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Kurzzusammenfassung

In der vorliegenden Arbeit stellen wir einen neuen Ansatz zur Simulation des Neu-

trinoflusses von Gamma-Ray Bursts (GRBs) vor. Ausgehend von grundlegenden

physikalischen Konzepten und Wissen aus der Teilchenphysik simulieren wir die

Produktion besagter Neutrinos in den aus photohadronischen Wechselwirkungen re-

sultierenden Zerfallsketten. Wir zeigen, dass sich das vielzitierte Waxman-Bahcall

Flussspektum mittels Approximation der photohadronischen Wechselwirkungen durch

die ∆-Resonanz reproduzieren lässt. Anschließend erläutern wir wie sich das Form

des Flussspektums ändert, wenn man den vollen Wechselwirkungsquerschnitt der

photohadronischen Wechselwirkungen berücksichtigt und die Mischung der flavor-

Zustände der Neutrinos berücksichtigt. Weiterhin überprüfen wir den Effekt von

Parameterverteilungen. Wir testen mittels Monte Carlo sampling Modelle für den

Lorentz-Faktor Γ, die Rotverschiebung z und das magnetische Feld B und deren Ef-

fekt auf den Neutrinofluss. Im Zuge dieser Überprüfung quantifizieren wir auch

den Effekt, den eine geringe Stichprobenmenge auf das Resultat der Verteilung

hat. Zum Schluss geben wir einen Ausblick auf Punkte, die im Zusammenhang

mit diesem Projekt noch bearbeitet werden sollten, und in welchen Gebieten noch

Entwicklungspotential besteht.
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Abstract

In this work we present a new algorithm for the simulation of the gamma-ray burst

(GRB) neutrino flux. We simulate the production of neutrinos from photohadronic

interactions using fundamental physical concepts and knowledge of particle physics.

We show that we can reproduce the much-quoted Waxman-Bahcall spectrum by

using the ∆-resonance approximation for the photohadronic interactions. Hence, we

describe how the flux shape changes when we consider the full photohadronic cross

section and also include flavor mixing. Moreover, we analyze the effect of parameter

distributions on the flux shape. Utilizing Monte Carlo sampling we test models for

the distribution of the Lorentz factor Γ, the redshift z, and the magnetic field B. In

the course of this investigation we also consider the effect of low count statistics on

the resulting flux shape. Finally, we give a short outlook on open issues and possible

improvements.
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1. Introduction

In the range of the standard model the neutrino is a unique particle. It was first

proposed (or one could say “invented”) by W. Pauli in 1930 in an attempt to explain

discrepancies in energy, momentum and angular momentum in atomic (beta) decays

[1]. The name “neutrino” for these new particles was introduced in 1934 by E. Fermi

when he developed his theory of β-decay [2]. The main problem at that point was

that the means of detection were not known and still had to be developed on the

basis of theoretical results. It took until 1956 for the confirmation of the existence of

neutrinos, see Ref. [3]. C. Cowan et al. designed and constructed a large multi-layer

detector near a nuclear power plant reactor in an attempt to measure neutrinos from

nuclear fission. In the detector the reaction

ν̄ + p+ → e+ + n (1.1)

leads to multiple photon pulses which are closely correlated. The first burst is due

to pair annihilation from e+ hitting an e−, the second one due to n being caught

in the scintillator medium. The results from these measurements proved Fermi’s

theory and verified Pauli’s intuition that a particle in the lepton sector had been

missing in the particle zoo. In due course the particle physics advanced and new

leptons - µ and τ - where discovered and measurements again demonstrated that

these also had to have associated neutrinos. It took years for the direct detection of

all neutrino flavors, with the (final) detection of interactions of ντ being published

in Ref. [4] in 2001 by the DONUT collaboration.

As the name “neutrino” suggests they are electrically neutral (have no electric

charge) and are extremely small (suffix “-ino”). Here “small” refers to the mass of

neutrinos as well as their interaction cross section. From tritium decay end point

measurements the mass of the neutrinos is confined to mν < 2 eV, see Ref. [5]. As

for the cross section it has to be noted that νs only participate in standard charged

current (CC) and neutral current (NC) weak interactions. This leads to very small

cross sections of the order of σνN,CC = 10−38 cm2 at Eν = 10 GeV (in case of the
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1. Introduction

νN charged current interactions). The basic set of attributes can be derived from

the properties of the lepton sector. Since leptons exist as particles and anti-particles

there also have to be antineutrinos. Also, there are three flavors of charged leptons;

electrons, muons and taus. Correspondingly there have to be electron neutrinos νe

and antineutrinos ν̄e, muon neutrinos νµ and antineutrinos ν̄µ and tau neutrinos ντ

and antineutrinos ν̄τ . It is now considered an experimental fact that these neutrinos

take part in the aforementioned weak interactions. For example, Standard Model

fits to LEP data show that there are N = 2.984 ± 0.008 flavors of interacting neu-

trinos, taken from Ref. [5] and references therein. Being leptons neutrinos possess

a spin of 1/2. And their mass is so small that they were considered massless for a

long time. In section 3.3 we will take a closer look at the masses when discussing

the propagation.

Already 14 years before the direct detection of ντ , neutrinos from outside our solar

system were detected. In 1987, as reported in Ref. [6], a burst of neutrinos from

supernova SN1987A was recorded by M. Koshiba and collaborators. These were the

first detected extraterrestrial neutrinos apart from the solar neutrino signal. This

was an important step for astronomy as it marked the possibility of observing the

universe in neutrinos. Before the detection of neutrino emission from this supernova,

astronomers were restricted to information from photons (from gamma-rays to radio

waves) and cosmic rays (charged particles such as α, β, p or higher ions). All of

these “old” observation methods have limitations in their accessible range. Photons

can e.g. get absorbed by matter while cosmic rays get deflected by magnetic fields

which makes the reconstruction of their origin nearly impossible. Neutrinos with

their property of only being subject to weak interactions are not as distance limited

as photons or charged particles. Thus a new field of astronomy - neutrino astronomy

- was born. In the past each new “window” of observation has led to a wide set of

new discoveries in astronomy with neutrinos being the most recent one. This was

honored by the 2002 Nobel Prize in Physics, shared between R. Davis Jr. for his

pioneering work on the detection of solar neutrinos, e.g. Refs. [7, 8], and M. Koshiba

for the detection of the SN1987A neutrinos, Ref. [6].

Unfortunately, the great advantage of the weakly interacting neutrinos is also their

main limitation. The interaction cross section of neutrinos is so low that events can

rarely be detected. The only way of recording a sufficient number of events is by

using a large detector volume and running measurements over a long time. Because
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of this limitation current state of the art neutrino telescopes have up to 1 km3 of

detector volume. Neutrino telescopes of such size are Km3Net in the Mediterranean

Sea, which is still in the planing stages [9, 10], and the IceCube neutrino telescope at

the South Pole [11], that will be completed in 2011 and is already taking data. Both

telescopes are designed to detect Cherenkov radiation from neutrino induced muons

in the deep sea or Antarctic ice. In case of IceCube the detector consists of several

strings with photomultiplier tubes deployed 2 km deep in the ice, see Ref. [11]. These

track events have to be analyzed to determine if or what kind of cosmic object pro-

duced the detected neutrino. For these analyses theoretical models of the sources are

needed and particle physics comes back to the focus of interest. For all astrophysical

uncertainties it is essential to have models of the shape of the neutrino spectra from

different astrophysical sources. However, so far no high energy neutrino signal has

been detected by any of the experiments.

When these telescopes finally detect the first signals, it will lead to the next step

in multi-messenger physics. A key part of deciphering the vast range of objects in

the observable universe is utilizing all the possible sources of information. Each kind

of particle, such as cosmic rays, photons of different energy ranges and neutrinos,

can be used to observe a certain part of the whole picture. The combination of all

data of an object, or of a region in space, helps to understand it better. In the

case of neutrinos the vast distances they can travel unperturbed are the greatest

advantage. It is one of the goals of multi-messenger astrophysics to determine the

sources of cosmic rays. If it is possible to establish a connection of a cosmic ray

(CR) source to a source of cosmic neutrinos, astrophysical neutrinos could be used

to probe cosmic ray sources. This would be mandatory for detecting high energy

cosmic ray sources, because directional information of the highest energy cosmic

rays is lost due to magnetic fields in space. It is assumed that the highest energy

cosmic rays originate from extragalactic sources. However, these charged particles

are deflected by the intergalactic magnetic field. Moreover, it might even be not

necessary to detect point sources. A diffuse flux of neutrinos, similar to the extra-

galactic CR flux, could already be sufficient when detected. This diffuse flux could,

in principle, be explained by connecting certain astrophysical sources, such as ac-

tive galaxy nuclei (AGN) or gamma-ray bursts (GRBs), to highest energy particle

production. Furthermore, neutrinos can be used to probe the inner regions of stars.

In case of the Sun it was expected that nuclear fusion led to the vast energy output.

Unfortunately, the photons reaching Earth are emitted from the photosphere of the

sun, far above the core of Sun. Cosmic rays emitted from the Sun are ejected from
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1. Introduction

the corona, and, therefore, are also useless for information on the inner part of the

Sun. Only neutrinos can pierce through the outer layers and thus give information

on processes in the core of the Sun. The detection of a solar neutrino flux proved

that the models with nuclear fusion in the Sun, and presumably other stars, are

correct.

Hence, the detection of neutrinos from a certain kind of cosmic source would be a

huge step in understanding cosmic accelerators. One particular case being discussed

in the literature is the neutrino production of gamma-ray bursts. There have been

several models for these extremely energetic events, but, unfortunately, there is no

final agreement how these bursts are produced. So far they were only detected in

photons. Even though the detection in different wavebands has led to some agree-

ment on what kinds of objects are the source of these bursts, a detection in neutrinos

would be essential in solving several questions. There are considerations that high

energy cosmic rays are the result of these cataclysmic events. Particle physics dic-

tates that interactions of emitted particles would result in a neutrino flux. These

interactions could be either hadronic collisions (pp) or photohadronic interactions

(pγ). Both would lead to the production of neutrinos. As for solar neutrinos, a

theoretical prediction of the cosmic neutrino flux, which precedents the detection,

would be beneficial for such a measurement. Therefore, a model of the expected

fluxes and flux shapes should help in the search for highest energy neutrinos. To-

day, the calculation of neutrino fluxes profits greatly from the advances in numerical

simulations and the precision of high energy particle data.

In this work we present a new simulation algorithm for neutrinos from extragalac-

tic cosmic accelerators. We will take a closer look at GRBs and the neutrinos one

can expect from these events. We will first recapitulate the theoretical framework,

such as the basic concepts, astrophysical neutrinos and the cosmic sources, on which

this work is based. Then we will introduce the NeuCosmA code and how it is used

in Monte Carlo simulations. In the third part we reproduce the so-called Waxman-

Bahcall flux and show how it changes in case of a more detailed model. After this

we discuss the effects of parameter distribution on the diffuse GRB neutrino flux.

We then summarize our results and give a short outlook on what still has to be done

and what could be done.
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2. Basic physics concepts

In the following sections we want to give an overview of the general theoretical

aspects of this work. We will give a short introduction into relativity, cosmology and

the boost of spectra. Since the phenomena discussed in this work are considered to be

relativistic and at cosmologic distances effects of “both” theories of relativity have to

be considered. Originally published by A. Einstein in 1905 (Special Relativity; SR),

Ref. [12], and 1916 (General Relativity; GR), Ref. [13], the former quickly gained

acceptance in the scientific community since SR can describe high energy particle

physics and its processes while the latter was long viewed to be too complex. The

time of GR came in the 1960s when new developments in mathematics helped to

extract measurable results from the Einstein field equations as well as explaining

new astronomical phenomena. Today all cosmologic models incorporate principals

of GR. In the first two of the following sections we take a look at the effects of

Special and General Relativity affecting this work. In the third we discuss the boost

of particle spectra and unit conversion.

2.1. Special Relativity

The simple case of Newton’s classical mechanics has to be modified when looking

at phenomena with velocity v . c. These modifications to mechanics are based on

two postulates which are in conflict with classical mechanics:

1. The laws of physics are the same in each reference frame moving at the same

speed and in the same direction (in a uniform motion); principle of relativity.

2. The speed of light in vacuum is constant regardless of the reference frame.

Starting from these two postulates Einstein derived a theory of motion that includes

several additional effects compared to classical mechanics. Especially the transition

between reference frames leads to changes that cannot be described by classical me-

chanics. For an observer who is at rest relative to an event the event looks different

compared to an observer who is moving towards or away from the event. Therefore,
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2. Basic physics concepts

the result of an event depends on the reference frame from which it is viewed. To

correctly describe these effects of transformations, it is necessary to consider all ob-

jects in 4D spacetime instead of just the 3D space of classical mechanics. Thus, a

reference frame has three spatial axes to measure the position as well as a “clock” to

measure the time of an event. Using Lorentz transformations it is possible to change

between these reference frames.

Let us consider two reference frames: the frame S, in which the clock is at rest,

and the reference frame S
′
, which is moving with velocity ~v relative to S. Therefore,

the clock of S
′

is moving. At the point zero the spatial axes and the clocks of

both frames coincide. The transition between the two reference frames S, the frame

with the clock at rest, and S
′
, the frame with the moving clock, can be described

mathematically with the following Lorentz boost:(
ct

′

~r′

)
= Γ(~v)

(
1 −~vT/c
−~v/c Γ(~v)−1 I + (1− Γ(~v)−1)~v ·~vT

v2

) (
ct

~r

)
. (2.1)

Here ct is the temporal component of the 4-vector and ~r is the spacial 3-vector.

Moreover, the symbol I represents the (3×3) identity matrix and ~vT is the transposed

velocity vector. The Lorentz factor Γ is defined as

Γ(~v) =
1√

1− β2
=

1√
1− |~v|2

c2

(2.2)

with β = v/c and is the scalar quantity describing the “strength” of the general

Lorentz boost as can be seen in Eq. (2.1). For most of the following calculations

only the absolute value of the velocity (v = |~v|) will be of interest and not the di-

rection. Because of this we will use the Lorentz factor Γ instead of the velocity ~v to

describe motions and boosts between different reference frames.

The effect of Lorentz transformations between the reference frames in the time

component is called time dilation. Due to the relative motion of the reference frames

events appear on different timescales. We consider an event in both reference frames.

As in the previous paragraph we assume that the clock is at rest for reference frame

S while it is moving in reference frame S
′
. Hence, we define the elapsed time between

two points to be called ∆t (for measurement with the clock at rest; in S) and ∆t
′

(for measurement with the moving clock; in S
′
). If the two clocks are synchronized
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2.1. Special Relativity

at the starting point, then the two times are connected as follows:

∆t = Γ ∆t
′
. (2.3)

The time on the moving clock seems to have elapsed slower in comparison to the

clock at rest. Applied to particle physics this effect describes the“longer” lifetimes of

moving particles for an observer at rest. On the other hand there is also an effect on

the spacial component, which is dubbed length contraction. Since the speed of light

is the same in all reference frames, it is no longer possible to claim that two events

are simultaneous in every reference frame. For a length measurement it is essential

to measure both endpoints of a length simultaneously (∆t = 0 as well as ∆t
′

= 0).

An object, which is at rest in reference frame S, has a length x measured in frame

S. If the object is now observed in reference frame S
′
(and, therefore, moves relative

to S
′
), a measurement of its length gives a different value, namely x

′
. x and x

′
are

again connected via Lorentz boosts:

x
′
= Γx . (2.4)

The time dilation, Eq. (2.3), and the length contraction, Eq. (2.4), are merely the

consequence of Lorentz transformations between frames. They describe the effect of

the transformations on time or length measurements in a simple way. We will need

these simplifications when dealing with the different reference frames in a GRB.

The two most relevant frames are the rest frame of the shock (short: SRF) and the

observer’s frame. The SRF is the comoving frame of reference for our particle in-

teractions and, therefore, for the production of the neutrinos. The observer’s frame

is as the name suggests the frame of an observer here on Earth. Therefore, the

observer’s frame equivalent to the frame S of our examples. The SRF is accordingly

considered to be the frame S
′
. Hence, primed variables will denote quantities in the

SRF and unprimed variables quantities in the observer’s frame.

In case the source of a wave and a detector observing the wave move relative to

each other there is a shift in frequency called the Doppler effect. This concept of

moving source and observer also applies to the change of reference frames. Therefore

the general transition between the comoving SRF and the observer’s frame can be

described with the help of the Doppler factor D. In the classical case the Doppler

factor depends on the velocity between source and detector β = v
c

and (the cosine

of) the angle between the line of sight and the direction of motion µ = cos θ, while

the relativistic speeds require the consideration of time dilation as in Eq. (2.3).
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2. Basic physics concepts

Note that S is equivalent with the observer’s frame and S
′

corresponds to the SRF.

The Doppler factor for relativistic beaming can be calculated with the help of the

following formula

relativistic D = time dilation · classical D ,

D = 1
Γ

· 1
1−βµ ,

or as a function of v and θ:

D =

√
1−

(
v
c

)2

1− v
c
· cos θ

. (2.5)

As stated before the main difference compared to the classical Doppler effect is the

contribution of time dilation. This leads to an additional shift. Due to time dilation,

the observed Lorentz boost is approximately 2Γ for a head-on approach (θ = 0) with

v ≈ c, and not Γ. Also, one can easily calculate the classical Doppler factor from

Eq. (2.5) for the aforementioned scenario. Without time dilation the Doppler factor

would go to infinity which is unphysical. In the next paragraph we will now discuss

the angular dependence of the Doppler factor and its effect on the spectra.

Another important result of the relativistic boosting discussed in the previous

paragraphs is the distortion of an emitting object. Especially the example of a

spherically expanding shell is useful for considerations on GRB in section 4.1. An

emitting sphere in the comoving frame, i.e. the SRF, will be seen as an ellipsoidical

shape for a distant observer when considering the equal arrival time surface. Most

radiation arrives from the hemisphere facing towards the observer. The photons are

strongly Doppler-boosted inside the light cone 1/Γ. This effect is called relativistic

beaming. This was first discussed for radio sources by Rees in Ref. [14] and is

depicted in Fig. 2.1. As can be seen from the figure, the radiation from the forward

hemisphere dominates the observed flux due to the high boost factors. Inside the

light cone with θ ≤ 1/Γ the Doppler factor D is in the range from Γ up to 2Γ.

Thus, it is a reasonable simplification to assume D ≈ Γ in the forward direction,

independent of the viewing angle. The variation is only by a factor of 2 and can

therefore be neglected. However, we can only deem this approximation valid, if the

radiation is coming really boosted into said light cone.

In the last part of this section we now want to discuss how quantities transform

using the Doppler factor D. The connection between times in the SRF ∆t
′

and in
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2.1. Special Relativity

Figure 2.1: The ellipsoid represents the surface of equal arrival for photons emitted
from a shell that expands spherically from the point S with Γ = (1 −
(v/c)2)−1/2 � 1 as seen by a distant observer (situated far on the right).
The major contribution of radiation is coming from the forward (right)
hemisphere, which is due to the strong Doppler boosting inside the
light cone 1/Γ, see Ref. [14]. The time t in the figure is the observer
time.

the observer’s frame ∆t can now be expressed in terms of the Doppler factor D as

∆t = D−1 ∆t
′
. (2.6)

This result is similar to the one given for the time-dilation in Eq. (2.3). However, the

Doppler factor describes the change of frame and location from source to detector

(including the Doppler effect), while the Lorentz boost only describes a change of

reference frame. This distinction is important for emitted radiation or particles. In

Ref. [15] the connections between comoving shock rest frame and observer’s frame

values for further quantities, e.g. frequency ν, solid angle Ω, specific intensity Iν(ν)

and volume V are expressed with help of the Doppler factor D. Note, according

to Ref. [15] the specific intensity Iν(ν) is defined as the energy emitted at a certain

frequency per unit time into a solid angle onto a surface area A:

Iν(ν) =
dE

dν dt dΩ dA
. (2.7)

Remember, this is a quantity defined for radiation (photons). It is similar to the

particle flux we will later define. However, the specific intensity as in Eq. (2.7) is the

amount of energy emitted as described and not the number of particles, which we

need. The derivation of the following transformation relations for the aforementioned
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2. Basic physics concepts

quantities is done in Ref. [15] with relativistic invariants:

ν = D ν ′
, (2.8)

dΩ = D−2 dΩ
′
, (2.9)

Iν(ν) = D3 I
′

ν′
(ν

′
) , (2.10)

dV = D dV
′
. (2.11)

Note that primed quantities note values in the SRF while unprimed quantities are

in the observer’s frame. This convention will be used throughout the whole work.

We will need these quantities when we discuss the transformation of rates in section

2.3.

2.2. Consequences of current cosmologic models

Since physics is trying to provide a detailed mathematical description of nature, a

model describing the largest scales, i.e. the whole known universe, is needed as a

framework for astrophysics. The current models of cosmology are based on the Ein-

stein field equations derived in 1916. Without going into detail on the field equations

themselves, one needs a metric to solve the equations. Since observations indicate

that on large scales (above 100 Mpc) the universe is homogeneous and isotropic,

the metric of choice is the so-called Friedmann-Lemâıtre-Robertson-Walker (FLRW)

metric

ds2 = c2 dt2 − a(t)2
[
dr2 + Σ(r)2 dΩ2

]
. (2.12)

Here a(t) is the “scale factor” of the universe as a function of time t. It describes the

time-dependence of the distance between two observers and depends only on one

length scale. The differential solid angle is defined as dΩ2 = dθ2 + sin2 θ dφ2. The

function Σ(r) incorporates the curvature of space into the metric. It depends on

the sign and value of the curvature, and can be defined as follows (in hyperspherical

coordinates, as is Eq. (2.12)):

Σ(r) =


√
−k sinh(r/

√
−k) for k < 0

r for k = 0√
k sin(r/

√
k) for k > 0

(2.13)
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2.2. Consequences of current cosmologic models

with k being the value of the curvature radius squared.1 This metric already includes

the possibility of a expanding universe, as has been observed by Hubble in Ref. [16].

With this metric it is possible to solve the Einstein field equations leading to the

Friedmann equations(
ȧ

a

)2

=
8π G

3
ρ− k c2

a2
+

Λ c2

3
.

2
ä

a
= −8π G

c2
p− k c2

a2
+ Λ c2 −

(
ȧ

a

)2

. (2.14)

Here ρ and p are the homogeneous density and pressure of the universe. Newton’s

constant of gravity is symbolized by G, and Λ is a relic once introduced by Einstein

himself. This cosmologic constant was introduced to explain the cosmic expansion.

