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Zusammenfassung

In dieser Arbeit berechne ich die schleifen-induzierte Produktion von vier geladenen Lep-
tonen in Gluon-Fusion via zwei off-shell Z Bosonen, gg → Z ∗Z∗ → (ll̄)(l′ l̄′). Zusätzlich
zur Quark-Antiquark-Annihilation, qq̄ → Z∗Z∗, stellt dieser Prozess einen wichtigen
Beitrag zur Z-Bosonen-Kontinuumsproduktion im Untergund des ,,Goldenen Higgs-
Kanals”, gg → H → Z∗Z∗, dar. Die Quark-Antiquark-Annihilation berechne ich
in führender Ordnung. Für die Einschleifen-Helizitäts-Amplitude des Gluon-Fusions-
Untergrunds wende ich eine analytische Zerlegung in Tensorstrukturen und Skalarin-
tegrale an. Diese Darstellung verhindert größtenteils das Auftreten inverser Gram-
Determinanten, die die numerische Stabilität der Lösung gefährden. Ich erkläre die
Berechnung und Vereinfachung der Koeffizientenfunktionen und führe eine geeignete
Phasenraum-Parametrisierung durch. Das Ergebnis stellt das Programm GG2ZZ dar,
mit dem ich schließlich den totalen Wirkungsquerschnitt sowie verschiedene Verteilun-
gen berechne.
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1. Introduction

The Standard Model of particle physics has been extremely successful since its foundation
in the early 70s extremely successful. Not only the heavy quarks, but also the gauge
bosons of electroweak interactions, W and Z, have been postulated theoretically before
being detected experimentally at LEP. The only missing stone which has not yet been
discovered is the Higgs boson, which could explain spontaneous breaking of electroweak
symmetry. Finding the Higgs boson is therefore one of the major challenges both from
the experimental and theoretical side. Although one hopes to find signatures of physics
beyond the Standard Model at the LHC, the major task of its experiments ATLAS and
CMS is the detection of the Higgs particle.

After a short review of the Standard Model of electroweak interactions and the Higgs
mechanism, I will discuss the search for the Higgs particle as postulated in the Standard
Model at the Large Hadron Collider.

1.1. The Higgs mechanism

1.1.1. The Standard Model of electroweak interactions

This short review of the Standard Model of electroweak interactions [1, 2, 3] is not meant
as a complete presentation of Standard Model physics but only as a motivation for the
symmetry breaking via Higgs mechanism1. I will therefore restrict the fermions to a
single family of leptons, i.e. an electron and the corresponding electron neutrino. As
there is no evidence for a right-handed neutrino so far, the lepton field can be described
by a left-handed doublet

L =

(
νL

eL

)
with νL =

1

2
(1 − γ5)ψν and eL =

1

2
(1 − γ5)ψe (1.1)

and a right-handed singlet

eR =
1

2
(1 + γ5)ψe. (1.2)

Both transform as follows:

1QCD is therefore omitted.
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under SU(2): L
′ = e−iα(x)τ/2

L, (1.3)

e′R = eR, (1.4)

under U(1): L
′ = e−iYLβ(x)/2

L, (1.5)

e′R = e−iYRβ(x)/2eR, (1.6)

where YL and YR are the hypercharges of the left-handed doublet and the right-handed
singlet, respectively.

For setting up a Lagrangian invariant under this transformation one must replace the
ordinary derivative ∂µ with the covariant derivative Dµ:

∂µ → Dµ =

{
∂µ + 1

2 ig
′YLBµ(x) + 1

2gτWµ(x) for L

∂µ + 1
2 ig

′YRBµ(x) for eR
. (1.7)

Bµ(x) and Wµ(x) are the gauge fields of the U(1) and SU(2) transformations, respec-
tively. These fields themselves transform according to

B′
µ(x) = Bµ(x) +

1

g′
∂µβ(x), (1.8)

W
′
µ(x) = Wµ(x) +

1

g
∂µα(x) −Wµ(x) × α(x). (1.9)

The set of transformations for the fermion fields, eqs. 1.3 - 1.6, and for the bosons,
eqs. 1.8 - 1.9, is called the gauge transformation. As I will show in the next section,
neither can the field Bµ(x) be identified with the photon field nor can the fields Wµ(x)
be identified only with the weak interactions.

Finally, the Lagrange density L of the electroweak theory is:

L = iL̄γµ

(
∂µ +

1

2
ig′YLBµ(x) +

1

2
gτWµ(x)

)
L

+iēRγ
µ

(
∂µ +

1

2
ig′YRBµ(x)

)
eR

−1

4
BµνB

µν − 1

4
WµνW

µν , (1.10)

where the field strength tensors are Bµν = ∂µBν − ∂νBµ and Wµν = ∂µWν − ∂νWµ.
The equations of motion for the fermion fields can then be derived via the Euler-

Lagrange equations and one finds

iγµ

(
∂µ +

1

2
ig′YLBµ(x) +

1

2
gτWµ(x)

)
L(x) = iγµDµL(x) = 0, (1.11)

iγµ

(
∂µ +

1

2
ig′YRBµ(x)

)
eR(x) = iγµDµeR(x) = 0. (1.12)
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Note that there are no mass terms in the Lagrange density and the equations of motion. If
there were, neither the Lagrange density nor the equations of motion would be invariant
under the gauge transformation since the mass term would produce an additional term
under transformation. Furthermore, a mass term would destroy the helicity as a good
quantum number while the dynamical term Dµ preserves it. This again reflects the fact
that only massless particles posses a definite helicity. A SU(2)L gauge theory is thus
only possible with massless fermions.

Similarly, the boson fields must also be massless. A massterm in its equation of
motion would not be invariant under gauge transformations and would therefore violate
the gauge invariance.

Both assumptions are obviously not true in nature: Both the electrons and the gauge
bosons of electroweak interactions, W and Z that will be defined in the next section,
posses a mass. Therefore, the SU(2)L×U(1) gauge symmetry must be broken to generate
masses for the fermions and gauge bosons.

1.1.2. Spontaneous symmetry breaking

The Higgs field

One can conserve the gauge invariance of the Lagrange density (eq. 1.10) and thereby
preserve the weak interactions mediated by the fields Bµ(x) and Wµ(x), but break the
invariance of the vacuum. Conserving the symmetry of the Lagrangian but breaking the
symmetry of the vacuum is called spontaneous symmetry breaking.

In order to obtain a vacuum with such a property, one must introduce additional
fields whose minimum does not correspond to a vanishing expectation value (as usual
for other fields) but to a finite expectation value. Fields which posses this property are
called Higgs fields [4, 5]. A possible implementation which breaks the SU(2)L × U(1)
symmetry and modifies the equations of motion such that the Bµ(x) and Wµ(x) fields
acquire mass is a doublet of complex scalar fields

Φ(x) =

(
Φ+(x)
Φ0(x)

)
=

1√
2

(
Φ+

1 (x) + iΦ+
2 (x)

Φ0
1(x) + iΦ0

2(x)

)
(1.13)

with Φ+
1 (x) and Φ+

2 (x) with positive electric charge and Φ0
1(x) and Φ0

2(x) neutral. Note
that this is not the only possible but the minimal configuration that leads to a symmetry
breaking.

The Lagrange density corresponding to this field is

L =
1

2
(DµΦ(x))†(Dµ

Φ(x)) − V
(
Φ(x)†Φ(x)

)
(1.14)

with V (Φ(x)†Φ(x)) = −µ2
Φ(x)†Φ(x) + λ

(
Φ(x)†Φ(x)

)2
, µ2, λ > 0. (1.15)

Note that the first expansion coefficient of V (Φ(x)†Φ(x)), −µ2, is negative and cannot
simply be interpreted as the mass of the Higgs field. The minimum of V (Φ(x)†Φ(x)) is
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not at 〈Φ〉 = 0 but at a finite value Φmin. The physical Higgs particle then corresponds
to excitations around this minimum and its equations of motions can be gained by
expanding around it.

For calculating the minimum of V (Φ(x)†Φ(x)), the field Φ is treated like a doublet
of classical fields. Minimizing its energy leads to

Φmin =
1√
2

(
0
v

)
with v =

√
µ2

λ
(1.16)

and for the quantum field Φ this corresponds to a vacuum expectation value of

〈Φ〉 = Φmin =
1√
2

(
0
v

)
. (1.17)

Excitations of the Higgs field around this minimum can now be parametrized by two
fields, ξ(x) and H(x) with four degrees of freedom

Φ = eiξ(x)τ 1√
2

(
0

v +H(x)

)
, (1.18)

where the field ξ(x) can be removed by a gauge transformation

Φ
′ = e−iξ(x)τ

Φ = e−iξ(x)τeiξ(x)τ 1√
2

(
0

v +H(x)

)
=

1√
2

(
0

v +H(x)

)
. (1.19)

The field ξ(x) is thus not physical and only H(x) corresponds to a physical particle, the
famous Higgs particle. The three degrees of freedom that seem to be lost, will again
show up in the W bosons when they acquire mass. Massless W bosons posses only
two degrees of freedom (two transverse polarizations, like photons) whereas massive W
bosons posses a third degree of freedom (longitudinal polarization).

Expanding the potential V (Φ(x)†Φ(x)) around the minimum,

V (H) ≈ −1

4
µ2v2 + µ2H2 + λvH3 +

1

4
λH4, (1.20)

one reads of a Higgs mass of

mH =
√

2µ2. (1.21)
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Boson masses

I will now show how the introduction of the Higgs field generates effective masses for
the gauge bosons. The interaction between the Higgs field and the vector boson fields
originates from the kinetic term of the Higgs field in the Lagrangian:

(DµΦ(x))†(Dµ
Φ(x)) =

{(
∂µ +

ig

2
τWµ

)
Φ(x)

}†(
∂µ +

ig

2
τWµ

)
Φ(x)

=
g2

4
Φ

† (τWµ)† (τWµ)Φ + . . .

=
g2

4

∑

ij

W i
µW

jµΦ† τiτj︸︷︷︸

=

8

<

:

−τjτi for i 6= j
1 for i = j

Φ + . . .

=
g2

4

∑

i

W i
µW

iµΦ†Φ + . . .

=
g2

8
WµW

µ(0, v +H)

(
0

v +H

)
+ . . .

=
g2v2

8
WµW

µ +
g2v

8
2HWµW

µ + . . . (1.22)

The field Bµ in the covariant derivative is suppressed here since it has no effect on how
the physical W bosons acquire mass. Varying the second last term with respect to W i

µ

generates the equation of motion for the W bosons

(
� +

g2v2

4

)
W i

µ = Jw
µ , (1.23)

where Jw
µ contains all currents except for that generated by the constant vacuum expec-

tation value of the Higgs field. One can read off the mass of the W boson

MW =
gv

2
. (1.24)

Comparison between decay processes in the electroweak theory and in Fermi theory leads
to a relation between g, MW and GF , the Fermi coupling between two currents:

GF√
2

=
g2

8M2
W

. (1.25)

Two of the W fields, W 1
µ and W 2

µ , can be allocated to physical particles, the W + and
W− bosons
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W±
µ =

1√
2

(
W 1

µ ± iW 2
µ

)
. (1.26)

It remains to explain how the fields W 3
µ and Bµ correspond to physical particles. The

interaction between these neutral gauge fields and the Higgs doublet is given by

L =
1

4

([
gW 3

µτ3 + g′Bµ

]
Φ
)† [

gW 3µτ3 + g′Bµ
]
Φ. (1.27)

If one considers the vacuum expectation value 〈Φ〉 instead of the full field Φ, one finds:

L =
1

4

v2

2

(
−gW 3†

µ + g′B†
µ

) (
−gW 3µ + g′Bµ

)

=
1

4

v2

2

[
g2W 3†

µ W 3µ + g′2B†
µB

µ − gg′
(
W 3†

µ Bµ +B†
µW

3µ
)]

=
1

2

v2

2

(
W 3†

µ , B†
µ

)( g2 −gg′
−gg′ g′2

)(
W 3µ

Bµ

)
. (1.28)

Since the mass matrix

M =
v2

4

(
g2 −gg′

−gg′ g′2

)
(1.29)

is not diagonal, the fields W 3
µ and Bµ cannot be interpreted as physical fields. But with

a unitary transformation U the mass matrix can be diagonalized:

MD = UMU−1 =
v2

4

(
0 0

0 v2

4 (g2 + g′2)

)
. (1.30)

The fact that one eigenvalue is exactly zero allows for the interpretation of one of the
transformed fields as the photon field. The other particle is then the neutral Z boson.

The unitary transformation is

U =
1√

g′2 + g2

(
g′ g
−g g′

)
(1.31)

and hence the photon field is

Aµ =
g√

g′2 + g2
Bµ +

g′√
g′2 + g2

W 3
µ

= cos θWBµ + sin θWW 3
µ (1.32)
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with the abbreviations

cos θW :=
g√

g′2 + g2
; sin θW :=

g′√
g′2 + g2

, (1.33)

where θw is called the Weinberg angle or weak mixing angle.
The remaining field is identified with the Z boson

Zµ = − sin θWBµ + cos θWW 3
µ . (1.34)

To see whether these assignments really correspond to physical reality, one must check
whether Aµ couples to the fields eR and eL with the coupling −e and whether it does
not couple to νL. These couplings can be found in the kinetic terms of the leptons:

L = −L̄γµ

(
1

2
g′YLBµ +

1

2
gW 3

µτ3

)
L− 1

2
g′ēRγ

µYRBµeR (1.35)

= −1

2
ν̄Lγ

µ
(
g′YLBµ + gW 3

µ

)
νL − 1

2
ēLγ

µ
(
g′YLBµ − gW 3

µ

)
eL − 1

2
g′ēRγ

µYRBµeR.

Substituting the inverse transformation to eqs. 1.32 and 1.34,

Bµ = Aµ cos θW − Zµ sin θW (1.36)

W 3
µ = Aµ sin θW + Zµ cos θW , (1.37)

the Lagrange density is given by

Lk = −1

2
ν̄Lγ

µ
(
g′YL cos θW + g sin θW

)
AµνL +

1

2
ν̄Lγ

µ
(
g′YL sin θW − g cos θW

)
ZµνL

−1

2
ēLγ

µ
(
g′YL cos θW − g sin θW

)
AµeL +

1

2
ēLγ

µ
(
g′YL sin θW + g cos θW

)
ZµeL

−1

2
g′ēRγ

µg′YR cos θWAµeR +
1

2
g′ēRγ

µg′YR sin θWZµeR

=
1√

g2 + g′2

[
−gg′(YL + 1)ν̄Lγ

µAµνL + (g′2YL − g2)ν̄Lγ
µZµνL

−gg′(YL − 1)ēLγ
µAµeL + (g′2YL + g2)ēLγ

µZµeL

−gg′YRēRγ
µAµeR + g′2YRēRγ

µZµeR
]
. (1.38)

Requiring that

1. Aµ does not couple to νL.

2. Aµ couples with the same strength to eL and eR.
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implies

YL = −1 and YR = YL − 1 = −2 (1.39)

Demanding furthermore that the coupling between Aµ and eL,R is e, one finds

e =
gg′√
g2 + g′2

= g sin θw. (1.40)

The mass of the Z boson can be read off the mass matrix

MZ =
v

2

√
g2 + g′2 =

MW

cos θW
. (1.41)

Since one knows e and GF , one can determine the W and Z mass (cf. eq. 1.25):

GF√
2

=
g2

8M2
W

⇔MW =
g

2

√ √
2

2GF
=

e

2 sin θW

√ √
2

2GF
≈ 80GeV (1.42)

⇒MZ =
MW

cos θW
≈ 90GeV. (1.43)

Both the W and the Z boson were found in the UA1 and UA2 experiments at CERN’s
Spp̄S collider in 1983 with masses of 80.4 and 91.2 GeV, respectively.

Fermion masses

The fermion masses are also generated by interactions with the Higgs field, but the
couplings, so called Yukawa couplings, are free parameters of the theory and have to be
introduced ad hoc whereas the W , Z and photon couplings and masses followed from
the covariant derivative in the Lagrangian.

To generate the fermion masses one postulates an interaction of the form

Lφ−F = −ge

[
L̄ΦeR + ēRΦ†L

]
. (1.44)

With the constant vacuum expectation value 〈Φ〉 one finds the electron mass term

−ge√
2

[
(ν̄L, ēL)

(
0
v

)
eR + ēR(0, v)

(
νL

eL

)]
= −gev√

2
(ēLeR + ēReL) = −gev√

2
ēe (1.45)

with e = eL + eR. The free parameter ge has to be adjusted to fulfill the relation

14



me =
gev√

2
. (1.46)

One thus has no prediction for the electron mass but a proportionality between the
electron mass and the electron Higgs coupling. Hence, generalizing to other fermions,
like quarks, the coupling of heavier fermions to the Higgs should be larger and thus the
production easier.

1.2. Higgs boson searches at hadron colliders

1.2.1. Constraints on the Higgs mass

Although the Standard Model of electroweak interactions and the Higgs mechanism of
spontaneous symmetry breaking explain the interactions of W bosons, Z bosons and
photons as well as their masses, there is no statement on mH . The mass of the Higgs
boson remains (besides the fermion masses or its Yukawa couplings) a free parameter of
the theory (cf. eq. 1.21) and has to be determined by experiment.

Which processes might contribute to evidence for a Higgs particle depends thereby
strongly on its mass, but previous experiments as well as fundamental considerations
allow for constraints on the possible Higgs mass. Direct searches at LEP, an electron
positron collider which was operating until 2000 at the location of the LHC, have yielded
a lower bound of mH = 114.4GeV [6]. An estimation of mH = 114+69

−45 GeV can be
gained indirectly from electroweak precision measurements if presuming the validity of
the Standard model and performing a global fit to all electroweak data [7]. Unitarity
sets an upper limit on the Higgs mass of ∼ 1TeV [8, 9, 10]. It shall be noted that it is
also possible to derive a mass range from a cut-off scale from which on one expects new
physics [11, 12, 13]. For a cut-off of the order of the Planck scale, 1019 GeV, the Higgs
mass is constrained to a range of 130 < mH < 190GeV. For lower cut-offs, the range
becomes wider.

1.2.2. Main Higgs production and decay modes

In hadronic reactions there are four main production modes for Higgs boson masses from
100 to some hundreds of GeV:

• gluon fusion by a heavy quark loop: gg → H;

• vector boson fusion: qq′ → qq′V V → qq′H, where the bosons V (V + W,Z) are
emitted by quarks and scatter off each other;

• associated production with weak gauge bosons: qq ′ →WH,ZH;

• associated production with heavy quarks: qq̄, gg → tt̄H, bb̄H, qq, gg → bH.

15



σLO(pp→H+X) [pb]
√s = 14 TeV

Mt = 174 GeV

CTEQ6L1gg→H

qq→Hqqqq
_
’→HW

qq
_
→HZ

gg,qq
_
→Htt

_

MH [GeV]
0 200 400 600 800 1000

10
-4

10
-3

10
-2

10
-1

1

10

10 2

0 200 400 600 800 1000

σ(pp→H+X) [pb]
√s = 14 TeV

Mt = 174 GeV

CTEQ6M
gg→H

qq→Hqqqq
_
’→HW

qq
_
→HZ

gg,qq
_
→Htt

_

MH [GeV]
0 200 400 600 800 1000

10
-4

10
-3

10
-2

10
-1

1

10

10 2

0 200 400 600 800 1000

Figure 1.1.: Higgs boson production cross section as a function of the Higgs mass MH

for the LHC collider at LO (left) and NLO (right) [14]

Typical production cross sections as function of the Higgs mass are shown in fig. 1.1.
While the gluon fusion process is the dominant one for small and intermediate Higgs
masses, at higher masses vector boson fusion qq ′ → qqH reaches comparable values.
At the LHC, associated production is not important except for small Higgs masses in
contrast to the Tevatron where it presents an important production mode.

The branching fractions for Higgs decay depend even stronger on its mass (cf. fig.
1.2). The most important modes are:

• decay to weak gauge bosons H →W+W−, ZZ;

• decay to heavy quarks: H → tt̄, bb̄;

• other decays: H → τ+τ−, cc̄, gg, γγ;

For masses over 140GeV, decay into W+W− or ZZ bosons is the predominant decay
mode. For even larger masses, tt̄ decay can reach up to 20% of this ratio. For light
Higgs bosons, decay into bb̄ is most important followed by decays to leptons (τ τ̄) and
strongly interacting particles (cc̄, gg). Decays into photons are very rare and appear
only in sizable fraction for intermediate masses, but are very interesting due to their
clean experimental signature.

1.2.3. The Tevatron

The Tevatron is a pp̄ collider currently operating in Run II with a center of mass energy
of 1.96TeV. Two Higgs boson channels are most promising: associated production with
W or Z and decay to bb̄ as well as gluon fusion with decay to WW .

For a light Higgs boson, decay to bb̄ is favored. The associated vector boson decays
via W → lν, Z → νν̄ or Z → ll̄. Backgrounds after b tagging are mainly from Wbb̄,
Zbb̄, WZ and tt̄ production as well as from QCD backgrounds for ZH → νν̄bb̄. Thus,
knowledge of backgrounds is important. A Higgs decay would then be visible as an excess
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in the bb̄ invariant mass spectrum. A sensitivity at the 95% confidence level is expected
for a Higgs mass of mH = 120GeV if combining all channels and both experiments.
A 5σ discovery would require an integrated luminosity of 10 fb−1 [14] and is thus most
likely not possible.

For masses above 140GeV, the decay to two W bosons is the dominant one for which
a relatively clean signature can be found in the gluon fusion channel. Although the
production from gluon fusion is higher than associated production, this channel is sup-
pressed due to the small branching ratio of W → lν̄. The background from W +W−

continuum production is known and can be controlled by several cuts. Expectations of
Higgs cross sections are an order of magnitude higher than estimations from the Stan-
dard Model and can thus be excluded to 95% C.L. 3σ sensitivity to Higgs boson masses
between 160 and 170GeV would require an integrated luminosity of about 10 fb−1 [14].
The corresponding mode from ZZ production is about an order of magnitude smaller
but contributes in combined searches.

1.2.4. The Large Hadron Collider

The Large Hadron Collider (LHC) is a proton-proton collider with a center of mass
energy of 14TeV situated at CERN and expected to start operation in 2007. There
are two experiments with general purpose detectors, ATLAS and CMS, running at a
luminosity of L = 1034 cm−2 s−2 after two to three years of operation. For experimental
details, I refer the interested reader to the technical design reports [16, 17].

The predominant signal process

The by far dominant production mode for LHC energies is, as already stated, gluon
fusion. For heavier Higgs bosons, decay to vector bosons is most important. Although
the H →WW mode

gg → quark loop → H →W+W− → (lν̄)(l̄′ν ′)

BR(H)

bb
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τ+τ−
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_

gg
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ZZ

tt-
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Figure 1.2.: Higgs branching ratios as a function of the Higgs mass MH [15]
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outweighs the H → ZZ mode, it is not favorable for mass measurements. Since the
W bosons decay to fermion-neutrino pairs and the neutrino’s momentum cannot be
determined by the detector, it is not possible to reconstruct the W momenta. Thus, the
Higgs mass cannot be reconstructed.

In contrast, the ZZ mode

pp→ H → Z∗Z∗ → (ll̄)(l′ l̄′)

allows for such a determination, since all four leptons can be detected. This channel
is therefore called the “Golden Higgs Channel”. The sensitivity for the discovery of a
Standard Model Higgs boson in both experiments, Atlas and CMS, is shown in fig. 1.3.
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Figure 1.3.: Sensitivity for the discovery of a Standard Model Higgs boson in the Atlas
(left) and CMS (right) experiments for an integrated luminosity of 30 fb−1.
Systematic uncertainties have been included for the H → W +W− →
(lν̄)(l̄′ν ′) (±5%, left and right) and for the vector boson fusion channels
(±10%, left only)

The gluon fusion Higgs production has been known for quite a while at leading order
[18, 19]. NLO corrections have been shown to be large [20, 21]. Recently NNLO cor-
rections have been calculated and are in good agreement within scale uncertainties from
NLO.

Background processes

Although the H → Z∗Z∗ mode provides experimentally quite clean signatures, it is clear
that ZZ continuum production background processes should be taken into account for a
precise determination of its mass. In the following, I will present the main contributions
to ZZ continuum production.
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qq̄ → Z∗Z∗

Quark annihilation to two Z bosons,

qq̄ → Z∗Z∗ → (ll̄)(l′ l̄′),

does not pose any calculational problems as a tree level process at LO [22]. In the next
chapter, I will present a LO calculation of on-shell Z pair production. Calculations of
NLO corrections to this process have been performed in [23, 24, 25, 26].

gg → Z∗Z∗

The Z bosons are produced via a quark loop

gg → quark loop → Z∗Z∗ → (ll̄)(l′ l̄′).

