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Introduction

1.1 Literature

Lecture 01: Tue, 14. 04. 2015

1.1.1 Elementary Particle Physics and Standard Model

Advanced

• Howard Georgi: Weak Interactions and Modern Particle Theory, Dover,
2009. NB: the author makes a PDF file of an updated version available
at his home page: http://www.people.fas.harvard.edu/~hgeorgi/
weak.pdf

• John F. Donoghue, Eugene Golowich, Barry R. Holstein: Dynamics of
the Standard Model, Cambridge University Press, 1992.

1.1.2 Quantum Field Theory

Introductory

• Micheal E. Peskin, Daniel V. Schroeder: An Introduction to Quantum
Field Theory, Addison-Wesley Publishing Company, 1995.

• Claude Itzykson, Jean-Bernard Zuber: Quantum Field Theory, McGraw-
Hill, 1990.

Advanced

• Steven Weinberg: The Quantum Theory of Fields. Volume I: Founda-
tions, Cambridge University Press, 1995.

http://www.people.fas.harvard.edu/~hgeorgi/weak.pdf
http://www.people.fas.harvard.edu/~hgeorgi/weak.pdf
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• Steven Weinberg: The Quantum Theory of Fields. Volume II: Modern
Applications, Cambridge University Press, 1996.

1.1.3 Group Theory

Introductory

• Howard Georgi: Lie Algebras in Particle Physics, 2nd ed., Perseus
Books, 1999.

Unorthodox

• Predrag Cvitanović: Group Theory: Birdtracks, Lie’s, and Exceptional
Groups, Princeton University Press, 2008. NB: the author makes a
PDF file of the book available at http://birdtracks.eu/

1.2 The Setting

1.2.1 Dramatis Personae

Stable Particles

These have never been observed to decay if left alone

• electrons (e−) and positrons (e+)

• photons (γ)

• protons (p) and anti-protons (p̄)

and γ, e− and p, together with neutrons, make up all “normal matter”.

Almost Stable Particles

These live long enough to leave macroscopic O(1 m) tracks in detectors:

• neutrons (n) and anti-neutrons (n̄)

• muons (µ−) and antimuons (µ−)

http://birdtracks.eu/
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Unstable Particles (a. k. a. Resonances)

Everything else decays too quickly to be seen as a track in detectors.
The exchange of a particle with mass M corresponds to an amplitude

e+

e−

µ+

µ−

∝ i

p2 −M2 + iε
(1.1)

and a cross section

σ(s) ∝
∣∣∣∣ i

s−M2

∣∣∣∣2 =
1

(s−M2)2
(1.2)

with an unphysical singularity at s = M2. A more careful computation
reveals a finite width with

i

p2 −M2 + iε
→ i

p2 −M2 + iMΓ
(1.3)

and a Breit-Wigner resonance shape

σ(s) ∝
∣∣∣∣ i

s−M2 + iMΓ

∣∣∣∣2 =
1

(s−M2)2 +M2Γ2
. (1.4)

The mass M of the particle can then be measured as the location of the
peak of the cross section and the lifetime τ of the particle as the inverse of
the width Γ = 1/τ of the resonance. A typical example is the spectrum of
resonances decaying into muon pairs at LHC, shown in figure 1.1. Obviously,
these resonances must correspond to uncharged particles and we can expect
more resonances in other channels, corresponding to charged particles.

1.2.2 Place

Typical energies in nuclear reactions are O(10 MeV) corresponding to length
scales O(10 fm) = O(10−14 m), using the conversion factor

~c = 197 MeV fm . (1.5)

“Interesting” elementary particle starts with O(1 GeV) and we are now test-
ing the “terascale” O(1 TeV) for the first time.
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Figure 1.1: Resonances in pp→ µ+µ−+X measured by the CMS experiment
at LHC in 2010 [1].

1.2.3 Tools

Experiment

Accelerators and colliders

• natural (cosmic)

• man made (LHC etc.)

Theory

• Quantum Field Theory (QFT) for computing cross sections and decay
rates

• group theory for organizing particles and interactions

1.2.4 Approaches

There are two complementary approaches that are both required for progress
in our understanding of the microcosmos
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Bottom-Up

1. write down the most general mathematically consistent interaction of
the observed particles, consistent with the observed symmetries and
conservation laws (cf. Noether theorem)

2. fit the free parameters to observations

3. compute cross section and decay rates for the observed particles

4. compare with experiment

5. if necessary, add new particles and repeat

Top-Down

1. propose an improved microscopic model of elementary particles and
their interactions

2. compute cross section and decay rates for the observed particles, which
might be bound states of the elementary particles

3. compare with experiment

4. repeat

1.3 The Frontier (as of today): LHC

In figure 1.1, the Standard Model (SM) predictions are tested by a single
experiment over more than two orders of magnitude in energy and five orders
of magnitude in cross section.

As we are speaking, the LHC is restarting for “Run 2”, which will probe
the SM predictions well into the terascale.
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—2—
Fundamental Particles and Forces

2.1 What Is an Elementary Particle?

The answer to this natural question is both trivial and subtle:

a particle is considered elementary, if and only if (iff) there is no
evidence that it is composite, i. e.

• there no finite spacial extend

• it can not be broken apart .

Therefore, the category of elementary particles is not constant in time

• a little more than a century ago (before Rutherford), atoms where
considered elementary

• between 1910 and 1950, electrons, photons, protons and neutrons were
considered elementary

• in the early 1950s, Robert Hofstadter discovered by elastic electron
scattering of protons (hydrogen) that protons have a size of roughly
1 fm = 10−15 m

• as of today, electrons and photons still qualify as elementary

Still, the term elementary particle physics also refers to particles that we now
know to be unstable or composite, such as protons, neutrons, other baryons
and mesons.
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2.1.1 Quantum Numbers

According to our observations, elementary particles are completely indistin-
guishable: if the have the same quantum numbers, their states must be either
symmetric (bosons) or antisymmetric (fermions) under permutations.

Therefore an elementary particle is completely characterized by its

• representation of the Poincaré group, i. e. mass, spin and parities under
space, time and charge inversion

• electric charge

• other more exotic charges: isospin, color, etc.

Of these, the mass, spin and the parities correspond to spacetime symmetries,
while the rest are called internal symmetries.

In the absence of gravity, i. e. in a flat space time, elementary particles can
only have the spins 0 (scalar), 1/2 (spinor) and 1 (vector), while composite
particles can have any spin (cf. Clebsh–Gordan decomposition). If we include
gravity, particles with spin 3/2 and 2 (gravitons) become possible.

2.2 Fundamental Interactions

Lecture 02: Wed, 15. 04. 2015

As of today all interactions among elementary particles are described by
four fundamental interactions:

2.2.1 Gravity

This is the only interactions felt by all elementary particles, since it affects
space-time itself. Unfortunately, we don’t have a good quantum mechanical
description yet. Fortunately, its effects on elementary particles are so weak
at accessible energy scales that it can savely be ignored.

2.2.2 Electromagnetism

This is described by Quantum Electro Dynamics (QED) to an incredible
precision and matches to electromagnetism in the classical limit.

