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Zusammenfassung

Das Ziel dieser Arbeit war die Berechnung von LHC (Large HandCollider) Observablen fur ein higgs-
loses supersymmetrisches Modell mit einer zusatzlicheimilimension in gewarptem Hintergrund. Das
Modell [] basiert auf Modellen mit zusatzlichen Raumdimi®nen, die in[[2][B][%] undlb] untersucht
wurden. Fir die phanomenologische Betrachtung des Niodetersuchen wir die Eigenschaften der er-
sten Kaluza-Klein Anregung des Gluons und den Kaluza-K&inndzustand des Sgluinos, die beide Teil
des funfdimensionalen Eichmultipletts sind.

Die Arbeit ist wie folgt aufgebaut: Zuerst geben wir einezeiEinfiihrung in extradimensionale Mod-
elle und konstruieren dann eine supersymmetrische fiimgidsionale Theorie. Als nachstes stellen wir das
Modell vor, das in dieser Arbeit verwendet wurde. Danacleblenen wir die Massen und Kopplungen des
schweren Gluons und des Sgluinos und stellen die Feynmainragf.

Im folgenden Kapitel berechnen wir den partonischen Wigaguerschnitt de8 — 4 Prozesses mit
zwei Gluonen im Anfangszustand und einem Top-Antitop ume i Bottom-Antibottom Paar im Endzu-
stand. Fur die Berechnung benutzen wir als erstes die Walfiolth Approximation und als zweites eine
Monte Carlo Simulation. Um die Narrow Width Approximatiomlzerechnen, benutzen wir die Programme-
pakete FeynArts und FormCalc und fur die Monte Carlo Sitaimplementieren wir das Modell in
O’Mega und verwenden dann Whizard zur Erzeugung der Monti® Eaeignisse. Da wir bei der Narrow
Width Approximation2 — 2 Prozesse mit festen Endzustanden berechnen, fuhreruwiante Carlo
Simulationen fir2 — 4 Wirkungsquerschnitte durch, die entweder schwere Gluaaken Sgluinos im
Zwischenzustand haben. Das ermoglicht uns im spaterdaufebeide Methoden miteinander zu verglei-
chen. Dabei stellen wir fest, dass die totalen Wirkungsspleritte der Narrow Width Approximation und
der Monte Carlo Simulation im Fall der schweren Gluonen bisl@% und im Fall der Sgluinos bis auf
0.05% miteinander Ubereinstimmen. Auch die Abhangigkeit®elsirwinkel®) passt nach der Faltung der
Narrow Width Approximation mit den Zerfallswahrscheitili@it der Quarks im Laborsystem gut mit der
Monte Carlo Simulation Uberein.

Um Vorhersagen fur Messungen am LHC machen zu konnencheea wir im letzten Kapitel den
hadronische2 — 4 Wirkungsquerschnitt mittels Monte-Carlo-Simulation®azu missen wir den par-
tonischer2 — 4 Wirkungsquerschnitt mit den Partonverteilungen der Rretofalten. Im Spektrum der
invarianten Masse des Top-Antitop Paares erhaten wir éheak, der bei der Masse des schweren Gluons
bzw. des Sgluinos liegt. Auch die Polarwinkelverteilunggzeine charakteristische Abhangigkeit der
neuen Teilchen.
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Chapter 1

Introduction

In the near future experiments at the LHC will produce thé fieta and one of the main tasks will be
the measurement of high energy physics, which providesnmdtion about the detailed dynamics of elec-
troweak symmetry breaking (EWSB). In the higgsless stahdavdel the scattering of massiVE- and
Z-Bosons violates unitarity at energies higher thahGeV. To keep unitarity and to ensure that the theory
remains renormalizable the most popular method for bregtkia electroweak symmetry is introducing a
scalar Higgs field with a vacuum expectation value (VEV). Wirimal standard model (SM) including a
Higgs accords very well with the electroweak precision dlata until now there is no experimental verifi-
cation of a scalar Higgs field. Thus the question appearsthehéhere are other possibilities for EWSB.

Furthermore the minimal SM gives no natural explanatiomeftiuge difference between the TeV scale
of the SM and much higher scales like the grand unificationcarashtum gravity scales. Last but not least
the minimal SM cannot describe cold dark matter (CDM), whdohstitutes 20% of the energy density of
the universe6]. Based on all these facts we can regarddheatd model as a well tested effective theory,
which is the low energy limit of an extended theory. The magiyar extension of the standard model is
supersymmetry, but there exist other very interesting @gres like little Higgs or extra dimensions.

The first examinations of extra dimensional theories wenmgeday Theodor Kaluza and Oskar Klein
[[Z][B]. At that time they wanted to unify electromagnetisritwgravity through a five dimensional metric
field. Shortly after the development of the standard modielet were several approaches how to embed
the standard model in extra dimensional theories. In eachesfe models the extra dimension is com-
pactified and the 5D fields are decomposed with the Kaluzakdesatz. Furthermore the emergence of
extra dimensional models gave rise to new approaches faegdalVSB. One finds that extra dimensional
models offer the possibility for breaking electroweak syetim without introducing a Higgs. The EWSB
can be rather realized through boundary conditions, whate to be consistent with the variation of the
fully gauge invariant action. In this case the unitarity ocaiering processes including massie and
Z-Bosons can be ensured by the exchange of the massive Keleragauge bosons. Furthermore the
EWSB via boundary conditions is a soft symmetry breaking #uedefore the low energy theory looks
like a renormalizable one. Thus such models remain BRSTrianvieand therefore Ward Identities hold.
Since the Higgs mechanism is also necessary for the gemedtthe fermion masses in a gauge invariant
way, one main aspect of constructing extra dimensional lsadehe mass generation of fermions. For
generating fermion masses we follow the approachlin [2],rerliee fermions also propagate in the extra
dimension.

In this diploma thesis we examine a warped extra dimensioigaisless supersymmetric model intro-
duced by Alexander Knochel and Thorsten Gl [1]. The modeicstire has the following form. The
bulk gauge group iSU(3) x SU(2)r x SU(2)r x U(1)p—r, WhereB is the baryon and. is the lepton
number. The motivation for introducing tw®U (2) gauge symmetries in the bulk is the following. The
Higgs potential in the minimal SM is invariant under the tima of all four real components of the scalar
field. The rotation corresponds approximately to a glob@4) ~ SU(2)r x SU(2)r and is reduced



to a custodialSU (2) p when the Higgs gets a VEV. The remaining custodial gauge sstmnensures the
correctiV/Z mass ratio, i.e.,p = 1. To get the same feature in extra dimensional theories wsiden
anSU(2)r x SU(2)r gauge group in the bulk and break it ta&5&/(2) p on the TeV brane. In order to
getU (1) after integrating out the extra dimension, th&'(2)r x U(1)p_r is broken toU(1)y on
the Planck brane. However in the case of flat extra dimensis parameter deviates from unity by ten
percent, and the lowest Kaluza-Klein excitations of tieand Z are too light. Thus constructing realistic
models with flat extra dimensions is not straightforwardthie case of warped extra dimensions we get the
correctiV/Z mass ratio and the mass gap between the lightest vector asdrtheir first Kaluza Klein
excitations can be increased~ol TeV. Moreover warped extra dimensional models have thefeatire

to connect the Planck scale with the TeV scale through a vaioff and thus give a natural explanation
for the huge scale differences.

Despite these interesting features, models of electrowgaimetry breaking in warped space do not
automatically contain stable particles as candidates RIVICThis is because the KK-parity, which is re-
quired for stable KK-modes does not hold in warped backgisiamy longer]9][[10]. Thus we have to
investigate extensions of warped extra dimensional mo@&ise SUSY is a well motivated extension of
the standard model and it provides natural candidates fdrdark matter, it is reasonable to study SUSY
in the background of warped extra dimensions. If the extens& compatible with R-parity, the model
provides stable candidates for CDM. An examination of CDMdidates in a supersymmetric extended
5D model was done i]1].

This diploma thesis is organized as follows. In chafler 2 ive g short introduction to flat and warped
extra dimensions. Afterwards we explain how to construpessymmetric theories in extra dimensions,
where we exploit the correspondence betweemsB 1 and 4DN = 2 SUSY. In chaptdil4 we outline the
model that we examined in this thesis and in the following per calculate the Feynman rules, couplings
and masses of the heavy gluon, sgluino, gluon and quarksgltibe, heavy gluon and sgluino are part of
the 5D gauge multiplet. In chapi@r 6 we calculate the pactdni+ 4 cross section with two gluons in the
initial state and a bottom anti-bottom and top anti-top pathe final state, which are the decay products
of the sgluino and heavy gluon of the intermediate stateth®calculation we firstly use the narrow width
approximation and secondly we perform a Monte Carlo sintadf the tree level — 4 process. To
understand the functionality of the Monte Carlo generatergive a short introduction to the color flow
decomposition and at the end of the chapter we compare thewnaidth approximation with the Monte
Carlo simulation. In chapt&l 7 we discuss the parton modeadfonic cross sections and make predictions
for characteristic measurements of the model at the LHGhérAppendix we give a short summary of the
conventions we used in this thesis, list the couplings whiehe necessary for the calculation and at the
end we explain the implementation of the model in FeynArts@iMega.



Chapter 2

Basics

2.1 Flat Extra Dimensions

In this section we will introduce the basic ideas of five disienal theories with a flat and compact extra
dimension with topolog®R* x [0, L]. Therefore we start with fermions in a 5D theory and explairtte
basis of this example the extension from a four to a five dino®as theory, the Kaluza Klein decompo-
sition, the derivation of the 5D equations of motion and éfisgrhow we obtain the mass spectrum of the
particles. More details towards this topic can be foundjjrafitd references therein. In the second part we
will examine the characteristics &fU (V) gauge theories in extradimensional models. The notation we
use is defined in ApLJA.

2.1.1 Fermions and Extra Dimensions

In four dimensional theories the Clifford algebra reads

{7} = 29" (2.1)
and can be extended to a five dimensional Clifford algebicuiin
M ANY = 24MN 2.2)

with M = 0,1,2,3,5. In 5D the smallest fermionic irreducible representatibthe Poincaré group is the
Dirac spinor, which contains two two-component spinorsfithe 4D point of view.

U — (2.3)

In 5D the decomposition of the Dirac spinor in a right- andHahded part is meaningless because the
4D-projection operators

Pt — %(—mﬁ +1) Po= %(_mﬁ ) (2.4)

do not commute with the Lorentz transformations anymomesi/® is already part of the 5D Clifford
algebra. The free bulk action for the Dirac spinors then given by

S5 fermion = / d’x <% (\IJ'YMaM‘IJ - 8M\TJ’YM\I’) - mbulk\l’\l’> . (2.5)

Varying the action with respect t& we get the following bulk equation of motion

7705V + iv" 0, ¥ — mpuk¥ = 0 (2.6)



When we replace the Dirac spinors by expressibl) and perform the matrix multiplication with the
~-matrices we can rewrite E{2.6) and get two coupled eqoaf motion for; andy.

10" 0ux — Osn — mpukn = 0
i&“aun + J5x — mpukX = 0 (2.7)

However when we vary the action we have to integrate by padgtaus get terms at the boundaries of the
fifth dimension.

1
SSoara = 5 [ ' lndx — xon + 1% ~ x60]§ 28)

We only regard terms which come from the integration by pafrthe fifth dimension because we consider
that the fields fall off sufficiently fast at infinity and théoee their value at the 4D-boundaries can be put
to zero. Next we have to specify the boundary conditions abttie boundary variatiofi{2.8) vanishes,
because we do not want additional dynamics of boundary fielisaffect the 5D dynamics. In this part of
the work we do not want to go further into the topic of boundasgditions and postpone this issue to Sec.

2.

Now we want to discuss how to perform the Kaluza-Klein decositpn of the five dimensional Dirac
spinors. In all of the extra dimensional models examinechis work one can get rid of mixing terms
betweend,, andJs in the equations of motion. Hence we can always use the faatmn ansatz and
decompose the 5D field into a part which depends on the extrardiion and a part which depends on the
4D coordinates. Because of the compact extra dimensiangdy get a discrete spectrum and can then be
written as

77(9579) = Zn(n) fn (n) )
X(xay) = ZX(n) fx (n) ) (29)

1, andy,, are the 4D two-component spinors which form a Dirac spinanassm,, and therefore satisfy
the 4D equations of motion

Z'G“auf((n) — MpNn) = 0 (2.10)
Plugging [ZD) into[[2]7) we get the following differenteduations fog,, and f,,
fé,(n) + Mmpukfn,(n) — Mnfy,m) = 0
Fomy T Mbukfx,m) = M fo ) = 0 (2.11)

wheref’ denotes the derivative of a functigrwith respect tg;. The above first order differential equations
are coupled. Hence by combining both we get two decouplezhskorder equations

f7l7/,(n) + (my — miu) fomy = 0
f;zl,(n) + (mrzz - m%ulk) Ix.ny = 0. (2.12)

Depending on the sign of2 — m2,, we get either &~v and e **»¥ (for m2 — m2,, > 0) or &% and
e v (for m2 — mi,, < 0) as solutions fok? = m2 — mZ,,. Thus we get
Foim () = Ay 1 B g~ (Dkny

(2.13)



We find out that for introducing an extra dimension we get auatKlein tower for every particle, which
means that we have an infinite number of excitations, the kedddaluza-Klein modes (KK-modes). The
ground state with mass, will be identified with the standard model particle. If we wam work with
extra dimensional models we have to deal with an infiniteigartontent when reducing to a 4D theory.
Until now we have only regarded the free bulk action. As in 4Bdries we can postulate a gauge

invariant Lagrangian to get interaction terms. To congteuD gauge invariant interaction we have to
introduce a 5D covariant derivative

DM = 8M —Z'g5A(]l\4Ta, (214)

wheregs is the 5D gauge coupling arit* are the generators of th#l/ (V') gauge group with7*, 7] =
ifeeTe. The bulk action then reads

i - _ _
S5,fermion = / d°x (5 (\IJ'YMDM\I' - DM\I"YM\I’) - mbulk‘IJ\I’> (2-15)
For getting the effective 4D theory we again have to integoaer the fifth dimension.

2.1.2 Gauge Theory and Extra Dimensions

Now we discuss gauge theories in extradimensional mode#DIthe action looks like

547gauge = /d4$ < 4FSVFG7MV> (2.16)

with F¢, = 8, A% — 9, A% — g f**° AL A¢.. The extended 5D action then reads

55 gauge — /d5 ( F]V[NFG JV[N) (217)

with F v = O A%y — On A%y — gs feP° A% AS,. The 5D action can be separated into the usual 4D term
and an additional expression, where the fifth componenteftuge boson appears. This can be done by
summing explicitly over the extra dimension. The action tteen be written as

a a,uv 1 a a
SS,gauge = /d5x ( 4F;WF B 5 M5F "“5) (2.18)
We now neglect the 4D term of the gauge action. We denote theces action by

~ 1
S5_]gauge = /d5$ (—§F55Fa’u5>

= 5 [ 2 (- 0.0 — duazgPany 1 200 A)  (@19)

In the above expression a mixing term proportioné]gnziﬁ8“14‘1’5 shows up. To avoid this mixing between
the fifth component of the vector field and the 4D part, we aéddiiowing gauge fixing

SeF = /d%— (0, A" + €05 A“5)
= / d°x (— — (9, A%M)? — g(a5Aa=5)2 — 8#Aa’“85Aa’5> (2.20)

To ensure the cancellation of the mixing terms fr@m (P.19) @20) we have to do an integration by parts.
As explained in Se€_2.1 only the integration by parts efftfth dimension gives a contribution due to
the boundaries.



In perturbation theory the fields are treated as free fieldistlans the time evolution is defined by the
free Hamiltonian. Hence to derive the equations of motionowly have to consider the free 5D gauge
action given by

free

1
S5 gauge= i/d%(— OpALOFA™Y 4+ 9, AL A%H — §,AZO" A™P
1
— 05 ALPANI E(QLAW)Q — £ (854%%)%) (2.21)
Varying the free action with respect #f; and A¢ we obtain the following equations of motion

— D2A 4+ 90" AV — (1 — g) FYOAL = 0
— Q0" A™P 4 LORAMS = 0 (2.22)

After the variation we have to perform an integration by pagain in the extra dimension, which will give
an extra term for the variation of the action on the boundasfehe interval. Taking all the boundary terms
together we get the following expression

5Shound = / 'z [D5AZSA™Y — 05 AZSAL — AZDVSASD — 9,AP6A]) =0,  (2.23)

which has to vanish for the same reason as in[Secl2.1.1. e 8w equations of motion we make the
ansatz

Al(z,y) = Ze DTN ()
%ww=ZwW£&> (2.24)

wheree? ande? are the polarization vectors. Note that there is no summatier the adjoint index of the
SU(N) gauge group. Furthermogé = m? holds. Plugging the Kaluza-Klein decomposition4f into
the second equation of motion @f{2122) we get

PN () +E () (y) = 0 (2.25)
The solution of the above second order differential equataiven by
M (y) = AL, eve™Y 4 Be e Ve (2.26)

Now we want to solve the first equation of motion[of{2.22). fiéiere we plugl(Z.24) in the above equation
and assume w.l.0.g. that three of the four polarizationorset are perpendicular tp, and one is parallel
to it. In the first case we haw&:“p, = 0 and get for\? (y)

Aiy) = Aj €Y + Bye v (2.27)

In the second case'(® = p”€*) the solution is

Ne(y) = CoeVEY 4 Die V&Y (2.28)

We will see later that the non-oscillating solutions are carinpatible with the boundary conditions and
therefore we can neglect them.

The only type of fields that we have not considered until nosvsmalar fields, but the extension of the
4D dynamics of scalars to a 5D one is the same as in the casembfes and vectors shown in the sections
before. Therefore we introduce the 5D Lagrangian and thatheg 5D equations of motion with their
solutions when we define the model used in this thesis.



2.2 Warped Extra Dimensions

Now we want to extend the flat 5D model to a warped 5D one. Thezafe denote quantities which live in
curved spacetime with. To understand the dynamics in a warped extra dimensiondéhfetter we first
introduce the very basics of classical curved spacetimenefal relativity is formulated to be invariant
under general coordinate transformations, the so calléebanorphisms. To get nontrivial dynamics one
main aspect of constructing a theory is defining a derivativeurved spacetime the partial derivativg

is not well defined becaugts Ay is no longer a tensor field ifl v is a vector. To obtain a tensor field we
define the covariant derivative

D]V[AN = 8MAN —FPMNAP, (229)

wherel'?’, , \ are the Christoffel symbols. The covariant derivativeléf is (9,, A" +I'N,, , A”). To get

a geometrical interpretation of the Christoffel symbolstvese to go back to the definition of a derivative
in general curved spacetime. A tangential space where tttergel 5y are defined exists at every spacetime
point . A derivative connects two vectors each living in iitBsimal separated tangent spaces. To get the
connection between the two tangential spaces we have tcedefinap from one tangential space to the
other. This map is the so called parallel transport and théstiffel symbols are the generators of it. After
the transformation both vectors are in the same tangeptaksand the partial derivative can be performed.
It makes sense then that in E._{2.29) an additional termdates from the parallel transport appears.
From the requirement of metricity

Dyigne = Omgne —Thynarr — Ty pine =0 (2.30)

and of the torsionsless conditidn’’,, , — 'y, = 0, it can be found uniquely that

1, . . .
Myy = §9PL (OmgNL + ONGmL — OLgmN) - (2.31)

As the spinor representation of the Lorentz group cannaieaily extended to the general coordinate
transformation group of general relativity we have to idtioe the Vielbein formalism. Since the spacetime
of general relativity is locally Minkowskian, we can set ufoaal orthogonal coordinate system at each
pointz. The basis vectors, A(z) (A = 0, 1,2, 3, 5) are called the Fiinfbein (or tetrad). They are related
to the metric tensod, x (z) through

JMN = gABVJV[AVNB (2.32)
whereV M1, A = 54, holds true. Extending EqLTZR9), we require
D]V[VNA = 8]V1VNA - FP]\/[NVPA + w]\/[ABVNB - 0, (233)

wherew,,*; denotes the spin connection, which is the connection klatéhe local gauge transforma-
tions, so that the spin connection is nothing else but thggéield for the Lorentz group. From EQ.{2133)
the spin connection can be expressed as

wJVIAB = VANFN]VIPVPB - (3M VAN) VNB (2.34)

and is antisymmetric with respect to the Minkowskian indi¢e, ;A% = —w,,5*). The Christoffel sym-
bols then read in terms of the spin connection

FNMP = VNAwJV[ABVBP - (3MVNA) VAP (2.35)



Next we want to examine the dynamics of fermions in a warpedHsory. The action of the fermions
is

~ = = =
S5 fermion = / dz\/§ [5 (U AM Dy — Dy AMT) — mipuc I ¥ (2.36)
To rewrite the action in more compact form
SSD’fermion == /d5$\/§ (Z \IJ '?MD]\/[\I’ — mbu|qu\I’) + BT (237)

we have to perform an integration by parts. Now we have to glesguestion whether the integration by
parts holds true in curved spacetime. The first approachstutty the covariant derivative and how it acts
on U4My

Dy (U 4MV0) = UAM (Dy ) + (DyP)AME + U (DyAM) (2.38)

To get the integration by parts we know, we have to ensurethieatovariant derivative of is equal to
zero. Moreover it becomes clear that the integration byspaith respect to the partial derivative does not
hold any longer becaugh 4" is not equal to zero in general. To calculate the covarianvakive of 4

we must clarify how the spin connection acts on spinors.

Because we are locally in a 5D Minkowsky space, the only frangations that locally exist are the 5D
Lorentz ones. Hence the infinitesimal parallel transpog wéctorA+ can be written as

) A
wy ' AB = — %wM ep (A7) ;AP (2.39)

This can easily be shown when plugging the vector representaf the Lorentz generators

(AP)A = i (¢°A5E — gPAsE) (2.40)

B
in Eq. {Z39). Operators transform with the commutator dredefore the infinitesimal parallel transport
of v is
w57 = - % [war ep AP, 4] (2.41)
This can be seen after a short calculation by plugging theospepresentation of the Lorentz generators
(A?), = 3 1"Y, (2.42)

in Eq. [ZZ1) and using the anticommutator relation of th@atrices({y4, 7} = 2¢42). At this point
we want to give a short summary how the spin connection actectors and fermions to get a consistent
convention. Therefore we require the covariant derivativihe vectors

[ B
DyAa = duAa + wyaBAs = 0 A* — Jwyep (AP) ;7 As

) A
Dy A? = 9y A* + wyAgAB = 9y AN — %wM ep (A°P)7 A8 (2.43)

and the fermions

Dy, = 0y, + ’LUMl-j \I/j = oyV¥,; — %’LUM cD (ACD)ij\I’j
.D]\/[\IfZ = 8M\T!Z — U}Mji\ifj = 5M\Ifz + in cD (ACD)ji\Ifj (244)

4



Now the only thing to do is to calculate the covariant dereabf 4N, Thus we regard the covariant
derivative of#4~ ¥ and get

Dy (UANW) = (0m0) AN + U AN (94 0) + U (0uAY) ¥ + TN, 570

— (0mT) ANT 4+ T AN (9 T) — %\IleﬁN\IJ + %\MN@UM\P + U (DaAN) W
(2.45)
With that equality we can write the covariant derivativeof as follows
7
DuAN = AN + TVypA" = = [warep AP, 4N =0 (2.46)

4

Plugging Eq. [[Z235) and{Z}1) in EQ_{2146) we see that tipeession vanishes. Thus an integration by
parts exists in curved spacetime

/ Fr /G (T 4YDyw) = / V3 (T 4w / oG (Da¥AMw)  (2.47)
oS

After this short excursion about properties of curved spams we want to come back to warped extra
dimensional theories. First we discuss the basic chaistitsrof the warped 5D model and afterwards
explain on the basis of the fermionic action how to obtaindfaation of motion and how to solve it. The
metric of the warped 5D spacetime is

. 1 .
gMN = W(S]Jéjisg 9AB; g = dlaqla_la_la_la_l) (248)

and from this it follows that the vielbein is

1
Vit = o oy (2.49)

To get the correct dynamics for the fermions we have to cateuhe spin connection for the warped 5D
metric. Therefore we use Eq.{2134) ahd(2.31) and obtain

1 . 1
wy's = - ;VNBVAP (030N + oxdhr — 97 gun) + ;VNB515VJVAN
1 .
= = V%V (00N + 0xon — 67 guw) (2.50)

where we used), V4 = —14%,V,, “A. Since we want the fermionic spin connection we choose time sp
representation of it

) 1
iU}M cpA°P = gVNDVCP (6308 — §7°gmn) [v¢.77]
1 . S
=3 (6303 — 7 gmn) [Ap, 4]
... 5
== (Amy° — 7°Am) (2.51)

From this we get the following covariant derivative for féoms

Dy = 0y — 5= Wy
Ds = 05 (2.52)



Because we have shown that the integration by parts is amaédication in curved spacetime we can extend
the Euler-Lagrange equations to a covariant form

oL oL

55~ PV aipg = (2.53)

As a next step we have to clarify what the natural represensbf they-matrices and the covariant
derivative are. Hence the spin representation with Diramiens exists only in the local Minkowsky space
the naturaly-matrices are the flat ones in opposition to the covariarivaliére, which is naturally defined
in curved spacetime. Therefore we write the fermionic acés follows

S5D fermion = /de\/g (Z VMA v "/ADM\IJ - mbulk@@)
1 _ c -
_ 5 M A
- /de(Z(SA\IJV DM\I/—;\I/\IJ) (2.54)
wherec = mpuk/k and\/g = 1/ (k°2°). The 4D part of the covariant derivative then reads
1. .
04y Dy = a4t (% - Z—Z%ﬁ"’)
1 e
= 55\7“45M ~ 5 kz A/”A/,fﬁ
z
2

= 70, — ;75 (2.55)
With this information we can derive the equations of motiorf andy

i0%0un + Bs% — 2% = 0

i0°0% — s — =20 = 0 (2.56)

z

Using the Kaluza-Klein decomposition given in E.2.9) @mel 4D equations of motion frofi{Z110) we
get the following equations of motion for the 5D part of thenf@nic wave functions

c+2
f)/z,(n) + m"fm(n) - P f)@(n) =0

c—2
Py = mnfrom + == fom) = 0 (2.57)

As in the flat case we have two coupled first order differeplations which can be transformed into two
second order differential equations

4 , 2—c—6
Fem = Sfam + (mn T ) Frm =0

4
z

A +c—6
fony = ZFmmy + (mi - 72> foimy = 0 (2.58)

z

whose solutions are linear combinations of Bessel funstion

fom(2) = 222 (Andijo—c(mnz) + BuYijo—o(mn2))
Foy(2) = 2% (Cody jore(mnz) + DY joge(mnz)) (2.59)
Using the bulk equations of motioR{2157) we obtain
A, = C, and B, = D,. (2.60)
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Chapter 3

Supersymmetric Extension in 5D

Since we want to implement supersymmetry in a warped exineaisional model we need a five dimen-
sional description of supersymmetry. This means that wedktend the four dimensional supersymmetry
algebra to a five dimensional one and in a next step constradidld representations of this algebra. We
will see that we can obtain the 5D supersymmetry representabut of 4D representations and thus the 5D
action is a sum of the normal 4D supersymmetry action and ditiadal 5D part. Thus we will first give

a short review of 4D supersymmetry. Afterwards we preseatmdlism for constructing five dimensional
supersymmetric theories.