When comparing the contributions from different quark generations, the light quarks
contribute most due to the propagators in the loop. The fact that this process is of
NNLO in αs is compensated by the higher luminosity of gluons in comparison to quark
luminosities at the LHC.

The first full on-shell calculation of gg → ZZ and its contribution to pp → ZZ +X
has been calculated by Duane A. Dicus, Chung Kao and W. W. Repko [27]. E. W.
N. Glover and J. J. van der Bij have taken into account interferences with the signal
gg → H → ZZ, but still for on-shell Z bosons and without subsequent decay of the
vector bosons [28]. Later, the decays of the Z bosons have been incorporated [29]. There
is one off-shell calculation for Z∗Z∗ pair production from gluon fusion with the decays
[30], but unfortunately there is no code available that could be used for predictions and
only a very limited number of distributions are shown in the existing literature.

I note that in these calculations technical cuts on pTZ , yZ and
√
ŝ have been applied

to exclude the phase space region of Z boson emission in the extreme forward region
where the applied calculational methods lead to numerical instabilities.

First of all, the off-shell computation presented here allows for access of the below-
threshold region. Furthermore, it employs a new method that minimizes the impact of
inverse Gram determinants that jeopardize the numerical stability. A stable amplitude
evaluation in the entire phase space can be achieved with quadruple precision. While
experimental cuts can be applied to eliminate the critical regions, with my program
this is not necessary for accurate theoretical predictions. These improvements will be
implemented in the GG2ZZ program that I will provide.
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2. LO qq̄ → ZZ cross-section

Before calculating the loop-induced background process gg → Z ∗Z∗ → (ll̄)(l′ l̄′) (where
l denotes the leptons e, µ (,τ)) to gluonic Higgs production I will show how to calculate
another background process: the annihilation of a quark-antiquark pair into two Z
bosons at LO. This is a quite simple tree-level process and has been calculated by R.
W. Brown and K. O. Mikaelian [22] quite a while ago. Here, I am rather interested in
demonstrating some basic quantum field theoretical techniques and in introducing the
typical process for the computation of hadronic cross sections.

In hadron collider experiments, the particles which are brought to collision—in the
case of the LHC two protons—are not elementary particles but posses a substructure.
In the parton model, the hadrons are made up of the strongly interacting quarks and
gluons. The quarks of the proton (two up quarks and one anti-down quark), called the
valence quarks, interact with each other by the exchange of virtual gluons. In higher
order of perturbation theory, the gluons themselves form loops of virtual quarks, called
sea quarks. The momentum transfer of these interactions is low and therefore is a long-
range interaction which cannot be calculated perturbatively.

When two protons are now brought two collision, single partons of the protons may
interact. These interactions appear at high energies with high momentum transfer. This
hard scattering is a short-distance interaction and can be calculated perturbatively due
to asymptotic freedom. The interactions of the partons long before the hard scattering
are absorbed into the description of the dynamics in the hadron since they appear
on completely different timescales. One can thus assume that the dynamics of these
interactions of single partons are approximately independent of the dynamics inside the
hadron. One says, that the two dynamics factorize. This factorization depends on a
scale, called the factorization scale µ. It is not evident which value to assume for the
factorization scale whereby uncertainties are introduced in every calculation. Usually,
one chooses a characteristic scale of the process, for electroweak processes the Z mass,
for instance.

In section 2.1, I will show how to calculate the partonic cross section of the hard
process, i.e. the annihilation of a quark-antiquark pair into two Z bosons at LO. In
section 2.2, I will then take into account that the initial state particles of the hard
process, the quarks, are partons and finally calculate the hadronic cross section.

2.1. Hard scattering process: qq̄ → ZZ

As there exist neither a vertex coupling three Z bosons nor a vertex coupling two Z
bosons and a photon, there is no s-channel diagram but only the t- and u-channel
diagrams. At order e2, there are only two diagrams (fig. 2.1).
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Figure 2.1.: The two diagrams contributing to qq̄ → ZZ in LO

The Feynman amplitude M is then

M = −iv̄(p2)γ
ν(gf

V − gf
Aγ5)

1

/l1
γµ(gf

V − gf
Aγ5)u(p1)ε

∗
ν(k2)ε

∗
µ(k1)

−iv̄(p2)γ
µ(gf

V − gf
Aγ5)

1

/l2
γν(gf

V − gf
Aγ5)u(p1)ε

∗
ν(k2)ε

∗
µ(k1)

= −iv̄(p2)T
µνu(p1)ε

∗
ν(k2)ε

∗
µ(k1). (2.1)

where T µν = T µν
1 + T µν

2 with

T µν
1 = γν(gf

V − gf
Aγ5)

1

/l1
γµ(gf

V − gf
Aγ5) (2.2)

T µν
2 = γµ(gf

V − gf
Aγ5)

1

/l2
γν(gf

V − gf
Aγ5). (2.3)

gf
V and gf

A denote the vector and axialvector part of the coupling of a fermion-anti
fermion pair to a Z boson, respectively:

gf
V =

e

sin θW cos θW

(
1

2
T f

3 − sin2 θWQf

)
(2.4)

gf
A = − e

sin θW cos θW

1

2
T f

3 . (2.5)

T f
3 is the third component of the weak isopsin and Qf is the electric charge. The notation

of slashed momenta in the denominator, for instance 1
/l1
, is defined by the inverse of the

Feynman slash: 1
/l1

:= (/l1)
−1.

The expressions for T µν
1 and T µν

2 can be simplified by exploiting (γ5)
2 = 1 and the

anticommutation relations {γµ, γ5} = 0,

T µν
1 = gf

V

2
γν 1

/l1
γµ + 2gf

V g
f
Aγ

5γν 1

/l1
γµ + gf

A

2
γν 1

/l1
γµ

= (gf
V

2
+ gf

A

2
+ 2gf

V g
f
Aγ

5)γν 1

/l1
γµ and T µν

2 analogously (2.6)

⇒ T µν = T µν
1 + T µν

2 = (gf
V

2
+ gf

A

2
+ 2gf

V g
f
Aγ

5)

(
γν 1

/l1
γµ + γµ 1

/l2
γν

)
(2.7)
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in agreement with [22].
The complex conjugate of the Feynman amplitude, M∗ is

M∗ = u†(p1)T
†ρσ

v̄†(p2)ερ(k1)εσ(k2) = ū(p1)γ0T
†ρσ

γ0v(p2)ερ(k1)εσ(k2), (2.8)

where

T †ρσ
= T †

1

ρσ
+ T †

2

ρσ
=

(
γσ 1

/l1
γρ + γρ 1

/l2
γσ

)†
(gf

V

2
+ gf

A

2
+ 2gf

V g
f
Aγ

5)†. (2.9)

Exploiting that γ†5 = −γ0γ5γ0, γ
†ρ

= γ0γ
ργ0 and (γ0)

2 = 1, one can rewrite γ0T
†ρσ

γ0 as
τρσ:

γ0T
†ρσ

γ0 = τρσ =

(
γρ 1

/l1
γσ + γσ 1

/l2
γρ

)
(gf

V

2
+ gf

A

2 − 2gf
V g

f
Aγ

5). (2.10)

Putting everything together yields the Feynman amplitude square

|M|2 = −v̄(p2)T
µνu(p1)ū(p1)τ

ρσv(p2)ε
∗
µ(k1)ε

∗
ν(k2)ερ(k1)εσ(k2). (2.11)

In a hadron collider experiment, one cannot control the spins s of the particles which
enter the hard process. Hence one averages over these spins, i.e. one sums over the
spin states of the initial state particles (in this case, the quarks) and divides by 4 for
the 4 combinations of spin states. Furthermore, one cannot control the color states of
the quarks and must thus also average over these states. As the electroweak vertices
do not change the color of the quark and antiquark, c1 and c2, respectively, there are
only contributions from the same color states. Summing over the three color states then
contributes a factor

∑
c1,c2

δc1,c2 = 3 and dividing by all combinations yields 1
9 , together

1
3 . Finally, the Z bosons which constitute the final state of the hard process, are of course
not the final states of the physical process. Their life-time is much too short so that they
do not reach the detector, but decay before. For the sake of simplicity, I will neither
take into account the different decay modes of the Z bosons, nor will I distinguish their
polarizations λ. Therefore, one must sum over these polarizations.

The spin and color averaged and polarization summed amplitude then reads

∑
|M|2 =

1

4

1

3

∑

c,s,λ

|M|2 =
1

12
Tr
[
/p1
τρσ

/p2
T µν

](
−gµρ +

k1µk1ρ

M2

)(
−gνσ +

k2νk2σ

M2

)
.

(2.12)

Expanding the parenthesis leads to four traces:
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A = Tr
[
/p1
τρσ

/p2
T µν

]
gµρgνσ =

∑

ij

Tr
[
/p1
τiµν/p2

T µν
j

]
=
∑

ij

Aij , (2.13)

B = Tr
[
/p1
τρσ

/p2
T µν

]
gµρ

k2νk2σ

M2
=
∑

ij

Tr
[
/p1
τσ
iµ/p2

T µν
j

] k2νk2σ

M2
=
∑

ij

Bij , (2.14)

C = Tr
[
/p1
τρσ

/p2
T µν

]
gνσ

k1µk1ρ

M2
=
∑

ij

Tr
[
/p1
τρ
iν/p2

T µν
j

] k1µk1ρ

M2
=
∑

ij

Cij, (2.15)

D = Tr
[
/p1
τρσ

/p2
T µν

] k1µk1ρ

M2

k2νk2σ

M2
=
∑

ij

Tr
[
/p1
τρσ
i /p2

T µν
j

] k1µk1ρ

M2

k2νk2σ

M2
=
∑

ij

Dij .(2.16)

(2.17)

Looking more closely at the terms inside τ and T ,

(gf
V

2
+ gf

A

2 − 2gf
V g

f
Aγ

5)/p2
(gf

V

2
+ gf

A

2
+ 2gf

V g
f
Aγ

5)

= [(gf
V

2
+ gf

A

2
)2 + 4gf

V

2
gf
A

2
)]/p2

− 4gf
V g

f
A(gf

V

2
+ gf

A

2
)γ5

/p2

= [gf
V

4
+ gf

A

4
+ 6gf

V

2
gf
A

2
]︸ ︷︷ ︸

f1

/p2
+ 4gf

V g
f
A(gf

V

2
+ gf

A

2
)︸ ︷︷ ︸

f5

/p2
γ5, (2.18)

one notices that each trace Xij can be split into two terms:

Xij = f1X1
ij + f5X5

ij . (2.19)

What remains to compute is then

A = Tr

[
/p1

(
γµ

1

/l1
γν + γν

1

/l2
γµ

)
(f1/p2

+ f5/p2
γ5)

(
γν 1

/l1
γµ + γµ 1

/l2
γν

)]
, (2.20)

B = Tr

[
/p1

(
γµ

1

/l1
γσ + γσ 1

/l2
γµ

)
(f1/p2

+ f5/p2
γ5)

(
γν 1

/l1
γµ + γµ 1

/l2
γν

)]
k2νk2σ

M2
, (2.21)

C = Tr

[
/p1

(
γρ 1

/l1
γν + γν

1

/l2
γρ

)
)(f1/p2

+ f5/p2
γ5)

(
γν 1

/l1
γµ + γµ 1

/l2
γν

)]
k1µk1ρ

M2
, (2.22)

D = Tr

[
/p1

(
γρ 1

/l1
γσ + γσ 1

/l2
γρ

)
(f1/p2

+ f5/p2
γ5)

(
γν 1

/l1
γµ + γµ 1

/l2
γν

)]
k1µk1ρ

M2

k2νk2σ

M2
.(2.23)

Exploiting the rules of the so-called Clifford algebra to compute the traces, one finds for
the first trace

A = 16(2p1 · k1 p2 · k1 −M2p1 · p2 )

(
1

(l21)
2

+
1

(l22)
2

)
− 64

p1 · p2 l1 · l2
l21l

2
2

. (2.24)
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Introducing the Mandelstam variables s, t and u,

s = (p1 + p2)
2, (2.25)

t = (p1 − k1)
2 = (p2 − k2)

2 = (l1)
2, (2.26)

u = (p1 − k2)
2 = (p2 − k1)

2 = (l2)
2, (2.27)

and expressing all relevant quantities in s, t and u,

p1 · p2 =
s

2
, k1 · k2 =

s

2
−M2, p1 · k1 =

1

2
(M2 − t), p2 · k1 =

1

2
(M2 − u),(2.28)

l1 · l2 = (p1 − k1)(p1 − k2) = −p1(k1 + k2︸ ︷︷ ︸
p1+p2

) + k1 · k2 = k1 · k2 − p1 · p2 = −M2,(2.29)

one rewrites A in terms of the Mandelstam variables

A = 8

(
[(M2 − t)(M2 − u) −M2s]

(
1

t2
+

1

u2

)
+ 4

sM2

tu

)

= 8

(
u

t
+
t

u
+ 4M2 s

tu
−M4

(
1

t2
+

1

u2

))
. (2.30)

The calculation of the other traces is straight forward when considering a simple trick:
It is possible to cancel /l1 and /l2 in the denominators when appearing in combination with
external momenta, for instance /p2

/k2
1
/l1

. With four-momentum conservation p1 + p2 =

k1 + k2

/p1
/k1,2 = −/p1

/l 1,2, /k1,2/p1
= −/l1,2/p1

, /p2
/k1,2 = /p2

/l 2,1, /k1,2/p2
= /l 2,1/p2

(2.31)

and thus

/p1
/k1,2

1

/l1,2

= −/p1
/l1,2

1

/l1,2

= /p1
, /p2

/k1,2

1

/l2,1

= /p2
/l2,1

1

/l2,1

= /p2
etc. (2.32)

Exploiting these relations, all the other traces, B, C and D, vanish since the subterms
of every trace cancel each other. Thus, as the only non-zero trace is A, one finds for the
spin and color averaged and polarization summed Feynman amplitude square:

∑
|M|2 =

1

12

∑

c,s,λ

|M|2 =
2

3
(gf

V

4
+gf

A

4
+6gf

V

2
gf
A

2
)

[
t

u
+
u

t
+ 4M2 s

tu
−M4

(
1

t2
+

1

u2

)]

(2.33)
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2.1.1. The differential cross section

The differential cross section is defined by

dσ =
1

2Ea2Eb|va − vb|
dΦ
∑

|M|2, (2.34)

with the phase space dΦ for a 2 → 2 process

dΦ =



∏

f=c,d

d3pf

(2π)3
1

2Ef


 (2π)4δ(4)(pa +pb−pc−pd) with Ei :=

√
~p2

i +m2
i . (2.35)

One can choose the z-axis of the laboratory frame along the colliding beams. The
denominator of eq. 2.34 can then be rewritten as 2Ea2Eb|va − vb| = 4|εµ12νp1µp2ν |. dσ
is thus not manifestly Lorentz invariant, but invariant under boosts along the z-axis.

Exploiting the relation δ(g(x)) =
∑

i
δ(x−xi)
|g′(xi)| , where xi are the roots of g(x), one can

substitute the factors of 1
2Ef

in eq. 2.35

dpf0δ(p
2
f0 − ( ~pf

2 +M2
f ))θ(pf0) =

∑

pf0=±Ef

1

2pf0
θ(pf0) =

1

2Ef
(2.36)

to show that dΦ is manifestly Lorentz invariant:

dΦ = (2π)4δ(4)(pa + pb − pc − pd)
∏

f=c,d

1

(2π)3
d4pfδ(p

2
f −M2

f )θ(pf0). (2.37)

Therefore, dΦ is called the invariant phase space.
However, for calculational purposes, it is convenient to start from the non manifestly

Lorentz invariant form of dΦ (eq. 2.35)

dΦ =
1

16π2

1

EcEd
d3pc δ

(3)(~pa + ~pb − ~pc − ~pd)d
3pd︸ ︷︷ ︸

~pd=~pa+~pb−~pc

δ(E −Ec −Ed)

=
1

16π2

1

EcEd
p2

cdpcdΩcδ(E −
√
~p2

c +M2
c −

√
~p2

d +M2
d ), (2.38)

where the conservation of 3-momentum, ~pd = ~pa + ~pb − ~pc, is implicit from now on.
Exploiting the Lorentz invariance one can choose the center of mass system (CMS) of

the partons, which will be denoted by hatted quantities, to evaluate dΦ. This frame of
reference is defined by
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~̂
P := ~̂pa + ~̂pb = ~̂pc + ~̂pd = 0

⇒ P̂ := p̂a + p̂b = p̂c + p̂d = (Êa + Êb, 0)
T = (Êc + Êd, 0)

T =: (
√
ŝ, 0)T

⇒ P̂ · p̂a,b =
√
ŝÊa,b

⇒ Êa,b =
ŝ+m2

a,b −m2
b,a

2
√
ŝ

. (2.39)

One can express |~̂pa| and |~̂pb| also by the masses and ŝ:

~̂p2
a = ~̂p2

b = Ê2
a −m2

a =
1

4ŝ
(ŝ− (ma +mb)

2)(ŝ− (ma −mb)
2) =:

1

4ŝ
λ(ŝ,m2

a,m
2
b)

⇒|~̂pa| = |~̂pb| =
1

2
√
ŝ

√
λ(ŝ,m2

a,m
2
b) (2.40)

and analogously for |~̂pc| and |~̂pd|. Defining p̂ := |~̂pc| = |~̂pd| the invariant phase space dΦ
simplifies to

dΦ =
1

16π2

p̂2

ÊcÊd

dΩ̂ dp̂ δ

(
Ê −

√
p̂2 +M2

c −
√
p̂2 +M2

d

)

=
1

16π2

p̂

Ê
dΩ̂ =

1

32π2

√

1 − 4M2

Ê2
dΩ̂ =

1

32π2
β dΩ̂. (2.41)

The cross section dσ then reads

dσ =
1

32π2s
β dΩ̂

∑
|M|2. (2.42)

As the process possesses symmetry around the z-axis, dσ will be independent of φ̂ and
the integration over φ̂ yields a factor 2π:

dΩ̂ = d cos θ̂dφ̂⇒ dσ =
1

32πs
β d cos θ̂

1

2

∑
|M|2. (2.43)

The polar angle θ̂ is now expressed in terms of the Mandelstam variable t:

t = M2 − 2(p̂1k̂1) = M2 − 2(p̂1,0k̂1,0 − ~̂p1
~̂
k1) = M2 − ŝ

2
(1 − β cos θ̂)

dt

d cos θ̂
=
ŝβ

2
⇒ dσ̂

dt
=

2

ŝβ

dσ̂

d cos θ̂
(2.44)

and finally, the differential cross section is

dσ

dt
=

1

3

1

8πŝ2
(gf

V

4
+ gf

A

4
+ 6gf

V

2
gf
A

2
)

[
t

u
+
u

t
+ 4M2 s

tu
−M4

(
1

t2
+

1

u2

)]
(2.45)

in agreement with [22].
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2.1.2. The total cross-section

The total cross section dσ of the hard process is obtained by performing the integration
over t, corresponding to an integration over the polar angle θ̂. The boundaries of this
integration are obtained from the substitution

t = M2 − ŝ

2
(1 − β cos θ) with θ ∈ [0, π](2.46)

⇒ tmax
min

= M2 − ŝ

2
± ŝ

2
β =

1

4
(4m2 − ŝ− ŝ± 2ŝβ) = − ŝ

4
(1 ∓ 2β + β2) = − ŝ

4
(1 ∓ β)2.(2.47)

� � ��

�����	�




�����	�

�����
�

� ��



��� ���

�����
�

�����	�

Figure 2.2.: Two kinematic configurations which cannot be distinguished from a quan-
tum mechanical viewpoint. The configuration on the right is obtained from
the configuration on the left by a rotation of π − 2θ perpendicular to the
beam line and a rotation of π around the beam line. When integrating over
φ and θ both configurations contribute, although they correspond to one
single quantum state. Therefore, a factor of 1

2 has to be introduced by hand
in the total cross section.

One must note that the factor of 1
2 is necessary to avoid double counting, as explained

in figure 2.2. The total cross section of the qq̄ → ZZ process is then given by

σ̂ =
1

2

∫ tmax

tmin

dt
dσ

dt
. (2.48)

Substituting the dependent variable u = 2M 2 − s− t, the integration can be performed
by partial decomposition and yields

σ =
1

3

1

4πs
(gf

V

4
+ gf

A

4
+ 6gf

V

2
gf
A

2
)

[
4 + (1 − β2)2

2(1 − β2)
log

1 + β

1 − β
− β

]
, (2.49)

again in agreement with [22] when considering that 4πα2

e4 = 4π
e4 ( e2

4π )2 = 1
4π .

2.2. Hadronic Cross Section

Having calculated the cross section of the hard process, I will now explain how to derive
relevant predictions. As explained before, the initial state particles of the hard scattering
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process are the partons. The probability to find the parton q, in this case a quark, in
the hadron, in this case in a proton, is given by the parton density functions or structure
functions.

Before calculating the hadronic cross section, I will explain the kinematics of a collider
experiment. I will assume that the momenta of the colliding protons, pA and pB are
parallel to the z-axis. Thus, in their CMS which is identical to the laboratory frame

pA =

√
s

2




1
0
0
1


 and pB =

√
s

2




1
0
0
−1


 . (2.50)

The total energies of the hadrons is defined as s := (pA + pB)2 ≈ 2pApB.
At high energies the transverse momenta of the partons are negligible and thus the

momenta of the partons pa and pb are fractions of the momenta pA and pB of the hadrons
from which they come from:

pa = pAxa and pb = pBxb with xa, xb ∈ [0, 1]. (2.51)

Since the total energy of the partons is invariant one defines τ

ŝ = (p̂a + p̂a)
2 = (pa + pb)

2 = 2papb = xaxb 2pApB︸ ︷︷ ︸
≈s

≈ xaxb︸︷︷︸
:=τ

s (2.52)

as the ratio of the total hadron to the total parton energy.
The cross section of the hadronic process is now a convolution of the partonic cross

section σhard which has been calculated in the previous section with the parton density
functions of a quark q and an antiquark q̄, fa=q(xa, µ

2) and fb=q̄(xb, µ
2), respectively,

summed over all flavors which contribute to the process:

σ =
∑

q

∫ 1

0
dxa

∫ 1

0
dxb fa=q(xa)fb=q̄(xb) σhard(qq̄ → ZZ) +

(
a = q̄
b = q

)
. (2.53)

Substituting the integration variable xb by τ = xaxb which leads to dxadxb = dxa
xa
dτ this

expression can be rewritten as

σ =

∫ 1

0
dτ
∑

q

∫ 1

τ

dxa

xa
fa=q(xa)fb=q̄(xb) σ̂(qq̄ → ZZ) +

(
a = q̄
b = q

)

︸ ︷︷ ︸
=: dσ

dτ
=s dσ

dŝ

. (2.54)
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2.3. Results

I have evaluated the total hadronic cross section numerically in Fortran code. As parton
density functions, I used the CTEQ6M set of the Les Houches Accord (LHAPDF, [31]).
Plots for both the differential cross section dσ

dŝ and the total cross sectionσ can be found
in figure 2.3.

Figure 2.3.: left: dσ
dŝ (

√
ŝ) for the pp → ZZ process for

√
s = 14TeV; right: σ(

√
s) for

the pp→ ZZ process
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3. The loop induced process gg → Z∗Z∗

The main goal of this work is to calculate the contribution from gluon-induced production
of 4 charged leptons (l = e, µ(, τ)) via two off-shell Z bosons:

g(p1) + g(p2) → Z∗(p3) + Z∗(p4) → l(p5)l̄(p6)l
′(p7)l̄′(p8).

g

g

Z

Z
l

l̄

l

l̄

Neglecting the mass of the leptons,

p2
5 = p2

6 = p2
7 = p2

8 = 0,

leads to considerable simplifications. For this double-resonant process, there exist various
topologies, loop diagrams even in leading order, either triangles or boxes (fig. 3.1), with
the two intermediate Z bosons decaying each into a lepton-antilepton pair.

a)

g

g

l′

l

l̄

l̄′

g

l

l′

l̄′

Z

b)

l̄

g

Z

Z

q

q

qq

q

q

q

Figure 3.1.: Double-resonant contributions to gg → Z ∗Z∗ → (ll̄)(l′ l̄′) from a) triangle
loop diagrams and b) box loop diagrams

One can directly argue that the triangle diagrams cannot contribute due to conserva-
tion of color. Let us assume that they would contribute. As gluons carry color the gluon
that is exchanged in the triangle diagrams must transfer color to the triangle, but since
the Z bosons are colorless objects, the conservation of color would be violated. Hence,
the contributions from the triangle diagrams vanish.