2.2.3 The Strong Force

This has no classical analog and affects only baryons and mesons.
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2.2.4 Weak Interactions

This also has no classical analog.
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—3—
Symmetries and Groups

3.1 Symmetries

If a charge Q commutes with the Hamiltonian H

[H,Q] = 0 , (3.1)

it is conserved
d

dt
Q = i[H,Q] = 0 . (3.2)

In addition, if such a charge relates two eigenstates of the Hamiltonian H

Q 1〉 = 2〉 (3.3)

with
H n〉 = En n〉 , (3.4)

then

E2 2〉 = H 2〉 = HQ 1〉 = QH 1〉 = QE1 1〉 = E1Q 1〉 = E1 2〉 (3.5)

i. e.
E1 = E2 (3.6)

and the states 1〉 and 2〉 are degenerate.
Therefore we will have multiplets of degenerate states { i〉}i∈I⊂Z, when-

ever these states form a representation (section 3.4) of a Lie algebra (sec-
tion 3.3) of conserved charges {Qj}j∈J⊂Z

[H,Qi] = 0 (3.7a)

[Qi, Qj] = i
∑
k∈J

fijkQk , (3.7b)
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i. e.
Qi j〉 =

∑
k∈J

[r(Qi)]jk k〉 . (3.8)

Since
H2 = M2 + ~P

2
, (3.9)

the above reasoning translates from energy levels to masses.

3.2 Lie Groups

In physics1, symmetries are described as Groups (G, ◦) with G a set and ◦
an inner operation

◦ : G×G→ G

(x, y) 7→ x ◦ y
(3.10)

with

1. closure: ∀x, y ∈ G : x ◦ y ∈ G,

2. associativity: x ◦ (y ◦ z) = (x ◦ y) ◦ z,

3. identity element: ∃e ∈ G : ∀x ∈ G : e ◦ x = x ◦ e = x,

4. inverse elements: ∀x ∈ G : ∃x−1 ∈ G : x ◦ x−1 = x−1 ◦ x = e .

Many examples in physics

• permutations

• reflections

• parity

• translations

• rotations

• Lorentz boosts

• Runge–Lenz vector

• isospin

• . . .

1And mathematics!
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Particularly interesting are Lie Groups, i. e. groups, where the set is
a differentiable Manifold and the composition is differentiable w. r. t. both
operands.

Note that the choice of coordinates is not relevant:

B =

{
b1(η) = exp

(
0 −η
−η 0

)
=

(
cosh η − sinh η
− sinh η cosh η

) ∣∣∣∣∣ η ∈ R

}

=

{
b2(β) =

1√
1− β2

(
1 −β
−β 1

) ∣∣∣∣∣β ∈ ]− 1, 1[

}
(3.11)

Both times we have the set of all real symmetric 2 × 2 matrices with unit
determinant. The composition laws are given by matrix multiplication2:

b1(η) ◦ b1(η′) = b1(η)b1(η′) = b1(η + η′) (3.12a)

b2(β) ◦ b2(β′) = b2(β)b2(β′) = b2

(
β + β′

1 + ββ′

)
. (3.12b)

3.3 Lie Algebras

A Lie algebra (A, [·, ·]) is a K-vector space3 with a non-associative antisym-
metric bilinear inner operation [·, ·]:

[·, ·] : A× A→ A

(a, b) 7→ [a, b]
(3.13)

with

1. closure: ∀a, b ∈ A : [a, b] ∈ A,

2. antisymmetry: [a, b] = −[b, a]

3. bilinearity: ∀α, β ∈ K : [αa+ βb, c] = α[a, c] + β[b, c]

4. Jacobi identity: [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0

2NB:

|β| < 1 ∧ |β′| < 1⇒
∣∣∣∣ β + β′

1 + ββ′

∣∣∣∣ < 1

3K = R or C
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Since A is a vector space, we can choose a basis and write

[ai, aj] =
∑
k

Cijkak . (3.14)

A Lie algebra is called simple, if it has no ideals besides itself and {0}.
Remarkably, all simple Lie algebras are known:

so(N), su(N), sp(2N), g2, f4, e6, e7, e8 (3.15)

with N ∈ N.
The infinitesimal generators of a Lie group form a Lie algebra. Vice versa,

the elements of a Lie algebra can be exponentiated to obtain a Lie group (not
necessarily the same, but a cover of the original group).

3.4 Representations

A group homomorphism f is a map

f : G→ G′

x 7→ f(x)
(3.16)

between two groups (G, ◦) and (G′, ◦′) that is compatible with the group
structure

f(x) ◦′ f(y) = f(x ◦ y) (3.17)

and therefore

f(e) = e′ (3.18a)

f(x−1) = (f(x))−1 . (3.18b)

A Lie algebra homomorphism φ is a map

φ : A→ A′

a 7→ φ(a)
(3.19)

between two Lie algebras (A, [·, ·]) and (A′, [·, ·]′) that is compatible with the
Lie algebra structure

[φ(a), φ(b)]′ = φ([a, b]) . (3.20)

NB: these need not be isomorphisms: f(x) = e′,∀x is a trivial, but well
defined group homomorphism and φ(a) = 0,∀a is a similarly trivial but also
well defined Lie algebra homomorphism.
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Lie groups and algebras are abstract objects, which can be made concrete
by representations.

A group representation
R : G→ L (3.21)

is a homomorphism from the group (G, ◦) to a group of linear operators (L, ·)
with (O1 · O2)(v) = O1(O2(v)). The representation is called unitary if the
operators are unitary. The representation is called faithful if ∀x 6= y : R(x) 6=
R(y).

A Lie algebra representation

r : A→ L (3.22)

is a homomorphism from the Lie algebra (A, [·, ·]) to an associative algebra of
linear operators (L, [·, ·]′) with [O1, O2]′ = O1 ·O2 −O2 ·O1 or [O1, O2]′(v) =
O1(O2(v))−O2(O1(v)), i. e. commutators for Lie brackets.

The Matrix groups SU(N), SO(N), Sp(2N) and their Lie algebras have
obvious defining representations.

Every Lie algebra has a adjoint representation, using the itself as the
linear representation space a⇔ a〉:

radj.(a) b〉 = [a, b]〉 (3.23)

using the Jacobi identity

(radj.(a)radj.(b)− radj.(b)radj.(a)) c〉 = [a, [b, c]]− [b, [a, c]]〉
= [[a, b], c]〉 = radj.([a, b]) c〉 (3.24)

or, using a basis

radj.(ai) aj〉 = [ai, aj]〉 = Cijkak〉 = Cijk ak〉 (3.25)

we find the matrix elements

[radj.(ai)]jk = Cijk . (3.26)

Using Hausdorff’s formula

eab (ea)−1 = eabe−a = eadab = e[a,·]b

= b+ [a, b] +
1

2!
[a, [a, b]] +

1

3!
[a, [a, [a, b]]] + . . . (3.27)

we see that the map
f(x) : A→ A

b 7→ xbx−1 (3.28)
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is well defined and remains inside the Lie algebra. It’s obviously linear and
since

f(x)(f(y)(a)) = f(x)
(
yay−1

)
= xyay−1x−1 = (xy)a(xy)−1 = f(xy)(a)

(3.29)
it is also a representation, called the adjoint representation of the group.

3.4.1 Irreducible Representations

Lecture 03: Tue, 21. 04. 2015

In general, representations can be decomposed: a group representation R
is called reducible, iff there is a non-trivial invariant subspace W ⊂ V

∀g ∈ G : R(g)W ⊆ W (3.30)

analogously for a Lie algebra representation r

∀a ∈ A : r(a)W ⊆ W . (3.31)

If a representation is not reducible, it is called irreducible.

Lemma 3.1 (Schur’s lemma). A matrix that commutes with all representa-
tives in an irreducible representation is proportional to the unit matrix.

