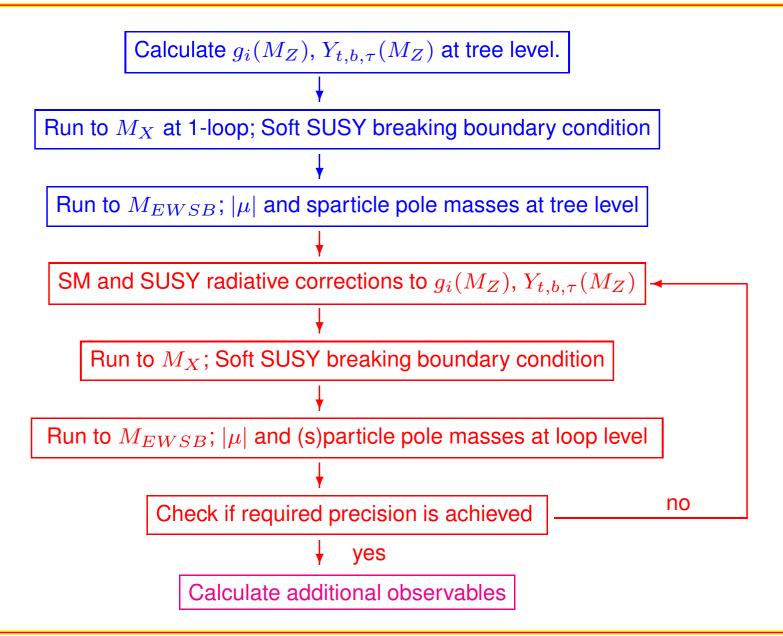


SPheno, a brief update on recent developments

Werner Porod

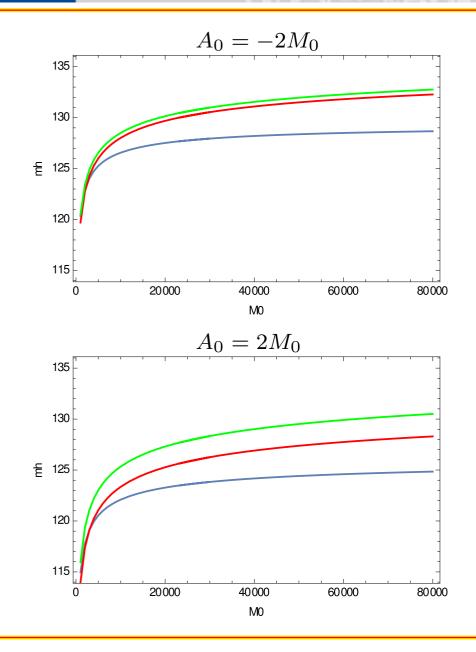
Universität Würzburg


KUTS, Heidelberg, 20-22 Jan. 2016

Julius-Maximilians-

UNIVERSITÄT

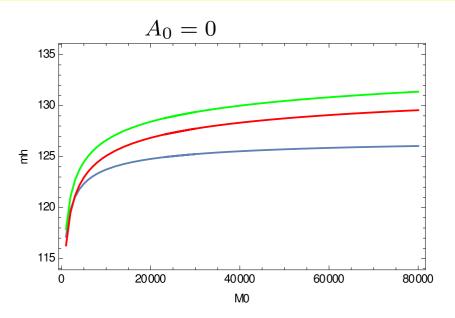
WURZBURG


calculate g_i^{SM} and Y_i^{SM} at m_Z

WURZBURG

- λ^{SM} : 1st iteration value for $m_H = 125 \text{ GeV}$ used, later iterations: calculated from $\lambda^{SM}(M_{SUSY})$ via RGE running to m_Z
- 2-loop SM-RGE up to M_{SUSY} (usually $\sqrt{m_{\tilde{t}_1}m_{\tilde{t}_2}}$ with tree-level stop masses)
- resummation of large $\tan \beta$ effects using A.Crivellin et al. arXiv:1103.4272
- from here same procedure to get soft parameters at M_{SUSY} but start SUSY RGE running, if necessary, from M_{SUSY}
- match at $M_{SUSY} m_h^{MSSM} = m_H^{SM}$ to get λ^{SM} (see also talk by Alexander Voigt) in SPheno: at the two-loop level
 - 1-loop: complete diagramatic calc. including p^2 -dep.
 - 2-loop SUSY calc.: routines from Pietro $O(\alpha_t \alpha_s + \alpha_b \alpha_s + (\alpha_t + \alpha_b)^2 + \alpha_b \alpha_\tau + \alpha_\tau^2)$
 - **2**-loop SM calc.: S.P. Martin, D.G. Robertson, arXiv:1407.4336, $O(\alpha_t \alpha_s)$ with $p^2 = 0$
 - 2-loop SM-RGE down to m_t to re-calculate m_H at the 2-loop level.

