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Abstract

Dirac leptogenesis offers the possibility to explain the baryon asymmetry of the
Universe in the presence of Dirac neutrinos with small masses. In this thesis, we dis-
cuss a left–right symmetric Dirac leptogenesis scenario that is embedded in an extra–
dimensional geometry with three five–dimensional throats. The baryon asymmetry is
generated by the decay of heavy Kaluza–Klein resonances that have a relative mass
splitting of the order ∼ 10−14. We calculate the resulting resonant enhancement of
the baryon asymmetry and study the gauge symmetry breaking in the bulk. We thus
find a baryon asymmetry ηB ≈ 10−10 which is in perfect agreement with observation.

Kurzfassung

Dirac–Leptogenese bietet in Gegenwart von Dirac–Neutrinos mit kleinen Massen
eine Möglichkeit die Baryonasymmetrie des Universums zu erklären. In dieser Diplo-
marbeit diskutieren wir ein links–rechts symmetrisches Dirac–Leptogenese Szenario,
welches eingebettet ist in eine extradimensionale Geometrie mit drei fünfdimension-
alen “throats”. Die Baryonasymmetrie wird durch den Zerfall schwerer Kaluza–
Klein Resonanzen erzeugt, die einen relativen Massenunterschied der Grössenordnung
∼ 10−14 aufweisen. Wir berechnen die resultierende resonante Verstärkung der Bary-
onasymmetrie und studieren die Brechung der Eichgruppe im Bulk. Wir finden dabei
eine Baryonasymmetrie ηB ≈ 10−10, die sich in perfekter Übereinstimmung mit der
Beobachtung befindet.
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Chapter 1

Introduction

It seems to be an inherent characteristic of mankind to wonder about the existence of
matter. As far back as thousands of years, prophets and philosophers first raised the
question for being. In our Western tradition, one of the first pre–Socratic philosophers
who asked for the origin of matter at the dawn of the Axial Age, i.e., around 600 BC,
was Anaximander from Miletus. He postulated the “apeiron” (“infinite” or “limit-
less”) as the first principle. The apeiron is an endless, unlimited primordial mass from
which perpetually everything is derived and to which all things are returning. This
abstract principle has been understood as some sort of chaos from which the Universe
originates in the separation of opposites in the primordial matter.

These fundamental questions and ideas have influenced our perception of the world
and its origin for centuries. Although we have to make a clear cut between these
ancient ideas and our scientific concepts of Nature today, the basic question why
there is something and not nothing still awaits its answer.

From our present understanding of the Big Bang, we expect particles and antipar-
ticles to be generated by the same amount and we intuitively assume that the laws of
Nature are symmetric for particles and antiparticles. However, we know that there is
no significant amount of antimatter on earth. Furthermore, solar rays and planetary
probes show the pure matter content of our solar system. When we turn our attention
to larger scales, cosmic rays indicate a small level of antiprotons. This amount of an-
tiprotons can consistently be explained as a secondary product of collisions between
cosmic rays and the interstellar medium. Consequently, our whole galaxy seems to
be built up by matter. If a matter–antimatter symmetry is constituted at the level of
galaxy clusters, we would expect a strong γ–ray signal, due to intracluster gas which
would lead to a nucleon–antinucleon annihilation. We know from X–ray emissions
about the existence of intracluster gas, but have not seen any evidence of a significant
baryon–antibaryon annihilation. Therefore, if there is a considerable amount of anti-
matter in the Universe, it must have been isolated from matter on scales of at least
1012 to 1014 M¯. In a locally baryon–symmetric Universe, an unknown mechanism
must have caused a segregation of antimatter at temperatures greater than 38 MeV.
However, at that time, the horizon of the Universe only contained 10−7 M¯. Thus,
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4 Chapter 1 Introduction

all evidence indicates a fundamental asymmetry between baryons and antibaryons.

The baryon asymmetry of the Universe is defined as the ratio of the total baryon
number density ∆nB to photon density nγ

1:

ηB =
nB − nB

nγ
=

∆nB
nγ

. (1.1)

Unfortunately, there is no accurate way of measuring ηB directly. Thus, we have to
use indirect methods.

One way to estimate ηB is offered by Big-Bang-Nucleosynthesis (BBN). The abun-
dance of the light elements D, 3He, 4He, and 7Li, produced at a temperature scale of
1 MeV is sensitive to the ratio nB/nγ. Our observations are in good agreement with
the theoretical prediction [1]

3.4 · 10−10 < ηB < 6.9 · 10−10. (1.2)

A second independent probe consists of the analysis of the small temperature
anisotropies of the Cosmic Microwave Background (CMB). The CMB anisotropies
give information about the acoustic oscillations of the baryon/photon fluid around
the last scattering of photons. Combining both methods, one finds [2]

ηB = (6.14± 0.25) · 10−10. (1.3)

The conditions to enable the evolution of a baryon asymmetry in the Universe have
been formulated by Sakharov [3], i.e., violation of baryon number (B), CP–violation,
and out–of–equilibrium processes. These conditions are commonly accounted for in
terms of leptogenesis [4] (see also [5–7]), where the out–of–equilibrium decay of heavy
Majorana neutrinos generates a lepton asymmetry due to a violation of lepton num-
ber (L). This L asymmetry is later on transferred to the baryonic sector by non–
perturbative sphaleron processes [8, 9]. This scenario has the attractive feature of
explaining not only the baryon asymmetry ηB but also accounts for the smallness of
the neutrino masses (∼ 10−2 eV) via the (type–I) seesaw mechanism [10–13].

Although, the seesaw mechanism predicts Majorana neutrinos, we do not know
experimentally whether the neutrinos are Majorana or Dirac particles. The seesaw
mechanism has the advantage that it could be tested in planned neutrinoless double
beta decay experiments [14–21]. However, if no signal for neutrinoless double beta
decay is found, there will always be the possibility that neutrinos are Dirac particles
like all the other known fermions. From this point of view, it is therefore interesting
to consider Dirac neutrinos.

1The number density of photons increases with time due to heavy particle annihilation processes,
while the number density of baryons is not affected by these reactions. Thus, it is convenient to use
the entropy density s instead of nγ with s = 7.04 nγ in the present Universe. The observed values of
ηB are given for nγ , while for our calculations we use s in this thesis.
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In the Standard Model (SM) of elementary particle physics, based on the gauge
group

GSM = SU(3)c × SU(2)L × U(1)Y , (1.4)

the active left–handed (LH) neutrinos would be massless. But Dirac neutrinos can be
simply obtained by introducing right–handed (RH) neutrinos that are singlets under
GSM. A more unified framework for Dirac neutrinos is offered by left–right (LR)
symmetric theories [22–24], which have the gauge group

GLR = SU(3)c × SU(2)L × SU(2)R × U(1)B−L ⊃ GSM, (1.5)

and restore, with respect to the SM, a parity symmetry. In terms of Grand Unified
Theories (GUTs), GLR can be embedded into the Pati–Salam group [25]

G(224) = SU(4)× SU(2)L × SU(2)R ⊃ GLR. (1.6)

Coming from an SO(10) GUT, e.g., there are two primary descendants that lead to
the SM: one via SU(5) and the other via G(224) [26] (see Fig. 1.1).

SO(10)

SU(5)

GLRG(224)

GSM

45
H

45
H

210
H

45
H

16
H

16
H

Figure 1.1: Primary descendants of SO(10) symmetry breaking, where 16H , 45H ,
and 210H , denote the representations of the Higgs fields responsible for spontaneously
breaking the respective symmetries.

In Fig. 1.1, the symmetry breaking SO(10) → SU(5) allows to implement easily the
seesaw mechanism, and would therefore lead to Majorana neutrinos. Going, instead,
via SO(10) → G(224), leads to the LR–symmetric model, and is, hence, compatible
with Dirac neutrinos. In a unified model, such as SO(10), we might thus have either
Majorana or Dirac neutrinos, depending on the detailed pattern of symmetry breaking.

In the case of Dirac neutrinos, we can, without the seesaw mechanism, no longer
make use of the usual (Majorana) leptogenesis, but need Dirac leptogenesis [27] to
generate the observed baryon asymmetry ηB. In Dirac leptogenesis, heavy copies
of the SM Higgs doublet decay into LH lepton doublets and RH neutrinos, and the
smallness of the Dirac neutrino Yukawa couplings of the order ∼ 10−12 prevents the
generated asymmetry from being washed out. The original version of Dirac lepto-
genesis, however, suffers from two major drawbacks. First, it lacks of providing an
attractive origin of the heavy scalars. Second, it does not offer any connection between
low–energy observables and the parameters relevant for leptogenesis. Third, and most
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importantly, the original Dirac leptogenesis model requires GUT scale baryogenesis
to produce a realistic baryon asymmetry, which is plagued with several problems con-
nected with inflation and gravitino overproduction. Thus, it would be desirable to
consider models for Dirac leptogenesis which resolve these shortcomings.

In this thesis, we discuss Dirac leptogenesis for a LR–symmetric model in extra
dimensions. Here, going to LR symmetry in extra dimensions serves the following
purposes:

• LR symmetry accounts for the Dirac nature of the neutrinos and the

• extra dimensions provide the heavy scalar resonances with suitable properties.

Since this model has many scalars charged under GSM in the effective low–energy the-
ory, one has to make sure that the usual electroweak symmetry breaking (EWSB) can
take place. Moreover, the model establishes a close connection between the low–energy
observables (Dirac neutrino Yukawa couplings) and the high–energy parameters en-
tering leptogenesis. This requires to resort to resonant leptogenesis in order to obtain
sufficient baryon asymmetry. To enable resonant leptogenesis, the model is formu-
lated in an extra dimensional space consisting of so–called throats [28] (in the flat
limit) which are known to arise naturally in flux compactifications [29,30]. The major
technical motivation for working with throats is to keep the mass splitting between
the resonating scalars under control.

This thesis is organized as follows: First, in Chapter 2, we start with a short review
of the theory of neutrino masses and mixing. Then, in Chapter 3, we will discuss the
basic aspects of baryogenesis and leptogenesis. The main features and consequences of
LR–symmetric models and extra dimensions are highlighted in Chapter 4. We study
in Chapter 5 the generation of an L asymmetry between LH and RH leptons due
the decay of the heavy scalars. Then, we consider the minimization of the potential
of a single scalar bi–doublet that propagates in a compact extra dimension in Chap-
ter 6. Next, in Chapter 7, we introduce the model for Dirac leptogenesis on three
throats. The resulting amount of baryon asymmetry in this model will be determined
in Chapter 8. Finally, we present our summary and conclusions in Chapter 9. In the
Appendix, we collect detailed calculations for the 1 → 2 decay rate of a particle, the
minimization of the scalar potential and a brief summary of the procedure of chemical
potentials.



Chapter 2

Neutrino Masses and Mixing

In this Chapter, we will start with a discussion of neutrino masses and mixing. First,
we give a brief summary of the SM. Then, we will discuss neutrino masses and mixing.
Special emphasis will be put on exemplary models for small neutrino masses.

2.1 The Standard Model

Over the last decades, the Standard Model has shown excellent accuracy in describing
experimental data. Here, we give a concise account of the SM as a fundamental for
all further discussions in this work.

In this Chapter, and throughout this thesis, we will work in “God-given” units, i.e.,
~ = c = 1.

2.1.1 Particle Content

The SM is based on the symmetry group GSM = SU(3)c × SU(2)L × U(1)Y , where
SU(3)c refers to the strong interaction, described by quantum chromodynamics (QCD),
while the electroweak (EW) interaction, described by the Glashow-Weinberg-Salam
model, is embedded into SU(2)L×U(1)Y . The SM has the important property to be a
renormalizable gauge theory. The symmetry group U(1)Q of quantum electrodynam-
ics (QED) results from spontaneous symmetry breaking (SSB) of the EW symmetry

SU(2)L × U(1)Y
SSB−→ U(1)Q, (2.1)

induced by the Higgs mechanism. The electric charge Q of a particle is generated by
the hypercharge Y of U(1)Y and the third component of weak isospin T3, following
the Gell-Mann-Nishijima relation

Q = T3 +
Y

2
. (2.2)

7



8 Chapter 2 Neutrino Masses and Mixing

Leptons Quarks

„
νe

e

«

L

eR

„
νµ

µ

«

L

µR

„
ντ

τ

«

L

τR

„
u
d

«

L

uR

dR

„
c
s

«

L

cR
sR

„
t
b

«

L

tR
bR

observed yes yes yes yes yes yes

Gauge Bosons Higgs Scalar

Ga
µ Aa

µ Bµ

„
φ+

φ0

«

observed yes yes yes no

Table 2.1: Particle content of the Standard Model.

The most general renormalizable Lagrangian for the particle content of the SM, as
summarized in Tab. 2.1, is

LSM = − 1

4g2
1

BµνB
µν − 1

4g2
2

AaµνA
µνa − 1

4g2
3

Ga
µνG

µνa

+QLii /DQLi + uRii /DuRi + dRii /DdRi + ψLii /DψLi + eRii /DeRi

+|DµΦ|2 + Y ij
u QLiujΦ̃ + Y ij

d QLidjΦ + Y ij
e ψLiejΦ

−λ(ΦΦ†)2 + λv2ΦΦ† +
θ

64π2
εµνρσGa

µνG
a
ρσ, (2.3)

where Bµν = ∂µBν − ∂νBµ, A
a
µν = ∂µA

a
ν − ∂νA

a
µ + g2f

abcAbµA
c
ν , and Ga

µν = ∂µG
a
ν −

∂νG
a
µ + g3f

abcGb
µG

c
ν (fabc is the structure constant and a, b, c = 1, 2, 3) are the gauge

field strength tensors for the gauge fields Bµ, A
a
µ, and Ga

µ. Furthermore, g1, g2 and g3

denote the coupling strengths of the gauge bosons Bµ, A
a
µ, and Ga

µ to the fermionic

current jµ = ψγµψ. In Eq. (2.3), the angle θ < 10−10 denotes the CP–violation in
QCD. The covariant derivative Dµ is

Dµ = ∂µ − ig2
σa
2
Aaµ − i

g1

2
Y Bµ. (2.4)

The particles of the SM can be classified by multiplets according to their trans-
formations under GSM, i.e., (SU(3)c, SU(2)L, U(1)Y ). For the fermionic content, we
have

ψL

(1,2,−1)⊕
eR

(1,1, 2)⊕
QL

(3,2, 1/3)⊕
uR

(3,1,+4/3)⊕
dR

(3,1,−2/3). (2.5)
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Note that the SM does not contain RH (SM singlet) neutrinos νR ∼ (1,1, 0). The
representations for the gauge bosons are given by

Ga
µ

(8,1, 0)⊕
Aa

µ

(1,3, 0)⊕
Bµ

(1,1, 0). (2.6)

The masses of the fermions and gauge bosons in the SM are generated by interactions
with the Higgs scalar Φ (1,2,−1), which is responsible for EWSB.

2.1.2 Electroweak Symmetry Breaking

In the SM, EWSB is achieved via a complex Higgs scalar doublet

Φ =

(
φ+

φ0

)
. (2.7)

The scalar Lagrangian is given by

Lscalar = DµΦ
†DµΦ− V (Φ), (2.8)

where the potential V (Φ) has the form

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2, (2.9)

in which µ2 ∼ 100 GeV and λ > 0 is some dimensionless parameter. Due to the gauge
freedom, we can rotate the vacuum expectation value (VEV) 〈Φ〉 of Φ in such way
that it becomes

〈Φ〉 =
1√
2

(
0
v

)
, (2.10)

where v = (µ2/λ)1/2 is real. Since

g2

2
√

2
=

(
m2
WGF√

2

)1/2

, (2.11)

we get a VEV of the order v = (
√

2GF )1/2 ' 246 GeV, where mW = g2v/2 = 80.403±
0.029 GeV is the mass of the W± gauge bosons and GF = 1.166 × 10−5GeV denotes
the Fermi coupling constant. We can expand the Higgs potential V (Φ) around its
VEV as

V (Φ) = V (〈Φ〉) +
1

2

∂2V

|∂Φ|2
∣∣∣
〈Φ〉

(Φ− 〈Φ〉)2 + . . . , (2.12)

where the mass matrix is given by

M2
Φ =

∂2V

∂|Φ2|
∣∣∣
〈Φ〉
, (2.13)

which gives a massive Higgs scalar H with mass mH = (2µ2)1/2.
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Gauge Boson Masses

The kinetic term of the scalar Lagrangian in Eq. (2.3) leads via SSB to two charged
massive gauge bosons W± with mass mW = g2v/2, where θW [sin2 θW = 0.23152(14)]
is the Weinberg angle defined by tan θW = g1/g2. The magnitude of the electric charge
of the positron is e = g1g2/(g1 + g2)

1/2. Furthermore, we have the gauge boson mass
terms

LA3
µ−Bµ =

v2

2

∣∣∣∣
(
g2
σ3

2
A3
µ +

g1

2
Y Bµ

) (
0
1

) ∣∣∣
2

=
v2

8

[ (
Bµ A3

µ

) (
g2
1 −g1g2

−g1g2 g2
2

)(
Bµ

A3µ

)]
. (2.14)

Diagonalizing this matrix by a rotation through θW , we find the two mass eigenvalues
for the photon and the neutral Z boson:

mγ = 0 and mZ =
(g2

2 + g2
1)

4
v2, (2.15)

where
mZ =

g2v

2 cos θW
=

mW

cos θW
= 91.1876± 0.0021 GeV. (2.16)

The interplay of massive and massless gauge bosons in the presence of broken sym-
metries is described by the Goldstone theorem:

Goldstone Theorem. Every spontaneously broken generator of a continuous, global
symmetry generates a massless particle, a Goldstone boson. If the symmetry is not
only broken spontaneously but also explicitly, we find massive pseudo–Nambu–Goldstone
bosons.

Fermion Masses

A gauge–invariant mass term for SM leptons as well as Dirac neutrinos, and in an
analogous way for quarks, can be written in terms of Yukawa couplings as

LY = −YeψLΦeR − YνψLΦ̃νR + h.c.

= −Yev +H√
2
ψL

(
0
1

)
eR − Yν

v +H√
2
ψL

(
1
0

)
νR + h.c.

= −Yev√
2
ee− Ye√

2
eeH − Yνv√

2
νν − Yν√

2
ννH, (2.17)

where Φ̃ = iσ2Φ
∗ and σi (i = 1, 2, 3) denotes the Pauli matrices. Thus, we see that

the leptons acquire the Dirac masses

me =
Yev√

2
and mν =

Yνv√
2
, (2.18)

while the Yukawa coupling strengths are given by

YeHe =
me

v
and YνHν =

mν

v
. (2.19)
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2.2 Neutrino Masses

In the SM, neutrinos are massless. In recent years, however, we have learned from
solar [31,32], atmospheric [33], reactor [34,35], and accelerator [36] neutrino oscillation
experiments that neutrinos exhibit nonzero (even large in contrast to the quark sector)
mixing (for a summary of current neutrino oscillation data, see Tab. 2.2.2). The
smallness of neutrino masses and the large neutrino mixing angles open the door to
physics beyond the SM.

2.2.1 Dirac versus Majorana Neutrinos

Since neutrinos carry no electric charge, they could be Majorana or Dirac particles like
all other fermions in the SM. To discuss the differences between Dirac and Majorana
particles, we can use the Weyl representation of spinors.

Any Dirac spinor ΨD can be decomposed into chiral states as

ΨD = PLΨD + PRΨD = ΨDL + ΨDR, (2.20)

where PL,R = 1
2
(1 ± γ5). The Dirac spinor ΨD consists of four components and can

be decomposed into two two–component Weyl spinors ξα and ηα̇ as

ΨD = PLΨD + PRΨD =

(
ξα
0

)
+

(
0
ηα̇

)
=

(
ξα
ηα̇

)
, (2.21)

where α, α̇ = 1, 2 [37]. In this notation, Weyl spinors with undotted upper indices
and with dotted lower indices are defined as the LH and RH projections, respectively.
Charge conjugation Ψc

D of ΨD, i.e.,

Ψc
D = CΨ

T

D, (2.22)

leads to

ΨD =

(
ξα
ηα̇

)
C−→

(
ηα

ξ
α̇

)
= Ψc

D. (2.23)

A Majorana spinor ΨM, on the other hand, consists of only two independent compo-
nents:

ΨM =

(
ξα

ξ
α̇

)
. (2.24)

Thus, we see that
Ψc

M = ΨM, (2.25)

i.e., Majorana particles are their own antiparticles. Every Dirac spinor can be repre-
sented by a sum of two Majorana spinors:

ΨD = ΨM1 + iΨM2, (2.26)
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where the Majorana spinors ΨMi (i = 1, 2) are given by

ΨM1 =
1

2
(ΨD + Ψc

D) and ΨM2 =
1

2i
(ΨD −Ψc

D). (2.27)

Taking this into account, we can, e.g., write a Dirac neutrino ν in the Weyl basis as

ν =

(
ξα
ηα̇

)
, (2.28)

where ν, ξα, and ηα̇ denote column–vectors consisting of three flavors, e.g., ν =
(νe, νµ, ντ )

T . We find

νL = ξα, νcL = ξ
α̇
, νR = ηα̇, and νcR = ηα, (2.29)

where the notation here is defined by

νL,R ≡ (νL,R), νcL,R ≡ (νL,R)c, and νcL,R ≡ (νL,R)c. (2.30)

The most general mass terms for the neutrinos therefore take the form

−Lmass = −(LDmass + LMmass) = νLMDνR +
1

2
(νcLMLνL + νcRMRνR) + h.c. (2.31)

Note that we cannot assign a well–defined lepton number L to Majorana neutrinos,
since they are a linear combination of two Dirac neutrinos with L = +1 and L = −1
[see Eq. (2.27)]. Consequently, every Majorana mass term violates L by ∆L = ±2.
We furthermore see that B − L is always violated by Majorana mass terms.

2.2.2 Neutrino mixing

In Eq. (2.31) Dirac neutrino mass matrix MD is a general complex 3 × 3 matrix,
whereas the Majorana mass matrices ML,R are general complex symmetric 3 × 3
matrices. These mass matrices can be diagonalized by the following transformations:

Mdiag
D = U †DMDU

′
D, Mdiag

L = UT
LMLUL, and Mdiag

R = U ′R
T
MRU

′
R, (2.32)

Parameter Best–fit± 1σ 1σ acc. 2σ range 3σ range
∆m2

21[10−5eV2] 7.9± 0.3 4% 7.3− 8.5 7.1− 8.9
|∆m2

31|[10−5eV2] 2.5+0.20
−0.25 10% 2.1− 3.0 1.9− 3.2

sin2 θ12 0.30+0.02
−0.03 9% 0.26− 0.36 0.24− 0.40

sin2 θ23 0.50+0.08
−0.07 16% 0.38− 0.64 0.34− 0.68

sin2 θ13 − − ≤ 0.025 ≤ 0.041

Table 2.2: Current best–fit values for three–flavor neutrino oscillation parameters [38].
Shown are the values with 1σ errors, the relative accuracies at 1σ, as well as the allowed
ranges for 2σ and 3σ.
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where the unitary mixing matrices Ux (x ∈ {D,L,R}) act on the LH neutrinos νL,
while U ′x transforms the RH neutrinos νR. In order to parametrize Ux and U ′x, we can
use the fact that a general unitary 3× 3 matrix U can always be written as

U = DÛK = diag(eiϕ1 , eiϕ2 , eiϕ3) · Û · diag(eiα1 , eiα2 , 1), (2.33)

where ϕ1, ϕ2, ϕ3, α1, α2 ∈ [0, 2π) and

Û =




c12c13 s12c13 s13e
−ibδ

−s12c23 − c12s23s13e
ibδ c12c23 − s12s23s13e

ibδ s23c13

s12s23 − c12c23s13e
ibδ −c12s23 − s12c23s13e

ibδ c23c13


 . (2.34)

The matrix Û in Eq. (2.34) is given in the standard parametrization with sij = sin θ̂ij,

cij = cos θ̂ij, where θ̂ij ∈ {θ̂12, θ̂13, θ̂23}, θ̂ij ∈ [0, π
2
], and δ̂ ∈ [0, 2π).

2.2.3 Neutrino Masses at Tree–Level

The smallness of the observed neutrino masses surprises. Thus, different scenarios for
the generation of small neutrino masses have been suggested in order to avoid a fine
tuning of neutrino masses.

Considering the SM as an effective field theory, obtained by integrating out heavy
degrees of freedom [39, 40], we can employ higher dimension operators as the origin
of small neutrino masses. Weinberg [41] has suggested a dimension–5 mass operator
(cf. Fig. 2.1)

Lmass = Yabmnψ
c

iaLφjbφkmψlnLεijεkl + h.c., (2.35)

where a and b are generation indices, m and n number the Higgs doublets and i, j,
k and l are SU(2) indices. The coupling constant is of the order Yabmn ' 1/MPl on
dimensional grounds. In the one–generation–case, i.e., for a = b and m = n, the
neutrino mass is

mν ' v2

MPl

' 10−5eV, (2.36)

where v ' 102GeV and MPl ' 1018GeV. But this value for the neutrino mass is by a
factor of 103 − 105 too small to be in agreement with current neutrino data.

�νL νL

〈φ0〉 〈φ0〉

1

Figure 2.1: Dimension–5 operator generating neutrino masses.
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Weinberg’s dimension–5 operator can, e.g., be ultraviolet completed in the type–I
seesaw mechanism [10–12]. For ν ≡ (νL, ν

c
R)T , we can rewrite Eq. (2.31) as −Lmass =

1
2
νcMν + h.c. In this equation, M denotes the 6× 6 Majorana neutrino mass matrix

M =

(
0 MD

MT
D MR

)
, (2.37)

in which “0” is a 3 × 3 mass matrix with zero entries only, while MD and MR are
3× 3 matrices with entries of the order v and MB−L ' 1014 GeV (the B−L breaking
scale), respectively. We can transform M to a block-diagonal matrix by

Mdiag = V TMV =

(
M1 0
0 M2

)
, (2.38)

where V is a unitary 6× 6 matrix of the form

V =

(
C1 S†2
−S1 C†2

)
. (2.39)

Here, the entries of Si (i = 1, 2) are of the order v/MB−L whereas Ci has entries of
order unity. Using the unitarity conditions for V and neglecting quartic terms of Si
that do not appear in combination with MR, we find

S1 'M−1
R MT

DC1 and S2 ' C2M
−1
R MT

D. (2.40)

In the limit MD → 0, the matrices M1 and M2 are to lowest order in 1/MB−L given
by

M1 ' −MDM
−1
R MT

D and M2 'MB−L. (2.41)

In the one–generation case, these become m1 ' v2/MB−L and m2 ' mR ' MB−L.
This leads to light neutrino masses of the order

mν ' v2

MB−L
' 10−1eV, (2.42)

which is in agreement with solar and atmospheric neutrino data. Apart from the
type–I seesaw mechanism, there exist also type–II [42–44], and type–III [45] seesaw
mechanisms. For a classification of effective neutrino mass operators see also Ref. [46].

2.2.4 Neutrino Masses via Radiative Corrections

Besides these tree–level scenarios, neutrino mass models with an extended Higgs sector
have been suggested. The neutrino masses are generated by radiative corrections. In
this context, we can distinguish models by the types of the additional Higgs scalars.
We will consider the cases of a singly charged singlet, a doubly charged singlet, or a
Higgs triplet.
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Following Zee [47], we can extend the scalar sector of the SM by a charged SU(2)
singlet h+, i.e.,

−L = Yhijψ
c

ikLψjlLεklh
+ + h.c., (2.43)

where i, j are generation indices, k, l denote SU(2) indices and Yhij is a Yukawa
coupling matrix. Due to Fermi statistics, we have Yij = −Yji. We can assign a B−L
quantum number of 2 to the field h+. Conservation of U(1)Q dictates that h+ must
acquire a vanishing VEV. Thus, there are no Majorana masses at tree level.

In order to generate nonzero neutrino masses, we have to introduce a second scalar
doublet φ′ which is a copy of the SM scalar doublet φ. Therefore, the trilinear coupling
µφT iσ2φ

′h+ +h.c. violates B−L by two units. For the case of just one scalar doublet,
this term would vanish due to the antisymmetric combination of fields. In the process
of symmetry breaking, a linear combination of φ+ and φ′+ will be eaten by the W+

gauge boson. The remaining two physical scalars S and S ′ are linear combinations of
φ+, φ′+, and h+. Consequently, these scalars break B−L and thus generate Majorana
neutrino masses at the one–loop level as shown in Fig. 2.2.