3.4.2 Direct Sums

The direct sum of representations

R(g) = R1(g)⊕R2(g)⊕ . . .⊕Rn(g) (3.32)

or
r(a) = r1(a)⊕ l2(a)⊕ . . .⊕ ln(a) , (3.33)

where the action of a direct sum of matrices is defined as

(M ⊕N)(v ⊕ w) = Mv ⊕Nw (3.34)

and the dimension of the direct sum of representation spaces is the sum of
the dimensions, is again a representation. Indeed

R(g)R(g′) = (R1(g)⊕R2(g))(R1(g′)⊕R2(g′))

= R1(g)R1(g′)⊕R2(g)R2(g′) = R1(gg′)⊕R2(gg′) = R(gg′) (3.35)
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and

[r(a), r(a′)] = [r1(a)⊕ r2(a), r1(a′)⊕ r2(a′)]

= r1(a)r1(a′)⊕ r2(a)r2(a′)− r1(a′)r1(a)⊕ r2(a′)r2(a)

= [r1(a), r1(a′)]⊕ [r2(a), r2(a′)] = r1([a, a′])⊕ r2([a, a′]) = r([a, a′]) (3.36)

All representations can be decomposed as a sum of irreducible representa-
tions. Note that each irreducible representation can appear more than once.

3.4.3 Tensor Products

The direct product, also known as (a.k.a.) tensor product, of group represen-
tations

R(g) = R1(g)⊗R2(g)⊗ . . .⊗Rn(g) (3.37)

where the action of a direct product of matrices on a product of vectors is
defined by

(M ⊗N)(v ⊗ w) = Mv ⊗Nw (3.38)

and extended by linearity to the vectors that can not be written as a product
of vectors, is again a representation. The dimension of the direct product of
representation spaces is the sum of the dimensions. Indeed

R(g)R(g′) = (R1(g)⊗R2(g))(R1(g′)⊗R2(g′))

= R1(g)R1(g′)⊗R2(g)R2(g′) = R1(gg′)⊗R2(gg′) = R(gg′) . (3.39)

However the direct product of Lie algebra representations must be defined
differently

r(a) = r1(a)⊗ 1⊗ . . .⊗ 1 + 1⊗ r2(a)⊗ . . .⊗ 1 + . . .

+ 1⊗ 1⊗ . . .⊗ rn(a) (3.40)

because for r = r1 ⊗ 1 + 1⊗ r2 we have

[r(a), r(a′)] = [r1(a)⊗ 1 + 1⊗ r2(a), r1(a′)⊗ 1 + 1⊗ r2(a′)]

= [r1(a)⊗ 1, r1(a′)⊗ 1] + [1⊗ r2(a),1⊗ r2(a′)]

+ [r1(a)⊗ 1,1⊗ r2(a′)]︸ ︷︷ ︸
= 0

+ [1⊗ r2(a), r1(a′)⊗ 1]︸ ︷︷ ︸
= 0

= r1(a)r2(a′)⊗ 1− r1(a′)r2(a)⊗ 1 + 1⊗ r2(a)r2(a′)− 1⊗ r2(a′)r2(a)

= [r1(a), r1(a′)]⊗ 1 + 1⊗ [r2(a), r2(a′)]

= r1([a, a′]⊗ 1 + 1⊗ [r2([a, a′]) = r([a, a′]) . (3.41)
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Useful heuristics for (3.40) are

ea · eb = (1 + a+ . . .) · (1 + b+ . . .) = 1 + a · 1 + 1 · b+ . . . = ea·1+1·b (3.42)

or the product rule

d

dx
(f(x)⊗ g(x)) =

df

dx
(x)⊗ g(x) + f(x)⊗ dg

dx
(x)

=

(
d

dx
⊗ 1 + 1⊗ d

dx

)
(f(x)⊗ g(x)) . (3.43)

Tensor products of (irreducible) representations are in general not irreducible,
but can be decomposed.

However, there are simple ways to find invariant subspaces. Consider
symmetric or antisymmetric tensors in the tensor product of an irreducible
representation with itself

t(S) = v ⊗ v′ + v′ ⊗ v (3.44a)

t(A) = v ⊗ v′ − v′ ⊗ v (3.44b)

then it is easy to see that the application of R(g)⊗R(g) or r(g)⊗1+1⊗r(g)
result in a symmetric or antisymmetric tensor respectively. This observation
can be generalized to symmetries under arbitrary permutations of indices
with definite signs.

3.4.4 Complex Conjugation

Since
∀M1,M2 ∈ GL(N,C) : M1M2 = M1M2 (3.45)

complex conjugation is a homomorphism from GL(N,C) to itself. Therefore,
if

R : G→ GL(N,C)

g 7→ R(g)
(3.46)

is a representation, then

R : G→ GL(N,C)

g 7→ R(g)
(3.47)

is one as well.
Note that this is in general not true for hermitian conjugation, because

∀M1,M2 ∈ GL(N,C) : (M1M2)† = (M2)† (M1)† 6= (M1)† (M2)† (3.48)



ohl: Wed Jul 1 17:09:35 CEST 2015 subject to change! 17

unless the matrices commute.
Note also, that there are special cases, where R ∼= R and complex con-

jugation does not give rise to a new representation. This is actually an
important ingredient of the minimal SM discussed below.

3.5 Lorentz and Poincaré Group

Lorentz transformations are the linear transformations of the Minkowski
space M

φΛ : M→M

xµ 7→ x′µ =
3∑

ν=0

Λµ
νx

ν
(3.49a)

that leave the metric invariant

∀x, y ∈M :
3∑

µ,ν=0

gµνx
µyν =

3∑
µ,ν=0

gµνx
′µy′ ν . (3.49b)

with

gµν =


+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 = gµν (3.50a)

g ν
µ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = gµν = δ ν
µ = δµν . (3.50b)

This condition can also be written

3∑
κ,λ=0

gκλx
κyλ =

∑
µ,ν=0

gµνx
′µy′ ν =

3∑
µ,ν,κ,λ=0

gµνΛ
µ
κΛ

ν
λx

κyλ (3.51)

and we obtain

gκλ =
3∑

µ,ν=0

gµνΛ
µ
κΛ

ν
λ (3.52)

from comparing coefficients. As a matrix equation this reads

g = ΛTgΛ . (3.53)
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The 00-component of (3.52) entails with

1 =
3∑

µ,ν=0

gµνΛ
µ

0Λν
0 =

(
Λ0

0

)2 −
3∑
i=1

(
Λi

0

)2 ≤
(
Λ0

0

)2
(3.54)

the condition
|Λ0

0| ≥ 1 (3.55a)

and from (3.53) we find
det Λ = ±1 . (3.55b)

3.5.1 Lorentz Group

The composition of two Lorentz Transformations (LTs) is obviously again an
LT

φΛ2 ◦ φΛ1 = φΛ3 . (3.56)

The corresponding matrix Λ is from (3.55a) always invertible and so the
inverse transformation

φ−1
Λ = φΛ−1 (3.57)

exists. Thus LTs φΛ form a group, the Lorentz Group L.
From (3.55), we see that L consists of four disconnected components

L↑+ =
{

Λ ∈ L : det Λ = +1 ∧ Λ0
0 ≥ 1

}
(3.58a)

L↑− =
{

Λ ∈ L : det Λ = −1 ∧ Λ0
0 ≥ 1

}
(3.58b)

L↓+ =
{

Λ ∈ L : det Λ = +1 ∧ Λ0
0 ≤ −1

}
(3.58c)

L↓− =
{

Λ ∈ L : det Λ = −1 ∧ Λ0
0 ≤ −1

}
. (3.58d)

Among these, only the proper and orthochronous LTs L↑+ form a subgroup.

All other LTs can be written as a product of an element of L↑+ with space
and time inversions

P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ∈ L↑− (3.59a)

T =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ∈ L↓− (3.59b)



ohl: Wed Jul 1 17:09:35 CEST 2015 subject to change! 19

P ◦ T = T ◦ P =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ∈ L↓+ . (3.59c)

Rotations

The rotations

ΛR =


1 0 0 0
0
0 R
0

 =


1 0 0 0
0 R1

1 R1
2 R1

3

0 R2
1 R2

2 R2
3

0 R3
1 R3

2 R3
3

 (3.60)

with R ∈ SO(3), i. e.

