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Zusammenfassung

Das Standard Modell (SM) ist eine der am besten getesteten Theorien der Physik. Je-
doch sind bis heute einige Fragen offen, die durch Erweiterungen des SM beantwortet
werden sollen. Eine Möglichkeit besteht darin, eine zusätzliche, raumartige Dimensi-
on mit flacher Metrik anzunehmen und die Auswirkungen auf die effektive 4D Theorie
zu berechnen. In dieser Arbeit soll unter der Annahme einer flachen fünf-dimensionalen
Raumzeit die Veränderung des Fermionspektrums durch randlokalisierte, kinetische Ter-
me berechnet werden. Zunächst werden die Wellenfunktionen und das Massenspektrum
der links- und rechtshändigen Fermionen einer Familie berechnet. Danach werden die
Wilsonkoeffizienten in einer effektiven Vier-Fermion-Kontaktwechselwirkung bestimmt,
die von den Überlappintegralen der Fermionen abhängen. Beim Übergang von der Eich-
in die Masseneigenbasis der Quarks werden flavorverletzende neutrale Ströme induziert
(FCNCs), die mit Hilfe der Wilsonkoeffizienten quantifiziert werden können. Diese Trans-
formationen sind ad hoc nicht festgelegt und werden in zwei speziellen Fällen untersucht.
Abschließend werden diese Koeffizienten mit Modell-unabhängigen Beschränkungen von
∆F=2 Prozessen verglichen um das Massespektrum der Fermionen einzuschränken.

Abstract

The Standard Model (SM) is one of the best tested theories in physics. However, until
today some questions remain unanswered while extensions to the SM try to provide a
solution. One possibility is to assume an additional spatial dimension with flat metric.
In this diploma thesis we want to calculate the alteration to the fermion spectrum due
to boundary localized kinetic terms under the assumption of a flat 5D space-time. At
first we calculate the wave functions and the mass spectrum of the left- and right handed
fermions for one family. After this we determine the Wilson coefficients in an effective
four Fermi interaction which depend significantly on the the overlap integrals from the
fermion sector. Going from the gauge eigenbasis to the mass eigenbasis of the quarks, we
get flavor changing neutral currents (FCNCs) which can be quantified with the Wilson
coefficients. Ad hoc these transformations are not determined and are examined in two
special cases. We conclude by comparing the Wilson coefficients to model independent
constraints for ∆F=2 processes to constrain the mass spectrum of the fermions.
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1. Introduction

The Standard Model (SM) is one of the best tested theories in physics which shows only
small deviations between the theoretically calculated and experimentally measured pa-
rameters. But even though the SM is describing nature so successfully, there are several
questions left to answer like the hierarchy problem, the strong CP problem, the flavor
problem, neutrino masses and the nature of dark matter [1]. There are many ideas
to solve these problems and try to embed the SM in larger theories. One of these is
to introduce further dimension(s) in addition to our four dimensional space-time. The
proposition that space-time has more than 3 spatial dimensions was first proposed by
Kaluza [2] and Klein [3] in the attempt to unify electromagnetic forces with gravity. Up
to now, there are several main branches in the physics of extra dimensions which try to
extend the SM and solve the mentioned problems and furthermore make predictions for
colliders like the Large Hadron Collider.

The first type of model which we want to mention are models with large extra dimen-
sions [4], where a n dimensional compact manifold with radius R is attached to every
4D space-time point. In the simplest case, the metric of this extra dimension is flat. In
these types of models only the gravitational force is promoted to the extra dimension(s)
whereas all other SM fields are localized on a 3-brane. One of the consequences is a de-
viation in the measurement of Newtons gravitational law which depends on the number
n of the extra dimension(s) and the compactification radius R

V (r) ∼ m1m2

Mn+2
Pl(4+n)

1

rn+1
, (1.1)

where m1 and m2 are two test masses with distance r << R and Mn+2
Pl(4+n) is the Planck

scale. This has not been found for sizes of the compactification radius R > 37 µm [5].
In so-called ”Randall-Sundrum-Models” or models with warped extra dimensions [6],
the assumption of a flat metric is dropped and instead an Anti-DeSitter metric is used:

ds2 = e−2kRφgµνdx
µdxν +R2dy2 , (1.2)

where k is the curvature and y is the coordinate of the extra dimension with size R. The
introduction of a term e−2kRφ into the metric is used to find a connection between the
electroweak and the Planck scale and explain their large hierarchy.
The group of extra dimensional models which is used in this thesis are the universal extra
dimensional (UED) models, also called ACD-models introduced by Appelquist, Cheng
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1. Introduction

and Dobrescu [7]. In contrast to the models we described before, these ACD-models
promote every SM field into a (or many) flat extra dimension(s) which is in the simplest
case a S1/ Z2-orbifold. In chapter 2 we will see that a S1/ Z2-orbifold has several advantages
like getting chiral fermions in the 4D SM theory or preserving a stable lightest Kaluza-
Klein (KK) particle (LKP) which serves as a viable dark matter candidate [8]. The UED
model has been advertised as a model with only three undetermined parameters: the
compactification radius R, the cut-off scale Λ and the Higgs mass mh. It is therefore
called the minimal universal extra dimension (mUED) model but as we show in this
thesis it is not the complete set of possible parameters for such models.
A typical mUED mass spectrum calculated to one loop level is shown in Fig. 1.1.
The Lagrangian for the 5D mUED model is [9]:

LUED = LGauge + LGF + LLeptons + LQuarks + LY ukawa + LHiggs , (1.3)

where the several Lagrangians are:

LGauge =

πR
2∫

−πR
2

{
−1

4
BMNB

MN − 1

4
W a
MNW

aMN − 1

4
GA
MNG

AMN

}
, (1.4a)

LGF =

πR
2∫

−πR
2

{
− 1

2ξ
(∂µBµ − ξ∂5B5)2 − 1

2ξ

(
∂µW a

µ − ξ∂5W
a
5

)2

− 1

2ξ

(
∂µGA

µ − ξ∂5G
G
5

)2
}
, (1.4b)

LLeptons =

πR
2∫

−πR
2

{
iL̄(x, y)ΓMDML(x, y) + iĒ(x, y)ΓMDME(x, y)

}
, (1.4c)

LQuarks =

πR
2∫

−πR
2

{
iQ̄(x, y)ΓMDMQ(x, y)

+iŪ(x, y)ΓMDMU(x, y) + iD̄(x, y)ΓMDMD(x, y)
}
, (1.4d)

LY ukawa =

πR
2∫

−πR
2

{
λUQ̄(x, y)U(x, y)H̃(x, y) + λDQ̄(x, y)D(x, y)H(x, y)

+λEL̄(x, y)E(x, y)H(x, y)
}
, (1.4e)
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LHiggs =

πR
2∫

−πR
2

[
(DMH(x, y))†

(
DMH(x, y)

)
+ µ2H†(x, y) H(x, y)

−λ
(
H†(x, y)H(x, y)

)2
]
. (1.4f)

Here H(x, y) is the 5D Higgs scalar field and H̃(x, y) = iτ2 H
∗(x, y) is its charge conju-

gate, (Bµ(x, y), B5(x, y)), (Wµ(x, y),W5(x, y)) and (Gµ(x, y), G5(x, y)) are the 5D gauge
fields BM , WM and GM for U(1)Y , SU(2)W and SU(3)C , respectively. The capital index
M runs over M = µ, 5, where the greek index is µ = 0, 1, 2, 3. The 5D field strength
tensors are defined as follows:

BMN = ∂MBN − ∂NBM ,

W a
MN = ∂MW

a
N − ∂NW a

M + ĝεabcW b
MW

c
N , (1.5)

GA
MN = ∂MG

A
N − ∂NGA

M + ĝsf
ABCGB

MG
C
N ,

where εabc and fABC are the structure constants for SU(2)W and SU(3)C , respectively.
The 5D coupling constants ĝ′ and ĝs are related to the 4D couplings for the SU(2)W
and SU(3)C via

g =
ĝ√
πR

; gs =
ĝs√
πR

. (1.6)

The parameter ξ in (1.4b) is the gauge fixing parameter in a Rξ gauge. The definition
and explanation for components of LLeptons, LQuarks and LY ukawa are moved to chapter
3 and 4.
Now we have to ask ourselves if we can extend the Lagrangian in eq. (1.3) and add terms
which are not forbidden by gauge or 4D Lorentz invariance since 5D Lorentz invariance
is explicitly broken due to working on a S1/ Z2-orbifold (see chapter 2). One possibility
is to add mass terms which depend on the extra dimensional coordinate for the fermions
to the Lagrangians LLeptons,Quarks in eq. (1.4c) and/or eq. (1.4d) what is done in the so-
called split-UED models [11]. Another possibility is to add boundary localized kinetic
terms for the scalar, gauge and/or fermion fields. These δ-localized kinetic terms are
induced radiatively [12] and therefore should be accounted for in the non minimal UED
(nUED) Lagrangian. To the three parameters R, Λ and mh in the mUED case, we then
get another set of parameters, the boundary kinetic localized term (BKLT) parameters

a
ΨiΨj
h which play the central role in this thesis. Previously, calculations for nUED where

boundary localized kinetic terms are added for scalar and gauge fields were done in [13].
Here we want to concentrate on BKLT for fermions, especially quarks, and study how
these terms alter the quark mass spectrum.
This thesis is organized as follows: In chapter 2 the structure of the S1/ Z2-orbifold and
its consequences for the theory are examined more closely. Moreover we introduce the
Z2- and KK parity and the gauge field decomposition which will be needed throughout

3



1. Introduction

Figure 1.1.: One-loop corrected mass spectrum of the first Kaluza-Klein level in mUED
for R−1= 500GeV, ΛR=20 and mh=120 GeV (from [10]).

this thesis. In chapter 3 we will decompose the fermion Lagrangian which is altered
by BKLT and calculate the subsequent fermionic wave functions and the fermion mass
spectrum. In chapter 4 we will use an effective theory approach to calculate a low energy
limit of the nUED model in 4D and derive analytically the Wilson coefficients for four
fermion interactions. We show that the Wilson coefficients of flavor changing neutral
currents (FCNCs) four fermion operators are non-vanishing in nUED. Their dominant
contribution arises due to the exchange of the KK gauge bosons with even KK modes
with the KK zero modes of the fermions which are modified by the BKLT. In chapter
5 we will use these results to examine the bounds we get from FCNC processes with
∆F=2 operators and how these will constrain the fermion mass spectrum. To do this we
assume how the Yukawa diagonalizing matrices are oriented in the SU(3) flavor space
and calculate these constraints with two special cases of these transformation matrices.
Additionally, the Yukawa contributions to the fermion masses are calculated and it is
shown how these shift the quark mass spectrum and finally if it is possible to lift mass
degeneracies between the fermion families.
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2. Compactification and Orbifolds

The KK decomposition for all SM fields contains many possibilities to modify the spec-
trum and the form of the 5D wave functions. In this diploma thesis only the fermion
spectrum is significantly altered; all scalar and gauge fields will be decomposed as it is
usually done in mUED. For a detailed discussion of the decomposition of the scalar or
gauge fields see [7, 14].
We now shortly summarize the results which are needed throughout this thesis. First of
all one has to find a way to incorporate further space-time dimensions since our obser-
vations are consistent with three spatial and one time-like dimension for distances larger
than 37 µm [5]. One possibility to “hide” the extra dimensions is using compactification,
i.e. we use compact manifolds that are attached to every four dimensional space-time
point. We only want to consider one extra dimension while it is possible to extend this
argument to more than one. The fifth dimension is assumed to be spatial [15]. We also
work on a S1/ Z2-orbifold; this orbifold is obtained by reflecting one half of the circle S1

on the other. This can be interpreted as an interval with orbifold fixed points at the end
as shown in Fig. 2.1.

Figure 2.1.: Orbifolding the circle S1 to an interval or S1/ Z2-orbifold. From [16].
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2. Compactification and Orbifolds

Introducing an orbifold like this breaks 5D Lorentz invariance which automatically leads
to a violation of 5D-momentum-conservation. Therefore, KK number is no longer a good
quantum number [17]. A remnant from KK number conservation is KK parity which is
still conserved in a S1/ Z2 compactification. This KK parity is responsible for the fact
that only an even number of KK parity odd particles can interact with each other; so
the first KK excitation of a particle is stable and cannot decay into SM particles. This
lightest KK particle (LKP) is a possible dark matter candidate in UED which usually
is the first KK excitation of the U(1)Y gauge field BM [8].
The S1/ Z2 orbifold has further crucial advantages: It is possible to get chiral fermions in
our 4D theory, which is not the case on a S1 manifold [16]. The boundary conditions at
the orbifold fixed points can be used to eliminate one chiral zero mode. So the fermion
sector of the SM can be restored via setting the fermion which should not have a zero
mode under a Dirichlet boundary condition:

Ψh(x,−L) = 0 = Ψh(x, L) , (2.1)

where Ψh(x, y) is a chiral Dirac fermion with h=right or h=left (see chapter 3) and -L,L
are the orbifold fixed points. The fundamental domain is chosen symmetrically between
L and -L with L = πR

2
, where R is the compactification radius of the extra dimension.

Furthermore, one can introduce two symmetries which leave the 5D action invariant.
This invariance will be shown for a arbitrary scalar field φ(x, y) and used for the KK
decomposition of the gauge fields AM(x, y) in chapter 2.2.

2.1. Z2-Parity and KK Parity

First of all, we fix our notation: greek letters denote the Lorentz-indices in 4D space-
time (µ = 0, 1, 2, 3), capital letters in 5D space-time (M = 0, 1, 2, 3, 5) where x5 ≡ y is
the coordinate of the extra dimension. The metric gMN in 5D is defined by:

gMN =

(
gµν

−1

)
, (2.2)

where gµν=diag(+1,-1,-1,-1).
The scalar action is given by:

Sφ =

∫
M

∫
S1/ Z2

d5x
1

2
∂Mφ(x, y)∂Mφ(x, y)− m2

2
φ(x, y)2 − λ

4!
φ(x, y)4 , (2.3)

where φ(x, y) is a real scalar field, ∂M is the derivative in 5D

∂M =

(
∂µ

∂5

)
and ∂M =

(
∂µ
∂5

)
, (2.4)

6



2.1. Z2-Parity and KK Parity

and m and λ are two real constants. xµ ≡ x is the 4D space-time coordinate with
Lorentz-index µ suppressed. We see that eq. (2.3) is invariant under

y − πR

2
→ −(y − πR

2
) and

φ(x, y − πR

2
)→ φ(x,−(y − πR

2
)) = ±φ(x, y − πR

2
) , (2.5)

so that

Sφ → S ′φ =

∫
M

∫
S1/ Z2

d5x
1

2
(−∂M)(±φ(x, y − πR

2
))(−∂M)(±φ(x, y − πR

2
))

− m2

2
(±φ(x, y − πR

2
))2 − λ

4!
(±φ(x, y − πR

2
))4 = Sφ .