There are also single resonant diagrams with the exchange of either a Z-boson or a
photon (fig. 3.2), but they also vanish, mainly due to Furry’s theorem, which I will
demonstrate in the next section.

Figure 3.3 gives a complete list of box diagrams. The calculation of their Feynman
amplitude and cross section will be presented in this chapter.
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a)

g

g

l

l′

l̄′

l̄
b)

g

g

l

l′

l̄′

l̄

γ, Z γ, Z

γ, Z
γ, Z

Figure 3.2.: Single-resonant contributions to gg → Z ∗Z∗ → (ll̄)(l′ l̄′); a) with the ex-
change of γ, Z

Figure 3.3.: An exhaustive list of all diagrams contributing to gg → Z ∗Z∗ in leading
order.

3.1. Single resonant diagrams

I will now show that the single resonant diagrams from fig. 3.2 with exchange of a
photon or a Z boson do not contribute to the amplitude for gg → (l l̄)(l′ l̄′).

Instead of calculating the complete Feynman amplitude for the quark loop, it is suffi-
cient to consider an effective ggZ coupling Γµ1µ2µ3 . The tensor structure is potentially
composed of all Lorentz invariants, i.e. the external momenta p1 and p2 as well as met-
ric tensors and ε tensors. Due to Furry’s theorem the contributions from the photon
exchange must vanish since an odd number of gauge bosons couples to the quark loop.
For the Z exchange this is only true for the contributions from the vector part of the Z
coupling to the loop and thus only the axial vector part can contribute. Therefore, all
tensor structures composed only of external momenta and metric tensors must vanish
and only those with ε tensors contribute.
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The effective ggZ vertex is composed of expressions where 1, 2 or 3 of the indices µ1,
µ2 and µ3 are carried by the ε tensor and the rest by external momenta or the metric
tensor:

Γ
µ1µ2µ3 = Aε

µ1µ2µ3σ
X

i=1,2

pσi

+ B

0

@
X

i=1,2

p
µ1
i

ε
µ2µ3ρσ

+
X

i=1,2

p
µ2
i

ε
µ1µ3ρσ

+
X

i=1,2

p
µ3
i

ε
µ1µ2ρσ

1

A
X

j,k=1,2

pρjpσk

+ C

0

@
X

i,j=1,2

p
µ1
i

p
µ2
j

ε
µ3νρσ

+
X

i,j=1,2

p
µ1
i

p
µ3
j

ε
µ2νρσ

+
X

i,j=1,2

p
µ2
i

p
µ3
j

ε
µ1νρσ

1

A
X

k,l,m=1,2

pνkpρlpσm

+ D
`
g

µ1µ2 ε
µ3νρσ

+ g
µ1µ3 ε

µ2νρσ
+ g

µ2µ3 ε
µ1νρσ´ X

k,l,m=1,2

pνkpρlpσm. (3.1)

This can be simplified when considering which contractions are possible in the Feynman
amplitude:

The term with one contraction (first line in eq. 3.1) has a p1 or p2 in the superscript
and when contracted with the Z momentum, (p1 + p2)µ3 , one momentum appears twice
in the superscript and thus the ε tensor vanishes. In the terms with three contractions
(third and fourth line), again, at least one momentum appears twice in the superscript
and thus the ε tensor vanishes. Only the second line survives

Γµ1µ2µ3 = B



∑

i=1,2

pµ1

i εµ2µ3ρσ +
∑

i=1,2

pµ2

i εµ1µ3ρσ +
∑

i=1,2

pµ3

i εµ1µ2ρσ




∑

j,k=1,2

pρjpσk,

but it further simplifies by transversality of the gluons

p1 · ε1 = p2 · ε2 = 0 (3.2)

and gauge conditions

p1 · ε2 = p2 · ε1 = 0 (3.3)

since in the first and second term there would be contractions between the external
momenta p1 and p2 and the polarization vectors in the amplitude

Γµ1µ2µ3 = B
∑

i=1,2

pµ3

i εµ1µ2ρσ
∑

j,k=1,2

pρjpσk = Bεµ1µ2p1p2(pµ3
1 + pµ3

2 ).

This term also fulfills the Ward identity, as one can see by contracting with pµ1
1 and

pµ2
2 . The dependencies still missing are those on s, m2

u and m2
d and are contained in the

function B = B(s,m2
u,m

2
d). The effective ggZ vertex is thus

Γµ = B(s,m2
u,m

2
d)ε

ε1ε2p1p2(pµ
1 + pµ

2 ). (3.4)

Defining the momenta of the fermion propagators (cf. fig. 3.4

l1 = p3 + k = p3 + p5 + p6 = q − p4

l2 = −(p4 + k) = −(p4 + p5 + p6) = −q + p3,
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qq

p3

p4 p4

p3

p6

p5 p5

p6

k
k

l1

l2

Figure 3.4.: Single resonant Z exchange diagrams

where k = p5 + p6 and q = p1 + p2 = p3 + p4 + p5 + p6, the Feynman amplitude for the
sum of both diagrams is

ū(p3)/J56

/l1
l21

(−i /q︸︷︷︸
/l1+/p4

(gV − gAγ5))v(p4)

+ū(p3) /q︸︷︷︸
−/l2+/p3

(−i(gV − gAγ5))
/l2
l22
/J56v(p4),

where J56 is the leptonic current corresponding to the second γ or Z boson propagator
and second fermion line. gf

V and gf
A denote the vector and axial vector part of the

coupling of a fermion-anti fermion pair to a Z boson, respectively:

gf
V =

e

sin θW cos θW

(
1

2
T f

3 − sin2 θWQf

)

gf
A = − e

sin θW cos θW

1

2
T f

3 .

T f
3 is the third component of the weak isopsin and Qf is the electric charge, i.e. for

charged leptons:

gV =
e(sin2 θW − 1)

4 sin θW cos θW

gA =
e

4 sin θW cos θW
.

With ū(p3)/p3
= 0 and /p4

v(p4) = 0 for massless final states, the fermion propagators
are canceled and one finds:

ū(p3)/J56(−i(gV − gAγ5))v(p4)

−ū(p3)/J56(−i(gV − gAγ5))v(p4)

= 0.
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3.2. Double-resonant diagrams

For a computation of the contributions of the double-resonant diagrams it is useful to
distinguish two cases: the massless and the massive case. The massless case applies
approximately for the contribution of the first two generations of quarks in the loops.
Compared to LHC energies which our calculation is adapted to, the masses of the up,
down, charm and strange quark are negligible. We can check this by performing a
calculation with massive quarks and then passing to the limit mq → 0 (cf. section 3.3.3).
This assumption allows for large simplifications of the amplitude and thus improves the
speed of the computation.

The massive case must be applied for the remaining bottom and top quark. Especially
the top mass of 172GeV [32] lies in the range of partonic energies

√
ŝ and must therefore

be taken into account.
Since only the box contributions survive, it is sufficient to consider off-shell production

of two Z-bosons

g(p1) + g(p2) → Z∗(p3) + Z∗(p4)

with subsequent decay of the Z’s to lepton pairs

Z∗(p3) → l(p5)l̄(p6), Z∗(p4) → l′(p7)l̄′(p8).

Here, all momenta are defined to be incoming:

g(p1) + g(p2, ) + Z∗(p3) + Z∗(p4) → 0.

The Feynman amplitude M for a single diagram is

ε1µ1ε2,µ2Mµ1µ2µ3µ4Pµ3ν3(p3)Pµ4,ν4(p4)J
ν3
3 Jν4

4 ,

where ε1µ1and ε2µ2 are the polarization vectors of the gluons, Pµ,ν(p) is the propagator
of a virtual Z boson and J ν3

3 and Jν4
4 are the currents of the lepton-anti lepton pairs:

Jν
3 =

1

2
v̄(p6)γ

ν(gV − gAγ5)u(p5)

Jν
4 =

1

2
v̄(p8)γ

ν(gV − gAγ5)u(p7).

where gV and gA denote again the vector and axial vector part of the coupling of a
charged lepton-anti lepton pair to a Z boson, respectively.

One could now perform the computation of the amplitude and cross section numeri-
cally. The inconvenience is that such a computation often suffers from numerical insta-
bilities for certain regions of phase space as will be explained later. In contrast, I opted
for a analytic computation.
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Such an analytic computation of the amplitude for each diagram begins by valuating
the traces in Mµ1µ2µ3µ4 thereby yielding a linear combination of tensor integrals. Each
tensor integral will then be reduced to a linear combination of covariant tensors and
coefficients which are scalar integrals. Thus, the amplitude of each diagram l consists
after these reductions of a tensor structure τj, scalar integrals Ik and the coefficients Cjkl

which are polynomials in the masses of the quarks in the loop and Mandelstam variables

Ml =
∑

j,k

Cjkl(s, t, u, s3, s4,m
2
b ,m

2
t ) τj Ik

with

s = (p2
1 + p2)

2, t = (p2 + p3)
2, u = (p1 + p3)

2,
s3 = p2

3, s4 = p2
4.

(3.5)

Reducing all the tensor structures and scalar integrals to an irreducible set of tensor
structures and scalar integrals, the analytic expression simplifies enormously thereby not
only improving the implementation speed but also its numerical stability. Therefore, I
will show how to find such a basis of tensor structures and such a minimal set of scalar
integrals

3.2.1. Tensor structures

Ingredients of the amplitude

Due to Lorentz covariance the scattering tensor Mµ1µ2µ3µ4 can be decomposed to metric
tensors, external momenta and ε tensors. Out of these elements one can construct the
following structures:

• only with metric tensors: gµ1µ2gµ3µ4 ;

• only with external momenta: pµ1
j1
pµ2

j2
pµ3

j3
pµ4

j4
;

• with metric tensors and external momenta mixed: gµ1µ2pµ3

j3
pµ4

j4
etc.;

• contractions of the ε tensor with up to three external momenta pj. Instead of
using the ε tensor and contracting it with external momenta, one can introduce an
orthogonal projection of the momenta p1, p2 and p3,

kµ
0 = εµp1p2p3 , (3.6)

where the notation of momenta in the superscript is defined by

εabcd := εµνρσaµbνcρdσ.

As every totally antisymmetric tensor of rank n is proportional to an antisym-
metrized product of n vectors, the ε tensor can be expressed by an antisymmetrized
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product of four vectors. We choose one of these vectors to be the vector kµ
0 , as

defined in eq. 3.6, and three of the vectors to be the dual vectors kµ
1 , kµ

2 and kµ
3 of

the vectors p1, p2 and p3, respectively, defined by

ki · pj = δij. (3.7)

With this representation of the ε tensor every contraction of the ε tensor is pro-
portional to the vector k0. Therefore, the ε tensor can be replaced by k0 as an
alternative ingredient of the decomposition. The following structures can be used:

– with one k0 and three pj: k
µ1
0 pµ2

j2
pµ3

j3
pµ4

j4
etc.;

– with one k0, one pj and one gµν : kµ1
0 pµ2

j2
gµ3µ4 etc. In this context, one should

note, that

kµ
0k

ν
0 = αgµν + βijp

µ
i p

ν
j , (3.8)

so that one can change the order of indices in products like kµ1
0 gµ2µ3 :

kµ1
0 gµ2µ3 = kµ1

0 kµ2
0 kµ3

0 − kµ1
0 βijp

µ2

i pµ3

j

= gµ1µ2kµ3
0 − kµ1

0 βijp
µ2

i pµ3

j .

This is used to always have either gµ1µ2 or gµ3µ4 if there is a k0.

– with two k0 and either two pj or one gµν : Exploiting eq. 3.8, one can sub-
stitute kµ

0k
ν
0 by gµν and βijp

µ
i p

ν
j Hence, this structure can be traced back to

structures already treated above.

– with three k0 and one pj: This structure can again be traced back to terms
like kµ1

0 pµ2
j gµ3µ4 and kµ1

0 pµ2
j2
pµ3

j3
pµ4

j4
;

– with four k0: This structure can be traced back to terms like gµ1µ2gµ3µ4 ,
gµ1µ2pµ3

j3
pµ4

j4
and pµ1

j1
pµ2

j2
pµ3

j3
pµ4

j4
which have already been treated above.

One can now reduce the range of occurring indices j1, j2, j3, j4 by considering that the
amplitude Mµ1µ2µ3µ4 will be multiplied by the polarization vectors ε1,µ1 , ε2,µ2 and the
leptonic currents J3µ3 , J4µ4 , yielding expressions of the form ε1 · p1 , ε1 · p2 , J3 · p3 etc.
Exploiting transversality,

ε1 · p1 = ε2 · p2 = 0, (3.9)

fixing the gauge by

ε1 · p2 = ε2 · p1 = 0 (3.10)
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and exploiting furthermore, that for massless external leptons

J3 · p3 = J4 · p4 = 0 (3.11)

many of these terms cancel.
The Feynman amplitude consists of a linear combination:

Mµ1µ2µ3µ4 = Agµ1µ2gµ3µ4

+
∑

j1j2j3j4

Cj1j2j3j4p
µ1
j1
pµ2

j2
pµ3

j3
pµ4

j4

+
∑

j1,j2

B1
j3j4g

µ1µ2pµ3

j3
pµ4

j4
+
∑

j2,j4

B2
j2j4g

µ1µ3pµ2

j2
pµ4

j4
+
∑

j2,j3

B3
j2j4g

µ1µ4pµ2

j2
pµ3

j3

+
∑

j1,j4

B4
j2j4g

µ2µ3pµ1

j1
pµ4

j4
+
∑

j1,j3

B5
j1j3g

µ2µ4pµ1

j1
pµ3

j3
+
∑

j1,j2

B6
j1j2g

µ3µ4pµ1

j1
pµ2

j2

+
∑

j2

E1
j200k

µ1
0 gµ3µ4pµ2

j2
+
∑

j1

E2
j100k

µ2
0 gµ3µ4pµ1

j1

+
∑

j4

E3
00j4k

µ3
0 gµ1µ2pµ4

j4
+
∑

j3

E4
00j3k

µ4
0 gµ1µ2pµ3

j3

+
∑

j2,j3,j4

E1
j2j3j4k

µ1
0 pµ2

j2
pµ3

j3
pµ4

j4
+
∑

j1,j3,j4

E2
j1j3j4k

µ2
0 pµ1

j1
pµ3

j3
pµ4

j4

+
∑

j1,j2,j4

E3
j1j2j4k

µ3
0 pµ1

j1
pµ2

j2
pµ4

j4
+
∑

j1,j2,j3

E4
j1j2j3k

µ4
0 pµ1

j1
pµ2

j2
pµ3

j3
, (3.12)

where j1, j2 ∈ {3} and j3, j4 ∈ {1, 2}.
To get the Feynman amplitude, this must be contracted with the polarization vectors,

ελ1
1µ1

and ελ2
2µ2

with polarizations λ1, λ2 ∈ {+,−}, and the leptonic currents, J3µ3 and
J4µ4 :

Mλ1λ2J3J4 = Aελ1

1 · ελ2

2 J3 · J4

+
∑

j3j4

C33j3j4 p3 · ελ1

1 p3 · ελ2

2 pj3 · J3 pj4 · J4

+
∑

j3j4

B1
j3j4ε

λ1

1 · ελ2

2 pj3 · J3 pj4 · J4 +
∑

j4

B2
3j4ε

λ1

1 · J3 p3 · ελ2

2 pj4 · J4

+
∑

j3

B3
3j3ε

λ1

1 · J4 p3 · ελ2

2 pj3 · J3 +
∑

j4

B4
3j4ε

λ2

2 · J3 p3 · ελ1

1 pj4 · J4

+
∑

j3

B5
3j3ε

λ2

2 · J4 p3 · ελ1

1 pj3 · J3 +B6
33J3 · J4 p3 · ελ1

1 p3 · ελ2

2

+ E1
300k0 · ελ1

1 J3 · J4 p3 · ελ2

2 +E2
300k0 · ελ2

2 J3 · J4 p3 · ελ1

1

+
∑

j4

E3
00j4k0 · J3 ε

λ1

1 · ελ2

2 pj4 · J4 +
∑

j3

E3
00j3k0 · J4 ε

λ1

1 · ελ2

2 pj3 · J3

+
∑

j3j4

E1
3j3j4k0 · ελ1

1 p3 · ελ2

2 pj3 · J3 pj4 · J4 +E2
3j3j4k0 · ελ2

2 p3 · ελ1

1 pj3 · J3 pj4 · J4
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+
∑

j4

E3
33j4k0 · J3 p3 · ελ2

2 p3 · ελ1

1 pj4 · J4 +
∑

j3

E4
33j3k0 · J4 p3 · ελ2

2 p3 · ελ1

1 pj3 · J3 .(3.13)

The notation of polarization indices, λ1,2 in the superscript is defined by

Aλ1,2 := Aµε
λ1,2
µ (p1,2).

Transformation to gauge invariant expressions

In order to rewrite the amplitude in a manifestly gauge-invariant way, one introduces
the Abelian part of the gluon field strength tensor and its dual by

Fµ1µ2
j = pµ1

j εµ2
j − pµ2

j εµ1
j

F̃µ1µ2
j = εµ1µ2µ3µ4Fjµ3µ4 = 2εµ1µ2pjεj .

The transformations of expressions defined with the gauge fixing of eq. 3.10 to gauge
invariant expressions are then

ελ1
1 · ελ2

2 → −1

s
tr(Fλ1

1 Fλ2
2 ),

ελ1
1 · p3 → 2

s
p2 · Fλ1

1 · p3,

ελ2
2 · p3 → 2

s
p1 · Fλ2

2 · p3,

ελ1
1 · Jk → 2

s
p2 · Fλ1

1 · Jk,

ελ2
2 · Jk → 2

s
p1 · Fλ2

2 · Jk,

k0 · ελ1
1 = ελ1p1p2p3 → −1

2
p2 · F̃λ1

1 · p3,

k0 · ελ2
2 = ελ2p1p2p3 → 1

2
p1 · F̃λ2

2 · p3.

Substituting these expressions into eq. 3.13,

Mλ1λ2J3J4

= −A
s
tr
(
Fλ1

1 Fλ2

2

)
J3 · J4 +

∑

j3j4

4C33j3j4

s2
p2 · Fλ1

1 · p3 p1 · Fλ2

2 · p3 pj3 · J3 pj4 · J4

−
∑

j3j4

B1
j3j4

s
tr
(
Fλ1

1 Fλ2

2

)
pj3 · J3 pj4 · J4 +

∑

j4

B2
3j4

2

s
p2 · Fλ1

1 · J3
2

s
p1 · Fλ2

2 · p3 pj4 · J4

+
∑

j3

B3
3j3

2

s
p2 · Fλ1

1 · J4
2

s
p1 · Fλ2

2 · p3 pj3 · J3 +
∑

j4

B4
3j4

2

s
p1 · Fλ2

2 · J3
2

s
p2 · Fλ1

1 · p3 pj4 · J4

+
∑

j3

B5
3j3

2

s
p1 · Fλ2

2 · J4
2

s
p2 · Fλ1

1 · p3 pj3 · J3 +
4B6

33

s2
J3 · J4 p2 · Fλ1

1 · p3 p1 · Fλ2

2 · p3
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− E1
300

s
p2 · F̃λ1

1 · p3 J3 · J4 p1 · Fλ2

2 · p3 − E2
300

s
p1 · F̃λ2

2 · p3 J3 · J4 p2 · Fλ1

1 · p3

−
∑

j4

E3
00j4

s
k0 · J3 tr

(
Fλ1

1 Fλ2

2

)
pj4 · J4 −

∑

j3

E4
00j3

s
k0 · J4 tr

(
Fλ1

1 Fλ2

2

)
pj3 · J3

−
∑

j3j4

E1
3j3j4

s
p2 · F̃λ1

1 · p3 p1 · Fλ2

2 · p3 pj3 · J3 pj4 · J4

−
∑

j3j4

E2
3j3j4

s
p1 · F̃λ2

2 · p3 p2 · Fλ1

1 · p3 pj3 · J3 pj4 · J4

+
∑

j4

4E3
33j4

s2
k0 · J3 p1 · Fλ2

2 · p3 p2 · Fλ1

1 · p3 pj4 · J4

+
∑

j3

4E4
33j3

s2
k0 · J4 p1 · Fλ2

2 · p3 p2 · Fλ1

1 · p3 pj3 · J3 ,

one finds a manifestly Lorentz invariant representation of the amplitude Mλ1λ2J3J4 and
furthermore, gauge invariance reflected in the Ward identities which one finds all fulfilled.
Nevertheless, this representation is still reducible, i.e. not all terms are independent.
This could be exploited for checks of the amplitude: Due to symmetries of the amplitude
one finds relations for the coefficients which one can check explicitly.

Helicity amplitudes

The representation of the amplitude which I presented so far exhibits a problem which
will become apparent later on: The coefficients A, B i

mn etc. contain denominators of the
form 2s(ut−s3s4). As I will show later, these terms approach zero in the extreme forward
scattering region and the amplitude diverge there. But since these divergences do not
correspond to any physical singularities they are only present in this representation and
can be overcome by changing to a different representation.

I will now show that by calculating the helicity amplitudes M+−J3J4 , M+−J3J4 ,
M−+J3J4 and M−−J3J4 , some of the dangerous denominators can be canceled and the
amplitude will be expressed in terms of an irreducible tensor basis. Exploiting CP sym-
metry, there is no need to calculate all four helicity amplitudes since they fulfill the
following relations:

M−−J3J4(s, t, u, s3, s4) = M++J4J3(s, u, t, s4, s3),

M−+J3J4(s, t, u, s3, s4) = M+−J4J3(s, u, t, s4, s3).

It is thus sufficient to calculate just M++J3J4(s, t, u, s3, s4) and M+−J3J4(s, t, u, s3, s4)
which will be denoted by ++ and +− in the following.

I will now make use of the spinor helicity formalism following [33] providing a conve-
nient representation of massless spin 1 polarization vectors which must obey

p · ελ(p) = 0,

ελ(p) · ελ′
(p) = −δλ,λ′ .
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In the bracket notation, the massless spinors are

|p±〉 := u±(p) = v∓(p),

〈p±| := ū±(p) = v̄∓(p).

The polarization vectors are introduced by referring to another massless momentum q:

ε+µ (p1) :=
〈2−|µ|1−〉√
2〈2−|1+〉

,

ε−µ (p1) :=
〈2+|µ|1+〉√
2〈2+|1−〉

,

ε+µ (p2) :=
〈1−|µ|2−〉√
2〈1−|2+〉

,

ε−µ (p2) :=
〈1+|µ|2+〉√
2〈1+|2−〉

,

where 〈pq〉 := 〈p−|q+〉. For details, I refer to the appendix A.1.
Using the spinor helicity formalism one obtains the following relation (cf. appendix

A.1):

ε+µ(p1)ε
+ν(p2) = −1

s

[12]

〈12〉 (pµ
1p

ν
2 + pν

1p
µ
2 − p1 · p2g

µν − iεp1νp2µ) .

The constraints are therefore given by

ε+µ(p1)ε
+ν(p2)p3µp3ν = − 1

2s

[12]

〈12〉 (ut− s3s4) ,

ε+1 · ε+2 =
[12]

〈12〉 ,

ε+1 · Jk ε
+
2 · p3 = −1

s

[12]

〈12〉

(
p1 · Jk

t− s3
2

+ p2 · Jk
u− s3

2
− iεp1p3p2Jk

)
,

ε+1 · p3 ε
+
2 · Jk = −1

s

[12]

〈12〉

(
p1 · Jk

t− s3
2

+ p2 · Jk
u− s3

2
+ iεp1p3p2Jk

)
,

ε+1 · k0 ε
+
2 · p3 =

1

s

[12]

〈12〉k
2
0,

ε+1 · p3 ε
+
2 · k0 = −1

s

[12]

〈12〉k
2
0 .