3.1 Supersymmetry in 4D

This section’s intention is to give a summary of all main tspof 4D supersymmetry that we need to
construct a 5D SUSY. If you want to know more details]| [11feo$fa well structured introduction in 4D
supersymmetric issues. First we start with the algebra péymmetry and then we switch over to the
representations of this algebra. Next we give a short ogendf the superfield formalism and finally
construct the most general 4D gauge invariant interaction.

3.1.1 Supersymmetry Algebra

The supersymmetry algebra is the only graded Lie algebrgrofreetries of the S-matrix consistent with
relativistic quantum field theory. The proof of this staternis based on the Coleman-Mandula theorem,
a theorem about the possible symmetries of the S-matrix tid@mem indicates that the most general Lie
algebra of symmetries of the S-matrix contains the energyentum operataP,,, the Lorentz generators
M,,,, and a finite number of operatof; which transform as scalars under Lorentz transformatiows a
must belong to a Lie algebra of a compact Lie group. For exartifg gauge transformations contain such
operators.

Supersymmetry eludes the restrictions of the Coleman-Miartieorem by generalizing the notion of a
Lie algebra so that the Lie algebra now includes elementse/tefining relations involve anticommutators
as well as commutators. These new algebras are called $fygienas or graded Lie algebras. They can be
written as

{QaQI} =X, [X,X/] = XU? [QvX] = QN (3.1)

whereQ, Q" andQ” represent the odd (anticommuting) part of the algebra’n’’ and X" the even
(commuting) part. The operato?s are determined by the Coleman-Mandula theorem and thereftrer
elements of the Poincaré algebra or elements of a Lorevdziant compact Lie algebra.

The Coleman-Mandula theorem tells us that the anticommiutdtthe Q’s has to be an element of the
Poincaré group. Because the Poincaré algebra only cargpin 1 objects, th@’s have to be of the form

11



Q. F andQ s, WhereQ denotes the hermitian conjugate®@f The Greek indice$ay, ..., g, A, .., d)
run from one to two and denote two-component Weyl spinorsteldeer the anticommutator 61,k and
Qs has to close intd,

{Q.1. Qam} = 2P.s0"y,, (3.2)

whereP,, = o,," P, ando is the intertwiner between the spin and vector represemsitiThe anticom-
mutator of two odd elements, both with undotted indices eawtitten as

{QaLaQﬁjw} = EaBXLM (33)

The generators “™ commute with all generators of the Poincaré group and tbbaelorentz invariant
compact Lie algebra and for this reason they are called @esttarges. The supersymmetric algebra then
reads

[PquaL} = [PqudL} =0
{QaLanM} = —20,,"P, 5LM
{QQL’QﬁJV[} = eapX M
{QdLaQBM} = Gaﬁ'XLM
[XLM7QQK} _ [XLJVI7QQK} . (3.4)

3.1.2 Representations of théV = 1, 2 Supersymmetry Algebra

In this part we want to study the 4V = 1 and N = 2 representations of supersymmetry on one-particle
states since we need these representations later on tostamethe decomposition of the 5D superfields

in 4D ones. Since the mass operafy is a Casimir operator of the SUSY algebra, the particles in an
irreducible representation of the SUSY algebra are of eauaesls. Furthermore it can be shown by a short
calculation that every representation has the same nunfibesonic and fermionic degrees of freedom.

Now we want to construct the representation of the superstnmynalgebra corresponding to massive
one-particle stated{> = M?2). To construct a 4DV = 2 SUSY out of N = 1 representations we require
massiveN = 1 representations. Thus we show in the following part how talye massive SUSW = 1
representations very easily. For simplicity we boost thefeectorP, to the rest framé®, = (M, 0,0,0)
and find for the algebra

{QaAvéﬁB} = 2M50[/6'5AB
{Q.4, Q5" = {Qaa, Qs = 0, (3.5)

where we set the central charges to zero for simplicity. hldécesA and B run from one toN. To get a
more intuitive access to the supersymmetry algebra we leegtagenerator§ so that

Aa__1 a4
G’ = Jong e
At 1 A
(a’a) _\/WQO(A (36)

and we recognize the algebra2¥ fermionic creation and annihilation operators. The algetir,,* and
(%A)T then reads

{a,*, (a5")"}

{a‘aA7 a’[j‘B}

5, ﬁ-aAB

{(a™). (@)} = 0 (3.7)
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Since the supersymmetry algebra is isomorphic2dvafermionic oscillator algebra, it can be represented
on a Fock space. The Clifford (Fock) vacudhis defined by

a,tQ = 0. (3.8)
. . . T
The states are built by applying the creation operafogs')' to the vaccum stat@

n) ay ... Qp 1
Q™ a o, = ﬁ(%’flf (aaf")T Q (3.9)

and the dimension of the representation is given by
d = 22N (3.10)

Note that we regard only spif vacua in the massive case. The massWe= 1 representation of the
supersymmetry algebra therefore contains two §states and one spifl state. When we introduce the
superfield formalism, we will see that the discussed repitasien can be identified with a massive chiral
superfield.

Next we want to study the supersymmetry representatiofisfimrin massless one-particle states
(P? = 0). Therefore we use the frame whepg = (E, 0,0, —E). The algebra then becomes

{Q.4,Qsp) = 2M 2B 0 645
0 O
{Q. Q") = {Qan, Qpp}t = 0 (3.11)
Again we rescale the generators Q
ot = ﬁ QlA
(a*) = %Qm (3.12)

and we find that the algebra consists\dtreation and annihilation operators

{aA,(aB)T} _ 5AB
{CLA,CLB} _ {(CLA)T,(CLB)T} -0 (313)

Thus we can construct the massless supersymmetry repatisastby applying the creation operatars

to a Clifford vacuum with helicit\. Soa* and(a“‘)T raising and lowering the helicity by and the states
can be written as

o= L ) (@) (3.14)

The dimension of the representation is giver2By We regard only the massless representations of vacua
with A equal to0, 1/2 and—1/2, since these are the representations we need to constriogsa@ N = 2
supersymmetry. To get a CPT invariant theory the states bmustoubled, since CPT reverses the sign
of the helicity. The CPT-complete representations are shiovifab.[3 an@3]2. Note that thé = 2,

A = —1/2 multiplet is by construction CPT-complete. Moreover theseige 4DN = 1 representation is

the same as the 4N = 1 CPT-complete massless representation of the spif2 and0 vacua. We will

use this identity later to construct the whole theory outDf¥ = 2 massless representations.
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1 1

1 1
1

1 1 1 1
0 1+1 1+1

1
-1 1 1 1
-1 1

Table 3.1: Massless 4 = 1 representations.

_ 1 _ _ 1

hel. A=-1 A=0 =1
3

2 1
1 1 2
1

! 1 2 1
0 2 1+1

1
- 1 2 1
-1 1 2

3

Table 3.2: Massless 4IY = 2 representations.
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hel. 1 —3 0 : 1
N =2 1 2 1+1 2 1
N=1 1 1 1 1
N=1 1 1+1 1

Table 3.3: Decomposition of the 4N = 2 representationX = 0).

hel. 1 -3 0 3 1
N =2 1 2 1
N=1 1 1

N=1 1 1

Table 3.4: Decomposition of the 4N = 2 representation\ = —%).

Each of theN = 2 multiplets can now be decomposed in tWo= 1 representations, as shown in Tab.
B3 and3H for the case of the spimnd spin—1/2 vaccum. TheV = 2, A = 0 representation splits into
aN =1,A=0andaN =1, A = 1/2 representation. Th& = 2, A = —1/2 representation splits into
aN =1,A=0andaN = 1, A\ = —1/2 representation. Massless representations have dime2¥ion
and massive representations have dimen8h Thus in the case oV = 1 SUSY we have to double
the massles® = 1 multiplets of Tab[(3W to get massivé = 1 representations. As we want to have
a supersymmetric field theory we have to construct the figiddeiseentations of the SUSY algebra, which
will be explained in the next section. We will see that thelded N = 1 multiplets of Tab[Z3} can be
identified with two massive chiral superfields and ffie= 1, A = 1/2 andN = 1, A = 0 representations
of Tab.[3:B with a massless vector and a massless chiralfigerespectively.

3.1.3 Superfields

Now we give a short introduction to the superfield formalisecduse it provides an elegant and compact
description of N = 1 supersymmetry field representations. To formulate a syperetric field theory
we must represent the supersymmetry algebra in terms o$ figdtirestricted by any mass-shell condition
first. Therefore we introduce a set of anticommuting paransét:, &,

{€,6°) = {€.Qs} = .. = [P = 0, (3.15)
which allow us to express the supersymmetry algebra in tefraemmutators
[€Q.£Q] = 2¢&0%EP,
[€Q.€Q] = [€Q,€Q] = 0
[P*,£Q] = [P*,EQ] = 0 (3.16)

This leads us to the following definition of the group elemefithe translation in superspace
G(z,0,0) = g(-=uP" +0Q+6Q) (3.17)
From the left multiplication of two group elements we obtain

G(0,£,6)G(",0,0) = G(a" + 008 — i€a"8,0 + €,0 + &), (3.18)
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where the infinitesimal transformation with respectt@an be written as
i(6Q + €Q) = & 9 i mgean) o £a 9 igeg rebon. (3.19)
a0 ad 90, af

Thus we have found a representation of the SUSY generatéhgiparameter space. Through the right
multiplication of two group elements we can define the déferal operator® and D

0 s
Da = W + Zaad“G au
D = — o — %0, (3.20)

which by their definition satisfy the following anticommtitan relations

{Do, Dy} = —2i0,,"0,
{Do, Dg} = {Ds,Dg} = 0 (3.21)
and anticommute witk®)

Now we can introduce superfields and superspace. Elemetits stiperspace are labeleddy: (., 6,0)
and superfields are functions of the superspace which stheulshderstood in terms of their power series
expansion irf andd

F(2,0,0) = f(z) + 0®(z) + Ox(z)
+ 00m(z) + 00n(z) + Oo*fv,(x)
+ 000N(x) + 009V (z) + 0060d(x) (3.23)

All higher powers o) andd vanish. Linear combinations of superfields are again sugesfand similarly
products of superfields are again superfields which is basédeofact that) and@ are linear differential
operators. Thus the superfields form a linear representatidhe supersymmetry algebra. Since the
representations are highly reducible we have to demandredms which reduce the superfields. This
conditions lead us to the next two sections where we intredlie chiral and the vector superfield, which
enable us to construct a gauge invariant supersymmetri@bagan.

3.1.4 Chiral Superfields

Chiral superfields are defined by the condition
Da® = 0 (3.24)
Since
D, (x“ + i@a”é) =0 and Dub = 0, (3.25)
the above constraint is easy to solve in terms of
y* = 2t + ifotd (3.26)
Any function of these variables satisfi€s{3.24) and can higenras

D = A(y) + V20U (y) + 00F(y)
A) + i600"00,Ax) — i@@ééDA(x)
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- %oeaﬂm(x)aﬂé + 00F(z) (3.27)

The superfieldb! satisfiesD,®" = 0 and is a natural function off # = 2* — i#o*0 andf. Its power
series is obtained by conjugation bf{3.27).

+ V200 (x)

The most general supersymmetric renormalizable Lagrangi@lving only chiral superfields reads

L= @j@j‘

1 1
—m;;i P; D, —Giin PP D N ®;
00(§(§+ [(2mJ j+393k iPr + )

+ h.c.] (3.28)
606

The couplingsn;; andg;;, are symmetric in their indices. In terms of the componend$igl reads

= 1 1 i
L = iaﬂ\lfia"u\l’i — A*0OA; — imlkll’zll’k — §mfk‘1’1‘1’k

where the the auxiliary fields; have been eliminated through their Euler-Lagrange equsitibhe poten-
tial V has the formV = F}' F), expressed in fieldd; andA;f.

3.1.5 \Vector Superfields
Vector superfields satisfy the condition
vV =V (3.30)
and therefore can be written as
V(z,0,0) = C(z) + ifx(z) — i0(x)
+ %99 (M(z) + iN(@z)] — %éé [M(z) — iN(2)]
— 05" 0v,(z) + 060 {/\(aj) + %U“aux(a:)]
— 606 {/\(x) + éo“@ux(x)] + %9995 [D(x) + %DC(x)} (3.31)
The component field§’, D, M, N andv,, are all real. Now we regard the hermitian figld- I'f wherel’
andI'T are chiral fields
I+ T = A+ A" + V2(0000) + 00F + 60F"

iy . (.
+ i0t00, (A — A™) + EGOGU“(%W

i Ghaoro, b — Loads *

+ \/59990 A 49999D (A + A" (3.32)
and we find that in front of the coefficiefit*6 stands the gradien®, (A — A*). This leads us to the
following supersymmetric generalization of a gauge trameftion

V -V 4+T 411 (3.33)

Note that the chiral fieldE andI'" have dimensiofi in contrast to a chiral matter-field which has dimension
1. The component fields transform under this gauge transfitwmas follows

C - C+ A+ A
X — x — V20
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M 4+ iN — M + iN — 2¢F
v, — v, — 10, (A — AY)
A=A
D — D (3.34)

We find that the choice of the componentslin(B.31) leavaad D gauge invariant. Now we can choose
the so called Wess-Zumino (WZ) gauge in whichy, M andN are all zero. In spite of the gauge fixing
it still remains the usual gauge transformatign— v,, + d,e. In Wess-Zumino gauge the powers of V
looks very simple

_ __ __ 1 __
V = —00"fu,(x) + i000M(z) — i000M(z) + 50090D(x)
1
V= — 5909011#11“
V3 =0 (3.35)

Next we want to construct the supersymmetric field strentftierefore we define two chiral fields

W= —%DDDQV
Wy = — iDDDdV (3.36)

and we see that they are gauge invariant
1 -~ 1- -
W, = — ZDDDQ (V+T + PT) =W, — ZD{D,DQ}F = W, (3.37)

where we used the fact th&tl' = DI'f = 0. SinceW,, andW; are chiral fields th@¢ andf¢ component
respectively ofV *W,, andW,; W transform into a spacetime derivative. Thus the supersymngauge
invariant generalization of the Lagrangian for a free vefigdd is

1 .
L= 2 (WWalgg + WalWyp) (3.38)

which reduces after some integration by parts to
4 4 1 2 1 nv - m \
d*x L = d*x §D — V" — iAot O (3.39)

3.1.6 Gauge invariant Interactions

In this part we want to present the fll/ (V') gauge invariant interaction. We only give a brief review of
the extended gauge transformations and the full Lagrangifout going into details of constructing non-
abelian gauge theories in supersymmetry. The generalizatigauge transformations on chiral superfields
reads

= eilTo, of = ptgl’ (3.40)
where the chiral superfieldsare matrices
Iy = T a (3.41)
T“ are the generators of the gauge group and get normalized by

1

T[T = 55‘“’ : (3.42)
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The Lie algebra reads
[T°,T% = ifebere, (3.43)

where f2¢ are the structure constants of the gauge group. The superstyiu field strengtfi?’® can be
generalized to

Wy = — iDDe*VDaeV. (3.44)
The vector superfieldg are now matrices
Vij = Tj;Va (3.45)
and the non-abelian extension of the gauge transformatiaus
v = e ilgVel (3.46)

Now we are ready to write down the most general Lagrangiariifersupersymmetric renormalizable
interaction of scalar, spinor and vector fields

1 .
— « . & TaV
L= g TIW Waly + WalW?|g) + @le D,

1 1
+ {(577%3'@1‘(1)]‘ + ggijkq)iq)jq)k>

+ h.c} . (3.47)
00

3.2 Supersymmetry in 5D

After the brief review of 4D supersymmetry we are now in theipon to construct a 5D supersymmetric
model. Therefore we first study supersymmetric theoriesfiataxtra dimension to show the main ideas
for constructing such theories and afterwards extend thattarped extra dimension.

3.2.1 Supersymmetry in a flat extra dimension

In a flat extradimensional model the 4D SUSY algebra giveBid)(can be generalized straightforwardly
to

{Qi, Q) = — 20 Pur, (3.48)

whereQ; and@; are now Dirac spinors and the indiceand; run from1 to 4. The~y-matrices fulfill the
5D Clifford algebra

(M AN = 24MY (3.49)
as discussed in Sdc.P.1 and the commutator of two infiniEdssdSY transformations then reads
[00,0¢] = —2(v™e — &Mn) P (3.50)

To see the equivalence of 4D = 2 and 5DN = 1 SUSY we decompos@; and@); in two two-component
spinors@; andQ@»

Q _ Q
Q=" and Q= [ |. (3.51)
Q2 Q1
When we now expand the anticommutatofof (8.48) in a 4D and&Mvee get
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Using the decomposition of the Dirac SUSY generators in tw@tomponent spinors we can rewrite the
above anticommutator to

{Q1a @8} {Qua@ual) _ [ -2P 200 (3.53)

{Q5,Q5}  {Q%,Q1a} —25M52p,  2iP;

and we find that the 5D SUSY algebra looks like a AD= 2 one with the central chargd’. Thus we

can construct the 5D field representations out of theMB- 1 one as we have seen in SEC._3.1.2. Since
we can build the required superfields for our theory out ofsiess representations the central charge has
no influence on the representations. Therefore the 5D veaoerfield can be composed of a 4D vector
superfieldl” and a massless chiral superfigldboth in the adjoint representation

Ve = GohGAT — iBEON + 00IN! + %999@“
a 1 a - Aa Z n a - Aa 1 aYa) a - ra
X' = (S iAD) + 0000, (S0 4 iAG) — 00000 (50 + iAY)
+ V2008 — %09@)\50“9 + 00C" (3.54)

The 4D vector superfield is chosen in the Wess-Zumino gaude: aenotes the adjointU () index.
The 5D hypermultiplet consists of one chiral and one ant&tisuperfieldd and H ¢

H = h + i00"00,h — ieaéémh + V200 — %99@%“9’ + 00F
_ 1 i _
H® = b + i60"00,h° — Z660000h° + \20U° — éoeaﬂwaﬂo + 00F° (3.55)

In a non supersymmetric theory the extended gauge tranafanmof a 5D non abelian gauge theory
would look like

Ay — UAnUT — gi(aMU)UT, (3.56)
5

wheregs is the 5D gauge coupling aridd = 959" (*)T” |t can be split into a 4D and a 5D part
A, — UAUN — Z@,0) U1
g5
As — UAUT — gi(a5U)UT (3.57)
5
The 4D part of gauge transformation is the usual one andftreres the same as declared [N (3.33). This
motivates us to define the gauge transformation of the 5Dovsciperfield ad]3]
vV - efiP*eVeiP

Y — & (x - \/505) e T (3.58)

sinceV contains4,, and y containsA;. The exponentiated 4D vector superfield transforms‘as-e

ele’ e, Since the gauge transformation fgrkeeps unchanged to S&c_311.5 we can adopt the gauge
invariant action forl” given in Eq.33B. The dynamics far have to be implemented in a 5D gauge
invariant way and the full 5D action then reafks [3]

= [P

Wo + WaW¢
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+ / & / 449 Ciggw[(\/i& + x) eV (—\/585 + X) & + 0seVase’]  (3.59)
The chiral and antichiral superfields and H ¢ transforms as
H —e'H
H¢ — e'He (3.60)
and the generalization for the 4D interaction of the chivglesfields to the gauge multiplets from Eq_3.47

then reads

Sh = / d°x / d'0 (He'VH + H°e"H°)
+ /d5xd29 H° [m + (a — %x)] H + h.c., (3.61)

whereds — \/%X is the covariant derivative associatedkp Note that in the case of a flat background the
actionS, andsS), are invariant under the full 5D SUSY. We will see in the nexttem that we cannot keep
the the complete 5D SUSY of the action in the case of warpekigraands.

3.2.2 Supersymmetry in warped extra dimensions

Now we want to examine supersymmetry in warped five dimemsibackgrounds. We assume that the
backreaction of the matter and gauge fields on the backgroamde neglected. This saves us from the
entire implementation of supergravity. Therefore we ordyédto take care that the global SUSY trans-
formations are compatible with the isometries of the warpackground(]il]. In warped extradimensional

models the SUSY algebra is easily extended to

{Qi,Q;} = 23 Py = —235P. — 24P, (3.62)

whereg™ " is now the warped metric an@f’ are they-matrices living in warped space time. Since the
warped 5D SUSY algebra can be again related to &48 2 SUSY algebra, the superfield representations
are the same as in the case of the flat background. We have ack® saperfield which is composed of a
4D vector and chiral superfieldl; andy and a 5D hypermultiplet which consists of a chiral and amtih
superfieldd and H¢. To understand where the differences between supersymimefiat and warped
backgrounds are, we study the SUSY transformatirsndd,,. The supersymmetry transformation on
the coordinates™ reads

oM — 2™ 4+ €M where  —2(yME — &YMn) Py = €Y Py (3.63)
The metricg™ " changes under this coordinate transformation into
gun — gun + €"0Lgun + GLnOme” + GrrrOne” (3.64)
Following the paper of Hall, Nomura, Okui and OlivEr [4] a g supersymmetry transformation is defined
as the the supersymmetry transformation which legyes unchanged. Thereforé” has to satisfy
“Orgun + gnOome” + gurone” =0 (3.65)

whereeM is called a Killing vector and{3.$5) is called the Killingater equation. When we express the
Killing vectors through the SUSY parametérandn we find that the Killing vector equation is fulfilled if
¢ (andn) satisfy the following conditior]1]

E(a,y) = e 2P/ (0 0)" (3.66)

£ is now called a Killing spinor. Note that the presence of tliléri¢ vector equation reduces the 5D SUSY
toa 4D one.
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The supersymmetric gauge action in a 5D warped spacetime ¢laels[[4][[5]

R o
_ 5 2 a ) &
S, = /d x/d 94Cg§Tr[W Wa + WeW?]

