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1. Zusammenfassung

Die genaue Natur Dunkler Materie [1, 2] ist weiterhin unbekannt und einer der Gründe,

die Suche nach Erweiterungen des Standard Modells der Teilchenphysik1 an Hochenergie-

beschleunigern [3] und in Experimenten zur direkten und indirekten Dunkle Materie De-

tektion [1, 4, 5] voranzutreiben. Eine Reihe von Anomalien bei der Beobachtung der kos-

mischen Hintergrundstrahlung [7, 8, 9, 10] hat einige Teilchenphysiker dazu veranlasst,

die experimentellen Daten mittels Dunkler Materie Annihilation zu erklären [11, 12, 13,

14, 15, 16, 17]. Um diese Interpretation aufrecht zu erhalten, stellt es sich heraus, dass

man einen Effekt benötigt, der die heutige Dunkle Materie Annihilationsrate im Vergleich

zur Annihilationsrate zur Zeit der thermischen Entkopplung um einige Größenordungen

[11, 18] verstärkt. Wie sich zeigt, kann dies durch den Sommerfeld-Effekt geleistet werden.

Inhalt dieser Arbeit ist die Untersuchung des Sommerfeld-Effekts [19] für Vektor Dunkle

Materie. Vektor Dunkle Materie ist in einer Reihe von Standard Modell Erweiterungen,

z.B. Universellen Extra Dimensionen (UED) [20] oder Little Higgs Modellen [21] anzutref-

fen, wobei der Sommerfeld-Effekt für diese Teilchenklasse nach unserem Wissen noch nicht

genauer untersucht wurde. Explizit handelt es sich beim Sommerfeld-Effekt um einen

nicht-perturbativen Effekt, der mit dem Zusammenbrechen der Störungsreihe, durch An-

wesenheit einer attraktiven Wechselwirkung, im nichtrelativistischen Limes einhergeht.

Im Falle von Dunkle Materie Paar-Vernichtung kann die Sommerfeld-Verstärkung zum

einen die richtige Dunkle Materie Dichte erklären und gleichzeitig bei der Interpretation

der oben angesprochenen Anomalien in der kosmischen Hintergrundstrahlung aus Sicht

der Teilchenphysik helfen. Wir gehen auf diese Punkte in den Abschnitten 3.1, 3.2 und

besonders in Kapitel 5 näher ein.

Da die Untersuchung des Sommerfeld-Effekts für eine der bereits erwähnten Erweiterun-

gen des Standard Modells den Rahmen dieser Arbeit sprengen würde, konstruieren wir

zunächst ein ”minimales” Spielzeugmodell, welches stabile Eichbosonen als Dunkle Ma-

terie Kandidaten enthält und dennoch die für den Sommerfeld-Effekt wichtigsten Eigen-

schaften der komplexeren Theorien wiedergibt. Insbesondere ist unser Modell durch so-

genannte ”dekonstruierte” Theorien inspiriert [22], welche einen nützlichen Bausatz zur

1Eine Einführung in das Standard Modell der Teilchenphysik (SM) findet man z.B. in [6].
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Modellkonstruktion liefern. Die detaillierte Vorstellung des Modells und die Berechnung

des Massenspektrums erfolgt in Kapitel 4. Daran anknüpfend erhalten wir aus der kom-

pletten eichfixierten Lagrangedichte (4.1) die Feynman-Regeln in der Masse-Eigenbasis,

welche in Anhang C aufgelistet sind.

Als weiterer wichtiger Programmpunkt unserer Arbeit steht nach der Modellkonstruk-

tion eine detailierte Analyse des Sommerfeld-Effekts für Vektor Dunkle Materie auf dem

Plan. Hierbei diskutieren wir zunächst allgemeine Eigenschaften des Sommerfeld-Effekts

in Abschnitt 3.2.1 und erläutern den Bethe-Salpeter Formalismus als feldtheoretisches

Werkzeug zur Behandlung nichtperturbativer Effekte in Kapitel 5.1. Anschließend wen-

den wir uns in Absatz 5.3 überblicksartig dem Sommerfeld-Effekt für fermionische Dun-

kle Materie zu, um die technischen Details des Formalismus an einem aus der Liter-

atur bekannten Beispiel [23] zu reproduzieren. Wie sich in 5.3 und 5.4 herausstellt,

entspricht die nichtperturbative Behandlung der Wechselwirkung zwischen den Dunkle

Materie Teilchen der Lösung eines quantenmechanischen Streuproblems, welches in einer

2-Teilchen-Schrödingergleichung beschrieben wird. In der nichtrelativistischen instanta-

nen Näherung wird die Wechselwirkung zwischen den Dunkle Materie Zuständen durch

ein effektives Potential beschrieben, welches wir für unser Vektor Dunkle Materie Mod-

ell explizit in den Abschnitten 5.5 und 5.7 herleiten. Darauf aufbauend konzentrieren

wir uns auf die Lösung des Streuproblems in Kapitel 5.10. Als Hauptergebnis dieser Ar-

beit finden wir, dass für gewisse Parameterpunkte eine Verstärkung des Dunkle Materie

Annihilations-Wirkungsquerschnittes um mehrere Größenordnungen erzielt werden kann.

Dies wird besonders in Abbildung 5.15 deutlich.
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2. Abstract

The mysterious nature of dark matter [1, 2] is one of many compelling reasons to look for

extensions of the Standard Model of particle physics1 in high energy colliders [3] as well

as direct and indirect dark matter detection experiments [1, 4, 5]. In recent years, certain

astrophysical cosmic ray observations [7, 8, 9, 10] have triggered a wide interest in the

particle physics community to interpret a number of anomalies in the experimental data

in terms of dark matter signals [11, 12, 13, 14, 15, 16, 17]. For this interpretation to hold,

it turns out that one has to device a mechanism - the Sommerfeld effect - to enhance the

present day dark matter annihilation cross section by several orders of magnitude (see

e.g. [11, 18]) in comparison to the cross section at the time of thermal decoupling. The

main goal of this thesis is the study of the Sommerfeld effect [19] for vector dark matter,

which, to our knowledge, has not been addressed in the literature so far.

Our work is split in three major sections:

First, we give a short review of the standard thermal evolution of dark matter and elabo-

rate on the necessity for enhanced dark matter annihilation cross sections for the interpre-

tation of the cosmic ray anomalies described in sections 3.1 and 3.2. As introduction, we

summmarize some general properties of the Sommerfeld effect in section 3.2.1. In section

3.3, we motivate our interest in vector dark matter and subsequently introduce a method

called ”deconstruction” [22] as model building guide (section 3.4).

The topic of the second major part of this work (chapter 4) is the detailed introduction of

our ”deconstructed”, renormalizable, gauge invariant vector dark matter toy model. We

derive the complete scalar and gauge boson mass spectrum in sections 4.5 and 4.6 as the

result of gauge symmetry breaking and show that we are able to describe stable vector

dark matter. A detailed discussion of technical details including gauge fixing, Goldstone

bosons and Faddeev-Popov-ghosts can be found in Appendix B. Subsequently, an exhaus-

tive list of Feynman rules of our model is given in Appendix C.

1for an introduction to the Standard Model (SM), c.f. [6]
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The third part (chapter 5) of this thesis is concerned with the Sommerfeld effect itself. We

describe the Bethe-Salpeter ansatz as a field-theoretic tool to deal with the nonperturba-

tive Sommerfeld enhancement in section 5.1. In paragraph 5.3, we employ this machinery

and present Iengo’s work [23] on the Sommerfeld effect for fermionic dark matter candi-

dates in order to understand the formalism along a known example. To leading order, it

turns out that one has to sum up ladder-type Feynman diagrams in the non-relativistic

regime which corresponds to the solution of a quantum mechanical scattering problem. In

this picture, the nonperturbative nature of the interaction is encoded in an effective poten-

tial. Within the remaining sections of chapter 5, we present our results on the Sommerfeld

enhancement to vector dark matter for the ”deconstructed” model. The line of reason-

ing, however, follows analogously for generic models, once one fixes the particle spectrum

and the interactions. Section 5.5 is devoted to the derivation of the relevant interaction

kernels, which are subsequently used in the effective description of the annihilating dark

matter pair. Analogously to the fermionic case, we are able to introduce a Bethe-Salpeter

wavefunction in section 5.7 as scattering solution to the coupled system of Schrödinger

equations. In section 5.10, we discuss the connection of the scattering solution with the

Sommerfeld enhancement factor and give numerical results for the vector dark matter

case. The important conclusion from this section is, that significant enhancement factors

arise for special regions of the model parameter space. The essence of our calculation is

summarized in figure 5.15.

We complete our work with a final summary of results in chapter 6 and also give a

brief outlook on potential improvements.
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3. Introduction - Motivation

3.1. Dark Matter and the ”WIMP Miracle”

Measurements of rotation curves of galaxies [2, 24, 25], gravitational lensing effects of

background radiation on galaxies [26, 27] and the observation of the microwave back-

ground with the WMAP satellite [28] convincingly support the idea of non-baryonic dark

matter that accounts for 23% of the energy content of the Universe [29]. Yet, the detailed

nature of dark matter has not been revealed by either direct or indirect searches1 so far.

Despite its immense success in explaining a variety of experimental results, the Stan-

dard Model of particle physics2 falls short in accounting for the existence of the above

mentioned dark matter candidate. In addition to some other open questions3, this moti-

vated the exploration of a wide range of beyond Standard Model (BSM) theories. Among

these, supersymmetry4 and extra dimensions [20] are probably the most compelling classes

of new physics models at the TeV scale and naturally contain weakly interacting massive

particles (WIMP) as paradigm dark matter candidates [1]. In the following, we do not

want to elaborate on dark matter phenomenology in great detail, as there is excellent

literature available (see e.g. [1, 4]), but only briefly review the thermal ”WIMP-miracle”,

common to many BSM models along the lines of Ref. [4].

In the simplest picture, the time evolution of the number density nχ of a non-degenerate

dark matter species χ is given by the Boltzmann equation

dnχ
dt

+ 3Hnχ = −〈σav〉
[
n2
χ − (neqχ )2

]
, (3.1)

where H = (8πρ/3MPl)
1/2 denotes the Hubble parameter, 〈σav〉 the thermally averaged

cross section times relative velocity of the χχ̄-pair and neqχ the equilibrium number density

of the χ particles:

nχ =
g

(2π)3

∫
f(~p)d3p. (3.2)

1for review of direct an indirect dark matter detection, c.f. e.g. [1, 4, 5]
2see e.g. [6] for an introduction
3for a review cf. e.g. [3]
4for review, c.f. e.g. [30]
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g accounts for internal degrees of freedom of the particle species and f(~p) is the Fermi-

Dirac or Bose-Einstein distribution, depending on the spin of χ. In the extremely hot

and dense early Universe, the temperature5 T is much larger than mχ so that nχ scales

as nχ ∝ T 3. In this era, the Universe was radiation dominated and the Hubble parameter

is proportional to T 2 (ρ ∼ T 4). Therefore, H decreases slower with temperature than nχ.

Due to the temperature scaling, the Hubble term in eq. (3.1) is negligible at early times

and the number density essentially follows its thermal equilibrium value.

As the Universe expands and cools, the temperature eventually falls below the mass mχ

of the dark matter particle and nχ drops exponentially

nχ ∝ g

(
mχT

2π

) 3
2

exp(−mχ/T ) (3.3)

in the T � mχ limit. Eventually, the annihilation rate Γ = 〈σav〉nχ falls below the

Hubble expansion rate H and the annihilations of χ cease to be efficient. At this point,

the χ particles fall out of equilibrium - the thermal ”freeze-out” occurs and one is left

with the cosmological relic abundance. Since the freeze-out condition, Γ ≈ H, depends

on the thermally averaged annihilation cross section 〈σav〉, it is clear, that the resulting

relic density Ωχ also depends on this parameter. The higher the interaction cross section,

the longer the dark matter species stays in equilibrium with the thermal bath. This gives

the Universe more time to cool before the decoupling occurs. According to the exponen-

tial depletion of the equilibrium dark matter number density with falling temperature

eq. (3.3), one naturally expects a lower relic density for higher annihilation cross sections

and approximately finds [4]:

Ωχh
2 =

mχnχ
ρc

≈ 3× 10−27cm3 s−1

〈σav〉
, (3.4)

where h is the Hubble constant in units of 100 km s−1Mpc−1 and ρc ≈ 10−5h2 GeV cm−3

today’s critical density. For WIMPs, the annihilation cross section can be estimated as

〈σav〉 ∼ ( α
10−2 )2

( mχ
1 TeV

)−2×10−27 cm3 s−1. Now the ”miracle” is, that plugging 〈σav〉 back

into the relic density estimate eq. (3.4) together with a weak scale coupling α2 = O(0.03)

and a TeV mass, encountered in common BSM scenarios, yields a relic density, which is

of the same order of magnitude as the observed value Ωχh
2 = 0.1109± 0.0056 [29].

If the dark sector contains more than one particle species with mass close to mDM , coan-

nihilation and threshold resonances6 can occur and the crude estimate that leads to (3.4)

can be altered considerably. In such cases, the system has to be described by a coupled

set of Boltzmann equations in order to trace the thermal evolution of the Universe.

5we adopt natural units with ~ = c = kB = 1
6cf. e.g. [31, 32, 33, 11, 34] for specific examples
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3.2. Indirect Dark Matter Detection and a First Glance

at the Sommerfeld Effect

Besides yielding the correct relic abundance, WIMPs are appealing from another per-

spective as well. Since they commonly have some kind of non-gravitational couplings to

Standard Model particles, the possibility of direct and indirect detection opens up and

relates these observables directly to the relic abundance [11]. Unfortunately, the low cross

sections required for the WIMP miracle seem to make indirect detection a difficult task.

Yet, recent experiments including PAMELA [7], ATIC [8], HESS [9] and Fermi LAT [10]

found indications for an excess of electrons, positrons and photons in the 10 GeV - (at

least) 100 GeV range of the cosmic radiation. Apart from astrophysical explanations (see

e.g. [35, 36, 37]), it has also been suggested, that these results might be understood in

terms of annihilating dark matter [11]. In order for this interpretation to hold, one has

to address the question how to obtain present day annihilation cross sections that are at

least of O(102) larger than the ones favored by the WIMP miracle at the time of decou-

pling. Following a number of authors [14, 18, 23, 38, 39], we will show that the so-called

”Sommerfeld effect” is able to alleviate this tension and can reconcile the WIMP miracle

with potential indirect dark matter signals.

3.2.1. General Features of the Sommerfeld Effect

In 1931, Arnold Sommerfeld calculated the distortion of the scattering wavefunction in

the presence of a Coulomb potential [19] leading to a velocity dependent 1
v

enhancement of

the electron-nucleon scattering cross section. In principle, one can think about this phe-

nomenon as the quantum mechanical counterpart to the classical enhanced cross section

in the presence of an attractive force.7 In the language of quantum field theory8, however,

the notion of an instantaneously acting force has to be abolished and replaced by the

exchange of field quanta as mediators of the interaction. One can understand the typical

interaction range in terms of the mass of the mediator mφ itself: rint ∝ 1
mφ

(interaction

potential corresponds to the Fourier transformed propagator).

In order to calculate annihilation cross sections for relativistic scattering processes in

particle physics, one commonly employs perturbative methods for weakly coupled the-

ories. In the low energy limit, however, this procedure breaks down in the presence of

7In Ref. [11], Arkani-Hamed et al. give a nice example of this analogy as found in celestial mechanics.
8for an introduction to quantum field thery (QFT), c.f. e.g. [40, 41]
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long range interactions [34]. Physically, this breakdown is attributed to the formation of a

loosely bound state [39]. In order to obtain the correct annihilation cross section, one has

to resort to nonperturbative methods and sum up an infinite number of field theory dia-

grams [18]. It turns out that this procedure is equivalent to introducing a non-relativistic

Schrödinger wavefunction for the DM pair that contains the information about the short

distance annihilation properties in the presence of a long-range interaction [23, 18, 38]. In

the quantum mechanical framework, the long-distance behavior is encoded in a potential

that distorts the initial state two-particle wavefunctions away from plane waves, thereby

invalidating the usual Born expansion [34]. This breakdown directly reflects the presence

of nonperturbative effects.

With respect to the non-relativistic reduction, starting from a field theoretic point of

view, we are going to follow the work of Iengo [23] and make use of the Bethe-Salpeter

ansatz, which we review in chapter 5.1. The conversion of the nonperturbative summation

of field theory diagrams into a Schrödinger problem simplifies the calculation consider-

ably. Upon deriving the Schrödinger equation from first principles, the problem of finding

the correct wavefunction is a matter of standard potential scattering theory known from

non-relativistic quantum mechanics9. Note, in case of inelastic scattering, the potential is

matrix valued in the space of two particle states and off-diagonal interactions introduce

mixings amongst them [11, 39]. These points will be highlighted in greater detail, once we

work out the detailed examples in sections 5.3 and 5.5.

Before we explain the technicalities of the derivation, it is instructive to compare10 the

length or equivalently the energy scales involved in the scattering problem. This outline

is useful for the treatment of our vector dark matter toy model, in particular when we

discuss the mass spectrum (sections 4.5 and 4.6) and interactions (see Sec. 4.7). In the

following, we focus on the specific application of the Sommerfeld effect we have in mind,

i.e. dark matter annihilation. Above, the notion of forming a loosely bound state due to

the mutual interaction between the incoming particles has been evoked. In the instanta-

neous limit,11 the presence of a massive force carrier leads to a Yukawa potential [39]:

V (r) = α
e−mφr

r
,

where the coupling strength α is determined by the type of incoming particles and their

interactions. The appearance of this potential sets the scale for the binding energy. Similar

9for an introduction to scattering theory in non-relativistic QM, see e.g. [42, 43, 44]
11This discussion follows the comments of Hryczuk et al. [39].
11The instantaneous limit is discussed in section 5.3 in greater detail.
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to the Bohr energy in the hydrogen atom, we find the scale of the binding energy for

incoming dark matter particles with mass mχ that interact via light mediators with mass

mφ → 0 to be of O(mχα
2). For finite exchange boson masses, the energy can only be

reduced, due to the Yukawa cutoff [34]. In order to form a bound state, the characteristic

Bohr energy mχα
2 has to be larger than the kinetic energy of the incoming particles

E ≈ mχv
2
sp which yields the first characteristic requirement for a sizable Sommerfeld

effect12:

mχα
2 & mχv

2
sp

⇒ α & vsp. (3.5)

The velocity dependence of the cross section is the intriguing feature of the Sommerfeld

effect. In case of dark matter annihilation, this particular property provides the founda-

tion of the difference between the annihilation cross section at the present time (v ∼ 10−3)

compared to the time of thermal decoupling in the early universe (v ∼ 0.3) [11], rendering

the effect attractive for indirect dark matter detection. For a typical WIMP, the interac-

tion strength is of the order of the weak coupling α2 =
g22
4π
≈ 0.03, one order of magnitude

smaller than the typical velocity at the decoupling time. The occurrence of nearly mass

degenerate states might however modify this argument. As Hisano et al. [18] pointed out,

if the mass splitting is sufficiently small and the additional states can be produced on-shell

with almost zero velocity, a threshold resonance might occur which could modify the relic

density, see also [39].

The discussion above suggests, that one has to consider the mass splitting δm in the

dark sector for systems involving multiple (near mass degenerate) states. If the mass

splitting δm is significantly larger than the kinetic energy of the incoming dark matter

pair, the heavier states can not be produced on-shell and do not experience any enhance-

ment. This effective cutoff is the main reason, why we only take into account a very

special subset of particles and interactions for the Sommerfeld effect. All states that are

considerably heavier than the dark matter candidate (mass splitting δm� E) effectively

decouple from the enhanced annihilation process and need not to be considered in this

analysis. The naive estimate 2δm < E for the participation of a particle species in the

Sommerfeld effect, however, has to be modified in the presence of the interaction potential

V . At short distances, where the interaction strength is relevant, one has to include the

Bohr energy. Consistent with Hryczuk et al. [39], one finds:

2δm . E +mχα
2. (3.6)

12vsp denotes the single particle velocity of the dark matter candidate.
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Besides the strength of the interaction potential, which is determined by α, we have

to consider another property related to the exchange of the mediator φ. As we have

mentioned in the beginning of this section, the nonperturbative nature of the Sommerfeld

effect can be encoded in the deformation of the two-particle wavefunction. In order for

the interaction to distort the free scattering state significantly, the range of the Yukawa

interaction (mφ)−1 has to be at least comparable to the Bohr radius of the bound state

(αmχ)−1, which leads to the condition:

1

mφ

&
1

αmχ

(3.7)

This condition suggests additional simplifications for any particular particle physics setup.

The requirement of light mediators with masses mφ . αmχ limits the number of fields

and vertices that are relevant for the Sommerfeld effect even further. In our specific

model describing vector dark matter, it turns out that we only have to consider Standard

Model modes as mediators in generic regions of parameter space. We are able to reject an

extensive number of field theory diagrams that have to be considered for the Sommerfeld

effect, based on these simple order of magnitude estimates.

3.3. Vector Dark Matter in Standard Model Extensions

To our knowledge, the Sommerfeld enhancement has only been discussed for scalar and

fermionic dark matter so far. However, a number of Standard Model extensions lead to

vector dark matter candidates. Amongst such theories, there are ”Little Higgs models”

that contain new gauge bosons, fermions, and scalars at the TeV scale (for review, cf.

e.g. [45]). A discrete symmetry, called ”T-parity” [21] ensures the stability of the lightest

parity-odd particle. As has been shown in the work of Cheng et al. [21], one of the heavy

new neutral vector bosons is a viable dark matter candidate.

Another promising idea to describe physics beyond the Standard Model involves the in-

troduction of extra spatial dimensions. In this thesis, we present a minimal vector dark

matter model, that is inspired by such theories, which is why we review them in a little

more detail. Yet, we would like to emphasize that the scope of our model is not limited

to this scenario. In Universal Extra Dimensions (UED) [20], one introduces an additional

spatial dimension that is compactified to a circle of radius R, where opposite points are

identified.13 Mathematically, this geometry of the extra dimension corresponds to a S1/Z2-

orbifold. In UED, it is assumed that all Standard Model fields can propagate in this higher

13For detailed discussions on the concepts of UED and the special choice of the geometry of the extra

dimension, we refer to e.g. [20, 46].



3.4 Construction of a Vector Dark Matter Toy Model -
Dimensional (De)construction 11

dimensional space. The compactification of the extra dimension leads to the discretiza-

tion of the momentum in this direction, which is reflected in the appearance of a tower of

excitations on top of every Standard Model field in an effective four-dimensional descrip-

tion. Each level of this tower is characterized by a quantum number n, the Kaluza-Klein

(KK) number, where Standard Model fields are identified with n = 0 and consecutive

KK-levels are separated in mass by ∼ 1/R. Due to the additional Z2 symmetry, there

are two fixed points in the extra dimension. Operators at these points break Lorentz

invariance and momentum conservation in the fifth dimension explicitly, so that n is not a

good quantum number. However, the fixed points leave a discrete Z2 reflection symmetry

intact, which is called KK-parity. In UED, this discrete Z2 symmetry guarantees the

stability of the lightest Kaluza-Klein particle (LKP) and is also responsible for the fact,

that KK-(1)-modes can only be produced in pairs. In Ref. [47], it has been shown, that

the first KK-excitation of the U(1)Y gauge boson, denoted by B(1), is the generic dark

matter candidate. However, additional operators, that have not been considered in [47]

can modify this statement and the first excitation of the W 3-gauge boson could become

the LKP [48].

3.4. Construction of a Vector Dark Matter Toy Model -

Dimensional (De)construction

The Sommerfeld calculation for a complete UED model is beyond the scope of this thesis

due to a number of complications arising in extra dimensional theories.

First, couplings with negative mass dimension render the UED-Lagrangian intrinsically

nonrenormalizable [47]. UED should therefore be considered as an effective field theory

(EFT), valid up to some cut-off scale Λ [47, 49]. In such a framework non-trivial compu-

tational techniques are necessary for higher order field theory calculations. On top of the

technical difficulties associated with the calculation process, we would like to mention,

that even though an EFT treatment is known for minimal UED [47], it remains elusive

for extended models so far.

Second, in UED models, mixing among different KK-modes [48] as well as KK-number vio-

lating vertices [47] occur, which complicate matters even further. These features, however,

play a subdominant role for the Sommerfeld calculation, since the mixing is suppressed by

at least O
(
m2

W (0)

(1/R)2

)
[48]14, so that the correction to the Z(1)W (1)W (0)-vertex for example

is negligible for a typical compactification scale O(1/R) ≈ TeV.

14mW (0) = 80.398± 0.025 GeV [50] denotes the Standard Model W-boson mass.
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The KK-number violating couplings of a full UED model, exemplarily depicted in fig.3.1,

do not significantly contribute to a sizable Sommerfeld enhancement either, for the large

mass splitting between different KK-levels of O(1/R) ≈ TeV (see discussion in Sec. 3.2.1).

Figure 3.1.: Exemplary KK-number-violating vertex. We depict a generic interaction between a

KK-0-, a KK-1- and a KK-3-mode.

In order to avoid the above mentioned complications altogether, we restrict ourselves to

constructing a 4D renormalizable toy model that contains a vector dark matter candidate

on top of the scalar and gauge sector of the Standard Model. In section 3.2.1 we have

demonstrated, that only a specific subset of the particle spectrum contributes to sizable

enhancement factors. In particular, only light states (in our minimal case, these are the

SM-gauge bosons) acting as long range force carriers have to be considered in addition to

the (potentially mass degenerate) heavy dark matter component of the model. For the

heavy neutral SU(2)-gauge boson, dubbed Z(1), one naturally expects a near mass degen-

eracy with the charged W±
(1)-bosons from the same gauge multiplet, which is only lifted

by electroweak symmetry breaking. Therefore we include these states in the dark matter

sector of our toy model. In comparison to the SU(2)-gauge-boson triplet, a priori, there is

no symmetry reason why the gauge bosons should be degenerate with the fermionic sector

and one generically expects a larger splitting between heavy fermions and gauge bosons.

As we have outlined in section 3.2.1, the near mass degeneracy with the dark matter

candidate is critical for the contribution of the particle species to the Sommerfeld effect.

On account of the larger fermion mass split-off, we are going to neglect the fermions in

the construction of our toy model as a first approximation.

In conclusion: besides 4D renormalizability, our model has to reproduce the electroweak

sector of the Standard Model as phenomenological starting point. In the dark sector, we

consider a set of particles that contains a neutral gauge boson with mass mDM ∼1 TeV

and additional states that are split-off by δm
mDM

. O(1 0/00) at most.
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For the construction of a toy model emulating many phenomenological properties of

extra-dimensional theories, we have a particularly compelling toolbox at hand. In their

influential paper on (De)Constructing Dimensions, Arkani-Hamed, Cohen and Georgi [22]

have shown how to ”build” extra dimensions from renormalizable, asymptotically free, 4D

gauge theories. Physically, these field theories may be imagined as latticized picture of the

additional spacial directions [51, 52, 53, 54, 55]. The 4D gauge theories that generate the

extra dimension dynamically are easily depicted in so called ”moose” or ”quiver” diagrams

that also help keeping track of the field content of those theories.

Figure 3.2.: Cartoon of a moose diagram with N + 1 gauge groups G. The dashed lines between

adjacent nodes represent non-linear sigma fields that correspond to link variables of

lattice gauge theory. Graphic taken from [22].

In the context of moose diagrams, one can follow the interpretation of Ref. [51] and regard

fig. 3.2 as an image of the latticized extra dimension. This point of view primarily focuses

on a manifestly gauge-invariant effective description of higher KK-modes. Normally, the

truncation of the KK-tower after a finite number of modes corresponds to a hard momen-

tum cutoff in the fifth dimension which spoils the higher dimensional gauge invariance.

The effective 4D gauge theory description of the KK-tower on the other hand remains

gauge invariant [53] by construction, which is the appealing feature of this approach.

In comparison to the periodic geometry insinuated in figure 3.2, it turns out that the

linear moose diagram (”aliphatic” model [51]) corresponds to the S1/Z2-orbifold construc-

tion in UED and contains no unwanted zero-modes [51]. One is left with a direct product

of N + 1 gauge groups G that are sequentially connected by N link fields transforming

under the bifundamental representation of adjacent groups. In Ref. [51], Cheng et al.

give a comprehensive treatment of the latticized Standard Model and many ideas for our

simple dark matter toy model are guided by this source.
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4. SU(2)× SU(2)×U(1)×U(1) -

Model

Inspired by (de)constructed theories [22], we have built a ”minimal”four dimensional gauge

theory that contains a stable heavy vector boson (Z(1)) and is able to mimic the Standard

Model electroweak gauge sector.1 By varying the parameters of the scalar potential, we

are able to switch between U(1)Y - and SU(2)L-like dark matter. The stability of our dark

matter candidate is guaranteed by a KK-parity-like discrete Z2 symmetry, implemented

by choosing equal vacuum expectation values, gauge couplings and hypercharges for both

”lattice-sites”. We introduce a number of fundamental scalars that give mass to the gauge

bosons and reproduce the electroweak sector of the Standard Model. In comparison to

other authors2 working on latticized extra dimensions, we make use of fundamental ”link

fields” instead of a nonlinear realization of the electroweak symmetry breaking in order

to evade renormalization issues connected to non-linear sigma models [40] and keep our

theory as simple as possible.

For the Sommerfeld phenomenology of the Z(1), we are interested in a scenario, where the

dark matter particle is nearly mass degenerate with the second lightest states of the dark

sector - the charged SU(2) gauge bosons W±
(1) (see discussion in Sec. 3.2.1). In order to

obtain a sizable Sommerfeld enhancement, couplings of order O(α ≈ v) between the DM

particles and the light force carriers are required (also see Sec. 3.2.1, v denotes the present

day DM velocity). In our model, this is implemented by electroweak couplings between

the heavy vector particles and their light Standard Model counterparts. In the context

of the Minimal Supersymmetric Standard Model3 scenario, the connection between the

enhancement factor, the coupling strength and the mass spectrum has been discussed in

the cardinal paper on the Sommerfeld effect by [18].

1For a certain parameter range (see Sec. 4.5.4), we are able to identify the field content of our 4D

gauge theory with the lowest scalar and gauge boson excitations of a UED model. Using only two

lattice sites in the 4D gauge theory language corresponds to a truncation of the KK-tower after the

1st KK-excitation in the effective description of the extradimensional model.
2e.g. [51, 52, 53, 54, 55]
3for review c.f. e.g. [30]
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4.1. Notation and Moose Diagram

A ”moose” representation of our theory, including important parameters and the field

content, is shown in fig. 4.1. The notation is chosen in the style of a UED4 theory,

the scope of our model, however, is of more general nature. For the discussion of the

spontaneous symmetry breaking pattern, the derivation of the mass spectrum and the

interaction vertices, we follow the latticized extra dimensions literature closely [51, 52, 53,

54, 55], especially in Sec. 4.2.2 where we treat the scalar sector.

Figure 4.1.: Moose diagram with description of Higgs fields, vacuum expectation values and gauge

couplings. Discrete Kaluza-Klein-like parity is implemented by a reflection symmetry

between the left and right lattice sites. The special parameter choice (equal gauge

couplings, hypercharges, VEVs v for HI and HII) also reflects this symmetry.

In the following sections we fix our notation and elaborate on the model-parameterization

in greater detail. We are going to introduce the specific terms of the Lagrangian explicitly,

derive the mass spectrum of the theory and finally summarize the Feynman rules in App.C.

4In particular, our theory can be seen as a simplified and truncated version of latticized extra dimensions

[51] in a certain region of parameter space. The connection to the UED notation is refined in a

comment on the scalar sector of UED in Sec. 4.2.2
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4.2. Lagrangian

Our minimal ”deconstructed” dark matter model is characterized by the gauge-fixed La-

grangian:

L = Lgauge + LHiggs + (Lgauge−fixing + LGhost) (4.1)

We are going to give explicit expressions for all contributions in the following sections.

For conciseness, we defer the detailed discussion of the gauge-fixing and ghost sector to

appendix A, since these matters are not the prime objective of this work.

4.2.1. The Gauge Sector

The gauge sector of the SU(2)I×SU(2)II×U(1)I×U(1)II-theory follows from a straight

forward generalization of the Standard Model case (for the SM gauge sector, see e.g.[40]).

Lgauge =− 1

4
Ga
I,µνG

a,µν
I − 1

4
Ga
II,µνG

a,µν
II −

1

4
FI,µνF

µν
I −

1

4
FII,µνF

µν
II , (4.2)

where a = 1, 2, 3 denotes SU(2) gauge indices and µ, ν represent Lorentz indices.

In the following, we are going to write out the expressions for the field strength tensors

explicitly.

Field Strength Tensors

The field strength tensors for SU(2)I and SU(2)II are given by

Ga
I/II,µν = ∂µW

a
I/II,ν(x)− ∂νW a

I/II,µ(x) + gεabcW b
I/II,µ(x)W c

I/II,ν(x), (4.3)

where we chose the couplings g of both SU(2) equal in order to preserve the Z2 reflection

symmetry under I ↔ II exchange in the Lagrangian. In case of the abelian U(1) gauge

groups the field strength tensors simplify and no gauge boson self-couplings occur, since

the structure constants are identically zero:

FI/II,µν = ∂µFI/II,ν(x)− ∂νFI/II,µ(x). (4.4)
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4.2.2. The Higgs Sector

Before we introduce the scalar sector of our ”deconstructed” dark matter toy model, we

take a short detour to discuss the KK-excitations of the Higgs field in UED, for it will

clarify our notation. In this exposition, we closely follow [47]. The KK-modes of the

W and Z bosons acquire their masses via the higher dimensional Higgs mechanism. The

corresponding Goldstone bosons are linear combinations of the 5th component of the gauge

fields (denoted by A5) and the Higgs KK-modes. The orthogonal combinations represent

physical scalar particles in the spectrum. For 1/R � m0
W,Z , it can be shown that the

longitudinal components of the KK gauge bosons are dominated by the respective A5’s,

and the physical scalars are approximated by the KK-excitations of the SU(2) Higgs-

doublet [56, 57]. In total, there are four physical scalars at each non-zero KK-level5, H±(n),

H0
(n), a

0
(n).

Let us now return to the scalar sector of our ”deconstructed”model. The Higgs-Lagrangian

is given by:

LHiggs = tr [|DµHW 5|2] + |DµHB5|2 + |DµHI |2 + |DµHII |2 + VHiggs (4.5)

In the following, we are going to give a detailed account of the covariant derivatives DµHi

and the Higgs potential VHiggs.

The Covariant Derivatives

The covariant derivatives couple the scalar content of our theory to the gauge fields and

eventually lead to gauge boson masses after spontaneous symmetry breaking.

1. HW 5 transforms under SU(2)I×SU(2)II as
(
2,2
)
. Due to an isomorphism between

C2 ⊗ C2 ∼=M2(C), HW 5 might be represented as a 2×2 matrix carrying two gauge

indices, one for the SU(2)I (in the following denoted by b, c ∈ {1, 2}) and the other

for the SU(2)II group (denoted by i, j ∈ {1, 2}).

(HW 5)ci =

(
φ11 φ12

φ21 φ22

)
ci

(4.6)

Each of the φ’s represents one complex or equivalently two real degrees of freedom

adding up to eight real degrees of freedom within the HW 5 field. The covariant

derivative acts on the HW 5 field in the bi-fundamental representation as:

(DµHW 5)ci = (∂µHW 5)ci + ig ~WI,µδcb (HW 5)bj
~τji
2
− ig ~WII,µ

~τcb
2

(HW 5)bj δji (4.7)

5Notice that H±(0) and a0
(0) are just the usual Goldstone bosons in the SM. The 5-components of the

gauge fields vanish for the 0-modes owed to the boundary conditions in the extra dimension [56, 57].

This comment should also elucidate our notation in the moose diagram 4.1. HW 5 mimics the 5th

component of the SU(2) gauge fields, denoted by W and HB5 the U(1) counterpart.



18 SU(2)× SU(2)×U(1)×U(1) - Model

Since DµHW 5 carries gauge indices that are uncontracted in a conventional kinetic

term, one has to introduce an extra trace in order to obtain a gauge invariant singlet

required for the Lagrangian.

2. HB5 transforms under U(1)I × U(1)II as
(
−Y HB5 ,+Y HB5

)
.

With this transformation property the covariant derivative acting on HB5 is:

DµHB5 =
[
∂µ + ig′Y HB5BI,µ − ig′Y HB5BII,µ

]
HB5 (4.8)

3. HI transforms under SU(2)I × U(1)I as
(
2,+Y HI

I

)
.

Again, this transformation property implies a covariant derivative acting on HI of

the form:

DµHI =

[
∂µ − ig

~τ

2
~WI,µ − ig′Y HI

I BI,µ

]
HI (4.9)

4. Finally, HII transforms under SU(2)II × U(1)II as
(
2,+Y HII

II

)
. Subsequently, the

covariant derivative acts on HII as:

DµHII =

[
∂µ − ig

~τ

2
~WII,µ − ig′Y HII

II BII,µ

]
HII (4.10)

In the definition of the covariant derivatives, we fixed the gauge couplings g and g′ to be

equal for both the SU(2) and U(1) groups, respectively. This has already been specified

in the moose diagram fig. 4.1 and implements the discrete Z2 reflection symmetry of our

theory under I ↔ II exchange responsible for the stability of the DM-candidate.

Parameterization of the Higgs Fields

The scalar sector of our theory mediates the symmetry breaking according to the moose

diagram in section 4.1. Contrary to other work on latticized extra dimensions (cf. e.g. [51,

54]) we implement the breaking via fundamental Higgs fields with properties discussed

below.

1. HW 5 transforms under the bi-fundamental representation asHW 5 7→ GSU(2)IIHW 5G†SU(2)I
,

where the G′js are elements of the respective SU(2) group. As noted before, HW 5

can be represented as a complex 2×2 matrix. It is instructive to expand the complex

2 × 2 HW 5 field in terms of the τ matrices τ 0, τ+, τ−, τ 3, which form a basis of

M2(C).

HW 5 =
∑

α=0,±,3

φα(x)τα (4.11)
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We use the Pauli matrices in the form:

τ 1 =

(
0 1

1 0

)
τ 2 =

(
0 −i
i 0

)
τ 3 =

(
1 0

0 −1

)
(4.12)

In (4.11), we defined the 2× 2 identity matrix τ 0 and introduced the SU(2) raising

and lowering operators τ± = 1
2
(τ 1 ± iτ 2). As will be shown, this parameterization

indicates the charge assignment of the unbroken U(1)em for each HW 5 component.

The charge assignment for the expansion coefficients φα is clarified by investigating

an infinitesimal gauge transformation around the 3 axis of SU(2)diag. HW 5 is not

charged under any U(1), which is why (Q = T3 + Y
2

) [40] reduces to Q = T3 ∝ τ 3 in

the absence of hypercharge Y and we are left with:

δHW 5 ∝ [τ 3, HW 5 ] ∝ q

[τ 3, τ+] ∝ +τ+ [τ 3, τ−] ∝ −τ− (4.13)

[τ 3, τ 0] = 0 [τ 3, τ 3] = 0. (4.14)

Therefore, we write6

HW 5 =

(
1√
2
(v3 + ψw5,1[x]− iχ(3)

w5,1[x]) v4 + iχ
(+)

w5,1[x]

v5 + iχ
(−)

w5,2[x] 1√
2
(v6 + ψw5,2[x]− iχ(3)

w5,2[x])

)
, (4.15)

with general VEV’s in all components of the field. The VEV’s are determined by

the potential minimum which is encoded in the tadpole equations.

2. HB5 is a complex scalar singlet charged under U(1)I × U(1)II

HB5 =
1√
2

(
v1 + h

(1)

B5 [x] + ih
(2)

B5 [x]
)

(4.16)

3. HI is a complex scalar doublet charged under SU(2)I×U(1)I according to
(
T 3
I , Y

HI
I

)
,

where T 3
I is fixed by the representation of HI and Y HI

I will be set to the common

hypercharge Y in later calculations. It is convenient to chose a parameterization in

terms of charged, scalar and pseudoscalar degrees of freedom:

HI =

(
iχ

(+)
I [x]

1√
2
(v + ψI [x]− iχ(3)

I [x])

)
(4.17)

4. HII is a complex scalar doublet charged under SU(2)II × U(1)II .

We parameterize HII as:

HII =

(
iχ

(+)
II [x]

1√
2
(v + ψII [x]− iχ(3)

II [x])

)
(4.18)

6According to [51], it is possible to choose potential parameters such that HW 5 acquires a vacuum

expectation value v2 proportional to the identity matrix.
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The Higgs Potential

In this thesis, we consider the following scalar potential7 for our multi-Higgs system:

VHiggs =V[HW 5 ] + V[HI ] + V[HII ] + V[HB5 ] + VWW

V [HW 5 ] =−M2tr[H†W 5HW 5 ] + λ1tr[(H
†
W 5HW 5)2]

+ λ2(tr[H†W 5HW 5 ])2 +M ′ (eiθdet(HW 5) + h.c.
)

V [HI ] =− µ2 |HI |2 + λ|HI |4 (4.19)

V [HII ] =− µ2 |HII |2 + λ|HII |4

V [HB5 ] =− µ2
B |HB5|2 + λB|HB5|4

VWW = M2
0

∣∣∣∣∣H†W 5HII

v2

− HIHB5

v1

∣∣∣∣∣
2

+

∣∣∣∣∣HW 5HI

v2

−
HIIH

†
B5

v1

∣∣∣∣∣
2


Our scalar potential is inspired by the one introduced for the latticized extradimensional

Standard Model [51]. It respects gauge invariance and fulfills the common renormalizabil-

ity condition, i.e. no coupling constants with negative mass dimension [41].