Substituting these relations into eq. 3.13 and suppressing the phase factor of [12]
〈12〉 , the

++ amplitude is given by

M
++J3J4
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=

»

A − B
6
33

(tu − s3s4)

2s
+ E

1
300

1

s
k
2
0 + E

2
300

1

s
k
2
0

–

J3 · J4

+

»

−C3311

(tu − s3s4)

2s
+ B

1
11 −

1

s

t − s3

2
[B

2
31 + B

3
31 + B

4
32 + B

5
32] + E

1
311

1

s
k
2
0 + E

2
311

1

s
k
2
0

–

p1 · J3 p1 · J4

+

»

−C3312

(tu − s3s4)

2s
+ B

1
12 −

1

s

t − s3

2
[B

2
32 + B

3
31 + B

4
31 + B

5
32] + E

1
312

1

s
k
2
0 + E

2
312

1

s
k
2
0

–

p1 · J3 p2 · J4

+

»

−C3321

(tu − s3s4)

2s
+ B

1
21 −

1

2

u − s3

2
[B

2
31 + B

3
32 + B

4
32 + B

5
31] + E

1
321

1

s
k
2
0 + E

2
321

1

s
k
2
0

–

p2 · J3 p1 · J4

+

»

−C3322

(tu − s3s4)

2s
+ B

1
22 −

1

2

u − s3

2
[B

2
32 + B

3
32 + B

4
31 + B

5
31] + E

1
322

1

s
k
2
0 + E

2
322

1

s
k
2
0

–

p2 · J3 p2 · J4

− 2
h

B
3
31 + B

5
32

i

p1 · J3 p3 · J4

− 2
h

B
3
32 + B

5
31

i

p2 · J3 p3 · J4

+

»

E
3
001 + [B

2
31 + B

4
31]

1

s
−

(tu − s3s4)

2s
E

3
331

–

ε
p1p3p2J3p1 · J4

+

»

E
4
001 + [B

3
31 + B

5
31]

1

s
−

(tu − s3s4)

2s
E

4
331

–

ε
p1p3p2J4p1 · J3

+

»

E
3
002 + [B

2
32 + B

4
32]

1

s
−

(tu − s3s4)

2s
E

3
332

–

ε
p1p3p2J3p2 · J4

+

»

E
4
002 + [B

3
32 + B

5
32]

1

s
−

(tu − s3s4)

2s
E

4
332

–

ε
p1p3p2J4p2 · J3 . (3.14)

Note that the leptonic currents J3 and J4 appear in 11 different terms on the left hand
side. Not all of these are independent as I will show later.

For the +− amplitude, one applies eq. A.34,

ε+µ(p1)ε
−ν(p2) =

tr−[/p1/p3/p2
γµ]tr−[/p1/p3/p2

γν ]

2s(ut− s3s4)

〈2 − |/p3
|1−〉

〈1 − |/p3
|2−〉 ,

with tr− defined as in eq. A.35 and finds that

ε+1 · ε−2 = 0,

ε+1 · p3 ε
−
2 · p3 =

〈2 − |/p3
|1−〉

〈1 − |/p3
|2−〉

ut− s3s4
32s

,

ε+1 · Jk ε
−
2 · p3 =

〈2 − |/p3
|1−〉

〈1 − |/p3
|2−〉

1

8s

(
p1 · Jk

t− s3
2

+ p2 · Jk
u− s3

2
− iεp1p3p2Jk

)
,

ε+1 · p3 ε
−
2 · Jk =

〈2 − |/p3
|1−〉

〈1 − |/p3
|2−〉

1

8s

(
p1 · Jk

t− s3
2

+ p2 · Jk
u− s3

2
+ iεp1p3p2Jk

)
,

ε+1 · k0 ε
−
2 · p3 = −

〈2 − |/p3
|1−〉

〈1 − |/p3
|2−〉

1

16s
k2
0,

ε+1 · k0 ε
−
2 · p3 =

〈2 − |/p3
|1−〉

〈1 − |/p3
|2−〉

1

16s
k2
0 .

Substituting these relations in eq. 3.13 and suppressing the phase factors of
〈2−|/p3

|1−〉
〈1−|/p3

|2−〉 ,

the +− amplitude simplifies to

M
+−J3J4

=
1

8s

"
ut − s3s4

4
B

6
33 −

k2
0

2
[E

1
300 − E

2
300]

#

J3 · J4
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+
1

8s

"
ut − s3s4

4
C3311 −

k2
0

2
[E

1
311 − E

2
311] +

t − s3

2
(B

2
31 + B

3
31 + B

4
31 + B

5
31)

#

p1 · J3 p1 · J4

+
1

8s

"
ut − s3s4

4
C3312 −

k2
0

2
[E

1
312 − E

1
312] +

t − s3

2
(B

3
32 + B

4
32) +

u − s3

2
(B

3
31 + B

5
31)

#

p1 · J3 p2 · J4

+
1

8s

"
ut − s3s4

4
C3321 −

k2
0

2
[E

1
321 − E

2
321] +

t − s3

2
(B

3
32 + B

5
32) +

u − s3

2
(B

2
31 + B

4
31)

#

p2 · J3 p1 · J4

+
1

8s

"
ut − s3s4

4
C3322 −

k2
0

2
[E

1
322 − E

2
322] +

tu − s3

2
(B

2
32 + B

3
32 + B

4
32 + B

5
32)

#

p2 · J3 p2 · J4

+
1

8s

»
ut − s3s4

32s
E

4
331

–

p1 · J3 ε
p1p3p2J4

+
1

8s

»
ut − s3s4

32s
E

4
332

–

p2 · J3 ε
p1p3p2J4

+
1

8s

»
ut − s3s4

32s
E

3
332

–

p2 · J4 ε
p1p3p2J3

+
1

8s

»
ut − s3s4

32s
E

3
331

–

p1 · J4 ε
p1p3p2J3

. (3.15)

Here, the leptonic currents J3 and J4 appear in 9 different terms on the left hand side.

Auxiliary vector p̃3

Although the numerators (ut − s3s4) canceled some of the dangerous denominators,
there are still some present in the amplitude. To further suppress their appearance, an
auxiliary vector p̃3 is introduced thereby providing more numerators (ut − s3s4). It is
defined by

p3 =
t− s3
s

p1 +
u− s3
s

p2 + p̃3,

p4 =
u− s4
s

p1 +
t− s4
s

p2 − p̃3.

One can now make the following replacements in the helicity amplitudes, eqs. 3.14 and
3.15:

p2 · J3 = − t− s3
u− s3

p1 · J3 −
s

u− s3
p̃3 · J3

p2 · J4 = −u− s4
t− s4

p1 · J4 +
s

t− s4
p̃3 · J4

p̃3 · J3 ε(p1, p2, p̃3, J4) = p̃3 · J4 ε(p1, p2, p̃3, J3) −
ut− s3s4

s
ε(p1, p2, J3, J4).

The tensor structures from eqs. 3.14 and 3.15 are now transformed to tensor structures
in terms of p̃3:

p1 · J3 p2 · J4 → −u− s4
t− s4

p1 · J3 p1 · J4 +
s

t− s4
p1 · J3 p̃3 · J4 ,

p2 · J3 p1 · J4 → − t− s3
u− s3

p1 · J3 p1 · J4 +
s

u− s3
p̃3 · J3 p1 · J4 ,
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p2 · J3 p2 · J4 → (t− s3)(u− s4)

(u− s3)(t− s4)
p1 · J3 p1 · J4 − (t− s3)s

(u− s3)(t− s4)
p1 · J3 p̃3 · J4

s(u− s4)

(u− s3)(t− s4)
p̃3 · J4 p1 · J4 − s2

(u− s3)(t− s4)
p̃3 · J3 p̃3 · J4 ,

p1 · J3 p3 · J4 → (−1 +
u− s4
t− s4

)p1 · J3 p1 · J4 +
s

t− s4
p1 · J3 p̃3 · J4 ,

p2 · J3 p3 · J4 → − t− s3
u− s3

(−1 +
u− s4
t− s4

)p1 · J3 p1 · J4 +
(t− s3)s

(u− s3)(t− s4)
p1 · J3 p̃3 · J4 ,

p1 · J3 ε
p1p3p2J4 → −p1 · J3 ε(p1, p2, p̃3, J4),

p1 · J4 ε
p1p3p2J3 → −p1 · J4 ε(p1, p2, p̃3, J3),

p2 · J3 ε
p1p3p2J4 → t− s3

u− s3
p1 · J3 ε(p1, p2, p̃3, J4) +

s

u− s3
p̃3 · J3 ε(p1, p2, p̃3, J4),

p2 · J4 ε
p1p3p2J3 → t− s3

u− s3
p1 · J4 ε(p1, p2, p̃3, J3) +

s

t− s4
p̃3 · J4 ε(p1, p2, p̃3, J3).

Note that the 9 bilinears in J3 and J4 on the left hand side are reduced to linear combi-
nations of only 8 bilinears on the right hand side. Together with J3 · J4 9 independent
terms, all bilinear in J3 and J4, occur:

τ1 = J3 · J4

τ2 = p1 · J3 p1 · J4

τ3 = p1 · J3 p̃3 · J4

τ4 = p1 · J3 ε(p1, p2, p̃3, J4)

τ5 = p̃3 · J3 p1 · J4

τ6 = p̃3 · J3 p̃3 · J4

τ7 = ε(p1, p2, J3, J4)

τ8 = p1 · J4 ε(p1, p2, p̃3, J3)

τ9 = p̃3 · J4 ε(p1, p2, p̃3, J3). (3.16)

As they come from different contractions of the leptonic currents and external momenta
with the scattering tensor these terms will be called tensor structures and the minimal
set of tensor structures is the tensor basis.

Performing the same substitutions in the ++ and the +− amplitude yields an ampli-
tude that is built out of these tensor structures τj:

M =
∑

j

Cj(s, t, u, s3, s4,m
2
b ,m

2
t ) τj.

The coefficients Cj(s, t, u, s3, s4,m
2
b ,m

2
t ) are polynomials of the quark masses and the

Mandelstam variables.
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3.2.2. Scalar integrals

The tensor structures which have been calculated in the previous section have arisen
from the Lorentz structure of the amplitude. Contracting this tensor structure with the
polarization vectors εµ1(p1) and εµ2(p2) and the leptonic currents Jµ3

3 and Jµ4
4 , I derived

helicity amplitudes and finally an irreducible set of 9 independent bilinears in J3 and J4,
{τj}. The coefficients Cj of this tensor structures are polynomials of the quark masses,
mb and mt, and the Mandelstam variables, s, t, u, s3 and s4. I will now show how to
decompose the amplitude of each diagram to a set of scalar integrals.

The scattering tensor for each diagram consists of loop integrals, for instance for the
diagram T2G1C1 (cf. fig. 3.5)

M
µ1µ2µ3µ4

=

Z
d4k

(2π)4

tr
h

γµ2 (/k + /p1
− /p3

− /p4
+ mu)γµ4 (gV − gAγ5)(/k + /p1

− /p3
+ mu)γµ3 (gV − gAγ5)(/k + /p1

+ mu)γµ1 (/k + mu)
i

((k + p1 − p3 − p4)2 − m2
u)((k + p1 − p3)2 − m2

u)((k + p1)2 − m2
u)(k2 − m2

u)
,

where couplings and constant factors are suppressed.

p1

p4p2

p3

k k + p1 − p3

k + p1

k + p1 − p3 − p4

Figure 3.5.: The diagram T2G1C1 contributing to the process gg → Z ∗Z∗

Integrals of this form are logarithmically divergent since the powers of the loop mo-
mentum in the numerator and the denominator are equal. This leads to divergences
when evaluating the integral. For instance, the scalar 2-point function

∫
dnk

(k2 −A+ iε)2
= iπn/2(−1)N Γ(N − n

2 )

Γ(N)

1

(A− iε)N−n/2

∣∣∣∣
N=2

(3.17)

diverges for n = 4.
One thus applies dimensional regularization, i.e. generalizes the dimension of the

integral from four dimensions to n = 4 − 2ε where n is not integer. To ensure that the
natural dimension of the integral, M 0, is independent of n, the factor of µ4−n has to
be introduced where µ is a mass scale. When finally performing the limit n → 4, the
dependence on µ cancels and the divergences show up as poles in the gamma function
(cf. eq. 3.17).

The dimenisonally regulated tensor integral from eq. 3.17 is then given by

M
µ1µ2µ3µ4

= µ
4−n

Z
dnk

(2π)n

1

((k + p1 − p3 − p4)2 − m2
u)((k + p1 − p3)2 − m2

u)((k + p1)2 − m2
u)(k2 − m2

u)

tr
h

γ
µ2 (/k + /p1

− /p3
− /p4

+ mu)γ
µ4 (gV − gAγ5)(/k + /p1

− /p3
+ mu)γ

µ3 (gV − gAγ5)(/k + /p1
+ mu)γ

µ1 (/k + mu)
i
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p5 pN

p3 p2

p1p4

q1

q2

qN

m4

m2q3

q4

m3 m1

mN

Figure 3.6.: N -point graph

.

which can be written as a linear combination of 4-, 3- and 2-point tensor integrals with
the N -point tensor integral being defined in a standard form by

Iµ1µ2µ3...µr

N,n (p1, p2, . . . , pN ;m1,m2, . . . ,mN )

=
(2πµ)4−d

iπ2

∫
dnk

kµ1 . . . kµr

(q21 −m2
1 + iε)(q2

2 −m2
2 + iε) . . . (q2

N −m2
N + iε)

.

The momenta of the propagators qj are related to the external momenta pj and the
momentum running in the loop k (cf. fig. 3.6) by

qj = k + rj with rj =

N∑

i=1

pi.

As I will show now, such tensor integrals can be reduced to a linear combination of
tensor structures and scalar integrals, i.e. integrals of the form

IN,n(p1, p2, . . . , pN ;m1,m2, . . . ,mN )

=
(2πµ)4−d

iπ2

∫
dnk

1

(q21 −m2
1 + iε)(q2

2 −m2
2 + iε) . . . (q2

N −m2
N + iε)

There exist various techniques for reducing such tensor integrals to simpler ones, that
is tensor integrals with less external legs and propagators. The first is from G. Passarino
and M. J. G. Veltmann [34]. Their reduction scheme starts with the usual decomposition
to a linear combination of tensor structures (like the Lorentz structure in eq. 3.12) and
coefficients, the so-called form factors. Performing different contractions with external
momenta and metric tensors then leads to a system of linear equations. The form factors
can then be determined by solving the system of linear equations. Unfortunately, not
only the number of terms rises by reduction, but there appear terms of (tu−s3s4)

−1 that
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diverge for certain regions of phase space and thus deteriorate the numerical stability of
the amplitude.

Here, a different approach [35, 36] is applied for tensor the reduction. In contrast to
[34], there do not appear dangerous denominators in the tensor reduction due to the
choice of basis integrals. Only when tracing the basis integrals back to even simpler
integrals, this denominators arise. However, by grouping this denominators with linear
combinations of scalar integrals vanishing for the same regions of phase space, diver-
gences can be canceled to a certain amount. All in all, the number of such terms can be
kept small. The results of this approach are cited in the following.

Definitions

I will start by setting the conventions for general N -point functions (cf. fig. 3.6). All
momenta are supposed to be incoming. For conveniently governing the propagators in
the integral, an ordered set of propagator labels is defined by

S = {j1, . . . , jN}.

The momentum of the j-th propagator is qj = k+ rj where k is the momentum running
in the loop and rj is a combination of external momenta: rj = pj + rj−1. Momentum

conservation leads to r0 = rN and one can choose r0 = rN = 0 such that rj =
∑j

i=1 pi.
The momentum representation of a scalar N -point function is

In
N (S) :=

∫
dnk

iπn/2

1
∏N

i=1(q
2
i −m2

i + iδ)
. (3.18)

By introducing the Feynman parameters zi, performing the Wick rotation and executing
the momentum integration, one finds the following representation in Feynman parameter
space:

In
N (S) = (−1)NΓ(N − n

2
)

∫ N∏

i=1

dziδ(1 −
N∑

l=1

zl)(R
2)

n
2
−N

with R2 = −1

2
z · S · z − iδ = −1

2

N∑

i,j=1

ziSijzj − iδ,

where the matrix S contains all kinematic information on the process and is defined by

Sij = (ri − rj)
2 −m2

i −m2
j .

In the reduction there will appear integrals in which one or more propagators labeled
by j1, . . . jm are canceled. These integrals are called “pinch” integrals. The ordered set
of propagator labels then reduces to

S \ {j1, . . . jm}.

46



Such reductions can already be performed before the tensor and scalar reduction if
numerators of the form k · ri are present. Integrals with such numerators are called
reducible, since the number of propagators and its rank can be reduced. For example,
2k · r1 can be expressed as

2k · r1 = −k2 + (k + r1)
2 − r21 +m2

N −m2
1 −m2

N +m2
1

= −(k2 −m2
N ) + ((k + r1)

2 −m2
1) − (r2

1 −m2
1 +m2

N ),

thus yielding a sum of three integrals. In the first one, the n-th propagator, (k2 −m2
N ),

is canceled. In the second one, the first propagator, ((k− r1)
2 −m2

1), is canceled. In the
last integral all propagators survive, but at least the rank is reduced by one. Thus, one
rank r N -point function has been reduced to two rank (r−1) (N−1)-point functions and
one rank (r− 1) N -point function, each possessing a simpler structure than the original
function. In these integrals loop momenta must be shifted to again match the standard
form. After performing this procedure on all reducible integrals only irreducible integrals
remain, thus simplifying the amplitude considerably.

The cancellation of a propagator has a graphic equivalence: A propagator which has
been canceled in the integral is omitted in the diagram, too. Hence, two or more external
momenta enter at the same vertex and are thus added. An example for a pinchedN -point
diagram is given in fig. 3.7.

q2

m2

qN

p5 pN

p3

pN

p5

p4

p1

p2

p3 p2

p1p4

q1

q2

qN

m4

m2q3

q4

m3 m1

mN
mN

Figure 3.7.: Left: N -point diagram; right: pinched N -point diagram obtained by pinch-
ing the propagators 1, 3 and 4

The N -point rank r tensor integral is usually defined as

In,µ1,...,µr

N (S) :=

∫
dnk

iπn/2

kµ1 . . . kµr

∏N
i=1(q

2
i −m2

i + iδ)
. (3.19)

The disadvantage of this notation is that after each reduction step with a cancellation of
a propagator the loop momentum k has to be shifted to again achieve a standard repre-
sentation of the tensor integrals for further reduction thereby leading to a proliferation
of terms. This problem can be overcome by choosing a shift invariant representation of
tensor integrals. Therefore, the N -point rank r tensor integral is defined alternatively
by
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In,µ1,...,µr

N (a1, . . . , ar;S) :=

∫
dnk

iπn/2

qµ1
a1 . . . q

µr
ar∏N

i=1(q
2
i −m2

i + iδ)
. (3.20)

The usual representation (eq. 3.19) can always be reproduced by setting all ai to N .
Furthermore, denominators constructed out of combinations qi of external momenta and
the loop momentum appear naturally in Feynman rules.

The starting point for the reduction algorithm is a decomposition of the tensor integral
into Tensor structures and form factors. For a shift invariant definition of the tensor
integrals, the tensor structures must of course be shift invariant, too. For this purpose
they are defined in terms of metric tensors, gµν and shift invariant vectors

∆µ
ij := rµ

i − rµ
j = qµ

i − qµ
j . (3.21)

For N ≤ 5, one defines the form factors AN,r
j1...jr

(S), BN,r
j1...jr−2(S) and CN,r

j1...jr−4(S) by

In,µ1,...,µr

N (a1, . . . , ar;S)

=
∑

j1...jr∈S

[
∆·

j1· . . .∆
·
jr·
]{µ1 ...µr}
{a1 ...ar} A

N,r
j1...jr

(S)

+
∑

j1...jr−2∈S

[
g··∆·

j1· . . .∆
·
jr−2·

]{µ1...µr}
{a1...ar} B

N,r
j1...jr−2(S)

+
∑

j1...jr−4∈S

[
g··g··∆·

j1· . . .∆
·
jr−4·

]{µ1...µr}
{a1...ar} C

N,r
j1...jr−4(S). (3.22)

The brackets stand for the sum over all different combinations of r Lorentz indices
distributed to the objects in the brackets. This is similar to the decomposition of the
Lorentz structure performed in the last subsection.

This shift invariant representation can again be transformed to the standard notation
in ri:

In,µ1,...,µr

N (S) = In,µ1,...,µr

N (N, . . . , N ;S)

=
∑

j1...jr∈S

[
r·j1 . . . r

·
jr

]{µ1...µr}AN,r
j1...jr

(S)

+
∑

j1...jr−2∈S

[
g··r·j1 . . . r

·
jr−2

]{µ1 ...µr}BN,r
j1...jr−2(S)

+
∑

j1...jr−4∈S

[
g··g··r·j1 . . . r

·
jr−4

]{µ1 ...µr}CN,r
j1...jr−4(S). (3.23)
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For instance, the 4 point rank 4 tensor integral is decomposed as follows:

In,µ1,µ2,µ3,µ4
4 (S)

=
∑

j1,j2,j3,j4

[
rµ1
j1
rµ2
j2
rµ3
j3
rµ4
j4

]
A44

j1j2j3j4(S)

+
∑

j1,j2

[
gµ1µ2rµ3

j1
rµ4

j2
+ gµ1µ3rµ2

j1
rµ4

j2
+ gµ1µ4rµ2

j1
rµ3

j2

+ gµ2µ3rµ1

j1
rµ4

j2
+ gµ2µ4rµ1

j1
rµ3

j2
+ gµ3µ4rµ1

j1
rµ2

j2

]
B44

j1j2(S)

+ [gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ4 ]C44(S)

with ji = 1, 2, 3.
Finally, in the reduction of the tensor integrals, there will appear integrals in Feynman

parameter space with Feynman parameters in the numerator. These are defined by:

In
N (l1, . . . , lr) := (−1)NΓ(N − n

2
)

∫ N∏

i=1

dziδ(1 −
N∑

l=1

zl)zl1 . . . zlr(R
2)n/2−N (3.24)

Scalar reduction

The scalar N -point integral

In
N (S) =

∫
dnk

iπn/2

1
∏N

j=1(q
2
j −m2

j + iδ)

is decomposed into a IR finite part of higher dimension, Ifin(S), and an algebraically
simpler part, Idiv(S), carrying potential IR divergences:

In
N (S) = Idiv(S) + Ifin(S)

=
∑

i∈S

bi(S)

∫
dnk

iπn/2

q2i −m2
i∏N

j=1(q
2
j −m2

j + iδ)
+

∫
dnk

iπn/2

(1 −∑i∈S bi(S))(q2i −m2
i )∏N

j=1(q
2
j −m2

j + iδ)
.

The coefficients bi of this decomposition can be chosen conveniently. Idiv(S) is reducible
and yields a sum of integrals with one propagator pinched:

Idiv(S) =
∑

i∈S

bi(S)In
N−1,l(S \ {i}).

When introducing Feynman parameters zi in Ifin(S) and shifting the loop momentum
k = l −∑i∈S ziri the numerator of Ifin(S) becomes:

1 −
∑

i∈S

bi(S)(q2
i −m2

i ) = (−l2 +R2)
∑

i∈S

bi(S) +
∑

j∈S

zj

[
1 −

∑

i∈S

{Sij + 2l · ∆ij }
]
.
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with R and S as defined above. The term linear in l vanishes due to symmetry and one
chooses

1 −
∑

i∈S

Sij = 0 (3.25)

so that Ifin(S) becomes

Ifin(S) = −B(S)Γ(N)

∫ 1

0

∏

i∈S

dziδ(1 −
∑

l∈S

zl)

∫
dnl

iπn/2

l2 +R2

(l2 −R2)N

= −B(S)(N − n− 1)In+2
N (S)

with B(S) defined as

B(S) =
∑

i∈S

bi(S). (3.26)

For non-exceptional four-dimensional kinematics (i.e. all external momenta are inde-
pendent), eq. 3.25 is fulfilled with

bi =
∑

k∈S

S−1
ki

since S is invertible. For exceptional kinematics, S is not invertible but there exists a
construction yielding the coefficients bi(S) fulfilling eq. 3.25.

Putting all pieces together, the scalar N -point integral becomes:

In
N (S) = −B(S)(N − n− 1)In+2

N (S) −
∑

i∈S

bi(S)In
N−1(S \ {i}). (3.27)

This does not seem to be a simplification since now an (n + 2)-dimensional integral is
present, but, however, the IR poles are isolated in the pinched functions. Furthermore,
this relation can be used to reduce (n + 2)-dimensional functions which appear in the
tensor reduction to lower dimensional functions.