It is still kept in models nowadays since observational results of the cosmic microwave

background (CMB) can be fitted best to models with this Λ component. The cur-

rently favored set of models is called ΛCDM which are models with Λ and cold dark

matter. The common way to define a model is to use a set of energy densities and

Hubble’s constant. The first Friedmann equation in Eq. (2.14) can be transformed

to include these quantities. By defining a vacuum energy density ρΛ it is possible

to re-write the Λ term to also include a density. With ρΛ = Λ c2/(8π G) the first of

the Friedmann equations from Eq. (2.14) can be simplified to(
ȧ

a

)2

=
8π G

3
(ρ+ ρΛ)− k c2

a2
. (2.15)

The physical interpretation of ρ includes matter (ρm) as well as radiation (ργ). Note

that all densities can have a time dependence and only today’s values can be mea-

sured, see Ref. [17]. The values of the densities are nowadays given in a dimension-

less form, Ω, as multiples of ρ0,crit = 3H2
0/(8π G) with the index 0 denoting todays

(t = t0) values. In recent years the results from the Wilkinson Microwave Anisotropy

Probe (WMAP) satellite set quite firm boundaries on the current densities. A de-

scription of how the parameters are obtained is given in Ref. [18]. An excerpt from

the values derived from the current 7-year data (and other experiments) are found

in Table 2.1. These values tell us that matter (Ωm = Ωb + Ωc ≈ 0.27) and “dark

energy” (ΩΛ ≈ 0.73) are the dominating contributions to the total energy density in

1Depending on the choice of units of k the units of other quantities change. If k is a length−2 then
r has the unit length and a(t) is unitless. On the other hand if k ∈ {+1, 0,−1} (and unitless)
then r is unitless as well and a(t) has the units of length.
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2. Basic physics concepts

Description Symbol WMAP+BAO+H0

Hubble constant H0 70.4+1.3
−1.4 km s−1 Mpc−1

Baryon density Ωb 0.0456± 0.0016
Dark matter density Ωc 0.227± 0.014
Dark energy density ΩΛ 0.728+0.015

0.016

Total density Ωtot 1.0023+0.0056
−0.0054

Table 2.1: Excerpt of the current cosmological parameters taken from Ref. [18], the WMAP

seven-year report. Except for Hubble’s constant all quantities are dimensionless.

The first four values are obtained for a flat (k = 0) universe while the last entry,

Ωtot, is obtained with the possibility of k 6= 0. For details on the acquisition see

Ref. [18] and references therein. We will use simplified values derived from the ones

above. We set H0 = 70.5 km s−1 Mpc−1, the matter density Ωm = Ωb + Ωc = 0.27

and ΩΛ = 0.73.

a flat (k = 0 and Ωtot = 1) universe. We will use the approximated values for the

matter density and the dark energy density, derived from the exact values in Ta-

ble 2.1. Compared to these two contributions the radiation density Ωγ is negligible

and therefore not included in Table 2.1. When one relaxes the restriction on k and

calculates the total energy density Ωtot from observed values it is still close to unity

and hence spacetime can be considered to be flat (or of negligible curvature), see

Table 2.1.

Apart from changing the distance between two points in space, see Eq. (2.12),

the cosmic expansion also leads to an energy shift. Photons are observed at lower

frequency compared to the frequency they were emitted with. In terms of optical

frequencies they are “red-shifted”. Since all energies are affected by this shift the

so-called redshift z was introduced. It is defined as

z =
λobs − λemit

λemit

(2.16)

with λobs and λemit being the observed and the emitted wavelength. By comparing

the distance traveled in the expanding spacetime and by assuming that for today

t = t0 and a(t = t0) = 1 one obtains the formula connecting the scale factor a(t)

with the redshift z

a(t) =
1

1 + z
. (2.17)

By knowing the redshift z of a distant object and using the framework of the flat

ΛCDM cosmology it is possible to calculate the distance between the observer and

12



2.2. Consequences of current cosmologic models

an object in the universe. Since we have an expanding spacetime a distance that

was defined at one point in time expands with the spacetime (and the scale factor

a(t)). Thus, it is useful to have a distance measure that is defined at the present

cosmological time along a path and is independent from the cosmologic expansion.

Such a distance is called comoving distance dcom and can be calculated from the

redshift z :

dcom(z) =
c

H0

∫ 1

1
1+z

da√
Ωma+ ΩΛa4

. (2.18)

The values needed for this formula are the rounded values from Table 2.1, see cap-

tion of the table for explanation. c is the speed of light.

Another important distance is the so-called luminosity distance dL. It connects the

luminosity L, the energy output per unit time, of an object at cosmologic distance

to the measured flux F on Earth. The classic relation between L and F is given

with

Liso = 4π d2 ·F . (2.19)

Here, it is assumed that the flux F is emitted isotropically from a source at distance

d. This formula does not hold for objects at cosmologic distances if we insert dcom as

the distance d. This is because photons loose energy due to the cosmologic redshift

as well as being affected by (cosmic) time dilation. This leads to an additional

redshift,

Liso = 4π d2
com (1 + z)2 ·F , (2.20)

and to the introduction of the luminosity distance,

dL = (1 + z) dcom

= (1 + z)
c

H0

∫ 1

1
1+z

da√
Ωma+ ΩΛa4

. (2.21)

Before we come to the section on the boost of spectra, it has to be mentioned

that the above calculations and distance measures are only valid for z > 0.023. The

central assumption of these derivations is that the universe is isotropic and homo-

geneous. As one can tell by looking into the sky at night, this is not the case for

structures like our galaxy. Structures of stars or clusters of galaxies are anisotropic.

However, sky surveys have shown that above 100 Mpc structures begin to be dis-

tributed evenly in space, see e.g. Ref. [17]. These 100 Mpc translate into a minimum

redshift of zmin ' 0.023 (for luminosity distance) with help of Eq. (2.21) and the
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2. Basic physics concepts

values from Table 2.1. Therefore, only bursts with z > 0.023 should be included in

the discussion of cosmic sources since smaller structures are not isotropic.

2.3. Relativistic boost of particle spectra and

transformation of rates

As mentioned before our calculations will be done in two different reference frames.

The production of the particles is best described in the shock (or bulk) rest frame

(SRF), but experimental results can only be taken in the observer’s frame (Obs).

As noted in section 2.1 Lorentz transformations, as defined in Eq. (2.1), connect

values from both frames. For the general astrophysical case one has to consider

the relativistic Lorentz factor Γ as well as the energy loss due to the cosmological

expansion, expressed through the redshift z.

xObs = x
′ ·Γ−1 · (1 + z) (2.22)

Here xObs is a length in the observer’s frame along the direction of the boost, while x
′

is the comoving length in the SRF. Mind, that our notation for quantities in the two

different frames will be such that primed (
′
) quantities are in always in the SRF and

unprimed quantities are in the observer’s frame. The way elements in the normal

plane of the boost are not affected by the Lorentz factor, see Eq. (2.1) (for motion

along one axis). However, they are nonetheless subject to the cosmic expansion. For

other values it is advisable to use relativistic invariants depending on the relativistic

Doppler factor D as described in Ref. [15], see Eqs. (2.8) - (2.11). Those equations

need to be extended with a contribution from the cosmological redshift. For energy

and specific intensity this results in the following formulas:

EObs = E
′ · D · (1 + z)−1 (2.23)

Iν,Obs = I
′

ν · D3 · (1 + z)−3 . (2.24)

The changes due to the cosmological expansion have to be considered carefully, since

the effect of the cosmic expansion is not the same as the effect of the Lorentz boost.

However, the scale factor already describes the effect and from Eq. (2.17) one gets

the “cosmological component” for the transformations.
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2.3. Relativistic boost of particle spectra and transformation of rates

The limitation of the possible visibility of an event is another effect of the tran-

sition of reference frames.. Current observational data and also constraints from

energetic considerations suggest that gamma-ray bursts are generated by relativis-

tic jets, similar to jets of active galaxy nuclei (AGN). Assuming an outflow in two

diametrical jets, the maximal angle in the SRF under which the outflow of one jet

can be seen from the direction of the observer is θSRF = π
2
. Higher values can be

neglected since emission from the second jet would be observed under a smaller

viewing angle θSRF. Using the relativistic aberration formula

cos θObs =
cos θSRF + β

1 + β cos θSRF

(2.25)

for a moving source one can calculate the value of θObs,max. This angle is the largest

angle for which the relativistic outflow can be observed. It, therefore, reduces the

number of observable sources, and, also, sets a boundary to the properties of the

jet, i.e. the jet opening angle θj. For θSRF = π
2

the cos disappears and the equation

can be re-written to the form

θObs,max = arccos(β) = arcsin

(
1

Γ

)
≈ 1

Γ
. (2.26)

The last approximation is the result of the series expansion of arcsin
(

1
Γ

)
and valid

for large Lorentz boost factors Γ. If one compares this to the opening angle of the

relativistic beaming in Fig. 2.1, then one sees that the maximum observable angle

θObs,max is equal the opening angle of our relativistically beamed light cone. Hence,

as long as the jet opening angle θj is larger than 1/Γ, the approximation of the

emitting sphere still applies even for emission from jets. Moreover, we can use the

simple approximation of a constant boost factor D inside the jet. Therefore, it is

common in the literature to use

D = Γ . (2.27)

We will also adept this simplification for our simulations and will not consider the

effect of the viewing angle explicitly. Thus, the Doppler factor D simplifies to the

Lorentz factor Γ. However, the angular dependence may be of interest at some point

in the future, and, therefore, we will treat the boosts in these introductory chapters

as general possible. Hence, Eq. (2.27) applies to all of the following transformations.

We now want to explain how the different kinds of spectra in our work transform.
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2. Basic physics concepts

Therefore, we first need a definition of the different spectra. We will be using three

different kinds of particle flux spectra, two at the source and one at the observer.

The first spectrum Q is the spectrum per unit time at the source, and in the SRF. It

is given in units of GeV−1 s−1 cm−3. The second spectrum N is the time-integrated

spectrum, i.e. opposite to Q N has no dependence per unit time, at the source,

and in the SRF. The units of this spectrum are GeV−1 cm−3. The third spectrum

is denoted as φ in this work. This is the flux spectrum at the observer, in the

observer’s frame, in GeV−1 s−1 sr−1 cm−2. If φ appears in the shock rest frame, it

will be denoted as φ
′
, following our convention of primed and unprimed quantities. 2

The basic procedure in our calculations will be to compute the spectrum per unit

time Q from the steady (read: “no dependence per unit time”) spectrum N . Details

on how this computation is done can be found in section 5.1. The resulting Q then

has to be boosted to the observer’s frame to match a spectrum at a detector, φ.

Unfortunately there is also a difference in units between Q and φ. Q depends on the

volume while φ depends on the area and the solid angle. The standard procedure

for this kind of unit conversion is described in Ref. [19]:

φ =
c

4π
·N . (2.28)

As can be seen from Eq. (2.28) this method only applies to the steady spectrum

(without dependence on unit time) N and not to Q. We, therefore, need another

way to calculate the unit conversion. We will divide the conversion into three steps.

The first is to loose the volume dependence via integration. The second step is

to include the dependence on solid angle. And as the third and final step the

dependence on the surface area is introduced. The integration over the volume can

be simplified, if we assume a spherical symmetry for the emission region as well

as an emission which is independent of the location inside the source. Then the

integration simplifies to a multiplication with the volume of a sphere (V = 4π
3
r3).

The radius of the emission region r does not affect the results since we introduce

a total normalization. Moreover, we assume that the radius is large enough to not

lead to additional effects, such as e.g. the particles cannot be accelerated because

magnetic field and radius have unsuitable values, see Ref. [20] for a discussion of

these effects. The dependence on the solid angle can be obtained by simple division

by 4π because the emitted flux is assumed to be of isotropic origin. The dependence

2The flux φ is sometimes denoted as dN/dE in the literature, but this notation is misleading since
it neglects the differentials of solid angle, time and surface area. Note that in this notation N
is the number of particles, and not our spectrum without a dependence on the unit time.
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2.3. Relativistic boost of particle spectra and transformation of rates

on the surface area is included by assuming that the flux is now through a sphere

with radius dL, reflecting the distance between source and observer.3 Hence, the

total unit conversion is

φ
′

=
1

4π d2
L

· 1

4π
·
(

4π

3
r3

)
·Q

=
r3

12π d2
L

Q . (2.29)

However, we still need to take the effects of relativistic boosting into account.

Thus, we need to know how φ
′

(in SRF) transforms to φ in the observer’s frame.

The appropriate power of the Doppler factor, describing the boost of the spectrum

φ, can be derived from the dependencies included in the spectrum:

φ =
dN

dE dt dΩ dA
. (2.30)

Here N is the particle number, E is the energy, t the time, Ω the solid angle and A

the surface area. The number of particles N and the surface area A perpendicular

to the direction of the boost are unaffected from the Lorentz boost. However, the

energy E transforms in the same way as the frequency ν in Eq. (2.8), since the energy

of a quantum, e.g. a photon, can be expressed as the product of Planck’s constant

and its frequency, see Ref. [22]. Moreover, the solid angle Ω transforms as described

in Eq. (2.9), and the time t as in Eq. (2.6). By combining all the components as

described by Eq. (2.30) we obtain that

φ = D2 φ
′
. (2.31)

Note that we do not need the “extended” Doppler factor. Even if the reasoning of

the derivation slightly changes for z, the solid angle Ω is not changed by the redshift

while A is, the result for the cosmic expansion is as expected (1 + z)−2. But the

effect of the cosmic expansion is already accounted for by the luminosity distance

dL as part of the surface area A in the transformation in Eq. (2.29). As part of A,

dL is not affected by the Lorentz boost.4

3As one might tell, Eq. (2.21) does not give an analytic expression for the chosen values from
Table 2.1. Therefore, we approximate the result from z = 0 to z = 6. The upper bound is the
current bound of star formation rate considerations taken from Ref. [21].

4It may be more reasonable to first boost the spectrum and then divide it by 4π d2
L. However, the

two steps are independent, when dL is assumed to be part of the area A perpendicular to the
direction of the boost. Therefore, the calculation factorizes and both steps can be interchanged,
as we have done in our derivation.
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The field of neutrino astronomy is a field with high potential. As reported in reviews

such as Refs. [23, 24] the properties of neutrinos open a whole new detection range

and insight on astrophysical sources. The great advantage of neutrinos comes from

their lack of attunement and from the fact that they are not deflected by magnetic

fields. Therefore, it is in principle possible to detect signals not accessible by con-

ventional means, such as photons or cosmic rays. However, we have to understand

where and at which energies neutrinos are produced, in which kind of sources, and

from which interactions. Thus, we will first recapitulate the possible sources for

astrophysical neutrinos. Then, we re-iterate the interactions leading to neutrino

production in these sources. In the third section of this chapter we discuss the mass

of neutrinos and the resulting effects on the propagation through space. In the last

section we will consider the different detection mechanisms available for the high

energy neutrinos.

3.1. Sources of astrophysical neutrinos

As stated in reviews such as Refs. [23, 24], there are potentially lots of interesting as-

trophysical sources of high-energy neutrino. In the widest sense every kind of source

with non-thermal emission qualifies as such a neutrino source. These kind of spectra

normally characterize a source far away from thermodynamic equilibrium and is a

sign of highly efficient particle acceleration. The non-thermal spectra are associated

with powerful supersonic outflows, as those seen in supernova remnants, gamma-ray

bursts, or galactic and extragalactic radio jets, which lead to particle acceleration at

shock waves. The general process leading to the non-thermal emission is assumed to

be Fermi acceleration. This kind of diffusive shock acceleration, developed by Krym-

skii and by Axford et al, utilizes repeated scattering between magnetic mirrors. For

details on the process see Ref. [23] and references within. As already mentioned in

the introduction mainly pp and pγ interactions of the accelerated particles will lead
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to the production of neutrinos. We will discuss the interaction chains leading to

neutrinos in more detail in section 3.2. According to Ref. [23] the possible sources

of the cosmic rays participating in the interactions can be divided in galactic can-

didates, such as pulsars and pulsar-driven nebulae, shell-type supernova remnants,

and black hole candidates and microquasars, and extragalactic candidates, such as

active galaxy nuclei (AGN), galaxy clusters and gamma-ray bursts (GRB). In this

work we will focus on GRB and will give a more detailed description of these events

in section 4.1.

As for the expected diffuse neutrino flux from cosmic sources there have been sev-

eral estimates in the past. The general scheme of these estimates is to calculate the

neutrino flux by assuming photohadronic interactions between the observed ultra-

high energy cosmic rays (UHECR) and the observed photon spectra of cosmic sources

or by proton-proton interactions of cosmic rays, see Refs. [25] and [26]. While the

model by Waxman and Bahcall (WB) is calculated by assuming a particular model

spectrum for cosmic rays, the one from Mannheim, Protheroe and Rachen (MPR)

orientates more on the experimental data on protons and gamma-rays available at

the time of the publication of Ref. [26]. In both models the strongest bounds can be

derived by assuming that the sources are transparent to neutrons. However, both

have their advantages and disadvantages. Namely, WB can describe a certain type

of source well, i.e. GRB with an E−2 proton spectrum together with a Band func-

tion for the photon spectrum. Furthermore, it has a strong GZK cut-off, which is

fairly consistent with data from the High Resolution Fly’s Eye Experiment (HiRes),

see Ref. [27], and the Auger International Collaboration, see Ref. [28]. However,

this treatment by Waxman and Bahcall does not reproduce the steep slope of the

observed cosmic ray spectrum below∼ 1010 GeV. On the other hand the MPR treat-

ment does include these features, it is however centered more on the observational

data up to 1011 GeV (and not specifically single sources), even though modifica-

tions to analyze different sources, such as several types of AGN or GRB, have been

done, see Ref. [26]. Both estimates give the same result in the energy range between

107 GeV ≤ Eν ≤ 109 GeV, but at higher and lower energies the MPR result is higher

than the WB prediction. This can be seen in Fig. 3.1, which is taken from Ref. [26].

However, for our theoretical calculation of GRB neutrinos including the detailed

treatment of the particle physics the derivations by Waxman and Bahcall [25] are

better suited, since they can be applied to single sources and give a prediction of

the flux shape. The estimates of Waxman and Bahcall, taken from Ref. [25], are

currently considered a simple approximation of the neutrino flux stemming from the
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prompt emission of GRBs.

Figure 3.1: The bounds of the (muon) neutrino flux derived from considering the cosmic ray

spectra as well as gamma-ray observations, taken from Ref. [26]. The figure shows

the bound derived by Mannheim, Protheroe and Rachen (MPR) for different op-

tical depth of neutrons, and the bound derived by Waxman and Bahcall (W&B).

Furthermore, the Waxman-Bahcall GRB neutrino flux, stated to be taken from

Ref. [25], is shown as a dashed curve.

3.2. Assumed production mechanisms for

astrophysical neutrinos

Neutrinos in general are produced in weak interactions. In astrophysical sources

these can be part of several processes, or decay chains. First of all they are a

byproduct of the nuclear fusion in stars. These neutrinos have low energies for

astrophysical standards (∼ eV). Neutrinos with higher energy are presumably pro-

duced in proton-proton (pp) collisions and/or photohadronic (pγ) interactions in

shock fronts. Here, the neutrinos are the product of the decay of (charged) pions.

The leading contribution from pp interactions is

p+ p→

{
p+ n+ π+ 1/3 of all cases

p+ p+ π0 2/3 of all cases
, (3.1)

as described in Ref. [24]. The interactions between the cosmic rays and the photons

(photohadronic interactions) are in leading order approximated with the so-called
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∆-resonance. The simple reaction chain for the production and decay of the ∆-

resonance is the following:

p+ γ → ∆+ →

{
n+ π+ 1/3 of all cases

p+ π0 2/3 of all cases
. (3.2)

Both kinds of interactions lead to neutrinos, if charged pions are produced as inter-

mediate particles. (See Eq. (3.3) for more details on the production of neutrinos.)

The same kind of processes can also occur for incident neutrons, which leads to π−

additionally. Furthermore, Ref. [24] mentions the possibility of kaons production at

high energies as well as high energy processes leading to multiple pions.

For a realistic computation of the neutrino spectra from astrophysical accelerators

one also has to include these further interaction channels. In this work we want to

focus on photohadronic interactions. In addition to the ∆-resonance we also include

higher resonances, the direct (t-channel) production of pions as well as multi-pion

production as in Ref. [29]. We then consider the weak decays of pions, muons, kaons

and neutrons into neutrinos as

π+ → µ+ + νµ ,

µ+ → e+ + νe + ν̄µ , (3.3)

π− → µ− + ν̄µ ,

µ− → e− + ν̄e + νµ , (3.4)

K+ → µ+ + νµ , (3.5)

n → p+ e− + ν̄e . (3.6)

These decay channels are sometimes mentioned in the literature, but their discussion

is generally restricted to how synchrotron cooling affects each particle species dif-

ferently, as in e.g. Ref. [30]. To ensure a correct simulation of the neutrino spectra,

we have to calculate the synchrotron losses for each intermediate particle species.

Because of this we cannot integrate out the intermediate particles, as explained in

Ref. [29]. Moreover, this allows us to include the P (parity-) symmetry breaking

properties of weak interactions in the calculation of the decays. Experimental re-

sults have shown that the weak force only couples to left-handed (LH; helicity +1/2)

particles or right-handed (RH, helicity −1/2) anti-particles. This has consequences

for the decay of particles, e.g. weakly interacting neutrinos are always either left-

handed neutrinos or right-handed antineutrinos. In particular, we adopt the helicity

22



3.3. Effects of propagation through space on neutrinos

dependent decay of muons from Ref. [31].

3.3. Effects of propagation through space on

neutrinos

In the last two decades experiments with solar, atmospheric, reactor and accelerator

neutrinos showed that there was an unusual discrepancy between the expected and

the observed flux of neutrino. The description of this effect was adopted from the

quark sector of the SM and led to the introduction of the transition among different

neutrino flavors νe, νµ, ντ (antineutrinos ν̄e, ν̄µ, ν̄τ ) in flight. The latter implies

that neutrino flavor states can mix due to the flavor states not being equal to the

mass eigenstates. This can be described by connecting the flavor states |να〉 with

α = e, µ, τ to the mass eigenstates |νj〉 via a mixing matrix, see Ref. [32],

|να〉 =
∑
j

U∗αj|νj〉 . (3.7)

Uαj is a unitary neutrino mixing matrix. Before we can define Uαj we need to

know how many mass eigenstates |νj〉 need to be considered. With the exception of

the LSND result all current neutrino oscillation data can be described by neutrino

mixing with three mass eigenstates in vacuum. From these results one can obtain

that three neutrinos νj, e.g. ν1, ν2 and ν3, must be light, m1,2,3 . 1 eV, and not

equal, m1 6= m2 6= m3.1 Unfortunately the results of current experiments only limit

the total neutrino mass, e.g. mν < 2 eV from tritium decay experiments [5], or set

boundaries on the mass difference ∆m2 in the 3-neutrino mixing scheme, taken from

Ref. [5],

∆m2
21 = m2

2 −m2
1 = (7.59± 0.20) · 10−5 eV2 ,

|∆m2
31| = |m2

3 −m2
1| = (2.43± 0.13) · 10−3 eV2 . (3.8)

The difference ∆m2
21 is obtained from detailed calculation and measurement of so-

lar neutrinos. In theory the chains of nuclear fusion only produce νe, however, the

measured flux of νe on the Earth coming from the Sun is significantly lower than

1There is still the possibility of “sterile” neutrinos, but we will not consider this more general case
in this work. This is justifiable since to this point there is no strong evidence that there are
more than three light neutrinos.
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expected compared to calculations without flavor mixing. This discrepancy can be

described with transitions among neutrino flavor states and, hence, can be calcu-

lated. On the other hand neutrinos can also be produced by interaction of cosmic

rays with the Earth’s atmosphere. The detection of these atmospheric neutrinos

allowed for calculation of |∆m2
31|.