�
νiL νjL

ej

S+, S′

+

1

Figure 2.2: Neutrino mass generation at the one–loop level in Zee’s model.

One might worry that the process shown in Fig. 2.2 could lead to an infinite contri-
bution to neutrino masses. The reason is that there are no tree–level mass terms and
one could not define counterterms which are absorbed into tree–level mass terms in
order to cancel possibly infinite contributions. However, finite masses are guaranteed
by the renormalizability of this model.

In order to read off the resulting neutrino mass matrices, let us redraw Fig. 2.2 in
more detail, as shown in Fig. 2.3. We can simplify the situation by assuming that the
Yukawa couplings of φ are much larger than those of φ′, while their VEVs v and v′

are of the same order, i.e., v ∼ v′. The consequence is that the charged lepton masses
get a dominant contribution from φ. Fig. 2.3 gives a total contribution Yhijm

2
ei

to the
neutrino masses. However, we also have to take into account the analogous diagram
involving h+ and φ+, which gives rise to a term Yhjim

2
ej

. Due to the antisymmetry of
Yhij, the total mass matrix becomes:

Mij = AYhij(m
2
ei
−m2

ej
), (2.44)

where A is a constant. The anti–symmetry of Yhij furthermore implies that Mij in
Eq. (2.44) is indeed symmetric, as we would expect it for a representation in the
Majorana basis.
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�
νiL νjLeiL eiR

φ+
h+

φ′0

φ0

〈

φ′0
〉

〈

φ0
〉

1

Figure 2.3: Detailed graph for the neutrino mass generation at the one–loop level in
Zee’s model.

Now, let us discuss the case of an additional doubly charged singlet k++ [48], which
leads to a Lagrangian of the form

−L = Ykije
c
iLejRk

++ + h.c. (2.45)

Again, k++ carries two units of B − L. In order to generate Majorana masses, we
need a B − L violating term. However, due to the absence of trilinear couplings, the
neutrinos must remain massless to all orders in perturbation theory. The situation
changes when we also add a singly charged scalar h+ as before. This scalar leads to
the desired trilinear couplings µh−h−k++, which break B − L and can thus generate
neutrino masses at the two-loop level as shown in Fig. 2.4. This two-loop diagram

�
νiL νjLek el

k
++

h
+

h
+

1

Figure 2.4: Neutrino mass generation at the two loop level in Babu’s model.

gives rise to the following mass matrix

Mij = 8µ
∑
ek,el

mek
mel

YhikYklkY
†
hljIkl, (2.46)
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where

Ikl =

∫
d4k

(2π)4

∫
d4q

(2π)4

1

k2 −m2
ek

1

q2 −m2
el

× 1

k2 −m2
h

1

q2 −m2
h

1

(k − q)2 −m2
k

. (2.47)

Obviously, the neutrino mass eigenvalues have to be small due to the suppression
factors from the two-loop integration.

In Secs. 2.2.3 and 2.2.4, we have discussed basic models for generating small neutrino
masses in four dimensions. There are, however, also interesting proposals for small
neutrino masses from extra dimensions [49, 50], which we will use in Chapter 7 to
obtain realistic neutrino masses in the model defined on three throats.
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Chapter 3

Leptogenesis

In this Chapter, we discuss the basic conditions and features of leptogenesis for Majo-
rana as well as for Dirac neutrinos. Furthermore, we give some examples for alternative
scenarios.

3.1 Sakharov’s Conditions

Even in a homogeneous and baryon–symmetric Universe, a tiny number of baryons
and antibaryons [51]

nB
s

=
nB
s

= 10−20 (3.1)

(s is the entropy) would be left over after freeze–out. However, this tiny abundance
is by far to small to explain BBN and CMB data. Thus, an effective mechanism must
have taken place in the history of the Universe, which led to the observed asymmetry
ηB ∼ 10−10. There are three indispensable ingredients needed in order to generate a
baryon asymmetry starting initially with B = 0. These three conditions, generally
referred to as Sakharov’s [3] conditions are

• B–violation,

• C– and CP–violation, and

• decays out of thermal equilibrium.

The necessity of the first condition is obvious: When B = 0 is given initially, B
has to be violated somehow in order to generate a baryon asymmetry, i.e., we must
have B 6= 0. In the context of leptogenesis, the B–violation is caused by sphaleronic
processes as it will be outlined in more detail in Sec. 3.3.

The second condition requires processes which violate C and CP. In order to illus-
trate this requirement, consider a process of the form

X → Y + Z, (3.2)

19
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where Y represents a symmetric initial state, with B = 0 and L = 0, and there are
no intrinsic asymmetries: BL = BR = LL = LR = 0 in Eq. (3.2). Y and Z are final
states, one of which carries a non-vanishing extrinsic or intrinsic B or L. Thus, if
this process is invariant under C–transformation, acting on a complex scalar φ and a
fermion ψ as

C : φ → φ∗, (3.3a)

C : ψ → iγ2ψ, ψL → iσ2ψ
∗
R, ψR → −iσ2ψ

∗
L, (3.3b)

it holds that

Γ(X → Y + Z) = Γ(X → Y + Z), (3.4)

where Γ(. . . ) is the decay width (see Chapter 5). As a consequence, no asymmetry A
can be produced, since the net rate of asymmetry production is proportional to the
difference between the decay rates:

dA

dt
∼ Γ(X → Y + Z)− Γ(X → Y + Z)

C
= 0. (3.5)

Furthermore CP, acting on φ and ψ as

CP : φ(t,x) → ±φ∗(t,−x), (3.6a)

CP : ψ(t,x) → iγ2ψ(t,−x),

ψL(t,x) → iσ2ψ
∗
R(t,−x),

ψR(t,x) → −iσ2ψ
∗
L(t,−x), (3.6b)

must be violated. Consider decays of the form

X → YL + ZR and X → YR + ZL. (3.7)

where Y R denotes the antiparticle of YR. Thus, Y R is actually a LH particle, since
the indices L and R keep, in this notation, track of whether a particle is an SU(2)L
doublet (L) or singlet (R). CP–conservation (YL → Y R and YR → Y L) would imply

Γ(X → YL +ZR)+Γ(X → YR +ZL) = Γ(X → Y R +ZL)+Γ(X → Y L +ZR), (3.8)

i.e., again no asymmetry could be generated. However, although it holds that

Γ(X → YLZR) 6= Γ(X → Y LZR), (3.9)

due to C– and CP–violation, this can only lead to a temporary excess if nX = nX
initially, and in the end everything would be equilibrated again. This contradiction is
resolved by the CPT theorem, which requires at least one additional decay channel.
CPT guarantees that the total process rates for particles and antiparticles are equal.
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Combining this with the requirement that B has to be violated, we see that there
have to take place at least two processes

Bi → Bf1 +Bi → Bf2
CPT
= Bi → Bf1 +Bi → Bf2, (3.10)

which generate different baryon numbers Bf1 6= Bf2 in the final states.
The third Sakharov condition requires out of thermal equilibrium decays. To see

this, we have to consider the fact thatB is odd under both C– and CP–transformations.
A system in thermal equilibrium is described by the density operator ρ = e−H/T . Re-
quiring furthermore that the Hamiltonian H is invariant under CPT, we find the
following relation for the average B in equilibrium at a time T = 1/β:

〈B〉T = tr [e−βHB] = tr [(CPT )(CPT )−1e−βHB]

= tr [e−βH(CPT )−1B(CPT )] = −tr[e−βHB] = 0. (3.11)

For the process X → Y + Z, thermal equilibrium would mean

Γ(X → Y + Z) = Γ(X → Y + Z), (3.12)

i.e., every net asymmetry has to average out to zero. Out–of–equilibrium means that
the temperature at the time τ = 1/Γ(X → Y + Z), when the decay takes place, has
to be smaller than the mass of the decaying particle, i.e., T < MX . The inverse decay
processes are then for kinematical reasons Boltzmann-suppressed

Γ(Y + Z → X) ∼ e−MX/T , (3.13)

and can thus not equilibrate the generated asymmetry.

3.2 Baryogenesis

There are several scenarios for baryogenesis. These can be classified according to
the mechanism by which they induce the departure from thermal equilibrium. GUT
baryogenesis scenarios [52–56] consider the out-of-equilibrium decay of heavy particles.
In fact, GUT models seem to be predestinated to fullfill Sakharov’s conditions. B–
violation is an inherent feature of GUT models, due to the fact that quarks and leptons
are unified in the same representations [cf.for example [57] for SU(5)]. Furthermore,
there can occur additional complex phases compared to the SM, and last but not
least, the decay rates of the heavy gauge bosons and scalars are necessarily out–
of–equilibrium because of their high mass scale. However, B + L violating sphaleron
processes will wash out every asymmetry except for B−L. Since B−L is conserved in
SU(5), there is no way to generate it dynamically. But, in SO(10), B−L is a gauged
subgroup and must thus be broken spontaneously. Therefore, only the decay of heavy
particles X with MX < MB−L can generate a baryon asymmetry. An alternative
to GUT baryogenesis is EW baryogenesis [58, 59], which has the advantage to be
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testable in future collider experiments. Here, the departure from thermal equilibrium
is caused by a strong first order phase transition. In the Affleck-Dine scenario [60],
ηB is generated by the evolution of a cosmological scalar fields which carries a baryon
number.

3.3 Sphalerons

Some properties of gauge groups cannot be treated in terms of conventional perturba-
tion theory. This is due to the fact that gauge field configurations show a non–trivial
vacuum structure. According to ’t Hooft [8], B can be violated, even in the SM,
by non–perturbative effects due to triangle anomalies. Since the Adler–Bell–Jackiw
triangular anomalies [61, 62] do not vanish, B and L are anomalous at the quantum
level [52,63]. This anomalous non–conservation of B can also be encountered by tran-
sitions between the different vacua, separated by potential barriers. Thus, each tunnel-
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Figure 3.1: A Feynman–like diagram of a SU(2)L sphaleron process. The indices r,
g, and b, are color indices.

ing process between the vacua would violate B and L by three units. These anomalies
lead to a violation of B and L by three units each, i.e., ∆B = ∆L = ±3. Since quarks
carry B = 1/3, we see that in every sphaleron process 3 leptons and 9 quarks are in-
volved. However, the probability of an instanton transition is P ∼ e−8π2/g2 ∼ 10−173.
Compared with the lifetime of the Universe, a process like this is most unlikely to
have ever happend. A typical sphaleron process is shown in Fig. 3.1.

On the other hand, it was recognized by Kuzmin, Rubakov, and Shaposhnikov [64]
that for T & 100 GeV there is enough thermal energy for the way over the barrier
between the vacua. Below the EW phase transition, i.e., for T < Tc ∼ 100 GeV,
the sphaleronic transition rate is Boltzmann–suppressed [65]. But extrapolating the
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transition rate to a high–temperature symmetric phase [66–69], i.e., T > Tc, it turns
out that at high energies, sphaleronic baryon number violation plays an important
role.

In Ref. [70], it has been shown that sphaleron–like processes can also occur in
finite–temperature QCD. The reason is that above the EW symmetry breaking scale,
QCD and the EW theory can be understood quite analogous. In the case of QCD,
sphaleronic transitions lead to a strong non–conservation of chirality because of chiral
anomalies. Thus, the chiral charge is the only charge that can be generated by tran-
sitions from one vacuum to another. Strong SU(3) sphalerons thus lead to a change
of chirality by 12 units, i.e., by two for each flavor.

3.4 Thermal Leptogenesis

A very popular approach to explain the baryon asymmetry ηB has been formulated
by of Fukugita and Yanagida [4] (see also Refs. [5–7]); the standard leptogenesis
scenario i.e., the generation of a baryon number asymmetry via the generation of
a lepton number asymmetry. The striking idea is the postulation of a connection
between this asymmetry and the smallness of the neutrino masses, a problematic
phenomenon that cannot be explained within the SM. Assuming that neutrinos are
Majorana particles, the masses of the RH singlets N = νR + νcR are not restricted by
arguments of naturalness (see Sec. 2.2.3). Thus, we can, on the one hand, explain the
smallness of the neutrino masses due to the type–I seesaw mechanism, and, on the
other hand, the RH neutrinos N serve as the heavy particles needed for the generation
of a particle–antiparticle asymmetry.

3.4.1 Standard Leptogenesis

In the standard leptogenesis scenario, heavy RH Majorana neutrinos N decay as

N → ψLH and N → ψLH, (3.14)

where H is the SM SU(2) Higgs doublet and ψL the LH SU(2) lepton doublet. These
decays can generate an lepton number asymmetry, which will later on be converted
into a B asymmetry by sphaleron processes.
The total decay width ΓDi of the ith (i, j = 1, 2, 3 are flavor indices) RH neutrino Ni

at tree–level is given by

ΓDi =
∑
j

[
Γ(Ni → H + ψLj) + Γ(Ni → H + ψLj)

]

=
1

8π
(YνY

†
ν )iiMi, (3.15)

where Mi denotes the mass of the ith RH neutrino Ni. Here, we will assume, for
simplicity, that only the decay of the lightest RH neutrino is responsible for the
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Figure 3.2: Decay diagrams of the RH Majorana neutrinos in the standard leptogene-
sis, where i, j are flavor indices. The lepton asymmetry is generated by the interference
of tree–level decays (a) with the one–loop vertex (b) and wave–function correction.

generation of the asymmetry1. The condition for an out–of–equilibrium decay, as
required by Sakharov, reads

r =
ΓD1

H(M1)
=

MPl

1.7 · 32π
√
g∗

(YνY
†
ν )11

M1

< 1, (3.16)

where g∗ ∼ 100 is the number of relativistic degrees of freedom and H(Mi) denotes
the Hubble parameter at the temperature T = Mi. In other words, Eq. (3.16) tells us
that the expansion of the Universe has to be larger than the total decay width such
that the particles are not any more able to follow the rapid change of the equilibrium
particle distribution. One can, furthermore, derive a constraint on the effective light
neutrino mass

m̃1 = (YνY
†
ν )11

v2

M1

' 4
√
g∗

v2

MPl

ΓD1

H(M1)
< 10−3eV, (3.17)

where Yν is the 3× 3 Yukawa coupling matrix and v ∼ 102 GeV. The CP asymmetry
ε1, generated by the interference between tree–level decays of N1 and their one-loop
corrections, take the form

ε1 =

∑
j

[
Γ(Ni → H + ψj)− Γ(Ni → H + ψj)

]

∑
α

[
Γ(Ni → H + ψj) + Γ(Ni → H + ψj)

]

' 1

8π

1

(Y Y †)11

∑
i=2,3

Im(Y Y †)2
1i

[
f
(M2

i

M2
1

)
+ g

(M2
i

M2
1

)]
, (3.18)

1For a discussion of the contributions from N2 and N3 see Ref. [71, 72]
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where the functions f(x) and g(x), which describe the one–loop vertex correction
[Fig. 3.2(b)] and the wave–function correction [Fig. 3.2(c)], respectively, are given by

f(x) =
√
x
[
1− (1 + x) ln

(1 + x

x

)]
(3.19a)

g(x) =

√
x

1− x
(3.19b)

Notice that Eq. (3.19b) is only valid for |Mi − M1| À |Γi − Γ1|. Below this limit
perturbation theory breaks down. In the case of a hierarchical mass structure for the
RH neutrinos, i.e., for M1 ¿M2, M3, Eq. (3.18) reduces to

ε1 ≈ − 3

8π

1

(YνY
†
ν )11

3∑
i=2

Im((YνY
†
ν )2

1i)
M1

Mi

. (3.20)

However, the any produced L asymmetry can be washed out again by inverse decays
and scattering processes (see Figs. 3.3 and 3.4). This wash–out effect is parametrized
by κ:

ηL =
nL − nL

s
= κ

ε1

g∗
. (3.21)

For the degree of wash–out, we can distinguish two cases depending on the size of r:

�N QLψL

H

tR�
N

QL

ψL

H

tR

�H

ψLψL

H
N �H ψL

N

ψL H

�
ψL H

N

ψL H

1

(a)

�N QLψL

H

tR�
N

QL

ψL

H

tR

�H

ψLψL

H
N �H ψL

N

ψL H

�
ψL H

N

ψL H

1

(b)

Figure 3.3: 2–2 scattering processes with ∆L = 1.�N QLψL
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Figure 3.4: 2–2 scattering processes with ∆L = 2.
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• Case I: r ¿ 1, i.e., the weak wash–out regime: Here, the inverse decay width
ΓID and 2–2 scattering processes described by ΓS, are impotent, i.e.,

ΓID
H

∼ MX

T

3/2

e−MX/T · r (3.22)

and
ΓS
H
∼ α

MX

T

5

· r, (3.23)

where r has been defined in Eq. (3.16) and MX is the mass of the heavy decaying
particle X. Since the number density nX of X has a thermal distribution, i.e.,
nX ' nX ' nγ at T ' TD, i.e., at the temperature where the decays drop out
of thermal equilibrium, we find for the produced lepton asymmetry

nL = ε1 ·nX ' ε1 ·nγ. (3.24)

• Case II: r À 1, i.e., the strong wash–out regime: No asymmetry will be gen-
erated here, due to rapidly occurring inverse decays and scattering processes
which keep the system in thermal equilibrium.

For values of r between these extrema, we have to solve the Boltzmann equations
in order to see how strong the wash–out actually is, and how much asymmetry is pro-
duced. The resulting lepton asymmetry ηL is then transferred to a baryon asymmetry
ηB via sphaleron processes:

ηB = c · ηB−L =
c

c− 1
ηL ≈ −1

3
ηL, (3.25)

where c is a conversion factor describing the relation between B, L and B − L by
B = c(B − L) and L = (c− 1)(B − L).

However, it has been pointed out that such a flavor–independent discussion is a
too strong simplification for hierarchical RH neutrino masses. The point is that all
three flavors (e, µ, and τ) reach thermal equilibrium at different temperatures. In
the case that leptogenesis takes place at T ∼ M1 > 1012 GeV, i.e., the temperature
where the τ–flavor Yukawa interactions reach thermal equilibrium, all three flavors
are out–of–equilibrium and thus we have a universal washout factor due to the fact
that they are indistinguishable. The situation changes if leptogenesis takes place at
temperatures below 1012 GeV, since then different flavors are distinguishable and we
have to analyze the effect of every single flavor on its own. A detailed analysis shows
an enhancement of the asymmetry by a factor of 2–3 [73–75].

3.4.2 Dirac Leptogenesis

Standard leptogenesis relies on the assumption that neutrinos are Majorana particles.
However, even for Dirac neutrinos, a leptogenesis–like scenario exists [27]. The fol-
lowing three characteristics of the sphalerons are crucial for Dirac leptogenesis: (i) In
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sphaleron processes only LH particles are involved. (ii) Sphalerons violate B +L but
conserve B−L. (iii) Sphalerons are in thermal equilibrium for T & Tc and Boltzmann–
suppressed at T < Tc. The basic idea in Dirac leptogenesis is that an asymmetry is
generated between the LH and RH neutrino sector due to out–of–equilibrium decays.
Suppose a negative lepton number is produced for the LH neutrinos, i.e., ∆LL < 0,
and a positive lepton number for the RH neutrinos, i.e., ∆LR < 0. At this point, the
total lepton asymmetry remains constant, i.e., L = Linit. Now, sphaleron processes
lead to a transfer of the asymmetry from the LH lepton sector to the baryon sector.
Thus, a part of the negative ∆LL gives rise to a positive LH baryon number which
leads to a total positive baryon asymmetry in both LH and RH sectors due to LR
equilibration. As long as the asymmetry stored in the RH neutrino sector is, due
to the small Dirac neutrino Yukawa couplings, conserved above Tc, a total baryon
asymmetry can evolve. When the temperature drops below Tc, the remaining nega-
tive ∆LL equilibrates with the positive ∆LR and a total positive lepton asymmetry
is generated. In order to avoid a LR equilibration of the neutrinos above Tc, we haveB

L
(B�L) = 0

Sphaleronss
s
 LR-Equilibratione
 e
�B�L�L RB Le
e
s
L R
Figure 3.5: Comparison of the evolution of B and L due to SU(2)L sphaleronic s© and
LR–equilibration e© processes in the case of neutrinos and SM particles (insertion).
For SM particles, both processes occur approximately simultaneously and thus no
baryon number can be generated for B − L = 0. (taken from Ref. [27]).

to require that

ΓLR ∼ λ2g2T . H ∼ T 2

MPl

, (3.26)

where λ symbolizes the Dirac neutrino Yukawa couplings to the SM Higgs boson. For
g ∼ 1, T = Tc ∼ 100 GeV and MPl ∼ 1018 GeV, we get

λ .
√

Tc
MPl

∼ 10−8. (3.27)

Thus, Dirac leptogenesis works for Dirac neutrino masses mD up to

mD ∼ λTc . 1keV. (3.28)
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This limit can be refined up to mD . 10 keV, in detailed numerical computations of
the Boltzmann equations. A realistic supersymmetric Dirac leptogenesis scenario has
been proposed in Ref. [76].

3.4.3 Gravitino Problem

In scenarios like the standard leptogenesis scenario where the RH neutrinos are pro-
duced thermally, we have to require that the reheating temperature Trh is greater
than the mass of the lightest RH neutrino, i.e., Trh > MR. A high Trh can cause
problems, since it can also lead to an overproduction of light particles, such as grav-
itinos [77–82]. If the gravitino is unstable, it must have a long lifetime, long enough
to trouble BBN [83], leading to a decrease of ηB. The number density of gravitinos
at the thermalization stage after inflation is

n3/2

s
' 10−2 Trh

MPl

. (3.29)

From the observed abundance of D+3 He, we can derive a constraint on the gravitino
number density and thus on the reheating temperature:

n3/2

s
. 10−12 ⇒ Trh < 108−9 GeV. (3.30)

If the neutrino mass spectrum of the RH neutrinos is strongly hierarchical, i.e.,
M1 ¿ M2 ¿ M3, an upper bound for the asymmetry generated by the decay of the
lightest RH neutrino, the so–called Davidson-Ibarra bound [84], can be found:

|ε1| ≤ 3

16π

M1(m3 −m2)

v2
, (3.31)

where v ∼ 100 eV. We know from experiments that |m3 −m2| =
√

∆m2
32 ∼ 0.05 eV,

leading to a lower bound M1 ≥ 2 · 109 GeV. Due to the fact that the lightest RH
neutrino has to be generated during the epoch of reheating at the end of inflation,
the Davidson-Ibarra bound also implies a lower bound for Trh. However, this bound
conflicts with the upper bound for Trh derived from the requirement to avoid an
overproduction of gravitinos in supersymmetric models.

3.5 Alternative Leptogenesis Scenarios

In order to overcome the conflicts arising from the gravitino problem (see Sec. 3.4.3),
several alternative leptogenesis scenarios have been proposed. These scenarios in-
clude so–called resonant leptogenesis [85], using a resonant enhancement of the wave–
function contribution to ηB due to degenerate RH neutrino masses. The one–loop
wave–function correction dominates the asymmetry in the resonant limit M2

i −M2
2 ∼

Γ2
N2. Thus, the mass scale of the RH neutrinos can be lowered even down to the
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TeV scale. Besides the standard scenario of generating CP–violation via heavy par-
ticle decays, there is the alternative of soft leptogenesis [86–91], in which the relation
between ηB and the RH neutrino masses is relaxed. Here, particle mixing can lead
to a CP–violation, due to a mismatch between CP–eigenstates and mass eigenstates,

analogously to the Kaon system K0−K0
(see, for example, [92]). Another possibility

is non–thermal leptogenesis [93], where the relation between Trh and the RH neutrino
masses is relaxed. In this scenario, the RH neutrinos are generated non–thermally
via the decay of the inflaton, the scalar responsible for inflation. The inflaton can
be assumed to decay dominantly into the lightest RH neutrino, which then gener-
ates ηB in the usual way. There is also another class of models, which establish a
connection between low energy CP–violation (occurring in neutrino oscillations and
neutrinoless double beta decay) and high energy CP–violation as necessary for lep-
togenesis. However, such scenarios face the problem of additional phases and mixing
angles which are introduced by the heavy neutrinos. There are two basic ideas to deal
with this problem: One possibility is to reduce the number of additional parameters,
for example, by restricting the number of heavy neutrinos to two instead of three [94].
An alternative approach is to postulate a common origin for both low–energy and
high–energy CP–violation [95].
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Chapter 4

Left–Right Symmetry and Extra
Dimensions

Existing models of Dirac leptogenesis suffer from the lack of an attractive scenario
which offers in an elegant way heavy states for the out–of–equilibrium decays as well
as a connection to low–energy observables. In order to overcome these white spots
on the map, we will, in this Chapter, discuss two model building ingredients that
might be usefull for a realistic implementation of Dirac leptogenesis: LR symmetry
and extra dimensions.

4.1 Left–Right Symmetry

As mentioned in the introduction, LR–symmetric theories could provide a natural
framework for Dirac neutrino masses. They are based on the LR–symmetric gauge
group GLR given in Eq. (1.5). These models postulate that the parity violating pro-
cesses we are observing are only the low–energy limit and that on a fundamental level,
all forces are parity–conserving. For these models, we consequently have to add RH
neutrinos. On the other hand, we know that neutrinos are massive and thus such
an extension of the SM is attractive. Moreover, in the SM, the hypercharge U(1)
generators are arbitrary in the sense that they are just adjusted to give the desired
electric charge. But on its own, it has no direct physical meaning. However, in the
LR–symmetric models all the U(1) generators can be identified with the B−L quan-
tum number and, thus, do have a physical meaning. In LR symmetry, the electric
charge formula is then given by

Q = I3L + I3R +
B − L

2
. (4.1)

There are a few more arguments favoring LR symmetry: In fundamental theories like
string theory [96, 97] it is easier to derive a LR–symmetric structure of the gauge
sector than the SM gauge structure [98]. Furthermore, for every model postulating a

31
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unified substructure of quarks and leptons like preons [99,100], we would expect GLR

to be a more natural symmetry than GSM.

4.1.1 Original Model with Dirac Neutrino Masses

The original version of the LR–symmetric model [22–24] would predict Dirac neutri-
nos. The quarks and leptons transform under GLR as follows

QL =

(
u
d

)

L

:
(

1
2
, 0, 1

3

)
, QR =

(
u
d

)

R

:
(
0, 1

2
, 1

3

)
,

ψL =

(
ν
e

)

L

:
(

1
2
, 0,−1

)
, ψR =

(
ν
e

)

R

:
(
0, 1

2
,−1

)
.

(4.2)

Due to a discrete parity symmetry, there are only two weak gauge couplings above
SSB: The couplings associated with SU(2)L and SU(2)R, g2L and g2R, are equal and
can be identified with g2 in the Glashow–Weinberg–Salam theory, i.e., g2 = g2L = g2R.
Furthermore, we can identify the coupling g′1 of U(1)B−L by g1 = g′1g2/(g

′
1
2 + g2

2)
1/2

and thus find tan θW = tan θ = g1/g2 = g1/(g
′
1
2 + g2

2)
1/2, where θW is the usual

Weinberg angle. In analogy to SU(2)L in the SM, also the breaking of SU(2)R leads
to two charged gauge bosons W±

R and one neutral ZR with masses MWR
and MZR

,
respectively. The gauge symmetry breaking has the pattern

SU(2)L × SU(2)R × U(1)B−LyMWR
,MZR

SU(2)L × U(1)YyMWL

U(1)Q.

(4.3)

In this scenario MWR
breaks the discrete parity and SU(2)R × U(1)B−L at the same

stage. Otherwise, the gauge couplings would be different at µ ≥MWR
, i.e., g2L 6= g2R.

Such a decoupling of the two processes of symmetry breaking would require a parity–
odd, neutral scalar field σ, which acquires a non–zero VEV.