As a simple example, the reduction of a scalar 3-point function reads

In
3 (S) = −B(S)(2 − n)In+2

3 (S) −
∑

i∈S

bi(S)In
2 (S \ {i}). (3.28)

Tensor reduction

The tensor integrals can be reduced by a generalization of the scalar reduction scheme:
Adding and subtracting a linear combination of pinched integrals one obtains a similar
decomposition
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In,µ1,...,µr

N (a1, . . . , ar;S) =

∫
dnk

iπn/2

[
qµ1
a1 +

∑
j∈S Cµ1

ja1
(q2j −m2

j )
]
qµ2
a2 . . . q

µr
ar

∏
i∈S(q2i −m2

i + iδ)

−
∑

j∈S

Cµ1

ja1

∫
dnk

iπn/2

(q2j −m2
j )q

µ2
a2 . . . q

µr
ar∏

i∈S(q2i −m2
i + iδ)

,

where the coefficients Cµ1

ja1
can be adjusted conveniently. The potentially divergent term

is again reducible and gives

−
∑

j∈S

Cµ1

ja1
In,µ2,...,µr

N−1 (a2, . . . , ar;S \ {j}). (3.29)

The finite part can be simplified by a scheme generalized from the scalar reduction.
Therefore, Feynman parameters are introduced and a shift of the loop momentum is
performed to achieve a quadratic form in denominator. The momenta then become

qa = l +
∑

i∈S

zi∆ai. (3.30)

Demanding the coefficients Cµ1
ja to fulfill

∑

j∈S

SijCµ1
ja = ∆µ

ia, a ∈ S,

the term Aµ1
a1 in the brackets reads:

Aµ1
a1 =


qµ1

a1
+
∑

j∈S

Cµ1

ja1
(q2j −m2

j )


 = lν

(
T µν

a1a2
+ 2Vµ

a1

∑

i∈S

zi∆
ν
a2i

)
+ (l2 +R2)Vµ

a1
,

where

Vµ
a =

∑

j∈S

Cµ
ja and T µν

a1a2
= gµν + 2

∑

j∈S

Cµ
ja1

∆ν
ja2
.

The integrand in the finite part is thus either proportional to l or to l2 +R2 and yields
higher dimensional integrals with Feynman parameters in the numerator for r > 1 when
integrated over the loop momentum.

Applying this reduction scheme iteratively, all n-dimensional tensor integrals of rank
r can be reduced to integrals of rank 0, scalar integrals, partly of higher dimensions
and with Feynman parameters in the numerators. The tensor structure thereby gets
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decomposed as in eq. 3.23. Comparing the coefficients of this tensor structures the form
factors will be expressed in terms of scalar integrals.

I will again give a very simple example by decomposing a rank 1 3-point function to
its Lorentz structure and form factors. The splitting into IR finite and divergent parts
is

In,µ1
3 (a1;S) =

∫
dnk

iπn/2

[
qµ1
a1 +

∑
j∈S Cµ1

ja1
(q2j −m2

j)
]

∏
i∈S(q2i −m2

i + iδ)

−
∑

j∈S

Cµ1
ja1

∫
dnk

iπn/2

(q2j −m2
j)∏

i∈S(q2i −m2
i + iδ)

.

With

Cµ1

ja1
=
∑

i

S−1
ij ∆µ1

ia1
(3.31)

the divergent part becomes

Idiv =
∑

l∈S

∑

j∈S

S−1
lj I

n
2 (s \ {j})∆µ1

ja1
. (3.32)

The finite part is also quite simple since the terms linear in l (cf. eq. 3.31) cancel due
to symmetry when integrated over l. Ifin is then given by

Γ(N)

∫ 1

0

∏

i∈S

dziδ(1 −
∑

l∈S

zl)

∫
dnl

iπn/2

l2 +R2

(l2 −R2)N
Vµ1

a1

∣∣∣
N=3

, (3.33)

where

Vµ
a1

=
∑

j∈S

Cµ
ja1

=
∑

k∈S

bk∆
µ
ka1
, (3.34)

and hence

∑

k∈S

bk∆
µ1

ka1
Γ(N)

∫ 1

0

∏

i∈S

dziδ(1 −
∑

l∈S

zl)

∫
dnl

iπn/2

l2 +R2

(l2 −R2)N
Vµ1

a1

∣∣∣
N=3

︸ ︷︷ ︸
(2−n)In+2

3 (S)

. (3.35)

The function In+2
3 (S) can be expressed by lower dimensional integrals, exploiting eq.

3.28:

In+2
3 (S) = − 1

B(S)(2 − n)

(
In
3 (S) +

∑

i∈S

bi(S)In
2 (S \ {i})

)
. (3.36)

52



One then finds

Ifin =
∑

k∈S

bk
B(S)

(
∑

i∈S

bi(S)In
2 (S \ {i}) − In

3 (S)

)
∆µ1

ka1
. (3.37)

Putting together the finite and the divergent part yields

Inµ1
3 (a1;S)

=
∑

l∈S

∆µ1

la1
A31

l (S)

=
∑

l∈S

∆µ1

la1





bk
B(S)

(
∑

i∈S

bi(S)In
2 (S \ {i}) − In

3 (S)

)
−
∑

j∈S

S−1
lj I

n
2 (s \ {j})



 .

The form factors A31
l (S) can then be read off as

A31
l (S) =

bk
B(S)

(
∑

i∈S

bi(S)In
2 (S \ {i}) − In

3 (S)

)
−
∑

j∈S

S−1
lj I

n
2 (s \ {j}). (3.38)

As mentioned above the standard representation of tensor integrals (eq. 3.19) can be
obtained from the alternative representation (eq. 3.20) by setting all ai to N :

Inµ1
3 (S)

= Inµ1
3 (N ;S)

=
∑

l∈S

rµ1

l A31
l (S)

=
∑

l∈S

rµ1

l





bk
B(S)

(
∑

i∈S

bi(S)In
2 (S \ {i}) − In

3 (S)

)
−
∑

j∈S

S−1
lj In

2 (s \ {j})



 .

In my program I used an existing implementation of the form factors.

Numerical stability

Higher dimensional scalar integrals with or without non-trivial numerators, i.e. with
Feynman parameters in the numerators, can be traced back to scalar integrals with
trivial numerators, cf. eq. 3.36, for instance. The problem now arises since B from eq.
3.26 is related to the determinant of another kinematic matrix G, the Gram matrix, by
the relation

BdetS = (−1)N+1detG (3.39)

which I just cite here and where G = G(N) with

G
(a)
ij := 2∆ia∆ja. (3.40)
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Here, a be is one of the propagator labels which is chosen for reference.
In the case of a kinematic 4-point configuration as presented in fig. 3.5 the ri are

r1 = p1, r2 = p1 − p3, r3 = p1 − p3 − p4 = −p2, r4 = r0 = 0.

Defining the Mandelstam variables and virtualities of the Z bosons

s = (p1 + p2)
2, t = (p2 − p3)

2, u = (p1 − p3)
2

s3 = p2
3, s4 = p2

4
, (3.41)

the Gram matrix G is given by

G =




0 u− s3 −s
u− s3 2u u− s4
−s u− s4 0


 (3.42)

and its determinant detG by

detG = −2s(u− s3)(u− s4) − 2us2

= −2s
(
u2 − us4 − s3u+ s3s4 + 2us

)

= 2s(ut− s3s4).

The expression in parenthesis, (ut− s3s4), can now be related to the transverse momen-
tum of one of the Z bosons: If p1 and p2 are parallel to the z axis,

p1,2 · p3 = E1,2E3 − pz1,2pz3 = E1,2E3 −E1,2pz3 = E1,2(E3 − pz3),

and with

p1 · p3 =
u− s3

2
; p2 · p3 =

t− s3
2

; E1 = E2 =

√
s

2

one can rewrite this expression as

(u− s3)(t− s3)

s
= E2

3 − p2
z3 = p2

3 + ~p2
T3,

⇒ ~p2
T3 =

1

s

(
tu− us3 − ts3 + s23 − ss3

)
=

1

s
(ut− s3s4) .

Hence, if the transverse momentum ~pT3 reaches zero, the Gram determinant detG be-
comes very small and by eq. 3.39, B(S) becomes very large.

Since the amplitude is finite the divergences introduced by B−1 ∼ det−1G in eq. 3.38,
for instance, must be compensated by suitable vanishing factors. The occurring huge
cancellations can cause instabilities in numerical evaluation with finite precision.

Inverse Gram determinants can be prevented if one does not further reduce the ba-
sis integrals after tensor reduction. Then, no dangerous denominators are present but
the basis integrals are either of higher dimension or have Feynman parameters in the
numerators and must therefore be evaluated in a special way.

A different method was applied in the implementation of the form factors which I
used: The higher dimensional integrals both with trivial and non-trivial numerators
were reduced to simple scalar integrals but the expressions were grouped in such a way
that cancellations of inverse Gram determinants were possible.
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The irreducible set of scalar integrals

Every tensor integral appearing in the initial expression of the amplitude for one single
graph (like eq. 3.18) can be expressed by a linear combination of tensor structures and
form factors. The form factors can again be expressed by a linear combination of scalar
integrals. This decomposition of the form factors can be calculated using the reduction
technique presented in the previous subsections. Instead of calculating them myself, I
used an existing implementation.

I will now show which is the irreducible set of scalar functions for a single graph. As
already stated, the Feynman amplitude for a single graph is a linear combination of
n-dimensional 4-, 3-, and 2-point tensor integrals (the tadpole integral vanishes):

In,µ,ν,ρ,σ
4 , In,µ,ν,ρ

3 , In,µ,ν
2 . (3.43)

By tensor reduction, these can be reduced to linear combinations of (n+4)- and (n+2)-
dimensional scalar 4-point integrals, (n+ 2)- and n-dimensional scalar 3-point integrals
and n-dimensional 2-point scalar integrals:

In+4
4 , In+2

4 , In+2
3 , In

3 , In
2 . (3.44)

Finally, the (n + 4)-dimensional box can be expressed in terms of (n + 2) dimensional
boxes and triangles and the (n + 2) dimensional triangles can be expressed in terms of
n-dimensional triangles and bubbles. The irreducible set of scalar integrals remaining
after the reductions is then

In+2
4 , In

3 , In
2 . (3.45)

For a single graph, T2G1C1, I will now exemplarily show the scalar functions. Instead
of giving the momenta of the propagators q1, q2 . . . as arguments, I will employ a different
notation using all independent scalar products of the external momenta. For a 4-point
integral, one needs 6 scalar products which can be chosen, for instance,

(p1 + p2)
2 = s, (p1 + p3)

2 = u, p2
1, p2

2, p2
3, p2

4.

��
��@@

0

��0

��
s3

@@ s4

s

u

BOXd6(u, s, 0, s4, s3, 0, m
2
t, m

2
t, m

2
t, m

2
t).

Diagrams and scalar integrals with less external momenta and propagators are obtained
either by decomposing reducible tensor integrals or by applying tensor and scalar reduc-
tion. In both cases the arguments can be obtained by the so-called pinching technique:
Starting with the 4-point function (3.5), one reduces the rank of the function by pinch-
ing the propagators in all combinations. By pinching one propagator, one obtains the
3-point integrals:
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,

and by pinching two propagators, the 2-point integrals:
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t) BUBd4(u, m2t, m

2
t) BUBd4(s4, m

2
t, m

2
t)

��
��

��s3

��
s3

��
��@@

0

@@ 0

��
��

��0

��
0

BUBd4(s3, m
2
t, m

2
t) BUBd4(0, m2t, m

2
t) BUBd4(0, m2t, m

2
t)

.

For the graph T2G1C1 one thus finds an irreducible set of 10 scalar integrals:

BOXd6(u, s, 0, s4, s3, 0, m
2
t, m

2
t, m

2
t, m

2
t)

TRId4(s4, s3, s, m
2
t, m

2
t, m

2
t)

TRId4(u, s3, 0, m
2
t, m

2
t, m

2
t)

TRId4(0, s, 0, m2t, m
2
t, m

2
t)

TRId4(0, s4, u, m
2
t, m

2
t, m

2
t)

BUBd4(s, m2t, m
2
t)

BUBd4(u, m2t, m
2
t)

BUBd4(s3, m
2
t, m

2
t)

BUBd4(s4, m
2
t, m

2
t)

BUBd4(0, m2t, m
2
t)

.

For other diagrams there appear other sets of arguments of which some can be related
to each other. For example

TRId4(es3, eu, 0, emt2, emt2, emt2) = TRId4(eu, es3, 0, emt2, emt2, emt2)
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since all masses in each quark loop are equal. Hence, the propagator momenta and thus
the scalar products of external momenta can be exchanged. Exploiting identities like
this, the set of scalar integrals form all diagrams with massive quarks consists of 30
functions. In the massless case, these can still be reduced to a set of 14 functions. These
sets are also listed in appendix A.3.

3.2.3. Summary

I have shown how to decompose the amplitude of each graph l to a linear combination
of tensor structures τ̃j and basis functions Ik and have given irreducible sets of both.
The sum over all diagrams then reads

Mλ1λ2J3J4 =
∑

l

∑

k

9∑

j=1

C̃j,k,l(s, t, u, s3, s4,m
2
b ,m

2
t ) τ̃j Ik. (3.46)
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3.3. Implementation

In the preceding chapter I have presented a decomposition of the amplitude into terms
carrying the tensor structure, scalar integrals and functions of Lorentz scalars. Further-
more, I have shown how to suppress the occurrence of dangerous Gram determinants
that may lead to numerous instabilities. In this chapter, I will explain how to analyti-
cally compute the amplitude and then numerically determine the total cross section for
the process and distributions. The calculation is greatly automated, i.e. the code is in
large part generated dynamically, starting with the diagrams and yielding in the end
numerical results for total cross sections and distributions.

In the different stages of the calculation, I used four different programming languages
to adapt the environment in the best possible way to the needs of the analytic manip-
ulation. I applied FORM [37] to manipulate the amplitude, because FORM already
disposes of the necessary structure (γ matrices, traces etc.), decomposing the amplitude
to the coefficients C[i, j] introduced in 3.2.2. The coefficients for different diagrams are
added and simplified in Maple. The calculation of the amplitude M is then done in
Fortran for which files have been generated automatically in the Maple code. Finally,
the computation of cross sections (including the whole phase space parametrization) is
performed in C++ code, which allows the use of object-oriented structures, for example
for conveniently implementing selection cuts.

3.3.1. Manipulating the Feynman amplitude of individual diagrams

Generation of the diagrams

I used the Mathematica package FeynArts/FormCalc [38] for generating the Feynman
amplitude for all 12 double-resonant box diagrams (cf. fig. 3.3). Instead of directly
piping its output to FORM, I saved it into the file Graphs.h which served as input file
for customized manipulations.

Generation of the FORM code

For each diagram, the Maple program BuildFormCode.map generates a FORM file. The
input consists of the Feynman amplitude for each diagram (Graphs.h) and a list of
the tensor structures and basis functions as worked out in the previous subsection (cf.
chapter 3.2) in the file INPUT LISTS.map. It sequentially generates FORM files named
Graph topology helicity.frm which are executed consecutively.

From now on, each diagram and its amplitude are treated separately. The subroutines
which are applied to them will be explained below.

subroutine Diracology

The dimensional regularization prevents the amplitude from being divergent but leads
to the so called γ5 problem: All γ matrices can be generalized to n dimensions, except
for the γ5 matrix. Therefore, standard dimensional splitting rules are applied, following
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[39]: All objects are replaced by their n-dimensional continuations, only the external
momenta and the γ5 matrix are kept 4-dimensional. The n-dimensional objects are
then split into a 4-dimensional component, denoted by a hat, and a (n− 4)-dimensional
component, denoted by a tilde:

k = k̂ + k̃, (3.47)

γµ = γ̂µ + γ̃µ. (3.48)

The 4 dimensional γ algebra remains unchanged, i.e.

{γ̂µ, γ5} = 0, (3.49)

{γ̂µ, γ̂ν} = 2ĝµν (3.50)

and as the external momenta pi are kept 4-dimensional, the scalar products with n
dimensional quantities reduce to scalar products with the 4 dimensional components:

pµ
i γµ = pµ

i γ̂µ, pµ
i kµ = pµ

i k̂µ. (3.51)

In n dimensions, the anticommutator is demanded to be formally the same as in 4
dimensions, namely the metric tensor:

2(ĝµν + g̃µν) = 2gµν =: {γµ, γν}
⇔ {γ̂µ, γ̂ν} + {γ̃µ, γ̃ν} = {γ̂µ, γ̂ν} + {γ̂µ, γ̃ν} + {γ̃µ, γ̂ν} + {γ̃µ, γ̃ν}

⇒ {γ̂µ, γ̃ν} = 0. (3.52)

Introducing this decomposition to the code, all traces with an odd number of /̃k vanish
similar to traces of an odd number of γ matrices vanishing in 4 dimensions. In the traces
with an even number of /̃k, the gamma matrices are commuted until two /̃k stand side by
side and are pulled out of the trace as k̃2. Now, there are no more (n− 4)-dimensional
objects in the trace and the usual Clifford algebra can be applied.

subroutines ProjectOnPP/ProjectOnPM

After having removed the particularities of n-dimensional γ matrix algebra, Mµ1µ2µ3µ4

is contracted with the polarization vectors ελ1
1µ1

and ελ2
2µ2

, thus yielding the helicity am-

plitudes Mλ1λ2µ3µ4 (cf. sec. 3.2.1). Since only two of the four helicity amplitudes are
independent, it suffices to calculate M++µ3µ4 and M+−µ3µ4 .

Note, that the expressions for the polarization vectors in terms of external momenta
can be obtained via the spinor helicity formalism (cf. A.1). The expressions are (eqs.
A.32, A.34):

ε+µ(p1)ε
+ν(p2) = −1

s

[12]

〈12〉 (pµ
1p

ν
2 + pν

1p
µ
2 − p1 · p2g

µν − εp1νp2µ) (3.53)

ε+µ(p1)ε
−ν(p2) =

tr− (p1, p3, p2, µ) tr− (p1, p3, p2, ν)

2s(ut− s3s4)

〈2 − |/p3
|1−〉

〈1 − |/p3
|2−〉 . (3.54)
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Both [12]
〈12〉 and

〈2−|/p3
|1−〉

〈1−|/p3
|2−〉 are global phase factors and can therefore be suppressed.1

subroutine PtoR

The propagator momenta of the N -point functions are currently still of the form

k + qj = k +

j∑

i=1

pi, (3.55)

where pi denotes the i-th external momentum. In contrast, for the formulae for decom-
posing the tensor integrals into tensor structures and form factors to be applicable the
propagator momenta have to be of the form

k + rj (3.56)

(cf. 3.19). Thus, the replacements

j∑

i=1

pi → rj (3.57)

are performed which will be revoked after the reductions.

subroutines CancelPropInBox/CancelPropInTri

The amplitude contains so far some reducible integrals which should be reduced thus
increasing the number but considerably simplifying the complexity of the integrals. Such
reductions have been explained in sec. 3.2.2.

subroutine PROtoTI

So far, the amplitude does not contain tensor integrals in the proper representation (cf.
eq. 3.19), but a lot of tensor integrals contracted with external momenta, i.e. scalar
integrals with numerators of the form k · rj or contractions like εk.... These expression
are rewritten to achieve the proper representation.

Furthermore, there are still remnants of the n-dimensional algebra, namely scalar
integrals containing factors of k̃ · k̃ . These integrals are not of the standard form for
scalar reduction, but can be expressed by standard integrals:

∫
dnk

iπn/2

(k̃ · k̃ )α

(k2 −M2)N
= (−1)α Γ(α− ε)

Γ(1 − ε)

n− 4

2
In+2α
N , (3.58)

∫
dnk

iπn/2

(k̃ · k̃ )αkµkν

(k2 −M2)N
= (−1)α+1 Γ(α− ε)

Γ(1 − ε)
gµν

n− 4

4

n+ 2α

n
In+2+2α
N . (3.59)

The amplitude now consists of a linear combination of scalar and tensor integrals in
a standard form, and is prepared for reduction formulae.

1This, however, can lead to disagreement when comparing complex amplitudes.
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subroutine TItoFF

The tensor reduction algorithm, presented in sec. 3.2.2, can be applied by decomposing
the tensor integrals into tensor structures and form factors. The form factors are then
retained symbolically to allow for simplifications before expressing the as linear combi-
nations of scalar integrals. For example, the 4 point rank 4 tensor integral is decomposed
as follows:

In,µ1,µ2,µ3,µ4
4 (S)

=
∑

j1,j2,j3,j4

[
rµ1
j1
rµ2
j2
rµ3
j3
rµ4
j4

]
A44

j1j2j3j4(S)

+
∑

j1,j2

[
gµ1µ2rµ3

j1
rµ4
j2

+ gµ1µ3rµ2
j1
rµ4
j2

+ gµ1µ4rµ2
j1
rµ3
j2

+ gµ2µ3rµ1
j1
rµ4
j2

+ gµ2µ4rµ1
j1
rµ3
j2

+ gµ3µ4rµ1
j1
rµ2
j2

]
B44

j1j2(S)

+ [gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ4 ]C44(S) (3.60)

with j1, j2, j3 ∈ 1, 2, 3.
The amplitude is now a linear combination of Lorentz structures, form factors and

scalar integrals.

subroutine RtoP

Since the tensor reduction for which the propagators had to be of the form k + rj has
taken place, the rj can be resubstituted in terms of external momenta pi:

rj =

j∑

i=1

pi. (3.61)

subroutine SchoutenIds

The tensor structure will now be expressed in the tensor basis derived in chapter 3.2.
First of all, the ε tensors with different contractions must be reduced to those present in
the tensor basis, eq. 3.16. To keep these substitutions simple one would like to cancel
as many contractions as possible.

Therefore, Schouten Identities are exploited: Every totally antisymmetric tensor can
be expressed as an antisymmetrized product of basis vectors. The ε tensor, a totally
antisymmetric tensor of rank 4, can thus be expressed by an antisymmetrized product
of four vectors.

Choosing one of these vectors to be the vector kµ
0 , as defined in eq. 3.6, and the other

three to be the dual vectors kν
1 , kρ

2 and kσ
3 of the vectors p1, p2 and p3, respectively, as

defined in eq. 3.7 and antisymmetrizing the product one obtains a representation of the
tensor εµνρσ . The advantage of this representation is that its contractions with external

61



momenta lead to many products ki ·pj with i 6= j thus partly remedying the proliferation
of terms due to the antisymmetrization in the implementation of the ε tensor.

subroutine EpsTenBase

Here, the representation of the ε tensor in the basis given in the last step is completed.
Firstly, the pseudoinverse H of the Gram matrix G is given in terms of external momenta
pj and the inverse Gram determinant |G|−1.

Furthermore, it is exploited that p3 · J3 = p4 · J4 = 0 for currents of massless leptons
J3 and J4 and the auxiliary vector p̃3 (cf. 3.16) is introduced by

p2 · J3 = − t− s3
u− s3

p1 · J3 − s

u− s3
p̃3 · J3 , (3.62)

p2 · J4 = −u− s4
t− s4

p1 · J4 +
s

t− s4
p̃3 · J4 , (3.63)

p̃3 · J3 ε(p1, p2, p̃3, J4) = p̃3 · J4 ε(p1, p2, p̃3, J3) +
ut− s3s4

s
ε(p1, p2, J3, J4), (3.64)

thus removing p2 from the products of the form pi · Jk and leading to the tensor basis
(eq. 3.16). Here, Gram determinants |G| ∝ (ut− s3s4) appear which cancel the inverse
Gram determinants from the tensor reduction.

subroutine MandelstamBasis

To obtain Lorentz invariant quantities, all scalar products of momenta are replaced by
the Mandelstam variables s, t, u, s3, s4.

subroutines TC44s0230m1211 etc.

The amplitude now consists of functions of the Mandelstam variables and the masses
multiplied with basis functions and tensor structures. Its coefficients Cj,l are now treated
in a loop over all tensor structures τ̃j. For each N , the full tensor reduction is applied
by expressing the form factors in terms of scalar functions (cf. eq. 3.44).

subroutine ReduceBox

Then, the scalar reduction algorithm further simplifies the scalar integrals: All form
factors which appear in the reduction of box diagrams are expressed by 4-point scalar
functions, in n, n+ 2 and n+ 4 dimensions. The n+ 4-dimensional ones can again be
expressed by n+ 2-dimensional 3- and 4-point scalar integrals (cf. eq. 3.45).

The same applies for the form factors and scalar integrals from reduction of 3- and 2-
point functions. The corresponding routines are TC3exp, TC2exp and ReduceTriangle,
ReduceBubble, respectively.
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subroutine ExpandInEpsilonNoIR

As one does not expect IR divergences in the amplitude of any diagram, a finite expres-
sion can be obtained by taking the limit n→ 4 ⇔ ε→ 0. For this purpose, all functions
of the dimensionality n are expanded in ε (according to n = 4 − 2ε) to O(ε). The box
and triangle functions are finite and thus all products of these functions with εn, n ≥ 1
vanish in the limit ε → 0. In contrast, the bubble functions posses poles ∝ 1

ε . Thus,
contributions of products of bubble functions and ε survive.