RRT = RTR = 1 (3.61a)

detR = 1 (3.61b)

are obviously proper and orthochronous LTs, since they preserve the length
~x~y as well as x0 and y0 and therefore xµy

µ = x0y0 − ~x~y.

Lecture 04: Wed, 22. 04. 2015

The SO(3) matrices can be parametrized by Euler angles

R : [0, 2π[×[0, π[×[0, 2π[→ SO(3)

(φ, θ, ψ) 7→ R(φ, θ, ψ) = R3(φ)R1(θ)R3(ψ)
(3.62)

with Ri a rotation around the ith axis. Alternatively by three real numbers ~α
via

O : D ⊂ R3 → SO(3)

~α 7→ O(~α) = ei~α~T
(3.63)

with the traceless, hermitian and antisymmetric generators

T1 =

0 0 0
0 0 i
0 −i 0

 (3.64a)

T2 =

0 0 −i
0 0 0
i 0 0

 (3.64b)
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T3 =

 0 i 0
−i 0 0
0 0 0

 . (3.64c)

of the so(3) Lie algebra

[Ti, Tj] = i
3∑

k=1

εijkTk . (3.65)

Algebraically, (3.63) is the simpler formula, but it is not obvious what D ⊂
R3 is without double counting.

However, we observe that multiples

~t =
1

2
~σ (3.66)

of the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (3.67)

satisfy the same Lie algebra as (3.65) and generate the SU(2)-matrices via

U(~α) = ei~α~σ . (3.68)

The group manifold of SU(2) turns out to be geometrically simple. First
parametrize all 2× 2-matrices by four complex numbers (χ0, ~χ)

U = χ01 + ~χ~σ . (3.69)

Then from the hermiticity of the ~σ

U † = χ̄01 + ~̄χ~σ (3.70)

and the unitarity condition can be written

1
!

= UU † =
(
|χ0|2 + ~χ~̄χ

)
1 +

(
χ0 ~̄χ+ χ̄0~χ+ i~χ× ~̄χ

)
~σ . (3.71)

The condition on the determinant yields

1
!

= detU = χ2
0 − ~χ~χ (3.72)

and we obtain

χ2
0 − ~χ~χ = 1 (3.73a)
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|χ0|2 + ~χ~̄χ = 1 (3.73b)

χ0 ~̄χ+ χ̄0~χ+ i~χ× ~̄χ = 0 . (3.73c)

These conditions are solved by{
(χ0, ~χ) = (β0, i~β) : (β0, ~β) ∈ R4 ∧ β2

0 + ~β~β = 1
}

(3.74a)

and we see that the group manifold of SU(2) homeomorphic to S3, the three-
dimensional hypersphere in R4.

On the other hand, we observe that

∀~α ∈ R3,
√
~α~α = 2π : ei~t~α = ei2~t~α/2 = ei~σ~α/2 = U(~α/2) = −1 , (3.75)

i. e. rotations of angle 2π about any axis are not the unit element, but only
rotations of angle 4π. Thus the group manifold of the rotation group SO(3)
is SU(2)/Z2 = S3/Z2, i. e. the three-dimensional hypersphere with opposing
points identified. Therefore SU(2) is called a cover of SO(3). There is an
obvious surjective homomorphism

φ : SU(2)→ SO(3) (3.76)

and any representation R of SO(3) induces a representation R ◦ φ of SU(2).
Note that it is not possible to define a global Lie group homomorphism φ−1 :
SO(3)→ SU(2) by choosing a member of φ−1(g) at each point, because such
a map will not match smoothly at the boundaries of φ−1(SO(3)).

The representations of SU(2) that are not representations of SO(3) are
physically important because they correspond to the fermionic representa-
tions with half integer spin.

Special Lorentz Transformations

As an example for LTs that mix space and time, we can leave x2 and x3

invariant:

Λ =


Λ0

0 Λ0
1 0 0

Λ1
0 Λ1

1 0 0
0 0 1 0
0 0 0 1

 . (3.77)

Then it is easy to see that thet can be parametrized by a single real number β

Λ(β) =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 . (3.78)
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with
|β| < 1 (3.79a)

und

γ =
1√

1− β2
≥ 1 . (3.79b)

The composition of two such LTs can be written

Λ(β1)Λ(β2) = Λ

(
β1 + β2

1 + β1β2

)
. (3.80)

A subtle, but important difference of rotations and special LTs is, that
the set SO(3) of rotations is compact, since they can be parametrized by the
periodic Euler angles

(φ, θ, ψ) ∈ [0, 2π[×[0, π[×[0, 2π[ . (3.81)

In contrast, the special LTs form an open set

β ∈ ]− 1,+1[ (3.82)

with the endpoints excluded.
By rotating, we find the other special LTs

Λ(~β) =


γ −γβ1 −γβ2 −γβ2

−γβ1 1 + Γβ1β1 Γβ1β2 Γβ3β1

−γβ2 Γβ2β1 1 + Γβ2β2 Γβ3β2

−γβ3 Γβ3β1 Γβ3β2 1 + Γβ3β3

 (3.83a)

with

γ =
1√

1− ~β2

≥ 1 (3.83b)

Γ =
γ2

1 + γ
. (3.83c)

Note that the product of two special LTs can in general not be written as a
special LT. Instead

Λ(~β1)Λ(~β2) = Λ , (3.84)

with Λ a product of a special LT and a rotation.
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SL(2,C)

There is a geometrically simpler description of the elements of the Lorentz
group close to the unit element.

Combining the Pauli matrices ~σ with the 2× 2 unit matrix σ0 = 12×2 in
a four vector of 2× 2 matrices

(σ0, ~σ) = (σ0, σ1, σ2, σ3) (3.85)

we can compute

σµx
µ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
. (3.86)

Conversely, given a hermitian 2× 2 matrix X, we can use

tr(σµσν) = 2δµν (3.87)

to construct a four vector

xµ =
1

2
tr(Xσµ) (3.88)

(note the location of the indices in either side).
We observe

det(σµx
µ) = gµνx

µxν . (3.89)

i. e. that transformations of x keeping the Minkowski length of x invariant
will correspond to transformations of X maintaining hermiticity and keeping
the determinant invariant. In fact

φα : X 7→ X ′ = αXα† (3.90)

maintains hermiticity

(X ′)† = (αXα†)† = (α†)†X†α† = αXα† = X ′ (3.91)

and if | detα| = 1 also the determinant

detX ′ = det(αXα†) = detα detX detα∗ = (detα)2 detX . (3.92)

Thus we can identify a neighborhood of the unit element of the Lorentz group
with a neighborhood of the unit element of SL(2,C), the group of complex
2× 2 matrices with unit determinant.

The number of independent real generators agrees. For the Lorentz group
we have 6, i. e.
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• 3 rotations

• 3 Lorentz boosts

and also in the case of SL(2,C), because we can write

α = ei~σ(~θ+i~η) (3.93)

with real ~θ and ~η. To be precise, one can show that we have just defined a
homomorphism from SL(2,C) onto L↑+.

Representations

As in the case of the rotation group, the representations of SL(2,C) turn
out to be interesting in their own right, because they include the fermionic
representations with half integer spin.