—2Rky
5 4g € NeV ([ v Vo oV
+ /d x/d Brer Tr[(\/§85 + x)e ( V205 + X)e + 056 Vase¥]  (3.67)

and the bulk action of the hypermultiplet coupled to the gdfigds is given by
S = / & / a'0 Re ™ (BeVH + HeeV H°)
1 3
5.2 —3RkyHc o _ v H h.c. .
+ /d xd“f e {85 \/§X <2 c) Rk} + h.c (3.68)
The warped character of the fields appear in their redefirstioe have to make. We will see this in Chap.
B
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Chapter 4

The Model

In this chapter we want to give a brief description of the kiggs model]1] we used in this thesis. The
superfield representations and the appropriate action @x@a dimensional warped background was dis-
cussed in chapteld 2 apld 3. The task of this chapter is finstrtmduce the particle content of the model and
second to discuss the main ideas of higgsless symmetryibhgeakhout going into detail. We will illus-
trate the mechanism in some more detail in the next sectibarewve explicitly show, for the example of
the quarks and the component fields of the®lID(3) gauge multiplet, how masses come up. Therefore we
specify the symmetries in the volume of the extra dimensiahan the boundaries and how the symmetry
breaking is encoded in the boundary conditions first.

4.1 Model Framework

The warped spacetime in which the model lives is a slice of Ad$he AdS5 space was made famous by
Lisa Randall and Raman Sundrum][12] and is a solution to Eimst equations in a setup with two branes
and appropriate cosmological terms. The AdS5 space in thgepdistance coordinates is defined by the
following metric (see also Apii]A)

ds®> = e g datdz” — R*dy? (4.1)

wherey € [0, 7], R is the radius of the extra dimension ahds the curvaturek is a scale of order the
Planck scale. The fixed points@at= 0, = will be taken as the boundaries of two branes, extendingén th
z# directions, so that they are the boundaries of the five dilnaakspacetime. The volume between the
two branes is called bulk. Since in AdS5 the metric scalingsea a scaling of the parameters of the fields
in particular of the massless graviton field we denote thadedy = 0 Planck or UV brane and the brane
aty = 7 IR brane. The entire 5D spacetime setup is illustrated inZED)

The symmetry in the bulk is a left-right symmetric gauge grou
G = SU@B)c x SU2), x SU22)p x U(l)x, (4.2)

whereX is the(B — L)/2 quantum numberB denotes the baryon number ahds the lepton number.
ThusX is 1/6 for quarks and-1/2 for leptons. The coupling constants are denotedsby 9., = gr = g5
andgs. For each gauge group in the bulk we get a 5D gauge multlplef{3The component fields for all
5D gauge multiplets are listed in Tdh. 4.1 4.2. We netjtecauxiliary fields since they are no physical
degrees of freedom. We denote the fifth components of theegawgdtiplet as would-be Goldstones, since
in the unitary gauge they will beatenby the massive gauge bosons. Followihg [1] each standar@imod
fermion is implemented by two doublets transforming un8€i(2);, andSU (2) g, respectively

Vp = (W, Uy, v 0T
Up = (V% 0% 04 04)T (4.3)
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Figure 4.1: Outline of the model framework. The curved limplies the curvature of the five dimensional
background.

Each of the doublets gets a 5D Dirac mass, which is denoteg bypdcr. They are defined as in SEC.2.
The particle content of th8U (2) , andSU (2) i transforming 5D hypermultiplets is shown in TBR14.3. As
in the case of the 5D gauge multiplets the auxiliary fieldsataontribute any physical degrees of freedom.

At last we have to define the gauge fixing actiyn

2

e—QRky
(95 — 2Rk)A%| . (4.4)

R a
Sef = — / Pr o [aﬂAﬂ’ — ¢

The choice was made to eliminate the mixing of the fifth congmand the 4D part of the vector.

4.2 Breaking Scenario

The symmetry breaking via boundary conditions is impleraérso that
G SUB3)e x SU(2), x U(l)y onthe UV brane (4.5)
SU(3)c x SU(2)p x U(l)x onthe IR brane '

holds on the boundaries. On the UV brane #1é(2)z andU (1) x are broken down to th& (1), of
hypercharge. On the IR brane tI%¢/(2), and SU(2)r are broken to &U(2) custodial symmetry
which is generated by’3 = T} + T%. The maximal subgroup contained in both breaking scenésios
SU(3)c x U(1)gam- Thus this is the only remaining symmetry group after thegnation over the ex-
tra dimension. The boundary conditions have to be impleateint a way that they respect the breaking
scenario and ensure that the variation of the boundaryracéinishes. Furthermore the supersymmetry is
only broken on the UV brane to get a particle spectrum thabimspatible with experimental datal[1]. The
particle content after the symmetry breaking is shown in E2h[42 an@Z13.

We are now ready to write down the supersymmetric boundamgliions. The BCs for the 5D vector
multiplet on the IR brane reads

y=m
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SU(2), x SU(2)r xU(1)x after EWSB name
Ap?, AP Wi KK T¥-Boson
A3, A%, B Yiny» Z(n) KK photon, KK Z-Boson
AT ASE AZ 0 would-be KK Goldstone
A3, A3 R, Bs A would-be KK Goldstone
AL AR AT AR Ao KK chargino
A LA R A3 LA R ALxs Ao x )\(1),(71)' )\g_’(n) KK neutralino
IR S I KK schargino
383, Bx 2 KK sneutralino

Table 4.1: The left column lists the component fields of 81&(2).,, SU(2)r andU(1)x 5D gauge
multiplet. The fermionic fields in the left column are Weyirsprs and the upper index denotes 1€ (2)
gauge index. The middle column shows the particle contéat tfe EWSB and integration over the extra
dimension. In the notation chosen h@) is a Dirac spinor and%(n) and)\g’(n) are Majorana spinors.

SU(3)c after EWSB name
A® Al KK gluon
Ag A5 would-be KK Goldstone
¢ A Aln) KK gluino
e Z‘(’n) KK sgluino

Table 4.2: The left column lists the component fields of #i&(3) 5D gauge multiplet. The fermionic
fields in the left column are all Weyl spinors and the uppeeindenotes th&U (3) gauge index. The
middle column shows the particle content after the EWSB atefjration over the extra dimension. In the
notation chosen herﬁn) is a Dirac spinor.

SU(?))C XSU(2)L XSU(?)RXU(].)X after EWSB
\Iﬂi, \Ij%cy \IJ%’ qj%f U(n)s C(n)» t(n)v Ve, (n)» Vyu,(n)r Vr,(n)
\Ij%, @%Cy \deR' \deR( d(n)v S(n)» b(n)v €(n)r K(n)r» T(n)
g by R, b i, (n)» Ci,(n)s i (n)s Des oy s Dty Vi
he, b b, b i (n)s Bis(n)s is(n)s €is(m)s Al (n)s T (m)

Table 4.3: The left column lists the component fields of #&(2);, andSU(2) i transforming 5D hyper-
multiplet. The fermionic fields in the left column are all Wepinors. The right column shows the particle
content after EWSB and the integration over the extra dimo@ensThe quarks are represented as Dirac
spinors and the neutrinos as Majorana spinors. The indéthe sfermions runs fromto 2.
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Oy  —0y X"

5yVX(7T) =0, XX(’lT

9V (r) =0, x%n) =0 (4.6)
and on the UV brane they have the form
95x8y 9589 VR’B -0
—95 95x VX
4 ly=0
R,3
J5x 95 | gomry |X 0
_95821 55 Oy XX
4 ly=0

Vi) =0, xH0) =0
VR,lQ(o) — 0, 8ye—2RkyXR,12 —
a,ve) =0, x0) =0 (4.7)

The boundary conditions for the quarks on IR and UV bran@getively are

W = e PG| =

C
Lly=o =
Vp — p V|, =

0
0
0
Ve + p V. 0

|y:7‘r -

(4.8)

We will see in the next section how the 5D Dirac masseandcy and the parametefsandp affect the
quark masses. Moreover we will discuss the originu@indp. Following [1] we remove all scalars from
the UV brane by setting them to zero at the UV brane

»E0) = 2F(0) = 2¥(0) = 90) = 0
Ry (0) = hZ'(0) = 0 (4.9)

This pushes th&U (3) andU (1) x gauge scalars up to a massofl.2 TeV.
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Chapter 5

Feynman Rules

In this thesis we want to study the characteristics of thietéigt KK-mode of the KK sgluino (sgluino) and
the first KK-mode of the gluon (heavy gluon) and examine weethe can measure these two particles
at the LHC. To make theoretical predictions for LHC obsetsslve need the effective 4D couplings and
vertex structures of the interactions of the sgluino andfeguon to the standard model particles. This
includes the self-interactions of the KK-gluon, the conglof the sgluino to the gluon and the interaction
of the sgluino and KK-gluon to the quarks. To get the coupding have to solve the equations of motion
for the fifth component of the 5D wave functions. This allovgsta integrate out the extra dimension and
to get the effective 4D theory. From the remaining effecthizeLagrangian we can read off the Lorentz
andSU(3) gauge structure of the couplings and determine the Feynutes: r

5.1 Equations of Motion

First we study the 5D part of the gauge action giver[n {|3.67}lie special case &U(3)c. Therefore
we replaceys by g5, and setC' = 1/2 (Tr[T*T?] = C§?*). To get the correct equations of motion for
the sgluino and the heavy gluon we need the part of the 5D gattge which contain&®, Af and A3.

¥* and A3 are part ofy® and A, occurs inV*, both defined in[(3.34). To get the action in terms of the
component fields we have to calculaté and eV, which is easily done since all orders higher thah

vanish

2
_ __ __ 1 __
4 1+ V + VT =1 — 0c"0A, — 000X, + 000N, + 59909D

0}
I

+ 1 (00704, (60"0A,)

2
_ __ _ 1
eV =1-V + V7 = 1+ 00”04, + 000N — 099X, — 50000D

+ % (00"0A,) (6070A,) (5.1)

Moreover we plug the superfiejg in terms of its component fields in the 5D gauge action. Aterfull
expansion and the integration over the superspace cotedthandd we obtain

e—QRky
Rg2.

1 a a a a a a
+ SO5AROSAT — (D5A7) (9" AZ) — (95D)

1 1
Sgsp [A%, AL, %] = / &z [—iaﬂzaaﬂza - S0.Az0" AL

1 1
o gfadefbceEaEbAZAd"'u o gfadefbcejélg142[4;J4d,,u

1 aoc a c ]' aoc a (& 1 aoc\ha (&
- 5f beAZYPDe — 5/ be (95 A%) AP AL + 5/ by (9,50) A%+ | .
(5.2)
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For the expansion we make use of the identities given in theeAgdix of [T1] and we employ th&U (3)
algebra [T%, T?) = if***T° and TfT*T"’] = C5%°). Note that we neglect all components of the 5D gauge
action which do not contairy;, Ag or X and that we only study th®999 part. As we can see the auxiliary
fields D* appear in the action. To get rid of them we have to use the msatf motion ofD*. Therefore

we must examine the 4D part of the gauge action

Sgap = /d5 /d2

and thus we have to derive the explicit form of the supersytrimﬁaeld strengthiV,, defined in[[3:36)

Tr [WeW.] + h.c (5.3)

Wo = —idia + [5a5D - %(U“&V)aﬂ (0,4, — 8VA#)} 05 + 000, 0\

W, = idg + [ D + QEM (50)7 . 5 (0 — &,AM)} 07 — €.5000" 0 Na.  (5.4)

The supersymmetric field strength is taken frénd [11]. Aftes integration oved?6 and some integration
by parts the 4D part of the gauge action reads

R [1 | )
Soap = / Pz - [gpapa ~ ZEnFO mga#aﬂxg} , (5.5)
C

which can be easily calculated by usiig15.4) and the idestidf the spinor algebra discussed in the
Appendix of [T1]. Now we can assemble the equations of mdtorD? and the auxiliary field may then
be written as

e72Rky

D' = — = (3:5" — 2RkY") (5.6)

Plugging [&.B) in the expanded gauge actiignp + Sg,sp [Aﬁ, Ag, Ea} we obtain the following equations
of motion for ¢
e72Rku
R2
Using the Kaluza-Klein Ansatz® = f (n) (W)X, () and the 4D equation of motion
O%2 + m?2Xe = 0 we can write down the dlfferentlal equation ffg (n)

(05055" — 4RkOsX* + 4R*k*S") — 0,0"%" = 0. (5.7)

e—QRky all al 21.2 ra 2 ra
T( Loy — ARKS ) + ARk fw)) +om2fE o = 0 (5.8)
whose solution are linear combinations of Bessel functions
mneRky mneRky
fEm = €7 <A?n>JO <T) N B?n)Y()( k )) 5

Next we want to derive the equations of motion for the glutfi{z, y). To get the correct equations of
motion we have to consider the gauge fixing giverl1nl(4.4) dtdia after the variation

e72Rky

1
OA% — (1 - E) 0,0, A% — (05 — 2Rk)0sAj, = 0 (5.10)

RQ
We make again the Kaluza-Klein decomposition for the 5D glfield A%, (x,y) = > /', (¥) A}, () (@)

SinceAy, ) satisfies the 4D equation of motion

]- a,v
DA ) — (1 - Z) 00, AGY = —min Ay () (5.11)
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we can write down the differential equation fff (y)

e72Rky

all al 2 ra o
R2 ( g,(n) 2ka g,(n)) + mnfg7(n) = 0. (512)
The solutions are again combinations of Bessel functions
- m, €KY m,,efthy
f;(n)(y) = e Rky ( (n)Jl (T) + B(,L)Yl ( i )) (513)

Since the equation of motion for the fermions is the same & ir{ZP we adopt the result derived in
(Z59). There remains nothing else to do than to rewrite thetisns in proper distance coordinates

eftky 5/2 eftky eftky
fo,m)(y) = < 3 > <CnJ1/2+c(mnT) + DnY1/2+c(mnT)>

eRky 5/2 eRky eRky
Fuen® = (5) (e S0 + BV, 50) 610

k k

A more interesting issue are the couplings of the fermionkeagluino. To get them we study the 5D part
of the hypermultiplet actiod {3.68)

1 3
Shsp = /d5x/d26‘ e 3ty e {a - —=x - (— — c> Rk} H + h.. 5.15
h,5D 5 ﬁx B ( )
Since we are interested in the interaction part of the 5D hyp#iplet action, it is sufficient to expand the

term Hex H andHyH¢. After the expansion and the integration over the supeespaordinates andé
we obtain

ei al, c a a aj,Cc
Shsoline = /d5 7 [C heT*h + C*ThiThet
1
— (2 4+ iAYRTF + — (2% — iAg)FTTopet
f( ) \/ﬁ( 5)
1
— (2 4 iAY)FTh + —(2 — iAQ)RiI T et
\f( ) \/5( 5)
1 o
— (D GADTTY — (D% — AL PTIC
\/i( 5) \/i( 5)
— AQUCTh — NATTOWC — XGhCT W — NGWTeheT (5.16)

Finally, we want to determine the coupling term of the glumthie fermions. To achieve this we have to
expand the 4D part of the hypermultiplet actibn (3.68). Afte integration oved*d we get the following
interaction term for the gluon and the fermions

1 _ _
Shaplipy = — / d°z Re_szy§ [ACUGHT U + T o TCAY] (5.17)

5.2 Masses

In this section we want to show how to get the standard modeliten masses out of the 5D parameters
first and then how the masses of the KK sgluuit(g and the KK gluonsA?® . | can be calculated. To

) »(n
understand how the fermion masses come out of the boundadjtioms of the hypermultlpletH andH¢
(see SedZ12) we need a better understanding of where timeléiguconditions come from. The fermion
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Figure 5.1: fu, (), fur(y), fuc (y) and fye (y) for different values ofu. (p = 3.8 x \/1/k, ¢, =
~60/100, cr = 60,/100)

boundary conditions on the IR brarfie_(4.8) have their origia brane localized mass term, which mixes
SU(2)r, andSU (2) g fermions [2]

S = / e € 3R (DS + USTg + ULUG + OG0 )| (5.18)

Yy=m
The additional brane term and thus the mass correction optional top, and the values of the fermion
wave functions on the IR brane. Thedependence of the 5D fermion wave functiofis,(v), fur(y),
fwer(y) and fyer(y) is shown in Fig[Rll.

The fermion boundary condition on the Planck brane comes fhe mixing term([2]

SPIanck - /d4$ (_ig‘j’#aﬂf - inaua,uﬁ =+ f(flf + 577) + My k_l( ?%5 =+ g@ﬁ))‘ )

y=0
(5.19)

where¢ andn are brane localized fermions, which together form a Dirana@pwith a Dirac masg on

the brane.p is in this context defined gs = M?2/f2k. We see in the next section that the paramater
appears in the normalization of the fermion wave functioms lbecause of that the masses decrease with
growing p. This dependence can also be seen in[Elg. 5.2, since theofemive functions become flatter
with growing p and thus the 5D overlap integral in front of the bulk mass ter@.38) becomes smaller.

Finally we examine how the 5D fermionic wave functions depenthe bulk parameteeg andcy. We
chooser;, andcr antisymmetric, because we will later use such parametetseket the physical fermion
masses. As we can see in HIgl5.3 the 5D fermionic wave fumctbiecome more localized to the IR brane
for lower absolute values af;, andcg. The larger values of the 5D fermionic wave functions on tRe |
brane lead to a higher contribution of tadoundary ternm{5.18) and thus to higher masses of the fesmion
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R 1.19 x 108 GeV !

10 GeV

Table 5.1: Warped 5D model parameters.

) (efF /k) p/\/1/k CR crL m/GeV
U 54.59 3.87 —60/100 60/100 0.00309
d 54.59 0 —60/100 60/100 0.00618
c 113.39 0 —52/100 52/100 1.31017
s 113.39 51.92 —52/100 52/100 0.11077
t 785.85 0 -1/3 40/100 171.106
b 785.85 41750 -1/3 40/100 3.87311

Table 5.2: Warped 5D model parameters for the fermions.

Now we are ready to determine the fermion masses. For thisawe to calculate the radiu? of the
extra dimension. Since we want to have a realistic model we satisfy the experimental constraints. The
mass of thé¥ -Boson is measured &0.4 GeV. Therewith and with a curvatute = 10'? GeV we can
calculateR from the following condition

ke72Rlc7r
2
= - 5.20
Mw (1—-k)Rm ( )
The factor(1 — ) in the denominator comes from a brane tefrn [1] that we havettoduce to get a
sufficiently large tree level mass of the lightest chargifio which escapes the current detection bounds.
The tree level chargino mass is approximately giveriby [1]

my+ ~ V1 4+ cmy . (5.21)

To get a chargino mass which is not excluded by existing exyaits, we sek = 0.4. The calculated
value forR is listed in Tab[ 2.

The rest of the parameters and the resulting masses of thiescara given in Tali 5l 2.

At last we have to determine the masses of the heavy gluontenddiuino. Therefore we use the
boundary conditions given ili{4.6) arld{¥.7) and get the emshown in in Tal. Bl 3. Itis interesting, that
both particles have the same mass. This is based on the &dhthheavy gluon and the sgluino have
the same boundary conditions. But we would expect the mdssgsange when we calculate the mass
corrections. At tree level the masses stay equal for higheéntodes of the gluons and the scalars, as
illustrated in FigCR¥. The intersections of the plotteddtion with thez-axes indicate the masses of the
particles since the boundary conditions are satisfied aetpeints.

mg(1) 1420.85 GeV

ms(0) 1420.85 GeV

Table 5.3: Mass of the heavy gluon and the sgluino.
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Figure 5.4: The roots of the plotted functions indicate thesses of the KK-gluomd? , and of the
sgluino, respectively. '
5.3 Couplings
In this section we calculate the couplings required for the tevel cross sections we want to study in this

thesis. To obtain the correct normalizations, Dirac strreetand coupling constants we have to do some
redefinitions

U — e iy

AN - g5cAM

As — gs5.RAs

A — g5ce_%Rk3’)\1

Ay — —ig5CRe_%Rk3’)\2

Y — g5 RYE

o = V.ot
g = VOV

Vg = Re *fky (5.22)

After the redefinitions we have to derive the normalizatibthe wave functions and the couplings to get
the correct 4D effective action. To obtain the standard 4tidador scalars and gluons

1
Sap scalar = /d4$ <—§8a2a80‘2a>
1
Sap gluon = /d4$ (‘ZFa’aﬁF&lﬁ> (5.23)

we require the following normalizations
/dy Re_szny,(n)fE,m = Onm

/dy ng7(n)fg7(m) = Onm- (524)

The 5D wave functions are by construction orthonormal andg thie can neglect mixing terms between
different KK-modes. The normalization of the fermions isianbore complicated but the derivation goes
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through as before. The normalization of the fermion reads

/dy Re3Rky (fWL’(n)f$L7(7n) + f‘I}R7(”)f$R,(m)) + p2fo/R’(")f‘I’R7(’”)|y:0 = Onm
(5.25)

Last we have to derive how the 5D gauge couplipg is related to the 4D gauge coupling.. The
relation

g5 = 2V R7Tg4c (526)

stems from the fact that we want to have a the standard vertetgre in 4D. Now we are ready to calculate
the couplings. We start with the coupling of the fermionshe $gluino. The interaction term reads (see

Eq. &18))
e—4Rky B - _ _
/d% {—R%CT (SOUG T, + SO0, T0G + SOUGT W, + SOURT0%) | (5.27)

Note that we have performed the redefinitions declareEZH5.Plugging the KK decomposition in the
above expression we obtain

I Ud4x Z YL T YL, m) /dy TR fs ) g () o
l n m
+ / d'a X Wi, ) T, o) / dy TE R f ) fay o Fas om)
* / d'z 3 W () TV () / dy %Tce_mwf&(l)f%m)f%(m)
+ / d'z 2 W r TV 1) / dy T2 R fs ) o oy )| (5:28)

Since the 5D wave functionsy, fg, fwe andfg. are real we can assume that
fo = fo and fee = fye. (5.29)
As a consequence of the boundary condition on the IR branewese that
Ui = Yrm Yim = Yam Yimw = YrRm Yiw = Yam: (5.30)

if the 1 parameter is not equal to zero, as in our case. U$ingl(5.2Bf@AD) we can rewritd (5.P8) as
follows

3 [— / d'e (S0 W) T Wimy + S ) T Wi )

l,n,m
g _
< [y BERE Y (f o fuy o funin) + oo fuofunm)] 63D

and thus get for the effective 4D coupling

95 _
95 fF (nim) = /dy TCRE Ahiky (f27(l)flpi,(n)f\111,,(m) + f27(l)f\11§27(n)f\111{7(m)) (5.32)

The numerical results for the couplings of the quarks to tiflmiso are shown in Tall.3.4. For the cal-
culation we used the parameters given in Tal. 5.1[add 5.2 mrdfective 4D strong coupling constant
equal togs, = 1.216. The couplings of thel- and c-quark are zero, because in that case the sum of
fe.@ fue () fuy m) andfg7(l)f%7(71)f\pR,(m) is zero up to numerical fluctuations.
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9¥ua,(000) 1.79 x 1079
9%.dd, (000) 0
95:55,(000) 7.93 x 1076
9sce,(000) 0
952b,(000) 0.0068
9x:tt,(000) —0.152

Table 5.4: Couplings of the quarks to the sgluino.

9gu i, (100) —0.227 9guriir,(100) —0.057
9qd 1 dy.,(100) —0.227 Jgdrdr,(100) —0.227
Jgeres.(100) ~0.125 Jgemen.(100) —0.00081
9gs1.51,,(100) —0.125 9gs rsr,(100) —0.00089
9gbLb,(100) 2.253 9gbrbr,(100) 0.0014
9ot 1 T1,(100) 1.666 9gt rfr,(100) 2.931

Table 5.5: Couplings of the quarks to the heavy gluon.

To get the coupling of the fermions to the gluons we have tchdasame procedure as in the case of the
sgluino, where we now use the action givenin (b.17). After bdefinition and the insertion of the KK
decomposition we obtain

a NT — a gs _
) {_/d% A i)Y' T ‘I’<m>/dy SR (fow fan i Funom) + fo ) S funom)

l,n,m

4 a c aysc gs —3Rk
- /d T A () Vo™ T (m)/dy TCRE Sliky (fg,(l)f\lfi7(n)fllli7(m) + fg7(l)f\11§,(n)f\llf%,(m)):| ;
(5.33)

where again we usef{5]29) ahd (%.30) and get for the 4D auymli
g5 _
Jqu ¥, (lnm) = /dy TCRe 3Rky (fg,(l)f\IlL,(77,)f\IlL,(7n) + fg(l)f\IJR(n)f\I/R(m))
_ — [ dy 952 pe—3Rky 5.34

gg\IlC\IIC7(lnm) Y 2 € fg,(l)f\I/i.,(n)f\I/i,(m) + fg,(l)f@%,(n)f‘l’%,@n) ( . )
The numerical values of the couplings of the quarks to thenhghion are listed in Talh_3.5. We used
the parameters from Tab 5.1 andl5.2 again and an effectivstdbg coupling constant,, = 1.216.
The coupling constant of the quarks to the massless glugy.isThe couplings of the quarks to the heavy
gluonincrease with respect to larger quark masses and elsagnyin the case of the bottom and top quarks.
This stems from the fact that the quark-quark-heavy gluapting grows for a decreasing absolute value

of ¢, andcg and changes sign at,, cp = 1/2.