The scalar potential (4.19) allows a vacuum structure, so that all Higgs fields acquire

VEVs according to the moose diagram in fig. 4.1. Due to the coupling of the gauge to

the scalar sector via the covariant derivatives (see paragraph 4.2.2), the vacuum struc-

ture leads to a gauge boson mass spectrum which reflects the symmetry breaking pattern

SU(2)I×SU(2)II×U(1)I×U(1)II → SU(2)diag×U(1)diag → U(1)em. Owed to (4.19), we

obtain a gauge sector which contains one massless particle - the SM photon - in addition

to seven massive modes. These are the W±
(0) and Z(0)-bosons from the SM as well as their

heavy KK-counterparts (see discussion in the introductory chapter 3.4). To guarantee the

stability of our dark matter candidate, we implement an additional Z2 symmetry that

limits the number of allowed interactions. This is achieved via a discrete reflection sym-

metry of the moose diagram in fig. 4.1 under I ↔ II exchange, which the scalar potential

has to respect as well.

7We follow the convention of [51]. Note, that M ′ has mass dimension 2, due to the particular represen-

tation of HW 5 .
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Eq. (4.19) is not the most general multi-Higgs model one can envision. We have for

instance neglected terms of the form |HI |2 |HII |2 and similar quartic interactions. Fortu-

nately, we can show in a simple order of magnitude estimate, that the scalar degrees of

freedom are irrelevant for the Sommerfeld enhancement to vector dark matter in the ma-

jority of the parameter space (see discussion in Sec. 3.2.1), which is the primary concern

of this thesis. The above statement holds as long as we do not consider special parameter

regions where fine-tuning could lead to near mass degeneracies of the heavy scalars with

the dark matter candidate or regions where mscalar ≈ 2mDM . In the following we are go-

ing to disregard these possibilities. In some sense, the most important task of our scalar

sector becomes the implementation of the correct vacuum structure in order to give the

desired gauge boson mass spectrum. The desired mass hierarchy is implemented by the

vacuum expectation values of the scalar fields which in turn are determined by the scalar

potential and its parameters.

4.2.3. Counting the Degrees of Freedom

Before symmetry breaking8, the gauge bosons are massless in order for the Lagrangian to

respect gauge invariance. Analog to the SM-photon, each massless vector particle accounts

for two real degrees of freedom. Our theory contains eight gauge bosons, three from the

respective SU(2) and one from each U(1) group. In the course of spontaneous symmetry

breaking, gauge bosons that are associated with broken group generators, acquire mass

via the Higgs mechanism. In this process, the Goldstone bosons from the scalar sector get

”eaten” to become the longitudinal component of the gauge field. For the scalar sector,

the number of degrees of freedom for each field is determined by its representation under

the gauge groups. For completeness, we list the degrees of freedom:

before symmetry breaking: after symmetry breaking

SU(2)I gauge bosons (massless) 3x2 dof 7 massive vector bosons 7x3 dof

SU(2)II gauge bosons (massless) 3x2 dof 1 massless vector boson 1x2 dof

U(1)I gauge boson (massless) 1x2 dof total 23 dof

U(1)II gauge boson (massless) 1x2 dof

HW 5 bifundamental representation 8 dof

HB5 complex scalar singlet 2 dof

HI complex scalar doublet 4 dof

HII complex scalar doublet 4 dof

total 34 dof ⇒ 11 dof for scalar fields

8For details concerning spontaneous symmetry breaking and the Higgs mechanism, c.f. e.g. [40, 41, 58]
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4.3. SU(2)I × SU(2)II → SU(2)diag Breaking

The analysis in this section is meant to be a pedagogical preparation for the symmetry

breaking of the complete gauge model. Furthermore, it constitutes a reasonable con-

sistency check, whether the HW 5 potential (4.20) is able to induce the desired breaking

pattern SU(2)I × SU(2)II → SU(2)diag. This breaking scheme is equivalent to a Higgs

sector containing three Goldstone bosons that get ”eaten”to become the longitudinal com-

ponents of the vector bosons of the broken SU(2) gauge group. The following calculation

only takes into account the HW 5 potential and does not consider mixing terms with the

other Higgs fields which will be discussed in Sec. 4.5. The notation and the potential is

adopted from [51].

4.3.1. HW5 Potential to Break the SU(2)I × SU(2)II Gauge Group

We consider a Higgs potential that allows a common VEV on the diagonal entries of the

HW 5 field in order to break SU(2)I × SU(2)II → SU(2)diag which we will identify with

the Standard Model SU(2)L later. Gauge covariance and renormalizability limited the

number of operators that had to be considered. Following [51, 53, 54] the potential at

hand is:

V [HW 5 ] = −M2 tr [H†W 5HW 5 ] + λ1tr [(H†W 5HW 5)2]

+ λ2(tr [H†W 5HW 5 ])2 +M ′ (eiθdet [HW 5 ] + h.c.
)

(4.20)

where we have used the notation of tr[...] and det[...] to construct gauge singlets of HW 5 :

• (H†W 5HW 5)il = (H∗W 5)iα(HW 5)αl ⇒ tr [H†W 5HW 5 ] = (H∗W 5)iα(HW 5)αi

• det [HW 5 ] = εiα(HW 5)1i(HW 5)2α, with the Levi-Civita symbol εiα
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4.3.2. VEV Structure and Tadpole Equations for the

SU(2)I × SU(2)II → SU(2)diag Breaking

Generally, the vacuum expectation values in spontaneously broken gauge theories have

to be determined via minimizing the scalar potential with respect to the dynamical field

variables; ∂V (φi)
∂φj

!
= 0. In order to obtain the so-called ”tadpole equations”, we expand

(4.20) using the parameterization of HW 5 given in (4.15). Our tree-level analysis works

as follows:

1. Write the HW 5 field with generic real VEVs in all four components of the matrix.

2. Expand the Higgs potential in terms of the dynamical degrees of freedom which

gives rise to a large number of terms.

3. Identify all expressions linear in dynamical degrees of freedom (those are the tadpole

terms that one obtains from the requirement that the field configuration leads to

a minimum in the potential ∂V

∂
(
h
(i)

W5

) !
= 0) and demand their coefficients to be zero.

This leads to a coupled system of equations, the tadpole-equations, connecting the

vacuum expectation values to the parameters of the scalar sector.

4. Solve the tadpole equations for the VEVs and keep in mind that each extreme

field configuration gives rise to a distinct solution of the tadpole equations. In

particular, extreme field configurations also include local maxima or saddle points.

To find a local minimum one has to assess (at least) the second derivative of the

potential (M2)ij = ∂2V

∂
(
h
(i)

W5

)
∂
(
h
(j)

W5

) and check the positive definiteness of the mass

matrix (corresponds to Hessian matrix).

Following the outlines of [51], we can always arrange the parameters in the potential

(4.20), such that the vacuum expectation value of HW 5 is proportional to the identity

matrix with diagonal entries denoted by v2. Doing so, the VEVs in eq. (4.15) reduce to

v3 = v6 ≡ v2 and v4 = v5 ≡ 0 and we obtain two equivalent sets of solutions9 to the

tadpole equations:

v2
2 =

M2 −M ′

λ1 + 2λ2

v2
2 =

M2 +M ′

λ1 + 2λ2

(4.21)

θ = 0 θ = ±π

Besides the values for v2 given above, there is one additional solution v2 = 0 that would

lead to a local maximum of the potential and is not considered any further.

9In order to obtain these solutions we had to solve for the relative phase θ as well, that way restricting

the range of the θ parameter in our setting.
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4.3.3. The Scalar Mass Spectrum for the

SU(2)I × SU(2)II → SU(2)diag Breaking

Determining the scalar mass spectrum for a given scalar potential is a straight forward

but somewhat tedious assignment. Therefore, we developed a Mathematica routine to

extract all expressions from the potential (4.20) that are bilinear in dynamical degrees

of freedom. We are going to give the main results for a parameterization of HW 5 in

terms of charged, scalar and pseudoscalar modes, since this parameterization facilitates

the physical interpretation of different field components. In the following we are going to

decompose the scalar mass matrix into a charged and neutral block:

1. The charged scalar mass matrix is defined via:

(χ
(+)

w5,1 χ
(+)

w5,2)
(
M̂ ch

HW5

)2

(χ
(−)

w5,1 χ
(−)

w5,2)T , (4.22)

where χ± have been defined in eq. (4.15). After collecting the relevant expressions

from the potential, we find:(
M̂ ch

HW5

)2

=

(
−M2 + 2v2

2 (λ1 + λ2) eiθM ′ − v2
2λ1

e−iθM ′ − v2
2λ1 −M2 + 2v2

2 (λ1 + λ2)

)
To obtain the mass eigenstates at the potential minimum, we apply the tadpole

condition (4.21) v2
2 = M2+M ′

λ1+2λ2
and θ = π to obtain the following spectrum:(

0,
2M2λ1 + 4M ′ (λ1 + λ2)

λ1 + 2λ2

)
(4.23)

The massless mode belongs to the symmetric eigenvector10(1, 1)T , whereas the mas-

sive mode is related to the antisymmetric eigenvector (−1, 1)T .

2. The neutral Higgs mass matrix is defined by11:

1

2
(ψW 5,1 ψW 5,2 χ

(3)

W 5,1 χ
(3)

W 5,2)
(
M̂n

HW5

)2

(ψW 5,1 ψW 5,2 χ
(3)

W 5,1 χ
(3)

W 5,2)T .

The expansion of (4.20) yields:

(
M̂

n
H
W5

)2
=


−M2 + v22(3λ1 + 4λ2) 2v22λ2 +M′ cos(θ) 0 M′ sin(θ)

2v22λ2 +M′ cos(θ) −M2 + v22(3λ1 + 4λ2) M′ sin(θ) 0

0 M′ sin(θ) −M2 + v22(λ1 + 2λ2) −M′ cos(θ)
M′ sin(θ) 0 −M′ cos(θ) −M2 + v22(λ1 + 2λ2)

 . (4.24)

Applying the tadpole conditions v2
2 = M2+M ′

λ1+2λ2
and θ = π in the neutral sector leads

to the following eigenvalues of
(
M̂n

HW5

)2

:(
0, 2M ′, 2

(
M2 +M ′) , 2M2λ1 + 4M ′ (λ1 + λ2)

λ1 + 2λ2

)
, (4.25)

10Normalization of all eigenvectors is implied, such that the kinetic terms are canonically normalized.
11The factor 1

2 for the definition of neutral masses as m2

2 in the Lagrangian is factored out.
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which belong to the eigenvectors (0, 0,−1, 1)T , (0, 0, 1, 1)T , (1, 1, 0, 0)T and

(−1, 1, 0, 0)T respectively. Note, for θ = 0,±π there is no scalar-pseudoscalar mixing

and different parity states remain decoupled.

The analytic results for the scalar mass spectrum obtained from the SU(2)I ×SU(2)II →
SU(2)diag breaking look very promising12. In total we obtain three massless modes - two

in the charged and one in the neutral Higgs sector. These correspond to two charged

Goldstone bosons required to give mass to the charged gauge bosons of the broken SU(2).

Analogously, the neutral Goldstone boson plays the role of the longitudinal component of

the neutral massive gauge boson. In a more general treatment with an Rξ gauge fixing

prescription applied, we expect the three massless Goldstone modes to acquire gauge

parameter dependent masses. We deal with the gauge fixing Lagrangian and its influence

on the Goldstone boson masses in Appendix B and direct our attention to the gauge boson

sector.

4.3.4. The Gauge Boson Mass Spectrum for the

SU(2)I × SU(2)II → SU(2)diag Breaking

In models with spontaneous symmetry breaking via the Higgs mechanism [59], the gauge

bosons acquire their mass when the scalar fields develop a vacuum expectation value.

In this case, the kinetic term for the scalar field, tr
[
|DµHW 5|2

]
, contains mass terms

WαM2
αβW

β, α, β ∈ {1, 2, 3} for the gauge bosons Wα. In eq. (4.7) it is advantageous to

rotate the gauge field basis:

W±
j,µ =

1√
2

(
W 1
j,µ ∓ iW 2

j,µ

)
τ± =

1

2

(
τ 1 ± iτ 2

)
, (4.26)

using SU(2)-raising and -lowering operators:

τ+ =

(
0 1

0 0

)
τ− =

(
0 0

1 0

)
. (4.27)

This substitution yields:(
~τ · ~Wj,µ

)
=
√

2
(
τ+W+

j,µ + τ−W−
j,µ

)
+ τ 3W 3

j,µ , (4.28)

where j = I, II label the different gauge groups and the Lorentz indices µ ∈ {0, ..., 3}.
With this transformation, we are able to extract the quadratic terms for the charged as

well as the neutral gauge bosons and combine them in the respective mass matrices.

12 Note that there is one scalar with mass squared directly proportional to M ′. If one were to drop

the det(HW ) term from the potential one looses that particular massive Higgs mode. This field

corresponds to a pseudo-Nambu-Goldstone boson that would have occurred due to a spontaneous

breaking of a global U(1). Introducing the M ′ term in the potential breaks the global U(1) explicitly

and no additional Goldstone boson appears.
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1. The charged gauge boson mass matrix

(
M̂ ch

SU(2)

)2

=

(
W+
I W

−
I W+

I W
−
II

W−
I W

+
II W+

IIW
−
II

)
=

1

2

(
g2v2

2 −g2v2
2

−g2v2
2 g2v2

2

)
(4.29)

Diagonalization of
(
M̂ ch

SU(2)

)2

= yields the following eigensystem:

a) one massless

b) one massive mode with m2 = g2v2
2 belongs to the eigenvector (−1, 1)T

2. The neutral gauge boson mass matrix

(
M̂n

SU(2)

)2

=

(
W 3
IW

3
I

1
2
W 3
IW

3
II

1
2
W 3
IW

3
II W 3

IIW
3
II

)
=

1

2

(
g2v2

2 −g2v2
2

−g2v2
2 g2v2

2

)
(4.30)

where the factor 1
2

for the definition of neutral fields has already been pulled out.

Diagonalization of
(
M̂n

SU(2)

)2

= yields the following eigensystem:

a) one massless mode with m2 = 0 belongs to the eigenvector (1, 1)T

b) one massive mode with m2 = g2v2
2 belongs to the eigenvector (−1, 1)T

In total we are left with three massive vector bosons from the broken SU(2). They are

degenerate in mass which indicates that they belong to a triplet. On top of the massive

modes, we find an unbroken SU(2) with massless gauge bosons. Thus, the spontaneous

symmetry breaking via the diagonal HW 5 VEV is a viable starting point to proceed with

the complete analysis of the full SU(2)I × SU(2)II × U(1)I × U(1)II model later.

A similar and straight forward analysis yields the breaking pattern of the respective U(1)

groups according to U(1)I × U(1)II → U(1)diag, which we do not outline explicitly. We

find a mass spectrum with:

1. one massless mode belonging to the symmetric eigenvector (1, 1)T

2. one massive mode13 with m2 = 2g′2v2
1Y

2 for the antisymmetric eigenvector (−1, 1)T

Note that the massive gauge bosons correspond to Z2-odd modes, whereas the massless

gauge bosons are Z2-even under I ↔ II exchange. We call these states KK-(1)- and

KK-(0)-modes respectively.

13In comparison to the SU(2) gauge boson mass square m2 = g2v2
2 , there is an additional factor of 1

2 for

the U(1) gauge boson mass square m2 = 1
2g
′2v2

1 (Y = 1
2 ). This difference originates from the trace

over the free SU(2) gauge indices and is ultimately a matter of defining v2.
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4.4. SU(2)diag ×U(1)diag Breaking

The diagonal groups get broken by the HI and HII fields, which are contained in two

separate parts of the full Higgs potential (4.19):

1. In V [HI ] = −µ2 |HI |2 + λ|HI |4 and V [HII ] = −µ2 |HII |2 + λ|HII |4

2. In the interaction part VWW = M2
0

(∣∣∣∣H†W5HII

v2
− HIHB5

v1

∣∣∣∣2 +

∣∣∣∣HW5HI
v2
− HIIH

†
B5

v1

∣∣∣∣2
)

with

HW 5 and HB5 set to their respective VEVs v2√
2

and v1√
2
. This leads to mass terms

for HI and HII of the following form:

VWW 7−→M2
0

(∣∣∣∣HII√
2
− HI√

2

∣∣∣∣2 +

∣∣∣∣HI√
2
− HII√

2

∣∣∣∣2
)

= M2
0 |HII −HI |2 (4.31)

Combining the appropriate quadratic expressions in the mass matrix yields:

M2
Hi

=

(
HIHI

1
2
HIHII

1
2
HIIHI HIIHII

)
=

(
M2

0 − µ2 −M2
0

−M2
0 M2

0 − µ2

)
(4.32)

The eigensystem of (4.32) contains one mode with m2 = −µ2 associated to the symmetric

eigenvector (1, 1)T . For a suitably chosen potential parameter M2
0 > 2µ2, the second

eigenvalue m2 = 2M2
0 − µ2 is positive for the antisymmetric (−1, 1)T eigenmode.

We construct a unitary transformation to switch from the gauge eigenstates HI and HII

to the mass eigenstates H̃0 and H̃1:(
HI

HII

)
=

(
1√
2
− 1√

2
1√
2

1√
2

)(
H̃0

H̃1

)
. (4.33)

In the new basis, only H̃0 has a negative mass squared and consequently acquires a VEV

v0, whereas the VEV of the H̃1 remains zero. The fact that only one mass eigenstate

acquires a vacuum expectation value leads to the desired property that both HI and HII

have the common VEV14 v = 1√
2
v0 in the gauge eigenbasis. In the following, we choose

to work with the H̃0, H̃1 fields and parameterize the Higgs doublets as:

H̃0 =

(
iχ

(+)
0 [x]

1√
2
(v0 + ψ0[x] + iχ

(3)
0 [x])

)
H̃1 =

(
iχ

(+)
1 [x]

1√
2
(ψ1[x] + iχ

(3)
1 [x])

)

14this VEV assignment is a result of the additional factor 1√
2

in the rotation matrix
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4.5. Complete Higgs Mass Spectrum

Having completed the discussion of preliminary breaking schemes, we are in the position

to calculate the Higgs mass spectrum of the entire SU(2)I × SU(2)II × U(1)I × U(1)II

system. We use the Higgs potential given in eq. (4.19) and write all fields in terms of

charged, scalar and pseudoscalar degrees of freedom. The procedure to determine the

tadpole equations is completely analogous to the one described for the SU(2)I × SU(2)II

breaking (see Sec. 4.3) and shall not be repeated here in detail. The expansion of the

complete scalar potential yields a plethora of terms, fortunately, an automated procedure

allows us to extract the relevant expressions in Mathematica.

4.5.1. Tadpole Equations and Potential Minimum

For the tadpole equations, we collect all terms linear in scalar dynamical degrees of freedom

from (4.19) and demand their coefficients to be identically zero (extremum condition) at

tree level15. This leads to a coupled system of equations that can be solved analytically.

To find the vacuum structure of the complete theory we solve for the VEVs in terms of

the remaining potential parameters and obtain the following results16:

v0 =

√
2µ√
λ
⇒ v =

1√
2
v0 =

µ√
λ

v1 =
µB√
λB

(4.34)

v2 =

√
M2 +M ′
√
λ1 + 2λ2

θ = π.

In (4.34), v denotes the VEV for the HI and HII fields, v1 belongs to HB5 and v2 is the

VEV in the diagonal entries of HW 5 .

15N.B. that we expand our scalar fields around the vacuum expectation values.
16Note, there are other classes of solutions to the tadpole equations of our scalar potential (4.19) that do

not give VEVs to all Higgs fields and consequently lead to a different mass spectrum in the Higgs as

well as in the gauge boson sector. Many of these extremes belong to local maxima or saddle points of

the potential. In those cases the scalar mass matrix has negative eigenvalues or contains additional

zero mass modes. Note that we did not check all solutions explicitly.
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4.5.2. Neutral Higgs Sector

Extracting all bilinear terms of the neutral sector within (4.19) requires some effort

but can be automated in a computer algebra system. In total there are 10 neutral

scalar degrees of freedom that have to be combined in a 10 × 10 mass matrix. In the

(χ
(3)
0 , ψ0, ψ1, ψW 5,1, ψW 5,2, h

(1)

B5 , h
(2)

B5 , χ
(3)
1 , χ

(3)

W 5,2, χ
(3)

W 5,1)T field basis we find a matrix, that is

block diagonal17:

(Mn
H)2 =

(Mn
diag)

2 0 0

0 (Mn
scalar)

2 0

0 0 (Mn
ps)

2

 , (4.35)

The neutral 10× 10 mass matrix decomposes into the following three blocks.

1. The diagonal block in the field basis (χ
(3)
0 ψ0 ψ1)

(
Mn

diag

)2
(χ

(3)
0 ψ0 ψ1)T

(
Mn

diag

)2
=

0 0 0

0 v2
0λ 0

0 0 2M2
0 + v2

0λ

 (4.36)

2. The scalar block in the field basis (ψW 5,1 ψW 5,2 h
(1)

B5) (Mn
scalar)

2 (ψW 5,1 ψW 5,2 h
(1)

B5)
T

(Mn
scalar)

2 =


M ′ + 2v2

2(λ1 + λ2) −M ′ + 2v2
2λ2 0

−M ′ + 2v2
2λ2 M ′ +

M2
0 v

2
0+4v42(λ1+λ2)

2v22
−M2

0 v
2
0

2v1v2

0 −M2
0 v

2
0

2v1v2

M2
0 v

2
0

2v21
+ 2v2

1λB

 (4.37)

3. The pseudo-scalar block in the field basis (h
(2)

B5 χ
(3)
1 χ

(3)

W 5,2 χ
(3)

W 5,1)
(
Mn

ps

)2
(h

(2)

B5 χ
(3)
1 χ

(3)

W 5,2 χ
(3)

W 5,1)T

(
Mn

ps

)2
=


M2

0 v
2
0

2v21

M2
0 v0
v1

−M2
0 v

2
0

2v1v2
0

M2
0 v0
v1

2M2
0 −M2

0 v0
v2

0

−M2
0 v

2
0

2v1v2
−M2

0 v0
v2

M ′ +
M2

0 v
2
0

2v22
M ′

0 0 M ′ M ′

 (4.38)

The first block (4.36) is already diagonal and we are able to read off the eigenvalues

straight away. The first massless Goldstone mode is found in this sector.

17 In (4.36), (4.37) and (4.38) the tadpole relations have already been applied. However, instead of

plugging in the minimization condition for the VEVs we have solved for the mass parameters of

the potential
{
µ→ v0

√
λ√

2
, µB → v1

√
λB , M →

√
−M ′ + v2

2λ1 + 2v2
2λ2, θ → −π

}
, which makes the

mass matrices look somewhat more compact.

The block diagonal form of (4.35) implies that scalar and pseudoscalar modes do not mix in our

tree-level calculation.
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Remarks on the Diagonalization of (Mn
scalar)

2 and
(
Mn

ps

)2

The structure of (Mn
scalar)

2 (4.37) makes it particularly hard to diagonalize, even though

it is ”merely” a real 3 × 3 matrix. The analytic results of the diagonalization look very

complicated and we are not able to give a compact form for the eigenvalues and their

respective eigenvectors.

However, looking at the structure of (4.37) and using physical input for the parameter

values, we realize that the off-diagonal terms which mix ψW 5,2 and h
(1)

B5 are proportional

to
v20
v1v2

. In our model, the VEVs v0 and v1,2 are of O(250 GeV) and O(TeV) respectively,

thus these mixing elements are suppressed by the mass hierarchy between the Standard

Model particles and the 1st heavy excitations. As a first approximation to the exact eigen-

values, we therefore diagonalize (Mn
scalar)

2, neglecting terms of O
(

v20
v1v2

)
, i.e. we ignore

further mixing via a Standard Model like Higgs field. In comparison to the gauge sector

where the additional mass splitting is of utmost importance for the Sommerfeld effect,

this does not play an important role in the Higgs sector. In this approximation we find

the eigenspectrum:

(Mn
scalar)

2 ≈
{

2
(
M ′ + v2

2λ1

)
, 2
(
v2

2λ1 + 2v2
2λ2

)
, 2v2

1λB
}

(4.39)

with the corresponding eigenvectors:{
(−1, 1, 0)T , (1, 1, 0)T , (0, 0, 1)T

}
(4.40)

The pseudoscalar mass matrix (4.38) can also be diagonalized analytically, yielding an-

other two massless Goldstone bosons. The exact results are rather lengthy, which is why

we only give the approximate values here. Neglecting terms of order O
(
v0
v2

)
, we obtain

the approximate eigenvalues: (
Mn

ps

)2 ≈
{

0, 0, 2M2
0 , 2M

′} (4.41)

with the corresponding eigenvectors:

{(0, 0,−1, 1)T , (1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 1)T} (4.42)
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4.5.3. Charged Higgs Sector

Having treated the complete neutral Higgs sector, we extract the mass matrix for the

charged degrees of freedom in terms of (χ
(+)
0 χ

(+)
1 χ

(+)

W 5,1 χ
(+)

W 5,2)
(
M ch

H

)2
(χ

(−)
0 χ

(−)
1 χ

(−)

W 5,1 χ
(−)

W 5,2)T

from (4.19). After applying the tadpole conditions, we are left with a 4× 4 matrix of the

following form:

(
M ch

H

)2
=


0 0 0 0

0 2M2
0 −M2

0 v0
2v2

−M2
0 v0

2v2

0 −M2
0 v0

2v2
M ′ +

M2
0 v

2
0

4v22
+ v2

2λ1 −M ′ − v2
2λ1

0 −M2
0 v0

2v2
−M ′ − v2

2λ1 M ′ +
M2

0 v
2
0

4v22
+ v2

2λ1

 (4.43)

(
M ch

H

)2
can be diagonalized analytically, yielding the eigenspectrum:{

0, 0,
1

4
M2

0

(
8 +

v2
0

v2
2

)
, 2M ′ +

M2
0 v

2
0

4v2
2

+ 2v2
2λ1

}
(4.44)

In total there are 7 massless Goldstone bosons in addition to 11 massive Higgs modes,

which is exactly the mass spectrum we expect for a theory containing 1 massless and 7

massive gauge bosons (see Sec. 4.2.3).

4.5.4. Higgs Boson Summary

In this section, we work towards one particular application of our model. In order to

obtain a sizable Sommerfeld enhancement18 to vector dark matter, we opt for a mass

spectrum where the neutral vector dark matter candidate is nearly mass degenerate with

the accompanying heavy states from the same gauge multiplet. This direction in mind, we

try to find regions in the model parameter space, such that the Z(1) gauge boson remains

the lightest non-SM particle and is nearly degenerate with the W±
(1) gauge bosons.

The hypercharge Y, as well as the gauge couplings for the SU(2)s and U(1)s are go-

ing to be determined in Sec. 4.6.4 by comparing the low mass modes of our gauge sector

to their Standard Model counterparts. We pre-empt the results19 Y = 1
2
, g = 0.652 ·

√
2

and g′ = 0.357 ·
√

2 and also fix v0 = 246 GeV as well as λ = 0.26, so that the SM-Higgs

in (4.36) obtains a mass mH(0) = v0

√
λ ≈ 125 GeV, consistent with recent evidence from

ATLAS [60] and CMS [61]. Applying the restrictions above, we are left with seven addi-

tional parameters of our model, namely {M0,M
′, λ1, λ2, λB, v1, v2}.

18see Sec. 3.2.1 for detailed discussion
19In latticized extradimensional theories [51] it is common to define the 4D gauge couplings g1 and g2

as g2 = g√
N+1

and g1 = g′√
N+1

, where N + 1 is the number of lattice sites and g, g′ denotes the ”5D”

coupling constants. The suppression of the coupling constant by ∝ 1√
N

corresponds to the classical

volume suppression in the 4 + 1 dimensional theory [51].



32 SU(2)× SU(2)×U(1)×U(1) - Model

Demanding that the neutral SU(2) gauge boson has to be the lightest stable non-Standard

Model state in the spectrum20, these parameters can be constrained. Neglecting the SM

VEV v0 in comparison to the new physics scale associated with v1, v2, we use the prelimi-

nary results of the gauge boson spectrum (Sec. 4.3.4) and compare it to the approximate

mass eigenvalues of the scalar particles (Sec. 4.5.2). Demanding SU(2)-like vector DM

(g2v2
2 <

1
2
g′2v2

1), we find:

2v2
1λB > g2v2

2 2M2
0 > g2v2

2 (4.45)

2v2
2(λ1 + 2λ2) > g2v2

2 2M ′ > g2v2
2 (4.46)

In the following, we are going to briefly discuss the features of the scalar mass spectrum.

1st Parameter Point for the Higgs Spectrum

As starting point, we choose parameters that appear as natural as possible, i.e. φ4 cou-

plings λi are of O(. 1) and mass parameters of the new physics scale M ′, v1 and v2 are set

to a TeV-scale value. In the scalar potential (4.19), we realize that M2
0/v

2
2 is the coefficient

of a φ4-interaction and therefore should be O(. 1) in the perturbative regime. Together

with condition (4.45), we first restrict M0 to 1
2
g2v2

2 < M2
0 < v2

2 and use:

Y =
1

2
; v0 = 246 GeV; λ2 = 0.48;

v1 = 4000 GeV; v2 = 1100 GeV; λB = 0.22;

g = 0.652 ·
√

2; g′ = 0.357 ·
√

2; M ′ =
(
103
)2

GeV2; (4.47)

λ = 0.26; λ1 = 0.29; M0 = 900 GeV;

We employ the exact diagonalization of (4.36),(4.37),(4.38) and (4.43) to find numerical

values for the scalar spectrum at this parameter point:

1. The neutral sector

a)
(
Mn

diag

)
: {1279 GeV, 125 GeV, 0 GeV}

b) (Mn
scalar) : {2654 GeV, 1742 GeV, 1647 GeV}

c)
(
Mn

ps

)
: {1432 GeV, 1262 GeV, 0 GeV, 0 GeV}

2. The charged sector

a)
(
M ch

H

)
: {1647 GeV, 1277 GeV, 0 GeV, 0 GeV}

20This is taken as input for our particular application. In general, we can obtain other DM-candidates

such as the U(1)Y gauge boson or a heavy scalar field as well.
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We anticipate the results for the neutral gauge bosons (4.53) in order to show, that the

Z(1) is in fact the dark matter candidate for this parameter point:

mZ(1) = 1017.433 GeV

m
W

(1)
±

= 1017.439 GeV

mγ(1) = 1428.679 GeV.

Concerning the Sommerfeld phenomenology of the Z(1) this parameter point is very in-

teresting, since all non-Standard Model scalar modes are split-off by & 200 GeV in

comparison to the Z(1), thereby decoupling from the effect (see Sec. 3.2.1). At the

same time, all coupling constants remain within the perturbative regime. We would

like to mention that the point we have chosen here, is by no means special and similar

spectra are obtained with other parameter choices21. The massless modes in the spec-

trum correspond to the Goldstone bosons of the spontaneous symmetry breaking pattern

SU(2)I × SU(2)II × U(1)I × U(1)II → U(1)em. In this particular breaking scheme, there

are seven broken generators, which is why we expect an equal number massless modes

according to the Goldstone theorem [40].

For parameter point (4.47), we count 10 scalar modes at the TeV scale. If we com-

pare this to a common UED spectrum (see remarks in the first paragraph of 4.2.2 or [47]),

we find a mismatch of modes. This is owed to our specific description of the breaking of

the extended SU(2)I × SU(2)II ×U(1)I ×U(1)II gauge group via fundamental scalars22.

We can, however, show that our model is able to mimic UED in a strongly coupled region

of parameter space.

2nd Parameter Point for the Scalar Spectrum - UED Spectrum

We vary the remaining free parameters to fit a UED-like scalar spectrum [47] containing

one Standard Model like Higgs with a mass of O(100 GeV) and four additional Higgs

modes around the TeV scale. In this section, we are able to find parameters in the scalar

potential (4.19) so that all but H0
(0) and the KK-(1)-scalar fields become very massive and

effectively decouple from the theory. Doing so, the additional modes become dispensable

and do not contribute to low energy phenomena we are mainly interested in. However,

for this to happen, we have to resort to a strongly coupled theory, which coincides with

the remarks of e.g. [55]. This observation indicates, that the nonrenormalizable nature of

21This is true, if we keep our restrictions (4.45) in mind.
22Cheng et al. [51] avoid some of the modes by resorting to a nonlinear σ-model to break the gauge

groups and comment, that they can make all but the four scalar KK-(1)-modes very heavy by tuning

the parameters in their scalar potential. For the second parameter point we follow the same spirit.
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the extradimensional theory [47, 49] eventually reenters the picture if one tries to match

the ”deconstructed” with the continuous 5D results23. One exemplary parameter point,

that is consistent with the low energy scalar- and gauge- spectrum of an extradimensional

theory is:

Y =
1

2
; v0 = 246 GeV; λ2 = 9× 108;

v1 = 4000 GeV; v2 = 1100 GeV; λB = 0.7× 108;

g = 0.652 ·
√

2; g′ = 0.357 ·
√

2; M ′ = (5.4× 105)2 GeV2; (4.48)

λ = 0.26 λ1 = 108; M0 = 900 GeV;

As for the first parameter (4.47) point in paragraph 4.5.4 , we use the exact diagonalization

of (4.36),(4.37),(4.38) and (4.43) to find numerical expressions for the scalar spectrum24:

1. The neutral sector

a)
(
Mn

diag

)
: {1279 GeV, 125 GeV, 0 GeV}

b) (Mn
scalar) : {6.8× 107 GeV, 4.7× 107 GeV, 1.6× 107 GeV}

c)
(
Mn

ps

)
: {7.7× 105 GeV, 1277 GeV, 0 GeV, 0 GeV}

2. The charged sector

a)
(
M ch

H

)
: {1.6× 107 GeV, 1277 GeV, 0 GeV, 0 GeV}

Looking at the mass spectrum and the approximate eigenvectors (4.40) and (4.42) for the

diagonalization of (4.35) we identify χ
(3)
1 ↔ a0

(1), ψ1 ↔ H0
(1) and ψ0 ↔ H0

(0). For the UED

fields a0
(1) and H0

(1) we follow the notation introduced in Sec. 4.2.2.

4.6. Complete Gauge Boson Mass Spectrum

Having investigated the vacuum structure and mass spectrum of the scalar sector, we

proceed with the calculation of the gauge boson masses. Most of the methods may be

transferred from the preliminary calculations of SU(2)I × SU(2)II breaking. The vec-

tor boson masses originate from the kinetic terms of the various scalar fields (4.2) after

symmetry breaking. Note, that we prefer to work with the unmodified gauge coupling

constants g and g′ for the moment, consequently there is no additional normalization

factor 1√
2

incorporated yet (see footnote in Sec. 4.5.4).

23In contrast to [22], we pursue a more modest agenda and do not opt for an UV-completion of extra

dimensional models.
24The gauge boson masses are unaffected and remain in the 1 TeV region, since we leave the VEVs vi

untouched.
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4.6.1. The Neutral Gauge Bosons

In the neutral sector we express the gauge boson mass matrix as follows:

(BI W
(3)
I BII W

(3)
II )

(
M̂n

gauge

)2

(BI W
(3)
I BII W

(3)
II )T and subsequently find25:

(
M̂n

gauge

)2

=


1
2
g′2 (v2 + 2v2

1)Y 2 −1
4
gg′v2Y −g′2v2

1Y
2 0

−1
4
gg′v2Y 1

8
g2 (v2 + 4v2

2) 0 −1
2
g2v2

2

−g′2v2
1Y

2 0 1
2
g′2 (v2 + 2v2

1)Y 2 −1
4
gg′v2Y

0 −1
2
g2v2

2 −1
4
gg′v2Y 1

8
g2 (v2 + 4v2

2)

 .

(4.49)

If we rotate the gauge fields to a Z2-even and -odd basis26:

Be/o(x) ≡ Beven/odd(x) =
1√
2

(BI(x)±BII(x)) (4.50)

W
(3)
e/o(x) ≡ W

(3)
even/odd(x) =

1√
2

(
W

(3)
I (x)±W (3)

II (x)
)
, (4.51)

the mass matrix becomes block diagonal and the Z2-even and -odd modes decouple:
1
2
g′2v2

0Y
2 −1

4
gg′v2

0Y 0 0

−1
4
gg′v2

0Y
1
8
g2v2

0 0 0

0 0 1
2
g′2 (v2

0 + 4v2
1)Y 2 −1

4
gg′v2

0Y

0 0 −1
4
gg′v2

0Y
1
8
g2 (v2

0 + 8v2
2)

 (4.52)

A subsequent diagonalization yields the eigenvalues27:

m2
γ(0) = 0 m2

Z(0) =
1

8
v2

0

(
g2 + 4g′2Y 2

)
(4.53)

m2
γ(1),Z(1) =

1

16

(
g2
(
v2

0 + 8v2
2

)
+ 4g′2

(
v2

0 + 4v2
1

)
Y 2

±
√
g4
(
v2

0 + 8v2
2

)2
+ 8g2g′2

(
v4

0 − 4v2
0v

2
1 − 8

(
v2

0 + 4v2
1

)
v2

2

)
Y 2 + 16g′4

(
v2

0 + 4v2
1

)2
Y 4

)
Upon redefining the gauge couplings g and g′ to their 4D values (see footnote in section

4.5.4), we are compatible with the Standard Model gauge boson masses (see e.g.[58]).

In the limit
v20
v1v2
� 1, the eigenvalues of the heavy gauge bosons simplify considerably.

Setting the hypercharge Y = 1
2
, we obtain:

m2
γ(1),Z(1) ≈

1

4

(
g′2v2

1 + 2g2v2
2 ±

√
(g′2v2

1 − 2g2v2
2)2

)
.

25the factor1
2 in the definition of the neutral vector field masses has been accounted for

26”Even” and ”odd” can be understood in terms of the ”KK-parity”, i.e. the discrete Z2 reflection sym-

metry under I ↔ II exchange of our model, which leads to the stability of the dark matter candidate.
27the attribution of the mass eigenvalues to Z(1) and γ(1) is explained in Section 4.6.4
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Figure 4.2.: v1, v2 dependence of mZ(1) and mγ(1) ; Y = 1
2 , v0 = 246 GeV

The dark matter candidate is mostly SU(2) like in the parameter region

v2 < a · v1, a ≈ 0.385. green: mZ(1) , red: mγ(1)

4.6.2. Mass mixing in the Neutral Sector and Weinberg Angles

The neutral gauge boson mass matrix (4.52) is diagonalized by the basis transformation:
γ(0)

Z(0)

γ(1)

Z(1)

 =


γ(0)

Z(0)

neutral4

neutral3

 =


cos θ

(0)
W sin θ

(0)
W 0 0

− sin θ
(0)
W cos θ

(0)
W 0 0

0 0 cos θ
(1)
W sin θ

(1)
W

0 0 − sin θ
(1)
W cos θ

(1)
W




Be

W
(3)
e

Bo

W
(3)
o

 (4.54)

In the Standard Model sector, we immediately obtain the known tree level relations by

demanding a massless photon28.

m2
γ(0)

!
= 0 =

1

8
v2

0

(
−2g′Y cos θ

(0)
W + g sin θ

(0)
W

)2

⇒ tan θ
(0)
W =

2g′Y

g
(4.55)

The Weinberg angle in the dark sector is somewhat more involved and the relationship

between θ
(1)
W and g, g′, v0, v1, v2 and Y was found by transforming (4.52) with the basis

transformation (4.54) and requiring the off-diagonal mass matrix elements in the dark

sector to be zero.

tan
[
2 θ

(1)
W

]
=

4gg′v2
0Y

g2(v2
0 + 8v2

2)− 4g′2Y 2(v2
0 + 4v2

1)

We obtain the analytic solution for θ
(1)
W , which we express in terms of the gauge boson

masses:

θ
(1)
W = arccos


√√√√m2

γ(1)
−m2

W±
(1)

m2
γ(1)
−m2

Z(1)

 . (4.56)

28Weinberg angles are not affected by the redefinition of the gauge couplings, as they only depend on the

rations of the coupling constants and therefore the factor 1√
N+1

drops out.
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In the parameterization of θ
(1)
W we realize the analogy to the Standard Model eq. (A.3),

where m2
γ(0)

= 0. In case of near mass degeneracy between W±
(1) and Z(1), the mixing

angle is small and hence cos θ
(1)
W large. We visualize the v1 and v2 dependence of the dark

Weinberg angle in a contour plot in order to show the parameter region in which the dark

matter candidate is mostly SU(2)-like.
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Figure 4.3.: v1 and v2 dependence of cos θ
(1)
W for Y = 1

2 , v0 = 246 GeV

The dark matter candidate is mostly SU(2) like in the parameter region

v2 < a · v1, a ≈ 0.385 to the right of the red dashed line

Looking at the v1, v2 dependence of the neutral KK-(1) gauge boson masses in fig. 4.2

combined with the v1 and v2 dependence of cos θ
(1)
W depicted in fig. 4.3, we realize that

our dark matter candidate is mostly SU(2) like in the v2 < a · v1, a ≈ 0.385 region of

parameter space.

The seemingly strange a ≈ 0.385 parameter for the ratio v2
v1

is easily understood, once

we realize that, neglecting terms of order v0/v1 for the gauge boson masses, the U(1)

gauge boson has to be as heavy as the SU(2) gauge boson at the ideal mixing point. This

relation implies:

v2

v1

=
g1√
2g2

=
g′√
2g

= 0.387, (4.57)

which readily explains the slope in the v1 − v2 plane.
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4.6.3. The Charged Gauge Bosons

An analog treatment of the charged sector yields the mass matrix:

(
M̂ ch

gauge

)2

=

(
g2v20

8
+

g2v22
2

−1
2
g2v2

2

−1
2
g2v2

2
g2v20

8
+

g2v22
2

)
(4.58)

with eigenvalues: {
m2
W±

(0)

, m2
W±

(1)

}
=

{
g2v2

0

8
,
1

8
g2
(
v2

0 + 8v2
2

)}
(4.59)

and eigenvectors:

EVW±
(0)

= (1, 1)T

EVW±
(1)

= (−1, 1)T

As for the neutral gauge fields, once we employ the redefinition of the gauge couplings

g2 = g√
2

and g1 = g′√
2

we are consistent with the charged Standard Model gauge boson

masses (see e.g. [58]).

