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Zusammenfassung
Die Narrow-Width Approximation (NWA) wird vielfach verwendet, um komplizierte
Streu- und Zerfallsprozesse in einfachere Teilprozesse zu faktorisieren, welche dann
in Störungsrechnung einfacher und genauer behandelt werden können. In dieser Ar-
beit untersuchen wir die Anwendbarkeit der im Standardmodell sehr genau getesteten
und i.d.R. gut funktionierenden NWA in Erweiterungen des Standardmodells. Da hier
häufig neue, schwere Teilchen vorrausgesagt werden, welche über viele Zwischenstufen
mit resonanten, instabilen Teilchen zerfallen, ist die NWA besonders wichtig um kom-
plizierte Prozesse genau berechnen zu können. Wir untersuchen im ersten Teil der Ar-
beit analytische Eigenschaften der NWA. Wir entwickeln zunächst eine Möglichkeit,
die NWA formal aus der Formel für den vollen Streuquerschnitt abzuleiten, unter-
suchen dann das Verhalten bei verschwindender totaler Zerfallsbreite des instabilen
Teilchens und geben schließlich, als Hauptresultat dieses Abschnitts, unter ganz allge-
meinen Vorraussetzungen einen Beweis dafür, dass der Fehler durch Anwendung der
NWA von der Ordnung Γ/m ist, wobei m und Γ die Masse und totale Zerfallsbreite
des instabilen Teilchens sind.
Im zweiten Abschnitt untersuchen wir die NWA im Minimalen Supersymmetrischen
Standardmodell (MSSM). Diese aus theoretischer Sicht besonders attraktive Erweiter-
ung des Standardmodells ist sehr gut untersucht und könnte am Large Hadron Col-
lider bereits in den ersten Jahren gefunden werden. Für eine systematische Unter-
suchung erzeugen wir alle resonanten 1 → 3 Zerfälle, die im MSSM möglich sind,
und untersuchen die Abhängigkeit der Güte der NWA von den auftretenden Massen
und Kopplungen. Zunächst bestimmen wir ganz allgemein die Prozesse und Parame-
terkonfigurationen, für die die NWA keine guten Ergebnisse liefert, und untersuchen,
wodurch es zu Problemen kommt, um uns dann speziellen Modellen zuzuwenden. Da
der Parameterraum des MSSM mit über einhundert Parametern nicht systematisch
nach problematischen Zerfällen durchsucht werden kann, beschränken wir uns auf
zehn Benchmarkpunkte (die sogenannten SPS Punkte), die für phänomenologische
Studien festgelegt wurden. Wir erzeugen für diese SPS Punkte alle resonanten 1 → 3
Zerfälle und diskutieren die Problemfälle.
Im letzten Abschnitt der Arbeit untersuchen wir nochmals die Näherungen, die im
ersten Abschnitt nötig waren um die NWA formal abzuleiten, und entwickeln modi-
fizierte NWA Formeln, die bestimmte Aspekte besser berücksichtigen. Dabei entwick-
eln wir eine Modifikation, die im wesentlichen alle Vorteile der eigentlichen NWA
beibehält und die Eigenschaften des Phasenraums besser berücksichtigt. Wir wenden
diese modifizierte NWA Formel auf die erzeugten Zerfälle für die SPS Punkte an und
finden insgesamt eine leichte Verbesserung des Fehlers.
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Introduction 1
In the past century a powerful model of the fundamental particles and interactions
has emerged. The so-called Standard Model (SM) of particle physics was developed
to describe three of the four fundamental interactions, namely the electro-magnetic,
the weak and the strong interaction. It is tested to an incredible precision hardly
found anywhere else in physics and so far there are no experimental results from col-
lider experiments that contradict SM predictions. However, neutrino masses, whose
nature in terms of Dirac or Majorana type is still unclear, have to be incorporated
and the SM does not provide a suitable dark matter candidate. Furthermore there are
clear signs on the theoretical side that the SM is an effective low-energy model, rather
than a fundamental theory. First of all, there is the missing description of gravity
which can not be incorporated within the SM framework. But despite the lack of a
quantum description of gravity, there are other problems, suggesting that there has
to be new physics far below the Planck scale. For example the hierarchy problem of
why the Higgs mass, which would – unless we accept an extreme fine-tuning – run
all the way up to the Planck scale due to loop contributions, is that small compared
to the scale of new physics. These theoretical arguments indicate that new physics
will play an important role at the TeV scale which will soon become accessible at
the Large Hadron Collider (LHC), scheduled to start in 2008. We therefore expect
discoveries revealing physics beyond the Standard Model (BSM) and giving insight
into more fundamental theories in the near future. A promising extension of the SM is
supersymmetry, which solves the hierarchy problem. In particular the Minimal Super-
symmetric Standard Model (MSSM) as the supersymmetric extension with minimal
additional particle content is of interest and studied very well. The MSSM, although
not being a fundamental theory itself, in addition to solving the hierarchy problem al-
lows for a unification of the couplings of strong and electroweak interactions and gives
suitable dark matter candidates. A typical phenomenological feature is the production
of the superpartners of the SM particles and their subsequent decay through cascade
decays into SM particles and the lightest supersymmetric particle (LSP), which leads
to many particles in the final states and complex scattering amplitudes. The new par-
ticles can only be identified by means of their decay products and therefore, accurate
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1. Introduction

predictions are required to successfully extract the correct values of additional La-
grangian parameters out of the experimental data. To achieve the desired accuracy, it
is necessary to include next-to-leading order (NLO) calculations which are very chal-
lenging or not yet feasible for these long decay chains. An approach to avoid these
complications is to factorize the (potentially resonant) production and decay of the
unstable particles by means of the narrow-width approximation (NWA). The NWA
provides a way of consistently neglecting sub- and non-resonant contributions as well
as non-factorizable loop contributions. Loop calculations can then be carried out for
the simpler subprocesses and considerable simplifications occur already at treelevel.
For these reasons, the NWA is used frequently in studies of BSM physics. Based on
the involved scales the NWA error is typically assumed to be of O(Γ/m), where m, Γ
are the mass and width of the unstable particle, respectively. Although the NWA is
well tested in SM scenarios, to our knowledge there exists no proof for the smallness
of the NWA error. Therefore, in order to make reliable theoretical predictions, the
NWA has to be checked in the context of new physics. In this work we first derive
some analytical properties of the NWA and give a proof that the NWA error is of
O(Γ/m). We then take the MSSM as specific extension of the SM to do a systematic
check of the NWA performance. For that, we first do a general analysis which is not
specific to supersymmetric theories and then study specific MSSM scenarios, namely
the SPS points.

1.1. The Standard Model

The SM of particle physics gives a very well tested description of all fundamental forces
but gravity. However, the gravitational effects in the energy ranges currently accessible
are negligibly small and the SM provides an excellent description of collider physics. It
consists of an outer symmetry of the Poincaré group of space-time transformations and
an inner symmetry group which is the direct product of the symmetry group of strong
interactions SU(3)C with the group of electroweak interactions SU(2)L × U(1)Y . We
have three generations of spin-1

2
fermions in the SM with the corresponding particles

of each generation having the same quantum numbers but different masses. The left-
handed parts of the fermions transform as SU(2)L doublets and are built of pairs of
charged leptons with the corresponding neutrinos and up- with down-type quarks. The
righthanded parts of the quarks and charged leptons transform as SU(2)L singlets. For
each group generator of the inner symmetries we have a massless spin-1 gauge boson
which transforms under the adjoint representation of the respective group. This gives
eight gluons for SU(3)C , three gauge bosons W i for SU(2)L and a single gauge boson
B for U(1)Y . Since explicit mass terms would spoil gauge invariance, the particles are
assumed to acquire masses due to spontaneous symmetry breaking, namely the Higgs
mechanism. Therefore an additional complex scalar field Φ which is a doublet under
SU(2)L is introduced together with a potential that produces a non-gauge-invariant

2



1.2. Narrow-width approximation

ground state. In this way the gauge invariance is broken spontaneously, meaning that
the Lagrangian is still gauge-invariant while the vacuum state is not. The Higgs field
Φ has hypercharge Y = 1 and its ground state acquires a vacuum expectation value v
such that SU(2)L×U(1)Y is broken down to U(1)Q. The electric charge is Q = I3+

1
2
Y

where I3 is the third component of weak isospin. In order to preserve U(1)Q only
the lower component of the Higgs field is assigned a vacuum expectation value. The
breaking of a continuous global symmetry generates one massless Goldstone boson for
each broken symmetry generator. In the case of the local symmetry SU(2)L×U(1)Y ,
these Goldstone bosons are no physical particles. By an appropriate gauge choice
– the unitary gauge – they can be eliminated. Their degrees of freedom become
the longitudinal modes of the gauge bosons which become massive. Of the four
degrees of freedom of the Higgs field Φ, three have become the massive modes of the
gauge bosons and a scalar neutral Higgs field H is left which is yet to be discovered.
After symmetry breaking, the gauge bosons of SU(2)L × U(1)Y mix to give as mass
eigenstates the charged massive bosons W± consisting of W 1 and W 2, the neutral
massive Z boson and the massless photon γ which are mixtures of W 3 and B. The
fermions acquire masses proportional to the respective Yukawa couplings and the
Higgs vacuum expectation value.

1.2. Narrow-width approximation

The NWA is used to reduce the complexity of scattering amplitudes. The idea is
to treat a process consisting of the (potentially resonant) production of an unstable
particle and the following decay as two separate processes not depending on each
other. The denominator of the unstable-particle propagator generally has a Breit-
Wigner form 1

q2−m2+imΓ
, with m, q and Γ being the mass, 4-momentum and width

of the intermediate particle, respectively. For small Γ, off-shell effects are strongly
suppressed and the intermediate particle is basically on-shell. The Breit-Wigner can
then be integrated out, factorizing the cross section into a production cross section
times a branching ratio which is the quotient of the partial decay width and the total
width of the unstable particle

σ = σprod ×
Γpartial

Γ
= σprod × BR. (1.1)

This way, the phasespace dimension as well as the number of contributing diagrams
is reduced and the calculation of the full process is split into two simpler calculations,
which do not take into account spin/polarization correlation effects1. Furthermore, it
is not possible to calculate interference with non-resonant contributions, or to calcu-
late differential cross sections with respect to q2. The error of the NWA calculation

1The Breit-Wigner can be integrated out without discarding spin/polarization correlations, but the
resulting cross section can then not be factorized in the form of Equation 1.1.
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1. Introduction

compared to the off-shell calculation integrated over the full phasespace is – based
on the involved scales – usually believed to be of O( Γ

m
). In the SM, the NWA works

quite well for most of the processes, which seems to rely on the specific mass spectrum
and couplings of the SM. That is, the masses of unstable particles are typically much
larger than masses of any lighter particles they decay to, and the widths of unstable
particles are typically small compared to their mass. Examples with well working
NWA are the decays of the heavy top quark (e.g. t→ bW+ → bud̄) and the decays of
the massive gauge bosons. There are only a few resonant processes that require off-
shell calculations (e.g. e+e− → W+W− → 4f [1]). In extensions of the SM there are
often nearly degenerate masses of parent and daughter particles and the new particles
can only be probed by means of their decay products. It is not clear a priori that the
NWA is a good approximation in these scenarios. A detailed understanding of the
cascade decays and the approximations in their calculation is necessary to deduce the
correct particle properties from the experimental data.

1.3. Supersymmetry

In this section we want to develop the MSSM, which is a very well studied extension
of the SM and can actually solve a number of problems. Supersymmetry for example
provides a natural explanation of the small Higgs mass. The relation between bosons
and fermions adds a quadratically divergent bosonic contribution to the Higgs mass,
which – due to supersymmetry – precisely cancels the divergent contribution of the SM
fermions. After the breaking of supersymmetry, a logarithmically divergent contribu-
tion remains in contrast to the quadratic divergence in the SM. Furthermore, after the
introduction of R-parity, the LSP becomes stable and can give a suitable dark-matter
candidate. More details of the formalism can be found in [2] and phenomenological
aspects are discussed in [3].

1.3.1. Supersymmetry algebra

After Coleman and Mandula had shown in 1967 [4] that any Lie group containing the
Poincaré group P and some internal symmetry group G must be the direct product
P ⊗ G, it was clear that internal symmetries can only be combined with space-time
symmetry in a trivial way. As the proof uses only very general assumptions such as
Lorentz invariance of the S-matrix or analyticity of the scattering amplitudes, the
only way to bypass this limitation is to not use Lie algebras defined by commutator
relations but rather use so-called superalgebras, which also contain anticommutators.
We can then define operators Q and Q̄ with the following properties:{

Qα
A, Q̄β̇B

}
= 2σµ

αβ̇
Pµδ

A
B,{

Qα
A, Qβ

B
}

= εαβX
AB, (1.2)
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1.3. Supersymmetry

{
Q̄α̇A, Q̄β̇B

}
= −εα̇β̇X

?
AB,[

Pµ, Qα
A
]

=
[
Pµ, Q̄α̇A

]
= 0.

These supersymmetry generators Q and Q̄ carry Weyl spinor indices α, α̇ and β, β̇
each running from 1 to 2. The undotted indices transform under the (0, 1

2
) spinor rep-

resentation of the Poincaré group and the dotted ones under the (1
2
, 0) representation.

The indices A and B refer to an internal space and run from 1 to some N ≥ 1. Pµ de-
notes the energy-momentum operator which generates the Lorentz translations, while
σµ

αβ̇
= (1, σi

αβ̇
) is a four-dimensional generalization of the Pauli matrices. As chiral

fermions, which are needed to construct the observed parity violation via SU(2)L, are
not allowed for N > 1, only the N = 1 case is of interest for the currently accessible
energy ranges and will be discussed now. The algebra for N = 1 becomes{

Qα, Q̄β̇

}
= 2σµ

αβ̇
Pµ,

{Qα, Qβ} =
{
Q̄α̇, Q̄β̇

}
= 0, (1.3)

[Pµ, Qα] =
[
Pµ, Q̄α̇

]
= 0.

The first line of (1.3) shows the connection of the space-time symmetry and the
internal symmetry. According to the spin-statistics theorem, the second line shows
that the Q, Q̄ are fermionic operators, i.e. they transform as half-integer-spin objects.
By calculation one finds that their spin is 1

2
. The third line ensures the invariance

of supersymmetry under Lorentz transformations. The action of Q on one-particle
states is to convert a boson into a fermion and vice versa. The one-particle states
belong to the irreducible representations of the supersymmetry algebra, the so-called
supermultiplets. Each supermultiplet contains fermionic and bosonic states which are
called superpartners of each other and by applying Q and Q̄ they are transformed
into one another. The simplest supermultiplet is the so-called chiral supermultiplet
consisting of a single Weyl fermion with two helicity states and one complex scalar
field. Additionally, we can construct a gauge or vector supermultiplet out of a massless
spin-1 vector boson and a massless spin-1

2
Weyl fermion. From Equation (1.3) we have

[PµP
µ, Qα] = [PµP

µ, Q̄α̇] = 0 (1.4)

and thus, application of the supersymmetry generators does not change M2, the
squared mass of the particles inside a supermultiplet. In unbroken supersymmetry,
the fermions and bosons inside a supermultiplet therefore have the same mass.

1.3.2. Superfield formalism

Considerable simplification of the notation in supersymmetric theories can be achieved
by using the superfield formalism. In this formalism, the usual four-dimensional space-
time is extended to the so-called superspace by introducing additional Grassmann
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1. Introduction

variables. With these anticommuting variables, the superalgebra can be written in
terms of commutators [

θαQα, Q̄β̇ θ̄
β̇
]

= 2θασµ

αβ̇
θ̄β̇Pµ,[

θαQα, θ
βQβ

]
= [Q̄α̇θ̄

α̇, Q̄β̇ θ̄
β̇] = 0, (1.5)

[P µ, θαQα] =
[
P µ, θ̄α̇Q̄α̇

]
= 0.

A finite supersymmetric transformation can be written as

G(xµ, θ
α, θ̄α̇) = ei(θαQα+θ̄α̇Q̄α̇−xµP µ)

with the supersymmetry generators Qα, Q̄α̇ and the generator of translation P µ. The
coordinates can be combined into a tuple and a point in superspace is then given by
X = (xµ, θ

α, θ̄α̇). The superspace itself is the set of all these tuples. The fields become
functions of X, i.e. they are functions of the usual space-time coordinate xµ as well
as of θα and θ̄α̇ and are called superfields, e.g. Φ(xµ, θ

α, θ̄α̇). The infinitesimal form
of a supersymmetry transformation is

δG(0, ξ, ξ̄)Φ(xµ, θ, θ̄) =

[
ξ
∂

∂θ
+ ξ̄

∂

∂θ̄
− i(ξσµθ̄ − θσµξ̄)

∂

∂xµ

]
Φ(xµ, θ, θ̄)

and the supersymmetry generators can be given as differential operators in superspace
by

Qα =
∂

∂θα
− iσµ

αβ̇
θ̄β̇ ∂

∂xµ
, (1.6)

Q̄α̇ = − ∂

∂θ̄α̇
+ iθβσµ

βα̇

∂

∂xµ
. (1.7)

Analogously to covariant derivatives in gauge theory, we now introduce the covariant
derivatives Dα and D̄α̇ with respect to the supersymmetry generators. These are
constructed to be invariant under Q and Q̄, i.e.

{Dα, Qα} = {D̄α̇, Qα} = {Dα, Q̄α̇} = {D̄α̇, Q̄α̇} = 0.

These covariant derivatives are

Dα =
∂

∂θα
+ iσµ

αβ̇
θ̄β̇ ∂

∂xµ
, (1.8)

D̄α̇ = − ∂

∂θ̄α̇
− iθβσµ

βα̇

∂

∂xµ
. (1.9)

The superfields can be expanded into component fields and due to the anticommuting
properties of the Grassman variables, this expansion terminates with the second order
in θ and θ̄. The general expansion is given by

Φ(xµ, θ
α, θ̄α̇) = f(x) + θϕ(x) + θ̄χ̄(x)

6



1.3. Supersymmetry

+θθm(x) + θ̄θ̄n(x) + θσµθ̄vµ(x) (1.10)

+θθθ̄λ̄(x) + θ̄θ̄θψ(x) + θθθ̄θ̄d(x)

where the spinor indices are not written explicitly. This expansion is valid for arbitrary
superfields. However, in the MSSM we only need two types of superfields, which can
be obtained by imposing covariant constraints on the general superfield.

Chiral and vector superfields

The first kind of field we need in the MSSM is the chiral superfield defined by the
constraint

D̄α̇Φ(xµ, θ
α, θ̄α̇) = 0 (1.11)

which leads to the chiral superfield

Φ = φ(x) + iθσµθ̄∂µφ(x) +
1

4
θθθ̄θ̄∂µ∂

µφ(x)

+
√

2θψ(x)− i√
2
θθ∂µψ(x)σµθ̄ + θθF (x)

with a complex scalar field φ, a complex Weyl spinor ψ and an auxiliary complex field
F with mass dimension two. This auxiliary field balances the fermionic and bosonic
degrees of freedom off-shell and under supersymmetry transformations it transforms
into a total space-time derivative. Therefore, it does not represent a physical degree
of freedom and can be written in terms of the other, physical fields. The product of
chiral superfields again is a chiral superfield, which can be shown via D̄α̇(Φ1Φ2) =
(D̄α̇Φ1)Φ2 + Φ1(D̄α̇Φ2) = 0. An antichiral superfield can analogously be defined by
demanding DαΨ(xµ, θ

α, θ̄α̇) = 0. The hermitian conjugate of a chiral superfield Φ† is
an antichiral superfield.
Vector superfields on the other hand can be defined by demanding

V (x, θ, θ̄) = V (x, θ, θ̄). (1.12)

The complete expansion of a vector superfield is given by

V (x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x) +
i

2
θθ[M(x) + iN(x)]− i

2
θ̄θ̄[M(x)− iN(x)]

−θσµθ̄Aµ(x) + iθθθ̄

[
λ̄(x) +

i

2
σ̄µ∂µχ(x)

]
− iθ̄θ̄θ

[
λ(x) +

i

2
σµ∂µχ̄(x)

]
+

1

2
θθθ̄θ̄

[
D(x) +

1

2
∂µ∂

µC(x)

]
where C, D, M and N are scalar fields, λ and χ are Weyl spinors and Aµ is the vector
field giving the name to this kind of superfield. All the fields are real in order to fulfill
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1. Introduction

(1.12). With the vector superfields generalizing the gauge fields we can now define a
supersymmetric gauge transformation which in the non-Abelian case is given by

Φ → e−iΛΦ, (1.13)

eV → e−iΛ†eV eiΛ (1.14)

with chiral superfields Λa, vector superfields Va and Λ = T aΛa, V = T aVa with T a

being the generators of the gauge group. In the Abelian case the transformation of
the vector superfield reduces to

V → V + i(Λ− Λ†).

Using part of the supersymmetric gauge freedom, the gauge can be fixed by

χ(x) ≡ C(x) ≡M(x) ≡ N(x) ≡ 0

which removes unphysical degrees of freedom, breaks supersymmetry and leaves the
’ordinary’ gauge freedom. This gauge is called Wess-Zumino gauge [5] and the expan-
sion of the vector superfield simplifies to

V = −θσµθ̄Aµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x) (1.15)

from which we have V 3 = 0. The expansion contains the auxiliary scalar field D with
mass dimension two and as was the case for the chiral superfield, this auxiliary field
again transforms into a total derivative under supersymmetry transformations and
therefore does not represent physical, propagating degrees of freedom.

1.3.3. The Lagrangian

For a supersymmetric theory, the action must be invariant under supersymmetry
transformations and therefore the Lagrangian is required to change only by a to-
tal space-time derivative. To achieve this, we only use the F and D terms in the
Lagrangian which can then be written as

L =

∫
d2θLF +

∫
d2θd2θ̄LD. (1.16)

As was already noted, the product of chiral superfields again is a chiral superfield
and since the product of four or more chiral superfields produces terms with mass
dimension larger than four, the most general form of a renormalizable, holomorphic
superpotential to appear in LF is

W (Φ) = λiΦi +
1

2
mijΦiΦj +

1

3
gijkΦiΦjΦk. (1.17)
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1.3. Supersymmetry

The product of two chiral superfields produces fermion mass terms ∝ ψiψj and the
product of three chiral superfields produces Yukawa terms ∝ ψiψjφk. With the prod-
uct Φ†Φ of a chiral field and its hermitian conjugate, we can introduce the kinetic
terms. The product is self-conjugate and therefore a vector superfield with the possi-
ble contribution to the Lagrangian∫

d2θd2θ̄ LD =

∫
d2θd2θ̄ Φ†Φ = FF ? + φ∂µ∂

µφ? + i∂µψ̄σ̄µψ.