Since it is always the same mechanism to get the 4D effectuplings we only state the results.
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InvestigatinglE.d), we get the interaction terms between the gluons ansiglunos

) / ata £y (0,5l ) ATt [ dy REEe2M0 g o oo

l,n,m

aae ce g —
5 X [t e sy s Az oAl [y RESE Ly f 0 fym o) (6:35)

lnmr

and the 4D effective couplings then read
_ d R95c —2Rky
9gss, (tnm) = y R==e fe. fs,m) fg,m)
93
gggEE,(lnmr) = / dy R_4C ei2Rkny7(l)fE,(n)fg,(m)fg,(r) (5.36)

Expanding the terr‘éFl‘}VF“=“” of (&3) we get the 4D couplings of the three and four gluoneser

ogg.(Inm) = / dy REE fg (fa.(n) fo.(m)
2 _ 93
ggggg(lnmr) - /dy R?ng,(l)fg,(n)fg,(m)fg,(r)~ (537)

The Lorentz andSU (3) structure of the remaining 4D part of the three and four glvertex looks like
the structure in standat$i (N') gauge theories. The only difference are the KK indices of4hevave
function. The numerical results of the KK gluon self-intetfans and the coupling of the KK gluon to the
sgluino are shown in Tab. 3.6 aldl5ggq 001) @Ndggggg (0001) are equal to zero because of orthogonality.
This is obvious since the 5D wave function of the masslessrgisia constant.

Now we are ready to construct the Feynman rules for our théfinget the Feynman rules out of the
Lagrangian we have to do the following steps [13]

e Multiplication of every vertex by an
e Replacing every partial derivativg, by —ip,,
e Symmetrization of identical fields

Since the fields have an additional KK index the symmetiizais reduced to the one without the KK
decomposition. But the summation over the KK index candeffect of that lack of symmetrization and
we end up with the vertices we know from stand&id(N) gauge theorie§[14]. The results are presented
in Fig.[&3.
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Y9ggg,(000) Gac
9ggg,(001) 0
9ggg,(011) Jac
9ggg,(111) 7.901
Jg095(0000) Jic
ggggg(oom) 0
Jagea(0011) 9.
ggggg(mn) 9.604
g§ggg(1111) 69.833

Table 5.6: Couplings of the gluong,(, = 1.216).

9gss,(000) Jic

9g=x, (100) 3.950
gggzz,(oooo) 93
93922,(0100) 4.802
gggEE,(noo) 23.278
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Figure 5.5: Vertices of the couplings among fermions, gtuand the sgluinos.
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Chapter 6

Partonic cross section

As we want to make predictions for detecting non-standardehparticles, we must think about cross sec-
tions, which deliver signals that can be clearly assignezhtracteristic particles predicted by our model.
The first idea is to generate the particles we want to measushell in a2 — 2 cross section and in a
second step to let them decay into standard model particesanw detect at the LHC. We hope to see a
characteristic peak in the invariant mass spectrum of thaydeg particles at the production threshold and
characteristic angular distributions of the decay proslutt this thesis we want to study cross sections
where the first Kaluza-Klein excitation of the gluon and tbluso contribute. By means of observables,
which depend on the character of the sgluino and heavy glwermay distinguish our model from the
standard model including a Higgs boson and in particulanfother extensions of the standard model, like
for example SUSY in 4D.

Since at LHC energies the colliding protons have a high gtlemsity, we study cross sections with two
gluonsin the initial state. Furthermore the massive plagiproduced in the intermediate should decay into
two quark-antiquark pairs. Therefore we have to calculate 4 cross sections. For the calculation we
first use the narrow width approximation and second, we peréoMonte Carlo simulation of the complete
tree level — 4 process. For all calculations we use the unitary gauge éontassive gauge bosons. Thus
we can neglect all contributions of the fifth component ofktegluon.

6.1 Calculation with the Narrow Width Approximation

6.1.1 Basics of Narrow Width Approximation

In this section we want to calculate the— 4 cross section using the narrow width approximation (NWA).
Therefore we have to calculate the— 2 scattering of two gluons into heavy gluon and sgluino paiic a
afterwards multiply the cross section with the decay prdiwf the produced particles. Thg — 2
amplitudes we want to study are shown in IEigl 6.1[anH 6.2. Wbemparing the NWA with the fulk — 4

tree level calculation we have to account for symmetry faotd the phase space. Thus we want to discuss
briefly how both approaches are connected. The 4 cross section can be written as

o 1 o
do(9g = 4:9:4;3) = -IM(g9 4:39;3;)|* 4@

Q

1 _ .
- (|M(gg — PPy d<1><2>) BR(P1 — ¢iGi) BR(P2 — ¢;;)

1
= Z_z (n_2|./\/l(gg — P Py)? d@(2)> BR(P1 — ¢:¢;) BR(P: — ¢;45)

n
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whered®® andd®® are the phase space measures fdr-a 2 and2 — 4 process, respectively. The
relation [&1) holds exactly in the case of vanishing irterhce termsP; and P, denote the intermediate
state particles which decay into quaigsandg;. ¢ andj run from1 to 3 and indicate the generation.
BR(P; — ¢;¢;) and BR P, — ¢;§;) are the branching ratios of partictg and . The branching ratio is

the decay probability and can be calculated from the dedagla

I'(Pe — 4ii)
tF(Pk - fsft) ’

S

BR(Px — ¢iqi) = (6.2)

wheref, andf; are all the possible decay productsiaf. The sum over all possible decay rates is defined
as the width of the particlen, andn, are symmetry factors of the phase spadé? andd®®. They

will be important in the case of identical particles in theafistates, since the phase space then has to be
reduced byl /n!, wheren is the number of the identical particles. For instange= 2!2! = 4 for two
identical quark anti-quark pairs in the final state and= 1 for two different onesns equal2! in the case

of two identical particles in the intermediate state, othisens = 1.

To make use of the NWA the width of the particle has to be sigaifily smaller than its mass. We will
see later that this requirement is satisfied.

We will assume that the decay of the particles is isotroptb@ir rest frame. To make the approximation
that the angular distribution of tiie— 2 cross section remains the same after the decay, we haveueens
that the on-shell produced particles are sufficiently bedsio become clear about this issue we make a
short estimate. Since the decaying particles are of equsd tha absolute value of the three momentum is

given by
. S
171l =P =y/>-m (63)

where/S is the the center of mass energy. When we assumeytdat= 4000 GeV and the mass of
the outgoing particle is equal ta = 1420.85 GeV, which is the mass of the predicted heavy gluon and
sgluino, we get

prm. (6.4)

Now we have to calculate the Lorentz facidr= v /¢, which is needed to boost a particle from the rest
frame to momentunp. For simplicity we choose the boost in z-direction. Aftee thoost,p can be
expressed as follows

p = Pym, (6.5)

wherey = 1/4/1 — 32. After solving [E5) for3 we obtain3 ~ 0.7. In chaptef6B we will discuss
whether the value of is sufficiently large to legitimate the assumption that theay products move in the
same direction as the outgoing particle of the> 2 process.

To calculate the — 2 cross sections and decay rates we use FeynArts and FormUwadeefore we
implemented the model into FeynArts, which is discussedpp K.

6.1.2 Calculation with FeynArts and FormCalc

In this section we want to calculate the— 2 cross sections shown in Fig-B.1 dndl 6.2 and the following
decays in terms of the NWA by FeynArts and FormCalc. To getthge need the phase space of two-body
final states.
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Figure 6.1: Amplitude for the process gg >3..
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Since the phase space is Lorentz invariant we choose thigasst for the decay and the center of mass
system for the — 2 cross section. The differential cross section of the dedayrassive particle with
massM in two particles with equal massa reads[[1B]

4m?
_ 2
o = 50 2M MIPYL= 3P
where M is the scattering amplitude anlf) = d¢dCog#). The differential cross section ofa— 2
scattering process is given iy ]13]

ds, (6.6)

4m2
_ 2 Fm=

do = i 2S|M| 5 ds, (6.7)
wherem is the mass of the outgoing particles. Note that we have UmeMandelstam variables, 7" and
U defined by

S = (m +P2)2
T = (p—p3)°
U= (pr—ps). (6.8)

p1 andp, are the momenta of the incoming particles andandp, are the momenta of the outgoing
ones. We use FormCalc to calculate the square of the absaluie of the scattering amplitude!. Since
FormCalc provides results depending on the Mandelstanabas, we want to rewrite the Mandelstam
variablesT” andU with respect taS to get a more compact expression. Therefore we need the ntamen
p1, P2, p3 andpy in terms ofS and the scattering angte In the center of mass frame the momenta of two
massless particles in the initial state and two massivégestwith massn in the final state read

p = (\/§/2,0,0,\/§/2)

Py = (\/§/2,0,0,—\/§/2)

ps = (V5/2,0,in(6)\/5]3—m?, Cos6) /5] —m?)

pi = (VS/2,0,-Sin(6)/S/4—m?, ~Cog)/S/4 — m?), (6.9)

where for simplicity we have chosen the momenta of the inogrparticles inz-direction. 7" is derived by

4
T = (p1 — p3)? andU can be easily calculated by using the idenfity- 7+ U = >~ m?. T andU then

i=1

read
S 2m? 4m?
T = ——|1 - — — 1 —
2( 5 5 Cos(@))
U= -8 —T + 2m? (6.10)

The transition probabilityM|? for the2 — 2 cross section in the center of mass frame with two heavy
gluons in the final state then reads

993,
16 S (S +@m2, — S)Cos(a)Z)

| Mag—gwa|” 3 (3 S+ (—4mZ ) + 5)005(9)2)

X (48 mi ) (2 - 2Cog6)* + Cog0)") — 8m2;)S (3+ 2C0g6)? + 3Cog0)")
+ S$% (19 — 10Cog#)* + 3Cog6)*)) (6.11)
Note that we summed over the polarizations and the adjling3) index in the final state and averaged

the initial state with respect to the polarizations and timiat SU(3) index. Plugging[&11) in[{6l7)
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Figure 6.3: Differential cross section of two gluons in théial state and two heavy gluons in the final
state depending on C@ for different values of/S.

0.35 T T T T T T T T

03 4

0.25 .

02 .

0.15 - .

d0gg 5g(1yg(1y/nb

0.1 - 1

0.05 o

4000 6000 8000 10000 12000 14000 16000 18000 20000

Sqrt[S]/GeV

Figure 6.4: Differential cross section of two gluons in théial state and two heavy gluons in the final
state depending oy S for different values of.

we get the differential cross section. Sing4 is independent on the azimuthal angleve perform the
integration overp which gives us a facta2r and the solid angle reducesd€og#6). The dimension of
do is 1/GeV2. To rewritedo in units of nb wherel nb = 10~2*m? we have to multiplydo by a factor
103"h2¢? ~ 0.389 x 10% nb GeV?. The dependence of the differential cross sectieron Cog6) and
VS is plotted in Fig[EB anf@.4. We see that the cross sectirédevel unitary, becausi decreases
for sufficiently high energies als/'S. Moreover, at higher energies the forward and backwardesaag is
enhanced. This stems from the fact that we can assume theilogigarticles to be massless in the limit
of very high energies. In this limit the differential crosscton will diverge for forward and backward
scattering since the intermediate state particle offttendU channel of the scattering amplitude become
on-shell. This effect can also be seen in Egl 6.5, whergthkannel, the” + U channel and the contact
vertex are plotted over C@#) for different energies. All contributions increases fonety degree scat-
tering with respect to higher energies. Thus the decreateediill cross section forr/2 scattering is an
effect of destructive interference.

Calculating the transition probability of ttie— 2 scattering amplitude with two sgluinos in the final
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Figure 6.5:S channel,I'+ U channel and contact graph for the cross section of two nsssglaons in the
initial state and two heavy gluons in the final state.

state we obtain

_ 99§C (
16 S (S + (4 m2 — S)Cog6)?)”
x (32m% —8mES + 5% + (—4mE + 5)? (—2Cog0)* + Cogh)*)). (6.12)

|Mgg—>2§]|2 = S+ (—4m% + S) COiH)Q)

Again we summed over the polarizations and the adj6iif3) index in the final state and averaged the
initial state with respect to the polarizations and the edj§U (3) index. The dependence of G6% and
V'S is shown in FigLE arld8.7. As in the case above we rewritdifferential cross section in units of nb
and integrated out the triviad dependence of the phase space. The cross section is agdevikunitary
(see Fig[&l7). Up to higher energies we may ascertain arelifte in the Cq®) dependence to the case
of two heavy gluons in the final state. The differential cresstion decreases for forward and backward
scattering and increases foy2 scattering. This stems from the fact that tHet U-channel increases
for /2 scattering and vanishes for G8s = —1 and Co$#) = 1. Moreover up to energies higher than
4000 GeV the contact graph decreases. The dependency comeshiegohdse space. This explains why
the whole cross section decreases for higher energies. dgendence of th8-, T' + U-channel and the
contact graph on Cd8) is plotted in Fig[&B.

Comparing the — 2 cross sections with two heavy gluons and two sgluinos, itisdy in the final
state we find that the cross section with two heavy gluonsasnhagnitudes larger than the cross section
with two sgluinos. This will be important for the discussionChap[T, where we study whether or not the
heavy gluon and sgluino can be detected at the LHC.

Finally we have to calculate the decay rates of the heavyngéiml the sgluino into quarks. We have
used again FeynArts and FormCalc to get the decay probapiit|?> and using[[EJ6), we obtain for the
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S-channel T+U-channel
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Figure 6.8:5, T'+ U channel and contact vertex for the cross section of two ressglluons in the initial
state and two sgluinos in the final state.

decay rate of the heavy gluon

T o 1 1 4m? 6 _ _ 2 2 2 2 2
SIS\ T m2 991212 9 Fe ™5 T gy g T Iy s ) (T1F + 010 ) -
g

(6.13)

9o(1)f1 7, NGy p, 7 Are the generic couplings from the quarks to the heavy glUbiey are listed in
Tab[55.m; denotes the mass of the respective quark. Plug@ingl(6.18)dhand performing the integra-
tion over the solid anglé(2, we get the decay rate in units of GeV. The values of the destag lare listed

in Tab[6. We find that the heavy gluon almost exclusivefags into bottoms and tops. This stems from
the fact that the couplings of the heavy gluon to the up, d@lhiaymed and strange quarks are negligible
small (see TalB5). Summing over all possible decays, Wihgevidth of the particle. Since the mass of
two squarks is larger than the mass of the heavy gluon anéhsglihe squarks add no contribution to the
decay width. In the case of the heavy gluon we obfgjn, = 155.93 GeV. This is around the tenth of
the particle mass and for this reason the assumption fogulsanarrow width approximation is justified.
Furthermore we find that the decay into the bottom and the tapkgdominates, which becomes important
for the detection of the heavy gluon at LHC. This will be dissed in the section of hadronic cross sections.

The decay rate of the sgluino into quarks reads

1 / 4m? 2 2 2

Plugging again[{6.14) intd{d.6) and integrating od€X we get the decay rates listed in TER]6.2. As in
the case of the heavy gluon the sgluino decays almost exelysnto bottom and top quarks, which cor-
responds to the couplings of the sgluino to the quarks (sbdbId). It is even more dramatic, since the
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T y1) um 0.516 GeV
L) —ad 0.971 GeV
Ty(1) et 0.1472 GeV
Ty(1)ss 0.1472 GeV
o1y it 106.32 GeV
T y1)—55 47.827 GeV

Table 6.1: Decay rate of the heavy gluon into quarks.

s ua 9.1 x 1077 GeV
Is_qq 0

I's ce 0

I's .5 7.1 x 1072 GeV
| 0.597 GeV

| 0.0013 GeV

Table 6.2: Decay rate of the sgluino into quarks.

decay into the bottom quark is much smaller then the decalgedrtdp quark. The width of the sgluino
I' = 0.598 GeV is very small compared to its mass. Thus we would expettiie narrow width approxi-
mation works very well in the case of the sgluino.

In the next subsection we want to check the Ward Identity@2fes 2 processes. Since the couplings of
the sgluinos and the gluons are gauge invariant by congtruof the theory, the Ward Identity of cross
sections with massless gluons in the initial state and sgtubr heavy gluons in the final state has to
be fulfilled. To ensure the correct calculation of the couplof sgluinos and gluons we check the Ward
Identity of the cross section with two gluons in the inititdte and two sgluinos in the final state.

Ward Identity

Now we want to check the Ward Identity for the-=2 process gg— >X. In order to verify the validity
of the Ward Identity we have to look at the single amplituded have to replace one of the polarization
vectors of the gluons by its momentum.

. 1 be pd
D2, MY = ig%e,(p) ———— fobefdec py
v 1 H( ) (_pl —p2)2 f f 2,v

x [g"(pr—p2)” + ¢”(2p2 +p)" + g"(=2p1—p2)”"] (p3—ps),  (6.15)

. 1 ca pec v
P2, M = ig?e.(p1) I e~ fEafe® py o, (2 ps — p1)* (2 pa — p2) (6.16)
v . 1 eca pdc v
p2,l/M3 = 292 Eu(pl) (pl _p4)2 — ng f fd bp27V (2 y2 _pl)#(2 P3 _p2) (617)
pQ,VMZ _ Z92 €p(p1) Doy g,uu (fdaCfbec 4 feaCfbdc) (618)
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Here we substitute, (p2) for p2 . For simplicity we calculate the Ward Identity in the cendémass
frame and can then apply the relatigns= —p; andps = —py. First of all we regard the' channel
amplitude and make use of the on-shell relation®;) p!’ = 0andp; ,p! = 0with i = 1,2. We then
obtain

po MY = — ig® fUFYC (p3 el — paoey). (6.19)
After using the relatiops; = —p; we get
Pap My = —2ig” fUfIC py ey (6.20)
We apply the same procedureAd, and M3 by using the above relations and end up with

p27uM5 — 929 92 fdcafecb p37u511/
P2 My = =21 g% ffI pg el (6.21)

p2,, MY is equal to zero because,,p), = 0. To see that the sum of the residual terms cancels, we have to
use the properties of the structure constdnis [15] :

fabCfdec _ E (5ad5be o 5ae§bd) + (dadcdbec o daecdbdc) (622)
n
with
debe = i Tr[{T, T} 1] . (6.23)

When we apply the identities to the above results we obtaridtiowing expressions:

2

pQ,VMT = 2 92 pg,VET E (_5ad5be + 5ae5bd _ dadcdbec + daecdbdc) (624)
2

pQ,VMg = 2 92 pg,VET E (5ab5de _ 5ae5bd + dabcddec _ daecdbdc) (625)
2

pQ,VMg = 2 92 pg,VET E (_5ab5de + 5ad5be _ dabcddec + dadcdbec) (626)

Now it is easy to see that the sum over the three expressi@uuia to zero and for this reason the Ward
Identity is fulfilled.

6.2 Monte Carlo Simulation

In this section we want to perform Monte Carlo simulationsXe— 4 processes with two massless gluons
in the initial state and a bottom anti-bottom and a top asjtigair in the final state. The Monte Carlo simu-
lation allows us to calculate thz — 4 tree level cross section without using any approximati@iace

we want to compare the Monte Carlo simulation with the NWA dodot want to make LHC predictions
at this moment, we reduce the number of diagrams of the the ful 4 tree level process to the number
of 2 — 4 diagrams, which contain onl§U (3) contributions. Furthermore, the neglected diagrams (see
Fig.[612 and Fig6.13) are single resonant diagrams andilveh@ose phase space cuts by which sin-
gle resonant diagrams are strongly suppressed. Furthetimemeglected diagrams contain electroweak
contributions. The ful2 — 4 tree level cross section is defined by the- 4 cross section, which takes
all possible contributions into account that are allowedhgymodel. By reducing the number of diagrams
we have to take care about gauge invariance. We ensure gawageance by taking all possiblgU (3)
contributions into account. Th&U (3) gauge invariant subclass of @ll— 4 diagrams is shown in Fig.
E3,[6T0 an@®&11. These diagrams are the diagrams we witecdrate on.

In the NWA we have to choose fixed final states of 2he> 2 cross section. Since the heavy gluon and
the sgluino have the same mass on lowest order we cannoiglisth?2 — 4 processes, where heavy gluons
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Figure 6.9: Production of two quark anti-quark pairs witlotmassless gluons in the initial state. These
are all possible double reson&nt- 4 diagrams in the&SU (3) sector. Note that we do not show the crossed
diagrams for reasons of compactness. The dotted lines stdra for a massless gluon, a heavy gluon or
a sgluino.

or sgluinos are in the intermediate state by using suitahés@ space cuts. To compare the Monte Carlo
simulation with the NWA, anyway we only regard cross sediamere either heavy gluons or sgluinos
are in the intermediate state. Note that these cross seatomain gauge invariant when taking all contri-
butions of the massless gluon into account. Now we can exathi characteristics of the two particles
separately and thus we are able to compare the results of dmeMCarlo simulation with those of the
NWA. If the masses of the heavy gluon and sgluino differ on-lmag order we would have the possibility
to distinguish processes with two heavy gluons or two sgisiin the intermediate state by the choice of
suitable phase space cuts. This will be discussed in Chap. 7

Since we want to study the contributions ©f— 4 cross sections, where two heavy gluons or two
sgluinos, respectively, are produced in the intermedittie swe have to introduce suitable phase space
cuts. Therefore we restrict the invariant mass of the twalgaatiquark pairs to the mass of the decaying
particles we want to measure. This will be discussed in betaén we present the results of the Monte
Carlo simulation.

To perform the required Monte Carlo simulations we needrsgygograms. To create the scattering
amplitudes we use O’Mega and for the Monte Carlo generatieruse Whizard. O’'Mega (Optimizing
Matrix Event Generator) is a tool which generates an efftoadede for scattering amplitudes created by
Mauro Moretti, Thorsten Ohl and Jurgen Reufer [16]. To piemla highly efficient code for calculating
multiparton cross sections O’Mega uses the so called calar decomposition. Moreover, by using this
representation, it is possible to add parton showers to thiéparton cross sections. In the next section
we will give a short introduction to color flow decompositithre reader needs to follow the discussion in
App. [0, where the implementation of the model in O'Mega isspreed. Afterwards we study the Ward
Identities in this color scheme to get a check for the corcaétulation of the sgluino-gluon coupling in
the color flow representation. Next we examine the correptementation in O’Mega on the basis of the
2 — 2 processes shown in FIg6.1 dndl6.2. In the end we will disfhlayesults of thé — 4 Monte Carlo
simulation.

6.2.1 Color Flow

In this section we give a short introduction to the topic ofocdlow decomposition of multiparton am-
plitudes. This whole part is based on the paper of F. Maltirfstelzer and S. WillenbrockT17]. For
calculating amplitudes, which involve many colored paesgthe calculation of the color structure has to
be done. In the past techniques have been developed to dedHisvery efficiently and the systematic
organization of thesU (IV') color algebra is one main aspect of such methods. For examgptensider a
n-gluon amplitude where the gluons have the adjsitit V) indicesay, as...a,, withn = N2 — 1. At tree
level, such an amplitude can be decomposed as

M(ng) = > Tr(A®A%2. ") A(1,2,...,n) (6.27)
P(2,...,n)
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Figure 6.10: Production of two quark anti-quark pairs witlo tmassless gluons in the initial state. These
are all possible single resonant- 4 diagrams in theSU (3) sector. Note that we do not show the crossed
diagrams for reasons of compactness. The dotted lines stdrat for a massless gluon, a heavy gluon or
a sgluino.

Figure 6.11: Production of two quark anti-quark pairs witlo tmassless gluons in the initial state. These
are all possible non-resonaht— 4 diagrams in theSU (3) sector. Note that we do not show the crossed
diagrams for reasons of compactness. The dotted lines stdra for a massless gluon, a heavy gluon or
a sgluino.
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Figure 6.12:W-, Z-, andy contributions of the production of two quark anti-quarkrpavith two massless
gluons in the initial state. Note that we do not show the @dsiagrams for reasons of compactness. The
wiggly lines stand either for & -Boson, aZ-Boson or a photon.
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Figure 6.13: Schargino and sneutralino contributions efgiroduction of two quark anti-quark pairs with
two massless gluons in the initial state. Note that we do hotsthe crossed diagrams for reasons of
compactness. The dashed line stands either for a schangisnautralino.

where\® are the generators of tht/ (V) gauge group in the fundamental representation and the sum is
over all(n — 1)! permutations of2, ..., n). The partial amplitude A depends only on the four momenta
and the polarization vectoes of then gluons withi =1, .., n.

