† + i

1

gi
Li(∂µ(L

i)†). (3.5)

The dots in (3.1) represent higher dimensional operators (D ≥ 6) which are irrelevant
at low energies. The λ’s are twice the generators of the gauge groups SU(n) and
satisfy

[
λa, λb

]
= 2ifabcλc, tr(λaλb) = 2δab. (3.6)

This is also the reason for the factor 1/8 of (Fµν)
2. In order to make a low-energy

expansion, we first concentrate on the simplest case, N = 1, one scalar field with two
neighboring sites, Aµ

L and AµR. The corresponding Lagrangian is given by

L =
v2

4
tr
(
(DµU)†DµU

)
− 1

8

(
tr
(
F µν,LFµν,L

)
+ tr

(
F µν,RFµν,R

))
(3.7)

with
DµU = ∂µU − igLA

L
µU + igRUA

R
µ , (3.8)

where U and DµU both transform covariantly under L×R

U → LUR†, (3.9a)

DµU → L(DµU)R†, (3.9b)

provided the gauge fields transform as

ALµ → LALµL
† + i

1

gL
L(∂µL

†), (3.10a)

ARµ → RARµR
† + i

1

gR
R(∂µR

†). (3.10b)

Expanding the covariant derivatives in the first term of (3.7), we find

L =
v2

4
tr
(
∂µU †∂µU

)
+

(gLv)
2

4
tr
(
ALµA

L,µ
)

+
(gRv)

2

4
tr
(
ARµA

R,µ
)

+ i
gLv

2

2
tr
(
ALµ(∂µU)U †)− i

gRv
2

2
tr
(
ARµU

†(∂µU)
)
− gLgRv

2

2
tr
(
ARµU

†AL,µU
)
.

(3.11)

12



3.1 Lagrangian

With the explicit realization of U in (3.2), the first term in

tr
(
ARµU

†AL,µU
)

= tr
(
ARµA

L,µ
)
+i

1

v
tr
(
[ARµ , A

L,µ]π
)
+

1

2v2
tr
(
[π,ARµ ][π,AL,µ]

)
+O(v−3)

(3.12)
contributes an off-diagonal mass term for the gauge bosons and we have to diagonalize
the mass matrix (

(gRv)
2 −gLgRv2

−gLgRv2 (gLv)
2

)

(3.13)

by

Aµ =
gLA

R
µ + gRA

L
µ

√

g2
L + g2

R

, (3.14a)

Zµ =
gRA

R
µ − gLALµ

√

g2
L + g2

R

, (3.14b)

where A is massless and Z receives a mass, (m2 = gLgRv
2/2). This is hardly surprising,

because the L = R subgroup
U → LUL† (3.15)

is realized linearly on π → LπL†, while the orthogonal L = R† subgroup is realized
nonlinearly (cf. section 3.4). If we choose for simplicity gL = gR = g, we obtain

Aµ =
1√
2

(
ARµ + ALµ

)
, (3.16a)

Zµ =
1√
2

(
ARµ − ALµ

)
, (3.16b)

and

ALµ =
1√
2

(Aµ − Zµ) , (3.17a)

ARµ =
1√
2

(Aµ + Zµ) . (3.17b)

The Lagrangian reads

L =
v2

4
tr
(
∂µU †∂µU

)
+

(gv)2

2
tr (ZµZ

µ)

+ i
gv2

2
√

2
tr
(
Aµ
[
(∂µU)U † − U †(∂µU)

])
− i

gv2

2
√

2
tr
(
Zµ
[
(∂µU)U † + U †(∂µU)

])

13



3 Gauged Sigma-Models

+ i
g2v

2
tr ([Aµ, Z

µ]π)

− 1

8
g2 tr ([π,Aµ][π,A

µ]) +
1

8
g2 tr ([π, Zµ][π, Z

µ]) +O(v−1). (3.18)

To read off the mass of the Z boson, we have to compare the kinetic term with the
mass term, after evaluating the traces and commutators by using (3.6).

3.2 Derivatives

The treatment of derivatives in exponentials is not trivial, but with the Baker-
Hausdorff-formula we can find useful expressions for the above terms involving U ’s
and their derivatives. The Hausdorff-formula

eA(De−A) = e[A,·]D−D = [A,D]+
1

2!
[A, [A,D]]+. . . = −DA− 1

2!
[A,DA]+. . . (3.19)

for derivations D1 follows from

eABe−A = e[A,·]B = B + [A,B] +
1

2
[A, [A,B]] + . . . . (3.20)

Note that derivations not only act on operators to their right, but also on the function
which follows the operator. For

U(x) = eiπ(x)/v (3.21)

we find from

U †(∂µU) = e−i/v[π,·]∂µ − ∂µ
= −i

1

v
[π, ∂µ]−

1

2v2
[π, [π, ∂µ]] + i

1

6v3
[π, [π, [π, ∂µ]]] +O(v−4) (3.22)

the expansions

U †(∂µU) = +i
1

v
∂µπ +

1

2v2
[π, ∂µπ]− i

1

6v3
[π, [π, ∂µπ]] +O(v−4), (3.23a)

U(∂µU
†) = −i

1

v
∂µπ +

1

2v2
[π, ∂µπ] + i

1

6v3
[π, [π, ∂µπ]] +O(v−4), (3.23b)

(∂µU)U † = +i
1

v
∂µπ −

1

2v2
[π, ∂µπ]− i

1

6v3
[π, [π, ∂µπ]] +O(v−4), (3.23c)

1A derivation maps an algebra into itself, D : A→ A. It is linear: D(αv + βw) = α(Dv) + β(Dw)
and obeys the product rule, D(vw) = (Dv)w + v(Dw).

14



3.3 Low-Energy-Expansion

(∂µU
†)U = −i

1

v
∂µπ −

1

2v2
[π, ∂µπ] + i

1

6v3
[π, [π, ∂µπ]] +O(v−4). (3.23d)

The latter three expressions can be derived from the first by conjugation π → −π

U(∂µU
†) = U †(∂µU)

∣
∣
∣
π→−π

(3.24a)

(∂µU)U † = (∂µU
†)U
∣
∣
∣
π→−π

(3.24b)

and by using ∂µ(U
†U) = ∂µ(UU

†) = 0, i.e.

U(∂µU
†) = −(∂µU)U †, (3.25a)

(∂µU
†)U = −U †(∂µU). (3.25b)

3.3 Low-Energy-Expansion

Now, we are able to expand the field U in terms of commutators of π’s and their
derivatives. Let’s evaluate the first term in (3.11):

L0 =
v2

4
tr
(
∂µU †∂µU

)
=
v2

4
tr
(
(U †∂µU)†(U †∂µU)

)
(3.26)

Using (3.23) and tr([π, ∂µπ]∂µπ) = 0 from the cyclic invariance of the trace, we find

L0 =
1

4
tr (∂µπ∂µπ)− 1

24v2
tr (∂µπ [π, [π, ∂µπ]])

− 1

16v2
tr ([π, ∂µπ] [π, ∂µπ])− 1

24v2
tr ([π, [π, ∂µπ]] ∂µπ) +O(v−4).

(3.27)

Again using the cyclic invariance, (3.27) simplifies to

L0 =
1

4
tr (∂µπ∂µπ) +

1

48v2
tr ([π, ∂µπ] [π, ∂µπ]) +O(v−4). (3.28)

With (3.23), the Lagrangian (3.18) results in

L =
1

4
tr (∂µπ∂µπ) +

1

48v2
tr ([π, ∂µπ] [π, ∂µπ]) +

(gv)2

2
tr (ZµZ

µ)

+
gv√

2
tr (Zµ∂µπ)− g

6
√

2v
tr (Zµ[π, [π, ∂µπ]])

− i
g

2
√

2
tr (Aµ [π, ∂µπ]) + i

g2v

2
tr ([Aµ, Z

µ]π)

15



3 Gauged Sigma-Models

− 1

8
g2 tr ([π,Aµ][π,A

µ]) +
1

8
g2 tr ([π, Zµ][π, Z

µ]) + L5,6 +O(v−3). (3.29)

Note the cancellation of two (one) terms when subtracting (adding) two terms in
(3.23) which are coupled to Aµ and Zµ. L5,6 contains all remaining terms of O(v−1)
and O(v−2) which originate from (3.12) and (3.23). They contain no derivatives and
involve five or six fields (two gauge bosons and two or three pions, respectively).
The term tr(Aµ[π, [π, [π, ∂µπ]]]) involves one derivative but also consists of five fields.
These vertices are not required for the calculation of two-point functions to one-loop
order and are thus ignored.

One also has to add the kinetic term for AL
µ and ARµ :

Lkin = −1

8

(
tr
(
F µν,LFµν,L

)
+ tr

(
F µν,RFµν,R

))
(3.30)

with
F µν
i = ∂µA

ν
i − ∂νAµi − ig[Aµi , A

ν
i ], i = L,R (3.31)

expressed in terms of Aµ and Zµ. We also have a ‘parity’ symmetry L↔ R:





Aµ
π
Zµ



 −→





+Aµ
−π
−Zµ



 (3.32)

All equations must be consistent with this parity transformation.

N = 2

From now on we set g1 = g2 for simplicity. Extending our model to two sites is trivial,
since for N = 2 the second site is the mirror image of the first, that is

D2
µ = D1

µ

∣
∣
∣
AL

µ↔AR
µ

(3.33)

which amounts to an overall replacement Zµ = 1√
2
(ARµ − ALµ) ↔ −Zµ and π1 ↔ π2.

The resulting mixing term is (gv/
√

2) tr(Zµ∂µ(π1− π2)). This indicates that the field

π− =
1√
2

(π1 − π2) (3.34a)

is the unphysical would-be Goldstone boson and is eaten by the Z boson, while the
field

π+ =
1√
2

(π1 + π2) (3.34b)
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3.4 Gauge Transformation of the Fields

is a physical degree of freedom, since there is no mixing term for π+ (the A boson
remains strictly massless). This field is the Little Higgs particle. Note that it is
a linear combination of the fields π1 and π2, a non-local object in figure 3.1. This
guaranties that it is free from quadratically divergent mass contributions as we will
see in chapter 6. The full Lagrangian for N = 2 is (without the (Fµν)

2-terms)

Lscalar =
1

4
tr (∂µπ+∂µπ+) +

1

4
tr (∂µπ−∂µπ−)

+
1

2 · 48v2
tr
(

[π+, ∂µπ+] [π+, ∂
µπ+] + [π−, ∂µπ−] [π−, ∂

µπ−]

+ [π+, ∂µπ−] [π+, ∂
µπ−] + [π−, ∂µπ+] [π−, ∂

µπ+]

+ 2 [π+, ∂µπ+] [π−, ∂
µπ−] + 2 [π+, ∂µπ−] [π−, ∂

µπ+]
)

+ (gv)2 tr (ZµZ
µ) + gv tr (Zµ∂µπ−)

− g

12v
tr
(

Zµ[π−, [π−, ∂µπ−]] + Zµ[π+, [π+, ∂µπ−]]

+ Zµ[π+, [π−, ∂µπ+]] + Zµ[π−, [π+, ∂µπ+]]
)

− i
g

2
√

2
tr (Aµ [π+, ∂µπ+] + Aµ [π−, ∂µπ−]) + i

g2v√
2

tr ([Aµ, Z
µ]π−)

− 1

8
g2 tr ([π+, Aµ][π+, A

µ] + [π−, Aµ][π−, A
µ])

+
1

8
g2 tr ([π+, Zµ][π+, Z

µ] + [π−, Zµ][π−, Z
µ]) +O(v−3)

(3.35)

Together with another Lagrangian derived in chapter 4 this Lagrangian will be used
to find all relevant vertices to compute all self-energies to one-loop approximation.
Since the Lagrangian doesn’t change under the relabelling of the two sites, we have
the following parity symmetry,







Aµ
π+

π−
Zµ






−→







+Aµ
+π+

−π−
−Zµ







(3.36)

to be respected by all equations.

3.4 Gauge Transformation of the Fields

For the BRS transformation (see chapter 4) we need the transformation properties of
the scalars π+, π− and the vector bosons Aµ, Zµ. These can be obtained from (3.9)
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3 Gauged Sigma-Models

and (3.10). Since we have two gauge groups L and R, we can parametrize them with
ζ and α in the following way:

L = eigζeigα, (3.37a)

R = e−igζeigα. (3.37b)

Varying these parameters independently, we obtain

eiπ/v α→ eigαeiπ/ve−igα, (3.38a)

eiπ/v ζ→ eigζeiπ/veigζ . (3.38b)

Using the Hausdorff-formulae

eAeBe−A = exp(e[A,·]B) = eB+[A,B]+ 1

2
[A,[A,B]]+O(A3) (3.39)

and
eAeBeA = eB+2A+ 1

6
[B,[B,A]]+O(A2,B3) (3.40)

we obtain as infinitesimal transformations of the π-field (N = 1)

δπ = δζπ + δαπ = 2gvζ − g

6v
[π, [π, ζ]] + ig[α, π] +O(π4ζ) (3.41)

where we can see that α parametrizes the linearly realized symmetry and ζ
parametrizes the nonlinearly realized one. Note that a term of O(π3ζ) has parity
+1 with respect to (3.32) and therefore cannot occur in the transformation of π.
From this we can easily derive the transformations of π+ and π−. The nonlinear
sigma model fields transform as U1 → LU1R

† and U2 → RU2L
†. From (3.37) and

(3.38) we find that the linear part of the transformation has the same sign both for
π1 and π2, but an opposite sign for the nonlinear part,

δζπ1 = 2gvζ − g

6v
[π1, [π1, ζ]] +O(π4

1), (3.42a)

δζπ2 = −2gvζ +
g

6v
[π2, [π2, ζ]] +O(π4

2), (3.42b)

δαπ1 = ig[α, π1], (3.42c)

δαπ2 = ig[α, π2]. (3.42d)

With

δζ,απ± =
1√
2

(δζ,απ1 ± δζ,απ2) (3.43)
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3.5 Feynman Rules

we find the transformation laws

δπ+ = δζπ+ + δαπ+ = − g

6
√

2v

(

[π−, [π+, ζ]] + [π+, [π−, ζ]]
)

+ ig[α, π+] +O(ζπ4),

(3.44a)

δπ− = δζπ− + δαπ− = 2
√

2gvζ − g

6
√

2v

(

[π+, [π+, ζ]] + [π−, [π−, ζ]]
)

+ ig[α, π−] +O(ζπ4).

(3.44b)

for the physical scalar π+ and the would-be Goldstone boson π− in the N = 2 La-
grangian. While (3.44a) is less interesting because it will not be used in a gauge
fixing functional, (3.44b) shows that both bosons π± will couple quartically to the
Faddeev-Popov ghosts (and with the same strength), see section 4.2.

Let’s turn to the transformation laws of the gauge bosons in the mass-eigenbasis.
With (3.10), (3.16) and (3.17) we find

Aµ →
1

2

(
RAµR

† + LAµL
† +RZµR

† − LZµL†)+ i
1√
2g

(
R∂µR

† + L∂µL
†) , (3.45a)

Zµ →
1

2

(
RAµR

† − LAµL† +RZµR
† + LZµL

†)+ i
1√
2g

(
R∂µR

† − L∂µL†) . (3.45b)

In particular, varying α and ζ independently, one has

Aµ
α→ LAµL

† + i

√
2

g
L∂µL

†, (3.46a)

Zµ
α→ LZµL

†, (3.46b)

Aµ
ζ→ 1

2

(
L†AµL+ LAµL

† + L†ZµL− LZµL†)+ i
1√
2g

(
L†∂µL+ L∂µL

†) , (3.46c)

Zµ
ζ→ 1

2

(
L†AµL− LAµL† + L†ZµL+ LZµL

†)+ i
1√
2g

(
L†∂µL− L∂µL†) . (3.46d)

The infinitesimal transformations are

δAµ = ig[α,Aµ] +
√

2∂µα− ig[ζ, Zµ], (3.47a)

δZµ = ig[α,Zµ]− ig[ζ, Aµ]−
√

2∂µζ. (3.47b)

3.5 Feynman Rules

In the preceding sections we have derived an effective low-energy Lagrangian up to
O(v−2) from the original Lagrangian (3.1). At this point we can translate the La-
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3 Gauged Sigma-Models

grangian into Feynman rules. In the path integral representation of quantum field
theory, Feynman rules are obtained by applying functional derivatives on generating
functionals of Green and vertex functions. After that we go from coordinate space
to momentum space via Fourier transformation. This thesis is not the place to give
a detailed description, which can be found in textbooks. Only the ‘recipe’ shall be
sketched here:

1. Take all terms in iL with a certain combination of fields; these are the outer
lines of the vertex.

2. Replace all derivatives by (−i) times the incoming momenta of the fields on
which they act. This corresponds to Fourier transformation.