Comparing the neutral and charged gauge boson masses, we realize that the mass split-

ting in the SU(2) multiplet of the dark sector is naturally small. For our analysis, we

parameterize the dark sector of (4.52) as:(
M2

1 −∆2

−∆2 M2
2

)
, (4.60)

where M2
1 = 1

2
g′2 (v2

0 + 4v2
1)Y 2 and M2

2 = 1
8
g2 (v2

0 + 8v2
2) are the mass scales of the heavy

U(1) and SU(2) gauge bosons respectively. ∆2 = 1
4
gg′v2

0Y is of the order of the electroweak

gauge boson mass ∆ ≈ 60 GeV. Diagonalizing (4.60) in the limit ∆2 � |M2
1 −M2

2 |, we

obtain the approximate eigenvalues of (4.60):

λ2
2 = M2

2 −
∆4

M2
1 −M2

2

+O[∆]5 λ2
1 = M2

1 +
∆4

M2
1 −M2

2

+O[∆]5

The mass square splitting |∆m2| = |m2
W±

(1)

−m2
Z(1)| = |M2

2 −λ2
2| in the SU(2) gauge sector

is |∆m2| ≈ | ∆4

M2
1−M2

2
|. With M1 ≈ 1.5 TeV and M2 ≈ 1 TeV (see parameter point in section

4.5.4), we obtain a natural mass splitting |δm| = |mW (1)−mZ(1) | ≈ |∆m2

2M2
| ≈ O(10−2) GeV.

Note that ∆m2 and δm are related via:

|∆m2| = |M2
2 − λ2

2| = |(M2 − λ2)(M2 + λ2)| ≈ |(δm)(2M2)|
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4.6.4. Gauge Boson Summary

We obtained analytical results for the masses of all eight gauge bosons. Seven out of the

eight obtained a mass via the Higgs mechanism while the latter one corresponds to the

gauge boson of an unbroken U(1).

After symmetry breaking, our model contains four gauge bosons with masses independent

of v1 and v2. However, their masses are related to the VEV of H̃0 which is responsible for

the breaking of the SU(2)diag ×U(1)diag → U(1). We attribute this pattern to the break-

ing of the Standard Model gauge group SU(2)L × U(1)Y → U(1)em and consequently,

identify the four gauge bosons with W±
(0)-, Z(0)-bosons and the photon of the Standard

Model. Due to this identification, we are able to fix a subset of our model parameters,

these are (v0, g1, g2). Numerical values are given in Appendix. A.

For the following gauge boson mass spectra plots, we set v1 to O(TeV) compliant with a

typical scale for new physics beyond the Standard Model [3]. In particular, we tune the

VEVs v1 and v2 in such a way that the dark matter candidate lies in the mass range of

500 GeV to several TeV. Note that a level crossing occurs in the region where cos θ
(1)
W

changes from ≈ 0 to ≈ 1. This crossover scales directly with the parameter v1 and shifts

upwards (downwards) if one increases (decreases) the value of v1 (see fig. 4.3).

As mentioned before, the Weinberg angle of the dark sector depends on the VEVs v1 and

v2. Subsequently, the ratio of the B-like and W-like fractions in neutral3 and neutral4

change with v2. By looking at the v2 dependence (for fixed v1 = 4000 GeV) of the gauge

boson masses in figure (4.4) it is applicable that a mostly SU(2) like neutral dark matter

candidate is obtained in the regime below the crossing point at v2 ≈ 1550 GeV. In this

particular region of parameter space we identify neutral3 with Z(1) and neutral4 with γ(1).

We would like to direct the attention to the δm − v2 graph (fig. 4.6). In the analysis

of the Sommerfeld enhancement, it turns out that the mass splitting between the DM-

candidate and the partner states of the multiplet is of vital importance and determines

the magnitude of resonant enhancement factors. In the SUSY inspired literature on the

Sommerfeld effect [18, 62] a mass splitting of the order O(10−1) GeV is commonly used.

In our case however, we find a tree-level mass splitting of order O(10−2) GeV in most of

the parameter space, where the SU(2)-like gauge boson is the DM-candidate.
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Figure 4.4.: VEV dependence of the gauge boson mass spectrum

v1 = 4000 GeV, Y = 1
2 .

Above the crossing point v2 ≈ 1550 GeV the DM-candidate becomes U(1)-like.
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Figure 4.5.: Gauge boson mass spectrum - closeup of the level crossing. In regions where the

gauge boson mass changes with v2 the corresponding particle has mostly SU(2)-like

character. Parameter choice: v1 = 4000GeV , Y = 1
2

blue: W±(1) dotted: Z(1) dashed: γ(1)
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Figure 4.6.: Generic mass splitting in the heavy gauge boson sector δm = mW (1) −mZ(1),γ(1)
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4.7. Gauge Fixing and Interactions

In order to quantize a gauge theory consistently, one has to device a mechanism to cancel

or constrain redundant degrees of freedom [40, 41, 58]. In the construction of quantum

electrodynamics (QED) for example, one also faces this problem. The vector field Aµ,

representing the photon, principally contains four degrees of freedom, whereas the physi-

cal polarizations of the photon are the two helicity states, only. The procedure that allows

constraining the artificial degrees of freedom consistently, is called gauge-fixing29.

In this work, we have adapted the gauge fixing prescription of [58] to write down the

gauge fixing Lagrangian (B.1) and derive the ghost interactions in Sec. B.2 for our

SU(2) × SU(2) × U(1) × U(1) theory. The gauge fixing Lagrangian (B.1) fulfills three

roles. First, it allows us to write down the generalized propagators for the gauge fields.

Second, it cancels mixing terms between Goldstone bosons and gauge fields arising from

the kinetic part of the scalar Lagrangian (4.5) and third, it gives rise to gauge param-

eter dependent masses of the Goldstone bosons. For the Sommerfeld calculation within

our minimal vector dark matter model in Sec. 5.5, we employ the unitary gauge for all

massive gauge bosons, where only the physical degrees of freedom are retained from the

start. Therefore, we defer a detailed discussion of technical details of the gauge fixing

procedure, including Goldstone bosons and Faddeev-Popov ghosts, to Appendix B.

We cover the complete gauge fixed scalar sector in B.0.3 as well as the rotation from

the gauge to the mass eigenbasis in paragraph B.1.2. Upon this calculation, we are in

the position to derive the interaction vertices in the physical field basis. In order to do

this, we use the (approximate) eigenvectors obtained from diagonalizing the mass matrices

and construct unitary transformations to relate gauge and mass eigenstates. With these

transformations, we obtain the Lagrangian (4.1) in the physical field basis and are able

to read off the Feynman rules, which are documented in Appendix C.

Here we summarize a list of Feynman rules, that are relevant for the calculation of the

Sommerfeld effect in unitary gauge. We use the conventions of Ref.[58] for the propaga-

tors:

29For an introduction to gauge fixing, c.f. e.g. [40, 41, 58]
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The relevant vertex rules are:

with the couplings:

gA(0)W+
(1)
W−

(1)
=g2 sin θ

(0)
W = e (4.61)

gZ(1)W+
(0,1)

W−
(1,0)

=g2 cos θ
(1)
W

θ
(1)
W ≈0
≈ g2 (4.62)

gZ(0)W+
(1)
W−

(1)
=g2 cos θ

(0)
W (4.63)

with the couplings:

gW+
(1)
W+

(1)
W−

(1)
W−

(1)
=g2

2 (4.64)

gZ(1)Z(1)W+
(1)
W−

(1)
=− g2

2 cos θ
(1)
W ≈ −g

2
2 (4.65)
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5. Sommerfeld Effect

Cosmic ray experiments including PAMELA [7], ATIC [8], HESS [9] and Fermi LAT [10]

have reported an excess of electrons, positrons and photons in the 10 GeV - (at least)

100 GeV region, which might be interpreted as annihilating dark matter [11, 13, 14, 63]1.

In order to explain the cosmic ray ”anomalies” from a particle physics perspective, the

Sommerfeld effect has been invoked by a number of authors (see e.g. [14, 18, 34, 46, 65]).

For reconciling the cosmic ray anomalies with the WIMP miracle, one has to device a

mechanism that provides current day annihilation cross sections more than O(100) larger

[66] than the ones during freeze-out (〈σv〉 ∼ 3× 10−26cm3s−1, for details see Sec. 3.1). In

the context of a supersymmetric dark matter scenario, Hisano et al. [18] have proposed

a velocity dependent cross section, generated by the so-called ”Sommerfeld effect” that

fulfills exactly this requirement. Additionally, boost factors of O(> 104) can arise in the

presence of long range interactions due to near threshold bound states [12] of dark matter

pairs.

In this chapter we are concerned with the main aspect of this thesis: the derivation

of the Sommerfeld factor in a model with spin-1 vector dark matter, which has not been

addressed in the literature so far. We have already discussed the general aspects of the

Sommerfeld effect in paragraph 3.2.1 and now focus on the machinery, necessary to deal

with bound states in the language of field theory (Sec. 5.1). In this description, we en-

counter the ”ladder” approximation scheme and show that box diagrams are enhanced in

the kinematic region near the pole of a bound state (Sec. 5.2). Before we finally turn

our attention to vector dark matter (Sec. 5.5), we are going to review an existing article

on the Sommerfeld effect for supersymmetric fermionic dark matter (Sec. 5.3) in order to

identify possible issues of the calculational framework on a known example.

1Note that astrophysical explanations have been suggested in the literature as well, c.f. e.g.[35, 36, 37,

64]



5.1 General Features of the Bethe-Salpeter Ansatz 45

5.1. General Features of the Bethe-Salpeter Ansatz

The Bethe-Salpeter (BS) equation principally allows for a rigorous treatment of relativis-

tic bound states in the language of quantum field theory and was proposed in its general

form in 1951 [67]. In our case, this framework is particularly useful, since it naturally

accommodates the nonperturbative resummation of field theory diagrams. For a compre-

hensive introduction to the BS-ansatz, we refer to the excellent review articles (e.g. [68,

69]) and quantum field theory textbooks [70, 71]. We do not want to repeat the entire

derivation which is nicely documented in the articles referenced above, but only state im-

portant intermediate results for scalar particles that can be transferred to vector bosons in

a straight forward manner. We review the result given by Nakanishi [68] for the diagonal

interaction of scalar particles a + b → a + b. A graphical representation of the Bethe-

Salpeter equation in momentum space (5.1) is given in figure 5.1. G(p, q, P ) denotes the

full scattering Greens function and I(p, p′;P ) the sum of all 2-particle irreducible (2PI)

diagrams (external propagators not included). The notion ”reducible diagram” is char-

acterized by the fact, that the diagram can be separated into two unconnected parts by

”horizontally” cutting two particle lines. Correspondingly, a diagram is called 2PI, if such

a decomposition is not possible [71]. The 2PI kernel I still contains an infinite number

of Feynman diagrams, yet, the particular form suggested in fig.5.1 has the decisive ad-

vantage that it already contains an infinite number of interactions, even if I(p, p′;P ) is

calculated only to lowest order in perturbation theory [71]. This feature is relevant for

the description of bound states, where, in principle, the constituent particles interact an

arbitrary number of times [67].

Figure 5.1.: Graphical representation of elastic 2→2 scattering event for scalar particles. P

denotes the momentum of the center of mass, p, p′ and q denote relative momenta. I

represents all 2-particle irreducible (2PI) graphs in the a+ b→ a+ b scattering process

(external lines not considered). G(p, q, P ) denotes the full scattering Greens function.

The iteration in fig. 5.1 insinuates that all irreducible Feynman graphs are connected in

such a way, that one obtains a complete set of all possible diagrams. This statement

holds, since every reducible diagram can be expressed as a sum of irreducible ones [71].
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The graphical representation of the Bethe-Salpeter equation (fig. 5.1) can subsequently

be transcribed into an analytic expression:[
∆′F,a(ηaP + p)∆′F,b(ηbP − p)

]−1
G(p, q;P ) = δ(4)(p− q) +

∫
d4p′I(p, p′;P )G(p′, q;P ). (5.1)

∆′F,i denotes the full scalar propagator for particle i, to be approximated by a free

propagator (∆F,i) in the so called ”ladder”approximation later on. The η’s are in principle

arbitrary real quantities with the property ηa + ηb = 1. It is instructive to choose them

in analogy to center of mass variables in the non-relativistic case, i.e. ηa/b =
ma/b
ma+mb

. To

avoid any confusion, let us stress beforehand that we are going to follow Iengo and use a

somewhat different definition of P . By introducing the Bethe-Salpeter wavefunction for

a bound state

φB,r(xa, xb;PB) = 〈0|T [φa(xa)φb(xb)] |B, r〉 (5.2)

φ̄B,r(xa, xb;PB) = 〈B, r|T [φ†a(xa)φ
†
b(xb)]|0〉, (5.3)

it is possible to recast eq. (5.1) into a more common form. |B, r〉 represents a state

with 4-momentum PB, T denotes the time ordering operator and the index r accounts for

possible bound state degeneracies. Translation invariance allows one to define the reduced

amplitude φB,r(x;PB), with X = ηaxa + ηbxb and x = xa − xb:

φB,r(xa, xb;PB) = (2π)−3/2e−iPBXφB,r(x;PB) (5.4)

φ̄B,r(xa, xb;PB) = (2π)−3/2e+iPBX φ̄B,r(x;PB).

The transformation procedure works as follows: one inserts a complete set of states |B, r〉
into the scattering Greens function G(xa, xb; ya, yb):

G(xa, xb; ya, yb) = 〈0|T
[
φa(xa)φb(xb)φ

†(ya)φ
†(yb)

]
|0〉 (5.5)

to find the contribution from the intermediate states |B, r〉2:

n∑
r=1

∫
d4P φB,r(xa, xb;P )φ̄B,r(ya, yb;P )θ(P0)δ(P 2 − P 2

B)θ(X0 − Y0)

(5.4)
=

n∑
r=1

∫
d3P

2ωB (2π)3
φB,r(x;PB)φ̄B,r(y;PB)

× e−iωB(X0−Y0)+i ~P ( ~X−~Y ) θ(X0 − Y0) (5.6)

ωB =

√
~P 2 + P 2

B

2In principle we should choose θ(min[(xa)0, (xb)0]−max[(ya)0, (yb)0]) = θ(X0−Y0− 1
2 |x0|− 1

2 |y0|) in stead

of θ(X0 − Y0), because each of the constituent particles in the initial state should be chronologically

earlier than any of the final state particles. This change, however leaves the residue at P0 = ωB

unaltered and only adds a phase to the integrand.
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Representing the Heaviside step function θ in terms of a contour integral

θ(z) =
i

(2π)

∫
dk

e−ikz

k + iε
, (5.7)

eq. (5.6) can be written as:

i
n∑
r=1

∫
d4P

(2π)4
φB,r(x;PB)φ̄B,r(y;PB)

e−iP (X−Y )

2ωB(P0 − ωB + iε)
. (5.8)

Adding the contributions from the anti-particle states of |B, r〉, i.e. contributions with

denominator 1
2ωB(P0+ωB−iε)

, the Fourier transform of the scattering Greens function takes

the form:

G(p, q;P ) =
i
∑n

r=1 φB,r(p;PB)φ̄B,r(q;PB)

P 2 − P 2
B + iε

+ regular terms (5.9)

At the pole of the bound state, the Bethe-Salpeter equation (5.1) reduces to its homoge-

neous manifestation:[
∆′F,a(ηaPB + p)∆′F,b(ηbPB − p)

]−1
φB,r(p;PB) =

∫
d4p′I(p, p′;PB)φB,r(p

′;PB) (5.10)

For a more thorough treatment of the derivation of the Bethe-Salpeter equation and com-

ments on the normalization of the BS-amplitude, we refer directly to [68]. Transferring

the results from the scalar case given above to the situation of vector particle scattering

is straight forward. One has to replace the scalar propagators in eq. (5.10) by vector

boson ones and φB,r now represents a bound state of two vector bosons carrying the ap-

propriate Lorentz structure. Off-diagonal interactions are incorporated by replacing the

delta-function in eq. (5.1) by the appropriate four-point function.

We would like to mention that some authors (e.g. [72]) prefer to start their work with ver-

tex functions Γ instead of the Bethe-Salpeter amplitude φ. The two quantities, however,

are closely related:

φ(p;P ) =
[
∆′F,a(ηaP + p)∆′F,b(ηbP − p)

]
Γ(p;P ). (5.11)

Practically, it is impossible to solve the Bethe-Salpeter equation without any approxima-

tion [70] and one has to device some truncation scheme to simplify this integral equation.

Probably the most common truncation procedure used throughout the literature is the

so called ”ladder” approximation. In this method, one neglects all but the lowest order

diagrams in the interaction kernel I and replaces the full propagators ∆′ by the free ones

∆ [68]. In the next section we would like to illustrate the reasoning behind the special

choice of ”ladder”-type diagrams for the description of bound states. For this purpose, we

investigate positronium as the paradigm system in QED.
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5.2. The Ladder Approximation - Discussion of

Positronium Bound States à la Landau Lifshitz

Reviewing the chapter on positronium in Landau/Lifshitz [72], we are going to highlight

the reason for summing up ladder-type diagrams in the nonrelativistic field theory de-

scription of bound states3. In comparison to the tree level diagrams in QED, all one loop

amplitudes come with an additional factor of α, the electromagnetic coupling constant.

As we will show in an order of magnitude estimate, the anomalously large contribution of

box diagrams is the result of a small denominator in the low energy limit. Consequently,

the size of the one-loop amplitude is comparable to the tree level case and the perturbative

treatment breaks down. Comparing the normal box diagram fig. 5.2(a) with its crossed

version fig. 5.2(b), we come to realize, that the normal box diagrams are dominant close

to the bound state pole. Understanding this feature in the one-loop amplitudes explicitly,

we conjecture that the suppression of diagrams with crossed internal exchange particle

lines also holds for higher order ladder diagrams.

For positronium, the electron and positron momenta p∓ are expressed in the center of

mass system (CMS):

~p− = −~p+ = ~p ~p′− = −~p′+ = ~p′. (5.12)

External lines are NOT assumed to be on shell, i.e. p2 6= m2 → ε+ 6= ε−, but ~p− = −~p+

p− = (ε−, ~p) p+ = (ε+,−~p)

p′− =
(
ε′−, ~p

′
)

p′+ =
(
ε′+,−~p′

)
(5.13)

ε− + ε+ = ε′− + ε′+

In analogy to the hydrogen problem, the binding energy of a composite state is:

EB ≈ mα2 � m , (5.14)

where m denotes the mass of the external particles (which will correspond to the mass

of the dark matter candidates later on) and α = e2

4π
is the finestructure constant. In the

neighborhood of the bound-state pole of the scattering amplitude it is necessary that:

|~p| ∼ |~p′| ∼ mα� m

|ε− −m| ∼ |ε+ −m| ∼
~p2

m
∼ mα2, (5.15)

3In the nonrelativistic instantaneous limit, the dominant term of the potential comes from the lowest

order 2PI diagram, i.e. the one vector boson exchange [23]. The reason why this is in fact the case

becomes clear once we investigate the analytical structure of box diagrams in the instantaneous

approximation. As we will see in this section, the anomalous enhancement of boxs is a direct result of

the interplay between the poles of the two heavy particle propagators in the kinematic bound state

region. Therefore, we neglect triangle diagrams in our non-abelian gauge theory to leading order.
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which reflects the fact that the kinetic energy of the external states should be of the same

order of magnitude as the potential binding energy in order to form a loosely bound state.

We continue the discussion of the one-loop box diagrams, depicted here:

(a) (b)

Figure 5.2.: Box diagrams relevant for the description of positronium in QED.

(a) Box diagram (b) crossed photon lines

External momenta are taken to be ingoing for initial states and outgoing for final

state particles. α, β, γ, δ denote Dirac indices.

For the vertex function4 Γ of diagram 5.2(a), one finds:

Γαβγδ = −i
∫

d4q

(2π)4
(ieγνiSF (q)ieγµ)αβDνρ(q − p′−)(ieγσiSF (q − p+ − p−)ieγρ)γδDµσ(p− − q)

= +ie4

∫
d4q

(2π)4
(γνSF (q)γµ)αβDνρ(q − p′−)(γσSF (q − p+ − p−)γρ)γδDµσ(p− − q). (5.16)

Dνρ and Dµσ denote photon propagators in the Feynman gauge, with the convention

Dξ=1
µν (k) = −igµν

k2+iε
. SαβF (q) =

(/q+m)αβ

q2−m2+iε
are fermionic propagators for the electron and

positron. The important qµ = (q0, ~q) loop-momentum range is close to the poles of both

fermionic propagators SF simultaneously, as such poles potentially cancel the usual one-

loop supression (by a factor ∼ e2) compared to the tree level diagram. In the relevant

parameter region |~q| and |q0 −m| are small. For the fermion propagator we write:

SF (q) =
γ0q0 − ~γ~q +m

(q0 +m)(q0 −m)− ~q 2 + iε
. (5.17)

To leading order, we set all values q0 = m, unless we find expressions of the form q0 −m
where subleading corrections are relevant.

=
γ0q0 − ~γ~q +m

(q0 +m)
[
(q0 −m)− ~q 2

q0 +m︸ ︷︷ ︸
≈2m

+ iε̃
] (5.18)

4The scattering amplitude A involves the four-point vertex function Γαβγδ and the polarization spinors

u, ū, v, v̄ of the external states. It is convenient to ignore the polarizations and work with the vertex

part Γ itself [72].
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Due to (5.15), we also neglect the spatial component of q in the numerator:

≈ γ0m+m

(2m)
[
(q0 −m)− ~q 2

2m
+ iε̃

] =
1

2
(γ0 + 1)

1

(q0 −m)− ~q 2

2m
+ iε̃

(5.19)

The second fermionic propagator in the box diagram 5.2(a) is a little more involved:

SF (q − p− − p+) =
γ0

≈−m︷ ︸︸ ︷
(q0 − ε− − ε+)−~γ(~q

=~0 in the CMS︷ ︸︸ ︷
−~p− − ~p+ ) +m

(q0 − ε− − ε+ +m) (q0 − ε− − ε+ −m)︸ ︷︷ ︸
≈−2m

−(~q − ~p− − ~p+)2 + iε
(5.20)

In the center of mass system and the kinematic region close to the bound state pole

(|~q| � m), the propagator reduces to:

SF (q − p− − p+) ≈ γ0(−m) +m

(−2m)
(

(q0 − ε− − ε+ +m)− ~q 2

−2m
+ iε
−2m

)
=

1

2
(γ0 − 1)

[
1

q0 − ε− − ε+ +m+ ~q 2

2m
− iε̃

]
(5.21)

The poles of the two fermion propagators are at q0 = m+ ~q 2

2m
− iε̃ and q0 = ε−+ ε+−m−

~q 2

2m
+ iε̃ respectively. From the Feynman pole prescription, one immediately realizes, that

they are on opposite sides of the real axis in the complex q0 plane.

Contracting the ieγ-vertices with the photon propagators5 Dνρ and Dµσ in (5.16), leads

to structures of the form γν(1)Dνρ(q− p′−)γρ(2) ∼
γ(1)νγ

ν
(2)

(q−p′−)2
and γµ(3)Dµσ(p− − q)γσ(4) ∼

γ(3)µγ
µ
(4)

(p−−q)2 .

Here we use the notation (1), (2), (3) and (4) to label the Dirac structure of different γ-

matrices. Note that γν and γρ originate from different spinor chains. The same is true for

γµ and γσ. One can split this interaction into an instantaneous and retarded part [70]:

γ(i)µγ
µ
(j)

k2
= −

γ0
(i)γ

0
(j)

~k2︸ ︷︷ ︸
instantaneous interaction

+

[
γ0

(i)γ
0
(j)(k

0)2

(k2)(~k2)
−
~γ(i)~γ(j)

k2

]
︸ ︷︷ ︸

noninstantaneous corrections

, (5.22)

{i, j} ∈ {{1, 2}, {3, 4}}, k ∈ {(q − p′−), (p− − q)}. The second part of (5.22) contains

both retardation and magnetic interactions [70] and will be treated as perturbation. To

zeroth-order in the classical limit, one only keeps the instantaneous contribution of (5.22).

5The photon propagators are taken in the t’Hooft-Feynman gauge ξ = 1.
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In this approximation, we are able to evaluate eq. (5.16). In the numerator, one has

to carefully contract the correct Dirac structure. We calculate the q0 integral by closing

the contour in either half of the complex q0 plane and use residue calculus to obtain:

Γαβγδ ∼ α2

∫ 1
2
(γ0 + 1)αβ

1
2
(γ0 − 1)γδ

∼(mα)3︷︸︸︷
d3q

(~q − ~p′−)2︸ ︷︷ ︸
∼(mα)2

(~p− − ~q)2︸ ︷︷ ︸
∼(mα)2

(2m− ε− − ε+ +
~q 2

m
)︸ ︷︷ ︸

∼ ε±−m ∼ mα2

. (5.23)

In an order of magnitude estimate, dropping the Dirac structure in the numerator, one

ends up with a contribution from 5.2(a) [72]:

Γ ∼ α2 (mα)3

(mα)4mα2
=

1

m2α
, (5.24)

which is comparable to the tree-level value. In a similar way, one can evaluate the crossed

diagram in fig. 5.2(b). For the fermion propagator that carries momentum q, no work has

to be done and we can readily transfer the result from eq. (5.17). Due to the crossing

of the photon lines, the momentum flow will be different which leads to the fact, that

fig. 5.2(b) does not significantly contribute to the scattering amplitude in the vicinity of

the bound state pole. For the second fermion propagator in diagram 5.2(b), one finds:

SF (p− − p′+ − q) =
γ0

−m︷ ︸︸ ︷
(ε− − ε′+ − q0) +~γ(~p− − ~p′+ − ~q) +m

(ε− − ε′+ − q0 −m)︸ ︷︷ ︸
−2m

(ε− − ε′+ − q0 +m)− (~p− − ~p′+ − ~q)2 + iε
(5.25)

Ignoring the spatial components in the numerator, we are left with:

SF (p− − p′+ − q) ∼
1

2
(γ0 − 1)

 −1

q0 − ε− + ε′+ −m−
(~p−−~p′+−~q)2

2m
+ iε̃

 (5.26)

In this approximation, the poles of the two fermion propagators are on the same side of the

real axis in the complex q0 plane and we can close the contour in the region without poles.

According to the residue theorem, the integration gives zero which indicates, that diagram

5.2(b) only gives subdominant contributions to the scattering amplitude. Physically, we

can understand this in terms of the picture pointed out by Bethe and Salpeter [67], relying

on a perturbative approach. In the ladder approximation one can always find a Lorentz

system where only one virtual field quantum is excited at a time. According to the

argument, as long as g is sufficiently small, the probability of ”finding two field quanta

simultaneously” is sufficiently suppressed. Including such diagrams would give rise to
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higher order corrections which are necessary if one is interested in the hyperfine splitting

of the bound state energy levels (see Itzykson/Zuber [70] for a more detailed treatment).

Now that we have introduced the concept of bound states in the language of the Bethe-

Salpeter equation in chapter 5.1 and motivated the ”ladder” approximation by considering

analytical features of one-loop amplitudes for positronium, we turn our attention to an

existing application of this computational machinery.

5.3. Derivation of the Sommerfeld Enhancement à la

Iengo

In his 2009 paper, Sommerfeld enhancement: general results from field theory diagrams

[23], Iengo closely follows the treatment of bound states in Itzykson/Zuber [70] to de-

rive the Sommerfeld enhancement factor by summing up ladder diagrams. He obtains

the Bethe-Salpeter kernel which leads to an effective Schrödinger equation in the non-

relativistic limit. We present Iengo’s derivation [23] for fermionic dark matter6 to under-

stand the important points of the calculation in detail and carry over as many steps as

possible to the case of vector dark matter. A(p, p′, P0) denotes the full amplitude, includ-

ing nonperturbative effects, for the annihilation process of two dark matter particles into

Standard Model states:

χ(p1) + χ(p2) −→ a1(p′1) + a2(p′2)︸ ︷︷ ︸
SM states

(5.27)

The kinematics is described by a set of center of mass (CMS)-like momenta7:

P =
p1 + p2

2
=
p′1 + p′2

2
p =

p1 − p2

2
=
p′1 − p′2

2
. (5.28)

In this frame of reference, one finds:

P0 =
√
~p 2 +m2

χ, ~P = ~0 (5.29)

p0 =
√
m2

1 + ~p 2
1 −

√
m2

2 + ~p 2
2

m1=m2= 0. (5.30)

As we have outlined in section 3.2.1, in order for the Sommerfeld enhancement to be

significant, one has to consider a setup where the mass of the force carrier mφ is much

smaller than the dark matter mass mχ (see also [11]).

6Aspects of the Sommerfeld effect for fermionic dark matter have also been discussed by other authors,

see e.g. [18, 38, 46, 14].
7Iengo’s momentum convention is somewhat unorthodox, usually one finds the definition P = p1 + p2,

i.e. a difference by a factor 1
2
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For fermionic external states it is advantageous to label the γ−matrices from different

vertices by an additional index for book keeping purposes. In this setup, a boson8 exchange

between the fermions generically leads to an integral kernel of the form [70]:

γ(1)µγ
µ
(2)

k2 −m2
φ

= −
γ0

(1)γ
0
(2)

~k2 +m2
φ︸ ︷︷ ︸

instantaneous interaction

+

[
γ0

(1)γ
0
(2)(k

0)2

(k2 −m2
φ)(~k2 +m2

φ)
−

~γ(1)~γ(2)

k2 −m2
φ

]
︸ ︷︷ ︸

noninstantaneous corrections

(5.31)

One conveniently writes (5.31), so that the non-relativistic instantaneous approximation

is evident. In this context, instantaneousness denotes the absence of relative energy co-

ordinates k0, which corresponds to the absence of a relative time variable after Fourier

transformation.

Following the analytical structure of the Bethe-Salpeter ansatz (Sec. 5.1) to accommo-

date the resummation of field theory diagrams, the full amplitude A satisfies the recursion

relation [23] (Dirac indices are not shown explicitly):

A(p, p′, P0) = A0(p, p′, P0)− ig2

∫
d3qdq0

(2π)4

γ0
(1)γ

0
(2)

(~p− ~q)2 +m2
φ

S2(q, P )A(q, p′, P0) (5.32)

with: S2(q, P ) =
(/P + /q +mχ)1

(P + q)2 −m2
χ + iε

·
(/P − /q +mχ)2

(P − q)2 −m2
χ + iε

,

written in the instantaneous limit of the ”ladder” approximation scheme for the φ ex-

change. At this point, we would like to mention some of the problems related to the

instantaneous Bethe-Salpeter ansatz, which are rarely discussed in the articles on the

Sommerfeld effect that take this approach. The question of how to derive the proper

non-relativistic limit of the Bethe-Salpeter equation has been the subject of extensive

discussion especially in the late sixties (see the excellent review of Nakanishi [68] and

references therein). Retarded interactions, connected to a relative time variable, inher-

ent to a full relativistic treatment of the physical situation are normally considered as

an approximation similar to higher order corrections of the interaction kernel [70]. In

the late seventies and early eighties, effective models for quark bound states have also

led to an era of increased interest in the problem of deriving a non-relativistic potential

from field theory [73, 74] and some improvements have been suggested, such as the intro-

duction of a noninstantaneous gauge [73]. Despite the deficiencies mentioned above, the

non-relativistic instantaneous ladder approximation of the Bethe-Salpeter equation leads

to a Lippmann-Schwinger-type equation with a nonrelativistic interaction potential which

presents a reasonable result in the weak coupling limit [74]. As a first approximation we

will therefore continue our analysis with three-dimensional propagators as in eq. (5.31)

8The gauge boson propagator is taken to be in the t’Hooft-Feynman gauge ξ = 1.
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for the exchange particles following other publications on the Sommerfeld phenomenology

of dark matter annihilations [23, 38, 75].

Similar to the pictorial representation of the 4-point scattering Greens function in section

5.1, we represent the recursion step for the dark matter annihilation amplitude A(q, p′, P0)

diagrammatically9:

Figure 5.3.: Graphical representation of 2→2 scattering iteration for lowest order interaction

kernel in the ladder approximation. Momentum flow follows the propagator arrows.

The external momenta are taken off-shell in the course of the computation and are put to

their on-shell values at the very end. We evaluate the loop integration in (5.32) by closing

the contour in the complex q0-plane and disregarde possible singularities of the amplitude

A(q, p′, P0) itself, which would give rise to subleading contributions in the non-relativistic

limit [23]. In (5.32), A0(p, p′, P0) represents the bare annihilation amplitude, neglecting

the multiple interactions between the incoming dark matter states. In case of WIMP

annihilation, A0(p, p′, P0) is in principal accessible via perturbation theory.

It turns out to be convenient, to represent the fermionic propagators as [70]:

SF (p) =
/p+m

p2 −m2 + iε
=

[
Λ+(~p)

p0 − ω + iε
+

Λ−(~p)

p0 + ω − iε

]
γ0 (5.33)

and introduce the notation10:

H(~p) = ~α · ~p+ γ0 ·m

Λ±(~p) =
ω ±H(~p)

2ω
(5.34)

with: H(~p)Λ±(~p) = ± ωΛ±(~p)

ω =
√
~p 2 +m2, ~α = γ0 · ~γ

9In comparison to Sec. 5.1, we have rotated the diagrams 90◦.
10H(~p) depends only on the 3-momentum ~p. In the CMS reference frame, the ~P = ~0 dependence in

S2(q, P ) of eq. (5.32) drops out in the numerator, which will be different for vector particles in a

general gauge.
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The energy projectors Λ± effectively act as the amplitude of the associated pole in the

complex q0 plane. Plugging the right hand side of eq. (5.33) into the Bethe-Salpeter

amplitude (5.32), one obtains:

A(p, p′, P0) =A0(p, p′, P0)

− ig2

∫
d3q

(2π)3

γ0
(1)γ

0
(2)

(~p− ~q)2 +m2
φ

∫
dq0

2π

[ pole 1︷ ︸︸ ︷
Λ+

1 (~q)

q0 + P0 − ω + iε
+

Λ−1 (~q)

q0 + P0 + ω − iε

]
γ0

(1)·[
−Λ+

2 (−~q)
q0 − P0 + ω − iε

+
−Λ−2 (−~q)

q0 − P0 − ω + iε︸ ︷︷ ︸
pole 2

]
γ0

(2) · A(q, p′, P0) (5.35)

The fermion propagators have poles at:

q0 = ω − P0 − iε q0 = −(ω − P0) + iε

q0 = − (ω + P0) + iε q0 = (P0 + ω)− iε

Figure 5.4.: Poles in the q0 plane for fermionic dark matter candidates in the Bethe-Salpeter

equation for the scattering amplitude

The contour is arbitrarily closed in the lower half of the complex q0 plane.

In order to evaluate the contour integral in (5.35), one uses ordinary residue calculus and

ignores possible poles of the amplitude A(q, p′, P0) (to be justified below).



56 Sommerfeld Effect

• pole 1 @ q0 = ω − P0 (ignoring contributions from A(q, p′, P0)):

g2

∫
dq0

2πi

[
Λ+

1 (~q)

q0 + P0 − ω + iε

]
γ0

(1)

[
−Λ+

2 (−~q)
q0 − P0 + ω − iε

+
−Λ−2 (−~q)

q0 − P0 − ω + iε

]
γ0

(2)

=

minus from clockwise

+g2(−2πi)

2πi︸ ︷︷ ︸
integration around pole

Λ+
1 (~q)γ0

(1)

[
−Λ+

2 (−~q)
(ω − P0)︸ ︷︷ ︸

=q0

−P0 + ω
+

−Λ−2 (−~q)
(ω − P0)︸ ︷︷ ︸

=q0

−P0 − ω

]
γ0

(2)

= −g2Λ+
1 (~q)

[
Λ−2 (−~q)

2P0

− Λ+
2 (−~q)

2(ω − P0)

]
γ0

(1)γ
0
(2) (5.36)

• pole 2 @ q0 = ω + P0

g2

∫
dq0

2πi

[
Λ+

1 (~q)

q0 + P0 − ω + iε
+

Λ−1 (~q)

q0 + P0 + ω − iε

]
γ0

(1)

[
−Λ−2 (−~q)

q0 − P0 + ω − iε

]
γ0

(2)

=
+g2(−2πi)

2πi

[
Λ+

1 (~q)

(P0 + ω) + P0 − ω
+

Λ−1 (~q)

(P0 + ω) + P0 + ω

] [
−Λ−2 (−~q)

]
γ0

(1)γ
0
(2)

= −g2

[
Λ+

1 (~q)

(2P0)
+

Λ−1 (~q)

2(P0 + ω)

] [
−Λ−2 (−~q)

]
γ0

(1)γ
0
(2) (5.37)

Note that (ω−P0) =
√
~q 2 +m2

χ−
√
~p 2 +m2

χ is a small quantity in the limit mχ � |~q|, |~p|
(mχ →∞ is the static limit). Only the pole at q0 = ω− P0 leads to a small denominator

and therefore an anomalously large contribution to the amplitude. To leading order, we

drop all but these terms in the instantaneous approximation and the non-relativistic limit.

Conceptually, the procedure introduced by Iengo is equivalent to the Landau/Lifshitz

method [72], where one analyzes the pole structure of the one-loop diagrams to find en-

hanced contributions.

The approximation of ignoring possible poles of the amplitude A(q, p′, P0) in the q0-

integration of eq. (5.35) is justified, considering the first iteration of said equation (see also

[76]). For the bare amplitude A0(q, p′, P0), we use the tree-level graph with a massive par-

ticle exchange (Φ with mass m̂ of the order of the dark matter candidate or above11). We

follow the outlines in Appendix A of Iengo’s work [23], treat the final state Standard Model

particles as massless and use the notation p′0 = ω(~p), ~p′ = ω(~p)~n, ω(~p) =
√
~p 2 +m2

χ.

The singularities of this amplitude stem from the denominator of the massive propagator.

(q − p′)2 − m̂2 + iε = [q0 − (u(q, p) + ω(p)) + iε][q0 + (u(q, p)− ω(p))− iε] (5.38)

where u(p, q) =
√
w(~p)2 + ω̂(~q)2 − 2~q · ~n ω(~p) and ω̂(~q) =

√
~q 2 + m̂2

Plugging these expressions back into the first iteration of eq. (5.35) leads to a contour

11This is due to the discrete Z2-symmetry that guarantees the stability of the dark matter candidate.

This symmetry implies that all vertices contain only even number of heavy parity-odd states.
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integral of the form:∫
dq0N(q0, ~q, ~p)×

1

[q0 − (ω(q)− (ω(p) + iε)] [q0 + (ω(q) + (ω(p)− iε)]
1

[q0 − (ω(q) + (ω(p) + iε)] [q0 + (ω(q)− (ω(p)− iε)]
(5.39)

1

[q0 − (u(q, p) + ω(p)) + iε][q0 + (u(q, p)− ω(p))− iε]
The numerator N(q0, ~q, ~p) does not play a crucial role in the integration since all singu-

larities were already factored out. Closing the contour in the lower complex q0 plane we

have to consider three poles.

1. q0 = ω(q)− ω(p)

2. q0 = ω(q) + ω(p)

3. q0 =
√
w(p)2 + ω̂(p)2 − 2~q · ~n · ω(p) + ω(p)

Similar to the calculations carried out in eq. (5.36) and eq. (5.37) one realizes that the

first pole leads to a small denominator ω(q) − ω(p) in the limit of large mass mχ which

is unrelated to the poles of A itself. Consequently, we ignore the poles of the amplitude

A(q, p′, P0) as a first approximation. This prescription even remains valid for higher or-

der iterations within the instantaneous treatment, since the propagator that forms the

ladder-steps is independent of q0 in this limit (see eq. (5.31)), therefore not contributing

any poles to the integrand.

Keeping only the leading contribution of (5.36), one obtains the approximate Bethe-

Salpeter equation for the scattering amplitude from (5.35).

A(p, p′, P0) = A0(p, p′, P0) +
g2

(2π)3

∫
d3q

1

(~p− ~q)2 +m2
φ

Λ+
1 (~q)Λ+

2 (−~q)
2(ω − P0)

A(~q, p′, P0) (5.40)

The γ0’s of the fermionic propagators have been canceled by the ones contained in the

φ−boson exchange kernel.

In eq. (5.40), the leading term (in the m→∞ limit) for Λ+
1 Λ+

2 is given by:

Λ+
1 (~q)Λ+

2 (−~q) =

[
ω + ~α · ~q + γ0mχ

2ω

]
1

[
ω − ~α · ~q + γ0mχ

2ω

]
2

|~q|�m
≈
ω≈m

1

2
(1 + γ0)1

1

2
(1 + γ0)2

In this approximation, one can use the projector properties of Λ± = 1
2
(1 ± γ0), i.e. the

relation Λ±Λ± = Λ±, to project (5.40) onto the A++-subspace12[70]. It is important to

12In this subspace, the Dirac-structure of the numerator factors out. We use the notation A++ ≡ Λ+Λ+A,

we are going to drop the ++ indices for the rest of the discussion. Note that Iengo claims that γ0 ∼ 1

in the nonrelativistic limit, so that Λ+Λ+ ∼ 1.
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note that this approximation neglects ~q dependent terms in the numerator even though

q acts as the integration variable. We assert this approximation is justified, considering

the relevant q region. The major contribution to the scattering amplitude is fixed by the

bound-state pole condition which subsequently fixes q to be small. Therefore the integral

is effectively evaluated at this particular pole only and the suppression of the numerator

with O(~q 2)
m2
χ

allows us to drop these terms as a first approximation. We will employ this

kinematical fact excessively to simplify the Sommerfeld calculations for vector DM (see

section 5.5). To continue with Iengo’s analysis, we expand the small denominator in terms

of three-momenta to leading order:

1

2(ω − P0)
=

1

2
[√

~q 2 +m2
χ −

√
~p 2 +m2

χ

]
≈ 1

2mχ

[
1 + 1

2
~q
m2
χ
− (1 + 1

2
~p
m2
χ
)
]

=
1

~q 2

mχ
− ~p 2

mχ

≡ 1
~q 2

2mr
− E

,

introduce the reduced mass mr = mχ
2

and the total non-relativistic energy E .