One of the most fundamental questions that cannot be determined with current

data is the question of the “nature” of neutrinos, i.e. if neutrinos are Dirac or Majo-

rana fermions. Since neutrinos have no electric charge they can in principle be their

own anti-particle since anti-particles are defined as the electric charge conjugate of

a particle, e.g. positron e+ (anti-particle) to electron e− (particle). If there is a lep-

ton charge L carried by the neutrino να, which is conserved in particle interactions,

then there would be distinguishable neutrinos να and antineutrinos ν̄α with opposite

lepton charge; e.g. L(να) = +1 and L(ν̄α) = −1. On the other hand if such a lepton

charge is not conserved, neutrinos could be Majorana particles. A massive Majorana

particle χ is identical with its anti-particle χ̄; χ ≡ χ̄.

In the following studies we will treat neutrinos as Dirac fermions. We assume three

generations of light neutrinos and will not include other possible effects (e.g. from

sterile neutrinos) in this work. The unitary mixing matrix for n = 3 parameterized as

in Eq. (3.9) is called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix UPMNS.

Here, the rows represent the flavors e, µ and τ , and the columns the mass eigenstates

1, 2 and 3, taken from Ref. [33],

UPMNS =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13e−iδ c12c23 − s12s23s13e−iδ s23c13

s12s23 − c12c23s13e−iδ −c12s23 − s12c23s13e−iδ c23c13

 .(3.9)

In this equation the following short hand conventions are used: cij = cos(θij) and

sij = sin(θij) are the cosine and the sine of the neutrino mixing angle θij, i, j = 1, 2, 3.

δ is the CP violating (Dirac) phase. Note that in this parameterization the effect of

δ (also called δCP) is connected to θ13.

For the results presented in this work we include the values of the mixing angles

from the update of Ref. [34] in February 2010. The best fit values are given in

Table 3.1 with 1σ errors, as in Ref. [34], together with the mixing angles use for our

calculations. The results in Table 3.1 are obtained for a three-flavor neutrino oscilla-
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Parameter best fit mixing angle derived value

sin2 θ12 0.318+0.019
−0.016 θ12 0.599

sin2 θ23 0.50+0.07
−0.06 θ23

π
4

sin2 θ13 0.013+0.013
−0.009 θ13 0

Table 3.1: The first two columns represent the best fit values with 1σ errors for the three-flavor

neutrino oscillation parameters, taken from Ref. [34]. These results are derived from

global data including solar, atmospheric, reactor (KamLAND and CHOOZ) and

accelerator (K2K and MINOS) experiments, according to Ref. [34]. The last two

columns, however, are the values for the mixing angles we use in our work. These

values are derived from the best fit values in the second column. The precision of

the chosen angles is on purpose higher than the current experimental precision. The

value θ13 = 0 is not exactly the best fit value, but a reasonable simplification to

avoid effects of CP violation in flavor mixing, see Eq. (3.9).

tion scheme from global data including solar, atmospheric, reactor (KamLAND and

CHOOZ) and accelerator (K2K and MINOS) experiments. The values of the angles

θ12 and θ23 are obtained by calculating the angles from the best fit values of sin2 θ

(second column of Table 3.1). These values are θ12 = 0.599 and θ23 = π
4
. However,

the value for θ13 is set to 0 for simplicity reasons. This confinement of θ13 allows to

set the CP-violating phase δ to an arbitrary value, since it no longer has an effect

on the flavor mixing, see Eq. (3.9).

For the correct calculation of the expected neutrino flux from cosmic accelerators

it is mandatory to include neutrino mixing, as described in Eq. (3.7). In the case

of cosmological neutrinos it is sufficient to take averaged oscillation probabilities

since distances are long enough to have a loss of coherence and, therefore, no more

transitions among mass eigenstates. A more detailed discussion of this can be found

in section 6.3. In the simple case of three neutrino flavors and three mass eigenstates

without any initial unstable states the probability of a neutrino of flavor α being

detected as a neutrino of flavor β is

Pαβ =
∑
j

|Uαj|2|Uβj|2 , (3.10)

taken from Ref. [35]. Uαj are entries of UPMNS from Eq. (3.9). The flavor indices

α and β can be e, µ or τ , and mass state index is j = 1, 2, 3. Using Eq. (3.10)

we calculate all unique combinations of Pαβ needed and implement them in our

c-code. Since currently no τ (or ντ ) is produced from the discussed processes, see

25



3. Astrophysical neutrinos

Eqs. (3.3)-(3.6), Pττ was not included into the source file. The full formulas of the

detection probabilities can be found in the Appendix B. By multiplying the detection

probability P with the boosted flux spectra φ one can calculate the expected flux

after flavor mixing,

φνα =
∑
β

Pαβφνβ . (3.11)

3.4. Detection methods for astrophysical neutrinos

The detection of neutrinos is highly limited by the small interaction cross section of

neutrinos. Since neutrinos only participate in weak interaction processes the num-

ber of processes that can be used for detection is relatively small. The commonly

used methods include the detection of secondary leptons, Cherenkov radiation or

characteristic photons from secondary (annihilation) processes. For low energy (re-

actor) neutrinos β-capture is the commonly used detection method, see Eq. (1.1).

As described in Ref. [3] this method yielded the first positive neutrino signal. Here

the flash from e+e− pair annihilation needs to be detected as well as a signal from

the slow neutron. In case of neutrinos with higher energies this and similar detection

methods are no longer sufficient.

For these neutrinos with higher energy other techniques are needed. As stated

in Ref. [23] astrophysical neutrinos with energies Eν ≥ 100 MeV are considered to

be high-energy and need special telescopes to be observed. The strongest limiting

factor today as stated by the authors in Ref. [23] is not necessarily the technique,

but the cost of the detector. To reach a sufficiently high sensitivity an effective area

of 1 km2 is needed. Just the cost for the detectors can therefore easily reach several

US $ 100 million, assuming US $ 100/m2 (numbers taken from Ref. [23]). Still there

are several viable methods to detect neutrinos. The currently most prominent one

is the detection of Cherenkov radiation in a transparent medium, such as ice or

water. The Interaction of a neutrino with a nucleon can lead to the production of

the charged lepton associated to the neutrino, see e.g. Eq. (1.1). If the velocity of a

charged particle, e.g. a muon, is higher than the speed of light in the medium then

the atoms along the path of the particle are first polarized and then relax rapidly

leading to radiation. Even though the production of the charged leptons is possible

for all three flavors, Cherenkov telescopes generally measure the tracks of muons.

This is due to the relatively long life time of the muons (compared to taus) and

their ability to polarize the medium well (compared to electrons), leading to a clear
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Cherenkov signal at these energies (Eν ≥ 100 MeV). The lifetime of the muons in

this energy range is long enough to detect the propagation track of the muon. The

reconstruction of the track can give directional information on the origin of the neu-

trino. The uncertainty of the reconstruction depends on the used detector medium,

the intrinsic detector resolution and on the kinematics of the interaction. The res-

olution is of the order of 1 ◦ for IceCube in the Antarctic ice, taken from Ref. [36],

and 0.3 ◦ for Antares in the Mediterranean Sea, see Ref. [37]. The interactions them-

selves, as described by particle physics, do not give a fixed result for the energies

and the momentum. Thus, the kinematics of the interaction always includes an

additional uncertainty independent from the detector. However, for the purpose of

detecting point sources the directional information is of great value. Electrons from

νe also produce Cherenkov radiation, but the signal from electrons is much fuzzier

and full of dots rather than a track. Also the Cherenkov radiation could be observed

in the radio window (below 100 MHz) or via acoustic detection.

Another possibility is the detection of shower or cascade events. As stated in

Ref. [38] this could be used to gain additional information. All flavors of neutrinos

can participate in neutral current interactions, creating a hadronic shower. However,

νe can also produce an electromagnetic shower through charged current interactions.

Theoretically it is possible to distinguish electromagnetic from hadronic showers by

comparing their muon content. In electromagnetic showers muons are absent, while

they occur in hadronic showers. However, it is not considered to be experimentally

viable at the moment. Nevertheless, a direct measurement of the electromagnetic

and the hadronic shower would be sufficient to recreate the total shower energy

and, therefore, the energy of the νe. In case of νµ, the charged current interaction

leads to the production of a muon and a shower. However, due to the long lifetime

of high energy muons, the muon track always extends beyond the shower. Thus,

these showers can be discriminated and do not contribute to the shower rate. For

the third flavor, ντ , the result of the interaction are a hadronic shower and a tau

track, similar to a muon event. Unfortunately, the decay path length of taus is

Γcττ ∼ 50(Eτ/PeV) m, with ττ the lifetime of the tau, taken from Ref. [38]. This

is so short that below a few PeV the decay of the tau cannot be distinguished

from the hadronic shower. Therefore, it is possible that the resulting particles also

contribute to the shower rate. According to Ref. [5] roughly 50% of the tau decays

lead to hadronic events. Moreover, the channel τ− → µ− + ν̄µ + ντ accounts for

(17.36±0.05) %, taken from Ref. [5]. This can lead to an additional muon track event.

However, if the energy of the tau is even higher, the track of the tau should extend
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beyond the shower. The ensuing decay of the tau would create a second shower.

Such double showers are called double-bang and lollipop events, see Ref. [38] for a

discussion. There are several possibilities to detect a shower. Either, photoelectrons

from the shower can be detected in a Cherenkov photon detector, such as IceCube.

The photoelectrons are distributed over a sphere with a ∼ 100 m radius for a TeV

shower. For a detection, the shower must at least be partially in the detector volume.

Since the size of a shower is much smaller than the range of a muon track the

effective volume for such a detection is much smaller compared to track events. Or

alternatively, the detection of the (nearly) horizontal extensive air showers (EAS)

in the atmosphere can be used to detect neutrino events at energies above EeV.

The measurement of the EAS can be accomplished by using Cosmic Ray detectors,

such as the Pierre Auger Observatory, or with pixelated optical detectors monitoring

the dark night sky for nitrogen fluorescence, a method developed by the Fly’s Eye

group, discussed in Ref. [23]. However, these events have to be separated from the

atmospheric showers, and again the effective volume for horizontal air showers is

rather small. In general, the detection of a shower event is less likely than the

detection of a track event. To reach comparable event rates in Cherenkov photon

detectors such as IceCube a much larger detector volume would be needed. Then it

should even be possible to directly detect double bang or lollipop events from taus,

see Ref. [38]. When it is possible to distinguish the different neutrino flavors, it is

helpful to define some new observables, that, according to Ref. [39], have to fulfill

the following two requirements:

1. They take into account the unknown flux normalization.

2. They take into account the detector properties.

A popular choice complying the first condition are so-called flavor ratios. These are

ratios of the fluxes at the detector between different flavors. Their main advantage is

that in case of the ratios the flux normalization cancels. The experimentally easiest

ratio to obtain is the ratio of muon track to shower events, taken from Ref. [40]:

R =
φν̄µ+νµ

φν̄e+νe + φν̄τ+ντ

. (3.12)

Here, φ is the flux at the detector, with contributions from neutrinos and antineu-

trinos summed over. The summation of νe and ντ is equivalent with the non-

discrimination of electromagnetic and hadronic showers. As stated before, this ratio

is limited by the number of detected shower events as well as the background of

atmospheric particle showers and neutral current showers. As a second observable
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the ratio of electron neutrino to tau neutrino can be defined:

S =
φν̄e+νe
φν̄τ+ντ

. (3.13)

This corresponds to the number of electromagnetic to hadronic showers, or electro-

magnetic showers to double bang or lollipop events, if the tau track can be resolved.

This is, however, experimentally far more complicated than to measure the ratio R.

Furthermore, the so-called Glashow resonance ν̄e+e− → W− → ... at about 6.3 PeV

may be used for (electron) antineutrino identification. This can be used to define

T =
φ̂ν̄e

φν̄µ+νµ

, (3.14)

which represents the ratio of Glashow resonance electron antineutrino events (de-

scribed by φ̂ν̄e) to the muon tracks. Note that the above ratios are somewhat ideal-

ized quantities. They neglect neutral current processes, different statistics between

numerator and denominator, and backgrounds. Therefore, results from these flavor

ratios have to be interpreted with care. There have been numerous studies in the

literature utilizing these ratios to look for new physics effects, see Ref. [41] for a re-

view. However, in this work we will only focus on the flavor ratio R, as in Eq. (3.12).

We will use this ratio to classify the GRB emission depending on energy, and take

the source classes from Ref. [20] as reference, see the Appendix C. Moreover, we

discuss what information could be obtained from such a flavor ratio measurement.

After all these methods of detecting high energy neutrinos, we now want to men-

tion the current experimental bound on the cosmic neutrino flux. There are several

experiments probing the cosmic neutrino flux. However, up to now there has been no

detection of such a neutrino flux. Thus, the current 90% C.L. bound from IceCube

for a generic E−2 spectrum, see Ref. [42], is set to

E2
νφν ≤ 8.9 · 10−9 GeV cm−2 s−1 sr−1 . (3.15)
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neutrino sources

In the following chapter we discuss one of the potential astrophysical sources in more

detail: gamma-ray bursts. We will recount the general considerations for astrophys-

ical neutrino sources and give estimates of the diffuse flux. We will establish the

general concept of a GRB, which will be used in the later simulations, and we take

a look at the distribution of measured parameters.

4.1. Overview and principle models of gamma-ray

bursts

On the other end of the size scale compared to neutrinos are events or objects that

can be seen over cosmic distances. Light of stars or galaxies can travel for millions

of years before it is finally observed. While galaxies host millions of stars or even ra-

diation from supermassive black holes in their center (Active Galaxy Nuclei, AGN)

there is a certain class of events that even outshines galaxies for a short period of

time. So-called gamma-ray bursts (GRBs) are the brightest events in the currently

known universe. They are some cataclysmic event in which (isotropic) energies of

the order of the solar mass M�c
2(∼ 2 · 1054erg) are released in form of a burst which

lasts only up to tens of seconds.

The first bursts were discovered in 1967 by satellites flown by the US Depart-

ment of Defense. The Vela satellites had omnidirectional gamma-ray detectors to

detect any nuclear explosions which might violate the Nuclear Test Ban Treaty. It

could already be established from the first measurements that these short blips of

gamma-rays came from space and not from the Earth’s direction. Being detected by

the military the results were only made public in 1973, see Ref. [43], six years after

the first events. Even though detected for years it was at that point not possible to

determine the exact origin of the bursts, mostly due to two key problems: First of all
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the bursts were too short for extensive measurements and detection happened only

by chance. And secondly, gamma-rays are hard to focus with any kind of devise.

Sharp “images” of bursts are therefore impossible to take, even now more than 40

years after the first discovery. These uncertainties led to a fast amount of models as

astrophysicists have tried to decipher this peculiar phenomenon, see e.g. Ref. [44].

It took nearly 25 years from the first detection to the next significant step in the

history of GRBs.

An important mission in the process of understanding GRBs was the launch of

the Compton Gamma-Ray Observatory (CGRO) in 1991. The results of this mission

are summarized in Ref. [45]. The main point of these observations was that the dis-

tribution of the bursts detected in the all-sky survey of the BATSE instrument were

isotropically distributed with nearly no dipole or quadrupole components [46]. This

strongly suggested that the bursts originated at cosmological or possibly extended

galactic halo distances. If one now considers bursts from cosmological distances,

the fluxes of the observed GRBs imply an enormous amount of energy which is re-

leased in a very short period of time in a small volume. The latter two conclusions

result from the short variability times of the measured bursts. From these conclu-

sions the formation of a relativistically expanding e±-γ fireball can be derived. The

main problem of such a model is the distribution of energy. In basic expanding

fireball most energy would be converted into kinetic energy of accelerated baryons,

rather than photons, and would lead to a quasi-thermal spectrum. Furthermore,

the timescales could not explain events much longer than milliseconds. To address

these issues the possibility of shocks being part of the generation of radiation was

introduced. The “fireball shock scenario” uses shocks created when fireball ejecta

run into the surrounding medium to accelerate particles and create the observed

non-thermal radiation spectrum (after the fireball has become optically thin). With

the help of Fermi acceleration kinetic energy is re-converted into non-thermal radi-

ation. Moreover, the fast varying structure of the temporal curve can be explained

by these models, e.g. due to internal shocks with different velocities which collide

before running into the external medium. For an introduction to these models see

Refs. [47, 48] and references therein.

One of the predictions of the generic fireball shock model is the existence of low

energetic afterglows. The detection of these was finally possible after 1997 with the

help of the Italian-Dutch satellite Beppo-SAX, which detected fading x-ray images,
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see Ref. [49]. After a delay of 4-6 hours from processing these images a position of

a burst could be extracted and allowed for follow-up observations in the optical or

other wavelength bands, see e.g. Ref. [50]. Capitalizing from these multi-wavelength

measurements it was possible to obtain the redshift distance of the bursts, identify

candidate host galaxies and the confirmation that they were indeed at cosmological

distances, see Refs. [51, 52]. After the end of the CGRO and Beppo-SAX mis-

sions the HETE-2 satellite followed with accurate measurements of GRB afterglows.

The delay between the first detection of a burst and the afterglow measurement by

satellite was still some hours. Nonetheless HETE-2 detected the first unambiguous

association of a GRB with a SN with the correlation of GRB 030329 to SN2003dh,

see Refs. [53, 54].

The third wave of significant advances came from the Swift multi-wavelength

afterglow satellite, which was launched in November 2004, see e.g. Ref. [55] and

references therein. This mission finally achieved the goal of measuring the afterglow

just minutes after first burst trigger. This yielded important information on the

transition of the light curves from prompt emission to the subsequent long term

afterglow, measured at gamma-ray, x-ray and optical wavelengths. Moreover, it

detected the long-awaited afterglow of short bursts (hard gamma-ray emission is

shorter than 2 s). Furthermore, it broke through the symbolic barrier of redshift

z = 6, even though only very few events at these distances were detected. These

measurements helped to refine several parts of the models, especially how the tran-

sition from prompt emission to afterglow can be described, and if information can

be obtained from high redshifts, z ≥ 6. And currently the Fermi satellite is on the

verge of providing an even more detailed range of data. Fermi is equipped with two

instruments which can measure gamma-rays in different energy ranges. The lower

energy range, from < 10 keV up to > 25 MeV, is observed by the GLAST Burst

Monitor (GBM), taken from Ref. [56]. The burst monitor can has a full sky field

of view (minus the part occulted by the Earth). Therefore, it is used to record pre-

trigger information, and can reposition the whole satellite when a burst is detected.

The GBM is complimented by the Large Area Telescope (LAT), which can detect

events in the range from 20 MeV up to 300 GeV. The field of view of LAT is with 2 sr

much smaller than the one of GBM, but, therefore, the angular resolution of LAT is

much better (< 0.5′ to ∼ 3◦), taken from Ref. [56]. Both instruments together can

record the photon flux over roughly seven orders of magnitude with nearly seamless

transition between energy ranges, which should bring new insight on GRBs. A first

catalog of 438 Fermi/GBM bursts has only recently been published, see Ref. [57].
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Thanks to observational data it is firmly believed that the following progenitor

models, who associate GRB with cataclysmic events at the end of the life of a small

fraction (∼ 10−6) of stars, are correct. In general two main populations of GRB

are distinguished depending on the observed duration of a burst. If the duration

is shorter than 2 s then the burst is considered “short” and, correspondingly, if the

duration is longer than 2 s then the burst is called “long”. For long bursts the can-

didates are massive (m & 30M�) stars whose core collapses to a black hole, either

directly or after a short accretion period with the accretion possibly being the merger

with a smaller companion. This so-called collapsar or hypernova model is supported

by the detection of an associated supernova through spectroscopic measurements,

see Refs. [58, 59]. Another possibility is the formation of a fast-rotating ultra-high

magnetic field neutron star from a stellar collapse, a so-called magnetar. For the

short bursts currently favored models are mergers of compact objects such as neutron

star binaries (NS-NS) or neutron star-black hole (NS-BH) binaries, see Refs. [60, 61].

These loose rotational energy and orbital angular momentum by gravitational waves

and then release even more energy during the merger. The scenario for short bursts

still needs to be confirmed. Neglecting this missing verification one can conclude

that all GRB models end in the formation of a black hole of a few solar masses.

One of the newer additions to the fireball model is the introduction of jet-like

outflows (instead of isotropical emission). This consideration is backed by afterglow

observations as well as by theoretical aspects. On one hand the observations of

x-ray and optical afterglows show a break or steepening which can be interpreted

as a sign for the edge of a jet which becomes visible when the jet slows down. For

long GRBs the typical jet opening angles are suspected to be θj = 5◦ − 20◦. This

essentially affects the fireball model since now the emission is no longer from an

isotropically expanding fireball but from a jet. However, as long as θj > 1/Γ is

valid, the fireball model still can be applied, see Eq. (2.26) and the discussion of

this equation. Moreover, as a positive effect this results in a reduction of the total

amount of energy required for a burst of the observed strength from 1053−1054 erg to

∼ 1052 erg. Instead of an emission from the full surface of a sphere, radiation is only

emitted from the surface of the jets. The actual energy amount Etot and the actual

luminosity L can be obtained by multiplying the isotropic total energy Etot, iso or,

correspondingly, the isotropic luminosity Liso with the fraction of the surface that

is actually emitting, i.e. the jet surface. However, details depend on the model of
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the assumed jet. Until now there is no conclusive jet model and the discussion is

going on which kind of model could describe observations. The models range from

uniform jets over structured jets to two jet models. We will assume simple case of a

uniform jet.

4.2. Parameters of a GRB in the internal shock model

As stated before GRB are considered to be produced from the collapse of stars or

the merger of compact objects with the central object being a black hole (or in case

of the magnetar model a fast rotating high-mass neutron star which eventually col-

lapses into a BH). During the collapse the release of high amounts of gravitational

energy during a short time in a small volume leads to an explosion or expansion.

The ejected plasma and photons from the burst interact, eventually producing the

so-called prompt emission of a GRB. The photons are assumed to be emitted from

co-accelerated electrons in the plasma expanding in form of a jet, the protons are

part of the plasma. Depending on the model of choice these relatively general con-

siderations set limits to several parameters of a burst. In this section we want to

discuss which parameters of a burst have already been constrained by measurements

or theoretical considerations.