Aside from the above decomposition there exists another loaged on the adjoint representation of
SU(N). Then-gluon amplitude can then be written as

M(ng) = Y Tr(FeF%. Pt A(L,2,.,n), (6.28)
P(2,...,n—1)
where(F*)% = —ifa are the adjoint-representation matricesSéf (N). The sum is over al{n — 2)!

permutations of2,..,n — 1). The partial amplitudes A are the same as in the above decsitigo In
opposite to the first decomposition scheme the second osts exily for a multigluon amplitude.

The third decomposition method is the so called color flowodgeosition. For this method the gluon
field is represented as/d x N matrix (AH)§ (i, = 1,.., N) instead of the adjoint representatidr}
(a =1,..., N? — 1), which is represented as a vector in the adjoint index.Hg&uon amplitude can then
be written as

M(ng) = Y 0162650 A(LL2,...n), (6.29)

J2 793"

where the sum is over allv — 1)! permutations of2, ..., n). Like the first decomposition this one can
be used for multiparton amplitudes. The color flow decompmsdescribes thow of colorand has for
this reason a very descriptive physical interpretationis foperty is also useful for merging the hard-
scattering cross section with shower Monte Carlo progravtaaeover this kind of decomposition allows
a very fast and efficient way to calculate multiparton anoplis.

In the color flow decomposition the color structure of thetiees is very easy (see Fig6l14). For the
simplicity of the color structure of the vertices we get a eopmplicated color structure of the gluon
propagator

(AW (A)2) o 300% — 0007 (6.30)
instead of the basic structured gluon propagator in theeational adjoint representatiQﬁZA?,) x 69,

But the more complicated color structure of the gluon pr@pawgis not eminently tragical because due to
the antisymmetry of the three- and four-gluon verticessgeond color flow in the propagator does not cou-
ple to these interactions. It only couples to the gluon exdtons with quarks. For amplitudes where only
particles in the adjoint representation$i/ (V) contribute we can forget about this additional term in the
gluon propagator and calculate the cross section with ttieced propagatai(4,,)’! (A,)2) oc 6;15%.
Only the interaction of gluon and quarks couple to the seamtar flow from the propagator. Since this
color flow couples as & (1) gluon to the quarks we can split the propagator int&&7) gluon propagator
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Figure 6.14: Feynman rules in the color flow decompositiohe $um in the three gluon vertex is over
the two non-cyclic permutations of (1,2,3). The sum in therfgluon vertex is over the six non-cyclic
permutations of (1,2,3,4).
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Figure 6.15: Three and four gluon vertex in the adjoint reprgation.

and aU (1) propagator. The bifundamental representation of the ghamnaivel\3 x 3 = 9 degrees of
freedom. ThdJ(1) gluon is unphysical and can now be interpreted as a ghogtikécle which cancels
the redundant degree of freedom of tiéNV) gluon. Therefore thauxiliary gluon has to be implemented
in programs which are based on the color flow representafibiis we have done in ApdD where we
discuss the implementation.

For a better understanding of the relation between theridjoid the color flow decomposition we want
to do the explicit transformation from the adjoint to theardilow representation of the three- and four-
gluon vertex. Therefore we start with the interaction wessiin the adjoint representation. First we want
to transform the three-gluon vertex Fig._g.15.

When we perform the sum of the three-gluon vertex shown inf&Efd we get a vertex with the same
kinematical and Lorentz structure like in the three-gluertex in the adjoint representation multiplied by
a color prefacto(&j; 6§§ 5“ 5;;6;” 512) To show the equivalence of the both representations wethave
check the validity of

= f T (1) (T3 = 27 (03387287 — 67307201). (6.31)

Therefore we have to use first that the structure constahtshvean be written ag**¢ = —iTr(T[T®, T)).
We get

—fe = GTrTT T — T°T°T") = i(T¢ 1, Thoes Teors — T s Teska Tk, ) (6.32)

Thereafter we multiply the whole expression w(tﬂ“)“ (Tb) (Tc)“ to saturate the adjoint indices. To
perform the saturation we have to use the relation

(T*)(T*)} = 6{6F — 1/N&%6f (6.33)
After the whole calculation the final expression for the stuwe constant is
—fRT ) (TP (T9)% = (6565265 — 6115%2672). (6.34)

The factorl/+/2 in the three gluon vertex of the color flow decomposition cerfiem the fact that the
N x N matrix field (4,,)’ is canonically normalized @,,)% = v/2(A,)}). Because of this normalization
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Figure 6.16: Quartic coupling of the lightest sgluino to tmassless gluons in the adjoint representation.

the coupling constant ig//2 rather thary.

Next we want to show the equivalence for the four gluon verfEixerefore we have to use again the

relation feb¢ = —iTr(T[T®, T¢]) and get the following expressions for the color structuré¢hef four
gluon vertex in the adjoint representation
febepede = T[T TOT Y 4+ THT T — THT T TTe] — T[T T T T (6.35)

where we also exploil{683). Now we multiply the obtainegmssion by(7*)% (T*)'2 (T)%* (T'%),
apply [63B) once more and get

abe pcede (rma\t by c\1 d\iqa __  gi1 Sio 593 SO i1 Sl $13 ST 11 $lo i3 ST i1 o <t o

FEFETZTETOVLTVE = 05,85305105 +05,07705305 — 033051051055 — 05,053053055

ace pbde a\t b\ C\ s d\ia __ i1 Si2 £13 O 11 Cl2 U3 ¢ 11 Clo <13 b i1 $lo <13 b

FeerT )311 (r )f; (r )Jz (r )Ji - 533153'23532 53;1 53;5J25325ﬁ - 53;(%?532532 - 53;5342153? 5]§

ST (TR (T (T = 03032030075 + 03,07, 033 051 — 03107073033 — 673,072.05: 031
(6.36)

We obtain six different color structures, which are exattlg six non-cyclic permutations of the four-
gluon vertex shown in Fig_614. When we now replace the &ireconstants in the four-gluon vertex in
the adjoint representation by the expressions from Eq8{@B8d rearrange the vertex in order to the six
non-cyclic permutations af;’ 4.2 523 5“ the four gluon vertex reads

Qg GRLOREREI (2ghe ghat — gtz ghtt — giita ghaits ) (6.37)

and is except for a factdr/2 equal to the four gluon vertex of the color flow decompositibine factorl /2
comes again from the canonical normalization of ¥ie« N matrix field (4,,)%. The vertex of the gluon
to a quark anti-quark pair can be transformed in the same wé#yesthree- and four-gluon vertex. The 4D
gluon vertices in the color flow decomposition are easilyeegid to the 5D one with heavy gluons, since
the color structure do not change.

Lastly we want to examine the couplings of the sgluinos togluens and fermions in the color flow
decomposition, since we need them in this representatichéamplementation in O’'Mega. The trilinear
couplings of the sgluino to the fermions and gluons onlyediffh the Lorentz structure and coupling
constants from the trilinear gluon couplings. Thus the clitaw structure of the vertices is the same as
shown in Fig[&.I¥ and we only have to exchange the Loreniztstre and coupling constants. In the case
of the quartic coupling of the sgluinos to the gluons we oelyard the coupling of the lightest sgluino to
two massless gluons for simplicity. The extension to thethdory is as easy as in the case of the gluon
couplings discussed above. The vertex in the adjoint reptation is shown in Fig. 6.1 6. To get the color
flow representation of the vertex we use formlla{b.36) ardiblafter a short calculation the vertex shown
in Fig.[E1T. The factot /2 comes again from the canonical normalization.

Ward Identity and Color Flows

The Ward Identity has to be fulfilled for every given setup nagtum numbers for the in- and out-states.
Hence the Ward Identity has to be valid for every color flow. Wt to show this item explicitly for
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Figure 6.17: Quartic coupling of the lightest sgluino to twassless gluons in the color flow representation.

the procesgg — X3. Most of the work has been done in section.1.2, because weleady use the
simplified expressions for the amplitudés?, M4 and MY from (€20) and[(621).

pQ,VMIf = —924 g2 fabCfdec p3,v€11j
p2,uM5 — 92 g2 fdcafecb p3,u611j
P2 My = =2ig? [ fI ps €l (6.38)

Thus the only work that has been left is the transformatiothefstructure constants in the color flow
representation. Therefore we use the relationEof16.36an

—23 g2 fabCfdec(Ta);';l (Tb);z (Td);z (Te);'i pB,VGIf — 929 g2 (617]93)
(=0505 03,071 — 03.03652855 +05,03103487 + 03, 07407,033)

24 92 fadcfbec(Ta);ll (Tb);i (Td);z (Te);i pB,VGIf — 92 g2 (El,pg)
X (40015205601 4 6116207361 —511 51261 61 — 61161267 614)

X

J47737J1 772 J3 794 7J2 01 J37J1 79472 J27J4731793
¥ 92 faechbdc(Ta ;11 (Tb);i (Td);z (Te);i pB,VGIf — 92 g2 (El,pg)
x (=03,03, 03,07, — 033020585 +0;.03103385 + 03, 07307,077) (6.39)

The sum over the three expressions is equal to zero and dheréie Ward Identity is fulfilled for every
given color flow. We do not regard the amplitude of the contextex because as a result of the Lorentz
structure this amplitude does not contribute to the Wardtitie as we have seen in section6l1.2.

6.2.2 Calculation of the2 — 2 cross sections with O’Mega

To check the implementation of the model into O'Mega, we wantalculate th& — 2 cross section
shown in Fig[&ll anf@.2 using O’'Mega. On one hand we canyer validity of the Ward Identity on
the basis o2 — 2 cross sections and on the other hand it allows us to compareetults of O’'Mega
with those of FormCalc. This is in particular helpful by ckieg the correct implementation of the quartic
coupling of the gluons to the sgluinos, since this vertexsdua contribute to the Ward Identity as shown
above. Since the explicitimplementation is discussed ip.Ap, in this section we will only explain how
to calculate2 — 2 cross sections with O’'Mega in principle.

O’Mega produces a fortran code of the scattering amplitudescalculate the cross section, we need
the square of the absolute value of the scattering ampliitste Therefore we have to perform the sum
over the polarizations and color flows. The sum over the paton is performed easily, since O’'Mega
provides tools for this. However, the sum over color will et done automatically. For this, we have
to know which different color flows exist for 2 — 2 cross section, where the incoming and outgoing
particles are in the bifundamental color flow representatithe six possible color flows are shown in Fig.
EI8. The indices,, ji, ..., 14, j4 are the indices of the bifundamental representation of #tgles. The
subscriptc = 1, 2 of i, andj; denotes the incoming particles ahd- 3, 4 the outgoing particles. Since in
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Figure 6.18: Six different color flows fora— 2 cross section, where the initial and final particles are in
the bifundamental color flow representation.

O’Mega the colored particles are not declared by the bifamet#al indices of the particles but through the
possible color flows1, ¢2, ¢3, ¢4, ... we rewrite the bifundamental indices to the possiblercitows as
shown in Fig[E1P. Note that in the case of the color flows thessriptsl, 2, 3, 4 are no longer connected
to the particles but are chosen arbitrarily. The amplituzfeie six color flows would then schematically
look like

particleXc4, c1) particleZcl, ¢2) — particle3c3, ¢2) particle4 ¢4, ¢3)
particleXcl1, ¢2) particleZc4, c1) — particle3c4, ¢3) particle4c3, ¢2)
(6.40)

When squaring the whole amplitude we have to attend thatcthare of equal color flow amplitudes gets
a symmetry facto /N* and the square of unequal color amplitudes gets a symmetigr fe/ N2 [IL7].

N is the dimension of the fundamental representation of5Sthi¢ V) gauge group. Now we are ready to
calculate the square of the absolute value of the scattarirgitude, which is managed by a short fortran
program.

In the scattering amplitudes, the momenta of the incomirtyartgoing particles appear. To plot the
differential cross section against the center of mass gnarthe incoming particles and the polar angle
6 we useoplotter  a “FRIENDLY O’'MEGA PLOTTING TOOL", created by Christian Spkner [18].
From the center of mass energy, the polar and azimuthal éncaéculates the momenta of the outgoing
particles in the rest frame and multiplies the square of tlagtering amplitude with the phase space factor
for a2 — 2 process. Plotting the results we find that they agree withehkelts of FormCalc.

6.2.3 Results of Monte Carlo simulations

In this section we want to discuss the results of the MontéoGamulation. As mentioned before we only
perform Monte Carlo simulations @f — 4 cross sections, where either heavy gluons or sgluinos dhein
intermediate state. The diagrams we use for the Monte Camiolation are shown in Fid. 8.8, 6110 and
ET11. Since we want to study the contribution®20f> 4 cross sections, where two heavy gluons and two
sgluinos, respectively, are produced in the intermeditie {see Fid_619) we have to introduce suitable
phase space cuts. Therefore we restrict the invariant nfiake two quark-antiquark pairs to the mass of
the decaying particles we want to measure. The invarians isatefined by

meq = \/(Pq + Pg)? (6.41)
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Figure 6.19: Six different color flows fora— 2 cross section, where the bifundamental representation of
the particles is denoted by their color flows.

CuUT1 CUT2
my; | GeV [1000, 2000] [1410, 1430]
my; | GeV [1000, 2000] [1410, 1430]

Table 6.3: Phase space cuts for the Monte Carlo simulatidheopartonic2 — 4 cross section with a
bottom anti-bottom and a top anti-top pair in the final state.

wherep, andp; are the momenta of the quark and anti-quark, respectivétyceShe heavy gluon and
the sgluino have a decay width, we cannot choose the intariass exactly to the mass of the decaying
particle. Rather we have to select a sufficiently large plspsee range to respect all contributions from
the double resonant decay processes (sed Elg. 6.9). Theofdhma peak in the invariant mass spectrum
corresponds to a Lorentz distribution. Thus we use a phas®gpnge which is six times the width of the
decaying particle. In the case of the heavy glubr<{ 155.93 GeV), we choose the invariant mass of the
quark anti-quark pairs betwe@n00 GeV and2000 GeV and in the case of the sgluinb & 0.598 GeV)
between 410 GeV andl1430 GeV. We will denote these phase space cuts as CUT1 and CUspatvely.
Because the sgluino has such a tiny width, we can choose #ee@pace cuts much larger than six times
the decay width without being at risk to take too large cdmitions of the single resonant processes shown
in Fig.[6.I0 into account. For the Monte Carlo simulation Wwease the final state to a bottom anti-bottom
and top anti-top pair. At this moment the choice of the finalests arbitrarily, it will be important when we
discuss LHC observables. To produce the plots shown il EXl,&.2Z1[6.22 and6.P3, the Monte Carlo
createss00000 events and we use a center of mass engf§y= 4000 GeV. All the phase space cuts we
use in this section are listed in TAR.16.3.

The results of the Monte Carlo simulation for two heavy glsianthe intermediate state are shown in
Fig.[620 and831. These plots display the events depemdirige invariant mass of the top anti-top pair
and the absolute value of Q@3 of the top quark. As we would expect, we find that the peak in[Eg0
is at the mass of the heavy gluad20.85 GeV and the width of the peak corresponds to the width of
the decaying particle, which is valugd5.93 GeV. The result of the total cross section, calculated from
Whizard, is

g1 (99 — bbLE) = (8816 + 16) fb . (6.42)

In the case of the two sgluinos we find the same behavior. Tdtseof the Monte Carlo simulations are
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Figure 6.20: Invariant mass of a top anti-top pair with twawegluons in the intermediate stat¥{; =
500000 and for the phase space cut we use CUT1).
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Figure 6.21: Absolute value of C@ for the top quark with two heavy gluons in the intermediataest
(Niot = 500000 and for the phase space cut we use CUT1).

shown in Fig[&2R and 623, where again the events depewdirige invariant mass of the top anti-top
pair and the absolute value of Gé3$ of the top quark are shown. The peak is located at the samgquosi
as in the case of the heavy gluon, since the mass of the sgtuatual to the mass of the heavy gluon and
again the width of the peak corresponds to the width of theisg] which is0.598 GeV. In this case the
value of the total cross section sums up to

osx(gg — bbtt) = (1.594 £ 0.002) fb . (6.43)

The huge difference of the total cross sectiops,, andoss; stems from the fact that on one hand the
sgluinos couple considerably less to the bottoms than taoihe (see Tal 3.4 afidh.5) and on the other
hand the gluon induce2l — 2 production of a sgluino pair is two orders of magnitude serathan the

2 — 2 heavy gluon production (see SEC. G 1.2).
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Figure 6.22: Invariant mass of a top anti-top pair with twhuggs in the intermediate stat&/,; = 500000
and for the phase space cut we use CUT2).
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Figure 6.23: Absolute value of C@ for the top quark with two sgluinos in the intermediate s{afg; =
500000 and for the phase space cut we use CUT2).
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6.3 Narrow width vs. Monte Carlo simulation

In this section we want to compare the narrow width appro%ionawith the results of the Monte Carlo
simulation. To do this, we have to translate the events mredifrom the Monte Carlo simulation into the
unit barn. Therefore we use the value of the total cross@gatalculated by Whizard, and relate it to the
contents of the histogram

do Ao,
Ttot = / -3 1® ~ 2, AD, (6.44)

The indexi sums over all bins. Since al®; are of the same size, we can write

Otot Adg;
WU ZN = A@?E, (6.45)

whereN is the total number of events aid are the events per bin. From this it follows that

Ao; Ot

AD  NAD

(6.46)

For N — oo the Monte Carlo simulation becomes the analytical cal@iatf the tree leve — 4 cross
section.

First we want to compare the total cross sections from the NWA the Monte Carlo simulation. The
calculation of the tota? — 2 cross sections for the NWA was done withlotter  and the values are

Ogg—gign = 22698 1fb
Ogg—xy = 378.401b (6.47)

As discussed in SeE_6.1.1, we have to multiply 2hes 2 cross section with the branching ratios of the
decays. They are listed in Tdh.16.4. Moreover we have to plylthe2 — 2 cross sections with a factor
2, which originates from the identical particles in the imbediate state. The total— 4 cross sections for
two heavy gluons then is

ONWA, g1 91 (99 — bbtt) = 2 BR(g1 — bb) BR(g1 — tt) 049—g1g» = 9569 fb (6.48)

Comparing this result with the result of the Monte Carlo dition {6.42), we find that the total cross
section of the Monte Carlo simulation 19% smaller than the total cross section of the narrow width ap-
proximation. This stems from destructive interferenceshef single resonant diagrams (see Eig.16.10),
which we cannot totally exclude by the phase space cut CUT1.

In the case of the sgluino we get for the narrow width appretiomn
UNWA’zg(gg — bgtﬂ =2 BR(E — bg) BR(E — t??) Ogg—xy = 1.586 fb . (6.49)

Comparing this result with the result of the Monte Carlo dmtion (648), we find that the narrow width
approximation deviates only 1y05%. As we had expected, the narrow width approximation workg ve
well in the case of the sgluino.

Next we want to compare the angular distributions shown q[E24 and 625. Fid_6.P24 ahd d.25
display the Co&)) dependence of the top quark of the final state. Note that ircéise of the narrow
width approximation we assume this to be the same as the idggagrticle. Thus we actually plotted the
Cog#) dependence of the heavy gludn(8.11) and sglUinoi6.1Yentively. We find that in the narrow
width approximation the forward and backward scatteringtigbutes much more than in the case of the
Monte Carlo simulation and is smaller foy2 scattering. This stems from the fact that in the narrow width
approximation we only consider top quarks, which move dydntthe same direction as the decaying
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BR(g1 — bb) 0.31
BR(g; — tt) 0.68
BR(XZ — bb) 0.0021
BR(X — tt) 0.998

Table 6.4: Branching ratios for the decay of the heavy gluahsluino, respectively into tops and bottoms.

16000

14000 Narrow width approximation

12000

10000

do/tb

8000
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Figure 6.24: Comparison of the narrow width approximatiathwhe full tree level cross section for the
decay of two heavy gluons into two tops and two bottoms. Th&{(Qalependence of the final state top
quark is plotted, where we assume that in the case of thewavidth approximation the top quark has the
same Cof) dependence as the heavy gluon in2he- 2 cross section.

1.6

T T
Full tree-level cross-section &=~~~
L5 | Narrow width approximation

do/fb

Figure 6.25: Comparison of the narrow width approximatiathwhe full tree level cross section for the
decay of two sgluinos into two tops and two bottoms. The(€pdependence of the final state top quark
is plotted, where we assume that in the case of the narrovinajatbroximation the top quark has the same
Cogd) dependence as the sgluino of the- 2 cross section.
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particle. Thus the Lorentz factgt ~ 0.7 discussed in Sefe1] is not sufficiently large to justify the
assumption that the quarks almost exclusively decay initieetibn of the heavy gluon or sgluino, respec-
tively.

To get a better approximation we regard the decay probgljfilidepending orfy, 1, # and¢ and
convolve it with the2 — 2 cross section (see Fig.6126)

/ do(01) f(01,1,0,¢) Sin(01)db1de; . (6.50)

6 andy denote the coordinates of the observer and thus we can satithathal angle» to zero without
loss of generality. Since the decay of the intermediatagdardnly depends on, it suffices to know the
probability distribution depending on this parameter. rEfiere we expressin terms of, ¢, andd

Coge) = Sin(6;)Cos(y1)Sin(f) + Cog6;)Cog6) (6.51)

and the remaining task is the calculation of the decay prtibatvith respect to Co&). To get there
we start with the isotropic decay probability in the restiemand boost it to the laboratory system. Let
h(z) = z the coordinate transformation fromto bez. The transformed probability distributiofthen
reads

dh(z)~!

~\ _ —1y\/
J@) = == =0 (6.52)
The coordinate transformation efs given by [19]
~ Cog¢€) +
Coqe) = T+ 5Coge)’ (6.53)

wheree’ is the coordinate in the rest frame afids the Lorentz factor. The inverse transformation then
reads

A _COS(E) + ﬂ
Cogq¢) = 1 Cosq) (6.54)
and with [E5R) we obtain the following probability distuition
_ N B(B — Coge))

N is the normalization constant, which makes sure that thegiitity remains conserved after the convo-
lution. The associated normalization conditioryig (e)de = 1 . When we convolve the above probability
distribution with the2 — 2 cross section, we get the Gé3% dependence shown in FIg_6127 4nd 6.28.

The convolved narrow width approximation fits the Monte @aimulation much better and in the case
of the sgluino it is almost identical. For the coordinatesfarmation we used a Lorentz facier= 0.71.
For the calculation off we make use of{@ 3) and{®$.5) and set the mass of the heavy ghabsgluino to
mg, =my = 1420.85 GeV.
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Figure 6.26: Angular dependence of the decay in the laboratstem.

Figure 6.27: Comparison of the improved narrow width appration with the full tree level cross section
for the decay of two heavy gluons in two tops and two bottonesreHs the Co®) dependence of the top

quark plotted.

Cos(0)
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Figure 6.28: Comparison of the improved narrow width appration with the full tree level cross section
for the decay of two sgluinos in two tops and two bottoms. Hethe Co$d) dependence of the top quark

plotted.



Chapter 7

Hadronic cross sections and LHC
Distributions

In this chapter we want to derive theoretical predictionsfibture measurements at the LHC. In the last
chapter we have calculated cross sections of the incomumpglwith fixed momenta. As a consequence
of confinement, gluons and quarks cannot be observed as &#jergarticles, but only as constituents of

hadrons. Observables of parton interactions can therefmrée measured directly by parton collisions,

but indirectly by hadron collider experiments. To make tietical predictions it is necessary to relate the
interactions at the parton level to the interactions of thérbn level. Thus in the fist part of the chapter we
will give a short introduction to the parton model. In the@ed part we will discuss possible observables
to measure sgluinos and heavy gluons at the LHC.

7.1 Factorization and the Parton Model of QCD

The parton model describes the interactions of hadronsgh @nergy collisions. If the energy scale of
the collider experiment is sufficiently large>(10 GeV), the partons can be treated as non-interacting
constituents of the proton. This means that the partons efh@uron do not interact which each other
within the time scale of the hadronic collision. A partonhwihomentunp* is given by

pt = xPH | (7.1)

where P is the momentum of the hadron amd= 10, 1[ . The probability for a parton with momentum
pH is given by the parton distribution function (PDF), whichpeads onz and the factorization scaje
The form of the parton distribution has to be measured, dinisea result of low-energy physics, where

\

Figure 7.1: Hadronic cross section for the gluon inducedpection of two quark antiquark pairs.
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Figure 7.2: Parton distribution of the CTEQ5M series for ¢igon and up and down quarks. The factor-
ization scale ig: = 3000 GeV. The black dashed line denotes a parton energy@i GeV, if the proton
has an energy df TeV.