E ≡
2(P 2

0 −m2
χ)

2mχ

≈ ~p 2

2mr

In the Bethe-Salpeter approach, it is conventional to introduce the Bethe-Salpeter wave-

function of the bound state [67], which can be thought of as a generalized form factor. To

leading order in the nonrelativistic limit (p0 = 0, q0 ≈ ω − P0 ≈ 0), one defines13:

A(~q, p′, P0) =(
~q 2

2mr

− E)Ψ̃E(~q, p
′) (5.41)

and eq. (5.40) becomes:

(
~p 2

2mr

− E)Ψ̃E(~p, p
′) =A0(~p, p′, P0) +

∫
d3q V (~p, ~q) Ψ̃E(~q, p

′) (5.42)

V (~p, ~q) =
g2

(2π)3

1

(~p− ~q)2 +m2
φ

Eq. (5.42) has the form of an effective Schrödinger equation for the bound state amplitude

and the interaction potential can be read off in momentum space14.

13Note that p is independent of p0 in the frame of reference we work in (see eq. (5.30)), so that

A(p, p′, P0)→ A(~p, p′, P0).
14Note that eq. 5.42 deviates from a common Schrödinger equation by the presence of the source term

A0(~p, p′, P0) which encodes the short range interaction in the final annihilation step.
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5.4. Iengo’s Solution of the Schrödinger Equation

Iengo continues to derive an analytic expression of the solution to the Schrödinger equa-

tion. It is advantageous Fourier transform of the expressions in (5.42):

1

~k2 + µ2
=

1

4π

∫
d3r

e−i
~k·~r−µr

r
(5.43)

α =
g2

4π
(5.44)

ΨE(~r) =

∫
d3pe+i~p·~rΨ̃E(~p, p

′) (5.45)

U0(~r) =

∫
d3pe+i~p·~rA0(~p, p′, P0), (5.46)

to obtain an inhomogeneous equation in configuration space:(
− 1

2mr

∂2 − αe−mφr

r
− E

)
ΨE(~r) = U0(~r). (5.47)

One can proof, that eq. (5.47) is formally solved by15:

ΨE(~r) =

∫
d3r′

∫
d3k

(2π)3

φ~k(~r)φ
∗
~k
(~r′)

~k2

2mr
− E − iε

U0(~r′), (5.48)

where Iengo chooses a Feynman contour prescription of −iε with the remark that the sign

is not important. φ~k(~r) form a complete set of solutions to the homogeneous equation:(
− 1

2mr

∂2 − αe−mφr

r
−

~k2

2mr

)
φ~k(~r) = 0, (5.49)

obeying the completeness relation:∫
d3k

(2π)3
φ~k(~r)φ

∗
~k
(~r′) = δ(3)(~r − ~r′) (5.50)

To realize that eq. (5.48) indeed fulfills the Schrödinger equation (5.47), one can simply

plug in the formal solution into (5.47) and use:(
− 1

2mr

∂2 − αe−mφr

r
− E

)
φ~k(~r) =

(
k2

2mr

− E
)
φ~k(~r). (5.51)

15Note that G(~r, ~r′) =
∫

d3k
(2π)3

φ~k(~r)φ∗~k(~r′)
~k2

2mr
−E−iε

is the Greens function to the differential operator on the left

hand side of eq. (5.47). One can think of G(~r, ~r′) as nonrelativistic Greens function for the bound

state in the Lehmann representation.
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This cancels the denominator and one is left with:∫
d3k

(2π)3
φ~k(~r)

∫
d3r′φ∗~k(~r

′)U0(~r′) = U0(~r), (5.52)

where one hast to take into account the completeness relation (5.50) in the last step to

proof the validity of (5.48). As has been demonstrated by Iengo [23], one can relate the

complete annihilation amplitude A to the bare annihilation amplitude A0 via the solution

of the nonrelativistic Schrödinger equation φ. For details, we refer to [23] directly:

A(~p, p′, P0) =

∫
d3rφ∗~p(~r)

∫
d3q

(2π)3
ei~q·~rA0(~q, p′, P0). (5.53)

In case of s-wave annihilation, A0(~q, p′, P0) is an angular-independent constant

A0(~q, p′, P0) → a0, which leads to
∫

d3q
(2π)3

ei~q·~rA0(~q, p′, P0) → a0δ(~r). Using this asymp-

totic behavior in eq. (5.53) yields:

A(~p, p′, P0) = a0φ
∗
~p(0). (5.54)

Relation between Amplitudes, the Schrödinger Equation and Enhancement Factors

We present a detailed study of the relation between the Sommerfeld enhancement factor

and the solution of the homogeneous Schrödinger equation for a diagonal interaction

with one annihilation channel (discussed e.g. in [23, 11, 65]), since we try to profit from

the insights gained in solving this simpler problem first and transfer many points to

our coupled system of equations for off-diagonal interactions later. Iengo [23] is rather

explicit in his calculation of the enhancement factor and considers Coulomb- and Yukawa

potentials separately for arbitrary partial wave l. The enhancement factor S factorizes

from the annihilation cross section:

σ =S × σ0, (5.55)

where the cross section σ is directly related to the amplitudes A by:

σ ∝ |A(~p, p′)|2 (5.56)

σ0 ∝ |A0(~p, p′)|2 . (5.57)

From eq. (5.53) we immediately realize, that the solution of the homogeneous Schrödinger

equation φ~p(~r) is intimately related to the Sommerfeld enhancement factor S. Following

Arkani-Hamed et al. [11], we enforce appropriate boundary conditions for the scattering

problem (5.49):

φ~p(~r)→ eipz + f(θ)
eipr

r
, as r →∞, (5.58)
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where the scattering amplitude f(θ) vanishes in the free case φ
(0)
~p . In this language, the

enhancement factor is defined as16:

Sp =
|φ~p(0)|2

|φ(0)
~p (0)|2

= |φ~p(0)|2 (5.59)

The particular form of the Sommerfeld factor is motivated by a simple physical argument

[65]. The s-wave annihilation reaction is assumed to be mediated by a delta function in-

teraction, which is why one expects an annihilation rate proportional to |φ~p(0)|2. (5.59)

also implies that the influence of non-perturbative effects in the dark matter annihilation

is effectively encoded in a modified two-particle wavefunction.

Scattering theory in non-relativistic Quantum Mechanics is treated in a number of text-

books (see e.g. [42, 43, 44]) and we only repeat results that are important for further

discussions of the Sommerfeld effect. As it turns out, we are primarily concerned with

rotationally invariant potentials, which renders the scattering problem cylindrically sym-

metric around the axis defined by the scattering geometry (here we take incoming particles

along the z-axis). In light of this symmetry, it is appropriate to expand the φ~p(~r) in terms

of Legendre polynomials Pl(p̂ · r̂) and radial wavefunctions Rp,l(r):

φ~p(~r) =
∑
l

Ap,lPl(p̂ · r̂)Rp,l(r) (5.60)

We have introduced the notation p̂ = ~p
p

and p = |~p| for the momentum vector. An

analogous notation is adopted for the position vector ~r. The modulus of the expan-

sion coefficients Ap,l can be determined from the normalization condition imposed on the

wavefunction: ∫
d3rφ∗~p(~r)φ~q(~r)

!
= δ(~p− ~q) (5.61)

We find, consistent with Arkani-Hamed, Ap,l = 1
p
il(2l+1)eiδl , where the phase factor ileiδl

has been chosen so that Rp,l behaves asymptotically as:

Rp,l(r)→
1

r
sin(pr − 1

2
lπ + δl), for r →∞. (5.62)

δl is commonly referred to as scattering phase. In order to obtain a physically sensible

result, we have to require a regular behavior for Rp,l(r) as r → 0. If the potential does not

diverge faster than r−1 at the origin, which is the case for a Yukawa as well as a Coulomb

potential, Rp,l(r) scales as ∼ rl as r → 0. From (5.59) we know, that the Sommerfeld

enhancement is related to the wavefunction at the origin. With the asymptotic behavior

Rp,l ∼ rl, all but the l = 0 terms vanish, thus we write with the help of (5.60):

Sp =

∣∣∣∣Rp,l=0(0)

p

∣∣∣∣2 . (5.63)

16In eq. (5.59), φ
(0)
~p = eipz denotes the free two-particle wavefunction.
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Upon introducing the reduced radial wavefunction χp,l(r) = rRp,l=0(r), the Schrödinger

equation (5.49) turns into a one-dimensional problem. The boundary condition (BC) at

the origin, Rp,l(r → 0) = regular, induces the corresponding BC for χp,l(0), i.e. χp,l(0) = 0.

Principally, for s-wave annihilation, we should solve the boundary value problem:

1

mχ

d2χp,0(r)

dr2
+
(α
r
e−mφr + E

)
χp,0(r) = 0 (5.64)

χp,0(0) =0 (5.65)

χp,0(r)
r→∞−→ sin(kr + δ), (5.66)

in order to obtain the enhancement factor Sp. However, due to the linearity of (5.64), we

can replace the boundary condition at infinity by a value for dχ̃p,0(r)

dr
at the origin [65]. If

we set pdχ̃p,0(r)

dr
= 117 and solve the initial value problem for χ̃ instead, the two solutions

are related by χ = χ̃ C−1. This procedure was also adapted by Iengo [23]; for a Yukawa

potential and arbitrary partial wave l, he finds the enhancement factor:

Sl =

∣∣∣∣(2l + 1)!

C

∣∣∣∣2 . (5.67)

C is defined as the amplitude of the reduced radial wavefunction χ̃l(x), x ≡ p · r in the

limit of large x for the initial value problem. We introduce the dimensionless reduced

radial Schrödinger equation18 favorable for numerical calculations

χ̃
′′

l (x) +

(
1 +

2a

x
e−bx − l(l + 1)

x2

)
χ̃l(x) = 0. (5.68)

As advertised above, the initial condition χ̃l(x)x→0 → xl+1 leads to an asymptotic behavior

at infinity:

χ̃l(x)x→∞ → C sin(x− lπ

2
+ δl). (5.69)

a = α
v
, b =

mφ
mrv

denote dimensionless parameters, v = p
mr

is the relative velocity of the

dark matter particles and mr denotes the reduced mass of the dark matter pair. Relating

χ̃l(x) to the radial wavefunction Rp,l(r)

Rp,l(r) =
1

C
p
χ̃l(x)

x
, (5.70)

we realize the compatibility of (5.63) and (5.67) for s-wave (l = 0) annihilations. In order

to obtain the amplitude C - defined in eq. (5.69) - Iengo describes a numerical procedure

to extract this value. One uses for example the NDSolve command in Mathematica and

17Defining the initial condition with the additional factor p, simplifies the the solution of the dimensionless

equation 5.68.
18We will explicitly demonstrate the reduction of the Schrödinger equation for our model in section 5.10.
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solves the initial value problem (5.68) with χ̃l(x)x→0 → xl+1. The s-wave case (l = 0)

does not cause numerical troubles, but we have had difficulties finding stable numerical

results for higher partial waves, due to the ∝ 1
x2

divergence at the origin. Owing to the

special asymptotic behavior of the scattering solution, we are able to extract C2 from the

constant value of χ̃l(x)2 + χ̃l(x− π
2
)2 for large values of x:

10 20 30 40
x = p*r

-0.10

-0.05

0.05

0.10

Χ0@xD

(a)
0 10 20 30 40

x = p*r0.000
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0.010

0.015
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C2@xD

(b)

Figure 5.5.: Numerical solution to eq. (5.68) for l = 0 with initial conditions χ̃0(0) = 0 and

χ̃′0(0) = 1. Input parameters were chosen α = 10−2, mφ = 1GeV ,

mχ = 1TeV , v = 8.2× 10−5.

a) Reduced wavefunction χ̃0(x) vs. the dimensionless x = p · r variable.

b) χ̃0(x)2 + χ̃0(x− π
2 )2 vs. the dimensionless x = p · r variable. For large x, the

reduced wavefunction takes its asymptotic form (5.69) and we effectively plot C2.

Since we are able to reproduce the numerical procedure described by Iengo [23] to extract

the Sommerfeld enhancement for a specific parameter point, we are going to investigate

the dependence of the enhancement factor S on the relative particle velocity v as well

as the dark matter mass mDM ≡ mχ for this simple model with diagonal interactions.

We take this as starting point for the validation of our own numerical setup to determine

the Sommerfeld enhancement to vector dark matter in Sec. 5.10. For completeness, we

reproduce some of the plots from the literature to have them at our disposal in this thesis.

Specifically, we check our calculation against the parameter choice of Arkani-Hamed et

al. [11] and the one of Lattanzi and Silk [16]. These two benchmark scenarios are also dis-

cussed in [17]. We follow the data presentation of the latter article and fig. 5.6 can directly

be compared to fig. 2 in [17]. We find excellent agreement, qualitatively and quantitatively

for both parameter points.

For the results presented here are reproduced from the literature, we direct the atten-

tion to [11, 23, 38, 16] for a detailed analysis of the Sommerfeld effect in this model.

A particularly concise discussion is found in [16], which we follow to sketch the physics

behind eq. (5.64) and fig. 5.6.
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Starting from eq. (5.64), the Schrödinger equation reduces to the well known hydrogen

problem in the limit mφ → 0. In this case, analytical solutions for χ(r) are obtained in

terms of hypergeometric functions19 and the Sommerfeld enhancement is given by:

S =
πα

v

(
1− e−πα/v

)−1 v→0→ πα

v
. (5.71)

with the famous 1/v behavior at low velocities. At very small velocities v2 � αmφ
mχ

,

however, the Yukawa part of the potential becomes relevant and we have to expand (5.64)

in this regime in terms of small mφr � 1 to first order:

χ′′(r) +
αmχ

r
χ(r) = αmφmχχ(r). (5.72)

The positiveness of the r.h.s. of (5.72) indicates the existence of bound states analog to

hydrogen, when:

mχ = 4mφ
n2

α
, n ∈ N (5.73)

Comparing eq. (5.73) to the numerical results in fig. 5.6(a),(b), it is applicable that the

naive estimate of the peak position via the hydrogen analogy deviates by a factor of 2

from the numerical results, the n2 peak spacing however is approximately reproduced in

fig. 5.6(b).

19c.f. e.g. [44] for the solution of the hydrogen problem
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Figure 5.6.: Velocity and dark matter mass dependence of the Sommerfeld enhancement for the

diagonal interaction via a Yukawa potential. We show our numerical results for the

Sommerfeld factor (S) for 2 benchmark points that have been discussed in the

literature. In the right panel we show our numerical results using Lattanzi and Silks

[16] parameter choice - α = 1
30 ,mφ = 90GeV . In the left panel we show the results

for Arkani-Hameds parameters - α = 1
100 ,mφ = 1GeV . We present the results in the

same order as in [17] and agree qualitatively and quantitatively with the authors.
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5.5. Sommerfeld Effect for Vector Dark Matter in

SU(2)× SU(2)×U(1)×U(1) - Model

In the previous sections we have summarized Iengo’s work [23] on fermionic dark matter

to understand the important points in the derivation of the effective potential between

two dark matter states. Within the non-relativistic, instantaneous Bethe-Salpeter ap-

proach, we came to realize that the pole structure in the Bethe-Salpeter equation plays

a fundamental role. Baring that in mind, we feel confident to extend the work done by

Iengo [23] and others to external vector particles. It seems needless to mention, that the

tensor structure of the theory and the special properties of the gauge-boson propagators

impede an easy transfer of QED results found in standard textbooks. The presence of

gauge dependent terms and four momenta in the numerator further complicate matters.

Along the derivation, we try to clearly state and justify all approximations employed. For-

tunately, there are a number of articles from the QCD-community that treat glueballs as

bound states of massive gluons within a Bethe-Salpeter ansatz [77, 78, 79, 80, 81]. These

papers provide valuable guidance for our derivation due to the similar tensor structure of

the BS-equation. For completeness, we also present the graphical representation of the

Bethe-Salpeter equation for the amplitude. In the next sections we only give the graphical

Figure 5.7.: Graphical representation of generic 2→2 scattering event from vector particles into

Standard Model states. P denotes the momentum of the center of mass, p, p′ and q

denote relative momenta. I represents all 2 particle irreducible (2PI) graphs in the

φiµ + φjν → φi
′

ρ + φj
′

σ scattering process. A denotes the full annihilation amplitude,

including nonperturbative effects, A0 is the bare amplitude for this process.

representation of the iteration part of the Bethe-Salpeter equation, i.e. only the second

term on the right hand side of fig. 5.7. In complete analogy to Refs. [23, 39], A(0)ij repre-

sents the bare annihilation amplitude of two dark matter particles φiµ + φjν into Standard

Model states, neglecting nonperturbative effects between initial states. Our scattering

kinematic is defined by P = 1
2
(p1 + p2), p = 1

2
(p1 − p2), ω~p =

√
m2
χ + ~p 2.
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5.5.1. Leading Order Z(1)Z(1) → Z(1)Z(1) Bethe-Salpeter Kernel

With the Z(1) as our preferred dark matter candidate, it is natural to ask whether the

lowest order Z(1)Z(1) → Z(1)Z(1) kernel leads to a sizable Sommerfeld enhancement. As

explained in section 3.2.1, we are only interested in diagrams with light exchange particles

as force carriers to start with. To leading order, we only consider diagrams with Standard

Model particles in the t- and u-channel respectively20. Generally, s-channel diagrams are

subdominant21 in the nonrelativistic limit, which is why we follow [11, 23, 39] and neglect

them to leading order. For beyond the Standard Model theories, however, such diagrams

may develop resonances22, if there is a heavy particle Φ in the spectrum with twice the

dark matter mass mΦ = 2mχ. In this thesis, we are going to disregard these special cases

and drop all s-channel contributions.

Figure 5.8.: Graphical representation of the Z(1)Z(1) → Z(1)Z(1) lowest order interaction kernel.

Momentum flow is indicated by arrows and Lorentz indices are attached at all vertices

for clarity. Momenta of incoming particles go into the vertices.

From the graphical representation of the amplitude depicted in figure 5.8, we can imme-

diately read off the analytic expression using our Feynman rules in App.C.

Aµ1µ2
Z(1)Z(1) =A

(0) µ1µ2
Z(1)Z(1) +

∫
d4q

(2π)4
Γµ1µ3 Γµ2µ4 G(q − p) Dµ3µ5

Z(1) (P + q) Dµ4µ6
Z(1) (P − q) Aµ5µ6(q, P )

(5.74)

In principle, the amplitude depends on the final state momenta (denoted by p′) as well

as other indices associated with the outgoing particles. This dependence however is not

20Note that we restrict ourselves to the lowest-order 2PI graphs, so that triangle diagrams are not

considered in the Bethe-Salpeter kernel. Expanding the kernel to higher order in perturbation theory

would require considerable effort and should be the subject of future research.
21In s-channel diagrams, the denominator is proportional to s = (p1 + p2)2 ∼ m2

χ, so that these contri-

butions are suppressed by the DM scale.
22For example, s-channel diagrams can become important in full extradimensional theories due to reso-

nances of the scattering particles with Kaluza-Klein (2)-modes (see e.g. [82]). Such scenarios are not

present in our truncated version of the ”deconstructed” theory.
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defined by the BS-equation itself [72] and will therefore be omitted. The vertex rules for

Γµiµj are taken from appendix C.2.4 and the scalar and vector propagators G and Dµkµl

read as follows:

Γµiµj =i g2 m
(0)
W gµiµj (5.75)

G(q − p) =
i

(q − p)2 −m2
h(0)

+ iε
(5.76)

Dµkµl
Z(1) (P ± q) =− i

(
gµkµl − (1− ξ) (P±q)µk (P±q)µl

(P±q)2−ξm2

Z(1)

)
(P ± q)2 −m2

Z(1) + iε
(5.77)

Alternative Representation of the Gauge-Boson Propagator

For future discussions, it is useful to decompose the gauge boson propagator into different

pole contributions. We adopt the pole prescription as found in the appendix of Ref. [40]

and write:

Dµkµl(p) =− i g
µkµl − pµkpµl/M2

p2 −M2 + iε
− i pµkpµl/M2

p2 − ξM2 + iε

=− i 1

2 ω~p

[
gµkµl − pµkpµl/M2

] [ 1

p0 − ω~p + iε
− 1

p0 + ω~p − iε

]
(5.78)

− i pµkpµl

2 ωξ~p M2

[
1

p0 − ωξ~p + iε
− 1

p0 + ωξ~p − iε

]
with the common appreviations:

ω~p =
√
~p 2 +M2 ωξ~p =

√
~p 2 + ξ M2. (5.79)

The drawback of this gauge-boson-propagator representation is the obscured good high

energy behavior - UV-finiteness is not obvious from simple power counting arguments

anymore. In comparison to the fermionic propagators appearing in the description of

positronium and for supersymmetric dark matter considerations, we are not able to elim-

inate the zero-component of the loop momentum from the numerator due to the pµkpµl

terms. Practically, we deal with this complication by dropping the q and p dependence

in the numerators of the gauge boson propagators as a first approximation and only keep

P0 ∼ mZ(1) � q0, p0, |~q| , |~p| in the leading pole region in the non-relativistic limit. An

analog procedure was adopted in the calculation of leading 1-loop contributions to scalar

and fermionic WIMP annihilation [76]. We are going to employ the instantaneous ap-

proximation for the h(0) exchange and subsequently split the scalar propagator into the

instantaneous contribution and the non-instantaneous p0 dependent part only to neglect

the latter. It is easy to verify that:

1

p2 −m2 + iε
=

−1

~p 2 +m2
+

p2
0

(~p 2 +m2)(p2 −m2)
. (5.80)
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In the non-relativistic limit, the energy exchange is much smaller than the three momen-

tum exchange [76]. Using the decomposed gauge boson propagators for the Z(1) fields in

eq. (5.74) and only keeping the P dependence in the numerator23, we find:

Dµ3µ5
Z(1) (P + q)Dµ4µ6

Z(1) (P − q) ≈

(
− i 1

2 ω~q

[
gµ3µ5 − P µ3P µ5/m2

Z(1)

]
×[

1

(q0 + P0)− ω~q + iε
− 1

(q0 + P0) + ω~q − iε

]
−

− i P µ3P µ5

2 ωξ~q m2
Z(1)

×
[

1

(q0 + P0)− ωξ~q + iε
− 1

(q0 + P0) + ωξ~q − iε

])
×

(5.81)(
− i 1

2 ω~q

[
gµ4µ6 − P µ4P µ6/m2

Z(1)

]
×[

1

(−q0 + P0)− ω~q + iε
− 1

(−q0 + P0) + ω~q − iε

]
−

− i P µ4P µ6

2 ωξ~q m2
Z(1)

×
[

1

(−q0 + P0)− ωξ~q + iε
− 1

(−q0 + P0) + ωξ~q − iε

])

In the CMS (~P = ~0 ), the ω’s only depend on the three-components of the momentum

vectors and therefore are independent of P . Unaffected by the numerator, we find eight

poles in the product of the two Z(1)-propagators, four of which are non-physical, i.e. ξ

dependent. We will keep them for now and only later assume, but not prove explicitly,

that all ξ dependent poles cancel for a gauge invariant (on-shell) kernel. Working in

unitary gauge, i.e. taking the limit ξ → ∞, removes these poles altogether and no

convoluted cancellation mechanism between several classes of diagrams (e.g. gauge and

Goldstone boson graphs) has to take place. We work in the instantaneous approximation,

therefore additional q0 poles from the scalar exchange propagator are absent. In analogy

to the argument of Iengo [23], we also neglect possible poles of the amplitude A itself.

The discussion on neglecting such poles rests solely on the denominator of the diagrams,

therefore differences in the numerators are irrelevant for this argument. The poles are:

(1) q0 = ω~q − P0 − iε (2) q0 = −(ω~q + P0) + iε

(3) q0 = ωξ~q − P0 − iε (4) q0 = −(ωξ~q + P0) + iε

(5) q0 = P0 − ω~q + iε (6) q0 = P0 + ω~q − iε
(7) q0 = P0 − ωξ~q + iε (8) q0 = P0 + ωξ~q − iε

23We are going to justify this approximation a posteriori by investigating the structure of the integral

kernel and show that q0 remains small at the bound state pole.



70 Sommerfeld Effect

Performing the contour integral in the complex q0 plane and arbitrarily closing the inte-

gration path in the lower half, we apply Cauchy’s Residue Theorem and, in general, have

to evaluate four contributions.

1. pole (1) q0 = ω~q − P0 − iε:

− i m2
W (0) g

2
2

∫
d3q

(2π)3

−gµ1µ3g
µ2
µ4

(~q − ~p)2 +m2
h(0)

−2πi

2π

[
−i
2ω~q

(
gµ3µ5 − P µ3P µ5

m2
Z(1)

)]
×[

−i
2ω~q

(
gµ4µ6 − P µ4P µ6

m2
Z(1)

)(
1

P0 − ω~q + P0 − ω~q
− 1

P0 − ω~q + P0 + ω~q

)
+ (5.82)

− i

ωξ~q

(
P µ4P µ6

m2
Z(1)

)(
1

P0 − ω~q + P0 − ωξ~q
− 1

P0 − ω~q + P0 + ωξ~q

)]
2. unphysical pole (2) q0 = ωξ~q − P0 − iε

− i m2
W (0) g

2
2

∫
d3q

(2π)3

−gµ1µ3g
µ2
µ4

(~q − ~p)2 +m2
h(0)

−2πi

2π

[
−i

2ωξ~q

(
P µ3P µ5

m2
Z(1)

)]
×[

−i
2ω~q

(
gµ4µ6 − P µ4P µ6

m2
Z(1)

)(
1

P0 − ωξ~q + P0 − ω~q
− 1

P0 − ωξ~q + P0 + ω~q

)
+ (5.83)

− i

ωξ~q

(
P µ4P µ6

m2
Z(1)

)(
1

P0 − ωξ~q + P0 − ωξ~q
− 1

P0 − ωξ~q + P0 + ωξ~q

)]
3. pole (6) q0 = ω~q + P0 − iε

− i m2
W (0) g

2
2

∫
d3q

(2π)3

−gµ1µ3g
µ2
µ4

(~q − ~p)2 +m2
h(0)

(
−2πi

2π

)
×[

−i
2ω~q

(
gµ3µ5 − P µ3P µ5

m2
Z(1)

)(
1

P0 + ω~q + P0 − ω~q
− 1

P0 + ω~q + P0 + ω~q

)
+

− i

2ωξ~q

(
P µ3P µ5

m2
Z(1)

)(
1

P0 + ω~q + P0 − ωξ~q
− 1

P0 + ω~q + P0 + ωξ~q

)]
× (5.84)[

+i

2ω~q

(
gµ4µ6 − P µ4P µ6

m2
Z(1)

)]
4. unphysical pole (8) q0 = ωξ~q + P0 − iε

− i m2
W (0) g

2
2

∫
d3q

(2π)3

−gµ1µ3g
µ2
µ4

(~q − ~p)2 +m2
h(0)

(
−2πi

2π

)
×[

−i
2ω~q

(
gµ3µ5 − P µ3P µ5

m2
Z(1)

)(
1

P0 + ωξ~q + P0 − ω~q
− 1

P0 + ωξ~q + P0 + ω~q

)
+

− i

2ωξ~q

(
P µ3P µ5

m2
Z(1)

)(
1

P0 + ωξ~q + P0 − ωξ~q
− 1

P0 + ωξ~q + P0 + ωξ~q

)]
× (5.85)[

+i

2ωξ~q

(
P µ4P µ6

m2
Z(1)

)]
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Having achieved the decomposition of the kernel, we only keep terms which have small

denominators. Expressions with 1
2(P0−ωξ~q)

appear to be relevant in the Feynman gauge, but

as mentioned before we suspect that non-physical ξ dependent poles eventually cancel with

contributions from other diagrams for a gauge invariant kernel. Terms with 1
2(P0−ω~q)

lead

to analogous expressions as found in Iengo’s paper treating fermionic dark matter. We do

not want to suppress the fact that for a special choice of ξ, 1
2P0−ωξ~q+ω~q

can develop a small

denominator which depends on the gauge parameter. Nonetheless we will drop these terms

since unphysical poles should not play a role in a gauge-invariant kernel. In hindsight,

the leading pole approximation also justifies the negligence of q in the numerator. The

leading contribution to the scattering kernel stems from poles where q0 � P0. Applying

the approximations stated here, we find the recursion relation for the scattering amplitude:

Aµ1µ2
Z(1)Z(1) =A

(0) µ1µ2
Z(1)Z(1) −m2

W (0) g
2
2

∫
d3q

(2π)3

1

(~q − ~p)2 +m2
h(0)

×[
1

4ω2
~q

(
gµ1µ5 − P µ1P µ5

m2
Z(1)

)(
gµ2µ6 − P µ2P µ6

m2
Z(1)

)(
1

2(P0 − ω~q)

)
+ (5.86)

1

4ω~qωξ~q

(
gµ1µ5 − P µ1P µ5

m2
Z(1)

)(
P µ2P µ6

m2
Z(1)

)(
1

2P0 − (ω~q + ωξ~q)

)
+

1

4ω~qωξ~q

(
P µ1P µ5

m2
Z(1)

)(
gµ2µ6 − P µ2P µ6

m2
Z(1)

)(
1

2P0 − (ω~q + ωξ~q)

)]
Aµ5µ6(~q, P0).

It is instructive to look at the Bethe-Salpeter equation for some special values of the gauge

parameter ξ. Let us start with the Feynman gauge ξ = 1:

Aµ1µ2ξ=1 =A
(0) µ1µ2
ξ=1 −m2

W (0) g
2
2

∫
d3q

(2π)3

gµ1µ5gµ2µ6

(~q − ~p)2 +m2
h(0)

1

4ω2
~q

Aµ5µ6(~q, P0)

2(P0 − ω~q)
(5.87)

We would like to direct the attention to the specific tensor structure stemming from the

Z(1) propagators. In the Feynman gauge all degrees of freedom, including the unphysical

ones, propagate. This can be illustrated by looking at the completeness relation for the

gauge boson polarization vectors:

3∑
λ=0

εµλ(k)ελν(k) = −gµν , (5.88)

which can be decomposed into a longitudinal Lµν(k) and a transversal T µν(k) part [40]:

Lµν(k) =
kµkν

m2
V

(5.89)

T µν(k) =gµν − kµkν

m2
V

(5.90)
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In a general frame where kµ is on-shell, T µν(k) constitutes the projection onto the three

physical states of a massive vector boson [41]. For the Bethe-Salpeter equation in unitary

gauge (ξ →∞), we find:

Aµ1µ2ξ=∞ =A
(0) µ1µ2
ξ=∞ − (5.91)

m2
W (0) g

2
2

∫
d3q

(2π)3

(
gµ1µ5 − Pµ1Pµ5

m2

Z(1)

)(
gµ2µ6 − Pµ2Pµ6

m2

Z(1)

)
(~q − ~p)2 +m2

h(0)

1

4ω2
~q

Aµ5µ6(~q, P0)

2(P0 − ω~q)

In light of the discussion on the vector boson polarization tensor, we immediately realize

that only the physical degrees of freedom of the Z(1) bosons propagate in unitary gauge.

Discussion of the Yukawa-Interaction Potential Strength

We proceed by adopting another approximation: in the interaction kernel we neglect the

~q dependence in ω and set 1
4ω2
~q
≈ 1

4m2

Z(1)

. Following the lines of [23] and [39], the Fourier

transform of the interaction kernel yields a Yukawa potential generated by the Higgs

exchange:

V (r) ∝
m2
W (0)g

2
2

4m2
Z(1)

1

4π

e−mh(0)r

r
. (5.92)

This allows us to read off the effective coupling strength of the potential:

α̃ =
m2
W (0)g

2
2

16πm2
Z(1)

(5.93)

Plugging in the Standard Model values for mW (0) , g2 and adopting a WIMP mass of

1 TeV, we compute α̃ ≈ 5.4× 10−5.

An order of magnitude estimation of the influence of the Higgs exchange on the Sommer-

feld enhancement is now achievable. As described in the section on general aspects of the

Sommerfeld effect (see Sec. 3.2.1), we have to compare the binding energy EB ∝ mZ(1)α̃2

of the Z(1)Z(1)-system with the kinetic energy of the Z(1)-pair; Ekin ∝ mZ(1)v2
sp. Using a

single-particle velocity of vsp = 150km
s

=̂ 5× 10−4 (in natural units) [11], we find that the

interaction strength due to the Higgs exchange is approximately one order of magnitude

too small to give a sizable contribution to the Sommerfeld effect. Matters take a turn

for the worse when comparing the Bohr radius of the bound state with the range of the

interaction potential as an indicator for possible resonant effects:

1

mh(0)
>

1

mZ(1)α̃

For viable Z(1)-masses, we realize that the Higgs interaction is too short ranged to give a

sizable enhancement, which is why we neglect any Higgs contributions to the Sommerfeld

effect henceforth.
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5.5.2. Off-diagonal Z(1)Z(1) → W (1)W (1) Bethe-Salpeter Kernel

Computing the Higgs exchange diagram, we found that the diagonal interactions of the

Z(1) are too weak and short ranged to contribute significantly to the Sommerfeld effect.

What we mean by ”diagonal interaction” is, that the particle content is not changed from

the initial to the final state of the interaction kernel. This does not rule out the possibility

of a Sommerfeld enhancement altogether. We make use of the special feature of the near

mass degeneracy of the W (1) with our Z(1) dark matter candidate and consider off-diagonal

diagrams as depicted in figure 5.9. The topology of the Z(1)Z(1) → W (1)W (1) diagram

Figure 5.9.: Graphical representation of the Z(1)Z(1) →W (1)W (1) lowest order interaction kernel.

Momentum flow is indicated by arrows and Lorentz indices are attached at all vertices

for clarity.

is the same as the one for the Z(1)Z(1) → Z(1)Z(1) graph (5.8). Contrary to the scalar

Higgs exchange particle, this time we have the W (0)-interaction that amounts in a more

complicated kernel due to the additional Lorentz structure of the interaction vertices as

well as the additional gauge propagator. To facilitate the extensive algebraic calculations

we used FeynCalc [83] to perform the Lorentz tensor manipulations.

Aµ1µ2
Z(1)W (1) =A

(0) µ1µ2
Z(1)W (1) +

∫
d4q

(2π)4
Γµ1µ3µ5(P, p, q) D

µ3µ4
W (0)(q − p) Γµ2µ6µ4(P, p, q) ×

Dµ5µ7
W (1)(P + q) Dµ6µ8

W (1)(P − q) Aµ7µ8(q, P0) (5.94)

Applying the Feynman rules for the three gauge boson vertices C.2.2 and carefully plugging

in the correct particle momenta24 we obtain:

Γµ1µ3µ5(P, p, q) =ig2 cos(θ
(1)
W ) [gµ3µ5(p− P − 2q)µ1 + gµ1µ3(q − P − 2p)µ5 + gµ1µ5(p+ q + 2P )µ3 ]

Γµ2µ6µ4(P, p, q) =ig2 cos(θ
(1)
W ) [gµ4µ6(p+ P − 2q)µ2 + gµ2µ4(q + P − 2p)µ6 + gµ2µ6(p+ q − 2P )µ4 ]

In the W (0)-propagator, we set all q and p momentum variables in the numerator to zero

which eliminates the gauge parameter dependence of the exchange propagator in this

24Feynman rules are given for incoming momenta
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approximation. We are left with the metric tensor gµ3µ4 in the numerator and can easily

employ the instantaneous approximation to find:

Dµ3µ4
W (0)(~q − ~p) =

+i gµ3µ4

(~q − ~p)2 +m2
W (0)

(5.95)

Omitting some Lorentz indices, setting θ
(1)
W to zero and contracting the vertices Γ with

the W (0)-propagator leads to:

AZ(1)W (1) =A
(0)

Z(1)W (1) + ig2
2

∫
d4q

(2π)4

1

(~q − ~p)2 +m2
W (0)

× (5.96)

(gµ1µ6Pµ2Pµ5 + gµ1µ2Pµ5Pµ6 − 4gµ1µ5Pµ2Pµ6 + Pµ1 (Pµ2gµ5µ6 − 4Pµ5gµ2µ6 + Pµ6gµ2µ5)

+4P 2gµ1µ5gµ2µ6
)
Dµ7

µ5,W (1)(P + q) Dµ8

µ6,W (1)(P − q) Aµ7µ8
(q, P0)

To obtain this result, we set q and p to zero in the interaction vertices (static approx-

imation) and only kept the leading P contributions. Since the W (0)-exchange does not

depend on q0 in the instantaneous approximation, we can pull the
∫

dq0
2π

through to the

W (1)-propagators and use an analogous pole decomposition as in section 5.5.1. Contract-

ing the vertices, the W (0)-propagator and the leading terms of the two W (1)-propagators

amounts to a rather lengthy expression in Rξ gauge which we do not write out explic-

itly. Since we are interested in the contribution to the scattering amplitude from the

bound state in the non-relativistic limit, we effectively put a delta-function for the loop-

momentum that picks out the desired kinematic region. In the following derivations, we

are going to work in unitary gauge, where only physical degrees of freedom contribute to

the computed quantities. This procedure limits the number of relevant Feynman-diagrams

considerably. For the off-diagonal recurrence relation in unitary gauge, we find:

Aξ=∞
Z(1)W (1) =A

(0),ξ=∞
Z(1)W (1) − g2

2

∫
d3q

(2π)3

1

((~q − ~p)2 +m2
W (0))

× (5.97)

(gµ1µ6P µ2P µ5 + gµ1µ2P µ5P µ6 − 4gµ1µ5P µ2P µ6+

P µ1 (P µ2gµ5µ6 − 4P µ5gµ2µ6 + P µ6gµ2µ5) + 4P 2gµ1µ5gµ2µ6
)

×

(
gµ5µ7 −

Pµ5Pµ7
m2

W (1)

)(
gµ6µ8 −

Pµ6Pµ8
m2

W (1)

)
4ω2

~q 2(P0 − ω~q)
Aµ7µ8(~q, P0).

Let us note at this point, that the interaction coefficient is not weakened by
m2

W (0)

m2

Z(1)

any

more as was the case for the Higgs exchange diagram. The unsuppressed coupling strength

motivates us to calculate the u-channel and the contact diagram to complete the leading

order interaction kernel for the Z(1)Z(1) → W (1)W (1) system, up to a subdominant con-

tribution with a h(0) in the s-channel. The tensor structure in the denominator and their

respective signs imply a mixture of attractive and repulsive contributions described in the

effective non-relativistic potential language.
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5.5.3. Off-diagonal Z(1)Z(1) → W (1)W (1) u-channel Diagram

As we have seen in the previous section, the Z(1)Z(1) → W (1)W (1) scattering is not

suppressed by small prefactors in the non-relativistic instantaneous approximation to the

Bethe-Salpeter equation, hence it seems worth calculating the corresponding diagram with

exchanged initial states. The calculation of the u-channel amplitude follows in complete

Figure 5.10.: Graphical representation of the Z(1)Z(1) →W (1)W (1) lowest order interaction

kernel with exchanged initial states.

Momentum flow is indicated by arrows and Lorentz indices are attached at all

vertices for clarity.

analogy to the t-channel one, which is why we only give the important intermediate results.

Aµ1µ2
Z(1)W (1),X

=A
(0) µ1µ2
Z(1)W (1),X

+

∫
d4q

(2π)4
Γµ2µ4µ5(P, p, q) G

µ3µ4
W (0)(q + p) Γµ1µ6µ3(P, p, q) ×

Dµ5µ7
W (1)(P + q) Dµ6µ8

W (1)(P − q) Aµ7µ8,X(q, P0) (5.98)

Using the same approximations as in section 5.5.2, we obtain the recurrence relation in

unitary gauge:

Aξ=∞
Z(1)W (1),X

≈A(0),ξ=∞
Z(1)W (1),X

− g2
2

∫
d3q

(2π)3

1

((~q + ~p)2 +m2
W (0))

× (5.99)

(gµ2µ6P µ1P µ5 + gµ1µ2P µ5P µ6 − 4gµ2µ5P µ1P µ6+

P µ2 (P µ1gµ5µ6 − 4P µ5gµ1µ6 + P µ6gµ1µ5) + 4P 2gµ2µ5gµ1µ6
)

×

(
gµ5µ7 −

Pµ5Pµ7
m2

W (1)

)(
gµ6µ8 −

Pµ6Pµ8
m2

W (1)

)
4ω2

~q 2(P0 − ω~q)
Aµ7µ8X (~q, P0).

Comparing the amplitude equation with exchanged initial states to eq. (5.97), we find

exactly the same tensor structure up to exchanged Lorentz indices µ7 ↔ µ8 or µ1 ↔ µ2

and different momentum flow in the W (0) exchange propagator.
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5.5.4. Off-diagonal Z(1)Z(1) → W (1)W (1) contact Diagram

We complete the off-diagonal Z(1)Z(1) → W (1)W (1) scattering by calculating the contact

diagram, which should lead to a delta-like potential in configuration space in the non-

relativistic limit. The vertex factor for the Z(1)Z(1)W (1)W (1) interaction is taken from

Figure 5.11.: Graphical representation of the Z(1)Z(1) →W (1)W (1) scattering amplitude for the

contact kernel.