The Lagrangian of the LR–symmetric model contains the three parts

L ⊃ Lfkin + LY − V, (4.4)

where Lfkin is the fermionic kinetic term, LY are the Yukawa interactions, and V is
the scalar potential. The fermionic kinetic energy is given by

Lfkin = −Q /D
q
Q− ψ /D

`
ψ, (4.5)

where the covariant derivatives Dq,`
µ for quarks q and leptons ` are

Dq,`
µ = ∂µ − ig

2
σaW

a
Lµ −

ig

2
σaW

a
Rµ −

ig′

6, 2
Bµ. (4.6)
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The Higgs sector consits of two Higgs doublets

χL,R =

(
χ+

χ0

)

L,R

(4.7)

and a bi–doublet

φ1 =

(
φ0

1 φ†1
φ−2 φ0

2

)
, φ2 = σ2φ

∗
1σ2 =

(
φ0∗

2 −φ†2
−φ−1 φ0∗

1

)
. (4.8)

These scalars carry the GLR quantum numbers

χL :
(1

2
, 0, 1

)
χL :

(
0,

1

2
, 1

)
φ :

(1

2
,
1

2
, 0

)
, (4.9)

where LR symmetry implies χL ↔ χR and φ↔ φ†. The most general renormalizable
parity– and gauge–invariant potential for χL,R and φ is then given by

V (χL, χR, φ) = −µ2(χ†LχL + χ†RχR)−
∑
i,j

µ2
ijtr(φ

†
iφj) + c1[(χ

†
LχL)

2 + (χ†RχR)2]

+ c2(χ
†
LχL)(χ

†
RχR) +

∑

i,j,k,l

λijkltr(φ
†
iφj)tr(φ

†
kφl)

+
∑

i,j,k,l

λ̃ijkltr(φ
†
iφjφ

†
kφl) +

∑
i,j

αi,j(χ
†
LχL + χ†RχR)tr(φ†iφj)

+
∑
i,j

βi,j(χ
†
Lφiφ

†
jχL + χ†Rφ

†
iφjχR) + h.c. (4.10)

A suitable choice of parameters gives the following VEV structure:

〈χL〉 = 0, 〈∆L,R〉 =

(
0
vR

)
and 〈φ〉 =

(
κ 0
0 κ′

)
. (4.11)

After SSB, there are 4 charged and 6 real neutral Higgs fields.
The fermion mass matrices are symmetric, due to the transformation φ↔ φ†. The

most general Yukawa couplings are

LY = f iL(aijφ+ bijφ̃)fjR + f jR(a∗ijφ
† + b∗ijφ̃

†)fiL, (4.12)

where f = (Q,ψ). Since aij = a∗ij and bij = b∗ij holds because of LR symmetry, we
find the fermion mass matrices

M1ij = aijk + bijk
′∗ and M1ij = aijk

′ + bijk
∗, (4.13)

where the index i, j = 1, 2 denotes fermions with T3 = 1/2 and T3 = −1/2, respec-
tively. In this model, the charged physical W1,2 bosons are linear combinations of
WL,R:

W1 = WL cos ζ +WR sin ζ, M2
W1
' 1

4
g2(κ2 + κ′2)

W2 = −WL sin ζ +WR cos ζ, M2
W2
' 1

4
g2(κ2 + κ′2 + 2v2)
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where tan 2ζ = 2κκ′/v2. The neutral gauge bosons are

A = (W3L +W3R) sin θ +Bµ

√
cos 2θ,

ZL ' cos θW3L − sin θ tan θW3R − tan θ
√

cos 2θB,

ZR '
√

cos 2θ

cos θ
W3R − tan θB. (4.14)

with

MA = 0, MZL
=
MWL

cos θ
, and MZR

=
MWR

cos θ√
cos 2θ

. (4.15)

Here, we are facing the basic problems of flavor changing neutral currents (FCNCs) in
LR–symmetric models: The experimental limits onW1−W2 mixing are consistent even
for κ = κ′, i.e., maximal mixing (see Ref. [101]). Thus, one is seduced to conclude that
the low–energy limits on the relative magnitudes of κ and κ′ are negligible. However,
in Ref. [102] it was pointed out that it is not possible to avoid FCNCs in LR–symmetric
models with three generations of fermions. When both κ and κ′ are non–zero, the
Higgs bosons have to be very massive in order to avoid FCNC interactions, which
might lead to problems with respect to unitarity in the W sector.

4.1.2 Model with Higgs Triplets

The original LR–symmetric model described in Sec. 4.1.1 was, later on, modified by
introducing the Higgs triplets ∆L,R [42]:

∆L,R =
1√
2
σδL,R =

(
δ+/

√
2 δ++

δ0 −δ+/
√

2

)

L,R

, (4.16)

which transform under GLR according to

∆L :
(
1, 0, 2

)
and ∆R :

(
0, 1, 2

)
, (4.17)

where LR symmetry implies ∆L ↔ ∆R. The most general renormalizable parity– and
gauge–invariant potential of ∆L,R and φ is then given by

V (∆L,∆R, φ) = V (∆L,∆R)−
∑
i,j

µ2
i,jtr(φ

†
iφj) +

∑

i,j,k,l

λijkltr(φ
†
iφj)tr(φ

†
kφl)

+
∑

i,j,k,l

λ̃ijkltr(φ
†
iφjφ

†
kφl) +

∑
i,j

αi,jtr(φ
†
iφj)tr(∆

†
L∆L + ∆†

R∆R)

+
∑
i,j

βi,jtr(φ
†
iφj∆

†
L∆L + φ†iφj∆

†
R∆R)

+
∑
i,j

(γijtr(∆
†
Lφi∆Rφ

†
j) + h.c.), (4.18)
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where

V (∆L,∆R) = −µ2tr(∆†
L∆L + ∆†

R∆R) + ρ1[(tr(∆
†
L∆L))2 + (tr(∆†

R∆R))2]

+ ρ2[tr(∆
†
L∆L)2 + tr(∆†

R∆R)2] + ρ3[tr(∆
†
L∆L)tr(∆

†
R∆R)]

+ ρ4[tr(∆
†
L∆†

L)tr(∆L∆L) + tr(∆†
R∆†

R)tr(∆R∆R)]. (4.19)

This potential has a minimum for the VEVs

〈∆L,R〉 =

(
0 0
vL,R 0

)
and 〈φ〉 =

(
κ 0
0 κ′

)
eiα. (4.20)

These VEVs break GLR down to GSM. The physical W1,2 are the same as in Eq. (4.14),
but with the masses

M2
W1
' 1

2
g2(κ2 + κ′2) and M2

W2
' 1

2
g2(κ2 + κ′2 + 2v2

R). (4.21)

Also the neutral gauge bosons take the same form as in Eq. (4.14). The massless
photon eigenstate is given by A, while the other two massive eigenstates are

Z1 = ZL cos ξ + ZR sin ξ and Z2 = −ZL sin ξ + ZR cos ξ, (4.22)

where tan 2ξ ' 2
√

cos 2θW (M2
ZL
/M2

ZR
) and

M2
ZL

' g2

2 cos2 θW
(κ2 + κ′2 + 4v2

L), (4.23)

M2
ZR

' g2

2 cos2 θW cos 2θW
(4v2

R cos4 θW + (κ2 + κ′2) cos2 θW + 4v2
L sin4 θW ).

The most general gauge–invariant Yukawa couplings in the LR–symmetric model reads

LY =
∑
i,j

(
YqijQLiφQRj + ỸqijQLiφ̃QRj + Y`ijψLiφψRj + Ỹ`ijψLiφ̃ψRj

+ Fij(ψ
T
LiC

−1σ2∆LψLj + ψTRiC
−1σ2∆RψRj) + h.c.

)
, (4.24)

leading after SSB to the fermionic mass matrices

Mu
ij = Md

ij

∗
= Yqijκe

iα + Ỹqijκ
′e−iα, and M e

ij = Y`ijκe
−iα + Ỹ`ijκ

′eiα. (4.25)

In the low–energy limit, where SU(2)L is a good approximation, we see from Eq. (4.1)
that

∆I3R = −1

2
∆(B − L). (4.26)

For pure leptonic processes, we find ∆L = 2∆I3R. Since |∆I3R| = 1 for neutrino
interactions, we see that they are Majorana particles. The gauge–symmetry breaking
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leads to the following neutrino mass matrix Mν :

SU(2)L × SU(2)R × U(1)B−Ly
〈∆0

L〉 ' 0, 〈∆0
R〉 = vR 6= 0, Mν =

(
0 0
0 vR

)

y
SU(2)L × U(1)Yy

〈φ〉 =

(
κ 0
0 κ′

)
, Mν =

(
0 1

2
Y`κ

1
2
Y`κ FvR

)

y
U(1)em.

(4.27)

The corresponding neutrino mass eigenstates and masses are

ν = νL cos ξ + νR sin ξ, mν ' Y 2
` κ

2/2FvR
N = −νL sin ξ + νR cos ξ, mN ' 2FvR,

where tan ξ = (mν/mN)1/2. It can easily be seen that for vR →∞, we get vanishing
neutrino masses: mν → 0. We can parametrize the neutrino masses in terms of
me and mWR

as mν ' (r2/β)(m2
e/mWR

) and mN ' βmWR
, where r and β are free

dimensionless parameters.

4.2 Extra Dimensions

The other idea that, as argued in the introduction, might be useful for a realistic
implementation of Dirac leptogenesis are extra dimensions. We will therefore briefly
review here the basic ideas and notions of extra dimensions, following closely the
review article in Ref. [103] (for other reviews on extra dimensions see, e.g., Refs. [104,
105]).

The first context in which the idea of extra dimensions occurred was the attempt
to unify gravity and gauge interactions. Kaluza [106] and Klein [107] noticed that
a unified theory of gravity and electromagnetism could be beautifully formulated by
embedding our four–dimensional (4D) world into an extra dimensional space that has
been compactified. However, the Kaluza–Klein (KK) scenario was based on a classical
understanding of gravity. It was recognized half a century later that extra dimensions
also offer an approach to a quantization of gravitational interactions. String theory,
which is regarded as the most promising scenario for a theory of quantum gravity, can
only be formulated consistently with six or seven extra spatial dimensions. Motivated
by string theory, there are also a number of more phenomenological applications of



4.2 Extra Dimensions 37

extra dimensions. The most important examples include the large extra dimensions
scenario of Arkani-Hamed, Dimopoulos, and Dvali (ADD) [108–110], which describes
the case of flat extra dimensions, and the Randall-Sundrum model [111, 112], formu-
lated in warped extra dimensions. The benefit of these scenarios, in the first place,
is an alleviation of the hierarchy problem. Other models with extra dimensions can
offer a new approach to GUT model building [113–115], provide candidates for dark
matter [116–118], or new mechanisms of EWSB [119–124].

4.2.1 Kaluza-Klein States

In the KK approach, extra dimensions are compactified to a small size R, which
accounts the fact that we have not observed extra dimensions in Nature yet. The
compactification of extra dimensions has interesting physical implications, which be-
come observable at energy scales comparable to 1/R.

The compactification of an extra space dimension can be simply illustrated, by
considering a five–dimensional (5D) hypercylindrical spacetime as shown in Fig. 4.1,
where the fifth dimension is compactified on a circle S1. The extra dimension is
parametrized as x5 = ϕR, where R is the radius of the circle and ϕ denotes the
angular coordinate that runs over the range −π ≤ ϕ ≤ π.

R

x5 = ϕR

xµ

Figure 4.1: 5D hypercylindrical spacetime compactified on a circle S1.

In the (4 + 1)–dimensional spacetime, we use for the metric tensor the convention
g = diag(−1,+1,+1,+1,+1,+1). For a real scalar field Φ(xµ, y), where µ = 0, 1, 2, 3,
denote the usual four spacetime dimensions and y = x5 = ϕR describes the extra
dimension, the Lagrangian density takes the form

L = −1

2
∂MΦ∂MΦ, (4.28)
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where M = 0, 1, 2, 3, 5. Due to the circle structure of the compactified extra dimen-
sion, the scalar field should be periodic with respect to y → y + 2πR, i.e.,

Φ(x, y) = Φ(x, y + 2πR). (4.29)

We can expand this field on the circle as

Φ(x, y) =
+∞∑

n=−∞
φn(x) e

iny/R, (4.30)

where φ∗n(x) = φ−n(x). Using this expansion, we can rewrite the Lagrangian density
in Eq. (4.28) as

L = −1

2

+∞∑
n,m=−∞

(
∂µφn∂

µφm − nm

R2
φnφm

)
ei(n+m)y/R, (4.31)

Integrating with respect to y, the action becomes

S =

∫
d4x

∫ 2πR

0

dyL = −2πR

2

∫
d4x

+∞∑
n=−∞

(
∂µφn∂

µφ∗n +
n2

R2
φnφ

∗
n

)
. (4.32)

This equation contains an infinite number of 4D fields φn(x). We can introduce the
shorthand notation

ϕn =
√

2πRφn. (4.33)

and rewrite the action in the form

S =

∫
d4x

(
− 1

2
∂µϕ0∂

µϕ0

)
−

∫
d4x

+∞∑

k=1

(
∂µφk∂

µφ∗k +
k2

R2
φkφ

∗
k

)
. (4.34)

As we can see in Fig. 4.2, the compactification of the extra dimension has led to
an infinite spectrum of massive states, the so–called KK modes. In this case, the KK
modes consist of a single real massless scalar field, i.e., the zero-mode ϕ0, and an
infinite number of massive complex scalar fields with mass–squares m2

k = k2/R2 (see
Fig. 4.2). In the low–energy limit, i.e., for E ¿ 1/R, only the zero mode is significant,
while for higher energies E & 1/R, all the KK modes become important.

Considering Abelian gauge fields AM(xµ, y) in a 5D spacetime, we also have to take
the local gauge invariance into account. The Lagrangian density is in this case

L = − 1

4g2
5

FMNF
MN , (4.35)

where the Abelian gauge fields AM have mass dimension +1, while the coupling con-
stant g5 has mass dimension −1. For the same type of compactification as before,
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zero mode

mn =
n

R

0

m
.
.
.

1/R

2/R

3/R

4/R

Figure 4.2: 4D KK spectrum of a 5D scalar.

we can decompose the field strength tensors as F 2
MN = F 2

µν + 2(∂µA5 − ∂5Aµ)
2, and

expand the fields Aµ and A5 on the circle as

Aµ(x, y) =
+∞∑

n=−∞
A(n)
µ (x) einy/R and A5(x, y) =

+∞∑
n=−∞

A
(n)
5 (x) einy/R. (4.36)

As in the scalar example, the effective 4D action can be calculated by integration with
respect to y:

S =

∫
d4x

∫ 2πR

0

dyL, (4.37)

where we can write the effective 4D Lagrangian by using a gauge transformation as

∫ 2πR

0

dyL = − 1

4g2
4

[
F (0)
µν F

(0)µν + 2
+∞∑

k=1

(
F (k)
µν F

∗(k)µν +
2k2

R2
A(k)
µ A∗(k)µ

)
+ 2(∂µA

(0)
5 )2

]
.

(4.38)
Therefore, we can see that the effective 4D spectrum for Abelian gauge fields consists
of a massless zero-mode gauge field A

(0)
µ with the gauge coupling g2

4 = g2
5/(2πR), an

infinite number of massive KK gauge bosons with masses m2
k = k2/R2, and a massless

scalar field A
(0)
5 .

Let us have a closer look at the 5D local gauge transformations AM(xµ, y) →
AM(xµ, y) + ∂mα(xµ, y). The compactification of the fifth dimension leads to an

infinite number of 4D gauge transformations, i.e., one for each KK mode: A
(n)
µ (xµ) →

A
(n)
µ (xµ) + ∂µα

(n)(x) (n = 0, 1, 2, . . . ,∞). However, only the zero-mode is a massless
gauge field, while all the higher KK modes are massive. We can interpret this in terms
of the Higgs mechanism which takes place at each massive KK level: For every KK
mode, a massless gauge field “eats” one massless scalar A

(n)
5 (n > 0) and consequently

becomes a massive gauge field with 3 physical degrees of freedom. At the level of zero
modes, we find a 4D massless gauge field with 2 physical degrees of freedom plus one
real massless scalar A

(0)
5 which could perhaps serve as the SM Higgs.
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4.2.2 Effect of the Bulk Volume

Let us now consider two important implications of integrating out extra dimensions:
the possibility of lowering the fundamental Planck scale and the suppression of Yukawa
couplings by the bulk volume. For this purpose, let us, in generalization of Sec. 4.2.1,
assume a number of δ flat extra spatial dimensions with common compactification
radius R. We denote the δ coordinates of the extra dimensions by yi ∈ [0, πR], where
i = 1, . . . , δ labels the ith extra dimension. Generalizing the Gauss law for gravity to
δ extra dimensions, one arrives at the famous relation

M2
Pl = M2+δ

∗ Rδ = M2
∗ (M∗R)δ = M2

∗N, (4.39)

between the usual 4D Planck scale MPl ' 1018 GeV and the δ–dimensional fundamen-
tal Planck scale M∗. In Eq. (4.39), N is the total number of KK modes in all δ extra
dimensions. Solving for M∗, we thus find that the fundamental scale is lowered by the
bulk volume to the value

M∗ =

(
M2

Pl

Rδ

)1/(2+δ)

≤MPl. (4.40)

For large (sub–mm) extra dimensions, M∗ could be as small as several TeV [108–110].
Note that for fixed M∗, the number of KK modes N is independent of δ, but the mass
of the first excitation becomes

N = (M∗R)δ ⇒ R−1 = M∗N−1/δ. (4.41)

Tab. 4.1 shows the masses of the first KK modes as a function of δ for N ' 1014 KK
modes.

number of extra dimensions mass of the first KK mode

δ = 1 1 MeV
δ = 2 104 GeV
δ = 3 106 GeV
δ = 4 107 GeV
δ = 5 108 GeV
δ = 6 108 GeV

Table 4.1: Masses of the first KK modes increasing with the number δ of flat extra
dimensions for a fixed number of N ' 1014 KK modes. Note the large jump by 7
orders of magnitude when going from δ = 1 to δ = 2.

Next, we will assume LH and RH fermions ψL and ψR that are localized as 4D
fields at the origin y1 = y2 = · · · = yδ = 0. The fermions couple to a scalar X which
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Figure 4.3: Generic Calabi-Yau manifold with three throats (taken from Ref. [125]).

propagates in the bulk of the δ extra dimensions. Now, we want to estimate the
volume suppression of the Yukawa couplings to the scalar. On dimensional grounds,
we can see that the Yukawa interactions are of the type

4+δ

LY ⊃
− δ

2

(
√
M∗)−δ

δ∏
i=1

1

δ(yi)Y

3
2

ψL

2+δ
2

X

3
2

ψR, (4.42)

where Y are the Yukawa couplings and the numbers above the different terms indicate
the mass dimensions. The spin–1

2
fields have mass dimension (δ − 1)/2, while spin–1

fields have mass dimension (δ−2)/2. It is obvious that in the case of δ extra dimensions
a factor of (

√
M∗)−δ has to be multiplied in order to keep the correct overall dimension:

δ+ 4 + δ/2− δ/2 = 4 + δ. This factor represents a volume suppression of the Yukawa
couplings. Taking the wave–function normalization factor (

√
R)−δ of X into account,

we get the following overall suppression of the Yukawa couplings:

Y

(
√
M∗R)δ

=
Y√
N
. (4.43)

For N ' 1014 the Yukawa couplings are suppressed by a factor of 10−7. Again, for
large extra dimensions, Y could be suppressed by a factor as small as ∼ 10−12 [49].

4.2.3 Calabi-Yau Manifolds and Throats

The most conventional superstring models consider ten dimensions out of which six
have been compactified. If the six–dimensional manifold is an Calabi-Yau manifold,
N = 1 supersymmetry in four dimensions remains unbroken after compactification
[126]. A generic type of geometry arising from so–called flux compactifications1 is a

1A flux can in this context be understood as a generalization of an electromagnetic field strength.
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Calabi-Yau manifold with multiple throats hanging out from it [28–30] (cf. Fig. 4.3).
The throats are strongly warped regions in spacetime that arise from stacks of so–
called branes (solitonic solutions of supergravity) transverse to the compactification
manifold. This can be seen as follows: The tension (energy density) of a brane curves
the space around it, and the back reaction is proportional to the total number of
branes in a certain region of space. A large stack of branes can therefore alter the
metric on a compactified manifold and create throats with a warped geometry. In
such a configuration, the degrees of freedom localized at the end of a throat can be
seen to be dual to the infrared (IR) excitations of the low–energy field theory, while
the excitations near the mouth of the throat are dual to the ultraviolet (UV) degrees
of freedom (cf. AdS/CFT correspondence).

Geometries with multiple throats could offer a number of advantages for model
building, such as a relatively simple implementation of multiple scales, a straightfor-
ward way to separate fields, and the generation of small numbers, even in the flat
limit [125,127,128]. In Chapter 7, we will make use of these possibilities and consider
a model for Dirac leptogenesis with three 5D throats in the flat limit.



Chapter 5

Heavy Scalar Decay

In this Chapter, we analyze the generation of a lepton asymmetry by the CP–violating
decays of heavy SU(2)L scalars into LH lepton doublets and RH neutrinos.

5.1 CP–Violation

CP–violation can occur when there are complex couplings in a theory. Let us therefore
consider the following Yukawa couplings for leptons

L(n)
Yν

= Yν1ψLφ
(n)νR + Yν2ψLξ

(n)νR

+ Ye1ψLφ
c(n)eR + Ye2ψLξ

c(n)eR + h.c., (5.1)

where Xc(n) = iσ2X
∗(n) for X(n) = φ(n), ξ(n). These doublets X(n) = (X

0(n)
1 , X

−(n)
2 )T

have the masses Mn(X). The superscript (n) will become important later on in
Chapters 6, 7, and 8, when we identify them with KK in a higher–dimensional scenario.
In Sakharov’s three conditions for the generation of baryon asymmetry, the presence
of a CP–violating process is the second indispensable ingredient (see Chapter 3). For
this purpose, we will turn our discussion to the decay of heavy scalars and assume
that the baryon asymmetry is generated via Dirac leptogenesis [27,76,129,130] by the
decay of the scalar doublets φ(n) and ξc(n) (cf.Fig. 5.1). Consequently, the leptonic
CP–violating decay channels are of the form

X
(n) → ψL + νR and X(n) → ψL + eR. (5.2)

In more detail, the decay of the heavy scalars into LH leptons ψL and RH neutrinos
νR, as shown in Fig. 5.2, consists of the decay channels

φ
(n) → ψL + νR : φ0∗

1
(n) → νL + νR, φ+

2
(n) → eL + νR,

χ(n) → ψL + νR : χ0∗
1

(n) → νL + νR, χ+
2

(n) → eL + νR,
(5.3)

The decays into LH leptons ψL and RH charged leptons eR read

φ(n) → ψL + eR : φ0
1
(n) → eL + eR, φ−2

(n) → νL + eR,

χ(n) → ψL + eR : χ0
1
(n) → eL + eR, χ−2

(n) → νL + eR.
(5.4)

43
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�ψL

φ(n)

νR

1

Figure 5.1: Decay of a heavy bulk scalar φ(n) into leptons with possible one–loop–
corrections indicated by the blob.

�ψL

φ(n)

νR �φ(n)

ψL

eR �ψL
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1

Figure 5.2: Tree–level decays of the heavy scalars φ(n) and ξ(n).

Similar equations hold for the scalar decays into quarks. Notice that all these decays
can be CP–violating due to loop effects as we will show later in this Chapter. However,
they do not change the baryon number B or lepton number L, since the overall
difference between of the number of particles and antiparticles in the lepton as well
as in the quark sector remains unchanged. In this case, CP–violation can only lead
to a number–difference of particles and antiparticles between the LH and the RH
sector. When we are talking about an asymmetry in the following, we mean this
matter–antimatter asymmetry between LH and RH particles.

We are interested in the physical decay asymmetries ε
(n)
X arising from the decays of

the scalars φ(n) and ξ(n). Let us define the quantity εX as the net ratio of particles
which is generated when a certain number density nX of particles X and a corre-
sponding number density nX of antiparticles X decay. As long as X and X are in
thermal equilibrium, decays and inverse decays will cancel out each other. However,
when a critical temperature T = M(X) is reached, where the particles drop out of
thermal equilibrium, a net number density nY of the decay products Y can survive,
i.e.,

nY = εXnX for nX = nX . (5.5)

The interesting number in the context of this thesis is the net number of weakly
coupled RH particles, since every asymmetry produced by strongly coupled particles
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would most likely be washed out by inverse decays. Thus, we write εX as the sum of
the differences of decay widths for decays in which RH particles are produced, divided
by the sum over decay widths of all possible weakly coupled decays which change the
net number density of X and X:

εX =

∑
bR

[Γ(X → aLbR)− Γ(X → aLbR)]∑
c

∑
d[Γ(X → cd) + Γ(X → cd)]

, (5.6)

where Γ denotes the decay width, and aL are all the possible LH particle states which
can be produced together with the RH states bR by the decay of X and X. On the
other hand, c and d denote every possible state including aL and bR. The form of
the denominator is due to the fact that all the different decay channels are competing
with each other. The decay width for the decay of one initial particle into f final
states is defined by

Γ =
1

2Mi

( ∫ ∏

f

d3pf
(2π)3

1

2Ef

)
|M(Mi → pf )|2(2π)4δ(4)(pi −

∑

f

pf ), (5.7)

where Mi and pi are the mass and momentum of the initial particle, while Ef and pf
are the energy and momentum of the final particle f . We are only considering weakly
coupled decay processes, since strongly coupled processes are longer in equilibrium
and thus do not change the net number density of X and X at that time. The
CP–violating contribution for a certain RH species, for example νR, is given by

ε
(n)
X1,νR

=
Γ(X

(n)
1 → ψLνR)− Γ(X

(n)

1 → ψLνR)

Γ
(n)
X1

+ Γ
(n)

X1

. (5.8)

Here, Γ
(n)
X1

denotes the total decay width of the particle X
(n)
1 , i.e., the sum of all

possible decay channels

Γ
(n)
X1

= Γ(n)(X
(n)
1 → ψLνR) + Γ(n)(X

(n)
1 → ψLeR) (5.9)

and Γ
(n)

X1
is defined in an analogous way. The decay width (cf. Appendix A)

Γ(n) = Γ(n)(X
(n)
1 → ψLνR) =

1

16πMn(X1)
|M

X
(n)
1 →ψLνR

|2, (5.10)

includes the sum over all internal degrees of freedom, i.e., spins and isospins. Thus,
in a bath which contains an equal number of particles X1 and antiparticles X1 the
net amount of RH neutrinos produced by CP–violating decays will be

nνR
=

nmax∑
n=0

ε
(n)
X1,νR

n
(n)
X1
. (5.11)

Let us in the following discussion concentrate on the asymmetry of the RH neutri-
nos. The asymmetries for all the other RH particles can be calculated and analyzed
in exactly the same way. All we have to do is to replace correspondingly the Yukawa
couplings and multiply by a factor of three for quarks.
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5.2 Generation of CP–Asymmetry

After having defined the notation, let us now have a closer look at how a CP–
asymmetry can be generated by the scalar decays. First, notice that in a tree–level
approximation, no CP–violation can be generated. The decay amplitudes for particles
and antiparticles in the tree–level approximation are

iM
X

(n)
1 →ψiLνjR

= i(Yν1)
∗
ijū(p)PRv(q), (5.12)

iM
X

(n)
1 →ψiLνjR

= i(Yν1)ijū(q)PLv(p)

= i(Yν1)ijv
T (q)γ0C−1γ0PLC

−1Cγ0C−1u∗(p)

= i(Yν1)ij(ū(p)PLv(q))
T = i(Yν1)ijū(p)PLv(q), (5.13)

where i and j are flavor indices, i.e., e1R = eR, e2R = µR, e3R = τR, etc. Here, we
have made use of the identities

u(p) = Cv̄T , C−1γµC = −(γµ)T . (5.14)

At this accuracy, the absolute value squares of the spin-summed amplitudes are iden-
tical:

ΣTij =
∑
spins

|M
X

(n)
1 →ψiLνjR

|2 =
∑
spins

|M
X

(n)
1 →ψiLν1jR

|2 =
∑
spins

|ū(p)i(Yν1)∗ijPRv(q)|2

= (Yν1)
∗
ij(Yν1)ijTr

[1

2
(1 + γ5)/q/p

]
= |(Yν1)ij|2M2

n(X1), (5.15)

i.e., complex phases are irrelevant at tree–level. Summing over all flavors, we get

ΣT =
∑
ij

ΣTij = tr(Y †
ν1
Yν1)M

2
n(X1), (5.16)

since
∑n

ij A
∗
jiBji =

∑n
ij A

†
ijBji =

∑n
i (A

†B)ii = tr(A†B), where A and B are general

complex n × n matrices. For two diagonal matrices Adiag and Bdiag this formula
simplifies to

∑n
ij A

diag
ji

∗
Bdiag
ji = tr(Adiag∗Bdiag). In the case of just one Yukawa coupling

matrix, this might allways be possible. However, since we are considering more than
one general Yukawa coupling matrix, and as we will see later on, even products of these
matrices, we can in general not assume that A and B are diagonal. The amplitudes

for the decay channels of φ(n) and φ
(n)

are given by

∑
ij

∑
spins

|M
φ

(n)→ψiLνjR
|2 = tr(Y †

ν1
Yν1)M

2
n(φ), (5.17a)

∑
ij

∑
spins

|M
φ

(n)→ψiLejR
|2 = tr(Y †

e1
Ye1)M

2
n(φ). (5.17b)
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The remaining decays of ξ and ξ can be treated similarly, all we have to do is to
correspondingly replace the Yukawa coupling matrices and the squared masses of the
decaying scalars. The sum of the decay widths in tree approximation is

Γ
(n)
T (X

(n)

1 → ψLνR) + Γ
(n)
T (X

(n)
1 → ψLνR) =

tr(Y †
ν1
Yν1)

4π
Mn(X1). (5.18)

We have thus to go to the next order and calculate the interference between the tree–
level amplitude and the one–loop corrections for the numerator in Eq. (5.8). At one–
loop level, we have to consider vertex–corrections as well as wave–function corrections.