3. Symmetrize all indices and momenta of identical fields and add the correspond-
ing symmetry factor. Then discard all outer fields. This corresponds to the
functional derivative.

Propagators are obtained by inverting the quadratic vertices (and multiplying by -1).

Now we apply this to our Lagrangian. First, we have to evaluate the traces over the
generators of the group, cf. (3.6) (remember that φ = φaλ

a).

As an example, consider the last term in (3.35),

iL4,Z =
1

8
ig2 · 2 · (2i)2gν1ν2fa1c1efa2c2eπa1

+ Z
c1
ν1
πa2

+ Z
c2
ν2

=
1

2
ig2gν1ν2(fa1c1efa2c2e + fa1c2efa2c1e)πa1

+ Z
c1
ν1
πa2

+ Z
c2
ν2
.

(3.48)

Note that the second line is symmetric with respect to the interchange of a1 ↔ a2

and/or c1 ↔ c2. Discarding the fields and multiplying by a symmetry factor of (2!)2

(since we have two identical π+ and Z’s) yields the vertex

a1

c1, ν1

a2

c2, ν2

= −2ig2 [fa1c1efa2c2e + fa1c2efa2c1e] gν1ν2 . (3.49)

The four Goldstone vertex with four identical scalars is more interesting:

i

96v2
tr ([π, ∂µπ] [π, ∂µπ]) = − 8i

96v2
fa1a2bfa3a4b(πa1∂µπ

a2)(πa3∂µπa4)

= − i

48
· 1

v2
fa1a2bfa3a4b(πa1

←→
∂µπ

a2)(πa3
←→
∂µπa4)
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3.5 Feynman Rules

∂→−ik−−−−→ i

48
· 1

v2
fa1a2bfa3a4b(k1 − k2)(k3 − k4)π

a1πa2πa3πa4

=
i

48
· 1

3v2

[

(k1 − k2)(k3 − k4)f
a1a2bfa3a4b + (k1 − k3)(k4 − k2)f

a1a3bfa4a2b

+ (k1 − k4)(k2 − k3)f
a1a4bfa2a3b

]

πa1πa2πa3πa4 . (3.50)

In the second line the symmetrization of the derivatives is obtained with the help of

fa1a2bπa1∂µπ
a2 =

1

2
fa1a2bπa1∂µπ

a2 +
1

2
fa2a1bπa2∂µπ

a1 =
1

2
fa1a2b(πa1

←→
∂µπ

a2) (3.51)

where in the last step we have used the antisymmetry of the structure constants and

πa1
←→
∂µπ

a2 = πa1∂µπ
a2 − πa2∂µπ

a1 .

In the fourth line we symmetrized the indices a1, a2, a3, a4, since they belong to four
identical fields. The symmetry factor is therefore 4! and we find

a1, k1

a2, k2

a4, k4

a3, k3

=
i

6v2





(k1 − k2)(k3 − k4)f
a1a2bfa3a4b

+(k1 − k3)(k4 − k2)f
a1a3bfa4a2b

+(k1 − k4)(k2 − k3)f
a1a4bfa2a3b



 . (3.52)

We also have a mixed four vertex with two π+ and two π− fields, to which four terms
in (3.35) contribute. The symmetrization in these terms is slightly different (since we
only have two pairs of identical fields) and the symmetry factor is (2!)2. However, we
obtain the same Lorentz and gauge structure as for the pure vertex in (3.52). This is
true for all other mixed vertices.

Another four vertex is found from

iL4 = − ig

12v
tr(Zµ[π−, [π−, ∂µπ−]]) = − 8ig

12v
fa2a3bfa1baZµ,aπa1

− π
a2

− ∂µπ
a3

−

=
ig

3v
· 1
3

[

faa1bfa2a3bZaπa1

− (πa2

−
←→
∂ πa3

− ) + faa2bfa3a1bZaπa2

− (πa3

−
←→
∂ πa1

− )

+ faa3bfa1a2bZaπa3

− (πa1

−
←→
∂ πa2

− )
]

. (3.53)
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After replacing the derivatives with the incoming momenta of the π− and multiplying
with 3!, since we have three identical π−, we get

b1, k1

Z, a, µ

b2, k2

b3, k3

=
2g

3v





(k1 − k2)
µfa1a2cfa3ac

+(k2 − k3)
µfa2a3cfa1ac

+(k3 − k1)
µfa3a1cfa2ac



 . (3.54)

We also find an analogous vertex where two of the π− are replaced by π+.

Here is an example for a three vertex,

iL3 =
g

2
√

2
tr(Aµ[π+, ∂µπ+]) =

√
2gfa1a2aAµ,aπa1

+ ∂µπ
a2

+

=
g√
2
faa1a2Aµ,a(πa1

+

←→
∂µπ

a2

+ ).
(3.55)

Again, replacing ∂µ with −ikµ and multiplying by 2!, we find

a1, k1

a2, k2

a, µ = −
√

2g(k1 − k2)
µfaa1a2 . (3.56)

Let’s turn to the pure gauge part of the Lagrangian, (3.30). Since the derivation of
the Feynman rules for non-abelian gauge bosons can be found in standard text books
on quantum field theory this will not be done in this work. We only have to think
about many gauge-boson vertices and their corresponding prefactors we have. After
rewriting the Lagrangian in terms of physical A and Z fields we find for the three
vertices a pure AAA-vertex and an AZZ-vertex, both with parity +1, consistent with
the L↔ R symmetry of the Lagrangian. An explicit calculation shows that the gauge
and Lorentz structure of the mixed AZZ-vertex is the same as for the AAA-vertex.
We also have to take care of the coupling constant g, since there are various factors
of 2 and 1/

√
2 due to commutators and traces of the generators (factor 4, see (3.6))

and normalization constants (factor (1/
√

2)3, see (3.17)). Another factor of 2 arises
because both AL and AR contribute to the vertices and a factor of 4 comes from
squaring Fµν . Finally, we have −1/8g · 4 · (1/

√
2)3 · 2 · 4 = −

√
2g as coupling constant

for the three vertices.

In analogy we find an AAAA-, ZZZZ- and a AAZZ-vertex, with coupling con-
stant 2g2.
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3.5 Feynman Rules

We obtain

d, σ

a, µ

c, ρ

b, ν

= −2ig2





(gµρgνσ − gµσgνρ)fabef cde
+(gµνgρσ − gµσgνρ)facef bde
+(gµνgρσ − gµρgνσ)fadef bce



 , (3.57)

p

q
k

b, ν

c, ρ

a, µ =
√

2gfabc





gµν(k − p)ρ
+gνρ(p− q)µ
+gρµ(q − k)ν



 (3.58)

for the gauge-boson vertices. A complete list of all vertices can be found in the
appendix.
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4 BRS Invariance

Until now, we haven’t determined the propagators of the gauge bosons. Following the
recipe for calculating propagators given in section (3.5), we obtain for the massless
gauge-boson propagator

iL2 = − i

4
(∂µA

ν,a)(∂µAbν)δ
ab

= − i

2
(∂νA

a
µ)(∂

µAν,b)δab +
i

2
(∂µA

a
ν)(∂

νAµ,b)δab

=
i

2
Aaνg

µν∂2Abµδ
ab − i

2
Aaν∂

µ∂νAbµδ
ab + surface terms

−→ −iδab
[
k2gµν − kµkν

]

= −(propagator)−1

(4.1)

Here, we can see the problem: the operator Kµν = gµνk2 − kµkν has an eigenvector
kµ with eigenvalue zero, so its inverse is not defined. This problem is due to gauge
invariance of the Lagrangian L. In the generating functionals we integrate over all
possible field configurations at every space-time point x, including those that are
connected by a gauge transformation. Recall that the Lagrangian is invariant under
general gauge transformations of the form

Aµ(x)→ Aµ(x) +
1

g
∂µα(x). (4.2)

The troublesome modes are those for which Aµ(x) = 1
g
∂µα(x) which are equivalent

to Aµ(x) = 0. In the functional integral we integrate over a continuous infinity of
physically equivalent field configurations, thus it is badly defined. To fix this problem,
we have to choose a local functional G[A;x] in the gauge fields that fixes the gauge
in the sense that the condition G[A;x] = 0 selects one solution out of the set of
gauge-transformed, physically equivalent potentials A(x).

Following [Böh], one way to accomplish this is the Faddeev-Popov procedure where
one inserts

1 = ∆{A}
∫

D[µ(g)]δ{G[A]} (4.3)

consisting of a delta-functional and a Jacobi determinant into the functional integral.
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4.1 BRS Transformation

The generating functional for Green functions is

T{J} = Z{J}/Z{0},

Z{J} =

∫

D[A]eiS{A}+i
�
d4xJ ·A (4.4)

The measure D[A] involves at each space-time point a product over all group and
vector components of the field Aa

µ(x). What remains is a divergent multiplicative
factor resulting from the integration over the gauge group (

∫
D[µ(g)]) that cancels

out when forming the ratio Z{J}/Z{0}. At the end this results in two new terms in
the Lagrangian. The first term is a gauge-fixing part of the form Lgf = −1/(2ξ)G2,
e.g. G = ∂µA

µ in Lorentz gauge for massless gauge bosons. The second term is
the ghost Lagrangian Lghost containing unphysical anticommuting Grassmann-valued
scalar fields, called Faddeev-Popov ghost fields.
By introducing the gauge-fixing term G[A;x] the manifest gauge-invariance is lost.
However, it can be shown that this new effective Lagrangian leads to physical results
such as S-matrix elements which are gauge independent. Unphysical contributions
contained in the gauge-fixing Lagrangian (which is necessary to define the propagator)
are cancelled by contributions of the ghost propagators and vertices.

4.1 BRS Transformation

Although the gauge invariance of the Lagrangian has been destroyed by gauge fixing,
a new symmetry of the effective action appears. It implies all the consequences of
gauge invariance for physical results by an extension of the gauge transformation to
the ghost fields. This extended gauge transformation is the Becchi-Rouet-Stora or
BRS transformation. The canonical BRS formalism is equivalent to the path integral
method (via Faddeev-Popov) but somewhat more elegant. Furthermore, it reveals us
more insight into quantum field theories.
For gauge-boson and scalar fields the BRS transformation is a gauge transformation
(cf. (3.44) and (3.47)) with α(x) = δληα(x) and ζ(x) = δληζ(x), where δλ is an
infinitesimal, Grassmann-valued constant which anticommutes with the ghost fields
ηα and ηζ

1. The constant δλ has been introduced so that the transformations do not
change the statistics of the fields. The BRS operator s is defined as the left derivative
with respect to δλ of the BRS transformed fields. Thus, the product rule reads

s(FG) = (sF )G± FsG, (4.5)

1ηα and ηζ are linear combinations of left- and right-ghosts, in analogy to the gauge bosons A
and Z, see (3.17) and (3.16). Their BRS transformations are defined by δηL ∝ [ηL, ηL] and
δηR ∝ [ηR, ηR]
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4 BRS Invariance

where the minus sign occurs for fermionic F (odd number of Grassmann variables).
The transformations of arbitrary fields Ψ are written as

sΨ =
δΨ

δλ
. (4.6)

They are given by

δπ+ = δλ(ig[ηα, π+]− g

6
√

2v
([π−, [π+, ηζ ]] + [π+, [π−, ηζ ]])), (4.7a)

δπ− = δλ(ig[ηα, π−] + 2
√

2gvηζ −
g

6
√

2v
([π+[π+, ηζ ]] + [π−[π−, ηζ ]])), (4.7b)

δZµ = δλ(ig[ηα, Zµ]− ig[ηζ , Aµ]−
√

2∂ηζ), (4.7c)

δAµ = δλ(ig[ηα, Aµ]− ig[ηζ , Zµ] +
√

2∂ηα), (4.7d)

δηα = δλ(
i

2
√

2
g · ([ηbα, ηcα] + [ηbζ , η

c
ζ ])), (4.7e)

δηζ = δλ(
i√
2
g · [ηbα, ηcζ ]), (4.7f)

δηζ = δλ ·Bζ , (4.7g)

δηα = δλ ·Bα, (4.7h)

δBα = 0, (4.7i)

δBζ = 0. (4.7j)

Note that the ghost transformations are consistent with our parity symmetry (ηα has
parity +1, ηζ has parity -1, similar to A and Z). The B-fields are introduced to
obtain off-shell BRS invariance. They are (commuting) auxiliary scalar fields. In the
Lagrangian they will appear only in quadratic terms without derivatives and can be
removed using their equations of motion.

The scalar and kinetic Lagrangian, (3.35) and (3.30) are evidently BRS-invariant,
δLscalar = δLkin = 0.

In addition, we can construct another BRS-invariant Lagrangian,

LBRS =
1

2
tr

[

s

(

ηζ

(

Gζ +
1

2
ξBZ

))]

+
1

2
tr

[

s

(

ηα

(

Gα +
1

2
ξBA

))]

(4.8)

written as a pure BRS transformation (since the BRS transformation is nilpotent, see
below) with the gauge-fixing functionals

Gζ = ∂Z − ξmπ−, (4.9a)

Gα = ∂A. (4.9b)
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4.1 BRS Transformation

The BRS transformation is nilpotent, that is

s(sΨ) = 0, (4.10)

which will be proven in section (4.3). This property is essential for a general proof
of renormalizability. It also allows us to divide the Hilbert space into a physical and
unphysical part what will be sketched here.
Because our Lagrangian is invariant under this (continuous) transformation, there is
a conserved current, and the integral over the time component of this current will be
a conserved charge Q that commutes with the Hamiltonian H and thus with the S-
matrix. It acts on anticommuting/commuting fields as [Q,Ψ]± = sΨ, where the plus
sign stands for the anticommutator. The relation (4.10) is equivalent to the operator
identity

Q2 = 0. (4.11)

The charge Q is used to define physical states2 (see [Ku79])

Q|Ψ〉phys = 0. (4.12)

A nilpotent operator that commutes with H divides the eigenstates of H into three
subspaces.

1. The subspace V1 of states that are not annihilated by Q.

2. the subspace V2 of states of the form |Ψ2〉 = Q|Ψ1〉 where |Ψ1〉 is in V1.

3. the subspace V0 of states that are annihilated by Q but are not in V2.

The states in V1 are characterized as unphysical, by (4.12). It can be easily seen that
all states |Ψ2〉 in V2 have zero norm and are orthogonal to all states |Ψ0〉 in V0.

〈Ψ2|Ψ2〉 = 〈Ψ1|Q|Ψ2〉 = 0,

〈Ψ2|Ψ0〉 = 〈Ψ1|Q|Ψ0〉 = 0.
(4.13)

As a consequence these states decouple, i.e. they disappear from any physical matrix
element. Physical states that differ only by zero-norm states are physically equivalent.
Thus, the physical Hilbert space Hphys can be defined as quotient space of V0 with
respect to the subspace V2,

Hphys ≡ V0/V2. (4.14)

Distinguishable physical states are defined as equivalence classes of states with strictly
positive norm.

2This can be seen as a generalization of the Gupta-Bleuler method in QED, where one needs the
additional identity for the physical states ∂µA+

µ (x)|ψ〉phys = 0.
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4 BRS Invariance

In general, asymptotic states (which are one-particle states) containing ghosts,
antighosts or gauge bosons with unphysical polarization always belong to V1 or V2.
There are exactly four unphysical modes, the ghost, the antighost, the would-be Gold-
stone boson and the B mode. This is an example of the so-called quartet mechanism.
According to this, unphysical states always appear as quartets and only combinations
of the quartet states with zero norm can appear in the physical space.