QCD becomes strongly interacting and perturbation theoegks down. The factorization scale is a free
parameter and should be chosen close to the energy scale odltision. The parton distributions of the
gluons, up and down quarks for= 3000 GeV are plotted in Fid_712.

The total energy at the LHC ist TeV, which means that each proton has an ener@yl@\V. To produce
the heavy gluon and sgluino on-shell, each of the gluons g an energy of500 GeV. For a proton
energy of7 TeV this corresponds to ~ 0.2 (see FigCZR). We find that the probability for two gluons
with an energy ofl500 GeV is sufficiently large to justify the examination of glusmuced processes.
The probability for an up and an anti-up or a down and an amtirdatz = 0.2 is also large, but the
quark induced production of heavy gluons and sgluinos @glly suppressed, since the coupling of the up
guarks to the heavy gluon and the sgluino is very small. Tty qumarks that couple strongly to the heavy
gluon and the sgluino are the bottom and the top quark, begsses induced by them can be excluded by
the parton distribution.

The proton collision with the gluon induced production obtguark-antiquark pairs is diagrammatically
shown in Fig[ZZN.p; andp, are the momenta of the colliding protons. The hadronic diffiéal cross
section then reads

1 1
o(Pr, Py) //dxldx2f (x1, 1) f (w2, p)do (21 Pr, 22 P2) | (7.2)
0 0
wheref are the parton distribution functions.

7.2 LHC observables

Now we have to think about observables that can be measurind &tHC and which are sensitive to
the physics of the sgluino and heavy gluon that are predisyedur model. Therefore we examine the
full hadronic2 — 4 cross section with two quark anti-quark pairs in the finates(@ee Fig[Z]1). We
only neglect the processes that contain schargino andrstieatcontributions (see Fi§_6l3), because
the implementation of the vertices in O’Mega would be exeggntime-consuming but the corresponding
processes only lead to small contributions, since the gaihamand sneutralino weakly interact. On the

65



CuT3 CuUT4 CUT5
Cog6,) [~0.98,0.98] [~0.98,0.98] [—0.98,0.98]
Cog;) [~0.98,0.98] [~0.98,0.98] [—0.98,0.98]
Cog6,) [~0.98,0.98] [~0.98,0.98] [—0.98,0.98]
Cog6;) [~0.98,0.98] [~0.98,0.98] [—0.98,0.98]

my; | GeV [1000, 2000] [1200, 1250] [1600, 1650]

my; | GeV [1000, 2000] [1200, 1250] [1600, 1650]

Table 7.1: Phase space cuts for the Monte Carlo simulatidgheohadroni2 — 4 cross section with a
bottom anti-bottom and a top anti-top pair in the final state.

basis of the — 4 cross sections we study the invariant mass of a quark-artiquair and furthermore the
dependence on the polar angle of the outgoing particles.h&haey gluon and the sgluino decays almost
exclusively in top anti-top pairs, but the experimentallgsia of four-top final states is very complicated.
This stems from the fact that the top decays directly in admotjuark and & -Boson, which decay further
into standard model particles we can measure at the detutbneutrinos. To simplify the analysis we
restrict ourselves to a bottom anti-bottom top anti-toplfatate. We will see that the number of events is
still large enough. Moreover the lifetime of the bottomsu#isiently long, so that its further decay is out
of the collision region. This can be resolved at the deteaiat thus the bottom quark can be identified,
which helps the analysis eminently.

To filter the processes where two heavy gluons or two sgluiespectively, are produced in the inter-
mediate state we restrict the invariant mass of the toptaptand bottom anti-bottom pair to be between
1000 GeV and2000 GeV. Since the detector is not sensitive to forward and bacthscattering, we also
bound Co#) of each outgoing particle to be betwee.98 and0.98. This phase space cut is denoted
by CUT3. All the phase space cuts we use in this section aesllim Tab[[Zll. Furthermore we use a
parton distribution with a dynamical factorization scaléis means that the Monte Carlo generator uses
for every event the parton distribution with the factoriaatscale which corresponds to the center of mass
energy of the event. Furthermore we use an integrated Iwsitjnof [ £ = 100 fb~', since this integrated
luminosity will definitely be reached at the LHC. The lumiitg$s a value to characterize the performance
of an accelerator and the integrated luminosity is the inatleaf the luminosity with respect to time. For a
given integrated luminosity the total number of eveNig can be calculated as follows

Niot = oot X /ﬁ (7.3)

With an integrated luminosity afo0 fo~! and the phase space cuts given above, the Monte Carlo simula-
tion calculates a total cross section of

oot = (40.49 £ 0.67) fo (7.4)

which corresponds tdVi,; = 4049. If we make the same Monte Carlo simulation with the SM we iobta
a total number of events which is less than 10. This is basdtefact that in the case of the SM— 4
cross section the invariant mass of the bottom anti-bottonow anti-top pair decreases abd@ GeV
and500 GeV, respectively, with /S. Furthermore the SM contributions are strongly supprebgetthe
phase space cut CUT3 (see TaRl 7.1), where we restrict bedhiant masses to be betwe&dd0 GeV
and2000 GeV. Thus we can ignore standard model processes, but radtthéhresults of our Monte Carlo
simulation contain all higgsless SM contributions (see Bid2) as well. The invariant mass of the top
anti-top pair and the C¢8) dependence are plotted in Hig.17.3 7.4. As we would expecobtain a
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Figure 7.3: Invariant mass of a top anti-top pair for the glioduced2 — 4 cross section (£ =
100 fb~'). For the phase space cut we use CUT3 (see[Tab. 7.1). CUT3eeshthe double resonant
diagrams (see Fi§._8.9) and suppresses all single and sonast contributions shown in Fig_8110 and
0. 11.

peak at the invariant mass of the heavy gluon and sgluino.p€a& has a width of more thain0 GeV
and thus it corresponds to the heavy gluon. Since the caottitsibof processes with two sgluinos in the
intermediate state are considerably smaller than the psesewith two heavy gluons in the intermediate
state, we cannot resolve the sgluino in the invariant masstspm. But as mentioned in SEC15.2, we expect
that the masses of the heavy gluon and the sgluino differ wigecalculate the one-loop mass corrections.
If the one-loop calculation generates a mass differenagebithan the width of the heavy gluon we would
have the possibility to distinguish both particles in theainant mass spectrum. In case that the sgluino
gets a mass correction 6f200 GeV, we perform a Monte Carlo simulation fors, = 1220.85 GeV and
my, = 1620.85 GeV. Since the — 4 contributions with two sgluinos in the intermediate state eery
small, we take an integrated luminosity pfC = 400 fb~!. The results are shown in FI_Y.5. We find that
in the case ofny = 1220.85 GeV we can resolve the sgluino in the invariant mass spectamnwell, but

in the case ofny = 1620.85 GeV this is much harder. This stems from the fact that theopatistribution

of the gluons decreases with growing energy (seelEld. 7.@).tHe phase space cuts we use CUT4 and
CUTS5 (see Tall711) fany, = 1220.85 GeV andmy, = 1620.85 GeV, respectively. To resolve the sgluino
in the invariant mass spectrum we have to study the SM andytgdaen background. When we perform
the Monte Carlo simulation for the SM contributions in theapl space range of CUT4 and CUT5 we get
a total cross section, which is numerically equal to zercee génerated heavy gluon background for CUT4
and CUTS5 is displayed in Fifl_1.5 by the shaded blocks. Naettie heavy gluon background contains
all higgsless SM contributions as well. Furthermore thekgemund is gauge invariant because we take all
SU(3) diagrams with massless gluons into account.

Finally we examine the C@8) dependence of the final state top quark. As in the case of Wagiamt

mass spectrum the C@3 dependence of the top quark plotted in Higl 7.4 arises fraendgcay of the
heavy gluon.

67



200 m
180 |
160
140 | | []
120 L

events/bin

100
80
60

40

-0.8 06 -04 -02 0 02 04 06 08
Cos(0)

Figure 7.4: Co§) dependence of the top quark for the gluon induged- 4 cross section (£ =
100 fb~'). For the phase space cut we use CUT3 (see[Iab. 7.1). CUT3eeshthe double resonant
diagrams (see Fi§._8.9) and suppresses all single and sonast contributions shown in Fig_6110 and
0. 11.
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Figure 7.5: Invariant mass of a top anti-top pair for the glimduced — 4 cross section, where we put
the mass of the sgluino 220 GeV or1620 GeV, respectively [ £ = 400 fb~!). For the phase space cuts
we use CUT4 and CUTS5, respectively (see Tal. 7.1). As in tke 0ACUT3, CUT4 and CUT5 enhance
the double resonant diagrams (see Eidl 6.9) and suppresaglé and non-resonant contributions shown

in Fig.[610 and&.11.
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Chapter 8

Conclusions

In this work we have studied the LHC phenomenology of a waiigdsless supersymmetric 5D model
introduced by Alexander Knochel and Thorsten @hl [1]. Theneewe examined the characteristics of the
heavy gluon and the sgluino, which are both part of$h&3) 5D SUSY gauge multiplet. For this purpose
we first had to calculate the masses and the effective 4D icmgobf the heavy gluon and the sgluino.
We found that both particles have equal masses< 1420.85 GeV) and that they couple strongly to the
bottom and in particular to the top quark. Next we have coiestd the Feynman rules of the three- and
four-point vertices of the gluon selfinteractions, the doupto the quarks, and the coupling of the gluons
to the sgluino.

To examine the characteristics we studied part@nie 4 cross sections with gluons in the initial state
and a bottom anti-bottom and top anti-top pair in the finakst&or the calculation we first use the narrow
width approximation and second a Monte Carlo simulationhef2 — 4 process. Since for using the
narrow width approximation we had to define fixed final statesHe2 — 2 cross section, we constrained
the partoni2 — 4 calculation to either heavy gluons or sgluinos in the inedate state. This gave us
the possibility to compare both methods. To calculate threomawidth approximation we implemented
the model in FeynArts and FormCalc and for the Monte Carlaugition we used O’Mega to create the
Feynman amplitudes and Whizard to generate the Monte Ceglot® We find that the total cross sec-
tions of the narrow width approximation differ abolit% in the case of the heavy gluon afh®5% in the
case of the sgluino. The large coincidence of the Monte Ganhulation with the narrow width approx-
imation for sgluinos in the intermediate state stems froenftitt that the sgluinos have the tiny width of
I' = 0.598 GeV. We also compared the Gé$ dependence of the final state top quark and we find that after
the convolution of the narrow width approximation with th#etential decay probability in the laboratory
system both distributions fitted very well.

To make predictions for possible observables of the heaugrghnd sgluino at the LHC, we have
performed Monte Carlo simulations of the hadroie- 4 cross section. Therefore we had to convolve
the2 — 4 partonic cross section with the parton distribution fuoies of the protons. The total cross
section of the2 — 4 process is sufficiently large by using suitable phase spatse that we would detect
the predicted particles in the runtime of the LHC. With aregrated luminosity of00 fb~! we would get
more thand000 events, where only abou® are standard model induced. In the invariant mass spectrum
of the top anti-top pair we find a peak-at1420 GeV, which corresponds to the mass of the heavy gluon
and sgluino. Since the width of the heavy gluon .93 GeV and the processes with heavy gluons in
the intermediate state contributes much more than the psesevith sgluinos in the intermediate state, we
cannot resolve the sgluino in the invariant mass spectrdma.séme holds true for the Gé$ dependence.
But we expect that the masses of the heavy gluon and the sgjeirsufficiently large one-loop corrections
and this then would give us the possibility to resolve theisgl in the invariant mass spectrum. Even when
we could not resolve the sgluino, the results of the MontédCamulation shows, that we would measure
characteristics of the predicted model, if it proves welltided.
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Appendix A

Notation and Conventions

We use the metric convention

JMN = 0O o0 -1 0 0 (A.1)

and
0 ot 5 i 0
o= v = : (A2)
a0 0 —
wheres? = 3 = —1, and—&? = ¢ are the Pauli matrices. For the Dirac spinors we write
No _ X
U = U= Ul = (A.3)
X e

The 5D Lorentz transformations of the fermions are given by

U — e i ATy (A.4)
with the generators
i
A = o [y AM] (A.5)

In theories with warped extra dimensions theories we usectwodinate systems. Thoper distance
coordinates and theonformalcoordinates. The proper distance coordinates hd¥e= (z*,y) with
y € [0, 7] and are related to the conformal coordinatés = (z*, 2) with z € [1/k,1/Ag] through

z = ke, Ag = kefFT (A.6)

In proper distance coordinates the metric is

—2Rky

Ju = € Guv
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gs5 = — R%gss

§u5 =0

and they-matrices then read
:Yu — _ efky 7#
,’\‘/5 _ Rfl ,\/5
:Yu = g;w PAYV
¥5 = —R*4°.

In conformal coordinates the metric can be written as

. 1

IMN = WQMN
and they-matrices are

AM = | M

v = gun AN .

For they-matrices we have
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Appendix B

Parameters

In this appendix we list all the standard model parameters@ezled for our calculations and we define
all the standard model coupling constants, which were rettudised in Chapl 5. The couplings of the
fermions to the photor#;/-Boson,W-Boson and massless gluon are the same as in the standart Farde
the calculation we need the following parameters

mw = 80.403 GeV
myz = 91.1876 GeV

Gr = 1.16637 GeV 2
ag = 0.1176 (B.1)

wheremy, andmy are the masses of th&- and Z-Boson,G i is the Fermi coupling constant ang is
the strong coupling constant. The Weinberg amigjeis given by the ratio ofny, andmz

cody = W (B.2)
myz

Now we are ready to calculate the electromagnetic couplitfte weak coupling, and the strong coupling

J4c
2 sinGW mw \/ \/§GF

e

e

ga = sinfdy
Jie = Vi mas (B.3)

We add the subscript 4 to the couplings, to illustrate they #hre effective 4D couplings. The coupling of
the up-type and down-type quarks to the photon then reads

_ 2
gaaUp - 36
1
Ga,down = — ge (B-4)
and thelW’-Boson coupling is
[z

The Z-Boson couples different to the left- and right-handed gsiar

g4

Jzu = T Scody,

8 .
(1 — gsm2()w)
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g4 4 )
P = — -1 —sin“6
9z ,downg, QCOEQW( + 3 W)
_ 94
9z upr 2c09y
g4
9z, downg — 2coF (B.6)

73



Appendix C

Implementation of the Model in
FeynArts

In order to calculate the narrow width approximation withyf&rts and FormCalc we have to create a
file which includes all the particles and couplings of the mlo&ince we want to treat the massive gauge
bosons in the unitarity gauge we define a new massive vectticlpa/V in Lorentz.gen  with the

following propagator
i v P
R R— (g“ -3 > (C.1)

We implemented the entire model including all particles aadplings in FeynArts. But for vertices we
would not need for the calculation of the narrow width apjmation, we introduced dummy coupling
constants instead of the explicit structure of the vertekusTwe show only the part of the model file,
which contains the full implementation. The model file isrtlggven by

IndexRange[Index[Generation]]= Range[3];
IndexRange[Index[Colour]] = NoUnfold[Range[3]];

IndexRange[Index[Gluon]] = NoUnfold[Range[8]];
IndexRange[Index[KaluzaG]] = Range[1]
M$ClassesDescription = {
(* -----------------
FERMIONS
................. *)
(* Quarks (u): 1.3 = +1/2, Q = +2/3 *)
F[3] ==

SelfConjugate -> False,

Indices -> {Index[Generation], Index[Colour]},

Mass -> MassQU,

PropagatorLabel -> ComposedChar["u", Index[Generation] 1,
PropagatorType -> Straight,

PropagatorArrow -> Forward },

(* Quarks (d): 1.3 = -1/2, Q = -1/3 *)

F[4] == {
SelfConjugate -> False,
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(*

Indices -> {Index[Generation], Index[Colour]},

Mass -> MassQD,

PropagatorLabel -> ComposedChar["d", Index[Generation]
PropagatorType -> Straight,

PropagatorArrow -> Forward },

VECTORBOSONS

V[5] ==

VV[1] =

(* Gluons: Q = 0 )

SelfConjugate -> True,

Indices -> {Index[Gluon]},

Mass -> O,

PropagatorLabel -> ComposedChar["g"],
PropagatorType -> Cycles,
PropagatorArrow -> None },

SelfConjugate -> True,

Indices -> {Index[Gluon],Index[KaluzaG]},

Mass -> MGluon,

PropagatorLabel -> ComposedChar["g","kk"Index[KaluzaG
PropagatorType -> Cycles,

PropagatorArrow -> None },

(*

SCALARS

S[19] =

(* sGluino: Q = 0 =*)

SelfConjugate -> True,

Indices -> {Index[Gluon]},

Mass -> MSGluino,

PropagatorLabel ->
ComposedChar["\Sigma"," ","SU(3)"],

PropagatorType -> ScalarDash,

PropagatorArrow -> None }

(*

MassQUI1]
MassQUI2]
MassQUI3]
MassQDI[1]
MassQD[2]
MassQDI3]

MassU;
MassC;
MassT,;
MassD;
MassS;
MassB;

MassQU[gen_, _] = MassQUJgen];

MassQDJ[gen_, ]

MassQDJ[gen]
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MSGluino[adjoint_] = MSGluino

M$CouplingMatrices = {

(*
Couplings from the GAUGE SUPERFIELDS

(+ (1) SIGMA SIGMA GLUON+)

C[S[19,{ad1}],S[19.{ad2}],V[5{ad3}]] ==
SUNF[ad1,ad2,ad3] gOEE {{1}},

C[S[19,{ad1}],S[19.{ad2}],VV[1 {ad3,k1}]] ==
SUNF[ad1,ad2,ad3] GIUKEE[k1] {{1}},

(* (8) SIGMA SIGMA GLUON GLUON)
C[S[19,{ad1}],5[19,{ad2}],V[5,{ad3}],V[5,{ad4}]] ==

- | gOOEE (SUNF[adl,ad3,ad4,ad2] + SUNF[ad2,ad3,ad4,ad1]
C[S[19,{ad1}],5[19,{ad2}],V[5,{ad3}],VV[1,{ad4 k1}]

- | Glu2KEE[Kk1] (SUNF[adl,ad3,ad4,ad2] + SUNF[ad2,ad3,ad
C[S[19,{ad1}],5[19,{ad2}],VV[1,{ad3,k1}],VV[1,{ad4,

- | Glu2KKEE[k1,k2] (SUNF[adl,ad3,ad4,ad2] + SUNF[ad2,ad

(*
Couplings from the INTERACTION WITH MATTER

(* (12) FERMION FERMION GLUONk)
C[F[3,{g1,c1}],-F[3.{g2,c2}],V[5.{ad1]]] ==

| gUUG IndexDelta[gl,92] SUNT[adl,c1,c2] {{1},{1}},
C[F[3,{g1,c1}],-F[3,{g2,c2}],VV[1,{adl,k1}]] ==

| IndexDelta[gl,02] SUNT[adl,cl,c2] {{UUGKKL[g1]},{UUG
C[F[4.{91,c1}],-F[4.,{g2,c2}],V[5 {ad1}]] ==

| gDDG IndexDelta[gl,02] SUNT[ad1,c1,c2] {{1},{1}},
C[F[4{g1,c1}],-F[4{g2,c2}],VV[1,{adl,k1}]] ==

I IndexDelta[gl,92] SUNT[ad1,c1,c2] {{DDGKKL[g1]},{DDG

(* (14) FERMION FERMION SIGMA«*)
C[F[3.{g1,c1}],-F[3,{g2,c2}],S[19,{ad1}]] ==

| IndexDelta[gl,92] UUE[g2] SUNT[ad1,c1,c2] {{1}.{1}},
C[F[4,{g1,c1}],-F[4,{g2,c2}],S[19,{ad1}]] ==

| IndexDelta[gl,g2] DDE[g2] SUNT[ad1,c1,c2] {{1}.{1}},

(*
Couplings from the W_{\alpha} W_{\alpha} TERM

(* (26) GLUON GLUON GLUON GLUGN
C[VI[5,{ad1}],V[5.{ad2}],V[5,{ad3}],V[5.{ad4]}]] ==

)

4.ad1)) {1}),
K2y ==

3,ad4,ad1]) {{1}}.

KKR[g1]}},

KKR[g1]}},

- 1 g0000 +* {{SUNF[adl,ad3,ad2,ad4] - SUNF[adl,ad4,ad3,ad2]},

{SUNF[adl,ad2,ad3,ad4] + SUNF[ad1l,ad4,ad3,ad2]},
{-SUNF[ad1,ad2,ad3,ad4] - SUNF[adl,ad3,ad2,ad4]}},
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C[V[5,{ad1}],V]5,{ad2}],VV[1,{ad3,k1}],VV[1,{ad4 k2
- | GludKK[k1,k2] *
{{SUNF[ad1,ad3,ad2,ad4] - SUNF[adl,ad4,ad3,ad2]},
{SUNF[ad1,ad2,ad3,ad4] + SUNF[ad1,ad4,ad3,ad2]},

{-SUNF[ad1,ad2,ad3,ad4] - SUNF[adl,ad3,ad2,ad4]}},

C[V[5,{ad1}],VV[1,{ad2,k1}],VV[1 {ad3,k2}],VV[1,{ad
- | Glu4KKK[k1,k2,k3] *
{{SUNF[ad1,ad3,ad2,ad4] - SUNF[adl,ad4,ad3,ad2]},
{SUNF[adl,ad2,ad3,ad4] + SUNF[adl,ad4,ad3,ad2]},

{-SUNF[ad1,ad2,ad3,ad4] - SUNF[adl,ad3,ad2,ad4]}},

C[VV[1{ad1,k1}],VV[1{ad2,k2}],VV[1,{ad3,k3}],VV[1
- | Glu4KKKKI[k1,k2,k3,k4] *
{{SUNF[ad1,ad3,ad2,ad4] - SUNF[adl,ad4,ad3,ad2]},
{SUNF[adl,ad2,ad3,ad4] + SUNF[adl,ad4,ad3,ad2]},

{-SUNF[ad1,ad2,ad3,ad4] - SUNF[adl,ad3,ad2,ad4]}},

(* (27) GLUON GLUON GLUON)
C[V[5.{ad1}],V[5{ad2}],V[5.{ad3}] ==
SUNF[ad1,ad2,ad3] g000 {{1}},
C[V[5.{ad1}],VV[1,{ad2,k1}],VV[1,{ad3,k2}]] ==
SUNF[ad1,ad2,ad3] Glu3KK[k1,k2] {1},
C[VV[1,{ad1,k1}],VV[1,{ad2,k2}],VV[1 {ad3 k3}]] ==
SUNF[ad1,ad2,ad3] Glu3KKK[k1,k2,k3] {1}

77

}] ==

4,k3}]] ==

{ad4,ka)]] ==



Appendix D

Implementation of the Model in
O’'Mega

The purpose of this chapter is to give schematic directimve to implement a new model in O’'Mega.
Thus we do not explain the explicit structure of O’'Mega bweginly a short overview of how it works. In
the paper of Mauro Moretti, Thorsten Ohl and Jurgen Reuterdetails about the structure of O'Mega
[18] can be found. O'Mega consists of a set of modules wriite®bjective Caml (Categorical Abstract
Machine Language) and some FORTRAN support libraries. @kgCaml is the most popular variant of
the Caml language developed since 1985 at INRIA by the FoameI[Cristal teams. Further information
is available from the ocaml homepadgp://caml.inria.fr/ . Most of the modules are of general
nature and therefore model independent, so that the matioipidae work for implementing a new model
is creating the model file. To illustrate the implementatias declare sometimes only the signature and
functionality of functions, to give a better understandirighe code and not to distract with programming
details. Note that we only implemented the particles angbiongs we need for the — 4 cross section
discussed in this thesis. A full implementation of the madel subject of further study and is beyond the
scope of this work. On compiling O’'Mega, an executafi¥ié _nameofthemodel.opt is generated
for every model. Executin0 _nameofthemodel.opt then produces fortran code of the scattering
amplitude. The input line for 2 — 2 process would be look like this

./f90_nameofthemodel.opt -scatter "particlel_in partic le2_in ->
particlel_out particle2_out" > scattering_amplitude.f9 0

wherescattering  _amplitude.f90 is the output file which contains the fortran code of the seatt
ing amplitude. To produce code compliant with the FORTRANs&ihdard we have to ensure that the
identifiers of the particles, couplings, masses etc. areTHRIRN 90 compliant. To achieve this we have to
define several functions. This is done at the end of this enapt

Now we want to start with the implementation of the model ifM@ga. Therefore we have to create first a
file f90 _nameofthemodel.ml  which contains the following code

module O = Omega.Make (Fusion.Mized23) (Targets. Fortran) (ModelsX . Nameofthemodel )
let _ = O.main ()
This calls of a functor which maps three modules to one andesyently calls the main code. Since the
model files of all implemented models are denotedrtndelsX.ml , whereX s an integer, we will adopt
this convention. Second we need a fitedelsX.mli  which contains

module Nameofthemodel : Model. T

Last we have to do add iMakefile.src in line 109
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PROGRAMS unreleased += f90_nameofthemodel

to ensure that the implemented model will be compiled. Attiés modifications in O’Mega we can apply
ourselves to the creation of the model fidelsX.ml , which will be discussed below.