At this accuracy, an imaginary part can arise as a consequence of unitarity of the
S-matrix, i.e., S†S = 1. With S = 1 + iT , we get −i(T − T †) = T †T . In terms of
the amplitudes, this expression becomes

−i(Mpi→pf
−M∗

pf→pi
) =

∑
a

dΠaMpi→paM∗
pf→pa

, (5.19)

where the sum over a indicates the summation over all possible on–shell intermediate
states and dΠa is the Lorentz–invariant phase–space measure. ForM∗

pf→pi
= M∗

pi→pf
,

we can rewrite Eq. (5.19) in terms of the optical theorem as

Mpi→pf
−M∗

pf→pi
= 2iIm (Mpi→pf

), (5.20)

i.e., the imaginary part of the forward scattering amplitude is proportional to the
total cross section. Therefore, the right–hand–side in Eq. (5.20) implies that an
imaginary part develops if intermediate states can go on–shell. This is always true
as long as the decaying particle is heavier than the intermediate states or the decays
take place at sufficiently high energies.

5.3 One–loop Corrections

Let us analyze the one–loop level diagrams, which are generating the CP–asymmetry.
There are two types of diagrams. A CP–asymmetry εv can arise from vertex–corrections
[56] and another CP–asymmetry εw is generated by wave–function corrections [131].
The total asymmetry ε is hence given by the sum ε = εv + εw of vertex– and wave–
function corrections.

The interference amplitude of the tree–level with the vertex–correction as, shown
in Fig. 5.3, can be written as

iMεv

ij = i
[
(Yν1)

∗
ijTij + (Y †

ν2
Ye1Y

†
e2

)jiVij
]
, (5.21)

where the function T denotes the tree–level amplitude

T = ū(p)PRv(q) (5.22)
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Figure 5.3: Vertex-corrections for the decays of φ(n). The diagrams for ξ(n) can be
obtained by exchanging the scalar fields.

and V is the amplitude of the vertex–correction:

V = iū(p)

∫
d4k′

(2π)4
PR

/p′

p′2 + iε
PL

/q′

q′2 + iε
PR

1

k′2 −Mn(X2) + iε
v(q)

= Re(V) + i Im(V). (5.23)

Furthermore, in writing the product of the Yukawa coupling matrices, we have used
the identity

(A†BC†)ij =
n∑

l=1

(A†B)ilC
∗
jl =

n∑

k=1

n∑

l=1

A∗kiBklC
∗
jl, (5.24)

where A, B, and C, are general complex n × n matrices. In the limit of massless
leptonic states, i.e., for Mn(X1) À mψL

,mνR
, the amplitudes T and V are flavor–

independent.
The creation of a rate asymmetry can be calculated in the following way:

Mεv

X
(n)
1 →ψiLνjR

= ((Yν1)
∗
ijT + Ŷ ∗

jiV), (5.25)

Mεv

X
(n)
1 →ψiLνjR

= ((Yν1)ijT + ŶjiV), (5.26)

where Ŷ = (Y T
ν2
Ye1

∗Y T
e2

)ji. The difference between the decay probabilities of particles

X
(n)

1 and antiparticles X
(n)
1 is then

|Mεv

X
(n)
1 →ψiLνjR

|2 − |Mεv

X
(n)
1 →ψiLνjR

|2

= ((Yν1)ijT ∗ + ŶjiV∗)((Yν1)∗ijT + Ŷ ∗
jiV)− ((Yν1)

∗
ijT ∗ + Ŷ ∗

jiV∗)((Yν1)ijT + ŶjiV)

= ((Yν1)ijŶ
∗
jiT ∗V + Ŷji(Yν1)

∗
ijT V∗ − (Yν1)

∗
ijŶjiT ∗V − Ŷ ∗

ji(Yν1)ijT V∗)
= [((Yν1)ijŶ

∗
ji − (Yν1)

∗
ijŶji)T ∗V − (Ŷ ∗

ji(Yν1)ij − Ŷji(Yν1)
∗
ij)T V∗]

= 2i((Yν1)ijŶ
∗
ji − (Yν1)

∗
ijŶji)Im(T ∗V) = −4 Im ((Yν1)ijŶ

∗
ji)Im(T ∗V)

= −4 Im
[
(Yν1)ij(Y

†
ν2
Ye1Ye2

†)ji
]
Im(T ∗V). (5.27)
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Taking all flavors into account, we get

|Mεv

X
(n)
1 →ψLνR

|2 − |Mεv

X
(n)
1 →ψLνR

|2 =
3∑
ij

|Mεv

X
(n)
1 →ψiLνjR

|2 − |Mεv

X
(n)
1 →ψiLνjR

|2

= −4 Im tr(Yν1Y
†
ν2
Ye1Y

†
e2

)Im(T ∗V). (5.28)

As we can now easily see, if tr(Yν1Y
†
ν2
Ye1Y

†
e2

) contains a phase, this phase will result
in an asymmetry. The sum of decay probabilities is, on the other hand, given by

|Mεv

X
(n)
1 →ψLνR

|2 + |Mεv

X
(n)
1 →ψLνR

|2 = 2 tr(Y †
ν1
Yν1)|T |2 + 2 tr(Ŷ †Ŷ )|V|2

+ 4Re tr(Yν1Y
†
ν2
Ye1Y

†
e2

)Re(T ∗V). (5.29)

Since the Yukawa couplings are all very small, i.e., Yνi
, Yei

¿ 1, we can safely neglect
in Eq. (5.29) factors proportional to Y 6

νi
and Y 6

ei
. Furthermore, compared to the tree–

level term tr(Y †
ν1
Yν1)|T |2, we can also neglect in Eq. (5.29) the last term. Especially,

if the asymmetry is maximal, we write

tr(Yν1Y
†
ν2
Ye1Y

†
e2

) ∈ C ⇒ Re tr(Yν1Y
†
ν2
Ye1Y

†
e2

) Re(T ∗V) = 0. (5.30)

In total, Eq. (5.29) simplifies to

|Mεv

X
(n)
1 →ψLνR

|2 + |Mεv

X
(n)
1 →ψLνR

|2 = 2 tr(Y †
ν1
Yν1)|T |2. (5.31)

The CP–violating one–loop wave–function correction diagrams for the decays of φ(n)

and ξ(n) are shown in Fig. 5.4. The interference amplitude with the wave–function
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Figure 5.4: Wave–function corrections for the decays of φ(n). The diagrams for ξ(n)

can be obtained by exchanging the scalar fields.

correction is, given by

iMεw

ij = i
[
(Yν1)

∗
ij + Y ∗

ν2ij
tr(Y †

e2
Ye1)W

]
, (5.32)

where, in this case, the one–loop-amplitude Π is

W = i5ū(p)
[ PR
k′2 −Mn(X2) + iε

∫
d4q′

(2π)4

−tr(PR/p
′PL/q′)

(p′2 + iε)(q′2 + iε)

]
v(q)

= Re(W) + i Im(W). (5.33)
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For the wave–function correction, the difference between the decay probabilities is

|Mεw

X
(n)
1 →ψiLνiR

|2 − |Mεw

X
(n)
1 →ψiLνiR

|2 = −4 Im [(Yν1)ijY
∗
ν2ij

tr(Ye1Y
†
e2

)]Im(T ∗W). (5.34)

The flavor-summed difference is then

|Mεw

X
(n)
1 →ψLνR

|2 − |Mεw

X
(n)
1 →ψLνR

|2 =
3∑
ij

|Mεw

X
(n)
1 →ψiLνiR

|2 − |Mε

X
(n)
1 →ψiLνiR

|2

= −4 Im [tr(Yν1Y
†
ν2

) tr(Y †
e2
Ye1)]Im(T ∗W),

(5.35)

while the sum can be approximated as

|Mεw

X
(n)
1 →ψLνR

|2 + |Mεw

X
(n)
1 →ψLνR

|2 = 2 tr(Y †
ν1
Yν1)|T |2. (5.36)

In Eq. (5.1), it can be see that tr(Yν1Y
†
ν2

) tr(Y †
e2
Ye1) = [tr(AB†)]2 and tr(Yν1Y

†
ν2
Ye1Y

†
e2

) =
tr[(AB†)2], where A and B are general real n× n matrices. The crucial point in the
trace product is that tr[(AB†)2] 6= [tr(AB†)]2. We can substitute C = AB†. Even if we
rotate to the basis where all the matrices are diagonal, we find tr[(AB∗)2] 6= [tr(AB∗)]2,
since tr[C2] =

∑3
i=1C

2
ii while [trC]2 =

( ∑3
i=1Cii

)2
. The relation tr[C2] = [trC]2

would only hold if we additionally assumed that one Yukawa coupling in the diagonal
matrix dominates and the others are neglected. But this would be a quite strong
restriction, so we will not assume anything like that in the following discussion.

5.3.1 Vertex Correction

We shall assume the limit where the leptons are massless compared to the mass of
the decaying scalars. Focussing on the calculation of V , we have

�k q

p′

q′

k′

p

1

Figure 5.5: Vertex-correction for the decay of a heavy scalar with the associated
momenta.

V = iū(p)
[
PR

∫
d4k′

(2π)4

/p′

p′2 + iε

/q′

q′2 + iε

1

k′2 −Mk(X2)2 + iε

]
v(q), (5.37)
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where conservation of momentum dictates the relations

p′ = p+ k′ and q′ = −q + k′. (5.38)

To combine the propagator denominators, we can use an integral over Feynman pa-
rameters

1∏n
i=1Ai

=

∫ 1

0

n∏
i=1

dxiδ
( n∑
i=1

xi − 1
) (n− 1)!

(
∑n

i=1 xiAi)
n
, (5.39)

where Ai are the denominators of the contributing propagators, obtaining

1

(p′2 + iε)(q′2 + iε)(k′2 −Mk(X2)2 + iε)
=

∫ 1

0

dx dy dzδ(x+ y + z − 1)
2

D3
, (5.40)

where D is given by

D = x((p+ k′)2 + iε) + y((−q + k′)2 + iε) + z(k′2 −Mk(X2)
2 + iε)

= 2xpk′ − 2yqk′ − zMk(X2)
2 + k′2 + iε

= (k′ + xp− yq)2 + xyMn(X1)
2 − zMk(X2)

2 + iε

= `2 −∆. (5.41)

Here, we have treated the final states to be on–shell and massless, i.e., p2 = q2 = 0
and (p + q)2 = 2pq = Mn(X1)

2. Furthermore, we have introduced ` = k′ + xp − yq
and ∆ = −xyMn(X1)

2 + zMk(X2)
2 − iε. In order to express in Eq. (5.37) also the

numerator in terms of `, we can use the following identities:

∫
d4`

(2π)4

`µ

D3
= 0 and

∫
d4`

(2π)4

`µ`ν

D3
=

∫
d4`

(2π)4

1
4
gµν`2

D3
. (5.42)

The numerator therefore takes the form

/p
′
/q
′ = (/p+ /̀− x/p+ y/q)(−/q + /̀− x/p+ y/q)

= `2 − /p/q(1− x+ y + xy)− xy/q/p, (5.43)

where we have used /̀/̀ = 1
4
gµν`2γµγν = 1

4
`2γµγ

µ = `2. As a consequence, the integral
becomes

∫ 1

0

dx dy dzδ(x+ y + z − 1)

∫
d4`

(2π)4

2(`2 − /p/q(1− x+ y + xy)− xy/q/p)

D3
. (5.44)

Note that the numerator is sandwiched between ū(p)PR and v(q). Using the identity∑
all spins[ū(p)Γ1u(q)][ū(p)Γ2u(q)]

∗ = tr[Γ1(/q + mq)Γ̄2(/p + mp)], where Γ1 and Γ2 are

two 4× 4 matrices and Γ̄2 = γ0Γ†2γ
0, we see that we get terms of the form

[ū(p)PRv(q)]
∗[ū(p)PRv(q)] = tr[γ0P †Rγ

0
/qPR/p] = tr[PL/qPR/p]. (5.45)
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This leads to the identities

[ū(p)PRv(q)]
∗ [ū(p)PRv(q)] = tr[

1

2
(1 + γ5)/q/p] = 2pq,

[
ū(p)PR/p/qv(q)

]∗ [
ū(p)PR/p/qv(q)

]
= 0,

[
ū(p)PR/q/pv(q)

]∗ [
ū(p)PR/q/pv(q)

]
= tr[

1

2
(1 + γ5)/q/p/q/p]

= 4(pq)2. (5.46)

We can then replace the numerator by 2(`2 − xyMn(X1)
2). In order to solve the

integral, it can be splitted up

I1 =

∫
dx dy dzδ(x+ y + z − 1)

∫

`

2`2

D3
, (5.47)

I2 =

∫
dx dy dzδ(x+ y + z − 1)

∫

`

−2xyMn(X1)
2

D3
. (5.48)

Using the following d–dimensional integrals in Minkowski space
∫

dd`

(2π)d
1

(`2 −∆)n
=

(−1)ni

(4π)d/2
Γ(n− d/2)

Γ(n)

( 1

∆

)n−d/2
, (5.49)

∫
dd`

(2π)d
`2

(`2 −∆)n
=

(−1)n−1i

(4π)d/2
d

2

Γ(n− d/2− 1)

Γ(n)

( 1

∆

)n−d/2−1

, (5.50)

The first integral I1 reads

I1 =
2i

(4π)d/2
d

2

Γ(2− d/2)

Γ(3)

×
∫ 1

0

dx

∫ 1−x

0

dy
( µ2

(1− x− y)Mn(X1)2 − xyMk(X2)2

)2−d/2
, (5.51)

where z ≥ 0, i.e., y ≤ 1− x. We have introduced here the arbitrary mass scale µ2 to
make the integral dimensionally correct. This integral diverges at d = 4. To analyze
its behavior, one expands the integrand as well as the gamma function around the
critical point:

( 1

∆

)2−d/2∣∣∣
d=4

= 1− (2− d

2
) ln ∆ + . . . ,

Γ(x)
∣∣∣
x=0

=
1

x
− γ +O(x), (5.52)

where γ is the Euler-Mascheroni constant, γ ≈ 0.5772. Using the modified minimal
substraction scheme (MS) [132], i.e., the the renormalization scale µ e

γ
2 /(4π)

1
2 , we can

replace

Γ(2− d/2)

(4π)d/2

(µ2

∆

)2−d/2
≈ 1

(4π)2

(2

ε
− γ + ln(4π)− ln

( ∆

µ2

))

→ 1

(4π)2

(
ln

(µ2

∆

))
. (5.53)
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Here, the parameter ε = 4−d contains the divergent part of the integral. The integral
thus yields

I1 =
2i

(4π)2

∫ 1

0

dx

∫ 1−x

0

dy ln
( µ2

(1− x− y)Mk(X2)2 − xyMn(X1)2

)

=
2i

(4π)2

∫ 1

0

dx
{

(1− x)

+
1− x

Mk(X2)2 + xMn(X1)2

[
Mk(X2)

2 ln
( µ2

(1− x)Mk(X2)2

)

+ xMn(X1)
2 ln

(
− µ2

x(1− x)Mn(X1)2

)]}
. (5.54)

We are interested in the imaginary part of the amplitude, since only this part can
generate a nonzero asymmetry. Remember that in the expression for the amplitude
Eq. (5.37), there still is a second imaginary unit. Therefore, the only imaginary part
that remains in the end must result from the last term of the integral over x, since
ln(−x) = ln |x|+iπθ(x) (θ(x) denotes here and for the rest of the chapter the Heaviside
step function with θ(0) = 0):

Im I1 = −2πMn(X1)
2

(4π)2

∫ 1

0

dx
x(1− x)

Mk(X2)2 + xMn(X1)2

= − 2π

(4π)2

(1

2
+
Mk(X2)

2

Mn(X1)2
(5.55)

−Mk(X2)
2(Mn(X1)

2 +Mk(X2)
2)

Mn(X1)4
ln

(Mn(X1)
2 +Mk(X2)

2

Mk(X2)2

))
.

Note that this imaginary part is independent of µ. In a similar way, one can discuss
the second integral

I2 =
i

(4π)2

∫
dx dy dzδ(x+ y + z − 1)

xyMn(X1)
2

∆

=
i

(4π)2

∫ 1

0

dx

∫ 1−x

0

dy
xyMn(X1)

2

(1− x− y)Mk(X2)2 − xyMn(X1)2

=
iMn(X1)

2

(4π)2

∫ 1

0

dx
[ x(1− x)Mk(X2)

2

(Mk(X2)2 + xMn(X1)2)2

ln
(
− xMn(X1)

2

Mk(X2)2

)
+

x(1− x)

Mk(X2)2 + xMn(X1)2

]
. (5.56)



54 Chapter 5 Heavy Scalar Decay

The imaginary part we are looking for thus turns out to be

Im I2 = −πMn(X1)
2

(4π)2

∫ 1

0

dx
x(1− x)Mk(X2)

2

(Mk(X2)2 + xMn(X1)2)2

= − π

(4π)2

Mk(X2)
2

Mn(X1)2

[Mn(X1)
2 + 2Mk(X2)

2

Mn(X1)2

ln
(Mn(X1)

2 +Mk(X2)
2

Mk(X2)2

)
− 2

]
. (5.57)

This leads to

Im(I1 + I2) = − 1

16π

[
1− Mk(X2)

2

Mn(X1)2
ln

(
1 +

Mn(X1)
2

Mk(X2)2

)]
, (5.58)

and for Im(T ∗V) we obtain the result:

Im(T ∗V) = −Mn(X1)
2

16π

[
1− Mk(X2)

2

Mn(X1)2
ln

(
1 +

Mn(X1)
2

Mk(X2)2

)]
. (5.59)

Besides this vertex contribution to the CP–violation, we have to take wave–function
corrections into account.

5.3.2 Wave–Function Correction

In order to calculate the wave–function corrections at high energies, we treat the
leptons as massless particles. We start with the wave–function factor

W = iū(p)
[ PR
k′2 −Mk(X2)2 + iε

∫
d4q′

(2π)4

tr[PR/p
′PL/q′]

(p′2 + iε)(q′2 + iε)︸ ︷︷ ︸
=I

]
v(q). (5.60)

The integral over the Feynman parameters is

1

(p′2 + iε)(q′2 + iε)
=

∫ 1

0

dx dyδ(x+ y − 1)
1

D2
, (5.61)

�k q

p′

k′

q′

p

1

Figure 5.6: Wave–function correction for the decay of a heavy scalar with the associ-
ated momenta.
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where D is given by

D = (1− x)((q′)2 + iε) + x((q′ + k′)2 + iε) = q′2 + 2xq′k′ + xk′2 + iε

= (q′ + xk′)2 + x(1− x)Mk(X2)
2 + iε = `2 −∆. (5.62)

The numerator in Eq. (5.60) can be written as

tr[PR/p
′PL/q′] = −2p′q′ = −2(`2 + x(x− 1)k2), (5.63)

and the integral I yields

I = 2

∫ 1

0

dxµ4−d
∫

`

dd`

(2π)d
`2 + ∆

(`2 −∆)2

= 2

∫ 1

0

dx
−iµ4−d

(4π)d/2

( d
2
Γ(1− d

2
)

∆1−d/2 − ∆Γ(2− d
2
)

∆2−d/2

)

= −2i (d− 1)µ4−d

(4π)d/2

∫ 1

0

dx
Γ(1− d

2
)

∆1−d/2 . (5.64)

where we have used the relation Γ(1 + x) = xΓ(x). Expanding Γ(x) near x = −n
(n ∈ N) as

Γ(x) =
(−1)n

n!

(
1

x+ n
− γ + 1 · · ·+ 1

n
+O(x+ n)

)
, (5.65)

we get

µd−4 Γ(1− d
2
)

(4π)(d/2)

(
1

∆

)1− d
2

≈ −∆

(4π)2

(
2

ε
− ln

(
∆

µ2

)
− γ + ln(4π) + 1

)
. (5.66)

Therefore, using the MS scheme I takes in the limit d→ 4, i.e., (d− 1) → 3− ε, the
form

I =
6i

(4π)2

∫ 1

0

dx(−x(1− x)k2)

(
− ln

(
− x(1− x)k2

µ2

)
+ 1

)

− 4i

(4π)2

∫ 1

0

dx(−x(1− x)k2). (5.67)

Since the above integral I gives I = i(1/4π)2k2
[(

3 ln
( |k2|
µ2

)
+ 3iπθ(k2)− 8

)
/3 + 4/6

]
,

just the real part of I contributes to ImW . For k2 = M2
n(X1) this contribution yields

a factor

Re I =
M2

n(X1)

16π
. (5.68)

Putting everything together, we end up with

Im(T ∗W) =
Mn(X1)

2

16π

[ Mn(X1)
2

Mn(X1)2 −Mk(X2)2

]
. (5.69)

The total CP–violation is then generated by the sum Im (T ∗V + T ∗W) given in
Eqs. (5.59) and (5.69).
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5.4 CP–Asymmetry

The loop calculations above lead to the following differences in the decay widths:

∆
(n)
V = Γ(n)(X

(n)
1 → ψν)− Γ(n)(X

(n)

1 → ψν) (5.70a)

=
Mn(X1)

32π2
Im tr(Yν1Y

†
ν2
Ye1Y

†
e2

)
[
1− Mk(X2)

2

Mn(X1)2
ln

(
1 +

Mn(X1)
2

Mk(X2)2

)]
,

∆
(n)
W = −Mn(X1)

32π2
Im [tr(Yν1Y

†
ν2

) tr(Ye1Y
†
e2

)]
Mn(X1)

2

Mn(X1)2 −Mk(X2)2
. (5.70b)

The result for ∆
(n)
W holds in the limit (Mn(X1) − Mk(X2))

2 À (Γ
(n)
X1
− Γ

(k)
X2

)2. For
example in Chapters 7 and 8, we are interested in resonant mass splittings of the
order (M2

n(X1)−M2
n(X2))/M

2
n(X1) ∼ 10−14. For tr(Y †

ν1
Yν1) ' tr(Y †

ν2
Yν2), we see that

(Γ
(n)
X1
− Γ

(k)
X2

)2 ' tr(Y †
ν1
Yν1)

2

(8π)2
(Mn(X1)−Mk(X2))

2. (5.71)

Consequently, our calculation in Sec. 5.3.2 should be valid as long as tr(Y †
ν1
Yν1) '

tr(Y †
ν2
Yν2) ¿ 1 even in the resonant limit, i.e., k = n. But to be on the safe side, we

will have a closer look at the resonant limit in the next Section.
The total lepton asymmetry generated by the heavy scalar decay including both

vertex– and wave–function corrections, reads

ε
(n)
X1

=
∆

(n)
W + ∆

(n)
V

Σ
(n)
T

=
1

8π [tr(Yν1Y
†
ν1) + tr(Ye1Y

†
e1)]

×
[
Im tr(Yν1Y

†
ν2
Ye1Y

†
e2

)
(
1− Mk(X2)

2

Mn(X1)2
ln

(
1 +

Mn(X1)
2

Mk(X2)2

))

− Im [tr(Yν1Y
†
ν2

) tr(Ye1Y
†
e2

)]
( Mn(X1)

2

Mn(X1)2 −Mk(X2)2

)]
,

(5.72)

where we have used in the denominator the tree–level approximation. Note that our
result in Eq. (5.72) disagrees with the corresponding expression given in Ref. [27].
The most important difference between Eq. (5.72) and Ref. [27] is the way how the
complex conjugation has been applied to the Yukawa coupling matrices.

5.5 Resonant Limit

Our approximations for the wave–function correction in Sec. 5.3.2 break down in a
“resonant” limit (Mn(X1) − Mn(X2))

2 ≈ (Γ
(n)
X1
− Γ

(n)
X2

)2. But we are interested in
an “enhanced scenario” for lepton–asymmetry. To ensure that we are on the safe
side with our calculations, we will now repeat the calculations in an approach which
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accounts for the resonant case. The method we use is Pilaftsis’ resummation approach
for scalars [85,133,134] (for another treatment see, e.g., Ref. [135]). For two complex
scalars X1 and X2, the effective resummation approach for unstable particle mixing
can be discussed as follows. The unrenormalized fields X0

i (i = 1, 2) with masses M0
i

are expressed in terms of renormalized quantities as

X0
i =

2∑
j=1

Z
1/2
ij Xj =

2∑
j=1

(δij +
1

2
δZij)Xj (5.73)

and

(M0
i )

2 = M2
i + δM2

i . (5.74)

We can determine the wave–function and mass renormalization constants Z
1/2
ij and

δMi from renormalization conditions which are imposed on the two-point correlation
functions Πij(p

2) in some physical scheme for the transition Xj → Xi. First, we have
to calculate all the XiXj Greens functions. Then, summing up a geometric series of
self–energies Πij(p

2), the full propagators are given by the inverse propagator matrix

∆−1
ij (p2) =

(
p2 − (M0

1 )2 + Π11(p
2) Π12(p

2)
Π21(p

2) p2 − (M0
2 )2 + Π22(p

2)

)
. (5.75)

After inverting this matrix, the propagators take the forms

∆11(p
2) =

[
p2 − (M0

1 )2 + Π11(p
2)− Π12(p

2)Π21(p
2)

p2 − (M0
2 )2 + Π22(p2)

]−1

, (5.76a)

∆22(p
2) =

[
p2 − (M0

2 )2 + Π22(p
2)− Π12(p

2)Π21(p
2)

p2 − (M0
1 )2 + Π11(p2)

]−1

, (5.76b)

∆12(p
2) = −∆11(p

2)Π12(p
2)

[
p2 − (M0

2 )2 + Π22(p
2)

]−1

, (5.76c)

∆21(p
2) = −∆22(p

2)Π21(p
2)

[
p2 − (M0

1 )2 + Π11(p
2)

]−1

. (5.76d)

We therefore see that the off-diagonal resummed scalar propagators ∆12(p
2) and

∆21(p
2) can also be written as

∆12(p
2) = −

[
p2 − (M0

1 )2 + Π11(p
2)

]−1

Π12(p
2)∆22(p

2), (5.77)

∆21(p
2) = −

[
p2 − (M0

2 )2 + Π22(p
2)

]−1

Π21(p
2)∆11(p

2). (5.78)

This unrenormalized scalar propagator ∆ij(p
2) is related to the renormalized propa-

gator ∆̂ij(p
2) by

∆ij(p
2) = Z

1/2
im ∆̂mn(p

2)Z
1/2†
nj (5.79)
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and can be obtained from Eqs. (5.76a) by replacing M0
i by Mi and Πij(p

2) by Π̂ij(p
2).

As a consequence, Eq. (5.78) also holds for ∆̂ij(p
2).