This expression contains kinetic terms for the scalar and the fermionic component but
no kinetic term for the auxiliary field F and thus, the auxiliary field can be integrated
out. Gauge interactions can be introduced by the supersymmetric generalization of
the minimal coupling Φ†Φ → Φ†e2gV Φ with vector superfields Va, V = T aVa and the
generators of the gauge group T a. In the component fields the ordinary derivatives are
replaced by the covariant derivatives Dµ = ∂µ + igAa

µTa. We need to introduce kinetic
terms for the gauge fields as well. These can be expressed in terms of a superpotential
by using the supersymmetric field strength

Wα = −1

4
(D̄D̄)e−2gVDαe

2gV (1.18)

which transforms as Wα → e−iΛWαe
iΛ under the non-Abelian gauge transformation.

The product WαW
α is a chiral superfield and its trace gauge invariant, so it can

appear in the supersymmetric Lagrangian. Again, the auxiliary fields do not acquire
kinetic terms and can be integrated out. The Lagrangian now reads

LSUSY =

∫
d2θ

[
1

16g2
tr(WαW

α + W̄α̇W̄
α̇) +W (Φ) + h.c.

]
+

∫
d2θd2θ̄(Φ†e2gV Φ) (1.19)

and with mij and gijk totally symmetric it is invariant under the gauge transformation

Φ → e−iΛΦ, e2gV → e−iΛ†e2gV eiΛ. The auxiliary fields F and D can be eliminated by
using their equations of motion, which – as the Lagrangian does not contain kinetic
terms – have the simple form

∂L
∂Fi

= F ?
i + λi +mkiφk + gkliφkφl = 0, (1.20)

∂L
∂F ?

i

= Fi + λ?
i +m?

kiφ
?
k + g?

kliφ
?
kφ

?
l = 0, (1.21)

∂L
∂Da

= Da + gφ?
iT

a
ijφj = 0. (1.22)

Using these expressions, the Lagrangian can be rewritten completely in terms of the
physical fields.

9



1. Introduction

1.3.4. Supersymmetry breaking

As seen in the previous section, supersymmetry forces all members of a supermulti-
plet to have the same mass. This means, that if supersymmetry were unbroken, there
would be a superpartner of the same mass for each SM particle and since these super-
partners of SM particles have not been found, supersymmetry has to be spontaneously
broken. To achieve spontaneous symmetry breaking inside the supersymmetric La-
grangian, it must be impossible for the F and D terms to simultaneously vanish.
There are two possibilities, one of them is the Fayet-Iliopoulos or D-term mechanism
[6] of adding a D term linear in the auxiliary field to the Lagrangian. The other one
is O’Raifeartaigh or F -term supersymmetry breaking [7] where chiral supermultiplets
are used with a superpotential such that not all F -terms can be zero simultaneously.
Both mechanisms are phenomenologically insufficient because they do not generate
an acceptable spectrum (see [3] for details) and thus, the breaking of supersymmetry
has to occur indirectly or radiatively. Basically, there are three scenarios of breaking
supersymmetry in a ’hidden sector’. In gravity-mediated supersymmetry breaking
(mSUGRA) [8, 9] the two sectors interact essentially by gravitational interactions
which mediate the breaking to the ’visible sector’ which we observe. The minimal
version of this scenario is characterized by four parameters and a sign, these are the
universal scalar mass parameter m0, the gaugino mass parameter m1/2 = Mi, where
Mi are the gluino-, wino- and bino-masses, the trilinear coupling parameter A0, the
ratio of the Higgs vacuum expectation values tan β and the sign of the supersymmet-
ric Higgs mass parameter µ. Another possibility is gauge-mediated supersymmetry
breaking (GMSB) [10, 11, 12] in which the supersymmetry breaking is mediated by
gauge interactions involving so-called messenger chiral supermultiplets that couple to
the MSSM particles through gauge boson and gaugino interactions. In the minimal
version of GMSB there are four parameters and a sign, the messenger mass Mmess,
the messenger index Nmess, the universal soft supersymmetry breaking mass scale felt
by the low energy sector Λ, tan β and the sign of µ. In the third scenario the breaking
is mediated via the super-Weyl anomaly and it is therefore called ’anomaly mediated
supersymmetry breaking’ (AMSB) [13]. The parameters are maux setting the over-
all scale of the supersymmetric-particle (sparticle) masses, tan β, the sign of µ and
a phenomenological parameter m0 which is introduced to keep the squared slepton
masses positive. From a phenomenological point of view it is not that important how
exactly supersymmetry is broken, but rather which additional terms are generated
in the Lagrangian. We want to keep the cancellation of the quadratically divergent
contributions to the Higgs mass in order to not lose the solution of the hierarchy
problem of the SM. The allowed terms which do not alter the cancellation are called
’soft supersymmetry breaking terms’ and it was shown [14] that only the following
terms are allowed:

• scalar mass terms m2
ijφ

?
iφj

10



1.3. Supersymmetry

• trilinear scalar interactions tijkφiφjφk + h.c.

• gaugino masses 1
2
mlλ̄lλl

• bilinear terms bijφiφj + h.c.

• linear terms liφi

1.3.5. The Minimal Supersymmetric Standard Model

The minimal phenomenologically viable extension of the SM is a N = 1 supersymme-
try with soft supersymmetry breaking. As the SM, the MSSM has the gauge group
SU(3)C × SU(2)L × U(1)Y which describes the strong and electro-weak interactions,
and the particle content of the MSSM is obtained by replacing all fields by the cor-
responding superfields. The matter fields are replaced by chiral superfields, with the
fermionic part describing the ordinary SM fermions and the scalar part describing the
superpartners, the so-called ’sfermions’. For each gauge field a vector superfield is
introduced, which – besides the SM vector bosons – contains their fermionic super-
partners, the gauginos. In the Higgs sector some care is needed since it is not sufficient
to just replace the scalar Higgs field by a superfield. In order to give masses to the
up-type and down-type quarks, the Higgs field H as well as its hermitian conjugate
H? would be needed. This spoils analyticity of the superpotential and thus we need a
second Higgs doublet with negative hypercharge. Another reason for the introduction
of two Higgs fields is that the fermionic part of a single Higgs field with negative
hypercharge would contribute to the chiral anomaly [15, 16]. In order to compensate
this, the second Higgs superfield with oppositely hypercharged fermion is needed. The
particle content of the MSSM is given in Table 1.1. For the gauge superfields we have
the field strengths

W a
Cα

= −1

4
(D̄D̄)e−2gsĜDαe

2gsĜ,

W i
Lα

= −1

4
(D̄D̄)e−2gwŴDαe

2gwŴ , (1.23)

WYα = −1

4
(D̄D̄)e−2gyB̂Dαe

2gyB̂ = −gy

4
D̄D̄DαB̂.

The superpotential of the MSSM is defined as

WMSSM = εij

(
Y IJ

e Ĥ i
1L̂

jIÊJ − Y IJ
u Ĥ i

2Q̂
jIÛJ + Y IJ

d Ĥ i
1Q̂

jID̂J − µĤ i
1Ĥ

j
2

)
(1.24)

where the 3 × 3 matrices Ye, Yu and Yd denote the Yukawa couplings and I, J are
generation indices that are summed over. Inserting the field strengths and the super-
potential together with the F -terms into Equation (1.19), we get the supersymmetric
part of the Lagrangian

LSUSY =

∫
d2θ

[( 1

16g2
s

W a
CαW

aα
C +

1

16g2
w

W a
LαW

aα
L

11



1. Introduction

fields group representation
superfield fermion field boson field SU(3)C SU(2)L U(1)Y

matter sector

Quarks Q̂I

(
uL,I

dL,I

) (
ũL,I

d̃L,I

)
3 2 1

3

ÛI uc
R,I ũ?

R,I 3̄ 1 −4
3

D̂I dc
R,I d̃?

R,I 3̄ 1 2
3

Leptons L̂I

(
νL,I

eL,I

) (
ν̃L,I

ẽL,I

)
1 2 −1

ÊI ec
R,I ẽ?

R,I 1 1 2

gauge sector

SU(3)C Ĝa λ̃a
G Ga

µ 8 1 0

SU(2)L Ŵ i λ̃i
W W i

µ 1 3 0

U(1)Y B̂ λ̃B Bµ 1 1 0

Higgs sector

Ĥ1

(
H̃1

1

H̃2
1

) (
H1

1

H2
1

)
1 2 −1

Ĥ2

(
H̃1

2

H̃2
2

) (
H1

2

H2
2

)
1 2 1

Table 1.1.: Superfields and particles of the MSSM in interaction basis. Superfields
are denoted by a hat, superpartners by a tilde.
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1.3. Supersymmetry

+
1

16g2
y

WY αWY
α +WMSSM

)
+ h.c.

]
+

∫
d2θd2θ̄

[
L̂†e2gwŴ+2gyB̂L̂+ Ê†e2gyB̂Ê (1.25)

+Q̂†e2gsĜ+2gwŴ+2gyB̂Q̂+ Û †e−2gsĜT +2gyB̂Û + D̂†e−2gsĜT +2gyB̂D̂

+Ĥ†
1e

2gwŴ+2gyB̂Ĥ1 + Ĥ†
2e

2gwŴ+2gyB̂Ĥ2

]
.

The soft supersymmetry breaking terms are Majorana mass terms for the gauginos,
mass terms for the scalar superpartners and the scalar Higgs, a bilinear term coupling
the two scalar Higgs fields and trilinear interaction terms for the scalar superpartners

Lsoft
Majorana = −1

2

(
M1

¯̃λBλ̃B +M2
¯̃λi

W λ̃
i
W +M3

¯̃λa
Gλ̃

a
G

)
+ h.c.,

Lsoft
scalarmass = −L̃?M2

L̃
L̃− Ẽ?M2

Ẽ
Ẽ − Q̃?M2

Q̃
Q̃− Ũ?M2

Ũ
Ũ − D̃?M2

D̃
D̃ (1.26)

−m2
1|H1|2 −m2

2|H2|2,
Lsoft

bilinear = m2
12(εijH

i
1H

j
2 + h.c.),

Lsoft
trilinear = εij

(
AIJ

u H
i
2Q̃

jIŨJ − AIJ
d H

i
1Q̃

jID̃J − AIJ
e H

i
1L̃

jIẼJ
)

+ h.c.

Most of the free parameters of the MSSM appear in the soft breaking sector. There
are the trilinear couplings Au, Ad, Ae which in general are complex 3×3 matrices, the
complex mass parameters ML̃, MẼ, MQ̃, MŨ , MD̃ which are hermitian 3×3 matrices,
the real Higgs mass parameters m1, m2, the gaugino mass parameters M1, M2, M3

and the bilinear Higgs coupling m12. As this huge parameter space is hard to handle,
we do the analysis in this work for ten benchmark points described in Section 1.3.6. In
order to protect the proton from decay and to get a suitable dark matter candidate,
we introduce an additional global symmetry called R-parity [17]. Each particle is
assigned the new quantum number R-parity PR = (−1)2s+3(B−L), where s, B and
L are spin, baryon number and lepton number, respectively. From this definition
we have PR = −1 for all superpartners and PR = 1 for all other particles, i.e. the
Standard Model particles and the Higgs fields. We demand that R-parity is conserved
multiplicatively. With this additional symmetry the proton decays are forbidden and
since each vertex must have an even number of supersymmetric particles, the lightest
supersymmetric particle (LSP) is stable.

Particle content

We now make the conversion from interaction eigenstates to mass eigenstates and give
the additional particle content of the MSSM. First, we consider the Higgs sector. We
reparameterize the Higgs fields as

H1 =

(
v1 + 1√

2
(φ0

1 − iχ0
1)

−φ−1

)
H2 =

(
φ+

2

v2 + 1√
2
(φ0

2 + iχ0
2)

)
(1.27)
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1. Introduction

with the vacuum expectation values v1, v2, real scalar fields φ0
i , χ

0
i and complex scalar

fields φ+
1 , φ−2 . Using this in the Higgs potential

VHiggs = |µ|2(|H1|2 + |H2|2) +
1

8
(g2

w + g2
y)(|H1|2 − |H2|2)2

+
1

2
g2

w|H
†
1H2|2 +m2

1|H1|2 +m2
2|H2|2 −m2

3(εijH
i
1H

j
2 + h.c.) (1.28)

we get the mass matrices by differentiating twice with respect to φ and χ. This way
we obtain four real 2× 2 matrices which can be diagonalized by the rotations(

G±

H±

)
=

(
cos β sin β
− sin β cos β

) (
φ±1
φ±2

)
,(

G0

A0

)
=

(
cos β sin β
− sin β cos β

) (
χ0

1

χ0
2

)
, (1.29)(

H0

h0

)
=

(
cosα sinα
− sinα cosα

) (
φ0

1

φ0
2

)
where tan β = v2

v1
with 0 < β < π

2
and tan 2α = tan 2β

m2
A+m2

Z

m2
A−m2

Z
with −π

2
< α < 0.

Analogously to the SM we get three would-be Goldstone bosons G±, G0 which become
the massive modes of the gauge bosons. The remaining physical Higgs bosons are two
neutral CP-even Higgs bosons h0 and H0, a CP-odd one A0 and two charged ones
H±. As in the SM, the gauge bosons are turned into the mass eigenstates W±, Z
and γ with the single vacuum expectation value replaced by v =

√
v2

1 + v2
2. The

mass eigenstates of the eight SU(3)C gauge bosons are identical to the interaction
eigenstates, giving eight massless gluons.
Next, we consider the supersymmetric partners – the Higgsinos and Gauginos. After
breaking of SU(2)L×U(1)Y , all particles with the same SU(3)C and U(1)Q quantum
numbers can mix. The neutral Higgsinos H̃0

1 , H̃0
2 and the neutral gauginos B̃, W̃ 0

combine to form four mass eigenstates called neutralinos χ̃0
i with i = 1, . . . , 4 which

are Majorana fermions. The charged Higgsinos H̃−
1 , H̃+

2 combine with the charged
gauginos W̃± to form two charged mass eigenstates called charginos χ̃±i with i = 1, 2
which are Dirac fermions. The gluinos, the gauginos of SU(3)C , do not mix with any
other particles since they are the only fermions interacting exclusively via the strong
interaction. They give eight Majorana fermions, the gluinos with mass mg̃ = |M3|.
Now, we come to the sleptons and squarks. In principle, any scalar particles with
the same electric charge and R-parity can mix. This would imply mixing of the six
up-type squarks ũL, c̃L, t̃L, ũR, c̃R, t̃R, the same for down-type squarks and selectrons
and mixing of the three sneutrinos. However, this general mixing would lead to
additional contributions to flavor changing neutral currents which are experimentally
constrained to be small. Also, the interactions mediating the soft supersymmetry
breaking are assumed to be flavor blind (e.g. gravity) and thus, we end up with 7
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1.3. Supersymmetry

nearly degenerate pairs of the first and second generation squarks and sleptons which
are (ẽL, µ̃L), (ẽR, µ̃R), (ũL, c̃L), (ũR, c̃R), (d̃L, s̃L), (d̃R, s̃R) and (ν̃e, ν̃µ). Due to the
large Yukawa and soft couplings of the third generation there is substantial mixing of
the left- and righthanded parts, giving mass eigenstates (τ̃1, τ̃2), (t̃1, t̃2) and (b̃1, b̃2).
The neutrinos are assumed to be massless in the MSSM and therefore, in the sneutrino
sector there are only left-handed fields and the interaction eigenstates are identical to
the mass eigenstates.

1.3.6. Snowmass points and slopes

In the unconstrained version of the MSSM with no particular SUSY breaking mech-
anism assumed, i.e. when all possible SUSY breaking terms are used, there are more
than one hundred (105) parameters in addition to the parameters of the SM. But
even the four- or five-dimensional parameter space of the three SUSY breaking mech-
anisms mentioned in Section 1.3.4 is too large to be scanned thoroughly and so, 10
specific points with attached model lines, the ’Snowmass Points and Slopes’, were de-
fined, each of them with different aim and motivation. See [18] and [19] for a detailed
discussion. The SPS points 1-5 (where SPS 1 consists of two points) are mSUGRA
points, SPS 6 is mSUGRA-like, points 7 and 8 are GMSB scenarios and the final point
9 is an AMSB scenario.

• SPS 1 is a ’typical’ mSUGRA SPS point and consists of two scenarios - SPS 1a
with intermediate tan β and SPS 1b with a relatively large value of tan β. The
points are defined as
SPS 1a: m0 = 100 GeV, m1/2 = 250 GeV, A0 = −100 GeV, tan β = 10.
SPS 1b: m0 = 200 GeV, m1/2 = 400 GeV, A0 = 0, tan β = 30.
with µ > 0 for both points. SPS 1a was found to be slightly outside the allowed
region to produce an acceptable amount of dark matter density [20, 21]. But
only a slight modification of the low energy spectrum is needed to compensate
this.

• The point SPS 2 lies in the ’focus point’ region with large m0 and small |µ|,
where the LSP χ̃0

1 has a sizable higgsino component, thus enhancing its an-
nihilation cross section. This avoids too large relic abundance. The scenario
produces relatively heavy squarks and sleptons, while neutralinos and charginos
are relatively light. The gluino is lighter than the squarks in this scenario, which
is defined by
SPS 2: m0 = 1450 GeV, m1/2 = 300 GeV, A0 = 0, tan β = 10 and µ > 0.

• SPS 3. In this scenario, the LSP and the next-to-lightest supersymmetric par-
ticle (NLSP) are nearly mass degenerate and there can be rapid coannihilation
between them. This can produce sufficiently low relic abundance. Another fea-
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ture is the very small slepton-neutralino mass difference.
SPS 3: m0 = 90 GeV, m1/2 = 400 GeV, A0 = 0, tan β = 10 and µ > 0.

• For SPS 4 we have a large value of tan β, which significantly enhances the
couplings of A and H to bb̄ and τ+τ− as well as the H±tb̄ couplings.
SPS 4: m0 = 400 GeV, m1/2 = 300 GeV, A0 = 0, tan β = 50 and µ > 0.

• SPS 5 is characterized by a large negative A0, which allows a relatively low value
for tan β while being consistent with the constraints from the Higgs search at
LEP.
SPS 5: m0 = 150 GeV, m1/2 = 300 GeV, A0 = −1000, tan β = 5 and µ > 0.

• At SPS 6, the bino mass parameter M1 is larger than in usual mSUGRA sce-
narios, reducing the mass difference between the lightest chargino and χ0

1, χ
0
2

and the sleptons.
SPS 6: m0 = 150 GeV, m1/2 = 300 GeV, A0 = 0, tan β = 10 and µ > 0
at GUT scale M1 = 480 GeV, M2 = M3 = 300 GeV.

• SPS 7 is a GMSB scenario with the gravitino (the superpartner of the gravi-
ton) as the LSP and the NLSP being the lighter stau. The interactions of the
gravitino are of gravitational strength and therefore it does not play a role in
collider physics.
SPS 7: Λ = 40 TeV, Mmess = 80 TeV, Nmess = 3, tan β = 15, µ > 0.

• For SPS 8 the lightest neutralino is the NLSP and the gravitino is the LSP.
SPS 8: Λ = 100 TeV, Mmess = 200 TeV, Nmess = 1, tan β = 15, µ > 0.

• SPS 9 is an AMSB scenario which has a very small neutralino-chargino mass
difference as a typical feature of AMSB scenarios. The LSP is a wino-like neu-
tralino and the NLSP is a nearly mass degenerate wino-like chargino.
SPS 9: m0 = 450 GeV, maux = 60 TeV, tan β = 10, µ > 0.

1.4. Feynman rules for Majorana fermions

Majorana fermions are of interest in the SM as possible facilitators for neutrinoless
double beta decay. The MSSM, however, contains Majorana fermions from the very
beginning. For example the gluinos and the neutralinos are Majorana fermions and as
we want to study the MSSM as a specific extension, some care is needed when applying
Feynman rules to these particles. Since the Majorana particles are self-conjugate, the
direction of fermion-number flow is not determined a priori, which results for example
in ambiguities in the external spinor assignments and the relative signs of coherent
amplitudes. In [22], a set of Majorana Feynman rules is proposed, where a continuous
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fermion flow is introduced and which uses only the usual fermion propagator together
with two sets of vertices. The relative signs of interfering diagrams are determined in
the same way as for Dirac fermions. The continuous fermion flow can be chosen with
arbitrary direction as long as this is done consistently for all diagrams, one just has to
use special ’reversed’ vertex functions and propagators for reversed Dirac lines. Since
the propagator depends on the relative orientation of fermion flow and momentum
flow, the reversed propagator is the usual one with the replacement p → −p, or
SR(p) = S(−p). In the reversed vertex functions, terms proportional to γµ pick up a
−1, while the terms proportional to 1, γ5, γµγ5 stay the same. As long as we choose
the directions of Majorana lines in such a way, that the Dirac lines keep their usual
directions, no differences occur.

1.5. Finite-width effects and gauge invariance

The NWA provides a way to simplify the calculation of processes with unstable inter-
mediate states and in the following, we discuss how the width of an unstable particle
enters the calculation and to what extend gauge invariance is concerned. The width
of an unstable particle enters its propagator – and this way the Feynman amplitude –
through the resummation of self-energy contributions. Consider the resummation of
one-particle-irreducible (1PI) self-energy contributions to the scalar propagator shown
in Figure 1.1, where 1PI means diagrams which can not be cut into two by just re-
moving a single line.

�
= + + + ...Π Π Π

Figure 1.1.: Dyson resummation of 1PI self energy contributions.