Further information to this subject can be found in [Ku79], [Wei], [Böh] and [Pes].
The BRS transformations as defined in (4.7) are not fully nilpotent. In order to
get a nilpotent transformation, we have to renormalize the ghosts with a factor of√

2. This compensates the
√

2 in the transformation of the vector bosons. The Z
antighost is multiplied by −1/2 and the A antighost by 1/2. This leads to canonical
normalized ghost propagators. Thus, the transformation laws for the nilpotent BRS
transformation reads

δπa− =
√

2δλ(2gfabcπb−η
c
α + 2

√
2gvηaζ +

4g

6
√

2v
fabef cde(πb+π

c
+η

d
ζ + πb−π

c
−η

d
ζ )), (4.15a)

δπa+ =
√

2δλ(2gfabcπb+η
c
α +

4g

6
√

2v
(fabef cde + facef bde)πb+π

c
−η

d
ζ ), (4.15b)

δAaµ =
√

2δλ(
√

2∂µη
a
α + 2gfabcAbµη

c
α − 2gfabcZb

µη
c
ζ), (4.15c)

δZa
µ =
√

2δλ(−
√

2∂µη
a
ζ + 2gfabcZb

µη
c
α − 2gfabcAbµη

c
ζ), (4.15d)

δηaα = δλ(−1

2
g · 2fabc(ηbαηcα + ηbζη

c
ζ)), (4.15e)

δηaζ = δλ(−g · 2fabcηbαηcζ). (4.15f)

4.2 Feynman Rules

Now we have considered all parts of the Lagrangian

L = Lscalar + Lkin + LBRS. (4.16)

This Lagrangian is BRS invariant and all Feynman rules can be derived from it. The
vertices from Lscalar and Lkin were already derived in the last chapter, here we write
down the propagators and ghost vertices.

It is useful to decompose the BRS Lagrangian into two parts,

LBRS =
1

2

∑

i=α,ζ

tr

[

(sηi)(Gi +
1

2
ξBi)− ηis(Gi +

1

2
ξBi)

]

=: Lgf + Lghost.

(4.17)
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4.2 Feynman Rules

Lgf corresponds to the gauge-fixing Lagrangian and enables us to define proper gauge-
boson propagators, whereas Lghost contains all vertices with ghost fields.

Replacing sηi with Bi we obtain:

Lgf =
1

2
tr

[
1

2
ξB2

A +BAGα

]

+
1

2
tr

[
1

2
ξB2

Z +BZGζ

]

. (4.18)

The B-field is an auxiliary field without derivatives. We can replace it via the equation
of motion (∂L/∂B = 0) according to

B = −1

ξ
G. (4.19)

Thus, we find

Lgf = − 1

2ξ
(∂µA

µ,a)2 − 1

2ξ
(∂µZ

µ,a − ξmπa−)2. (4.20)

We can determine the gauge-boson propagators Gµν from the terms ∝ (∂A)2, (∂Z)2

in analogy to (4.1):

−(Gµν
A )−1 = −iδab[k2gµν − (1− 1

ξ
)kµkν ]. (4.21)

In order to invert this, we define the transverse and longitudinal projection operators

gµνT = gµν − kµkν

k2
, gµνL =

kµkν

k2
. (4.22)

With the ansatz
Gµν
A = agµνT + bgµνL , Gµν

A (GA,νρ)
−1 = δµρ , (4.23)

we find
A

a b =
−i

k2

(

gµν − (1− ξ)kµkν
k2

)

δab. (4.24)

Let’s turn to the Z boson. In (3.35) we found

Lscalar = (gv)2 tr(ZµZ
µ) + gv tr(Zµ∂µπ−) + . . . . (4.25)

The first term is a mass term for the Z boson, m = 2gv (remember that taking the
trace yields a factor of 2). The second is a mixing term, which is cancelled by the
term mπa−∂µZ

µ,a, coming from 1/(2ξ)(∂µZ
µ,a − ξmπa−)2 in Lgf. Our BRS Lagrangian

corresponds to the Rξ-gauges3, where all bilinear terms involving two different fields

3Arbitrary other gauges can be obtained by using LBRS = sΨ, where Ψ is an arbitrary functional
with ghost number −1. The ghost number is defined as +1 for η, −1 for η and 0 for all gauge
and matter fields.
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4 BRS Invariance

cancel in the Lagrangian.

With the additional mass term we get the Z boson propagator

Z
a b =

−i

k2 −m2

(

gµν − (1− ξ)kµkν
k2 − ξm2

)

δab. (4.26)

Lgf also contains a mass term for the field π− (mπ− =
√
ξm). Thus, the bilinear

Lagrangian for π− reads

L2,scalar =
1

4
tr(∂π2

−) +
1

4
ξm2 tr(π2

−), (4.27)

and the corresponding scalar propagators are given by

π+
a b =

i

k2
δab, (4.28)

π−
a b =

i

k2 − ξm2
δab. (4.29)

Remember that π− with its ξ-dependent mass is the would-be Goldstone boson which
is eaten by the massive Z boson, while π+ is the Little Higgs and a physical degree
of freedom.

Unitarity gauge, where there are no unphysical states, is obtained for ξ → ∞. The
would-be Goldstone boson gets infinitely heavy and decouples from the S matrix. For
k →∞, the Z boson propagator is of O(1), while for finite ξ the propagator behaves
as 1/k2.

Ghosts

Now we are ready to derive the Feynman rules from the part of the BRS Lagrangian

Lghost = −1

2
tr[ηαsGα + ηζsGζ ], (4.30)

where the BRS operator s acts on the gauge-fixing functional. We obtain the ghost
propagators by considering only terms with two fields in the BRS transformed gauge-
fixing functionals G.

iLζ,2 = − i

2
tr

[

−1

2
ηζ∂

µ(−
√

2∂µ(
√

2ηζ))− ξm(−1

2
ηζ(
√

2m
√

2ηζ))

]

= − i

2
tr
[
ηζ∂

µ∂µηζ + ξm2ηζηζ
]

= iηaζ(−�− ξm2)ηaζ .

(4.31)
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4.2 Feynman Rules

The propagator term for the α ghost is analogous, but with zero mass. Hence, we find

α
a b =

i

k2
δab, (4.32)

ζ
a b =

i

k2 − ξm2
δab. (4.33)

Gauge-boson ghost three vertices result from

Lζ,3 = −1

2
tr
(

−1

2
ηζ∂

µ(+ig[
√

2ηα, Zµ]− ig[
√

2ηζ , Aµ])
)

= −
√

2

4
ig2
(

ηaζ(−2ifabc∂µ(Abµη
c
ζ) + 2ifabc∂µ(Zb

µη
c
α))
)

=
√

2gfabc
(
(∂µηaζ)(A

b
µη

c
ζ)− (∂µηaζ)(Z

b
µη

c
α)
)
.

(4.34)

Replacing ∂ → ip (outgoing momentum of the antighost) and multiplying with i, we
obtain the Aηζηζ-and the Zηζηα-vertices

c

a, p

b, µ = ±
√

2gpµfabc. (4.35)

The positive sign is for the vertices with an A boson.The Aηαηα- and the Zηαηζ-
vertices from Lα are analogous.

Scalar three and four vertices result from δπ−, i.e.

L3 =
ξm

2
tr

(

−1

2
ηζ [π−,

√
2ηα]

)

= −2
√

2g2vξfabc ηaζπ
b
−η

c
α, (4.36)

and

L4 =

√
2

4
ξm tr

(

ηζ(−
g

6
√

2
δλ([π+, [π+, ηζ ]] + [π−, [π−, ηζ ]]))

)

=
2g2v

4 · 6v δλ tr(λa[λb, [λc.λd]]) · (ηaζπb+πc+ηdζ + ηaζπ
b
−π

c
−η

d
ζ )

= −1

3
ξg22fabef cde · (ηaζπb+πc+ηdζ + ηaζπ

b
−π

c
−η

d
ζ ),

(4.37)
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4 BRS Invariance

which leads to the vertices

α

π−
ζ

c

a

b, ν = −2
√

2ig3vfabc, (4.38)

π±

ζ

b

a

c

d

= −2i

3
ξg2
[
fabef cde + facef bde

]
. (4.39)

4.3 Nilpotence

In this section we show that the BRS transformation of any product of fields Φ is
nilpotent, that is4

δBRS(sΦ) = 0, (4.40)

or equivalently
s(sΦ) = 0. (4.41)

4.3.1 Nilpotence of the BRS Transformation of the Lagrangian

First, we prove that it is sufficient to prove the nilpotence for a single field, s(sΨ) = 0.
Applying the transformation on a prduct of two fields reads

δBRS(Ψ1Ψ2) = δλ(sΨ1)Ψ2 + Ψ1(δλsΨ2) = δλ[(sΨ1)Ψ2 ±Ψ1sΨ2], (4.42)

where the sign ± is plus for bosonic Ψ1 and minus for fermionic Ψ1. For δBRS(sΨ) = 0,
the BRS transformation on s(Ψ1Ψ2) is

δBRSs(Ψ1Ψ2) = (sΨ1)δλ(sΨ2)± δλ(sΨ1)(sΨ2). (4.43)

Since sΨ has statistics opposite to Ψ, moving δλ to the left introduces a sign factor
∓ and one finds

δBRS(Ψ1Ψ2) = δλ[∓s(Ψ1)(sΨ2)± s(Ψ1)(sΨ2)] = 0. (4.44)

4We do note write δBRS(δBRSΦ) since this would involve δλ2 which is trivially zero.
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4.3 Nilpotence

Continuing this way, we see that BRS transformations are nilpotent on any products
of fields,

δBRSs(Ψ1Ψ2 . . .) = 0. (4.45)

Any functional F [Ψ] can be written as a sum of integrals of such products with c-
number coefficients, so this completes the proof of the nilpotence of LBRS under the
assumption of the nilpotence of a single field, which will be proven in the following
sections.

In the following, we need the BRS transformations (4.15a) and use the Jacobi-identity

[T a, [T b, T c]] + [T b, [T c, T a]] + [T c, [T a, T b]] = 0. (4.46)

With [T a, T b] = ifabcT c (4.46) leads to

f 12ef 34e + f 13ef 42e + f 14ef 23e = 0, (4.47)

where we replaced a, b, c, d with the numbers 1, 2, 3, 4 to emphasize the cyclic structure.

4.3.2 Nilpotence of the BRS Transformation of the Ghosts

The transformation of the α ghost is given by

δBRS(sη
a
α) ∝ fabc[(δηb)ηcα] + ηbα(δη

c
α) + (δηbζ)η

c
ζ + ηbζ(δη

c
ζ)]

= fabc[f bdeδλ(ηdαη
e
α+ηdζη

e
ζ)η

c
α+ηbαδλf

cde(ηdαη
e
α+ηdζη

e
ζ)+2δλf bdeηdαη

e
ζη
c
ζ+2f cdeηbζδλη

d
αη

e
ζ ]

= δλfabc[f bde(ηdαη
e
αη

c
α+ηdζη

e
ζη
c
α)−f cde(ηbαηdαηeα+ηbαη

d
ζη

e
α)+2f bdeηdαη

e
ζη
c
ζ−2f cdeηbζη

d
αη

e
ζ ].

(4.48)

The product ηbαη
d
αη

e
α is antisymmetric (η2

αη
3
αη

4
α = −η3

αη
2
αη

4
α = η3

αη
4
αη

2
α = η4

αη
2
αη

3
α), so

terms with three equal ghosts vanish due to the Jacobi-identity. The first and last
term in the mixed ghost terms also cancel for the same reason,

fabcf bdeηdζη
e
ζη

c
α − 2fabcf cdeηeζη

b
ζη
d
ζ = (fabcf bde − 2faebf bcd)ηdζη

e
ζη
c
α

= (fabcf bde − faebf bcd + fadbf bce)ηdζη
e
ζη
c
α = 0, (4.49)

where we relabelled the indices, used the anticommutativity of the ghosts and the
antisymmetry of f abc. The calculation for the second and third term is analogous.

The nilpotence of the transformation acting on the antighost (and the auxiliary B
field) is obvious, cf. (4.7).
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4 BRS Invariance

4.3.3 Nilpotence of the BRS Transformation of the Vector Bosons

We use the same manipulations as above, only the number of terms is larger. Again,
only one vector boson is shown, the other is analogous.

s(sZa
µ) = 2gfabc∂µ(η

b
αη

c
ζ)

− 2gfabc
(√

2∂µη
b
α + 2gf bdeAdµη

e
α − 2gf bdeZd

µη
e
ζ

)
ηcζ − 2gfabcAbµ

(
− g · 2f cdeηdαηeζ

)

+2gfabc
(
−
√

2∂µη
b
ζ+2gf bdeZd

µη
e
α−2gf bdeAdµη

e
ζ

)
ηcα+2gfabcZb

µ

(
−1

2
g·2f cde(ηdαηeα+ηdζηeζ)

)
.

(4.50)

The terms with derivatives add up to zero (note that ∂µ(η
b
αη

c
ζ) = (∂µη

b
α)η

c
ζ−(∂µη

c
ζ)η

b
α).

For the Aµ and Zµ terms the Jacobi identity applies, i.e.

− 4g2fabcf bdeAdµη
e
αη

c
ζ + 4g2fabcf cdeAbµη

d
αη

e
ζ − 4g2fabcf bdeAdµη

e
ζη
c
α

= 4g2Adµη
e
αη

c
ζ(−fabcf bde + fadbf bec + fabef bdc) = 0,

4g2fabcf bdeZd
µη

e
ζη
c
ζ − 2g2fabcf cdeZb

µη
d
ζη

e
ζ

= 2g2[(fabcf bde − fabef bdc)Zd
µη

e
ζη
c
ζ − fadbf becZd

µη
e
ζη

c
ζ ] = 0. (4.51)

4.3.4 Nilpotence of the BRS Transformation of the Scalars

This is the hard part, since we have to check the nilpotence involving terms containing
up to four fields (we cannot do more, since in the transformation (3.44) of the scalars,
we have ignored terms of O(π4ζ) which contribute to terms with five fields). The
calculation involves terms with three structure constants f abc, so we would need nested
Jacobi-identities. We will avoid this by rewriting these terms as commutators of four
generators T . There are two possibilities to arrange four generators in commutators,

[T b[T c[T d, T e]]] = −if degf cgff bfaT a = −if bfaf cgffdegT a,

[[T b, T c], [T d, T e]] = −f bcffdeg[T f , T g] = −if bcffdegf fgaT a = −if bcff fgafdegT a.
(4.52)

Note the different contractions in (4.52). Applying s2 on π−, we obtain

s(sπa−) = −2
√

2gv2gfabcηbαη
c
ζ

+ 2gfabc
[

2gf bdeπd−η
e
α + 2

√
2gvηbζ +

2g

6
√

2v
(f bdif fgi + f bfifdgi)(πd+π

f
+η

g
ζ + πd−π

f
−η

g
ζ )
]

ηcα

− gf cdeπb−
[

ηdαη
e
α + ηdζη

e
ζ

]

+
2g

6
√

2v
(fabef cde + facef bde)·
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4.3 Nilpotence

[

(δπb+)πc+η
d
ζ + (δπc+)πb+η

d
ζ + πb+π

c
+(δηdζ ) + (δπb−)

︸ ︷︷ ︸

2
√

2gvηbζ + 2gf bdeπd−η
e
α + . . .

πc−η
d
ζ + (δπc−)πb−η

d
ζ + πb−π

c
−(δηdζ )

]

.

(4.53)

We have only two terms involving two (ghost)fields, these terms cancel each other.
There are also two terms containing π−ηαηα which cancel due to the Jacobi-identity.
For π−ηζηζ we have three terms, two of them result from δπ− in the last line of (4.53).
Since these are symmetric in b and c this results in a factor of two. Thus, we obtain

− 2g2fabcf cdeπb−η
d
ζη

e
ζ +

4

3
g2(fabef cde + facef bde)ηbζπ

c
−η

d
ζ

= (−2g2facef ebd +
4

3
g2(fabef cde + facef bde))ηbζπ

c
−η

d
ζ

=
2

3
g2ηbζπ

c
−η

d
ζ (f

acef bde + 2fabef cde). (4.54)

which also cancels due to the Jacobi-identity. Now, consider the terms with four fields.
It is sufficient to treat π−π−ηζηα, since the calculation is analogous for π+. We also
suppress an overall factor of 4g2/6

√
2 and obtain

s(sπ−) =
[

2fabcf bdif fgiπd−π
f
−η

g
ζη

c
α + (fabef cde + facef bde)

[f bfgπf−π
c
−η

g
αη

d
ζ + f cfgπf−π

b
−η

g
αη

d
ζ

︸ ︷︷ ︸

2f bfgπf−π
c
−η

g
αη

d
ζ

− fdfgπb−πc−ηfαηgζ
︸ ︷︷ ︸

→ 2fabef cdefdfg . . .