(2.6)

This symmetry is called Z2-parity and is a direct consequence of the orbifolding process.
We call a field even under Z2-parity if φ(x,−ỹ) = φ(x, ỹ) and odd under Z2-parity if
φ(x,−ỹ) = −φ(x, ỹ) for ỹ = y − πR

2
. This can be used to eliminate the zero mode of

fields which are not present in the SM (see chapter 2.2).
Another symmetry which leaves eq. (2.3) invariant is the KK parity. The corresponding
transformations are

y → −y ,
φ(x, y)→ φ(x,−y) = ±φ(x, y) . (2.7)

We call a field even under KK parity if φ(x,−y) = φ(x, y) and odd under KK parity if
φ(x,−y) = −φ(x, y). This parity is not a special feature of the S1/ Z2-orbifold but it is
relevant for further investigation. The Z2-parity and KK parity are depicted in Fig. 2.2.

As an example we will do the KK decomposition for the scalar field. To get the action
for a free and massive scalar field, we set λ=0 in eq. (2.3)1. The action now is:

Sφ =

∫
M

∫
S1/ Z2

d5x
1

2
∂Mφ(x, y)∂Mφ(x, y)− m2

2
φ(x, y)2 . (2.8)

Using the Euler-Lagrange equation [18]

∂L
∂φ
− ∂M ∂L

∂ (∂Mφ)
= 0 , (2.9)

we get the following differential equation:

�5φ(x, y) +m2φ(x, y) = (∂µ∂µ + ∂5∂5)φ(x, y) +m2φ(x, y) = 0 , (2.10)

1The KK decomposition for the gauge fields can be done in an analogue calculation.
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2. Compactification and Orbifolds

L

-L

0

(a) Z2-parity even wave function.

L

-L

0

(b) KK parity odd wave function.

Figure 2.2.: A polar plot for f(y) = sin(ny
R

) on a S1. We set the compactification radius
R = 1TeV−1 and the KK mode number n = 5. The dashed line shows the
S1/ Z2 orbifold, the big dots are the orbifold fixed points and the continu-
ous line represents the symmetry axis. a) Depiction of the Z2-parity. b)
Depiction of the KK parity

where �5 is the d’Alembert operator in 5D

�5 = ∂M∂M = ∂µ∂µ + ∂5∂5 = �4 + ∂5∂5 . (2.11)

Eq. (2.10) is the 5D Klein-Gordon equation for a scalar field φ(x, y) with mass m. To
solve this partial differential equation we will use a separation ansatz of the form

φ(x, y) =
∞∑
n=0

φ(n)(x)f (n)(y) . (2.12)

Inserting the separation ansatz in eq. (2.10), we get:

∞∑
n=0

(
f (n)(y) �4φ

(n)(x)− φ(n)(x) ∂2
5f

(n)(y) +m2 φ(n)(x)f (n)(y)
)

= 0 . (2.13a)

8



2.1. Z2-Parity and KK Parity

Dividing by φ(n)(x)f(y)(n), it holds:

∞∑
n=0

�4φ
(n)(x)

φ(n)(x)
−∂

2
5f

(n)(y)

f (n)(y)
+m2︸ ︷︷ ︸

m2
n

 = 0 . (2.13b)

Since we can vary x and y independently, the fractions must be constant and there-
fore mn has to be constant, too. Now we reformulate eq. (2.13b) and get a differential
equation for the 5D part of the scalar field f (n)(y):

− ∂2
5f

(n)(y) = (m2
n −m2)f (n)(y) ≡M2

nf
(n)(y) . (2.14)

This is a linear second order differential equation. For m2
n > m2 we choose the ansatz:

f (n)(y) = A sin(Mny) +B cos(Mny) , (2.15)

where Mn is defined in eq. (2.14) and A and B are integration constants. Additionally,
the solutions must have a certain Z2-parity (see eq. (2.5)) so that either A or B must be
zero. This results in a Dirichlet and Neumann condition for the 5D wave functions on
the orbifold fixed points, respectively [19]:

∂5φ = 0 fields with even Z2-parity

φ = 0 fields with odd Z2-parity

}
at y =

−πR
2

,
πR

2
, (2.16)

which gives us an expression for Mn in eq. (2.14)

Mn =
n

R
, (2.17)

so that the mass mn of the scalar field φ(x, y) of the nth KK mode can be written as:

mn =

√
m2 +

( n
R

)2

. (2.18)

Finally the solutions for the scalar 5D wave functions are:

f (n)(y) =



1√
πR

for n = 0√
2

πR
cos(

ny

R
) for n ∈ {2, 4, 6, · · · }√

2

πR
sin(

ny

R
) for n ∈ {1, 3, 5, 7, · · · } ,

(2.19)
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2. Compactification and Orbifolds

where the normalization is determined by

πR
2∫

−πR
2

f (n)(y) f (m)(y) = δm,n . (2.20)

2.2. Gauge Field Kaluza-Klein Decomposition

In this section we want to show how one can use the orbifolding mechanism to eliminate
certain zero modes and how the KK decomposition of the gauge fields looks like. The
action in eq. (1.3) is invariant under a gauge transformation

Aµ(x, y)→ Aµ(x, y) + ∂µΘ(x, y) , (2.21a)

A5(x, y)→ A5(x, y) + ∂5Θ(x, y) , (2.21b)

where the 4D vector Aµ(x, y) is the 4D part, the 4D scalar A5(x, y) is the 5D part of
the gauge field and Θ(x, y) is an arbitrary scalar gauge transformation function. The
Z2-parity of Θ(x, y) determines the Z2-parity of the gauge fields Aµ(x, y) and A5(x, y)

Aµ(x, ỹ) + ∂µΘ(x, ỹ)→ (±Aµ(x, ỹ)) + ∂µ(±Θ(x, ỹ)) , (2.22a)

A5(x, ỹ) + ∂5Θ(x, ỹ)→ (∓A5(x, ỹ)) + (−∂5)(±Θ(x, ỹ)) , (2.22b)

with ỹ = y − πR
2

. We see that Aµ and A5 always have opposite Z2-parity. If Θ(x, y)
has positive Z2-parity, Aµ(x, y) and A5(x, y) have positive and negative Z2-parity, re-
spectively, and thus, A5(x, y) cannot have a zero mode. We can see this calculating the
gauge field zero mode wave function f(y)=const of a gauge field with odd Z2-parity.
The gauge fields can now be decomposed in the following way:

Aµ(x) =
1√
πR

Aµ(0)(x
µ) +

√
2

πR

∞∑
n=1

Aµ(n)(x
µ)f (n)(y) , (2.23a)

A5(x) =

√
2

πR

∞∑
n=1

A5
(n)(x

µ)f
(n)
5 (y) , (2.23b)

where the 5D wave functions can be calculated as shown in the previous section or
in [7, 14]. We get:

f (n)(y) =

 cos(
ny

R
) for n ∈ {0, 2, 4, 6, · · · }

sin(
ny

R
) for n ∈ {1, 3, 5, 7, · · · } ,

(2.24a)

f
(n)
5 (y) =

 sin(
ny

R
) for n ∈ {0, 2, 4, 6, · · · }

cos(
ny

R
) for n ∈ {1, 3, 5, 7, · · · } .

(2.24b)
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2.2. Gauge Field Kaluza-Klein Decomposition

We also see here that the KK parity alternates for the individual gauge fields Aµ(x, y) and
A5(x, y) for different KK mode numbers n and how this determines the wave functions
when we fix the Z2-parity of a field. We will encounter this behavior again in the
next chapter when we derive the fermion wave functions (see Fig. 3.2). For electroweak
symmetry breaking and gauge fixing in 5D theories see [14].
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3. Fermion Kaluza-Klein
Decomposition

3.1. nUED Lagrangian in a Brane Kinetic Localized
Term Setup

In the last chapter the S1/ Z2-orbifold was introduced which ensures that we can remove
zero modes of unwanted fields and formulate a chiral theory. Furthermore we reviewed
the KK decomposition of the scalar and the gauge fields. In this chapter the fermion
wave function and mass spectrum will be derived from the fermion Lagrangian with
brane kinetic localized terms (BKLT) for one fermion family.
The fermion Lagrangian in a BKLT setup has the form:

S =

∫
M

∫
S1/Z2

d5x
i

2

(
Ψ ΓM∂MΨ− ∂MΨ ΓMΨ

)
+ LBKLT

= SBulk + SBKLT , (3.1)

where SBulk is the fermionic UED-action, SBKLT denotes the BKLT action, Ψ and Ψ
are 5D Dirac fermions and ∂M is the 5D partial derivative defined in eq. (2.4). ΓM is
the extended gamma matrix in order to fulfill the Clifford algebra in higher dimensional
theories [20]. We extend the four dimensional basis of gamma matrices by using the four
Γµ = γµ matrices and Γ5 = iγ5 to close the 5D Clifford algebra [19,21]:

{ΓM ,ΓN} = 2gMN , (3.2)

with the metric defined in eq. (2.2), the anti-commutator {a,b}=ab+ba and where

ΓM =

(
γµ

iγ5

)
. (3.3)

The Lagrangian for the BKLT is:

LBKLT = iΨh/∂Ψh

(
ah,1δ

(
y − πR

2

)
+ ah,2δ

(
y +

πR

2

))
, (3.4)

12



3.2. The Equations of Motion

where ah,1 and ah,2 are two additional real parameters with mass dimension -1 and δ(y)
is the Dirac-Delta-distribution

L∫
−L

dy f(y) δ(y − c) =

{
f(c) for c ∈ [−L,L]

0 else
,

with c ∈ R. The chiral fermions Ψh with h=R,L are defined as

ΨR = PR ·Ψ =
1 + γ5

2
Ψ; ΨL = PL ·Ψ =

1− γ5

2
Ψ , (3.5)

so that Ψ = ΨR + ΨL, γ5 ΨR,L = ±ΨR,L and PRPLΨ=0. For the calculation in this
section we choose left chiral BKLT (h = L). The reasons for choosing a BKLT of certain
chirality and the results for a right chiral BKLT are given in section 3.3.
The action in eq. (3.1) is invariant under the following symmetry which will be given for
completeness:

Ψ(x, y)→ Ψ(x,−y) = ZΨ(x, y) , (3.6)

if Z fulfills the following conditions:

γ0Z†γ0ΓMZ = ΓM , (3.7a)

Z (ZΨ(x, y)) = Ψ(x, y) . (3.7b)

This can be accomplished by choosing Z = ±γ5.

3.2. The Equations of Motion

After integrating S from eq.(3.1) by parts and rewrite the fermions into their chiral
constituents, the action takes the following form:

S =

∫
M

∫
S1/ Z2

d5x i (ΨR + ΨL)
(
∂µ, ∂5

)
·
(
γµ

iγ5

)
(ΨR + ΨL)

+i ΨL/∂ΨL

(
a1,Lδ

(
y − πR

2

)
+ a2,Lδ

(
y +

πR

2

))
+

∫
M

d4x
1

2
(ΨR + ΨL)γ5(ΨR + ΨL)|

πR
2

−πR
2︸ ︷︷ ︸

boundary term

,

(3.8)
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3. Fermion Kaluza-Klein Decomposition

with f(y)|ab ≡ f(a)− f(b). Using the Clifford algebra in eq. (3.2), eq. (3.8) simplifies to∫
M

∫
S1/ Z2

d5x i ΨR/∂ΨR + i ΨL/∂ΨL

+ ΨR∂5γ5ΨL + ΨL∂5γ5ΨR

+ i ΨL/∂ΨL

(
a1,Lδ

(
y − πR

2

)
+ a2,Lδ

(
y +

πR

2

))
−
∫
M

d4x
1

2
(ΨR γ5ΨL −ΨL γ5ΨR|

πR
2

−πR
2︸ ︷︷ ︸

boundary term

,

(3.9)

where we used γ5 = −γ5 to get the common notation of the 5D terms. It is assumed
that 4D fields vanish at infinity, but the integration by parts generates a boundary term
at πR

2
and −πR

2
which does not vanish since the fifth dimension is finite.

The variation of eq. (3.9) yields:

δΨL : 0 =i/∂ΨL + ∂5ΨR + i/∂ΨL(a1,Lδ(y −
πR

2
) + a2,hδ(y +

πR

2
))

− 1

2
ΨR|

πR
2

−πR
2

, (3.10a)

δΨR : 0 =i/∂ΨR − ∂5ΨL +
1

2
ΨL|

πR
2

−πR
2

. (3.10b)

The variation for ΨR and ΨL is redundant since Ψh = Ψ†hγ
0. We perform the KK

decomposition with the following ansatz:

ΨR(x, y) =
∞∑
n=0

Ψ
(n)
R (x) f

(n)
R (y) ; ΨL(x, y) =

∞∑
n=0

Ψ
(n)
L (x) f

(n)
L (y) , (3.11)

where n is the KK mode number, Ψ
(n)
R/L(x) are the nth KK excitations of the 4D fermions

and f
(n)
R/L(y) are the to the right/left chiral fermion corresponding 5D wave functions.

Inserting the KK decomposition into eq. (3.10), we get:

0 =
∑
n=0

i/∂Ψ
(n)
L (x)f

(n)
L (y) + ∂5Ψ

(n)
R (x)f

(n)
R (y)

+ i/∂Ψ
(n)
L (x)f

(n)
L (y)(a1,Lδ(y −

πR

2
) + a2,Lδ(y +

πR

2
))

− 1

2
Ψ

(n)
R (x)f

(n)
R (y)|

πR
2

−πR
2

, (3.12a)

0 =
∑
n=0

i/∂Ψ
(n)
R (x)f

(n)
R (y)− ∂5Ψ

(n)
L (x)f

(n)
L (y) +

1

2
Ψ

(n)
L (x)f

(n)
L (y)|

πR
2

−πR
2

. (3.12b)

14



3.2. The Equations of Motion

We can rewrite the equations in the bulk (i.e. at y 6= ±πR
2

) in the following form
introducing a separation constant mn:

i/∂Ψ
(n)
R (x)

Ψ
(n)
L (x)

= mn =
∂5f

(n)
L (y)

f
(n)
R (y)

;
i/∂Ψ

(n)
L (x)

Ψ
(n)
R (x)

= mn = −∂5f
(n)
R (y)

f
(n)
L (y)

. (3.13)

The separation constant mn will be identified as the KK mass of the nth KK mode. The
4D fields Ψ

(n)
R,L(x) satisfy the 4D Dirac equation if we set mn=0 = 0:

0 =i /∂Ψ
(n)
R (x)−mnΨ

(n)
L (x) , (3.14a)

0 =i /∂Ψ
(n)
L (x)−mnΨ

(n)
R (x) , (3.14b)

thus mn must be determined from the set of differential equations in y. The set of
equations in eq. (3.12) become in the bulk

0 =∂5f
(n)
L (y)−mnf

(n)
R (y) , (3.15a)

0 =∂5f
(n)
R (y) +mnf

(n)
L (y) , (3.15b)

or formulated as second order differential equations:

(∂2
5 +m2

n)f
(n)
L (y) = 0 , (3.16a)

(∂2
5 +m2

n)f
(n)
R (y) = 0 . (3.16b)

Before solving the partial differential equations in eq. (3.15) completely, we concern
ourselves with the zero modes. One condition to restore the SM is that the fermion zero
mode is chiral. This can be accomplished by imposing a Dirichlet boundary condition
(see eq. (2.1)) on the fermion wave function which we want to have a vanishing zero
mode. In this case, a Dirichlet boundary condition is imposed on the right handed
fermion wave function:

f
(n)
R (±πR

2
) = 0 . (3.17)