Momentum flow is indicated by arrows and Lorentz indices are attached at all

vertices for clarity.

the Feynman rules in the appendix (C.2.3). We are left with the integral equation of the

form:

Aµ1µ2
Z(1)W (1),C

=A
(0) µ1µ2
Z(1)W (1),C

+

∫
d4q

(2π)4
Γµ1µ2µ3µ4

Dµ3µ7
W (1)(P + q) Dµ4µ8

W (1)(P − q) Aµ7µ8,C(q, P0)

(5.100)

Without contracting the four-point vertex with the approximated gauge boson propaga-

tors we find for the Bethe-Salpeter equation in unitary gauge:

Aξ=∞
Z(1)W (1),C

=A
(0)ξ=∞
Z(1)W (1),C

− g2
2

∫
d3q

(2π)3
(gµ1µ4gµ2µ3 + gµ1µ3gµ2µ4 − 2gµ1µ2gµ3µ4)× (5.101)(

gµ3µ7 −
Pµ3Pµ7
m2

W (1)

)(
gµ4µ8 −

Pµ4Pµ8
m2

W (1)

)
4ω2

~q 2(P0 − ω~q)
Aµ7µ8C (~q, P0).

If we compare the different classes of diagrams by an order of magnitude estimate, we

find that the ones with an W (0) propagator are dominant over the contact diagrams. The

t- and u-channel kernels scale as:

IZ(1)W (1) ∼ IZ(1)W (1),X ∼ d3q
1

~q 2 +m2
W (0)

1

m2
W (1)

P 2 1

P0 −mW (1)

∼ d3q

(~q 2 +m2
W (0))(P0 −mW (1))

(5.102)
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whereas the contact kernel scales as:

IZ(1)W (1),C ∼
d3q

m2
W (1)(P0 −mW (1))

. (5.103)

This estimate reveals a suppression of the contact term by a factor of ∼
m2

W (0)

m2

W (1)

.

5.5.5. Reversed off-diagonal Diagrams: W (1)W (1) → Z(1)Z(1)

An exchange of in- and out- states in the four-point kernels for the gauge boson scattering

does not affect the Bethe-Salpeter result except for a trivial substitution of the appropriate

masses in the heavy gauge-boson propagators and in ω~q =
√
m2
Z(1) + ~q 2. Using this

feature of the theory, we can directly copy the equations from the Z(1)Z(1) → W (1)W (1)

computation. To see the symmetry property explicitly, it is easiest to look at the four

gauge boson contact interaction vertex (C.15) which manifestly possesses the invariance

of in- and out state exchange.

5.5.6. Diagonal W (1)W (1) → W (1)W (1) Scattering Diagrams

To complete the considerations on the heavy gauge boson scattering for the Bethe-Salpeter

kernel we have to calculate the diagonal W (1)W (1) → W (1)W (1) contribution. Contrary

to all previously calculated diagrams we have to include the massless photon exchange

which we treat separately. We would like to mention that we do not consider the Higgs

exchange diagrams due to a coupling suppression already explained in section 5.5.1. We

Figure 5.12.: Graphical representation of the W (1)W (1) →W (1)W (1) scattering amplitude for

Z(0) and A(0) interaction kernel.

Momentum flow is indicated by arrows and Lorentz indices are attached for clarity.
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write the recurrence relation for the amplitude with an Z(0) exchange propagator:

Aµ1µ2
W (1)W (1) =A

(0)µ1µ2
W (1)W (1) +

∫
d3q

(2π)4
Γ µ1
µ3µ5

(q − p,−(P + q), P + p)Dµ3µ4
Z(0) (q − p) (5.104)

Γ µ2
µ4 µ6

(−(q − p), P − p,−(P − q))Dµ5µ7
W (1)(P + q)Dµ6µ8

W (1)(P − q)AW
(1)W (1)

µ7µ8
(q, p′, P0)

Applying the usual approximations we explained in the previous sections we find the

expected result in unitary gauge:

Aξ=∞
W (1)W (1) ≈A

(0),ξ=∞
W (1)W (1) − g2

2 cos(θ
(0)
W )

∫
d3q

(2π)3

1

(~q − ~p)2 +m2
Z(0)

× (5.105)

(gµ1µ6P µ2P µ5 + gµ1µ2P µ5P µ6 − 4gµ1µ5P µ2P µ6+

P µ1 (P µ2gµ5µ6 − 4P µ5gµ2µ6 + P µ6gµ2µ5) + 4P 2gµ1µ5gµ2µ6
)

×

(
gµ5µ7 −

Pµ5Pµ7
m2

W (1)

)(
gµ6µ8 −

Pµ6Pµ8
m2

W (1)

)
4ω2

~q 2(P0 − ω~q)
Aµ7µ8(~q, p′, P0)

which exactly coincides with the result found in the corresponding Z(1)Z(1) → W (1)W (1)

calculation up to the SM Weinberg angle cos(θ
(0)
W ) entering the vertex factor and the Z(0)-

instead of the W (0) mass to account for the different exchange propagator.

5.5.7. W (1)W (1) → W (1)W (1) Photon exchange Diagram

Besides the exchange of a massive gauge boson, the W (1)W (1) → W (1)W (1) scattering

kernel includes the diagram with a photon in the t-channel (see figure 5.12). This is the

first time we have to deal with a massless exchange particle which could possibly lead to

additional poles in the scattering amplitude (see comment in [84]). The propagator for a

massless gauge boson in general Rξ gauge is [40]:

Dµν(k) =
−i

k2 + iε

(
gµν − (1− ξ)k

µkν

k2

)
(5.106)

The difference in the coupling strength discriminating the Z(0)- from the A(0)-diagram is

rather simple and only involves the substitution of g2 Cos(θ
(0)
W )→ e in the vertex factors.

The presence of the kµkν

k2
in the propagator however poses a somewhat more delicate

problem, since we can not apply our usual approximation of setting the relative momenta

to zero in the numerator. To circumvent this problem we choose to set the photon gauge

parameter ξA to 1, which removes the problematic terms and leaves us with the photon

propagator in a simple Lorenz gauge. If one were to calculate the on-shell kernel, the k

dependence would vanish identically due to transversality. Working in unitary gauge for
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the massive gauge bosons and with ξA = 1 for the photon, we find:

Aξ=∞,ξA=1

W (1)W (1),A(0) ≈A
(0),ξ=∞,ξA=1

W (1)W (1) − e2

∫
d3q

(2π)3

1

(~q − ~p)2
× (5.107)

(gµ1µ6P µ2P µ5 + gµ1µ2P µ5P µ6 − 4gµ1µ5P µ2P µ6+

P µ1 (P µ2gµ5µ6 − 4P µ5gµ2µ6 + P µ6gµ2µ5) + 4P 2gµ1µ5gµ2µ6
)

× gµ5µ7gµ6µ8
4ω2

~q 2(P0 − ω~q)
Aµ7µ8(~q, p′, P0)

5.5.8. W (1)W (1) → W (1)W (1) contact Diagram

The similarity of the W (1)W (1) → W (1)W (1) to the Z(1)Z(1) → W (1)W (1) scattering en-

countered in the previous section also holds for the contact diagram. The tensor structure

remains the same and only the scalar vertex factor for the 4×W (1) interaction has to be

modified. According to the Feynman rules of our theory (C.15) the difference between the

Z(1)Z(1)W (1)W (1) and W (1)W (1)W (1)W (1) factor is an overall minus sign. This is a trivial

change and we do not repeat the recurrence relation but only refer to eq. (5.100) to read

off the appropriate result.

In unitary gauge, this completes the lowest order scattering kernel Î and we can write the

coupled system of Bethe-Salpeter equations in matrix notation:

Aij(~p, P ) =A(0)ij(~p, P ) +

∫
d3q

(2π)3
Î ij,i

′j′Ai
′j′(~q, P ) (5.108)

or more explicitly:(
AZZ

AWW

)
(~p, P ) =

(
A(0)ZZ

A(0)WW

)
(~p, P ) +

∫
d3q

(2π)3

(
IZZZZ IZZWW

IWWZZ IWWWW

)
(~p, ~q, P )

(
AZZ

AWW

)
(~q, P )
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5.6. Neglected Terms in the Ladder Approximation

In this section, we will briefly discuss classes of diagrams that are omitted in the lad-

der approximation to the Bethe-Salpeter equation in addition to s-channel graphs and

crossed boxes. In the nonrelativistic limit, we have already demonstrated, that crossed

box diagrams are suppressed in section 5.2. In unitary gauge, we will argue that all other

diagrams are subdominant in comparison to the regular box in fig. 5.13(a) in the non-

relativistic, instantaneous approximation considered here. We restrict ourselves to the

discussion of one-loop graphs for the Z(1)Z(1) → W (1)W (1)-kernel, but all other interac-

tion kernels display similar topologies, so that the line of reasoning follows analogously.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.13.: Discussion of neglected Feynman diagrams in the ladder approximation to the

Bethe-Salpeter kernel. This list is an exemplary selection of graphs that would

appear in a complete one-loop calculation. We only show one-loop graphs for

Z(1)Z(1) →W (1)W (1)-scattering, the other interaction kernels contain similar

topologies. Note that s-channel diagrams and graphs with crossed exchange-lines are

not shown here. Heavy modes are indicated by a ”1”.

As we have discussed in the previous sections explicitly, the box diagrams similar to

5.13(a) are enhanced in the nonrelativistic instantaneous limit, as we employ the unitary

gauge. The enhancement of diagram 5.13(a) was a direct result from the integration

over the zero component of the loop-momentum q, which led to the small denomina-

tor25 (P0−ω~q) ∼ mχα
2 (see e.g. eq. (5.97)) in the nonrelativistic regime. In this situation,

the small denominator resulted from the interplay between the poles of the two heavy

gauge boson propagators, which will neither occur in diagram 5.13(b) nor 5.13(c). Note,

that the instantaneous limit is important for this discussion, so that the propagators of

the exchange particles do not have poles in q0.
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One might wonder, why we have not considered box diagrams with heavy modes on

the ladder steps and Standard Model fields as lateral bars (Feynman graph similar to

5.13(a), but heavy and light modes interchanged in the box) in the nonrelativistic instan-

taneous approximation. In the instantaneous limit, the interaction range of the heavy

modes in the ladder steps is very short and becomes delta-like in the limit mχ → ∞, so

that such diagrams do not influence the Schrödinger wavefunction considerably. This has

been discussed in section 3.2.1.

Diagram 5.13(d) contributes to the first order correction to the triple-gauge-boson vertex

and is neglected in our weakly coupled theory. The same is true for graphs 5.13(e) and

5.13(f). In principle we could include such diagrams by ”dressing” the three-gauge-boson-

vertices in the sense of solving the corresponding Dyson-Schwinger equations [67, 85]. A

similar statement holds true for diagrams 5.13(g) and 5.13(h), which contribute to the

first correction to the propagators. Such terms are in principle implemented by ”dressed”

two-point functions, where ”dressed” is understood in the same sense as for the vertex

corrections. Working with ”dressed” propagators and vertices is beyond the scope of this

work and we restrict ourselves to the lowest order two- and three-point functions.
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5.7. Definition of the Bethe-Salpeter Wavefunction

Let us pursue the analogy to Iengo [23] and Nakanishi [68] and introduce the Bethe-

Salpeter wavefunction as a generalized form factor [70] of the bound state (see also chapter

5.1 and eq. (5.41)). We follow the notation of [39] and have an annihilation cascade of

the form

φaφb → φiφj → φ′iφ
′
j → · · · → SM final states (5.109)

in mind. Working in unitary gauge for the massive gauge bosons rotates all physical de-

grees of freedom into the gauge boson propagators which subsequently become transversal.

The definitions given below reflect this choice of gauge, but could easily be generalized

if desired. The advantage of the unitary gauge is the limited number of Feynman dia-

grams that have to be taken into account for the integral kernel because only the physical

modes are present from the start (Goldstone bosons and ghost decouple)[40]. In the non-

relativistic limit and the center of mass system we define:

χµνij (~q, P0) =

(
gµρ − P µP ρ

m2
i

)(
gνσ − P νP σ

m2
j

)
Aijρσ(~q, P0)

4ω2
~q 2(ω~q − P0)

(5.110)

≈
(
gµρ − P µP ρ

m2
i

)(
gνσ − P νP σ

m2
j

)
Aijρσ(~q, P0)

4ω2
~q

(
~q 2

2mijr
− E + 2δmij

)
where E = ~p2

2mabr
denotes the kinetic energy of the incoming pair, mij

r =
mimj
mi+mj

the reduced

mass of the {ij} pair and 2δmij = mi +mj − (ma +mb) parameterizes the mass splitting.

Note that the order of the denominator 1
2(ω~q−P0)

in (5.110) is reversed compared to all

our expressions for the recurrence relations, which gives an additional minus sign. By

rewriting the recurrence relation for the scattering amplitudes in terms of Bethe-Salpeter

wavefunctions, we obtain a set of coupled Schrödinger equations (see [39] for the analog

MSSM result) in momentum space which can be expressed symbolically as26:

Aijµ1µ2(~p, P ) =A(0)ij
µ1µ2

+
∑
{i′j′}

∫
d3q

(2π)3
Kij,i′j′

µ1µ2ρσ
(~p, ~q, P0) (5.111)

(
gρµ7 − P ρP µ7

m2
i′

)(
gσµ8 − P σP µ8

m2
j′

)
Ai
′j′
µ7µ8

(~q, P0)

4ω2
~q

(
~q 2

2mi
′j′
r

− E + 2δmi′j′

)

⇒ 4ω2
~p(

~p2

2mij
r

− E + 2δmij)

(
gµ1ρ − P µ1P ρ

m2
i

)−1(
gµ2σ − P µ2P σ

m2
j

)−1

χijρσ(~p, P0) (5.112)

=A(0)ij
µ1µ2

(~p, P0) +
∑
{i′j′}

∫
d3q

(2π)3
Ki,j,i′,j′;µ7,µ8
µ1µ2

(~p, ~q, P0)χi
′,j′

µ7µ8
(~q, P0)

26In a general Rξ-gauge, Goldstone bosons and ghost have to be considered as well for {ij}.
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⇒ (
~p2

2mij
r

− E + 2δmij)χ
ij
µ1µ2

(~p, P0) (5.113)

=Ũ (0)ij
µ1µ2

(~p, P0) +
∑
{i′j′}

∫
d3q

(2π)3
V i,j,i′,j′;µ7,µ8
µ1µ2

(~p, ~q, P0)χi
′,j′

µ7µ8
(~q, P0)

{ij}, {i′j′} ∈ {{Z(1)Z(1)}, {W (1)W (1)}}

In the last step we have made use of the redefinition

V i,j,i′,j′;µ7,µ8
µ1µ2

(~p, ~q, P0) =
1

4ω2
~p

(
gρµ1 −

Pµ1P
ρ

m2
i

)(
gσµ2 −

Pµ2P
σ

m2
j

)
Ki,j,i′,j′;µ7,µ8
ρσ (~p, ~q, P0)

Ũ (0)ij
µ1µ2

(~p, P0) =
1

4ω2
~p

(
gρµ1 −

Pµ1P
ρ

m2
i

)(
gσµ2 −

Pµ2P
σ

m2
j

)
A(0)ij
ρσ (~p, P0)

to express the Bethe-Salpeter equation as an effective Schrödinger equation in the non-

relativistic, instantaneous limit with relative momenta p, q neglected in the numerators.

The integral kernels Ki,j,i′,j′;µ7,µ8
µ1µ2

(~p, ~q, P0) and correspondingly V i,j,i′,j′;µ7,µ8
µ1µ2

(~p, ~q, P0) are a

sum of different contributions, associated to the appropriate field theory diagrams for each

combination {ij, i′j′}. In the approximation applied above, we immediately realize that

χµν is transversal on the mass shell:

P µχµν = P νχµν = 0 (5.114)

due to the vanishing right hand side of eq. (5.113).
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5.8. Summary of Integral Kernels

We have just recast the recurrence relation for the amplitudes Aµν into a set of equa-

tions for the Bethe-Salpeter amplitudes χijµν . We were able to extract the lowest order

interaction kernels from field theory diagrams by applying our Feynman rules. After all

transformations applied so far, let us briefly summarize the integral kernels to have them

compactly on one page. The results are obtained within the instantaneous ladder ap-

proximation with all small momenta q, p disregarded in the numerators and in unitary

gauge:

V ZZWW,µ7µ8
µ1µ2

(~p, ~q, P ) =
1

4ω2
~p

[
gρµ1 −

Pµ1P
ρ

m2
Z(1)

] [
gσµ2 −

Pµ2P
σ

m2
Z(1)

]
× (5.115){

g2
2

(~q − ~p)2 +m2
W (0)

[
gµ8ρ PσP

µ7 + gρσP
µ7P µ8 − 4gµ7ρ PσP

µ8

+Pρ(Pσg
µ7µ8 − 4P µ7gµ8σ + P µ8gµ7σ ) + 4P 2gµ7ρ g

µ8
σ

]
+

g2
2

(~q + ~p)2 +m2
W (0)

[ρ↔ σ]

+ g2
2

[
gµ8ρ g

µ7
σ + gµ7ρ g

µ8
σ − 2gρσg

µ7µ8
]}

V WWWW,µ7µ8
µ1µ2

(~p, ~q, P ) =
1

4ω2
~p

[
gρµ1 −

Pµ1P
ρ

m2
W (1)

] [
gσµ2 −

Pµ2P
σ

m2
W (1)

]
× (5.116){[

g2
2Cos[θ0

W ]

(~q − ~p)2 +m2
Z(0)

+
e2

(~q − ~p)

] [
gµ8ρ PσP

µ7 + gρσP
µ7P µ8 − 4gµ7ρ PσP

µ8

+Pρ(Pσg
µ7µ8 − 4P µ7gµ8σ + P µ8gµ7σ ) + 4P 2gµ7ρ g

µ8
σ

]
− g2

2

[
gµ8ρ g

µ7
σ + gµ7ρ g

µ8
σ − 2gρσg

µ7µ8
]}

The V WWZZ,µ7µ8
µ1µ2

(~p, ~q, P ) integral kernel is identical to eq. (5.115) up to a trivial substitu-

tion of m2
Z(1) ↔ m2

W (1) . Note that the ω~p’s have to be adjusted to the incoming particles,

i.e. ω~p =
√
m2
Z(1) + ~p2 for the V ZZWW,µ7µ8

µ1µ2
(~p, ~q, P ) kernel and ω~p =

√
m2
W (1) + ~p2 for the

V WWZZ,µ7µ8
µ1µ2

(~p, ~q, P ) and V WWWW,µ7µ8
µ1µ2

(~p, ~q, P ) case.
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5.9. Spin Decomposition of Tensor Fields

Even though we have already introduced a number of approximations to the Bethe-

Salpeter equation, it remains rather hard to determine the overall sign of the effective

potential. The non-relativistic Schrödinger equation 5.113 still contains different bound

state spin contributions. By introducing a set of projection operators we hope to disen-

tangle different spin configurations and thereby simplifying the calculations.

A general second-rank tensor T µν can be decomposed into a 10 component symmetric and

a 6 component anti-symmetric part [86, 87]. These tensors can subsequently be decom-

posed into their spin representations. We take the projection operators given by Barnes

[86] to treat our bound state amplitude formed by two vector particles. The general T µν

decomposes into representations D(2)⊕3 ·D(1)⊕2 ·D(0) which give just the right num-

ber of degrees of freedom, i.e. 16. The corresponding projection operators in momentum

space are:

P µνµ′ν′

2 =
1

2

[
θµµ

′
θνν

′
+ θµν

′
θνµ

′
]
− 1

3
θµνθµ

′ν′

P µνµ′ν′

1 =
1

2k2

[
θµµ

′
kνkν

′
+ θνν

′
kµkµ

′
+ θµν

′
kνkµ

′
+ θνµ

′
kµkν

′
]

P µνµ′ν′

0 =
1

12
ψµνψµ

′ν′ (5.117)

A
(1),µνµ′ν′

1 =
1

2k2

[
gµµ

′
kνkν

′ − gνν′kµkµ′ − gµν′kνkµ′ + gνµ
′
kµkν

′
]

A
(2),µνµ′ν′

1 =
1

2

[
gµµ

′
gνν

′ − gµν′gνµ′
]
− 1

2k2

[
gµµ

′
kνkν

′ − gνν′kµkµ′ − gµν′kνkµ′ + gνµ
′
kµkν

′
]

with the shorthand notation:

θµν = gµν − kµkν

k2
ψµν = gµν − 4

kµkν

k2

The derivation of these projection operators and their particular four-momentum depen-

dence are neatly explained in [87] and shall not be repeated here. We will however give

the explicit expressions for the projection operators P(S) for the spin-2, spin-1 and spin-0

subspaces27[87]:

P̂ µν
(2),σρ =− 1

3
gµνgσρ +

1

2
(gµσg

ν
ρ + gµρ g

ν
σ)

+
1

3k2
(gµνkσkρ + kµkνgσρ) +

2

3k4
kµkνkσkρ (5.118)

− 1

2k2
(gνρk

µkσ + gµσk
νkρ + gµρk

νkσ + gνσk
µkρ)

27We have corrected a few typos in the expressions given by [87], so that the projection operator identities

hold in our case.
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P̂ µν
(1),σρ =

1

2
(gµσg

ν
ρ − gµρ gνσ) (5.119)

+
1

2k2
(gνρk

µkσ + gµσk
νkρ + gµρk

νkσ + gνσk
µkρ)

− 2

k4
kµkνkσkρ

P̂ µν
(0),σρ =

1

3
gµνgσρ −

1

3k2
(gµνkσkρ + kµkνgσρ) (5.120)

+
4

3k4
kµkνkσkρ

It is important to note that [86, 87] discuss spin projectors for fundamental tensor fields.

We on the other hand have to deal with a composite state, potentially involving relative

momenta p and q to describe the compound object. We define the projectors using four-

momentum P µ and plug them into eq. (5.113) to decouple the BS-equation into different

subspaces (which are not necessarily the spin subspaces for the compound object), utilizing

the special property of projection operators, i.e. 1 =
∑

i P̂(i)(P ) and P̂ 2
(i)(P ) = P̂(i)(P ).

On the bound state pole, the inhomogeneous contribution Ũ
(0)
µ1µ2(~p) is subdominant [39]

and will be neglected in the following. We eventually drop some Lorentz indices and

momentum dependences for brevity and write:

(
~p2

2mij
r

− E + 2δmij)χ
ij
µ1µ2
∝
∑
{i′,j′}

∫
d3q

(2π)3
V i,j,i′,j′;µ7,µ8
µ1µ2

(~p, ~q, P0)1χi
′,j′

µ7µ8
(~q, P0)

=
2∑
l=0

∑
{i′,j′}

∫
d3q

(2π)3
V i,j,i′,j′(~p, ~q, P0)P̂ 2

(l)χ
i′,j′(~q, P0)

⇒ (
~p2

2mij
r

− E + 2δmij)P̂(l′)χ
ij ∝

2∑
l=0

∑
{i′,j′}

∫
d3q

(2π)3
P̂(l′)V

i,j,i′,j′(~p, ~q, P0)P̂(l)P̂(l)χ
i′,j′(~q, P0)

In our approximation, neglecting all q, p in the numerator of the interaction term, it can be

shown that P̂(l′)(P )V i,j,i′,j′(~p, ~q, P0)P̂(l)(P ) = Ṽ
(l′→l)
i,j,i′,j′δl′l ≡ Ṽ

(l′)
i,j,i′,j′ , i.e. the interaction ker-

nel is blockdiagonal with subspaces defined by the projection operators. Having achieved

this decomposition we can look at each subspace separately.

⇒ (
~p2

2mij
r

− E + 2δmij)χ
ij
l′ =

∑
{i′,j′}

∫
d3q

(2π)3
Ṽ

(l′)
i,j,i′,j′χ

i′j′

l′ (5.121)

We have introduced the notation:

χi
′j′

l (~q, P ) =P̂(l)(P )χi
′,j′(~q, P0) (5.122)
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5.9.1. Tensor Decomposition of the Bethe-Salpeter Amplitude

We write the Bethe-Salpeter amplitude in terms of Lorentz tensors. The most general

structure we can write down in momentum space is:

χµνij (q, P ) =f ij0 g
µν − f ij1

P µP ν

P 2
+ f ij4

qµqν

q2
+ f ij2 P

µqν + f ij3 P
νqµ + f ij5 ε

µνρσPρqσ. (5.123)

The coefficients f ijk ; {ij} ∈ {ZZ,WW} in principle depend on Lorentz scalars involving

contractions of q and P . From the transversality condition (5.114) we immediately realize

that f0 = f1 and f2 = f3 = 0.

P̂(0)(P)-subspace

Applying the projection operator P̂(0)(P ) to eq. (5.123) we find28:

P̂ µνρσ
(0) (P )χijρσ(~q, P ) ≡ χµν(0),ij(~q, P ) =

(
gµν − P µP ν

P 2

)(
3f ij0 (~q, P ) + f ij4 (~q, P )

3

)
(5.124)

Going back to the homogeneous Bethe-Salpeter equation (5.121), setting the diagonal

Z(1)Z(1) → Z(1)Z(1) kernel to zero29 and contracting Ṽ
(0)
ZZWW with χWW

(0) leads to:

(
~p2

2mZZ
r

−E + 2δmZZ)

(
gµν − P µP ν

P 2

)
φZZ(0) (~p, P ) (5.125)

=g2
2

P 2

ω2
~p

∫
d3q

(2π)3

(
1

m2
W (0) + (~q − ~p)2

+
1

m2
W (0) + (~q + ~p)2

− 1

P 2

)(
gµν − P µP ν

P 2

)
φWW

(0) (~q, P )

where we have defined:

φij(0)(~q, P ) =

(
3f ij0 (~q, P ) + f ij4 (~q, P )

3

)
(5.126)

χµν(0), ZZ/WW (~q, P ) =

(
gµν − P µP ν

P 2

)
φ
ZZ/WW
(0) (~q, P ) (5.127)

The tensor structure of the Bethe-Salpeter wavefunction can be factored out and (5.121)

reduces to a coupled system of scalar equations in the P̂(0)(P ) subspace:(
( ~p2

2mZZr
− E + 2δmZZ) φZZ(0) (~p, P )

( ~p2

2mWW
r
− E + 2δmWW ) φWW

(0) (~p, P )

)
=

∫
d3q

(2π)3

(
Ṽ

(0)
ZZZZ(~p, ~q, P ) Ṽ

(0)
ZZWW (~p, ~q, P )

Ṽ
(0)
WWZZ(~p, ~q, P ) Ṽ

(0)
WWWW (~p, ~q, P )

)
·

(
φZZ(0) (~q, P )

φWW
(0) (~q, P )

)
(5.128)

28Note that P · q = 0, since P only possesses a nonvanishing P0 in the CMS and the zero-component of

q has already been integrated out.
29The lowest order interaction kernel is suppressed, see discussion in section 5.5.1.
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with the matrix elements:

Ṽ
(0)
ZZZZ(~p, ~q, P ) ≈ 0 (5.129)

Ṽ
(0)
ZZWW (~p, ~q, P ) =

g2
2P

2

ω2
~p(m

2
W (0) + (~q − ~p)2)

+
g2

2P
2

ω2
~p(m

2
W (0) + (~q + ~p)2)

− g2
2

ω2
~p

(5.130)

Ṽ
(0)
WWZZ(~p, ~q, P ) =

g2
2P

2

ω2
~p(m

2
W (0) + (~q − ~p)2)

+
g2

2P
2

ω2
~p(m

2
W (0) + (~q + ~p)2)

− g2
2

ω2
~p

(5.131)

Ṽ
(0)
WWWW (~p, ~q, P ) =

g2
2 Cos2(θ

(0)
W )P 2

ω2
~p(m

2
Z(0) + (~q − ~p)2)

+
e2P 2

ω2
~p(~q − ~p)2

+
g2

2

ω2
~p

(5.132)

In the P̂(0) subspace, the scalar amplitudes φij(0) can be functions of q2 and P 2, therefore

a redefinition of momentum q → −q in the second term of the kernel does not change

the physics. We combine the contributions from the t- and u-channel diagrams and get

a factor of two in front of the gauge boson exchange terms. As we already realized,

the contact term is suppressed by
m2

W (0)

m2

W (1)

and henceforth we are going to neglect it as an

approximation. This reduces the number of terms in the BS-equation even further30:

Ṽ
(0)
ZZZZ(~p, ~q, P ) ≈ 0 (5.133)

Ṽ
(0)
ZZWW (~p, ~q, P ) ≈ 2 g2

2P
2

ω2
~p(m

2
W (0) + (~q − ~p)2)

≈ 2 g2
2

(m2
W (0) + (~q − ~p)2)

(5.134)

Ṽ
(0)
WWZZ(~p, ~q, P ) ≈ 2 g2

2P
2

ω2
~p(m

2
W (0) + (~q − ~p)2)

≈ 2 g2
2

(m2
W (0) + (~q − ~p)2)

(5.135)

Ṽ
(0)
WWWW (~p, ~q, P ) ≈ g2

2 Cos2(θ
(0)
W )P 2

ω2
~p(m

2
Z(0) + (~q − ~p)2)

+
e2P 2

ω2
~p(~q − ~p)2

(5.136)

≈ g2
2 Cos2(θ

(0)
W )

(m2
Z(0) + (~q − ~p)2)

+
e2

(~q − ~p)2

We have to solve a coupled system of Schrödinger equations (eq. (5.128)) which can in

principle be accomplished by diagonalizing the matrix valued potential. Unfortunately,

due to the difference in the denominators of Ṽ
(0)
ZZWW (~p, ~q, P ) and Ṽ

(0)
WWWW (~p, ~q, P ), one

looses the simple Yukawa-like interaction structure by the diagonalization. The approxi-

mated interaction potential has the form:(
0 a

a b

)
(5.137)

with eigenvalues:

λ1,2 =
1

2
(b±

√
4a2 + b2) (5.138)

30To leading order, we set P 2

ω2
~q

= 1.
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We realize however, that we obtain one attractive (λ1) and one repulsive (λ2) contribution

to the potential in the diagonalization process. Therefore, before even solving the decou-

pled system of equations explicitly, we are able to make an important statement which

was the primary goal of the entire project. In the scattering process of two vector parti-

cles, there is at least one irreducible component that leads to an attractive force and the

formation of a loosely bound two-particle state in the non-relativistic instantaneous limit.

In our case this two-particle state is a mixture of Z(1)Z(1) and W (1)W (1) which can lead

to a Sommerfeld enhanced annihilation amplitude. Instead of diagonalizing the potential

matrix directly, one can follow the treatment of Hryczuk [39] and solve the equations by

a partial wave decomposition ansatz to deal with the system of Schrödinger equations nu-

merically. It is common to Fourier-transform the Schrödinger equation into configuration

space:

(
~p2

2mZZ
r

−E + 2δmZZ) φZZ(0) (~p, P ) =

∫
d3q

(2π)3

2 g2
2

(m2
W (0) + (~q − ~p)2)

φWW
(0) (~q, P )∫

d3p

(2π)3
e−i~p·~x(

~p2

2mZZ
r

−E + 2δmZZ) φZZ(0) (~p, P )

=2 g2
2

∫
d3p

(2π)3

∫
d3q

(2π)3
e−i~p·~x

1

(m2
W (0) + (~q − ~p)2)

φWW
(0) (~q, P )

after a momentum shift ~p→ ~p′ + ~q on the r.h.s.

=2 g2
2

∫
d3p′

(2π)3

∫
d3q

(2π)3
e−i(~p

′+~q)·~x 1

(m2
W (0) + ~p′2)

φWW
(0) (~q, P )

=2 g2
2

∫
d3p′

(2π)3

1

(m2
W (0) + ~p′2)

e−i~p
′·~x
∫

d3q

(2π)3
e−i~q·~xφWW

(0) (~q, P )

⇒ (− ∂2
x

2mZZ
r

−E + 2δmZZ) φZZ(0) (~x, P ) =
2g2

2

4π

e−mW (0) |~x|

|~x|
φWW

(0) (~x, P ) (5.139)

Analogously, we can transform the second part of the matrix equation (5.128):

(− ∂2
x

2mWW
r

− E + 2δmWW ) φWW
(0) (~x, P ) =

2g2
2

4π

e−mW (0) |~x|

|~x|
φZZ(0) (~x, P ) (5.140)

+

(
g2

2 Cos2(θ
(0)
W )

4π

e−mZ(0) |~x|

|~x|
+
e2

4π

1

|~x|

)
φWW

(0) (~x, P )

The vector boson exchange leads to a considerably larger Yukawa-potential coupling

strength in comparison to the Higgs case. We define three coupling parameters using

SM-values for g2 and θ
(0)
W (see app. A):

α1 =
e2

4π
≈ 1

128
α̃2 =

2g2
2

4π
≈ 0.0662 α3 =

g2
2 Cos2(θ

(0)
W )

4π
≈ 0.0253 (5.141)
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P̂(1)(P)-subspace

For the P̂(1)(P ) subspace we proceed in complete analogy to the P̂(0)(P ) case and apply

the projection operator P̂(1)(P ) to eq. (5.123) and use the transversality condition (5.114)

to find:

P̂ µνρσ
(1) (P )χijρσ(~q, P ) ≡ χµν(1),ij(~q, P ) = f ij5 εµνρσPρqσ (5.142)

εµνρσ denotes the completely antisymmetric Levi-Civita symbol. Note, in the center

of mass system χµν(1),ij is only non-zero for ρ = 0, therefore χµν(1),ij can be reduced to

f ij5 P0ε
mnkqk; m,n, k ∈ {1, 2, 3}; ij ∈ {ZZ,WW}. Going back to the homogeneous Bethe-

Salpeter equation (5.121) we have to calculate the contractions between Ṽ
(1)
iji′j′ and χi

′j′

(1) .

As for the P̂(0)(P ) subspace Ṽ
(1)
ZZWW and Ṽ

(1)
WWZZ contain three contributions in our trun-

cation scheme, the t- and u-channel W (0) exchange as well as the four gauge boson contact

term (see eq. (5.115)). To leading order, we neglect the Higgs-exchange and set Ṽ
(1)
ZZZZ to

zero. The diagonal Ṽ
(1)
WWWW involves the Z(0), A(0) t-channel exchange and the contact

term. We give the results of the contraction explicitly:

P̂(1)(P )V ZZZZ(~p, ~q, P )P̂(1)(P )χZZ(1) (~q, P ) ≈0 (5.143)

P̂(1)(P )V ZZWW
t−channel(~p, ~q, P )P̂(1)(P )χWW

(1) (~q, P ) =fWW
5

P 2

ω2
~p

g2
2

m2
W (0) + (~q − ~p)2

εµνρσPρqσ (5.144)

P̂(1)(P )V ZZWW
u−channel(~p, ~q, P )P̂(1)(P )χWW

(1) (~q, P ) =− fWW
5

P 2

ω2
~p

g2
2

m2
W (0) + (~q + ~p)2

εµνρσPρqσ (5.145)

P̂(1)(P )V ZZWW
contact (~p, ~q, P )P̂(1)(P )χWW

(1) (~q, P ) =0 (5.146)

The difference between the t- and u-channel contribution stems from the topology of

the diagrams. The potential terms differ by an exchange of the final state Lorentz in-

dices which directly leads to the minus sign upon contraction with the antisymmetric

Levi-Civita symbol. The difference in the W(0)-boson propagator is a result from the

different momentum flow. Changing q to −q in the integration for the u-channel term,

we realize that the t- and u-channel contributions are in fact equal as argued in the

glueball literature (see e.g. [78]). The contraction of the reversed off-diagonal kernel

P̂(1)(P )V WWZZ
i (~p, ~q, P )P̂(1)(P ) with χZZ(1) (~q, P ) leads to similar expressions:

P̂(1)(P )V WWZZ
t−channel(~p, ~q, P )P̂(1)(P )χZZ(1) (~q, P ) =fZZ5

P 2

ω2
~p

g2
2

m2
W (0) + (~q − ~p)2

εµνρσPρqσ (5.147)

P̂(1)(P )V WWZZ
u−channel(~p, ~q, P )P̂(1)(P )χZZ(1) (~q, P ) =− fZZ5

P 2

ω2
~p

g2
2

m2
W (0) + (~q + ~p)2

εµνρσPρqσ (5.148)

P̂(1)(P )V WWZZ
contact (~p, ~q, P )P̂(1)(P )χZZ(1) (~q, P ) =0 (5.149)
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Last but not least, we have to perform the contraction between the diagonal

P̂(1)(P )V WWWW
i (~p, ~q, P )P̂(1)(P ) and χWW

(1) (~q, P ) to obtain:

P̂(1)(P )V WWWW
Z(0)−xchange(~p, ~q, P )P̂(1)(P )χWW

(1) (~q, P ) =fWW
5

P 2

ω2
~p

g2
2 Cos2(θ

(0)
W )

m2
Z(0) + (~q − ~p)2

εµνρσPρqσ (5.150)

P̂(1)(P )V WWWW
A(0)−xchange(~p, ~q, P )P̂(1)(P )χWW

(1) (~q, P ) =fWW
5 e2P

2

ω2
~p

1

(~q − ~p)2
εµνρσPρqσ (5.151)

P̂(1)(P )V WWWW
contact (~p, ~q, P )P̂(1)(P )χWW

(1) (~q, P ) =0 (5.152)

Now we are in the position to write down the coupled system of Bethe-Salpeter equations

for the P̂(1)(P ) subspace. In comparison to the P̂(0)(P ) calculation, the Lorentz structure

does not factor out and we have to keep it for the moment.(
( ~p2

2mZZr
− E + 2δmZZ) χµν(1),ZZ(~p, P )

( ~p2

2mWW
r
− E + 2δmWW ) χµν(1),WW (~p, P )

)
(5.153)

=

∫
d3q

(2π)3

(
Ṽ

(1)
ZZZZ(~p, ~q, P ) Ṽ

(1)
ZZWW (~p, ~q, P )

Ṽ
(1)
WWZZ(~p, ~q, P ) Ṽ

(1)
WWWW (~p, ~q, P )

)
·

(
χµν(1),ZZ(~q, P )

χµν(1),WW (~q, P )

)

Where we have reshuffled some terms to define the scalar potential matrix elements:

Ṽ
(1)
ZZZZ(~p, ~q, P ) ≈0 (5.154)

Ṽ
(1)
ZZWW (~p, ~q, P ) ≈ 2g2

2

m2
W (0) + (~q − ~p)2

(5.155)

Ṽ
(1)
WWZZ(~p, ~q, P ) ≈ 2g2

2

m2
W (0) + (~q − ~p)2

(5.156)

Ṽ
(1)
WWWW (~p, ~q, P ) ≈ g2

2Cos2(θ
(0)
W )

m2
Z(0) + (~q − ~p)2

+
e2

(~q − ~p)2
(5.157)



92 Sommerfeld Effect

P̂(2)(P)-subspace

Finally, we apply the projection operator P̂(2)(P ) to eq. (5.123) to find the BS-amplitude

in this subspace:

P̂ µνρσ
(2) (P )χijρσ(~q, P ) ≡ χµν(2),ij(~q, P ) =

f ij4
3

(
−gµν +

P µP ν

P 2
+ 3

qµqν

q2

)
(5.158)

To find the interaction potential, we repeat the analysis of the P̂(1)(P ) subspace and also

find the coupled system of Schrödinger equations:(
( ~p2

2mZZr
− E + 2δmZZ) χµν(2),ZZ(~p, P )

( ~p2

2mWW
r
− E + 2δmWW ) χµν(2),WW (~p, P )

)
(5.159)

=

∫
d3q

(2π)3

(
Ṽ

(2)
ZZZZ(~p, ~q, P ) Ṽ

(2)
ZZWW (~p, ~q, P )

Ṽ
(2)
WWZZ(~p, ~q, P ) Ṽ

(2)
WWWW (~p, ~q, P )

)
·

(
χµν(2),ZZ(~q, P )

χµν(2),WW (~q, P )

)
,

with the Ṽ
(2)
iji′j′(~p, ~q, P ) matrix elements:

Ṽ
(2)
ZZZZ(~p, ~q, P ) ≈0 (5.160)

Ṽ
(2)
ZZWW (~p, ~q, P ) ≈ 2g2

2

m2
W (0) + (~q − ~p)2

+
g2

2

2ω2
~p

(5.161)

Ṽ
(2)
WWZZ(~p, ~q, P ) ≈ 2g2

2

m2
W (0) + (~q − ~p)2

+
g2

2

2ω2
~p

(5.162)

Ṽ
(2)
WWWW (~p, ~q, P ) ≈ g2

2Cos2(θ
(0)
W )

m2
Z(0) + (~q − ~p)2

+
e2

(~q − ~p)2
− g2

2

2ω2
~p

. (5.163)

The last terms in the potential are the result from the contact diagrams which are sup-

pressed by O
(
m2

W (0)

m2

W (1)

)
and can approximately be neglected. The fact that the scalar

interaction potentials are the same for all P̂(i)(P ) subspaces indicates that the approxi-

mations applied so far, especially neglecting all relative momenta p, q in the numerator

of the kernel, only retain ”spin”-independent interactions. If one opts for spin-spin and

spin-orbit terms one should keep the relative momentum dependence of the interaction

kernel. In the absence of spin-orbit terms, the total spin of the two-body system is con-

served [62]. Due to the similarity between the tensor structures of our matrix elements and

the QCD-ones, considered for the Bethe-Salpeter treatment of glueballs, one expects to

transfer a number of their results up to factors of δm and modifications owed to the mass

of our SM-exchange particles instead of massive gluons. In fact, [77] give the potential of

the one gluon exchange in configuration space.
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5.10. Solution of the Coupled Schrödinger Equations

We introduced Iengo’s solution to the Schrödinger equation for diagonal interactions in

section 5.4 and have realized, that the enhancement factor S is tightly related to the

wavefunction of the homogeneous equation. According to [18, 34, 39] this also holds, if off-

diagonal potential contributions are involved. In analogy to the single-channel Sommerfeld

enhancement (5.55), we define the enhanced s-wave annihilation cross section as:

σ =

(
φZZ(0)

φWW (0)

)†
σ0

(
φZZ(0)

φWW (0)

)
, (5.164)

with the annihilation matrix:

σ0 ∝

( ∣∣A0
Z(1)Z(1)→SM

∣∣2 (A0
Z(1)Z(1)→SM)∗A0

W (1)W (1)→SM
(A0

W (1)W (1)→SM)∗A0
Z(1)Z(1)→SM

∣∣A0
W (1)W (1)→SM

∣∣2
)

(5.165)

In the P̂(0)(P ) subspace we have to analyze the scalar equations31:[
−

~∇2

2mij
r

− E + 2δmij

]
φij(0)(~r) +

∑
{i′j′}

V iji′j′(|~r|)φi
′j′

(0) (~r) = 0 (5.166)

In the following we will drop the subscript (0) from the wavefunctions and introduce

the shorthand notation |~r| ≡ r and |~p| ≡ p, not to be confused with 4-momentum pµ.