Let DΦ(p2) and D0
Φ(p2) denote the resummed and unresummed propagator respec-

tively. With iΠΦ(p2) denoting the 1PI self-energy contributions, we get

DΦ(p2) = D0
Φ(p2) +D0

Φ(p2)iΠΦ(p2)D0
Φ(p2) + · · ·

= D0
Φ(p2)

∞∑
n=0

(
iΠΦ(p2)D0

Φ(p2)
)n
. (1.30)

This implies for the inverse propagator the relation

DΦ(p2)
−1

=

[
D0

Φ(p2)
∞∑

n=0

(
iΠΦ(p2)D0

Φ(p2)
)n

]−1

(1.31)
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=

[
∞∑

n=0

(
iΠΦ(p2)D0

Φ(p2)
)n

]−1

D0
Φ(p2)

−1
(1.32)

=
(
1− iΠΦ(p2)D0

Φ(p2)
)
D0

Φ(p2)
−1

(1.33)

= D0
Φ(p2)

−1 − iΠΦ(p2). (1.34)

This so-called Dyson equation is solved by

DΦ(p2) =
D0

Φ(p2)

1− iΠΦ(p2)D0
Φ(p2)

. (1.35)

For scalar particles, the resummed propagator is given by

DΦ(p2) =
i

p2 −m2
0 + ΠΦ(p2)

(1.36)

and with the physical mass defined as the real part of the pole of the propagator
m2 = m2

0 − ReΠΦ(m2) and the width Γ = 1
m

ImΠΦ(m2), the propagator reads

DΦ(p2) =
i

p2 −m2
0 + Π(p2)

≈ i

p2 −m2 + imΓ
. (1.37)

For massive vector bosons things are a bit more complicated due to the Lorentz tensor
structure of the propagator and the self energy. With the decomposition of Πµν

W into
a transverse and a longitudinal part

Πµν
W (q2) = ΠT

W (q2)(gµν − qµqν

q2
) + ΠL

W (q2)
qµqν

q2
(1.38)

the resulting propagator in unitary gauge is given by (see [23])

DW (q2) =
−i

q2 −m2 − ΠT
W (q2)

[
gµν − qµqν

q2

q2 + ΠL
W (q2)− ΠT

W (q2)

m2 + ΠL
W (q2)

]
. (1.39)

This resummation of self energies takes into account a specific part of a Feynman
diagram to all orders in perturbation theory, while other loop contributions are ig-
nored. This mixing of different orders in the perturbation expansion threatens to
violate gauge invariance. Another problem is, that the self energy contribution does
not develop an imaginary part for q2 < 0, i.e. the decay threshold for the unstable
particle. As a simple solution, one could introduce a step function mΓ → mΓΘ(q2),
but this was found to make things even worse [23]. However, in our analyses we always
have q2 ≥ 0 and therefore we concentrate on gauge invariance issues.
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There are several schemes for introducing finite-width effects in tree-level calcula-
tions and a few of them are discussed now. In the overall factor scheme [24] the
amplitude without finite-width effects, which is gauge invariant, is multiplied by

p2 −m2

p2 −m2 + imΓ

for each resonant propagator. This generates the Breit-Wigner propagators for the
resonant intermediate states while gauge invariance is preserved. However, the overall
factor has no physical sense or meaning for the non-resonant diagrams. The complex
mass scheme [25] is a more sophisticated version of the simple fixed width scheme
[26] and it ensures full gauge invariance. The Feynman rules are changed by the
replacement m2 → m2 − imΓ everywhere the mass m appears. For the W and Z
bosons this implies the use of a complex Weinberg angle

cos2 ΘW =
M2

W − iMW ΓW

M2
Z − iMZΓZ

.

This scheme is manifestly gauge invariant again but the physical content of the com-
plex Feynman rules is not clear. Loop schemes are another possibility to ensure gauge
invariance by including subsets or even all diagrams up to a given number of loops
and using strictly resummed propagators. The fermion loop scheme [27] proposes to
include all fermionic one-loop diagrams and has been successfully applied to 4 fermion
final states, but fails for a six fermion final state [28].

1.6. Monte Carlo integration

In order to check our off-shell calculations, we use automatically generated matrix
elements and for their integration we implement the Monte Carlo method (see [29]
for details). The general idea of Monte Carlo integration is to generate a sufficiently
large number N of random points in the integration region V and then approximate
the integral of a function f over this region by∫

V

fdV = V 〈f〉 =
V

N

N∑
i=1

f(xi) (1.40)

where 〈f〉 is the arithmetic mean of f over the N sample points. An estimate for the
result with the one-standard-deviation error is∫

V

fdV = V 〈f〉 ± V

√
〈f 2〉 − 〈f〉2

N
. (1.41)

Note that the Monte Carlo result is not generally distributed as a Gaussian and there-
fore the estimate can underestimate the real error. If the integration region V is too
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complex to be used for the random number generation directly, one could choose a
larger region W ⊆ V and set f to zero for all x in W \ V . These zero-values increase
the error estimate (1.41) and therefore W should be chosen as close to V as possible.
If the integrand varies very strongly in the integration region, a change of the inte-
gration variables can be very useful. If, for example, we want to integrate f(x) = e5x

on the interval [−5, 5], the Monte Carlo integration works, but as the integrand be-
comes very small for large negative x-values, a lot of the sample points contribute
almost nothing to

∑
f(xi) and

∑
f 2(xi). A better way to calculate the integral is to

substitute y = 1
5
e5x with dy = e5xdx. Then we have∫ x1

x0

f(x)dx =

∫ y1

y0

dy

with y0 = 1
5
e5x0 and y1 = 1

5
e5x1 . What is left then is to Monte Carlo integrate a

constant function f̃(y) ≡ 1, which is exact after the first sampled point. Of course
this is not possible in general, since the substitution only works because we already
know the antiderivative of f(x) and it can be inverted. But it is a good idea to
extract all analytically integrable dominant factors out of the integrand and make
an accordant substitution to make the remaining integrand as close as possible to a
constant function and this way speed up the Monte Carlo integration. This technique
is known as ’reduction of variance’. More details on the method used here are in
Section 3.6.
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Analytical NWA proper-
ties 2
In this chapter we examine general properties of the NWA, in particular its behavior in
the limit of vanishing width of the intermediate particle and ways of formally obtaining
the NWA formula. We then examine the impact of spin/polarization correlation effects
and prove that the relative NWA error is of O(Γ/m), which is often assumed but to
the best of our knowledge no proof has been given in the literature. First, we develop
the factorization of the phasespace and of the matrix element in order to obtain the
NWA factorization.

2.1. Phasespace factorization

We want to factorize an n-particle phasespace into an m-particle phasespace which
will later be the production part of the process and an (n−m+1)-particle phasespace
which will become the decay part. For this purpose, an additional variable q is intro-
duced, which will be interpreted as the momentum of an intermediate particle. The
phasespace can be factorized exactly, i.e. there are no approximations or assumptions
necessary. To obtain the factorized form we insert an additional integral over d4q and
an appropriate δ(4) factor compensating this integration. The d3q part of the integra-
tion will then be reinterpreted as additional particle in the production part, the δ(4)

factor will give energy-momentum conservation in the decay part and we are left with
the production and decay phasespaces with an additional q2-integration. The general
n-particle phasespace with P denoting the momentum of the decaying particle or the
sum of the momenta of the scattering particles is then factorized as follows:

dΦn = (2π)4δ(4)(P −
n∑

i=1

pi)
n∏

i=1

d3pi

(2π)32Ei

(2.1)

= (2π)4δ(4)(P −
m−1∑
i=1

pi − q)
m−1∏
i=1

d3pi

(2π)32Ei

× d4q × (2.2)

δ(4)(q −
n∑

i=m

pi)
n∏

i=m

d3pi

(2π)32Ei

(2.3)
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2. Analytical NWA properties

= (2π)4δ(4)(P −
m−1∑
i=1

pi − q)
d3q

(2π)32Eq

m−1∏
i=1

d3pi

(2π)32Ei

× 2Eqdq
0

2π
× (2.4)

(2π)4δ(4)(q −
n∑

i=m

pi)
n∏

i=m

d3pi

(2π)32Ei

(2.5)

= (2π)4δ(4)(P −
m−1∑
i=1

pi − q)
d3q

(2π)32Eq

m−1∏
i=1

d3pi

(2π)32Ei

× dq2

2π
× (2.6)

(2π)4δ(4)(q −
n∑

i=m

pi)
n∏

i=m

d3pi

(2π)32Ei

(2.7)

= dΦm
dq2

2π
dΦn−m+1. (2.8)

As we need the factorization of a 3-particle phasespace for the 1 → 3 process shown

�P,M q,m,Γ

p1,m1

p2,m2

p3,m3

Figure 2.1.: Kinematics of the 1 → 3 decay.

in Figure 2.1, we give the explicit form here

dΦ3 = (2π)4δ(4)(P −
3∑

i=1

pi)
3∏

i=1

d3pi

(2π)32Ei

= (2π)4δ(4)(P − q − p1)
d3p1

(2π)32E1

d3q

(2π)32Eq

× dq2

2π
×

(2π)4δ(4)(q − p2 − p3)
d3p2

(2π)32E2

d3p3

(2π)32E3

= dΦp ×
dq2

2π
× dΦd

where dΦp and dΦd are two-particle phasespaces and the intermediate particle can be
treated as on-shell with squared mass q2. For this process, the explicit forms of dΦp

in the restframe of the parent particle and dΦd in the restframe of the intermediate
particle are (see [30], where a different convention concerning the (2π)4 factors is used)

dΦp = (2π)4δ(4)(P − q − p1)
d3p1

(2π)32E1

d3q

(2π)32Eq
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2.2. Factorization of the Feynman amplitude

=
1

16π2

|~p1|
M

dΩp (2.9)

and

dΦd = (2π)4δ(4)(q − p2 − p3)
d3p2

(2π)32E2

d3p3

(2π)32E3

=
1

16π2

|~p2|√
q2
dΩd (2.10)

with

|~p1| =

√(
M2 − (

√
q2 +m1)2

)(
M2 − (

√
q2 −m1)2

)
2M

, (2.11)

|~p2| =

√(
q2 − (m2 +m3)2

)(
q2 − (m2 −m3)2

)
2
√
q2

. (2.12)

2.2. Factorization of the Feynman amplitude

Depending on the type of the intermediate particle, the amplitude for a general process
consisting of its production and subsequent decay has one of the following forms in
Rξ gauge

MS
full = Mp

i

q2 −m2 + imΓ
Md,

MV
full = Mµ

p

i(−gµν + (1− ξ) qµqν

q2−ξm2 )

q2 −m2 + imΓ
Mν

d, (2.13)

MF
full = Mp

i(/q +m)

q2 −m2 + imΓ
Md

for scalars, vector bosons and fermions as intermediate particle respectively, where
Mp denotes the production-part amplitude and Md the decay-part amplitude. For
scalar intermediate particles the squared amplitude is already factorized:

|Mfull|2 = |Mp|2
1

(q2 −m2)2 + (mΓ)2
|Md|2 (2.14)

with no need of a spin or polarization sum. In order to get an analog factorization
for fermions and vector bosons, the propagators are rewritten as

i(−gµν + (1− ξ) qµqν

q2−ξm2 )

q2 −m2 + imΓ
=

∑
λ

ε?λ
µ (q)

i

q2 −m2 + imΓ
ελν(q), (2.15)
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2. Analytical NWA properties

i(/q +m)

q2 −m2 + imΓ
=

∑
s

us(q)
i

q2 −m2 + imΓ
ūs(q). (2.16)

Using this in the squared amplitudes and suppressing the explicit notion of the q-
dependence of the respective spinors and polarization vectors, we get

|MV
full|2 = |

∑
λ

Mµ
pε

?λ
µ

i

q2 −m2 + imΓ
ελνMν

d|2 (2.17)

=
∑
λ1,λ2

(
Mµ

pε
?λ1
µ ελ1

ν Mν
d

) 1

(q2 −m2)2 +m2Γ2

(
Mρ

pε
?λ2
ρ ελ2

σ Mσ
d

)†
(2.18)

=
∑
λ1,λ2

Mµ
pε

?λ1
µ ελ1

ν Mν
d

1

(q2 −m2)2 +m2Γ2
Mσ

d
†ε?λ2

σ ελ2
ρ Mρ

p
† (2.19)

→ 1

3

∑
λ1,λ2

Mµ
pε

?λ1
µ ελ2

ν Mν
d

1

(q2 −m2)2 +m2Γ2
Mσ

d
†ε?λ2

σ ελ1
ρ Mρ

p
† (2.20)

=
∑
λ1

|Mµ
pε

?λ1
µ |2 1

(q2 −m2)2 +m2Γ2

1

3

∑
λ2

|ελ2
ν Mν

d|2 (2.21)

and

|MF
full|2 = |

∑
s

Mpus
i

q2 −m2 + imΓ
ūsMd|2 (2.22)

=
∑
s1,s2

(Mpus1ūs1Md)
1

(q2 −m2)2 +m2Γ2
(Mpus2ūs2Md)

† (2.23)

=
∑
s1,s2

Mpus1ūs1Md
1

(q2 −m2)2 +m2Γ2
M†

dū
†
s2
u†s2
M†

p (2.24)

→ 1

2

∑
s1,s2

Mpus1ūs2Md
1

(q2 −m2)2 +m2Γ2
M†

dū
†
s2
u†s1
M†

p (2.25)

=
∑
s1

|Mpus1|2
1

(q2 −m2)2 +m2Γ2

1

2

∑
s2

|ūs2Md|2. (2.26)

In lines (2.20) and (2.25), we have rearranged the spin/polarization sums as follows. In
the full amplitude the unstable particle, once it is produced with a certain polarization,
also decays with this polarization. We drop this correlation and instead treat both
parts as independent of each other and average over the polarization in the decay
part to fully factorize the process. We will later see that for total decay rates this
rearrangement is exact for on-shell intermediate states. However, generally there are
correlation effects due to the rearrangement.
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2.3. A formal derivation

2.3. A formal derivation

We now want to gain insight into the approximations that are necessary to obtain the
NWA for unstable particles with finite Γ and for that, we give a formal way to obtain
the factorized NWA cross section. It is not meant to be a rigorous derivation in the
mathematical sense. To factorize the cross section we use the phasespace-factorization

dΦ = dΦp
dq2

2π
dΦd

where q2 (’virtuality’) is treated like an intermediate mass, i.e. it gives the ’off-
shellness’ of the intermediate particle. dΦp and dΦd are the phasespaces of the pro-
duction and decay processes. With the factorization of the spin/polarization-summed
and averaged Feynman-amplitude

∑
|M|2∑

|M|2 = (
∑

p

|Mp|2)
1

(q2 −m2)2 + (mΓ)2
(
∑

d

|Md|2)

and thus neglecting correlation effects, the formula for the overall calculation becomes

σ =

∫
dq2

2π
(

∫
dΦp

∑
p

|Mp|2)
1

(q2 −m2)2 + (mΓ)2
(

∫
dΦd

∑
d

|Md|2). (2.27)

Now the intermediate particle is set on-shell, i.e. instead of integrating the full inte-
grand, q2 is fixed to m2 in

∫
dΦp

∑̄
p|Mp|2 and

∫
dΦd

∑̄
d|Md|2. For this step to make

sense we would need the limit Γ → 0 (see Section 2.4). However, we do not want to
apply this limit to the whole formula, but rather assume that Γ is small but finite
and the production and decay cross sections vary only weakly with q2 in the small
resonance region [(m− Γ)2, (m+ Γ)2]. For Γ → 0 this is exact and for sufficiently
small Γ we accept it as an approximation. What is left then is

σNWA = σp ×
∫ q2

max

q2
min

dq2

2π

2m

(q2 −m2)2 + (mΓ)2
× Γd (2.28)

= σp ×
∫ q2

max−m2

q2
min−m2

dx

2π

2m

x2 + (mΓ)2
× Γd (2.29)

' σp ×
∫ ∞

−∞

dx

2π

2m

x2 + (mΓ)2
× Γd (2.30)

= σp × 2

∫ ∞

0

dx

2π

2m

x2 + (mΓ)2
× Γd (2.31)

= σp ×
Γd

Γ
=: σp × BR (2.32)

where σp is the production cross section and Γd the partial width of the decay part.
With the assumption q2

max −m2 � mΓ and m2 − q2
min � mΓ the integration bounds
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2. Analytical NWA properties

can be shifted to±∞ and the integration can be carried out with the simple result 1/Γ.
For a particle of mass M decaying into a particle of mass m1 and the unstable particle
of mass m, which then further decays into two particles of masses m2, m3 we have
q2
min = (m2 +m3)

2 and q2
max = (M −m1)

2. The assumptions (M −m1)
2 −m2 � mΓ

and m2 − (m2 + m3)
2 � mΓ are fulfilled for most of the SM processes – e.g. the

massive gauge bosons which often occur as resonant intermediate states are light
compared to the top quark and have a small ratio Γ/m of less than 3%. Additionally,
the final state fermions are very light in comparison to the heavy, promptly decaying
particles in the SM and there are only the massless photon and gluon as stable final
state vector bosons. Consider for example the top decay t→ bW+ → bud̄ where from
[30] mt = 174 GeV, mW = 80.4 GeV, ΓW/mW = 0.0266, mb = 4.20 GeV and the up-

and down-quark masses are a few MeV. We then have
(mt−mb)

2−m2
W

mW ΓW
≈ 130 � 1 and

m2
W−(mu+md)2

mW ΓW
≈ mW

ΓW
≈ 37 � 1.

Some of the q2-values in the integration are unphysical, e.g. q2 > P 2, but for these
values the integrand is sufficiently small, making the effect negligible unless parts of
the resonance around q2 = m2 are kinematically cut out. The resulting formula is
production cross section times branching ratio (BR), the latter being the quotient of
partial decay width and total decay width of the intermediate particle. We can now
summarize the assumptions and approximations being made in the NWA. First, we
drop spin/polarization correlations and then the off-shell effects in the amplitudes.
These two steps could be performed in opposite order, i.e. one could first neglect the
off-shell effects due to the matrix elements and then drop spin/polarization correla-
tions. As will be shown later, the last step of dropping the on-shell correlations1 would
then be exact for decay processes. The correlation effects in this case are implicitly
dropped in the first step. We then assume that the intermediate particle’s mass is
sufficiently far away from the kinematical bounds to be able to shift the integration
bounds to infinity without producing a large error. If m approaches the kinematical
bounds, we find vanishing phasespace factors in the NWA calculation and consider-
able parts of the Breit-Wigner peak shifting out of the integration region, which is
not incorporated in the NWA formula.

2.4. NWA in the limit Γ → 0

In this section we use the representation of the Dirac delta function as limit of the
Cauchy distribution

δ(x) = lim
a→0

1

π

a

a2 + x2
(2.33)

1When referring to spin correlation or just correlation effects, we always mean spin/polarization
correlation effects.
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2.5. Correlation effects

to argue that the NWA formula becomes – up to spin correlation effects – exact as
we take the limit Γ → 0, which suggests that it is a good approximation for small Γ.
Consider the formula for the total cross section and the NWA formula

σofs =

∫
dq2

2π
dΦp(q

2)dΦd(q
2)

|M′
f (q

2)|2

(q2 −m2)2 +m2Γ2
, (2.34)

σNWA = σp(m
2)× 1

Γ
× Γd(m

2) (2.35)

=

∫
dΦp(m

2)|Mp(m
2)|2 × 1

Γ
× 1

2m

∫
dΦd(m

2)|Md(m
2)|2 (2.36)

where we denote the full matrix element up to the denominator of the propagator
by M′

f and the matrix elements for the production and decay part by Mp and Md,
respectively. In the limit Γ → 0 with the factorization of phasespace and matrix
element developed in the previous sections, we get

lim
Γ→0

σofs

σNWA

= lim
Γ→0

Γ

σp(m2)Γd(m2)

∫
dq2

2π
dΦp(q

2)dΦd(q
2)

|M′
f (q

2)|2

(q2 −m2)2 +m2Γ2
(2.37)

=

∫
dq2dΦp(q

2)dΦd(q
2)

1

2m

|M′
f (q

2)|2

σp(m2)Γd(m2)
× (2.38)

lim
Γ→0

1

π

mΓ

(q2 −m2)2 +m2Γ2
(2.39)

=

∫
dq2dΦp(q

2)dΦd(q
2)

|M′
f (q

2)|2

σp(m2)2mΓd(m2)
δ(q2 −m2) (2.40)

=

∫
dΦp(m

2)dΦd(m
2)

|M′
f (m

2)|2

σp(m2)2mΓd(m2)
(2.41)

=

∫
(dΦp(m

2)|Mp(m
2)|2) (dΦd(m

2)|Md(m
2)|2)

σp(m2)2mΓd(m2)
(2.42)

= 1. (2.43)

This way, we see that the NWA result is asymptotically equal to the off-shell result
(σNWA ' σofs), which is obtained very fast, but contains no information about the
NWA performance for finite Γ.

2.5. Correlation effects

In this section we argue that there are no spin/polarization correlation effects when the
intermediate particle is assumed to be on the mass-shell. We numerically check this
result in Section 3.2.4. This absence of correlation effects when the unstable particle
is produced on-shell is also needed in the next section where we prove that the NWA
error is of O(Γ/m). As seen before, the factorization of the squared amplitude is
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2. Analytical NWA properties

exact for scalar intermediate particles and here we consider vector bosons. A similar
argument can be used for unstable fermionic particles. For an arbitrary decay process
where we produce a vector boson, which then decays, the full amplitude is given by

Mf = Mµ
p

−gµν + (1− ξ) qµqν

q2−ξm2

q2 −m2 + imΓ
Mν

d. (2.44)

We now consider the case where the intermediate particle is on-shell, i.e. q2 = m2.
Then we have the squared matrix element with the denominator of the propagator
suppressed given by

|M′
f |2 = |Mµ

p(−gµν +
qµqν
m2

)Mν
d|2 (2.45)

which should be compared to the squared NWA matrix element

|MNWA|2 =
∑
λ1

|Mµ
pε

λ1
µ |2 ×

1

3

∑
λ2

|Mν
dε

λ2
ν |2 (2.46)

=
[
Mµ

p(−gµν +
qµqν
m2

)Mν
p
?
]
× 1

3

[
Mµ

d(−gµν +
qµqν
m2

)Mν
d
?
]
. (2.47)

In order to get the total decay rate for a given process, these matrix elements have to
be integrated over the full phasespace. In the following we consider the 1 → 3 decay
shown in Figure 2.1. The result can be generalized by factorizing the phasespace
recursively as explained in Section 2.1. We perform the integration in the so-called
Gottfried-Jackson frame where ~p2+~p3 = 0 implying q = (m,~0) (see [31]). In this frame
we have P = (P 0, ~p1), p1 = (p0

1, ~p1) and p2 = (p0
2, ~p2), p3 = (p0

3,−~p2) and the only free
variable to integrate over is the cosine of the angle between ~p1 and ~p2 denoted by cos θ.
Since the matrix elements Mµ

pεµ and Mν
dεν are Lorentz invariant, the production and

decay amplitudes are Lorentz vectors and because there are no vectors but ~p1 and ~p2

in the production and decay parts respectively, the 3-vector parts of Mp = (M0
p,
~Mp)

and Md = (M0
d,
~Md) have to be proportional to the respective ~p1 and ~p2 as well. In

particular, this means that the angle between ~Mp and ~Md also is θ. In the restframe
q = (m,~0), we have

−gµν +
qµqν
m2

=


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (2.48)

and thus, with σ̃ denoting the on-shell cross section with correlations kept, we get

σNWA − σ̃ ∝
∫ 1

0

d(cos θ)
(
|MNWA|2 − |M′

f |2
)

(2.49)

=

∫ 1

0

d(cos θ)
[
Mµ

p(−gµν +
qµqν
m2

)Mν
p

]
(2.50)
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m)

×1

3

[
Mµ

d(−gµν +
qµqν
m2

)Mν
d

]
(2.51)

−
∫ 1

0

d(cos θ)|Mµ
p(−gµν +

qµqν
m2

)Mν
d|2 (2.52)

=

∫ 1

0

d(cos θ)
(
( ~Mp · ~Mp)

1

3
( ~Md · ~Md)− ( ~Mp · ~Md)

2
)

(2.53)

=

∫ 1

0

d(cos θ)| ~Mp|2| ~Md|2
(

1

3
− cos2 θ

)
(2.54)

= 0 (2.55)

implying that there are no on-shell correlation effects for the 1 → 3 decay.
To generalize this result to a broader class of processes we consider the case where
the parent particle with momentum P is produced by an arbitrary process and the
daughter particles with momenta pi may decay further into particles pij with j =
1, . . . , nj. We now use the phasespace factorization

dΦn = dΦn−n3+1
dp2

3

2π
dΦn3 (2.56)

= dΦn−m

3∏
i=1

dp2
i

2π
dΦni

with m =
3∑

i=1

(ni − 1) (2.57)

= dΦn−m−2
dP 2

2π
dΦ3(p1, p2, p3)

3∏
i=1

dp2
i

2π
dΦni

(2.58)

and integrate everything but dΦ3(p1, p2, p3). We can then again go to the frame where
~p2 + ~p3 = 0 and as the integrand does not depend on other variables except of P , p1,
p2, p3 anymore, again apply the above argument.