The irreducible R(j/2,k/2) representations of SL(2,C) can be labelled by
two non-negative integers j and k. The representation spaces are the tensors
in Cj⊗Ck that are totally symmetric in the j undotted and the k dotted in-
dices separately. The j undotted indices transform according to the SL(2,C)
matrix itself, the k dotted indices according to its complex conjugate:

ψα1...αj ,α̇1...α̇k →
(
R(j/2,k/2)ψ

)
α1...αj ,α̇1...α̇k

=
2∑

β1...βj ,β̇1...β̇k=1

R
(j/2,k/2) β1...βj ,β̇1...β̇k

α1...αj ,α̇1...α̇k
(A)ψβ1...βj ,β̇1...β̇k

=
2∑

β1...βj ,β̇1...β̇k=1

A β1
α1
· · ·A βj

αj
A β̇1
α̇1
· · ·A β̇k

α̇k
ψβ1...βj ,β̇1...β̇k . (3.94)

3.5.2 Poincaré Group

Lecture 05: Tue, 28. 04. 2015

Adding the space and time translations

φ~a : M→M

xµ 7→ x′µ = xµ + aµ
(3.95)

to the Lorentz group, we obtain the Poincaré group with a semidirect mul-
tiplication law

P(Λ1, a1)P(Λ2, a2) = P(Λ1Λ2, a1 + Λ1a2) , (3.96)
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reflecting the noncommutativity of translations and Lorentz transformations.
The proper and orthochronous component can be parametrized by 10 param-
eters:

• 4 space time translations

• 3 rotations

• 3 Lorentz boosts .

Poincaré Algebra

If we represent an element P of the Poincaré group by exponentiated gener-
ators Jµν = −Jνµ and P µ

P(ω, a) = eiaµPµeiωµνJµν (3.97)

we obtain the commutation relations of the Poincaré Algebra

[Pµ, Pν ] = 0 (3.98a)

[Jµν , Pρ] = i (gµρPν − gνρPµ) (3.98b)

[Jµν , Jρσ] = i (gµρJνσ − gµσJνρ − gνρJµσ + gνσJµρ) . (3.98c)

Note that the structure of these commutation relations is completely fixed
by the fact that the Lorentz generators Jµν are antisymmetric and contain
the angular momentum and thus have the dimension of ~.

Introducing the Pauli–Lubanski vector

Wµ =
1

2
εµνρσJ

νρP σ , (3.99)

it is a straightforward calculcation to show that

[Pµ, PρP
ρ] = [Jµν , PρP

ρ] = 0 (3.100a)

[Pµ,WρW
ρ] = [Jµν ,WρW

ρ] = 0 , (3.100b)

i. e. that both PρP
ρ and WρW

ρ must be constant Casimir Operators propor-
tional to the unit matrix in each irreducible representation of the Poincaré
algebra. This means that the irreducible representations of the Poincaré
algebra are labelled by the eigenvalues

PµP
µ = m2 (3.101a)

WµW
µ = −m2s(s+ 1) (3.101b)
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of these operators. Obviously, m denotes the mass associated to the repre-
sentation and s the spin.

Representations with m2 < 0 exist, but are pathological and discarded
for physical reasons. Representations with m2 > 0 for 2s + 1 angular mo-
mentum multiplets and representations with m = 0 are one-dimensional,
corresponding to a fixed helicity and two-dimensional if parity is included.

3.5.3 Extensions of the Poincaré Group

Coleman–Mandula Theorem

Coleman and Mandula showed in 1967 that, if

1. the S-matrix is based on a local relativistic QFT in 4 space-time di-
mensions,

2. there are only a finite number of different particles of a given mass and

3. there is an energy gap between the vacuum and the one particle states,

then the symmetry group is the direct product of the Poincaré group and a
compact Lie group. I. e., all additional symmetries must commute with the
Poincaré group.

In practical terms, this means that all members of a Poincaré group mul-
tiplet must have the same “internal” quantum numbers.

NB: there is no anologuous theorem for the Galileo group and non-
relativistic multiplets can mix spin and internal symmetries.

Haag– Lopuszański–Sohnius Theorem

There is only one way to avoid the consequences of the Coleman–Mandula
theorem, as has been proved by Haag,  Lopuszański and Sohnius in 1975: al-
low supersymmetries, i. e. symmetries generated by fermionic charges. Fur-
thermore, the number N of allowed charges is limited:

• 0 ≤ N ≤ 2 if no gravity is involved

• 0 ≤ N ≤ 4 if gravity is involved .
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—4—
Quark Model

4.1 The Particle Zoo

The advent of particle accelerators in the late 1940 led to a proliferation of
observed resonance with different

• masses

• lifetimes, i. e. decay widths,

• decay channels

that called for a systematic classification.
It became obvious that there is a hierarchy of interactions that respect

different symmetries:

• strong interactions that respect the most symmetries

• weak and electromagnetic interactions that are, in first approximation,
only observable in processes that are verboten in strong interactions

4.2 Isospin

4.2.1 Strong Interactions vs. Electromagnetism

Nucleons have spin 1/2 and we observe

• protons, mp = 938.3 MeV

• neutrons, mn = 939.6 MeV
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with
mn −mp

(mp +mn)/2
≈ α

2π
(4.1)

suggesting that the mass difference can be attributed to electromagnetic
interactions. Similarly pseudoscalar mesons

• charged pions, mπ± = 139.57 MeV

• neutral pions, mπ0 = 134.98 MeV

with
mπ± −mπ0

mπ

≈ 15α

π
. (4.2)

Thus it makes sense to try to group mesons and baryons in multiplets of the
symmetry group of the strong interactions and this symmetry group must
have dublets and triplets in among their representations.

4.2.2 Dublets and Triplets

An obvious candidate is SU(2), a.k.a. isospin:(
p
n

)
7→
(
p′

n′

)
= R2(g)

(
p
n

)
(4.3a)π+

π0

π−

 7→
π+′

π0′

π−′

 = R3(g)

π+

π0

π−

 (4.3b)

We know from elastic e−p scattering that protons have a finite size and it
make sense to assume that they are composite.

Since

2⊗ 2 = 1⊕ 3 (4.4a)

2⊗ 2⊗ 2 = 2⊕ 2⊕ 4 (4.4b)

and mp � mπ, we can start from the assumption that protons and neutrons
are composed of 3 constituent with spin and isospin 1/2 and pions of 2 of
them.

These constituents are called quarks with the colloquial names(
u
d

)
(4.5)

for up-quarks and down-quarks as in spins.
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It is easy see that

∀i = 1, 2, 3 : σi = σ2(−σi)σ2 (4.6)

where · denotes elementwise complex conjugation and not hermitian conju-
gation. Thus the complex conjugate representation 2̄ of SU(2) is equivalent:(

d̄
−ū

)
∈ 2̄ ∼= 2 3

(
u
d

)
. (4.7)

This allows us to construct the triplet from quarks and anti-quarks using
familiar techniques.

Raising and Lowering Operators

Lecture 06: Wed, 29. 04. 2015

Using

~T =
~σ

2
(4.8)

we find

[Ti, Tj] = i
3∑

k=1

εijkTk , (4.9)

independently of the representation. For notational simplicity, we will write Ti
for r(Ti) hencforth and assume that the representation is specified by the vec-
tors the operators act on.

We observe from Schur’s lemma that

T 2 = T1T1 + T2T2 + T3T3 (4.10)

must be constant in each irreducible representation

[T 2, ~T ] = 0 . (4.11)

Furthermore, there are no two independent linear combinations of the Ti that
commute with each other:

0 = [~α~T , ~β ~T ] = i
(
~α× ~β

)
~T ⇐⇒ ~α ‖ ~β (4.12)

This means that we can label our irreducible representations by the eigen-
values of the Casimir operator T 2 and the states in each irreducible repre-
sentation by the eigenvalue of one linear combination, conventionally chosen
to be T3.
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Introducing

T± =
1√
2

(T1 ± iT2) (4.13)

we observe

[T3, T±] = ±T± (4.14a)

[T+, T−] = T3 . (4.14b)

For eigenvectors m〉 of T3

T3 m〉 = m m〉 (4.15)

we observe
T3T± m〉 = (m± 1)T± m〉 , (4.16)

i. e.
T± m〉 ∝ m± 1〉 . (4.17)

Obviously T± act as raising and lowering operators for the eigenvalue of T3,
respectively. We can use them repeatedly to find all states in an irreducible
representation, since the representation would be reducible otherwise.