The Feynman amplitude for one diagram and one single tensor structure is now a linear
combination of functions of Lorentz scalars, i.e. the kinematic variables s, t, u, s3, s4 and
masses m2

b and m2
t , and the scalar integrals as explained in sec. 3.2.2 and listed for all

the diagrams in the appendix A.3.
Finally, the coefficients of the basis functions Ik, C̃j,k,l(s, t, u, s3, s4,m

2
b ,m

2
t ), in the

tensor coefficients Cj,l are written to files.

3.3.2. Simplifying the coefficients

Simplifying the coefficients

One now disposes of the coefficients Cj,k,l for each diagram l, written each in a single
file. The Maple program Simplify Coefficients.map expands these coefficients in ε,
factorizes the coefficients of this expansion and tries to find typical functions of the kine-
matic variables, mostly Kaellen functions, to shorten the expressions. Then, all factors
are put together again and the coefficients for all tensor structures and basis integrals
appearing in the amplitude of this diagram are written to SimRes topology helicity.out.

Adding the contributions from all the diagrams

Since only the box contributions survive, the contributions from all box topologies are
added, i.e. the coefficients Cj,k,l from all box diagrams are added:

C̃j,k =
∑

l

C̃j,k,l. (3.65)

The contributions from all diagrams are contained in COEFFS BOX ggZZ PP MASSIVE.out

and COEFFS BOX ggZZ PM MASSIVE.out for ++ and +− helicities in the massive case and
in COEFFS BOX ggZZ PP MASSLESS.out and COEFFS BOX ggZZ PM MASSLESS.out for the
massless case.

Creating Fortran code

So far, the expressions for the coefficients C̃j,k are in Maple format, but for the computa-
tion of the amplitude they are needed in Fortran format, each coefficient as a function of
its arguments, the Mandelstam variables and the masses. The external momenta serve
as input parameters from which the Mandelstam variables and finally the amplitude are
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computed. The leptonic currents J3 and J4 appearing in the tensor structures τ̃j must
be expressed in terms of external momenta, too, which can be achieved in the spinor
helicity formalism (cf. eqs. A.46 and A.47):

Jµ3
3 =

(4 sin θW − 1)tr[/p7/p1/p8
γµ3 ] + tr[γ5/p7/p1/p8

γµ3 ]

4
√
s17s18

, (3.66)

Jµ4
4 =

(4 sin θW − 1)tr[/p5/p2/p6
γµ4 ] + tr[γ5/p5/p2/p6

γµ4 ]

4
√
s25s26

. (3.67)

The ε tensors contracted with leptonic currents, like ε(p1, p2, p̃3, J4), are contractions of
the external leptons and ε tensors. As only 5 external momenta are independent, we can
choose 5 ε tensors contracted with external momenta as a basis:

{εk} = {ε(p1, p2, p5, p̃3), ε(p1, p2, p8, p̃3), ε(p1, p2, p5, p8), ε(p1, p5, p8, p̃3), ε(p2, p5, p8, p̃3)}.
(3.68)

The tensor structures τ̃j are then computed as

τ̃j =

5∑

k=1

cjkεk. (3.69)

After these preparations the amplitude is finally returned as

Mλ1λ2J3J4 =
∑

l

∑

k

9∑

j=1

C̃j,k,l(s, t, u, s3, s4,m
2
b ,m

2
t ) τ̃j Ik. (3.70)

3.3.3. Checks I

Having calculated the coefficients Cij in the amplitude

Mλ1λ2J3J4 =
∑

tensor
structures

i

∑

basis
functions

j

Cij τ̃iIj , (3.71)

I have performed a first check of these coefficients, exploiting two symmetries of the
amplitude, namely Bose and CP symmetry. After revealing the transformation laws of
the tensor structures τ̃i and the basis functions Ij under both transformations, I will
show that demanding invariance of the amplitude leads to constraints on the coefficients
which can be tested.
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dimensional regularization:
∫

d4k
(2π)4 → µ4−n

∫
dnk

iπn/2

splitting of 4-dimensional quantities: k = k̂ + k̃; γµ = γ̂µ + γ̃µ

introduction of helicity amplitudes: Mµ1µ2µ3µ4 → M++J3J4 ,M+−J3J4

transform to shift invariant propagators: qj = k +
∑j

i=0 pi → qj = k + rj

CancelPropInBox/CancelPropInTri

PROtoTI: µ4−n
∫

dnk
iπn/2 . . .→ In,µ1,µ2,...

N

TItoFF: In,µ1,µ2,...
N →∑

j1...jr∈S

[
r·j1 · . . . r

·
jr ·

]{µ1...µr}
AN,r

j1...jr
(S) + . . .

RtoP: rj →
∑j

i=0 pi

SchoutenIds and EspTenBase: εµ1,µ2,µ3,µ4 ∝ L{kµ1

1 , kµ2

2 , kµ3

3 , kµ4

0 }

expansion in ε: In
N = T0 + T1ε+ T2ε

2 + . . .

Figure 3.8.: Diagram showing the manipulation of the Feynman amplitude M++, from
the diagrams to the coefficients and amplitude files; the manipulation for
M+− is completely analogous
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Bose symmetry

After having extracted the color algebra for the strong interacting particles (which only
leads to a color factor of 1

32 as I have shown) the two gluons cannot be distinguished
any more. Thus, the amplitude must be invariant under interchange of their momenta
p1 and p2:

Mλ1λ2J3J4(p1, p2, p3, p4) = Mλ2λ1J3J4(p2, p1, p3, p4). (3.72)

Interchanging the momenta affects the Mandelstam variables t and u

t↔ u, (3.73)

while s, s3, s4 and p̃3 are invariant.
For calculating the transformation properties of the 9 tensor structures one exploits

(cf. 3.16)

p1 · J3 → p2 · J3 = − t− s3
u− s3

p1 · J3 −
s

u− s3
p̃3 · J3, (3.74)

p1 · J4 → p2 · J4 = −u− s4
t− s4

p1 · J4 +
s

t− s4
p̃3 · J4 (3.75)

and

ε(p1, p2, J3, J4) = − s

ut− s3s4
(p̃3 · J3ε(p1, p2, p̃3, J4) − p̃3 · J4ε(p1, p2, p̃3, J3))

⇒ p̃3 · J3 ε(p1, p2, p̃3, J4) = p̃3 · J4 ε(p1, p2, p̃3, J3) −
ut− s3s4

s
ε(p1, p2, J3, J4) (3.76)

The 9 tensor structures then transform under Bose transformation as follows:

J3 · J4 → J3 · J4

p1 · J3 p1 · J4 → (t − s3)(u − s4)

(u − s3(t − s4)
p1 · J3 p1 · J4 +

s(u − s4)

(u − s3)(t − s4)
p̃3 · J3 p1 · J4

− (t − s3)s

(u − s3)(t − s4)
p1 · J3 p̃3 · J4 − s2

(u − s3)(t − s4)
p̃3 · J3 p̃3 · J4

p1 · J3 p̃3 · J4 → − t − s3

u − s3
p1 · J3 p̃3 · J4 − s

u − s3
p̃3 · J3 p̃3 · J4

p1 · J3 ε(p1, p2, p̃3, J4) →
t − s3

u − s3
p1 · J3 ε(p1, p2, p̃3, J4) +

s

u − s3
p̃3 · J3ε(p1, p2, p̃3, J4)

=
t − s3

u − s3
p1 · J3 ε(p1, p2, p̃3, J4) +

s

u − s3
p̃3 · J4ε(p1, p2, p̃3, J3)

−ut − s3s4

u − s3
ε(p1, p2, J3, J4)

p̃3 · J3 p1 · J4 → −u − s4

t − s4
p̃3 · J3 p1 · J4 +

s

t − s4
p̃3 · J3 p̃3 · J4

p̃3 · J3 p̃3 · J4 → p̃3 · J3 p̃3 · J4
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ε(p1, p2, J3, J4) → −ε(p1, p2, J3, J4)

p1 · J4 ε(p1, p2, p̃3, J3) →
u − s4

t − s4
p1 · J4 ε(p1, p2, p̃3, J3) − s

t − s4
p̃3 · J4 ε(p1, p2, p̃3, J3)

p̃3 · J4 ε(p1, p2, p̃3, J3) → −p̃3 · J4 ε(p1, p2, p̃3, J3)

The transformation properties of the basis functions can be easily obtained by applying
the transformation rules to their arguments and then interchanging the arguments to
obtain one of the basis functions. One thus finds:

f(1)=BOXd6(u, s, 0, s4, s3, 0, m2t, m
2
t, m

2
t, m

2
t)→BOXd6(t, s, 0, s3, s4, 0, m2t, m

2
t, m

2
t, m

2
t)=f(2)

f(2)=BOXd6(t, s, 0, s3, s4, 0, m2t, m
2
t, m

2
t, m

2
t)→BOXd6(u, s, 0, s4, s3, 0, m2t, m

2
t, m

2
t, m

2
t)=f(1)

f(3)=BOXd6(t, u, s3, 0, s4, 0, m2t, m
2
t, m

2
t, m

2
t)→BOXd6(t, u, s3, 0, s4, 0, m2t, m

2
t, m

2
t, m

2
t)=f(3)

f(4)=TRId4(s4 , s3, s, m2t, m
2
t, m

2
t) →TRId4(s4 , s3, s, m2t, m

2
t, m

2
t) =f(4)

f(5)=TRId4(u, s3, m2t, m
2
t, m

2
t, m

2
t) →TRId4(0, s3, t, m2t, m

2
t, m

2
t) =f(9)

f(6)=TRId4(0, s, 0, m2t, m
2
t, m

2
t) →TRId4(0, s, 0, m2t, m

2
t, m

2
t) =f(6)

f(7)=TRId4(0, s4, u, m2t, m
2
t, m

2
t) →TRId4(t, s4, 0, m2t, m

2
t, m

2
t) =f(8)

f(8)=TRId4(t, s4, 0, m2t, m
2
t, m

2
t) →TRId4(0, s4, u, m2t, m

2
t, m

2
t) =f(7)

f(9)=TRId4(0, s3, t, m2t, m
2
t, m

2
t) →TRId4(u, s3, m2t, m

2
t, m

2
t, m

2
t) =f(5)

f(10)=BUBd4(s, m2t, m
2
t) →BUBd4(s, m2t, m

2
t) =f(10)

f(11)=BUBd4(u, m2t, m
2
t) →BUBd4(u, m2t, m

2
t) =f(12)

f(12)=BUBd4(t, m2t, m
2
t) →BUBd4(t, m2t, m

2
t) =f(11)

f(13)=BUBd4(s3 , m2t, m
2
t) →BUBd4(s3 , m2t, m

2
t) =f(13)

f(14)=BUBd4(s4 , m2t, m
2
t) →BUBd4(s4 , m2t, m

2
t) =f(14)

f(15)=BUBd4(0, 0, m2t) →BUBd4(0, 0, m2t) =f(15)
f(16)=BOXd6(u, s, 0, s4, s3, 0, m2b, m

2
b, m

2
b, m

2
b)→BOXd6(t, s, 0, s3, s4, 0, m2b, m

2
b, m

2
b, m

2
b)=f(17)

f(17)=BOXd6(t, s, 0, s3, s4, 0, m2b, m
2
b, m

2
b, m

2
b)→BOXd6(u, s, 0, s4, s3, 0, m2b, m

2
b, m

2
b, m

2
b)=f(16)

f(18)=BOXd6(t, u, s3, 0, s4, 0, m2b, m
2
b, m

2
b, m

2
b)→BOXd6(t, u, s3, 0, s4, 0, m2b, m

2
b, m

2
b, m

2
b)=f(18)

f(19)=TRId4(s4 , s3, s, m2b, m
2
b, m

2
b) →TRId4(s4 , s3, s, m2b, m

2
b, m

2
b) =f(15)

f(20)=TRId4(u, s3, m2b, m
2
b, m

2
b, m

2
b) →TRId4(0, s3, t, m2b, m

2
b, m

2
b) =f(24)

f(21)=TRId4(0, s, 0, m2b, m
2
b, m

2
b) →TRId4(0, s, 0, m2b, m

2
b, m

2
b) =f(21)

f(22)=TRId4(0, s4, u, m2b, m
2
b, m

2
b) →TRId4(t, s4, 0, m2b, m

2
b, m

2
b) =f(23)

f(23)=TRId4(t, s4, 0, m2b, m
2
b, m

2
b) →TRId4(0, s4, u, m2b, m

2
b, m

2
b) =f(22)

f(24)=TRId4(0, s3, t, m2b, m
2
b, m

2
b) →TRId4(u, s3, m2b, m

2
b, m

2
b, m

2
b) =f(20)

f(25)=BUBd4(s, m2b, m
2
b) →BUBd4(s, m2b, m

2
b) =f(25)

f(26)=BUBd4(u, m2b, m
2
b) →BUBd4(u, m2b, m

2
b) =f(27)

f(27)=BUBd4(t, m2b, m
2
b) →BUBd4(t, m2b, m

2
b) =f(26)

f(28)=BUBd4(s3 , m2b, m
2
b) →BUBd4(s3 , m2b, m

2
b) =f(28)

f(29)=BUBd4(s4 , m2b, m
2
b) →BUBd4(s4 , m2b, m

2
b) =f(29)

f(30)=BUBd4(0, 0, m2b) →BUBd4(0, 0, m2b) =f(30)
f(31)=one →one =f(31)

One now expresses the amplitude in the transformed tensor structures and basis integrals,
rearranges them in the tensor basis and integral basis and compares the coefficients:

C1(s, t, u, s3, s4) = C1(s, u, t, s3, s4) (3.77)

C2(s, t, u, s3, s4) =
(t− s3)(u− s4)

(u− s3(t− s4)
C2(s, u, t, s3, s4) (3.78)

C3(s, t, u, s3, s4) = − (t− s3)s

(u− s3)(t− s4)
C2(s, u, t, s3, s4) −

t− s3
u− s3

C3(s, u, t, s3, s4) (3.79)

C4(s, t, u, s3, s4) =
t− s3
u− s3

C4(s, u, t, s3, s4) (3.80)

C5(s, t, u, s3, s4) =
s(u− s4)

(u− s3)(t− s4)
C2(s, u, t, s3, s4) −

u− s4
t− s4

C5(s, u, t, s3, s4) (3.81)

C6(s, t, u, s3, s4) = − s2

(u− s3)(t− s4)
C2(s, u, t, s3, s4) −

s

u− s3
C3(s, u, t, s3, s4)

+
s

t− s4
C5(s, u, t, s3, s4) + C6 (3.82)
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C7(s, t, u, s3, s4) =
ut− s3s4
u− s3

C4(s, u, t, s3, s4) − C7(s, u, t, s3, s4) (3.83)

C8(s, t, u, s3, s4) =
u− s4
t− s4

C8(s, u, t, s3, s4) (3.84)

C9(s, t, u, s3, s4) =
s

u− s3
C4(s, u, t, s3, s4) −

s

t− s4
C8(s, u, t, s3, s4) − C9(s, u, t, s3, s4)(3.85)

(3.86)

As the coefficients are already at hand in Maple format it is easy to check these relations.
I thereto wrote a program in Maple and found out that all these relations are fulfilled.

CP symmetry

The amplitude is not only invariant under Bose transformation of the gluons, reflecting
in the interchange of p1 and p2, but, in the limit of massless leptons, also under CP
transformation (cf. fig 3.9): The initial and the CP transformed state are identical since
the flavors of the leptons cannot be distinguished in the massless limit.2

Since the CP transformation corresponds to an interchange of the momenta of the Z
bosons, p3 and p4,

Mλ1λ2J3J4(p1, p2, p3, p4) = M−λ1 −λ2J4J3(p1, p2, p4, p3), (3.88)

the amplitude must be also invariant under

t↔ u, (3.89)

s3 ↔ s4, (3.90)

p̃3 ↔ −p̃3, (3.91)

while s is again invariant.
The 9 tensor structures then transform under CP transformation as follows:

J3 · J4 → J3 · J4

p1 · J3 p1 · J4 → p1 · J3 p1 · J4

p1 · J3 p̃3 · J4 → −p̃3 · J3 p1 · J4

p1 · J3 ε(p1, p2, p̃3, J4) → −p1 · J4 ε(p1, p2, p̃3, J3)

p̃3 · J3 p1 · J4 → −p1 · J3 p̃3 · J4

p̃3 · J3 p̃3 · J4 → p̃3 · J3 p̃3 · J4

ε(p1, p2, J3, J4) → −ε(p1, p2, J3, J4)

p1 · J4 ε(p1, p2, p̃3, J3) → −p1 · J3 ε(p1, p2, p̃3, J4)

p̃3 · J4 ε(p1, p2, p̃3, J3) → p̃3 · J3 ε(p1, p2, p̃3, J4)

2Of course, it is also possible to consider the Bose symmetry of the Z bosons,

M
λ1λ2J3J4(p1, p2, p3, p4) = M

λ1λ2J4J3(p1, p2, p4, p3), (3.87)

for checks of the amplitude.
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⇒ ⇐

ε+
2

Z2

ε+
1

Z1

e+

e−

µ−

µ+

J3

J4

p4

p3

⇐ ⇒

ε−1ε−2

p4

p5

J4

J3

e−

e+

µ−

Z2

Z1

µ+

CP

Figure 3.9.: Two kinematic configurations linked by a CP transformation

= p̃3 · J4 ε(p1, p2, p̃3, J3) −
ut − s3s4

s
ε(p1, p2, J3, J4)

The transformation properties of the basis functions can again be revealed quite easily:
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f(1)=BOXd6(u, s, 0, s4, s3, 0, m2t, m
2
t, m

2
t, m

2
t)→BOXd6(t, s, 0, s3, s4, 0, m2t, m

2
t, m

2
t, m

2
t)=f(2)

f(2)=BOXd6(t, s, 0, s3, s4, 0, m2t, m
2
t, m

2
t, m

2
t)→BOXd6(u, s, 0, s4, s3, 0, m2t, m

2
t, m

2
t, m

2
t)=f(1)

f(3)=BOXd6(t, u, s3, 0, s4, 0, m2t, m
2
t, m

2
t, m

2
t)→BOXd6(t, u, s3, 0, s4, 0, m2t, m

2
t, m

2
t, m

2
t)=f(3)

f(4)=TRId4(s4 , s3, s, m2t, m
2
t, m

2
t) →TRId4(s4 , s3, s, m2t, m

2
t, m

2
t) =f(4)

f(5)=TRId4(u, s3, 0, m2t, m
2
t, m

2
t) →TRId4(t, s4, 0, m2t, m

2
t, m

2
t) =f(8)

f(6)=TRId4(0, s, 0, m2t, m
2
t, m

2
t) →TRId4(0, s, 0, m2t, m

2
t, m

2
t) =f(6)

f(7)=TRId4(0, s4, u, m2t, m
2
t, m

2
t) →TRId4(0, s3, t, m2t, m

2
t, m

2
t) =f(9)

f(8)=TRId4(t, s4, 0, m2t, m
2
t, m

2
t) →TRId4(u, s3, 0, m2t, m

2
t, m

2
t) =f(5)

f(9)=TRId4(0, s3, t, m2t, m
2
t, m

2
t) →TRId4(0, s4, u, m2t, m

2
t, m

2
t) =f(7)

f(10)=BUBd4(s, m2t, m
2
t) →BUBd4(s, m2t, m

2
t) =f(10)

f(11)=BUBd4(u, m2t, m
2
t) →BUBd4(t, m2t, m

2
t) =f(12)

f(12)=BUBd4(t, m2t, m
2
t) →BUBd4(u, m2t, m

2
t) =f(11)

f(13)=BUBd4(s3 , m2t, m
2
t) →BUBd4(s4 , m2t, m

2
t) =f(13)

f(14)=BUBd4(s4 , m2t, m
2
t) →BUBd4(s3 , m2t, m

2
t) =f(14)

f(15)=BUBd4(0, 0, m2t) →BUBd4(0, 0, m2t) =f(15)
f(16)=BOXd6(u, s, 0, s4, s3, 0, m2b, m

2
b, m

2
b, m

2
b)→BOXd6(t, s, 0, s3, s4, 0, m2b, m

2
b, m

2
b, m

2
b)=f(17)

f(17)=BOXd6(t, s, 0, s3, s4, 0, m2b, m
2
b, m

2
b, m

2
b)→BOXd6(u, s, 0, s4, s3, 0, m2b, m

2
b, m

2
b, m

2
b)=f(16)

f(18)=BOXd6(t, u, s3, 0, s4, 0, m2b, m
2
b, m

2
b, m

2
b)→BOXd6(t, u, s3, 0, s4, 0, m2b, m

2
b, m

2
b, m

2
b)=f(18)

f(19)=TRId4(s4 , s3, s, m2b, m
2
b, m

2
b) →TRId4(s4 , s3, s, m2b, m

2
b, m

2
b) =f(19)

f(20)=TRId4(u, s3, 0, m2b, m
2
b, m

2
b) →TRId4(t, s4, 0, m2b, m

2
b, m

2
b) =f(23)

f(21)=TRId4(0, s, 0, m2b, m
2
b, m

2
b) →TRId4(0, s, 0, m2b, m

2
b, m

2
b) =f(21)

f(22)=TRId4(0, s4, u, m2b, m
2
b, m

2
b) →TRId4(0, s3, t, m2b, m

2
b, m

2
b) =f(24)

f(23)=TRId4(t, s4, 0, m2b, m
2
b, m

2
b) →TRId4(u, s3, 0, m2b, m

2
b, m

2
b) =f(20)

f(24)=TRId4(0, s3, t, m2b, m
2
b, m

2
b) →TRId4(0, s4, u, m2b, m

2
b, m

2
b) =f(22)

f(25)=BUBd4(s, m2b, m
2
b) →BUBd4(s, m2b, m

2
b) =f(25)

f(26)=BUBd4(u, m2b, m
2
b) →BUBd4(t, m2b, m

2
b) =f(27)

f(27)=BUBd4(t, m2b, m
2
b) →BUBd4(u, m2b, m

2
b) =f(26)

f(28)=BUBd4(s3 , m2b, m
2
b) →BUBd4(s4 , m2b, m

2
b) =f(29)

f(29)=BUBd4(s4 , m2b, m
2
b) →BUBd4(s3 , m2b, m

2
b) =f(28)

f(30)=BUBd4(0, 0, m2b) →BUBd4(0, 0, m2b) =f(30)
f(31)=one →one =f(31)

One again expresses the amplitude in the transformed tensor structures and basis inte-
grals, rearranges them in the tensor basis and integral basis and compares the coefficients:

C1(s, t, u, s3, s4) = C1(s, u, t, s4, s3) (3.92)

C2(s, t, u, s3, s4) = C2(s, u, t, s4, s3) (3.93)

C3(s, t, u, s3, s4) = −C5(s, u, t, s4, s3) (3.94)

C4(s, t, u, s3, s4) = −C8(s, u, t, s4, s3) (3.95)

C5(s, t, u, s3, s4) = −C3(s, u, t, s4, s3) (3.96)

C6(s, t, u, s3, s4) = C6(s, u, t, s4, s3) (3.97)

C7(s, t, u, s3, s4) = −C7(s, u, t, s4, s3) −
ut− s3s4

s
C9(s, u, t, s4, s3) (3.98)

C8(s, t, u, s3, s4) = −C4(s, u, t, s4, s3) (3.99)

C9(s, t, u, s3, s4) = C9(s, u, t, s4, s3) (3.100)

(3.101)

I have checked these relations in a Maple program, too, and they are fulfilled.
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3.3.4. Computation of the cross section

So far, only the Feynman amplitude M has been calculated as a function of the external
momenta p1, p2, p5, p6, p7 and p8. To allow for experimental predictions, one must
compute cross sections

dσhard =
1

2E12E1|v1 − v2|




∏

f

d3pf

(2π)3
1

2Ef





︸ ︷︷ ︸
=:dΦ

|M(p1, p2 → {pf})|2(2π)4δ(4)(p1 + p2 −
∑

f

pf )

(3.102)

and, since pp collisions will be treated, convolve with the parton density function for the
gluon fg(x,Q

2)

dσ = dx1dx2dσhardfg(x1, Q
2)fg(x2, Q

2), (3.103)

where x1 and x2 are the Bjorken variables of the gluons with momenta p1 and p2,
respectively, and Q is the factorization scale.