]
]

T a. (4.55)

We relabel the indices to factor out the fields πf−π
c
−η

g
αη

d
ζ and use the antisymmetry of

fabc to get the indices into the order of (4.52). Expression (4.55) reads

− 2

i
πf−π

c
−η

g
αη

d
ζT

a
[

f gbaf cebf fde + f fgbf beaf cde − f ceafdbef fgb − f feaf cbef gdb
]

→ [T g[T c[T f , T d]]] + [[T f , T g], [T c, T d]]− [T c[T d[T f , T g]]]− [[T f , T c], [T g, Tdd]].
(4.56)

Now, we have to expand all these commutators. The terms cancel completely, when
using the symmetry in the indices f and c, since we have two identical particles. For
example, T gT cT fT d from the first commutator cancels −T gT fT cT d from the second
commutator.
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5 Background Field Method

In the above, the final Lagrangian has not been gauge invariant due to the gauge
fixing and the inclusion of ghosts. It is only invariant under the nonlinear BRS trans-
formations. As a consequence, Green functions do not directly reflect the underlying
gauge invariance, but rather satisfy complicated Slavnov-Taylor identities resulting
from BRS invariance. They also depend on the particular gauge fixing chosen, and
only physical quantities such as cross-sections are gauge-independent.

The background field method is a technique which allows for fixing a gauge without
destroying explicit gauge invariance. This makes calculations in gauge theories easier
both technically and conceptually. For example the β-function of non-abelian gauge
theories can be calculated from the background field two-point function alone. No
vertex functions have to be considered, which is a considerable simplification compared
to the conventional method.

Fixing the gauge is necessary for defining propagators. For external fields gauge fixing
is not mandatory. So, the basic idea of the background field method is to split the
gauge field appearing in the classical action according to

Aaµ → Aaµ + Âaµ, (5.1)

where Â is an arbitrary classical background field and plays the role of an external
field. Thus no gauge fixing is necessary for Â. A is the fluctuating quantum field
with properly defined propagators, requiring gauge-fixing. The background field is
treated as an external source while the quantum field is the variable of integration in
the functional integral. Then, a gauge is chosen (the background field gauge) which
breaks the gauge invariance only of the A field, but retains gauge invariance in terms
of the Â field.

A complete treatment of the BFM can be found in [Ab81] and the method will be
only sketched here. The classical Yang-Mills Lagrangian for a gauge field reads

LYM = −1

4
F a
µνF

a,µν (5.2)

with
F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

v
ν . (5.3)
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After splitting the gauge field according to (5.1), the Lagrangian can be written as

LBFM = −1

4
(F̂ a

µν + D̂ac
µ A

c
ν − D̂ac

ν A
c
µ + gfabcAbµA

c
ν)

2, (5.4)

where
F̂ a
µν = ∂µÂ

a
ν − ∂νÂaµ + gfabcÂbµÂ

v
ν ,

D̂ac
µ = ∂µδ

ac + gfabcÂbµ
(5.5)

are the field strength and the covariant derivative with respect to the background field.
For fixed background field, the Lagrangian (5.4) is invariant under the infinitesimal
gauge transformations

Aaµ → A′a
µ = Aaµ +

1

g
δac∂µα+ fabc(Abµ + Âbµ)α

c

= Aaµ +
1

g
D̂ac
µ α

c + fabcAbµα
c.

(5.6)

In order to define the functional integral, we have to fix the gauge for Aa
µ. We choose

the background field gauge condition

Ga
BFM = ∂µA

a
µ + gfabcÂbµA

c
µ = D̂ab,µAbµ. (5.7)

The BRS-Lagrangian is obtained from this gauge-fixing functional and the gauge
transformation (5.6).

The complete Lagrangian

LBFM = LYM,BFM −
1

2ξ
(Ga

BFM)2 + LFP,BFM (5.8)

is gauge-fixed, but remains invariant under the local transformations

Â→ Â′a
µ = Âaµ +

1

g
D̂abα̂b,

Aaµ → A′a
µ = Aaµ + fabcAbµα̂

c,

ηa → η′a = ηa + fabcηbα̂c,

ηa → η′a = ηa + fabcηbα̂c.

(5.9)

The background field Â transforms inhomogeneously as a gauge field, while the quan-
tum field A and the ghost fields η, η transform (homogeneously) as matter field.
This invariance in the background field gauge follows directly from the fact that a
background field Âaµ appears in (5.8) only within covariant derivatives and the field
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5 Background Field Method

strength. To construct an explicitly gauge invariant effective action1 Γ̂, we simply set
the source for the quantum field Aa

µ in the generating functional equal to zero,

Γ̂{Â} = ΓBFM{A = 0, Â}. (5.10)

One can ask for the relation of this gauge invariant effective action Γ̂ and the effective
action Γconv in the conventional method. Performing a shift Aa

µ → Aaµ + Âaµ, it turns
out that the BFM effective action and the conventional action are related by

ΓBFM{A, Â} = Γconv{Ã}|Ã=A+Â, (5.11)

evaluated with the unconventional gauge-fixing term G̃a = ∂µA
µ,a − ∂µÂ

µ,a +

gfabcÂbµA
µ,c. Thus, the gauge invariant effective action is given by

Γ̂{Â} = Γconv{Ã}|Ã=Â. (5.12)

From this effective action one computes the Feynman rules. In one-particle irreducible
diagrams, quantum fields only appear in loops (since the source of A has been set to
zero) and background fields only appear in external lines (since the functional integral
is only over A).

In the model under study with two gauge groups and the mixing term LM =
gv tr[Z∂π−] we choose a background field gauge which also cancels the mixing terms
in the Lagrangian

GBFM,AL
= ∂AL − ig[ÂL, AL] + ξ

gv√
2
π−, (5.13a)

GBFM,AR
= ∂AR − ig[ÂR, AR] + ξ

gv√
2
π− . (5.13b)

Rewriting (5.13) in terms of physical fields

Z =
1√
2
(AR − AL), (5.14)

A =
1√
2
(AR + AL), (5.15)

we obtain

LBRS
BFM =

1

2
tr

[

s

(

ηαGA +
1

2
ξηαBA

)]

+
1

2
tr

[

s

(

ηζGZ +
1

2
ξηζBZ

)]

(5.16)

1In the functional path integral method, the effective action is defined as a Legendre transformation
of the generating functional of connected Green functions.
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with

GA(A,Z) = ∂A− ig√
2
([Â, A] + [Ẑ, Z]), (5.17a)

GZ(A,Z, π−) = ∂Z − ig√
2
([Ẑ, A] + [Â, Z])− 2ξgvπ− . (5.17b)

Feynman rules

The Feynman rules can be obtained from the scalar and BRS Lagrangian in the usual
way. All vertices that result from the scalar part are equal to those in the conventional
formalism, no matter whether they contain background or quantum fields. Different
vertices result for fields which are involved in the gauge-fixing term. For calculating
the vertices resulting from the BRS Lagrangian, we need the transformation properties
of the fields involved:

δZa
µ = −

√
2∂µζ

a − 2gfabcαb(Z + Ẑ)cµ + 2gfabcζb(A+ Â)cµ, (5.18)

δAaµ =
√

2∂µα
a − 2gfabcαb(A+ Â)cµ + 2gfabcζb(Z + Ẑ)cµ. (5.19)

We only derive vertices with one or two Â’s from LBRS, since in chapter 8 we only
calculate the two-point function of the massless background field Â. The gauge-fixing
Lagrangian in the background field gauge reads

Lgf = − 1

4ξ
tr
[
G2
A +G2

Z

]
(5.20)

and results in

L ∝
(

−
√

2g

ξ
fa1ba2 ∂µA

a1,µÂbνA
a2,ν − 2g2

ξ
fa1b1efa2b2e Âa1

µ Â
a2

ν A
b1,µAb2,ν

)

(5.21)

which imply the modified three and four gauge-boson vertices

p2

p3
p1

A, a2, µ2

A, a3, µ3

Â, â1, µ1=
√

2gf â1a2a3





gµ1µ2(2p1 + (1− 1
ξ
p3))

µ3

+gµ2µ3(p2 − p3)
µ1

+gµ3µ1(2p1 + (1− 1
ξ
)p2)

µ2



 , (5.22)
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5 Background Field Method

A, a4, µ4

Â, â1, µ1

A, a3, µ3

Â, â2, µ2

= −2ig2





(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3) f â1â2bfa3a4b

+(gµ1µ4gµ3µ2 − gµ1µ2gµ3µ4 − 1
ξ
gµ1µ3gµ2µ4)f â1a3bfa4â2b

+(gµ1µ2gµ4µ3 − gµ1µ3gµ4µ2 + 1
ξ
gµ1µ4gµ3µ2)f â1a4bf â2a3b



 .

(5.23)

Analog vertices can be found for the massive quantum fields Z.

From the mixed term in G2
Z results a contribution to a vertex with a π−-leg,

iL′
3 = − i

4ξ
tr
(√

2igξm[Â, Z]π−

)

= 2
√

2ig2vgµνfabcÂaZbπc−. (5.24)

The same contribution to the vertex appears in Lscalar, but with a relative minus-sign.
The ÂZπ−-vertex vanishes

Â

Z

π− = 0. (5.25)

Let’s turn to the ghost vertices. We explicitly derive vertices with one or two Â
coming from GA, vertices from GZ can be found analogously. The relevant terms in
the Lagrangian are

1

2
tr (−ηα(sGA))→ −1

2
tr

(

ηαs(∂A−
ig√
2
[Â, A])

)

= −ηaα∂(sAa)−
√

2gfabcηaα)Â
b(sAc)

→
√

2gfabcηaα∂(ηbαÂ
c)−
√

2gfabcηaαÂ
b∂ηcα + 2g2fabcf cdeηaαÂ

bηdαÂ
e

= −
√

2gfabc
(
(∂ηaα)η

b
αÂ

c − ηaαÂc(∂ηbα)
)

︸ ︷︷ ︸

→ −
√

2gfabc(p2 − p3)
µ

+ 2g2fabcf cdeηaαÂ
bηdαÂ

e

︸ ︷︷ ︸

→ 2ig2gµν(fabcf cde + faecf cbe)

(5.26)

In the intermediate steps, we evaluated the traces, renormalized the (anti)ghosts with
factors of 1/2 and

√
2, integrated by parts and replaced ∂ → −ip, where p2 is the

(incoming) momentum of the antighost. The vertices read

α

Â
α

a3, p3

a2, p2

â1, µ = −
√

2g(p2 − p3)
µf â1a2a3 , (5.27)
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α

Â

a4

â1, µ1

a3

â2, µ2

= 2ig2
[
f â1a3bf â2a4b + f â1a4bf â2a3b

]
gµ1µ2 . (5.28)

(5.29)

The background field vertices can be also found in appendix D.
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6 Self-energies

Now we are able to calculate the self-energies for all fields. All relevant vertices and
propagators have been derived in chapter 3 and chapter 4. We use dimensional regular-
ization to regularize the divergent integrals and express the results in terms of scalar
N -point integrals A0, B0, . . . and tensor coefficients (e.g. B1, B00, B11, C11, C12, . . .)
which are functions of the scalar N -point integrals. We use the notation and con-
ventions as defined in [Kil02]. All necessary formulas for this work can be found in
appendix A. Especially note the treatment of quadratic divergences as a limit of
D → 2 in the general D-dimensional integrals.

6.1 Scalar Self-energies

The vertices with four scalars contribute in the loop

k

p, a1 −p, a2

. (6.1)

Using k1 = −k2 = p and k3 = −k4 = k, the numerator gets

i

6v2
((p− k)2fa1cbf ca2b − (p+ k)2fa1cbfa2cb) = − 2i

6v2
(p2 + k2)CAδ

a1a2 . (6.2)

The product of the structure constants f a1cbfa2cb with two of their indices contracted
yields

fa1cbfa2cb = CAδ
a1a2 , (6.3)

where CA the quadratic Casimir operator of the group. It depends on the representa-
tion of the group, e.g. CA = N in the adjoint representation of SU(N).
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6.1 Scalar Self-energies

6.1.1 Self-energy of π+

Since π+ plays the role of our ‘Little Higgs’ particle, its mass should be protected from
quadratic divergences. The following six graphs

π+ π−

A
A Z ζ

(6.4)

contribute to the self-energy.

The following notation is used: Π stands for a self-energy diagram, its first index
indicates if it results from a four vertex or from three vertices. The next index denotes
the outer legs of the diagram and the last indices list all other involved particles.

The first graph yields

Π4π+
=

1

2

−i

3v2
CAδ

abµ4−d
∫

ddk

(2π)d
i(p2 + k2)

k2
=

1

6v2

i

16π2
CAδ

abp2A0(0), (6.5)

where the first factor of 1/2 is a symmetry factor. Note that the integral is quadrat-
ically divergent, since the A0 function has a (mass independent) pole when we send
the dimension d → 2. For d → 4 we have no pole, since the mass is zero and thus
not logarithmically divergent. The global factor of i/(16π2)CAδ

ab appears in all other
diagrams and will be consequently omitted in the following.

For the second graph we obtain

Π4π+π− =
1

2

−i

3v2

∫
ddk

(2π)d
i(p2 + k2 − ξm2 + ξm2)

k2 − ξm2
=

1

6v2
(p2 + ξm2)A0(ξm

2). (6.6)

The third graph requires a bit more calculation,

Π3π+A =

∫
ddk

(2π)d
2g2(2p+ k)µfhal(−2p− k)νfhbl i

(k + p)2
· −i

k2

(

gµν −
(1− ξ)kµkν

k2

)

= −2g2

∫
ddk

(2π)d

(
(2p+ k)2

k2(k + p)2
− (1− ξ)kµ(2p+ k)µkν(2p+ k)ν

k4(k + p)2

)

= −2g2

∫
ddk

(2π)d

(
4p2 + 4pk + k2

k2(k + p)2
− (1− ξ)4pµpνk

µkν + 4pµk
µk2 + k4

k4(k + p)2

)

= −2g2
[
4p2B0(p, 0, 0) + 4p2B1(p, 0, 0) + A0(0)− (1− ξ)(4p2C00 + 4p2B1 + A0(0))

]
,

(6.7)
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6 Self-energies

and the fourth graph results in

Π4π+A = 2g2gµν
∫

ddk

(2π)d
gµνk

2 − (1− ξ)kµkν
k4

= 2g2(d− 1 + ξ)A0(0). (6.8)

The fifth graph yields

Π4π+Z = −2g2gµν
∫

ddk

(2π)d
1

k2 −m2

(

gµν −
(1− ξ)kµkν
k2 − ξm2

)

= −2g2

∫
ddk

(2π)d

(
d

k2 −m2
− (1− ξ)k2

(k2 −m2)(k2 − ξm2)

)

= −2g2
[
dA0(m

2)− (1− ξ)dB00(0,m
2, ξm2)

]
,

(6.9)

and the last one is

Π4π+ζ = (−1)(
−4i

3
ξg2)fabef cae

∫
ddk

(2π)d
i

k2 − ξm2
=

4

3
ξg2A0(ξm

2). (6.10)

In order to see the quadratic divergent part, we send d→ 2. Only the scalar one-point
function A0 and the tensor coefficient B00 = 1

2
A0 + . . . contributes. In this limit, A0

is given by A0 = −4πµ2 · Γ
(

2−d
2

)
+ finite terms. With m = 2gv, we find

Ππ+(quadr.) = A0

(
p2

3v2
+

2

3
ξg2 − 2ξg2 + 2g2(1 + ξ)− 2g2(1 + ξ) +

4

3
ξg2

)

=
p2

3v2
A0.

(6.11)

Note the intricate cancellation of the mass terms in the scalar, gauge-boson and ghost
loops. Expression (6.11) shows that we don’t need a mass renormalization with a
quadratic dependence on the cut-off scale, as expected. π+ is naturally light. The
quadratic divergence is only ∝ (p/v)2 and can be remedied by a wave-function renor-
malization.

The logarithmic divergence is

Ππ+(log.) =

[
m2p2

v2

(
2

3
ξ − 3

2

)

− 3

2

m4

v2

]

∆. (6.12)

6.1.2 Self-energy of π−

This calculation ist pretty much the same as for the π+-self-energy. We have the same
six graphs which contribute to quadratic divergencies. There is also a seventh graph,
where an A and Z boson build the loop, but this is only logarithmically divergent
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6.1 Scalar Self-energies

what can be seen by simple power counting. The graphs 1,2,4,5 and 6 are identical.
The third graph can be obtained by replacing B...(p, 0, 0) with B...(p, 0, ξm

2) and A0(0)
with A0(ξm

2), which is due to the massive π−-propagator. Therefore, the quadratic
divergence is same as for π+,

Ππ−(quadr.) =
p2

3v2
A0. (6.13)

The remaining seventh diagram is given by

A

Z

a b = (
−4i√

2
g2v)2(−i)2gµνgρσ

∫
ddk

(2π)d

(
gµρ
k2
− (1− ξ)kµkρ

k4

)

·
(

gσν
(k − p)2 −m2

− (1− ξ)(k − p)σ(k − p)ν
[(k − p)2 −m2][(k − p)2 − ξm2]

)

facdf bcd

= 8g4v2

∫
ddk

(2π)d

[ gµνgρσgµρgσν
k2[(k − p)2 −m2]

− (1− ξ)k2

k4[(k − p)2 −m2]

− (1− ξ)[(k − p)2 − ξm2 + ξm2]

k2[(k − p)2 −m2][(k − p)2 − ξm2]
+

(1− ξ)2kµ(k − p)µkν(k − p)ν
k4[(k − p)2 −m2][(k − p)2 − ξm2]

]

= 2m2g2
[

(d− 1 + ξ)B0(p, 0,m
2)− (1− ξ)

(
B0(p, 0,m

2) + ξm2C0(. . .)
)

+ (1− ξ)2
(
B0(0, 0,m

2)− 2pµC
µ(. . .) + pµpνD

µν(. . .)
)]

= 2m2g2
[

(d− 1 + ξ2)B0(p, 0,m
2) + . . .