The question is how to find the effective resummed decay amplitude M̂Xi
for the

decay of Xi into n light stable scalars Xi1 , . . . , Xin . We start in analogy with the LSZ
formalism [136] with the Greens function and then amputate the legs by their inverse
propagators. The procedure which can be extended to the external line describing
the XiXj system, is summarized as

M̂i... = lim
p2→M2

i

Mamp
k... Z

1/2
km ∆̂mn(p

2)Z
1/2†
nj Z

−1/2†
ji ∆̂−1

ii (p2)

= lim
p2→M2

i

(
Mamp

k... Z
1/2
ki −Mamp

k... Z
1/2
km

Π̂mi(p
2)(1− δmi)

p2 −M2
m + Π̂mm(p2)

)

= Mi... −Mj...
Π̂ji(M

2
i )(1− δij)

M2
i −M2

j + Π̂jj(M2
i )
, (5.80)

where Mi... and Mj... are the renormalized transition elements evaluated in the stable
particle approximation. It is important to notice that the on–shell renormalized self–
energies M̂2

j contain nonvanishing absorptive parts, since renormalization can only
modify dispersive parts. This is due to the fact that the counter term Lagrangian must
be Hermitian in contrast to absorptive parts which are anti-Hermitian. As it can be
easily seen, Xi... is analytic in the limit M2

i →M2
j because of the remaining imaginary

term i Im Π̂jj(M
2
i ) in the denominator. It must be stressed that the decaying particle

cannot serve as an initial state. Consequently, the resummed decay amplitude must
be regarded as being effectively embedded into the resummed S-matrix element. The
resulting S-matrix describes the dynamics of the following process: Some asymptotic
states produce the considered unstable particle which resides only in the intermediate
state. Then it decays subsequently either directly or indirectly through mixing into
some observed final states which are stable.

Given the effective resummed decay amplitude in Eq. (5.80), we can obtain an
equation for the transition Mεw

1 amplitude responsible for the CP–violation induced
by the wave–function correction:

Mεw

1 = Y †
ν1
uνPRvψ − iY †

ν2
uνPR[p2 −M2

2 + iΠabs
22 (p2)]−1Πabs

21 (p2)vψ, (5.81)

where the superscript “abs” denotes the absorptive part The absorptive part of the
one–loop transitions is

Πabs
ij (p2) =

tr(Yei
Y †
ej

)

16π
M2(Xi), (5.82)

such that

Mεw

1 = uνPRvψ

[
Y †
ν1
− i

Y †
ν2

tr(Ye1Y
†
e2

)

16π

M2
1 (M2

1 −M2
2 − i

tr(Ye2Y
†
e2

)

16π
M2

1 )

(M2
1 −M2

2 )2 +
tr(Ye2Y

†
e2

)2M4
1

(16π)2

]
. (5.83)
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The resummed amplitude for the CP-transformed decay Mεw

1 is

Mεw

1 = Y †
ν1
uψPLvν + iY †

ν2
uψΠabs

12 (p2)[p2 −M2
2 + iΠabs

22 (p2)]−1PLvν

= Y †
ν1
uψPLvν − iY †

ν2
uνPL[p

2 −M2
2 + iΠabs

22 (p2)]−1Π
abs

21 (p2)vψ, (5.84)

where we have used that Π
abs

ij (p2) = Πabs ∗
ij (p2). In the resummation approach, the

difference in the decay widths of scalar and antiscalar due to the wave–function cor-
rection is

∆
(n)
W = −Mn(X1)

32π2
Im [tr(Yν1Y

†
ν2

) tr(Ye1Y
†
e2

)]

× M2
n(X1)

M2
n(X1)−M2

n(X2) +
tr(Ye2Y

†
e2

)4

(16π)2
M4

n(X1)

M2
n(X1)−M2

k (X2)

(5.85)

It has to be emphasized here that due to the additional term in the denominator,

0.5 1 1.5 2

−20

20

40

fRes(x) = 1
1−x+a 1

1−x

Figure 5.7: The function fRes(x) = 1/[1− x+ a/(1− x)] in the range [0, 2], where the
turquoise, blue, and black refer to a = 10−2, a = 10−3, and a = 0, respectively.

∆
(n)
W is well–behaved in the deeply resonant limit (cf.Fig. 5.7), i.e.,

lim
Mn(X1)→Mn(X2)

M2
n(X1)

M2
n(X1)−M2

n(X2) +
tr(Ye2Y

†
e2

)4

(16π)2
M4

n(X1)
M2

n(X1)−M2
n(X2)

= 0. (5.86)

In particular, for a typical number tr(Ye2Y
†
e2

) ∼ 10−24 (see Chapters 7 and 8) and a
relative mass splitting between X1 and X2 of the order of ∼ 10−14, we can estimate

tr(Ye2Y
†
e2

)2

(16π)2

M4
n(X1)

(M2
n(X1)−M2

k (X2))2
< 10−28. (5.87)

For this reason, we can neglect in Eq. (5.85) the additional term in the denominator
and thus reproduce our original result in Eq. (5.70b).
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Chapter 6

Symmetry Breaking by a Bulk
Scalar

In this Chapter, we will apply the two ideas of LR symmetry and extra dimensions,
introduced in Chapter 4, to a scalar bi–doublet of the LR symmetric model that
propagates on an interval in 5D flat space. In particular, we determine the minimum
of the scalar potential after dimensional reduction in the 4D effective theory. The
symmetry breaking GLR → SU(2)D × U(1)B−L induced by the bulk scalar VEV
serves as an origin of EWSB. We also analyze the role of brane–localized operators.

6.1 The Potential

Consider a single 5D scalar bi–doubletX transforming underGLR asX ∼ (1
2
, 1

2
, 0) that

propagates on an interval as shown in Fig. 6.1. The coordinate of the 5th dimension
is y ∈ [0, πR], where πR is the size of the extra dimension. We impose on X the
following Neumann boundary conditions (BCs)

at y = 0 : ∂yX|y=0 = 0 and at y = πR : ∂yX|y=πR = 0. (6.1)

This ensures that there are scalar zero modes which can be identified with SM–like
Higgs fields that acquire nonzero VEVs of the order of the EW scale ∼ 102 GeV. The
standard flat space KK expansion (see Sec.4.2.1) for the scalar X, consistent with the
BCs in Eq. (6.1), is

X(xµ, y1) =
1√
πR

[
X(0)(xµ) +

√
2

+∞∑
n=1

X(n)(xµ) cos
(ny1

R

)]
, (6.2)

where X(n)(xµ) is the nth KK mode of X and X(0)(xµ) is the zero mode, both having
mass dimension +1. The most general 5D potential for the bi–doublet X is

V (X) = −
∑
i,j

µ2
ij trX†

iXj+
∑

i,j,k,l

λijkl trX
†
iXj trX†

kXl+
∑

i,j,k,l

λ′ijkl trX
†
iXjX

†
kXl, (6.3)
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πR

X

0
y

Figure 6.1: 5D scalar bi-doublet X ∼ (1
2
, 1

2
, 0) propagating on an interval.

where i, j, k, l = 1, 2, and X1 and X2 are defined as X1 = X and X2 = X̃, respectively.
(Thenotation for X1,2 here should not be confused with that of Chapter 5). The
potential V in Eq. (6.3) consists of 22 + 2 · 24 = 36 terms. In Eq. (6.3), it is obvious
we must have

λijkl = λklij. (6.4)

Since the fields Xi transform under LR symmetry as Xi ↔ X†
i , we find

µij = µji,

λ1212 = λ2121, λiijk = λiikj, λijkk = λjikk,

λ̃ijkl = λ̃lijk = λ̃klij = λ̃jkli. (6.5)

These identities are a consequence of the reality of V . The parameters µij have mass

dimension +1, while λijkl and λ̃ijkl have mass dimension −1.
Now, we go from the 5D description of the scalars to the 4D effective theory. The

4D effective Lagrangian for the scalar Leff
scalar =

∫ πR

0
dy[Lkin

scalar − V (X)] is given by

Leff
scalar = −Veff(X) +

+∞∑
n=0

{(
K +

K ′
X

πR

)
tr

[(
DµX

(n)
)†
DµX(n)

]

− K
( n

πR

)2

trX(n)†X(n)

}
, (6.6)

The scalar kinetic part of the Lagrangian is invariant under the Z2 interchange sym-
metry X ↔ X̃, i.e.,

Lkin
scalar ⊃ tr[(DµX)†DµX] = tr[(DµX̃)†DµX̃], (6.7)

where the covariant derivative Dµ is defined by

DµX = ∂µX − ig

2
[σaA

a
LX −XσaA

a
R]. (6.8)

In this equation, the index a runs over 1, 2, 3. From the identities σ2
a = diag(1, 1) and

σ2σaσ2 = −σ∗a it follows that

DµX̃ = ∂µ(σ2X
∗σ2)− ig

2
[σaA

a
Lσ2X

∗σ2 − σ2X
∗σ2σaA

a
R]

= σ2[∂µX
∗ +

ig

2
[σ∗aA

a
LX

∗ −X∗σ∗aA
a
R]σ2 = σ2(DµX)∗σ2. (6.9)
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The Lagrangian thus satisfies

Lkin = tr[(DµX̃)†DµX̃] = tr[(σ2(DµX)∗σ2)
†σ2(D

µX)∗σ2]

= tr[(DµX)†(DµX)]∗ = tr[(DµX)†DµX], (6.10)

where we have used in the last step that Lkin is real. The 4D effective potential Veff(X)
for all the KK modes including the zero mode reads

Veff(X) = −
∑
n

∑
i,j

µ2
ij trX

(n)
i

†
X

(n)
j +

∑
m,n,p,q

∑

i,j,k,l

λmnpqijkl trX
(m)
i

†
X

(n)
j trX

(p)
k

†
X

(q)
l

+
∑
m,n,p,q

∑

i,j,k,l

λ̃mnpqijkl trX
(m)
i

†
X

(n)
j X

(p)
k

†
X

(q)
l , (6.11)

where, in the notation of Eq. (6.3), X
(n)
i is the nth KK mode ofXi, and the summation

indices run over i, j, k, l = 1, 2, and m,n, p, q = 0, 1, . . . ,∞. In Eq. (6.11), the mass

squares µ2
ij are the same as in Eq. (6.3), whereas λmnpqijkl and λ̃mnpqijkl are dimensionless

parameters, which are related to λijkl and λ̃ijkl in Eq. (6.3) by

λmnpqijkl = λijkl
1

(πR)2
amanapaq

∫ πR

0

dy cm(y)cn(y)cp(y)cq(y), (6.12a)

λ̃mnpqijkl = λ̃ijkl
1

(πR)2
amanapaq

∫ πR

0

dy cm(y)cn(y)cp(y)cq(y), (6.12b)

where we have introduced cr(y) = cos(ry/R), for r = m,n, p, q, as well as as = 1, for

s = 0, and as =
√

2, for s > 0. If, in the 4D effective theory, λmnpqijkl and λ̃mnpqijkl are

of order one, while the 5D parameters λijkl and λ̃ijkl are of the order of the size of

the extra dimension, i.e., λijkl, λ̃ijkl ∼ πR. In the following, we will assume that K
(which is dimensionless) and K ′

X (which has mass dimension −1) are given by

K = O(1) and K ′
X ∼ 1/M∗, (6.13)

where for one flat extra dimension, i.e., δ = 1, M∗ = (M2
Pl/R)1/3 is the fundamental

5D Planck scale and MPl ' 1018 GeV is the usual 4D Planck scale. This is a general
feature of theories with extra dimensions: The higher dimensional fundamental scale
is lowered in the effective theory (cf. Sec. 4.2.2). Assuming, e.g., 1/R ' 1 TeV, we
have M∗ ' 1011 GeV.

Now, we have to remember that there are also scalar mass terms arising from the
bulk kinetic terms. We denote by M2

n(X) the mass-squared of the nth KK-mode X(n).
In Eq. (6.6), we canonically normalize the kinetic terms of the fields X by applying

the field-redefinition X → X ′ = [K+(K ′
X/πR)]

1
2X. Setting for simplicity K = 1 and
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using a Taylor expansion, we find

trX(n)†X(n) =
[
1− K′X

πR
+ . . .

]
trX ′(n)†X ′(n), (6.14a)

trX(m)†X(n)trX(p)†X(q) =
[
1− 2

K′X
πR

+ . . .
]
trX ′(m)†X ′(n)trX ′(p)†X ′(q), (6.14b)

trX(m)†X(n)X(p)†X(q) =
[
1− 2

K′X
πR

+ . . .
]
trX ′(m)†X ′(n)X ′(p)†X ′(q), (6.14c)

where the dots denote higher powers of K ′
X/πR. For 1/R ' 1 TeV and M∗ '

1011 GeV, a mass splitting of the order K ′
X/πR ∼ 10−9 is introduced. For our

discussion of the potential in this Chapter we can neglect these small corrections safely,
because of their smallness compared to the absolute mass of the scalars. However,
later on they will become important and lead to resonant expressions in the equations
for the generation of the lepton asymmetry. It is convenient at this point to redefine
the effective potential in the form

V ′
eff(X) = Veff(X) +K

( n

πR

)2

trX(n)†X(n). (6.15)

Notice that calculating the following integrals X(n) in the bulk kinetic term has no
subscript due to the fact that this term is invariant under X

(n)
1 ↔ X

(n)
2 . In order to

write down an explicit expression of the 4D effective potential, we have to evaluate
integrals over products of cosines up to the order of four. For these integrals, we can
take advantage of the following identities in terms of delta functions:

∫ πR

0

cos
(ny
R

)
dy = 0, (6.16a)

∫ πR

0

cos
(ny
R

)
cos

(my
R

)
dy =

1

2
πR∆(n,m), (6.16b)

∫ πR

0

cos
(ny
R

)
cos

(my
R

)
cos

( ly
R

)
dy =

1

4
πR∆(n,m, l), (6.16c)

∫ πR

0

cos
(ny
R

)
cos

(my
R

)
cos

( ly
R

)
cos

(ky
R

)
dy =

1

8
πR∆(n,m, l, k), (6.16d)

where we have used that

∆(n,m) ≡ δ(n−m), (6.17a)

∆(n,m, l) ≡ δ(n+m− l) + δ(n−m+ l) + δ(n−m− l), (6.17b)

∆(n,m, l, k) ≡ δ(n+m+ l − k) + δ(n+m− l + k) + δ(n+m− l − k)

+ δ(n−m+ l + k) + δ(n−m+ l − k) + δ(n−m− l + k)

+ δ(n−m− l − k). (6.17c)
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As a consequence, Eq. (6.11) becomes

V ′
eff(X) =

∫ πR

0

V (X) dy =

−
∑
i,j

µ2
ij

{
trX

(0)†
i X

(0)
j +

∑
n,m

trX
(n)†
i X

(m)
j ∆nm

}

+
∑
n

K
( n

πR

)2

trX
(n)
1

†
X

(n)
1

+
∑

i,j,k,l

λijkl

{
1

(πR)
trX

(0)†
i X

(0)
j trX

(0)†
k X

(0)
l

+
1

πR

∑
n,m

[
trX

(0)†
i X

(0)
j trX

(n)†
k X

(m)
l ∆nm + all permutations

]

+
1√
2πR

∑
n,m,p

[
trX

(0)†
i X

(n)
j trX

(m)†
k X

(p)
l ∆nmp + all permutations

]

+
1

2πR

∑
n,m,p,q

trX
(n)†
i X

(m)
j trX

(p)†
k X

(q)
l ∆nmpq

}

+
∑

i,j,k,l

λ̃ijkl

{
1

(πR)
trX

(0)†
i X

(0)
j X

(0)†
k X

(0)
l

+
1

πR

∑
n,m

[
trX

(0)†
i X

(0)
j X

(n)†
k X

(m)
l ∆nm + all permutations

]

+
1√
2πR

∑
n,m,p

[
trX

(0)†
i X

(n)
j X

(m)†
k X

(p)
l ∆nmp + all permutations

]

+
1

2πR

∑
n,m,p,q

trX
(n)†
i X

(m)
j X

(p)†
k X

(q)
l ∆nmpq

}
. (6.18)

Here, “all permutations” refers to all possible permutations between the zero mode
and the higher KK modes. In this context, we are interested in VEVs of the form

〈X(0)〉 = 〈X̃(0)∗〉 = κX · diag(1, 1), 〈X(n)〉 = 〈X̃(n)〉 = 0, (6.19)

where the parameter κX is real and n = 1, . . . ,∞. In Eq. (6.19), only the zero
modes X(0) acquire nonzero VEVs. As we will demonstrate next, the VEVs of the
zero modes X(0) in Eq. (6.19) lead in the bulk to the symmetry breaking GLR →
SU(2)D × U(1)B−L, where SU(2)D is the diagonal subgroup of SU(2)L × SU(2)R.

6.2 Extremum of the Potential

In order to see that the VEVs in Eq. (6.19) indeed correspond to a local minimum,
we have to analyze the effective 4D potential in more detail. What we want to show



66 Chapter 6 Symmetry Breaking by a Bulk Scalar

is that the potential has a local minimum for the VEVs given in Eq. (6.19). Thus, by
keeping in mind the simple structure of these VEVs, which are mostly zeros, one can
reduce the complexity of this discussion significantly.

As a first step, we split the scalars into real and imaginary parts:

X1 = X =

(
X11 X12

X21 X22

)
=

(
R11 R12

R21 R22

)
+ i

(
I11 I12

I21 I22

)

X2 = X̃ = σ2X
∗σ2

=

(
X∗

22 −X∗
21

−X∗
12 X∗

11

)
=

(
R22 −R21

−R12 R11

)
+ i

(−I22 I21

I12 −I11

)
. (6.20)

Thus, we can describe each pair of scalars X and X̃ in terms of eight independent
parameters. Now, we can identify 16 structurally different extremizing conditions,
which take the form

∂V ′
eff(X)

∂R
(0)
ab

∣∣∣∣∣
VEVs

=
∂V ′

eff(X)

∂I
(0)
ab

∣∣∣∣∣
VEVs

=
∂V ′

eff(X)

∂R
(r)
ab

∣∣∣∣∣
VEVs

=
∂V ′

eff(X)

∂I
(r)
ab

∣∣∣∣∣
VEVs

= 0, (6.21)

where the indices a, b, and r run over a, b = 1, 2 and r = 1, 2, . . . ,∞. Note that only
squared and quartic terms appear in the potential. It is important for our further
analysis to notice that there are no cubic terms in X

(0)
i , since these are forbidden

by the orthogonality of the y–integration. We can identify the basic building–blocks
which build up the complete potential as

trA†B = tr
[(
AR

)T
− i

(
AI

)T][
BR + iBI

]

= tr

{(
AR

)T
BR +

(
AI

)T
BI + i

[(
AR

)T
BI −

(
AI

)T
BR

]}

=
2∑

a,b

{
ARabB

R
ab + AIabB

I
ab + i

[
ARabB

I
ab − AIabB

R
ab

]}
, (6.22a)

trA†B trC†D =
2∑

a,b

{
ARabB

R
ab + AIabB

I
ab + i

[
ARabB

I
ab − AIabB

R
ab

]}

{
CR
abD

R
ab + CI

abD
I
ab + i

[
CR
abD

I
ab − CI

abD
R
ab

]}
, (6.22b)

trA†BC†D =
(
A11B11 + A21B21

)(
C11D11 + C21D21

)

+
(
A11B12 + A21B22

)(
C12D11 + C22D21

)

+
(
A12B11 + A22B21

)(
C11D12 + C21D22

)

+
(
A12B12 + A22B22

)(
C12D12 + C22D22

)
, (6.22c)



6.2 Extremum of the Potential 67

where A,B,C, and D, are arbitrary complex 2× 2 matrices and the indices R and I
denote the real and the imaginary parts, respectively. The product AabBab is given by
AabBab = ARabB

R
ab+AIabB

I
ab+i

[
ARabB

I
ab−AIabBR

ab

]
. Considering derivatives with respect

to R
(0)
ab or I

(0)
ab , we see that terms containing solely either X

(0)
1 or X

(0)
2 can be nonzero,

i.e., we are left with the 8 extremizing conditions

∂V ′0
eff(X)

∂R
(0)
ab

∣∣∣∣∣
VEVs

=
∂V ′0

eff(X)

∂I
(0)
ab

∣∣∣∣∣
VEVs

= 0, (6.23)

where

V ′0
eff(X) = −

∑
i,j

µ2
ijtrX

(0)†
i X

(0)
j +

1

(πR)

∑

i,j,k,l

{
λijkltrX

(0)†
i X

(0)
j trX

(0)†
k X

(0)
l

+ λ̃ijkl trX
(0)†
i X

(0)
j X

(0)†
k X

(0)
l

}
. (6.24)

This result is a consequence of the fact that after differentiating with respect to R
(r)
ab

or I
(r)
ab , only terms which are linear in X

(0)
1 or X

(0)
2 can be nonzero. However, as

mentioned above, there are no such terms, i.e., the extremizing conditions

∂V ′
eff(X)

∂R
(r)
ab

∣∣∣∣∣
VEVs

=
∂V ′

eff(X)

∂I
(r)
ab

∣∣∣∣∣
VEVs

= 0, (6.25)

are always satisfied for the VEVs given here. Now, let us have a closer look at the
non-vanishing derivatives in Eqs. (6.23). In Eqs. (6.22a) – (6.22c), only terms linear
in the off–diagonal elements could be nonzero. Again, there are no such terms. The
obvious consequence is that

for a 6= b :
∂V ′

eff(X)

∂R
(0)
ab

∣∣∣∣∣
VEVs

=
∂V ′

eff(X)

∂I
(0)
ab

∣∣∣∣∣
VEVs

= 0, (6.26)

is always satisfied by construction. Furthermore, when taking the derivative with
respect to the diagonal elements, we can ignore every term containing at least one
off–diagonal element, since these will be zero anyway.

Thus, the rules for the remaining equations are: When differentiating with respect
to the real parts, all terms containing one or more imaginary parts will vanish for our
VEVs. In the case of derivatives for the imaginary parts, only terms linear in these
can survive. The fact that there are no terms linear in the imaginary parts implies
that

∂V ′0
eff(X)

∂I
(0)
11

∣∣∣∣∣
VEVs

=
∂V ′0

eff(X)

∂I
(0)
22

∣∣∣∣∣
VEVs

= 0 (6.27)
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is always satisfied. Therefore, our only non–trivial extremum conditions are

∂V ′0
eff(X)

∂R
(0)
11

∣∣∣∣∣
VEVs

=
∂V ′0

eff(X)

∂R
(0)
22

∣∣∣∣∣
VEVs

= −2
∑
i,j

µ2
ijκ+

4

(πR)

∑

i,j,k,l

(2λijkl + λ̃ijkl)κ
3

= Aκ+ (B + C)κ3 = 0, (6.28)

where we have used the substitution A = −2
∑

i,j µ
2
ij, B = 4

(πR)

∑
i,j,k,l 2λijkl, and

C = 4
(πR)

∑
i,j,k,l λ̃ijkl. Apart from the trivial and undesirable solutions κ = 0 or

A = B + C = 0, our extremizing conditions in Eq. (6.28) are solved by

κ = ±
√

−A
B + C

. (6.29)

VEVs are in general complex, but we can always perform a global phase rotation and
absorb one phase into the fermion fields. The parameter κ can consequently, without
loss of generality, be assumed to be real, in other words

−A
B + C

> 0 and B + C 6= 0. (6.30)

In Sec. 6.3, we will find a whole range of parameters for λijkl ∼ λ̃ijkl, where B+C 6= 0,

since B + C is linear in λijkl and λ̃ijkl.

6.3 Minimum of the Potential

For a local minimum of the potential V ′
eff, the symmetric Hessian matrix

H
(
V ′

eff

)
=

(
∂2V ′

eff

∂A
(n)
a ∂A

(m)
c

)
(6.31)

must be positive semi–definite, i.e., the eigenvalues ρi of H
(
V ′

eff

)
have to satisfy

ρi ≥ 0. In Eq. (6.31), we have A
(n)
1 = R

(n)
11 , A

(n)
2 = R

(n)
12 , A

(n)
3 = R

(n)
21 , A

(n)
4 = R

(n)
22 ,

A
(n)
5 = I

(n)
11 , A

(n)
6 = I

(n)
12 , A

(n)
7 = I

(n)
21 , A

(n)
8 = I

(n)
22 , and the indices run over n,m =

1, 2, . . . ,∞. The explicit results for the 2nd derivatives of V ′
eff in Eq. (6.31) are given

in the Appendix B.1. The Hessian matrix of these derivatives is of the block–diagonal
form

H
(
V ′

eff

)
=




H(0)

H(1) 0
. . .

0 H(n)

. . .



. (6.32)
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Due to this block–structure, H can be diagonalized by Hdiag = S†HS, where S is
also a block–diagonal matrix. Consequently, we can consider for every KK mode a
diagonalization equation of the type

H
(i)
diag = S(i)†H(i)S(i), (6.33)

where the index i runs over i = 0, 1, 2, . . . ,∞. The symmetric matrix H(0) is given by

H(0) =




a(0) 0 0 b(0) 0 0 0 0
c(0) c(0) 0 0 0 0 0

c(0) 0 0 0 0 0
a(0) 0 0 0 0

d(0) 0 0 d(0)

c(0) −c(0) 0
c(0) 0

d(0)




, (6.34)

where a(0), b(0), c(0), and d(0) are defined in Appendix B.1 and the corresponding
eigensystem is

ρ
(0)
1 = a(0) + b(0) ↔ v1 = 1√

2
(1, 0, 0, 1, 0, 0, 0, 0)T ,

ρ
(0)
2 = 2c(0) ↔ v3 = 1√

2
(0, 1, 1, 0, 0, 0, 0, 0)T ,

ρ
(0)
3 = 0 ↔ v4 = 1√

2
(0,−1, 1, 0, 0, 0, 0, 0)T ,

ρ
(0)
4 = a(0) − b(0) ↔ v2 = 1√

2
(−1, 0, 0, 1, 0, 0, 0, 0)T ,

ρ
(0)
5 = 2d(0) ↔ v5 = 1√

2
(0, 0, 0, 0, 1, 0, 0, 1)T ,

ρ
(0)
6 = 0 ↔ v7 = 1√

2
(0, 0, 0, 0, 0, 1, 1, 0)T ,

ρ
(0)
7 = 2c(0) ↔ v8 = 1√

2
(0, 0, 0, 0, 0,−1, 1, 0)T ,

ρ
(0)
8 = 0 ↔ v6 = 1√

2
(0, 0, 0, 0,−1, 0, 0, 1)T .

(6.35)

The second derivatives of the higher KK modes can be arranged as

H(n) =




a(n) 0 0 b(n) 0 0 0 0
c(n) e(n) 0 0 0 0 0

c(n) 0 0 0 0 0
a(n) 0 0 0 0

d(n) 0 0 f (n)

c(n) −e(n) 0
c(n) 0

d(n)




, (6.36)
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where n ≥ 1 and a(n), b(n), c(n), d(n), e(n), and f (n) are defined in Appendix B.1. This
gives the following eigensystem with eight nonzero eigenvalues:

ρ
(n)
1 = a(0) + b(0) + 2K

(
n
πR

) ↔ v1 = 1√
2
(1, 0, 0, 1, 0, 0, 0, 0)T ,

ρ
(n)
2 = 2c(0) + 2K

(
n
πR

) ↔ v3 = 1√
2
(0, 1, 1, 0, 0, 0, 0, 0)T ,

ρ
(n)
3 = 2K

(
n
πR

) ↔ v4 = 1√
2
(0,−1, 1, 0, 0, 0, 0, 0)T ,

ρ
(n)
4 = a(0) − b(0) + 2K

(
n
πR

) ↔ v2 = 1√
2
(−1, 0, 0, 1, 0, 0, 0, 0)T ,

ρ
(n)
5 = 2d(0) + 2K

(
n
πR

) ↔ v5 = 1√
2
(0, 0, 0, 0, 1, 0, 0, 1)T ,

ρ
(n)
6 = 2K

(
n
πR

) ↔ v7 = 1√
2
(0, 0, 0, 0, 0, 1, 1, 0)T ,

ρ
(n)
7 = 2c(0) + 2K

(
n
πR

) ↔ v8 = 1√
2
(0, 0, 0, 0, 0,−1, 1, 0)T ,

ρ
(n)
8 = 2K

(
n
πR

) ↔ v6 = 1√
2
(0, 0, 0, 0,−1, 0, 0, 1)T .