All boundary terms we get because of the integration by parts (see eq. (3.12)) will
therefore vanish, too [21]. For a massless fermion zero mode, we set mn=0 = 0 in
eq. (3.15)

∂yf
(0)
L (y) = 0 , (3.18a)

∂yf
(0)
R (y) = 0 . (3.18b)

The solution is a constant wave function for the left chiral part and a vanishing wave
function for the right one since eq. (3.17) and eq. (3.18b) hold:

f 0
L(y) = constant , (3.19a)

f 0
R(y) = 0 (3.19b)
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3. Fermion Kaluza-Klein Decomposition

The value of f 0
L(y) will be only determined by the modified scalar product introduced

in eq. (3.28).
Now we use the following ansatz to solve the differential equation in eq. (3.15):

f
(n)
L (y) = AL sin(kn y) +BL cos(kn y) , (3.20a)

f
(n)
R (y) = AR sin(kn y) +BR cos(kn y) , (3.20b)

where AL, AR, BL, BR and kn are complex coefficients. Inserting this ansatz in eq. (3.15)
and eq. (3.16), we get kn = mn, BR = AL and BL = −AR.
The variation is a crucial point when working with BKLT. We work here with a scheme
introduced in [21]. The BKLT are shifted away from the boundary by ε, which will be
taken to zero at the end of the calculation. Now eq. (3.12a) and eq. (3.12b) have the
form:

0 = ∂yf
(n)
R (y) +mnf

(n)
L (y)

+mnf
(n)
L (a1,Lδ(y − (

πR

2
− ε)) + a2,Lδ(y + (

πR

2
− ε))) ,

(3.21a)

0 =∂yf
(n)
L (y)−mnf

(n)
R (y) . (3.21b)

We integrate eq. (3.21a) over a small ε dependent region:

0 =

−πR
2

+2ε∫
−πR

2

dy mnf
(n)
L (y) + ∂5f

(n)
R +mnf

(n)
L a2,Lδ(y + (

πR

2
− ε)) , (3.22a)

0 =

πR
2∫

πR
2
−2ε

dy mnf
(n)
L (y) + ∂5f

(n)
R +mnf

(n)
L a1,Lδ(y − (

πR

2
− ε)) , (3.22b)

where we dropped the Dirac-Delta distribution parts which will be zero due to the
integration regions we have chosen. To simplify the notation, we set

± πR

2
∓ bε ≡ ±(

πR

2
)bε , (3.23)
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3.2. The Equations of Motion

where b ∈ N. Evaluating the integrals and inserting the ansatz from eq. (3.20a) and
eq. (3.20b), we get:

0 =AR sin[−(
πR

2
)2εmn] + AL cos[−(

πR

2
)2εmn]+

mnaL,2

(
AL sin[−(

πR

2
)1εmn]− AR cos[−(

πR

2
)1εmn]

)
, (3.24a)

0 =− AR sin[(
πR

2
)2εmn]− AL cos[(

πR

2
)2εmn]+

mnaL,1

(
AL sin[(

πR

2
)1εmn]− AR cos[(

πR

2
)1εmn]

)
. (3.24b)

We again dropped the terms which will vanish in the limit of ε →0 and used eq. (2.1).
By applying KK parity on eq. (3.15) we see:

∂5 → −∂5 ; f
(n)
L → ±f (n)

L ; f
(n)
R → ∓f (n)

R . (3.25)

This shows that the wave functions have always opposite KK parity. To fulfill eq. (3.25),
one of the two remaining parameters AL and AR in eq. (3.20) has to be zero. We now
take a closer look on these two cases:

3.2.1. Case 1: AL = 0

Setting AL to zero, f
(n)
L has positive and f

(n)
R has negative KK parity. Eq. (3.20) and

eq. (3.24) simplify to:

f
(n)
L (y) = −AR cos(mn y) , (3.26a)

f
(n)
R (y) = AR sin(mn y) , (3.26b)

sin(−(
πR

2
)2εmn) = mna2,L cos(−(

πR

2
)1εmn) , (3.26c)

− sin((
πR

2
)2εmn) = mna1,L cos((

πR

2
)1εmn) . (3.26d)

We see that the wave functions are now only determined by the same normalization
constant (see eq.(3.28)) and that the BKLT parameter a1,L = a2,L = aL have to be the
same after ε→ 0.
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3. Fermion Kaluza-Klein Decomposition

3.2.2. Case 2: AR= 0

Setting AR to zero, f
(n)
L has negative and f

(n)
R has positive parity. Eq. (3.20) and

eq. (3.24) simplify to:

f
(n)
L (y) =AL sin(mn y) , (3.27a)

f
(n)
R (y) =AL cos(mn y) , (3.27b)

cos(−(
πR

2
)2εmn) =mna2,L sin(−(

πR

2
)1εmn) , (3.27c)

cos((
πR

2
)2εmn) =mna1,L sin((

πR

2
)1εmn) . (3.27d)

Using the results from eq. (3.26) and eq. (3.27) we can calculate the mass spectrum of
the fermions. The masses of the first three KK excitations are plotted in Fig. 3.1.

m1

m2

m3

Excluded

Excluded
@LKPD

-10 -5 -
Π

2
0 5 10

aL

R

1

2

3

4

mnR

Figure 3.1.: The fermion mass spectrum mn R for the first three KK modes where the
transcendental equations eq. (3.26c) and eq. (3.27c) were solved numerically
for different aL

R
. The zeroth mode is massless. The blue(gray) colored regions

aL
R
< −π

2
and 0 < aL

R
are excluded (see text).

We now have a set of wave functions which characterize the KK decomposition of the
right handed and left handed fermions. The final step is to clarify how to enumerate the
KK-modes. In Fig. 3.2 the two quantization conditions from eq. (3.26c) and eq. (3.27c)
are plotted. We see that the solutions of the different quantization conditions alternate.
Giving the solution corresponding to mn=0 = 0 the number n = 0 and count forth, we
can assign the even numbers to eq. (3.26c) and the odd numbers to eq. (3.27c). Hence we
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3.2. The Equations of Motion

define Case 1 in section 3.2.1 as the even-numbered solution having even mode numbers
and Case 2 as the odd-numbered solution having odd mode numbers.

n=1 n=2 n=3 n=4

aLmn

1 2 3
Rmn

-3

-2

-1

1

2

3

tan@ ΠR

2
mnD

Figure 3.2.: Solution to the transcendental equations eq. (3.26c)(continuous line) and
eq. (3.27c)(dashed line) for aL

R
= π

2
. The solutions to both equations, repre-

sented through the intersection labeled with different numbers n, take turns
and define the even and odd numbered KK modes.

Now we check the orthonormality of the wave functions under the following scalar prod-
ucts.

δm,n =

πR
2∫

−πR
2

dy f
(n)
L (y)f

(m)
L (y)

(
1 + aL[δ(y − πR

2
) + δ(y +

πR

2
)]

)
, (3.28a)

δm,n =

πR
2∫

−πR
2

dy f
(n)
R (y)f

(m)
R (y) . (3.28b)

The wave functions furthermore satisfy:

mn δn,m =

πR
2∫

−πR
2

dy f
(n)
R (y)∂yf

(m)
L (y) +

1

2
f

(n)
R (y)f

(m)
L (y)|

πR
2

−πR
2

. (3.28c)

These scalar products are the conditions to restore the SM and they occur when the KK
decomposition in the Lagrangian eq. (3.8) is done. From the Sturm-Liouville theory we
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3. Fermion Kaluza-Klein Decomposition

know that such a scalar product must exist and that the solutions from the differential
equation in eq. (3.15) form an orthonormal basis under these scalar products. The weight
function in this Sturm-Liouville problem is the boundary kinetic localized term which
appears in eq. (3.28a) and has a significant impact on the wave functions and later on
the the couplings in the 4D effective theory (cf. chapter 4). For detailed explanation see
Appendix A. Tab. 3.1 shows the wave functions for the left and right fermions and the
quantization conditions which determine the masses of the fermions for a BKLT setup
with a left zero mode.

KK zero modes even numbered KK-modes odd numbered KK-modes

f
(0)
L (y) = 1√

2aL+πR
f

(n)
L (y) = −N cos(mny) f

(n)
L (y) = N sin(mny)

f
(0)
R (y) = 0 f

(n)
R (y) = N sin(mny) f

(n)
R (y) = N cos(mny)

m0 = 0 tan(πR
2
mn) = −aLmn cot(πR

2
mn) = aLmn

Table 3.1.: The solutions for the 5D fermion wave functions and their masses with a left
handed zero mode. N is the normalization constant from eq. (3.29) and aR
is the BKLT parameter.

N is the normalization constant which depends on the mass of the nth mode:

N =

(
πR

2
+

sin(πR
2
mn) cos(πR

2
mn)

mn

)− 1
2

. (3.29)

Now we will constrain the BKLT parameter aL. On the one hand we want a real zero
mode and therefore set aL ∈ (−πR

2
,∞) or the zero mode wave function in Tab. 3.1 gets

complex which can lead to anomalies in the theory. On the other hand, we exclude
the region 0 ≤ aL < ∞ for phenomenological reasons. As seen in Fig. 3.1, the fermion
masses get lighter than n

R
which are the masses of the gauge bosons in this model. If

we look at the full UED mass spectrum and choose a BKLT parameter aL bigger than
zero, we would get a fermion as the lightest KK particle (LKP). This would mean our
dark matter candidate could be charged1 (or even colored) what is in contrast to its
characteristics demanded by astrophysical observation. So the allowed region for the
BKLT parameter is

− πR

2
< aL < 0 . (3.30)

The wave functions for four different BKLT parameters aL are plotted for the first three
KK mode in Fig. 3.3 and Fig. 3.4.

1Calculation in [22] showed that the first KK excitation of the KK neutrino ν(1) cannot be the LKP.
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3.3. Form of the Brane Kinetic Localized Terms

-1.5 -1 -0.5 0.5 1 1.5
y

-0.5

0.5

fR
H1LHyL

Figure 3.3.: The right handed wave functions of the first KK mode plotted for several
BKLT parameters aL

R
= {−π

2
,−π

4
,−π

8
, 0} from bottom (continuous line) to

top (dot-dashed line) in a setup with a left chiral zero mode and a compact-
ification radius R = 1TeV−1.

3.3. Form of the Brane Kinetic Localized Terms

In the beginning we have chosen brane kinetic terms of the form:

LBKLT = iaLΨL/∂ΨL

(
δ(y − πR

2
) + δ(y +

πR

2
)

)
, (3.31)

i.e. only for the left handed fermions and imposing a Dirichlet condition on f
(n)
R (y). If

we would impose a Dirichlet condition on the left fermions in the same setup, we would
arrive again at a normal UED theory, because the relevant modification with the BKLT
parameter aL would vanish. To get a spectrum with right chiral zero modes, the BKLT
must be chosen to

LBKLT,R = iaRΨR/∂ΨR

(
δ(y − πR

2
) + δ(y +

πR

2
)

)
, (3.32)

and the left chiral fermion must obey a Dirichlet boundary condition:

f
(n)
L

(
±πR

2

)
= 0 . (3.33)

Then the solution for a right chiral zero mode can be obtained by exchanging f
(n)
R (y)↔

f
(n)
L (y) and aL ↔ aR in the solution for a left chiral zero mode. The solutions for a setup

with a right chiral zero mode are shown in Tab. 3.2.
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3. Fermion Kaluza-Klein Decomposition

-1.5 -1 -0.5 0.5 1 1.5
y
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H1LHyL

Figure 3.4.: The left handed wave functions of the first KK mode plotted for several
BKLT parameters aL

R
= {−π

2
,−π

4
,−π

8
, 0} from bottom (dot-dashed line) to

top (continuous line) in a setup with a left chiral zero mode and a compact-
ification radius R = 1TeV−1.

KK zero mode even numbered KK modes odd numbered KK modes

f
(0)
R (y) = 1√

2aR+πR
f

(n)
R (y) = −N cos(mny) f

(n)
R (y) = N sin(mny)

f
(0)
L (y) = 0 f

(n)
L (y) = N sin(mny) f

(n)
L (y) = N cos(mny)

m0 = 0 tan(πR
2
mn) = −aRmn cot(πR

2
mn) = aRmn

Table 3.2.: The solutions for the 5D fermion wave functions and their masses with a
right handed zero mode. N is the normalization constant from eq. (3.29)
and aR is the BKLT parameter. These are obtained using Tab. 3.1 and the
index substitution L↔ R.
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4. Effective Description of Fermion
Interactions

In the last section we calculated the fermion wave functions and the mass spectrum
from a Lagrangian with brane kinetic localized terms (see eq. (3.1)). Now we use these
wave functions to determine the overlap integrals which appear when we go from a 5D
theory to an effective 4D theory. After a transformation into a basis where the Yukawa
matrices are diagonal, we can derive the Wilson coefficients for ∆F=2 processes, that
means, processes where the flavor of a particle is changed by two. For example a hadron
with one strange quark having strangeness s = 1 going to a state with an anti-strange s̄
with strangeness s = −1.1 This can be used to constrain the BKLT parameters due to
bounds from flavor changing neutral currents (FCNCs).
The action for the fermion and the Yukawa sector is

S =

∫
d5x (LF + LY ) , (4.1)

with

LF =
∑
i,j,h

δij
i

2

(
ΨiDMΓMΨj −DMΨiΓ

MΨj + a
Ψi,Ψj
h Ψi,h /DΨj,hb(y)

)
, (4.2a)

LY =
∑
i,j

(
λUijQiH̃Uj + λDijQiHDj + λEijLiHEj

)
+ h.c. . (4.2b)

Qi is a SU(2) quark doublet (ui(x, y), di(x, y))T with a left handed zero mode, Ui and
Di are up-type and down-type SU(2) quark singlets with a right handed zero mode
(cf. Tab. 3.1 and Tab. 3.2). Li is a SU(2) lepton doublet (νi(x, y), ei(x, y))T with a
left handed zero mode and Ei is a SU(2) lepton singlet with a right handed zero mode.
Ψ = Ψ†γ0 are the corresponding antifermions. H is the Higgs field, H̃ = i τ 2H∗ its
charge-conjugate and λΨi

ij are the Yukawa matrices for the quark and lepton fields. a
ΨiΨj
h

is the hermitian BKLT-parameter matrix for the different fermions with chirality h=R,L,
depending on which fermion should get modified by the BKLT and the function b(y) is
defined by b(y) =

(
δ
(
y − πR

2

)
+ δ

(
y + πR

2

))
. For the fermion Lagrangian LF we choose

a basis in which the BKLT matrix a
ΨiΨj
h is diagonal so that there is no mixing between

the different fermions and between different KK modes from the brane kinetic localized

1An example for such a process in the SM would be neutral Kaon mixing K0 − K̄0 [1].
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4. Effective Description of Fermion Interactions

terms.
DM is the covariant derivative defined as:

DM =∂M −
ĝ′

2
Y BM −

3∑
a=1

ĝ

2
τaW a

M −
8∑

a=1

ĝs
2
T aGa

M , (4.3a)

ĝ′ : 5D U(1)Y coupling ; Y : hypercharge ;

ĝ : 5D SU(2)L coupling ; τa : Pauli matrices ;

ĝs : 5D SU(3)C coupling ; T a : Gell −Mann matrices .