Furthermore, the representation is uniquely characterized by the highest
weight l, i. e. the largest eigenvalue m of T3. We know from elementary
quantum mechanical that this representation is 2l + 1-dimensional and

T 2 = l(l + 1)1(2l+1)×(2l+1) . (4.18)

Example

If we write

u〉 =

(
1
0

)
(4.19a)

d〉 =

(
0
1

)
(4.19b)

d̄〉 =

(
1
0

)
(4.19c)

ū〉 =

(
0
−1

)
, (4.19d)

we have

T3 u〉 =
1

2
u〉 (4.20a)
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T3 d〉 = −1

2
d〉 (4.20b)

T3 ū〉 =
1

2
ū〉 (4.20c)

T3 d̄〉 = −1

2
d̄〉 (4.20d)

and

T− u〉 =
1√
2
d〉 (4.21a)

T+ d〉 =
1√
2
u〉 (4.21b)

T− ū〉 = − 1√
2
d̄〉 (4.21c)

T+ d̄〉 = − 1√
2
ū〉 . (4.21d)

Starting from
π+〉 = u〉 ⊗ d̄〉 (4.22)

then

π0〉 = T− π+〉 = (T− ⊗ 1 + 1⊗ T−) u〉 ⊗ d̄〉

= T− u〉 ⊗ d̄〉+ u〉 ⊗ T− d̄〉 =
1√
2
d〉 ⊗ d̄〉 − 1√

2
u〉 ⊗ ū〉 (4.23)

and
π−〉 = T0 π0〉 = d〉 ⊗ ū〉 (4.24)

Similarly, the spin 3/2, isospin 3/2 quadruplet, i. e. the 4 in

2⊗ 2⊗ 2 = 2⊕ 2⊕ 4 (4.25)

is

∆++〉 = u〉 ⊗ u〉 ⊗ u〉 (4.26a)

∆+〉 = S ( u〉 ⊗ u〉 ⊗ d〉) (4.26b)

∆0〉 = S ( u〉 ⊗ d〉 ⊗ d〉) (4.26c)

∆−〉 = d〉 ⊗ d〉 ⊗ d〉 , (4.26d)

where S denotes symmetrization, e. g.

S ( u〉 ⊗ u〉 ⊗ d〉)



ohl: Wed Jul 1 17:09:35 CEST 2015 subject to change! 32

=
1√
3

( u〉 ⊗ u〉 ⊗ d〉+ u〉 ⊗ d〉 ⊗ u〉+ d〉 ⊗ u〉 ⊗ u〉) . (4.27)

We have left two choices for the isospin 1/2 dublets

p〉 =
1√
2

( u〉 ⊗ u〉 ⊗ d〉 − u〉 ⊗ d〉 ⊗ u〉) (4.28a)

n〉 =
1√
2

( d〉 ⊗ u〉 ⊗ d〉 − d〉 ⊗ d〉 ⊗ u〉) (4.28b)

and

p′〉 =
1√
6

( u〉 ⊗ u〉 ⊗ d〉+ u〉 ⊗ d〉 ⊗ u〉 − 2 d〉 ⊗ u〉 ⊗ u〉) (4.29a)

n′〉 =
1√
6

(2 u〉 ⊗ d〉 ⊗ d〉 − d〉 ⊗ d〉 ⊗ u〉 − d〉 ⊗ u〉 ⊗ d〉) (4.29b)

or any linear combination of these.
This works by assigning the (additive) electric charges

Q u〉 =
2

3
u〉 (4.30a)

Q d〉 = −1

3
d〉 (4.30b)

Q ū〉 = −2

3
ū〉 (4.30c)

Q ū〉 =
1

3
ū〉 . (4.30d)

Indeed

Q p〉 =

(
2

3
+

2

3
− 1

3

)
p〉 = p〉 (4.31a)

Q n〉 =

(
1

3
+

1

3
− 2

3

)
= 0 (4.31b)

Q π+〉 =

(
2

3
+

1

3

)
π+〉 = π+〉 (4.31c)

Q π0〉 = 0 (4.31d)

Q π−〉 =

(
−2

3
− 1

3

)
π+〉 = − π−〉 . (4.31e)

In addition, it appears that baryon number B

B u〉 =
1

3
u〉 (4.32a)
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B d〉 =
1

3
d〉 (4.32b)

B ū〉 = −1

3
ū〉 (4.32c)

B ū〉 = −1

3
ū〉 (4.32d)

is conserved, leading to the stability of the proton, which is the lightest
observed state with B = 1.

Statistics

However, there is a problem. If we take this constituent quark model seriously,
the Hilbert space is a direct product of three factors

H = HP︸︷︷︸
=position

⊗ HS︸︷︷︸
=spin

⊗ HF︸︷︷︸
=flavor

, (4.33)

where flavor denotes the internal quantum numbers, such as isospin.
In the case of the ∆-quadruplet of spin 3/2, isospin 3/2 baryons (which

all have been observed in pion-nucleon scattering), the wave functions are
totally symmetric both in HF and in HS, as can be seen from (4.26) and
its analog for spin. Since spin 1/2 quarks must be fermions, this means that
the wavefunction in position space HP

ψ(~r1, ~r2, ~r3) (4.34)

must be totally antisymmetric for the overall wavefunction to be antisym-
metric as well, as required by Fermi statistics.

Thus the wavefunction must have a zero when the relative distances van-
ish and one would not expect this to be the lowest energy state:

• typically the energy increases with the number of nodes

• an attractive interaction should favor states with the largest overlap.

In fact, the most likely ground state in position space is a product of three
S-waves. There are two ways out of this dilemma

• quarks don’t satisfy Fermi statistics

• there’s another factor in the Hilbert space, where the wave function is
totally antisymmetric.
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The latter solution turns out to be more efficient, because the new quantum
number, color, will also provide a description of the strong interaction. The
Hilbert space for quarks turns out to be

H = HP︸︷︷︸
=position

⊗ HS︸︷︷︸
=spin

⊗ HF︸︷︷︸
=flavor

⊗ HC︸︷︷︸
=color

, (4.35)

where the wavefunctions in HC are arranged such that

• the states carry no overall color charge

• Fermi statics is satisfied.

We will later see that SU(3) has just the right properties for this.

Constituent Quark Model

By treating the masses of quarks a fit parameters, it is possible to com-
pute static properties of hadrons, like masses and magnetic momenta, in the
constituent quark model, when the detailed form of the position space wave
function(s) cancel out. The corresponding predictions work surprisingly well.

It is much harder to compute dynamical properties, like decay widths,
because they depend on wave function overlaps

〈out|HI |in〉 , (4.36)

which can not be computed from first principle:

• the relevant interaction is strong, precluding the use of perturbation
theory

• the form of the interaction potential at long distances is not well known,
precluding the use of Schrödinger- or Dirac-equation methods.

Flavor Symmetries

A very powerful approach to strong interactions avoids the use of position
space wavefunctions altogether and relies on flavor symmetries alone.