2.6. Proof that the NWA error is of O( Γ
m

)

Now, we prove that the relative error R = (σofs−σNWA)/σNWA is of O( Γ
m

). As seen in
Section 2.4, the NWA becomes exact with Γ → 0 and now we want to prove that the
first off-shell corrections are ∝ Γ/m. A priori this is not clear. The error as function
of Γ/m could behave like (Γ/m)κ with 0 < κ < 1 and then it would not be possible
to make a series expansion around Γ/m = 0. In particular, the decay calculation
seems not to make any sense if we set Γ = 0 because in the NWA calculation, the
on-shell-produced intermediate particle would never decay if its width were zero. For
the proof we need additional conditions as assuming a small ratio Γ/m seems not to
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2. Analytical NWA properties

be enough. This way we also get an idea where the NWA should be applicable and
where it may cause problems. The off-shell cross section can be written as

σofs =

∫ b2

a2

dq2

2π

σ̃(q2)

(q2 −m2)2 +m2Γ2
(2.59)

where a2 and b2 are the kinematical limits for the process and σ̃(q2) denotes the
integrand up to the squared denominator of the propagator. That is, σ̃ is the squared
product of production matrix element, the numerator of the propagator and the decay
matrix element, integrated over dΦp and dΦd including prefactors like 1

2M
. The NWA

cross section is given by

σNWA = σp(m
2)

1

Γ
Γd(m

2) (2.60)

where σp and Γd are the production cross section and partial decay width, respectively.
Now we use the integral∫ b2

a2

dq2 1

(q2 −m2)2 +m2Γ2
=

1

mΓ

(
arctan

m2 − a2

mΓ
− arctan

m2 − b2

mΓ

)
(2.61)

to rewrite

σofs − σNWA =

∫ b2

a2

dq2

2π

σ̃(q2)

(q2 −m2)2 +m2Γ2
− σp(m

2)Γd(m
2)

Γ
(2.62)

=

∫ b2

a2

dq2

2π

σ̃(q2)− σp(m
2)2mΓd(m

2)

(q2 −m2)2 +m2Γ2
− α

σp(m
2)Γd(m

2)

Γ
(2.63)

=

∫ b2

a2

dq2

2π

σ̃(q2)− σ̃(m2)

(q2 −m2)2 +m2Γ2
− α

σp(m
2)Γd(m

2)

Γ
(2.64)

with

α = 1− 2mΓ

∫ b2

a2

dq2

2π

1

(q2 −m2)2 +m2Γ2
. (2.65)

In (2.64) we have used the on-shell factorization of the cross section. For the relative
deviation R we get

|R| =

∣∣∣∣σofs − σNWA

σNWA

∣∣∣∣ (2.66)

=
1

σNWA

∣∣∣∣ ∫ b2

a2

dq2

2π

σ̃(q2)− σ̃(m2)

(q2 −m2)2 +m2Γ2
− α

σp(m
2)Γd(m

2)

Γ

∣∣∣∣ (2.67)

=

∣∣∣∣ ∫ b2

a2

dq2

2π

σ̃(q2)− σ̃(m2)

σp(m2)Γd(m2)

Γ

(q2 −m2)2 +m2Γ2
− α

∣∣∣∣ (2.68)

≤
∣∣∣∣ ∫ b2

a2

dq2

2π

σ̃(q2)− σ̃(m2)

σp(m2)Γd(m2)

Γ

(q2 −m2)2 +m2Γ2

∣∣∣∣ + |α|. (2.69)
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2.6. Proof that the NWA error is of O( Γ
m)

Assume now, that σ̃(q2) is twice continuously differentiable in the allowed phasespace.
Furthermore, assume that σp(q

2)Γd(q
2) = 0 ⇔ q2 ∈ {a2, b2}, i.e. the product of

production cross section and decay width vanishes as we approach the kinematical
limits but is non-zero in the allowed phasespace. Then, the function

gm(q2) :=
σ̃(q2)

σp(m2)Γd(m2)
(2.70)

is twice continuously differentiable with respect to q2 for all q2 ∈ [a2, b2] and m2 in
(a2, b2). As we focus on resonant decays here, m2 ∈ (a2, b2) is assumed in the following.
By second order Taylor expansion we then get

gm(q2) = gm(m2) + g′m(m2) · (q2 −m2) +
1

2
g′′m(κ2) · (q2 −m2)2 (2.71)

with κ2 ∈ [a2, b2]. Note that κ2 depends on q2. The functions g′m and g′′m as continuous
functions on the compact set [a2, b2] are then bounded and we can find L1 > 0 and
L2 > 0 with

|g′m(q2)| ≤ L1 and |g′′m(q2)| ≤ L2 ∀q2 ∈ [a2, b2]. (2.72)

We can now further evaluate |R| to obtain

|R| ≤
∣∣∣∣ ∫ b2

a2

dq2

2π

σ̃(q2)− σ̃(m2)

σp(m2)Γd(m2)

Γ

(q2 −m2)2 +m2Γ2

∣∣∣∣ + |α| (2.73)

=

∣∣∣∣ ∫ b2

a2

dq2

2π

(
gm(q2)− gm(m2)

) Γ

(q2 −m2)2 +m2Γ2

∣∣∣∣ + |α| (2.74)

=
Γ

2π

∣∣∣∣ ∫ b2

a2

dq2 g
′
m(m2) · (q2 −m2) + 1

2
g′′m(κ2) · (q2 −m2)2

(q2 −m2)2 +m2Γ2

∣∣∣∣ + |α| (2.75)

≤ ΓL1

2π

∣∣∣∣ ∫ b2

a2

dq2 q2 −m2

(q2 −m2)2 +m2Γ2

∣∣∣∣ (2.76)

+
ΓL2

4π

∣∣∣∣ ∫ b2

a2

dq2 (q2 −m2)2

(q2 −m2)2 +m2Γ2

∣∣∣∣ + |α| (2.77)

=
ΓL1

4π

∣∣∣∣ log
(b2 −m2)2 +m2Γ2

(a2 −m2)2 +m2Γ2

∣∣∣∣ + |α| (2.78)

+
ΓL2

4π

(
b2 +mΓ arctan

m2 − b2

mΓ
− a2 −mΓ arctan

m2 − a2

mΓ

)
. (2.79)

Now we want to develop the log factor for small Γ/m. Using the Taylor expansion for
x around x0 = 0 which is given by

log
k + x2

l + x2
= log

k

l
+ (

1

k
− 1

l
)x2 +O(x3) (2.80)
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2. Analytical NWA properties

we get

log
(b2 −m2)2 +m2Γ2

(a2 −m2)2 +m2Γ2
= log

(b2 −m2)2/m4 + (Γ/m)2

(m2 − a2)2/m4 + (Γ/m)2
(2.81)

= log
(b2 −m2)2

(a2 −m2)2
+O

(
(Γ/m)2

)
. (2.82)

Using this expansion in (2.78) we find that

R ≤ Γ

m

mL1

4π

∣∣∣∣ log
(b2 −m2)2

(a2 −m2)2

∣∣∣∣ +O
(
(Γ/m)2

)
+ |α| (2.83)

+
ΓL2

4π

(
b2 +mΓ arctan

m2 − b2

mΓ
− a2 −mΓ arctan

m2 − a2

mΓ

)
. (2.84)

With the Taylor expansion of arctan k
x

for small positive x

arctan
k

x
= sign(k)

π

2
− x

k
+O(x3) (2.85)

we obtain

arctan
m2 − b2

mΓ
= arctan

1− b2/m2

Γ/m
(2.86)

= sign(m2 − b2)
π

2
− mΓ

m2 − b2
+O

(
(Γ/m)3

)
(2.87)

and an analog expansion for arctan m2−a2

mΓ
. This way we get

R ≤ Γ

m

mL1

4π

∣∣∣∣ log
(b2 −m2)2

(m2 − a2)2

∣∣∣∣ +O
(
(Γ/m)2

)
+ |α| (2.88)

+
Γ

m

mL2

4π

(
b2 − a2 − πmΓ

)
+O

(
(Γ/m)3

)
. (2.89)

Now we come back to calculating α. We have

α = 1− 2mΓ

∫ b2

a2

dq2

2π

1

(q2 −m2)2 +m2Γ2
(2.90)

= 1− 2mΓ
1

2πmΓ

(
arctan

m2 − a2

mΓ
− arctan

m2 − a2

mΓ

)
(2.91)

= 1− 1

π

(
arctan

m2 − a2

mΓ
− arctan

m2 − b2

mΓ

)
. (2.92)

Using the expansion of (2.87) and the analog expansion for arctan m2−a2

mΓ
in (2.92) and

using m2 ∈ (a2, b2) for a resonant decay, we get

α = 1− 1

π

(
π

2
+

Γ

m

1

1− b2/m2
+
π

2
− Γ

m

1

1− a2/m2
+O

(
(Γ/m)3

))
(2.93)
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m)

=
Γ

m

m2(a2 − b2)

π(m2 − a2)(m2 − b2)
+O

(
(Γ/m)3

)
. (2.94)

The final result for R becomes

|R| ≤ Γ

m

mL1

4π

∣∣∣∣ log
(b2 −m2)2

(a2 −m2)2

∣∣∣∣ +
Γ

m

mL2

4π

(
b2 − a2

)
(2.95)

+
Γ

m

m2(a2 − b2)

π(m2 − a2)(m2 − b2)
+O

(
(Γ/m)2

)
(2.96)

with the Γ-independent constants L1, L2 with mass dimension −1 and −3, respec-
tively. We have shown that R is indeed of O(Γ/m) for m in the interior of the
kinematically allowed region. However, R of O(Γ/m) just means that for Γ → 0,
the limit of R/(Γ/m) is finite. This is a stronger result than σNWA ' σofs which we
obtained in Section 2.4, but it does not prove that the prefactor of Γ/m is small – in
particular, it does not mean R ≈ Γ/m. The right-hand side may become arbitrarily
large as m2 approaches the kinematical limits which is not only due to the obvious
prefactors of Γ/m but also due to L1, L2 potentially becoming very large as m2 ap-
proaches a2 or b2. These large factors do not depend on Γ and therefore do not affect
the asymptotic behavior. However, for practical calculations we would like the factor
multiplying Γ/m to be small. While ’small’ in this case is not well defined, a necessary
condition is that m is sufficiently far away from the kinematical bounds.
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NWA in the MSSM 3
In the previous section we have proven that the NWA error is of O(Γ/m), which,
however, does not mean that the error is approximately Γ/m. There are potentially
large prefactors and thus, the NWA has to be checked in BSM scenarios. In this section
we perform a systematic analysis of the NWA behavior in the MSSM. It is of course
not possible to compare for all processes of interest the NWA calculation with the
off-shell result – if this were feasible, the NWA would be superfluous. We therefore
choose the smallest diagram which contains production and decay of an unstable
particle and on the other hand frequently occurs in decay chains of supersymmetric
particles. These are the 1 → 3 decays, which can be checked systematically for SM
extensions. Although we use the Feynman rules of the MSSM for this analysis, in
particular the general analysis of Section 3.2 is not specific to supersymmetry and can
also be used in other extensions of the SM.

3.1. General considerations

For the NWA calculation of the process in Figure 3.1 the 1 → 3 decay is split into two
successive 1 → 2 decays. The intermediate particle is treated as on-shell final state

�P,M q,m,Γ

p1,m1

p2,m2

p3,m3

Figure 3.1.: Kinematics of the 1 → 3 decay.
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3. NWA in the MSSM

vertex coding structure vertex coding structure

� �sss λ sff αPL + βPR

� �vsv λgµν vss λ(p− k)µ

� �
λ(gνλ(k1 − k2)

µ+
vff γµ(αPL + βPR) vvv gλµ(k2 − k3)

ν+
gµν(k3 − k1)

λ)

Table 3.1.: The general vertices of the MSSM with the corresponding Feynman rules.
Momentum flow is chosen towards the vertex. For the vss vertex, p and k denote the
momenta of the scalar particles.

with no spin/polarization correlations between its production and decay to obtain the
decay width factorized as

ΓNWA = Γp ×
Γd

Γ
=: Γp ×BR. (3.1)

In this section we perform a systematic analysis of this NWA factorization compared
to the full off-shell calculation.

3.2. Resonant 1 → 3 decays in the MSSM

In the MSSM there are six classes of 3-particle vertices, which are given in Table
3.1 together with the structure of the corresponding vertex-function (see [32] for the
complete MSSM Feynman rules). We wrote a program to build up the possible classes
of diagrams with these 6 vertex-classes and the result are 48 classes of diagrams, shown
in Appendix A. Diagrams which only differ in exchange of the particles with momenta
p2 and p3 are physically equivalent and counted only once. The other particles (e.g.
P and p1) can not be exchanged since this would change the kinematics. To check
the performance of the NWA for these diagrams, the decay width for each process is
calculated on-shell as well as off-shell analytically except for the final q2-integration
for Γofs. These calculations are performed in Mathematica with FeynCalc [33] used
for polarization and spin sums, the trace evaluations and general simplifications. The
one-dimensional q2-integration can not be done analytically for most of the processes
or at least not for all masses kept non-zero. But since numerical integration in one
dimension is very fast, the evaluation for large numbers of parameter-space points is
no problem. The analytical off-shell calculations of the matrix elements and the full
widths have been checked for each process as explained in Section 3.6.
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3.2. Resonant 1 → 3 decays in the MSSM

3.2.1. Program

In order to compare the different processes, we want to find the maxima and minima
of R = (Γofs/ΓNWA − 1) / (Γ/m) depending on m, Γ, m1, m2, m3 and the coupling
parameters. M is used as an overall normalization for the other masses. As R has a
lot of local maxima and minima, the fast methods for numerical optimization find –
depending on the starting point in the at least five dimensional parameter space – one
of these local extrema. But as we have to find the global maximum and minimum,
we decided to evaluate R on a lattice of about 106 points in parameter space and
determine the maximum and minimum on this lattice. To be more specific, the
lattice consists of 20 equally-distributed values for the four masses (m, m1, m2, m3),
four different couplings for each fermionic vertex (α, β) ∈ {(1, 1), (1, 0), (0, 1), (1,−1)}
and 3 different widths Γ/m ∈ {0.1%, 1%, 10%}. The couplings for the other types of
vertices as well as other overall factors cancel in Γofs/ΓNWA.
The 20 values for m1 are set after m is determined and afterwards the 20 values for m2

and then m3 are set. This way we only generate points in the parameter space which
fulfill all kinematical and other limitations. The maxima and minima of R as well as
the mean value and the standard deviation can then be compared for the 48 processes.
Some care is needed in the determination of the limits we set in the parameter space.
When the mass of the intermediate particle approaches the kinematical limits, we find
two competing errors - as we have seen in Section 2.3, the propagator is integrated
out in the NWA by shifting the integration bounds to infinity which means that we
integrate the full Breit-Wigner. For finite bounds the result is smaller since parts of
the Breit-Wigner are cut out by the kinematical limits, which makes the NWA result
too large, especially when considerable parts are outside the integration region, i.e.
when m is in the Γ-vicinity of the kinematical limits. On the other hand we have
vanishing phasespace factors in the NWA calculation since the phasespaces in the
1 → 2 decays vanish as the sum of the daughter masses approaches the parent mass,
whereas for the full 1 → 3 decay, the phasespace is finite for M > m1 + m2 + m3,
so the decay can also be non-resonant with m larger than M − m1 or smaller than
m2 +m3. This forces ΓNWA → 0 while Γofs > 0 and therefore we can get large errors
for all processes. To generate meaningfull results, we modify the limits m2 +m3 ≤ m
and m + m1 ≤ M to m2 + m3 ≤ (1 − p)m and m + m1 ≤ (1 − p)M , where p is
chosen appropriately. For the different processes we find different sensitivities of R to
m − (m2 +m3) and M − (m +m1) and we therefore use p ∈ {5%, 10%, 20%} for all
calculations. This way we obtain conservative results with the p = 20% restriction
and can also make predictions for BSM models, which often contain decay chains
where the sum of the daughter-particles’ masses is close to the parent-particle’s mass.
For performance reasons the calculations are implemented in C/C++.
The polarization sums for massive vector bosons are calculated in unitary gauge∑

λ1λ2
ε?λ1
µ (k)ελ2

ν (k) = −gµν + kµkν

m2 and to keep this expression finite we introduce
lower bounds for all the masses. We use m1,m ≥ pM and m2,m3 ≥ pm.
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3.2.2. Discussion

The results for the 48 classes are listed in Tables 3.2 and 3.3, where we have chosen
Γ/m = 0.01. In the left-hand columns maxx and minx are shown, which are the
maximum and minimum values of R for p = x%. The last two columns contain
the mean value and standard deviation of R for p = 5%. The table is ordered by
decreasing maximum of |R| for p = 10% and the results are given with two significant
digits. We do not expect large errors caused by the phasespace factors or off-shell
effects due to the propagator, since with p at least 5% in comparison to Γ/m = 1%,
we should be sufficiently far away from the regions with (M −m1)

2 −m2 . mΓ or
m2 − (m2 + m3)

2 . mΓ where we expect bad NWA results. Indeed, the all-scalar
sss-sss process shows relatively good NWA performance with a maximal error of about
9%. Generally, for p = 20% the error is in the range of Γ

m
, the largest enhancement

factors are about 16 for sss-ssv. In the p = 10% region things are quite different,
factors of order 102 are found quite often where an enhancement factor of 100 for
Γ/m = 0.01 means that the off-shell result is larger by a factor of 2 compared to the
NWA result, which clearly is not the desired accuracy. Looking at the table we see
that for all ..s-sss processes R is quite small. For these processes the factorization
of the amplitude is exact and the second vertex is completely independent of q2, so
the only additional source for deviations between NWA and the full calculation are
off-shell effects due to the production matrix element. The situation is quite different
for the sss-s.. processes. Even though the amplitude factorization is exact again and
now the production matrix element is q2-independent, some processes show very large
deviations (sss-ssv), while others have good NWA performance (sss-sff). It seems
that the NWA performance does not have a strong dependence on the first vertex.
Further investigation of the second-vertex dependence shows, that if we consider the
first 24 processes with larger error and the last 24 processes for which the NWA works
relatively well and take a look at the second vertices, we find all the processes with
-ssv, -vsv, -ffv, -vvv and -svv in the upper half and all processes with -fsf, -sff, -vff,
-vss and -sss in the lower half. We study the deviations in more detail in the next
section. The weaker dependence on the first vertex can be understood by means of
the involved masses. In the first vertex, we have M2 ≥ (m1 +

√
q2)2 for a resonant

decay and therefore M is the dominant mass. In particular, M2-terms dominate
terms with strong q2 dependence. For the second vertex we have q2 ≥ (m2 + m3)

2

and therefore
√
q2 as dominant mass. The processes with resonant fermions or vector

bosons generally don’t show larger deviations than the processes with scalars, which
shows that correlation effects don’t play a crucial role here. We now come to a detailed
discussion of the deviations and where they come from.
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process max10 min10 max5 min5 max20 min20 mean dev
sss-ssv 210 −3.6 14000 −8.1 16 −1.0 37 230
ssv-vsv 210 −4.1 7800 −9.2 9.9 −1.6 29 220
ffs-ssv 160 −6.0 9800 −13 14 −2.0 28 170
fsf-ffv 160 −4.9 5300 −11 12 −2.1 13 94

vsv-vvv 150 −3.5 7800 −8.1 14 −0.79 25 130
ffv-vsv 150 −5.0 5500 −10 7.1 −1.9 18 160
vvs-ssv 130 −4.4 7600 −9.4 12 −1.3 27 160
svs-ssv 110 −6.3 6900 −13 9.0 −2.1 19 120
vss-ssv 110 −6.3 6900 −13 9.0 −2.1 19 120
sss-svv 110 −4.0 7200 −8.8 9.2 −1.0 17 110
vvv-vsv 100 −5.1 4100 −10 4.6 −2.1 18 150
vff-ffv 100 −6.0 3000 −13 9.0 −2.2 8.6 64

svv-vsv 96 −4.4 3800 −9.0 3.7 −1.9 13 110
sff-ffv 91 −6.1 2700 −13 8.0 −2.2 7.6 57
ffs-svv 84 −5.3 5100 −10 7.8 −2.1 13 82
vsv-vsv 80 −4.3 3700 −8.9 2.5 −1.8 12 110
vvv-vvv 73 −6.2 3800 −13 6.4 −2.1 10 63
fvf-ffv 72 −6.3 2000 −13 6.8 −2.4 6.6 49
ffv-vvv 72 −6.1 3500 −13 7.7 −2.2 11 61
vvs-svv 67 −4.4 4000 −8.9 6.8 −1.4 12 76
svs-svv 57 −5.3 3700 −10 5.0 −2.2 8.3 59
vss-svv 57 −5.3 3700 −10 5.0 −2.2 8.3 59
ssv-vvv 55 −6.3 3600 −13 3.8 −2.5 7.8 55
svv-vvv 45 −4.8 2200 −9.7 4.4 −1.5 8.4 44
sff-fsf 34 −6.0 280 −13 3.3 −2.4 −0.31 8.4
fsf-fsf 33 −4.8 690 −11 4.8 −2.2 0.070 7.7
vff-fsf 23 −6.1 540 −13 3.2 −2.3 −0.61 5.9
fvf-fsf 19 −6.3 470 −13 2.6 −2.5 −0.60 5.5
sss-sff 18 −4.3 110 −8.9 3.1 −1.7 0.12 5.2
ffs-sff 16 −6.2 100 −13 2.7 −2.4 −0.26 4.8
ssv-vff 15 −4.7 94 −10.0 2.3 −2.1 0.27 5.1
vvs-sff 15 −4.8 96 −9.8 2.4 −1.9 −0.19 4.8
vsv-vss 14 −4.0 140 −8.6 1.4 −1.5 1.7 8.5
svs-sff 14 −6.4 93 −13 1.9 −2.6 −0.52 4.5

Table 3.2.: NWA comparison of resonant 1 → 3 decays in the MSSM. The maxima,
minima, mean and standard deviation are shown for the relative NWA deviation
normalized to the conventionally expected error Γ/m. The particle code is explained in
Table 3.1. Processes are ordered by max(|max10|, |min10|) and the remaining processes
are shown in Table 3.3.
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process max10 min10 max5 min5 max20 min20 mean dev
vss-sff 14 −6.4 93 −13 1.9 −2.6 −0.52 4.5
ffv-vff 13 −5.9 86 −12 1.9 −2.2 −0.81 4.1

vvv-vss 13 −6.4 140 −13 0.48 −2.6 0.84 8.0
ffv-vss 12 −6.2 140 −13 0.55 −2.7 1.1 8.0
vvv-vff 12 −6.3 81 −13 1.7 −2.3 −0.72 4.3
ssv-vss 12 −6.2 140 −13 −0.056 −2.8 2.8 9.0
vsv-vff 12 −4.3 79 −8.9 2.0 −1.8 −0.70 4.0
svv-vff 12 −5.0 79 −9.9 1.3 −2.0 −0.78 3.8
svv-vss 11 −5.1 130 −10 0.0021 −2.2 0.91 7.4
svs-sss 5.7 −4.6 33 −9.5 −0.52 −2.2 −1.3 3.1
vss-sss 5.7 −4.6 33 −9.5 −0.52 −2.2 −1.3 3.1
ffs-sss 2.9 −4.8 17 −9.7 −0.58 −2.2 −1.8 1.7
vvs-sss 1.7 −4.4 11 −9.0 −0.61 −2.0 −1.7 1.8
sss-sss −0.41 −4.4 0.084 −8.9 −0.56 −1.9 −2.0 1.3

Table 3.3.: NWA comparison for the remaining processes. Details as in Table 3.2.

