

Spontaneous Symmetry Breaking

7.1 Nonlinear Sigma–Model (redux)

Consider a field in the 3×3 representation of $SU(3) \times SU(3)$ represented by a 3×3 matrix Σ . It transforms under $L \times R \in SU(3) \times SU(3)$ as

$$\Sigma \to L\Sigma R^{\dagger}$$
. (1)

Fakultät für Physik und Astronomie

Prof. Dr. Thorsten Ohl

A general Σ can be parametrized by eight fields $\{\pi_a\}_{a=1,2,\dots,8}$

$$\Sigma = e^{i\lambda_a \pi_a/v} \tag{2}$$

with v an energy scale.

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

1. Construct a SU(3) \times SU(3) convariant derivative D_{μ} with

$$D_{\mu}\Sigma \to L D_{\mu}\Sigma R^{\dagger}$$
 (3)

2. Expand the Lagrangian

$$\mathcal{L} = v^2 \operatorname{tr} \left((D_{\mu} \Sigma)^{\dagger} D^{\mu} \Sigma \right) - \frac{1}{2} \operatorname{tr} \left(F_{\mu\nu} F^{\mu\nu} \right) - \frac{1}{2\alpha} \operatorname{tr} \left(\partial^{\mu} A_{\mu} \partial^{\nu} A_{\nu} \right)$$
(4)

as a power series in π_a and compute all terms containing at most four fields.

- 3. Derive the corresponding Feynman rules:
 - (a) propagators for π_a and A^a_{μ} ,
 - (b) couplings of the π_a with itself and with the gauge field A_{μ} .
- 4. What are the masses of π_a and A^a_{μ} ?

7.2 Minima of Potentials

Consider a multiplet ϕ of fields in a real orthogonal or complex unitary representation R of a Lie group G with potential V:

•
$$G = SO(2), R = 2$$

 $V(\phi) = \frac{1}{4} (\phi^T \phi - v^2)^2$
(5)

- G = SO(3), R = 3, V as in (5)
- G = SO(4), R = 4, V as in (5)

• G = U(1), R = 1, $V(\phi) = \frac{1}{2} \left(\overline{\phi}\phi - v^2\right)^2$ (6)

•
$$G = SU(2), R = 2,$$

 $V(\phi) = \frac{1}{2} (\phi^{\dagger} \phi - v^2)^2$
(7)

- G = SU(2), R = 3, V as in (7)
- G = SU(3), R = 3, V as in (7)
- $G = \mathrm{SO}(2), R = \mathbf{2} \otimes \mathbf{2},$

$$V(\phi,\psi) = \frac{1}{2} \left(\phi^T \phi + \psi^T \psi + \alpha (\phi_1 \psi_2 - \phi_2 \psi_1) - v^2 \right)^2$$
(8)

 $(\alpha \in \mathbf{R}).$

For all these examples

- 1. show that $V(\phi)$ is invariant under G.
- 2. find the local and global minima ϕ_0 of the potentials.
- 3. using a suitable basis, determine which generators t_a of G are broken by these minima, i. e.

$$t_a \phi_0 \neq 0 \tag{9}$$

and which remain unbroken, i.e.

$$t_a \phi_0 = 0. \tag{10}$$

4. identify the Goldstone modes.