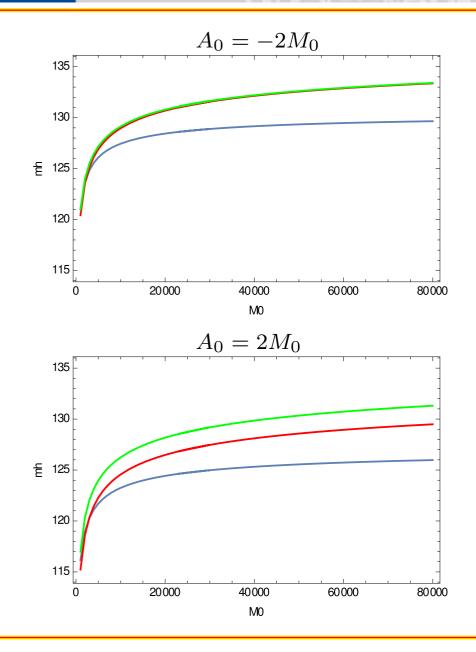
Comparision with SUSYHD 1.0.2, mSUGRA scenarios



Julius-Maximilians-

UNIVERSITÄT

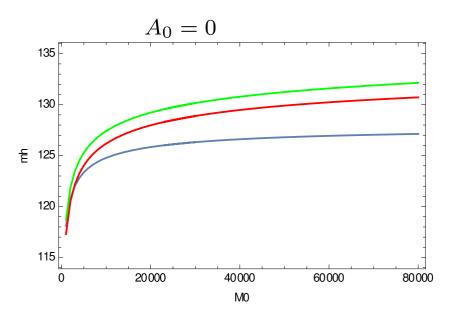
WÜRZBURG



$$\begin{split} M_{1/2} &= M_0, \tan\beta(M_{SUSY}) = 10, \mu > 0 \\ m_h: & \text{SPheno standard, but using SM} \\ \text{RGEs up to } M_{SUSY} &= \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}} \\ m_h: & \text{matching } m_h^{\text{MSSM}} = m_H^{\text{SM}} \text{ at } M_{SUSY}, \\ \text{running } \lambda^{\text{SM}} \text{ to } m_t \\ m_h: & \text{SUSYHD handing over all parameters} \\ \text{at } M_{SUSY} \end{split}$$

preliminary results

Comparision with SUSYHD 1.0.2, mSUGRA scenarios



Julius-Maximilians-

UNIVERSITÄT

WURZBURG

$$\begin{split} M_{1/2} &= M_0, \tan\beta(M_{SUSY}) = 40, \, \mu > 0 \\ m_h: & \text{SPheno standard, but using SM} \\ \text{RGEs up to } M_{SUSY} &= \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}} \\ m_h: & \text{matching } m_h^{\text{MSSM}} = m_H^{\text{SM}} \text{ at } M_{SUSY}, \\ \text{running } \lambda^{\text{SM}} \text{ to } m_t \\ m_h: & \text{SUSYHD handing over all parameters} \\ \text{at } M_{SUSY} \end{split}$$

preliminary results

- Include $O(\alpha_t^2)$ contribution to m_H^{SM}
- get an understanding of the differences between SPheno and SUSYHD results
- finish implementation of 'traditional' EFT approach at 2-loop level
- include split-SUSY
- Include some high scale motivated large hierarchies, e.g. $m_{\tilde{q}} \simeq m_{\tilde{g}} \gg m_{\tilde{t}_i}, m_{\tilde{b}_i} \gg M_1, M_2, \mu$
- ▶ however general multiple scale is not possible: even taking an effective model with 14 mass parameters (e.g. taking sfermion masses for first two generations equal but different for \tilde{q}_L , $\tilde{u}_r R$, \tilde{d}_R , \tilde{l}_L , \tilde{l}_L) gives $14! \simeq 9 \cdot 10^{10}$ mass orderings! (expect about 10^5 GB code)