3.2.3. Problematic decays

We first consider the process sss-ssv which features the largest deviations. Note that
all processes with -ssv show very large off-shell effects and are therefore located in
the upper part of the table. The reason for the large off-shell effects should be most
obvious for sss-ssv due to its simple matrix element. For general masses the final q2

integration can not be done analytically, so we analyze the squared and polarization-
summed matrix element∑

λ

|M|2 =
∑

λ

|(p2 + q)µε?λ
µ (p3)|2

(q2 −m2)2 +m2Γ2
(3.2)

=
(p2 + q)µ

(
−gµν + p3µp3ν

m2
3

)
(p2 + q)ν

(q2 −m2)2 +m2Γ2
(3.3)

=
−(p2 + q)2 + 1

m2
3
(q2 − p2

2)
2

(q2 −m2)2 +m2Γ2
(3.4)

=
1

m2
3

m4
2 − 2(m2

3 + q2)m2
2 + (m2

3 − q2)2

(q2 −m2)2 +m2Γ2
. (3.5)

Here and in the following we neglect coupling constants for vertices without fermions
since they drop out in the ratio Γofs/ΓNWA. The integrand for the final q2 integration
is this squared matrix element multiplied by the phasespace factors. Due to the Breit-
Wigner shape of the squared matrix element the integrand should be peaked around
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3.2. Resonant 1 → 3 decays in the MSSM

q2 = m2, justifying that – in the NWA – we evaluate the matrix elements for q2 = m2

only. But the third term in the numerator (q2−m2
3)

2 might grow as fast as (q2−m2)2

grows in the denominator, compensating the suppression of the off-shell parts of the
amplitude. To clarify this, we set m1 = m2 = 0 and obtain

∑
λ

|M|2 =
1

m2
3

(m2
3 − q2)2

(q2 −m2)2 +m2Γ2
(3.6)

which approaches a constant for large q2 instead of decreasing like q−4. Another effect
is that, for m3 ≈ m, the peak is suppressed by the factor (m2

3 −m2)
2
. Therefore, if m2

is small compared to the upper limit (M−m1)
2 for the q2-integration and m3 is large,

i.e. of the same magnitude as m, there is a large off-shell contribution and the NWA
fails. The righthand side of Equation (3.6) is plotted against q2 in Figure 3.2(a) for
small m and m3 ≈ m to illustrate the deviation from the Breit-Wigner shape and in
Figure 3.2(b) R is plotted against (m,m3). The color code is explained in Table 3.4.
The reason for the large deviations in ffs-ssv, vvs-ssv, svs-ssv and vss-ssv is the same,

0.8 0.9 1 1.1 1.2 1.3 1.4
q2
��������
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Figure 3.2.: Plots for sss-ssv. In (a), the squared and polarization summed matrix
element of Equation (3.6) is plotted against q2 as solid line together with a Breit-
Wigner shape as dashed line. The parameters are m/M = 0.1, Γ/m = 0.01, m1 =
m2 = 0 and m3/m = 0.98. In (b) a contour plot for R as function of m and m3 is
shown, the color code is explained in Table 3.4 and the remaining parameters are as
in (a).

the deviations are smaller because the squared matrix element of the production part
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3. NWA in the MSSM

green |R| ≤ 5
dark blue 5 < |R| ≤ 10
light blue 10 < |R| ≤ 25
dark red 25 < |R| ≤ 50
light red 50 < |R|

Table 3.4.: Color code for the contour plots.

tends to wash out the suppression of the Breit-Wigner peak due to the (q2 − m2
3)

2

factor. In the MSSM there are a lot of candidates for heavy scalar particles, which
have to be identified by their decay products. However, in the SM and the MSSM we
do not find a massive vector boson as a stable final state.
The next process of interest is ssv-vsv. An additional feature of this process is the
gauge dependence of the off-shell result. In Rξ gauges, the propagator for the interme-
diate vector boson depends on the gauge parameter ξ. For q2 = m2 this dependence
drops out, making the NWA calculation gauge-parameter independent. The squared
and spin-summed matrix element for this process is

|M̄|2 =
∑

λ

|(P + p1)
µ

(
−gµν + (1− ξ)

qµqν
q2 − ξm2

)
ε?ν
λ (p3)|2. (3.7)

The problematic part of this amplitude can not be seen that easily, so we calculate
the amplitude with the assumption m1 = m and assume m3 to be small, i.e. we only
keep the terms of lowest order in m3. In unitary gauge we then get the squared and
spin-summed matrix element integrated over the two solid angles Ω1 and Ω2∫

dΩ1dΩ2|M̄|2 =
4π2

3m4m2
3q

4

(m2
2 − q2)

2

(q2 −m2)2 +m2Γ2
×(

4m8 − 8
(
M2 + q2

)
m6 + 2

(
2M4 + 5q2M2 + 2q4

)
m4

−6M2q2
(
M2 + q2

)
m2 + 3M4q4

)
. (3.8)

Again we have the suppression of the peak form2 ≈ m due to the factor (m2
2 − q2)

2
and

the compensation of the q−4 decrease of the Breit-Wigner shape, which produces large
NWA errors. But now we find a strong dependence of the NWA performance on the
gauge parameter ξ. Consider, for example, the parameter set m/M = m1/M = 0.05,
Γ/m = 0.01, m2/m = 0.73 and m3/m = 0.05 which produces R ≈ 1600 in unitary
gauge. In Landau gauge, for ξ = 0 which corresponds to replacing m2 with q2 in the
propagator, this is reduced to R = 1.4. The replacement of 1/m2 by 1/q2 reduces the
asymptotic behavior of the matrix element from O(q4) to O(q2) and this way improves
the NWA performance. The ξ dependence of Γofs drops out when calculating a gauge-
invariant set of diagrams.
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3.2. Resonant 1 → 3 decays in the MSSM

For fsf-ffv, the squared and spin-summed matrix element integrated over the two solid
angles is∫

dΩ1dΩ2|M̄|2 =
8π2

m2
3q

2

(m2
2 − q2)

2

(q2 −m2)2 +m2Γ2

((
M2 + q2

) (
m2 + q2

)
+ 4Mq2m

)
(3.9)

where we have set m1 = 0 and assumed m3 to be small compared to the other masses.
There is the factor (q2 −m2

2)
2 suppressing the peak and combined factors up to the

denominator are of O(q6). This not only compensates the q−4 decrease of the Breit-
Wigner shape, but even produces increasing contributions as q2 gets larger. The
deviations are not larger than for the previously discussed processes because the term
M2q2 dominates the q4 term in the last factor.
For vsv-vvv we do not give the full amplitude, since it is quite lengthy. The asymptotic
behavior of the numerator is∝ q8, but the leading terms in q2 are suppressed compared
to the other terms. This mitigates the numerator to be effectively ∝ q6, which still
produces increasing values of the matrix element away from the resonance.
For sss-svv, the squared and spin-summed matrix element is

∑
λ

|M̄|2 =
∑

λ

|ε?λ
µ (p2) · ε?µλ(p3)|2

(q2 −m2)2 +m2Γ2
(3.10)

=
(−gµν + p2µp2ν

m2
2

)(−gµν +
pµ
3 pν

3

m2
3

)

(q2 −m2)2 +m2Γ2
(3.11)

=
2 + (p2·p3)2

m2
2m2

3

(q2 −m2)2 +m2Γ2
(3.12)

=
2

(q2 −m2)2 +m2Γ2
+

1

4m2
2m

2
3

(q2 −m2
2 −m2

3)
2

(q2 −m2)2 +m2Γ2
. (3.13)

For one of the masses m2, m3 very small, the second term dominates the first one
and there we find an asymptotic behavior ∝ q4, compensating the q−4 decrease. For
m2

2 +m2
3 ≈ m2 we then get a suppression of the peak relative to the off-shell parts.

We have now seen the reasons for the deviations that occur for the processes in
the first half of the table. There is the suppression of the peak due to factors in the
numerator imitating the behavior of (q2−m2)2 and the (over)compensation of the q−4

decrease in the Breit-Wigner shape due to terms ∝ qn with n ≥ 4. Either one or both
of these reasons produce the deviations we have seen in the first half. The processes
in the second half either do not show such behavior, like the processes ..s-sff for which
we take sss-sff as representative and calculate the squared and spin-summed matrix
element to be

|M̄|2 = 32π2 (m2 +m3)
2 − q2

(q2 −m2)2 +m2Γ2
(3.14)
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3. NWA in the MSSM

which has a numerator of O(q2) and only a weak peak-suppressing factor. Or this
behavior occurs only in part of the amplitude and is dominated by other contributions,
which can be found for example in ssv-vss. For the processes of the second half we
can still find very large max5 values even though m is not in the Γ-vicinity of the
kinematical bounds for Γ/m = 1% and p = 5%.

3.2.4. Spin/polarization effects

In Section 2.5 we have seen that there are no spin/polarization effects in the on-shell
case for total decay rates. However, generally there are correlation effects when the
intermediate particle is off-shell. To check the result of Section 2.5, we first compare
the NWA calculation with the on-shell calculation where the full matrix element is
kept. That is, we assume that the intermediate particle is produced on-shell but do
not factorize the decay rate into production and decay parts. The relative differences
in the two calculations are of O(10−13) for all 48 processes confirming that there are
no on-shell correlations.
We then examine correlation effects in the off-shell calculation, i.e. we compare the
calculation with the full matrix element integrated over q2 with the product of the
matrix elements of the production and decay part, integrated over q2. This way we
keep the off-shell effects but drop spin/polarization correlations. To be precise, we

compare
∫

dq2

2π

|Mp|2 |Md|2
(q2−m2)2+m2Γ2 with

∫
dq2

2π
|Mfull|2. The results for p = 10% are given

in Table 3.5 together with the previously obtained errors of the NWA calculation.
For some processes, like ssv-vsv or ffv-vsv, the largest errors and mean deviation
are almost the same as for the NWA calculation, showing that for these processes
the correlation effects are the main source of NWA deviation. For fsf-fsf the largest
errors are even larger than in the NWA calculation, suggesting that the errors due
to correlation effects and those due to off-shell contributions partly cancel. On the
other hand we find processes like vsv-vvv for which the deviations almost vanish when
keeping off-shell contributions. These processes give bad NWA results due to large
off-shell contributions.
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3.2. Resonant 1 → 3 decays in the MSSM

off-shell without correlation on-shell without correlation (NWA)
process max10 min10 mean dev max10 min10 mean dev
ssv-vsv 210 0.055 29 210 210 −4.1 29 220
ffv-vsv 150 0 19 140 150 −5.0 18 160
vvv-vsv 100 0 19 140 100 −5.1 18 150
svv-vsv 94 0 14 110 96 −4.4 13 110
vsv-vsv 75 0 12 100 80 −4.3 12 110
fsf-ffv 28 −55 −2.3 9.3 160 −4.9 13 94
vff-ffv 0.90 −43 −2.5 7.3 100 −6.0 8.6 64
fsf-fsf 41 −14 −0.12 4.1 33 −4.8 0.070 7.7
sff-ffv 1.0 −40 −2.4 6.9 91 −6.1 7.6 57
fvf-ffv 1.5 −35 −2.2 6.6 72 −6.3 6.6 49
ssv-vvv 17 0 1.8 9.4 55 −6.3 7.8 55
ssv-vff 12 0 1.4 2.8 15 −4.7 0.27 5.1
ffv-vvv 11 0 0.90 4.9 72 −6.1 11 61
ffv-vff 10 0 0.61 2.1 13 −5.9 −0.81 4.1
ssv-vss 8.8 0 3.2 6.2 12 −6.2 2.8 9.0
svv-vff 8.6 0 0.54 1.8 12 −5.0 −0.78 3.8
vvv-vff 8.4 0 0.62 2.1 12 −6.3 −0.72 4.3
svv-vvv 7.7 0 0.73 4.2 45 −4.8 8.4 44
sff-fsf 7.6 −7.7 −0.20 1.4 34 −6.0 −0.31 8.4

vvv-vvv 7.5 0 0.94 4.9 73 −6.2 10 63
vff-fsf 6.2 −7.1 −0.42 1.5 23 −6.1 −0.61 5.9
vsv-vff 6.9 0 0.35 1.6 12 −4.3 −0.70 4.0
fvf-fsf 5.2 −5.4 −0.31 1.4 19 −6.3 −0.60 5.5
ffv-vss 5.0 0 0.97 2.7 12 −6.2 1.1 8.0
svv-vss 4.7 0 0.87 2.5 11 −5.1 0.91 7.4
vvv-vss 4.7 0 1.0 2.8 13 −6.4 0.84 8.0
vsv-vss 3.7 0 0.44 1.8 14 −4.0 1.7 8.5
vsv-vvv 3.5 0 0.31 1.5 150 −3.5 25 130

Table 3.5.: Deviation R of off-shell calculation without correlations relative to off-
shell calculation with correlations in the left-hand columns compared to the deviation
of the NWA calculation relative to the off-shell calculation with correlations in the
right-hand columns. The predictions of the on-shell calculation with and without
correlations are identical. Details as in Table 3.2.
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3. NWA in the MSSM

3.3. Resonant decays in specific MSSM scenarios

To check whether there are large deviations between NWA and full calculation in the
MSSM, we calculate all resonant 1 → 3 processes at the SPS points off-shell and
in NWA to compare the resulting decay widths. The SPS points represent only a
very small subset of the possible MSSM parameter space, but as a full scan is not
possible and phenomenological analyses should be carried out for these points, we
focus on them here. Of course, one has to keep in mind that even if there are no large
deviations with impact on phenomenology for the SPS points, this might not be true
for the general parameter space.
There are some classes of diagrams discussed in the previous section, that do not
occur as resonant decays in the MSSM. For example all decays of the forms vss-, vvs-,
vsv-, -vss, -vsv can not be resonant since the vector particles of the MSSM are the
same as in the SM and the lightest scalar is heavier than the W and Z bosons. This
means that of the five vertices for decay processes which were found to produce large
deviations in the last section (see Tables 3.2 and 3.3), two do not occur in the MSSM.
Considering the list of the last section, where the processes are ordered by the NWA
deviations, 10 of the first half of the processes can not occur as resonant decays.

3.3.1. Program

The mass spectra for the ten SPS points are generated with SoftSusy 2.05 [34] and
we wrote a program that reads in the masses and total widths of the particles and
determines all possible resonant 1 → 3 decays. For the sff and vff vertices, specific
values for α and β in the coupling αPL + βPR are needed while for all other vertices
the coupling constants drop out in the quotient Γofs/ΓNWA. Even for the fermionic
vertices we have seen from the generic calculations and plots that the dependence
on α and β is quite weak for most of the processes. For some of them however,
there is a strong dependence and therefore we use the routines in Madgraph to read
in a param card.dat file (Les-Houches like) for each SPS point and calculate all the
coupling parameters which are then used to scan the SPS points for large R-values.
The program then interfaces with the program described in Section 3.2 to calculate
R for the specific processes. The result is many processes for each SPS point with
quite different behavior concerning NWA performance. We filter out the processes
with stable particles in the final state and |R| > 5. The calculations are done once
with the masses of the light quarks and leptons set to zero and once with the PDG
masses [30]. The results are the same.

3.3.2. Results

The results are listed in Table 3.6, where the u- and d-type quarks and squarks are
representative for the first two generations of quarks and squarks, respectively. Note

46



3.3. Resonant decays in specific MSSM scenarios

process at SPS R Γ/m in % (m+m1)/M (m2 +m3)/m

g̃ → dd̃?
L → dd̄χ̃0

1 1a 9.54 0.935 0.935 0.170
. 1b 9.72 0.935 0.936 0.184
. 3 5.18 0.926 0.920 0.187
. 5 11.4 0.956 0.940 0.176
. 6 9.69 0.938 0.939 0.281

g̃ → uũ?
L → uūχ̃0

1 1a 5.98 0.976 0.923 0.172
. 1b 7.35 0.952 0.929 0.186
. 5 9.46 0.975 0.935 0.177
. 6 6.57 0.967 0.930 0.284

χ̃+
1 → χ̃0

1W
+ → χ̃0

1ud̄ 1a 5.21 2.49 0.975 ≈ 0
χ̃+

1 → χ̃0
1W

+ → χ0
1e

+νe 1a 5.21 2.49 0.975 ≈ 0
χ̃+

1 → νeẽ
?
L → νee

+χ̃0
1 3 6.99 0.0550 0.945 0.555

χ̃0
2 → e+ẽL → e+e−χ̃0

1 3 10.0 0.0550 0.951 0.555
χ̃0

3 → e+ẽR → e+e−χ̃0
1 3 9.76 0.0223 0.343 0.889

χ̃0
4 → e+ẽR → e+e−χ̃0

1 3 10.1 0.0223 0.333 0.889

g̃ → b̄b̃2 → b̄bχ̃0
1 4 6.43 1.11 0.934 0.183

g̃ → ūũL → ūdχ̃+
1 9 114 1.19 0.980 0.157

g̃ → dd̃?
L → dūχ̃+

1 9 209 1.19 0.985 0.156

Table 3.6.: Problematic decays in specific MSSM scenarios, namely the SPS points.
Shown are the resonant 1 → 3 decays with stable final states and |R| ≥ 5.

that the deviation for processes with different charge assignments, like g̃ → d̄d̃L →
d̄dχ̃0

1 and g̃ → dd̃?
L → dd̄χ̃0

1, is the same. In this section, only processes with stable
final states are examined, that is, only the LSP and the stable SM particles are allowed
as decay products. Processes with unstable particles in the ’final state’ are examined
in the next section.
We now check the processes of Table 3.6 for contributions from other diagrams (non-
resonant contributions and diagrams with |R| < 5 which are not listed in the table).
If we find other large contributions to the decays, these might wash out the NWA
error. The numerical results can be found in Appendix B.

SPS 1a The processes with large deviations for SPS 1a are g̃ → dd̄χ̃0
1, the similar

process with up-type quarks g̃ → uūχ̃0
1 and the chargino decays χ̃+

1 → χ̃0
1ud̄ and χ̃+

1 →
χ̃0

1e
+ν̄e. The involved masses are mg̃ = 608 GeV, mχ̃0

1
= 96.7 GeV, md̃R

= 545 GeV,

md̃L
= 568 GeV, mũL

= 561 GeV and mũR
= 549 GeV. We first consider g̃ → dd̄χ̃0

1,
where we have to coherently sum up the contributing amplitudes shown in Figure 3.3.
As can be seen in Table 3.6, for the d̃L process R ≈ 10 at SPS 1a while R ≈ 2 for the
d̃R process which is not listed in the table. Calculation of the d̃R and d̃L processes
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Figure 3.3.: Contributing diagrams for g̃ → dd̄χ̃0
1.

separately gives an about two orders of magnitude larger partial width for the d̃R

process, for which R is relatively small and Γd̃R
/md̃R

is only about 0.05% rather than

about 0.9% for d̃L. The calculation of the NWA widths has been checked against
SDecay [35] and the full widths of the processes against SMadgraph [36] and we used
αS(MZ) which cancels in the quotient Γofs/ΓNWA. So, for the main contribution the
NWA works well and only the small d̃L contribution has large off-shell effects.
The dominant corrections therefore are expected to be interference effects which could
be estimated as follows. We have Γpart

d̃R
/Γpart

d̃L
≈ 100 for the NWA calculation. Thus,

we have |Md̃R
|/|Md̃L

| ≈ 10 where each matrix element is evaluated on-shell. The
resonances are far away from each other md̃L

− md̃R
� Γd̃L

+ Γd̃R
and therefore

|Md̃L
(m2

d̃R
)| � |Md̃L

(m2
d̃L

)| ≈ 1
10
|Md̃R

(m2
d̃R

)|. If evaluating both matrix elements for

the dominant contribution at q2 ≈ m2
d̃R

, we get for the interference effects

|Md̃L
+Md̃R

|2 − |Md̃L
|2 − |Md̃R

|2 = 2Re
(
M†

d̃L
Md̃R

)
(3.15)

� 2

10
|Md̃R

|2 (3.16)

and thus we expect the errors due to interference to be very small compared to 20%.
We calculate the total decay rate for the process by implementing the full amplitude
generated by SMadgraph in the Monte Carlo integrator described in Section 3.6 and
compare it to the NWA calculation for Γpart

d̃R
. The relative deviation is about 1.2%.

The situation for the g̃ → uūχ̃0
1 process is quite similar. Again the contribution of

the ũR process is much larger than the ũL contribution and for the right-handed up-
squark we have good NWA performance. The relative error of the NWA calculation
for ũR compared to the full calculation is about 1.1%.