]

. (6.14)

Note that C0, C
µ and Dµν are already convergent.

We obtain

Ππ−(log.) =
(p2 + ξm2

6v2
ξm2 − 2g2(3p2 − ξp2 + ξ2m2)− 8g2

(
m2 − (1− ξ) 3

12
(m2 + ξm2)

)

+
4

3
ξg2ξm2 + 2m2g2(3 + ξ2m2)

)

∆

=
m2p2

v2

(
2

3
ξ − 3

2

)

∆

(6.15)

for the logarithmic divergence of the π− self-energy.
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6 Self-energies

6.2 Self-energies of the Ghosts

We can build loops out of three vertices with one gauge boson leg and from scalar four
vertices, where only the ζ ghost couples to the scalars. We have also a scalar three
vertex with an α ghost and a ζ antighost, but we cannot close this vertex to form a
loop.

6.2.1 Self-energy of the α Ghost

There are two diagrams,

A Z

, (6.16)

which contribute to the self-energy. The first diagram is given by

2g2

∫
ddp

(2π)d
1

(p+ q)2

(gµν

p2
− (1− ξ)p

µpν

p4

)

fdca(q + p)µf bcdqν

= −2g2

∫
ddp

(2π)d

(
q(p+ q)

p2(p+ q)2
− (1− ξ)pµq

µpν(q + p)ν

p4(p+ q)2

)

= −2g2q2
(
B0 +B1 − (1− ξ)(C00 + q2C11 +B1(q, 0, 0))

)
. (6.17)

The loop in the second diagram is built by a Z boson and a ζ ghost. Only the
arguments of the above result change which only affects the finite part. Note that
there are no quadratic divergences here.

6.2.2 Self-energy of the ζ Ghost

We have four diagrams,

A Z

π+ π−

(6.18)
The first two diagrams are calculated in analogy to (6.17). The third graph yields

Π4ζπ+
=

1

2

(−2i

3
ξg2

)

· 2fadefdbe
∫

ddp

(2π)d
i

p2
= −2

3
ξg2A0(0). (6.19)
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6.3 Gauge-Boson Self-energies

The fourth graph with its massive π− propagator results in

Π4ζπ− = −2

3
ξg2A0(ξm

2). (6.20)

Note that the second and third diagram are quadratically divergent and add up to

Πζ(quadr.) = −4

3
ξg2CAδ

ab i

16π2
A0. (6.21)

The logarithmic divergent part of the self-energy of the ζ ghost is

Πζ(log.) = −g2∆

[
3

2
q2 − 1

2
ξq2 +

2

3
ξ2m2

]

. (6.22)

6.3 Gauge-Boson Self-energies

6.3.1 Self-energy of the Z Boson

We can construct the following eight loop diagrams:

Z A π+ π−

Z

A

A

π−

α

ζ

ζ

α

(6.23)
The first four graphs have a symmetry factor of 1/2 and the vertex contributes to a
factor −2ig2 · 2CAδab times metric tensors. The outer legs are labelled a, µ and b, ν.
The first diagram yields

Πµν
4Z = −2g2

∫
ddp

(2π)d

[

gµνgρσ − gµρgνσ
]( gρσ

p2 −m2
− (1− ξ)pρpσ

(p2 −m2)(p2 − ξm2)

)

= −2g2

∫
ddp

(2π)d

(
gµν(d− 1)

p2 −m2
− (1− ξ)(p2gµν − pµpν)

(p2 −m2)(p2 − ξm2)

)

= −2g2gµν(d− 1)
(

A0(m
2)− (1− ξ)B00(0,m

2, ξm2)
)

.

(6.24)

The second one can be obtained from the first by replacing the masses in the arguments
with zero. Thus, this diagram has no logarithmic but only quadratic divergences.
The third and fourth are simple, they yield

Πµν
4Zπ+

= 2g2gµνA0(0), (6.25)
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6 Self-energies

Πµν
4Zπ−

= 2g2gµνA0(ξm
2). (6.26)

The next one is harder. We denote A with group index d, momentum q + p and the
propagator with indices σ, α. Z is denoted by c, p, β, ρ.

Πµν
3ZA = 2g2(−i)2

∫
ddp

(2π)d

(
gσα

(q + p)2
− (1− ξ)(q + p)σ(q + p)α

(q + p)4

)

·
(

gβρ
p2 −m2

− (1− ξ) pβpρ
(p2 −m2)(p2 − ξm2)

)

facdf bcd

· [gµρ(q − p)σ + gρσ(2p+ q)µ + gσµ(−p− 2q)ρ]

·
[
gνβ(−q + p)α + gβα(−2p− q)ν + gαν(2q + p)β

]
. (6.27)

To make things easier, let us use Feynman-gauge, ξ = 1. After multiplying and sorting
the expressions, we obtain

−2gµνp2 + (6− 4d)pµpν − 2gµνpq + (6− 4d)pµqν − 5gµνq2 + (6− d)qµqν (6.28)

for the numerator structure. Inserting (6.28) in (6.27) yields

Πµν
3ZA = −2g2

(

gµν
[
−2A0(0)− 2m2B0 + (6− 4d)B00 − 2q2B1 − 5q2B0

]

+ qµqν
[
(6− 4d)(B11 +B1) + (6− d)B0(q,m, 0)

])

.
(6.29)

For a general ξ the calculation by hand is very tedious, but it can be implemented
with the computer program FORM, [Ver01].

Πµν
3ZA = 2g2∆

(

gµν
[

q2
(25

6
− ξ
)

+
3

4
ξm2 +

3

4
ξ2m2 + 3m2

]

+ qµqν
[

−14

3
+ ξ
])

(6.30)

is the result for the logarithmically divergent part. The sixth diagram is only loga-
rithmically divergent, we obtain

Πµν
3ZAπ−

= −8g4v2gµρfdacgνσfdbc
∫

ddp

(2π)d
1

p2 − ξm2

( gρσ
(p+ q)2

− (1− ξ)(p+ q)σ(p+ q)ρ
(p+ q)4

)

= −2g2m2gµν
(
B0(q, ξm

2, 0)− (1− ξ)C00

)
.

(6.31)
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6.3 Gauge-Boson Self-energies

The final two ghost loops are identical and yield

Πµν
3Zζ,α = (−1)4g2

∫
ddp

(2π)d

(
i

(p2 − ξm2)

i

(q + p)2
fdac(q + p)µf cbdpν

)

= −4g2(Bµν + qµBν)

= −4g2(gµνB00 + qµqν(B11 +B1)).

(6.32)

where the arguments of B are (q, ξm2, 0).

We extract the quadratic divergent part by sending d→ 2 and obtain

Πµν
Z(quadr.) = g2gµνA0(−2− 2 + 2 + 2− 2[−2− 2 · 1

2
]− 1− 1) = 4g2gµνA0. (6.33)

This result also holds for a general ξ since the ξ-dependent contributions of diagram
1,2 and 5 cancel each other (see next section). The logarithmic divergence is

Πµν
Z(log.) = g2∆

(

gµν(
26

3
− 2ξ + 2ξm2)− qµqν(26

3
− 2ξ)

)

. (6.34)

We decompose the self-energy in a transverse and a longitudinal part by

Πµν =

(

gµν − qµqν

q2

)

ΠT (k2) +
qµqν

q2
ΠL(k2) (6.35)

and obtain
ΠZ
L = 2ξm2g2∆ (6.36)

for the longitudinal part.

6.3.2 Self-energy of the A Boson

A Z

A

A

Z

Z

Z

π−

π+ π−

α

α

ζ

ζ

π+

π+

π−

π−

(6.37)
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6 Self-energies

The diagrams involving gauge boson loops can be obtained from the previous section
by changing the arguments of the N -point functions, which are shown once in each
equation. Note also the symmetry-factor of 1/2 for the third and fourth diagram
and an opposite sign for diagram six and seven, due to the vertex. For the massless
A boson we expect a transverse Lorentz structure of the self-energy (a longitudinal
part would induce a radiative mass term, but a massive A boson is forbidden by the
gauge symmetry) and a cancelling of the quadratic divergencies. Gauge-boson and
ghost loops have to cancel independently from the scalar loops. This is shown in the
following calculation.

Πµν
4A = −2g2gµν(d− 1)

(

A0(0)− (1− ξ)B00(0, 0, 0)
)

(6.38a)

Πµν
4AZ = −2g2gµν(d− 1)

(

A0(m
2)− (1− ξ)B00(0,m

2, ξm2)
)

(6.38b)

Πµν
3A = g2

(

gµν
[
2A0(0)− (6− 4d)B00 + q2(2B1 − 5B0)

]

− qµqν
[
(6− 4d)(B11 +B1) + (6− d)B0(q, 0, 0)

])

(ξ = 1) (6.38c)

Πµν
3AZ = g2

(

gµν
[
2A0(m

2) + 2m2B0 − (6− 4d)B00 + q2(2B1 − 5B0)
]

− qµqν
[
(6− 4d)(B11 +B1) + (6− d)B0(q,m

2,m2)
])

(ξ = 1) (6.38d)

Πµν
3AZπ−

= −2g2m2gµνB0(q,m
2,m2) (ξ = 1) (6.38e)

Lets calculate the remaining scalar and ghost loops. The scalar loops are given by

Πµν
3Aπ±

= −g2

∫
ddp

(2π)d
(2p+ q)µ(−2p− q)ν

(p2 − ξm2)[(p+ q)2 − ξm2]

= g2[4Bµν + 4qµBν + 4kµqνB0]

= g2(4gµνB00 + qµqν(4B11 + 4B1 +B0)),

(6.39)

where the argument of B is (q, 0, 0) for π+ and (q, ξm2, ξm2) for π−.

The ghost loops are given by

Πµν
3Aζ,α = (−1)2g2

∫
ddp

(2π)d
i

(p2 − ξm2)

i

(q + p)2 − ξm2
fdac(q + p)µf cbdpν

= −2g2(Bµν + qµBν)

= −2g2(gµνB00 + qµqν(B11 +B1)).

(6.40)

Let’s summarize the ghost and scalar loops:

Πµν
4Aπ+

= −2g2gµνA0(0), (6.41a)
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6.3 Gauge-Boson Self-energies

Πµν
4Aπ−

= −2g2gµνA0(ξm
2), (6.41b)

Πµν
3Aπ+

= g2
(

4gµνB00 + qµqν
(
4B11 + 4B1 +B0(q, 0, 0)

))

, (6.41c)

Πµν
3Aπ−

= g2
(

4gµνB00 + qµqν
(
4B11 + 4B1 +B0(q, ξm

2, ξm2)
))

, (6.41d)

Πµν
3Aα = −2g2

(

gµνB00 + qµqν
(
B11 +B1(q, 0, 0)

))

, (6.41e)

Πµν
3Aζ = −2g2

(

gµνB00 + qµqν
(
B11 +B1(q, ξm

2, ξm2)
))

. (6.41f)

We obtain

Πµν
A(quadr.) = g2gµνA0(−2− 2 + 3 + 3− 2− 2 + 2 + 2− 1− 1) = 0 (6.42)

for the quadratically divergent part (ξ = 1). Note that the scalar contributions cancel
among themselves and the gauge boson part is cancelled by the ghost part. If one
wants to calculate in a general gauge, Π3A and ΠAZ become rather lengthy, since
higher C and D functions appear. One way around is to use the formulae (A.44)
to (A.48) in [Pes]. In (6.24) only the p4-terms in the (1 − ξ) part are quadratically
divergent. Then one can bring the integral into the form of (A.47) and extract the
pole (Γ(1− d

2
) ∝ A0). The result is that 3A0 gets replaced by (3 + (ξ − 1))A0 in Π3A

and Π3AZ . This also leads to a vanishing quadratic divergence, but for a general ξ
(additionally, this was also checked with FORM).

Being sure that we have no quadratic divergences, we can now safely send d→ 4 and
verify the transverse Lorentz structure. Note that Πµν

4Aπ+
and Πµν

4A vanish for d→ 4.

With B̃... = B...(k, 0, 0)+B...(k,m,m) and A0(m
2) = A0 the scalar part can be written

for (ξ = 1) as

Πµν,scalar = g2gµν [4B̃00 − 2A0] + qµqν [4B̃11 + 4B̃1 + B̃0]

=

(

gµν − qµqν

q2

)

Πscalar
T (k2) +

qµqν

q2
Πscalar
L (k2),

(6.43)

with

Πscalar
T (k2) = g2[4B̃00 − 2A0], (6.44a)

Πscalar
L (k2) = g2[4B̃00 − 2A0 + 4k2B̃11 + k2B̃1 + k2B̃0]. (6.44b)

Using the expressions for B... as defined in the [Kil02], one can easily show the van-
ishing of Πscalar

L . The logarithmically divergent part is

Πscalar
T (q2) = −2

3
g2q2 ·∆. (6.45)
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6 Self-energies

An analogous calculation can be done for the gauge sector (including ghosts), the
longitudinal part of the self-energy also vanishes. Note that the sixth graph, where
the loop is formed by a π− and a Z is taken to the gauge sector because it only
contributes mass terms which exactly cancel the mass contributions of diagrams with
massive gauge-boson or ghost propagators. The transverse part of the A boson self-
energy reads

Πgauge
T = 2(2− d)A0 − 4(2− d)B̃00 + 4q2B̃0 =

20

3
g2 ·∆ + . . . . (6.46)

6.4 Self-energy for the Zπ−-mixing

At one loop, we have four contributions to the Zπ-mixing.

A

π−

α

ζ

π+ π−

(6.47)

The outer legs are denoted by the group indices a and b and the momentum of the Z
boson by p.

For the first graph, we obtain

−4i√
2
g3v(−

√
2)fdcaf cdbgµν

∫
ddk

(2π)d

(gνρ
k2
− (1− ξ)kνkρ

k4

) (k + p)ρ + pρ

[(k + p)2 − ξm2]

= −4ig3v

∫
ddk

(2π)d

(
(k + 2p)µ

[(k + p)2 − ξm2]k2
− (1− ξ) kµkν(k + 2p)ν

[(k + p)2 − ξm2]k4

)

= −4ig3v
(
Bµ(p, 0, ξm2) + 2pµB0 − (1− ξ)(pµB1 + 2pµC

µν)
)

= −4ig3v(2B0 +B1 − (1− ξ)(B1 + 2C00))p
µ = −6ig3v∆ · pµ, (6.48)

and the second diagram results in

4iξg3vpµ
(
B0(p, ξm

2, 0) +B1(p, ξm
2, 0)

)
= 2iξg3v∆ · pµ. (6.49)

The third graph yields a purely quadratic divergence,

1

2

2ig

3v
faa1cfa1bc

∫
ddk

(2π)d
(−p+ k)µ + (−p− k)µ

k2
=

2ig

3v
pµA0(0). (6.50)

Note the minus sign of p. This is due to the fact that in the corresponding vertex
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6.5 Quadratic Divergences

only (incoming) momenta from the scalars appear. Due to momentum conservation
the incoming momentum of the outer scalar leg is (-1) times the momentum of the
gauge boson whose momentum is going into the loop.

The fourth graph is given by
2ig

3v
pµA0(ξm

2). (6.51)

We obtain

ΠZπ,quadr.
µ =

4ig

3v
pµA0 (6.52)

for the quadratically divergent and

ΠZπ,log.
µ = 2iξg3v∆ · pµ − 6ig3v∆ · pµ +

2ig

3v
ξm2∆ · pµ

= − im3

v2
∆

(
3

4
− 7

12
ξ

)

· pµ
(6.53)

for the logarithmically divergent part.

