3. Problemset "Theoretical Particle Physics" May 8, 2015

Fakultät für Physik und Astronomie

Prof. Dr. Thorsten Ohl

Applications of SU(3), Representations of su(4)

3.1 SU(3) and the Harmonic Oscillator

Show that the isotropic harmonic oscillator in three dimensions

$$H = \frac{1}{2m} \sum_{i=1}^{3} p_i^2 + \frac{\omega^2}{2m} \sum_{i=1}^{3} x_i^2$$
(1)

has a SU(3) \supset SO(3) symmetry. Identify the degenerate SU(3) multiplets 1, 3, 6 and 10 in the subspace of the Hilbert space corresponding to low occupation number.

3.2 Generators of su(4)

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

- Show that the su(4) Lie algebra has 15 independent generators.
- Using the Gell-Mann matrices as inspiration, write down a basis for the su(4) Lie algebra with

$$T_a = \frac{1}{2}\lambda_a \tag{2a}$$

$$\operatorname{tr}(T_a T_b) = \frac{1}{2} \delta_{ab} \tag{2b}$$

3.3 Roots and Weights of su(4)

The weight vectors $(m_1, m_2, \ldots, m_{\operatorname{rank}(g)})$ can be visualized as sets of points in $\mathbf{R}^{\operatorname{rank}(g)}$.

- Determine the weights in the four dimensional defining representation and visualize them.
- Determine the weights in the complex conjugate fourdimensional representation and visualize them.
- Determine the roots (i.e. the weights in the adjoint representation) and visualize them.