For SPS 1a there are two more processes which produce large deviations – the χ̃+
1

decays into χ̃0
1e

+νe and χ̃0
1ud̄ with a W boson as intermediate particle. R is about

5 for these processes but as Γ/m is relatively large for W , the absolute deviation is
about 10%.
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For χ̃+
1 → χ̃0

1e
+νe there are non-resonant contributions by diagrams with ẽL and ν̃e as

intermediate particles, shown in Figure 3.4. The main contribution is from the reso-
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Figure 3.4.: Contributing diagrams for χ̃+
1 → χ̃0

1e
+νe.

nant W diagram. The contribution from the ẽL diagram is very small because ẽL is far
from being resonant (in terms of its width ΓẽL

= 0.214 GeV, mẽL
= 203 GeV is much

larger than the parent particle mass mχ̃±1
= 182 GeV) and thus its contribution is sup-

pressed, while ν̃e is much closer to being resonant (Γν̃e = 0.150 GeV, mν̃e = 185 GeV)
and the partial width for this diagram is about 20% of the partial width of the W
diagram. Due to this 20% non-resonant contribution we can not apply the NWA to
this process. The error of the NWA width for the W diagram compared to the full
calculation turns out to be even larger than 30% due to additional interference effects.
For χ̃+

1 → χ̃0
1ud̄ there are non-resonant contributions as well, they are shown in Figure

3.5. But in contrast to χ̃+
1 → χ̃0

1e
+νe the non-resonant contributions are very small,

�
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Figure 3.5.: Contributing diagrams for χ̃+
1 → χ̃0

1ud̄.

since mũL
,md̃L

� mχ̃+
1
, thus making the NWA applicable. An off-shell calculation of

the three isolated processes gives a more than four orders of magnitude larger partial
width for the resonant W process compared to the other two processes. Comparing
the NWA result for the W process with the full calculation we find a deviation of
about 11%. This large error is particularly important for this process, as there are
no non-factorizing higher-order QCD corrections for the resonant diagram, since the
chargino and the neutralino do not participate in the strong interaction. Thus, we do
not expect large corrections at next-to-leading order since the electroweak corrections
are expected to be smaller than 10% due to the small coupling constant.
A problem is ensuring gauge invariance of this decay width, as the introduction of the
constant finite width can break gauge invariance, as described in the introduction and
we want to drop two of the contributing diagrams. Here one could apply the gauge-
preserving constant factor scheme, i.e. multiply the matrix element for all the three
processes by the factor q2−m2

q2−m2+imΓ
. This way, we multiply a gauge-invariant ampli-

tute with a gauge-independent factor, maintaining gauge invariance at the price of an
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ad-hoc factor for the non-resonant contributions. However, as the non-resonant contri-
butions are very small, this ad-hoc factor is harmless. To check for gauge dependence,

we implemented the calculation with the gauge-dependent propagator
−gµν+(1−ξ)

qµqν

q2−ξm2

q2−m2+imΓ

to check the dependence on the gauge parameter ξ. Up to the numerical uncertainty
in the integration, we found a constant cross section.
At a collider the ud̄ final state can not be distinguished from an sc̄ final state since
all four quarks hadronize. But as the couplings and masses are nearly identical in the
first two quark and squark generations, there is nothing new for this process and as
there is no interference between the processes with different final states, the relative
NWA error is very similar for the sum of both processes.
The contribution of the decays χ̃+

1 → χ̃0
1ud̄ and χ̃+

1 → χ̃0
1sc̄ to the total width of χ̃+

1 is
only about 5%. For the NWA calculation this can be understood as result of the small
phasespace for χ̃+

1 → χ̃0
1W

+, as the sum of mχ̃0
1

and mW already is about 97.5% of

mχ̃±1
. The dominant chargino decays at SPS 1a are χ̃+

1 → τ̃+
1 ν̃τ → · · · . The smallness

of the NWA-problematic widths is a general feature as large errors occur mainly for
mass configurations which produce small phasespaces.
For most of the processes, the coupling parameters don’t play an important role, but
for the processes χ̃+

1 → χ̃0
1W

+ → χ0
1ud̄ and χ̃+

1 → χ̃0
1W

+ → χ0
1e

+νe we found a strong
dependence on the first coupling which is shown in Figure 3.6.
More generally, the coupling is important for ffs vertices, which have large off-shell
contributions. R depends only on the ratio α/β, which is obvious from the calcula-
tions, since overall scaling factors drop out in the ratio Γofs/ΓNWA. Furthermore, R
is symmetric under exchange of α and β because in the squared amplitudes either
(α2 + β2) or α · β appear.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Α

Β

Figure 3.6.: Dependence of the relative error R on the coupling αPL +βPR for ffv-vff.
The color code is explained in Table 3.4.

50



3.3. Resonant decays in specific MSSM scenarios

SPS 1b, 4, 5, 6 For SPS 1b, 5 and 6, we have only the two processes already
discussed for SPS 1a and since the discussion is very similar, it is not repeated here in
detail. For g̃ → qq̄χ̃0

1 with q = d, s, the error of ΓNWA for the q̃R process compared to
the off-shell calculation including all diagrams is about 0.89% at SPS 6, about 0.71%
at SPS 5 and 0.65% at SPS 1b, which is much larger than Γ/m but still small in
absolute terms due to the very small ratio Γ/m. For g̃ → qq̄χ̃0

1 with q = u, c, the
errors are 0.87%, 0.95%, 2.3% for SPS 1b, 5, 6, respectively.
At SPS 4 we have the process g̃ → b̄bχ̃0

1 to which diagrams with resonant b̃1 and b̃2
contribute. These resonances are sufficiently separated to apply the argument already
used at SPS 1a to neglect interference effects. For the b̃1 processes the NWA works
very well (R = −0.659, Γ/m = 1.11%) and their partial widths are about a factor 100
larger than the contributions of the b̃2 processes. The overall error is about 2%.

SPS 3 Again, the previously discussed process g̃ → dd̄χ̃0
1 appears for this benchmark

point, but with even smaller error and therefore we focus on the other processes.
The other processes appearing in the table are χ̃+

1 → νeẽ
?
L → νee

+χ̃0
1 and χ̃0

2 →
e+ẽL → e+e−χ̃0

1. The first one is part of the χ̃+
1 → νee

+χ̃0
1 process already discussed

for SPS 1a. The diagrams are shown in Figure 3.4, but now all three diagrams are
resonant, since the masses are mχ̃±1

= 306 GeV, mW = 80.4 GeV, mẽL
= 289 GeV and

mν̃e = 275 GeV, mχ̃0
1

= 161 GeV. The dominant part is the ν̃e process with a partial
width about a factor 3 larger than the width of the ẽL process. The decay through
the W boson can be neglected. Again, the resonances m2

ẽL
and m2

ẽR
are far away from

each other in terms of their total widths and thus we do not expect large interference
effects. Due to the very small ratio of ΓẽL

/mẽL
of about 0.06%, the large value of

R does not produce a large deviation in absolute terms. The deviation of the NWA
calculation is about 0.9% which is larger than the values expected by the estimate
Γ/m but still the NWA is a good approximation.
For χ̃0

2 → e+e−χ̃0
1, there are 5 contributing processes which are shown in Figure

3.7. The intermediate particles ẽL, ẽR and Z are all resonant with the resonances

�e+

χ̃0
2

χ̃0
1

Z e−
�e+

χ̃0
2

e−

ẽ?
L χ̃0

1

�e+

χ̃0
2

e−

ẽ?
R χ̃0

1

�
e+ χ̃0

1
χ̃0

2

ẽL e−
�

e+ χ̃0
1

χ̃0
2

ẽR e−

Figure 3.7.: Contributing diagrams for χ̃0
2 → χ̃0

1 e
+ e−.

sufficiently far away from each other to not expect large interference effects. The
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3. NWA in the MSSM

dominant contribution is due to the ẽL diagram for which we found the large R-value.
Comparing the sum of the NWA widths for the three processes with the full result,
we find an error of about 2.4%. For the χ̃0

3 and χ̃0
4 decays we also find parts of the

processes with large off-shell contributions. The ratio Γ/m for these processes is even
smaller and there are again additional contributions for which the NWA works well.
As the discussion is quite similar to the χ̃0

2 decay, it is not repeated here.

SPS 9 For SPS 9 the process g̃ → ūdχ̃+
1 , to which the two diagrams shown in

Figure 3.8 contribute, gets very large off-shell contributions. Both of the contributing

�ū

g̃

d

d̃?
L

χ̃+
1

�
ū

g̃

ũL

d

χ̃+
1

Figure 3.8.: Contributing diagrams for g̃ → χ̃+
1 ūd.

diagrams are listed in the table with R of order 102, while Γ/m is about 1% giving an
absolute deviation of at least a factor two. The d̃L and ũL resonances are separated by
about 7 GeV which is small compared to their widths of about 15 GeV. Thus we expect
large interference effects which produce an additional large error. The conventional
Γ/m error estimate which would give an error of 1% is completely wrong for this decay,
for which the sum of the NWA widths is too small by roughly a factor of 3. However,
the total width of 0.09 GeV for the gluino decaying into udχ̃0

1 is small compared to
its total width of 14.3 GeV and keeping in mind its large mass of mg̃ = 1286 GeV, it
is not very likely to play an important role at the LHC.

3.4. Parts of longer decay chains in specific MSSM
scenarios

In the preceding discussion we focussed on decays with stable final states, that is
on the ends of decay chains. As one would like to apply the NWA also in the inner
parts of decay chains (e.g. for the processes in the Section 3.5), the results for unstable
particles which further decay in the ’final states’ are of interest as well. To address this,
we also calculate the relative NWA deviation for resonant processes with one unstable
’final state’ particle at the SPS points. The results are given in Appendix C. Of
course, these results are only meant to give hints on where to be careful, as additional
scales come into play in complex processes, which might introduce additional effects.
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3.5. Phenomenologically interesting decay modes

3.5. Phenomenologically interesting decay modes

In this section we check the NWA performance for the processes used in the analyses
of [37], where SPS 1a is considered. The first kind of process is χ̃0

2 → l±l̃∓R → l+l−χ̃0
1,

where l and l̃R denote (s)leptons of the first two generations. This process is of interest
because the two leptons in the final state provide a natural trigger and it is part of
q̃L → qχ̃0

2 → ql±l̃∓R → ql+l−χ̃0
1, which can be used to extract various invariant masses

of particle subsets from kinematical edges and thresholds. Since the width of χ̃0
2 is

only about 0.01% of its mass, the factorization of the decay chain at this point does
not introduce large errors and we consider the part χ̃0

2 → l±l̃∓R → l+l−χ̃0
1. The widths

of the righthanded sleptons l̃R are about 0.15% of their masses and we therefore expect
the error due to the l̃R factorization to dominate.
Also of interest is χ̃0

2 → τ±τ̃∓1 → τ+τ−χ̃0
1 which is used to measure the τ̃1 mass. The

Γ/m ratio for the τ̃1 is about 0.1%. The results for comparison of NWA and off-shell-
calculation for these processes are shown in Table 3.7. The R-factors are about 3,
which is only slightly larger than Γ/m and as Γ/m is very small, the overall error is
small and the NWA is a very good approximation here.
Another set of important processes are the gluino decays, since a large number of
them could be produced at the LHC. In particular the decays g̃ → b̄b̃1 → b̄bχ̃0

i as well
as g̃ → t̄t̃1 → t̄bχ̃+

j and g̃ → b̄b̃i → b̄tχ̃−j are of interest for studies of the stop and
sbottom sector. There are additional processes of interest for the stop and sbottom
sector and in Table 3.7, we show the relative deviation of the NWA and off-shell results
for all resonant gluino decays into third generation quarks at SPS 1a. As can be seen,
R is not very large for these processes, but together with Γ/m ratios of O(1%), errors
of about 3% occur.
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3. NWA in the MSSM

process SPS R Γ/m in % (m+m1)/M (m2 +m3)/m

χ̃0
2 → e+ẽR → e+e−χ̃0

1 1a −2.84 0.150 0.796 0.671
χ̃0

2 → µ+µ̃R → µ+µ−χ̃0
1 1a −2.84 0.150 0.796 0.672

χ̃0
2 → τ+τ̃1 → τ+τ−χ̃0

1 1a −2.67 0.110 0.752 0.732
g̃ → t̃1t̄→ t̃1b̄W

− 1a −1.77 0.893 0.946 0.483

g̃ → b̄b̃1 → b̄t̃1W
− 1a −4.43 0.728 0.851 0.936

g̃ → b̄b̃1 → b̄bχ̃0
1 1a −0.448 0.728 0.851 0.197

g̃ → b̄b̃1 → b̄bχ̃0
2 1a −0.974 0.728 0.851 0.361

g̃ → b̄b̃1 → b̄bχ̃0
3 1a −3.32 0.728 0.851 0.717

g̃ → b̄b̃1 → b̄bχ̃0
4 1a −3.66 0.728 0.851 0.752

g̃ → b̄b̃1 → b̄tχ̃−1 1a −2.46 0.728 0.851 0.695

g̃ → b̄b̃2 → b̄t̃1W
− 1a −6.81 0.147 0.902 0.883

g̃ → b̄b̃2 → b̄bχ̃0
1 1a 1.79 0.147 0.902 0.186

g̃ → b̄b̃2 → b̄bχ̃0
2 1a 0.950 0.147 0.902 0.341

g̃ → b̄b̃2 → b̄bχ̃0
3 1a −2.45 0.147 0.902 0.677

g̃ → b̄b̃2 → b̄bχ̃0
4 1a −2.97 0.147 0.902 0.710

g̃ → b̄b̃2 → b̄tχ̃−1 1a −1.37 0.147 0.902 0.656
g̃ → t̄t̃1 → t̄bχ̃+

1 1a −1.46 0.506 0.946 0.465
g̃ → t̄t̃1 → t̄bχ̃+

2 1a −6.54 0.506 0.946 0.961
g̃ → t̄t̃1 → t̄tχ̃0

1 1a −2.21 0.506 0.946 0.680
g̃ → t̄t̃1 → t̄tχ̃0

2 1a −5.56 0.506 0.946 0.891

Table 3.7.: χ̃0
2 and gluino decays at SPS 1a.
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3.6. Checking the calculations with Monte Carlo integration

3.6. Checking the calculations with Monte Carlo
integration

In order to check the analytic calculations of the amplitudes and phasespace factors we
implement a simple Monte Carlo integration. To be prepared for other processes the
program should be kept as general as possible. So we use the matrix-element generator
SMadgraph to give us a fortran routine calculating the squared and spin-summed
Feynman amplitude for a given process and given point in phasespace. To generate
appropriate points we use the phasespace factorization discussed in Section 2.1, that
is, we generate a properly distributed q2 and the angles Ω1 of p1 in the restframe of
the decaying particle and the angle of p2 in the restframe of the intermediate particle
equally distributed. We generate q2 distributed as a Breit-Wigner resonance around
the intermediate mass m, which is realized by

q2 = m2 +mΓ tan(x) (3.17)

with a linear mapping for x

x = (xmax − xmin)r + xmin (3.18)

where xmax/min = arctan
q2
max/min

−m2

mΓ
and r is equally-distributed in [0, 1]. The phas-

espace factor then becomes

dq2

2π
= dr

xmax − xmin

2π

(q2 −m2)2 + (mΓ)2

mΓ
(3.19)

which cancels the denominator of the propagator and thus reduces the variance of the
integrand (as described in the introduction) to speed up the Monte Carlo integration.
The benefit of this parameterization is that the angles are equally distributed and
most of the q2-values are centered aroundm2 which makes the Monte Carlo integration
converge faster. To determine the bounds for q2 we use evaluations of q2 once in the
restframe of the parent particle and once in the restframe of the intermediate particle

q2 = (P − p1)
2 = M2 − 2Pp1 +m2

1 = M2 − 2M
√
m2

1 + ~p 2
1 +m2

1

≤ (M −m1)
2

and

q2 = (p2 + p3)
2 = m2

2 + 2
√
m2

2 + ~p 2
2

√
m2

3 + ~p 2
3 − 2~p2 · ~p3 +m2

3

= m2
2 + 2

√
m2

2 + ~p 2
2

√
m2

3 + ~p 2
2 + 2~p 2

2 +m2
3

≥ (m2 +m3)
2

55



3. NWA in the MSSM

to obtain

(m2 +m3)
2 ≤ q2 ≤ (M −m1)

2. (3.20)

We also implement a check for energy-momentum conservation on the generated phas-
espace points. Now, p1 can easily be calculated in the restframe of P while p2 and p3

are calculated in the restframe of q. After boosting p2 and p3 back into the restframe
of P , we have generated an appropriate point in phasespace for which SMadgraph
returns the squared and spin-summed matrix element. The integration can be carried
out by multiplying the squared amplitude with the phasespace factors and the Jacobi
determinant and summing up the results.
The analytical calculations for each process have been checked against the Monte
Carlo integrated matrix element. The check for each process has been performed for
3 points in parameter space, where we compared the amplitudes for three phasespace
points and the total decay widths. The agreement between analytical and numerical
results is at least 8 significant digits for the amplitudes and 5 significant digits for the
total decay widths.

56



Improving the NWA per-
formance 4
For almost all of the processes with large deviations, the sum of the daughter masses is
not too far away from the parent mass in one of the 1 → 2 decays. This suggests that
at least part of the deviations can be traced back to the vanishing phasespace factors
near the kinematical limits, forcing ΓNWA → 0 while Γofs stays finite. Therefore, we
now want to find improvements of the simple ΓNWA = Γprod×BR factorization which
better take into account the phasespace properties and on the other hand maintain
as much simplification of the NWA formula as possible.

4.1. Effective-mass NWA

As mentioned before, at least some deviation can be traced back to the vanishing
phasespace in the NWA calculations with the daughter masses approaching the par-
ent mass. Since we want to maintain the general simplifications of the NWA, we can
not rely on special properties of the matrix elements to find improvements. The first
thing to do therefore is to improve the NWA for the all-scalar process, where the
matrix elements do not play any role at all. In Figure 4.1 the obtained total widths
in NWA and off-shell are plotted in some arbitrary normalization as functions of the
intermediate-particle mass m. As can be seen there, with m approaching the kine-
matical limits, the NWA width starts to fall stronger than the off-shell width. We now
want to find a better description with improved threshold behavior. Recalling from
the previous sections that – neglecting spin correlation – we made the replacement∫

dq2

2π
Γp(q

2)
2m

(q2 −m2)2 +m2Γ2
Γd(q

2) → Γp(m
2)

1

Γ
Γd(m

2),

the NWA could also be obtained by inserting a factor πmΓδ(q2−m2) into the integral,
giving ∫

dq2Γp(q
2)

m2Γ

(q2 −m2)2 +m2Γ2
Γd(q

2)δ(q2 −m2). (4.1)

The factor πmΓ is a normalization factor introduced to obtain the correct NWA
formula. Taking a look at the integrand, which is strongly peaked around q2 = m2,

57



4. Improving the NWA performance
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Figure 4.1.: Threshold behavior of NWA decay rate (dashed line) compared to off-
shell decay rate (solid line) for Γ/m = 0.01. On the lefthand side the behavior for
m→ m1 +m2 is shown, on the righthand side for m→M −m1.

this corresponds to taking the value of the integrand at its maximum and multiply
it with a factor proportional to the width of the peak, basically mΓ. The problem
now can be reformulated as follows. For q2 = m2 the squared denominator of the
propagator has its maximum – it is not necessarily the maximum of the full integrand
because Γp and Γd, in particular the phasespaces, are functions of q2 as well. Especially
as we approach the kinematic limits in one of the decays, these phasespace factors
vanish and the maximum is shifted considerably. To take this into account while not
being too much process-specific, we want to determine the maximum of the product

of the phasespace factors and the squared denominator PS(q2)
(q2−m2)+m2Γ2 and consider it

as an effective mass m2
eff . This effective mass does not depend on any process-specific

information and is given as a function of the general kind of process, e.g. 1 → 3 or
2 → 4 and the masses of the external particles. The determination of the correct
maximum might be too complicated for arbitrary phasespaces, but as we expect the
maximum not to shift too much, we use a series expansion of the phasespacefactor in
q2 up to the second order. The maximum of the integrand

I(q2) :=
PS(m2) + dPS

dq2 (m2)(q2 −m2) + 1
2

d2PS
d(q2)2

(m2)(q2 −m2)2

(q2 −m2)2 +m2Γ2
(4.2)

can then be determined analytically by solving d
dq2 I(q

2) = 0. The solution, with

a = PS(m2), b = d
dq2PS(m2) and c = d2

d(q2)2
PS(m2), is

m2
eff = m2 +

1

b

(
−a+ cm2Γ2 ±

√
a2 − 2cm2Γ2a+ c2m4Γ4 + b2m2Γ2

)
. (4.3)

Only the positive-sign solution is relevant, since for Γ → 0, the effective mass should
fulfill m2

eff → m2. With this effective mass, the NWA formula is the same as before
with m2 replaced by m2

eff

ΓNWAeff
= Γp(m

2
eff )

1

Γ
Γd(m

2
eff ). (4.4)
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4.1. Effective-mass NWA

With m2
eff → m2 for Γ → 0, we maintain the property that Γofs/ΓNWAeff

→ 1 for
Γ → 0 which was discussed for the NWA in Section 2.4. For the 1 → 3 decays the
phasespace factor is

PS(q2) =
1

162π4

|~p1(q
2)||~p2(q

2)|
M

√
q2

(4.5)

and in Figure 4.2 the widths calculated off-shell as well as with NWA are compared
to the new method. The modified NWA reproduces the usual NWA widths for m2 far
away from the kinematical bounds but produces much better results as m2 approaches
these bounds in one of the decays. There is only a small region for m → m2 + m3,
where the too strong decrease in the NWA width compensates the slightly too large
NWA width for larger values of m. There the usual NWA produces slightly better
results. Since in the calculation we only use a series expansion of the phasespace factor,
which can be obtained for any kind of phasespace, this procedure can be applied to
arbitrary processes. The expansion up to second order in q2 is a compromise to keep
the calculation as simple as possible while achieving a satisfactory precision. This
choice is not critical – expansion linear in q2 could be chosen as well, simplifying the
expression for m2

eff . This modified NWA should produce the same results for the
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Figure 4.2.: Threshold behavior of the modified NWA formula in comparison to the
ordinary NWA and off-shell calculation. The lefthand side shows m → m1 + m2,
the righthand side m → M − m1 for Γ/m = 0.01. The dashed line is the off-shell
calculation, the dot-dashed line the NWA result and the solid one is obtained with
the effective-mass NWA.

scans in Section 3.2, since m-values near the kinematic bounds are excluded there.
For the analysis in Sections 3.3 and 3.4 slight improvements are expected. Therefore
the program is rerun with the modified NWA. For the decays with stable final state
particles, the new results are listed in Table 4.1. Again all resonant decays with
stable final state particles are listed and the first and second generation quarks are
represented by u and d. Only for the decays at SPS 3 the deviation is almost the same
as before, while we see a slight decrease of the relative error for all other processes. We
note that the total widths of the resonant particles at SPS 3 are very small and that
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4. Improving the NWA performance

process at SPS R′ R Γ/m in %

g̃ → dd̃?
L → dd̄χ̃0

1 1a 9.03 9.54 0.935
. 1b 9.20 9.72 0.935
. 3 4.88 5.18 0.926
. 5 10.8 11.4 0.956
. 6 9.13 9.69 0.938

g̃ → uũ?
L → uūχ̃0

1 1a 5.62 5.98 0.976
. 1b 6.93 7.35 0.952
. 5 8.93 9.46 0.975
. 6 6.15 6.57 0.967

χ̃+
1 → χ̃0

1W
+ → χ̃0

1ud̄ 1a 4.61 5.21 2.49
χ̃+

1 → χ̃0
1W

+ → χ0
1e

+νe 1a 4.61 5.21 2.49
χ̃+

1 → νeẽ
?
L → νee

+χ̃0
1 3 6.96 6.99 0.0550

χ̃0
2 → e+ẽL → e+e−χ̃0

1 3 9.99 10.0 0.0550
χ̃0

3 → e+ẽR → e+e−χ̃0
1 3 9.75 9.76 0.0223

χ̃0
4 → e+ẽR → e+e−χ̃0

1 3 10.1 10.1 0.0223

g̃ → b̄b̃2 → b̄bχ̃0
1 4 5.98 6.43 1.11

g̃ → ūũL → ūdχ̃+
1 9 98.8 114 1.19

g̃ → dd̃?
L → dūχ̃+

1 9 169 209 1.19

Table 4.1.: Specific processes in the MSSM for the ten SPS points. R′ is the relative
error normalized to Γ/m, obtained with the modified NWA formula of Equation (4.4).
For comparison we also list the relative deviation R, obtained with the original NWA
formula.

m is not close to the kinematical bounds. Therefore we do not find an improvement
of the NWA for these decays.