We will consider the internal shock model, as proposed in Refs. [62, 63, 64]. In

this model the collision of emitted shells leads to the main acceleration, before the

ejecta reach the interstellar medium. These collisions are assumed to take place at

a distance Rc (in the observer’s frame) from the central engine, leading to a delayed

acceleration in the GRB, see Fig. 4.1. In case of the internal shock model this

distance R
′
c is called the collision radius (in the SRF) and can be calculated from

observed parameters of a burst as explained in Ref. [30]:

R
′

c ' 2Γ2ctv . (4.1)

Here Γ is the bulk Lorentz factor, see Eq. (2.2), and tv is the observed variability

time scale. As stated in Ref. [30] both of these quantities can be obtained from the

measured light curves including prompt emission as well as the afterglow. Typical

values are assumed to be of the order of R
′
c ∼ 1014 − 1015 cm.
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Figure 4.1: These are basic sketches of the emission in the internal shock model and of the

shells. They are taken from Ref. [65] to illustrate the basic concept of the internal

shock model. The left sketch depicts the emission from different parts of the sphere,

leading to the distorted shape in Fig. 2.1. The right sketch shows a shell in the

internal shock model. The collision radius R
′

is our R
′

C from the text, as well as

the shell thickness ∆R
′

being our δR
′

C .

The variability time tv describes how fast the temporal structure of the light curve

varies. The temporal structure of the GRB light curves is different for every burst,

with values of tv ranging from ∼ 10−3 s up to 1 s, see Ref. [66]. In the internal shock

model it is connected to the shell width and the difference in velocity among shells

as well as possibly the distance between these. The width of a shell δR is approxi-

mately 107 cm, see Fig. 4.1. The variability time is one of the few parameters that

can be directly extracted from the measured light curves. However, the result of tv

can vary depending on the energy band. This can either be an effect of the measure-

ment process, or some aspect of the acceleration that has not been understood yet.

Moreover, there is so far no clear definition of tv. Therefore, even the measurement

of tv is subject to high uncertainties.

The other quantity needed in Eq. (4.1) is the bulk Lorentz factor Γ. For a quick

explanation of what this quantity describes let us make a comparison to wave de-

scriptions. The bulk Lorentz factor of a burst corresponds to the group velocity

is in a wave packet. Accordingly the Lorentz factor of a single shell is equivalent

to the phase velocity. For bounds on Γ one can use general considerations on the

emission from the jet. As mentioned earlier the fireball has to become optically thin

for photons to escape the jet. For the source to be optically thin to non-thermal high

energy photons the Lorentz factor has to be at least 100, see Ref. [67]. This approx-

imation is done by calculating the minimal Γ required for the maximal (observed)

energy photons to still participate in e±-pair production inside the source. On the
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other hand the Lorentz factor cannot be much higher than 1000 since then the pro-

tons would loose most of their energy due to synchrotron radiation, see Ref. [68].

The value of Γ needs to be derived from other observable quantities. In Ref. [30] a

method to calculate Γ from observational data is described. In mentioned reference

an analysis of a sample of bursts from the Swift data is done using two different

formulas. The main criteria is the dependence on the observed break energy in

photons. From this the minimal needed Γ is constrained, for which the observed

radiation is reasonable and not suppressed by some process. It is stated in Ref. [30]

that bursts with high observed break energies, εγ,break & 500 keV, have a Lorentz

factor Γ that does not differ significantly from the minimum value for which the fire-

ball becomes opaque to photons due to pair production near the maximum energy

of γ-rays, εγ,max.1 Guetta chose 100 MeV as their default maximum photon energy

εγ,max leading to the formula

Γ ∼ 250
[
Lγ,52t

−1
v,−2

( εγ,max

100 MeV

)]1/6

. (4.2)

This formula describes the extraction of the Lorentz factor Γ out of observational

data. As can be seen from the formula it depends weakly on the observed luminosity

Lγ,52 (in units of 1052 erg s−1) and the observed variability time t−1
v,−2 (in units of

10−2 s) apart from the aforementioned maximal observed photon energy. On the

other hand bursts with low break energy can be analyzed by using some assumptions

stemming from synchrotron radiation. In this case the Lorentz factor Γ is related

to the peak energy of the γ-ray spectrum, εγ,break,

Γ = ε
1/4
B ε3/4e

L
−1/4
γ,52

εγ,break;MeV t
−1
v,−2

102.5 . (4.3)

Here, εB is the fraction of the total energy stored in the magnetic field, and εe is the

fraction carried by the electrons. For details please refer to Ref. [30] and references

therein. Using these two formulas Guetta et al. analyzed a sample of Swift bursts.

The obtained distribution can be found in Fig. 4.2 taken from Ref. [30]. As one can

see from the Fig. 4.2 the most observed bursts have a Lorentz factor Γ ∼ 300, a

value that is commonly used in the literature, see e.g. Refs. [30, 48, 66, 68]. This

will later be our reference distribution even though Fermi has already produced very

interesting new data indicating higher values of Γ. A first catalog with the spec-

tral properties of 438 Fermi/GBM bursts has been published recently, see Ref. [57].

1Note that in this case εγ,max is the real observed maximum photon energy, not the to certain
extent arbitrary cut introduced by our model. A discussion of the effect of εγ,max can be found
in the Appendix A.4.
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Figure 4.2: This figure shows the distribution of the Lorentz factors Γ obtained by Guetta

et al., taken from Ref. [30]. They used the equations, denoted as Eqs. (4.2) and

(4.3) in this current work, to calculate the Lorentz factors from the observed light

curves. As one can see most of the observed bursts have Γ ∼ 300. The distribution

is asymmetric on the displayed linear scale. Namely, the number of bursts with a

Γ > 500 is much smaller than the number of bursts with Γ < 500. We will try to

reproduce this distribution in section 7.1.

However, this comprehensive study only includes properties of the light curves, and

none explicitly on the Lorentz factors. Therefore, we have to compare our simula-

tions in section 7.1 with the “old” Swift data from Ref. [30].

Since GRB, or more correctly long GRB, are connected to the death of massive

stars it is natural to assume that GRB trace the star formation history in redshift z.

Since GRB events are only a small fraction of all visible objects it is easier to obtain

a distribution of the redshift dependent star formation rate (SFR). There are several

models parameterizing the star formation in redshift. A recent work by A. Hopkins

and J. Beacom uses a piecewise steady approach to parameterize the star formation

rate density, which is denoted as ρ̇∗, depending on the redshift z, see Ref. [21]. Note

that the dot refers to a differential of cosmic time, which can also be expressed

in terms of z, as well as density referring to the z -dependent volume. Therefore,

the distribution of ρ̇∗ only depends on z, but is given in units of Modot Mpc−3 yr−1.

They obtained the best result from a parameter fit using the initial mass function
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proposed by Baldry and Glazebrook, Ref. [69], leading to the following function:

ρ̇∗ ∝


(1 + z)3.44 0 < z ≤ 0.97

101.09 · (1 + z)−0.26 0.97 < z ≤ 4.48

106.66 · (1 + z)−7.8 4.48 < z

. (4.4)

As a maximum value for the redshift Hopkins and Beacom introduced a cut-off at

zmax = 6. As stated in Ref. [21] this is due to the low statistics at even higher

redshifts. The universe at higher redshifts is hard to probe, so for now we will only

consider the region up to z = 6. To get the number of bursts depending on redshift

several factors apart from the star formation rate are needed, such as the comoving

volume per unit redshift dV/dz
1+z

or correction factors as in Ref. [70]:

dṄ

dz
= F (z)

E(z) ρ̇∗(z)

〈fbeam〉
dV/dz

1 + z
. (4.5)

Here F (z) is the fraction of bursts that can be observed at a certain redshift as well as

the possibility to obtain a redshift. For simplicity reason we will set this fraction to

a constant value, which is feasible if one considers bursts with luminosity L which is

high enough to be observed over the whole redshift range, e.g. L− iso = 1052 erg s−1

would be sufficient to be observable up to zmax = 6. 〈fbeam〉 is a correction if a burst

is observable or not due to beaming effects. The last factor E(z) is a correction

introduced by Kistler et al. in Ref. [70] to account for the fraction of stars resulting

in GRBs. In that work 66 Swift GRBs, with well measured redshifts in the range

of z = 0 → 4 and Liso > 1051 ergs−1, were analyzed and compared to the expected

distribution derived from the SRF by Hopkins and Beacom [21]. They conclude that

a function E(z) = E0(1 + z)1.2 describes observational data of GRB best and applies

to redshifts higher than the analyzed range as well. This suggests that the death

of stars is more likely to result in a GRB at higher redshifts. The “typical value”

for the redshift of a GRB according to Ref. [66] is roughly between z = 1− 2. This

corresponds to the peak obtained from the star formation rate in Eq. (4.4). With

the correction factor these values are shifted to higher redshifts with a broad peak

between roughly z = 2 − 3. We will discuss the connection between the number of

bursts and the star formation rate in more detail in section 7.2.

Another quantity, which is mandatory to consider when talking about shocks and

accelerated charges, is the magnetic field. There is still great debate about what

values the magnetic field can reach in the relevant acceleration areas. According
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4. Gamma-ray bursts as astrophysical neutrino sources

to Ref. [71] it is expected to range from 104 to 107 G for GRBs with no definite

restrictions on its value. There is so far no model for the distribution of the magnetic

field values, partly due to the lack of a certain method to determine the magnetic

field of a GRB. As pointed out by Guetta et al. [30] the magnetic field in the

SRF can be calculated by comparing the energy density stored in the magnetic field

times the surface of a boosted sphere to the luminosity in the magnetic field. For

this derivation several quantities are needed:

B
′
=

√
εB Liso

2 Γ6 c3 t2v
. (4.6)

As can be seen from Eq. (4.6) it has to be noted that the derivation of the magnetic

field values strongly depends on the bulk Lorentz factor Γ. The isotropic luminosity

can be obtained from the measured flux of a burst, see Eq. (2.20). In Ref. [66] the

quoted “typical burst luminosity” Liso is roughly 1052 erg s−1, which is the same as

our threshold luminosity mentioned in the paragraph on the redshift (in this sec-

tion). Furthermore, we can again use the values that we previously mentioned in

this section, such as tv =∼ 10−3− 1 s and Γ ∼ 300. The last parameter, the fraction

of energy stored in the magnetic field εB, is so far not measurable, and one can only

make assumptions for its value. A value of εB = 0.1 (or similar order) is reasonable

but cannot be confirmed by current data. By inserting the quoted typical values

from Ref. [66] into Eq. (4.6), one can calculate that the possible values for a typical

GRB are between 431 and 4.31 · 105 G.

4.3. The Waxman-Bahcall model of the GRB

neutrino spectrum

As mentioned in section 3.1 the calculations by Waxman and Bahcall, taken from

Ref. [25], are a simple and solid upper bound for the diffuse flux of neutrinos. In

the progress of their calculations Waxman and Bahcall also proposed a flux shape

for the muon neutrinos produced in GRBs via photohadronic interactions. This flux

shape is the result of relatively general considerations depending on the photon and

proton spectra. The observed spectra can be parameterized as following. The steady
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4.3. The Waxman-Bahcall model of the GRB neutrino spectrum

target proton field in the rest frame of the source can be written as in Ref. [31]

N
′

p(E
′
) = C

′

p ·

 E
′−2 · exp

(
− E

′2

ε′2p,max

)
ε
′
p,min ≤ E

′

0 else
(4.7)

with the cut-off energy ε
′
p,max being derived from comparison of acceleration time and

synchrotron loss time, see Eq. (4.18) later this section. For computational reasons

we include a low energy cut-off ε
′
p,min. C

′
p is the normalization of the spectrum.

The flux shape of the protons is derived from the observed extragalactic component

of the cosmic ray spectrum in the energy range between 1010 and 1012 GeV, taken

from Ref. [72]. The steady target photon field N
′
γ(E) is derived from observed GRB

photon spectra and is parameterized by the Band function2, see Ref. [73]:

N
′

γ(E
′
) = C

′

γ ·


E

′αγ ε
′
γ,min eV ≤ E

′
< ε

′

γ,break

ε
′

γ,break ·E
′βγ ε

′

γ,break ≤ E
′
< ε

′
γ,max

0 else

. (4.8)

Again C
′
γ is the normalization factor. The spectral indices αγ and βγ can be ob-

tained from GRB observations. The median values are αγ ≈ −1 and βγ ≈ −2. The

break energy ε
′

γ,break is normally retrieved from the photon spectrum of a burst, but

we will need it as a parameter in our model as we will show later on in this section.

Moreover, the energy ε
′
γ,max is the maximum photon energy, and ε

′
γ,min is the lower

energy cut-off of the photon spectrum.

From these spectra Waxman and Bahcall concluded a power-law spectrum of

muon neutrinos at the observer [25]. The analytic formula normally given (in the

language of Ref. [66]) is

E2
ν

dNν

dEν
= Cν ·


(Eν/ε

b
ν)
−αν for Eν < εbν

(Eν/ε
b
ν)
−βν for εbν ≤ Eν < εsν

(Eν/ε
b
ν)
−βν (Eν/ε

s
ν)
−2 for Eν ≥ εsν

. (4.9)

Here dNν
dEν

(our φν) is the observed neutrino spectrum with Eν being the neutrino

energy at the observer. αν and βν are spectral indices. They are connected to the

photon spectrum indices as follows: αν = βγ + 1 ≈ −1 and βν = αγ + 1 ≈ 0 [66].

2Note that the original Band function has an additional exponentially decaying component above
the photon break. We neglect this feature only for the sake of a better recalculation of the WB
flux shape. This is not needed for a calculation to be successful, but purely cosmetic.
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4. Gamma-ray bursts as astrophysical neutrino sources

This simple shape is often used as the expected neutrino flux shape for a stack-

ing analysis, as in e.g. Ref. [74]. In such a stacking analysis the spectra of several

bright bursts are used individually to calculate the single source neutrino fluxes.

These different fluxes are then added up to obtain a quasi-diffuse limit. These this

analysis utilizes the assumption that only a few bright bursts dominate the total flux.

The first break of the WB spectrum εbν is connected to the break in the photon

spectrum ε
′

γ,break via the energetics of the ∆-resonance. As can be seen in Eq. (4.9),

or in the resulting Fig. 6.1 in section 6.1, the observed first break is set to be at

105 GeV [25, 66]. Following the argumentation of Ref. [30], this first break in the

expected neutrino spectrum can be derived from the available center of mass energy

of the photohadronic interaction leading to the ∆(1232)-resonance:

E
′

γE
′

p ≥
m2

∆ −m2
p

2 (1− cos θ′
pγ)

. (4.10)

Here m∆ and mp are the rest mass of the ∆-resonance and of a proton, respectively.

It has to be noted that this approach slightly differs from the treatment in Ref. [30]

since our kinematics treatment takes the collision angle between photon and proton

θ
′
pγ into account. When integrating out the angular dependence, most of the interac-

tions take place at higher center of mass energy. Thus no longer a head on collision

(θ
′
pγ = π) but an average scattering angle of

〈
θ
′
pγ

〉
' π/2 corresponds to the peak

in the cross-section, see Ref. [29] or the SOPHIA code [75]. By inserting this value

of the collision angle into Eq. (4.10) one sees that the cos-term vanishes instead of

giving an additional factor of 2 (= 1 − cosπ). Because of this the needed break

energy ε
′

γ,break will be larger by a factor of two compared to the result in Ref. [30].

To emphasize the difference in the calculation we will keep the angular dependence

in the following formulas, even though it vanishes during calculations in the case of

our assumptions. We now need an approximation of how much energy is passed from

the parent protons to the neutrinos (after pion decay). It is possible to estimate the

fraction of energy fπ passed on from the protons to the pions. In the subsequent

decay of the pions about 1/4 of the pion energy is transformed into neutrinos, see

Ref. [30]:

E
′

ν =
1

4
fπ E

′

p

=
1

20
·

m2
∆ −m2

p

2 (1− cos θ′
pγ) E

′
γ

. (4.11)
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4.3. The Waxman-Bahcall model of the GRB neutrino spectrum

Here fπ ≈ 0.2 is used, taken from Ref. [30]. This result then has be boosted to the

observer’s frame as well as shifted due to cosmologic effects to obtain the observed

values, see section 2.3. Note that in Eq. (4.12), the Lorentz factor Γ is used instead

of the Doppler factor D to match conventions in the literature. This is a valid result

of Eq. (2.5) when θ = 1/Γ is assumed (in case of large Γ), leading to

Eν ≈
Γ2

(1 + z)2
· 1

20
·

m2
∆ −m2

p

2 (1− cos θpγ) Eγ
. (4.12)

It was already suggested in Ref. [25] that the charged intermediate particles could

loose energy through synchrotron cooling. Following this suggestion it is shown

in Ref. [30] that the second break of the WB spectrum εsν can be obtained by

considering synchrotron cooling of the pions. To calculate the energy of this break

one has to compare the particle life time τ
′

to the synchrotron loss time t
′
syn. The

reasoning for this assumption is that synchrotron losses start to dominate if the

synchrotron loss time is shorter than the particle life time, see Ref. [30]. Since

Waxman and Bahcall looked specifically into neutrino production resulting from the

∆-resonance, the main charged particles of interest are pions. Nevertheless, the

same reasoning applies for other charged particles. The particle specific quantities

have to be inserted accordingly in case of e.g. muons. The synchrotron loss rate is

defined (in SI units) as

t
′−1
π,syn(E

′

π) =
e4 B

′2 E
′
π

9π ε0 m4
πc

5
(4.13)

with ε0 being the vacuum permittivity (in A s V−1 m−1), mπ the rest mass of a pion

(in kg), Eπ the pion energy (in J), e the elementary charge (in C) and B the magnetic

field (in T). It is important for calculations to use the correct units of quantities.

Because of this it will be noted in the text if units differ from the normally used

units, as in the case of Eq. (4.13). As stated before this needs to be compared to

the energy dependent decay rate of the pion τ
′−1
π (in SI units):

τ
′−1
π (E

′

π) = τ−1
0,π

mπc
2

E ′
π

. (4.14)

Here τ−1
0,π is the decay rate of the pion at rest. This is tabulated to be 2.6033 · 10−8 s

in Ref. [33]. By assuming equipartion between the synchrotron loss rate and the

decay rate, an analytic formula for the energy ε
′
π in the shock rest frame is obtained:

ε
′

π =

√
9π ε0 (mπc2)

c τ
′
0,π

· (mπc
2)2

e2 B′ c
. (4.15)
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Again Eq. (4.15) is in SI units. From this “pion break energy” it is possible to

calculate the resulting break in the neutrino spectrum. Such as before, the result

needs to be transformed to the observer’s frame as well as considering that only about

25% of the pion energy are transfered to the neutrinos. This is done analogous to

Eq. (4.12):

εsν =
1

4
· Γ

(1 + z)
·

√
9π ε0 (mπc2)

c τ
′
0,π

· (mπc
2)2

e2 B′ c
. (4.16)

The other parameter we can obtain in a similar fashion is the proton cut-off energy

ε
′
p,max. It can be determined by comparing the energy dependent acceleration rate

(Eq. (4.17)) and the synchrotron loss rate (Eq. (4.13)). This method is in principle

the same as the one used to calculate the second break of the WB spectrum, but

with the acceleration rate (see Ref. [76])

t
′−1
acc = η

c2 q B
′

E ′ (4.17)

instead of the particle decay rate. The factor η is the acceleration efficiency, and q

the particle charge. Then one can calculate the energy at which the acceleration time

is equal to the synchrotron loss time of the protons. This leads to the mentioned

maximum proton energy, if we insert proper values for protons:

ε
′

p,max =
√
η ·
√

9π ε0 m4
p c

7

e3 B′ . (4.18)

By inserting the obtained magnetic field B
′

from Eq. (4.16) and setting a value for

η we can calculate ε
′
p,max directly during computation through Eq. (4.18).
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5. Numerical Methods

In the next chapter we will explain how the astrophysics and particle physics are

implemented in our simulations. We will give a brief overview on our code that we

use to simulate photohadronic interactions. In the second part of the chapter we

explain the Monte Carlo techniques used to generate the parameter distributions.

5.1. The NeuCosmA code - simulating neutrino

production in cosmic accelerators

When calculating neutrino spectra from astrophysical sources there is currently a

tradeoff between speed and precision. Either one uses sophisticated Monte Carlo

methods such as the SOPHIA software [75] or one uses a rather simple approx-

imation of the interaction cross section with the ∆-resonance approximation, see

Eq. (3.2) in section 3.2. Therefore current software is either too slow (SOPHIA) or

too inaccurate (∆-resonance approximation) for detailed parameter studies. Because

of these limitations we use our C-software NeuCosmA (“Neutrinos from Cosmic Ac-

celerators”) for the calculation of the neutrino spectra.

NeuCosmA is specifically designed to model neutrinos from cosmic accelerators.

The current version developed by our group and collaborators can very efficiently

calculate photohadronic interactions and subsequent particle decays. This is pos-

sible by analytically approximating the photohadronic interaction treatment of the

SOPHIA code with a parametric description as proposed in Ref. [77]. This comes

at the expense of a simpler kinematics treatment compared to SOPHIA, however,

as it is shown in Ref. [29] this treatment reproduces the SOPHIA result with high

accuracy. The code can simulate the production of π+, π− and π0 as well as K+ and

n separately and can easily be extended with further particles, e.g. K0. All of these

production processes include the ∆-resonance, higher resonances, direct (t-channel)

production and at high energies statistical multi-pion production. The code can

45



5. Numerical Methods

calculate the decay of the secondary particles into neutrinos without integrating out

the intermediate particles. This is necessary to include the effect of energy losses of

intermediate particles before they further decay. To correctly calculate these energy

loss effects particle properties such as charge and mass are already included for each

particle. For each step spectra are generated with the help of interpolating functions

to reduce numerical errors. This form of generality allows for the application of the

code for arbitrary photon and proton (target) spectra.

Our simulations use model Sim-B from Ref. [29] which includes direct production

(t-channel), different resonances, and high energy processes. Also muon decays

are treated helicity dependent as in Ref. [31]. The resulting neutrino spectra have

to be Lorentz boosted (and redshifted) to obtain the spectra at the Earth. We

assume that the source is optically thin to neutrons, which means that neutrons

produced by the photohadronic interactions will decay via beta decay and lead to an

additional electron antineutrino flux. For all charged particles we include the effect

of adiabatic and synchrotron energy losses, and we assume that these dominate such

that energy losses due to inverse Compton processes, Bethe-Heitler pair production,

and photohadronic interactions (the source is optically thin to neutrons) are sub-

leading. Although not all spectral features of some sources may be described by

this method, it has the advantage that the electron-positron (or proton) ratio is

not needed as parameter, and that only the product of photon and proton injection

spectrum enters the total normalization.

To summarize, we show in Fig. 5.1 a flowchart describing the computation of the

neutrino spectra in the shock rest frame (SRF). As introduced in section 2.3 Q(E)

(rectangular boxes) stands for (injection) spectra per time frame and N(E) (boxes

with rounded corners) for steady spectra derived from the balance between injection

and losses or escape. Dashed arrows stand for solving the steady state differential

equation balancing energy losses and escape with injection. Weak decays and pho-

tohadronic interactions are denoted by the horizontal lines. The resulting neutrino

spectra are marked by a double border and a colored background. Below the boxes

we indicate in which decay the neutrinos are produced.