6.5 Quadratic Divergences

We could explicitly show that the scalar π+ boson, the little Higgs, is free of quadratic
divergences, unlike the Higgs particle in the Standard Model.

But there is a non-vanishing quadratic divergence for the self-energy of the Z boson,
Πµν
Z(quadr.) = 4g2gµνA0. This term contributes to a quadratically divergent mass cor-

rection. It results from the scalar loops of the third and fourth diagram in section
6.3.1 and can be traced back to the nonlinear parametrization of the sigma model.
On a technical level, we expect an independent cancelling of the quadratic divergent
parts from gauge and scalar loops, as it is the case for the massless A boson. When
computing the divergent terms in the self-energies, the only difference between the
two bosons is the mass, but this doesn’t affect quadratic divergences (see the argu-
ment after (A.10). Here, only the terms in the gauge sector of the Z boson cancel,
the contributions from the scalar loops remain.

In appendix B the scalar part in the self-energy of the Z boson is calculated also
in an SU(2) × SU(2) linear sigma model, which is a possible UV-completion of the
nonlinear sigma model. There, it turns out that there is a contribution from the
massive σ boson, and the sum of all scalar contribution vanishes. Maybe we should
not be too surprised about this. In the nonlinear sigma model we argued that the
mass of the σ boson is much bigger than the energy where the theory is measured
and therefore decouples. However, quadratic divergences are independent of masses.
Therefore, even infinitely heavy particles yield a contribution to quadratic divergences,
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6 Self-energies

which is missing in the nonlinear sigma model (more discussion about the limit of a
large mσ, linear and nonlinear sigma models can be found in [Vel]).
Do we have to worry about the quadratically divergent mass of the Z boson? No, the
theory is only valid up to the cut-off scale 4πv and loop integrations are only carried
out for momenta smaller than 4πv. After that, a UV-completed theory takes over
which is free of quadratic divergences. Thus, the mass of the Z boson would be of
O(v2). We do not have a fine tuning problem, since we have no bounds for the mass
of this field, as it is the case for the Higgs boson.
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7 Consistency Checks

Continuous symmetries in a classical Lagrangian lead to conserved currents and
charges, due to Noether’s theorem. These considerations can be extended to the
path integral representation in quantum field theory. The results are Ward identities
for Green functions, i.e. relations between Green functions resulting from a symmetry
of the action.

The equations of motion for the classical fields can be generalized to the equations
of motion for Green functions. Their derivation is similar to the derivation of the
Ward identities. The starting point is the invariance of the path integral under field
transformations, which simply corresponds to the invariance of the action S.

Details to the following discussion can be found in [Böh]. The generating functional

is

Z{J} =

∫

D[ψψψ]eiS{ψ}+i
�

J(x)ψψψ(x), (7.1)

where the vector ψψψ collectively denotes all fields ψi and J denotes all sources of the
fields.

Now, let us perform an infinitesimal transformation of the fields,

ψi → ψi + δψi, δψi = εfi(x), (7.2)

where ε is an infinitesimal parameter and fi is an ordinary function of x. Under this
transformation the action also varies. We obtain

δS

δψk(x)
=

∂L
∂ψk(x)

− ∂µ
∂L

∂(∂µψk(x))
. (7.3)

A change of integration variables cannot change the integral Z{J}. Thus, the variation
of δZ{J} vanishes and we obtain

0 =

∫

D[ψψψ]eiS{ψ}+i
�
d4yJ(x)ψψψ(x)

(
δS

δψi(x)
+ Ji(x)

)

. (7.4)

Green functions are obtained by differentiating the generating functional with respect
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7 Consistency Checks

to the sources and putting these equal to zero,

G(x1, . . . , xn) =
δn

iδJ(x1) · · · iδJ(xn)
Z{J}|J(x)≡0. (7.5)

Generically, we write Green functions as 〈T ∏l ψil〉. Applying the functional derivative
to (7.4), we obtain the equations of motion for Green functions,

−i〈T
∏

l

ψil(xl)
δS

δψi(x)
〉 = 〈T δ

δψi(x)

∏

l

ψil(xl)〉. (7.6)

The δ-functions in (7.6) result from the differentiation of the explicit sources Ji(x) in
(7.4). Later, we need the equation of motion when we have only one type of fields.
Then (7.6) simplifies to

−i〈Tψ(y)
δS

δψ(x)
〉 = δ4(x− y). (7.7)

From (7.6) we also obtain Ward identities for Green functions,

δ〈T
∏

l

ψil(xl)〉 = 0, (7.8)

if the action S is invariant of the action under (global) transformations, δS/δψi = 0.
The BRS transformation is an example for a global transformation (δλ is a global
variable), the resulting Ward identities are called Slavnov-Taylor identities1 and read

s〈T
∏

l

ψil(xl)〉 = 0. (7.9)

7.1 Slavnov-Taylor Identities for the Z Boson

We are interested in identities which result from the Green function 〈Tηa(x)Gb{Z; y}〉.
(7.9) yields

0 = 〈T (sηa(x))Gb{Z; y}〉 − 〈Tηa(x)sGb{Z; y}〉

= −1

ξ
〈TGa{Z; y}Gb{Z; y}〉+ 〈T (sGb{Z; y})ηa(x)〉.

(7.10)

1This general Slavnov-Taylor identity can also be derived in the canonical BRS method by sand-
wiching the commutator (or anticommutator) (sΨ = [Q,Ψ]±) of an arbitrary product of fields
with the BRS charge between physical fields: 〈φphys|T [Q,Ψ1Ψ2 . . .Ψn]±|ψphys〉 = 0. Then the
BRS charge can be taken out of the time-ordering and we arrive at (7.9).
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7.1 Slavnov-Taylor Identities for the Z Boson

We can replace the second term in (7.10) via the equation of motion for the antighost
(cf. (7.7) with Lghost = −ηasGb). We obtain

−1

ξ
〈TGa{Z; y}Gb{Z; y}〉 = iδabδ4(x− y). (7.11)

Using the gauge-fixing functional for the massive Z boson in (4.9), we find the following
non-trivial relation

∂xµ∂
y
ν 〈TZµ,a(x)Zν,b(y)〉−2ξm∂xµ〈TZµ,a(x)πb−(y)〉+ξ2m2〈Tπa−(x)πb−(y) = −iξδabδ4(x−y).

(7.12)
Going to momentum space, (7.12) reads

kµkνGZZ
µν − 2iξmkµGZπ

µ + ξ2m2Gππ = −iξ, (7.13)

where the momentum kµ in GZπ
µ denotes the outgoing momentum of the gauge boson2.

As already mentioned in section (3.5), the propagators (two-point Green functions)
are obtained by inverting the two-point vertices. Here we have to invert the full (five
dimensional) propagator matrix

(
ΓZZµν ΓZπµ
ΓZπν Γππ

)

= −
(
GZZ
µν GZπ

µ

GZπ
ν Gππ

)−1

. (7.14)

With the ansatz

G =

(
GZZ
νρ GZπ

ν

GZπ
ρ Gππ

)

=

(
GZZ
T gTνρ +GZZ

L gLνρ GZπ
L kν

GZπ
L kρ Gππ

)

(7.15)

and

gTνρ = gνρ −
kνkρ
k2

, gLνρ =
kνkρ
k2

, (7.16)

we get the propagators by comparing coefficients of GG
−1 = 15×5.

GZZ
T =

1

ΓZZT
, GZπ

L =
−ΓZπL

ΓππΓZZL − (ΓZπL )2k2
,

GZZ
L =

Γππ

ΓππΓZZL − (ΓZπL )2k2
, Gππ =

1

Γππ
+

k2(ΓZπL )2

Γππ(ΓππΓZZL − (ΓZπL )2k2)
.

(7.17)

2See the comment after (6.50): the momentum of Z going into the loop is the outgoing momentum
at the space-time point x. Thus, ∂x

µ gets replaced by +ikµ and the signs are correct.
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ΓZZµν = + = gTµνΓ
ZZ
T + gLµνΓ

ZZ
L

Γππ = +

ΓZπµ = = ΓZπL kµ

(7.18)

The above two-point-vertices from iL in momentum space are given by (including
both the quadratically and logarithmically divergent part)

ΓZZL = −i

(
k2

ξ
−m2

)

+
m2

v2
A0 +

ξm4

2v2
∆, (7.19a)

Γππ = i
(
k2 − ξm2

)
+

k2

3v2
A0 +

m2k2

v2

(
2

3
ξ − 3

2

)

∆, (7.19b)

ΓZπL =
2im

3v2
A0 +

im3

v2

(

−3

4
+

7

12
ξ

)

∆. (7.19c)

Since we only calculate vertex corrections to one loop, we can ignore second order
contributions. Using 1/(1 + x) = 1− x, we find (m = 2gv)

kµkνGZZ
µν = − k2Γππ

ΓππΓZZL − (ΓZπL )2k2
= − k2

ΓZZL
=

−iξk2

(k2 − ξm2)[1 + i
2v2

(2ξm2A0+ξ2m4∆
k2−ξm2 )]

=
−iξk2(1− i

2v2
2ξm2A0+ξ2m4∆

k2−ξm2 )

k2 − ξm2
,

(7.20)

Gππ = − 1

Γππ
=
i(1 + ik2

3v2
A0+m2(2ξ− 9

2
)∆

k2−ξm2 )

k2 − ξm2
, (7.21)

kµGZπ
µ =

ΓZπL k2

ΓππΓZZL
=
ξk2
[

im
v2

(2
3
A0 + (−3

4
+ 7

12
ξ)m2∆)

]

(k2 − ξm2)2
. (7.22)

Now, we can check if the Ward-identity (7.13) holds. The tree-level part is obviously
fulfilled, which indicates that our signs are right. The one-loop contributions are

−
m2

v2
ξ2k2A0

(k2 − ξm2)2

(

1− 4

3
+

1

3

)

− ξ2m4

v2
k2∆

(k2 − ξm2)2

(
1

2
ξ +

3

2
− 7

6
ξ +

2

3
ξ − 3

2

)

(7.23)

The prefactors of the divergent parts cancel. Thus, the Ward-identity holds.

58



7.2 Goldstone-Boson Equivalence Theorem

7.2 Goldstone-Boson Equivalence Theorem

The Goldstone-boson equivalence theorem (ET) is an important consequence of the
Slavnov-Taylor identities in spontaneously broken theories. It states that S-matrix
elements for the emission of scalar gauge bosons can be obtained from S-matrix el-
ements for the emission of Goldstone bosons. The scalar gauge boson is unphysical,
for high energies however the scalar polarization vector goes over into the physical
longitudinal polarization vector, up to O(MZ

E
). Thus, the theorem can be used to

facilitate the calculation of cross sections for reactions with longitudinal gauge bosons
at high energies, as the amplitudes for external scalars are much easier to evaluate.
On the other side it might allow to derive information on the mechanism of sponta-
neous symmetry breaking from the experimental study of longitudinal gauge bosons.
In this work, it will be used as second check of the correctness of our Feynman rules.

Crucial for the ET is again the fact that the BRS transformation on Green functions
vanish,

s〈T
∏

l

ψil(xl)〉 = 0. (7.24)

We consider a Green function with one antighost field and arbitrary other fields. We
obtain

0 = s〈Tηa
∏

l

ψil(xl)〉

= −〈T 1

ξ
Ga
∏

l

ψil(xl)〉

+ all other terms where s acts on ψil .

(7.25)

Now, if all the fields are physical and on shell, their BRS variations vanish [cf. (4.12)]
and we find

〈TGa
∏

l

ψphysil
(xl)〉 = 0. (7.26)

Inserting the gauge-fixing functional for the massive gauge boson and going into mo-
mentum space, (7.26) reads

〈T (kµZµ(k)− ξmπ−(k))
∏

l

ψphysil
(kl)〉 = 0. (7.27)

S-matrix elements can be obtained via the LSZ-reduction formula from truncated
Green functions, that is removing the poles of internal lines. In the derivation one has
to use the tree level relations

kµG
µν
ZZ = −ξGηηk

ν , Gηη = Gππ, (7.28)
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7 Consistency Checks

which can be derived from the identities

s〈TZa
µ(x)η

b
ζ(y)〉 = 0, s〈Tπa−(x)ηbζ(y)〉 = 0, (7.29)

respectively, evaluated at tree level. Relation (7.28) can also be obtained from the
explicit expressions, this is done in [Hor96]. Relation (7.27) for the amplitudes reads

i
kµ

m
Mµ(A→ B + Z)) =M(A→ B + π−). (7.30)

A and B are arbitrary other physical particles, including other gauge bosons as well.
Note that kµ/m is not a physical polarization vector3, which must satisfy the condition

εµ(k) · kµ = 0. (7.31)

For our theory, we cannot construct a physical matrix element where only one Z boson
is involved, due to the negative parity of Z. But a process with two Z bosons and
two π+ bosons (total parity +1) is possible. The relation

−ikν3Mµν(ZZ → π+π+) · εµ(k4) = mMµ(Zπ− → π+π+) · εµ(k4) (7.32)

with

Mµν(Z
µ,d(k4)Z

ν,c(k3)→ πa+(k1)π
b
+(k2)) =

Z

Z

π+

π+

+
A

Z

Z

π+

π+

(7.33)
and

Mµ(Z
µ,d(k4)π

c
−(k3)→ πa+(k1)π

b
+(k2)) =

π−

Z

π+

π+

+
A

π−

Z

π+

π+

(7.34)

should be valid. The first diagram ofMµν is (using momentum conservation to replace
k3 with −(k1 + k2 + k4), (7.31) and putting external particles on-shell)

2g2(k1 + k2)
µ[facef bde + fadef bce]εµ. (7.35)

3For high energies however, the longitudinal polarization vector of a massive gauge boson, εµL =
( k

m
, 0, 0, Ek

m
) gets parallel to kµ
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7.2 Goldstone-Boson Equivalence Theorem

The second diagram ofMµν reads (after some manipulations)

2g2f ecdf eab(gµν(k4−k3)
ρ+gνρ(k3−k)µ+gµρ(k−k4)

ν)
−igρσ
k2

(k1−k2)
σ ·(−ik3,ν)εµ(k4)

= 2g2fabef cde(k1 − k2)
µ − 2m2g2fabef cde

(k1 − k2)
µ

2k1k2

. (7.36)

The first and second diagram ofMµ are given by (m = 2gv)

4

3
g2[(k1 − k2)

µfabef cde + (2k1 + k2)
µfacef bde + (k1 + 2k2)

µfadef bce] · εµ, (7.37)

−8g4v2fabef cde
(k1 − k2)

µ

2k1k2

· εµ, (7.38)

respectively. We observe that (7.38) cancels the last term in (7.36), however the other
cancellations are not obvious. Naively, one would compare the coefficients of the
f ...f ... terms, but this is not correct, since we can use the Jacobi-identity to replace
this term by two other f ...f ... terms. We rewrite the 8/3g2-terms in (7.37) and find

8

3
g2(kµ1 f

abef cde + kµ2 f
adef bce =

2g2(kµ1 f
abef cde+kµ2 f

adef bce)+
2

3
g2kµ1 [fadef bce+fabef cde]+

2

3
g2kµ2 [facef bde−fabef cde].

(7.39)

Now, the cancellation can be seen.
Another process involving one π− can be constructed,

−ikµ1Mµνρ(ZZ → A) · εν(k2)ε
ρ(k3) = mMµ(Zπ− → A) · εν(k2)ε

ρ(k3). (7.40)

The calculation ofMµνρ(ZZ → A) is analogous to (7.36) and the above relation can
be verified.
Having done these two non-trivial checks we can be confident that our Feynman rules
and expressions for our self-energies are correct.
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8 Renormalization

Quantum effects, resulting from Feynman graphs containing loops, lead to corrections
to Green functions and S-matrix elements. These corrections change the relations
among the parameters of the Lagrangian. As a result, the bare parameters are no
longer directly related to physical quantities. Moreover, the bare parameters can
even become divergent. These divergent quantities have to be regularized, e.g. by
dimensional regularization. This amounts to a modification of the theory so that
the possibly divergent expressions become well-defined, and that in a suitable limit
the original (divergent) theory is recovered. Consequently, a redefinition of the orig-
inal (bare) parameters (m, g, . . .), a renormalization of the theory is needed. In this
process, also the fields have to be renormalized.

The requirement that divergences are compensated does not determine the finite parts
of the renormalization constants. As a consequence, calculations in finite orders of
perturbation theory performed in different renormalization schemes may differ by
higher-order contributions. In an all-order calculation all different schemes would
lead to equivalent relations between physical quantities. The dependence of the
choice of the renormalization scheme and consequences are studied with the help
of renormalization-group equations.