Ga
M are the gluon fields, BM and W a

M are the W±
M , ZM and AM fields in the flavor

eigenbasis and the SU(3)C × SU(2)L × U(1)Y charges of the fermions are [23, 24]:

Ψi(x, y) = (Qi, Ui, Di, Li, Ei) =
(

(3, 2) 1
3
, (3̄, 1) 4

3
, (3̄, 1)− 2

3
, (1, 2)−1, (1, 1)−2

)
, (4.4)

where the first number in the parenthesis is the SU(3) representation, the second num-
ber the SU(2) representation and the subscript the U(1)Y charge of the fermion. The
expression ΓMDM in eq. (4.2a) can be rewritten into a kinetic and in a gauge part:

ΓMDM =γµDµ + iγ5D5 (4.5a)

=/∂ − γµ
∑
d,a

ĝd
2
tadA

a
d,µ + iγ5∂5 − iγ5

∑
d,a

ĝd
2
tadA

a
d,5

= /∂ + iγ5∂5︸ ︷︷ ︸
kinetic part

−
∑
d,a

(
γµ
ĝd
2
tadA

a
d,µ + iγ5 ĝd

2
tadA

a
d,5

)
︸ ︷︷ ︸

gauge part

, (4.5b)

where d runs over the three gauge groups (eq. (4.3a)) and a over the corresponding
number of generators. AM represents the three different gauge fields BM , WM and GM

and /∂ = γµ∂µ as defined as in Feynman slash notation. The fermionic Lagrangian in
eq. (4.2a) can be rewritten in a kinetic part only containing derivatives and a gauge part
which gathers up all the components with gauge fields

LF = Lkin + Lg , (4.6)
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with

Lkin =i δij
∑
i,j

[Ψi(/∂ + iγ5∂5)Ψj + a
ΨiΨj
h Ψi,h/∂Ψj,hb(y)]

+
1

2
[Ψi,LΨj,R −Ψi,RΨj,L]

y=πR
2

y=−πR
2

, (4.7a)

Lg =− i δij
∑
i,j,d,a

(Ψi[γ
µ ĝd

2
tadA

a
d,µ︸ ︷︷ ︸

4D

−i γ5 ĝd
2
tadA

a
d,5︸ ︷︷ ︸

5D

]Ψj

+a
ΨiΨj
h Ψi,h[γ

µ ĝd
2
tadA

a
d,µ]Ψj,hb(y))︸ ︷︷ ︸

gauge BKLT

, (4.7b)

where the kinetic part was integrated by parts. The 5D part of Lg includes the 5D

components of the gauge fields A
a,(n)
5 . Those are needed to give the higher KK modes

of the eight gluons G
a,(n)
µ at each non zero KK level their mass and, together with the

four 5D components of the Higgs fields, generate four physical fields and four goldstone
bosons for the massive SU(2)×U(1) gauge field KK modes [14,19]. For further discussion
the 4D components of the gauge fields of Lg remain:

Lg = −i
∑
i,d,a

iΨi,h

(
1 + aΨiΨi

h b(y)
)
γµ
ĝd
2
tadA

a
d,µΨi,h , (4.8)

with the Kronecker symbol δij evaluated in eq. (4.7b) and combining the gauge fields
with the BKLT part. Here we see the modification in comparison to normal UED since
the BKLT induce deviations from the unity matrix 1. In what follows we will neglect the
summation sign for the gauge fields, generators and flavor in the equations for clearing
up the notation. Inserting the KK decomposition for the different gauge fields as defined
in eq. (2.23), eq. (4.7a) and eq. (4.7b), we get:

Lkin = i

∞∑
m,n=0

[Ψ
(n)

i (x)f
(n)
i (y)(/∂ + iγ5∂5)Ψ

(m)
i (x)f

(m)
i (y)

+ aΨiΨi
h Ψ

(n)

i,h (x)f
(n)
i,h (y)/∂Ψ

(m)
i,h f

(m)
i,h b(y)] (4.9a)

+
1

2
[Ψ

(n)

i,L(x)f
(n)
i,L (y)Ψ

(m)
i,R (x)f

(m)
i,R (y)−Ψ

(n)

i,R(x)f
(n)
i,R (y)Ψ

(m)
i,L (x)f

(m)
i,L (y)]

y=πR
2

y=−πR
2

,

Lg =− i
∞∑

k,m,n=0

Ψ
(n)

i,h (x)f
(n)
i,h (y)

(
1 + aΨiΨi

h b(y)
)
· (4.9b)

· γµ ĝd
2
tadA

a,(k)
d,µ (x)f

(k)
d (y)Ψ

(m)
i,h (x)f

(m)
i,h (y) .

Lkin determines the equations of motion and the shape of the fermion wave functions as
shown in chapter 3. All terms containing a y-dependence in Lg are collected to define
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4. Effective Description of Fermion Interactions

an overlap matrix which contains all the information from the extra dimension. After
integrating over y, the gauge interactions of the fermion KK modes are described by:

Lg = −i
∞∑

k,m,n=0

Ψ
(n)

i,h γ
µ1

2

ĝd√
πR︸ ︷︷ ︸
gd

tadA
a,(k)
d,µ F

Ψ,[nkm]
d,ii Ψ

(m)
i,h , (4.10)

where we used eq. (1.6) and define an overlap matrix with

FΨ,[nkm]
d,ii =

πR
2∫

−πR
2

dy F̃Ψ,[nkm]
d,ii

=
√
πR

πR
2∫

−πR
2

dyf
(n)
i,h (y)f

(k)
d (y)f

(m)
i,h (y)

(
1 + aΨiΨi

h b(y)
)
.

(4.11)

The indices {k,m, n} are the mode numbers of the gauge field and the fermions, i is the
flavor index and h the chirality of the fermion, d is the gauge field index introduced in
eq. (4.3a) and the superscript Ψ in the overlap matrix FΨ,[nkm]

d,ii shows which BKLT pa-

rameter for the fermions Q,U,D,L,E it contains. The factor of
√
πR has been introduced

in order to express Lg in terms of 4D couplings (cf. chapter 1). We are interested in
constraints on the BKLT by tree-level FCNC processes. These will appear after rotat-
ing the overlap matrix in eq. (4.11) into a basis where the quark mass matrices in the
Yukawa sector are diagonal (see eq. (4.20)). The off-diagonal elements now induce flavor
violation. On a closer look, only the coupling between the even KK modes of the gauge
bosons k = {2, 4, 6, · · · } and the zero modes of the fermions m = 0 and n = 0 have a
significant contribution whereas other contributions can be neglected. This is called the
zero mode approximation [25,26]. This approximation is valid since any contribution to
flavor changing neutral currents comes from off-diagonal matrix elements. If we look at
couplings between the KK zero mode k = 0 of the gauge bosons or the Higgs and any
arbitrary KK mode of the fermions {m,n} > 0, it holds:

F [n0m]
ΨiΨj

= δnmδΨiΨj , (4.12)

since all fermion wave functions form a orthonormal basis (see eq. (3.28) and appendix
A) and the gauge boson and Higgs have a flat zero mode profile in this setup. Further we
see in eq. (4.2) that we have chosen a basis where the BKLT matrix aΨiΨi

h is diagonal and
so there is no mixing between different KK fermion modes which then can superpose to
the lightest possible mode and therefore the zero mode. So the zero mode of the fermion
is the actual lightest fermionic mode. Every other overlap matrix containing KK fermion
or KK gauge modes with k 6= 0, m 6= 0 and n 6= 0 is not relevant for a tree-level process
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where only SM particles (KK zero mode particles) are in the initial and the final state
of the process. Integrating over the S1/ Z2-orbifold, eq. (4.11) becomes:

FΨ,[k]
d,ii ≡

πR
2∫

−πR
2

dy F̃Ψ,[0k0]
d,ii (4.13a)

=



πR
2∫

−πR
2

dy
1 + aΨiΨi

h b(y)

(2aΨiΨi
h + πR)

for k = 0

πR
2∫

−πR
2

dy
√

2 sin(
ny

R
)

1 + aΨiΨi
h b(y)

(2aΨiΨi
h + πR)

for k ∈ {1, 3, 5, · · · }

πR
2∫

−πR
2

dy
√

2 cos(
ny

R
)

1 + aΨiΨi
h b(y)

(2aΨiΨi
h + πR)

for k ∈ {2, 4, 6, · · · }

(4.13b)

=


1 for k = 0

0 for k ∈ {1, 3, 5, · · · }
√

8(−1)
k
2

aΨiΨi
h

(2aΨiΨi
h + πR)

for k ∈ {2, 4, 6, · · · }
, (4.13c)

with b(y) defined in eq. (4.2). The overlap matrices F [k]
d are the same for every gauge

field since only the fermion spectrum is altered by the BKLT so that

F [k]
B ≡ F

[k]
Wa ≡ F [k]

Ga ≡ F
[k] . (4.14)

We are only interested in the quark sector and therefore neglect the leptonic parts.2

The Lagrangian Lg in eq. (4.9b) will be decomposed further and after integrating out
all y-dependence in the zero mode approximation it becomes:

Lg = −i q(0)
i,hγ

µ

(
g′

2
Y B(k)

µ F
Ψ,[k]
ii +

g

2
τaW a,(k)

µ FΨ,[k]
ii +

gs
2
T aGa,(k)

µ FΨ,[k]
ii

)
q

(0)
i,h , (4.15)

where the notation is defined in eq. (4.3a) and q
(0)
i,h stands for either the left handed SU(2)

doublet quark zero mode or the right handed SU(2) singlet quark zero mode. One has
to notice that the W a

µ fields only couple to fields with left chirality (h=L) whereas Bµ

and Ga
µ couple to both chiralities with their respective charges.

In an analogous calculation, the KK decomposition of the Yukawa-Lagrangian in eq. (4.2)

2The calculation would be analogous except that the leptons do not couple to gluons.

27



4. Effective Description of Fermion Interactions

can be done. First of all we choose the vacuum expectation value (vev) of the Higgs-
doublet and its conjugate to be:

〈H〉 =

(
0

v̂5(y)

)
6= 0 ;

〈
H̃
〉

=

(
v̂5(y)

0

)
6= 0 , (4.16)

where the 5D wave function of the Higgs-doublets are the same as in chapter 2.2. Using
the Higgs vev in eq. (4.2b), we get:

LY =
∑
i,j

v̂5(y)
(
uL,i(x, y)λUijuR,j(x, y) + dL,i(x, y)λDijdR,j(x, y)

)
+ h.c. . (4.17)

The KK decomposition now yields:

LY =
∑
i,j

∞∑
n,m,k=0

v
(
u

(n)
L,i(x)λUijF̃

[nkm]
Yu,ij

u
(m)
R,j (x) + d

(n)

L,i(x)λDij F̃
[nkm]
Yd,ij

d
(m)
R,j (x)

)
+ h.c. , (4.18a)

with
F̃ [nkm]
Yq ,ij

=
√
πR f

Q,(n)
i (y)f (k)(y)f

u/d,(m)
j (y) , (4.18b)

where we used v̂5 =
√
πR v. We are using again the zero mode approximation and

integrate the overlap matrix over the S1/ Z2-orbifold:

πR
2∫

−πR
2

dy F̃ [0k0]
Yq ,ij
≡ F [k]

Yq ,ij
=


πR√

2aQL + πR
√

2aqL + πR
for k = 0

0 for k else

. (4.19)

We now transform the Yukawa Lagrangian LY in eq. (4.18a) with a bi-unitary transfor-
mation:

(S†u)iju
(0)
L,j = uL,i ; (S†d)ijd

(0)
L,j = dL,i ; (4.20a)

(T †u)iju
(0)
R,j = uL,i ; (T †d )ijd

(0)
R,j = dR,i , (4.20b)

which diagonalizes the quark mass matrices in the Yukawa sector [11]. These trans-
formations will alter the overlap matrices in the gauge sector and give rise to FCNCs
since the rotated FΨ,[k] in eq. (4.11) are ad hoc not diagonal anymore. The Yukawa
Lagrangian then becomes:

LY =v
∑
i,j,k

(u
(0)
L,i(Su)ik (S†u)kiλijF

[0]
Yu,ij

(Tu)jk

diagonal

(T †u)kju
(0)
R,j

+ d
(0)

L,i(Sd)ik (S†d)kiλijF
[0]
Yd,ij

(Td)jk

diagonal

(T †d )kjd
(0)
R,j) + h.c.

=v
∑
k

(
uL,kλ

′
kkuR,k + dL,kλ

′
kkdR,k

)
+ h.c. . (4.21)
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4.1. Neutral Currents

The Yukawa matrices now depend on the overlap matrices. Here we see that the in-
troduction of an extra dimension has effects on the masses in the fermion sector in the
effective 4D theory.

4.1. Neutral Currents

The main contribution to the neutral currents are generated by the gluons since the
SU(2) coupling g and U(1) g′ coupling are much smaller than the strong coupling gs as
shown in Tab. 4.1. Therefore only the gluon Wilson coefficients will be used when we
calculate the flavor bounds on the nUED model.

SU(3) coupling SU(2) coupling U(1) coupling

gs =
√

4παs g =
√

4πα
sin(ΘW )

g′ =
√

4πα
cos(ΘW )

Table 4.1.: List of the coupling constants for the SU(3), SU(2) and U(1) groups. The
values for their calculation are given in eq. (B.3) in appendix B.

The fermion-gluon Lagrangian can be written as:

Lg,gl =− igs
2

(
q

(0)
L,iγ

µT aFQ,[k]
ii q

(0)
L,i + q

(0)
R,iγ

µT aF q,[k]
ii q

(0)
R,i

)
G(k)
µ , (4.22)

with the definition for the generators from eq. (4.3a) and where the superscript of the
overlap matrices Q and q = u, d must be matched to the left quark doublet and right
quark singlet. Now we use the transformation in eq. (4.20) to rotate all the fermions in
the gauge Lagrangian into the Yukawa diagonal basis. The gluonic part Lgl,g gets

Lg,gl =− igs
2

(
q

(0)
L,i(Sq)im γ

µT a (S†)mjFQ,[k]
jj (Sq)jn (S†q)niq

(0)
L,i

+ q
(0)
R,i(Tq)im γ

µT a (T †q )mjF q,[k]
jj (Tq)jn (T †q )niq

(0)
R,i

)
G(k)
µ

=− igs
2

(
qL,mγ

µT aV Q,[k]
mn qL,n + qR,mγ

µT aV q,[k]
mn qR,n

)
G(k)
µ (4.23)

=
gs
2
J

(k),µ
G G(k)

µ , (4.24)

where J
(k),µ
G ist the gluon current and V

Q/q,[k]
mn are the overlap matrices rotated by the

bi-unitary transformation

V Q,[k]
mn = (S†q)mjF

Q,[k]
jj (Sq)jn ; V q,[k]

mn = (T †q )mjFu/d,[k]
jj (Tq)jn . (4.25)

The off-diagonal elements of these matrices induce FCNCs. The indices m and n denote
the particular flavor of the quarks. The SU(3) generators T a are not affected by this
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4. Effective Description of Fermion Interactions

rotation and should not be confused with the rotation matrices Tq.