Assuming that the Hamiltonian commutes with flavor symmetries, such
as isospin [

~T ,H
]

= 0 , (4.37)

or is a member of a multiplet of tensor operators Ol

[
Ta, O

l
m

]
=

l∑
m′=−l

[rl(Ta)]mm′O
l
m′ , (4.38)
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it is possible to use (extensions of) the Wigner–Eckhart theorem to express all
matrix elements among a pair of multiplets by a single number, the reduced
matrix element

〈l′||Ol||l′′〉 (4.39)

multiplied by appropriate Clebsh–Gordan coefficients

〈l′,m′|Ol
m|l′′,m′′〉 = δm′,m+m′′ 〈l′,m′|l, l′′,m,m′′〉 〈l′||Ol||l′′〉 . (4.40)

For example all scattering amplitudes for pion-nucleon scattering can be
expressed by two reduced matrix elements, one for the isospin 1/2 and one
for the isospin 3/2 channel.

Since the proof of the Wigner–Eckhart theorem depends only on the com-
mutation relations, it can be copied verbatim from spin to isopin.

4.3 Eight-Fold Way

Lecture 07: Tue, 05. 05. 2015

Soon, it was discovered that the three pions were not the only pseu-
doskalar mesons: there are also the 4 charged and neutral kaons

K+, K0, K̄0, K− (4.41)

and the neutral η. Here the η and the π0 are distinguished from the K0 by
the masses

mη = 547.9 MeV 6= mK0 = mK̄0 = 497.6 MeV (4.42)

but the K̄0 differs from the K0 by its decays (see below). The masses of the
charged kaons are

mK± = 493.7 MeV . (4.43)

The kaons where called strange particles because they live much longer than
other particles that can decay into hadrons. Therefore, it was suggested
that there is a new quantum number strangeness S that is conserved by the
strong interactions and only violated by weak interactions. The difference in
the strength will then explain the difference in lifetime.

It turns out that the more useful quantum number is the hypercharge Y

Y = B + S , (4.44)
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which is conserved by the strong, but violated by the weak interactions. This
hypercharge satisfies the Gell-Mann–Nishijima formula

Q = T3 +
Y

2
, (4.45)

if we assign

S K+〉 = K+〉 (4.46a)

S K0〉 = K0〉 (4.46b)

S K̄0〉 = − K̄0〉 (4.46c)

S K−〉 = − K−〉 (4.46d)

and group the kaons in the corresponding two isopin dublets(
K+

K0

) (
K̄0

K−

)
. (4.47)

4.3.1 SU(3)

Gell-Mann’s stroke of genius was to realize that

SU(2)× U(1) ⊂ SU(3) (4.48)

as Lie groups, where the U(1) is generated by (a multiple of) the hyper-
charge Y and that just as the non-strange baryons and mesons fit into almost
degenerate iso-spin multiplets, all (at the time) observed baryons and mesons
fit into slightly less degenerate SU(3) multiplets.

Gell-Mann Matrices

The group of unitary 3× 3-matrices U with unit determinant is generated

U = eiT (4.49)

by traceless, hermitian 3 × 3-matrices T . A convenient basis for the latter
are the Gell-Mann matrices {λa}a=1,...,8

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 ,

λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2


(4.50)
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with the conventional normalization

Ta =
λa
2

(4.51)

such that

tr (TaTb) =
1

2
δab . (4.52)

4.3.2 Structure Constants

Not only for SU(3), but for any Lie algebra, we can use (4.52) to define a
metric in the adjoint representation

〈Ta|Tb〉 = 2 tr(T †aTb) = δab (4.53)

and to compute the structure constants fabc in a given basis

[Ta, Tb] = i
∑
c

fabcTc (4.54)

as
fabc = −2i tr ([Ta, Tb]Tc) . (4.55)

Since (4.55) depends only on the Lie algebra structure, which is independent
of the representation, and the normalization (4.52), which can always be
arranged. we may compute the structure constants in any representation. If
the group has a unitary representation, the generators are hermitian

(r(Ta))
† = r(Ta) (4.56)

in this representation. We may use it to compute the structure constants
and find

ifabcr(Tc) = ifabcr(Tc)
† = −(ifabcr(Tc))

† = −[r(Ta), r(Tb)]
†

= −
[
(r(Tb))

†, (r(Ta))
†] = − [r(Tb), r(Ta)] = [r(Ta), r(Tb)] = ifabcr(Tc) .

(4.57)

Thus the structure constants of a Lie algebra are real fabc = fabc, whenever
the Lie group has at least one faithful unitary representation.
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4.3.3 Representations

Given a representation r : L → GL(N,C), it turns out that there is also a
complex conjugate representation

r̃ : L→ GL(N,C)

a 7→ −r(a)
(4.58)

if there is any unitary representation. Indeed, choosing a basis, we can write

T̃a = −Ta (4.59)

and find[
T̃a, T̃b

]
=
[
Ta, Tb

]
= [Ta, Tb] = ifabcTc = −ifabcTc = ifabcT̃c (4.60)

since fabc = fabc.
Given a representation r : L→ GL(V ) and an isomorphism φ : V → W ,

we can define a similar representation rφ : L→ GL(W ) making the diagram

V W

V W

φ

φ
r(a) rφ(a) = φ ◦ r(a) ◦ φ−1

(4.61)

commute. Indeed[
rφ(a), rφ(b)

]
= rφ(a)rφ(b)− rφ(b)rφ(a)

= φ ◦ r(a) ◦ φ−1 ◦ φ︸ ︷︷ ︸
=id

◦r(b) ◦ φ− φ ◦ r(b) ◦ φ−1 ◦ φ︸ ︷︷ ︸
=id

◦r(a) ◦ φ

= φ ◦ [r(a), r(b)] ◦ φ−1 = [r(a), r(b)]φ . (4.62)

4.3.4 Cartan Subalgebra and Rank

A maximal subalgebra of commuting elements [a, b] = 0 of a Lie algebra
is called a Cartan subalgebra. It’s dimension is called the rank of the Lie
algebra.

Above, we have shown that the rank of SU(2) is 1. It is very easy to
compute the rank for SU(N): since the members of the Cartan subalgebra
commute and are hermitian, they can be diagonalized simultaneously. Thus
there is a basis in which they are all diagonal and there can be only N
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independent diagonal hermitian matrices. Since the generators of SU(N) are
traceless, we must remove the unit matrix from this set and obtain N − 1
independent diagonal traceless hermitian matrices. This shows

rank(SU(N)) = N − 1 , (4.63)

which includes the special case rank(SU(2)) = 1.
Below, we will denote the representatives of the generators of the Cartan

subalgebra of g by
{Ha}a=1,...,rank(g) . (4.64)

4.3.5 Roots and Weights

The eigenvalues of the generators of the Cartan subalgebra are called weights

Ha m; r, η〉 = ma m; r, η〉 = (4.65)

and can be combined into a weight vector

m = (m1,m2, . . . ,mrank(g)) . (4.66)

As eigenvalues of real matrices, the weights are real. They depend on the
representation r and possible degenerate eigenvectors might need to be dis-
tinguished by additional labels η. In a given basis, we may order the weight
vectors lexicographically and define positivity by comparing to (0, . . . , 0) with
respect to (wrt) this order.

The weight vectors of the adjoint representation are called roots and it can
be shown that they are not degenerate. The roots of the states corresponding
to the Cartan generators vanish

Ha Hb〉 = [Ha, Hb]〉 = 0 . (4.67)

The roots of the non-Cartan generators E must not vanish

Ha Em〉 = ma Em〉 (4.68)

which can also be written

[Ha, Em] = maEm . (4.69)

Note that the Em are not hermitian

maE
†
m = [Ha, Em]† = [E†m, H

†
a] = [E†m, Ha] = −[Ha, E

†
m] , (4.70)
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i. e.
E†m = E−m . (4.71)

Now observe that the E±m act as raising and lowering operators for weights
in any representation r

HaE±m m′; r, η〉 = [Ha, E±m] m′; r, η〉+ E±mHa m′; r, η〉
= ±maE±m m′; r, η〉+ E±mm

′
a m′; r, η〉 = (m′a ±ma)E±m m′; r, η〉 .