For the charged species we consider possible energy losses, such as synchrotron ra-

diation, before they decay. The kinetic equation for the particle spectrum, assuming
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Figure 5.1: Flowchart describing the model. The functions Q(E) denote the time depen-

dent (injection) spectra [
(
GeV s cm3

)−1
] and N(E) the time independent ones

[
(
GeV cm3

)−1
]. Dashed arrows stand for solving the steady state differential equa-

tion Eq. (5.2). The decay of kaons is depicted without the resulting muons, see

Eq. (3.5). It is analogous to decay of π+.

continuous energy losses, is given by (see, e.g., Ref. [78]):

∂N(E)

∂t
=

∂

∂E
(−b(E)N(E))− N(E)

tesc

+Q(E) (5.1)

with tesc(E) the characteristic escape time, b(E) = −E t−1
loss with t−1

loss(E) the rate

characterizing energy losses, Q(E) the particle injection rate [(GeV s cm3)
−1

] and

N(E) the time independent particle spectrum [(GeV cm3)
−1

]. For different energy

loss or decay mechanisms, the inverse timescales are summed over. Because the

statistics in neutrino observations is not expected to be as high as that time depen-

dent features can be reasonably resolved, we assume that energy losses and escape

are in balance with the particle injection and that ∂N(E)/∂t = 0, which leads to

the so-called steady state spectrum N(E) described by the differential equation

Q(E) =
∂

∂E
(b(E)N(E)) +

N(E)

tesc

. (5.2)

Our computations will only consider the energy range from 1(= 100) to 1010 GeV.
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5.2. Monte Carlo simulation of diffuse fluxes

In our simulations we also want to take into account that each GRB is different.

Even though there are certain “typical” values, the parameters, such as the Lorentz

factor Γ, the redshift z, or the magnetic field B, vary significantly from burst to

burst. Therefore, we need to simulate a certain number of bursts to understand how

the (measured) distribution of a parameter affects the spectrum of a single burst,

and the diffuse flux. This simulation of several bursts with different parameters

can be done by randomly picking values for the distributed quantities. Simulations

utilizing random numbers as an integral part of their calculations are called Monte

Carlo simulations.

Monte Carlo simulations are a junction between the mathematical description of

an event and its measured results. The mathematical description of an event is

generally continuous, the results, however, are divided in “steps” due to the finite

resolution of measurements. The law of large numbers tells us that only for an infi-

nite number of events measured with infinite resolution the result is identical to the

continuous mathematical description. However, real measurements are always done

for a finite number of events and with a certain resolution, leading to deviations

from the expected empirical result. Here, computers have opened the possibility to

simulate a finite number of randomly distributed events, which can be compared to

experimental results. Monte Carlo simulations use the laws of statistics to randomly

pick values according to the continuous description. The correct input in form of

the mathematical description is essential for the simulation to return useful results.

Thanks to advances in the hardware sector in the last two decades, it is now possible

to run (smaller) simulations on desktop PCs. The current standard of multi-core

CPUs as well as programmable GPUs allow for efficient computation on low budget

hardware with the possibility of parallelizing the programs.

The simulation of the diffuse flux has already been done with the help of Monte

Carlo simulations, see e.g. Ref. [71]. However, in previous studies the calculation

was done with help of Monte Carlo integration. Hence, the calculation of the flux

was done with integrals, which were solved numerically. But, the result of an inte-

gration over the continuous distribution represents the limit of an infinite number

of sources. This is, however, not the realistic case for a measurement. The result of

the integration does not represent the measured result of only a few events. There-
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fore, the use of Monte Carlo integration is highly limited for the diffuse flux. Low

statistics samples, or stacking analyses for a quasi-diffuse flux cannot be done by it.

Thus, we will use another technique called Monte Carlo sampling. This technique

utilizes to the original intention to pick a certain number of bursts with distributed

parameters. Here, the values for the parameters are generated for each burst sepa-

rately and each burst is calculated individually. In chapter 7 we will first calculate

the (quasi-)diffuse flux for a high number of bursts. Then, we will show in chapter

8 that we can calculate even low statistics samples with Monte Carlo sampling. For

our simulations we generate sets of variables with (known) complicated probability

density functions. Therefore, it is necessary to first generate uniform statistically in-

dependent values on the half open interval [0, 1) with a “random number generator”.

There are several different algorithms available in software libraries which differ in

quality and speed. We use the random number generator and functions provided by

the GSL utilizing the standard gsl rng mt19937 generator. This is the “Mersenne

Twister” generator by Makoto Matsumoto and Takuji Nishimura, Ref. [79], using

“the second revision of the seeding procedure published by the two authors above in

2002” as stated in the GSL manual, Ref. [GSL Manual]. The seed is left unchanged

at zero, if not stated otherwise.

To generate parameter sets for variables with measured distributions we need to

transform a uniform distribution of random numbers into an arbitrary one. For this

purpose we will use the inverse transform method. The general approach is that if

a probability density function is f(x) on −∞ < x < ∞, it is possible to define a

cumulative distribution function

F (a) =

∫ a

−∞
f(x) dx (5.3)

describing the probability that x ≤ a. If we assume that f(x) is normalized then

F (a) ∈ [0, 1]. For a real probability density function this addition is not necessary

since normalization is implicitly assumed. In our case where we want to apply this

concept to measured distributions it is essential that all distributions have to be

normalized. Also measured distributions introduce cuts so that the endpoints are

no longer ±∞ but xmin and xmax. In that case the normalization is performed over

the interval [xmin, xmax]. We can now assume that F (x) is a uniformly distributed

random variable u we can find a connection between u and x:

x = F−1(u) . (5.4)
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This relation is true as long as there is a unique inverse of F (x). This inverse allows

us to generate parameters x with a probability density f(x) from a uniform distri-

bution u. In some cases no analytic inverse function can be found. In those cases a

numerical inversion has to be done.

In some cases we have to use distributions with complicated dependencies in

order to correctly simulate these parameters. In these cases it is essential to ensure

that the probabilities are conserved. If we have to random variables x and y with

y = y(x) then the probability distribution function P (y) depends on x in this case

since P (y(x)). The distribution P (x) can be deformed to be unrecognizable, but

probabilities always have to be conserved:

P (y) dy = P (x) dx ,

P (y) = P (x)
dx

dy
. (5.5)

In chapters 7 and 8 we will use these methods to generate parameter sets for different

quantities, such as the bulk Lorentz factor of a burst, see section 7.1, the distance

to the observer in form of the redshift, see section 7.2, as well as the magnetic field

in the emission region of a burst, see section 7.3.
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Waxman-Bahcall GRB neutrino spectrum

In this chapter we discuss the spectrum of a single burst. We first reproduce the

commonly used flux shape for GRB neutrinos proposed by Waxman and Bahcall.

Then, we show how this shape changes, if additional production channels of the

photohadronic cross section are included. In the last step we include the effect of

flavor mixing, which further alters the flux shape.

6.1. The numerical reproduction of the original

Waxman-Bahcall flux shape

The estimates of Waxman and Bahcall are currently seen as an approximation of the

neutrino flux stemming from the prompt emission of GRBs on the basis of cosmic

ray observations. In the simple ∆-resonance approximation used for the derivation

of the flux shape only νµ from π+ decay are considered, see Eqs. (3.2) and (3.3).

The analytic version of the WB flux spectrum, see Eq. (4.9), is plotted in Fig. 6.1

as neutrino flux E2 ·φν(E) as a function of energy E. The spectral indices of the

analytic version have been set to αν = −1 and βν = 0. The two break energies εbν

and εsν are obtained from limiting calculations, as described in section 4.3. They

are a result of the photohadronic interactions (εbν) or stem from synchrotron effects

(εsν). In the literature these breaks are εbν ≈ 105 GeV and εsν ≈ 107 GeV, Ref. [66].

In Fig. 6.1 we plot the analytical version of the Waxman-Bahcall spectrum (thin,

dashed curve) and compare this with the numerical reproduction of the spectrum

(bold, solid curve). We will now discuss how we can calculate the WB shape nu-

merically.

We first need to calculate a parameter set that reproduces the WB flux shape.

This is done with the equations in section 4.3. The bulk Lorentz factor is set to be

Γ = 102.5(≈ 300) since the analysis in Ref. [30] illustrated that most bursts have
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such a value of Γ. As stated in section 4.2 the redshift, at which the most bursts

are observed, depends on the star formation rate and further parameters. The val-

ues for this z differ in the literature. According to Ref. [24] the “typical redshift”

would be z ≈ 1 − 2, while Ref. [80] claims that z = 3 is more likely to be the most

“productive” redshift. For our derivations we will assume the latter value, and use

the according set of parameters as reference. Nevertheless, it is also possible to

derive a parameter set with z = 2 which leads to the same result, see Table 6.1.

By fixing the lower break to εbν = 105 GeV we can use Eq. (4.12) to calculate the

break energy of the photon spectrum ε
′

γ,break. Using the previously defined values

we obtain ε
′

γ,break = 11.06 keV for our model, which would translate to an observed

break at εγ,break = 874.37 keV. From the considerations for the second break, see

Eq. (4.16), we can calculate the magnetic field B
′

needed to get an expected break

εsν = 107 GeV. Keep in mind that we need a certain precision on our calculated

values, which my be not justifiable from an experimental point of view, to reduce

numerical errors during simulation. Therefore, the values given reflect the num-

bers we actually use for our simulations. We obtain B
′ ' 2.16 · 105 G, which is of

the same order as the 1.5 · 105 G obtained Razzaque et al. in Ref. [81]. However,

the authors in Ref. [81] obtained their result from considerations on synchrotron

radiation by protons for a particular burst, i.e. GRB 080916C, the most powerful

burst measured so far [82]. All values are summarized in Table 6.1. With this first

parameter set and using a ∆-resonance setting described in Ref. [25] we calculate

the expected neutrino spectrum. The result, a comparison of the analytic and the

numeric spectrum, can be found in Fig. 6.1. As one can see from the plot in Fig. 6.1

our numerical result matches the analytic function well, even though the second

break is obscured by a small hump in front of it. This ”hump” is the result of the

synchrotron losses. While these lead to lower amounts of particles above the break

the same mechanism gives rise to a pile-up effect just below the break. This feature

can be seen for every particle species which is affected by synchrotron losses. This

will be more important in the next section when we introduce further particles and

decay channels.

Since our value for εγ,break is not the average value for the observed spectral break

of a GRB photon spectrum we also calculate a version with the same parameter set

obtained in the previous paragraph, but with different εγ,break. For comparison we

also add the resulting spectrum for an observed spectral break εγ,break = 300 keV,

which corresponds to ε
′

γ,break = 3.79 keV in the source rest frame, to Fig. 6.1. It is

depicted as a bold, dashed line. As expected the first break in the neutrino spec-
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Γ B
′

z ε
′

γ,break ε
′
p,max η E

′
p,min E

′
γ,min ε

′
γ,max

102.5 2.16 · 105 G 3 11.06 keV 1.37 · 108 GeV 0.1 1 GeV 0.2 eV 300 · ε′γ,break

102.5 2.89 · 105 G 2 14.76 keV 1.18 · 108 GeV 0.1 1 GeV 0.2 eV 300 · ε′γ,break

Table 6.1: Two sets of parameters capable of reproducing the WB flux spectrum from first

principles. The first line the set of parameters we used in our line of reasoning. The

second line represents the parameters we would need in our model, if we assumed

that the redshift z was 2 instead of 3. Since all parameters are connected in one way

or another a change in one parameter can still lead to lead to the same result if the

other parameters are adjusted accordingly.

trum is now at higher energies, the other features including the second break stay

the same. However, newest data from Fermi/GBM suggests that it is more realistic

to assume εγ,break ' 160 keV as the average spectral break, taken from Ref. [57].

Therefore, the first break of real neutrino spectra is to be expected at higher ener-

gies than WB assume. However, we will for now focus on the reproduction of the

original shape with the fixed expected breaks in the muon neutrino spectrum.

The normalization is taken from considerations by Waxman and Bahcall, Ref. [25],

in an attempt to set an upper limit to the possible flux of neutrinos derived from

proton flux measurements. It estimates the spectral bound by assuming that all

energy in protons is lost via pions. From this reasoning it is obvious that actual

results will be below this bound. Even though some of our later spectra exceed this

bound it is only because we want to emphasize the effects our additions have on the

spectral shape and the relative flux levels. We take the integrated energy amount Ê

in νµ as the reference for the normalization of the spectra:

Ê =

∫
E φν(E) dE . (6.1)

This allows us to incorporate energy conservation even if the spectral shape is slightly

different from the analytical form. For this reason it was essential that we added

a version of the ∆-resonance treatment to our software which incorporates the as-

sumptions used by Waxman and Bahcall in Ref. [25]. The integrated energy in

(only) muon neutrinos produced when using the aforementioned cross section was

compared with the integrated energy in the analytical spectrum. The plateau of the

analytical spectrum was set to the bound derived by WB. The value for the bound is

taken from the update in Ref. [72] and is E2 φWB
ν̄µ+νµ(E) ≈ 0.9 · 10−8 GeV cm−2 s−1 sr−1

for the total muon neutrino (ν̄µ + νµ) flux. We can also assume a flux of νe from

the consideration that the source produces νe : νµ : ντ in a ratio of (1 : 2 : 0)
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Figure 6.1: Comparison of the computed (thick curve) to the ideal (dashed curve) WB spectrum

(of νµ). The idealized Waxman-Bahcall spectrum for νµ is as described in Eq. (4.9).

The breaks are set to be at εbν = 105 GeV and εsν = 107 GeV. From these breaks we

calculated the parameters needed to obtain the computed version of the spectrum.

The used parameters can be found in Table 6.1. Additionally we computed the

spectrum expected for εγ,break = 300 keV which corresponds to the average observed

break in photon spectra (thick, dashed curve).

due to pion and subsequent muon decay. This leads to the flux of E2 φWB
νe (E) ≈

0.45 · 10−8 GeV cm−2 s−1 sr−1 for every species of neutrino - νe, νµ or ν̄µ - in this

basic WB model. This result is obtained in the following manner, as described in

Ref. [25] and [72]. Starting from the measurement of the proton flux at Earth, the

flux is analyzed using a two component model, i.e. a galactic and an extragalactic

component. For GRBs, the extragalactic component is considered the relevant part

of the flux spectrum. The level of this extragalactic proton flux can be derived by

assuming the production rate of protons in the energy range of 1019 eV to 1021 eV

to be

ĖCR ≈ 3 · 1044 erg Mpc−3 yr−1 (6.2)

if coming from cosmologically-distributed sources with a power law differential en-

ergy spectrum dNp/dEp ∝ E−2. This corresponds to an energy per logarithmic
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decade of protons of

E2
p

dṄCR
p

dEp
≈ 0.7 · 1044 erg Mpc−3 yr−1 . (6.3)

This energy generation rate sets an upper limit to the production of neutrinos in

extragalactic sources which are optically thin to pion producing photohadronic in-

teractions of protons with source photons, e.g. GRBs or jets of AGNs. If one now

assumes that the high-energy protons loose a fraction ε < 1 in photohadronic in-

teractions creating pions before leaving the source, the resulting present-day energy

density of muon neutrinos is E2
νdNν/dEν ≈ 0.25εtHE

2
pdṄ

CR
p /dEp. Here tH is the

Hubble time which is taken to be ≈ 1010yr as in Ref. [72]. It is now considered

that for energy independent ε the neutrino spectrum follows the proton spectrum

since the amount of energy carried away in form of neutrinos through a photo-meson

interaction, Eν ≈ 0.05Ep, is energy independent. This fraction, 0.05, consists of the

fraction of proton energy converted to pions, fπ ≈ 0.2, and the fraction of pion

energy resulting in neutrinos, fπ→ν ≈ 0.25. Ref. [72] states that the factor of 0.25

arises because only half of the produced pions are charged and again about half of

the charged pion energy is carried away by neutrinos in weak decays.1 Waxman and

Bahcall also consider that the fraction of proton energy converted pions fπ is not

necessarily fixed. However, for the calculation of the bound we will use fπ = 0.2,

independent of energy, as suggested in Refs. [72, 30]. A more detailed, and energy

dependent, treatment of this fraction is implicitly included in our NeuCosmA code.

With this reasoning a value depending on ε can be determined,

E2
νφν ≤ E2

νφ
WB
ν ≈ fπ fπ→ν ε ξZ tH

c

4π
E2
p

dṄCR
p

dEp

≈ 1.5 · 10−8 ε ξZ GeV cm−2 s−1 sr−1 . (6.4)

The derivation of this bound neglects the redshift energy loss of neutrinos produced

at cosmic time t < tH and implicitly assumes that the cosmic-ray generation rate

per unit (comoving) volume is independent of cosmic time. The quantity ξZ has

been introduced to describe corrections due to redshift evolution and energy loss.

For details see Ref. [83]. In the derivation of the limit for GRBs ξZ will be set to

ξZ ≈ 0.6 < 1, which reflects the assumption that the energy generation rate does

not evolve with redshift, and neutrinos are subject to redshift energy loss (with a

1These assumptions differ from our photohadronic treatment, but this should not be a hindrance
to still use the WB bound since it is an upper bound which can be considered largely independent
of the details of the theory. There is definitely potential for refinement but this shall not be
considered in this work.
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weak dependence on cosmology). This represents a more conservative bound than

models including evolution with redshift. If we now assume that GRBs carry similar

amounts of energy in high-energy protons and electrons and, therefore, account for

the observed ultra high energy cosmic-ray flux, one can use Eq. (6.4) to obtain the

expected GRB muon-neutrino flux. This flux still depends on the fraction of energy

ε lost by the protons in form of pions. In the plots throughout the paper we will set

ε = 1 and will remember that this is an upper limit with the real limit being lower:

E2
νφν0.9 · 10−8 ε GeV cm−2 s−1 sr−1 . (6.5)

6.2. Particle production modes beyond the

∆-resonance

We start our re-examination with the change of the cross section of photohadronic

interactions. In Fig. 6.2 we show how the flux of νµ from π+ increases when, start-

ing from the ∆(1232)-resonance. We successively add the higher resonances which

contribute to the total photohadronic cross section in the observed energy range,

direct (t-channel) interactions and high energy processes (“Multi-π”). Especially the

multi-pion production enhances the flux in regions above 104 GeV and leads to a tilt

of the plateau. Furthermore, it leads to a contribution of neutrinos from π− decay.

Because of these π− we plot the flux of νµ and ν̄µ together. As one can see from

Fig. 6.2 the result for the full cross-section is up to one order of magnitude higher

than the result for ∆(1232). Since the ∆-resonance approximation by Waxman and

Bahcall includes more than just ∆(1232) the change compared to the WB approach

(thick dashed line; “WB ∆+-approximation”) is only of the order of ≈ 3. If one com-

pares the WB result in Fig. 6.2 to the different contributions one can tell that the

WB ∆+-approximation already includes the ∆(1232) resonance, higher resonance

and probably contributions from direct interactions at energies below 106 GeV.

As mentioned in section 3.2 the ∆-resonance contributes more neutrinos than just

νµ. To be more precise the energy independent (and therefore simplified) decay of

π+, Eq. (3.3), results in a flavor ratio (νe : νµ : ντ ) of (1:2:0) after production. As

shown in Ref. [20] this is not true and can be easily verified by comparing the break

energies from synchrotron cooling of pions and muons. While Eq. (4.16) is for ν

from π decays simply changing the particle dependent quantities of the equation,

such as the lifetime τ0 and the mass m, to the values of muons one can calculate the

break for muons. This is, as already stated in Ref. [25], roughly one order magnitude
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Figure 6.2: The change of the WB-like spectrum depending on the contributions to the cross

section. We start with the ∆(1232)-resonance and then add sequentially higher

resonances, direct (t-channel) interactions and high energy processes (“Multi-π”) to

obtain the full result for νµ from π+ (Total flux). The curves are labeled accordingly.

As one can see the so-called ∆-resonance approximation of Waxman and Bahcall

(dashed thick line, see label“WB ∆+-approximation”) which we used in the previous

section already includes the higher resonances as well as a contribution from the

direct interactions at energies below 106 GeV. The plot also includes the analytic

version of the WB spectrum as in Eq. (4.9) (thin dashed black line).

lower than the pion break. If we now include the contributions from further particles

as stated in Eqs. (3.3) to (3.6) there are several changes. There are more channels

which produce neutrinos and alter the shape of the spectrum. The high energy

(multi π) processes lead to contributions from negative pions and muons, leading

to more anti-neutrinos in comparison to the ∆-resonance. Apart from the inverted

ratio of ν to ν̄ the different sign of charge has no effect on properties such as the

cooling break. Because of this we will not distinguish between the charge signs in

the following discussion. (The exception are kaons which will only contribute as K+

and will be considered solely with positive charge. Contributions from K− or K0

are neglected.)

As one can easily see from Fig. 6.3 the dominating contribution depends on en-

ergy. The different particle species are produced with the “full” cross section of the
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Figure 6.3: In the above graphs the contributions of different particles to the total neutrino

flux of a flavor is depicted. On the left is the flux of νe with the contributions from

n- (dashed) and µ-decays (dotted). The right hand side shows the spectrum of νµ

with the contributions of muons (dashed), pions (dotted) and kaons (dot-dashed).

The shaded area is both graphs the contribution calculated from the ∆-resonance

only.

interaction model leading to in general higher values than the WB-bound. Espe-

cially, the additional breaks from muon decay at 5.43 · 105 GeV and kaon decay at

3.39 · 108 GeV can be seen in the νµ channel, as shown in the right graph of Fig. 6.3.

The different contributions from different parent particles alter the shape of WB

spectrum significantly. Pile-up effects lead to an excess of the parent particles (and

subsequently of the neutrinos) in the region below the breaks while synchrotron

losses lead to a steepening in energy by two powers of energy as assumed for the

theoretical curve in Eq. (4.9). Instead of a plateau-like shape now we have a peak at

the muon break, a peak at the pion break (still at 107 GeV) and a third peak coming

from the kaon decays if we plot the combined flux of νµ and ν̄µ as in right graph of

Fig. 6.3. In the case of the νe the main change in the combined flux is that now ν̄e

can contribute. Not only µ− decays are a factor but also the neutrinos from neutron

decays. For our chosen set of parameters the contributions from neutrons dominate

at energies below 103 GeV, but could also dominate at high energies since neutrons

are not affected by magnetic fields. In our case the neutrinos from neutrons extend

only 106.5 GeV due to the exponential cut-off in the proton spectrum.
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6.3. Effects of flavor mixing on GRB neutrino spectra

In the last step we include neutrino mixing due to transitions among mass eigenstates

contributing to a flavor eigenstate. As stated in section 3.3 we can assume averaged

oscillation probabilities to describe flavor mixing in the case of cosmic neutrinos.

The reasoning justifying this assumption is the following: According to quantum

mechanics, we can assume that neutrinos are produced as finite wave packets. The

different wave modes represent the mass eigenstates. Therefore, the existence of

neutrino oscillations dictates that the initial wave packet needs to be a coherent

superposition of the mass eigenstates. As for all coherent wave packets, there is

a finite decoherence length after which there are no more transitions among mass

eigenstates. For cosmic sources, the distance between the source and the observer on

Earth is so huge that it can be assumed much larger than the decoherence length of

the neutrinos. Hence, we can use averaged transition probabilities for flavor mixing.