First we define some code which contains general informatian file would be filled in by Subversion
(SVN), which is a version control system.
let res_file = RCS.parse "warped5DSUSY" ["Warped _5D_Higgsless _SUSY model" |
{ RCS.revision = "$Revision: _alpha$" ; RCS.date = "$Date: _07.01.08%" ;
RCS.author = "$Author: _Laslo _Reichert$" ;
RCS.source = "$Source: _/home/laslo/omega/src/models5.mi$" }

The next two lines are the Caml syntax for starting a module.

module Warped5Dsusy =
struct

To save the trouble of prefixing all members of the O’Mega dioggibrary with “ Coupling.” we make it
available with

open Coupling

The width of all particles is chosen timelike. This meang tha width only appears i§-channel propa-
gators.

let width - = Timelike
let default_width = ref Timelike

options is a command line interface for changing the width treatment

let options = Options.create |
"constant _width" , Arg.Unit (fun - — default_width = Constant),
"use _constant _width _(also _in _t-channel)" ;
"custom _width" | Arg.String (fun z — default_width := Custom z),
"use _custom _width" ;
"cancel _widths" | Arg.Unit (fun - — default_width = Vanishing),
"use _vanishing _width" ]

Next we declare the indices we need to specify the partickesvant to implement.generation is the
index for the three generations in the standard madéjr differentiates between particle and anti-particle,
isospin denotes the up and down type fermiongpr the color flow index andkmode is the Kaluza-Klein
index.

type generation = Gen0 | Genl | Gen?2
type csign = Pos | Neg

type isospin = Iso_up | Iso_down

type color = @ of int

type kkmode = Kal0 | Kall

Now we are ready to define the particle content. The Fermiomseparated into two main classes, the
quarks and leptons. Each of them have the indices we knowtfrerstandard model. The gauge bosons are
the Photord, theWW-BosonV, the Z-BosonZ, the Gluon and its first Kaluza-Klein excitati@gfuon KK .
Note that the Gluon is defined in the color flow representadiot thus has two color indices. The color
indices of the gluon are not the indices in the bifundamempitesentation but denote color flows. As
discussed ilL6.2.1 we have to introduce an auxiliary fiéldonAuziliary. Last we have to define the
sgluino denoted byigma and for the same reason as in the case of the gluon, we haveddune its
auxiliary field SigmaAuziliary.
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type fermion =
| Lepton of (csign x generation X isospin)
| Quark of (csign X generation x isospin X color)

type gauge_boson =
| A
| W of csign
| Z
| GluonKK of (kkmode x color x color)
| GluonAuziliary of kkmode

type scalar =
| Sigma of (color x color)
| SigmaAuziliary

The typeflavor is required by the signature of O’'Mega and contains of theglflevorsiermion, Gauge - Boson
andScalar
type flavor =
| Fermion of fermion
| Gauge_Boson of gauge_boson
| Scalar of scalar

The functionsflavor_of _f, flavor _of _g and flavor_of _s map a particle to the correspondifigvor
type.

let flavor_of _f x = Fermion x
let flavor_of _g x = Gauge_Boson x
let flavor_of _s x = Scalar =

The functionsint_of _csign, int_of _gen andint_of _kk map the typessign, generation andkkmode
to integers

let int_of _csign = function Pos — 1 | Neg — —1
let int_of _gen = function Gen0 — 1 | Genl — 2 | Gen2 — 3
let int_of _kk = function Kal0 — 0 | Kall — 1

int_to_kk is the inverse function tént_of _kk

let int_to_kk = function
0— Kal0 | 1 — Kall | - — failwith "int _to _kk: _invalid _argument"

The functiongun _to_6tupel andfun _to_Stupel apply a functiorfuns to all members of an 6- and 8-tupel,
respectively.

let fun_to_6tupel funs = function (c1, c2, ¢3, ¢4, ¢5, ¢6) —
(funs c1, funs c2, funs c3, funs ¢4, funs c¢5, funs c6)

let fun_to_8tupel funs = function (c1, ¢2, ¢3, ¢4, ¢, 6, c7, ¢8) —
(funs c1, funs c2, funs c3, funs ¢4, funs ¢, funs c6, funs c7, funs c8)

In the next part of the implementation we define essentiattians and lists for the color implementation.
The number of possible color flows; for cross sections with gluons and quarks in the initial andlfi
state is

1 1

Nef = Ng + gng + 5ng, (D.1)

2 2
wheren, is the number of external gluons ang andn; are the number of external quarks and anti-
quarks, respectively. Thus in the case of two external glaond four external quarks it is sufficient to set
the maximal number of color flowsc to

80



let ne = 4

The typecol$ andcolj we need later to define functions for permuting color flow oedi.

type col3 = Col31 | Col32 | Col33
type coly = Colj1 | Col42 | Col4s | Coliy

The functionnc_list maps a integer to a list which contains all integers up to tvegpne (e.gnc_list 4 = [1;2;3;4])

let nc_list = ThoList.range 1 nc

The functionchoose2 maps a list to the list of all ordered 2-tuples that can betlitoim its members
(e.g.choose2 [1;2;3] = [(1,2);(1,3);(2,3)])
let choose2 set =
List.map (function [z;y] — (z,y) | - — failwith "choose2" )
(Combinatorics.choose 2 set)

inequ_pairs is a list of all possible 2-tuples, which can be created framiist. (e.g. fornc_list = [1;2; 3]
inequ-pairs reads|(1,2); (1,3); (2,3); (2,1); (3, 1); (3,2)])
let inequ_pairs =
choose2 nc_list @ choose2 (List.rev nc_list)

triple_col is a list of all ordered 3-tuples, which can be created fromlist (e.g. fornc_list = [1;2; 3; 4]
triple_col readd(1,2,3); (1,2,4); (1,3,4); (2,3,4)])
let triple_col =
List.map (function [z;y; 2] — (z,y,2) | - —
failwith “triple  _col" ) (Combinatorics.choose 3 nc_list)

quartic_col is a list of all ordered 4-tuples, which can be created fromiist (e.g. fornc_list = [1;2; 3; 4]
quartic_col readg(1, 2, 3,4)])

let quartic_col =
List.map (function [r; s; t;u] — (r,s,t,u) | - —
failwith "quartic  _col" ) (Combinatorics.choose 4 nc_list)

The functioncolor returns the representation of the color group under whietp#rticle transforms.
let color = function

| Fermion (Quark (Pos, _, _, _)) — Color.SUN 3
| Fermion (Quark (Neg, _, _, _)) — Color.SUN (—3)
| Gauge_Boson (GluonKK (-, _, _)) — Color.AdjSUN 3

| Scalar (Sigma (-, -)) — Color.AdjSUN 3
| - — Color.Singlet

The functioncolsymm is implemented for future features of O’'Mega and unusedeatrtbment.

let colsymm = function
| Fermion f — begin match f with
| Quark (Pos, gen, Iso_down, ) — (int_of _gen gen,true), (0,false)
| Quark (Neg, gen, Iso_down, ) — (—(int_of _gen gen).true), (0.false)
| Quark (Pos, gen, Iso_up, _) — ((int_of _gen gen) + 3,true), (0,false)
| Quark (Neg, gen, Iso_up, ) — (—(int_of _gen gen) — 3,true), (0,false)
| - — (0, false), (0, false)
end
| Gauge_Boson f — begin match f with
| GluonKK (Kal0, -, ) — (7,true), (0.false)
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| GluonKK (Kall, _, ) — (8,true), (0,false)
| GluonAuziliary (Kal0) — (7,true), (7.true)
| GluonAuziliary (Kall) — (8,true), (8,true)
| - — (0,false), (0, false)

end

| Scalar f — begin match f with

| Sigma (-, -) — (9,true), (0,false)

| SigmaAuziliary — (9,true), (9,true)

end

In the next part we discuss the implementation of the vestiée® implement the correct color structure
we introduce several definitions, which are especially irtgra for the implementation of the couplings
of the gluons to the sgluinos and the gluon self-interastiorhe implementation of these couplings will
be therefore the main part of the following discussion. Alier vertices are already implemented in other
models in a very similar way and thus will be not discussec lerdetail. To understand why we need
these definitions we have to delve deeper into the inner wgrkf O’Mega. From the definitions of the
couplings in the model file, O’'Mega obtains the informatidioat the color and Lorentz structure. The
coupling contains not the whole vertex structure but theimmah architecture which O’Mega needs to
rebuild it. In the case of the four gluon vertex it means, trdy the first term of the sum (see Fig—4.14)

z% (29u1uggu2u4 — gHiHz ghske _ gmmguw:s) 5;; 5;2; 525;? (D.2)
is implemented. As mentioned in SEC._B]2.2 the coloredg@astido not carry bifundamental indices but
are distinguished by the possible color flows. Thus evertigathas a tupel of two color flows. When
the gluons of the vertex are identical O’'Mega permutes therdaples of the four particles with respect
to the correct permutation of the Lorentz structure andethweigets the whole vertex. O’Mega only per-
mutes the indices of identical particles. Thus in the caseoofidentical particles we have to declare the
missing permutations explicitly. We will illustrate thisrfthe quartic coupling of two massless and two
heavy gluons. Imagine four distinguishable particles. réfae you havel! = 24 possibilities to arrange
them. If the four particles are two equal pairs the permartettireduce by an fact@t2! = 4 and you end
up with 6 possible configurations of the four particles. These aresitheolor configurations you have to
put in by hand. Note that we have to care about the Lorentztstr@ of the vertex and have to adapt it
if necessary. In the case of the trilinear coupling of twodyegluons to one massless gluon it remains
possible permutations out 6f The discussion above also covers the cases of all othefingsjpf gluons
and sgluinos, which we therefore won't discuss any further.

First of all we have to ensure that the numbering of the gagiconcerning to the color indices is irrelevant.
Therefore we define the following color lists which contaihe possible permutations of the same color
flow. This is illustrated in FigCDJ1 arld.2.

let list_col3 _equal = [(Col31, Col33, Col32, Col31, Col33, Col32);
(Col31, Col32, Col33, Col31, Col32, Col33)]

let list_colf —equal = [(Col41, Colj4, Col42, Colj1, Cols3, Colj2, Col44, Col43);
(Colf1, Colj4, Col43, Coljl, Coly2, Col4y3, Col4s, Colf2);
(Colf1, Col483, Col44, Col4l, Coly2, Colss, Col43, Colf2);
(Colf1, Colj2, Col44, Col4l, Col4y3, Colss, Col42, Colf3);
(Colf1, Colf3, Colf2, Col4l, Coli4, Col42, Col43, Coli4);
(Coly1, Colj2, Col43, Col41, Coly4, Cols3, Colj2, Coli4)]

Next we define the functions to get the permutations we hapet by hand. In the case of the trilinear
coupling the3 missing arrangements can be constructed by thyeelic permutations. This will be done by
the functioncol3 _cyclic.

~— — — —
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Figure D.1: All possible permutations of the same color flowd trilinear coupling of three particles in
the3 x 3 color flow representation.
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Figure D.2: All possible permutations of the same color flowd quartic coupling of four particles in the
3 x 3 color flow representation.
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Figure D.3: Permutation of the first and the fourth color floyvel.
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Figure D.4: Permutation of the second and the third color flgvel.

let col3 _cyclic =
let col8_cyclic’ = function Col31 — Col32 | Col32 — Col33 | Col33 — Col31
in function (c1, ¢2, ¢3, ¢4, ¢5, c6) —
(col3 _cyclic’ c1, col3_cyclic' ¢2, col3_cyclic’ ¢3,
col3 _cyclic' ¢4, col3_cyclic’ ¢5, col3_cyclic’ cb)

In the case of the quartic coupling we have to dofegclic permutations and two anticyclic permutations.
col4 _cyclic performs the cyclic permutationsel/ _permutel exchanges the second and the third particle
and col4 _permute2 exchanges the first and the fourth particle. Cyclic pernmnatdo not change the
color flow and thus we do not have to care about adapting theritprstructure. But the permutations
of colf _permutel and col/ _permute2 change the color flow shown in FigIp.3 dndD.4. This has to be
taken into account by implementing these couplings.

let col/ _cyclic =
let colj _cyclic’ = function
Col41 — Col42 | Colf2 — Col48 | Colf3 — Col44 | Coll4 — Col4l
in function (c1, ¢2, ¢3, ¢4, ¢, ¢6, c7, ¢8) —
(eoly —cyclic’ ¢l colf —cyclic’ ¢2, col _cyclic’ ¢3, col4 _cyclic' ¢4,
coly _eyclic’ ¢5, colf _cyclic’ ¢6, colf _cyclic’ ¢7, colf _cyclic’ ¢8)

let col4 _permutel = function (c¢1, ¢2, ¢3, ¢4, ¢5, c6, c7, ¢8) —
(c1, ¢2, ¢b, c6, c3, ¢4, c7, c8)

let coly _permute2 = function (c1, c2, ¢3, ¢4, ¢5, c6, c7, ¢8) —
(c7, ¢8, 3, ¢4, c5, c6, cl, c2)

Now we can construct the color lists we need for the impleitgon of the couplings, applying the func-
tions, defined above to the color ligist _ col3 _equal andlist_col/ _equal.

let list_col3 _unequal =
let list1 = list_col3 -equal
inlet list2 = List.map col3_cyclic list1
inlet list3 = List.map col3 _cyclic list2
in list1 @ list2 Q list3
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let list _colj _unequal_cyc =
let list _cycl = list_col _equal
inlet list_cyc2 = List.map col4 _cyclic list_cycl
inlet list_cyc3 = List.map colf _cyclic list_cyc2
inlet list_cycf = List.map col4 _cyclic list_cycd
in list_cycl Q list _cyc2 Q list_cycs Q list _cycy

let list_col _unequal_per =
let list_perl = List.map col _permutel list_colj _equal
inlet list_per2 = List.map colj _permute2 list_col4 _equal
in list _perl Q list_per?2

let list _colj _unequal = list_colj _unequal_cyc @ list_colj _unequal _per

In the next part of the implementation we define lists of tagiéKaluza-Klein indices, which are needed
for a compact definition of the couplings.

let kk1 _list _string =
[Kal0; Kall]
let kk2_list _string =
[(Kal0, Kal0); (Kall, Kall)]
let kkSgluonEqual _list _string =
[(Kal0, Kal0, Kal0); (Kall, Kall, Kall)]
let kk3gluon Unequal _list _string =
[(Kal0, Kal0, Kall); (Kal0, Kall, Kall)]
let kkgluonEqual _list _string =
[(Kal0, Kal0, Kal0, Kal0); (Kall, Kall, Kall, Kall)]
let kkjgluonUnequall _list _string =
[(Kal0, Kal0, Kal0, Kall); (Kal0, Kal0, Kall, Kall);(Kal0, Kall, Kall, Kall)]
let kkjgluon Unequal2 _list _string =
[(Kal0, Kal0, Kall, Kall)]

To loop over the particle indices we define functions mapparthe type variablegepton, Quark, A, W,
7, GluonKK, GluonAuxiliary andSigma .

let lepton cs gen iso = Lepton (cs, gen, iso)

let quark cs gen iso col = Quark (cs, gen, iso, col)
leta = A

letwes = Wes

letz = Z

let gluonKK kk col col = GluonKK (kk, col, col)
let gluonAuzKK kk = GluonAuziliary kk
let sigma col col = Sigma (col, col)

The loop-functions will be used later to loop over the particle iretic
let revmap funs v = List.map (funz — z v) funs
let revmap2 funs values = ThoList.flatmap (revmap funs) values
let loop_cs flist = revmap?2 flist [Pos; Neg]
let loop_gen flist = revmap?2 flist [Gen0; Genl; Gen2]
let loop_iso flist = revmap2 flist [Iso_up; Iso_down]
let loop_kk flist = revmap2 flist [Kal0; Kall]

The typegauge is required by signature and is in our case chosen to the dwanmgbleunit. The gauge
is implemented manifest in the unitarity gauge{ oo), through the definitions of the propagators.

type gauge = unit
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let gauge_symbol () = failwith "Models.warped5DSUSY.gauge _symbol: _internal _error"

Since we have chosen the unitary gauge there are no goldstsoas
let goldstone x = None

The pdg function assigns every particle its pdg number. The fumdideentz returns the Lorentz structure
and propagator the propagator of the particleconjugate maps the particle to its complex conjugate.
fermion returnsl for fermions—1 for antifermions and for bosons. The assignments are shown in Tab.
O andD2?.
let pdg =
var — int

let lorentz =
var — var

let propagator =
var — var

let conjugate =
var — var

let fermion =
var — int

Next we define the coupling constants.

type constant =
| G_3gluonKK of (kkmode x kkmode x kkmode)
| G_4gluonKK of (kkmode x kkmode x kkmode x kkmode)
| G_2sigma_gluonKK of kkmode
| G_2sigma_2gluonKK _cyc of (kkmode x kkmode)
| G_2sigma_2gluonKK _per of (kkmode x kkmode)
| G_sigma_2quark of (generation x isospin)
| G_sigmaAuz_2quark of (generation X isospin)
| G_a_2quark of isospin
| G_ow_2quark
| G_z_2quark of (generation x isospin)
| G_gluonKK _2quark of (generation X isospin X kkmode)
| G_gluonAux_2quark of (generation X isospin x kkmode)

Afterwards we rewrite the coupling constants as functions

let g_3gluonKK (kk1, kk2, kk3) = G_3gluonKK (kk1, kk2, kk3)

let g_4gluonKK (kk1, kk2, kk3, kkj) = G_4gluonKK (kk1, kk2, kk3, kkj)

let g_2sigma_gluonKK kk = G_2sigma_gluonKK kk

let g_2sigma_2gluonKK _cyc (kk1, kk2) = G_2sigma_2gluonKK _cyc (kk1, kk2)
let g_2sigma_2gluonKK _per (kk1, kk2) = G_2sigma_2gluonKK _per (kk1, kk2)
let g_sigma_2quark gen iso = G_sigma_2quark (gen, iso)

let g_sigmaAux_2quark gen iso = G_sigmaAuz_2quark (gen, iso)

let g_a_2quark iso = G_a_2quark iso

let g_w_2quark = G_-w_-2quark

let g_z_2quark gen iso = G_z_2quark (gen, iso)

let g_gluonKK _2quark gen iso kk = G_gluonKK _2quark (gen, iso, kk)

let g_gluonAuz_2quark gen iso kk = G_gluonKK _2quark (gen, iso, kk)

to constructist_ couplings which is a list of all coupling constants.
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pdg lorentz propagator conjugate
e 12 Spinor Prop_Spinor et
et —12 ConjSpinor Prop_ConjSpinor e~
Ve 11 Spinor Prop_Spinor Ve
Ve —11 CongjSpinor Prop_ConjSpinor Ve
wo 14 Spinor Prop_Spinor ut
ut —14 CongSpinor Prop_ConjSpinor wo
vy 13 Spinor Prop_Spinor vy,
v, —13 ConjSpinor Prop_ConjSpinor vy
T~ 16 Spinor Prop_Spinor T+
T+ —16 CongjSpinor Prop_ConjSpinor T
v, 15 Spinor Prop_Spinor 7
Uy —15 ConjSpinor Prop_ConjSpinor vy
U 2 Spinor Prop_Spinor U
U -2 ConjSpinor Prop_ConjSpinor U
d 1 Spinor Prop_Spinor d
d -1 CongjSpinor Prop_ ConjSpinor d
c 4 Spinor Prop_Spinor c
c —4 ConjSpinor Prop_ConjSpinor c
S 3 Spinor Prop_Spinor S
S -3 ConjSpinor Prop_ConjSpinor S
t 6 Spinor Prop_Spinor t
t —6 CongjSpinor Prop_ ConjSpinor t
b 5 Spinor Prop_Spinor b
b -5 ConjSpinor Prop_ConjSpinor b

Table D.1: Functionality of the functionslg, lorentz, propagator andconjugate for fermions.
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pdg lorentz propagator conjugate
A 22 Vector Prop_Feynman A
23 Massive Vector Prop_ Unitarity Z
w+ 24 Massive Vector Prop_ Unitarity w=
W= —24 Massive Vector Prop_ Unitarity w+
g(cl, c2) 21 Vector Prop_Feynman g(—cl,—c2)
Gaux 21 Vector Prop_Col_Feynman Jaux
g1(cl, e2) 9925 Massive Vector Prop_Unitarity g1(—cl, —c2)
91,aux 9925 Massive Vector Prop_Col_ Unitarity g1,aux
Y(cl, e2) 9931 Scalar Prop_Scalar Y(—cl,—c2)
Yaux 9931 Scalar Prop_Col_Scalar Yaux

Table D.2: Functionality of the functionsly, lorentz, propagator and conjugate for bosons.cl andc¢2
denote the color indices of the gluons and sgluinos.

let list_couplings = (List.map g_3gluonKK kk3 _list_string) @
(List.map g-4gluonKK kkj _list_string) Q
(List.map g-2sigma_gluonKK kk1 _list_string) Q
(List.map g-2sigma_2gluonKK _cyc kk2_list _string) Q
(List.map g-2sigma_2gluonKK _per kk2 _list_string) Q
(loop—iso (loop-gen [g-sigma_2quark])) @
(loop—iso (loop-gen [g-sigmaAuz _2quark])) @
(loop_iso [g-a_2quark]) Q
[g-w_2quark] Q
(loop_iso (loop_gen [g-z_2quark])) Q
(revmap?2 (loop-iso (loop-gen [g-gluonKK _2quark))) kk1 _list_string) @
(revmap?2 (loop—iso (loop-gen [g-gluonAux_2quark))) kk1 _list_string)

maz_degree is the maximal degree of the vertices.
let maz _degree () = 4

In the next part of the implementation we will define the \aa$.

let gauge4 = Vector [(2, C_13_42); (=1, C_12_34}); (-1, C_14_23)]
let gauge4 _per = Vectors [(2, C-12_34); (=1, C_14_23); (=1, C_13_42)]

gauge4 is an abbreviation for the following Lorentz structure

9 gHIHs ghaka _ glik2 gisiia i fia ghops (D.3)
andgauge4 _per is equal to

2 gN1N2gP«3P«4 _ gM1N39N2P«4 _ gM1M4gM2M3 (D4)

They will be used for the definition of the four gluon vertexe Will illustrate the explicit implementation
of the vertices on the basis of the three gluon vertex. Theamgimg vertices are implemented in the
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same way and thus will be only shown without further expleomatFirst we define an auxiliary function
h_3gluonKK to write the proper vertex function more compact. To avoid éxplicit definition of all
possible trilinear gluon interactions we define the verea &unction of Kaluza-Klein and color variables.
This function is denoted by_ 3gluon KK’ and looks like

v_3gluonKK' (cla, c1b, c2a, c2b, c3a, c3b) (kk1, kk2, kk3) =
[ (((Gauge_Boson (GluonKK kk1, Q cla, @ (—cl1b)),
(Gauge_Boson (GluonKK kk2, Q c2a, Q (—c2b)),
(Gauge_Boson (GluonKK kk3, Q c3a, Q (—c3b))),
Gauge-Gauge_Gauge 1, G_SgluonKK (kk1, kk2, kk3))]

Note that we already execute the auxiliary functiarbgluon KK . v_3gluonKK' is a list which contains

a 5-tuple of the three particles the Lorentz structure angpliog constant. Now we have to saturate the
Kaluza Klein and color variables to all possible values aniteneach saturation in a separate 5-tuple of the
list. This is done by mapping_3gluonKK’ to the listslist_col3 _equal’, kk3gluonEqual _list _string’,
list_col3 _equal’ andtriple_col. The vertex list then reads

vertexr _3gluonKK _equal’ =
[ (((Gauge-Boson (GluonKK Kal0, Q 1, Q (—3)),
(Gauge-Boson (GluonKK Kal0, Q 2, Q (—1)),
(Gauge_Boson (GluonKK Kal0, Q 3, @ (—2))),
Gauge_Gauge_Gauge 1, G_3gluonKK (0, 0, 0)) ]
[ (((Gauge-Boson (GluonKK Kall, Q 1, Q (—3)),
(Gauge_Boson (GluonKK Kall , Q 2, Q (1)),
(Gauge_Boson (GluonKK Kal] Q 3 Q(—2))),
Gauge_Gauge_Gauge 1, G_S’gluonKK (1,1, 1)), ..