For completeness, we calculate the Zdish (because we want to distinguish between the

three neutral currents and the current belonging to the Z
(k)
µ field) and the electromag-

netic currents. We know from electroweak symmetry breaking that the B
(k)
µ and W

3,(k)
µ

are not in mass eigenbasis. To rotate between flavor and mass eigenbasis, we need the
transformation [23]:

W 3,(k)
µ = sin(θW )A(k)

µ + cos(θW )Z(k)
µ ,

B(k)
µ = cos(θW )A(k)

µ − sin(θW )Z(k)
µ .

(4.26)

The U(1)Y coupling g’, SU(2)L coupling g and electromagnetic coupling e are related
by:

g′ = g tan(θW ) and e = g sin(θW ) , (4.27)

where θW is the Weinberg-angle. We recall that only the left SU(2) doublets couple
to the W 3 field whereas the B field couples to both. The left SU(2) doublet and right
SU(2) singlet become

Lg,nc =− i
[
q

(0)
L,iγ

µ

(
g′

2
Y B(k)

µ 12×2FQ,[k]
ii +

g

2
τ 3W 3,(k)

µ FQ,[k]
ii

)
q

(0)
L,i

+q
(0)
R,i

g′

2
Y γµB(k)

µ F
q,[k]
ii q

(0)
R,i

]
(4.28)

=− i

2

[
(u

(0)
L,i, d

(0)

L,i)γ
µ

(
g′Y B

(k)
µ + gW

3,(k)
µ 0

0 g′Y B
(k)
µ − gW 3,(k)

µ

)(
u

(0)
L,i

d
(0)
L,i

)
FQ,[k]
ii

+ q
(0)
R,i

g′

2
Y γµB(k)

µ q
(0)
R,iF

q,[k]
ii

]
, (4.29)

where FQ,[k]
ii are the overlap matrices for the left chiral quarks, F q,[k]

ii for the right chiral
quarks and τ 3 is one of the Pauli matrices defined in eq. (4.40). Using eq. (4.26), we get
for the left handed fields:

Lg,nc ⊃ (4.30)

i

2

[
u

(0)
L,iγ

µ
(
g′Y [cos(θW )A(k)

µ − sin(θW )Z(k)
µ ] + g[sin(θW )A(k)

µ + cos(θW )Z(k)
µ ]
)
u

(0)
L,i F

Q,[k]
ii

+d
(0)

L,iγ
µ
(
g′Y [cos(θW )A(k)

µ − sin(θW )Z(k)
µ ]− g[sin(θW )A(k)

µ + cos(θW )Z(k)
µ ]
)
d

(0)
L,iF

Q,[k]
ii

]
.
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4.1. Neutral Currents

Collecting all the terms with the same gauge field and using the substitution for the
coupling constants from eq. (4.27), we get

Lg,nc ⊃ i

(
u

(0)
L,iγ

µ [Y + 1]

2
u

(0)
L,i + d

(0)

L,iγ
µ [Y − 1]

2
d

(0)
L,i

)
FQ,[k]
ii eA(k)

µ

− i
(
u

(0)
L,iγ

µ [(Y + 1) sin2(θW )− 1]

2
u

(0)
L,i

+ d
(0)

L,iγ
µ [(Y − 1) sin2(θW ) + 1]

2
d

(0)
L,i

)
FQ,[k]
ii

g

cos(θW )
Z(k)
µ .

(4.31)

In an analogous procedure, it holds for the right singlets:

Lg,nc ⊃ i

[
q

(0)
R,i

g′

2
Y γµq

(0)
R,iF

q,[k]
ii B(k)

µ

]
= i

[
e
Y

2
q

(0)
R,iγ

µq
(0)
R,iF

q,[k]
ii A(k)

µ −
g

cos(θW )

Y sin2(θW )

2
q

(0)
R,iγµq

(0)
R,iF

q,[k]
ii Z(k)

µ

]
.

(4.32)

Taking together the Zdish (Z) and electromagnetic (em) parts of Lg,nc with right and
left chirality, we get the electromagnetic Lagrangian Lg,em

Lg,em = i

(
u

(0)
L,iγ

µ [Y + 1]

2
FQ,[k]
ii u

(0)
L,i + d

(0)

L,iγ
µ [Y − 1]

2
FQ,[k]
ii d

(0)
L,i

+
Y

2
q

(0)
R,iγ

µF q,[k]
ii q

(0)
R,i

)
eA(k)

µ

= i

(
q

(0)
L,iγ

µCemFQ,[k]
ii q

(0)
L,i + q

(0)
R,iγ

µY

2
F q,[k]
ii q

(0)
R,i

)
eA(k)

µ , (4.33)

and the Zdish Lagrangian Lg,Z

Lg,Z =− i
(
u

(0)
L,iγ

µ [(Y + 1) sin2(θW )− 1]

2
FQ,[k]
ii u

(0)
L,i

+d
(0)

L,iγ
µ [(Y − 1) sin2(θW ) + 1]

2
FQ,[k]
ii d

(0)
L,i

−Y sin2(θW )

2
q

(0)
R,iγ

µF q,[k]
ii q

(0)
R,i

)
g

cos(θW )
Z(k)
µ

= −i
(
q

(0)
L,iγ

µCZF [k],L
ii q

(0)
L,i −

Y sin2(θW )

2
q

(0)
R,iγ

µF [k],R
ii q

(0)
R,i

)
g

cos(θW )
Z(k)
µ , (4.34)

where Cem and CZ are defined as follows

Cem =

(
Y+1

2
0

0 Y−1
2

)
; CZ =

(
[(Y+1) sin2(θW )−1]

2
0

0 [(Y−1) sin2(θW )+1]
2

)
, (4.35)
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4. Effective Description of Fermion Interactions

and where the fitting hypercharges which are defined in eq. (4.4) must be included.
Again, we perform the rotation into the mass eigenbasis and define the remaining neutral
currents. The Zdish Lagrangian Lg,Z is:

Lg,Z =− i (CZ
11 u

(0)
L,i(Su)im γ

µ (S†u)miF
Q,[k]
ii (Su)in (S†u)niu

(0)
L,i

+ CZ
22 d

(0)

L,i(Sd)im γ
µ (S†d)miF

Q,[k]
ii (Sd)in (S†d)nid

(0)
L,i

+
Y sin2(θW )

2
q

(0)
R,i(Tq)im (T †q )miF q,[k]

ii (Tq)in (T †q )niq
(0)
R,i)

g

cos(θW )
Z(k)
µ

=− i
(
CZ

11uL,mγ
µV Q,[k]

mn uL,n + CZ
22dL,mγ

µV Q,[k]
mn dL,n

+
Y sin2(θw)

2
qR,mV

q,[k]
mn qR,n

)
g

cos(θW )
Z(k)
µ

=
g

cos(θW )
J

(k),µ
Z Z(k)

µ , (4.36)

where Cem
ii and CZ

ii are the matrix entries of the matrices defined in eq. (4.35) and J
(k),µ
Z

is the Zdish current. Furthermore the electromagnetic Lagrangian Lg,em becomes:

Lg,em =− i (Cem
11 u

(0)
L,i(Su)im γ

µ (S†u)miF
Q,[k]
ii (Su)in (S†u)niu

(0)
L,i

+ Cem
22 d

(0)

L,i(Sd)im γ
µ (S†d)miF

Q,[k]
ii (Sd)in (S†d)nid

(0)
L,i

+
Y

2
q

(0)
R,i(Tq)im (T †q )miF q,[k]

ii (Tq)in (T †q )niq
(0)
R,i)eA

(k)
µ

=− i
(
Cem

11 uL,mγ
µV Q,[k]

mn uL,n + Cem
22 dL,mγ

µV Q,[k]
mn dL,n +

Y

2
qR,mV

q,[k]
mn qR,n

)
eA(k)

µ

= eJ
(k),µ
A A(k)

µ . (4.37)

where J
(k),µ
A is the electromagnetic current. The matrices V Q/q,[k] we get from the trans-

formation matrices Tq and Sq and the overlap matrix FQ/q,[k] in eq. (4.13c) are identical
to the ones which appear in the gluonic current in eq. (4.24). Since the coupling constant

of the Z
(k)
µ and A

(k)
µ fields are much smaller, it is justified to drop these contributions in

the calculation of the Wilson coefficients in chapter 4.3.

4.2. Charged Currents

We make the following substitutions which come from the Higgs sector where the gauge
boson masses are generated via spontaneous symmetry breaking [14, 18, 23]. The La-
grangian Lg,cc for the charged current can be written as:

Lg,cc = −i q(0)
L,iγ

µ g

2

(
τ 1W 1,(k)

µ FQ,[k]

W+,ii + τ 2W 2,(k)
µ FQ,[k]

W−,ii

)
q

(0)
L,i . (4.38)
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4.2. Charged Currents

W
1,(k)
µ and W

2,(k)
µ are redefined such that they generate the charged currents:

√
2 W∓,(k)

µ = W 1,(k)
µ ± i W 2,(k)

µ ,

2 τ± = τ 1 ± i τ 2 ,
(4.39)

where τa are the Pauli matrices defined as:

τ 1 =

(
0 1
1 0

)
, τ 2 =

(
0 −i
i 0

)
, τ 3 =

(
1 0
0 −1

)
. (4.40)

Under the redefinition in eq. (4.39) the left SU(2)-doublets q
(0)
L,i =

(
u

(0)
L,i

d
(0)
L,i

)
and

q
(0)
L,i = q

(0)†
L,i γ0 get:

q
(0)
L,i γµ τ

+ q
(0)
L,i = u

(0)
L,i γµ d

(0)
L,i , (4.41)

q
(0)
L,i γµ τ

− q
(0)
L,i = d

(0)

L,i γµ u
(0)
L,i , (4.42)

so that Lg,cc in eq. (4.38) can be written like

Lg,cc = −i g

2
√

2

(
u

(0)
L,iγ

µFQ,[k]

W+,iid
(0)
L,i W

+,(k)
µ + d

(0)

L,iγ
µFQ,[k]

W−,iiu
(0)
L,i W

−,(k)
µ

)
. (4.43)

The overlap matrices FQ,[k]

W+,ii and FQ,[k]

W−,ii will be identified as the Cabibbo-Kobayashi-
Maskawa (CKM) matrix and its conjugate transpose, respectively, after we rotate into
the basis where the Yukawa matrices are diagonal (see eq. (4.20)). This fact will be used
in chapter 5 to constrain the BKLT parameters aΨiΨi

h and find a parametrization for the
transformation matrices. The charged Lagrangian then Lg,cc gets

Lg,cc =− i g

2
√

2

[
u

(0)
L,i(Su)im γ

µ (S†u)miF
Q,[k]

W+,ii(Sd)in (S†d)nid
(0)
L,i W

+,(k)
µ

+ d
(0)

L,i(Sd)im γ
µ (S†d)miF

Q,[k]

W−,ii(Su)in (S†u)niu
(0)
L,i W

−,(k)
µ

]
=− i g

2
√

2

[
uL,mγ

µ(Vckm)mndL,n W
+,(k)
µ + dL,mγ

µ(V †ckm)mnuL,n W
−,(k)
µ

]
(4.44)

=
g

2
√

2

(
J

(k),µ

W+ W+,(k)
µ + J

(k),µ

W− W
−,(k)
µ

)
, (4.45)

where Vckm has to be the CKM matrix with contributions from the overlap matrices.
The CKM matrix in the SM is given by: 1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 , (4.46)
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4. Effective Description of Fermion Interactions

with its matrix elements in the Wolfenstein parametrization to the order O(λ4) [27]. The
best fit values from the SM are listed in the appendix B. Here, the overlap matrices FQ,[k]

induce corrections to the SM CKM matrix but these are suppressed by ∝ ( MW

M
W [k]
FQ/q,[k])2

where MW is the mass of the W-boson and MW [k] are the masses of the higher W-
boson KK excitations. We will drop these contributions when we want to determine the
transformation matrices Tq and Sq in chapter 5.

4.3. Calculation of the Wilson Coefficients

After the diagonalization of the quark mass matrices we can go to an effective Hamilto-
nian approach. We assume that the masses of the gauge bosons and their Kaluza-Klein
excitations are much bigger than the momentum of all participating particles in the
process. Then the propagator of the intermediate vector boson can be approximated by:

i D(k)
µν (p) =

−i
p2 −M2

A(k) + iε

(
gµν

(ξ − 1)pµpν
p2 − ξM2

A(k)

)
≈ − i gµν

M2
A(k)

for
p2

M2
A(k)

� 1 , (4.47)

where MA(k) is the KK mass of the exchanged gauge boson A
(k)
µ , p is the gauge boson

momentum and ξ is the gauge fixing parameter which will be set to ξ = ∞ (unitary
gauge). Using this, we are going to an effective four Fermi interaction [23] (see Fig. 4.1).

Figure 4.1.: Feynman diagram where the exchanged gauge boson mass MA(k) is much
bigger than the momentum of the participating particles; so we receive an
effective four-fermion-vertex. The numbers in parenthesis are the KK mode
number and the greek indices {α, β, ε, η} are the color of the respective
quarks.
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4.3. Calculation of the Wilson Coefficients

The effective Hamiltonian is of the form:

HA
eff =

∑
k

g2
a

2M2
A(k)

J
(k)†

A,µ J
(k),µ
A , (4.48)

where the index A stands for the gauge field, ga for the corresponding coupling and
J

(k),µ
A are the corresponding currents defined in eq. (4.24), eq. (4.36) and eq. (4.37).

Additionally, we inserted a factor 1
2

due to the exchange symmetry present in such
current-current interactions [23]. We want to calculate the Wilson coefficients for ∆F=2

processes and try to constrain the BKLT parameters a
ΨiΨj
h with model independent

constraints provided by the UTfit collaboration [28]. To use their data, it is necessary
to rewrite the operators in the effective Hamiltonian in the operator basis given in [28]:

H∆S=2
eff =

5∑
i=1

CiQ
sd
i +

3∑
i=1

C̃i Q̃
sd
i ,

H∆C=2
eff =

5∑
i=1

CiQ
cu
i +

3∑
i=1

C̃i Q̃
cu
i ,

H∆B=2
eff =

5∑
i=1

CiQ
bq
i +

3∑
i=1

C̃i Q̃
bq
i ,

where Ci are the complex valued Wilson coefficients and q = d(s) for Bd(s)−Bd(s) mixing.
The operators Qqiqj are defined by:

Q
qiqj
1 = (qαjLγµq

α
iL)(qβjLγ

µqβiL) ,

Q
qiqj
2 = (qαjRq

α
iL)(qβjRq

β
iL) ,

Q
qiqj
3 = (qαjRq

β
iL)(qβjRq

α
iL) ,

Q
qiqj
4 = (qαjRq

α
iL)(qβjLq

β
iR) ,

Q
qiqj
5 = (qαjRq

β
iL)(qβjLq

α
iR) .