As we are only considering three neutrino mass eigenstates, the probability of a neu-

trino of flavor α being detected as a neutrino of flavor β is given by Eq. (3.10). If we

apply Eq. (3.11) to the spectra from the previous section, then the observed values

of νe and νµ are a mixture of the produced values. The resulting spectra can be seen

in Fig. 6.4 where we have plotted the reference WB flux after mixing (thin, dashed

line) and the total expected flux of neutrinos as a bold, solid line. The shaded area

surrounding this line is the still possible range of the flux due to uncertainties on

the mixing parameters. Furthermore, the contributions from νe (dark, dashed line)

and νµ (light, dotted line) to the respective total (mixed) spectrum are included to

better understand the resulting spectral shape. In case of the νµ we also added a

rescaled version of the total flux to include “energy conservation” compared to the

WB flux using Eq. (6.1). This was done to emphasize the deviations in the spectral

shape due to the additional effects.

Due to the mixing both spectra now have features from both channels. The

differences are more subtle than before mixing. Features such as the higher peak

near the muon break in case of νe are possibilities to distinguish the spectra directly.

Another possibility is taking flavor ratios into account since shower and track events

are produced by different flavors. The commonly used ratio R is the ratio of track

to shower events which can be associated to the flux φ of muon neutrinos (tracks)

and electron and tau neutrinos (showers) at the detector, see Eq. (3.12). If we take

Eq. (3.12) and insert the spectra after flavor mixing with full cross section we get an

energy dependent ratio at the detector. Using the classifications from Ref. [20] one
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Figure 6.4: The spectra of the ν̄e+νe (left) and of ν̄µ+νµ (right) after flavor mixing is applied.

In both graphs the dashed line is the contribution from the produced ν̄e + νe and

the dotted line is the contribution from ν̄µ + νµ. The features of both spectra are

now nearly alike. Only the more pronounced peak near the muon break in νe is a

directly visible difference. Additionally we included the standard WB-spectrum in

both figures for comparison. We also included a rescaled version of the total flux to

match the WB flux; bold, solid curve with label ”Total flux rescaled”. Furthermore,

we included the error margins from the uncertainties on the mixing parameters.

The effect is relatively small on the logarithmic scale. The visible shaded area

represents the current (2010) uncertainties.

can obtain the source class depending on energy from the ratio presented in Fig. 6.5.

The figure shows that our GRB has an energy dependent transition from pion beam

to muon damped source. The energy range of the transition is independent of the

cross section. Only low energy or high energy contributions alter the ratio slightly.

Furthermore, it is possible to obtain bounds on the possible ratios from the current

bounds on the mixing angles. By using a χ2-test to assess the variation of the

mixing angles we calculated minimal and maximal possible values for the flavor

ratio R. As can be seen in Fig. 6.5 we also included estimated bounds from upcoming

experiments to get an idea how the bounds will look in 5 (”2015”) and in 15 years

(”2025”). As mentioned earlier we use the values by Schwetz et al. from their

update in February 2010 [34] with the addition that we force the error margins to

be symmetrical around the best-fit values for easier computation. The statistical
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Figure 6.5: Flavor ratio R at the detector as in (3.12) for the full photohadronics treatment

(solid curve) and for the WB-like treatment with only the ∆-resonance (dashed

curve). Both curves use the best-fit values of the neutrino mixing angles as in

Ref. [34]. As one can see only at low energies derivations are visible in the flavor

ratio. The general tendency is a ratio of 0.5 (pion beam) at low energies which goes

into ≈ 0.64 (muon damped) at higher energies with the transition above 106 GeV.

At low energies (below ≈ 103.5 GeV) the full photohadronic treatment leads to

a ratio resembling the transition from neutron to pion beam while the WB-like

spectrum has the features of a pure pion beam. For better orientation the levels

of the three source classes are included as horizontal lines at R ' 0.28 (neutron

beam source), R = 0.5 (pion beam source) and R ' 0.64 (muon damped source).

The jump of the WB-like ratio at high energies (above ≈ 109.5 GeV) is a numerical

artifact. The shaded areas represent the current bounds to the ratio from the

uncertainties of the mixing angles. The smaller sections are from the predicted

bounds in the year 2015 and 2025 due to better experimental data.

measure χ2 is defined as

χ2 =

(
sin2 θ12 − sin2 θB.F.

12

)2(
δ sin2 θ12

)2 +

(
sin2 θ23 − sin2 θB.F.

23

)2(
δ sin2 θ23

)2 +

(
sin2 θ13 − sin2 θB.F.

13

)2(
δ sin2 θ13

)2 .

(6.6)

Here sin2 θB.F. denotes the best-fit value and δ sin2 θ is the σ deviation. The val-

ues of the angles in our scan were picked to be sufficient for χ2 = 9. To obtain

the needed quantities we must extract the different parameters from the literature.

sin2 θ12 = 0.318+0.019
−0.016 from Table A1 in Ref. [34] will translate to sin2 θB.F.

12 = 0.318

and δ sin2 θ12 = 0.016 which is the simplified symmetric deviation. With the same

method we get sin2 θB.F.
23 = 0.50 and δ sin2 θ23 = 0.06 as well as sin2 θB.F.

13 = 0 (fixed)

and δ sin2 θ12 = 0.009. These are the values for the current bounds. The expected
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sensitivities at around 2015 rely on the improved 3σ bounds on θ13 from Daya Bay

sin2 θ13 ≤ 0.012 and θ23 from T2K 0.426 ≤ sin2 θ23 ≤ 0.574 [84]. Beyond these, a

neutrino factory may improve the bounds even further: sin2 θ13 . 1.5 · 10−5 [85] and

0.46 ≤ sin2 θ23 ≤ 0.54 [86], which we label ”2025”. For θ12, the errors may improve

somewhat, but new generations of experiments are not assumed here. Since θ12 is

of secondary importance in Eq. (3.10), we do not consider future improvements.

To show the impact of these uncertainties we included the possible ranges of the

neutrino spectra and of the ratio R for current error ranges, for the projected errors

in 2015 and in 2025 as shaded areas in Figs. 6.4 and 6.5.
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shape and flavor ratio

After having established the modified spectral shape expected for neutrinos from a

single GRB we now want to look at the effect of certain parameters on the spectrum

and how the sampling of a set of GRBs affects the diffuse flux. An important aspect

when discussing the parameters of a model is to find a set of uncorrelated parame-

ters. These parameters have to affect the results obtained with this model essentially.

However, there are, in general, correlations and connecting conditions between dif-

ferent parameters resulting from the basic physics of the model. In the worst case

for the identification of parameters there are “degenerate” results, obtained from

slightly different parameter sets. As shown in Table 6.1 we can easily find two sets

of parameters which reproduce (nearly)1 the same spectral shape. Moreover, some

parameters of a model might not be directly measurable, as it is the case for GRBs.

Therefore, it is vital to define which variables will be varied, which will be assumed

fixed and, also, in which reference frame the assumptions are made. Since our code

designed to simulate the particle production at the source we hypothesize that we

only need parameters characterizing the engine for the calculation of the neutrino

flux. Therefore, quantities, such as the Lorentz factor Γ or the magnetic field B, are

a consequence of the chosen engine. Thus, for long GRBs these parameters can be

assumed to be determined by their progenitors. These are considered to be collaps-

ing massive stars, as stated in section 4.1. Each star, with its mass, its metallicity

and all its other properties, already defines how the eventual death of the star will

look like. E.g. the stellar rest mass sets a limit on the total isotropically emitted

energy amount E
′
iso. Thus, the burst duration t

′
and the isotropic (total) luminosity

L
′
iso are already confined since their product is E

′
iso. For other quantities similar

reasoning applies. As described in section 6.1, we need the bulk Lorentz factor Γ,

which may already be defined by the central engine of a GRB, for our simulations.

Moreover, we need the magnetic field B at the collision radius R
′
C , which we as-

sume to be a property of the jet. As explained in the previous section, synchrotron

1There are some minor differences between the results of the two parameter sets, but they are
negligible.
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losses are considered to be the main loss mechanism. Therefore, the magnetic field

is essential for our calculations. Note, however, that depending on the model all

quantities are correlated. Even if we only vary the Lorentz factor or the magnetic

field explicitly, the internal connections can also lead to a change of other parame-

ters or measurable quantities of the burst. The third parameter we will consider for

the effect of parameter distribution is the redshift z. It is somewhat disconnected

from the other two properties since it is a property of the distance to the object and

not of the object itself. However, the cosmic expansion affects observational data

as well. As described in section 2.2 these effects have to be carefully discussed. A

detailed discussion of the particular consequences of each parameter choice will be

done in the next sections. Nevertheless, the general approach is to assume that the

parameters of the engine (apart from Γ), such as the source luminosity L
′
iso and the

burst duration t
′
, are fixed in the SRF. Moreover, for the jet parameters we assume

that jet opening angle θj > 1/Γmin. And, collisions are assumed to take place at a

set distance R
′
C . As a result of this assumption the scaling of the variability time

needs to be tv ∝ Γ−2. Generally, changes of observed quantities are in this model a

result of the boost with different Lorentz factors. However, spectral features, which

vary among bursts and are not necessarily described by our chosen values, are also

assumed fixed. The discuss of their effect has to be done at some point in the future.

For our goal to simulate a (quasi-)diffuse flux of GRB neutrinos we need a sample

of bursts. To obtain a relatively realistic sample of bursts one has to estimate the

number of bursts expected to show up in a certain time window. As a quick and

rough estimate we will assume 1000 GRBs per year over a time of ten years leading

to a total of 10000 bursts. Hence, we will simulate a set of 10000 bursts for each

parameter using a Monte Carlo algorithm to pick a value for the parameter. The

actual number of detected bursts may be lower over the time of ten years since we

neglect the detection efficiency and the field of view of the detectors. Furthermore,

we assume that all GRBs are “long” GRBs. By this choice we omit the contribution

of “short” GRBs, which amount for roughly 1/3 of all bursts, as stated in Ref. [24].

However, it is assumed that these bursts have a different precursor than the long

bursts and, therefore, a different central engine. Furthermore, short burst display a

harder photon flux spectrum. Hence, the restriction on long GRBs is a necessary

simplification to ensure we can correctly calculate the neutrino flux, and simulate

the diffuse flux.
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7.1. The effects of the distribution of the Lorentz factor

7.1. The effects of the distribution of the Lorentz

factor

The first parameter we consider is the Lorentz factor. Even though Fermi bursts

represent the current state-of-the-art data there is so far only a comprehensive study

of the spectral features of 438 GBM bursts, see Ref. [57], but none on parameters

such as the Lorentz factor. Due to this we use the well analyzed BATSE data, as

already mentioned in section 4.2. By this we confine our analysis to one measured

data set and its analysis methods. The method used in Ref. [30] may not be correct,

due to its assumptions leading to Eqs. (4.2) and (4.3). Other methods, such as

the determination of the pair-creation cutoff, as used in e.g. Refs. [67, 87], or the

observation of the rise of forward shock emission, e.g. Ref. [88], might give a different

result from the same set of observational data. Nevertheless, we will try to reproduce

the result obtained by Guetta et al. in Ref. [30], see Fig. 4.2. For this purpose we

use Monte Carlo generation consisting of two steps. First, we generate a Lorentz

factor Γ as

Γ = 10x + offset

with P (x) =
1√

2π σ2
exp

(
−(x− x̄)2

2σ2

)
(7.1)

with x̄ = 2.6, σ = 0.25 and offset = 50. Our ansatz for the parameter generation

is to distribute the exponent x of 10x using a Gaussian, which leads to an asym-

metric shape on the linear scale. The offset had to be introduced to shift the whole

distribution to match the minimal value Γmin & 100 as well as giving it a peak on

linear scale at ∼ 300. This part can be called the generation of a burst. Since we

are trying to simulate an observed distribution, we still need to make sure that the

burst is observed. Thus, the second step is to make sure that Eq. (2.26) is fulfilled.

As described in section 2.3, the emission from a relativistic jet can only be observed

if the viewing angle θ is smaller than 1/Γ; see Eq. (2.26). In case of θ > 1/Γ the

radiation is only weakly boosted or even suppressed to the point that a burst can

no longer be separated from the background, see Fig. 2.1. Therefore, we take this

limitation into account by additionally generating a viewing angle θ with uniform

distribution from 0 to π/2. It is then tested, if the pair of generated viewing angle

θ and Lorentz factor Γ obey the aforementioned condition θ ≤ 1/Γ. Only if it is

fulfilled the burst is considered to be “observed” and taken for our sample. Note that

this viewing angle is not considered for the calculation of the (Doppler) boost factor.

The simplification from Eq. (2.27) is still valid, and we assume that the boost factor
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7. Effect of parameter distribution on flux shape and flavor ratio

inside the light cone is ∼ Γ. However, this check of the viewing angle leads to a 1/Γ

suppression of bursts with high Γ in the distribution. The final distribution of the

burst parameters P (Γ) can be quantified using Eq. (5.5):

P (Γ) =
1

Γ
· 1√

2π σ2
exp

(
−(log10(Γ− 50)− x̄)2

2σ2

)
· 1

ln(10) · (Γ− 50)
. (7.2)

The resulting distribution for 10000 simulated bursts on linear scale is plotted in

Fig. 7.1. The depicted range from 0 to 1400 reflects the data range shown in Fig. 4.2.

The theoretically obtained maximum of P (Γ) from Eq. (7.2) using the aforemen-

tioned parameters is 268 (≈ 300). By comparing the histograms of the measured

values, Fig. 4.2, and our theoretical distribution, Fig. 7.1 (left plot), it shows that

our rather simple approach for the distribution of Γ at the source reproduces the

observed distribution quite well. On another note, it should be mentioned that the

relation between viewing angle and Lorentz factor must be carefully distinguished

from the mostly given comparison of the jet opening angle θj to the Lorentz factor

Γ. The relation of θj ≥ 1/Γ is needed to apply the fireball model even though the

emission is from jets, which we implicitly assume to be true.

For comparison we also simulate a distribution from the literature. A distribution

of Γ was given in Ref. [89], which we will use as a second possibility. It is similar

to our approach, using a Gaussian distribution for the exponent with x̄ = 2.6 and

σ = 0.3. The main difference is that the Lorentz factors are only generated using

the distribution as in Eq. (7.1) (with offset = 0). Our second step, the creation

of a viewing angle and subsequent the application of Eq. (2.26), is missing. This

leads to the generation of more high Γ values compared to our model. Moreover,

due to the missing offset there are as well a number of bursts which have a Lorentz

factor below 100, which is generally excluded by theory. As a result the probability

of the Lorentz factor peaks at Γ = 247 in case of this second distribution model.

Since we assume most parameters to be fixed at the source, the observed values vary

proportional to the appropriate power of the Lorentz factor, see section 2.1.

We use the spectra of this sample to gain average values of the expected muon

neutrino spectra by summing over all bursts and then normalizing the total spec-

trum with Eq. (6.1). As can be seen in Fig. 7.2 (left column) the averaged spectrum

is for both Γ distributions shifted to higher energy values as well as being higher in

flux. In our approach this is the result of relativistic boosting. The observed energy
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Figure 7.1: Distribution of the 10000 bursts on a linear scale in form of a histogram. The

chosen distribution in the left plot tries to model the result of Ref. [30]. It was

managed with a parameter generation in two steps, see text for details. Depicted

on the right is the result for the distribution suggested in Ref. [89]. The red curve

in each plot is the relative contribution. It weighs the probability of a burst with

how the flux E2 φ(E) scales with Γ, i.e. Γ4 ·P (Γ).

depends linearly on the Lorentz factor; E ∝ Γ. The effect on the flux is even stronger

since E2φ ∝ Γ4. This leads to a dominance of bursts with high Γ even though most

bursts have a value of around 102.5. This is in contrast to results by Alvarez-Muniz,

Halzen and Hooper in Ref. [90]. In the article the authors claim that low Γ bursts

dominate, which only is true if values are assumed fixed at the observer. However, it

has to be carefully discussed at some point in the future, if it is reasonable to assume

that the parameters are fixed at the source and that higher Γ lead to higher contri-

butions, or not. Here, we will always assume that the values at the source are fixed.

To quantify which bursts dominate we also calculate the relative contribution to the

total flux spectrum Γ4 ·P (Γ) and plot it in the histograms of Fig. 7.1, depicted as a

red curve. As can be seen from the graphs our distribution (upper row) has a peak

contribution from bursts with Γ = 774, while the second distribution is dominated

by bursts with Γ > 1400 for our source assumptions. This leads to a discrepancy

between the peak of the number of bursts compared to the contribution. The num-

ber of bursts contributing the most to the total flux is relatively low. In case of a

smaller sample size this may lead to fluctuations in the flux. However, apart from

the shift to higher values there are no effects on the spectral shape from our 10000

burst sample. The double peak shape is still clearly visible. To better understand

the contribution from different values of Γ we also plot the flux spectrum for all
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7. Effect of parameter distribution on flux shape and flavor ratio

bursts with Γ ≤ 300, ≤ 500 and ≤ 1000 in addition to the total flux in case of our

chosen distribution (Eq. (7.1)), which is depicted in the upper left plot of Fig. 7.2.

For the distribution suggested by Gupta and Zhang we include the same spectra,

but as one can see from the lower left plot in Fig. 7.2 the contribution from bursts

with Γ ≤ 300 is so low that it is no longer in the chosen plot range. The effect of our

chosen distribution (upper row) is not as strong as the one of the distribution given

in Ref. [89] (lower row), which is due to the higher amount of high Γ bursts in the

latter distribution. However, this change of Γ has implications on several other pa-

rameters. We assume that the luminosity at the source is fixed. If now the Lorentz

factor changes, this leads to a change in the observed flux and therefore to different

contributions depending on Γ, as mentioned before E2φ ∝ Γ4. Furthermore, the

observed break in the photon spectrum scales ∝ Γ, as in Eq. (2.23). This results in

a variation of the observed εγ,break even though ε
′

γ,break is assumed fixed. Moreover,

just by using scaling relations, such as εγ,break ∝ Γ and Liso ∝ Γ2, it may be possi-

ble to obtain observed relations, such as the Yonetoku relation Liso ∝ εγ,break, see

Ref. [91] on the Yonetoku relation. The whole photon spectrum is affected by this,

the minimal as well as the maximal energy. Following this line of argumentation it

could also be possible to understand why Fermi LAT bursts tend to have Lorentz

factors Γ ≥ 1000. Only a few bursts detected with the GBM on Fermi are also

detected in the higher energy range of the LAT detector. However, these few bursts

generally have a high Γ. In our approach highest energy photons would naturally

be associated to high Lorentz factors. But this has to be carefully studied in the

future, when comprehensive data of all Fermi bursts is available. To conclude, the

change of Γ leads to sensitive changes in many of the observable parameters.

We also calculate the change of flavor ratio R from Eq. (3.12) which is depicted

in the right column of Fig. 7.2. Here the effect is similar to the one on the spectra

themselves. The whole ratio evolution is shifted (or boosted) up in energy. Again

the effect of the second distribution is stronger and the transition from “pion beam”

to “muon damped” is at higher energies compared to the single burst. Also at low

energies (below 101 GeV) the transition to a “neutron beam” source is wearing of

and the ratio seems to form another plateau at the value of R = 0.4. For the

first distribution one can only guess if this will happen. However, for the second

distribution this effect can be clearly seen, as depicted in the lower right plot of

Fig. 7.2. In general the shift of the spectra may lead to the features being observable

in different detectors, such as from IceCube to Auger. In particular, it would be

interesting to observe the transition between the “source classes”. Unfortunately, for
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7.2. The effect of the distribution of the redshift

comprehensive result of the flavor ratios we would need results for all flavors over

the whole energy range, which is not feasible at the moment. Thus, the information

in the flavor ratios on the Lorentz factor Γ is restricted to certain energy ranges. It

might be possible to measure the flavor ratio for E & 1 TeV.

7.2. The effect of the distribution of the redshift

The next parameter we discuss is the redshift z. The basic assumption for our

analysis is that long GRBs are the result of the collapse of massive stars (collapsar

model). The initial mass of the progenitor has to be high enough that the death of

the star results in a core-collapse supernova and the birth of a stellar mass black hole

(BH). The initial mass of the progenitor therefore has to be ≥ 8M�. Depending

on the initial mass function and the star formation history one is able to model the

possible distribution of GRBs in redshift z. We test several models depending on

the parameterization of the star formation history, which implicitly needs a certain

initial mass function. Also we apply a recently proposed correction factor for one

of the models. The differential flux φν depending on z can be calculated with the

following formula taken from Ref. [70]:

φν(Eν) = ∆t
∆Ω

4π

∫ zmax

zmin

dz
dṄ

dz

dNν((1 + z)Eν)

dE ′
ν

(7.3)

with E
′

ν = (1 + z)Eν .

Here ∆t and ∆Ω are the observing time and the sky coverage which correct the ob-

servational data depending on the parameters of the experiment. The boundaries of

the integral are chosen to be zmin = 0.023 and zmax = 6, as discussed in section 2.2.
dNν((1+z)Eν)

dE′
ν

is the flux spectrum of a single burst at the source. It is however already

relativistically boosted. dṄ
dz

denotes the expected redshift distribution of GRBs. We

will compute the expected redshift distribution with the formula given in Eq. (4.5).

Note that ρ̇∗ is normally given in M� yr−1 Mpc−3 in the literature. For this we would

need a proportionality constant such as ρ̇∗(z = 0), which we have neglected in all

prior descriptions. We are able to do this since we only need the probability of a

burst to appear for our Monte Carlo sampling, and not the real (measured) rate. In

particular, all proportionality constants are absorbed in the total normalization of

the quasi-diffuse flux spectrum.
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Figure 7.2: Effect of the Lorentz factor Γ on the muon neutrino spectrum (left column) and

on the flavor ratio R (right column). The upper row represents the effect of our

model of the Lorentz factor Γ distribution from Eq. (7.1). The lower row is showing

the effect of a similar ansatz suggested in Ref. [89]. The strong dependence of the

observed quantities on Γ leads to the shown shifts. High values of Γ lead to higher

values of the flux and the whole shape is shifted to higher values of the observed

energy.
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7.2. The effect of the distribution of the redshift

The current “standard” parameterization of the star formation rate ρ̇∗(z) was

proposed by Hopkins and Beacom in 2006 [21]. It utilizes the initial mass function by

Baldry and Glazebrook, see Ref. [69], to calculate a function describing the formation

of stars depending on the redshift z. The analytic version of their star formation rate

can be found in Eq. (4.4). We will be considering the effect of this star formation

rate with and without the correction E(z) ∝ (1 + z)1.2, see Eq. (4.5). For our Monte

Carlo sampling we need to invert the result of the integration of Eq. (4.5) over z

numerically, as explained in Eq. (5.3) from section 5.2. The two histograms of the

generated number of bursts as a function of the redshift z can be seen in Fig. 7.3.2

The first distribution (left plot of Fig. 7.3) is generated using the aforementioned star

formation rate with a constant fraction of stars collapsing and producing a GRB.