To lowest order within the non-relativistic instantaneous approximation, the interaction

potential displays spherical symmetry. From standard quantum mechanics textbooks [42,

43] we know that the Laplace operator ∆ in spherical coordinates reads:

∆ =
1

r2

∂

∂r

[
r2 ∂

∂r

]
+

1

r2sin θ

∂

∂θ

[
sin θ

∂

∂θ

]
+

1

r2sin2 θ

[
∂2

∂φ2

]
. (5.167)

We also introduce the angular momentum operator

−l̂2 =
1

sin θ

∂

∂θ

[
sin θ

∂

∂θ

]
+

1

sin2 θ

[
∂2

∂φ2

]
, (5.168)

whose eigenfunctions are the spherical harmonics Ylm(θ, φ):

l̂2Ylm(θ, φ) = l(l + 1)Ylm(θ, φ). (5.169)

If we normalize Yl,m(θ, φ) according to:∫ π

0

dθ

∫ 2π

0

dφ Y ∗l,m(θ, φ)Yl′,m′(θ, φ) = δl,l′δm,m′ , (5.170)

31See equations (5.139) and (5.140), to read off the correct potentials in configuration space. In the

following we focus our analysis on the P̂(0)(P ) subspace, the results for the other two projections

would follow analogously.
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the spherical harmonics may be expressed in terms of associated Legendre polynomials

Pm
l (cos θ):

Yl,m(θ, φ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cos θ)× eimφ. (5.171)

In section 5.4, we have demonstrated, that the Sommerfeld enhancement is determined

by the solution of the scattering problem for a given initial state. Here we generalize

this derivation to a coupled multi-state system. Owed to the axis defined by the incident

particles, the scattering geometry displays cylindrical symmetry. In comparison to rota-

tionally invariant problems, m is not a good quantum number any more and we have to

expand the angular part of φijp (~r) in terms of Legendre polynomials [43]:

φijp (~r) =
∞∑
l=0

Bij
l Pl(cos θ)Rij

p,l(r). (5.172)

Plugging (5.172) into (5.166), we obtain the radial Schrödinger equation for each partial

wave separately32:{
1

2mij
r

[
1

r2

∂

∂r

[
r2 ∂

∂r

]
− l(l + 1)

r2

]
+ E

(
1− 2δmij

E

)}
Bij
l R

ij
p,l(r)−

∑
{i′j′}

V ij
i′j′(r)B

i′j′

l Ri′j′

p,l (r) = 0.

(5.173)

Asymptotically, the potential is negligible, the system decouples and the radial wavefunc-

tions behave as [39]:{
Rab
p,l(r)

r→∞→ nabl
1
r

sin
(
pabr − 1

2
lπ + δabl

)
, for the incoming dark matter pair

Rij
p,l(r)

r→∞→ nijl
eip

ijr

r
, for scattered states

(5.174)

where pij =
√

2mij
r ε− 4mij

r δmij. Alternatively, the scattering solution might be cast in

a more familiar way:

φij(~r) = cijeip
ijz + f ij(r, θ)

eip
ijr

r
, (5.175)

The coefficients cij depend on the normalization of the incoming {ij} probability current

density and f ij(θ) denotes the scattering amplitude. Using the asymptotic form of eip
ijz

[43]:

eip
ijz z→∞→ 1

2ipijr

∑
l

(2l + 1)Pl(cos(θ))(eip
ijr − (−1)le−ip

ijr), (5.176)

32In our sign convention, the potential is defined e.g. as V ZZWW (r) = − 2g22
4π

e
−m

W (0)r

r .
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we evaluate (5.172) and (5.175) in the asymptotic limit r →∞:

φijl (~r)
r→∞→ cij

1

2ipijr
(2l + 1)Pl(cos(θ))

(
eip

ijr − (−1)le−ip
ijr
)

+ f ij
eip

ijr

r

=Bij
l Pl(cos(θ))

nijl
r

1

2i

(
ei(p

ijr− 1
2
πl+δijl ) − e−i(pijr−

1
2
πl+δijl )

)
(5.177)

Comparing the coefficients for the incoming wave e−ip
ijr, we are able to determine the

expansion coefficients Bij
l and find:

Bij
l = il(2l + 1)

cij

pij nijl
eiδ

ij
l . (5.178)

Physically, imposing (5.175) implies the boundary condition, that the scattered waves are

purely outgoing and the incoming wave amplitude is normalized to cij [34].

To simplify the radial Schrödinger equation it is advantageous to introduce the reduced

wavefunction χijp,l(r), so that Rij
p,l(r) =

nijl e
−iδij

l

cij
χijp,l(r)

r
, where we pull out the asymptotic

normalization for convenience. In this parameterization, the radial kinetic term becomes:

1

r2

∂

∂r

[
r2 ∂

∂r

χp,l(r)

r

]
=
χ
′′

p,l(r)

r
; (5.179)

and we obtain the following wave equation for χ(r):

∂2

∂r2
χijp,l(r) + 2mij

r E

[(1− 2δmij

E

)
− l(l + 1)

2mij
r Er2

]
χijp,l(r)−

1

E
∑
{i′j′}

V ij
i′j′(r)χ

i′j′

p,l (r)

 = 0

(5.180)

For numerical calculations it is favorable to introduce the dimensionless quantity x ≡ p · r
[39]. Due to this substitution, we have to transform the derivative terms, according to:

∂

∂r
χ(r)→ ∂x

∂r

∂

∂x
χ(x) ⇒ ∂2

∂r2
χ(r)→ p2 ∂

2

∂x2
χ(x) (5.181)

Making further use of the definition of E = p2

2mabr
= 1

2
mab
r v

2 in the non-relativistic limit,

we transform (5.180):

∂2

∂x2
χijp,l(x) +

mij
r

mab
r

[(1− 2δmij

E

)
− mab

r

mij
r

l(l + 1)

x2

]
χijp,l(x)− 1

E
∑
{i′j′}

V ij
i′j′(x)χi

′j′

p,l (x)

 = 0,

(5.182)

which agrees with eq. (3.9) in [39] up to the orbital momentum term and a different sign

definition for V .
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Explicitly, the coupled system of Schrödinger equations reads:

∂2

∂x2
χZZp,l (x) +

[
1− l(l + 1)

x2

]
χZZp,l (x) +

2

v

2g2
2

4π

1

x
Exp

[
−mW (0)x

1
2
mZ(1)v

]
χWW
p,l (x) = 0 (5.183)

∂2

∂x2
χWW
p,l (x) +

mZ(1) + δm

mZ(1)

{[(
1− 2δm

1
4
mZ(1)v2

)
− mZ(1)

mZ(1) + δm

l(l + 1)

x2
+ (5.184)

+
2

v

(
g2

2c
2
W

4π

1

x
Exp

[
− mZ(0)x

1
2
mZ(1)v

]
+
e2

4π

1

x

)]
χWW
p,l (x)

+
2

v

2g2
2

4π

1

x
Exp

[
−mW (0)x

1
2
mZ(1)v

]
χZZp,l (x)

}
= 0.

We have introduced the abbreviation cw ≡ cos θ
(0)
W and continue to use the relative velocity

v = p
mr

= p
1
2
m
Z(1)

, which is connected to the single particle velocity via v = 2 vsp.

From (5.164), we remember the connection between the wavefunction φijp,l(0) and the

enhanced cross section σ. It is convenient and straight forward to express σ in terms of

the reduced dimensionless wavefunction. For s-wave annihilation we write:

φp,l=0(~r) =
χp,l=0(r)

pr

r→0
≈

=0︷ ︸︸ ︷
χp,l=0(0) +(∂rχp,l=0(r)|r→0) r

p r
=
∂rχp,l=0(r)|r→0

p
(5.185)

After substituting x = p r, the Sommerfeld-enhanced cross section is conveniently ex-

pressed as:

σ =

(
∂xχ

ZZ
p,l=0(x)|x→0

∂xχ
WW
p,l=0(x)|x→0

)†
σ0

(
∂xχ

ZZ
p,l=0(x)|x→0

∂xχ
WW
p,l=0(x)|x→0

)
, (5.186)

During the preparation of this thesis, another article by Iengo and Hryczuk [62] ap-

peared where they discuss electroweak corrections and the Sommerfeld effect for Majorana

dark matter nearly degenerate with charginos transforming in the adjoint representation

of SU(2)W . For s-wave annihilation, our dimensionless reduced Schrödinger equations

(5.183, 5.184) coincide33 with their equations (1.10) and (1.11) up to factors of
√

2 in

V WWZZ(x) and V ZZWW (x).34 We also find agreement between (5.186) and eq. (1.14) of

[62] for the Sommerfeld enhanced cross section.

34Notice that [62] work with the single particle velocity vsingle−partile which is related to our convention

as described in the body of our text.
34In our case, due to the bosonic nature of Z(1), we have included t- and u-channel annihilation diagrams.

The presence of both diagrams, together with the Feynman rules, led to the particular coefficients in

VWWZZ(x) and V ZZWW (x).
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In order to compare our results to the existing literature on excited dark matter [34] that

deal with a coupled system of states as well, it is useful to cast the Schrödinger equation

in a different form:

∂2

∂x2
~χ(x) = M̂(x)~χ(x). (5.187)

In 5.187 we introduce the vector of reduced radial wavefunctions ~χ(x) =

(
χZZ(x)

χWW (x)

)
.

Our matrix operator M̂(x) reads:

M̂(x) =

 l(l+1)
x2
− 1 −4α2

v
e

[
−
m
W (0)x

p

]
1
x

−4α2

v
e

[
−
m
W (0)x

p

]
1
x

2δm
ε
− 1 + l(l+1)

x2
− 2α2c2W

v
e

[
−
m
Z(0)x

p

]
1
x
− 2

v
e2

4π
1
x

 , (5.188)

and is consistent in signs with [34]35. Note that we have an interaction potential on the

diagonal entry of M̂ in comparison to [34], who consider a U(1) vector interaction coupling

the two-particle states and obtain purely off-diagonal interaction entries. We introduce

the shorthand notation36:

Vod(x) ≡ Voff−diag(x) =
4α2

v
e

[
−
m
W (0)x

p

]
1

x
(5.189)

Vd (x) ≡ Vdiag(x) =
2α2c

2
W

v
e

[
−
m
Z(0)x

p

]
1

x
+

2

v

e2

4π

1

x
, (5.190)

for brevity. In order to check consistency with [34], it is most appropriate to introduce:

ε2v = 1

εφ =
mW (0)

p
=

mW (0)

1
2
mZ(1)v

ε̃φ ==
mZ(0)

p
=

mZ(0)

1
2
mZ(1)v

ε2δ(x) =
2δm

ε
− Vd(x).

That way M̂(x) transforms to:

M̂(x) =

(
l(l+1)
x2
− ε2v −Vod(x)

−Vod(x) l(l+1)
x2
− ε2v + ε2δ(x)

)
, (5.191)

which formally agrees with eq. (3.2) in [34]. However, due to the diagonal potential

Vdiag(x), ε2δ is not a constant anymore and care should be taken in adapting the results of

35N.B., that the notation differs by a rescaling of x. In order to agree with [34] we would have to set

x→ α2

v x. Physically, this corresponds to a change of measure. We refer everything to the de Broglie

wavelength 1/p of the DM pair, whereas [34] measure in Bohr radii of the bound state.
36Note, that Voff−diag and Vdiag are dimensionless in our notation.
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the above mentioned paper. It is straight forward to find the eigenvalues and eigenvectors

of M̂(x). For εδ 6= 0 we obtain:

λ± =
l(l + 1)

x2
− ε2v +

ε2δ(x)

2
±

√
Vod(x)2 +

(
ε2δ(x)

2

)2

(5.192)

χ± =
1√
2

∓√1∓ 1√
1+(Vod(x)/(ε2δ(x)/2))2√

1± 1√
1+(Vod(x)/(ε2δ(x)/2))2

 . (5.193)

Notably, the eigenvectors only depend on the ratio of mass splitting and off-diagonal

potential. Parametrically, neglecting all numerical factors O(1), this ratio scales as:

Vod
ε2δ
∼

α2

v
e
−εφx

x

δm
ε
− α2

v
e
−ε̃φx

x
− α2

vx

∼
α2

r
e−mW (0)r

δm− α2

r

[
e−mZ(0)r + 1

] .
We immediately realize two limiting cases, one where the potential terms (∼ α2/r) dom-

inate over the mass splitting (∼ δm) and vice versa.

1. Potential � δm

In this case we neglect the mass splitting term in ε2δ , the rest remains unchanged. In

our specific example, the potentials become strong at short distances 1/r < mZ(0) .

For the eigenvalues and eigenvectors of M̂ , we find the analogon to (5.192):

λ± ≈
l(l + 1)

x2
− ε2v +

Vd(x)

2
±

√
Vod(x)2 +

(
Vd(x)

2

)2

χ± ≈
1√
2

∓
√

1∓ |Vd(x)/2|√
(Vd(x)/2)2+Vod(x)2√

1± |Vd(x)/2|√
(Vd(x)/2)2+Vod(x)2

 .

The presence Vd(x) makes the diagonalization of M̂ nontrivial. This is the major

difference to the Schrödinger equation studied in [34], where the diagonal potential

was absent and the eigenvectors χ± → 1/
√

2(∓1, 1)T follow from an x-independent

45◦ rotation.

2. Potential � δm

We can directly implement this limit in (5.191) where M̂ is diagonal and the

Schrödinger equation decouples:

λ± ≈
l(l + 1)

x2
− ε2v +

ε2δ
2
± ε2δ

2
+O(V (x)2)

χ+ ≈

(
0

1

)
χ− ≈

(
1

0

)
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In the limiting cases where the diagonalization of M̂ is independent of x, we can introduce

an approximate decoupled Schrödinger equation of the form:

χ±(x) = λ±(x)χ±(x). (5.194)

In the intermediate regime Vod(x) ∼ ε2δ
2

, however, the interplay of the different energy

scales leads to nontrivial diagonalization matrices that depend on x explicitly. This gives

rise to non-diagonal derivative terms of the diagonalization matrix itself [34] and we are

not able to decouple the system.

Numerical Solution of the Coupled Schrödinger Equations - Technical Details

Having discussed the limiting cases of the reduced radial Schrödinger equation (5.187),

we turn our attention to the numerical solution of (5.183) and (5.184). In the asymp-

totic limit x→∞, equations (5.183) and (5.184) decouple and we retrieve the boundary

conditions (5.174) at infinity. Together with the requirement, that the solutions to the

radial wave-equations have to be regular at the origin (χij(x = 0)
!

= 0), we are left to

solve the ordinary differential equations (ODEs) as a boundary value problem (BVP), i.e.

the solutions have to satisfy boundary conditions at two distinct points, x1 and x2, of the

independent variable, x. Such scenarios have been addressed in the literature and we are

going to adopt the numerical treatment of BVPs as outlined in [88]. In comparison to

initial value problems (IVP), the setup we are dealing with is a little more involved, since

one is not able to begin the numerical iteration from a single point, lets say x1, where the

specific solution of the ODE is uniquely determined. A method called ”shooting” solves

this problem by introducing a number of arbitrary initial conditions at x1 that is equal

to the number of boundary conditions that would have to be fulfilled at x2 in the original

BVP. One cleverly varies the free initial parameters at x1 via a Newton-Raphson method

[88] until the boundary conditions at x2 are met.

We have implemented the whole algorithm in Mathematica and used a Runge-Kutta 4

(RK4) [89] update procedure to integrate the ODE between the two endpoints37. Instead

of starting at the origin x = 0 ≡ x0 and integrating χZZ and χWW to infinity, we have

chosen to set the boundary conditions at numerical infinity (x∞) and iterate backwards.

In our case, we found more reliable solutions and were able to automatically pick out the

asymptotically damped modes of χWW , when the WW-pair can not go on-shell (E < 2δm).

37The continuous ODE is discretized and the iteration relates points that are separated by small but

finite differences. The number of steps is denoted by NIt in the following. For a detailed description of

the method, c.f. e.g. [89]. For completeness, we give our Mathematica routine for the coupled system

in App. E. For the implementation, we used the lecture notes [90] as guidance.
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In particular, we use:

χZZ(x)
x→∞→ sin(x+ δ) (5.195)

χWW (x)
x→∞→ nWW exp(−k′x) (5.196)

k′ =

√
−mZ(1) + δm

mZ(1)

(
1− 2δm

E

)
≈ i

√(
1− 2δm

E

)
and set up the shooting method such that we vary the scattering phase δ and the amplitude

nWW at numerically infinity until we obtain regular solutions for χZZ and χWW at the

origin. For specific integrations, we have defined x∞ ≡ 25 and chosen the Runge-Kutta

step size h = x∞−x0
NIt

so that the wavefunctions close to the origin are sampled sufficiently

well. NIt denotes the number of steps between the two endpoints of the integration

interval. Numerically, we demand38:

|χZZ(0)| < ε |χWW (0)| < ε,

where we introduce the desired accuracy ε of the shooting procedure.

Validation of our Numerical Routines

In order to validate our method, we revisited the simple ODE for the single-channel Som-

merfeld enhancement (5.64) and this time solve the boundary value problem with the

procedure described above.

We find excellent agreement between the two methods, however, we had minor issues with

our shooting routine in the low velocity region and were not able to sample parameter

points with v/c < 10−4 efficiently. Probing the low velocity parameter range numerically

would have required a drastic increase in Runge-Kutta iteration steps NIt, leading to a

significant slowdown of the integration process. In order to obtain the v/c = 10−5 mass

dependence plot in fig. 5.14 for example, we had to set NIt = 500000 for stable results.

We have already sketched the line of reasoning behind the particular form of fig. 5.14

in Sec. 5.4 and shall not repeat it here. For comprehensive discussion, we refer to the

existing literature on the single-channel Sommerfeld effect [11, 23, 38, 16].

38In fact, we do not iterate all the way to x = 0, but stop at a small parameter x0 = ε̃ so that we do not

run into troubles with the divergent potentials V iji
′j′(x) at the origin.
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Figure 5.14.: Validation of the numerical shooting method via velocity and dark matter mass

dependence of the Sommerfeld enhancement for single-channel Yukawa interaction.

We show our numerical results for the Sommerfeld factor (S) for the Arkani-Hamed

parameter point discussed in Sec. 5.4 for our shooting routine (top panel) and

Iengos routine (lower panel). Explicitly, we use α = 1
100 ,mφ = 1GeV .
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Numerical Solution of the Coupled Schrödinger Equations - Numerical Results

In comparison to other authors working on the Sommerfeld effect of coupled systems

who obtain similar effective Schrödinger equations as (5.183) and (5.184)[18, 62, 34], our

model has a preferred mass splitting δm ≈ 0.01 GeV, which was the result from elec-

troweak symmetry breaking in the gauge boson multiplet (c.f. Sec. 4.6.3 and Sec. 4.6.4).

This is approximately one order of magnitude smaller than the mass splittings considered

in supersymmetric scenarios [18, 62]. On the other hand, our generic mass splitting is at

least an order of magnitude larger than the one required for excited dark matter39[34, 91,

92], so that our model covers the intermediate range of parameter space. As we have seen

in Sec. 3.2.1, the mass splitting plays a vital role and controls the influence of the gauge

multiplet partners on the Sommerfeld phenomenology of the DM candidate via eq. (3.6).

If we assume a generic mass splitting of O(10−2) GeV in accordance with Sec. 4.6.4

and vary the relative velocity of the DM pair40 v ∈ {3×10−4, ..., 10−2} as well as the dark

matter mass mχ ∈ {300 GeV, ..., 5 TeV}, we cover the range where the W±
(1)-pair can go

on-shell, i.e. 2δm . 1
4
mχv

2. Due to the intricate interplay between the three different

energy scales,

• εkin ≈ 1
4
mχv

2 (kinetic energy of the DM pair),

• εBind ≈ mχα
2 (binding energy due to long range potential) and

• εsplit = 2δm (mass splitting in the dark sector),

we expect interesting parameter dependences of the Schrödinger wavefunctions χZZ(x)

and χWW (x). These are directly related to the Sommerfeld factor41 via eq. (5.186). In

order to get an overview of the parametric behavior of the Sommerfeld enhancement we

exemplarily plot |∂xχWW (x)|x=0 in the v − mDM plane (see fig. 5.15 and 5.16), before

we continue to investigate special parameter settings in greater detail. Doing so, we try

to clarify the physics of the coupled Schrödinger equations (5.183) and (5.184). Making

contact to dark matter phenomenology, |∂xχWW (x)|x=0 is important in our brief discussion

on enhanced dark matter annihilation into two photons.

39N.B.: In Refs. [34, 91, 92], purely off-diagonal interaction potentials are considered which is different

to our problem, where diagonal and off-diagonal entries occur.
40We chose the velocity range around the present day rms value v ≈ 10−3 [11].
41In this section we will use ”Sommerfeld factor” for the derivatives of the reduced two-particle wavefunc-

tions ∂xχ
ij(x)|x=0 and the proper Sommerfeld enhancement, defined in eq. (5.186) simultaneously.

Whenever we give plots of ∂xχ
ij(x)|x=0, one has to multiply these results with the bare annihilation

matrix σ0.
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(a) (b)

Figure 5.15.: Numerical solution of the coupled system of Schrödinger equations (5.183) and

(5.184) for fixed DM mass splitting δm = 0.01 GeV. We exemplarily depict

Log[|∂xχWW (x)|x=0] with logarithmic (a) and linear (b) velocity axis. The threshold

region, where the W±(1)-pair can go on-shell is accompanied by multiple resonance

lines, best visible in (b).

Figure 5.16.: 3D plot of the numerical solution of equations (5.183) and (5.184) for fixed DM

mass splitting δm = 0.01 GeV. We exemplarily depict |∂xχWW (x)|x=0 from a

somewhat different perspective as in fig. 5.15 to highlight the trenches in the

Sommerfeld enhancement which have not been discussed before.

In fig. 5.15 and fig. 5.16, clear resonances are visible that have also been reported in

the works of [18, 62], who obtained similar Schrödinger equations. Besides the resonance

peaks, we observe additional ”trenches”, where |∂xχij(x)|x=0 � 1. To our knowledge, this

feature has not been discussed in the literature so far. Despite the trenches, we are able

to follow the analysis of Hisano et al. [18] in order to explain the resonance features by

a simplified model42 of the electroweak potential (5.189). In this approximation scheme,

one neglects the mass splitting δm and the electromagnetic interaction by setting cw = 1.

42In Ref. [16], there is a similar approximation for the single channel Sommerfeld enhancement.
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The Yukawa potentials are approximated by finite square wells [18]:

V (r) =

(
0 −b1α2

√
2mW (0)

−b1α2

√
2mW (0) −b1α2mW (0)

)
θ((b2 mW (0))−1 − r), (5.197)

with numerical constants b1 and b2 and the SU(2) coupling α2 ≡ g22
4π

. In this notation,

the approximate results derived by [18] are readily transferred. Since the full approxima-

tion formulae are rather lengthy and given in eq. (56) of [18]43, we only write down the

approximate version in the limit of small v �
√

α2mW (0)

mχ

mχ=1TeV
≈ 0.05. For the neutral

channel, one finds:

∂xχ
ZZ(x)|x=0 ∝

(
cos
√

4α2mχ/mW (0)

)−1

+ 2

(
cosh

√
2α2mχ/mW (0)

)−1

(5.198)

From eq. (5.198), it is applicable that ∂xχ
ZZ(x)|x=0 is enhanced considerably, when√

4α2mχ/mW (0) = (2n + 1)π/2, n ∈ N0, which reflects the occurrence of bound state

resonances [18], the same resonance structure occurs for the charged channel.

The particular coefficients in (5.198) are a direct result of the parameter choice in (5.197)

for the potential depth b1 and the interaction range b2. Since (5.197) is only a crude

approximation of the electroweak potential, we expect the general result to be more com-

plicated than (5.198). If we do not restrict ourselves to the parameter choice of [18], but

leave the relative coefficients in (5.198) as free parameters, one gains higher flexibility to

model the full two-state system. We come back to this point in a moment.

Before we proceed discussing the potential well approximation any further, we show spe-

cific cuts through the parameter space depicted in fig. 5.15 and extend the parameter

region to different mass splittings δm in fig. 5.19. In order to clarify what happens near

the ”trench” regions, we plot a sequence of wavefunctions around one specific parameter

point in fig. 5.18.

43Note, that Hisano’s [18] d22 is directly proportional to ∂xχ
ZZ(x)|x=0 in our case. It should be noted,

that the final annihilation step is handled differnetly by Hisano et al. [18] and Iengo et al. [62]. In

this thesis we follow Ref. [62], which is why we only relate Hisano’s diagonal components d22 to our

notation. Later on, we generalize the potential well approximation for both Z(1)Z(1) and W+
(1)W

−
(1)

annihilation channels in eq. 5.200.
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Figure 5.17.: Numerical solution of equations (5.183) and (5.184) for fixed DM mass splitting

δm = 0.01 GeV and velocity v = 10−3.

For |∂xχWW (x = 0)|, this is a particular slice through the contour of fig. 5.15.

In comparison to the usual mass dependence plots of the Sommerfeld enhancement

(e.g. fig. 5 in [18]) the striking feature of our mass splitting region is the existence of

parameter regions where ∂xχ
ij(x)|x=0 � 1. In order to find out what happens to the

wavefunction at these special points, we have exemplarily looked at χWW (x) for different

DM masses around the dip.

mZH1L= 1750 GeV

mZH1L= 1625 GeV

mZH1L= 1600 GeV

mZH1L= 1575 GeVmZH1L= 1400 GeV

v   = 10-3

∆m = 0.01 GeV

ΧWWHxL around trench region

0.000 0.005 0.010 0.015 0.020
-0.010

-0.008

-0.006

-0.004

-0.002

0.000

0.002

0.004

x

Χ
W

W
HxL

Figure 5.18.: Numerical solution for χWW (x) for fixed DM mass splitting δm = 0.01 GeV and

velocity v = 10−3 for dark matter mass points around the dip in fig. 5.17.
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As applicable from figs. 5.17 and 5.18, the dip region in fig. 5.17 corresponds to a point in

parameter space, where the two-particle wavefunction develops an additional node. Phys-

ically, this might be interpreted as follows: the scattering length is determined by the

range of the potential ∝ 1
mφ

. When we increase the dark matter mass, we simultaneously

decrease the corresponding de Broglie wavelength λdB ∝ 1
mχv

so that more wave-nodes

fit into the scattering region. This is exactly the phenomenon we see in the sequence

illustrated in fig. 5.18.

As we have mentioned, to our knowledge, the ”trenches” have not been addressed in

the literature up to this point. In light of the similarities between our and Hisanos [18]

Schrödinger equations, one might wonder, why this is the case. Plainly, it is a matter

of δm. The supersymmetry inspired Sommerfeld calculations (e.g. [18, 75]) work with

mass splittings of O(0.1) GeV, i.e. one order of magnitude larger than our generic value

of O(0.01) GeV. A larger mass splitting naturally implies a higher on-shell threshold for

the W±
(1)-pair via 2δm = 1

4
mχv

2. For the direct comparison, this means, that the super-

symmetry models, for equal velocities, have threshold masses mthr
χ that are an order of

magnitude higher than ours, so that interference effects between the WW and the ZZ-

channel are less prominent. This point is highlighted, once we investigate the influence of

the mass splitting δm in the dark sector on the Sommerfeld factor.
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Figure 5.19.: Parametric δm dependence of the numerical solution for χWW (x) for fixed velocity

v = 10−3. For detailed explanation, see main text.

Particularly, the δm = 0.02 GeV sweep (green line in fig. 5.19) shows a normal first reso-

nance without any dips. For higher mχ, however, the second resonance structure is more

complicated and contains a ”dip” which we attribute to negative interference between
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the annihilation channels. The mass sweeps with δm > 0.02 GeV have on-shell regions

far from the investigated range mχ ∈ {300, ..., 5000} GeV, so that deconstructive inter-

ference effects do not show up and the graphs look similar to the once obtained by e.g. [18].

Fig. 5.19 allows another observation. In accordance with the remarks in Ref. [18], the

resonances move to heavier mχ for larger δm. This can be seen, once one introduces the

mass splitting δm into the approximate electroweak potential (5.197). Starting from the

parameter choice of [18], (5.197) can be diagonalized analytically, yielding the potential

energy of the attractive state in the limit δm . α2mW (0) :

|λ−| ≈ 16α2mW (0)/9− 4δm/3, (5.199)

so that the potential energy is reduced for increasing δm.

Upon discussing the parametric dependence of the Sommerfeld enhancement on the mass

splitting as well as showing a single cut through the mχ− v parameter space, let us come

back to the approximate solution of the coupled Schrödinger equations with a finite well

interaction potential. Instead of (5.198), we now use the more general approximation:

dij := aij1

(
cos

√
sij1 α2mχ/mW (0)

)−1

+ aij2

(
cosh

√
sij2 α2mχ/mW (0)

)−1

, (5.200)

and try to find coefficients aij1,2 and sij1,2 to fit the lowest resonance. As proof of principle,

we show that we are able to model trenches with the more general approximation (5.200).

In fig. 5.20, we realize that the first peak and ”trench” position is approximated relatively

well by (5.200), the exact line-shape however varies from the numerical result especially in

the higher mχ region. For an improved analytical approximation of the electroweak poten-

tial, Ref. [34] looks very promising. The detailed analysis of such revised approximation

schemes, however, is beyond the scope of this work.



108 Sommerfeld Effect

generalized potential well solution |d22|

numerical simulation |¶x ΧZZ(x=0)|
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Figure 5.20.: Proof of principle, that we are able to model ”trench” resonances with a generalized

version of Hisanos [18] finite well potential approximation. Exemplarily, we fit the

first resonance in the |∂xχZZ(x = 0)| mass sweep for δm = 0.01 GeV, v = 10−3.

Fit parameters in (5.200): sZZ1 = 4.76, sZZ2 = 2.38, aZZ1 =
√

2
10 and aZZ2 = 12

10

Dark Matter Annihilation into Standard Model Photons

After this somewhat academic discussion on the behaviour of the reduced two-particle

wavefunctions χij(x), we would like to make contact to a physical situation, where the

Sommerfeld enhancement can play a significant role. We follow the notation of Hryczuk et

al. [75] and remind the reader, that the Sommerfeld enhanced amplitude AZ(1)Z(1)→SM for

Z(1)-dark matter annihilation into any compatible SM-final state is related to the reduced

two-particle wavefunctions χij via [75]:

AZ(1)Z(1)→SM =
[
∂xχ

ZZ(x = 0)
]
A0
Z(1)Z(1)→SM +

[
∂xχ

WW (x = 0)
]
A0
W+

(1)
W−

(1)
→SM . (5.201)

In eq. (5.201), A0
ij→SM , denotes the leading order annihilation amplitude of the {ij}-pair.

In this section, we briefly comment on the Sommerfeld enhanced dark matter annihilation

into two photons. This process leads to monoenergetic gamma-rays with energy Eγ ∼ mχ,

which is considered to be a smoking-gun signature for DM [93, 94]. For the γγ-final state,

the lowest order annihilation amplitude A0
Z(1)Z(1)→γ(0)γ(0) occurs only at one-loop level44,

whereas the annihilation in the W+
(1)W

−
(1)-channel proceeds via tree-level processes. To a

very crude estimate, we therefore neglect A0
Z(1)Z(1)→γ(0)γ(0) in eq. (5.201),45

45Ohlsson et al. calculate the one-loop annihilation for neutral SU(2) vector bosons in non-minimal UED

[93]. This model contains fermions, which are not present in our theory, so that a straight forward

transfer of their results is not possible without further investigation.
45Note, that we expect the Sommerfeld-type box diagram with W -bosons in the loop to be sizable in the

nonrelativistic limit, so that the exact values for S should not be overemphasized.
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so that the Sommerfeld enhancement S is given by:

S ≈
|A

Z(1)Z(1)→γ(0)γ(0) |2

|A0
W+

(1)
W−

(1)
→γ(0)γ(0)|

2
≈ |∂xχWW (x = 0)|2 (5.202)

This estimate has to be taken with some care. As we have seen in fig. 5.17, ∂xχ
ZZ(x = 0)

can be considerably larger than ∂xχ
WW (x = 0), especially in the low dark matter mass

regime. Since it is the product of ∂xχ
ij(x = 0) and A0

ij→SM , that is relevant, the derivative

term could overcompensate the one-loop suppression of the amplitude Z(1)Z(1) → γ(0)γ(0)

so that a complete analysis, similar to the fermionic case considered in Ref. [62], becomes

necessary. This is beyond the scope of our current work and would have to be the subject

of future research. In order to get a rough estimate of the enhancement factors that are

achievable around the bound state resonances, we plot Sγγ as given in eq. (5.202) for

current day dark matter velocity v ≈ 10−3 [11].
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Figure 5.21.: Dark matter mass dependence of estimated Sommerfeld enhancement factor Sγγ

(5.202) for Z(1)-pair annihilation into two Standard Model photons. The plot is

shown for a generic mass splitting δm = 0.01 GeV and present day DM-velocity

v = 10−3.

In fig. 5.21, we find Sommerfeld enhancements up to O(104 − 105), which is comparable

to the single-channel Sommerfeld factor discussed in section 5.4. As we have mentioned

before, this scenario has to be investigated in greater detail and only illustrates, that

the Sommerfeld effect has to be taken into account for generic dark matter annihilation

models.



110 Sommerfeld Effect

Sommerfeld Effect of Coupled System - Conclusion

As we have seen in the contour plot (fig. 5.15) of the Sommerfeld enhancement in the

mχ − v-plane, we are able to find specific parameter settings where the annihilation of

the Z(1) dark matter candidate is significantly enhanced. In particular, a strong Sommer-

feld enhancement is obtained for Z(1)-masses mZ(1) ≈ 1 TeV and mZ(1) ≈ 2.15 TeV at a

present day velocity v = 10−3 [11]. These parameter regions lead to a significantly lower

cross section at the time of decoupling (v ≈ 0.3 [39]) of the dark matter particle from

the thermal bath. Thus our vector dark matter model is able to account for the tension

between annihilation cross sections required for the correct relic abundance of WIMPs

and the once needed in order to explain potential indirect WIMP signals in cosmic ray

observations (see Sec. 5 for references and discussion) from a particle physics perspective.

In fig. 5.15(a) we realized, that the enhanced Sommerfeld peaks are nearly velocity inde-

pendent for v . 2 × 10−3, thus not only dark matter particles with velocities of present

day values v = 10−3 are enhanced but also particles in the lower tail of the velocity dis-

tribution are subject to the resonant Sommerfeld effect.

Following this discussion, we have briefly mentioned the possibility of a Sommerfeld en-

hanced annihilation cross section into two Standard Model photons. Such a process gives

rise to monoenergetic gamma-rays, which is one of the most promising indirect dark mat-

ter search channels [94]. We found approximate enhancement factors of O(104) for special

dark matter masses, where bound state resonances occur. The detailed investigation of

this process involves the calculation of the one-loop Z(1)Z(1) → γ(0)γ(0) amplitude and

should be subject of future research.
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6. Summary and Outlook

In this thesis we have investigated the Sommerfeld effect for vector dark matter. Follow-

ing an introduction to general aspects of the Sommerfeld effect in Sec. 3.2.1, we have

motivated the study of vector dark matter (paragraph 3.3), which arises for example in

Little Higgs models as well as extradimensional theories. The Sommerfeld effect [19] is a

non-perturbative effect, that leads to a velocity dependent two-particle annihilation cross-

section in the presence of a long-range force in the nonrelativistic limit. It turns out that

this approach corresponds to the solution of a quantum mechanical scattering problem,

where the long range interactions are encoded into an effective nonrelativistic potential.

For attractive forces, this modifies the wavefunction of the dark matter pair which leads to

an increase in the annihilation cross section. As we have reviewed in Sec. 3.2, this allows

for reconciling anomalies in cosmic ray observations with annihilation cross sections that

yield the correct thermal relic abundance.

The focus of this work was twofold. In chapter 4, we have introduced a minimal vector

dark matter toy model in the form of a SU(2)×SU(2)×U(1)×U(1) gauge theory, which

was inspired by dimensional deconstruction [22]. In our model, we have implemented a

discrete Z2-symmetry to guarantee the stability of the dark matter candidate. Starting

from the Lagrangian (4.1), we have calculated the complete mass spectrum of this theory

in sections 4.5 and 4.6 and found that either the neutral U(1)Y or SU(2)L vector boson

is a viable dark matter candidate. In the SU(2) case, the dark matter candidate Z(1), is

nearly mass degenerate with the W±
(1) with a generic splitting of O(10−2) GeV (see fig.

4.6), which led to interesting effects for the Sommerfeld phenomenology in the second part

of this thesis.

Upon deriving the mass spectrum and interactions of our theory, which are expressed

in terms of Feynman rules in Appendix C, we turned our attention to the Sommerfeld

effect itself. We followed the outlines of Iengo [23], developed for fermionic dark matter,

and pursued a Bethe-Salpeter approach (reviewed in Sec. 5.1) in order to account for

nonperturbative effects in field theory language by a resummation of Feynman diagrams.

We have encountered the ladder approximation in the nonrelativistic limit in section 5.2

and motivated that box diagrams are enhanced in this kinematic regime. In section 5.3,
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we analyzed the calculation of Iengo [23] for fermionic dark matter in greater detail in

order to understand the subtle points of the formalism along the lines of a known example.

In chapter 5.5, we focused on the derivation of the interaction kernel for our vector dark

matter model. From the lowest order field theory diagrams we obtained the interaction po-

tential for the nonrelativistic Schrödinger equation (5.128). Due to the presence of nearly

mass degenerate states in the dark sector, the potential is matrix valued in the space of

two-particle states. Our results coincide with the ones of Refs. [18, 23] for fermionic dark

matter, which indicates that the spin structure of the theory is subdominant in the non-

relativistic instantaneous limit. The solution of this scattering problem is directly related

to the enhanced annihilation cross section via eq. (5.164). In the following, we focused on

the numerical solution of the coupled system of Schrödinger equations and have presented

our results in section 5.10. In fig. 5.15, we found that a considerable enhancement of the

dark matter annihilation cross section is possible for special regions in parameter space.

Improvements and Outlook

We would like to add a few points how to extend some of the calculations and discussions

considered in this thesis. The following list is not intended to be exhaustive, but only

states major points that would require some effort and are beyond the scope of this work.

• An obvious point would be the extension of our two-site lattice model (see Sec. 4)

to a larger number of gauge groups. The natural extension of our minimal vector

dark matter toy model could contain three SU(2) and U(1) groups respectively.

This extension would require considerable more effort to calculate the complete

mass spectrum and interaction vertices after symmetry breaking due to the larger

field content. The three-site model, on the other hand has the advantage that it is

able to model KK-(2) modes that are not contained in our theory that potentially

have significant influence on e.g. relic density calculations [95]. Additionally , the

three-site model allows to include a KK-parity conserving fermionic sector [96].

• We have studied the non-perturbative effects with an Bethe-Salpeter ansatz (Sec.

5.1) and introduced the ladder approximation, where we only considered the lowest

order field theory diagrams in the interaction kernel. In order to treat relativistic

effects correctly, one would have to go beyond this approximation scheme and regard

higher loop-diagrams in the interaction kernel [70], which naturally leads to the

evaluation of a great number of field theory diagrams. In this thesis we restricted

ourselves to leading order calculations and followed existing work on the Sommerfeld

effect for dark matter scenarios [11, 23, 39].

• In the course of deriving the Bethe-Salpeter kernel and subsequently the interaction

potential in the effective Schrödinger equation in Sec. 5.5 we restricted ourselves to
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leading terms, neglecting relative momentum dependences that give subdominant

contributions to the interaction. Neglecting these terms corresponded to dropping

spin-spin and spin-orbit interactions which should be considered in a more complete

analysis. As starting point, articles on the Bethe-Salpeter approach for glueballs

in QCD [77, 78, 79] might give valuable insights to spin-dependent terms, since

the tensor structure of diagrams with gluon-gluon external states interacting via

another gluon is similar to our case of SU(2) gauge-bosons interacting via vector-

boson exchange.

• In the Bethe-Salpeter approach 5.3 we came across the instantaneous approxima-

tion, where the energy dependence of the interaction mediator is neglected to first

order. A natural extension would be the inclusion of such effects that describe non-

instantaneous effects that lead to a relative time variable in the Fourier transformed

Bethe-Salpeter equation [71].

• For a consistent treatment of higher order effects with the Bethe-Salpeter approach,

one should replace the free propagators and vertices in the ladder-approximation

with dressed ones, that can in principle be obtained by solving Dyson-Schwinger

equations [67].

• As is known in the literature, the treatment of bound-state problems requires some

non-perturbative approximation scheme [70, 72]. In such scenarios it is a nontrivial

issue how to maintain external gauge invariance [97]. A systematic investigation of

the gauge invariance of the Bethe-Salpeter equation for external vector particles, is

beyond the scope of this work and should be addressed in future research in analogy

to e.g. [97, 98].