(6.37)

For the zero mode (n = 0), we get no further contributions from the kinetic terms.
Hence, we find – in contrast to the higher modes – three Goldstone bosons for the
zero mode. These are eaten to give mass to three spin–1 vector states of SU(2)L ×
SU(2)R/SU(2)D in the course of the gauge symmetry breaking SU(2)L × SU(2)R →
SU(2)D. H is positive semi–definite when the potential satisfies the conditions

a(0) > |b(0)|, c(0) > 0, d(0) > 0. (6.38)

Let us have a more detailed look at the definition of these eigenvalues in Eq. (B.7) –
(B.10): The parameters µij and the factor 1/R have mass dimension +1, while the pa-

rameters λijkl and λ̃ijkl have mass dimension −1. Furthermore, we see from Eq. (6.29)
that the VEV has mass dimension +1 (as it must be), and the eigenvalues have mass
dimension +2, since they are mass squares.

In order to discuss the parameter space in which the minimum conditions of Eq. (6.38)
are satisfied, we can first consider the simple case of the SM Higgs potential (cf. Sec. (2.1.2).
The SM Higgs VEV remains constant, when we change µ and λ to the same extent,
i.e., there are two extreme limits: (i) µ2 → 0 and at the same time λ → 0 and (ii)
µ2 → ∞ and simultaneously λ → ∞. However, since the Higgs mass in the SM is
given by mH =

√
2µ2 and we have a lower limit of mH > 114 GeV from LEP data,

we know that (i) becomes unphysical when µ2 becomes too small. For case (ii), which
is known as the non–linear sigma model, we encounter the problem that the theory
becomes non–perturbative for large values of λ.

In the following, we will show that it is always possible to find a reasonable pa-
rameter space, where Eqs. (6.28) and (6.38) are satisfied. As the radius of the extra
dimension we will take 1/R ∼ 100 TeV. Analogous to the SM case, we substitute

λijkl/(πR) ' λ̃ijkl/(πR) = r1
0 and µ2

ij = (r100
1 × 100 GeV)2, where r1

0 and r100
1 denote

random numbers in the range [0, 1] and [1, 100], respectively. In Eq. (B.11), one can

convince oneself that the scaling of λijkl and λ̃ijkl does not much affect the minimum
conditions for given µ2

ij, but it has a significant effect on the VEV. Even if the ab-
solute scaling is not crucial for the minimum conditions, the relative scaling is more
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important, since it determines the sign of the eigenvalues of the Hessian matrix. We
can analyze the parameter space for the minimum in more detail by using a large
setup of random numbers for µij, λijkl, and λ̃ijkl. Fig. 6.2 shows the parameter range

of the VEV κ, while Fig. 6.3 show the range of the eigenvalues ρ
(0)
1 , ρ

(0)
2 , ρ

(0)
4 , and

ρ
(0)
5 , respectively. We have used here 104 random sets. The picture does not change

much, if we enlarge the number of random sets up to 106. In this case, the range of
the VEV is

κ ∈ [3.44× 1010, 4.02× 1012], (6.39)

and the ranges of the eigenvalues are

ρ
+(0)
1 ∈ [2.28× 1023, 1.59× 1027], ρ

−(0)
1 ∈ ∅, (6.40)

ρ
+(0)
2 ∈ [4.96× 1020, 6.24× 1026], ρ

−(0)
2 ∈ [−5.14× 1026,−6.55× 1019],

ρ
+(0)
4 ∈ [8.25× 1019, 5.63× 1026], ρ

−(0)
4 ∈ [−5.27× 1026,−9.50× 1019],

ρ
+(0)
5 ∈ [3.64× 1019, 6.19× 1026], ρ

−(0)
5 ∈ [−6.71× 1026,−3.56× 1020],

where ρ
±(0)
i denotes the positive (+) negative (-) values of the ith eigenvalues. Obvi-

ously, ρ
(0)
1 is positive for every setup. But for ρ

(0)
2 , ρ

(0)
4 , and ρ

(0)
5 , the parameter space

seems to be approximately symmetric with respect to zero. We thus have to count
all the random number sets for which all eigenvalues are positive. For 104 and 106

random sets we find about 4×103 and 4×106 cases, where all eigenvalues are positive.
In order to see that the sign of the eigenvalues mainly depends on the relative ratio

of the µij, we can assume λijkl ' λ̃ijkl ' 1 and view the eigenvalues ρ
(0)
1 , ρ

(0)
2 , ρ

(0)
4 , and

ρ
(0)
5 , as functions of µ12 and µ11 = µ22. This is shown in Fig. 6.4. Obviously, we can

always find a parameter space where all eigenvalues are positive. But this positiveness
is mainly determined by the µij. In contrast to the zero mode, the mass matrix H(n)

(n ≥ 1) is positive definite if

a(0) + 2K
( n

πR

)
> |b(0)|, c(0) +K

( n

πR

)
> 0, d(0) +K

( n

πR

)
> 0, K > 0, (6.41)

which is always satisfied as long as the compactification scale 1/R is large enough and
K > 0. As a consequence, the mass squares are

M2
n(X) =

[
− µ2 +

( n

πR

)2][
1− K ′

X

πR
+ . . .

]
, (6.42)

where n ≥ 0 and the mass–square µ2 is determined by the coefficients in Eq. (6.18).

6.4 Brane–Localized Operator

The VEV in Eq. (6.19) is only determined up to a unitary transformation. This
freedom can be fixed by introducing a suitable operator which can become important
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Figure 6.2: Different values of the VEV κ, using 104 random sets for the parameters
µ2
ij and λijkl and λ̃ijkl. The x–axis denotes the number n of the set. Only random

number sets have been taken into account, for which all eigenvalues are non–negative.

for the vacuum alignment of several Higgs fields. We have the freedom to write down
explicit terms on the branes, as long as they leave the local symmetries on the branes
unbroken. At y = πR, let us therefore add the operator

VB(X) = δ(y − πR)
∑
i,j

[−µ2
i tr(Xi) + λij tr(Xi)tr(Xj) + λ̃ij tr(XiXj)], (6.43)

which leaves SU(2)D invariant. In Eq. (6.43), µi, λij, and λ̃ij are real, such that these
parameters satisfy

µi = µj, λii = λjj, λij = λji, λ̃ii = λ̃jj, and λ̃ij = λ̃ji. (6.44)

Now, we split the operator into VB(X) = AB(X)+BB(X), where BB(X) only consists

of mixed terms in X and X̃, while AB(X) contains all the remaining terms. After
integrating over y, we get the 4D effective operator VBeff(X) = ABeff(X)+BBeff(X). For

the explicit expressions for ABeff(X) =
∫ πR

0
dyAB(X) and BBeff(X) =

∫ πR

0
dyBB(X)

see Eqs. (B.21) and (B.22) in Appendix B.2. From the extremizing conditions of

VB(X) in Appendix B.2, it can be seen that for real VEVs, 〈X(n)〉 = 〈X̃(n)〉 = 0
(n = 1, . . . ,∞) and λ11 6= λ12 can only be satisfied, if the off–diagonal VEVs are

〈R(0)
12 〉 = 〈R(0)

21 〉 = 0. (6.45)
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Figure 6.3: Different values of the zero–mode eigenvalues ρ
(0)
1 (a), ρ

(0)
2 (b), ρ

(0)
4 (c),

and ρ
(0)
5 (d) , using 104 random sets for the parameters µ2

ij and λijkl and λ̃ijkl. The

x–axis shows the label n of the sets. For ρ
(0)
1 , there are only positive values, while all

the other eigenvalues are almost symmetrically arranged around zero. For 4×103 sets
all eigenvalues are simultaneously non-negative. Thus, we see that there is always a
reasonable parameter space for which the minimum conditions given in Eq. (6.38) are
satisfied.
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Figure 6.4: Different values of the zero–mode eigenvalues ρ
(0)
1 (a), ρ

(0)
2 (b), ρ

(0)
4 (c),

and ρ
(0)
5 (d) as functions of µ12 and µ11 = µ22, assuming λijkl ' λ̃ijkl ' 1. As we can

see ρ
(0)
1 is always positive, while the signs of all the other eigenvalues crucially depend

on µ12 and µ11 = µ22. Again, we can always find an reasonable space of parameters
for which all eigenvalues are non-negative.
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The diagonal VEVs have to satisfy

−µ2
1

2√
πR

+
4

πR

[
(λ11 + λ12 + λ̃11)〈R(0)

11 〉+ (λ11 + λ12 + λ̃12)〈R(0)
22 〉

]
= 0, (6.46)

−µ2
1

2√
πR

+
4

πR

[
(λ11 + λ12 + λ̃11)〈R(0)

22 〉+ (λ11 + λ12 + λ̃12)〈R(0)
11 〉

]
= 0, (6.47)

for µ1 6= 0. Since 〈R(0)
11 〉 and 〈R(0)

22 〉 satisfy the same equations, they must be equal:

〈R(0)
11 〉 = 〈R(0)

22 〉 = κ, (6.48)

where

κ =

√
πR

2

µ2
1

2(λ11 + λ12) + λ̃11 + λ̃12

. (6.49)

Consequently, we can see that 2(λ11 +λ12)+ λ̃11 + λ̃12 6= 0 must hold for an extremum.
Actually, the VEV also should not be close to this pole in order to be physical.

We thus conclude that the brane–localized potential VBeff aligns the VEV of X(0)

such that it is proportional to the identity matrix, i.e.,

〈X(0)〉 = κX · diag(1, 1). (6.50)

The presence of the operator VBeff(X) therefore completely fixes the structure of the
VEVs. In order to check whether this potential really has a minimum for this VEVs,
we will next calculate the Hessian matrix for the total potential.

6.5 Minimum of the Total Potential

In order to discuss the minimum of the total potential V total
eff = (V ′

eff + VBeff), we
will start with the minimum of VBeff. We identify 208 structurally different second
derivatives. From Eqs. (B.21) and (B.22), we can see that there is no mixing between
real and imaginary parts due to Hermiticity, i.e.,

∂2VBeff(X)

∂R
(0)
ab ∂I

(0)
cd

=
∂2VBeff(X)

∂R
(0)
ab ∂I

(n)
cd

=
∂2VBeff(X)

∂R
(n)
ab ∂I

(0)
cd

=
∂2VBeff(X)

∂R
(n)
ab ∂I

(n)
cd

=
∂2VBeff(X)

∂R
(n)
ab ∂I

(m)
cd

= 0, (6.51)

where a, b, c, d = 1, 2. Furthermore, there is no mixing between diagonal and off-
diagonal elements:

∂2VBeff(X)

∂R
(0)
aa ∂R

(0)
cd

=
∂2VBeff(X)

∂I
(0)
aa ∂I

(0)
cd

=
∂2VBeff(X)

∂R
(0)
aa ∂R

(n)
cd

=
∂2VBeff(X)

∂I
(0)
aa ∂I

(n)
cd

=
∂2VBeff(X)

∂R
(n)
aa ∂R

(0)
cd

=

∂2VBeff(X)

∂I
(n)
aa ∂I

(0)
cd

=
∂2VBeff(X)

∂R
(n)
aa ∂R

(n)
cd

=
∂2VBeff(X)

∂I
(n)
aa ∂I

(n)
cd

=
∂2VBeff(X)

∂R
(n)
aa ∂R

(m)
cd

=
∂2VBeff(X)

∂I
(n)
aa ∂I

(m)
cd

= 0.

(6.52)



76 Chapter 6 Symmetry Breaking by a Bulk Scalar

The detailed expressions for the remaining 2nd order derivatives are given in Appendix
B.3. Taking all of them together, we find the associated Hessian matrix

H
(
VBeff

)
=

(
∂2V ′

eff

∂A
(n)
a ∂A

(m)
c

)
(6.53)

belonging to the operator potential VBeff. This matrix can be written as

H
(
VBeff

)
=




H(0)(0) H(0)(1) . . . H(0)(n) . . .
H(1)(0) H(1)(1) . . . H(1)(n) . . .

...
...

. . .

H(n)(0) H(n)(1) H(n)(n)

...
...

. . .



, (6.54)

where the sub–matrices H(i)(j) (i, j = 0, 1, 2,∞) are defined by

H(i)(j) =

(
H

(i)(j)
R 0

0 H
(i)(j)
I

)
, (6.55)

where

H
(0)(0)
R =

4

πR




λ11 + λ12 + λ̃11 0 0 λ11 + λ12 + λ̃12

0 −λ̃12 λ̃11 0

0 λ̃11 −λ̃12 0

λ11 + λ12 + λ̃12 0 0 λ11 + λ12 + λ̃11


 , (6.56)

H
(0)(0)
I = − 4

πR




λ11 − λ12 − λ̃11 0 0 λ11 − λ12 − λ̃12

0 λ̃12 λ̃11 0

0 λ̃11 λ̃12 0

λ11 − λ12 − λ̃12 0 0 λ11 − λ12 − λ̃11


 , (6.57)

and

H
(n)(n)
R,I = 2H

(0)(0)
R,I , H

(0)(n)
R,I =

√
2 cos(nπ)H

(0)(0)
R,I ,

H
(n)(m)
R,I = 2 cos(nπ) cos(mπ)H

(0)(0)
R,I . (6.58)

The sum H = H
(
V ′

eff

)
+H

(
VBeff

)
of both potentials reads

H =




H(0) + H(0)(0) −√2H(0)(0)
√

2H(0)(0) . . .
√

2cnH(0)(0) . . .

−√2H(0)(0) H(1) + 2H(0)(0) −2H(0)(0) . . . −2cnH(0)(0) . . .√
2H(0)(0) −2H(0)(0) H(2) + 2H(0)(0)

...
...

. . .√
2cnH(0)(0) −2cnH(0)(0) H(n) + 2H(0)(0)

...
...

. . .




,

(6.59)
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where cn = cos(nπ). In order to get rid of the periodic minus signs, we can per-

form a field–redefinition for the scalars X(n) → X ′(n) = (−1)nX(n). This leads to

cos(nπ)X(n) = X ′(n).
The total mass matrix in Eq. (6.59) can be discussed in terms of time–independent

perturbation theory [137]. This is a valid Ansatz under the assumption that the
matrix H(0)(0) can be understood as a sufficiently small perturbation, i.e., for

κ2λijkl, κ
2λ̃ijkl À λij, λ̃ij. (6.60)

In perturbation theory, we consider an operator H, which is the sum an operator
H

(
V ′

eff

)
= H0 and a sufficiently small perturbation H

(
VBeff

)
= H ′, i.e.,

H = H0 +H ′. (6.61)

The eigenvalues of H0 are ρ
(m)0
1 , ρ

(m)0
2 , . . . , ρ

(m)0
n , . . . , where m = 0, 1, 2, . . . The eigen-

values ρ
(m)0
n are associated with a complete orthonormal set of eigenvectors |v0

nα〉,
where the label α distinguishes in the case of degenerate eigenvalues the eigenvec-
tors belonging to ρ

(m)0
n , i.e., H0|v0

nα〉 = ρ
(m)0
n |v0

nα〉. We want to solve the perturbed

eigenvalue equation H|vnα〉 = ρ
(m)
n |v0

nα〉. The common procedure is to calculate the
eigenvectors up to first order and the eigenvalues up to second order in perturbation
theory. For non–degenerate perturbation theory, we have the relations

ρ(m)
n ≈ ρ(m)0

n + 〈v0
n|H ′|v0

n〉+
∑

i6=n

∑
α

|〈v0
i α|H ′|v0

n〉|2
ρ

(m)0
n − ρ

(m)0
i

, (6.62a)

|vn〉 ≈ |v0
n〉+

∑

i6=n

∑
α

〈v0
i α|H ′|v0

n〉
ρ

(m)0
n − ρ

(m)0
i

|v0
i α〉. (6.62b)

Let us first concentrate on the eigenvalues of the higher KK modes, i.e., n ≥ 1. The
first important point is that these eigenvalues are non–degenerate. Moreover, the
block–diagonal 8 × 8 sub–matrices of the unperturbed and the perturbation matrix
are structurally similar. We therefore find that 〈v0

i α|H(0)(0)|v0
n〉 = 0, for i 6= n, and

consequently |vn〉 = |v0
n〉. The perturbed eigenvalues are

ρ
(n)
1 = a(n) + b(n) + δ1, ρ

(n)
2 = c(n) + e(n) + δ2,

ρ
(n)
3 = c(n) − e(n) + δ3, ρ

(n)
4 = a(n) − b(n) + δ2,

ρ
(n)
5 = d(n) + f (n) − δ4, ρ

(n)
6 = c(n) − e(n) + δ3,

ρ
(n)
7 = c(n) + e(n) + δ2, ρ

(n)
8 = d(n) − f (n) + δ2,

(6.63)

where δ1 = 8
πR

[2(λ11 + λ12) + λ̃11 + λ̃12], δ2 = 8
πR

(λ̃11 − λ̃12), δ3 = 8
πR

(−λ̃11 − λ̃12) and

δ4 = 8
πR

[2(λ11 − λ12) − λ̃11 − λ̃12]. The discussion of the zero mode is more difficult,
since some eigenvalues are degenerate. For the non–degenerate eigenvalues, we find

ρ
(0)
1 = a(0) + b(0) +

1

2
δ1, ρ

(0)
4 = a(0) − b(0) +

1

2
δ2, ρ

(0)
5 = 2d(0) − 1

2
δ4. (6.64)
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The possible values of ρ
(0)
n are given by the eigenvalues of the gn × gn matrix

H ′
αβ = 〈v0

nβ|H ′|v0
nα〉. (6.65)

For ρ
(0)
2 = ρ

(0)
7 = 2c(0), we have H ′

αβ = 1
2
diag(δ2, δ2), and for ρ

(0)
3 = ρ

(0)
6 = ρ

(0)
8 = 0, it

follows that H ′
αβ = 1

2
diag(δ3, δ3, δ2). The second order corrections are

Vγβ = 〈v0
nγ|H ′|

∑

i 6=n

∑
α |v0

i α〉〈v0
i α|

ρ
(m)0
n − ρ

(m)0
i

|H ′|v0
nβ〉. (6.66)

However, due to the fact that 〈v0
i α|H(0)(0)|v0

nβ〉 = 0, for i 6= n, we can see that the
second order corrections are all zero, i.e., Vγβ = 0. Thus, we get up to second order

ρ
(0)
2 = 2c(0) + 1

2
δ2, ρ

(0)
3 = 1

2
δ3, ρ

(0)
6 = 1

2
δ3,

ρ
(0)
7 = 2c(0) + 1

2
δ2, ρ

(0)
8 = 1

2
δ2.

(6.67)

The Hessian of the total potential V ′
eff and VBeff is therefore positive semi–definite

when the parameters satisfy the conditions

λ̃12 ≤ 0 and |λ̃11| ≤ −λ̃12. (6.68)

Thus, for a GLR bi–doublet propagating on an interval in 5D flat space, we can always
find a minimum for a suitable choice of parameter after dimensional reduction in the
4D effective theory. The VEVs in Eq. (6.19) lead to conditions for the parameters
given in Eqs. (6.30), (6.38) and (6.41). The remaining freedom of a unitary transfor-
mation of the VEVs can be fixed by a brain localized term (cf.. Eq. (6.43)). Regarding
this term as small perturbation of the scalar potential, the minimum is maintained if
Eqs. (6.68) are satisfied.



Chapter 7

The Model

In this Chapter, we will discuss a new model for Dirac leptogenesis. This Dirac
leptogenesis scenario is formulated in a geometry with three 5D throats and a LR
symmetric gauge group in the bulk.

7.1 Geometry with Three Throats

Let us consider a 5D model defined on three intervals that are glued together at a
single point as shown in Fig. 7.1. We will occasionally denote the intervals as throats
(for a discussion, see Sec. 4.2). The coordinates on the three throats are respectively
zM1 = (xµ, y1), z

M
2 = (xµ, y2), and zM3 = (xµ, y3), where the 5D Lorentz indices are

denoted by capital Roman letters M = 0, 1, 2, 3, 5, while the usual 4D Lorentz indices
are symbolized by Greek letters µ = 0, 1, 2, 3, and the coordinates y1, y2, and y3,
describe the 5th dimension for the three throats. The physical space is thus defined
by three bulks with 0 ≤ y1 ≤ πR1, 0 ≤ y2 ≤ πR2, and 0 ≤ y3 ≤ πR3, where
R1, R2, and R3, denote the size of the three bulks. We will call the intersection point
at y1 = y2 = y3 = 0 the UV brane, and denote the endpoints of the intervals at
z1 = πR1, z2 = πR2, and z3 = πR3 as IR branes. Although this vocabulary is usually
used for warped spacetime, we will throughout work in flat space. It is also useful
to characterize this geometry by elements of the symmetric group S3 that include Z2

reflection symmetries interchanging the 1st and 2nd as well as the 2nd and 3rd throat
(see Fig. 7.1). We will comment on these symmetries and how they are broken below.

The gauge group on the three intervals is that of the LR symmetric model GLR =
SU(2)L×SU(2)R×U(1)B−L (for a discussion see 4.1). The LR gauge bosons propagate
freely in all three throats. The 5D lepton multiplets are in the GLR representations

ψL =

(
νL
eL

)
: (1

2
, 0,−1), ψR =

(
νR
eR

)
: (0, 1

2
,−1). (7.1a)

We will assume here that the fermion fields are all localized at the UV brane. The

79
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scalar sector contains three 5D Higgs multiplets χ, φ, and ξ, in the GLR representations

χ, φ, ξ : (1
2
, 1

2
, 0). (7.1b)

They have the charge–decomposition

X = (Xu, Xd) =

(
X0

1 X+
1

X−
2 X0

2

)
, X̃ = εX∗ε = −ε(X∗

d , X
∗
u) =

(
X0

2
∗ −X+

2

−X−
1 X0

1
∗

)
, (7.2)

where X = χ, φ, ξ, and ε is the antisymmetric 2× 2 tensor. In Eq. (7.2), the up– and
down–type Higgs doubletsXu andXd are given byXu = (X0

1 , X
−
2 )T , Xd = (X+

1 , X
0
2 )T ,

which transform under GLR as Xu, Xd ∼ (1
2
, 0, 0), and under GSM as Xu ∼ (1

2
,−1)

and Xd ∼ (1
2
,+1). In our setup, it is important that the three bi–doublets live on

separate throats: χ propagates in the first, φ in the second, and ξ in the third throat.

The action of the gauge fields for the three bulks is given by

Sgauge =

∫
d4x

3∑
i=1

∫ πRi

0

dyi Ligauge + h.c., (7.3)

where Ligauge is the 5D bulk Lagrangian in the ith throat. The gauge kinetic terms
read

Ligauge = −ML

4
(F a

L)MN(F a
L)MN − MR

4
(F a

R)MN(F a
R)MN − MB

4
BMNB

MN , (7.4)

with field strengths (F a
L,R)MN = ∂MA

a
L,RN − ∂NA

a
L,RM + fabcAbL,RMA

c
L,RN (fabc is the

structure constant and a, b, c = 1, 2, 3), BMN = ∂MBN − ∂NBM . In Eq. (7.4), the
quantitiesML,MR, andMB, have mass dimension +1, and the gauge fields AaLM , A

a
RM ,

and BM , have mass dimension +1. We assume that at the IR brane in the first
throat y1 = πR1, GLR is broken to the SM gauge group GLR → GSM. Following
Refs. [123, 124, 138], GLR is broken by BCs to GSM at the IR brane y1 = πR1 of the
1st throat. The BCs to achieve this symmetry breaking are

at y1 = πR1 : ∂y1A
La
µ = 0, ∂y1A

Ra
µ = 0, ∂y1Bµ = 0, Bµ − AR3

µ = 0, (7.5)

where A±aM is defined as A±aM = 1√
2
(ALaM ± ARaM ). When χ acquires in the first throat

a VEV 〈χ〉 ∼ diag(1, 1), GLR is spontaneously broken as GLR → SU(2)D × U(1)B−L.
Together with the symmetry breaking via BCs [see Eq. (7.5)], the total surviving
gauge group is then U(1)Q of electromagnetism. We will comment on the SSB via the
Higgs VEV of χ in some more detail later in Sec. 7.2.

The kinetic terms of the fermions and scalars are given by

Skin
fermion =

∫
d4x

3∑
i=1

∫ πRi

0

dyi Lifermion, (7.6a)

Skin
scalar =

∫
d4x

( ∫ πR1

0

dy1 Lkin
χ,1 +

∫ πR2

0

dy2 Lkin
φ,2 +

∫ πR3

0

dy3 Lkin
ξ,3

)
, (7.6b)
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y1 πR1

Throat 1

y2

πR2

y3

πR3

0

Z2

Z2

Throat 2

Throat 3

χ

φ

ξ

Figure 7.1: Geometry of the three throats (cf. Fig. 4.3). The throats are described
by intervals with coordinates y1, y2, and y3, and intersect in the UV brane at y1 =
y2 = y3 = 0. The scalar bi–doublets χ, φ, and ξ, are separately living on the 1st, 2nd,
and 3rd throat, respectively. At the IR brane y1 = πR1, GLR is broken to GSM by
BCs. The SM fermions are localized at the UV brane, whereas the LR gauge bosons
propagate freely throughout the three throats. The throats are characterized by Z2

reflection symmetries (see main text).
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where the 5D Lagrangian densities are

Lifermion =
1

3
Cδ(yi)i(ψLΓµDµψL + ψRΓµDµψR) + h.c., (7.7a)

Lkin
X,i = [KX +K ′

Xδ(yi)] tr (DMX)†DMX, (7.7b)

for (X, i) = (χ, 1), (φ, 2), (ξ, 3), and DM is the covariant derivative with DMψL,R =
∂MψL,R− 1

2
iσaAaL,RMψL,R and DMX = ∂MX− 1

2
i(σaAaLMX−XσaAaRM). In Eq. (7.7),

KX is a dimensionless bulk kinetic parameter and K ′
X and C are gauge kinetic pa-

rameters of 4D brane kinetic terms localized at y1 = 0 and y1 = πR1 that have mass
dimension −1. The scalars X have in Eq. (7.7) mass dimension +3/2, and the fermion
doublets ψL and ψR, have mass dimension +2. Note also that we have absorbed in
the covariant derivatives the dimensionful gauge coupling into a redefinition of the
gauge fields.

From Eq. (7.6), one sees that χ, φ, and ξ propagate in the 1st, 2nd, and 3rd throat,
respectively, while ψL and ψR are localized at the UV brane y1 = y2 = y3 = 0. The
5D Yukawa couplings of the fermions to the scalars in the three throats read

SY =

∫
d4x

( ∫ πR1

0

dy1 LYχ,1 +

∫ πR2

0

dy2 LYφ,2 +

∫ πR3

0

dy3 LYξ,3
)

+ h.c., (7.8)

in which the 5D Yukawa coupling Lagrangians LYX,i are defined as

LYX,i = δ(yi)ψL(YXX + ỸXX̃)ψR, (7.9)

where YX and ỸX are the complex Yukawa couplings to X and X̃, with (X, i) =
(χ, 1), (φ, 2), (ξ, 3).

It is useful to discuss our model in terms of discrete symmetries acting on the scalar
bi–doublets X. First of all, we assume the symmetry

D1 : χ↔ φ, throat 1 ↔ throat 2. (7.10)

The symmetry D1 establishes among the Yukawa couplings the identities Yχ = Yφ
and Ỹχ = Ỹφ. Also, D1 implies that R1 = R2. In the effective theory, however, D1 is
broken by the scalar masses as a consequence of choosing different BCs for χ and φ.
These BCs and the scalar masses will be discussed in some more detail in Sec. 7.2.