The proportionality fraction is absorbed in the total normalization. The second

distribution (right plot of Fig. 7.3) has the additional factor of E ∝ (1 + z)1.2. As

one can see from the plots the SFR without the correction factor leads to a peak in

the burst distribution between z = 1 − 2 which is the quoted “typical range” from

Ref. [66]. With the correction factor applied the range of highest burst production

is spread roughly between z = 1 and z = 4.5 with the peak at approximately z = 3.

Additionally we add the relative contribution we also introduced for the Lorentz

factor Γ. In case of the redshift it goes as (1+ z)−4 P (z) with P (z) ∝ dṄ
dz

. It is shown

as a solid red curve in the plots of Fig. 7.3.

We then again use these parameters to simulate GRBs with the redshifts obtained

in the previous step. We add up all the observed flux spectra E2
ν φν(Eν) and normal-

ize the whole flux with the integrated energy from Eq. (6.1), as done in the previous

sections. Again, we have to consider how quantities are changed by assuming a dif-

ferent value of z. As in section 7.1 we have assumed that the luminosity, the magnetic

field, the total energy output, and, here, the Lorentz factor are fixed at the source.

The cosmologic redshift leads a shift in energy, as described in Eq. (2.23). Thus, as

for the Lorentz factor a different z leads to a different observed photon break εγ,break,

and maximum photon energy εγ,max. Furthermore, the observed luminosity (or flux)

decreases ∝ (1+z)−2. And, the observed time scales grow ∝ (1+z), if they are fixed

at the source. The effect of the redshift is a bit decoupled from the source and it only

shifts the parameters slightly, compared to the Lorentz factor. Consider, that (1+z)

is less than 10 for the highest redshift we consider. Therefore the effect of z is orders

of magnitude smaller than the effect of Γ. So far, new bursts from Fermi have not

2The distribution depending on the redshift can also be analyzed with logarithmic binning. Since
there is some confusion in the literature about what “log” stands for - either to the base of 10
or to the base of e - we stay on the linear scale. Both logarithmic versions for the distribution
with the correction factor E(z) can be found in Fig. D.1 in the Appendix D.
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Figure 7.3: Histogramatic distribution of the 10000 bursts as a function of redshift. The chosen

distributions try to model the GRB rate using the star formation history by Hopkins

and Beacom [21] (left plot) and the same SFR with a correction by Kistler et al.

[70] (right plot). From the spread of bursts depicted here one can see that for

the pure SFR most of the burst have a redshift z between 1 and 2 while for the

distribution with the correction for GRB the bursts are spread in a much broader

range (roughly between z = 1 and z = 4.5. The relative contribution to the total

flux is shown as a solid red curve (in arbitrary units).

altered the concept of long GRBs being the result of collapsing stars. However, there

are a few bursts that cannot be classified in the current “short/long” scheme and

the rate of high redshift bursts exceeds the estimates from star formation rates, see

e.g. Ref. [92] and references within. As before we plot the muon neutrino spectrum

at the observer (with neutrino mixing) and the flavor ratio R from Eq. (3.12). Both

the muon neutrino spectrum and the flavor ratio R are for the averaged spectrum

similar to the single burst versions but shifted to higher energies. Also the flux is

higher compared to the single burst. This indicates that nearby bursts dominate this

distribution. Since the spectral features such as the double peak structure or the

peak from kaon decays are still visible it is reasonable to assume that low z bursts

mainly contribute to the spectrum. In general, the redshift has the reciprocal effect

of the Lorentz factor on the flux or the energy. As can be seen from the relative

contribution that the main contribution comes from bursts with redshift just below

z = 1 independent of the correction factor. We also plot the spectra for all bursts

with z ≤ 0.1, ≤ 0.5, and ≤ 1.0, see Fig. 7.4. As expected from the considerations on

the order of the redshift, the contributions up to a certain redshift are much closer

to the total value compared to the case of the Lorentz factor in Fig. 7.2. Moreover,

when comparing the two distributions in redshift it is evident that the correction
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7.2. The effect of the distribution of the redshift

factor leads to a slightly higher contribution from bursts with high redshifts but does

not change the peak contribution itself. The theoretical analysis of (1 + z)−4 P (z)

gives z = 0.97 as the peak of the contribution for both distributions.

For comparison reasons we also simulate three more star formation history models

by Porciani and Madau taken from Ref. [93], that can be found as Eqs. (7.4)-(7.6)

in this thesis. These model the star formation history with one steady function

containing exponential functions. The three star formation rates taken from Ref. [93]

are

ρ̇SF1
∗ ∝ exp(3.4z)

exp(3.8z) + 45
, (7.4)

ρ̇SF2
∗ ∝ exp(3.4z)

exp(3.4z) + 22
, (7.5)

ρ̇SF3
∗ ∝ exp(3.05z− 0.4)

exp(2.93z) + 15
. (7.6)

Again we are only interested in the dependence on z and not the proportionality

constant. These functions were used in earlier studies, such as Ref. [71], and we will

use them as well by inserting them in Eq. (4.5) to (eventually) show their effect on

the νµ spectrum and the flavor ratio R. The main goal of these additional simulations

is to show that the resulting diffuse neutrino flux is (nearly) independent from the

chosen parameterization of the star formation history. As can be seen from the plots

in Fig. 7.5. The histograms show that the number of bursts differs from the two

previous models, see Fig. 7.3, however the relative contribution is similar. The main

contribution is again from bursts with z . 1, more precisely z = 0.94 for SF1 from

Eq. (7.4), z = 0.91 for SF2 from Eq. (7.5), and z = 0.88 for SF3 from Eq. (7.6). It

can therefore be said quite safely that the current observational data suggests that

the main contribution to the total neutrino flux comes from bursts with redshift

z . 1.

The effect on the spectra for all the three distributions is similar and comparable

with the effect of the distribution utilizing the star formation rate by Hopkins and

Beacom. As said before, the bursts with redshift z . 1 contribute most leading to a

shift to higher energies compared to our “standard” spectrum. Again, the loss due to

cosmologic redshift is smaller for lower values of z. Therefore, the spectra are shifted

to higher energies. However, the spectral features, such as the double peak and the

kaon peak, are still visible, with only slight smoothing effects. And, furthermore, the

contributions from the bursts with redshift z ≤ 0.1, ≤ 0.5, and ≤ 1.0 are relatively

close to the total flux. Also, the transitions in the flavor ratios are at higher energies
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Figure 7.4: Effect of the redshift z on the muon neutrino spectrum (left) and the flavor ratio R

(right). The spectrum (left panel) is again shifted to higher energies and is showing

higher flux values. In context of the redshift this indicates that probably nearby

(low z ) bursts dominate the averaged spectrum. This conclusion is also supported

by the fact that the smearing of the spectral features is very weak and the double

peak structure and the peak from kaon decays are still visible. The flavor ratio of

the averaged spectrum in the right panel shows nearly the same behavior as the one

for the single burst but shifted to higher energies. Also the low energy behavior is

perturbed. Partly due to low statistics. This leads to the jump in the ratio function

at 3 · 102 GeV.
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Figure 7.5: Distribution of the 10000 bursts as a function of redshift. The plotted distributions

are (from left to right) the result for the star formation rates 1 to 3 by Porciani

& Madau taken from Ref. [93]. The solid red curve is the relative contribution of

bursts at a redshift to the total flux, (1 + z)−4 ·P (z).

compared to the single burst. The width of the transition region (on logarithmic

scale) is, however, unaffected. Hence, we can conclude that the effect of the redshift

is considerable, but relatively independent of the chosen distribution. As long as

the luminosity at the source is assumed fixed, bursts at z . 1 will dominate the

diffuse flux, even if the more discussed bursts from the Fermi sample are currently

the bursts at highest redshifts.

7.3. The effect of the distribution of the magnetic

field

On first glimpse the magnetic field is the simplest of the three parameters we want

to look into. As stated at the end of section 4.2 the range of the magnetic field values

is roughly between 103 and 106 G. The values we obtained just from synchrotron

cooling considerations are still in the reasonable range, see Table 6.1. Unfortunately

the uncertainties on the parameters and the lack of an accepted model to determine

the value of B, limit the amount of data on the magnetic field strength. The rea-

sonable and/or needed values depend on the model of the emission region. In our

attempt to stay as general as possible we have only adopted all the features of the

internal shock model and the fireball model to describe a GRB. This generality is

necessary since up to now there is no theory or data on the distribution of magnetic
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7. Effect of parameter distribution on flux shape and flavor ratio
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Figure 7.6: Effect of the redshift z on the muon neutrino spectrum (left) and the flavor ratio

R (right). The rows show the result for the star formation rates 1 (top) to 3

(bottom) by Porciani and Madau. The spectrum (left panel) is again shifted to

higher energies and is showing higher flux values. In context of the redshift this

indicates that probably close (low z ) bursts dominate the averaged spectrum. This

conclusion is also supported by the fact that the smearing of the spectral features

is very weak and the double peak structure and the peak from kaon decays are still

visible. The flavor ratio of the averaged spectrum in the right panel shows nearly

the same behavior as the one for the single burst but shifted to higher energies.

Also the low energy behavior is perturbed, partly due to low statistics.
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7.3. The effect of the distribution of the magnetic field
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Figure 7.7: Depicted above are three possible distributions of the magnetic field values of 10000

bursts on a linear scale. The main goal was to spread the values between 104 and

107 G. The displayed distribution on the left is a Gaussian distribution of the

exponent of the type 10x, see Eq. (7.7). The standard deviation σ of this first

exponent distribution is 0.75. The second distribution (middle) is using the same

ansatz but with a standard deviation σ = 0.25. The third distribution (right) is a

Gaussian distribution on the linear scale with a median value of B̄ = 2.16 · 105 G

and standard deviation σ = 105 G.

field strength in GRBs. Hence, we assumed a generic distribution:

B = 10x

with P (x) =
1√

2π σ2
exp

(
−(x− x̄)2

2σ2

)
. (7.7)

Here x̄ is the median assumed value of the exponent and σ is the width of the

distribution. For the first distribution these parameters were set to be x̄ = 5.4 and

σ = 0.75. Since we use a Gaussian on a logarithmic scale the median value is not

the value of highest contribution when rescaled to a linear scale. This effect can be

seen in Fig. 7.7. This effect is the result of the conservation of probabilities. Using

Eq. (5.5) we can quantify this effect:

P (B) = P (x)
1

ln(10)B
. (7.8)

As can be seen from Eq. (7.8) the transformation of variables brings an additional

1/B suppression of the probability to obtain a B field value. This leads to a shift of

the peak from 105.4 (= 2.51 · 105) G to 103.94 (= 8.77 · 103) G. For the second distri-

bution the same model is applied but with σ = 0.25. This results in a much smaller

shift of the theoretical maximum to 105.38 (= 2.41 · 105) G. As a third distribution

we test a Gaussian distribution on linear scale with the standard deviation being

105 G around the median B̄ = 2.16 · 105 G.
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7. Effect of parameter distribution on flux shape and flavor ratio

This is a rather simplistic approach and we do not claim that this is the real dis-

tribution. The main goal is only to show the effects on the averaged spectral shape.

However, as for Γ and z, changing the magnetic field affects other parameters of the

GRB. The discussions in sections 7.1 and 7.2 show that it is possible to vary the

Lorentz factor and the redshift with only affecting the observed quantities, which

is a result of our assumption to fix all quantities at the source. Unfortunately, the

magnetic field is more complicated since it is directly connected to the source engine.

In our simulations we keep the luminosity at the source, the redshift and the Lorentz

factor fixed. As a consequence either the fraction of the total energy stored in the

magnetic field εB or the total energy itself change. While one can be assumed fix,

it is mandatory to change the other. If the total energy changes and εB is constant,

then, according to Eq. (4.6), the variation time tv changes as well. And, for con-

stant luminosity, the burst duration would change proportional to the total energy.

Moreover, depending on the model it has to be carefully considered what the lowest

possible magnetic fields are to still confine the particles in the shock. If in case of

shells the shell thickness is to small, then the acceleration to the highest energies

would not be possible. We still need to understand the consequences of changing

the magnetic field in the internal shock model, however, this is work beyond this

thesis.

As stated before we use a Monte Carlo algorithm to generate 10000 values using

the distribution in Eq. (7.7). The normalization for the spectrum is obtained using

the integrated energy as defined in Eq. (6.1) to allow “energy conservation”. The

plots in Fig. 7.8 show the muon neutrino spectrum after oscillation and flavor ratio

R, see Eq. (3.12), for the three proposed distributions. In all the plots of the νµ

spectra we show the averaged spectrum obtained from the 10000 simulated bursts

(thick solid curve) and for comparison the spectrum of a single burst obtained in

the previous section (thick dashed curve) as well as the standard WB spectrum

(thin dashed curve) as in Eq. (4.9). For the first distribution (Gaussian in exponent,

high σ) nearly all the features of the single spectrum are smeared out. Instead of

the double peak structure with an additional high energy peak from kaons there is

only one broad peak as can be seen in the upper left plot of Fig. 7.8. If this kind

of distribution is found in reality, and the effect on the spectra is as described in

Fig. 7.8, then it will be hard to trace the spectral shape back to GRB. There are

no unique features left and the spectrum does not look like the spectrum of a single

burst. This will lead to problems in the data analysis of the observed neutrinos.

However, this ambiguous shape is a result of our chosen distribution. In the case of
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7.3. The effect of the distribution of the magnetic field

the second distribution, which has a lower standard deviation compared to the first

distribution, the spectral features of the GRB neutrino flux are still visible but not as

pronounced as for a single burst. This can also be seen when looking at the plots of

the flavor ratio R on the right hand side of Fig. 7.8. Here we only plotted the ratios

from the averaged spectra and from the earlier obtained single burst. Furthermore,

we added the ratios of certain source classes as reference as done in Fig. 6.5. (A

description of the source classes can be found in the Appendix C.) The main effect

of the magnetic field in this case can be seen in the transition from “pion beam” to

“muon damped” source class at around 106 to 107 GeV. For the first distribution

this transition is over a much wider energy range going from roughly 2 · 105 GeV to

about 108 GeV. This is a clearly visible change from the single burst shape. Hence,

if we can measure the flavor ratio from track and shower events we should be able to

draw conclusions on the magnetic field distribution. This is also true for the second

distribution, even though the effect can only be seen in direct comparison of single

and averaged spectrum. The principal broadening stays the same and should be

measurable. The third distribution, however, has a slightly different effect on the

spectrum. The features are also smoothed out, but the spectrum is higher at high

energies. While in the case of the first two distributions the smoothing looked like

an averaging effect here the value of the spectrum at high energies is significantly

higher than for the single burst. The levels of the single burst are only touched at

the peak from kaon decays. Otherwise the value of the (third) averaged spectrum

is higher as can be seen in the lower left plot of Fig. 7.8. This can be explained

by the absence of high magnetic fields. The spectra extend to higher energies as all

charged particles suffer less synchrotron losses. However, it still has to be discussed,

if such an absence of high magnetic fields is viable in the different GRB models.

The deviation can also be seen in the flavor ratio R as in the lower right plot of

Fig. 7.8. Here the ratio calculated from the averaged burst spectra differs from the

single burst ratio at energies above 106 GeV. As can be seen in the plot the ratio

is slightly lower compared to the ratio from a single (standard) burst. This is also

due to the missing high magnetic fields since muons are not completely “damped”

by synchrotron losses. Thus, if such a lower flavor ratio should be resolvable, it

would provide valuable information on the magnetic field. However, apart from this

small deviation, the flavor ratios are relatively robust, even for a distribution of

the magnetic field. They should, therefore, be similar for all bursts, even when the

parameters are not known.

As this analysis shows the detection of a neutrino signal will help to set better

bounds on the magnetic field in the emission region of GRBs. Currently, the calcula-
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7. Effect of parameter distribution on flux shape and flavor ratio
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Figure 7.8: Effect of the magnetic field B on the muon neutrino spectrum (left) and on the flavor

ratio R (right) for the three distributions from Fig. 7.7. The first two distributions

(two upper rows of plots) smear out the features of the spectrum in the form of

averaging with the magnitude of the effect depending on the used σ. The third

distribution changes the spectrum above 106 GeV to higher values in the spectrum

and lower values in the flavor ratio; see lower row of plots.
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7.3. The effect of the distribution of the magnetic field

tions of the magnetic field are extremely model dependent. Some models describing

the observed GRB light curves with synchrotron radiation from protons need mag-

netic fields of the order of 105 kG, see Ref. [81]. Hence, the detection of single burst

spectra would already set far better bounds on the magnetic field of a single burst,

the diffuse flux can do the same for all bursts. If the spectral shape predicted by our

photohadronic interaction treatment is still visible the magnetic fields cannot have

a high spread σ. Correspondingly, if the spectral shape is washed out the variation

of B between bursts is high. Also as one could get information on the upper bound

by looking at the high energy spectrum compared to the expected spectrum. As

was shown by our third spectrum a lack of high magnetic fields would lead to a

measurable deviation from the expected spectrum. Moreover, it would also be in-

teresting to know if an effect was from the distribution of a parameter and therefore

a systematic deviation or only the effect of low statistics (statistical deviation). We

will take a look at this in the next chapter.
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8. On the changes to the flux due to low

count statistics

Since a high amount of statistics will take a vast amount of time - GRBs are still

not detected very often and the amount of GRBs with measured redshift is only a

fraction of the detected number - it is more realistic for current studies to take a

lower amount of data. As mentioned earlier Ref. [24] suggests that roughly 667 long

bursts take place each year over the whole sky. Since IceCube has only access to the

northern hemisphere of the sky we can expect that only half of the bursts can be seen

with the aforementioned neutrino telescope. A more realistic number is therefore a

sample of 300 bursts, which could already be recorded in one year of data acquisition

in a stacking analysis. However, for the derivation of the redshift or the Lorentz fac-

tor additional requirements on the light curves and afterglow measurements need to

be met. For these two parameters we simulate samples of 66 bursts, which reflects

the number of bursts used in a recent analysis, see Ref. [70]. For this reason we

also computed low statistics samples for the magnetic field B, Lorentz factor Γ and

redshift z distribution. We will show that the extrapolation from the low statistics

limit, e.g. obtained from stacking analysis, to the high statistics limit of the diffuse

flux introduces unwanted uncertainties. Moreover, if it is possible to measure single

bursts, it might be possible to probe the redshift of GRBs in neutrinos. This would

add an additional contribution to the multi-messenger studies of the star formation

rate.

We first look at the magnetic field B. We use the distribution given in Eq. (7.7)

with x̄ = 5.4 and σ = 0.75, which is the first distribution discussed in section 7.3,

and generate 300 bursts. The histogram of the distribution of the bursts can be seen

in Fig. 8.1.

The main effect expected from the low statistics is that the contribution of the

single bursts is higher and that this may lead to additional effects on the total

flux. We again use the “energy conservation” method to normalize the total flux

of the neutrinos. The resulting spectra of flux E2
ν φν as a function of energy Eν is
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8. On the changes to the flux due to low count statistics
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Figure 8.1: Distribution of only 300 bursts following the distribution described by Eq. (7.7)

with x̄ = 5.4 and σ = 0.75 displayed on a logarithmic scale (with base 10).

depicted as a thick, solid curve in the left plot in Fig. 8.2. Compared to the high

statistics result (thin, solid curve) the smearing is even stronger. Instead of the

double peak structure, which one sees for a single burst (thick, dashed curve), all

kinds of features are washed out in the low statistics version of the total flux. The

double peak from µ and π decays is perturbed to one broad peak. The drop of the

spectrum after its peak is not as steep as for the single burst and does not have the

third peak from the K decays. For comparison, the high statistics result still has a

slight nudge left from the kaon peak; see relative position of thick, solid and thin,

solid curve in Fig. 8.2. For the flavor ratio R the changes are significant as well.

While there is no visible deviation at low energies there is a large change in the size

of the transition (energy) range in which the source goes from “pion beam” to “muon

damped”, that now extends over nearly four orders of magnitude from 105 GeV to

roughly 109 GeV. Still, the basic flavor ratios stay relatively robust and only the

range of the transition between two source classes changes. As stated before this

should be measurable in the flavor ratios, leading to information on the magnetic

field at the source. However, the uncertainties on the magnetic field are nevertheless

high, even when obtained from the flavor ratio.

For the Lorentz factor Γ we use our distribution given by Eq. (7.1) with x̄ = 2.6,

σ = 0.25, and offset = 50. In the literature analysis mostly have been done for

smaller samples. The correctional factor to the star formation rate was obtained

from a 66 burst sample, see Ref. [70]. For this reason we generate five samples with

66 bursts each. We use a different seed for the random number generator for each
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Figure 8.2: The flux of 300 simulated bursts with the magnetic field distributed as shown in

Fig. 8.1. The left plot shows the flux spectrum of the νµ. Compared to the single

burst all the significant features such as the double peak from µ and π decays

or the high energy peak from K decay is washed out due to the distribution of

the magnetic field. Also the flavor ratio R (right plot, thick solid curve; given by

Eq. (3.12)) changes compared to the version for higher statistics (thin solid curve).

In case of the low statistics the transition from “pion beam” to “muon damped”

source extends over four orders of magnitude which is roughly two orders more

than expected. For comparison we included the flavor ratio of a single burst with

our standard set of parameters as a dashed curve.
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Figure 8.3: Distribution a sample 66 bursts following the distribution described by Eq. (7.1)

with x̄ = 2.6, σ = 0.25, and offset = 50. Depicted here is sample 1, see the

Appendix E for information on seed. Furthermore, the thick red curve shows the

relative contribution of bursts with corresponding Γ, as described in section 7.1.

By comparing the number of bursts to the relative contribution one can see that

there are only five burst in the range of highest contribution (between Γ = 600

and Γ = 1000). This gives rise to additional uncertainties when one uses this low

number of bursts to extrapolate a diffuse flux.

of the samples. The data sets are numbered from 1 to 5, and the chosen seeds for

each set can be found in the Appendix E. Hence, we plot the generated values of

sample 1 in form of a histogram using a bin size of 10 in the range from 0 to 1400.

Additionally, we include the relative contribution of a certain Lorentz factor Γ, to

visualize the limitations of low statistics samples, see Fig. 8.3. The sample 1 is the

chosen example to represent the five data sets. The actual distribution of the 66

bursts is different, however, the qualitative distribution is the same. Therefore, it is

sufficient to discuss the effects for one example. As one can clearly see from Fig. 8.3,

the number of bursts at Γ that contribute most is low. Only five bursts are in the

range of 600 ≤ Γ ≤ 1000. Thus, one has to expect fluctuations in flux shape and

normalization of the burst sample.
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We then calculate the expected spectrum of νµ after flavor mixing. In the plot

of the expected muon neutrino flux after mixing we have included the analytic WB

shape (thin, dashed line) and the high statistics flux (bold, dashed line) as references,

see Fig. 8.4 (left plot). Furthermore, there are the flux shapes for the five 66 burst

samples, depicted as solid lines. The thick, solid line is the result for sample 1, which

is also displayed in Fig. 8.3. The four thin, solid lines are the result for four further

samples. These depicted curves are the extrapolation from the 66 burst sample up to

a 10000 burst limit. Therefore, we added the 66 bursts and scaled them up to 10000

by a multiplication by 10000
66

. This method maintains the relative contributions and

variations among the five samples. We have not included a legend for the different

66 burst samples because only the relative variation among the samples is relevant.