• In the final part of this thesis we have derived the Sommerfeld enhancement to

vector dark matter in our toy model 5.5 but did not consider any astrophysical and

cosmological implications of our model. In principle we could follow the steps of [11,

34, 18, 14, 62] to perform detailed relic density calculations or possible reheating

effects from enhanced interaction cross sections.
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A. Parameters and Relations in the

Standard Model

Numerical values for Standard Model parameters1 are taken from [50] at the electroweak

scale in the MS scheme.

g′√
2

=g1 = 0.357

g√
2

=g2 = 0.652

v0 = 246 GeV ⇒ mH =

√
λ

2
v0

mW = 80.398± 0.025 GeV mZ = 91.1876± 0.0021 GeV

sin2(θ
(0)
W ) = 0.23116,

where g1 and g2 denote the U(1)Y and SU(2)W gauge couplings, respectively. θ
(0)
W is the

Weinberg angle in the Standard Model.

Relations between mZ , mW , α, θ
(0)
W and g1, g2, v0 at tree level:

m2
W =

g2
2v

2
0

4
, m2

Z =
g2

2 + g2
1

4
v2

0 (A.1)

tan θ
(0)
W =

g′

g
=

g1

g2

(A.2)

sin2 θ
(0)
W = 1− m2

W

m2
Z

= 1−
v20
4
g2

2

v20
4

(g2
2 + g2

1)
=

g2
1

g2
2 + g2

1

(A.3)

e = g1 cos θ
(0)
W =

g2g1√
g2

2 + g2
1

= g2 sin θ
(0)
W (A.4)

α =
e2

4π
=
g2

2 sin2 θ
(0)
W

4π
∼ 1

128
(at m2

W ) (A.5)

e ... electron charge, α ... finestructure constant

1The factor
√

2 in the definition of g and g′ reflects the presence of the normalization factor 1√
N+1

,

commonly invoked in deconstructed models. In this notation, g1 and g2 are the Standard Model

gauge couplings.
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B. Gauge Fixing

In gauge theories, gauge fixing denotes a mathematical procedure for coping with redun-

dant degrees of freedom of the dynamical field variables [40]. In general, a gauge theory

represents physically distinct field configurations as different equivalence classes, where

any two configurations within the same class are related by a gauge transformation. This

feature leads to redundancies in the description of the theory. In order to obtain physical

predictions, one has to come up with a consistent method to suppress or constrain these

unphysical degrees of freedom1.

In principle there exist a number of methods to implement the above mentioned con-

straints on the dynamical variables in the Lagrangian. Historically, well known gauge

fixing prescriptions invented for QED, include the Lorentz gauge ∂µA
µ = 0 or the non-

covariant Coulomb-gauge ~∂ ~A = 0 [58].

For our work, we chose to start with a generalized covariant, renormalizable Rξ gauge. In

such a gauge, the Goldstone bosons are not eliminated explicitly [56]. The advantage of

this class of gauges is the transparently good high energy behavior of the gauge field prop-

agators [58]. It contains a number of popular gauges as limiting cases, such as the Landau

gauge (ξ = 0), the t’Hooft-Feynman gauge (ξ = 1) and the unitary gauge (ξ →∞).

Using textbook path integral quantization à la Faddeev and Popov [41], we are free to

choose gauge fixing functions fi(A) for each gauge field and add a gauge fixing term to

the Lagrangian. A priori these are functions of the gauge fields and their derivatives.

Lgauge−fixing =
∑

i=gauge functions

− 1

2ξi
[fi]

2 (B.1)

For practical purposes, one opts for gauge functions that are convenient for computations.

In this line of reasoning we choose our gauge functions to cancel all mixing terms between

gauge bosons and Goldstone modes arising from the kinetic terms of the scalar fields

explicitly so that an interpretation of the extended Lagrangian in terms of particle excita-

tions becomes possible, i.e. the propagators are diagonal. This extended Lagrangian is to

1For an introduction to gauge fixing, cf. e.g.[40, 41, 58]
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be used to derive the Feynman rules of the theory. However, all physical quantities have

to be independent of the special choice of gauge [41], so keeping the ξ parameter until

the end of all calculations constitutes a practical cross check, at the same time increasing

the calculational workload. Eventually, we are going to employ the unitary gauge in our

Sommerfeld calculations for vector dark matter in the nonrelativistic limit.

First, we are going to demonstrate how the mixing terms arise explicitly from the La-

grangian when gauge fixing terms are omitted, before we proceed to construct convenient

gauge fixing functions that cancel the afore mentioned mixings. Having determined a

suitable gauge fixing Lagrangian we calculate the ξ dependent masses of the (would-be)

Goldstone bosons that remained massless in the previous analysis. We find that the

(would-be) Goldstone boson masses exactly equal the gauge boson ones up to an overall

factor of ξ. This result exactly coincides with standard textbook examples (see e.g.[40,

58]).

B.0.1. Mixing Terms between Gauge Fields and Goldstone Bosons

We perform the analysis for the HW 5 field in greater detail, the mixing terms for the

remaining scalars follow analogously.

1. HW5 mixing terms

For later convenience we split HW 5 into the VEV and the dynamic part:

HW 5 = 〈HW 5〉0 + φW

〈HW 5〉0 =
1√
2

(
v2 0

0 v2

)

φW =

(
1√
2
(ψw5,1[x]− iχ(3)

w5,1[x]) iχ
(+)

w5,1[x]

iχ
(−)

w5,2[x] 1√
2
(ψw5,2[x]− iχ(3)

w5,2[x])

)
(B.2)

To find the mixing terms between the gauge- and the Goldstone bosons one has to

expand the kinetic term of the Higgs fields, in the case of HW 5 this is:

tr

[(
DµHW5

)† (
D
µ
H
W5

)]
= tr

[{
∂µ

(
〈H†
W5 〉0 + φ

†
W

)
− ig

(
~WI,µ

~τ

2

)† (
〈H†
W5 〉0 + φ

†
W

)
+ ig

(
〈H†
W5 〉0 + φ

†
W

)(
~WII,µ

~τ

2

)†}
∗

∗
{
∂
µ
(
〈H†
W5 〉0 + φ

†
W

)
+ ig ~W

µ
I

(
〈H
W5 〉0 + φW

) ~τ
2
− ig ~Wµ

II

~τ

2

(
〈H
W5 〉0 + φW

)}]
(B.3)
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which contains:

tr
[
(DµHW 5)† (DµHW 5)

]∣∣∣
mixing

= tr

ig ~Wµ
I

{(
∂µφ

†
W

) v2√
2
12×2︷ ︸︸ ︷

〈HW 5〉0
~τ

2
− ~τ

2

v2√
2
12×2︷ ︸︸ ︷

〈H†
W 5〉0 (∂µφW )

}

+ tr

ig ~Wµ
II

{
〈H†

W 5〉0︸ ︷︷ ︸
v2√
2
12×2

~τ

2
(∂µφW )−

(
∂µφ

†
W

) ~τ
2
〈HW 5〉0︸ ︷︷ ︸
v2√
2
12×2

}
(B.4)

2. HB mixing terms

Treating HB the same way as HW and resorting to a similar notation for the VEV

and dynamic part of the field we find:

(DµHB5)† (DµHB5)
∣∣∣
mixing

= ig′Y (−BI,µ +BII,µ)

[ 1√
2
v1︷ ︸︸ ︷

〈H†
B5〉0 (∂µφB)−

(
∂µφ†B

) 1√
2
v1︷ ︸︸ ︷

〈HB5〉0

]
(B.5)

3. HI mixing terms

(DµHI)
† (DµHI)

∣∣∣
mixing

= ig ~Wµ
I

[ 1√
2

(0,v)︷ ︸︸ ︷
〈H†I 〉0

~τ

2
(∂µφI)−

(
∂µφ

†
I

) ~τ
2

1√
2

(0,v)T︷ ︸︸ ︷
〈HI〉0

]

+ ig′Y Bµ
I

[
〈H†I 〉0︸ ︷︷ ︸
1√
2

(0,v)

~τ

2
(∂µφI)−

(
∂µφ

†
I

) ~τ
2
〈HI〉0︸ ︷︷ ︸
1√
2

(0,v)T

]
(B.6)

4. HII mixing terms

(DµHII)
† (DµHII)

∣∣∣
mixing

= ig ~Wµ
II

[ 1√
2

(0,v)︷ ︸︸ ︷
〈H†II〉0

~τ

2
(∂µφII)−

(
∂µφ

†
II

) ~τ
2

1√
2

(0,v)T︷ ︸︸ ︷
〈HII〉0

]

+ ig′Y Bµ
II

[
〈H†II〉0︸ ︷︷ ︸
1√
2

(0,v)

~τ

2
(∂µφII)−

(
∂µφ

†
II

) ~τ
2
〈HII〉0︸ ︷︷ ︸
1√
2

(0,v)T

]
(B.7)

Rearranging all mixing terms as coefficients of the four gauge fields and taking into account

that the gauge group generators ~τ
2

commute with the VEV of HW 5 leads to:

1. Mixing Terms for ~W
µ

I :

ig ~Wµ
I

[
tr

[
−〈H†

W 5〉0
~τ

2
(∂µφW ) +

(
∂µφ

†
W

) ~τ
2
〈HW 5〉0

]
+ 〈H†I 〉0

~τ

2
(∂µφI)−

(
∂µφ

†
I

) ~τ
2
〈HI〉0

]
(B.8)
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2. Mixing Terms for ~W
µ

II:

ig ~Wµ
II

[
tr

[
+〈H†

W 5〉0
~τ

2
(∂µφW )−

(
∂µφ

†
W

) ~τ
2
〈HW 5〉0

]
+ 〈H†II〉0

~τ

2
(∂µφII)−

(
∂µφ

†
II

) ~τ
2
〈HII〉0

]
(B.9)

N.B.: the sign change in the terms connected with HW 5 is a direct result of the

different transformation property of the HW 5 field under SU(2)I and SU(2)II

3. Mixing Terms for Bµ
I

ig′Y Bµ
I

[
+
(
∂µφ

†
B

)
〈HB5〉0 − 〈H†B5〉0 (∂µφB) + 〈H†I 〉0 (∂µφI)−

(
∂µφ

†
I

)
〈HI〉0

]
(B.10)

4. Mixing Terms for Bµ
II

ig′Y Bµ
II

[
−
(
∂µφ

†
B

)
〈HB5〉0 + 〈H†

B5〉0 (∂µφB) + 〈H†II〉0 (∂µφII)−
(
∂µφ

†
II

)
〈HII〉0

]
(B.11)

As for the W gauge fields there is a sign change in the terms connected with HB5

due to the different transformation properties of HB5 under U(1)I and U(1)II

B.0.2. Construction of Gauge Functions

Following the lines of [58], we make an ansatz for the four gauge fixing functions ~fI , ~fII ,

fIII and fIV and show that this choice cancels all mixing terms between gauge- and

Goldstone-bosons and simultaneously yields the correct mass spectrum for the Goldstone

modes.

1. Gauge Function for SU(2)I

~fI = ∂µ ~W
µ
I + igξ

[
tr

[
+〈H†

W 5〉0
~τ

2
φW − φ†W

~τ

2
〈HW 5〉0

]
− 〈H†I 〉0

~τ

2
φI + φ†I

~τ

2
〈HI〉0

]
(B.12)

One immediately realizes the special structure of this gauge fixing function. Com-

pared to the mixing terms we wrote down for the WI field, the partial derivative

that used to act on the φI got shifted to the WI field itself. Simultaneously, all

signs of the Higgs terms changed relative to eq. (B.8). Incorporated in 1
2ξ

[fi]
2, the

particular structure of the gauge fixing function enables us to cancel the gauge field

Goldstone boson mixing terms arising in the gauge part of the Lagrangian after a

partial integration.

2. Gauge Function for SU(2)II

~fII = ∂µ ~W
µ
II + igξ

[
tr

[
−〈H†

W 5〉0
~τ

2
φW + φ†W

~τ

2
〈HW 5〉0

]
− 〈H†II〉0

~τ

2
φII + φ†II

~τ

2
〈HII〉0

]
(B.13)

In comparison to ~fI there are relative minus signs due to different transformation property

of HW 5 under SU(2)I and SU(2)II
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3. Gauge Function for U(1)I

fIII = ∂µB
µ
I + ig′Y ξ

[
〈H†

B5〉0φB − φ†B〈HB5〉0 − 〈H†I 〉0φI + φ†I〈HI〉0
]

(B.14)

4. Gauge Function for U(1)II

fIV = ∂µB
µ
II + ig′Y ξ

[
−〈H†

B5〉0φB + φ†B〈HB5〉0 − 〈H†II〉0φII + φ†II〈HII〉0
]

(B.15)

B.0.3. Gauge Fixing Lagrangian Lgauge-fixing

Having all gauge fixing functions at hand, we cast Lgauge-fixing into standard textbook form

[58] and write:

Lgauge−fixing =
∑
i

− 1

2ξ
[fi]

2

= − 1

2ξ

[
~fI

]2

− 1

2ξ

[
~fII

]2

− 1

2ξ
[fIII ]

2 − 1

2ξ
[fIV ]2 (B.16)

In principle we could have chosen different gauge parameters ξ for each gauge group

individually2.

Expanding the gauge fixing Lagrangian, we obtain a polynomial in Higgs VEVs, dynamic

Higgs terms and derivatives of gauge fields. We find expressions of the form:

− 1

2ξ

[ term 1︷ ︸︸ ︷
(∂µA

µ)2 +

term 2︷ ︸︸ ︷
2igξ (∂µA

µ) (Higgs-part) +

term 3︷ ︸︸ ︷
(igξ (Higgs-part))2

]
(B.17)

”A” in this case generically represents gauge fields and the ”Higgs-part” corresponds to

terms including dynamical scalar degrees of freedom as well as vacuum expectation values.

Cancellation of Gauge- and Goldstone Boson Mixing

We will explicitly demonstrate the cancellation of the mixing terms between Goldstone-

and gauge-bosons arising from the Higgs kinetic Lagrangian through the expressions in

”term 2” for the special case of ~WI . Analog considerations equally apply to all other gauge

fields.

For the gauge fixing function (B.12) we adopt the general formula (B.17) from above to

find:

−ig
(
∂µ ~W

µ
I

)
·
[
tr

[
+〈H†W 5〉0

~τ

2
φW − φ†W

~τ

2
〈HW 5〉0

]
− 〈H†I 〉0

~τ

2
φI + φ†I

~τ

2
〈HI〉0

]
(B.18)

2During the calculation of the Sommerfeld enhancement to vector dark matter, we are going to make

use of this freedom to treat the photon propagator separate from the massive gauge bosons.
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and compare this to the mixing terms in the gauge Lagrangian from the covariant deriva-

tives (see eq. (B.8))

−ig ~W µ
I

[
tr

[
+〈H†W 5〉0

~τ

2
(∂µφW )−

(
∂µφ

†
W

) ~τ
2
〈HW 5〉0

]
− 〈H†I 〉0

~τ

2
(∂µφI) +

(
∂µφ

†
I

) ~τ
2
〈HI〉0

]
(B.19)

After a partial integration in the gauge fixing Lagrangian we can shift the partial derivative

from the ~WI to the Higgs fields and get an additional minus sign which leads to the exact

cancellation of all mixing terms. As mentioned in the introduction to gauge fixing, the

absence of such mixing terms enables us to interpret the remaining expressions in the

Lagrangian in terms of physical particle excitations.

Goldstone Boson Mass

Other than expressions responsible for the cancellation of gauge- and Goldstone- boson

mixings, the gauge fixing Lagrangian also includes contributions giving rise to ξ depen-

dent Goldstone-boson masses.

”Term 3” in equation (B.17) contains expressions quadratic in scalar fields, thus contribut-

ing to the mass matrices in the scalar sector. In the case of the gauge fixing function ~fI

for SU(2)I we obtain:

g2ξ

2

[
tr

[
+〈H†W 5〉0

~τ

2
φW − φ†W

~τ

2
〈HW 5〉0

]
− 〈H†I 〉0

~τ

2
φI + φ†I

~τ

2
〈HI〉0

]2

(B.20)

Evaluating these terms for all other gauge fixing functions is rather cumbersome and not

very enlightening. We implemented these terms in Mathematica to evaluate the scalar

mass spectrum and the eigenvectors for the complete gauge-fixed Lagrangian automati-

cally.
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The Neutral Higgs Sector with Gauge Fixing Terms

In accordance with our preceding analysis without the gauge fixing terms (section 4.5),

we split the neutral 10 × 10 Higgs mass matrix into three distinct blocks. The gauge

fixing terms do not give rise to inter-block mixing, but cause mixings within the three

sub-blocks separately. For completeness we show the mass matrices explicitly:

In the basis (χ
(3)
0 ψ0 ψ1)

(
M̃n

diag

)2

(χ
(3)
0 ψ0 ψ1)T

(
M̃n

diag

)2

=


1
8
v2

0 (g2 + 4g′2Y 2) ξ 0 0

0 v2
0λ 0

0 0 2M2
0 + v2

0λ

 (B.21)

In the basis (ψW 5,1 ψW 5,2 h
(1)

B5)
(
M̃n

scalar

)2

(ψW 5,1 ψW 5,2 h
(1)

B5)
T

(
M̃n

scalar

)2

=


M ′ + 2v2

2(λ1 + λ2) −M ′ + 2v2
2λ2 0

−M ′ + 2v2
2λ2 M ′ +

M2
0 v

2
0+4v42(λ1+λ2)

2v22
−M2

0 v
2
0

2v1v2

0 −M2
0 v

2
2

2v1v2

M2
0 v

2
0

2v21
+ 2v2

1λB

 (B.22)

In the basis (h
(2)

B5 χ
(3)
1 χ

(3)

W 5,2 χ
(3)

W 5,1)
(
M̃n

ps

)2

(h
(2)

B5 χ
(3)
1 χ

(3)

W 5,2 χ
(3)

W 5,1)T

(
M̃
n
ps

)2
=



M2
0v

2
0

2v21

+ 2g′2v21Y
2ξ

M2
0v0
v1

− g′2v0v1Y 2ξ −
M2

0v
2
0

2v1v2
0

M2
0v0
v1

− g′2v0v1Y 2ξ 2M2
0 + 1

8
v20

(
g2 + 4g′2Y 2

)
ξ −

M2
0v0
v2

+ 1
4
g2v0v2ξ − 1

4
g2v0v2ξ

−
M2

0v
2
0

2v1v2
−
M2

0v0
v2

+ 1
4
g2v0v2ξ M′ + 1

2

(
M2

0v
2
0

v22

−M2
0
v20
v22

+ g2v22ξ

)
M′ − 1

2
g2v22ξ

0 − 1
4
g2v0v2ξ M′ − 1

2
g2v22ξ M′ + 1

2
g2v22ξ


(B.23)

Only
(
M̃n

diag

)2

and
(
M̃n

ps

)2

contain ξ dependent contributions which coincides with

our earlier observation of massless Goldstone modes in these particular sectors (see

1a and 1c). For now we are only interested in the gauge dependent mass eigenval-

ues therefore we only reevaluate the mass spectrum for
(
M̃n

diag

)2

and
(
M̃n

ps

)2

. The

mass of the Goldstone mode from the diagonal block is directly accessible. Before

continuing to diagonalize the pseudoscalar sector it is beneficial to apply an orthogo-

nal transformation and change the field basis: χ
(3)

W 5,e/o = 1√
2

(
χ

(3)

W 5,1 ± χ
(3)

W 5,2

)
to find

(h
(2)

B5 χ
(3)
1 χ

(3)

W 5,e χ
(3)

W 5,o)
(
M̂n

ps

)2

(h
(2)

B5 χ
(3)
1 χ

(3)

W 5,e χ
(3)

W 5,o)
T .:
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0 v
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+ 2g′2Y 2ξv2

1

v0(M2
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2Y 2ξv21)
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2
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2
√

2v1v2
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0 v

2
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√

2v1v2
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0−g′
2Y 2ξv21)

v1
2M2

0 + 1
8

(
g2 + 4g′2Y 2

)
ξv2

0 −M2
0 v0√
2v2

−v0(−2M2
0 +g2ξv22)

2
√

2v2

− M2
0 v

2
0

2
√

2v1v2
−M2

0 v0√
2v2

2M ′ +
M2

0 v
2
0

4v22
−M2

0 v
2
0

4v22
M2

0 v
2
0

2
√
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0 +g2ξv22)
2
√

2v2
−M2

0 v
2
0
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0 v

2
0

4v22
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2
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The diagonalization proceeds in a straight forward way, the formerly massless Gold-
stone modes acquire ξ dependent masses whereas the formerly massive modes remain
unchanged.
A summary of all neutral Goldstone bosons masses is given by3:
{
m

2
GB

Z(0)
, m

2
GB

γ(1)/Z(1)

}
=

{
1

8
v
2
0

(
g
2
+ 4g

′2
Y

2
)
ξ,

1

16

(
g
2
(
v
2
0 + 8v

2
2

)
+ 4g

′2
(
v
2
0 + 4v

2
1

)
Y

2 ±

√(
g4
(
v
2
0 + 8v

2
2

)2
+ 8g2g′2

(
v
4
0 − 4v

2
0v

2
1 − 8

(
v
2
0 + 4v

2
1

)
v
2
2

)
Y 2 + 16g′4

(
v
2
0 + 4v

2
1

)2
Y 4

))
ξ

}
(B.24)

We realize that the gauge eigenstate χ
(3)
0 is equivalent to the Goldstone boson for the

Standard Model Z (GBZ(0)) and no mixing with other scalar modes occurs. For the Gold-

stone boson associated with dark photon (GBγ(1)) we obtain a mixing between different

gauge eigenstates according to the eigenvector:

v1

(
4g′2Y 2(v20+4v21)−g2(v20+8v22)+

√
16g′4Y 4(v20+4v21)2+g4(v20+8v22)2+8g2g′2Y 2(v40−4v20v

2
1−8(v20+4v21)v22)

)
2
√

2g2v20v2

−
4g′2Y 2(v20+4v21)+g2(v20−8v22)+

√
16g′4Y 4(v20+4v21)2+g4(v20+8v22)2+8g2g′2Y 2(v40−4v20v

2
1−8(v20+4v21)v22)

4
√

2g2v0v2

0

1


The Goldstone boson associated with Z(1) (GBZ(1)) is realized through a mixing between

the gauge eigenstates according to:

v1

(
4g′2Y 2(v20+4v21)−g2(v20+8v22)−

√
16g′4Y 4(v20+4v21)2+g4(v20+8v22)2+8g2g′2Y 2(v40−4v20v

2
1−8(v20+4v21)v22)

)
2
√

2g2v20v2

−
4g′2Y 2(v20+4v21)+g2(v20−8v22)−

√
16g′4Y 4(v20+4v21)2+g4(v20+8v22)2+8g2g′2Y 2(v40−4v20v

2
1−8(v20+4v21)v22)

4
√

2g2v0v2

0

1


We are able to parameterize these eigenvectors in terms of the gauge boson masses:

GBγ(1) :



v1
v2

1√
2m2

W±(0)

(
m2
A(1) −m2

W±(1)

)
−v0
v2

1
2
√

2m2

W±(0)

(
m2
A(1) −m2

W±(1) +m2
W±(0)

)
0

1

 (B.25)

GBZ(1) :



v1
v2

1√
2m2

W±(0)

(
m2
Z(1) −m2

W±(1)

)
−v0
v2

1
2
√

2m2

W±(0)

(
m2
Z(1) −m2

W±(1) +m2
W±(0)

)
0

1

 (B.26)

3Note that we only give the results in terms of the original gauge couplings g and g′. The transition to

the SM couplings includes only a rescaling by a factor 1√
2

as explained in the footnote of sec. (4.5.4)
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The Charged Higgs Sector with Gauge Fixing Terms

The points mentioned in the discussion of the neutral Higgs sector equally apply to the

charged case. For simplicity we split the charged scalar mass matrix into two sepa-

rate blocks that do not mix amongst each other. We decouple the contribution for

χ
(+)
0

(
M ch

diag

)2
χ

(−)
0 : (

M ch
diag

)2
=

1

8
g2v2

0ξ (B.27)

The remaining 3× 3 block is written in the basis (χ
(+)
1 χ

(+)
W 5,2

χ
(+)
W 5,1

)
(
M ch
ps

)2
(χ

(−)
1 χ

(−)
W 5,2

χ
(−)
W 5,1

)

(
M ch
ps

)2
=


2M2

0 + 1
8g

2ξv2
0 −M2

0 v0
2v2

+ 1
4g

2ξv0v2 −M2
0 v0

2v2
+ 1

4g
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−M2
0 v0

2v2
+ 1

4g
2ξv0v2 M ′ +

M2
0 v

2
0

4v22
+ 1

2g
2ξv2

2 + v2
2λ1 −M ′ + 1

2g
2ξv2

2 − v2
2λ1

−M2
0 v0

2v2
+ 1

4g
2ξv0v2 −M ′ + 1

2g
2ξv2

2 − v2
2λ1 M ′ +

M2
0 v

2
0

4v22
+ 1

2g
2ξv2

2 + v2
2λ1


(B.28)

We perform a basis change from the χ
(±)

W 5
1/2

to a new symmetric and antisymmetric basis

χ
(±)
W 5,e/o

= 1√
2

(
χ

(±)
W 5,1

± χ(±)
W 5,2

)
and define (χ

(+)
1 χ

(+)
W 5,e

χ
(+)
W 5,o

)
(
M̂ ch
ps

)2
(χ

(−)
1 χ

(−)
W 5,e

χ
(−)
W 5,o

)T :

(
M̂ ch
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)2
=


2M2

0 + 1
8g

2ξv2
0

√
2
(
−M2

0 v0
2v2

+ 1
4g

2ξv0v2

)
0

√
2
(
−M2

0 v0
2v2

+ 1
4g

2ξv0v2

)
M2

0 v
2
0

4v22
+ g2ξv2

2 0

0 0 2M ′ +
M2

0 v
2
0

4v22
+ 2v2

2λ1


(B.29)

Diagonalization of the
(
M̂ ch

ps

)2

yields four Goldstone modes with ξ dependent masses.{
m2
GB

W±
(0)

, m2
GB

W±
(1)

}
=

{
1

8
g2v2

0ξ,
1

8
g2
(
v2

0 + 8v2
2

)
ξ

}
(B.30)

The gauge eigenstates χ
(±)
0 are directly identified with the Goldstone bosons GBW±

(0)
asso-

ciated to the Standard Model W and no additional diagonalization is required. Compared

to the neutral sector, the mixing between the charged pseudo-scalars that form the Gold-

stone bosons GBW±
(1)

is far simpler, the corresponding eigenvector is:
(

v0
2
√

2v2
, 1, 0

)T
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B.0.4. Discussion

We have chosen a special set of gauge fixing functions fi(A) that cancel the mixing terms

between gauge- and Goldstone bosons on the Lagrangian level. The analysis of the par-

ticle mass spectrum yields an equal number of massive vector- and massless Goldstone

modes before the incorporation of gauge fixing terms. Properly taking into account the

gauge fixing Lagrangian renders the Goldstone bosons massive with a gauge parameter

dependent mass. It is important to note that the Goldstone masses are exactly equal to

the gauge boson masses up to a factor of
√
ξ. This is a clear indication that they can not

be physical degrees of freedom of the theory but are rather mathematical devices to cancel

the redundant degrees of freedom of the gauge fields and implement the constrains on the

dynamical variables in the Lagrangian. Notably, we are able to take the limit ξ →∞ to

make the Goldstone bosons infinitely heavy and decouple them (together with the ghosts)

from our theory. This is commonly referred to choosing a unitary gauge. Doing so, one is

left with the physical degrees of freedom at the price of a seemingly ill defined high energy

behavior of the gauge boson propagators. In the following, we would like to summarize

the scalar sector by giving the transformation properties and masses of all scalar and

pseudo-scalar particles.
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Goldstone-Bosons

We are going to start from the exact mass eigenstates and continue to perform several

approximations in order to reduce the interaction vertices to the leading terms. We will

elaborate on this point in the following sections in greater detail and explain our intentions.

GB
Z(0) [x] =χ

(3)
0 [x]

m
2
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Z(0)
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Neutral Physical Higgs Fields

h
(0)

[x] =ψ0[x]

m
2

h(0)
=v

2
0λ
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(1)

[x] =ψ1[x]
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2
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=2M

2
0 + v

2
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the following fields are part of the scalar Higgs sector and we take the approximate diagonal-
izations:
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Charged Physical Higgs Fields
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B.1. Approximations to the Basistransformation between

Gauge- and Mass Eigenstates

For certain processes it is phenomenologically legitimate to neglect subdominant mixings

induced by diagonalizing mass matrices, despite using the exact solution for the mass

eigenvalues themselves. If one is primarily interested in leading contributions to the scat-

tering amplitude, we might think of each vertex factor expanded as Γ (1 + ε+O(ε2)),

where subdominant contributions from mixings are parameterized by a small parameter

|ε| << 1. As long as there is no cancellation of leading order terms, we consistently ne-

glect O(ε) terms to reduce the calculational workload. In the scalar sector of our theory

we exploit the specific feature of the particle mass spectrum and the hierarchy of vacuum

expectation values to find a natural expansion parameter ε̃ = v0
v1,2

.

For the Sommerfeld effect, we are particularly concerned with a few specific classes of ver-

tices and diagrams. Only interactions between two nearly mass degenerate non-Standard

Model states with one lighter state (which is supposed to act as the long range force car-

rier) are of principal importance [11, 23]. In case of four particle interactions, which can

be relevant for higher loop order corrected integral kernels in vector dark matter mod-

els, we are exclusively interested in four-point functions with two nearly mass degenerate

(1)-mode particles and two (0)-modes. For Z(1) dark matter, the relevant vertices either

contain two Z(1) or W±
(1) (or a combination thereof) together with one or two (0)-modes.

In a generalized Rξ gauge, we allow for the corresponding vertices with Goldstone bosons

and ghosts, since these contributions have to cancel non-physical degrees of freedom in

the gauge boson diagrams.

In the general model without restrictions on any of the parameters it is virtually im-

possible to find a physically reasonable approximation to the basis transformation. For

the Sommerfeld effect, however, we are interested in a region of parameter space where the

lightest non-Standard-Model particle is the SU(2)-like neutral gauge boson which already

fixes the range of v1 and v2 to the white region in figure (4.3). The mixing coefficients for

the Goldstone bosons only depend on v1 and v2, if one assumes the gauge couplings g and

g′ and the Standard Model VEV v0 as fixed. We depict the magnitudes of the expansion

coefficients in the v1 − v2 plane to illustrate the validity of neglecting terms of O(ε̃). In

order to get a numerical estimate of the approximation error, we explicitly state all results

for the representative reference point v1 = 4000 GeV and v2 = 1100 GeV (see Sec. 4.5.4).
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For convenience we introduce the following parameters:

∆m ≡
√
m2
W (1) −m2

Z(1) (B.34)

δm ≡mW (1) −mZ(1) (B.35)

which are related through:

δm ≈ ∆m2

2mZ(1)

(B.36)

In the relevant parameter region the relation ∆m2 < m2
W (0) (far away from the gauge

boson mass level crossing, even ∆m2 << m2
W (0)) holds. At our reference point 4.5.4 we

find:

∆m ≈ 3.5 GeV

mW (0) ≈ 80 GeV

B.1.1. Approximation of the GBZ(1) Eigenvector

The exact eigenvector for the transformation between gauge- and mass eigenstate for the

Z(1) Goldstone boson is given in eq. (B.31) and we proceed utilizing the special properties

of the mass spectrum to approximate the eigenvector4:

GBZ(1) [x] ∝
(
c1h

(2)

B5 [x] + c2χ
(3)
1 [x] + χ

(3)

W 5,o[x]
)

c1 =− v1√
2v2

(
∆m

mW (0)

)2

︸ ︷︷ ︸
ε

≈ −O(1) ·
(

∆m

mW (0)

)2

, (B.37)

with the small expansion parameter ε(v1, v2) and the coefficient

c2 =− v0

2
√

2v2

−∆m2 +m2
W (0)

m2
W (0)

= − v0

2
√

2v2

(1− ε) , (B.38)

which is suppressed by the hierarchy between the electroweak scale (∝ v0) and the new

physics scale (∝ v2). These expansion coefficients have to be compared to the 1 in front

of χ
(3)

W 5,o[x]. For our reference point 4.5.4 we find:

c1 ≈− 0.005 c2 ≈ −0.079.

To illustrate the size of our approximation, we plot ε as well as the c1 and c2 individually

in the v1 − v2 plane.
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Figure B.1.: v1 and v2 dependence of ε =
(

∆m
m
W (0)

)2

The red dashed line indicates the crossover form a U(1)-like to a SU(2)-like dark

matter candidate as obtained from cos θW (1) . The blue region corresponds to ε < 0.10

and covers almost all of the relevant parameter region.
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Figure B.2.: Expansion parameters c1 and c2 for the Z(1) Goldstone boson in the v1 − v2 plane.

a) dark blue: |c1| < 0.1. b) light blue: |c2| < 0.2, dark blue: c2 < −0.2 .
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If we neglect terms of order ε, we obtain an approximate eigenstate for GBZ(1) with the

correct normalization:

GBZ(1) [x] ≈ 1√
v2

0 + (2
√

2v2)2

(
2
√

2v2χ
(3)

W 5,o[x]− v0χ
(3)
1 [x]

)
, (B.39)

which simplifies even further under the assumption of a hierarchy v0 < v1,2. In this

approximation, the mixing with the modes from H̃1 are neglected and the Z(1) Goldstone

boson is solely χ
(3)

W 5,o[x]5:

GBZ(1) [x] ≈χ(3)

W 5,o[x] (B.40)

B.1.2. Approximation of the GBγ(1) Eigenvector

Analogously to GBZ(1) , we try to find a reasonable approximation for GBγ(1) . In this case

we do not have a small expansion parameter ε but a large mass splitting between m2
γ(1)

and m2
W (1) which we can use to our advantage.

GBγ(1) [x] ∝
(
c̃1h

(2)

B5 [x] + c̃2χ
(3)
1 [x] + χ

(3)

W 5,o[x]
)

c̃1 =
v1√
2v2

m2
γ(1)
−m2

W (1)

m2
W (0)

c̃2 =− v0

2
√

2v2

m2
γ(1)
−m2

W (1) +m2
W (0)

m2
W (0)

≈ − v0

2
√

2v2

m2
γ(1)
−m2

W (1)

m2
W (0)

(B.41)

where c̃2 is suppressed by the hierarchy between the weak scale (∝ v0) and the compact-

ification scale (∝ v2). We have to compare the expansion coefficients to 1 in front of

χ
(3)

W 5,o[x]. For our reference point we find:

c̃1 ≈400

c̃2 ≈− 12

As applicable from figure (B.3), we can neglect χ
(3)

W 5,o to a very good approximation to

obtain the eigenvector for GBγ(1) :

GBγ(1) [x] ≈ 1√
v2

0 + (2v1)2

(
2v1h

(2)

B5 [x]− v0χ
(3)
1 [x]

)
(B.42)

4Coefficients are not normalized, this however is irrelevant for the comparison of their relative orders

of magnitude.
5If one were to make contact to extra dimensional theories, this is consistent with UED (see remark in

chapter 4.2.2), where the 5-components of the gauge fields furnish the Goldstone bosons in the limit

R−1 >> mW (0) .
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for a reasonably large hierarchy v0 < v1 the mixing simplifies further and the mixing with

the modes from H̃1 are neglected altogether. The γ(1) Goldstone boson is equivalent to

h
(2)

B5 [x]:

GBγ(1) [x] ≈h(2)

B5 [x] (B.43)

To validate the assumption of a mostly h
(2)

B5 [x] likeGBγ(1) we plot the expansion parameters

c̃1 and c̃2 in the v1 − v2 plane:
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Figure B.3.: Expansion parameters c̃1 and c̃2 for the γ(1) Goldstone boson in the v1 − v2 plane

a) c̃1: is an order of magnitude larger than c̃2 b) c̃2 is v0/v2 hierarchy suppressed.

Approximation to the φ4/5 Eigenvectors

Contrary to the eigenvectors of GBZ(1) and GBγ(1) the eigenvectors for the physical fields
φ4/5 not only depend on the VEVs v1 and v2 but also on the parameters M0 and M ′ from
the scalar potential. This fact renders the approximation an intricate business. Depending
on the relative magnitude of M0 and M ′ the size of the coefficients will change.

φ4/5[x] ∝

(√
2v2

v1
h

(2)
B5 [x] +

2
√

2v2

v0
χ

(3)
1 [x] + c̃4/5χ

(3)
W 5,e[x] + χ

(3)
W 5,o[x]

)

c̃4/5 =

(
−4M ′v2

1 +M2
0

(
v2

0 + 4v2
1

))
v2

2 ±
√

16M ′
2
v4

1v
4
2 − 8M ′M2

0 v
2
1 (v2

0 + 4v2
1) v4

2 +M4
0 (4v2

1v
2
2 + v2

0 (v2
1 + v2

2)) 2

M2
0 v

2
0v

2
1

=
4v2

2

M2
0 v

2
0

(
m2
φ5/4
− 2M ′

)
− 1 (B.44)

For a parameter region around our reference point 4.5.4 we find that φ4/5[x] can be

approximated by a mixture between χ
(3)
1 [x] and χ

(3)

W 5,e[x]. For the reference point 4.5.4
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itself we find the coefficients:

φ4[x] :


0.39

12.65

3.90

1.

 φ5[x] :


0.39

12.65

−41.27

1.


As a first approximation we neglect all terms suppressed by either the gauge boson mass

hierarchy or the hierarchy between the compactification scale (represented by the Higgs

VEVs v1 and v2) and the electroweak scale (v0) and therefore effectively block-diagonalize

the transformation between gauge- and mass-eigenstates. If we were not to neglect v0 we

always end up with a mixing between the Goldstone sector and the sector of φ4/5 which

complicates the basis transformation considerably. In the preferred region of parameter

space this approximation produces an error of O(10%) in the mixing of states.

For now we will use6: 
GBγ(1)

GBZ(1)

φ4

φ5

 =


1 0 0 0

0 1 0 0

0 0 α1 β1

0 0 α2 β2



h

(2)

B5

χ
(3)

W 5,o

χ
(3)
1

χ
(3)

W 5,e

 (B.45)

and do not express the transformation for the Higgs degrees of freedom φ4/5 explicitly, since

they are neglectable for the Sommerfeld effect due to their large mass which disqualifies

them as long range force carriers. They are not mass degenerate with the dark matter

candidate in the relevant region of parameter space either, hence their contribution to

Sommerfeld relevant diagrams is not required as a first approximation (see discussion in

Sec. 3.2.1).

B.2. Faddeev-Popov-Ghosts

Having constructed the gauge fixing functions to cancel the mixing terms between vector

bosons and scalar fields in section B.0.2 we are able to derive the Lagrangian for the

anti-commuting scalar Faddeev-Popov ghosts [99] by applying infinitesimal gauge trans-

formations to the gauge fixing functions. The gauge transformations for the HW 5 and HB5

have to be taken into account carefully and special attention should be attributed to the

subtle difference between the fundamental and anti-fundamental transformation proper-

ties of the aforementioned fields under SU(2)I / SU(2)II and U(1)I / U(1)II respectively.

6Note that the Goldstone-bosons for the Z(1) and γ(1) are formed by pseudo-scalar modes from the

bifundamental SU(2) and U(1) doublets respectively in this approximation.
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Following the calculations in Appendix B of Cheng/Li [58] for the Standard Model closely

we finally obtain the ghost Lagrangian:

LGhost =

∫
d4x


wiI(x)

wkII(x)

χI(x)

χII(x)


†

M ij
11 M il

12 M i
13 M i

14

Mkj
21 Mkl

22 Mk
23 Mk

24

M j
31 M l

32 M33 M34

M j
41 M l

42 M43 M44



wjI(x)

wlII(x)

χI(x)

χII(x)

 (B.46)

with matrix elements:

M ij
11 =

(
−∂µ

(
∂µδij − gεijkWµ,k

I

)
− g2ξ

{
tr

(
〈H†W 〉0

1

2
〈HW 〉0δij + 〈H†W 〉0

τ i

2
φW

τ j

2
+
τ j

2
φ†W

τ i

2
〈HW 〉0

)
+〈H†I 〉0

1

2
〈HI〉0δij + 〈H†I 〉0

τ iτ j

4
φI + φ†I

τ jτ i

4
〈HI〉0

})
M il

12 = g2ξ tr

(
〈H†W 〉0

1

2
〈HW 〉0δil + 〈H†W 〉0

τ iτ l

4
φW + φ†W

τ lτ i

4
〈HW 〉0

)
M i

13 = −Y gg
′ξ

2

(
2〈H†I 〉0τ

i〈HI〉0 + φ†Iτ
i〈HI〉0 + 〈H†I 〉0τ

iφI

)
M i

14 = 0

Mkj
21 = g2ξ tr

(
〈H†W 〉0

1

2
〈HW 〉0δkj + 〈H†W 〉0

τk

2
φW

τ j

2
+
τ j

2
φ†W

τk

2
〈HW 〉0

)
Mkl

22 =

(
−∂µ

(
∂µδkl − gεklmWµ,m

II

)
− g2ξ

{
tr

(
〈H†W 〉0

1

2
〈HW 〉0δkl + 〈H†W 〉0

τkτ l

4
φW + φ†W

τ lτk

4
〈HW 〉0

)
+〈H†II〉0

1

2
〈HII〉0δkl + 〈H†II〉0

τkτ l

4
φII + φ†II

τ lτk

4
〈HII〉0

})
Mk

23 = 0 (B.47)

Mk
24 = −Y gg

′ξ

2

(
2〈H†II〉0τ

k〈HII〉0 + 〈H†II〉0τ
kφII + φ†IIτ

k〈HII〉0
)

M j
31 = −Y gg

′ξ

2

(
2〈H†I 〉0τ

j〈HI〉0 + 〈H†I 〉0τ
jφI + φ†Iτ

j〈HI〉0
)

M l
32 = 0

M33 = −
(
∂µ∂

µ + g′2Y 2ξ
(

2 |〈HB〉0|2 + 〈H†B〉0φB + φ†B〈HB〉0 + 2 |〈HI〉0|2 + 〈H†I 〉0φI + φ†I〈HI〉0
))

M34 = g′2Y 2ξ
(

2 |〈HB〉0|2 + 〈H†B〉0φB + φ†B〈HB〉0
)

M j
41 = 0

M l
42 = −Y gg

′ξ

2

(
2〈H†II〉0τ

l〈HII〉0 + 〈H†II〉0τ
lφII + φ†IIτ

l〈HII〉0
)

M43 = g′2Y 2ξ
(

2 |〈HB〉0|2 + 〈H†B〉0φB + φ†B〈HB〉0
)

M44 = −
(
∂µ∂

µ + g′2Y 2ξ
(

2 |〈HB〉0|2 + 〈H†B〉0φB + φ†B〈HB〉0 + 2 |〈HII〉0|2 + 〈H†II〉0φII + φ†II〈HII〉0
))

.