In addition, we assume that the scalar sector is invariant under the Z2 exchange
symmetry

D2 : φ↔ ξ, throat 2 ↔ throat 3, (7.11)

which corresponds in Fig. 7.1 to the Z2 reflection symmetry with respect to the dashed
line between the throats 2 and 3. The symmetryD2 implies in Eq. (7.7b) for the scalars
equal bulk kinetic terms

Kφ = Kξ ≡ K. (7.12)
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This symmetry is responsible for establishing a resonant decay amplitude of the scalars
in leptogenesis. In particular, it implies thatR2 = R3, i.e., the 2nd and 3rd throat have
equal size. Different from the symmetry D1, however, D2 remains almost completely
intact in the scalar sector. The symmetry D2 is broken at the UV brane yi = 0 by
the Yukawa couplings Yφ 6= Yξ and Ỹφ 6= Ỹξ. Moreover, D2 is broken by the brane
kinetic terms K ′

φ 6= K ′
ξ, which induces in the effective theory a tiny splitting between

the 4D scalar degrees of freedom of φ and ξ, which is important for the value of
the resonant decay amplitude of these fields. Although D2 is broken by the Yukawa
couplings, we will, in the following, require that the Yukawa couplings to φ and ξ are
still roughly of the same order, i.e., besides having already established Yχ = Yφ and

Ỹχ = Ỹφ via the symmetry D1, we assume that Yφ ∼ Yξ and Ỹφ ∼ Ỹξ. We will outline
a possible model building realization of this later, when discussing the origin of the
Dirac Yukawa couplings in Sec. 7.3. The discrete symmetries and their breakings are
summarized in Tab. 7.1.
In the following, we will, for simplicity, take the Yukawa couplings in Eq. (7.9) to be

symmetry broken by
D1 scalar masses (BCs)

D2
brane kinetic terms,
Yukawa couplings

Table 7.1: Discrete symmetries and the types of symmetry breaking terms.

of the type
LYX,i = δ(yi)YXψL(X + eiαiX̃)ψR + h.c., (7.13)

where α1 = α2 = α, α3 = β, and Yχ = Yφ. These Yukawa couplings are consistent with

the discrete symmetry D3 : χ ↔ eiαχ̃, φ ↔ eiαφ̃, ξ → eiβ ξ̃. This discrete symmetry
just serves here to simplify the discussion, but is, however, not important for the
general features of our model. In a GSM–invariant notation, the Yukawa couplings in
Eq. (7.13) can be rewritten as

LYX,i = δ(yi)YX
[
ψL(Xu − eiαiXc

d)νR + ψL(Xd − eiαiXc
u)eR

]
+ h.c., (7.14)

where the SU(2)L doublets φi and ξi (i = 1, 2), are defined as in Eq. (7.2), and, in
this notation, we have introduced Xc

u = εX∗
u and Xc

d = εX∗
d . Like in Eq. (7.13), the

symmetry D1 implies in Eq. (7.14) that Yχ = Yφ.
In general, there can be a non–zero Xu − Xc

d (and Xc
u − Xd) mixing between the

doublets belonging to the same representation X, and we can write in the notation of
Eq. (7.2) for each pair of doublets Xu and Xd the corresponding mass eigenstates X̂1

and X̂2 as
(
X̂1

X̂2

)
= VX

(
Xu

Xc
d

)
=

(
cX −sX
sX cX

)(
Xu

Xc
d

)
and

(
X̂c

1

X̂c
2

)
= VX

(
Xc
u

Xd

)
(7.15)
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where cX = cos(αX), sX = sin(αX), and αX is the mixing angle between Xu and

Xc
d. We denote the mass of X̂1 by MX1 and the mass of X̂2 by MX2 , and suppose,

like in the standard two–Higgs doublet model, that the mass splitting between MX1

and MX2 is, say, of the order of the EW scale. That means, |MX1 −MX2| ∼ 1 TeV.
Consequently, in terms of the Higgs doublet mass eigenstates, Eq. (7.14) reads

LYX,i = δ(yi)YX

{
ψL

[
(cX + eiαisX)X̂1 − (eiαicX − sX)X̂2

]
νR

− ψL
[
(eiαicX + sX)X̂c

1 − (cX − eiαisX)X̂c
2

]
eR

}
+ h.c., (7.16)

where we have used the orthogonality of VX , i.e., V T
X VX = 0. Since the exact value of

this splitting is not of particular importance for our considerations, we can assume that
the mixing angles αX are all very small, and will in the following always approximately
identify the field X̂1 with Xu and X̂2 with Xc

d.

7.2 VEVs and Scalar Masses

One advantage of our multi–throat geometry is that the scalar fields are separated on
different throats. We can thus write the total scalar potential of χ, φ, and ξ, as a sum

Vtotal =
∑

X=χ,φ,ξ

V (X), (7.17)

where V (X) is a potential of the general form for a single scalar bi–doublet as given
in Eq. (6.3). The important point is here that the mixing among the scalars vanishes.
The scalar bi–doublets in the three throats are subject to the BCs

at the UV brane : ∂y1χ|y1=0 = 0, ∂y2φ|y2=0 = 0, ∂y3ξ|y3=0 = 0, (7.18a)

at the IR branes : ∂y1χ|y1=πR1
= 0, φ|y2=πR2

= 0, ξ|y3=πR3
= 0. (7.18b)

Note that we have for the field χ in the first throat Neumann BCs at both endpoints,
whereas the fields φ and ξ have Neumann BCs at the UV brane and Dirichlet BCs
at the IR branes. For χ, the most general flat space KK expansions of the scalars,
consistent with the BCs in Eqs. (7.18a) are given by

χ(xµ, y1) =
1√
πR1

[
χ(0)(xµ) +

√
2

+∞∑
n=1

χ(n)(xµ) cos
(ny1

R1

)]
, (7.19)

while the KK expansion for the fields φ and ξ read

X(xµ, yi) =

√
2

πRi

+∞∑
n=1

X(n)(xµ) cos
((2n− 1)yi

2Ri

)
, (7.20)
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where (X, i) = (φ, 2), (ξ, 3). Note the important fact that the Dirichlet BCs at the IR
branes have projected out the zero modes of φ and ξ, such that only χ will have a
zero mode. At the same time, the Neumann BCs at the UV brane ensure that χ, φ,
and ξ, are non–vanishing there, such that the wave functions of all the scalars χ, φ,
and ξ, will have a non–zero overlap with the fermions localized at the UV brane.

As we have already studied in detail in Chapter 6, the potential of the scalar
bi–doublet φ with a KK expansion as given in Eq. (7.19) has for a wide range of
parameters a local minimum for the VEVs

〈χ(0)〉 = κχ · diag(1, 1), 〈χ(n)〉 = 0, (7.21)

where κχ is real parameter with mass dimension +1 and n = 1, 2, . . . . In other words,
only the zero mode χ(0) acquires a non–zero VEV while all higher KK excitations
have zero VEVs. Qualitatively, this is because only the zero mode has a negative
mass–squared (coming from the potential), while the higher KK excitations have, for
a sufficiently large compactification scale, always positive mass-squares. Similarly,
since the zero modes of φ and ξ have been projected out by the Dirichlet BCs, we will
assume for the potentials of φ and ξ the VEVs

〈φ(n)〉 = 〈ξ(n)〉 = 0, (7.22)

where n = 1, 2, . . . , i.e., the VEVs of all KK excitations of φ and ξ vanish. As one
can see from Eq. (6.3), these VEVs lead indeed to a minimum of the potential, since
all first order derivatives vanish, while the second derivatives give

−2
∑
i,j

µ2
Xi,j

+
( n

πR1

)2

> 0. (7.23)

Therefore, only χ(0) with the VEV as given in Eq. (7.21) will be responsible for
spontaneously breaking GSM → SU(2)D × U(1)B−L. Moreover, only the zero mode
χ(0) will generate non–zero mass terms for the fermions from the Yukawa interactions
in Eq. (7.9).

Next, let us have a closer look at the masses of the scalar KK excitations. For
this purpose, we denote by M2

n(X) the mass squares of the nth KK state X(n) of X.
As demonstrated in Chapter 6, after canonically normalizing the kinetic terms of the
scalars in Eq. (7.7b), we arrive for χ at the masses of the KK states

M2
n(χ) =

[
− µ2

χ +
( n

πR1

)2][
1− K ′

X

πR1

+ . . .
]
, (7.24)

where n = 0, 1, 2 . . . , the tachyonic mass–squared−µ2
χ is determined by the coefficients

µ2
ij in Eq. (6.3) applied to the field X → χ, and the dots denote higher powers of
K ′/πR1. By the same argument, we obtain for the KK excitations of φ in canonical
normalization the masses

M2
n(φ) =

[
− µ2

φ +
(2n− 1

2πR2

)2][
1− K ′

φ

πR2

+ . . .
]
, (7.25)
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where n = 1, 2, . . . , and the mass–square µ2
φ is determined by the coefficients µ2

ij

in Eq. (6.3) specialized for the field X → φ. The field ξ has KK states with masses

0

m
.
.
.

.

.

.
.
.
.

χ(n) φ(n) ξ(n)

1/R

2/R

3/R

4/R

Figure 7.2: Masses of the KK states of χ, φ and ξ. The masses of φ(n) and ξ(n) are
practically degenerate.

M2
n(ξ) that are obtained from M2

n(φ) by setting in Eq. (7.25) µ2
φ → µ2

ξ , K
′
φ → K ′

ξ, and
R2 → R3. Now, the discrete symmetry D2 in Eq. (7.11) establishes µ2

φ = µ2
ξ as well as

R2 = R3 but is broken byK ′
φ 6= K ′

ξ. The mass squares M2
n(φ) andM2

n(ξ) will therefore
be practically degenerate, up to corrections of the order K ′

φ/(πR2) ∼ K ′
ξ/(πR3). We

thus find that under order one variations of the brane kinetic terms K ′
X the mass

splittings are of the order
M2

n(φ)−M2
n(ξ)

M2
n(φ)

∼ K ′
X

πR2

, (7.26)

where K ′
X is of the same order as K ′

χ, K
′
φ, and K ′

ξ. Since K ′
X has mass dimension

−1 in five dimensions, we expect K ′
X to be of the order K ′

X ∼ 1/M∗, where M∗ is
the fundamental higher–dimensional Planck scale. Recall that for a number of δ flat
extra dimensions with common compactification radius R, we have M2

Pl = M2+δ
∗ Rδ,

where MPl ≈ 1018 GeV is the usual 4D Planck scale (see Sec. 4.2.2). In δ such extra
dimensions, K ′

X has mass dimension −δ and the mass–squared splitting in Eq. (7.26)
generalizes to [M2

n(φ) −M2
n(ξ)]/M

2
n(φ) ∼ (M∗/MPl)

2, independent from the number
of extra dimensions δ. If, for example, the fundamental scale is M∗ ∼ 1012 GeV, we
arrive in Eq. (7.26) at a tiny mass splitting

[M2
n(φ)−M2

n(ξ)]/M
2
n(φ) ∼ 10−14. (7.27)

This small relative mass–squared splitting between the KK states arises from the
hierarchy between M∗ and MPl. It is interesting to observe that, instead of explicitly
using higher-dimension operators, this splitting becomes small as a consequence of
rescaling the scalar fields when going to canonical normalization.
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7.3 Fermion Masses

After integrating out the extra dimensions, we obtain from Eq. (7.14) in the 4D
effective theory for the Yukawa couplings

Leff
Y =

∫ πR1

0

dy1 LYχ,1 +

∫ πR2

0

dy1 LYφ,2 +

∫ πR3

0

dy1 LYξ,3 (7.28)

=
1√
πR1

LY (0)
χ,1 +

√
2

∞∑
n=1

( 1√
πR1

LY (n)
χ,1 +

1√
πR2

LY (n)
φ,2 +

1√
πR3

LY (n)
ξ,3

)
,

where the 4D Yukawa couplings to the 0th and nth KK modes LY (n)
X,i are

LY (0)
χ,1 = Y`ψL(χ

(0)
u − eiαχcd

(0))νR + Y`ψL(χ
(0)
d − eiαχcu

(0))eR + h.c., (7.29a)

LY (n)
χ,1 = Y`ψL(χ

(n)
u − eiαχcd

(n))νR + Y`ψL(χ
(n)
d − eiαχcu

(n))eR + h.c., (7.29b)

LY (n)
φ,2 = Y`ψL(φ

(n)
u − eiαφcd

(n))νR + Y`ψL(φ
(n)
d − eiαφcu

(n))eR + h.c., (7.29c)

LY (n)
ξ,3 = Y ′

`ψL(ξ(n)
u − eiβξcd

(n))νR + Y ′
`ψL(ξ

(n)
d − eiβξcu

(n))eR + h.c., (7.29d)

where n = 1, 2, . . . , and we have identified Y` = Yχ = Yφ and Y ′
` = Yξ. In more

than five dimensions, the normalization factors
√
πRi in the above expressions will be

replaced with
√
πRi →

√
Vδ, where Vδ is the extra-dimensional volume. Note that the

only contribution to Leff
Y from zero modes is provided by LY (0)

χ,1 in Eq. (7.29a). In the 4D

effective theory, the discrete symmetryD1 in Eq. (7.10) interchanges LY (n)
χ,1 ↔ LY (n)

φ,2 for

n ≥ 1, but it is broken by the Yukawa couplings LY (0)
χ,1 to the zeromodes. Since only the

zero modes χ
(0)
u and χ

(0)
d acquire nonzero VEVs, Dirac neutrino masses are generated

only from LY (0)
χ,1 . To reproduce Dirac neutrino masses of the order ∼ 10−2 eV, we

need Dirac Yukawa couplings of the order ∼ 10−12. In our model, such small Yukawa
couplings will originate (i) from a volume suppression mechanism and (ii) from higher-
dimension operators as proposed in Ref. [76].

To estimate the volume suppression of the Yukawa couplings, consider a generaliza-
tion of our 5D throat model to δ flat extra dimensions with common compactification
radius R (cf. Sec. 4.2.2). Having 1/R & 1 TeV requires at least two extra dimensions
δ ≥ 2, and for δ = 2, the compactification scale would then be 1/R ∼ 100 TeV.
In such a scenario, the Yukawa couplings in Eqs. (7.29) have mass dimension −δ/2
and are of the order ∼ M

−δ/2
∗ . For δ = 2 and M∗ ∼ 1012 GeV, as assumed to ob-

tain the tiny mass–squared splitting in Eq. (7.27), we then have in the 4D effective
theory a suppression of the Dirac Yukawa couplings by a volume factor of the or-
der ∼ 1/(M∗R) ∼ 10−7. This volume suppression alone would therefore produce in
the low energy effective theory Dirac Yukawa couplings of the order ∼ 10−7, which,
though small, are still by roughly 5 orders of magnitude too large to account for the
observed neutrino masses.
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In our model, the suppression of the Yukawa couplings by additional 5 orders of
magnitude shall be implemented through higher dimension operators similar to the
discussion in Ref. [76]. Let us briefly sketch one way how this mechanism could be
realized here. For this purpose, we assume two additional complex SM singlet scalars
s1 and s2. The scalars are charged under an extra U(1)× U(1) product gauge group
as s1 ∼ (+1, 0) and s2 ∼ (0,+1). We also assign the scalar bi–doublets χ, φ, and ξ,
under this group the charges χ ∼ (−1, 0), φ ∼ (−1, 0), and ξ ∼ (0,−1). Note that this
U(1) charge assignment respects the symmetry D1 but breaks D2. We thus see that
in the 4D effective theory, the Yukawa couplings in Eqs. (7.29) become dimension–
five operators as shown in Fig. 7.3 which are suppressed by a factor ∼ 〈si〉/M∗. The
dimension–five operators are shown in Fig.7.3. In analogy with Eq. (7.17), we can

ΨL ΨR

〈χ(0)〉 〈s1〉

1

Figure 7.3: Dimension-five operator suppressing the Dirac Yukawa couplings.

assume for the scalars a potential V (s1, s2) = λ1(v
2
1 − |s1|2) + λ2(v

2
2 − |s2|2)2, where

λ1 ∼ λ2 and v1 ∼ v2. For λ1,2 > 0, this potential has a minimum at |s1| = v1

and |s2| = v2. As a consequence, the effective Yukawa couplings of the leptons to χ
and φ in Eqs. (7.29b) and (7.29c) will be degenerate and of the same order as the
effective Yukawa coupling to ξ in Eq. (7.29d). Taking v1,2 ∼ 105 GeV, we obtain,
in combination with the volume suppression factor ∼ 10−5 discussed above, Dirac
Yukawa couplings of the order ∼ 10−12, giving Dirac neutrino masses of the order
∼ 10−2 eV in perfect agreement with observation.

In this model, all Dirac Yukawa couplings, including those of the charged leptons,
are of the order ∼ 10−12, which would give too small charged lepton masses. Realistic
charged lepton masses can, however, be generated by 4D Dirac mass terms of the type
∼ CeLeR (C is some mass and eL and eR are 4D LH and RH charged leptons) that
are localized at the IR brane of an extra throat with only U(1)Q gauge invariance (a
similar mass term for the neutrinos can, for example, be forbidden by requiring that
νR is not propagating in this extra throat or by assuming a symmetry that acts in
the extra throat on ψL, νR, and eR). The same argumentation can also be applied to
reproduce the quark masses.



Chapter 8

Dirac Leptogenesis

Due to the smallness of the Yukawa couplings in the model introduced in Chapter 7,
we have to consider resonantly enhanced leptogenesis. In this Chapter, we thus turn
to the discussion of leptogenesis in the throats 2 and 3, where the 4D scalar degrees
of freedom of φ and ξ exhibit a tiny mass splitting induced by brane kinetic terms.
We are neglecting the possible contribution of χ, which is not in resonance with φ
and ξ. Since, in this model, the neutrinos are Dirac particles, we will assume that the
baryon asymmetry is generated via Dirac leptogenesis [27,76,129,130]. Furthermore,
we consider the limit in which the φu−φcd and ξu− ξcd mixings are small. For Y` ∼ Y ′

`

and Y`, Y
′
` . 10−12, a mass splitting of the order |M2

n(φu)−Mn(ξu)
2|/|M2

n(φu)| ∼ 10−14

is responsible for an enhanced generation of baryon asymmetry.

8.1 CP–Asymmetry

In our leptogenesis model, the quarks also contribute to the asymmetry, since their
Yukawa couplings Yq are of the same order as Y`. We are therefore actually talking
about a scenario of combined baryogenesis and leptogenesis in the sense that a LR
asymmetry is not only generated in the lepton but also in the quark sector. The 4D
Yukawa couplings to the 0th and nth KK modes in the quark sector are analogous
to the leptonic couplings in Eq. (7.29) with the following replacements: Y` ↔ Yq,
Y ′
` ↔ Y ′

q , ψL ↔ QL, νR ↔ uR, and eR ↔ dR. Consequently, we would have to take
further Feynman diagrams into account. We find the same diagrams as for leptons,
where we just have to replace leptons by quarks. Additionally, quarks are allowed as
intermediate states in the wave–function correction, for a decay into leptons and vice
versa, since the net amount of color charge remains zero throughout the whole process.
Vertex diagrams with leptons as final (intermediate) and quarks as intermediate (final)
states are forbidden due to conservation of color charge. Here, we are considering the
decays of massive scalar KK excitations far above the EW scale, for which the loop
calculations in Chapter 5 in the limit of neglegible quark masses also holds.

Let us start with the discussion of the lepton asymmetry εv in terms of KK modes.

89
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The CP–violation induced by the vertex–correction for the nth KK mode of φu takes
the form

εv
(n)
φu

=
Γ(φ

(n)
u → ψL`R)− Γ(φ

(n)

u → ψL`R)

Γ
(n)
φu

+ Γ
(n)

φu

=
Im [ei(α−β)tr(Y`Y

′
`
†)2]

16π(tr(Y †
` Y`) + 3tr(Y †

q Yq))

kmax∑

k=1

f(M2
k (ξu)/M

2
n(φu)), (8.1)

where the function f(x) is given by f(x) = 1−x ln(1+1/x) and the total decay width

Γ
(n)
φu

of φu has been extended by the decay width into quarks. This contribution of
the quarks has the same form as the decay widths in Eq. (5.9), where we only have to
replace the leptons by quarks and take color factors into account. Note that there is
also the diagram with ξd as an intermediate state, for which the following argumenta-
tion applies correspondingly. For the decays of ξ

(n)
u with φ

(n)
u as intermediate an state,

we have

εv
(n)
ξu

=
−Im [ei(α−β)tr(Y`Y

′
`
†)2]

16π (tr(Y ′
`
†Y ′
` ) + 3tr(Y ′

q
†Y ′
q ))

kmax∑

k=1

f(M2
k (φu)/M

2
n(ξu)). (8.2)

We can combine Eqs. (8.1) and (8.2) into

εv
(n)
φu+ξu

=
Im [ei(α−β)tr(Y`Y

′
`
†)2]

16π (tr(Y †
` Y`) + 3tr(Y †

q Yq))

×
kmax∑

k=1

[f(M2
k (ξu)/M

2
n(φu))− f(M2

k (φu)/M
2
n(ξu))]. (8.3)

The splitting between the scalars φ
(n)
x and ξ

(n)
x as well as φ

(n+1)
x and ξ

(n+1)
x , where x =

u, d, is illustrated in Fig. 8.1. Defining the quantities ∆M (n) = Mn+1(Xi) −Mn(Xi)
(i = 1, 2), m(n) = 1/2[Mn(X1) +Mn(X2)], and ∆m(n) = Mn(X2)−Mn(X1), Eq. (8.3)
can be approximated as follows: Since f(M2

k (X2)/M
2
n(X1)) ≈ f(M2

k (X1)/M
2
n(X2)),

we can write

f

(
M2

k (X2)

M2
n(X1)

)
− f

(
M2

k (X1)

M2
n(X2)

)
= df = f ′dx, (8.4)

where f ′(x) = 1/(1+x)− ln(1+1/x) denotes the derivative of the function f(x) with
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∆m(n)

∆m(n+1)

∆M (n)

φ
(n)
x

ξ
(n)
x

φ
(n+1)
x

ξ
(n+1)
x

.

.

.

.

.

.

Figure 8.1: The splitting between the scalars φ
(n)
x and ξ

(n)
x as well as φ

(n+1)
x and ξ

(n+1)
x ,

where x = u, d (cf. Ref [139]).

respect to x and

dx =
M2

k (X2)

M2
n(X1)

− M2
k (X1)

M2
n(X2)

≈ m(k)2 + ∆m(k)m(k)

m(n)2 −∆m(n)m(n)
− m(k)2 −∆m(k)m(k)

m(n)2 + ∆m(n)m(n)

= 2
m(k)2

m(n)2

∆m(n)/m(n) + ∆m(k)/m(k)

1− (∆m(n)/m(n))2

≈ 2
m(k)2

m(n)2

(
∆m(n)

m(n)
+

∆m(k)

m(k)

)
, (8.5)

here we have used

M2
n(X1) = (m(n) + 1/2∆m(n))2 ≈ m(n)2 + ∆m(n)m(n), (8.6a)

M2
n(X2) = (m(n) − 1/2∆m(n))2 ≈ m(n)2 −∆m(n)m(n). (8.6b)

Thus, we end up with a CP–violation induced by the vertex–correction that is given
by

εv(n) ≈ Im [ei(α−β)tr(Y`Y
′
`
†)2]

8π (tr(Y †
` Y`) + 3tr(Y †

q Yq))

kmax∑

k=1

(
∆m(n)

m(n)
+

∆m(k)

m(k)

)
m(k)2

m(n)2
f ′

(
m(k)2

m(n)2

)
, (8.7)

since M2
k (X2)/M

2
n(X1) ≶ m(k)2/m(n)2 ≶ M2

k (X1)/M
2
n(X2). The function xf ′(x) has

in the parameter range x ∈ [0,∞[ a global minimum xmaxf
′(xmax) = −0.216 at

xmax = 0.462 and the asymptotic behavior limx→0 xf
′(x) = 0 and limx→∞ xf ′(x) =

0. From Eq. (8.7), it can be easily seen that every summand which contributes to
εv(n) is suppressed by a factor ∆m(n)/m(n) or ∆m(k)/m(k). In the resonant limit,
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2 4 6 8
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|xf ′(x)| = ln(1 + 1
x
)− 1

1+x

Figure 8.2: The function |xf ′(x)| = x(ln(1 + 1/x)− 1/(1 + x)) in the range [0, 9]. It
is obvious that the contribution is small over the whole interval [0,∞[.

∆m(n)/m(n) or ∆m(k)/m(k) and become very small. The vertex contribution to the
total L asymmetry is than negligible. Now, we focus on the εw-type contribution
induced by wave–function corrections. Taking the smallness of the splitting between
Mn(X1) and Mn(X2) into account, we can perform a similar estimate as in the case
of the vertex corrections. We start with the asymmetry

εw
(n)
φu

=
Γ(φ

(n)
u → ψL`R)− Γ(φ

(n)

u → ψL`R)

Γ
(n)
φu

+ Γ
(n)

φu

= − Im [ei(α−β)tr(Y`Y
′
`
†)2]

16π (tr(Y †
` Y`) + 3tr(Y †

q Yq))

kmax∑

k=1

g(M2
k (ξu)/M

2
n(φu)), (8.8)

and get for the combined asymmetry of φu and ξu

εw
(n)
φu+ξu

≈ − Im [ei(α−β)tr(Y`Y
′
`
†)2]

16π (tr(Y †
` Y`) + 3tr(Y †

q Yq))

kmax∑

k=1

[
g

(
M2

k (ξu)

M2
n(φu)

)
− g

(
M2

k (φu)

M2
n(ξu)

)]
, (8.9)

where g(x) has been defined as g(x) = 1/(1−x). For k = n, the summand in Eq. (8.9)
becomes

− Im [ei(α−β)tr(Y`Y
′
`
†)2]

16π (tr(Y †
` Y`) + 3tr(Y †

q Yq))

M2
n(φu) +M2

n(ξu)

M2
n(φu)−M2

n(ξu)
. (8.10)

The remaining sum in Eq. (8.9) can be further approximated as

εw(n) ≈ − Im [ei(α−β)tr(Y`Y
′
`
†)2]

8π (tr(Y †
` Y`) + 3tr(Y †

q Yq))

kmax∑

k=1,k 6=n

(
∆m(n)

m(n)
+

∆m(k)

m(k)

)
m(k)2

m(n)2
g′

(
m(k)2

m(n)2

)
,

(8.11)
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where g′(x) = −1/(1− x)2 is the derivative of the function g(x) with respect to x.
Fig. (8.3) shows the function xg′(x), which has the asymptotic behavior limx→0 xg

′(x) =

0.5 1 1.5 2 2.5 3

200

400

600

800

1000

xg′(x) = − x
(1−x)2

Figure 8.3: The function xg′(x) = −x/((1−x)2) in the range [0, 3]. It is obvious that
the resonant contribution is dominant over the whole range [0,∞[.

0, limx→∞ xg′(x) = 0, and limx→1 xg
′(x) = ∞. We see that the wave–function correc-

tions contribute constructive and the corrections with k = n dominates.

In the following, we will therefore concentrate on the asymmetries generated by the
resonantly enhanced wave–function corrections. Since there is no constraint on the
mass ratio of up–type and down–type fields, we will consider resonant splittings only
for scalar fields of the same type. As a consequence, we end up with

ε
(n)

X
(n)
u →νR

≈ −
[Im

{
ei(α−β)[tr(Y ′

`
†Y`)2 + 3tr(Y ′

`
†Y`)tr(Y ′

q
†Yq)]

}

Mn(φu)2 −Mn(ξu)2

+
3Im[tr(Y ′

`
†Y`)tr(Y ′

qY
†
q )]

Mn(φu)2 −Mn(ξu)2

](
Mn(φu)

2

16π(tr(Y †
` Y`) + 3tr(Y †

q Yq))

+
Mn(ξu)

2

16π(tr(Y ′
`
†Y ′
` ) + 3tr(Y ′

q
†Y ′
q ))

)
= ε

(n)
` , (8.12)

ε
(n)

X
(n)
u →eR

≈ −ε(n)
` , (8.13)

where we have used that tr(ABT ) = tr(ATB) for any two n × n matrices A and B,
since tr(A) = tr(AT ) and tr(AB) = tr(BA). Due to the similar structure of lepton
and quark Yukawa couplings in our scenario, we have to take similar asymmetries for
the decays to quarks into account, i.e., ε

(n)

X
(n)
u →uR

= −ε(n)

X
(n)
u →dR

= ε
(n)
q . Where ε

(n)
`

and ε
(n)
q differ in the Yukawa couplings and in the color factor for the wave–function
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correction with quarks in the intermediate as well as in the final states. Exactly the
same equations hold also for the resonant decays of φ

(n)
d and ξ

(n)
d .

In order to analyze the resulting asymmetry, let us a go to the limit where we will
replace all Yukawa coupling matrices by values of the order Y` ≈ Y ′

` ≈ Yq ≈ Y ′
q ∼ 10−12

and assume order one values for the combinations of α, β, and the relative phases
between Y` and Y ′

` , as well as between Yq and Y ′
q , i.e.,

ε
(n)
` ≈ ε(n)

q ≈ 10−10. (8.14)

These values are of the same order as the observed ηB. So, we have to see to which
extent this LR asymmetry is converted into a B asymmetry by sphaleron processes.