As one can see from the left plot of Fig. 8.4 there is some variation among the

samples. Therefore, it has to be carefully considered before drawing a conclusion

from such a small sample. As expected from considering the low number of bursts

with high contribution, as in Fig. 8.3, the analysis of such a small sample would be

statistics limited. However, the changes of the flux shape are more subtle than for

the magnetic field. For each spectrum the double peak structure is still visible as

well as the kaon peak at high energies. Yet, the high statistics sample has slightly

smoother features compared to the 66 burst samples. Moreover, the result for the

expected flux as well as the energies of the features are shifted from sample to

sample. Since we fix quantities at the source, the flux and the observed energy scale

with the Lorentz factor. The samples scatter around the high statistics spectrum.

Three extrapolation results are slightly higher than the high statistics result, two are

significantly lower. This is due to the mentioned low number of bursts with Lorentz

factor between 600 and 1000. The same holds for the flavor ratio R depicted in

the right plot of Fig. 8.4. Here, we again only plotted the flavor ratio R for the

sample 1 as an example for the five 66 burst spectra. The bold, dashed line is the

flavor ratio of a single burst, while the thin, solid line is the flavor ratio for the high

statistics sample. The transition from a mixed source between “neutron beam” and

“pion beam” to “pion beam” to “muon damped” source is practically the same. Only

a small kink at roughly E ≈ 102.5 GeV is not the same as in the upper right plot

of Fig. 7.2. As stated before this is an effect of low statistics in this energy region.

Hence, the flavor ratio is nearly unaffected by the low statistics. Therefore, it is

possible to estimate that the result of a stacking analysis with such a low number of

bursts will have an uncertainty of roughly one order of magnitude on the flux level

(for GRBs). However, a sample of 66 bursts would already be sufficient to obtain

representative information on the flux shape and the flavor ratio. Thus, one can
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8. On the changes to the flux due to low count statistics
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Figure 8.4: The flux of 66 simulated bursts with the Lorentz factor distributed as shown in

Fig. 8.3. The left plot shows the flux spectrum of the νµ. The bold, solid curve is

the sample 1 depicted in Fig. 8.3. The thin solid curves are the result for the samples

2, 3, 4, and 5. The 66 burst spectra have been rescaled to 10000 burst obtain a

quasi-diffuse flux limit. Therefore, we have included the high statistics result as the

bold, dashed curve. Due to the low number of bursts there is high variation among

the low statistics samples, especially on the derived flux limit. However, the flux

shape is unaffected by the low statistics. The right plot shows the flavor ratio R for

sample 1 (thick, solid curve), which is chosen as representative for the low statistics

samples. The thick, dashed curve is the flavor ratio for a single burst, while the

thin, solid line is the result for the high statistics. As one can see from comparing

the thin, solid and the thick, solid curves, there is nearly no difference in the flavor

ratio between the high and the low statistics result.

gain insight on the distribution of Γ. The information from stacking analysis is very

useful in this context, even though no precise diffuse flux estimation can be obtained

from it.

The third sample is the redshift z. For the low statistics sample we again use

the star formation rate by Hopkins and Beacom as stated in Eq. (4.4) including

the correctional factor E(z) for evolution with redshift. As for the Lorentz factor

we generate five 66 burst samples. The seeds for the sets can be found in the Ap-

pendix E. The representative sample 1 is displayed in the histogram on linear scale

with a bin size of 0.1 together with the relative contribution from a redshift, see

Fig. 8.5. Note that the number of bursts with high contribution is low, with the

highest contributions (lowest redshifts) missing in the sample. There are only two

bursts in this 66 burst sample with z ≤ 1, and only eight with z ≤ 1.4.
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Figure 8.5: Distribution of the 66 bursts of sample 1 following the distribution described by

Eq. (4.4). Sample 1 is one example of the five simulated distributions. Since

there are no qualitative differences among the sample, we only include this one

example. Furthermore, the thick red curve shows the contribution of all bursts up

the corresponding z. By comparison of both contributions one can see that there

are only two bursts at z ≤ 1, which is considered to be the dominant region as

discussed in section 7.2.

We use the five samples of 66 bursts with different redshifts z to calculate the

spectral flux of the νµ after flavor mixing individually. We then add the 66 burst

spectra and use linear extrapolation to gain a 10000 burst limit. As a consequence of

the low number of low redshift GRBs, the extrapolated “10000 burst” result of sam-

ple 1 (solid, bold curve) is significantly lower compared to the high statistics sample

(dashed, bold curve) from section 7.2, see left plot of Fig. 8.6. This observation is

also correct for the four other 66 burst samples (solid, thin curves). Only one curve

is nearly at the same level as the high statistics sample. However, if such a near

burst (with all the assumptions and implications discussed in section 7.2) would by

chance be observed in such a small sample, the result could also be higher compared

to the high statistics sample. Nevertheless, this shows that the uncertainty on the

diffuse flux from stacking analysis is high. And, maybe more importantly, that the

low burst limit looks significantly different from the high burst limit, which could

89



8. On the changes to the flux due to low count statistics

also be obtained by Monte Carlo integration. Therefore, for low statistics, as can

be expected for GRB neutrinos, it is mandatory to use Monte Carlo sampling, as

Monte Carlo integration cannot produce any low statistics results. However, as for

the Lorentz factor, the effect of the low statistics on the flux shape is small. All

features of the single burst are visible. Moreover, as one can see from the right plot

of Fig. 8.6, the flavor ratio is also just slightly affected. Depicted in Fig. 8.6 are the

flavor ratio for sample 1 (bold, solid curve), as representative for the five 66 burst

samples, the high statistics sample (thin, solid curve), and the single source flavor

ratio (bold, dashed curve). Due to the lack of low z bursts, the transition from “pion

beam” to “muon damped” is slightly shifted to lower energies, when one compares

the low to the high statistics result. Still, the flavor ratio is very robust. Therefore,

we can, as for the Lorentz factor before, gain insight on the flux shape and the flavor

ratio from stacking analysis. However, the result of the flux limit from these analysis

has significant uncertainties.
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Figure 8.6: The muon neutrino flux obtained from the 66 burst samples (left plot). The bold,

solid curve represents sample 1, which is depicted in Fig. 8.5. The four thin, solid

curves are the four additional 66 burst samples. These flux results are obtained

by extrapolating from 66 bursts up to 10000. They are in general lower than the

high statistics result (bold, dashed curve), due to the lack of low redshift bursts.

However, the flux shape is unchanged by low statistics. In case of the flavor ratio R

similar reasoning applies. The bold, solid curve in the right plot depicts the flavor

ratio for sample 1. The thin, solid line is the ratio for the high statistics sample.

And, the bold, dashed curve is the flavor ratio for the single burst. The transition

from a mixed source between “neutron beam” and “pion beam” to “pion beam” to

“muon damped” source does not change in shape but is shifted to slightly lower

energies compared to the high statistics result, as shown in the right plot. The kink

at E ≈ 102.5 GeV is due to low statistics in that energy range.
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9. Discussion and Summary

This diploma project was centered around the simulation of diffuse neutrino fluxes

from cosmic accelerators. The simulation of these was done for the special case of

gamma-ray bursts. In the progress of this diploma thesis we first extended the new

NeuCosmA code with features such as relativistic beaming, energy loss through cos-

mological redshift and flavor mixing of neutrinos. With the help of this extended

code we were able to reproduce the often cited WB flux shape (proportional to en-

ergy till first break at ≈ 105 GeV, then flat plateau till 107 GeV, spectrum decays

∝ E−2 in E2φ(E)) by calculating the result of photohadronic interactions. For this

reproduction the photohadronic interactions were modeled using the ∆-resonance

approximation as used by Waxman and Bahcall. All calculations were done by

assuming fixed photon and proton spectra, which were derived from observational

data. The main goal was to successfully reproduce the WB flux shape. Therefore,

we needed to use the same assumptions, including the same spectra, as Waxman and

Bahcall did. We showed that the spectral features can be reproduced in a multi-step

process including input from particle physics and astrophysics. The breaks in the

spectra can be traced back to the break in the photon spectrum (lower break) and

to synchrotron losses of the intermediate pions (upper break). From this starting

point we derived parameter sets consisting of the Lorentz factor Γ, the redshift z,

the magnetic field B, and the break energy of the photon spectrum ε
′

γ,break. Our cal-

culations showed that the specific WB shape can be reproduced with a multitude of

parameter sets. The two parameter sets shown in Table 6.1 are just two examples of

reasonable solutions. The parameters have internal connections when one assumes

the flux shape to be fixed. We then switched on other production channels from

photo hadronic interactions. We showed how this affects the spectrum and how the

shape is perturbed. In the next step we took flavor mixing into account leading to

a new flux shape. After each step the spectra had to be renormalized to conserve

energy. The resulting flux shape has a characteristic double peak from pions and

muons and a further contribution at high energies from kaon decays. However, the

parameters obtained from observations do not always match our parameter sets.

The magnetic fields in GRBs currently cannot be probed by measurements. The
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Lorentz factor can only be estimated, and some observations indicate that higher

Lorentz factors than Γ ∼ 300 should be assumed for most bursts. And, the observed

spectral breaks are lower than the ones we obtain from the calculation of the lower

break. Moreover, spectral data from the current Fermi/GBM observations indicate

that for long gamma-ray bursts the lower photon spectral index is αγ = 0.90± 0.36,

taken from Ref. [57]. And, that the light curves should not be fitted with a Band

function.

We discussed the effect of distribution of parameters at the example of the Lorentz

factor Γ, the redshift z and the magnetic field B. For the first two parameters we

could model observational data. We incorporated several known distributions as well

as proposing an analytic distribution ourselves in case of Γ. As already theoretical

considerations show the flux of a burst strongly depends on these two parameters.

From the simulation of 10000 bursts each with parameters distributed according to

the measured distributions we could obtain a (quasi-)diffuse flux. The parameter

values were picked with Monte Carlo sampling. By this we could show that the

diffuse flux is dominated by bursts with parameters which differ significantly from

the “standard” values. For our distribution of Γ bursts with Γ = 774 contributed the

most to the total diffuse flux. For the redshift bursts with z = 0.97 dominated in

case of the star formation history by Hopkins and Beacom (with correction function).

The magnetic field B affected only on the shape of the diffuse flux spectra and not

the contribution of a single burst. The problem with the magnetic field was mainly

the uncertainties. There was (and still is) no accepted distribution of the magnetic

field among the bursts and there are only ranges for possibly viable values. Hence,

we used some academic example distributions to quantify the effect. The result was

that the features were smeared out. The degree of the smearing depended on the

chosen distribution. In particular, in case of fewer bursts we showed that this can

be problematic. In a low statistics sample we only considered 300 bursts for the

magnetic field. For the samples of B the smearing effect got even stronger, obscur-

ing all features of the single burst. Therefore, the information on the magnetic field

from stacking analysis may be limited. Moreover, we also plotted 66 burst samples

for the Lorentz factor Γ and the redshift z. This number of bursts is of the order

of recent analysis, see Ref. [70]. We showed that the flux shape and the flavor ratio

can already be obtained from such a small sample. However, the extrapolation of

a diffuse flux limit from such a low number of bursts is highly limited by statistical

uncertainties.
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The flux levels estimated in this thesis were taken from ideal assumptions by

Waxman and Bahcall. Even with those assumptions it will need roughly 10 years of

data taking from IceCube to, in the best case, detect this diffuse flux. Unfortunately,

it is more realistic that the diffuse flux from GRB is lower than the WB GRB limit

by more than one order of magnitude. Some single bright bursts may be detected

nonetheless. Also, the kaon component opens a new window of opportunity to maybe

detect GRB neutrinos with extensive air shower imaging, e.g. with measurements

from Auger. The next years will set new bounds on the diffuse flux of neutrinos.

Even a non-detection will help refine the current bounds.
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10. Outlook and open issues

Even though we have already taken a look at some parameters not all have been

studied yet. We will be examining next the effect of different input spectra with

different spectral indices. In particular, the effect of the included photon spectra

still needs to be discussed in more detail. First of all, our choice of spectral indices

of the Band function in Eq. (4.8) is only the averaged values. Real spectra mostly

have different indices compared to our standard values, see Ref. [57] for current

Fermi/GBM results. This will again alter the shape of the neutrino spectra, how-

ever, it is easily included into our code. Furthermore, we still need to take a closer

look at the internal connections of the parameters in the internal shock model. As

stated in chapter 7 varying one parameter nearly always also changes other param-

eters. This has to be examined carefully. So far, observational correlations, e.g. the

Amati relation , see Ref. [94], or the Yonetoku relation, Ref. [91], are not included

in our model. However, it might be possible to derive these relations with help of

the internal connections of the source engine. Moreover, we still want to calculate

the probability to observe a very favorable burst, i.e. low z, high Γ. On the other

hand the Band function does not necessarily describe the observed photon spectra

of a GRB. Since it is possible to calculate interpolating functions from datasets in

our software we could take the measured GRB photon spectra and use these for

calculations. This would omit the step of fitting the Band function to the measured

photon spectra and would reduce the uncertainty on the result. This kind of di-

rect calculation could be interesting for the search of GRB signals with a neutrino

telescope. Moreover, with the first comprehensive analyses for Fermi data being

published, we might also gain new information on the parameters of the burst in

the near future. These developments considered and, maybe, give even new distri-

butions for our diffuse flux simulations.

Another possible extension of this study could be achieved by adding the pp in-

teractions into the NeuCosmA code. Since our current version totally neglects these

kinds of interactions they will alter the shape. It would be interesting to see if these

changes would be negligible or if they change the spectral shape significantly. As far
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10. Outlook and open issues

as GRB go an inclusion of these interactions could soften the requirement of neutron

transparency. Since the code also calculates the production of photons the inclusion

of these pp interactions could lead to (or at least be a next step) a self consistent

model for GRB.
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A. The effect of the input and further

control parameters

In this chapter we discuss the effect of what we call input and further control param-

eters. So far, these parameters have been set to a certain value without explaining

their function. We will now give a short overview of how these parameters effect

the spectra and why these small changes do not affect the spectrum significantly.

We will discuss the acceleration efficiency η, the minimal proton energy εp,min, the

minimal photon energy εγ,min and the maximal photon energy εγ,max.

A.1. Acceleration efficiency

Another parameter of our model which so far has not been discussed is the accelera-

tion efficiency η. So far we have adapted a value of η = 0.1 for our calculations. This

selection was done relatively arbitrarily. To justify this decision as well as showing

the effect of η we calculated the spectra of νe and νµ after oscillation. As can be

seen in Fig. A.1 the changed cut-off energy ε
′
p,max affects the high energy part of the

spectra. Features such as the peak from kaons are more pronounced for a higher

acceleration efficiency. The spectral shape stay unperturbed from this change. Also

this constrain on the maximum proton energy does not allow for a dominance of the

ν̄e from n-decays at high energies, see Fig. 6.3.

We also looked into the effect the maximal proton energy ε
′
p,max (in the source

rest frame) has on the muon neutrino flux spectra from π+-decay, especially on the

high energy processes (labeled “Multi π” in Fig. 6.2). We inserted ε
′
p,max manually

simulating spectra with 106, 107, 108, 109 and 1010 GeV. The solid curves are ob-

tained from the full photohadronic interaction cross section while the solid curves

are without the high energy (“Multi π”) events, see Fig. A.2. As can be seen in

Fig. A.2 a lower ε
′
p,max leads to earlier breaks in the neutrino spectra which is clearly

visible for 106 and 107 GeV due to the change of shape, visible for 108 GeV (steeper

drop-off), while the curves for 109 and 1010 GeV are hardly distinguishable. None
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Figure A.1: These plots show the effect of the acceleration efficiency η (which effects the cut-off

energy ε
′

p,max). At high energies the spectra are higher for higher η while at low

energies the effect is negligible.

the less even for the last two the premise of a cut at lower energy (or a stronger

break) still holds. The normalization is the same as in Fig. 6.2.

A.2. Minimal proton energy

The minimal proton energy Ep,min was set to 1 GeV due to estimations of the thresh-

old energy. This value of Ep,min is considered our ”standard value” of Ep,min. The

main goal was to choose a value that was far enough away from the threshold to

suppress effects of this parameter. In Fig. A.3 we plot the spectra of the electron and

muon neutrinos after oscillation at the detector for our standard value (thick curve)

and for a value 4 orders of magnitude larger (thin curve). As can be expected a

higher Ep,min leads to lower neutrino fluxes at low energies. To emphasize the effect

the area between the two spectra was shaded. Calculations for a value of Ep,min

which was four orders of magnitude smaller did not show any deviation from the

standard spectrum and are therefore not depicted additionally.
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Figure A.2: These curves show the effect of the maximal proton energy ε
′

p,max on the muon

neutrino spectra from π+-decay. The solid curves are for the full photohadronic

cross section, while the dashed lines represent the neutrino production without

high energy (“Multi π” in Fig. 6.2) processes. The plot shows spectra for ε
′

p,max =

106, 107, 108, 109 and 1010 GeV. The curves for 109 and 1010 GeV are hardly

distinguishable.
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Figure A.3: In these figures the effect of Ep,min is depicted. The labels show the value of Ep,min

for the appropriate curve. Due to the proportionality Eν ∝ Ep the effect of Ep,min

is to the lower energy part of the spectrum. As expected a higher maximal proton

energy leads to lower levels of neutrinos in these energy regions.
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A. The effect of the input and further control parameters
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Figure A.4: In these figures the effect of Eγ,min is depicted. The labels show the value of Eγ,min

for the appropriate curve. As can be seen above a higher value of Eγ,min leads to

a suppression of the neutrino flux at energies above 105 GeV.

A.3. Minimal photon energy

As another parameter the minimal photon energy Eγ,min was set to 0.2 eV without

further explanation. Again the threshold energy of the photohadronic interactions

was the energy reference taken into account for this decision. But opposite to the

effect of Ep,min which directly affects the low energy regime Eγ,min has an effect on

the highest energy neutrinos as can be derived from Eq. (4.12). As can be seen in

Fig. A.4 a Eγ,min that is four orders of magnitude larger than our standard value

leads to a suppression of the produced neutrinos above ≈ 105 GeV. To emphasize

this deviation the area between the standard spectrum and the one with large Eγ,min

has been shaded. The curves have been labeled in Fig. A.4 by the values of Eγ,min.

A.4. Maximum photon energy

The maximum photon energy Eγ,max was chosen to be a multiple of εγ,break. For

our standard spectrum in Fig. 6.1 we chose a value of 300. As explained earlier the

choice of Eγ,max affects the “zeroth” break of the neutrino spectrum. This break is

obtained by inserting Eγ,max into Eq. (4.12). By simple evaluation of the formula

one obtains a value for the zeroth break at ∼ 102.5 GeV (for Eγ,max = 300 · εγ,break.
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A.4. Maximum photon energy
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Figure A.5: The effect of Eγ,max for the values 30, 300 (standard) and 3000 in multiples of

εγ,break. A higher Eγ,max leads to a lower “zeroth” break.
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B. The full transition probabilities

B. The full transition probabilities

On the next page we have given the full analytic formulas for the transition proba-

bilities as defined in Eq. (3.10). The transition probability Pττ is not included since

none of the considered decay processes results in the production of a τ or a ντ , see

Eqs. (3.3) to (3.6).
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C. Classes of neutrino sources

C. Classes of neutrino sources

The classification of neutrino sources, taken from Ref. [20]:

Pion beams

Neutrinos are produced by charged pion decays in the ratio νe : νµ : ντ of 1 : 2 : 0

(neutrinos and antineutrinos added). This means that the electron to muon neutrino

ratio Re = (Qνe +Qν̄e) /
(
Qνµ +Qν̄µ

)
' 1/2 (corresponds to R = 0.5 for our flavor

ratio R after flavor mixing, taken from Eq. (3.12)). In fact, corrections from the

helicity dependence of the muon decays lead to small deviations from this ratio,

which, however, can be understood in terms of particle physics, as well as there

can be pile-up effects. The deviations depend on the input particle spectra and are

below the level of 10% in Re. They are fully taken into account in our computations.

Muon damped sources

If the synchrotron loss time scale of the muons is shorter than the decay time scale,

the muons loose energy before they decay. In this case, only neutrinos from pion

decays are present, leading to νe : νµ : ντ of 0 : 1 : 0 (neutrinos and antineutrinos

added), or Re = (Qνe +Qν̄e) /
(
Qνµ +Qν̄µ

)
' 0 (corresponds to R ' 0.64).

Neutron beam sources

Given the assumption of sources optically thin to neutrons, the neutrons leave the

source and decay into protons, electrons, and electron antineutrinos. These neutrinos

are typically found at low energies, unless the synchrotron losses of the pions and

muons are so large (i.e., the magnetic fields are very large) that the neutrinos from

neutron decays contribute significantly. In this case, we have νe : νµ : ντ of 1 :
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0 : 0 (neutrinos and antineutrinos added), or Re = (Qνe +Qν̄e) /
(
Qνµ +Qν̄µ

)
→∞

(corresponds to R ' 0.28). Note that there are other potential sources of neutrons,

such as neutrons produced by the photo-dissociation of heavy nuclei.

Muon beams

If the synchrotron loss time scale of the muons is shorter than the decay time scale,

the muons loose energy before they decay. These muons may pile up at lower

energies, where, similar to a neutrino factory, only neutrinos from muon decays are

present. This leads to νe : νµ : ντ of 1 : 1 : 0 (neutrinos and antineutrinos added), or

Re = (Qνe +Qν̄e) /
(
Qνµ +Qν̄µ

)
' 1 (corresponds to R ' 0.44). Typically, a muon

beam comes together with a muon damped sources at higher energies: The muons

missing at high energies are recovered at lower energies. Note that there may be

other sources of muon beams, such as heavy flavor decay (D, DS, B, etc.) dominated

sources, where the pions and kaons interact before they can decay, whereas the heavy

mesons have shorter lifetimes.
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D. Redshift distributions on logarithmic scales

D. Redshift distributions on logarithmic

scales

Some additional figures to explain some plots in references.
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Figure D.1: Distribution of bursts in redshift on a logarithmic scale. The data is the data set

tracing the star formation history by Hopkins and Beacom (Eq. (4.4)). The left

plot is for a logarithm with a base of 10, the right plot for the natural logarithm.
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E. Used seed for 66 burst data sets

# of set Seed

1 0
2 5
3 12
4 249253
5 3641

Table E.1: These are the seeds used for the generation of the ten 66 burst data sets. Five sets

were generated for the Lorentz factor Γ and five sets for the redshift z.
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this work. Furthermore, Svenja Hümmer for all the help, information and feedback.

Without her work none of the simulations would have been possible. Also, my

officemate Jian Tang for help in countless questions, as well as Dr. Davide Meloni

and Martin Krauß for their thoughts and expertise on various aspects of neutrino

physics. Moreover, I have to thank Michael Rüger, Dr. Felix Spanier and Prof. Dr.
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