In our Lagrangian we absorb the divergences by a simple rescaling of the original (bare)
quantities, denoted by the subscript 0. The renormalized quantities are defined as

π± = Z1/2
π±
π±,0, (8.1a)

Aµ = Z
1/2
A Aµ0 , (8.1b)

Zµ = Z
1/2
Z Zµ

0 , (8.1c)

m2
0 = Zmm

2, (8.1d)

g0 = Zgg, (8.1e)

ξ0 = ZAξ, (8.1f)

where Zπ± , ZA and ZZ are wave-function or field-strength renormalization constants;
Zg and Zm are known as the coupling and the mass renormalization constants respec-
tively. In perturbation theory we write

Zi = 1 + δZi. (8.2)
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This multiplicative renormalization does not change the functional dependence of
L(ψi, g,m) on ψi, g and m. L(ψi, g,m) yields the same Feynman rules for the renor-
malized fields and parameters as does L(ψi,0, g0,m0) does for the bare ones. The
counterterm Lagrangian Lct summarizes all terms containing the renormalization con-
stants and generates counterterm Feynman rules1. The renormalization constants will
absorb the divergences, up to finite parts. In the mass-independent modified minimal-

substraction scheme MS only the divergences of the form ∆ = 2/(4−D)−γE +log 4π
get subtracted, which is especially convenient for higher-order calculations and best
suited for dimensional regularization. In the on-shell scheme one determines the
renormalization constants by imposing renormalization conditions so that m and g
are the physical masses and coupling constants. The difference of the various schemes
is in the finite part of the renormalization constants. The transformations which link
the coupling constants in different schemes leave the β-function invariant up to second
order.

Renormalization group

The reparametrization (8.1) is not unique. Physical results are independent of the
choice of renormalized parameters. Only the explicit expressions for physical quanti-
ties change, not the relation between them. This fact is the basis of the renormalization

group (RG).

The renormalization group equation (RGE) follows from the fact that S-matrix el-
ements (or n-point proper vertex functions Γn which are related to the generating
functional of Green functions via a Legendre transformation) do not change (calcu-
lated in all orders of perturbation theory) under the shift of µ→ µ+ δµ, (where µ is
the arbitrary mass parameter in dimensional regularization)

µ
δ

δµ
〈out|S|in〉 = 0. (8.3)

The proper vertex functions are renormalized by

Γ(r)
n = Z

n/2
φ Γ(0)

n , (8.4)

where the unrenormalized n-point vertex function Γ
(0)
n only depends on the bare quan-

tities g0,m0, . . . and not on the mass scale µ. The renormalization constants Z
1/2
φ for

each field in the n-point vertex and the renormalized vertex function Γ
(r)
n itself do de-

pend on µ and the regularized masses m and coupling constants g. The RGE exploits

1For a massless gauge boson it is an easy exercise to show that −iδZA[k2gµν − (1 − 1/ξ)kµkν ] +
iδZξ(1/ξ)k

µkν is the counterterm vertex.
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8 Renormalization

the µ-independence of Γ
(0)
n to determine how Γ

(r)
n must depend on µ.

µ
∂

∂µ
Γ(0)
n = 0 = µ

∂

∂µ
(Z

−n/2
φ Γ(r)

n (g,m, µ))

= Z
−n/2
φ

(

µ
∂

∂µ
+ β(g)

∂

∂g
+ γm

∂

∂m
− nγ(g)

)

Γ(r)
n (g,m, µ),

(8.5)

where dimensionless functions are defined as

β(g) = µ
∂g

∂µ
, (8.6a)

γm(g) = µ
∂

∂µ
lnm = m−1µ

∂

∂µ
m, (8.6b)

γ(g) = µ
∂

∂µ
ln
√

Zφ =
1

2
Z−1
φ µ

∂

∂µ
Zφ. (8.6c)

γ(g) is the called the anomalous dimension, γm(g) is the renormalization-group coeffi-
cient for the mass term and β(g) is the renormalization-group function, or β-function2.
These functions are the same for all vertex functions and thus a characteristic of the
theory. They are related to the shifts in the coupling constant, mass and field strength
that compensate for the shift in the renormalization scale µ. The behaviour of the
coupling constant as a function of µ is of particular interest, since it determines the
strength of the interaction and the conditions under which perturbation theory is
valid. We can compute these functions by choosing convenient Green functions3,
where we insist that the expressions satisfy the RGE. Because the µ-dependence of a
renormalized Green function originates in the counterterms that cancel its logarithmic
divergences, we find that the β, γm and γ functions are simply related to these coun-
terterms, or equivalently to the coefficients of the divergent logarithms. In order to
determine the β-function we also need the counterterms for the three point functions,
the vertex corrections. We only have calculated the two point functions (self-energies)
which is not enough. But there is a way how to circumvent this problem: the gauge
invariance of the effective action in the background field gauge relates the renormaliza-
tion constant of the gauge coupling to the renormalization constant of the background
field. Because explicit gauge invariance is retained in the background field method,
the infinities appearing in the effective action must take the gauge invariant form of
a divergent constant times (F a

µν)
2. According to (8.1), F a

µν is renormalized by

(F a
µν)0 = Z

1/2
A

[

∂µA
a
ν − ∂νAaµ + gZgZ

1/2
A fabcAbµA

c
ν

]

. (8.7)

2In principle, these functions can also depend on the dimensionless quantity m/µ. This problem is
circumvented in the mass-independent MS-scheme.

3The RGE holds also for n-point Green functions.
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This is only invariant if
Zg = Z

−1/2

Â
(8.8)

is satisfied. So, we can extract the β-function from the self-energy of the background
field Â.

With (8.1), (8.6) and the fact that g0 and ZÂ are independent of µ, the β-function
and the anomalous dimension γ are related to the coupling constant renormalization
Zg and the field renormalization ZÂ by

β(g) = −gµ ∂

∂µ
lnZg, γ(g) =

1

2
µ
∂

∂µ
lnZÂ. (8.9)

Thus, β and γ are related by
β = gγ. (8.10)

The β-function can be written as an expansion in g of the form

β(g) = − g3

16π2
β0 −

g5

(16π2)2
β1 +O(g7) (8.11)

where the first coefficient is obtained from a one loop calculation.

Self-energy for the background field gauge boson

The self-energy for Â can be calculated similarly as in the conventional formalism
(cf. section 6.3.2). The Feynman graphs with the external background fields are the
same with one exception: the fifth graph in (6.37) where the loop contains π− and Z
doesn’t exist, since the ÂZπ−-vertex is zero in the background field gauge. We also
have two ghost diagrams coming from the four vertex with two ghosts. The graphs
with scalar loops give the same result as in the conventional mechanism, while the
graphs involving gauge bosons and ghosts yield different results owing to the modified
Feynman rules (cf. appendix D).

A Z

A

A

Z

Z

α

α

ζ

ζ

α ζ π+ π−

π+

π+

π−

π−

(8.12)
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8 Renormalization

The calculation was implemented in FORM. It turns out that the mass terms for
graphs with massive propagators have a complicated dependence on ξ, but the sum of
all contributions is zero. This is not surprising, we expect the cancellation of all mass
terms, since the gauge boson is strictly massless. We also expect that the final result
is ξ-independent and transverse, but already each graph has a transverse nature, when
ignoring the mass terms. It is given by

Πtotal
T = 14g2k2∆. (8.13)

As always, the factor i/(16π2)CAδ
ab has been suppressed. The gauge boson and ghost

loops contribute a factor of 11/3 · (2g)2k2∆ (in agreement with textbook results for
a pure Yang-Mills theory) and the scalar loops a factor of −1/6 · (2g)2k2∆ to the
final result. The factor of 2 results form the fact that we use twice the generators of
the group (cf. (3.30)). Note that for each diagram with massless propagators exists
an analogous diagram with massive propagators which equally contributes to the β
function.
From this we obtain the background field renormalization constant

ZÂ = 1 + 14CA

(
g2

16π2

)

∆ (8.14)

and the β-function

β(g) = − g3

16π2
β0, β0 = 14CA. (8.15)

We can easily solve this differential equation by integrating

∫ g

g

1

g3
dg = −

∫ Q2

m2

β0

16π2

dµ

µ
(8.16)

and we obtain

g2(Q2) =
g2

1 + g2

16π2 2β0 ln Q2

m2

(8.17)

for the running coupling constant. Additional matter multiplets would give a positive
contribution to the β-function. The coupling constant tends to zero at a logarithmic
rate as the energy scale increases. This is called asymptotic freedom.
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9 Conclusion

The last missing particle in the Standard Model, the Higgs boson is not protected by
a symmetry from radiative corrections to its mass. Quadratically divergent contri-
butions from gauge boson, top and Higgs loops arise. It was long believed that only
supersymmetry provides a realistic mechanism to cancel the quadratic dependence of
the Higgs mass on the cut-off scale. Recently, a new way of cancelling of quadratic
divergences was found where loops with the same spin cancel. These models are called
Little Higgs models, and the Higgs boson is naturally light. This is also due to a new
symmetry. The Higgs boson is a Goldstone boson, resulting from the spontaneous
breaking of a global symmetry in such a way that no single operator alone breaks the
symmetry. The idea is based on the deconstruction of extra dimensions, but it can
be shown that the mechanism can be generalized and doesn’t depend on this concrete
realization (cf. [ArH02]).

This work investigates a special Little Higgs Model. Starting from the Lagrangian
with N = 2 sites, motivated from the deconstruction of a fifth dimension, we made
an expansion in the inverse of the symmetry breaking scale 4πv and derived the rel-
evant Feynman rules for a one loop calculation. We also discussed the importance of
the BRS formalism, which yields a deeper insight into the structure of quantum field
theory. We quantized the theory using the BRS method and explicitly showed the
nilpotence of the transformation. This completed our Feynman rules. Then we calcu-
lated the quadratically and logarithmically divergent contributions to all self-energies
in a general Rξ-gauge, using dimensional regularization. We showed that π+, the Little
Higgs, is free of quadratically divergent mass contributions. We discovered a quadratic
divergence for the mass terms of the massive gauge boson. We have attributed this
to the nonlinear realization of the sigma model. We derived Slavnov-Taylor identities
and the Goldstone boson equivalence theorem and successfully applied these to the
results. Finally, we could compute the β-function of the model using the background
field method.

For a future work, an extension of the loop calculations to a model with N sites and
the calculation of vertex functions to determine all renormalization constants can be
carried out. But for a realistic model which completely includes the Standard Model,
further modifications have to applied. This is done in [ArH02], for example. Thus,
Little Higgs models are serious competitors for an alternative solution of the hierarchy
problem. Currently, we cannot say whether SUSY or the Little Higgs models describe
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9 Conclusion

nature best. Forthcoming experiments at the LHC or at a future linear collider have
to decide.
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A Dimensional Regularization

Higher-order corrections to Green functions and S-matrix elements result from Feyn-
man graphs containing loops. This is a conceptual and technical complication because
divergences occur in the evaluation of loop diagrams. The simplest example is the
scalar tadpole diagram (Fig. A.1).

Figure A.1: tadpole graph

It involves the integral

A0(m) =
1

iπ2

∫

d4k
1

k2 −m2
. (A.1)

The factor (iπ2)−1is added for convenience. According to power counting, the integral

is quadratically divergent in four dimensions. For large momenta, A0 ∝
∫ Λ

0
k3dk
k2 =

∫ Λ

0
kdk = Λ2, where we send the cut-off parameter Λ to infinity.

In the dimensional regularization scheme, calculations are performed in D instead of
four dimensions. Since loop integrals converge for small enough D (D < 2 for A0) the
usual calculational rules for integrals, such as linearity, translational and rotational
invariance, and the usual scaling can be used. The analytic structure of these integrals
allows for an analytic continuation to arbitrary complex D. The UV divergences
manifest themselves as poles at integer values of D. Changing the dimension of the
integral changes also the dimension of A0(m). We compensate this by multiplying
with µ4−D, where µ has the dimension of a mass. So, we replace

∫
d4k

(2π)4
−→ µ(4−D)

∫
dDk

(2π)D
. (A.2)
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A Dimensional Regularization

A precise definition of dimensional regularization implies that integrals vanish if they
do not depend on any scale ∫

dDk(k2)α = 0, (A.3)

although being formally infinite for all α and integer D. The following is taken from
[Kil02] which is an excellent introduction for dimensional regularization.

Standardized One-Loop Integrals

General N -point tensor integral:

TNµ1,···µM
(p1, . . . pN−1,m0, . . . ,mN−1) =

(2πµ)4−D

iπ2

∫

dDq
qµ1
· · · qµM

N0N1 · · ·NN−1

(A.4)

with

N0 = (q2 −m2), Ni = [(q + pi)
2 −m2

i ], i = 1, . . . , N − 1 (A.5)

The pi are external momenta. Note that the integral is only over dDq. In calculations
this leads to factors of i/(16π2).

In the following, we will write T 1 as A, T 2 as B, T 3 as C, and so forth. Scalar integrals
with no momenta in the numerator are denoted with the subscript 0.

Tensor integrals with loop momenta in the numerator can be built up from a complete
set of Lorentz tensors and invariant scalar coefficient functions. The Lorentz tensors
are constructed from the external momenta and the d-dimensional metric tensor gµν .

Bµ = pµ1B1 (A.6a)

Bµν = gµνB00 + pµ1p
ν
1B11 (A.6b)

Cµ = pµ1B1 + pµ2B2 (A.6c)

Cµν = gµνC00 + pµ1p
ν
1C11 + (pµ1p

ν
2 + pν1p

µ
1 )C12 + pµ2p

ν
2C22 (A.6d)

. . .

Now we have to evaluate the scalar integrals. We define the auxiliary integral

In(A) =

∫

dDq
1

(q2 − A+ iε)n
, D < 2n, A > 0. (A.7)

After performing a Wick-rotation (euclidian coordinates, time component of the four
vector multiplied by i), using Cauchy’s theorem and integrating in polar coordinates
(the integral over the surface of a D-dimensional unit sphere is 2πD/2/Γ(D/2)) we
obtain

In(A) = i(−1)nπD/2
Γ(n−D/2)

Γ(n)
(A− iε)

D
2
−n. (A.8)
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The properties of Γ(z) =
∫∞
0
tz−1e−tdt are:

• poles at z = 0,−1,−2,−3, . . . ,

• 1
Γ(z)

is analytical,

• Γ(z + 1) = zΓ(z),

• Γ(n+ 1) = n! for n = 0, 1, 2, 3, . . .; Γ( 1
2
) =
√
π,

• lim
z→0

Γ(z) = 1
z
− γE +O(z) with γE = 0.5772 . . .

one-point function A0(m):

A0(m) =
(2π)4−D

iπ2

∫

dDq(q2 −m2 + iε)−1

=
(2π)4−D

iπ2
I1(m

2)

(A.9)

In chapter 6 we are interested in the quadratic and logarithmic divergences of two-
point functions. Quadratic divergences appear as a pole in (D − 2) whereas the
logarithmic divergences appear as poles in (D − 4).

In the limit of D → 2 we obtain

A0 = −4πµ2

(
2

2−D − γE + log 4π − log
m2

µ2

)

. (A.10)

Note that the coefficient of the pole is independent of the mass. Since we are only
interested in the coefficients of the poles we can ignore finite terms. Thus we can drop
the argument of A0. This implies that we do not set

∫
dDq(q−2) = 0 for D → 2. A

quadratic divergence vanishes if its coefficients can be written in the form D− 2, that
is if the coefficient is zero for D = 2.

In the limit of D → 4 we obtain after an Taylor expansion

A0(m) = m2

[

∆− log

(
m2

µ2

)

+ 1

]

+O(D − 4) (A.11)

with

∆ =
2

4−D − γE + log 4π (A.12)

Note that A0 vanishes for zero mass. Thus, A0(0) is purely quadratically divergent.
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A Dimensional Regularization

N-point functions:

With the Feynman parametrization

1

ab
=

∫ 1

0

dx[a(1− x) + bx]−2 (A.13)

and its generalizations we can also find expressions for higher n-point functions. We
also need expressions for the tensor coefficients B1, B11, B00, . . . in terms of scalar
integrals A0, B0, C0 and D0. Note that only A0 and B0 are logarithmically divergent.
The calculational details can be found in [Kil02]. All logarithmically divergent (D →
4) parts of the tensor integrals (including higher C and D functions are listed in
[Den03].