4.2. Correct treatment of integration bounds

As we have seen in Section 2.3, the NWA can be obtained by shifting the integration
bounds for q2 to infinity and this way integrating the full Breit-Wigner form. This
is a good approximation if the resonance is sufficiently centered in the kinematically
allowed region, making the contributions from the kinematically forbidden region
small. If on the other hand, the resonance is near one of the bounds, considerable
parts of the Breit-Wigner are kinematically forbidden and shifting the integration
bounds is not a good approximation anymore. Since the integral∫ b2

a2

dq2

2π

1

(q2 −m2)2 +m2Γ2

60



4.2. Correct treatment of integration bounds

can be calculated analytically, we can also use the NWA without the shift of the
integration bounds. This way we obtain

Γ′NWA = Γp ×
∫ q2

max

q2
min

dq2

2π

2m

(q2 −m2)2 + (mΓ)2
× Γd (4.6)

= Γp ×
∫ (M−m1)2

(m2+m3)2

dq2

2π

2m

(q2 −m2)2 + (mΓ)2
× Γd (4.7)

= Γp ×
∫ (M−m1)2−m2

(m2+m3)2−m2

dx

2π

2m

x2 + (mΓ)2
× Γd (4.8)

=
ΓpΓd

Γ
×

1

π

[
arctan

(
(M −m1)

2 −m2

mΓ

)
− arctan

(
(m2 +m3)

2 −m2

mΓ

)]
.(4.9)

Now, this formula can be used for the factorized calculation. With this NWA formula,
the proof that the error is of O(Γ/m) would even be shortened since the term α
which we get in the proof in Section 2.6 does not occur. However, we find that
this modified formula produces even larger errors than the ordinary NWA. This can
be understood by considering that all the decays with bad NWA behavior have a
large positive R due to the fact that the NWA cross section is too small for these
decays. This smallness of the NWA result can be attributed to correlation effects,
off-shell contributions or vanishing phasespace factors. But anyway, the corrections
due to the correct integration bounds only further reduce the NWA decay rate, thus
increasing the error. In fact the error due to the integration of the full Breit-Wigner
partly compensates the error due to the vanishing phasespace when approaching the
kinematical bounds.
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Summary 5
Good narrow-width approximation (NWA) performance is a necessary precondition
to obtain accurate predictions, in particular with beyond-leading-order calculations,
for complicated scattering processes such as production and decay of supersymmetric
particles. The purpose of this work was to systematically check the NWA for BSM
physics.
We first developed and proved general properties of the NWA. We gave a formal way of
obtaining the NWA from the full calculation by using certain assumptions and showed
that the NWA becomes exact with vanishing width of the intermediate particle. Then
we considered correlation effects and showed that they have no impact on total decay
rates once we assume the intermediate particle to be on the mass-shell. The main
result of our general investigation is that the NWA error is of O(Γ/m) which we have
proven under certain weak assumptions.
We then focussed on the MSSM as a specific BSM model and chose the 1 → 3 decays
for a systematic analysis. These processes frequently occur as parts of decay chains
and on the other hand are simple enough to be checked for all particle combinations
and large numbers of parameter configurations. We generally found good NWA per-
formance for resonances in the very interior of the kinematically allowed region but
process-specific, problematic behavior near the kinematical bounds. After giving a
ranking of the different processes with respect to NWA performance, we discussed the
relevant decays and how the deviations arise. The two main conditions that have to
be fulfilled for the NWA to break down are a large hierarchy between the mass of the
parent particle and the masses of the decay products, and the mass of the unstable
particle has to be near the kinematical bounds.
The third part was the application of the analysis done so far to specific scenarios
of the MSSM. For that purpose we used the SPS benchmark points to generate and
check all possible resonant 1 → 3 decays for these specific low-energy scenarios. We
filtered out the processes with stable final states and large deviations and for these
considered all sub- and non-resonant contributions as well as interference effects. For
the first eight SPS points we found only the process χ̃+

1 → χ̃0
1ud̄ with bad NWA

performance which is not remedied by other contributions. For this process we have
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5. Summary

an error of about 11% and after arguing on a very general footing that interference
effects are small, the NWA is still a good approximation for all other processes. At
SPS 9 we again found two processes giving very bad NWA results which are too small
by more than a factor 2 even though the interval [m− Γ,m+ Γ] is completely inside
the kinematically allowed region. However, these are very few problematic decays and
keeping them in mind the NWA should very well be applicable for the 1 → 3 decays
with stable final states at the SPS points. For processes with unstable particles in the
’final state’ we found a lot of decays with bad NWA performance. For one unstable
and two stable particles as decay products the results are given in the appendix.
In the last part of this work we again considered the assumptions and approximations
that are necessary to formally obtain the NWA and developed improvements of the
simple σp × BR formula. These modifications preserve the simplifications due to the
NWA not only for loop calculations but also for tree-level processes. We improved the
treatment of the phasespace by taking into account the strongly varying phasespace
factors near the kinematical bounds and the resulting modified NWA formula is as
simple as the original one up to the replacement of the intermediate-particle mass by
an effective mass, which depends on the numbers of incoming and outgoing particles
and their respective masses. We then applied this modified NWA formula to the de-
cays obtained for the SPS points and generally found a slight decrease of the NWA
error.
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Feynman diagrams and
amplitudes A
In Tables A.1-A.3 we show the 48 processes with the corresponding amplitudes. Since
we will sum/average over the spins and polarizations we do not write the indices
explicitly.

diagram process amplitude

� ffs-sff ū(p1)C1u(P )× ū(p3)C2v(p2)

� ffs-sss ū(p1)C1u(P )λ2

� ffs-ssv ū(p1)C1u(P )× λ2(q + p2) · ε?(p3)

� ffs-svv ū(p1)C1u(P )× λ2ε
?(p2) · ε?(p3)

� ffv-vff ū(p1)γµC1u(P )× (−gµν + qµqν

m2 )× ū(p3)γµC2v(p2)

� ffv-vss ū(p1)γµC1u(P )× (−gµν + qµqν

m2 )× λ2(p2 − p3)ν

� ffv-vsv ū(p1)γµC1u(P )× (−gµν + qµqν

m2 )× λ2ε
?
ν(p3)

� ffv-vvv
ū(p1)γµC1u(P )× (−gµν + qµqν

m2 )× iλ2ε
?
ρ(p2)ε

?
σ(p3)

(gνσ(q + p3)
ρ + gσρ(p2 − p3)

ν − gρν(p2 + q)σ)

� fsf-ffv ū(p2)γ
νC2ε

?
ν(p3)× (/q +m)× C1u(P )

Table A.1.: Diagrams and amplitudes for the resonant 1 → 3 decays. The ampli-
tudes are given with Ci = αiPL + βiPR. The factor i

q2−m2+imΓ
is suppressed and

spin/polarization indices are not written explicitly.
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A. Feynman diagrams and amplitudes

diagram process amplitude

� fsf-fsf ū(p3)C2 × (/q +m)× C1u(P )

� fvf-ffv ū(p2)γ
νC2ε

?
ν(p3)× (/q +m)× γµC1ε

?
µ(p1)u(P )

� fvf-fsf ū(p3)C2 × (/q +m)× γµC1ε
?
µ(p1)u(P )

� sff-ffs ū(p2)C2 × (/q +m)× C1v(p1)

� sff-ffv ū(p2)γ
νC2ε

?
ν(p3)× (/q +m)× C1v(p1)

� sss-sff λ1ū(p3)C2v(p2)

� sss-sss λ1λ2

� sss-ssv λ1λ2(q + p2) · ε?(p3)

� sss-svv λ1λ2ε
?(p2) · ε?(p3)

� ssv-vff λ1(P + q)µ × (−gµν + qµqν

m2 )× ū(p3)γµC2v(p2)

� ssv-vss λ1(P + q)µ × (−gµν + qµqν

m2 )× λ2(p2 − p3)ν

� ssv-vsv λ1(P + q)µ × (−gµν + qµqν

m2 )× λ2ε
?
ν(p3)

� ssv-vvv
λ1(P + q)µ × (−gµν + qµqν

m2 )× iλ2ε
?
ρ(p2)ε

?
σ(p3)

(gνσ(q + p3)
ρ + gσρ(p2 − p3)

ν − gρν(p2 + q)σ)

� svs-sff λ1(P + q) · ε?(p1)× ū(p3)C2v(p2)

� svs-sss λ1(P + q) · ε?(p1)λ2

� svs-ssv λ1(P + q) · ε?(p1)× λ2(q + p2) · ε?(p3)

� svs-svv λ1(P + q) · ε?(p1)× λ2ε
?(p2) · ε?(p3)

� svv-vff λ1ε
?
µ(p1)× (−gµν + qµqν

m2 )× ū(p3)γµC2v(p2)

� svv-vss λ1ε
?
µ(p1)× (−gµν + qµqν

m2 )× λ2(p2 − p3)ν

� svv-vsv λ1ε
?
µ(p1)× (−gµν + qµqν

m2 )× λ2ε
?
ν(p3)

Table A.2.: Diagrams and amplitudes for the resonant 1 → 3 decays. Details as in
Table A.1.
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diagram process amplitude

� svv-vvv
λ1ε

?
µ(p1)× (−gµν + qµqν

m2 )× iλ2ε
?
ρ(p2)ε

?
σ(p3)

(gνσ(q + p3)
ρ + gσρ(p2 − p3)

ν − gρν(p2 + q)σ)

� vff-ffv ū(p2)γ
µC2ε

?
µ(p3)× (/q +m)× γνC1v(p1)εν(P )

� vff-fsf ū(p3)C2 × (/q +m)× γµC1εµ(P )v(p1)

� vss-sff λ1(p1 − q) · ε(P )× ū(p3)C2v(p2)

� vss-sss λ1(p1 − q) · ε(P )λ2

� vss-ssv λ1(p1 − q) · ε(P )× λ2(q + p2) · ε?(p3)

� vss-svv λ1(p1 − q) · ε(P )× λ2ε
?(p2) · ε?(p3)

� vsv-vff λ1εµ(P )× (−gµν + qµqν

m2 )× ū(p3)γνC2v(p2)

� vsv-vss λ1εµ(P )× (−gµν + qµqν

m2 )× λ2(p2 − p3)ν

� vsv-vsv λ1εµ(P )× (−gµν + qµqν

m2 )× λ2ε
?
ν(p3)

� vsv-vvv
λ1εµ(P )× (−gµν + qµqν

m2 )× iλ2ε
?
ρ(p2)ε

?
σ(p3)

λ2(g
νσ(q + p3)

ρ + gσρ(p2 − p3)
ν − gρν(p2 + q)σ)

� vvs-sff λ1ε(P ) · ε?(p1)× ū(p3)C2v(p2)

� vvs-sss λ1ε(P ) · ε?(p1)λ2

� vvs-ssv λ1ε(P ) · ε?(p1)× λ2(q + p2) · ε?(p3)

� vvs-svv λ1ε(P ) · ε?(p1)× λ2ε
?(p2) · ε?(p3)

� vvv-vff
λ1(g

κµ(P + q)λ + gµλ(p1 − q)κ − gλκ(p1 + P )µ)
iεκ(P )ε?λ(p1)× (−gµν + qµqν

m2 )× ū(p3)γµC2v(p2)

� vvv-vss
λ1(g

κµ(P + q)λ + gµλ(p1 − q)κ − gλκ(p1 + P )µ)
iεκ(P )ε?λ(p1)× (−gµν + qµqν

m2 )× λ2(p2 − p3)ν

� vvv-vsv
λ1(g

κµ(P + q)λ + gµλ(p1 − q)κ − gλκ(p1 + P )µ)
iεκ(P )ε?λ(p1)× (−gµν + qµqν

m2 )× λ2ε
?
ν(p3)

� vvv-vvv
(gκµ(P + q)λ + gµλ(p1 − q)κ − gλκ(p1 + P )µ)
iεκ(P )ε?λ(p1)× (−gµν + qµqν

m2 )× iε?ρ(p2)ε
?
σ(p3)

λ2(g
νσ(q + p3)

ρ + gσρ(p2 − p3)
ν − gρν(p2 + q)σ)

Table A.3.: Diagrams and amplitudes for the resonant 1 → 3 decays. Details as in
Table A.1.
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Decay widths at SPS
points B

process Γofs/GeV ΓNWA/GeV Γsdecay/GeV Γmg/GeV

g̃ → dd̃L → ddχ̃0
1 0.003548 0.003258 0.003296 0.003556

g̃ → dd̃R → ddχ̃0
1 0.3369 0.3365 0.3404 0.3369

g̃ → ddχ̃0
1

∑
ΓNWA = 0.6795 GeV 0.6808

g̃ → uũL → uuχ̃0
1 0.001372 0.001297 0.001306 0.001370

g̃ → uũR → uuχ̃0
1 0.2983 0.2965 0.3000 0.2983

g̃ → uuχ̃0
1

∑
ΓNWA = 0.5955 GeV 0.5993

χ̃+
1 → χ̃0

1W
+ → χ̃0

1ud 4.713 · 10−4 4.252 · 10−4 4.251 · 10−4 4.713 · 10−4

χ̃+
1 → dũL → dχ̃0

1u 6.138 · 10−9 - - 6.144 · 10−9

χ̃+
1 → ud̃L → uχ̃0

1u 1.723 · 10−8 - - 1.725 · 10−8

χ̃+
1 → χ̃0

1ud ΓNWA = 4.252 · 10−4 GeV 4.731 · 10−4

χ̃+
1 → χ̃0

1W
+ → χ̃0

1e
+νe 1.571 · 10−4 1.417 · 10−4 1.371 · 10−4 1.571 · 10−4

χ̃+
1 → e+ν̃e → e+χ̃0

1νe 3.149 · 10−5 - - 3.159 · 10−5

χ̃+
1 → νeẽL → νeχ̃

0
1e

+ 6.184 · 10−6 - - 6.188 · 10−6

χ̃+
1 → χ0

1e
+νe ΓNWA = 1.417 · 10−4 GeV 1.935 · 10−4

Table B.1.: Results for SPS 1a. SMadgraph results (Γmg) with 2 · 107 points and
Monte Carlo error ≈ 0.1%. The matrix elements of Madgraph and off-shell are equal
to at least 8 digits. The remaining deviations are due to the Monte Carlo integration.
For SM particle branching ratios, values from the PDG have been used in SDecay
results.
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B. Decay widths at SPS points

process Γofs/GeV ΓNWA/GeV Γsdecay/GeV Γmg/GeV

SPS 3

χ̃+
1 → χ̃0

1W
+ → χ̃0

1e
+νe 0.001444 0.001465 0.001419 0.001446

χ̃+
1 → e+ν̃e → e+χ̃0

1νe 0.04288 0.04290 0.04290 0.04181
χ̃+

1 → νeẽL → νeχ̃
0
1e

+ 0.01310 0.01305 0.01305 0.01304
χ̃+

1 → χ0
1e

+νe

∑
ΓNWA = 0.05742 GeV 0.05691

χ̃0
2 → χ̃0

1Z → χ̃0
1e

+e− 3.946 · 10−5 4.022 · 10−5 3.915 · 10−5 3.951 · 10−5

χ̃0
2 → e−ẽL → e−e+χ̃0

1 0.005645 0.005614 0.005614 0.005644
χ̃0

2 → e−ẽR → e−e+χ̃0
1 8.508 · 10−4 8.504 · 10−4 8.328 · 10−4 8.457 · 10−4

χ̃0
2 → χ̃0

1e
+e−

∑
ΓNWA = 0.01269 GeV 0.01300

SPS 9

g̃ → dd̃L → duχ̃0
1 0.03679 0.01057 0.01065 0.03718

g̃ → uũL → udχ̃0
1 0.04694 0.01989 0.01998 0.04692

g̃ → udχ̃0
1

∑
ΓNWA = 0.03046 GeV 0.08906

Table B.2.: Results for SPS 3 and SPS 9. Details as in Table B.1.
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Decay fragments at SPS
points C

process SPS R Γ/m in % (m+m1)/M (m2 +m3)/m

H± → χ̃0
1χ̃

±
1 → χ̃0

1χ̃
0
1W 1a 28.0 0.009 0.683 0.975

χ̃±2 → eν̃e → eeχ̃±1 1a 180.1 0.081 0.488 0.981
χ̃±2 → eν̃e → eνeχ̃

0
2 1a 133.7 0.081 0.488 0.977

χ̃0
3 → νeν̃e → νeeχ̃

±
1 1a 167.8 0.081 0.509 0.981

χ̃0
3 → νeν̃e → νeνeχ̃

0
2 1a 124.6 0.081 0.509 0.977

χ̃0
4 → νeν̃e → νeeχ̃

±
1 1a 181.4 0.081 0.485 0.981

χ̃0
4 → νeν̃e → νeνeχ̃

0
2 1a 134.7 0.081 0.485 0.977

ν̃e → eχ̃±1 → eχ̃0
1W 1a −22.5 0.009 0.981 0.975

ν̃e → νeχ̃
0
2 → νeẽRe 1a 40.5 0.011 0.977 0.796

c̃L → sχ̃±1 → sχ̃0
1W 1a 39.2 0.009 0.326 0.975

d̃L → uχ̃±1 → uχ̃0
1W 1a 39.9 0.009 0.320 0.975

ẽL → νeχ̃
±
1 → νeχ̃

0
1W 1a −10.2 0.009 0.895 0.975

s̃L → cχ̃±1 → cχ̃0
1W 1a 39.9 0.009 0.322 0.975

t̃1 → bχ̃±1 → bχ̃0
1W 1a 23.7 0.009 0.465 0.975

t̃1 → bχ̃±2 → bχ̃0
1W 1a 15.5 0.655 0.961 0.466

t̃1 → bχ̃±2 → bν̃ee 1a 28.1 0.655 0.961 0.488
t̃1 → bχ̃±2 → bẽLνe 1a 25.4 0.655 0.961 0.534
t̃2 → bχ̃±1 → bχ̃0

1W 1a 41.7 0.009 0.317 0.975
ũL → dχ̃±1 → dχ̃0

1W 1a 39.2 0.009 0.324 0.975
χ̃±2 → eν̃e → eχ̃±1 1b 11.9 0.093 0.618 0.942
χ̃0

3 → νeν̃e → νeχ̃
±
1 1b 11.0 0.093 0.631 0.942

χ̃0
4 → νeν̃e → νeχ̃

±
1 1b 12.1 0.093 0.616 0.942

Table C.1.: Specific processes in the MSSM at SPS points 1a and 1b. Here we show
the processes with one unstable and two stable particels in the ’final state’ and with
|R| > 5. The charge assignments are not written explicitly except of the charged
Higgs and Charginos to distinguish them from the neutral particles.
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C. Decay fragments at SPS points

process SPS R Γ/m in % (m+m1)/M (m2 +m3)/m

H± → χ̃0
1χ̃

±
1 → χ̃0

1χ̃
0
1W 2 23.6 0.003 0.238 0.856

ν̃e → eχ̃±1 → eχ̃0
1W 2 12.5 0.003 0.163 0.856

c̃L → sχ̃±1 → sχ̃0
1W 2 13.8 0.003 0.153 0.856

d̃L → uχ̃±1 → uχ̃0
1W 2 13.8 0.003 0.152 0.856

ẽL → νeχ̃
±
1 → νeχ̃

0
1W 2 12.5 0.003 0.163 0.856

s̃L → cχ̃±1 → cχ̃0
1W 2 13.8 0.003 0.153 0.856

t̃2 → bχ̃±1 → bχ̃0
1W 2 10.5 0.003 0.186 0.856

ũL → dχ̃±1 → dχ̃0
1W 2 13.8 0.003 0.153 0.856

H0 → ẽRẽR → ẽReχ̃
0
1 3 10.8 0.022 0.614 0.889

ν̃e → νeχ̃
0
4 → νeh

0χ̃0
1 4 15.3 0.499 0.944 0.560

c̃L → cg̃ → cb̃1b 4 14.7 0.287 0.967 0.840

c̃R → cg̃ → cb̃1b 4 14.5 0.287 0.982 0.840

c̃R → cg̃ → cb̃2b 4 10.4 0.287 0.982 0.934

d̃R → dg̃ → db̃1b 4 42.8 0.287 0.987 0.840

d̃R → dg̃ → db̃2b 4 34.8 0.287 0.987 0.934
ẽR → eχ̃0

3 → eχ̃0
1Z 4 22.2 0.508 0.961 0.528

ẽR → eχ̃0
3 → eh0χ̃0

1 4 32.4 0.508 0.961 0.582
ẽR → eχ̃0

4 → eχ̃0
1Z 4 4936.4 0.499 0.998 0.508

ẽR → eχ̃0
4 → eh0χ̃0

1 4 6739.9 0.499 0.998 0.560

s̃R → sg̃ → sb̃1b 4 43.0 0.287 0.988 0.840

s̃R → sg̃ → sb̃2b 4 35.1 0.287 0.988 0.934

t̃2 → b̃1W → b̃1cs 4 32.8 2.491 0.996 0.027

t̃2 → b̃1W → b̃1eνe 4 32.8 2.491 0.996 ≈ 0

t̃2 → b̃1W → b̃1ud 4 32.8 2.491 0.996 ≈ 0

t̃2 → Wb̃1 → Wbχ̃0
1 4 756.9 1.018 0.996 0.204

ũL → ug̃ → ub̃1b 4 14.6 0.287 0.965 0.840

ũR → ug̃ → ub̃1b 4 14.4 0.287 0.981 0.840

ũR → ug̃ → ub̃2b 4 10.3 0.287 0.981 0.934

Table C.2.: Specific processes in the MSSM at SPS points 2, 3 and 4. Details as in
Table C.1.
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process SPS R Γ/m in % (m+m1)/M (m2 +m3)/m