8.2 Conversion of LR Asymmetry into B Asym-

metry

The leptogenesis in our model proceeds along the same lines as the Dirac leptogenesis
scenario presented in Sec. 3.4.2. However, due to the fact that in our model all
Yukawa couplings are very small, we have to take all RH fermions into account to
find ηB. We assume all Yukawa couplings to be of the same order of magnitude
∼ 10−12. But in principle, the smallest couplings determine the asymmetry. For
the analysis of the conversion of the LR asymmetry into a B asymmetry, we refer
to chemical potentials, the convenient way to treat particle asymmetries [70, 140]. A
brief summary of this topic and the basic equations is given in Appendix C. Here,
we will denote with µ

X
0(0)
i

and µ
X
−(0)
i

the potentials of the two scalar fields χ
(0)
u and

χ
(0)c
d . The LH particles should be in equilibrium, due to the gauge couplings, i.e.,

their reactions occur rapidly compared to the expansion rate of the Universe. All RH
particles, because they are not thermalized by Higgs interactions, carry an asymmetry

3∑
i=1

µνiR
6= 0,

3∑
i=1

µeiR
6= 0, µuR

6= 0, µdR
6= 0. (8.15a)

These asymmetries are generated by the out–of–equilibrium decays of higher KK-
modes (n ≥ 1) of the heavy bulk scalars. The chemical potentials in equilibrium obey
the following relations:

W− ↔ X
0(0)
i +X

−(0)
i : µW− = µ

X
0(0)
i

+ µ
X
−(0)
i

,

W− ↔ uL + dL : µW− = µdL
− µuL

,
W− ↔ νiL + eiL : µW− = µeiL

− µνiL
.

(8.16)

With the help of these relations, we can reduce the number of chemical potentials from
5+4N +2M to 4+3N +M , where N denotes the number of fermion generations and
M is the number of Higgs doublets (cf. Chapter C). Since the chemical potential for
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the third component of weak isospin T3 [cf. Eq.(C.6a)] has to vanish, we find µW− = 0.
The interaction of the Higgs particles with W± only implies that

M∑
i=1

µ
X

0(0)
i

=
M∑
i=1

µ
X

+(0)
i

. (8.17)

We can consider the zero mode of χ as being decoupled for temperatures T > Tc,
since all other interactions are strongly suppressed by the small Yukawa couplings.
Thus, this zero mode will conserve an initial asymmetry. When there are no processes
above the EW scale which could cause an asymmetry, we find:

M∑
i=1

µ
X

0(0)
i

=
M∑
i=1

µ
X
−(0)
i

= 0. (8.18)

Using Eqs. (8.16), (C.8), and (C.9), we obtain

µdL
= − 1

3N

N∑
i=1

µνiL
and µuR

= − 2

3N

N∑
i=1

µνiL
− µdR

, (8.19)

and, thus, for a vanishing chemical potential of the electric charge µQ = 0 [cf. Eq. (C.6b)]
above Tc, it follows that

N∑
i=1

µνiL
= −3

8

(
3NµdR

+
N∑
i=1

µeiR

)
. (8.20)

This leads to

µB = −4

3

N∑
i=1

µνiL
=

1

2

(
3NµdR

+
N∑
i=1

µeiR

)
(8.21)

and

µL =
1

4

N∑
i=1

µeiR
+

N∑
i=1

µνiR
− 9N

4
µdR

. (8.22)

For N = 3, the net baryon number is then

µB =
9

2
µdR

+
1

2

N∑
i=1

µeiR
. (8.23)

So, we can see that the asymmetry in the RH sector leads to the creation of a baryon
asymmetry. Since we expect the LR asymmetry for all fermions to be approximately
equal, the final baryon asymmetry will thus be of the same order of magnitude as the
LR asymmetry generated by out–of–equilibrium decays.
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8.3 LR–Equilibration and Wash–Out

Now, we discuss the total amount of B asymmetry which is generated in out–of–
equilibrium decays of the heavy bulk scalars φ

(n)
u and ξ

(n)
u . The contribution from

φ
(n)c
d and ξ

(n)c
d is assumed to be of the same order of magnitude and thus does not

change the result significantly. For the rest of this discussion we will therefore give
our results only in terms of the up–type fields φ

(n)
u and ξ

(n)
u . Furthermore, we use the

results from the previous sections, i.e., we concentrate on the reconant terms and take
the LR asymmetry to be equal to the B asymmetry.

The ratio of neutrino number to entropy produced in out–of–equilibrium decays
can be approximated in the “drift and decay limit” [51], i.e., nX(n)i

= n
X

(
n)i
∼ nγ by

∆nνR

s
∼ ∆neR

s
∼

∑nmax

n=1 (ε
(n)
ν − ε

(n)
ν ) ·nγ

g∗nγ
=

2
∑nmax

n=1 ε
(n)
`

g∗
, (8.24a)

∆nuR

s
∼ ∆ndR

s
∼ 2

∑nmax

n=1 ε
(n)
q

g∗
, (8.24b)

where nγ is the number density of photons and g∗ ∼ O(100) is the total number of
relativistic degrees of freedom at low energies. In Eqs. (8.24a) and (8.24b), we have
neglected usual possible annihilation effects of the scalars, since these are proportional
to the scalar number density and thus self–quenching. However, going to high energies,
we have to take a possibly large number of accessible KK modes into account, which
would change g∗ [139]. The number of relevant relativistic degrees of freedom increases
with the temperature T due to the presence of the KK tower. For δ extra dimensions,
the numbers of relativistic KK excitations NT (Xi) and NT (Yi) of the scalar fields Xi

and Yi below T are

NT (X) = int[(T −M0(Xi))Ri]
δ and NT (Yi) = int[TRi]

δ, (8.25)

where Yi in contrast to Xi has no zero mode and int[x] denotes the rounded down
integer value of x. The number of active degrees of freedom for one extra dimension
as a function of T is approximately given by

g(T ) ≈ g∗ + gN = g∗ + 2
{ ∑

i

θ(T −M0(Xi))int
[
(T −M0(Xi))Ri

]δ

+
∑
j

int
[
(TRj)

]δ}
, (8.26)

where the factor 2 accounts for the fact that we have scalar bi–doublets in our model.
Obviously, the KK modes can change the number of relativistic degrees of freedom for
T > M0(Xi) significantly, unless M∗ is very high. The dominant contribution to the

LR asymmetry ηLR is generated by the nth pair of KK modes φ
(n)
u and ξ

(n)
u around the

energy at which they drop out of thermal equilibrium, i.e., at T ≈Mn(φu) ≈Mn(ξu):

ηLR =
nmax∑
n=1

η
(n)
LR ≈

nmax∑
n=1

ε
(n)
Xu

g
(
Mn(Xu)

) . (8.27)
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The asymmetry ε
(n)
φu

is independent of n, since the relative mass splitting between

φ
(n)
u and ξ

(n)
u remains constant with n. The remaining sum over 1/g

(
Mn(φu)

)
can be

written in form of an integral

gN (Tmax)∑

gN (Tmin)

1

g∗ + gN(T )
=

gN (Tmax)∑

gN (Tmin)

d
[
ln

(
1 + gN (T )

g∗

)]

d gN(T )
∼ ln

(
g∗ + gN(Tmax)

g∗ + gN(Tmin)

)
. (8.28)

Here, a plausible energy range for leptogenesis is given by Tmin ∼ 100 GeV and Tmax ∼
109 GeV, where the upper bound is motivated by the gravitino problem (cf. Sec. 3.4.3).
For δ = 2, as used in Sec.. 7.3, Eqs. (8.26) and (8.28) lead to a factor of just about 6.
The total baryonic asymmetry is consequently given by

ηB ≈
nmax∑
n=1

η
(n)
LR ≈ 10−10. (8.29)

We thus see that for a reasonable range of parameters, the amount of baryon asym-
metry that is generated in our model is in good agreement with the observed value.
Note, however, that in Eq. (8.29), we have assumed that sphaleron processes were fully
active in converting the lepton asymmetry into a baryon asymmetry. This requires,
of course, that the lepton asymmetry is produced early enough, at temperatures not
much below Tc ∼ 100 GeV , where sphalerons are still in thermal equilibrium. Consid-
ering the energy range of leptogenesis given above with KK masses between 109GeV
and 105GeV, we can estimate the time scale for the heavy scalar decays to be of the
order tD ' 10−10sec. The scalar lifetime has to be short compared to this time scale,
i.e., tD > τ = 1/Γ

(n)
Xi

. To ensure that this is indeed the case, it might be necessary to

have Yukawa couplings of the leptons to the higher KK states φ(n) and ξ(n) (n ≥ 1)
which are larger than ∼ 10−12 by a few (up to five) orders of magnitude. This would
require, however, additional studies, which are beyond the scope of this thesis, but
deserve further considerations.

Compared to the original model of Dirac leptogenesis [27], in our model, the small-
ness of the Dirac Yukawa couplings to the higher KK states φ(n) and ξ(n) (n ≥ 1) has
the clear advantage that the mass scale of the decaying scalar KK resonances can be
very small (∼ 100 TeV) compared to the GUT scale. The reason is that we are in the
weak wash–out regime: the quantity r [cf. Eq. (3.16)], determining the effectiveness
of the inverse decays, is always much smaller than one, i.e.,

r =
Γ

(n)
φu

H(Mn(φu))
∼ tr(Y`Y

†
` )

g(Mn(φu))1/2

MPl

Mn(φu)
¿ 1, (8.30)

while keeping simultaneously the baryon asymmetry at the observed value ηB ≈ 10−10.
This is only possible in our model, where we can use the resonant enhancement of ηB
to compensate for the small Yukawa couplings Y`. As a consequence, this allows us
to avoid the problems associated with GUT scale baryogenesis, such as the gravitino
problem (see Sec. 3.4.3) which is generally an advantage of low–scale leptogenesis.
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Chapter 9

Summary and Conclusions

From the present experimental and theoretical point of view, Dirac and Majorana
neutrinos can both be implemented in our picture of particle physics. The seesaw
mechanism predicts Majorana neutrinos, which could be tested at low energies in
neutrinoless double beta decay experiments. However, there is no evidence for Majo-
rana neutrinos so far. In fact, current neutrino oscillation data is in perfect agreement
with neutrinos being Dirac particles. For Majorana neutrinos, the standard leptogene-
sis scenario and its implications have been much appreciated in the literature. Despite
the popularity of Majorana neutrinos, however, it is also possible to generate sufficient
baryon asymmetry with Dirac neutrinos, which is known as Dirac leptogenesis.

In this thesis, we have discussed Dirac leptogenesis for a LR–symmetric model in
extra dimensions. The main intention of this model is to overcome the drawbacks of
the original formulation of Dirac leptogenesis. The model

• provides scalar KK modes as an attractive origin of the heavy decaying particles
that produce the baryon asymmetry,

• establishes a connection between low–energy observables and the parameters
entering leptogenesis through discrete symmetries, and

• circumvents the necessity for GUT scale baryogenesis by a resonant enhancement
of CP–violation.

These aspects are realized in an extra–dimensional geometry with three throats in
the flat limit. Multi–throat backgrounds are motivated by string theory and offer
a number of advantages for model building. In our model, the KK excitations can
have masses as low as roughly 100 TeV up to the fundamental Planck scale. Discrete
exchange symmetries between the throats link the low–energy Dirac neutrino Yukawa
couplings with those to the heavy KK resonances. An important aspect is that GUT
scale baryogenesis is avoided by small Yukawa couplings that are mainly suppressed
by the extra–dimensional bulk volume. Otherwise, for large Yukawa couplings, we
would have strong wash–out effects. The smallness of these Yukawa couplings be-
comes compatible with the observed baryon asymmetry only in connection with the
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aid of resonant leptogenesis, which is established here in a natural way as a conse-
quence of the discrete symmetries acting on the throats. Such a low–scale leptogenesis
avoids the general problem with a low reheating temperature of the order of 109 GeV
(gravitino problem), as predicted in generic inflationary supergravity models. A fur-
ther interesting feature of this model is that the discrete symmetries can be broken
by brane–localized kinetic terms and BCs.

We have considered in detail the CP–asymmetry generated in the decays of the
heavy scalar KK modes into fermions. For this purpose, we have applied and com-
pared different techniques. First, we have performed a standard calculation for the
CP–violation in Dirac leptogenesis and found a disagreement with the result stated
in the literature. The main difference is here how the complex conjugation has been
applied to the Yukawa couplings. Next, we have transferred a resummation approach
for unstable particles from resonant Majorana leptogenesis to the case of Dirac lepto-
genesis. As another main point in this thesis, we have explicitly minimized the scalar
potential of a scalar bi–doublet within the LR–symmetric model in the 5D bulk. We
have shown that, after dimensional reduction, the VEV of the scalar zero mode breaks
in the 4D effective theory SU(2)L × SU(2)R down to the diagonal subgroup SU(2)D.
At the same time, the VEVs of the higher KK scalars are all zero. This allows for
EWSB in connection with BCs at the IR brane. We have performed a corresponding
analysis to describe the effect of brane–localized terms on the vacuum alignment. This
is particularly useful for SSB in the presence of several 5D scalar bi–doublets. Finally,
we have calculated the baryon asymmetry generated in our model including the con-
tribution from the whole tower of KK states. Our results show that, under these
circumstances, one can obtain a baryon asymmetry in agreement with observation.

In a more comprehensive analysis, one should include the effect of annihilation
processes on the generation of the baryon asymmetry in detail. Also, explicit evalua-
tions of Boltzmann equations might lead to a better understanding of the underlying
dynamical processes. A possible danger for BBN, which should be checked in this
scenario, is the overproduction of KK gravitons in extra dimensions. On the side of
model building, one open question is how to obtain non–universal Yukawa couplings
to the scalar KK states which might be important to avoid too late decays. This
could for example, be achieved by altering the spectrum with dominant brane kinetic
terms, by delocalizing also the fermions in the extra dimensions, or by switching on
nonzero warp factors in the throats.

It would be interesting to investigate further possibilities of generating the mass
splitting relevant for leptogenesis, such as mass splittings induced by loop corrections.
This could be connected, e.g., with TeV–scale supersymmetry. The fact that our
model describes a low–scale leptogenesis scenario offers the appealing possibility to
work out ample implications for collider physics. It would also be attractive to study
the connection of our multi–throat setup to cosmology in the context of inflation and
dark matter.



Appendix A

Decay Rate

Here, we derive the explicit expression for a 1 → 2 decay of an unstable particle as
needed in Chapter (5). The general decay rate of an unstable particle to a given final
state has the form

Γ =
1

2Mi

( ∫ ∏

f

d3pf
(2π)3

1

2Ef

)
|M(Mi → pf )|2(2π)4δ(4)(pi −

∑

f

pf ). (A.1)

Considering the special case of one massive initial particle k and a massless two-
particle final state p+ q, i.e. Ep = p0 = |p| and Eq = q0 = |q|, the Lorentz-invariant
phase space takes the simple form

ILips =

∫
d3p

(2π)2

1

2|p|
∫
d3q

1

2|q|δ
(4)(k − p− q)|M|2

=

∫
d3p

(2π)2

1

2|p|
1

2|k− p| δ
(
k0 − |p| − |k− p|

)
|M|2

=
1

8π

∫ |p|+1

|p|−1

d|p|
∫ 1

−1

d cosϑ
1

|k| δ
(

cosϑ− k0

|k| +
k2

2|k||p|
)
|M|2, (A.2)

where we are using spherical coordinates d3p = |p|2 dϕ d cosϑ d|p| to integrate over
the δ-distribution for which

δ
(
k0 − |p| − |k− p|

)
=
|k− p|
|k||p| δ

(
cosϑ− k0

|k| +
k2

2|k||p|
)

(A.3)

holds if |k|, |p| > 0 since δ(f(x)) = δ(x)/f ′(x). The angle ϑ denotes the angle
between k and p, i.e., k ·p = |k||p| cosϑ. Due to the δ-distribution and the fact that
−1 ≤ cosϑ ≤ 1 we can see that |p|−1 = 1

2
(k0− |k|) ≤ |p| ≤ 1

2
(k0 + |k|) = |p|+1. Thus

the final result takes the form

ILips =
1

8π
|M|2. (A.4)
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It is obvious that we can understand Eq. (5.8) in terms of the absolute–value squares
of the amplitudes, since

Γ =
1

16π2Mi

|M(Mi → p1p2)|2. (A.5)

This is the form of the decay rate used for the discussion of heavy scalar decays in
this work.



Appendix B

Minimization Equations for the
Total Potential

In this Appendix, we present the explicit expressions for the minimization of the total
potential V total

eff = V ′
eff + VBeff introduced in Chapter 6.

B.1 Minimization Equations for the Potential

Let us first analyze the exact extremizing conditions of the bulk potential V ′
eff in

Eq. (6.18). We can use similar arguments as in Sec. 6.2 to discuss the 10 · 42 = 160
structurally different second derivatives of V ′

eff(X):

∂2V ′
eff(X)

∂R
(0)
ab ∂R

(0)
cd

∣∣∣∣∣
VEVs

,
∂2V ′
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∂I
(0)
ab ∂I

(0)
cd

∣∣∣∣∣
VEVs

,
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(0)
ab ∂I

(0)
cd

∣∣∣∣∣
VEVs

,

∂2V ′
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ab ∂R

(r)
cd
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VEVs

,
∂2V ′
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∂I
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ab ∂I

(r)
cd
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VEVs

,
∂2V ′
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ab ∂I

(0)
cd
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VEVs

,
∂2V ′
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cd
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,
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∂I
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eff(X)
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(s)
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, (B.1)

where the summation indices run over a, b, c, d = 1, 2, and r, s = 1, . . . ,∞. Except
for the zero mode, all higher KK modes acquire zero VEVs. Therefore, all linear
derivatives for R

(r)
ab or I

(r)
ab have to be zero:

∂2V ′
eff(X)

∂R
(0)
ab ∂R

(r)
cd

∣∣∣∣∣
VEVs

=
∂2V ′

eff(X)

∂I
(0)
ab ∂I

(r)
cd

∣∣∣∣∣
VEVs

=
∂2V ′

eff(X)

∂R
(0)
ab ∂I

(r)
cd

∣∣∣∣∣
VEVs

=
∂2V ′

eff(X)

∂R
(r)
ab ∂I

(0)
cd

∣∣∣∣∣
VEVs

= 0. (B.2)

Furthermore, only squared terms in the higher KK-modes could lead to a nonzero
result when differentiating with respect to R

(r)
ab R

(s)
ab , I

(r)
ab I

(s)
ab , or R

(r)
ab I

(s)
ab . Since ∆mn
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appears in the squared terms, all derivatives with r 6= s are already zero:

∂2V ′
eff(X)
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cd
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VEVs

=
∂2V ′

eff(X)

∂I
(r)
ab ∂I

(s)
cd

∣∣∣∣∣
VEVs

=
∂2V ′

eff(X)

∂R
(r)
ab ∂I

(s)
cd

∣∣∣∣∣
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= 0. (B.3)

In Eq. (B.1), we will, as before, replace V ′
eff by V ′0

eff and introduce

V ′r
eff(X) = −

∑
i,j

µ2
ij trX

(r)†
i X

(r)
j +K

( n
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)2
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†
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j X
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]}
. (B.4)

With all these considerations in mind, the non–trivial second derivatives are
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In order to simplify the expressions, we have used here the extremizing condition to
substitute µ2

12 by

µ2
12 = −1

2
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It is easily seen that the non–trivial second derivatives of V ′r
eff take the same values

as the corresponding second derivatives of V ′0
eff, except for a factor (n/(πR))2 from

the bulk kinetic term:
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(B.20)

To whether there is a range of the parameters µij, λijkl, and λ̃ijkl where V ′
eff has

a local minimum, we have to check whether the Hessian matrix H
(
V ′

eff

)
of V ′

eff in
Eq. (6.31) is positive semi–definite. In Sec. B.1 we show that there indeed exist such
a local minimum.

B.2 Extremization Equations for the Brane–Localized

Term

The brane–localized term VB(X) in Eq. 6.43 can be splitted into VB(X) = AB(X) +

BB(X), where BB(X) only consists of mixed terms in X and X̃, while AB(X) contains
all the remaining terms. The 4D effective operator VBeff(X) = ABeff(X)+BBeff(X) can
be calculated by integrating over the extra dimension y. The two parts ABeff(X) =
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∫ πR
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The calculation of the extremizing equations for ABeff(X) and BBeff(X) is significantly
simplified by noting that both terms are real. Since z + z∗ = 2Re(z), we will in our
further calculations only have to consider two times the real part of X. The local
extrema of VBeff(X) satisfy the following extremum conditions:
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∣∣∣∣∣
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∞∑
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From these conditions we see that if the only the zero mode acquires a VEV, these
VEVs must must have the form given in Eq. (6.50).

B.3 Minimization Equations for the Brane–Localized

Term

In this Section, we will list the exact expressions for all the nonzero 2nd order deriva-
tives of the potential VBeff in Eq. (6.43). We find
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and
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while the 2nd derivatives with respect to off-diagonal elements, i.e., for a 6= b, are
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For a 6= b, we find
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πR
cos(nπ) cos(mπ), (B.24r)
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and for purely off-diagonal derivatives, i.e., ab 6= cd, a 6= b and c 6= d:

∂2VBeff(X)

∂R
(0)
ab ∂R

(0)
cd

∣∣∣∣∣
VEVs

= −∂
2VBeff(X)

∂I
(0)
ab ∂I

(0)
cd

∣∣∣∣∣
VEVs

= λ̃11
4

πR
, (B.24s)

∂2VBeff(X)

∂R
(0)
ab ∂R

(n)
cd

∣∣∣∣∣
VEVs

= −∂
2VBeff(X)

∂I
(0)
ab ∂I

(n)
cd

∣∣∣∣∣
VEVs

= λ̃11
4
√

2

πR
cos(nπ), (B.24t)

∂2VBeff(X)

∂R
(n)
ab ∂R

(n)
cd

∣∣∣∣∣
VEVs

= −∂
2VBeff(X)

∂I
(n)
ab ∂I

(n)
cd

∣∣∣∣∣
VEVs

= λ̃11
8

πR
, (B.24u)

∂2VBeff(X)

∂R
(n)
ab ∂R

(m)
cd

∣∣∣∣∣
VEVs

= −∂
2VBeff(X)

∂I
(n)
ab ∂I

(m)
cd

∣∣∣∣∣
VEVs

= λ̃11
8

πR
cos(nπ) cos(mπ). (B.24v)

The implications of these results for the minimum of the total potential V total
eff are

discussed in Sec. 6.5.
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Appendix C

Chemical Potentials

In Sec. 8.2, we discuss the convertion of the asymmetry generated by the heavy scalar
decays into an B asymmetry. In this context, it is convenient to use chemical po-
tentials. Here, we give a short summary of the basic concept of chemical poten-
tials [70,140].

The number density n for a weakly interacting gas of particles is given by

n =
g

(2π)3

∫
f(p)d3p, (C.1)

where g counts the internal degrees of freedom and f(p) (the phase space distribution
function for the kinetic equilibrium) is the familiar Dirac or Bose-Einstein distribution:

1

exp[(E(p)− µ)/T ]± 1
. (C.2)

Here, as in general, holds E = (m2+p2)1/2 and µ denotes the chemical potential of the
particles. For antiparticles, the sign of µ flips. In contrast to the kinetic equilibrium,
the chemical equilibrium describes a state where all the chemical potentials of the
interacting particles are related to each other. The net number density is

n− n =
g

2π2

∫ ∞

m

√
E2 −m2 dE

×
(

1

exp[(E(p)− µ)/T ]± 1
− 1

exp[(E(p) + µ)/T ]± 1

)

=

{
gT 3

6
µ
T

[
1 + 1

π2
µ
T

2 + . . .
]

for bosons,
gT 3

3
µ
T

[
1 + 1

π2
µ
T

2 + . . .
]

for fermions,
(C.3)

for T À m. Here, we are considering all SM particles in the ultrarelativistic limit
(p À m). This should be a good approximation at temperatures T > TC ∼ 100 GeV,
i.e., above EW phase transition. To characterize the asymmetry between matter and
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antimatter, we can use the particle-to-entropy ratio

n− n

s
=

15g

2π2g∗

µ

T
for bosons and (C.4a)

n− n

s
=

15g

4π2g∗

µ

T
for fermions, (C.4b)

where g∗ counts the total number of effectively massless degrees of freedom, i.e.,

g∗ =
∑

i=bosons

gi

(
Ti
T

)3

+
7

8

∑

i=fermions

gi

(
Ti
T

)3

, (C.5)

where s = (ρ+p)/T = 2π2g∗T 3/45 is the entropy density, Ti denotes the temperature
and gi the internal degrees of freedom of the ith particle species. At temperatures far
above the EWSB scale g∗ takes the value g∗ = 106.75 in the SM and g∗ = 228.75 in
the minimal supersymmetric model. Furthermore, it is assumed that |µ/T | ¿ 1, since
baryon and lepton chemical potentials are expected to be of the order |µ| ∼ 10−10T .
We suppose that no Bose-Einstein condensation takes place, i.e., |µ| < m where m is
the mass of the particle.
For N generations of quarks and leptons and M complex Higgs doublets, the relevant
fields are: N left–handed quark doublets qiL (i = 1, . . . , N), N left–handed lepton
doublets ψiL, 2N right–handed quark singlets uiR and diR, 2N right–handed lepton
singlets νiR and eiR, one right–handed charged gauge boson field W±, as well as M
complex scalar doublets X

(0)
i . Here, the eight gluon fields as well as the fields W 3

µ

and Bµ are neglected since their chemical potentials vanish. Above the EW phase
transition, the chemical potentials for fields in the same EW multiplet are equal,
i.e., W± also acquires a zero chemical potential. In what follows, µW− will denote
the chemical potential of W−, µνiL

(µνiR
) will stand for all the left–handed (right–

handed) neutrino fields, and µeiL
(µeiR

) will be used for all the left–handed (right–
handed) charged lepton fields. Since the Cabbibo mixing ensures the equality of the
chemical potentials for all the up–quark states as well as the equality of the chemical
potentials for all down–quarks states, we can assign µuL

(µuR
) and µdL

(µdR
) to all the

left–handed (right–handed) up– and down–quark fields, respectively. The chemical
potentials µT3 , µQ, µB and µL of the third component of the weak isospin, the electric
charge, baryon and the lepton number density, respectively, are given by

µT3 =
3N

2
(µuL

− µdL
) +

1

2

N∑
i=1

(µνiL
− µeiL

)− 4µW− −
M∑
i=1

(µ
X

0(0)
i

+ µ
X
−(0)
i

),

(C.6a)

µQ = 2N(µuL
+ µuR

)−N(µdL
+ µdR

)−
N∑
i=1

(µeiL
+ µeiR

)− 4µW−

−
M∑
i=1

µ
X
−(0)
i

, (C.6b)
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µB = N(µuL
+ µuR

) +N(µdL
+ µdR

), (C.6c)

µL =
N∑
i=1

(µνiL
+ µeiL

+ µνiR
+ µeiR

). (C.6d)

For T & Tsphal, the sphaleronic interactions

S ↔ dL + uL + dL + νL and S ↔ uL + dL + uL + eL (C.7)

provide the two additional relation:

N(µuL
+ 2µdL

) +
N∑
i=1

µνiL
= 0, and N(µdL

+ 2µuL
) +

N∑
i=1

µeiL
= 0. (C.8)

For our discussion, we assume that possible sphaleronic processes due to the RH
gauge fields in the LR symmetric model are exponentially suppressed by a high LR–
symmetry breaking scale. As pointed out in Ref. [70], there are also QCD sphaleron–
like transitions to be taken into account. These processes enforce

µuL
+ µdL

= µuR
+ µdR

. (C.9)

For T & Tc & Tsphal, the third component of weak isospin T3 as well as the electromag-
netic charge Q have to vanish, i.e., µT3 = µQ = 0. Using the equations given in this
Appendix and considering the relevant interactions which are in chemical equilibrium
[for our model cf. Eqs. (8.16)], one can derive the B asymmetry as done in Sec. 8.2.
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