As one cannot control the spins of the partons in a pp collision at the LHC and not
does measure the spins of the final state particles, the amplitude is to be considered as
spin averaged and spin summed, respectively.

To compute the total cross section σ or distributions dσ
dx (where x can be every quan-

tity of interest, for example rapidities of the particles in the interaction, angles between
particles, invariant mass(es) of one or more particle etc.), an integration of dσ must be
performed. For this purpose the invariant phase space dΦ has to be parametrized con-
veniently. One then integrates over all degrees of freedom that are left after taking into
account possible constraints like energy-momentum conservation or on-shell conditions
for external particles, applying VEGAS-style Monte Carlo integration [40] with adaptive
sampling.

This calculation is enclosed in a prêt-à-porter public program, named GG2ZZ, which
will be explained in detail in the following subsections.

Kinematics

Before explaining the phase space parametrization, I will explain the kinematics and
introduce the parametrization of four momenta pj which is best adjusted to a LHC
collider experiment.

First of all, one can distinguish two frames of reference: The first is the laboratory
frame which coincides with the center of mass system (CMS) of the hadrons since the
LHC is a colliding beams experiment. I will denote all quantities in this frame by plain
letters. The second frame is the parton CMS defined by demanding the center of mass
momentum of the two partons, gluons in this case, to be zero. This frame will be denoted
by hatted quantities.
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The momenta for the hadrons, in the case of the LHC protons, are pa and pb, respec-
tively. Defining the coordinate system such as with the z-axis parallel to the beam line,
the hadron momenta are

pa =

√
s

2




1
0
0
1


 and pb =

√
s

2




1
0
0
−1


 , (3.104)

where
√
s is the hadron CMS energy. The momenta of the gluons in the hadron CMS

are then given as fractions x1 and x2, called Bjorken variables, of the hadron momenta:

p1 = x1pa = x1

√
s

2




1
0
0
1


 and p2 = x2pb = x2

√
s

2




1
0
0
−1


 . (3.105)

Taking into account the beam line as symmetry axis it is useful to split every 3
momentum ~pj into a longitudinal momentum ~pLj and a transverse momentum ~pTj:

~p = ~pLj + ~pTj (3.106)

with ~p2
Tj = ~p2

jx + ~p2
jy, ~pLj = ~pjz. One can define a transverse mass by

m2
Tj = m2

j + ~p2
Tj. (3.107)

With the rapidity

yj =
1

2
log

Ej + pLj

Ej − pLj
(3.108)

the energy is

Ej = mTj cosh yj (3.109)

and the longitudinal momentum

pLj = mTj cosh yj. (3.110)

For the transverse momentum there remains one degree of freedom that can be
parametrized by the azimuthal angle φj :
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pxj = pTj cosφj; pyj = pTj sinφj. (3.111)

The 4-momentum pµ
j of a particle j of mass m is then given by

pµ
j =




mTj cosh yj

pTj cosφj

pTj sinφj

mTj sinh yj


 . (3.112)

The advantage of this parametrization is that its behavior under Lorentz transformation
along the z axis is quite simple since the transverse momentum, the transverse mass and
the angle φj are invariant and the rapidity is additive under boosts along the z axis.

This parametrization is implemented in the C++ class Fourmomentum and all mo-
menta, its components and the Bjorken variables in Phasespace which I adapted from
[41].

Phase space parametrization

For the parametrization of a phase of n final state particles one needs 3n−2 variables as
two Bjorken variables are given and one can exploit the global momentum conservation
and on-shell conditions for the final state particles:

n 4-momenta 4n
2 Bjorken variables x1 and x2 2
energy-momentum conservation −4
n on-shell conditions for final state particles n

degrees of freedom 3n− 2

The phase space for n = 4 final state leptons is thus 10 dimensional. Since the
integration is performed by a Monte Carlo algorithm, 10 independent random variables
will be generated. Therefrom, the set of momenta for the calculation of the amplitude
and the weight of the phase space point for the Monte Carlo integration are derived.

Decomposition of the phase space

Before calculating the momenta of the phase space, I will explain a possible decomposi-
tion of the phase space into three subspaces that makes the calculation more clearly. In
general, every n-particle invariant phase space with one massive intermediate particle
decaying into j particles p1 . . . pj factorizes to

dΦn(pin; p1 . . . pn) = dΦn−j+1(pin; q, pj+1 . . . pn)
dq2

2π
dΦj(q; p1 . . . pj) (3.113)
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with invariant mass of decay products

q2 =

(
j∑

i=1

Ei

)2

− |
j∑

i=1

~pi|2. (3.114)

For a process with two massive intermediate particles, the phase space can be decom-
posed into

dΦ4(p1, p2; p5, p6, p7, p8) = dΦ2(p1, p2; p3, p4)
dp2

3

2π
dΦ2(p3; p5, p6)

dp2
4

2π
dΦ2(p4; p7, p8).

(3.115)

Moreover, the factors 1
(p2

i −m2)2+(mΓ)2
, i = 3, 4 from the Z propagators have to be taken

into account. Altogether, the Z resonances,
(

dp2
i

2π
1

(p2
i −m2)2+(mΓ)2

)
and the phase space

factors for the gg → Z∗Z∗ process, dΦ2(p1, p2; p3, p4), as well as for the decay of both Z
bosons, dΦ2(p3; p5, p6) and dΦ2(p4; p7, p8) will be calculated below.

Z resonances

The first information that is needed for the generation of the gg → Z ∗Z∗ phase space
and the Z∗ → ll̄ decays are the invariant masses of the Z boson propagators. They
are computed in the class Zresonance. For each boson its invariant mass q2 is chosen
randomly and its weight is set according to the Breit-Wigner distribution

1

(q2 −m2)2 + (mΓ)2
. (3.116)

For small widths, i.e. Γ � m, the Breit Wigner resonance in the propagator weight can
hamper the quick convergence of the integrals and even lead to numerical instabilities.
One therefore tries to avoid this resonance in q2 by the following transformation:

x = mΓarctan

(
q2 −m2

mΓ

)
(3.117)

⇒ dq2 =
(q2 −m)2 +m2Γ2

m2Γ2
dx. (3.118)

In practice, one restricts q2 to a range [0, s] corresponding to

xmin = mΓarctan

(
q2min −m2

mΓ

)
, xmax = mΓarctan

(
q2max −m2

mΓ

)
. (3.119)

With a linear mapping
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x = (xmax − xmin)r + xmin with r ∈ [0, 1] (3.120)

the Jacobian becomes

dq2 =
(q2 −m)2 +m2Γ2

m2Γ2
dr (3.121)

and exactly cancels the Breit Wigner resonance thereby stabilizing the numerical behav-
ior of the propagator.

gg → Z∗Z∗

Now that one knows the virtualities of the incoming and outgoing particles for the
gg → Z∗Z∗ process, its momenta p1, p2, p3 and p4 can be calculated. Here, a more
general algorithm is presented allowing the generation of n outgoing particles (among
n − 1 jets and 1 residuum) from 2 ingoing particles. It is implemented in the class
TwoToJetsAndResiduum.

In the CMS of the jets and the residuum, one can calculate its maximum energies:

~̂P =

n∑

i=1

~̂pi = 0

P̂ =
∑

i

p̂i = (

n∑

i=1

Êi, 0)
T = (

√
ŝ, 0)T

⇒ P̂ · p̂j =
√
ŝÊj

⇒ Êj =
P̂ · p̂j√

ŝ
=

∑
i p̂i · p̂j√
ŝ

=
p̂2

j +
∑

i6=j p̂i · p̂j√
ŝ

=
p̂2

j + 1
2

∑
i (p̂i)

2 − 1
2

∑
i p̂

2
i√

ŝ
=
ŝ+m2

j −
∑

i 6=j m
2
i

2
√
ŝ

⇒ Êj,max =
ŝ+m2

j

2
√
ŝ
. (3.122)

The momentum of each jet can now be calculated:
In the hadron CMS, i.e. the laboratory frame, in a loop over all jets:

1. The transverse mass mTj is hyperbolically distributed in [mj , Ej,max];

2. The rapidity yj is equally distributed in [−ymax, ymax] with the maximum rapidity

ymax = arcosh
(

Ej,max

mt,j

)
;

3. The azimuthal angle φj between the jet and the beam line is equally distributed
in [0, 2π]
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4. Finally, pj is derived from mt,j, yj and φj :

pj =




mTj cosh yj√
m2

Tj −m2 cosφ
√
m2

Tj −m2 sinφ

mTj sinh yj



. (3.123)

The momentum of the residuum is then Pres = −Pjets = −∑j pj. As all momenta
are fixed now, one can calculate the movement of the parton CMS with respect to the
hadron CMS. Let y and ŷ be the rapidity of the jets and the residuum in the hadron
and parton CMS, respectively. As they are linked by a boost ycm:

y = ŷ + ycm ⇒ ycm = y − ŷ. (3.124)

One can show that

ŷmax = arsinh

√
(s−(m3+m4)2)(s−(m3−m4)2)

4s − ~p2
T

m2 + ~p2
T

(3.125)

and distribute y equally in [−ŷmax, ŷmax]. To calculate ŝ, Êjets and Êres one Lorentz
transforms to the parton CMS:

|~̂pjets|2 = p̂2
t,jets − p̂2

l,jets

= p2
t,jets − γ2(pl,jets − βEjets)

2

= p2
t,jets − γ2(pl,jets cosh ycm −Ejets sinh ycm)2 (3.126)

Êjets =
√
m2

jets + |~̂pjets|2 (3.127)

Êres =

√
m2

res + |~̂pres|2 =

√
m2

res + |~̂pjets|2 (3.128)

ŝ = ÊpCMS = Êres + Êjets

The total momentum of partons in the hadron CMS is

ptot := p1 + p2 =




EpCMS cosh ycm

0
0

EpCMS sinh yj


 (3.129)

and can be calculated from EpCMS = ÊpCMS and ycm.
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One can now compute x1 and x2:

ptot =




p0
tot

0
0
p3

tot


 = p1 + p2 = x1pa + x2pb = x1

√
s

2




1
0
0
1


+ x2

√
s

2




1
0
0
−1


(3.130)

⇒





2p0
tot√
s

= x1 + x2

2p3
tot√
s

= x1 − x2

⇒





x1 =
p0

tot+p3
tot√

s

x2 =
p0

tot−p3
tot√

s

(3.131)

⇒
{
p1 = x1pa

p2 = x2pb
. (3.132)

Decays of the Z bosons

With the momentum of the Z boson p3 having been calculated, the momenta of the
decay products p5 and p6 will now be computed in the class TwoBodyDecay. In the CMS
of the decaying Z boson:

p3 = p5 + p6 = (E5 +E6, 0)
T = (

√
s3, 0)

T (3.133)

Therefrom, one derives E5:

(p5 + p6) · p5 =
√
s3E5

⇒ E5 =
p2
5 + p5 · p6√

s

=
1
2s3 + 1

2m
2
5 − 1

2m
2
6√

s

=
s3 +m2

5 −m2
6

2
√
s

(3.134)

with s3 = (p5 + p6)
2 and E6 analogously:

E6 =
s+m2

5 −m2
6

2
√
s

. (3.135)

For the 3 momenta one finds

|~p5| = |~p6| =
√
E2

1 −m2
1 (3.136)

=
1

2
√
s

√
s− (m1 +m2)2)

√
s− (m1 −m2)2). (3.137)

For an isotropic distribution of the decay products, cos θ1 and cos θ2 as well as φ1 and φ2

are equally distributed. Finally, the momenta are boosted from the CMS of the decay
products to the hadron CMS, i.e. the laboratory frame.
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Monte Carlo integration

In the last subsection, I have shown how to parametrize the momenta pj and hence
the Feynman amplitude square |M|2 and the invariant phase space dΦ by a set of ten
random variables {ri}10

i=1. As these variables are equally generated in [0, 1] it is possible
to perform a Monte Carlo integration over a 10 dimensional hypercube. The integrand
is composed of three factors,

dσ=|M(p1, p2; p5, p6, p7, p8)|
2

| {z }
(2π)

4

0

@
Y

f

d3pf

(2π)3

1

2Ef

1

A
1

2E1E2|v1 − v2|

| {z }

fg(x1, Q
2
)fg(x2, Q

2
)

| {z }

dsigma= ampSqr weight isp

, (3.138)

where the δ function is implicit in the phase space parametrization.
The total cross section σ is obtained as integral over the hypercube while the distri-

butions dσ
dx are obtained as histograms of the quantity x (cf. A.4).

So far, the calculation has been performed in natural units with /h = c = 1, leading to
cross sections with the dimension of an energy. To get cross sections with the dimension
of an area, one finally multiplies with the factor

(~c)2 = 3.893796623 · 108 pb

GeV2
. (3.139)

3.3.5. Checks II

Comparison with gg →WW

For gluon-induced WW backgrounds, there exists a “pret-à-porter” program, GG2WW

[42, 43] for the process gg → W+W− → (lν̄)(l̄′ν ′). As the diagrams for gg → W+W−

(cf. fig. 3.10) are topologically very similar to the gg → Z ∗Z∗ diagrams, the computation
can be checked by compensating all remaining differences in the diagrams and then
comparing the results, for example the total cross sections. They should be equal up to
the accuracy of the Monte Carlo integration.

The necessary changes affect the qq̄Z couplings in the box amplitude,

−iγµ(gv − gAγ5), (3.140)

that are changed to qq̄′W couplings

−i g√
2
γµ 1 − γ5

2
. (3.141)

Furthermore, the same couplings appear in the leptonic currents

Jν3
3 =

1

2
v̄(p6)γ

µ3(gV − gAγ5)u(p5), (3.142)

Jν4
4 =

1

2
v̄(p8)γ

µ4(gV − gAγ5)u(p7) (3.143)
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Figure 3.10.: For the process gg →W+∗W−∗ there exist only 6 box diagrams; contribu-
tions from triangle diagrams vanish, cf. [42, 43]

that are changed to

Jν3
3 =

1

2
v̄(p6)

g√
2
γµ3

1 − γ5

2
u(p5), (3.144)

Jν4
4 =

1

2
v̄(p8)

g√
2
γµ4

1 − γ5

2
u(p7) (3.145)

The Z boson mass and width, appearing for example in the propagators for both Z
bosons, are changed to W boson mass and width, respectively.

The diagrams are now formally equivalent, but in the gg → W +W− calculation there
are only half as many diagrams (compare 3.10 with 3.3). Taking into account this factor
of 1

2 on the amplitude level and the factor for the Bose symmetry of the Zs, the total
cross sections of both calculations for the massless case are in excellent agreement.

For the massive case, the qq̄′W couplings give rise to different flavors in the quark
loop. But as the only distinction between the quarks of different flavors is the mass, since
other quantum numbers have no effect in the qq̄ ′W couplings, it suffices to degenerate
the bottom and top mass. Then, the agreement of the results of both computations is
again excellent.

limit: massive → massless case

Another strong check is possible within our calculation. Consistency of the massless
and massive case demand that the contributions for one quark generation agree in the
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limit mq → 0. Since some of the basis functions occurring for the massive case are IR
divergent when setting the masses to 0, one cannot just set mb = mt = 0. Instead, one
can extrapolate the behavior for small masses to the limit mb = mt → 0. The result
from the massive case in this limit and the result from the massless case then agree.
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3.4. Results

To show the potentials of my program, I will present some total cross sections and dis-
tributions of various observables. This chapter is not meant to present a comprehensive
analysis, but to give an impression of the dynamics of the gg → Z ∗Z∗ → (e−e+)(µ−µ+)
background.

I therefore calculated the contributions of two massless and one massive generation of
quarks with the bottom and top quark masses being 4.4 and 178GeV, respectively. For
the parton density functions I applied the CTEQ6M set from the Les Houches Accord
Parton Density Functions (LHAPDF) [31]. The strong coupling αs has been evaluated
at the Z mass scale, also via the LHAPDF routines. As electroweak parameters, the
Fermi coupling GF = 1.16639 · 10−5 GeV−2, the W mass mW = 80.419GeV and the Z
mass mZ = 91.188GeV have been given as input. Therefrom, the weak mixing angle
θW and the fine structure constant α have been derived as sin2 θW = 1−

(
mW
mZ

)2 ≈ 0.222

and α =
√

2
π GFmW sin2 θW ≈ 1/132.507, respectively. The mass of the Higgs boson has

been set to 200GeV to be above the threshold for Z production.

3.4.1. The total cross section

At first, I compare the contributions from three processes to the total cross sections:

• the gluon-induced Higgs signal;
• continuous ZZ production background from qq̄ annihilation;
• continuous ZZ production background from gluon fusion;

As already stated in the previous chapter, the cancellation of as many Gram determi-
nants as possible leads to such a numerically stable solution that a technical cut on
the transverse Z momenta of pTZ > 4GeV was sufficient. The contributions from the
different processes can be found in table 3.1

pp→ Z∗Z∗ → (ll̄)(l′ l̄′) [fb]

Higgs gg Higgs + gg

6.803 9.538 16.81

Table 3.1.: Total cross sections form the Higgs signal, the gg background, qq̄ annihilation
background in LO and NLO and from both, Higgs signal and gluon fusion
background.

3.4.2. Distributions

Invariant mass distributions of 4 leptons

The most obvious observable for Higgs searches is the invariant mass of both Z bosons
which is identical to the invariant mass of the four leptons in the final state. As the
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Figure 3.11.: Invariant mass distribution of all 4 leptons dσ
dm4l

with a Higgs mass of mH =

200GeV/c2. signal: black (dotted), background from gluon fusion: blue
(dashed), signal and gluon fusion background: red (solid)

electrons and positrons as well as the muons and antimuons can be detected, it is ex-
perimentally easily accessible. In figure 3.11, the mass peak of the Higgs boson can be
clearly identified. The background increases already for invariant masses below 2mZ due
to the finite width of the Z bosons.

Distributions of intermediate Z bosons

The transverse momentum distribution of the Z bosons (fig. 3.12) shows an interesting
feature, since the distributions for the signal and the background are peaked at different
values. While the distribution of the Z bosons from the decay of the Higgs boson has
a maximum at about 40GeV, the distributions of the Z bosons produced in the quark
box has a smaller maximum at about 10GeV transverse momenta and is less sharply
peaked.

Figure 3.12.: Rapidity distribution dσ
dyZ

(left) and transverse momentum distribution
dσ

dpTZ
of one Z boson. signal: black (dotted), background from gluon fusion:

blue (dashed), signal and gluon fusion background: red (solid)

The invariant mass distribution (3.13) does not seem exceptional, one observes the Z
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Figure 3.13.: Invariant mass distribution dσ
dmZ

of one Z boson. signal: black (dotted),
background from gluon fusion: blue (dashed), signal and gluon fusion back-
ground: red (solid)

mass peaks. In a logarithmic representation, one sees that the signal falls faster above
the Z resonance than the background and the sum of both thus consists effectively only
of the background.

Distributions of single leptons

The leptons both from the Higgs signal process and from the gluon-induced background
are produced centrally in terms of pseudorapidity distribution (fig. 3.14) and less leptons
are produced with higher transverse momenta (fig. 3.15). For the signal, the distribution
almost vanishes for pT l > 80GeV/c2 while for the background there are also leptons with
higher transverse momenta. This can be understood since already for the Z bosons the
transverse momentum distribution extends to higher momenta (cf. 3.12).

Figure 3.14.: Pseudorapidity distribution dσ
dηl

of one final state lepton, assuming a Higgs

mass of mH = 200GeV/c2. signal: black (dotted), background from gluon
fusion: blue (dashed), signal and gluon fusion background: red (solid)
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Figure 3.15.: Transverse momentum distribution dσ
dpTl

of one final state lepton, assuming

a Higgs mass of mH = 200GeV/c2. signal: black (dotted), background
from gluon fusion: blue (dashed), signal and gluon fusion background: red
(solid)

Relative distributions of 2 leptons

I will now present some distributions for the relative orientation of two leptons which are
emitted from the same Z boson. The production of leptons with smaller differences ∆η ll

in pseudorapidity (fig. 3.16 (left)) is more likely than with larger differences. The angle
∆Φll tends generally to larger values. The two leptons are thus most often produced
nearly back to back since Z bosons that are boosted strongly with respect to the lab
frame are very unlikely (cf. fig. 3.12).

Figure 3.16.: Distribution of the difference in pseudorapidities ∆η (left) and of the az-
imuthal opening angle ∆φ (right) of two leptons from the same Z, dσ

d∆η .
signal: black (dotted), background from gluon fusion: blue (dashed), signal
and gluon fusion background: red (solid)

For the distance ∆Rll defined by

∆Rll =
√

(∆η)2 + (∆φ)2 (3.146)

this difference shows up again, since the Higgs signal again peaks at smaller distances
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∆Rll than the gg background (fig 3.18).

Figure 3.17.: Distribution of the polar angle θll between two leptons from one Z boson,
dσ

d cos θ . signal: black (dotted), background from gluon fusion: blue (dashed),
signal and gluon fusion background: red (solid)

Figure 3.18.: Distribution of the distance ∆R, dσ
dRll

of two leptons from one Z. signal:
black (dotted), background from gluon fusion: blue (dashed), signal and
gluon fusion background: red (solid)
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4. Summary

In this work, I calculate the loop-induced production of four charged leptons in gluon
fusion via two off-shell Z bosons.

I started by reviewing the fundamentals of electroweak SU(2)L×U(1) theory, with the
lepton matter fields composed of a left-handed doublet and a right-handed singlet and the
gauge fields introduced by postulating non-Abelian gauge invariance. Generating mass
terms, both for gauge bosons and leptons, can be explained by a spontaneous breaking of
gauge symmetry achieved by introduction of a doublet of complex scalar fields with non-
vanishing vacuum expectation value. In the end, only one degree of freedom remains,
the physical Higgs field. Demanding the known electric couplings leads to four gauge
fields for electroweak interactions: Two charged ones, the W + and W− bosons, as well
as two neutral ones, the Z boson and the photon.

Afterwards, I briefly provided insight into Higgs boson searches at hadron collid-
ers. After reviewing constraints on the Higgs mass, both from experimental results and
from theoretical considerations, the fundamental production and decay modes were pre-
sented, finding that gluon fusion is the most important production channel for energies
in the TeV range. I explained that for Higgs boson masses above 180GeV, the decay
H → Z∗Z∗ is a favored channel since it allows for a reconstruction of the Higgs boson
mass. I concluded this introductory chapter by presenting the main backgrounds to this
signal process both at the Tevatron and the Large Hadron Collider. Here, I pointed
out that besides the known quark-antiquark annihilation, qq̄ → Z ∗Z∗, the continuum Z
production from gluon fusion is important.

After this phenomenological considerations, I calculated the contribution from quark-
antiquark annihilation, qq̄ → ZZ, in LO. Firstly, I introduced the parton model and
presented some basic techniques. I showed a simple parametrization for two particle
phase space and calculated both the differential and the total partonic cross section and
finally obtained the total hadronic cross section.

Thereafter, I attended to the loop induced process gg → Z ∗Z∗ with off-shell Z bosons.
Presenting all double-resonant box and triangle topologies, I showed that only the boxes
survive. Single resonant diagrams were shown to vanish, too, mainly due to Furrys
theorem and cancellations between the remaining diagrams.

In the following I dealt with contributions from double-resonant diagrams. The deter-
mination of the tensor structure started by decomposing the scattering tensor Mµ1µ2µ3µ4

into Lorentz covariants. After contractions with the gluon polarization vectors and
the leptonic currents from Z boson decay to charged leptons, I explicitly showed the
gauge invariance of the Feynman amplitude. Then, I introduced helicity amplitudes
thus achieving further simplifications to a linear combination of nine independent tensor
structures.
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I then cited a technique for reduction of tensor and scalar integrals. I could define a set
of basis functions which remain when this scheme is applied to the amplitude. I showed
by pinching of the diagrams that only (n+ 2)-dimensional scalar boxes, n dimensional
scalar triangles and n-dimensional scalar bubbles are present in the amplitude.

Afterwards, I presented the implementation in detail. Since the computation is an-
alytical as long as possible it can be modified easily to cover similar processes like
gg → Z∗γ∗, γ∗γ∗. I started with generating the amplitude for each diagram and per-
forming manipulations separately for both independent helicity amplitudes. They were
finally expressed in terms of tensor structures and scalar integrals. Their coefficients were
then simplified and the contributions from all diagrams were added. I then performed a
first check one the amplitude. From Bose and CP invariance of the amplitude I derived
relations of the coefficients, which I checked with two programs. For calculating cross
sections, I presented a phase space parametrization which is suitable for Monte Carlo
integration. As a second kind of check, I tested the consistency of my program and
its compatibility with another program for a similar process, and again found excellent
agreement.