A0(m0) = m2
0∆ (A.14a)

A00(m0) =
1

4
m2

0∆ (A.14b)

B0(p1,m0,m1) = ∆ (A.14c)

B1(p1,m0,m1) = −1

2
∆ (A.14d)

B00(p1,m0,m1) = − 1

12
[p2 − 3(m2

0 +m2
1)]∆ (A.14e)

B11(p1,m0,m1) =
1

3
∆ (A.14f)

C00(p1, p2,m0,m1,m2) =
1

4
∆ (A.14g)

All other tensor integrals are finite. In the limit of D → 2 only A0, B00 = 1/2A0 and
C0000 = 1/8A0 are divergent.
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B Linear Sigma-Model

In this appendix a gauged linear sigma model is written down and Feynman rules
are derived for it. We show that quadratic divergences for the massive gauge boson
resulting from scalar loops cancel, in contrast to the nonlinear realization.

The SU(2)L ⊗ SU(2)R-invariant Lagrangian is

L0 =
1

2
(∂~π)2 +

1

2
(∂σ)2 − µ2

2
(σ2 + ~π2)− λ

4
(σ2 + ~π2)2 (B.1)

where (σ, ~π) forms a vector in O(4) which locally isomorphic to SU(2)⊗ SU(2). In a
more compact matrix notation

Σ = σ + i~τ~π (B.2)

we rewrite the Lagrangian

L0 =
1

4
tr(∂µΣ)(∂µΣ)† − µ2

4
tr
(
Σ†Σ

)
− λ

16

[
tr
(
Σ†Σ

)]2
(B.3)

and the invariance of L0 under Σ → LΣR† becomes obvious. The τi are the Pauli
matrices which satisfy the following relations

τaτ b = δab + iεabcτ c, (B.4a)

tr τ a = 0, (B.4b)

tr τ aτ b = 2, (B.4c)

tr(τ aτ bτ c) = 2iεabc. (B.4d)

For µ < 0 the minimum of the potential V (σ, ~π) = µ2

2
(σ2 + ~π2) + λ

4
(σ2 + ~π2)2 occurs

at

〈σ〉0 =

√

−µ2

λ
≡ v (B.5)

We introduce a shifted field σ̃ by subtracting the vev from σ

σ̃ = σ − v (B.6)
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B Linear Sigma-Model

The Lagrangian in terms of σ̃ and π reads

L0 =
1

2
∂µσ̃∂

µσ̃ − 1

2
(−2µ2)σ̃2 +

1

2
∂µ~π∂

µ~π − λvσ̃(σ̃ + ~π)2 − λ

4
[(σ̃ + ~π)2 − v4] (B.7)

Now we gauge the model by introducing covariant derivatives (in complete analogy
to the nonlinear sigma model)

DµΣ = ∂µΣ− igALµΣ + igΣAR
µ , (B.8)

and the locally gauge invariant Lagrangian reads

L =
1

4
(DµΣ)(DµΣ)† − µ2

4
tr
(
Σ†Σ

)
− λ

16

[
tr
(
Σ†Σ

)]2
. (B.9)

Σ and DµΣ both transform covariantly under L×R

Σ→ LΣR†, (B.10a)

DµΣ→ L(DµΣ)R† (B.10b)

with
L = e−i~αL·~τ/2, R = e−i~αR·~τ/2, (B.11)

provided the gauge fields transform as

ALµ → LALµL
† + i

1

gL
L(∂µL

†) (B.12a)

ARµ → RARµR
† + i

1

gR
R(∂µR

†). (B.12b)

We obtain the transformation properties for σ by taking the trace of (B.10). For πa

we first multiply with τ a and then take the trace. A simple calculation yields

δσ =
1

2
(αL − αR)aπa, (B.13a)

δπa = −1

2
(αL − αR)aσ − 1

2
εabcπb(αL + αR)c. (B.13b)

Next, we want to rewrite the Lagrangian in terms of the fields σ̃ and π. In order to
do this, we have to find expressions for the covariant derivatives for σ̃ and π. For Dµσ
this can be found by taking the trace of (B.8), for Dµπ we first multiply with τ a.

Dµσ = ∂µσ − g(AR − AL)aµπ
a, (B.14a)

Dµπ
a = ∂µπ

a + g(AR − AL)aµσ + gεabc(AR + AL)bµπ
c. (B.14b)
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As in the nonlinear model, we define A and Z bosons as linear combinations of AL

and AR,
Aaµ = AR,aµ + AL,aµ , Za

µ = AR,aµ − AL,aµ . (B.15)

The squares of the covariant derivatives are

1

2
(Dµσ)2 =

1

2
(∂µσ̃ − gZa

µπ
a)2 =

1

2
(∂σ̃)2 +

1

2
g2(Za

µπ
a)2 − g∂µσ̃(Zµ,aπa) (B.16)

and

1

2
(Dµπ)2 =

1

2
(∂µπ

a + gZa
µ(σ̃ + v) + gεabcAbµπ

c)2

=
1

2
(∂π)2 +

1

2
g2Za

µZ
µ,a(σ̃ + v)2 +

1

2
g2εabcεadeAbµπ

cAµ,dπe

+ g∂µπZ
µ,a(σ̃ + v) + gεabc∂µπ

aAµ,bπc + g2εabcZa
µA

µ,b(σ̃ + v)πc. (B.17)

Together with the potential terms in (B.7) we obtain (partially suppressed indices)

L =
1

2
(∂σ̃)2 − 1

2
(−2µ2)σ̃2 +

1

2
(∂π)2 +

1

2
(gv)2Z2 + gv∂πZ

+
1

2
g2(Zπ)2 − g∂σ̃(Zπ) +

1

2
g2Z2σ̃2 + g2vZ2σ̃

+
1

2
g2εabcεadeAbπcAdπe + g∂πZσ̃ + gεabc∂πaAbπc + g2εabcZaAbσ̃πc

+ g2vεabcZaAbπc − λvσ̃3 − λvσ̃π2 − λ

4
σ̃2π2 − λ

4
σ̃4 − λ

4
π4. (B.18)

Note the mass term for the Z boson, m = gv. There is also a mixing term, gv∂πZ.
To this Lagrangian we add the kinetic terms of Z and A and also the BRS invariant
Lagrangian

LBRS = s

(

ηζ(Gζ +
1

2
ξBZ)

)

+ s

(

ηα(Gα +
1

2
ξBA)

)

(B.19)

with the gauge-fixing functionals for Z and A

Gζ = ∂Z − ξmπ, Gα = ∂A. (B.20)

This cancels the mixing term and yields properly defined gauge-boson propagators
and ghost vertices. The particle content of our model is one massive gauge boson Z
which acquires its extra degree of freedom by eating the unphysical would-be Gold-
stone boson π, one massless gauge boson A and one massive scalar boson σ̃ (heavy
higgs). Extending our model to two link fields (N = 2) would be straightforward,
the argumentation is analogous to the nonlinear model. This would lead to a second
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B Linear Sigma-Model

massive σ̃-boson and an extra physical scalar π (but with zero mass, the little higgs)
which is not eaten by a gauge boson.

We are only interested in scalar loops which contribute in the self-energy of the Z
boson. For this it is sufficient to consider only the N = 1 case. To calculate these
terms, we only need three and four vertices with two Z boson legs. The ghost terms
do not contribute. The relevant terms are

1

2
g2gµνδabZa

µZ
b
ν σ̃

2,
1

2
g2gµνδabδcdZa

µπ
bZc

νπ
d, g∂µπ

aZa,µσ̃ − g∂µσ̃(Zµ,aπa). (B.21)

This leads to the following vertices:

σ̃

Z
π

a, p

b, k

a, µ = g(k − p)µδab, (B.22)

Z

c

a, µ

d

b, ν

= ig2gµν
[
δacδbd + δadδbc

]
, (B.23)

Z

c

d, µ

e

b, ν

= ig2gµν
[
εabcεade + εabeεadc

]
. (B.24)

(B.25)

(for N = 2 the number of vertices doubles, the signs do not change)

From this we can build the following scalar loops which contribute to the Z boson
self-energy

σ̃ π

σ̃

π

. (B.26)

The first diagram yields (symmetry factor 1/2 and suppressing the factor
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i/(16π2)CAδ
ab)

ig2gµν
∫

ddp

(2π)d
i

p2 + 2µ2
= −g2gµνA0(−2µ2). (B.27)

The second is analogous
−g2gµνA0(ξm

2), (B.28)

the last diagram is

g2

∫
ddp

(2π)d
(k + 2p)µ(k + 2p)ν

(p2 + 2µ2)[(p+ k)2 − ξm2]
= g2(4Bµν + 4kµBν + kµkνB0). (B.29)

Only A0 and B00 = 1/2A0 + . . . contribute to quadratic divergences and the masses
are irrelevant. So the quadratic divergences coming from the first and second diagram
are exactly cancelled by the third diagram which is absent in the nonlinear sigma
model.
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C Feynman Rules in Rξ-gauge

C.1 Vertices

Unless otherwise denoted, the massless vector boson A is denoted by the indices ai, µi,
the massive vector boson Zci

νi
, the real scalar πai

+ (ki) and the would-be Goldstone boson

πbi−(k̃i).

a1, k1

a2, k2

a4, k4

a3, k3

= i
1

6v2





(k1 − k2)(k3 − k4)f
a1a2cfa3a4c

+(k1 − k3)(k4 − k2)f
a1a3cfa4a2c

+(k1 − k4)(k2 − k3)f
a1a4cfa2a3c



 = Sa1a2a3a4
(k1, k2, k3, k4)

(C.1)

b1, k̃1

b2, k̃2

b4, k̃4

b3, k̃3

= Sb1b2b3b4(k̃1, k̃2, k̃3, k̃4) (C.2)

a1, k1

a2, k2

b2, k̃4

b1, k̃3

= Sa1a2b1b2(k1, k2, k̃3, k̃4) (C.3)

a1, k1

a2, k2

a, µ = −
√

2g(k1 − k2)
µfaa1a2 (C.4)

b1, k̃1

b2, k̃2

a, µ = −
√

2g(k̃1 − k̃2)
µfab1b2 (C.5)
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C.1 Vertices

c, ν

a, µ

b = 2
√

2ig2vgµνfabc (C.6)

A

a1

b1, µ1

a2

b2, µ2

= 2ig2
[
fa1b1efa2b2e + fa1b2efa2b1e

]
gµ1µ2 = F µ1µ2

a1a2b1b2
(C.7)

A

b1

c1, µ1

b2

c2, µ2

= F µ1µ2

b1b2c1c2
(C.8)

Z

a1

c1, ν1

a2

c2, ν2

= F ν1ν2
a1a2c1c2

(C.9)

Z

b1

c1, ν1

b2

c2, ν2

= F ν1ν2
b1b2c1c2

(C.10)

b1, k̃1

Z, a, ν

b2, k̃2

b3, k̃3

=
2g

3v





(k̃1 − k̃2)
νfa1a2cfa3ac

+(k̃2 − k̃3)
νfa2a3cfa1ac

+(k̃3 − k̃1)
νfa3a1cfa2ac



 = M ν
aa1a2a3

(k̃1, k̃2, k̃3) (C.11)

b, k̃

Z, a, ν

a2, k2

a1, k1

= M ν
aa1a2b

(k1, k2, k̃) (C.12)
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C Feynman Rules in Rξ-gauge

ζ

A
ζ

c

a, p

b, µ = −
√

2gpµfabc = T µabc(p) (C.13)

α

A
α

c

a, p

b, µ = T µabc(p) (C.14)

α

Z
ζ

c

a, p

b, ν = −T νabc(p) (C.15)

ζ

Z
α

c

a, p

b, ν = −T νabc(p) (C.16)

α

π−
ζ

c

a

b, ν = −2
√

2ig2vfabc (C.17)

π+

ζ

b

a

c

d

= −2i

3
ξg2
[
fabef cde + facef bde

]
(C.18)

π−

ζ

b

a

c

d

= −2i

3
ξg2
[
fabef cde + facef bde

]
(C.19)
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C.2 Propagators

p

q
k

A, b, ν

A, c, ρ

A, a, µ =
√

2gfabc





gµν(k − p)ρ
+gνρ(p− q)µ
+gρµ(q − k)ν



 = Gµνρ
abc (k, p, q) (C.20)

p

q
k

Z, b, ν

Z, c, ρ

A, a, µ = Gµνρ
abc (k, p, q) (C.21)

Z, d, σ

A, a, µ

Z, c, ρ

A, b, ν

= −2ig2





(gµρgνσ − gµσgνρ)fabef cde
+(gµνgρσ − gµσgνρ)facef bde
+(gµνgρσ − gµρgνσ)fadef bce



 = Hµνρσ
abcd (C.22)

A, d, σ

A, a, µ

A, c, ρ

A, b, ν

= Hµνρσ
abcd (C.23)

Z, d, σ

Z, a, µ

Z, c, ρ

Z, b, ν

= Hµνρσ
abcd (C.24)

C.2 Propagators

We have the usual propagators for massless/massive scalars, bosons and ghosts. The
ghost fields were renormalized in the BRS transformation by a factor of

√
2 and the

antighost fields by a factor of 1/2 for the α ghost and a factor of −1/2 for the ζ ghost
to get the canonical normalized propagators.

π+
a b =

i

k2
δab (C.25)

π−
a b =

i

k̃2 − ξm2
δab (C.26)

Aµ
a b =

−i

k2

(

gµν − (1− ξ)kµkν
k2

)

δab (C.27)
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C Feynman Rules in Rξ-gauge

Zµ
a b =

−i

k2 −m2

(

gµν − (1− ξ)kµkν
k2 − ξm2

)

δab (C.28)

α
a b =

i

k2
δab (C.29)

ζ
a b =

i

k2 − ξm2
δab (C.30)
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D Feynman Rules in Background

Field Gauge

Only vertices which are relevant for the two-point function of the massless background
field Â are listed. All momenta (including ghosts) go into the vertex.

p2

p3
p1

A, a2, µ2

A, a3, µ3

Â, â1, µ1=
√

2gf â1a2a3





gµ1µ2(2p1 + (1− 1
ξ
p3))

µ3

+gµ2µ3(p2 − p3)
µ1

+gµ3µ1(2p1 + (1− 1
ξ
)p2)

µ2



 = Gµ1µ2µ3

â1a2a3
(p1, p2, p3)

(D.1)

p2

p3
p1

Z, a2, µ2

Z, a3, µ3

Â, â1, µ1= Gµ1µ2µ3

â1a2a3
(p1, p2, p3)

(D.2)

A, a4, µ4

Â, â1, µ1

A, a3, µ3

Â, â2, µ2

= −2ig2





(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3) f â1â2bfa3a4b

+(gµ1µ4gµ3µ2 − gµ1µ2gµ3µ4 − 1
ξ
gµ1µ3gµ2µ4)f â1a3bfa4â2b

+(gµ1µ2gµ4µ3 − gµ1µ3gµ4µ2 + 1
ξ
gµ1µ4gµ3µ2)f â1a4bf â2a3b



 = Kµ1µ2µ3µ4

â1â2a3a4

(D.3)

Z, a4, µ4

Â, â1, µ1

Z, a3, µ3

Â, â2, µ2

= Kµ1µ2µ3µ4

â1â2a3a4
(D.4)

α

Â
α

a3, p3

a2, p2

â1, µ = −
√

2g(p2 − p3)
µf â1a2a3 (D.5)
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D Feynman Rules in Background Field Gauge

ζ

Â
ζ

a3, p3

a2, p2

â1, µ = −
√

2g(p2 − p3)
µf â1a2a3 (D.6)

α

Â

a4

â1, µ1

a3

â2, µ2

= 2ig2
[
f â1a3bf â2a4b + f â1a4bf â2a3b

]
gµ1µ2 (D.7)

ζ

Â

a4

â1, µ1

a3

â2, µ2

= 2ig2
[
f â1a3bf â2a4b + f â1a4bf â2a3b

]
gµ1µ2 (D.8)

Â

Z

π− = 0 (D.9)
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marbeit TU Darmstadt, 2000), http://heplix.ikp.physik.tu-

darmstadt.de/~schwinn/diplom.ps.gz.

[Sch02] M. Schmaltz, (2002), [arXiv:hep-ph/0210415].

[Vel] M. Veltman, REFLECTIONS ON THE HIGGS SYSTEM,
Lectures given in the Academic Training Programme of CERN 1996-1997
(CERN 97-05).

[Ver01] J.A.M. Vermaseren, (2001), [arXiv:math-ph/0010025].

[Wei79] S. Weinberg, Physica 96A (1979) 312.

[Wei] S. Weinberg, The Quantum Theory of Fields, Vol.1 and Vol.2, (Cambridge
University Press, 2001).

86



Danksagung
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