χ̃±2 → eν̃e → eeχ̃±1 5 29.9 0.097 0.383 0.941
χ̃±2 → eν̃e → eνeχ̃

0
2 5 30.4 0.097 0.383 0.941

χ̃±2 → νeẽL → νeeχ̃
0
2 5 10.2 0.112 0.400 0.902

χ̃±2 → νeẽL → νeνeχ̃
±
1 5 10.1 0.112 0.400 0.902

χ̃0
3 → eẽL → eeχ̃0

2 5 10.2 0.112 0.400 0.902
χ̃0

3 → eẽL → eνeχ̃
±
1 5 10.1 0.112 0.400 0.902

χ̃0
3 → νeν̃e → νeeχ̃

±
1 5 29.8 0.097 0.384 0.941

χ̃0
3 → νeν̃e → νeνeχ̃

0
2 5 30.3 0.097 0.384 0.941

χ̃0
4 → eẽL → eeχ̃0

2 5 10.4 0.112 0.394 0.902
χ̃0

4 → eẽL → eνeχ̃
±
1 5 10.3 0.112 0.394 0.902

χ̃0
4 → νeν̃e → νeeχ̃

±
1 5 30.4 0.097 0.378 0.941

χ̃0
4 → νeν̃e → νeνeχ̃

0
2 5 30.9 0.097 0.378 0.941

b̃2 → bχ̃0
3 → bχ̃0

1Z 5 290.9 1.556 0.995 0.329

b̃2 → bχ̃0
3 → bν̃eνe 5 527.2 1.556 0.995 0.384

b̃2 → bχ̃0
3 → bb̃1b 5 85.1 1.556 0.995 0.879

b̃2 → bχ̃0
3 → bẽLe 5 514.5 1.556 0.995 0.400

b̃2 → bχ̃0
3 → bẽRe 5 363.5 1.556 0.995 0.301

b̃2 → bχ̃0
3 → bh0χ̃0

1 5 469.6 1.556 0.995 0.365
c̃L → cχ̃0

3 → cχ̃0
1Z 5 12.5 1.556 0.951 0.329

c̃L → cχ̃0
3 → cν̃eνe 5 28.3 1.556 0.951 0.384

c̃L → cχ̃0
3 → cẽLe 5 27.6 1.556 0.951 0.400

c̃L → cχ̃0
3 → cẽRe 5 16.7 1.556 0.951 0.301

c̃L → cχ̃0
3 → ch0χ̃0

1 5 24.0 1.556 0.951 0.365
c̃L → cχ̃0

4 → cχ̃0
1Z 5 26.0 2.921 0.965 0.324

c̃L → cχ̃0
4 → cν̃eνe 5 54.0 2.921 0.965 0.378

c̃L → cχ̃0
4 → cẽLe 5 52.7 2.921 0.965 0.394

c̃L → cχ̃0
4 → cẽRe 5 33.2 2.921 0.965 0.297

c̃L → cχ̃0
4 → ch0χ̃0

1 5 46.2 2.921 0.965 0.360
c̃L → sχ̃±2 → sχ̃0

1W 5 15.3 1.924 0.952 0.312
c̃L → sχ̃±2 → sν̃ee 5 29.6 1.924 0.952 0.383
c̃L → sχ̃±2 → sẽLνe 5 28.9 1.924 0.952 0.400
c̃L → sχ̃±2 → st̃1b 5 28.2 1.924 0.952 0.416
c̃R → cχ̃0

3 → cχ̃0
1Z 5 56.6 1.556 0.976 0.329

c̃R → cχ̃0
3 → cν̃eνe 5 66.9 1.556 0.976 0.384

c̃R → cχ̃0
3 → cb̃1b 5 16.9 1.556 0.976 0.879

c̃R → cχ̃0
3 → cẽLe 5 66.1 1.556 0.976 0.400

c̃R → cχ̃0
3 → cẽRe 5 120.1 1.556 0.976 0.301

Table C.3.: Specific processes in the MSSM at SPS point 5. Details as in Table C.1.
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C. Decay fragments at SPS points

process SPS R Γ/m in % (m+m1)/M (m2 +m3)/m

c̃R → cχ̃0
3 → ch0χ̃0

1 5 94.2 1.556 0.976 0.365
c̃R → cχ̃0

4 → cχ̃0
1Z 5 306.4 2.921 0.991 0.324

c̃R → cχ̃0
4 → cν̃eνe 5 359.6 2.921 0.991 0.378

c̃R → cχ̃0
4 → cb̃1b 5 69.1 2.921 0.991 0.866

c̃R → cχ̃0
4 → cẽLe 5 355.2 2.921 0.991 0.394

c̃R → cχ̃0
4 → cẽRe 5 655.3 2.921 0.991 0.297

c̃R → cχ̃0
4 → ch0χ̃0

1 5 510.6 2.921 0.991 0.360

d̃L → dχ̃0
3 → dν̃eνe 5 23.6 1.556 0.944 0.384

d̃L → dχ̃0
3 → dẽLe 5 23.0 1.556 0.944 0.400

d̃L → dχ̃0
3 → dẽRe 5 13.6 1.556 0.944 0.301

d̃L → dχ̃0
3 → dh0χ̃0

1 5 19.9 1.556 0.944 0.365

d̃L → dχ̃0
4 → dχ̃0

1Z 5 19.8 2.921 0.959 0.324

d̃L → dχ̃0
4 → dν̃eνe 5 42.3 2.921 0.959 0.378

d̃L → dχ̃0
4 → dẽLe 5 41.3 2.921 0.959 0.394

d̃L → dχ̃0
4 → dẽRe 5 25.6 2.921 0.959 0.297

d̃L → dχ̃0
4 → dh0χ̃0

1 5 36.1 2.921 0.959 0.360

d̃L → uχ̃±2 → uχ̃0
1W 5 12.3 1.924 0.945 0.312

d̃L → uχ̃±2 → uν̃ee 5 24.7 1.924 0.945 0.383

d̃L → uχ̃±2 → uẽLνe 5 24.0 1.924 0.945 0.400

d̃L → uχ̃±2 → ut̃1b 5 23.5 1.924 0.945 0.416

d̃R → dχ̃0
3 → dχ̃0

1Z 5 123.5 1.556 0.983 0.329

d̃R → dχ̃0
3 → dν̃eνe 5 144.2 1.556 0.983 0.384

d̃R → dχ̃0
3 → db̃1b 5 42.9 1.556 0.983 0.879

d̃R → dχ̃0
3 → dẽLe 5 142.5 1.556 0.983 0.400

d̃R → dχ̃0
3 → dẽRe 5 255.8 1.556 0.983 0.301

d̃R → dχ̃0
3 → dh0χ̃0

1 5 201.4 1.556 0.983 0.365

d̃R → dχ̃0
4 → dχ̃0

1Z 5 8279.6 2.921 0.998 0.324

d̃R → dχ̃0
4 → dν̃eνe 5 9764.7 2.921 0.998 0.378

d̃R → dχ̃0
4 → db̃1b 5 1832.3 2.921 0.998 0.866

d̃R → dχ̃0
4 → dẽLe 5 9638.2 2.921 0.998 0.394

d̃R → dχ̃0
4 → dẽRe 5 18328 2.921 0.998 0.297

d̃R → dχ̃0
4 → dh0χ̃0

1 5 14121.2 2.921 0.998 0.360

g̃ → bb̃2 → bbχ̃0
3 5 60.4 0.102 0.903 0.995

g̃ → cc̃L → ccχ̃0
3 5 −12.6 0.975 0.937 0.951

Table C.4.: Specific processes in the MSSM at SPS point 5. Details as in Table C.1.
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process SPS R Γ/m in % (m+m1)/M (m2 +m3)/m

g̃ → cc̃L → ccχ̃0
4 5 −12.8 0.975 0.937 0.965

g̃ → cc̃L → csχ̃±2 5 −12.6 0.975 0.937 0.952
g̃ → cc̃R → ccχ̃0

4 5 56.2 0.211 0.913 0.991

g̃ → dd̃L → ddχ̃0
3 5 −12.9 0.956 0.940 0.944

g̃ → dd̃L → ddχ̃0
4 5 −13.8 0.956 0.940 0.959

g̃ → dd̃L → duχ̃±2 5 −13.0 0.956 0.940 0.945

g̃ → dd̃R → ddχ̃0
3 5 15.2 0.053 0.903 0.983

g̃ → dd̃R → ddχ̃0
4 5 1992.0 0.053 0.903 0.998

g̃ → ss̃L → scχ̃±2 5 −13.0 0.956 0.941 0.947
g̃ → ss̃L → ssχ̃0

3 5 −12.9 0.956 0.941 0.945
g̃ → ss̃L → ssχ̃0

4 5 −13.8 0.956 0.941 0.960
g̃ → ss̃R → ssχ̃0

3 5 15.3 0.053 0.904 0.984
g̃ → ss̃R → ssχ̃0

4 5 3284.3 0.053 0.904 ≈ 1
g̃ → uũL → udχ̃±2 5 −12.6 0.975 0.935 0.950
g̃ → uũL → uuχ̃0

3 5 −12.5 0.975 0.935 0.949
g̃ → uũL → uuχ̃0

4 5 −12.8 0.975 0.935 0.964
g̃ → uũR → uuχ̃0

4 5 54.9 0.211 0.911 0.990
s̃L → cχ̃±2 → cχ̃0

1W 5 12.3 1.924 0.947 0.312
s̃L → cχ̃±2 → cν̃ee 5 24.7 1.924 0.947 0.383
s̃L → cχ̃±2 → cẽLνe 5 24.1 1.924 0.947 0.400
s̃L → cχ̃±2 → ct̃1b 5 23.5 1.924 0.947 0.416
s̃L → sχ̃0

3 → sχ̃0
1Z 5 10.0 1.556 0.945 0.329

s̃L → sχ̃0
3 → sν̃eνe 5 23.7 1.556 0.945 0.384

s̃L → sχ̃0
3 → sẽLe 5 23.1 1.556 0.945 0.400

s̃L → sχ̃0
3 → sẽRe 5 13.6 1.556 0.945 0.301

s̃L → sχ̃0
3 → sh0χ̃0

1 5 19.9 1.556 0.945 0.365
s̃L → sχ̃0

4 → sχ̃0
1Z 5 19.8 2.921 0.960 0.324

s̃L → sχ̃0
4 → sν̃eνe 5 42.3 2.921 0.960 0.378

s̃L → sχ̃0
4 → sẽLe 5 41.3 2.921 0.960 0.394

s̃L → sχ̃0
4 → sẽRe 5 25.6 2.921 0.960 0.297

s̃L → sχ̃0
4 → sh0χ̃0

1 5 36.1 2.921 0.960 0.360
s̃R → sχ̃0

3 → sχ̃0
1Z 5 124.0 1.556 0.984 0.329

s̃R → sχ̃0
3 → sν̃eνe 5 144.7 1.556 0.984 0.384

s̃R → sχ̃0
3 → sb̃1b 5 43.1 1.556 0.984 0.879

s̃R → sχ̃0
3 → sẽLe 5 143.0 1.556 0.984 0.400

s̃R → sχ̃0
3 → sẽRe 5 256.8 1.556 0.984 0.301

s̃R → sχ̃0
3 → sh0χ̃0

1 5 202.2 1.556 0.984 0.365

Table C.5.: Specific processes in the MSSM at SPS point 5. Details as in Table C.1.
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C. Decay fragments at SPS points

process SPS R Γ/m in % (m+m1)/M (m2 +m3)/m

s̃R → sχ̃0
4 → sχ̃0

1Z 5 13356.5 2.921 ≈ 1 0.324
s̃R → sχ̃0

4 → sν̃eνe 5 15749.8 2.921 ≈ 1 0.378

s̃R → sχ̃0
4 → sb̃1b 5 2967.1 2.921 ≈ 1 0.866

s̃R → sχ̃0
4 → sẽLe 5 15545.9 2.921 ≈ 1 0.394

s̃R → sχ̃0
4 → sẽRe 5 29550.1 2.921 ≈ 1 0.297

s̃R → sχ̃0
4 → sh0χ̃0

1 5 22770.6 2.921 ≈ 1 0.360
t̃2 → bχ̃±2 → bχ̃0

1W 5 215.5 1.924 0.993 0.312
t̃2 → bχ̃±2 → bν̃ee 5 364.5 1.924 0.993 0.383
t̃2 → bχ̃±2 → bẽLνe 5 355.6 1.924 0.993 0.400
t̃2 → bχ̃±2 → bt̃1b 5 347.9 1.924 0.993 0.416

t̃2 → Wb̃1 → Wbχ̃0
1 5 62.4 2.807 0.983 0.221

ũL → dχ̃±2 → dχ̃0
1W 5 15.3 1.924 0.950 0.312

ũL → dχ̃±2 → dν̃ee 5 29.6 1.924 0.950 0.383
ũL → dχ̃±2 → dẽLνe 5 28.9 1.924 0.950 0.400
ũL → dχ̃±2 → dt̃1b 5 28.2 1.924 0.950 0.416
ũL → uχ̃0

3 → uχ̃0
1Z 5 12.5 1.556 0.949 0.329

ũL → uχ̃0
3 → uν̃eνe 5 28.3 1.556 0.949 0.384

ũL → uχ̃0
3 → uẽLe 5 27.6 1.556 0.949 0.400

ũL → uχ̃0
3 → uẽRe 5 16.7 1.556 0.949 0.301

ũL → uχ̃0
3 → uh0χ̃0

1 5 24.0 1.556 0.949 0.365
ũL → uχ̃0

4 → uχ̃0
1Z 5 26.0 2.921 0.964 0.324

ũL → uχ̃0
4 → uν̃eνe 5 53.9 2.921 0.964 0.378

ũL → uχ̃0
4 → uẽLe 5 52.6 2.921 0.964 0.394

ũL → uχ̃0
4 → uẽRe 5 33.1 2.921 0.964 0.297

ũL → uχ̃0
4 → uh0χ̃0

1 5 46.1 2.921 0.964 0.360
ũR → uχ̃0

3 → uχ̃0
1Z 5 56.5 1.556 0.974 0.329

ũR → uχ̃0
3 → uν̃eνe 5 66.6 1.556 0.974 0.384

ũR → uχ̃0
3 → ub̃1b 5 16.9 1.556 0.974 0.879

ũR → uχ̃0
3 → uẽLe 5 65.9 1.556 0.974 0.400

ũR → uχ̃0
3 → uẽRe 5 119.7 1.556 0.974 0.301

ũR → uχ̃0
3 → uh0χ̃0

1 5 94.0 1.556 0.974 0.365
ũR → uχ̃0

4 → uχ̃0
1Z 5 301.0 2.921 0.990 0.324

ũR → uχ̃0
4 → uν̃eνe 5 353.3 2.921 0.990 0.378

ũR → uχ̃0
4 → ub̃1b 5 67.7 2.921 0.990 0.866

ũR → uχ̃0
4 → uẽLe 5 349.1 2.921 0.990 0.394

ũR → uχ̃0
4 → uẽRe 5 644.0 2.921 0.990 0.297

ũR → uχ̃0
4 → uh0χ̃0

1 5 501.8 2.921 0.990 0.360

Table C.6.: Specific processes in the MSSM at SPS point 5. Details as in Table C.1.
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process SPS R Γ/m in % (m+m1)/M (m2 +m3)/m

χ̃0
3 → eẽR → eeχ̃0

2 6 23.5 0.062 0.556 0.951
χ̃0

4 → eẽR → eeχ̃0
2 6 25.6 0.062 0.534 0.951

A0 → τ̃1τ̃2 → τ̃1τ̃1Z 7 −16.7 0.062 0.992 0.808
A0 → τ̃1τ̃2 → τ̃1h

0τ̃1 7 −13.1 0.062 0.992 0.886
H0 → τ̃1τ̃2 → τ̃1τ̃1Z 7 −15.8 0.062 0.991 0.808
H0 → τ̃1τ̃2 → τ̃1h

0τ̃1 7 −12.5 0.062 0.991 0.886
χ̃±1 → νeẽL → νeeχ̃

0
1 7 58.1 0.036 0.979 0.620

χ̃0
2 → eẽL → eeχ̃0

1 7 21.7 0.036 0.967 0.62
χ̃0

4 → h0χ̃0
2 → h0ẽRe 7 −11.8 0.080 0.995 0.477

g̃ → cc̃L → ccχ̃0
1 7 12.9 0.944 0.944 0.184

g̃ → cc̃L → ccχ̃0
2 7 11.3 0.944 0.944 0.305

g̃ → cc̃L → ccχ̃0
3 7 10.4 0.944 0.944 0.358

g̃ → cc̃L → csχ̃±1 7 11.3 0.944 0.944 0.301

g̃ → dd̃L → ddχ̃0
1 7 18.5 0.926 0.951 0.181

g̃ → dd̃L → ddχ̃0
2 7 16.4 0.926 0.951 0.301

g̃ → dd̃L → ddχ̃0
3 7 15.3 0.926 0.951 0.353

g̃ → dd̃L → ddχ̃0
4 7 13.4 0.926 0.951 0.427

g̃ → dd̃L → duχ̃±1 7 16.5 0.926 0.951 0.298

g̃ → dd̃L → duχ̃±2 7 13.4 0.926 0.951 0.427
g̃ → ss̃L → scχ̃±1 7 16.5 0.926 0.952 0.299
g̃ → ss̃L → scχ̃±2 7 13.4 0.926 0.952 0.428
g̃ → ss̃L → ssχ̃0

1 7 18.5 0.926 0.952 0.182
g̃ → ss̃L → ssχ̃0

2 7 16.4 0.926 0.952 0.302
g̃ → ss̃L → ssχ̃0

3 7 15.3 0.926 0.952 0.354
g̃ → ss̃L → ssχ̃0

4 7 13.4 0.926 0.952 0.428
g̃ → uũL → udχ̃±1 7 11.3 0.944 0.943 0.300
g̃ → uũL → uuχ̃0

1 7 12.9 0.944 0.943 0.182
g̃ → uũL → uuχ̃0

2 7 11.3 0.944 0.943 0.304
g̃ → uũL → uuχ̃0

3 7 10.4 0.944 0.943 0.356
t̃2 → bχ̃±1 → bẽLνe 7 11.3 0.049 0.306 0.979

Table C.7.: Specific processes in the MSSM at SPS points 6 and 7. Details as in Table
C.1.
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C. Decay fragments at SPS points

process SPS R Γ/m in % (m+m1)/M (m2 +m3)/m

b̃1 → t̃1W → t̃1cs 8 95.1 2.491 0.999 0.027

b̃1 → t̃1W → t̃1eνe 8 95.1 2.491 0.999 ≈ 0

b̃1 → t̃1W → t̃1ud 8 95.1 2.491 0.999 ≈ 0

b̃1 → bχ̃0
3 → bẽRe 9 17.4 0.704 0.936 0.306

b̃1 → bχ̃0
4 → bν̃eνe 9 10.5 0.712 0.939 0.307

b̃1 → bχ̃0
4 → bẽLe 9 10.4 0.712 0.939 0.321

b̃1 → bχ̃0
4 → bẽRe 9 18.5 0.712 0.939 0.304

b̃2 → Wt̃2 → Wbχ̃±1 9 50.4 ≈ 0 0.971 0.178

g̃ → bb̃2 → bbχ̃0
1 9 76.2 0.037 0.978 0.161

g̃ → bb̃2 → bbχ̃0
2 9 57.9 0.037 0.978 0.441

g̃ → bb̃2 → bbχ̃0
3 9 13.7 0.037 0.978 0.821

g̃ → bb̃2 → bbχ̃0
4 9 13.2 0.037 0.978 0.825

g̃ → bb̃2 → btχ̃±1 9 73.0 0.037 0.978 0.297
g̃ → cc̃L → ccχ̃0

1 9 114.3 1.191 0.981 0.158
g̃ → cc̃L → ccχ̃0

2 9 86.8 1.191 0.981 0.436
g̃ → cc̃L → ccχ̃0

3 9 24.4 1.191 0.981 0.815
g̃ → cc̃L → ccχ̃0

4 9 23.6 1.191 0.981 0.818
g̃ → cc̃L → csχ̃±2 9 24.8 1.191 0.981 0.812
g̃ → cc̃R → ccχ̃0

1 9 274.9 0.145 0.988 0.157
g̃ → cc̃R → ccχ̃0

2 9 213.2 0.145 0.988 0.433
g̃ → cc̃R → ccχ̃0

3 9 78.6 0.145 0.988 0.809
g̃ → cc̃R → ccχ̃0

4 9 77.1 0.145 0.988 0.812

g̃ → dd̃L → ddχ̃0
1 9 209.0 1.188 0.985 0.156

g̃ → dd̃L → ddχ̃0
2 9 159.9 1.188 0.985 0.433

Table C.8.: Specific processes in the MSSM at SPS points 8 and 9. Details as in Table
C.1.
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process SPS R Γ/m in % (m+m1)/M (m2 +m3)/m

g̃ → dd̃L → ddχ̃0
3 9 52.8 1.188 0.985 0.809

g̃ → dd̃L → ddχ̃0
4 9 51.6 1.188 0.985 0.813

g̃ → dd̃L → duχ̃±2 9 53.6 1.188 0.985 0.807

g̃ → dd̃R → ddχ̃0
1 9 302.9 0.034 0.988 0.156

g̃ → dd̃R → ddχ̃0
2 9 235.3 0.034 0.988 0.432

g̃ → dd̃R → ddχ̃0
3 9 88.5 0.034 0.988 0.807

g̃ → dd̃R → ddχ̃0
4 9 86.9 0.034 0.988 0.811

g̃ → ss̃L → scχ̃±2 9 53.7 1.188 0.986 0.808
g̃ → ss̃L → ssχ̃0

1 9 209.3 1.188 0.986 0.157
g̃ → ss̃L → ssχ̃0

2 9 160.1 1.188 0.986 0.434
g̃ → ss̃L → ssχ̃0

3 9 52.9 1.188 0.986 0.810
g̃ → ss̃L → ssχ̃0

4 9 51.7 1.188 0.986 0.813
g̃ → ss̃R → ssχ̃0

1 9 303.4 0.034 0.988 0.156
g̃ → ss̃R → ssχ̃0

2 9 235.8 0.034 0.988 0.433
g̃ → ss̃R → ssχ̃0

3 9 88.7 0.034 0.988 0.808
g̃ → ss̃R → ssχ̃0

4 9 87.0 0.034 0.988 0.812
g̃ → uũL → udχ̃±2 9 24.8 1.191 0.980 0.812
g̃ → uũL → uuχ̃0

1 9 114.1 1.191 0.980 0.157
g̃ → uũL → uuχ̃0

2 9 86.7 1.191 0.980 0.435
g̃ → uũL → uuχ̃0

3 9 24.3 1.191 0.980 0.814
g̃ → uũL → uuχ̃0

4 9 23.6 1.191 0.980 0.817
g̃ → uũR → uuχ̃0

1 9 274.1 0.145 0.987 0.156
g̃ → uũR → uuχ̃0

2 9 212.6 0.145 0.987 0.432
g̃ → uũR → uuχ̃0

3 9 78.4 0.145 0.987 0.808
g̃ → uũR → uuχ̃0

4 9 76.8 0.145 0.987 0.811

Table C.9.: Specific processes in the MSSM at SPS point 9. Details as in Table C.1.
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