Finally, to show the ability of my program, I presented the total cross section for
the gg → Z∗Z∗ → (ll̄)(l′ l̄′) background process and compared it to the Higgs signal
process gg → H → Z∗Z∗ → (ll̄)(l′ l̄′). Moreover, I showed a number of distributions of
observables which can be of interest in Higgs searches.
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A. Appendix

A.1. Spinor helicity formalism

Massless spinors

The massless spinors u(p) and v(p) satisfy the Dirac equation

/p u(p) = /p v(p) = ū(p) /p = v̄(p) /p = 0. (A.1)

The helicity parts can be obtained by projection:

u±(p) :=
1 ± γ5

2
u(p), ū±(p) := ū(p)

1 ∓ γ5

2
, (A.2)

v±(p) :=
1 ∓ γ5

2
v(p), v̄±(p) := v̄(p)

1 ± γ5

2
, (A.3)

so that different subspaces are orthogonal:

1 ∓ γ5

2
u±(p) =

1 ± γ5

2
v±(p) = 0, (A.4)

ū±(p)
1 ± γ5

2
= v̄±(p)

1 ∓ γ5

2
= 0. (A.5)

Following [33] and [44], one introduces the bra-ket notation:

|p±〉 := u±(p) = v∓(p), (A.6)

〈p±| := ū±(p) = v̄∓(p) (A.7)

with the abbreviations

〈pq〉 := 〈p−|q+〉, (A.8)

[pq] := 〈p+|q−〉. (A.9)

(A.10)

The spinors are normalized as usual:

〈p±|γµ|p±〉 = 2pµ. (A.11)
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I will now cite some relations that will be of use calculating polarization vectors and
leptonic currents:

〈p±|q±〉 =

(
〈p±|

1 ∓ γ5

2

)
|q±〉 = 〈p±|

1 ∓ γ5

2
|q±〉

︸ ︷︷ ︸
0

= 0, (A.12)

|q+〉〈p+ | = 〈p+ |γµ|q+〉γµ
1

4
(1 − γ5), (A.13)

⇒ |p±〉〈p±| =
1 ± γ5

2
/p, (A.14)

〈p−|p+〉 = 〈p+|p−〉 = 0, (A.15)

〈p−|q+〉 = −〈q−|p+〉, (A.16)

〈p± |γµ1 . . . γµ2n+1 |q±〉 = 〈q ∓ |γµ2n+1 . . . γµ1 |p∓〉, (A.17)

〈p+ |γµ|q+〉〈r − |γµ|s−〉 = 2 [ps] 〈qr〉, (A.18)

|〈pq〉|2, = 2p · q (A.19)

〈pq〉∗ = 〈p−|q+〉∗ = 〈q + |p−〉, (A.20)

〈pq〉 = 〈p−|q+〉 = −〈q − |p+〉 = −〈qp〉, (A.21)

[pq] = 〈p+|q−〉 = −〈pq〉∗. (A.22)
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Polarization vectors

One can introduce polarization vectors by referring to another momentum vector q
(q2 = 0):

ε+µ (p, q) :=
〈q−|γµ|p−〉√

2〈qp〉
, (A.23)

ε−µ (p, q) :=
〈q+|γµ|p+〉√

2〈qp〉∗
. (A.24)

This reference momentum can now be chosen freely without changing amplitude with this
polarization vector. For proof, one shows that the difference between two polarization
vectors for the same momentum k but different reference vectors q and p is proportional
to the momentum k:

ε+µ (k, q) − ε+µ (k, p) =
〈q−|γµ|p−〉√

2〈qk〉
− 〈p−|γµ|p−〉√

2〈pk〉

=
−〈q−|γµ|p−〉〈p−|p+〉 + 〈p−|γµ|p−〉〈p−|q+〉√

2〈pk〉〈qk〉

=
−〈q−|γµ

1−γ5

2
/k|p+〉 + 〈p−|γµ

1−γ5

2
/k|q+〉√

2〈pk〉〈qk〉

=
−〈q−|1+γ5

2 γµ/k|p+〉 + 〈p−|1+γ5

2 γµ/k|q+〉√
2〈pk〉〈qk〉

=
−〈q−|γµ/k|p+〉 + 〈p−|γµ/k|q+〉√

2〈pk〉〈qk〉

=

√
2〈p−|kµ|q+〉
〈pk〉〈qk〉

=

√
2〈pq〉

〈pk〉〈qk〉kµ

⇒ ε+µ (k, q) = ε+µ (k, p) +

√
2〈pq〉

〈pk〉〈qk〉kµ. (A.25)

Given gauge invariance and thus the Ward identity, the difference must vanish. As the
reference momentum can thus be chosen freely, it will be suppressed as argument from
now on. Then, in a somehow shorter notation:
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ε+µ (p1) :=
〈2−|µ|1−〉√
2〈2−|1+〉

, (A.26)

ε−µ (p1) :=
〈2+|µ|1+〉√
2〈2+|1−〉

, (A.27)

ε+µ (p2) :=
〈1−|µ|2−〉√
2〈1−|2+〉

, (A.28)

ε−µ (p2) :=
〈1+|µ|2+〉√
2〈1+|2−〉

. (A.29)

For the +− helicity amplitude, one calculates

ε+1 · ε+2 = ε+µ(p1)ε
+
µ (p2)

=
〈2−|µ|1−〉√
2〈2−|1+〉

〈1−|µ|2−〉√
2〈1−|2+〉

=
1

2〈21〉〈12〉
〈21〉∗
〈21〉∗ 〈2−|µ|1−〉〈1−|µ|2−〉

= − 1

2s

[12]

〈12〉 |2−〉〈2−|γ
µ|1−〉〈1−|γµ

= − 1

2s

[12]

〈12〉 tr
[
1−γ5

2
/p2
γµ 1−γ5

2
/p1
γµ

]

= − 1

2s

[12]

〈12〉

(
1

2
tr
[
/p2
γµ
/p1
γµ

]
− 1

2
tr
[
γ5/p2

γµ
/p1
γµ

])

= − 1

2s

[12]

〈12〉


−tr

[
/p2/p1

]

︸ ︷︷ ︸
−4p1·p2=−2s

+tr
[
γ5/p2/p1

]

︸ ︷︷ ︸
=0




=
[12]

〈12〉 (A.30)

and
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ε+µ(p1)ε
+ν(p2) =

〈2−|µ|1−〉√
2〈2−|1+〉

〈1−|ν|2−〉√
2〈1−|2+〉

=
1

2

1

〈12〉
〈21〉∗

〈21〉〈21〉∗ 〈2−|µ|1−〉〈1−|ν|2−〉

= − 1

2s

[12]

〈12〉 |2−〉〈2−|γ
µ|1−〉〈1−|γν

= − 1

2s

[12]

〈12〉 tr
(

1 + γ5

2
/p2
γµ 1 + γ5

2
/p1
γν

)

= − 1

4s

[12]

〈12〉
(
tr
(
/p2
γµ
/p1
γν
)

+ tr
(
γ5/p2

γµ
/p1
γν
))

= −1

s

[12]

〈12〉 (pµ
1p

ν
2 + pν

1p
µ
2 − p1 · p2g

µν − ε(p1, γ
ν , p2, γ

µ)) , (A.31)

where [12]
〈12〉 is a pure phase factor. To substitute it in A.31, one contracts this relation

with p3µp3ν :

ε+µ(p1)ε
+ν(p2)p3µp3ν

= ε+1 · p3 ε+2 · p3

= −1

s

[12]

〈12〉


p1 · p3 p2 · p3 + p1 · p3 p2 · p3 − p1 · p2p

2
3 − ε(p1, p3, p2, p3)︸ ︷︷ ︸

=0




= −1

s

[12]

〈12〉

(
2
u− s3

2

t− s3
2

− s

2
s3

)

= − 1

2s

[12]

〈12〉
(
ut− us3 − ts3 + s23 − ss3

)

= − 1

2s

[12]

〈12〉


tu− s3 (u− t− s3 − s)︸ ︷︷ ︸

s4




= − 1

2s

[12]

〈12〉 (tu− s3s4)

⇒ ε+1 · ε+2 =
[12]

〈12〉 = − 2s

tu− s3s4
ε+1 · p3 ε+2 · p3. (A.32)

For the +− amplitude one finds
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ε+1 · ε−2 = ε+µ(p1)ε
−
µ (p2)

=
〈2−|µ|1−〉√
2〈2−|1+〉

〈1+|µ|2+〉√
2〈1+|2−〉

=
1

2〈21〉〈21〉∗ 〈2−|γµ|1−〉〈1+|γµ|2+〉︸ ︷︷ ︸
eq.A.18

= 2 [11]︸︷︷︸
=0

〈22〉︸︷︷︸
=0

= 0 (A.33)

and

ε+µ(p1)ε
−ν(p2)

=
〈2−|µ|1−〉√
2〈2−|1+〉

〈1+|ν|2+〉√
2〈1+|2−〉

=
〈2−|µ|1−〉√
2〈2−|1+〉

〈2−|ν|1−〉√
2〈1+|2−〉

=
1

2

1

〈21〉
1

[12]
〈2−|µ|1−〉

1︷ ︸︸ ︷
〈1−|/p3|2−〉

2

〈1−|/p3|2−〉2
〈2−|ν|1−〉

=
1

2s

1

〈1−|/p3
|2−〉2

|2−〉〈2−|γµ|1−〉〈1−|/p3︸ ︷︷ ︸
tr

h
1
−

γ5

2 /p
2
γµ

1
−

γ5

2 /p
1
/p
3

i

|2−〉〈2−|γν |1−〉〈1−|/p3︸ ︷︷ ︸
tr

h
1
−

γ5

2 /p
2
γν

1
−

γ5

2 /p
1
/p
3

i

=
1

2s

1

〈1−|/p3
|2−〉2

〈2−|/p3
|1−〉

〈2−|/p3
|1−〉

tr

[
/p1/p3

1−γ5

2
/p2
γµ 1−γ5

2

]
tr

[
/p1/p3

1−γ5

2
/p2
γν 1−γ5

2

]

=
1

2s

1

〈1−|/p3
|2−〉〈2−|/p3

|1−〉︸ ︷︷ ︸
= 1

ut−s3s4

〈2−|/p3
|1−〉

〈1−|/p3
|2−〉

(
1

2
tr
[
/p1/p3/p2γ

µ
]
− 1

2
tr
[
γ5/p1/p3/p2

γµ
])

·
(

1

2
tr
[
/p1/p3/p2

γµ
]
− 1

2
tr
[
γ5/p1/p3/p2γ

ν
])

=
tr−[/p1/p3/p2

γµ]tr−[/p1/p3/p2
γν ]

2s(ut− s3s4)

〈2−|/p3
|1−〉

〈1−|/p3
|2−〉

(A.34)

with tr− defined by

tr−[γµγνγργσ] :=
tr [γµγνγργσ] − tr [γ5γ

µγνγργσ]

2
(A.35)

and where it has been used that
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〈1−|/p3
|2−〉〈2−|/p3

|1−〉 = tr

[
1 − γ5

2
/p1/p3

1 − γ5

2
/p2/p3

]

=
1

2
tr
[
/p1/p3/p2/p3

]
− 1

2
tr
[
γ5/p1/p3/p2/p3

]

︸ ︷︷ ︸
εp1p3p2p3=0

= 2 (p1 · p3 p2 · p3 − p1 · p2 p3 · p3 + p1 · p3 p2 · p3)

= 2

(
2
u− s3

2

t− s3
2

− s

2
s3

)

= ut− us3 − ts3 + s23 − ss3

= tu− s3 (u+ t− s3 + s)︸ ︷︷ ︸
s4

= ut− s3s4 (A.36)

(A.37)

with
〈2−|/p3

|1−〉
〈1−|/p3

|2−〉 being a pure phase factor.

A.2. Leptonic currents

With the f f̄Z coupling

f̄

f

Z = −i e
cos θW sin θW

γµ
(
T f

3
1−γ5

2 −Qf sin2 θW

)

(A.38)

the leptonic current J3µ is

J3µ = v̄(p6)γµ

(
−1

2

1 − γ5

2
+ sin2 θW

)
u(p5) (A.39)

when extracting the prefactor of −i e
cos θW sin θW

. The first term in the bracket contributes
with

v̄(p6)γµ
1 − γ5

2
u(p5) = v̄(p6)γµ

1 − γ5

2
u−(p5)

= v̄(p6)
1 + γ5

2
γµu−(p5)

= v̄+(p6)γµu−(p5)

= 〈6 − |µ|5−〉. (A.40)

It can be extended and then reads
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〈6 − |µ|5−〉 = 〈6 − |µ|5−〉〈5 − |2+〉〈2 + |6−〉
〈5 − |2+〉〈2 + |6−〉

=
1√

s25
√
s26

tr [|5−〉〈5 − |2+〉〈2 + |6−〉〈6 − |µ]

=
1√

s25
√
s26

tr

[
1 − γ5

2
/p5

1 + γ5

2
/p2

1 − γ5

2
/p6
γµ

]

=
1√

s25
√
s26

tr

[
1 − γ5

2
/p5

(
1 + γ5

2

)2

︸ ︷︷ ︸
=1

/p2/p6
γµ

]

=
1

2
√
s25

√
s26

(
tr
[
/p5/p2/p6

γµ

]
− tr

[
γ5/p5/p2/p6

γµ

])
(A.41)

up to a phase factor.
The second term in the bracket contributes with

v̄(p6)γµu(p5) = 〈6 + |µ|5+〉︸ ︷︷ ︸
〈5−|µ|6−〉

+〈6 − |µ|5−〉, (A.42)

where

〈5 − |µ|6−〉 =
1

2
√
s25

√
s26

(
tr
[
/p6/p2/p5

γµ

]
− tr

[
γ5/p6/p2/p5

γµ

])
(A.43)

=
1

2
√
s25

√
s26

(
tr
[
/p5/p2/p6

γµ

]
+ tr

[
γ5/p5/p2/p6

γµ

])
(A.44)

and thus

v̄(p6)γµu(p5) =
1√

s25
√
s26

tr
[
/p5/p2/p6

γµ

]
. (A.45)

Putting together the pieces gives

J3µ = −1

2
v̄(p6)γµ

1 − γ5

2
u(p5) + sin2 θW v̄(p6)γµu(p5)

= −
tr
[
/p5/p2/p6

γµ

]
− tr

[
γ5/p5/p2/p6

γµ

]

4
√
s25

√
s26

+ sin2 θW

tr
[
/p5/p2/p6

γµ

]

√
s25

√
s26

=
(4 sin2 θW − 1)tr

[
/p5/p2/p6

γµ

]
+ tr

[
γ5/p5/p2/p6

γµ

]

4
√
s25

√
s26

(A.46)
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and analogously

J4ν =
(4 sin2 θW − 1)tr

[
/p7/p1/p8

γν

]
+ tr

[
γ5/p7/p1/p8

γν

]

4
√
s17

√
s18

. (A.47)
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A.3. Basis functions

T2G1C1, T2G1C2, T2G1C3, T2G1C4

��
��@@

0

��0

��

s3

@@ s4

s

u

BOXd6(u, s, 0, s4, s3, 0, m
2, m2, m2, m2)

��
��

s
��
s3

@@ s4

��
��
u

��0 @@ s4

TRId4(s4, s3, s, m
2, m2, m2) TRId4(0, s4, u, m

2, m2, m2)

��
��@@

0

��0

s ��
��@@

0
��
s3

u

TRId4(0, s, 0, m2, m2, m2) TRId4(u, s3, 0, m
2, m2, m2)

��
��

s s ��
��
u

u

��
��@@

s4

@@ s4

BUBd4(s, m2, m2) BUBd4(u, m2, m2) BUBd4(s4, m
2, m2)

��
��

��s3

��
s3

��
��@@

0

@@ 0

��
��

��0

��
0

BUBd4(s3, m
2, m2) BUBd4(0, m2, m2) BUBd4(0, m2, m2)

Figure A.1.: List of basis functions for the diagrams T2G1C1, T2G1C2, T2G1C3 and
T2G1C4. For the massive quark generation, set m = mt for T2G1C1 and
T2G1C2 and m = mb for T2G1C3 and T2G1C4. For the massless quark gen-
erations set m = 0
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T3G1C1, T3G1C2, T3G1C3, T3G1C4

��
��@@

0

��0

��
s4

@@ s3

s

t

BOXd6(t, s, 0, s3, s4, 0, m
2, m2, m2, m2)

��
��

s
��
s4

@@ s3

��
��
t

��0 @@ s3

TRId4(s4, s3, s, m
2, m2, m2) TRId4(0, s3, t, m

2, m2, m2)

��
��@@

0

��0

s ��
��@@

0
��
s4

t

TRId4(0, s, 0, m2, m2, m2) TRId4(t, s4, 0, m
2, m2, m2)

��
��

s s ��
��
t

t

��
��@@

s3

@@ s3

BUBd4(s, m2, m2) BUBd4(t, m2, m2) BUBd4(s3, m
2, m2)

��
��

��s4

��

s4

��
��@@

0

@@ 0

��
��

��0

��

0

BUBd4(s4, m
2, m2) BUBd4(0, m2, m2) BUBd4(0, m2, m2)

Figure A.2.: List of basis functions for the diagrams T3G1C1, T3G1C2, T3G1C3 and
T3G1C4. For the massive quark generation, set m = mt for T3G1C1 and
T3G1C2 and m = mb for T3G1C3 and T3G1C4. For the massless quark gen-
erations set m = 0
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T4G1C1, T4G1C2, T4G1C3, T4G1C4

��
��@@

s3

��0

��
0

@@ s4

t

u

BOXd6(u, t, 0, s4, 0, s3, m
2, m2, m2, m2)

��
��

t
��

0

@@ s4

��
��
u

��0 @@ s4

TRId4(s4, 0, t, m
2, m2, m2) TRId4(0, s4, u, m

2, m2, m2)

��
��@@

s3

��0

t ��
��@@

s3
��

0

u

TRId4(0, t, s3, m
2, m2, m2) TRId4(u, 0, s3, m

2, m2, m2)

��
��

t t ��
��
u

u

��
��@@

s3

@@ s3

BUBd4(t, m2, m2) BUBd4(u, m2, m2) BUBd4(s3, m
2, m2)

��
��

��0

��

0

��
��@@

s4

@@ s4

��
��

��0

��

0

BUBd4(0, m2, m2) BUBd4(s4, m
2, m2) BUBd4(0, m2, m2)

Figure A.3.: List of basis functions for the diagrams T4G1C1, T4G1C2, T4G1C3 and
T4G1C4. For the massive quark generation, set m = mt for T4G1C1 and
T4G1C2 and m = mb for T4G1C3 and T4G1C4. For the massless quark gen-
erations set m = 0
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All functions for massive quark generation

f(1) = BOXd6(u, s, 0, s4, s3, 0, m
2
t, m

2
t, m

2
t, m

2
t)

f(2) = BOXd6(t, s, 0, s3, s4, m
2
t, m

2
t, m

2
t, m

2
t)

f(3) = BOXd6(t, u, s3, 0, s4, 0, m
2
t, m

2
t, m

2
t, m

2
t)

f(4) = TRId4(s4, s3, s, m
2
t, m

2
t, m

2
t)

f(5) = TRId4(u, s3, 0, m
2
t, m

2
t, m

2
t)

f(6) = TRId4(0, s, 0, m2t, m
2
t, m

2
t)

f(7) = TRId4(0, s4, u, m
2
t, m

2
t, m

2
t)

f(8) = TRId4(t, s4, 0, m
2
t, m

2
t, m

2
t)

f(9) = TRId4(0, s3, t, m
2
t, m

2
t, m

2
t)

f(10) = BUBd4(s, m2t, m
2
t)

f(11) = BUBd4(u, m2t, m
2
t)

f(12) = BUBd4(t, m2t, m
2
t)

f(13) = BUBd4(s3, m
2
t, m

2
t)

f(14) = BUBd4(s4, m
2
t, m

2
t)

f(15) = BUBd4(0, 0, m2t)
f(16) = BOXd6(u, s, 0, s4, s3, 0, m

2
b, m

2
b, m

2
b, m

2
b)

f(17) = BOXd6(t, s, 0, s3, s4, m
2
b, m

2
b, m

2
b, m

2
b)

f(18) = BOXd6(t, u, s3, 0, s4, 0, m
2
b, m

2
b, m

2
b, m

2
b)

f(19) = TRId4(s4, s3, s, m
2
b, m

2
b, m

2
b)

f(20) = TRId4(u, s3, 0, m
2
b, m

2
b, m

2
b)

f(21) = TRId4(0, s, 0, m2b, m
2
b, m

2
b)

f(22) = TRId4(0, s4, u, m
2
b, m

2
b, m

2
b)

f(23) = TRId4(t, s4, 0, m
2
b, m

2
b, m

2
b)

f(24) = TRId4(0, s3, t, m
2
b, m

2
b, m

2
b)

f(25) = BUBd4(s, m2b, m
2
b)

f(26) = BUBd4(u, m2b, m
2
b)

f(27) = BUBd4(t, m2b, m
2
b)

f(28) = BUBd4(s3, m
2
b, m

2
b)

f(29) = BUBd4(s4, m
2
b, m

2
b)

f(30) = BUBd4(0, 0, m2b)
f(31) = one

Table A.1.: List of all basis functions for the massive quark generation
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All functions for massless quark generations

f(1) = BOXd6(u, s, 0, s4, s3, 0, 0, 0, 0, 0)
f(2) = BOXd6(t, s, 0, s3, s4, 0, 0, 0, 0, 0)
f(3) = BOXd6(t, u, s3, 0, s4, 0, 0, 0, 0, 0)
f(4) = TRId4(s4, s3, s, 0, 0, 0)
f(5) = TRId4(u, s3, 0, 0, 0, 0) IR divergent
f(6) = TRId4(0, s, 0, 0, 0, 0) IR divergent
f(7) = TRId4(0, s4, u, 0, 0, 0) IR divergent
f(8) = TRId4(t, s4, 0, 0, 0, 0) IR divergent
f(9) = TRId4(0, s3, t, 0, 0, 0) IR divergent
f(10) = BUBd4(s, 0, 0)
f(11) = BUBd4(u, 0, 0)
f(12) = BUBd4(t, 0, 0)
f(13) = BUBd4(s3, 0, 0)
f(14) = BUBd4(s4, 0, 0)
f(14) = one

Table A.2.: List of all basis functions for the massless quark generations
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A.4. Monte Carlo integration

The integral of f(~x) over the n-dimensional hypercube is

z =

∫
dz =

∫
dnxf(~x) =

∫ 1

0
dx1

∫ 1

0
dx2 . . .

∫ 1

0
dxnf(x1, x2, . . . xn). (A.48)

The average is then the integral itself

f̄ =

∫
dnxf(~x)∫
dnx

=

∫
dnxf(~x) = z (A.49)

and can be estimated as the average over a limited number of samples f(~xi):

zest = f̄est = lim
N

∑N
i=1 f(~xi)

N
. (A.50)

Transforming the integration variable, one can cover arbitrary integration volumes:

z =

∫
dz =

∫
dnq|J |f(~x(~q)) =

∫
dnq|J |g(~q) =

∫
dq1

∫
dq2 . . .

∫
dqn|J |g(q1, q2, . . . qn).

(A.51)

The average and the estimated integral are then

z = f̄ =

∫
dnxf(~x)∫
dnx

=

∫
dnq|J |g(~q)∫
dnq|J | = |J |g(~q), (A.52)

zest = f̄est = lim
N

∑N
i=1 |J |g(~qi)

N
, (A.53)

where |J |g(~qi) is called the weight of the sample point ~qi.
Partial derivatives of the integral read

∂z

∂xl
=

∫ 1

0
dx1 . . .

∫ 1

0
dxl−1

∫ 1

0
dxl+1 . . .

∫ 1

0
dxnf(x1, x2, . . . xn)

=

∫ 1

0
dq1 . . .

∫ 1

0
dql−1

∫ 1

0
dql+1 . . .

∫ 1

0
dqn|J |g(q1, q2, . . . qn). (A.54)

Choosing a set of random n-dimensional vectors {~r1, ~r2 . . . ~rN} one can define a histogram
hl = {hl

1, . . . h
l
M} of M bins hl

j for the l-th dimension by
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hl
j =

∑

i

if ri,l∈[xj
l ,x

j+1
l ]

|J |g(~ri). (A.55)

hl is an estimate for ∂z
∂xl

since the summation of eq. A.55 corresponds to the integration
of eq. A.54 over all dimensions but ql.
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