(4.49)

Here qR,L = PR,L q and {α, β} are color indices which run over the three possible colors.
The operators Q̃

qiqj
1,2,3 are obtained from the Q

qiqj
1,2,3 by the exchange L → R. We will

calculate the gluon Wilson coefficients in detail and give the results for the Zdish and
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4. Effective Description of Fermion Interactions

electromagnetic contributions:

HG
eff =

g2
s

2M2
G(k)

J
(k)†

G,µ J
(k),µ
G

=
g2
s

2M2
G(k)

(
qαL,mT

a
αεγµV

Q,[k]
mn qεL,n + qαR,mT

a
αεγµV

q,[k]
mn qεR,n

)
·(

qβL,kT
a
βηγ

µV
Q,[k]
kl qηL,l + qβR,kT

a
βηγ

µV
q,[k]
kl qηR,l

)
=

g2
s

2M2
G(k)

[(
qαL,mT

a
αεγµV

Q,[k]
mn qεL,n

) (
qβL,kT

a
βηγ

µV
Q,[k]
kl qηL,l

)
+ L→ R

]
+ 2

g2
s

2M2
G(k)

(
qαL,mT

a
αεγµV

Q,[k]
mn qεL,n

) (
qβR,kT

a
βηγ

µV
q,[k]
kl qηR,l

)
(4.50)

=
g2
s

2M2
G(k)

(Hpure +Hmixed) , (4.51)

where {α, β, ε, η} are color indices. We take eq. (4.51) apart into left-left or right-
right chiral combinations we call pure part and a left-right chiral combinations of the
quarks we call mixed part. We simplify this expression by using a relation for SU(N)
representations [18]:

(T a)αε(T
a)βη =

1

2

(
δαηδβε −

1

N
δαεδβη

)
, (4.52)

where T a are the generators of the SU(N), N is the dimension of the group and (T a)αε
and (T a)βη are the matrix elements of the SU(N) representation. The pure chiral part
Hpure gets:

Hpure =
1

2

(
qαL,mγµV

Q,[k]
mn qβL,n

)(
qβL,kγ

µV
Q,[k]
kl qαL,l

)
− 1

6

(
qαL,mγµV

Q,[k]
mn qαL,n

) (
qβL,kγ

µV
Q,[k]
kl qβL,l

)
+ L→ R and Q→ q , (4.53)

while the mixed part Hmixed gets

Hmixed =
(
qαL,mγµV

Q,[k]
mn qβL,n

)(
qβR,kγ

µV
q,[k]
kl qαR,l

)
− 1

3

(
qαL,mγµV

Q,[k]
mn qαL,n

) (
qβR,kγ

µV
q,[k]
kl qβR,l

)
. (4.54)

We now have to match the expressions to the one in eq. (4.49). Therefore we need Fierz
identities so we can exchange the order of the quarks. In [29], we find an algorithm for
general Fierz transformations. Using this, we find two Fierz Identities that can be used
to transform eq. (4.53) and eq. (4.54):

(q̄αL,m
1

γµ q
β
L,n
2

)(q̄βL,m
3

γµ qαL,n
4

) = (q̄αL,m
1

γµ q
α
L,n
4

)(q̄βL,m
3

γµ qL,n
2

β) , (4.55)
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and the analogue relation for L↔ R, as well as

(q̄αL,m
1

γµ q
β
L,n
2

)(q̄βR,m
3

γµ qαR,n
4

) = −2(q̄αL,m
1

qαR,n
4

)(q̄βR,m
3

qβL,n
2

) , (4.56)

where the greek indices {α, β} denote color, {m,n} indices denote flavor and the numbers
enumerate the quarks to show which interchanges we made. After the Fierz transforma-
tions, we can calculate the Wilson Coefficients for the gluon current:

C1,gl =
g2
s

6M2
G(k)

(V Q,[k]
mn V

Q,[k]
kl ) ;

C̃1,gl =
g2
s

6M2
G(k)

(V q,[k]
mn V

q,[k]
kl ) ;

C4,gl =− g2
s

M2
G(k)

V q,[k]
mn V

Q,[k]
kl ;

C5,gl =
g2
s

3M2
G(k)

V q,[k]
mn V

Q,[k]
kl .

(4.57)

For the Zdish and electromagnetic Wilson coefficients, eq. (4.52) cannot be used since

the generators in the form of the Pauli matrices where used to formulate the Z
(k)
µ and

A
(k)
µ field. Instead we have to think about the color structure of four fermion processes

to simplify the expressions. We know that color is a feature of the SU(3)C . The only
vector bosons carrying color charge are gluons. Therefore every vertex in a γ-, W±-
or Z exchange process needs to be color neutral, so that e.g. the effective Hamiltonian
corresponding to Zdish currents in eq. (4.36) becomes:

HZ
pure ⊂ δαεδβη

(
qαL,mC

ZγµV Q,[k]
mn qεL,n

) (
qβL,mC

ZγµV Q,[k]
mn qηL,n

)
+L→ R and Q→ q (4.58)

and

HZ
mixed ⊂ 2δαεδβη

(
qαL,mC

ZγµV Q,[k]
mn qεL,n

)(Y sin2(θw)

2
qβR,mV

q,[k]
mn qηR,n

)
. (4.59)

The Kronecker deltas show how we have to contract the color indices. These can be
read off from Fig. 4.1. The calculation using the Fierz identities eq. (4.55) and eq. (4.56)
yield for the Zdish Wilson coefficients:

C1,Z =
g2

2 cos2(θW )M2
Z(k)

(CZ
qiqi

)2V Q,[k]
mn V

Q,[k]
kl ;

C̃1,Z =
g2

2 cos2(θW )M2
Z(k)

(
Y sin2(θW )

2

)2

V q,[k]
mn V

Q,[k]
kl ;

C4,Z = 0 ;

C5,Z =− g2

cos2(θW )M2
Z(k)

CZ
qiqi

Y sin2(θW )

2
V q,[k]
mn V

Q,[k]
kl ,

(4.60)
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and in an analogous consideration for the electromagnetic Wilson coefficients:

C1,em =
e2

2M2
A(k)

(Cem
qiqi

)2V Q,[k]
mn V

Q,[k]
kl ;

C̃1,em =
e2

2M2
A(k)

(
Y

2

)2

V q,[k]
mn V

q,[k]
kl ;

C4,em = 0 ;

C5,em =− e2

M2
A(k)

Cem
qiqi

Y

2
V q,[k]
mn V

Q,[k]
kl .

(4.61)

We have now every contribution to the Wilson coefficient from the neutral currents.
As we said before, we will only use the gluon coefficients since these have the largest
contributions (see Tab. 4.1). If we look at the Wilson coefficients C1 and C̃1 in eq. (4.60)
and eq. (4.61) we see that they all the same sign as in eq. (4.57). The constraints we
will therefore get from the gluonic C1 solely, neglecting the electromagnetic and Zdish
contributions, are an upper bound on the BKLT parameters. Also, we notice that we
have no additional contributions to the gluonic coefficients C4,gl since C4,Z and C4,em are
zero.
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5. Constraints on the BKLT and
Implications for the Fermion KK
Mass Spectrum

In the last section we calculated the analytic expressions for the neutral current Wilson
coefficients Ci and how they depend on the overlap matrices FQ/q,[k]. In Tab. 5.1 are
model-independent constraints for ∆F=2 operators on the corresponding Wilson coeffi-
cients (from [28]). These will be used to constrain the BKLT parameters and the KK
masses of the fermion modes. A full study of the nUED parameter space would require
a scan over the 3x3 eigenvalues of the overlap matrices FQ/q,[k] as well as all possible ori-
entations in flavor space of the BKLT matrices. This would go beyond the scope of this
thesis. Instead, we focus on two special cases. This way, we determine the constraints
in a generic setup of nUED as well as the minimal constraints which are still left in a
maximally aligned setup.

We have to compute off-diagonal elements of the Ci matrix since we are interested in
flavor changing processes (∆F=2). A closer examination shows that we can extract an

identity matrix which has only diagonal elements of the same magnitude FQ/q,[k]
11 and

which does not contribute to the flavor changing neutral processes from the overlap
factor matrix FQ/q,[k]. We also see that the BKLT parameters are correlated and only
the differences between one BKLT parameter and the other two contribute. It does not
make any difference which parameter FQ/q,[k]

ii we choose:

V Q/q,[k] =AqFQ/q,[k]A†q = Aq


F

Q/q,[k]
11 0 0

0 FQ/q,[k]
11 0

0 0 FQ/q,[k]
11


+

0 0 0

0 FQ/q,[k]
22 −FQ/q,[k]

11 0

0 0 FQ/q,[k]
33 −FQ/q,[k]

11

A†q

=FQ/q,[k]
11 13×3 + Aq

0 0 0

0 ∆FQ/q,[k]
22 0

0 0 ∆FQ/q,[k]
33

A†q , (5.1)
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Parameter 95% allowed range Parameter 95% allowed range
(TeV−2) (TeV−2)

ReC1
K [−9.6, 9.6] · 10−7 |C1

Bd
| < 2.3 · 10−5

ReC2
K [−1.8, 1.9] · 10−8 |C2

Bd
| < 7.2 · 10−7

ReC3
K [−6.0, 5.6] · 10−8 |C3

Bd
| < 2.8 · 10−6

ReC4
K [−3.6, 3.6] · 10−9 |C4

Bd
| < 2.1 · 10−7

ReC5
K [−1.0, 1.0] · 10−8 |C5

Bd
| < 6.0 · 10−7

ImC1
K [−4.4, 2.8] · 10−9 |C1

Bs
| < 1.1 · 10−3

ImC2
K [−5.1, 9.3] · 10−11 |C2

Bs
| < 5.6 · 10−5

ImC3
K [−3.1, 1.7] · 10−10 |C3

Bs
| < 2.1 · 10−4

ImC4
K [−1.8, 0.9] · 10−11 |C4

Bs
| < 1.6 · 10−5

ImC5
K [−5.2, 2.8] · 10−11 |C5

Bs
| < 4.5 · 10−5

|C1
D| < 7.2 · 10−7

|C2
D| < 1.6 · 10−7

|C3
D| < 3.9 · 10−6

|C4
D| < 4.8 · 10−8

|C5
D| < 4.8 · 10−7

Table 5.1.: 95% probability range for Ci for arbitrary new physics flavor structure from
[28].

where Aq is a transformation matrix Sq or Tq, respectively, introduced in eq. (4.20) and
FQ/q,[k] is the diagonal overlap factor matrix with:

FQ/q,[k]
ii =

√
8(−1)

k
2

aΨiΨi
h

(2aΨiΨi
h + πR)

, (5.2)

from eq. (4.13c). We see that the only dependence on the mode number k lies in the

factor (−1)
k
2 where k only can take even numbered values. So we can write FQ/q,[k] =

(−1)
k
2FQ/q. The only mode number dependent quantity still left is the gauge boson mass

M2
A[k] . Since we have no mode mixing, the Wilson coefficients contains a sum which can

be analytically calculated

∞∑
k=1

(−1)
2k
2 (−1)

2k
2

M2
A(2k)

≈
∞∑
k=1

R2

(2k)2
= 2−2ζ(2)R2 =

π2

24
R2 , (5.3)

where ζ(x) is the Riemann ζ function and MA(2k) = 2n
R

. As we know this now, we will
drop all superscripts [k] for the overlap matrices FQ/q,[k] and recall this when it is needed.
If we look at FCNCs in the Kaon or D meson sector in Tab. 5.1, we need the matrix
elements for ds and uc and thus we have to calculate the matrix elements V

Q/q
12 . The

restrictions on ∆FQ/qii will show that FQ/q11 and FQ/q22 are highly correlated, so that we
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can write FQ/q22 = FQ/q11 + ∆FQ/q with ∆FQ/q being a small quantity. So we obtain a
matrix structure which looks like:

FQ/q =

F
Q/q
11 0 0

0 FQ/q22 0

0 0 FQ/q33

 =

F
Q/q
11 0 0

0 FQ/q11 + ∆FQ/q 0

0 0 FQ/q33



=−
√

8


a

Ψ1Ψ1
h

2a
Ψ1Ψ1
h +πR

0 0

0
a

Ψ2Ψ2
h

2a
Ψ2Ψ2
h +πR

0

0 0
a

Ψ3Ψ3
h

2a
Ψ3Ψ3
h +πR

 . (5.4)

We take ∆FQ/q and calculate the mass differences between the two fermion families.
From eq. (5.4), we know that

∆FQ/q =
√

8
aΨ2Ψ2
h

(2aΨ2Ψ2
h + πR)

−
√

8
aΨ1Ψ1
h

(2aΨ1Ψ1
h + πR)

=
√

8
∆aπR

(2aΨ1Ψ1
h + πR)(2aΨ1Ψ1

h + 2∆a+ πR)

≈
√

8
∆aπR

(2aΨ1Ψ1
h + πR)2

→ ∆a(∆FQ/q) =
∆FQ/q(2aΨ1Ψ1

h + πR)2

√
8πR

, (5.5)

where the difference between the two BKLT parameter ∆a = aΨ2Ψ2
h − aΨ1Ψ1

h is assumed
to be small. Fig. 5.1 shows the comparison between the numerically calculated solution
for ∆a and the approximation formula in eq. (5.5). This approximation is valid for our
purposes.
The masses of the KK fermions with KK mode numbers n are determined by the quan-
tization condition in Tab. 3.1. The mass difference between two fermion families Ψ1

and Ψ2 of an odd numbered KK mode corresponding to the BKLT parameter aΨ1Ψ1
h and

aΨ2Ψ2
h can be determined via:

cot(
πR

2
m

(n′)
1 )− cot(

πR

2
m

(n′)
2 ) =aΨ1Ψ1

h m
(n′)
1 − aΨ2Ψ2

h m
(n′)
2 →

cot(
πR

2
m

(n′)
1 )− cot(

πR

2
(m

(n′)
1 −∆m)) =aΨ1Ψ1

h m
(n′)
1 − (aΨ1Ψ1

h + ∆a)(m
(n′)
1 −∆m) ,

(5.6)

where n′ ∈ {1, 3, 5, · · · }.
This equation will be solved numerically for ∆m in order to obtain predictions for the
mass degeneracy of the first KK quark excitation. We now want to analyze how the
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Figure 5.1.: Deviation between the numerical calculation for ∆a (continuous line) and
the approximated formula (dashed line) in eq. (5.5) with R = 1TeV−1 and
∆FQ/q = 0.05. The deviation between these two is negligible.

constraints are on the BKLT parameters aΨiΨi
h . A full analysis would require a variation

over all the a
{Q,U,D}{Q,U,D}
R/L parameters and the parameters which generate the SU(3)

matrices Tq and Sq defined in eq. (4.20). Then we have to find all allowed parameter
regions which satisfy the bounds from Tab. 5.1 and reproduce the correct quark masses
in the 4D effective theory and the CKM matrix in eq. (4.46). Instead we consider two
different scenarios concerning the rotation matrices and derive the constraints on the
quark mass spectrum:

Generic rotation matrices All entries in the rotation matrices Tq and Sq are of order
one.

Aligned rotation matrices We choose the matrices in such a way, that we will get the
weakest constraints from Tab. 5.1 on the mass matrices. These constraints are a
prediction for the nUED quark mass spectrum which cannot be avoided by tuning
the BKLT parameters a

{Q,U,D}{Q,U,D}
R/L .