We immediately realize, that the ghost Lagrangian gives rise to gauge field - ghost as well

as to scalar-ghost interaction vertices that have to be taken into account when working

in a non-unitary gauge.

The appropriate bilinear terms in (B.46) yields the mass matrix for the Faddeev-Popov
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ghosts. The resulting 8 × 8 matrix is identical to the gauge boson mass matrix up to

an overall factor of ξ. Hence, the corresponding eigenspectrum coincides with the one

already derived for the gauge bosons and the transformation between gauge- and mass

eigenstates can readily be copied from 4.6. It is important to note that the ghost fields

are not self-adjoint, hence no factor of 1
2

is necessary in the definition of the neutral ghost

masses. Similar to the linear combinations constituting the mass eigenstates of the gauge

boson, we are able to define an intermediate ghost field basis:

wie/o =
1√
2

(
wiI ± wiII

)
, i ∈ {1, 2, 3}

χe/o =
1√
2

(χI ± χII)

and in a subsequent diagonalization step we obtain:

w±(0) =
1√
2

(
w1
e ∓ iw2

e

)
w±(1) =

1√
2

(
w1
o ∓ iw2

o

)
w

(0)
Z = w3

e cos θ
(0)
W − χe sin θ

(0)
W (B.48)

w
(1)
Z = w3

o cos θ
(1)
W − χo sin θ

(1)
W

w(0)
γ = −w3

e sin θ
(0)
W + χe cos θ

(0)
W

w(1)
γ = −w3

o sin θ
(1)
W + χo cos θ

(1)
W
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C. Feynman Rules for the

SU(2)× SU(2)× U(1)× U(1) Gauge

Theory

This chapter gives a comprehensive list of Feynman rules for our theory used in the cal-

culations of the Sommerfeld effect for Z(1) vector dark matter. We have written the

Lagrangian in section 4.1 in the gauge eigenbasis and successively calculated the trans-

formation to the mass eigenstates. The mass eigenstates and their interactions reflect the

conservation of a discrete Z2 symmetry of the Lagrangian, leading to the fact, that only

vertices with an even number of non-Standard-Model fields show up. As mentioned in

section B.1 we neglect subleading contributions to interaction vertices resulting from the

field transformation in the scalar sector to the mass eigenbasis. Therefore, we expect our

Feynman rules to differ from the ones given by Gustafsson [100] by terms of order v0
v2

.

C.1. Field Content and Propagators

We want to emphasize, that we have derived the mass eigenstates in a covariant Rξ gauge,

so that Ghosts (denoted by ω or c) and pseudo-Goldstone bosons (denoted by GB) are

present for finite values of the gauge parameter ξ. The notation used in the body of this

thesis should clearly indicate the correspondence of the Ghosts and pseudo-Goldstone

bosons to their associated gauge boson. For the sake of brevity, we only give the expres-

sions of interactions either present in the Standard Model or relevant to our Sommerfeld

calculation. We cross-check our Standard Model Feynman rules with Cheng/Li [58] and

Böhm/Denner/Joos [40] whenever their vertex rules are applicable.

As mentioned in section 3.4, our theory can be thought of as a truncated version of a lat-

ticized 5 dimensional theory [51], where we have cut the Kaluza-Klein tower after the first

excitation. It should be stressed however, that we have constructed a completely renormal-

izable 4 dimensional gauge invariant theory so that the truncation does not affect gauge

invariance and unitarity (for detailed discussion see Sec. 3.4 as well as e.g. [51, 22, 52]).

After the spontaneous symmetry breaking SU(2)I ×SU(2)II ×U(1)I ×U(1)II → U(1)em

we employ the following gauge field notation:
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A(0)/γ(0) ... Standard Model Photon

Z(0) ... Standard Model Z-boson

W±
(0) ... Standard Model W-bosons

A(1)/γ(1) ... heavy U(1)−like gauge boson

Z(1) ... heavy SU(2)−like neutral gauge boson

W±
(1) ... heavy charged SU(2)− gauge bosons

We follow the conventions of Cheng/Li [58] for the propagators, the field definitions may

however differ by a global phase:

−i
k2 −m2

V + iε
[gµν − (1− ξ) kµkν

k2 − ξm2
V

] (C.1)

Scalars:
i

k2 −m2
φ + iε

(C.2)

Goldstone-Bosons:
i

k2 − ξm2
V + iε

(C.3)

Ghosts:
−i

k2 − ξm2
V + iε

(C.4)

where ξ = 1 is the Feynman gauge, ξ = 0 the Landau gauge and ξ = ∞ the unitary

gauge. The standard Feynman +iε pole-prescription is adopted throughout our work.

The Goldstone boson masses (see section B.0.3) are equal to the gauge boson masses

(mV ) up to a factor
√
ξ.
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C.2. Vertex Rules

If possible we express the vertex rules in terms of the gauge couplings and masses of the

gauge bosons. In our conventions we have the following relations amongst the parameters

of our theory:

g2 =
g√
2

g1 =
g′√
2

(C.5)

the gauge boson mass for the W (0) can be written as:

mW (0) =
g v0

2
√

2
=
g2 v0

2
(C.6)

We can further use the fact, that the Weinberg angle of the heavy modes θW (1) tends

to zero away from the level crossing (see fig. 4.3), which we use to set sin θ
(1)
W = 0 and

cos θ
(1)
W = 1 as an approximation. When we diagonalized the mass matrices in order to

derive approximated field transformations between the gauge- and the mass-eigenstates

we used several features of the mass spectrum (see section B.1), which are reflected in

the Feynman rules as well (e.g. the correct analysis of the particle mass spectrum yielded

m2
W (1) = 1

8
g2(v2

0 + 8v2
2) which reduces to m2

W (1) = g2v2
2 in the v2

0 << v2
2-limit).

To simplify the vertex rules further, we use the following relations1:

tan θ
(0)
W =

g′

g
=
g1

g2

(C.7)

mZ =
mW

cos θ
(0)
W

(C.8)

g1 =
e

cos θ
(0)
W

(C.9)

g2 =
e

sin(θ
(0)
W

(C.10)

C.2.1. Notation

In this section, we are going to comment on our phase convention for the fields and make

contact to the Standard Model literature [40, 58]. Whenever one picks up a different

book, it is almost certain, that the conventions are going to vary in one way or another,

therefore cross-referencing results becomes somewhat tedious. In order to simplify the

reader’s ability to check our results, we give a dictionary to translate our Standard Model

vertex rules to the ones found in the textbooks [40, 58] used by us as a reference. Our

Feynman rules differ by global phases for some fields, which are physically irrelevant (if

used consistently).

1we choose to work in conventions of e = + |e| so that e = g2 · sin θ(0)
W = g1 · sin θ(0)

W is positive
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Connection to Böhm/Denner/Joos

Most checks were performed along [40], we therefore give a short list of rules how to

convert our vertex results2 into the ones obtained by Böhm/Denner/Joos.

• multiply our vertex-factor with (+i) for each GB
(+)
(0)

• multiply our vertex-factor with (-i) for each GB
(−)
(0)

• multiply our vertex-factor with (-1) for each GB
(0)
Z

• multiply our vertex-factor with (+1) for each GB
(0)
A

• multiply our vertex-factor with (-1) for each c̄
(0)
Z or c

(0)
Z

• multiply our vertex-factor with (-1) for each Z(0)

Connection to Cheng/Li

For completeness, we also make contact to [58], since we used this book as reference for

several discussions on the spontaneous symmetry breaking, e.g. in Appendix B.0.4.

• multiply our vertex-factor with (-i) for each GB
(+)
(0)

• multiply our vertex-factor with (+i) for each GB
(−)
(0)

• multiply our vertex-factor with (-1) for each GB
(0)
Z

• multiply our vertex-factor with (+1) for each GB
(0)
A

2We found these rules by comparing different vertices one by one and match the results consistently.
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C.2.2. Triple Vector Boson Vertices

The interaction terms between three gauge fields originate from the kinetic part of the

gauge Lagrangian (4.2) and is a direct result of the non-abelian structure of our theory.

We give an exhaustive list of Feynman rules for our model in terms of mass eigenstates,

momentum flow is indicated by arrows if relevant:

with the couplings:

gA(0)W+
(1,0)

W−
(1,0)

=g2 sin θ
(0)
W = e (C.11)

gZ(1)W+
(0,1)

W−
(1,0)

=g2 cos θ
(1)
W

θ
(1)
W ≈0
≈ g2 (C.12)

gZ(0)W+
(0,1)

W−
(0,1)

=g2 cos θ
(0)
W (C.13)

gA(1)W+
(0,1)

W−
(1,0)

=g2 sin θ
(1)
W

θ
(1)
W ≈0
≈ 0 (C.14)

C.2.3. Quartic Vector Boson Vertices

As the vector-vector-vector vertices, the interaction terms between four gauge fields also

arise from the field strength tensors in the Lagrangian. We find the following Feynman

rules: with the couplings:
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gA(0)A(0)W+
(1,0)

W−
(1,0)

=− g2
2 sin2 θ

(0)
W = −e2 (C.15)

gZ(0)A(0)W+
(1,0)

W−
(1,0)

=− g2
2 sin θ

(0)
W cos θ

(0)
W = −e g2 cos θ

(0)
W (C.16)

gW+
(0,1)

W+
(0,1)

W−
(0,1)

W−
(0,1)

=g2
2 (C.17)

Note, other authors [100] find a geometrical factor of 3
2

for the vertex factors with four

KK-1-modes as a result of an integration over the extra dimension, which is not the case

in the 4D-theory.

gW+
(1,0)

W+
(1,0)

W−
(0,1)

W−
(0,1)

=g2
2 (C.18)

gW+
(1,0)

W+
(0,1)

W−
(1,0)

W−
(0,1)

=g2
2 (C.19)

gZ(0)Z(0)W+
(1,0)

W−
(1,0)

=− g2
2 cos θ

(0)
W (C.20)

gZ(1)Z(1)W+
(1,0)

W−
(1,0)

=− g2
2 cos θ

(1)
W ≈ −g

2
2 (C.21)

gZ(1)Z(0)W+
(1,0)

W−
(0,1)

=− g2
2 cos θ

(0)
W cos θ

(1)
W ≈ −g

2
2 cos θ

(0)
W (C.22)

gA(0)Z(1)W+
(1,0)

W−
(0,1)

=− g2
2 cos θ

(1)
W sin θ

(0)
W (C.23)

Besides the vertices shown above, we get additional interactions proportional to sin θ
(1)
W ,

which tend to zero in the limit θ
(1)
W → 0

gA(0)A(1)W+
(1,0)

W−
(0,1)

=− g2
2 sin θ

(0)
W sin θ

(1)
W ≈ 0 (C.24)

gA(1)A(1)W+
(1,0)

W−
(1,0)

=− g2
2 sin2 θ

(1)
W ≈ 0 (C.25)

gA(1)Z(0)W+
(1,0)

W−
(0,1)

=− g2
2 cos θ

(0)
W sin θ

(1)
W ≈ 0 (C.26)

gA(1)Z(1)W+
(1,0)

W−
(1,0)

=− g2
2 cos θ

(1)
W sin θ

(1)
W ≈ 0 (C.27)

C.2.4. Vector-Vector-Scalar-Vertices

The Vector-Vector-Scalar vertices arise from the Higgs-kinetic terms in (4.2), the gauge

fixing functions in (B.1) only contribute to the mass of the unphysical scalar pseudo-

Goldstone bosons and cancel scalar-gauge-mixing terms. In order to derive the Feynman

rules, we used the approximate basis transformations in the scalar sector (see Sec. B.1).

As consistency check, we compared our results to the Feynman rules given in the PhD-

thesis of Gustafsson [100] and for the Standard Model interactions we cross checked our

Feynman rules with the ones in [58] and [40]. Note: to arrive at the vertex-factor one has

to multiply the appropriate coefficient in the interaction Lagrangian by igµν and possible

symmetry factors.
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The Vertices for the Standard Model (derived from our interaction Lagrangian):

gZ(0)Z(0)h(0) =
g2 m

(0)
Z

cos θ
(0)
W

(C.28)

gW+
(0)
W−

(0)
h(0) =g2 m

(0)
W (C.29)

gW∓
(0)
A(0)GB±

(0)
=± i e m(0)

W (C.30)

gW∓
(0)
Z(0)GB±

(0)
=∓ i e m(0)

W

sin θ
(0)
W

cos θ
(0)
W

(C.31)

Interactions involving non-Standard-Model states:

gA(0)W∓
(1)
GB±

(1)
=∓ i e m(1)

W (C.32)

gZ(0)W∓
(1)
GB±

(1)
=∓

ig2
2

(
−v2

0 sec θ
(0)
W + cos θ

(0)
W (v2

0 + 8v2
2)
)

2
√
v2

0 + 8v2
2

≈ ∓i g2 cos θ
(0)
W m

(1)
W (C.33)

gZ(1)W∓
(0)
GB±

(1)
=±

ig2
2

(
8v2

2 cos θ
(1)
W + v2

0 sin θ
(1)
W tan θ

(0)
W

)
2
√
v2

0 + 8v2
2

≈ ±i g2 cos θ
(1)
W m

(1)
W (C.34)

gZ(1)W∓
(1)
GB±

(0)
=∓ i e m(0)

W

sin θ
(1)
W

cos θ
(0)
W

≈ 0 (C.35)

g
W∓

(1)
W±

(0)
GB

(1)
Z

=∓ i g2 m
(1)
W (C.36)

gZ(1)Z(1)h(0) =
1

2
g2

2v0 cos2 θ
(1)
W + g1g2v0 sin θ

(1)
W cos θ

(1)
W +

1

2
g2

1v0 sin2 θ
(1)
W ≈ g2 m

(0)
W (C.37)

gW−
(1)
W+

(1)
h(0) =g2m

(0)
W (C.38)
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C.2.5. Scalar-Scalar-Gauge-Vertices

These interactions arise from the Higgs kinetic terms in (4.2), which lead to derivative

couplings and one has to be careful how to treat the momentum-flow of the particles. We

work in conventions, where all momenta are ingoing. Following [40], for a Lagrangian of

the form LI = gφ1V
µ(∂µφ2) the vertex rule is: g (p2)µ

For the Standard Model we find:

gA(0)GB−
(0)
GB+

(0)
=− e (C.39)

gZ(0)GB−
(0)
GB+

(0)
=− g2

(
cos2 θ

(0)
W − sin2 θ

(0)
W

2 cos θ
(0)
W

)
(C.40)

g
Z(0)h(0)GB

(0)
Z

=− i g2

2 cos θ
(0)
W

(C.41)

gW∓
(0)
h(0)GB±

(0)
=− ig2

2
(C.42)

g
W∓

(0)
GB

(0)
Z GB±

(0)

=± g2

2
(C.43)

and for interaction vertices involving non-Standard-Model fields3:

gA(0)GB−
(1)
GB+

(1)
=− e (C.44)

g
W∓

(0)
GB

(1)
Z GB±

(1)

=∓ g2 (C.45)

gZ(0)GB−
(1)
GB+

(1)
=− 1

2
g2

(
2 cos θ

(0)
W −

v2
0

v2
0 + 8v2

2

sec θ
(0)
W

)
≈ −g2 cos θ

(0)
W (C.46)

gW∓
(1)
GB±

(1)
h(0) =− ig2

2

m
(0)
W

m
(1)
W

= O(
v0

v2

) ≈ 0 (C.47)

3A vertex we have neglected due to the approximations in the field rotation, but present in Gustafsson’s

thesis: g
Z(1)GB

(1)
Z h(0) = i g22

m
(0)
Z

m
(1)
Z

= O( v0v2 )
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C.2.6. Scalar-Scalar-Gauge-Gauge-Vertices

This class of vertices stems from the kinetic terms of the scalar fields (4.2). In order to

arrive at the vertex rules, it is sufficient to multiply the appropriate coefficient of the

interaction Lagrangian with i gµν and symmetry factors if necessary.

We begin with the Standard Model vertices to compare our notation to Refs. [40, 58]:

gA(0)A(0)GB+
(0)
GB−

(0)
=2 e2 (C.48)

gZ(0)Z(0)GB+
(0)
GB−

(0)
=g2

2

(
cos2 θ

(0)
W − sin2 θ

(0)
W

)2

2 cos θ
(0)
W

(C.49)

gZ(0)Z(0)h(0)h(0) =g2
2

(
cos2 θ

(0)
W + sin2 θ

(0)
W

)2

2 cos θ
(0)
W

=
g2

2

2 cos θ
(0)
W

(C.50)

g
Z(0)Z(0)GB

(0)
Z GB

(0)
Z

=g2
2

(
cos2 θ

(0)
W + sin2 θ

(0)
W

)2

2 cos θ
(0)
W

=
g2

2

2 cos θ
(0)
W

(C.51)

gA(0)W∓
(0)
GB±

(0)
h(0) =± ig2 e

2
(C.52)

g
A(0)W∓

(0)
GB±

(0)
GB

(0)
Z

=− g2 e

2
(C.53)

gZ(0)W∓
(0)
GB±

(0)
h(0) =∓ ig2 e

2
tan θ

(0)
W (C.54)

g
Z(0)W∓

(0)
GB±

(0)
GB

(0)
Z

= + i
g2 e

2
tan θ

(0)
W (C.55)

gW+
(0)
W−

(0)
GB+

(0)
GB−

(0)
=
g2

2

2
(C.56)

gW+
(0)
W−

(0)
h(0)h(0) =

g2
2

2
(C.57)

g
W+

(0)
W−

(0)
GB

(0)
Z GB

(0)
Z

=
g2

2

2
(C.58)
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Vertices containing non-Standard-Model fields:

gA(0)A(0)GB+
(1)
GB−

(1)
=2 e2 (C.59)

g
A(0)W∓

(0)
GB±

(1)
GB

(1)
Z

=
2
√

2g2
2v2 sin θ

(0)
W√

v2
0 + 8v2

2

≈ g2 e (C.60)

g
W

(∓)
(0)

W
(∓)
(0)

GB
(±)
(1)

GB
(±)
(1)

=− 4g2
2v

2
2

v2
0 + 8v2

2

≈ −2g2
2 (C.61)

g
W

(+)
(0)

W
(−)
(0)

GB
(+)
(1)

GB
(−)
(1)

=
1

2
g2

2

(
2− v2

0

v2
0 + 8v2

2

)
≈ g2

2 (C.62)

g
W

(+)
(0)

W
(−)
(0)

GB
(1)
Z GB

(1)
Z

=2 g2
2 (C.63)

g
W

(+)
(1)

W
(−)
(1)

GB
(+)
(0)

GB
(−)
(0)

=
g2

2

2
(C.64)

g
W

(+)
(1)

W
(−)
(1)

GB
(0)
Z GB

(0)
Z

=
g2

2

2
(C.65)

g
W

(+)
(1)

W
(−)
(1)

h(0)h(0)
=
g2

2

2
(C.66)

g
A(0)Z(0)GB

(+)
(1)

GB
(−)
(1)

=g2
2

(
sin 2θ

(0)
W −

v2
0 tan θ

(0)
W

v2
0 + 8v2

2

)
≈ g2

2 sin 2θ
(0)
W (C.67)

g
W

(∓)
(0)

Z(0)GB
(±)
(1)

GB
(1)
Z

=
2
√

2 cos θ
(0)
W g2

2v2√
v2

0 + 8v2
2

≈ g2
2 cos θ

(0)
W (C.68)

g
Z(0)Z(0)GB

(+)
(1)

GB
(−)
(1)

=
g2

2

(
v2

0 cos2 2θ
(0)
W sec2 θ

(0)
W + 32v2

2 cos2 θ
(0)
W

)
2 (v2

0 + 8v2
2)

≈ 2g2
2 cos2 θ

(0)
W (C.69)

g
W

(∓)
(1)

Z(1)GB
(±)
(0)

GB
(0)
Z

=g2 e
sin θ

(1)
W

2 cos θ
(0)
W

≈ 0 (C.70)

g
W

(∓)
(1)

Z(1)GB
(±)
(0)

h(0)
=∓ ig2 e

sin θ
(1)
W

2 cos θ
(0)
W

≈ 0 (C.71)

g
Z(1)Z(1)GB

(+)
(0)

GB
(−)
(0)

=
1

2
g2

2 cos2 θ
(1)
W − g1g2 sin θ

(1)
W cos θ

(1)
W +

1

2
g2

1 sin2 θ
(1)
W ≈

g2
2

2
(C.72)

g
Z(1)Z(1)GB

(0)
Z GB

(0)
Z

=
1

2
g2

2 cos2 θ
(1)
W + g1g2 sin θ

(1)
W cos θ

(1)
W +

1

2
g2

1 sin2 θ
(1)
W ≈

g2
2

2
(C.73)

gZ(1)Z(1)h(0)h(0) =
1

2
g2

2 cos2 θ
(1)
W + g1g2 sin θ

(1)
W cos θ

(1)
W +

1

2
g2

1 sin2 θ
(1)
W ≈

g2
2

2
(C.74)

g
W

(±)
(1)

A(0)GB
(∓)
(1)

h(0)
=± ie g2

2

m
(0)
W

m
(1)
W

≈ 0 (C.75)
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gZ(1)Z(1)GB+
(1)
GB−

(1)
=
g2

2v
2
0 cos2

[
θ

(0)
W + θ

(1)
W

]
sec2 θ

(0)
W

2 (v2
0 + 8v2

2)
≈ 0 (C.76)

g
Z(1)Z(1)GB

(1)
Z GB

(1)
Z

=2 cos2 θ
(1)
W g2

2 ≈ 2g2
2 (C.77)

gW∓
(1)
W∓

(1)
GB±

(1)
GB±

(1)
=

16g2
2v

2
2

v2
0 + 8v2

2

≈ 2g2
2 (C.78)

gW+
(1)
W−

(1)
GB+

(1)
GB−

(1)
=
g2

2 (v2
0 + 16v2

2)

2 (v2
0 + 8v2

2)
≈ g2

2 (C.79)

g
W+

(1)
W−

(1)
GB

(1)
Z GB

(1)
Z
≈0 (C.80)

g
Z(1)W±

(1)
GB

(1)
Z GB∓

(1)

=− 2
√

2g2
2v2 cos θ

(1)
W√

v2
0 + 8v2

2

≈ −g2
2 (C.81)

Note: We do not have a vertex for the Z(0)Z(0)GB
(1)
Z GB

(1)
Z interaction, due to the approx-

imated field rotation in the scalar sector.
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C.2.7. Triple Scalar Vertices

For the charged Goldstone bosons we have used the exact transformation between gauge-

and mass- eigenstates and only truncate terms of order v0
v2

according to our approximations

described in section B.1. This enables us to compare some of the non-Standard Model

results to Gustafsson [100]. The origin of these vertices is the scalar potential (4.19). We

also compare our Standard Model results to [40]:

The Standard-Model interactions:

gh(0)h(0)h(0) =− 3

2
g2

m2
h(0)

m
(0)
W

(C.82)

g
h(0)GB

(0)
Z GB

(0)
Z

=− 1

2
g2

m2
h(0)

m
(0)
W

(C.83)

gh(0)GB+
(0)
GB−

(0)
=− 1

2
g2

m2
h(0)

m
(0)
W

(C.84)

g
GB

(0)
Z GB+

(0)
GB−

(0)

=0 (C.85)

and a number of interactions involving non-Standard-Model fields4:

gh(0)GB+
(1)
GB−

(1)
=− g2

2
m

(0)
W

(
mh(0)

m
(1)
W

)2

= O(
v2

0

v2
2

) ≈ 0 (C.86)

g
h(0)GB

(1)
Z GB

(1)
Z

=−M2
0

v0

2v2
2

= O(1)v0 (C.87)

g
GB

(1)
Z GB±

(1)
GB∓

(0)

=
±iM2

0 v0√
2v2

√
v2

0 + 8v2
2

= O(1)v0 ≈ ±i
M2

0

v2
2

v0

4
(C.88)

g
GB

(0)
Z GB+

(1)
GB−

(1)

=0 (C.89)

4Note that the combination
M2

0

v22
is the coupling constant of a φ4 term in the scalar potential VWW of

section 4.5, to stay in the perturbative regime it is of O(1) at most.
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C.2.8. Quartic Scalar Vertices

The origin of these vertices is also the Higgs potential (4.19). As consistency check, we

compare our Standard Model results to [40]:

gh(0)h(0)h(0)h(0) =− 3

4
g2

2

m2
h(0)

m2
W (0)

(C.90)

g
GB

(0)
Z GB

(0)
Z GB

(0)
Z GB

(0)
Z

=− 3

4
g2

2

m2
h(0)

m2
W (0)

(C.91)

g
h(0)h(0)GB

(0)
Z GB

(0)
Z

=− g2
2

4

m2
h(0)

m2
W (0)

(C.92)

And the interactions involving non-Standard-Model fields:

gGB+
(1)
GB−

(1)
GB+

(0)
GB−

(0)
=− 2 (2M2

0 + λv2
0)

v2
0 + 8v2

2

≈ −M
2
0

2v2
2

(C.93)

gGB±
(1)
GB±

(1)
GB∓

(0)
GB∓

(0)
=− 2λv2

0

v2
0 + 8v2

2

≈ 0 (C.94)

g
GB+

(1)
GB−

(1)
GB

(0)
Z GB

(0)
Z

=− 4M2
0 + λv2

0

(v2
0 + 8v2

2)
≈ −M

2
0

2v2
2

(C.95)

g
GB+

(0)
GB−

(0)
GB

(1)
Z GB

(1)
Z

=− M2
0

2v2
2

(C.96)

g
GB

(1)
Z GB

(1)
Z GB

(0)
Z GB

(0)
Z

=− M2
0

2v2
2

(C.97)

gGB+
(1)
GB−

(1)
h(0)h(0) =− 4M2

0 + λv2
0

(v2
0 + 8v2

2)
≈ −M

2
0

2v2
2

(C.98)

g
GB

(1)
Z GB

(1)
Z h(0)h(0)

=− M2
0

2v2
2

(C.99)

g
GB

(1)
Z GB

(1)
Z GB+

(1)
GB−

(1)

=
−M2

0 v
2
0 + 16(λ1 + 2λ2)v4

2

2v2
2 (v2

0 + 8v2
2)

≈ (λ1 + 2λ2) (C.100)

g
GB

(1)
Z GB

(1)
Z GB

(1)
Z GB

(1)
Z

=3 (λ1 + 2λ2) (C.101)

gGB+
(1)
GB+

(1)
GB−

(1)
GB−

(1)
=− 2 (8M2

0 v
2
0 + λv4

0 − 64v4
2 (λ1 + 2λ2))

(v2
0 + 8v2

2) 2
≈ 2 (λ1 + 2λ2) (C.102)
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C.2.9. Ghost - Anti-Ghost - Gauge Vertices

The ghost-gauge boson interactions arise from the ghost Lagrangian described in section

B.2. One can choose a physical gauge, where no ghosts are present in the theory. Since we

began to work in a generalized Rξ gauge, we give the Feynman rules for their interactions.

i gc̄1c2V k1,µ

gc̄±
(0)
c±
(0)
A(0) =± e (C.103)

g
c̄
(0)
A c∓

(0)
W±

(0)

=± e (C.104)

g
c̄±
(0)
c
(0)
A W±

(0)

=∓ e (C.105)

gc̄±
(0)
c±
(0)
Z(0)

=± g2 cos θ
(0)
W (C.106)

g
c̄
(0)
Z c∓

(0)
W±

(0)

=± g2 cos θ
(0)
W (C.107)

g
c̄±
(0)
c
(0)
Z W±

(0)

=∓ g2 cos θ
(0)
W (C.108)

gc̄±
(0)
c±
(1)
Z(1)

=± g2 cos θ
(1)
W (C.109)

gc̄±
(1)
c±
(0)
Z(1)

=± g2 cos θ
(1)
W (C.110)

g
c̄±
(1)
c
(0)
Z W±

(1)

=∓ g2 cos θ
(0)
W (C.111)

g
c̄
(0)
Z c∓

(1)
W±

(1)

=± g2 cos θ
(0)
W (C.112)

g
c̄±
(0)
c
(1)
Z W±

(1)

=∓ g2 cos θ
(1)
W (C.113)

g
c̄
(1)
Z c∓

(0)
W±

(1)

=± g2 cos θ
(1)
W (C.114)

g
c̄±
(1)
c
(0)
A W±

(1)

=∓ e (C.115)

g
c̄
(0)
A c∓

(1)
W±

(1)

=± e (C.116)

g
c̄
(1)
Z c∓

(1)
W±

(0)

=± g2 cos θ
(1)
W (C.117)

g
c̄±
(1)
c
(1)
Z W±

(0)

=∓ g2 cos θ
(1)
W (C.118)

gc̄±
(1)
c±
(1)
A(0) =± e (C.119)

gc̄±
(1)
c±
(1)
Z(0) =± g2 cos θ

(0)
W (C.120)
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C.2.10. Ghost - Anti-Ghost - Scalar Vertices

The special structure of our gauge fixing functions induce couplings between scalars and

ghosts. Origin of those interactions is once more the Faddeev-Popov-Lagrangian (B.46).

i gc̄1c2S ξ

g
c̄
(0)
A c∓

(0)
GB±

(0)

=0 (C.121)

g
c̄±
(0)
c
(0)
A GB±

(0)

=∓ iem(0)
W (C.122)

g
c̄±
(0)
c±
(0)
GB

(0)
Z

=± ig2 m
(0)
Z cos θ

(0)
W

2
(C.123)

g
c̄
(0)
Z c∓

(0)
GB±

(0)

=± i g2 m
(0)
W

2 cos θ
(0)
W

(C.124)

g
c̄±
(0)
c
(0)
Z GB±

(0)

=∓ i g2 m
(0)
W

2 cos θ
(0)
W

(
cos2 θ

(0)
W − sin2 θ

(0)
W

)
(C.125)

g
c̄
(0)
Z c

(0)
Z h(0)

=− g2 m
(0)
W

2 cos2 θ
(0)
W

(C.126)

gc̄±
(0)
c±
(0)
h(0) =− g2 m

(0)
W

2
(C.127)



150

D. Gauge Transformations

In order to fix our sign convention for the gauge transformations, which also influences

the notation in the covariant derivatives, we introduce two explicit examples relevant for

this thesis.

SU(2) Gauge Transformations in the Fundamental Representation

Take a complex doublet H(x) = (h1 [x] h2 [x])T ; h1,2 [x] ∈ C, which transforms under the

fundamental representation of SU(2) according to:

H (x)→ H ′ (x) = exp

[
−iτaαa (x)

2

]
H (x) (D.1)

τa ... Pauli matrices a = 1, 2, 3 αa (x) ... SU(2) transformation parameters

The Pauli spin matrices τ i are taken as:

τ 1 =

(
0 1

1 0

)
τ 2 =

(
0 −i
i 0

)
τ 3 =

(
1 0

0 −1

)
(D.2)

and the corresponding SU(2) Lie algebra is given by:[
τ i

2
,
τ j

2

]
= iεijk

τ k

2
. (D.3)

Our convention for the gauge transformation of a SU(2) doublet in the fundamental

representation implies a covariant derivative of the form1:

Dµ = ∂µ − ig
τa

2
W a
µ (x) (D.4)

where g is the SU(2) gauge coupling and τa

2
are the SU(2) generators in the fundamental

representation.

1Note: other authors use the opposite sign in the exponential map to define their gauge transformation.

We adopt the notation presented in the chapter on non-abelian gauge theories by Cheng/Li [58].
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SU(2) Gauge Transformations in the Anti-Fundamental

Representation

In the special case of SU(2) the fundamental 2 and anti-fundamental 2 representations

are equivalent. Nonetheless, the gauge transformations and correspondingly the covariant

derivatives have a change in sign. For completeness we state the transformation properties

explicitly.

For a SU(2) doublet H(x) = (h1 [x] h2 [x])T in the anti-fundamental representation, the

gauge transformation is defined via:

H (x)→ H ′ (x) = H (x) exp

[
+iτaαa (x)

2

]
(D.5)

which implies a covariant derivative of the form:

Dµ = ∂µ + igW a
µ (x)

τa

2
(D.6)
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E. Numerical Shooting Routine

For completeness, we document our Mathematica-code to solve the coupled system of

Schrödinger equations of section 5.10. The boundary value problem is solved via a ”shoot-

ing” process. All numerical recipes were adopted from Refs. [88, 89, 90].

(*******************************)

(******* potential definition *******)

(*******************************)

p = 1
2
mz1 v

Vzzww[x ]:=− 2
v

2g22

4π

Exp[−mw0x
p ]

x
;

Vwwzz[x ]:=− 2
v
2g22

4π

Exp[−mw0x
p ]

x
;

Vwwww[x ]:=− 2
v

(
g22cθ2

4π

Exp[−mz0x
p ]

x
+ g22sθ2

4π
1
x

)
;

(* definition of the ODE in ~f *)

(* d
dx


f [[1]]

f [[2]]

f [[3]]

f [[4]]

 == d
dx


χzz(x)

χzz′(x)

χww(x)

χww′(x)

 =


χzz′(x)

χzz′′(x)

χww′(x)

χww′′(x)

 *)

(* use ODE to express d2

dx2
χij(x) in terms of χij(x) and d

dx
χij(x) *)

G[x , f ]:=


f [[2]]

−f [[1]] + Vzzww[x]f [[3]]

f [[4]]

−
(

mz1+δm
mz1

)
∗
(((

1− 2δm
ε

)
− Vwwww[x]

)
f [[3]]− Vwwzz[x]f [[1]]

)


(*************************************)

(*** parameters for integration of ODE ***)

(*************************************)

xmax = 25; (*upper boundary –> numerically infinity *)

NIt = 50000; (* number of RK4-steps *)



153

(***************************)

(****** shooting variable *****)

(******* initialization ********)

(***************************)

(*********** textbook asymptotic ***********)

(*** φzz[x→∞] ∼ sin[x + δ Streu] ***)

(*** φww[x→∞] ∼ Amp Exp
[
−√qwwx

]
***)

(*** qww = −mz1+δm
mz1

(
1− 2δm

ε

)
***)

(*** kprime =
√
−mz1+δm

mz1

(
1− 2δm

ε

)
***)

(************************************************************************)

(**** execution of all routines, so that new parameters are correctly initialized ***)

(************************************************************************)

ODERK4Update[G , fn , xn , dx ]:=Module

[
{k1, k2, k3, k4}, (*RK4 update− step*)

k1 = dxG[xn, fn];

(* G denotes a multi-component vector, depending on the order of the ODE and

the number of coupled equations. Consequently ki is a vector too!!! *)

k2 = dxG[xn + (1/2)dx, fn + (1/2)k1];

k3 = dxG
[
xn + 1

2
dx, fn + 1

2
k2
]

;

k4 = dxG[xn + dx, fn + k3];

Return
[
fn + 1

6
k1 + 1

3
k2 + 1

3
k3 + 1

6
k4
] ]

;

ODE[G , f0 , x0 , dx ,Ns ]:=Module

[
{fvals, index, xn},

(*initialize a table fvals with zeros, so that one can address the entries of fvals later on.*)

fvals = Table[{0,Table[0, {jj, 1,Length[f0]}]}, {ii, 1,Ns}];
(* treat initial values seperately, all other entries of fvals are written via a For-loop. *)

fvals[[1, 1]] = x0; fvals[[1, 2]] = f0;

For
[
index = 2, index ≤ Ns, index = index + 1,

xn = x0 + (index− 1)dx;

fvals[[index, 1]] = xn; (* write the x-values in fvals-array *)

fvals[[index, 2]] = ODERK4Update[G, fvals[[index− 1, 2]], fvals[[index− 1, 1]], dx];

(* take xn−1, ψn−1, ψ
′
n−1 and calculate xn, ψn andψ

′
n*)
]
;

Return[fvals]

]
;
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(* u returns the reduced wavefunction on the left boundary x = 0

for arbitrary input parameters Ampl and δStreu.*)

u[Ampl , δscatter ]:=Module

[
{fval, retval, φzzAsymp, φzzpAsymp, φwwAsymp, φwwpAsymp, startx, kprime},
kprime =

√
−mz1+δm

mz1

(
1− 2δm

ε

)
;

φzzAsymp = Sin[xmax + δscatter];

φzzpAsymp = Cos[xmax + δscatter];

φwwAsymp = AmplExp[−kprimexmax];

φwwpAsymp = −kprimeAmplExp[−kprimexmax];

fval = ODE
[
G, {φzzAsymp, φzzpAsymp, φwwAsymp, φwwpAsymp},

xmax, −1
(NIt−0.999999)

xmax,NIt
]
;

(*** As above, I do not go directly to zero to determine the wavefunction

and the derivative, but to the second last point of the RK-integration for stability ***)

(*************************************)

retval =
{
{

fval[[Length[fval], 2, 1]]} (* returns φzz[0]*),

{fval[[Length[fval], 2, 3]]} (* returns φww[0]*),

{fval[[Length[fval]− 1, 2, 2]]} (* returns φzz′
[
∆x = xmax

NIt

]
*),

{fval[[Length[fval]− 1, 2, 4]]} (* returns φww′
[
∆x = xmax

NIt

]
*)
}

;

Return[retval];

]
;

(*cur : current value for u[rpsi0, ipsi0] *)

(*ngrad : numerical GRADIENT *)

Gradu[Ampl , δscatter , dAmpl , dStreu ]:=Module

[
{ngrad, cur1, cur2, current},

current = u[Ampl, δscatter];

cur1 = current[[1, 1]];

cur2 = current[[2, 1]];

ngrad =
{
u[Ampl+dAmpl,δscatter][[1,1]]−cur1

dAmpl
, u[Ampl,δscatter+dStreu][[1,1]]−cur1

dStreu
,

u[Ampl+dAmpl,δscatter][[2,1]]−cur2
dAmpl

, u[Ampl,δscatter+dStreu][[2,1]]−cur2
dStreu

}
;

Return[ngrad];

]
;
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Shoot[initialAmp , initialδStreu , dAmpl , dStreu , epsi ]:=Module

[
{ir, ii, res1, res2, counter, gradient, residue, sol, delamp, delphase,

delampi, delphasi, restable, countermax, φzzpof0, φwwpof0},

delamp = dAmpl;

delphase = dStreu;

counter = 1;

countermax = 40;

(* quit routine, if more than ”countermax” shooting trials are necessary. *)

ir = initialAmp;

ii = initialδStreu;

residue = u[ir, ii];

res1 = residue[[1, 1]];

(* returns φzz(0) for specified values of Amp and δStreuat infinity *)

res2 = residue[[2, 1]];

(* returns φww(0) for specified values of Amp and δStreuat infinity *)

restable = Table[{i, {0, 0}}, {i, 1, countermax}];
(* restable is going to contain the differences between φzz[0], φww[0] and zero. *)

While
[
(((Abs[res1] > epsi)‖(Abs[res2] > epsi))&&(counter < countermax)),

(* vary the initial conditions at xmax until the BC at zero are satisfied with precision

eps or the number of shooting-iterations exceeds the maximum value countermax. *)

(******************************************************)

(*** Implementation of Newton− Raphsen method ***)

(*** I used Numerical Recipes as reference ***)

(*** p.380 and following ***)

(******************************************************)

gradient = Gradu[ir, ii, delamp, delphase];

(* solve linear system: Ĵ ∗
⇀

δcond == −
⇀

φ
( ⇀

cond
)

*)

sol = Solve[{gradient[[1]] ∗ delampi + gradient[[2]] ∗ delphasei == −res1, gradient[[3]] ∗
delampi + gradient[[4]] ∗ delphasei == −res2}, {delampi, delphasei}];
delamp = sol[[1, 1, 2]];

delphase = sol[[1, 2, 2]];

Clear[sol, residue, delampi, delphasi];
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(* calculate new input values for Amp and δStreu *)

{ir, ii} = {ir, ii}+ {delamp, delphase};
(* evaluate φzz[0] und φww[0] with the new initial conditions

for new input values Amp and δStreu *)

residue = u[ir, ii];

res1 = residue[[1, 1]]; (* difference res1 = φzz[0]− 0 *)

res2 = residue[[2, 1]]; (* difference res2 = φww[0]− 0 *)

restable[[counter, 2, 1]] = res1;

restable[[counter, 2, 2]] = res2;

counter = counter + 1;

φzzpof0 = residue[[3, 1]];

φwwpof0 = residue[[4, 1]];
]
;

If[(counter > (countermax− 1)),

Return[{Root-Finding failed to converge to desired precision, restable}],
Return[{ir, ii, res1, res2, counter, restable, φzzpof0, φwwpof0}]];
(* If the shoot-routine converges, it returns the result in the following order: *)

(*

(1) best initial value for Amp at xmax;

(2) best initial value for δStreu at xmax;

(3) φzz[0];

(4) φww[0];

(5) # of steps to achieve desired precision eps, so that

| φzz[0]| < eps and |φww[0]| < eps;

(6) deviation of |φzz[0]| and |φww[0]| from zero

*)

]
;
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Selbständigkeitserklärung
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