Note that we separated the vertices with the same KaluziarkKldex and those with different one. We
will see later that in the case of the quartic coupling of thgs to the sgluinos and the quartic gluon self-
interaction we need this separation to pass different Ltarginuctures and coupling constants, for reasons
we already discussed some pages before. The full implet@mtz the three gluon vertex is

let h_3gluonKK ((g1, g2, ¢3), t, ¢) =
((Gauge_Boson (GluonKK g1), Gauge_Boson (GluonKK ¢2),
Gauge_Boson (GluonKK ¢3)), t, c)

let v_3gluonKK _equal (c1, c2, ¢3) =
let substitute = function

Col31 — c¢1 | Col32 — ¢2 | Col33 — ¢3

in let list _col3 _equal’ =
List.map (fun_to_6tupel substitute) list_col3 _equal

inlet v_3gluonKK’ (cla, c1b, c2a, c2b, cSa, c¢3b) (kk1, kk2, kk3) =
List.map h_3gluonKK
[(((kk1, Q cla, Q (—clD)), (kk2, Q c2a, Q (—c2b)), (kk3, Q c3a, Q (—c3b))),
Gauge_Gauge_Gauge 1, G_3gluonKK (kk1, kk2, kk3)) ]

inlet v_3gluonKK" = List.map v_3gluonKK' list_col3_equal’

in revmap?2 v_3gluonKK" kk3gluonEqual -list _string

let v_3gluonKK _unequal (c1, c2, ¢3) =
let substitute = function
Col31 — c¢1 | Col32 — ¢2 | Col33 — ¢3
in let list_col3 _unequal’ =
List.map (fun_to_6tupel substitute) list_col3 _unequal
inlet v_3gluonKK’ (cla, c1b, c2a, c2b, cSa, c¢3b) (kk1, kk2, kk3) =
List.map h_3gluonKK

[ (((kk‘l? Q Clav Q (_Clb))a (kk27 Q Cgaa Q (_C'gb))7 (kk‘?a Q C‘?aa Q (_C‘?b)))a
Gauge_Gauge_Gauge 1, G_3gluonKK (kk1, kk2, kk3)) ]
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inlet v_3gluonKK" = List.map v_3gluonKK' list_col3 _unequal’
in revmap?2 v_3gluonKK" kk3gluonUnequal _list _string

let vertex - Sgluon KK _unequal =

List.flatten ( ThoList.flatmap v_3gluon KK _unequal triple_col)
let vertex_SgluonKK _equal =

List.flatten ( ThoList.flatmap v_3gluonKK _equal triple_col)

Next we discuss the implementation of the coupling of fowogls ¢« gxgrgx). The coupling is separated
into three parts_4gluonKK _equal, v_jgluonKK _unequal_cyc andv_4gluon KK _unequal_per. The
first part is for four identical Kaluza-Klein gluons and cetefore be matched with the Lorentz structure
gauges . As discussed above we have to implement six additionak dlwavs in the case of two massless
gluons and two heavy gluons and four additional color flowshim case of three heavy gluons and one
massless gluon or one heavy gluon and three massless gladhs.case of three identical Kaluza-Klein
gluons the additional colorflows are the four cyclic perntiotas of the four color flow tuples and therefore
have the Lorentz structurgiuges . The four cyclic permutations of the coupling with two idieat Kaluza
Klein gluons, respectively have also the Lorentz structuneye/ . The cyclic permutations are realized in
the vertex functiony_4gluon KK _unequal _cyc. In the case of the two non-cyclic permutations we have
to adapt the Lorentz structure by Jgluon KK _unequal _per.

let h_4gluonKK ((g1, 92, 93, 94), t, ¢) =
((Gauge-Boson (GluonKK g1), Gauge_Boson (GluonKK ¢2),
Gauge_Boson (GluonKK ¢3), Gauge_Boson (GluonKK g4)), t, ¢)

let v_4gluonKK _equal (c1, ¢2, ¢3, ¢f) =
let substitute = function
Col41 — ¢l | Col42 — c2 | Col43 — c3 | Colj4 — ¢4
in let list_colj _equal’ =
List.map (fun_to_8tupel substitute) list_colj _equal
inlet v_jgluonKK'
(cla, c1b, c2a, c2b, c3a, c3b, cla, c4b) (kk1, kk2, kk3, kkj) =
List.map h_4gluonKK
[(((kk1, Q cla, Q (—clD)), (kk2, Q c2a, Q (—c2b)), (kk3, Q c3a, Q (—c8b)),
(kk4, Q cfa, Q (—c4b))), gauge4, G_4gluonKK (kk1, kk2, kk3, kk4)) ]
inlet v_JgluonKK" = List.map v_4gluonKK' list_colj _equal’
in revmap?2 v_4gluonKK" kkjgluonEqual _list _string

let v_4gluonKK _unequal_cyc (c1, c2, ¢3, ¢}) =
let substitute = function
Col41 — ¢l | Col42 — c2 | Col43 — c3 | Col44 — ¢4
in let list_col4 _unequal _cyc' =
List.map (fun_to_8tupel substitute) list_colj _unequal _cyc
inlet v_/gluonKK'
(cla, c1b, c2a, c2b, c3a, c3b, cla, c4b) (kk1, kk2, kk3, kkj) =
List.map h_4gluonKK
[(((kk1, Q cla, Q (—clD)), (kk2, Q c2a, Q (—c2b)),(kk3, Q c3a, Q (—c3b)),
(kk4, Q cfa, Q (—c4b))), gauge4, G_4gluonKK (kk1, kk2, kk3, kk4)) ]
inlet v_jgluonKK" = List.map v_4gluonKK' list_colj _unequal_cyc’
in revmap2 v_4gluonKK" kkjgluonUnequall _list _string

let v_4gluon KK _unequal_per (c1, c2, ¢3, ¢4) =
let substitute = function
Col41 — c1 | Col42 — ¢2 | Col43 — 3 | Coly4 — ¢4
in let list_col4 _unequal _per’ =
List.map (fun_to_S8tupel substitute) list_colj —unequal_per
inlet v_/gluonKK'
(cla, c1b, c2a, c2b, c3a, c3b, cla, c4b) (kk1, kk2, kk3, kkj) =
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List.map h_4gluonKK
[(((kk1, Q cla, Q (—clD)), (kk2, Q c2a, Q (—c2b)), (kk3, Q c3a, Q (—c3b)),
(kkf, Q cfa, Q (—c4b))), gauges _per, G_4gluonKK (kk1, kk2, kk3, kk4))]
inlet v_/gluonKK" = List.map v_4gluonKK' list_colj _unequal _per’
in revmap2 v_4gluonKK" kkjgluonUnequal2 _list _string

let vertex_4gluonKK _equal =

List.flatten (ThoList.flatmap v_4gluonKK _equal quartic_col)
let vertex_4gluonKK _unequal _cyc =

List.flatten (ThoList.flatmap v_4gluon KK _unequal_cyc quartic_col)
let vertex_4gluon KK _unequal _per =

List.flatten ( ThoList.flatmap v_4gluonKK _unequal_per quartic_col)

Coupling of two sgluinos to the gluoixEg:)

let h_2sigma_gluonKK ((g1, g2, g3), t, ¢) =
((Gauge-Boson (GluonKK g1), Scalar (Sigma g2), Scalar (Sigma ¢3)), t, )

let v_2sigma_gluonKK (cl1, ¢2, ¢3) =
let substitute = function

Col31 — c¢1 | Col32 — ¢2 | Col33 — ¢3

in let list_col3 _unequal’ =
List.map (fun_to_6tupel substitute) list_col3 _unequal

inlet v_2sigma_gluonKK’ (cla, c1b, c2a, c2b, c3a, c3b) kkl =
List.map h_2sigma_gluonKK
[(((kk1, @ cla, @ (—clb)), (Q c2a, Q (—c2b)), (Q c3a, Q (—c3b))),
Vector_Scalar -Scalar 1, G_2sigma_gluonKK kk1) ]

in let v_2sigma_gluonKK" = List.map v_2sigma_gluonKK' list_col3 _unequal’

in revmap?2 v_2sigma-gluonKK" kk1 _list_string

let vertex_2sigma_gluonKK =
List.flatten ( ThoList.flatmap v_2sigma_gluonKK triple_col)

Coupling of two sgluinos to two gluon&ggrgx). The vertex structure of the coupling of two sgluinos to
two gluons is (see Selc.6.2.1)

— % ghie (51_1 giagisgia | ghigiagis gia 4 gi gia gis gia | si1gio gis gia

J2 733 " J4 " J1 Ja"J1 772773 Ja 733 771 32 J3 7 JaJ2 1
_ 2§ girgisgle 9 i1 g2 g8 ia
2 5]45.71 5]2 5.73 2 5]4 5]15.72 5]3) (D5)

We find that the two non-cyclic permutations of the color flogt gn additional factor-2. Therefore we

split the coupling into two parts_ 2sigma- 2gluon KK _cyc andv_2sigma- 2gluonK K _per and introduce

for each vertex function a separate coupling constantsigma_ 2gluon KK _cyc and G _2sigma_ 2gluon KK _per.
The Lorentz structure of the vertex is symmetric under theharge of the gluons and therefore we do not
have to take care of it. Note that we only implement the cauyptf either two massive or two massless
gluons to two sgluinos.

let h_2sigma_2gluonKK ((g1, g2, ¢3, 94), t, ¢) =
((Gauge_Boson (GluonKK g1), Gauge_Boson (GluonKK ¢2),
Scalar (Sigma ¢3), Scalar (Sigma g4)), t, ¢)

let v_2sigma_2gluonKK _cyc (c1, c2, ¢3, ¢}) =
let substitute = function
Col41 — c1 | Col42 — ¢2 | Col43 — 3 | Coly4 — ¢4
in let list_colj _unequal _cyc’ =
List.map (fun_to_S8tupel substitute) list_colj —unequal_cyc
in let v_2sigma_ 2gluon KK’
(cla, c1b, c2a, c2b, c3a, c3b, cla, c4b) (kk1, kk2) =
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List.map h_2sigma_2gluon KK
[(((kk1, Q cla, Q (—clD)), (kk2, Q c2a, Q (—c2b)),
(Q c3a, Q (_C'S)b))7 (Q 640,, Q (_046)))7
Scalar2 _Vector2 1, G_2sigma-2gluonKK _cyc (kk1, kk2)) |
in let v_2sigma_2gluonKK" =
List.map v_2sigma_2gluonKK' list _col{ _unequal _cyc
in revmap2 v_2sigma_2gluonKK" kk2 _list _string

let v_2sigma_2gluonKK _per (c1, c2, ¢3, ¢4) =
let substitute = function
Col41 — c¢1 | Col42 — ¢2 | Col43 — 3 | Coly4 — ¢4
in let list_col/ _unequal _per’ =
List.map (fun_to_8tupel substitute) list_colj —unequal_per
in let v_2sigma_ 2gluon KK’
(cla, c1b, c2a, c2b, c3a, c3b, cla, c4b) (kk1, kk2) =
List.map h_2sigma_2gluonKK
[(((kk1, Q cla, Q (—clD)), (kk2, Q c2a, Q (—c2b)),
(Q 6301, Q (_C‘?b))? (Q 640‘7 Q (_C4b)))7
Scalar2_Vector2 1, G_2sigma-2gluonKK _per (kk1, kk2)) |
in let v_2sigma_2gluonKK" =
List.map v_2sigma_2gluonKK' list _colj _unequal _per’
in revmap2 v_2sigma_2gluonKK" kk2 _list _string

let vertex_2sigma_2gluon KK _cyc =
List.flatten (ThoList.flatmap v_2sigma_2gluonKK _cyc quartic_col)
let vertexr_2sigma- 2gluonKK _per =

List.flatten (ThoList.flatmap v_2sigma_ 2gluonKK _per quartic_col)

Coupling of the quarks to the sgluin&{q)
let h_sigma_2quark ((g1, g2, 93), t, ¢) =
((Fermion (Quark g1), Scalar (Sigma ¢2), Fermion (Quark ¢3)), ¢, c)
let v_sigma_2quark (c1, c2) =
let v_sigma_2quark’ gen iso =
List.map h_sigma_2quark
[(((N@g, gen, ZISO, Q (_62))5 (Q 627 Q (_CZ))v (POS, gen, i807 Q CI))7
FBF ((—1), Psibar, S, Psi), G_sigma_2quark (gen, iso))]
in loop_iso (loop_gen [v_sigma_2quark’])
let vertex _sigma- 2quark =
List.flatten (ThoList.flatmap v_sigma_2quark inequ_pairs)

Coupling of the auxiliary field of the sgluino to the quarks(xqq)

let h_sigmaAuz_2quark ((g1, g2, ¢3), t, ¢) =
((Fermion (Quark g1), Scalar g2, Fermion (Quark g3)), t, c)

let v_sigmaAuz_2quark c1 =
let v_sigmaAuz_2quark’ gen iso =
List.map h_sigmaAux_2quark
[ (((Neg, gen, iso, Q (—cl)), SigmaAuziliary, (Pos, gen, iso, Q cl1)),
FBF ((—1), Psibar, S, Psi), G_sigmaAuz_2quark (gen, iso)) |
in loop_iso (loop_gen [v_sigmaAux_2quark’])

let vertex_sigmaAuz _2quark =
List.flatten ( ThoList.flatmap v_sigmaAuz _2quark nc_list)

Coupling of the gluon to the quarkgigg). When we implement left- right-couplings in O’Mega we have
to multiply the couplings byt /2 since the projectors;, r are defined a#;,/r = (1 F 75).
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let h_gluonKK _2quark ((g1, g2, g3), t, ¢) =
((Fermion (Quark g1), Gauge_Boson (GluonKK ¢2), Fermion (Quark g3)), t, c)

let v_gluonKK _2quark (c1, c2) =
let v_gluonKK _2quark’ gen iso kk =
List.map h_gluonKK _2quark
[ (((Neg, gen, iso, Q (—c2)), (kk, Q ¢2, Q (—cl1)), (Pos, gen, iso, Q cl)),
FBF ((—1), Psibar, VLR, Psi), G_gluonKK _2quark (gen, iso, kk)) ]
in revmap2 (loop—iso (loop_gen [v_gluonKK _2quark’])) kk1 _list_string

let vertex _gluonKK _2quark =
List.flatten ( ThoList.flatmap v_gluonKK _2quark inequ_pairs)

Coupling of auxiliary field of the gluon to the quarks; (auxgq)

let h_gluonAuz_2quark ((g1, g2, 93), t, ¢) =
((Fermion (Quark g1), Gauge-Boson g2, Fermion (Quark ¢3)), t, c)

let v_gluonAux_2quark c1 =
let v_gluonAux_2quark’ gen iso kk =
List.map h_gluonAux_2quark
[ (((Neg, gen, iso, Q (—cl)), GluonAuxiliary kk, (Pos, gen, iso, Q cl)),
FBF ((—1), Psibar, VLR, Psi), G_gluonAuz_2quark (gen, iso, kk)) |
in revmap?2 (loop-iso (loop_gen [v_gluonAuz_2quark’])) kk1 _list_string

let vertex _gluonAux_2quark =
List.flatten ( ThoList.flatmap v_gluonAuz_2quark nc_list)

Coupling of the photon to the quarkd{q)

let h_a_2quark ((g1, g2, ¢3), t, ¢) =
((Fermion (Quark g1), Gauge-Boson g2, Fermion (Quark ¢3)), t, c)

let v_a_2quark c1 =
let v_a_2quark’ gen iso =
List.map h_a_2quark
[ (((Neg, gen, iso, Q (—cl)), A, (Pos, gen, iso, Q cl)),
FBF (1, Psibar, VL, Psi), G_a-2quark iso)]
in (loop_iso (loop_gen [v_a-2quark’]))

let vertex_a_2quark = List.flatten (ThoList.flatmap v_a_2quark nc_list)

Coupling of thell-Boson to the quarkd¥ ¢q)

let how_2quark ((g1, g2, 93), t, ¢) =
((Fermion (Quark g1), Gauge_Boson g2, Fermion (Quark ¢3)), t, ¢)

let v_w_2quark c1 =
let v_w_2quark’ gen =

List.map h_w_2quark

[ (((Neg, gen, Iso_down, Q (—c1)), W Neg, (Pos, gen, Iso_up, Q cl)),
FBF (1, Psibar, VL, Psi), G_w_2quark);
(((Neg, gen, Iso_up, @Q (—cl1)), W Pos, (Pos, gen, Iso_down, @ c1)),
FBF (1, Psibar, VL, Psi), G_w_2quark) ]

in (loop-gen [v_w_2quark’])

let vertex —w_2quark = List.flatten (ThoList.flatmap v_w_2quark nc_list)

Coupling of theZ-Boson to the quarks4qq)
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let h_z_2quark ((g1, ¢2, 93), t, ¢) =
((Fermion (Quark g1), Gauge_Boson g2, Fermion (Quark ¢3)), t, ¢)

let v_z_2quark c1 =
let v_z_2quark’ gen iso =
List.map h_w_2quark
[ (((Neg, gen, iso, Q (—cl)), Z, (Pos, gen, iso, Q cl)),
FBF (1, Psibar, VA, Psi), G_z_2quark (gen, iso)) ]
in loop_iso (loop_gen [v_z_2quark'])

let vertex _z_2quark = List.flatten (ThoList.flatmap v_z_2quark nc_list)

module F' = Models. Fusions (struct

type f = flavor
type ¢ = constant

let compare = compare
let conjugate = conjugate
end )

vertices is a list of all vertices.

let vertices () =
( vertez_3gluonKK _equal @ vertez_3gluonKK _unequal @
vertex _2sigma_gluonKK Q@ vertex_sigma_2quark Q

vertex _sigmaAuz _2quark Q verter_gluonKK _2quark Q vertex _gluonAuz _2quark Q

verter _a_2quark Q vertex_w_2quark Q vertex_z_2quark,

vertez _ 2sigma_ 2gluon KK _cyc Q vertex_2sigma_2gluon KK _per Q
vertex _4gluon KK _equal Q vertex_4gluonKK _unequal - cyc Q
vertex _4gluonKK _unequal _per, [])

let table = F.of _vertices (vertices ())

let fuse2 = F.fuse2 table
let fuse3 = F.fused table
let fuse = F'.fuse table

let quark _sumcol ¢ =
let quark_col iso gen ¢ =
[Quark (Pos, iso, gen, Q c); Quark (Neg, iso, gen, Q (—c))]
in List.map flavor _of _f
(List.flatten ((revmap (loop_iso (loop_gen [quark_col])) c)))

let gluonKK _sumcol © =
let gluonKK _col kk (n, m) = [GluonKK (kk, Q n, @ (—m))]
in List.map flavor_of _g (List.flatten (revmap (loop_kk [gluonKK _col]) z))

let scalar —sumcol (n, m) = [Scalar (Sigma (Q n, Q (—m)))]

let external _flavors () =
[
"leptons" , List.map flavor_of _f (loop_iso (loop_gen( loop_cs [lepton))));
"quarks" , ThoList.flatmap quark_sumcol nc_list;
"a" , [Gauge_Boson Al;
"W" , [Gauge_Boson (W Pos); Gauge_Boson (W Neg)];
"z" , [Gauge_Boson Z];
"gluonKK" , (ThoList.flatmap gluonKK _sumcol inequ_pairs) Q
(List.map flavor_of _g (loop_kk [gluonAuzKK]));
"sigma" , (ThoList.flatmap scalar_sumcol inequ_pairs) @Q [Scalar SigmaAuxiliary];

]
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let flavors () = ThoList.flatmap snd (external_flavors ())

let parameters () = {input = List.map (funz — (z, 0.)) list_couplings;
derived = []; derived_arrays = []}

The following functions maps the flavor of a particle to argiriflavor_to_string makes the connection
between the the model file and the user interfaedi_of _flavor and flavor _symbol renders the model
parameters from the model file as FORTRAN compatible code.aBsignments are tabled in TRRID.3 and
DRs
let flavor _to_string =
var — string

let bedi_of _flavor =
var — string

let flavor _symbol =
var — string

flavor_of _string is the inverse function oflavor_of _string. It is copied from models3.ml.

let flavor_of _string x =
let dict = List.map (funz — (z, flavor_to_string x)) (flavors ())
in let get_ident = function (z, _) — z
intry
get_ident (List.find (fun (_, y) — (x = y)) dict)
with
Not_found — invalid_arg "Warped5DSUSY flavor  _of _string"

mass_symbol maps every particle to a FORTRAN 90 compatible mass-strivtjw@dth _symbol maps
every particle a FORTRAN 90 compatible width-string. Batimétions are required by signature.

let mass_symbol = function
| Gauge_Boson A — "0. _omega_prec"
| Gauge_Boson (GluonKK (Kal0, _, _)) — "0. _omega_prec"
| Gauge_Boson (GluonAuziliary (Kal0)) — "0. _omega_prec"
| = — "mass _array(" " (bedi-of —flavor )" ")"

let width_symbol = function
| Gauge_Boson A — "0. _omega_prec"
| Gauge_Boson (GluonKK (Kal0, _, _)) — "0. _omega_prec"
| Gauge_Boson (GluonAuziliary (Kal0)) — "0. _omega_prec"
| = — "width _array(" " (bedi-of _flavor z) " ")"

letres = RCS.rename res_file "Models5.Warped5Dsusy”  (["The _Warped_5D_Susy Model" |)

end
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flavor _to_string bedi—of — flavor flavor _symbol

e e- e_bcd 11
et e+ e_bcd bl
Ve nue- nue _bcd nl
75 nue+ nue _bcd nbl
W mu- mu_bcd 12
ut mu+ mu_bcd b2
vy numu- numu_bcd n2
vy, numu-+ numu_bcd nb2
T~ tau- tau _bcd 13
Tt tau+ tau _bcd Ib3
vy nutau- nutau _bcd n3
7 nutau+ nutau _bcd nb3
u(n) u/n u_bcd ul_|n|
a(n) ubar/n u_bcd ulb _|n|
d(n) d/n d_bcd dl_|n|
d(n) dbar/n d_bcd dib _|n|
c(n) c/n c_bcd u2_|n|
¢(n) char/n c_bcd u2b _|n|
s(n) s/n s_bcd d2_|n|
5(n) shar/n s_bcd d2b _|n|
t(n) t/n t _bcd u3d_|n|
t(n) tbar/n t _bcd u3b _|n|
b(n) b/n b_bcd d3_|n|
b(n) bbar/n b_bcd d3b _|n|

Table D.3: Functionality of the functionfavor_to_string, bedi-of - flavor and flavor _symbol for
fermions.n is the integer of the color index arid| denotes the absolute valuerof
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flavor _to_string bedi—of — flavor flavor _symbol
A a a
z z_bcd z
w+ W+ w_bcd w
W= w- w_bcd W
g(n,m) gluon/n(-m) glu _n(-m)
Jaux gluon0 gluAux
g1(n,m) gluonKK1/n(-m) gluonKK1 _bcd gluKK1 _n(-m)
g1,aux gluon0OKK1 gluonAuxKK1 _bcd gluAuxKK1
Y(n,m) sigma/n(-m) sigma _bcd sig _n(-m)
Yaux sigma0 sigmaAux _bcd SigAux

Table D.4: Functionality of the functionfavor_to_string, bedi_of _flavor and flavor _symbol for
fermionsn andmdenote the integer of the color index.

constant_symbol
G_3gluonKK (k1,k2,k3) g_3gluonkKK _k1k2k3
G_4gluonKK (k1,k2,k3,k4) g_4gluonkKK _k1k2k3k4
G _2sigma_gluonKK k1 g-2sigma _gluonKK _00k1
G_2sigma_2gluonKK _cyc (k1,k2) g_2sigma _2gluonKK _cyc _00k1k2
G_2sigma_2gluonKK _per (k1,k2) g_2sigma _2gluonKK _per _00k1k2
G _sigma_2quark g_sigma _qgbar
G _sigmaAuz_2quark g-sigmaAux _qgbar
G_a_2quark (Iso_up) g_a_2uptypequark
G_a_2quark (I1so_down) g-a_2downtypequark
G_w_2quark g-w_2quark
G_z_2quark g-z._qgbar
G_gluonKK _2quark k1 g_gluonKK _qgbar _k100
G_gluonAuz_2quark k1 g-gluonAux _qgbar _k100

Table D.5: Functionality of the functiomonstant,ymbol. k1, k2, k3 andk4 denote the integer of the
Kaluza-Klein index.
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