5.1. Generic Rotation Matrices

One possibility to calculate constraints on flavor changing neutral currents in nUED
models is to use generic rotation matrices Tq and Sq [30]. We want to estimate how
either the KK mass of the second KK gluon mode or the overlap matrix elements ∆FQ,q
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Figure 5.2.: Mass m(1) of the first fermion KK excitation times the compactification
radius R vs. the mass degeneracy ∆m

m(1) between two fermion families for
generic matrices. In the region of interest, it is not possible to distinguish
between the fermion families. The blue region is excluded because in this
area, nUED incorporates too large C4

K parameter for generic matrices and
the yellow region is excluded due to the demand of a non fermionic LKP.

are constrained in this scenario. Every element in Tq or Sq is assumed to be a complex
number of order ∼ O(1). This can be justified by saying that any SU(3) rotation matrix
consists of real entries∼1 times a phase like it is realized in the CKM matrix in eq. (4.46).
Now the Wilson coefficient C4,gl from eq. (4.57) can be calculated for this case using the
constraint from Tab. 5.1 from the Kaon sector since we get the tightest bounds from
C4
K . C4,gl gets

|Im[C4,gl]| ≈ 1.5
∆FQ∆F q

M2
G(2)

< 0.9 · 10−11TeV−2 = Im(C4
K) , (5.7)

where the numerical value consists of contributions from the transformation matrices
and the couplings in the Wilson coefficients defined in Tab. 4.1. Since we used the
gluon coefficient C4

K , we have to make another assumption and set the BKLT for the
right fermions equivalent to the left BKLT so that we can estimate the constraints, i.e.
aΨiΨi
L = aΨiΨi

R . If we vary the right BKLT parameters and therefore the right overlap
matrix F q independently, we can relax the bounds by turning them down and, finally set
them to zero and thus avoid any constraints from C4

K . If we assume the overlap matrix
differences ∆FQ,q

ii are all of order O(1), we get a lower bound for the mass of the second
KK excitation of the gluon to MG(2) > 8.1 · 105 TeV and therefore a compactification
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Figure 5.3.: BKLT parameter over compactification radius
a

ΨiΨi
h

R
vs. mass degeneracy

∆m
m(1) between two fermion families for generic matrices. The blue region
corresponds to a C4

K parameter which is larger than the experimental bound
allows and the yellow region is excluded because the viable dark matter
candidate would be a fermionic LKP.

radius R−1 ∼ 4.1 · 105TeV. These masses are not accessible since this would mean that
all KK particles are extremely heavy and can not be detected in colliders like the LHC.
The 2nd possibility to satisfy eq. (5.7) is to assume a 1TeV KK scale which then implies
bounds on ∆FQ,q. We get ∆FQ,q < 2.5 · 10−6 which shows that we have highly degen-
erate overlap function eigenvalues.
Using the relation in eq. (5.3) to calculate the KK gluon tower mass, setting the com-
pactification radius to 1TeV−1 and the overlap difference to ∆FQ,q = 2.5 · 10−6 from the
estimation before, the mass degeneracy with eq. (5.6) can be plotted against the first KK
excitation mass m(1) which is shown in Fig. 5.2. Fig. 5.3 shows the mass degeneracy vs.
the BKLT parameter aΨiΨi

h . In both figures, the blue region is excluded due to FCNC
constraints and the yellow area for the demand for a lightest, non fermionic KK particle
(LKP) which is a viable dark matter candidate (cf. chapter 3). The bound on the mass
degeneracy between the fermion families is ∆m

m(1) < 1.8 · 10−6. This means regarding a

compactification scale of R = 1TeV−1 that:

• The masses of the left doublets are degenerate: mQ(1)

u,d,c,s,t,b are the same within

∆mQ
(1)

u,d,c,b,t,b

mQ
(1)

u,d,c,b,t,b

< 1.8 · 10−6 for R = 1TeV−1 (see Fig. 5.3).
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• The same holds for the right up-type singlets mU(1)

u,c,t and the right down-type

singlets mD(1)

d,s,b that their masses are degenerate within
∆mU

(1)

u,c,t

mU
(1)

u,c,t

< 1.8 · 10−6 and

∆mD
(1)

d,s,b

mD
(1)

d,s,b

< 1.8 · 10−6 for R = 1TeV−1 (see Fig. 5.2).

If we take a look again at Fig. 3.1, we see that the constraints on aΨiΨi
h are −πR

2
<

aΨiΨi
h < 0 and for the quarks we get masses between 1

R
< mQ(1),U(1),D(1)

< 2
R

where the
upper bound comes from the calculation of the KK-spectrum and the lower bound comes
from the demand that we still want to have a non-fermionic LKP. In this scenario we
have three sets of degenerate quark families:

• Six degenerate masses mQ(1)
,

• three degenerate masses mU(1)
and

• three degenerate masses mD(1)
.

It should be pointed out that with our analysis it is not possible to constrain the mass
degeneracy between the doublet and singlet quarks i.e. we can make no prediction on
the mass differences mQ(1) −mU(1)

, mQ(1) −mD(1)
and mU(1) −mD(1)

.

5.2. Aligned Rotation Matrices

Now a selective approach is used and we fix the matrices Sq and Tq by hand to avoid
as many flavor constraints as possible and only use the relation between the CKM
matrix and the transformations in eq. (4.45). To avoid every restriction from the down
sector (see Tab. 5.1), we choose the transformation matrices for the left and right d-
type quarks, Sd and Td, as identity matrices Sd = 1 and Td = 1 and also set right
u-type rotation Tu = 1 so the constraints from operators containing right quarks and
the Wilson coefficients containing the right handed BKLT parameter aΨiΨi

R like C̃1, C4 or
C5 are avoided. C1,gl is the only coefficient that contributes. From the charged sector, we
have the condition that S†uFQ,[k]Sd = Vckm (see eq. (4.46)) and therefore S†uF [k] = Vckm.
Here, the overlap matrices induces corrections to the Standard Model CKM matrix but
these are suppressed by ∝ ( MW

M
W (k)
FQ,[k])2. In this aligned scenario we set Su = V †ckm.

By using the constraints from Tab. 5.1 from the D meson sector, the following inequality
must hold

|C1,gl| ≈ |
g2
sπ

2

144
V Q

12V
Q

12 | < 7.2 · 10−7TeV−2 , (5.8)

where gs is defined in eq. (B.3) and the excitations of the gluon masses are substituted
with eq. (5.3). V Q

12 = V Q
ūb is the overlap matrix defined in eq. (4.25) for the D0 meson.

The plot in Fig. 5.4 shows the allowed region for the two differences ∆FQ22 and ∆FQ33.
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Figure 5.4.: Constraints on the differences ∆FQ22 = FQ22 − F
Q
11 and ∆FQ33 = FQ33 − F

Q
11

of the eigenvalues of the overlap matrix. The allowed region by the CD
1

constraints is blue. We see that ∆FQ22 is of order O(0.01) in comparison to
∆FQ33, which shows only a small correlation between FQ11 and FQ33.

Two of the three overlap matrix elements must be the same up to a deviation in the
order of O(0.01).
Fig. 5.5 shows the ratio ∆m

m(1) which is a measure for the degeneracy between the first KK

mode of the two quark families against m(1)R for different values of R.

Due to this alignment, the degeneracy between two of the three masses mQ(1)
can be

reduced but not completely avoided. Additionally, the region aΨiΨi
L > 0 in Fig. 5.5

corresponding to KK masses lighter than m(1) = 1TeV with the largest allowed mass
difference is ruled out, if the theory should contain a lightest, non fermionic dark matter
candidate. The reason, that the degeneracy rises with higher masses is due to the zero
mode of the fermions which are defined in eq. (3.19). The zero mode of the quark which

is not zero contains the term (2aΨiΨi
L + πR)−

1
2 . This term mainly defines the properties

of ∆a in eq. (5.5) and therefore in the determination of ∆m in eq. (5.6). In the limit for
aΨiΨi
h to πR

2
, we see that ∆a is zero and eq. (5.6) simplifies to:

cot(m̃−∆m̃)− cot(m̃) = ∆m̃ , (5.9)

where m̃ = πR
2
m

(n′)
1 . We see that for ∆m̃ = 0, this equation is fulfilled. This behavior
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Figure 5.5.: First mode KK mass m(1) times R vs. the mass degeneracy ∆m
m(1) plotted for

different values of the compactification radius R = {0.5,1,3,5}TeV−1 from
bottom to top in the aligned scenario. The forbidden parameter space due to
FCNC constraints for the respective R is blue colored. We see that for higher
masses and also for a higher compactification radii R, the difference between

the masses mQ
(1)
1 and mQ

(1)
2 of two fermion families vanishes. The yellow

colored area contains fermionic LKP as possible dark matter candidates
and thus is excluded.
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Figure 5.6.: BKLT parameter aΨiΨi

h over R vs. the mass degeneracy ∆m
m(1) plotted for

different values of the compactification radius R = {0.5,1,3,5}TeV−1 from
bottom to top in the aligned scenario. We see that for smaller BKLT pa-
rameters or respectively for a higher compactification radii, the difference

between the masses mQ
(1)
1 and mQ

(1)
2 of two fermion families decreases. The

forbidden parameter space due to FCNC constraints for the respective R
is blue colored and because of the demand for a non fermionic LKP as a
possible dark matter candidate is yellow colored.

48



5.2. Aligned Rotation Matrices

Excluded
@FCNCD

1 2 3 4 5
-1.0

-0.8

-0.6

-0.4

-0.2

0.0
R @TeV-1D

D
m

m
H1L

@10
-

2 D

Figure 5.7.: The mass degeneracy ∆m
m(1) plotted against the compactification Radius R for

different values of the BKLT parameter aΨiΨi
L . We see that the masses of two

fermion families get more and more degenerate for higher compactification
scales and smaller BKLT parameter. The values from top to bottom are
a

ΨiΨi
L

R
= {−π

4
, −π

8
, 0}. The blue area is excluded since the flavor constraints

from the Wilson coefficient C1
D are not fulfilled.

can again be seen in Fig. 5.6 where the mass degeneracy is plotted against the BKLT
parameter aΨiΨi

L over R. The blue region is again excluded because of FCNC bounds
and the yellow region because of the non fermionic LKP argument.
In Fig. 5.7, the mass degeneracy is plotted against the compactification radius R for
different values of the BKLT parameter a

ΨiΨj
L . We see two things: on the one hand,

that for smaller BKLT parameter ∆m
m

gets smaller, which means the masses are getting
more and more degenerate. On the other hand, for higher compactification radii R the
mass difference also becomes smaller and so the quark masses become more degenerate.
The conclusion of the aligned scenario is, that we can avoid all constraints we get from
the overlap matrices FU and FD by choosing Tu and Td to be the identity matrix 1.
The masses of the particles are again located between 1

R
< mU(1),D(1)

< 2
R

but we can

make no statements about the mass differences of the six right singlet masses mU(1)

and mD(1)
. However, we can only set one of the left transformations Su and Sd to

be the identity matrix 1 since the CKM matrix correlates these two (see eq. (4.46)).
Due to this relation, we get bounds on the overlap matrix FQ. Fig. 5.4 shows that
∆FQ33 is only weakly constrained while the maximal value for ∆FQ22 can only lie between

±0.015. This means for the quark masses of the first KK-excitation that m
Q(1)
b and

m
Q(1)
t are degenerate and due to the bounds on FL22 the four masses m

Q(1)
u ,m

Q(1)
d ,m

Q(1)
c
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and m
Q(1)
s are degenerate with

∆m
Q(1)
u,d,c,s

m
Q(1)
u,d,c,s

< 0.011 for R = 1TeV−1(see Fig. 5.6) where all

the masses are again between 1
R
< mQ(1)

< 2
R

. In contrast to the generic case, there is

no requirement that the masses m
Q(1)
t,b and m

Q(1)
u,d,c,s are degenerate.

Another approach for calculating the flavor constraints on this model would be to use
randomly generated transformation matrices for all the transformations Sq and Tq in
eq. (4.20) and take a look at the restrictions they generate. Some attempts showed
that parameters ∆Fii can be further constrained which seems plausible since we used
an aligned approach with minimal flavor violation and specially chosen transformations
matrices. For a proper and complete analysis we would need a complete statistical
examination of a 6 dimensional parameter space (two BKLT parameter differences for
one left doublet and two right singlet field transformations). Further investigations
concerning random transformations go beyond the scope of this thesis.
After calculating the flavor restrictions on this nUED theory, we see that that we have
two possibilities to lower the bounds on the BKLT parameters so that they do not violate
flavor constraints:

• Alignment: If the matrix in eq. (5.1) is of the form FQ = c × 13×3 and therefore
having three maximally degenerate BKLT parameters aΨiΨi

h , they cannot be con-
strained by this Wilson coefficient approach because they do not induce FCNCs
via off-diagonal matrix elements. The extreme case would be setting all BKLT to
zero and therefore getting a mUED model.

• Varying the compactification radius R: We can set the size of the extra dimension
to 105TeV scale and therefore make the KK particles extremely heavy so that
we will not detect any effects induced through a higher dimensional theory as
discussed here.

Lastly we want to see if the Yukawa contributions to the first KK mode mass together
with the contribution ∆m of the overlap matrices FQ/q,[k] are relevant and can lift the
mass degeneracy. The transformations in eq. (4.20) were introduced to diagonalize the
quark mass matrices and thus the 4D Yukawa matrices, so that e.g. the up sector Yukawa
matrices is:

v4λ
U,4D = v4Mdiag = v4

mu 0 0
0 mc 0
0 0 mt

 , (5.10)

where the up-type quark masses are given in the appendix B in eq. (B.4). As shown in
eq. (4.21) the relation between λU,5D and λU,4D is

v4λ
U,4D ≡ v5Suλ

U,5DF [0]
Yu
T †u −−−−→ λU,5D =

1√
πR

S†uλ
U,4DTuF [0]−1

Yu
. (5.11)
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We used the connection between the vacuum expectation value (vev) of the Higgs in 4D
and 5D is

v4 =
v5√
πR

. (5.12)

Using the bare quark masses as input to formulate the diagonal 4D Yukawa matrix, we
can calculate the Yukawa matrices in 5D and derive the deviation of the KK masses with
mode number n=1. A crucial point now is the chirality of the quarks with KK mode
number n > 0. The Dirichlet boundary condition eq. (2.1) only removes one chiral zero
mode. On higher KK levels, we have both, left and right handed SU(2) doublets and
also left and right handed SU(2) singlets. This fact has to be respected when calculating
the KK masses with mode number n ≥ 1. The first KK excitation masses for the left
and right handed up type quarks are:

u
(1)
R Mu

(1)
L =(u

Q,(1)
R , u

u,(1)
R )

(
M1 M2

M3 M4

)(
u
Q,(1)
L

u
u,(1)
L

)
(5.13)

=u
Q,(1)
R M1u

Q,(1)
L + u

Q,(1)
R M2u

u,(1)
L + u

u,(1)
R M3u

Q,(1)
L + u

u,(1)
R M4u

u,(1)
L .

Quarks with a Q superscript are the SU(2) doublets whereas the quarks with a u super-
script are SU(2) singlets and the Mi are the different mass matrices. M1 contains the
first mode KK masses of the doublets and M4 the first mode KK masses of the singlets.
They are determined by the quantization condition in Tab. 3.1 and Tab. 3.2. These ma-
trices are diagonal since the left and right quarks are forming a orthogonal basis coming
from the KK decomposition eq. (3.28). The matrices M2 and M3 are determined by the
Yukawa coupling. Those are not diagonal since there is no relation between the chiral
SU(2) singlets and doublets. They are determined by

M2 = v5λ
U,5DF [101]

QRUL
and M3 = v5λ

U,5DF [101]
QLUR

, (5.14)

with the overlap factor matrices of the first KK mode quarks and the Higgs zero mode.
The matrix M is not hermitian, so we will calculate the eigenvalues of the hermitian
matrix M M †. The eigenvalues m

(1)

true,M M†
of M M † are real, positive and approximate

in a very good manner the squared eigenvalues m
(1)
true of M

m
(1)

true, MM†
≈ (m

(1)
true)

2 . (5.15)

We calculated the Yukawa contributions to the first KK mode masses numerically to see
if it is possible to lift the degeneracy we get due to the flavor constraints in the previous
section. First we introduce 3 BKLT parameter for the left handed quarks a

Q1,2,3

L and 3 for

the right handed up-type quarks a
U1,2,3

R . Since we know from previous considerations that
FQ11 and FQ22 are highly correlated in the generic and the aligned scenario, we vary aQ1

L

from −πR
2

to 0 (which is the allowed parameter interval as explained in chapter 3) and
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calculate aQ2

L with eq. (5.5). The remaining BKLT parameters are set to a fixed value
near −πR

2
. With these BKLT parameters we calculate the corresponding first mode KK

masses mQ
(1)
1,2,3 and mU

(1)
1,2,3 of the SU(2) doublets and singlets and their corresponding

Yukawa contribution as shown in eq. (5.11) and eq. (5.14) and finally can reconstruct the
mass matrix M in eq. (5.13). After diagonalizing the matrix M M † and calculating the

eigenvalues m
(1)
true (see eq. (5.15)), we sort the masses of the first KK excitation without

Yukawa contributions m(1) and the eigenvalues of M called here m
(1)
true so we can assign

the correct masses to their corresponding eigenvalues. With these results we were able
to make the plots in Fig. 5.8-Fig. 5.11. The rotation matrices of the generic or the
aligned scenario affect these calculation when we reconstruct the 5D Yukawa matrix in
eq. (5.11) and the bounds from FCNCs affect the BKLT parameters aQ1

L and aQ2

L via
eq. (5.5).
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Figure 5.8.: Relative difference of the up-type mass mQ(1)

true,u/d including Yukawa contri-

butions and the first fermion KK mode mass mQ(1)

u/d ignoring Yukawa contri-

butions plotted against mQ(1)

u/d R with compactification radius R = 1TeV−1

for generic rotation matrices.

In the generic case we see that the Yukawa contribution to the uncorrected first KK mode

mass of the up-type quarks mQ(1)

u/d is about 3%-6% and that the contribution makes the
quarks heavier as we expected. This is depicted in Fig. 5.8. More important is the
degeneracy of fermions after the Yukawa correction which is shown in Fig. 5.9. The

masses of the lightest left handed SU(2) doublets mQ(1)

true,u/d and mQ(1)

true,c/s indeed differ
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Figure 5.9.: Difference ∆mtrue between the first KK mode mass of left handed doublets

mQ(1)

true,u/d and mQ(1)

true,c/s including Yukawa contributions vs. the Yukawa cor-

rected mass mQ(1)

true,u/d in the generic scenario. We see the degeneracy we
get from the FCNC bounds cannot be lifted completely due to the Yukawa
contributions.

more (up to 5%) than the pure first KK excitation masses mQ(1)

u/d and mQ(1)

true,c/s but still
the degeneracy which is demanded by the FCNC bounds cannot be lifted completely.

In the aligned case a similar behavior as in the generic case can be observed, i.e. that
the Yukawa contribution to the uncorrected first KK mode mass of the up-type quarks

mQ(1)

u/d are about 1%-5% as shown in Fig. 5.10. But in contrast to the generic case

the degeneracy of fermion masses mQ(1)

true,u/d and mQ(1)

true,c/s after the Yukawa correction is

smaller (up to 4%) and is of the same order as demanded by flavor bounds (up to 3%
in Fig. 5.5). Again the degeneracy which is required by the FCNC constraints between
the left handed SU(2) doublet quarks cannot be lifted. Even if the mass difference due

to the Yukawa corrections of two fermion families mQ
(1)
1 and mQ

(1)
2 is significantly bigger

in the generic case than imposed via flavor constraints, it is in both scenarios, generic
and aligned, not possible to lift the mass degeneracy completely.
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5. Constraints on the BKLT and Implications for the Fermion KK Mass Spectrum
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Figure 5.10.: The plot shows the relative difference of the left handed up-type mass

mQ(1)

true,u/d including Yukawa contributions and the first fermion KK mode

mass mQ(1)

u/d ignoring Yukawa contributions plotted against mQ(1)

u/d R with

compactification radius R = 1TeV−1. The Yukawa correction to mQ(1)

u/d in

this aligned scenario is about the same order as in the generic case.
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5.2. Aligned Rotation Matrices

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

0.01

0.02

0.03

0.04

mtrue,u�d
QH1L

R @1D

D
m

tr
ue

�m
tr

ue
,u

�d
Q

H1L
@1D

Figure 5.11.: Difference ∆mtrue between the first KK mode mass of left handed doublets

mQ(1)

true,u/d and mQ(1)

true,c/s including Yukawa contributions vs. the Yukawa cor-

rected mass mQ(1)

true,u/d in the aligned scenario. We see that the degeneracy
in the Yukawa sector is of the same order as the one we get from the FCNC
bounds in this aligned scenario.
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6. Conclusion

In this thesis we explored the nUED model with boundary kinetic localized terms
(BKLT) for the fermions. These BKLT introduced an additional set of parameters

a
ΨiΨj
h (see eq. (3.4)). In chapter 3 the KK decomposition of the fermionic Lagrangian

for one family was performed and their wave functions were calculated (Tab. 3.1). One
special feature of the fermion sector is that a chiral zero mode is needed which was
accomplished by using a Dirichlet condition at the orbifold fixed point of the S1/ Z2-
orbifold. The quantization condition in eq. (3.26c) and in eq. (3.27c) made it possible
to calculate the mass spectrum of the fermions. At this point we were able to put first
constraints on the BKLT parameters a

ΨiΨj
h since our dark matter candidate is required

to be electrically neutral and colorless which is not possible with fermions lighter than
n
R

which implied a
ΨiΨj
h > 0. We also saw that using BKLT, a non standard calculation

scheme was needed which was introduced in [21] and for the first time was applied to
an elaborate treatment of boundary conditions in UED model.
After performing the fermion KK decomposition, we calculated in chapter 4 the 4D
effective action and in particular determined the Wilson coefficients for four fermion
interactions accounting all three quark families. First of all we integrated out all y-
dependence in the Yukawa and the fermion Lagrangian in eq. (4.2b) and defined an
overlap matrix FQ/q,[nkm] which consists of the fermion wave functions and the gauge
fields (see eq. (4.13c)). Going to the zero mode approximation we could simplify these
overlap matrices to FQ/q,[0k0] where only the even numbered gauge modes contributed
since all other contributions are suppressed or give no rise to flavor violation. Then we
made a basis transformation in which the Yukawa matrices in eq. (4.2b) are diagonal.
These transformation matrices defined in eq. (4.20) do not commute with the overlap
matrices FQ/q,[0k0] and are a source for FCNCs. Finally in chp. 4.3 we calculated all
Wilson coefficients for the neutral currents which are listed in eq. (4.57), eq. (4.60) and
eq. (4.61).
As an application we constrained the off-diagonal elements of the Wilson coefficients
which induce flavor violation by using model-independent bounds on the Wilson coeffi-
cients for ∆F=2 operators from [28] (see Tab. 5.1). To utilize these data Fierz identities
were needed (eq. (4.55) and eq. (4.56)) to bring the four fermion operators into a form

comparable to the operator basis in [28]. In addition to the BKLT parameters a
ΨiΨj
h and

the mass spectrum of the quarks which we wanted to constrain, we needed the SU(3)
flavor transformation matrices Tq and Sq which parametrizes the relative alignment of

the BKLT parameters a
ΨiΨj
h to the 5D Yukawa couplings λU,D. Since an analysis of the
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full parameter space of the alignments is beyond the scope of this work, we focused on
two sample cases, called the generic and the aligned scenario. Additionally, the mass
difference between two fermions, which depends on how the BKLT parameter are cho-
sen, was used to calculate the degree of the mass degeneracy.
In the generic ansatz in chapter. 5.1, generic rotation matrices were used for the ba-
sis rotation where all entries of the matrices were set to 1. It was shown that we can
only make statements on the mass differences of the KK quarks within one SU(2) mul-

tiplet. The six quark masses in the left doublet mQ(1)

i and both of the three masses

of the right up-type and down-type singlets m(U(1),D(1)) are highly degenerate within

∆mQ
(1)

u,d,c,s,t,b

mQ
(1)

u,d,c,s,t,b

< 1.8 · 10−5 and
∆m

(U ;D)(1)

(u,c,t);(d,s,b)

m
(U ;D)(1)

(u,c,t);(d,s,b)

< 1.8 · 10−5. However, our investigation of fla-

vor does not imply constraints on the mass differences mQ(1) −mU(1)
, mQ(1) −mD(1)

and
mU(1) −mD(1)

.
In the aligned approach in chapter 5.2 we tried to avoid as many flavor constraints as
possible by choosing the rotation matrices Tu, Td and Sd as identity matrices to cir-
cumvent the constraints from the Kaon sector. The only constraint left was to restore
the CKM matrix in eq. (4.46) in the effective 4D theory. This fact determines the last
rotation matrix Su = V †CKM . For this case, it was found that the bounds on the overlap

matrices and thus on the BKLT parameters a
ΨiΨj
h were not as severe as in the generic

case. Some, but not all of the mass degeneracies could be removed. The bounds on
the right handed up-type and down-type quarks vanished and no degeneracy between
mU(1)

i and mD(1)

i is required anymore. One degeneracy in the left handed quarks can be

lifted, but still the four remaining quark masses mQ(1)

u , mQ(1)

d , mQ(1)

c and mQ(1)

s are close

to degenerate within
∆m

Q(1)
u,d,c,s

m
Q(1)
u,d,c,s

< 0.011. In both, the generic and the aligned case the

fermion masses of the first KK excitation have to lie in between 1
R
< mQ(1),U(1),D(1)

< 2
R

.
Also we calculated the contribution from the Yukawa sector to the masses of the first
Kaluza-Klein mode and saw, that in both scenarios the addition to the pure first mode
KK masses are not sufficient to lift the degeneracy (Fig. 5.9 and Fig. 5.11).
We conclude, that flavor constraints force the nUED quark spectrum to contain mass
degenerate state (typically in sets of 6, 3 and 3 states and with maximal aligning still 4
states) even when BKLTs are included in the UED theory.
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A. Sturm-Liouville Theory

The Sturm-Liouville (SL) differential equation in an interval [a,b] is

− d

dx

(
p(x)

dy

dx
(x)

)
+ q(x)y(x) = λw(x)y(x) , (A.1)

boundary value conditions

{
α1y(a) + α2y

′(a) = 0
β1y(b) + β2y

′(b) = 0
,

with p(x) > 0, p′(x) > 0, the weight function w(x) > 0 and a, b, αi and βi ∈ R.
SL theory now tries to generalize and examine the properties of the solution to this
differential equation. Introducing the operator

L · y(x) =

(
dp

dx
(x)

d

dx
+ p(x)

d2

dx2
+ q(x)

)
y(x) , (A.2)

you can write the SL equation as an eigenvalue problem:

1

w(x)
L · y(x) = λn y(x) , (A.3)

where λn is the nth eigenvalue of the operator 1
w(x)

L. The operator L is self adjoint

(L[u], v) = (u, L[v]), if the so called Lagrange-condition is satisfied, i.e. that the bound-
ary terms that occur in the partial integration vanish. This is always the case when the
boundary value conditions are chosen as in eq.(A.1). A direct consequence is that all
eigenvalues λn are real1.

Two important theorems are:

Theorem A.0.1 Every eigenvalue λn has a unique eigenfunction φn(x) i.e. there are
no degenerate eigenfunctions to one specific eigenvalue.

The proof will be omitted and can be found in the corresponding mathematical literature
as in [31].

Theorem A.0.2 All eigenfunctions φn form an orthonormal basis in a Hilbert Space
L2 under the following scalar product:

(φm, φn) =

b∫
a

dxφmφnw(x) = δm,n , (A.4)

1It can be shown that the eigenfunctions are also real.
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where w(x) is again the weight function of the scalar product. Given two eigenfunctions
φi and φj and two non-equal eigenvalues λi and λj, we can write:

(L[φi], φj)− (φi, L[φj]) = 0 = (λiw(x)φi, φj)− (φi, λjw(x)φj) = (λi − λj)(w(x)φi, φj) ,

using the self-adjoint operator L from eq.(A.2) and that w(x) > 0. Setting (φi, φi) = 1,
the theorem is proven.
The relevance in the physics of extra dimensions is, that the differential equation of the
5D wave functions will always correspond to a Sturm-Liouville problem. The Dirichlet
condition we choose in eq. (2.1) corresponds to a boundary value condition with β2 =
α2 = 0, β1 = α1 = 1 and a = −b = πR

2
. The weight function w(x) are the Dirac-Delta

functions b(y) =
(
δ(y − πR

2
) + δ(y + πR

2
)
)
. Thus we can ensure that the wave functions

and eigenvalues which are the masses of the fermions always exist, are always non-
degenerate and form an orthonormal basis so that the Standard Model 4D Lagrangian
can be restored.
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B. Input Parameters

This appendix lists the numerical values of the input parameters used in this thesis to
calculate the Wilson coefficients in chapter 4 and both the FCNC constraints and the
Yukawa corrections to the first excitation of the KK mass of the fermions m(1). All the
values are taken from the Particle Data Group [27].
The values for the Wolfenstein parameter of the CKM matrix are:

λ = 0.2257+0.0009
−0.0010 ; A = 0.814+0.021

−0.022 ; (B.1)

ρ = 0.135+0.031
−0.016 ; η = 0.349+0.015

−0.017 . (B.2)

To calculate flavor constraints on the gluon Wilson coefficient, we need the numerical
value for gs (see Tab. 4.1). The constants we need are

αs(mZ) = 0.1184 , α = 0.007297 and sin2(ΘW (mZ)) = 0.2312 , (B.3)

where αs(mZ) and sin2(ΘW (mZ)) are measured at Z-pole.
In chapter 5 we determine the Yukawa contributions to the first KK excitation of the
fermion mass. To do this, we need the up-type quark masses:

mu = 1.7 · 10−6 TeV , mc = 1.3 · 10−3 TeV and mt = 0.17 · TeV . (B.4)
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