(4.72)

Therefore, acting with Em on a state with weight −m, we get a state with
weight m−m = 0. In the adjoint representation this means that the result
is a combination of Cartan generators

Em E−m〉 =

rank(g)∑
a=1

βa Ha〉 . (4.73)

Even better

βa = 〈Ha|Em|E−m〉 = 〈Ha|[Em, E−m]〉 = 2 tr(H†a[Em, E−m])

= 2 tr(Ha[Em, E−m]) = 2 tr(E−m[Ha, Em]) = 2ma tr(E−mEm)

= 2ma tr(E†mEm) = ma 〈Em|Em〉 = ma (4.74)

and thus

[Em, E−m] =

rank(g)∑
a=1

maHa (4.75)

as a generalization of [L+, L−] = L3.
In a finite dimensional representation, there must be a state that is an-

nihilated by all raising operators, i. e. all Em with postive root m > 0. This
is called the highest weight state.

Unless the raising or lowering operator E±m annihilates the state corre-
sponding to the root m′, there is another root m′ ±m. Therefore it makes
sense to define a simple root as a root that can not be written as the sum
of other simple roots. It then suffices to check that a highest weight state is
annihilated by all raising operators corresponding to simple roots.

Lecture 08: Wed, 06. 05. 2015

From (4.69) and (4.75) we can define for each root vector m > 0 the
operators

E
(m)
± =

1

|m|
E±m (4.76a)
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E
(m)
3 =

1

|m|
∑
a

maHa (4.76b)

with the length of the root vector

|m| =
√∑

a

m2
a . (4.77)

These operators form a SU(2) Lie algebra written expressed by raising and
lowering operators

[E
(m)
+ , E

(m)
− ] = E

(m)
3 (4.78a)

[E
(m)
3 , E

(m)
± ] = ±E(m)

± (4.78b)

and we know all finite dimensional irreducible representations from elemen-
tary Quantum Mechanics (QM). This means that the states in each repre-
sentation must form lines of equidistant points along the direction of each
root vector.

4.3.6 Back to SU(3)

In our choice of Gell-Mann matrices, a natural choice for a basis of the Cartan
subalgebra is

H1 = T3 =
1

2

1 0 0
0 −1 0
0 0 0

 (4.79a)

H2 = T8 =
1

2
√

3

1 0 0
0 1 0
0 0 −2

 (4.79b)

and we can compute the weights by reading off the eigenvalues of these
matrices from the diagonal elements:

(m1,m2)1 =

(
1

2
,

1

2
√

3

)
(4.80a)

(m1,m2)2 =

(
−1

2
,

1

2
√

3

)
(4.80b)

(m1,m2)3 =

(
0,− 1√

3

)
, (4.80c)
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m2

m1

(
1
2
, 1

2
√

3

)(
−1

2
, 1

2
√

3

)

(
0,− 1√

3

)

Figure 4.1: 3 or fundamental representation of SU(3).

as depicted in figure 4.1. In the complex conjugate representation, all weights
have their signs reversed since they are eigenvalues of hermitian operators,
as shown in figure 4.2.

Since the roots correspond to raising and lowering operators, they must
be differences of weight vectors

E±1,0 = ±(m1,m2)1 ∓ (m1,m2)2 = (±1, 0) (4.81a)

E±1/2,±
√

3/2 = ∓(m1,m2)2 ± (m1,m2)3 =

(
±1

2
,±
√

3

2

)
(4.81b)

E±1/2,∓
√

3/2 = ±(m1,m2)1 ∓ (m1,m2)3 =

(
±1

2
,∓
√

3

2

)
(4.81c)

and are depicted in figure 4.3. Together with the two Cartan generators at
the origin, they fill out the 8-dimensional adjoint representation of SU(3) in
figure 4.4.

The general form of irreducible representations of SU(3) can deduced from
the relative orientaten of the roots generating the SU(2) subgroups. They
form a triangular grid with hexagonal or triangular boundaries and invariance
under the group generated by rotations by 2π/3 and reflections about the
m2-axis. The hexagons can be viewed as triangles with the corners chopped
off. Vice versa, the triangles are hexagons with three sides shrunk to a single
point. In general two or more of these hexagons or triangles of different size
will be combined, like H1 and H2 in the 8, as depicted in figure 4.4.
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m2

m1(
1
2
,− 1

2
√

3

)(
−1

2
,− 1

2
√

3

)

(
0, 1√

3

)

Figure 4.2: 3̄ or anti-fundamental representation of SU(3).

Since the representations are symmetrical about the m2 axis and complex
conjugation corresponds to an inversion (m1,m2) 7→ (−m1,−m2), a repre-
sentations is equivalent to its complex conjugate, iff it is symmetrical about
the m1 axis.

4.3.7 Quarks, Octets and Decuplets

We can construct all representations of SU(3) out of building blocks from the
3 and 3̄. As shown in figure 4.5, we call these states quarks and antiquarks,
respectively. As before, the up and down quarks u and d form an isospin
dublet, while the strange quark is an isospin singlet.

In oder to avoid irrational coefficients in the Gell-Mann–Nishijima rela-
tion (4.45), we rescale the Cartan generators and introduce the usual quan-
tum numbers isospin and hypercharge

T3 = H1 (4.82a)

Y =
2√
3
H2 . (4.82b)

Note that this rescaling breaks the triangular symmetries of the representa-
tions. We find the quantum numbers depicted in table 4.1.

Starting from the quarks we can now construct quark-antiquark states,
graphically, as shown on the Left Hand Side (LHS) of figure 4.6 and identify
them with the octet of pseudoscalar mesons as shown on the Right Hand



ohl: Wed Jul 1 17:09:35 CEST 2015 subject to change! 44

m2

m1

E±1,0

E±1/2,±
√

3/2E±1/2,∓
√

3/2

Figure 4.3: Roots of SU(3) derived from 3 or fundamental representation.
Note that the 3̄ will yield the same roots since E†m = E−m has already been
included.

Side (RHS) of figure 4.6. Note that of the three combinations uū, dd̄ and ss̄
only the two traceless superpositions enter the octet. The orthogonal ninth
state forms an SU(3) singlet and is called η′.

This graphical construction reproduces the Clebsh–Gordan decomposi-
tion

3⊗ 3̄ = 8⊕ 1 . (4.83)

Algebrically, we start from the heighest weight state

K+〉 = u〉 ⊗ s̄〉 (4.84)

and successively apply the lowering operators E−m until we have exhausted
all possibilities. A similar approach to the di-quark states will produce

3⊗ 3 = 6⊕ 3̄ (4.85)

but the corresponding states do not appear in nature, because they can not
be coupled to color singlets.

On the LHS of figure 4.7 we have depicted all possible three quark states,
which have indeed been found as 3/2-baryons, as shown on the RHS of fig-
ure 4.7. An early triumph of the quark model, which earned Gell-Mann a
trip to Stokholm was the discovery of the Ω−− at the predicted mass. The
algebraic approach starts again from the highest weight state

∆++〉 = u〉 ⊗ u〉 ⊗ u〉 (4.86)
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m2

m1

H1

H2

E1,0

E−1,0

E1/2,
√

3/2E−1/2,
√

3/2

E1/2,−
√

3/2E−1/2,−
√

3/2

Figure 4.4: Roots, 8 ∼= 8̄ or adjoint representation of SU(3).

Y

T3

ud

s

Y

T3

d̄ū

s̄

Figure 4.5: The quarks and antiquarks form a 3 and a 3̄ of SU(3).

and successively applies the lowering operators E−m until we have exhausted
all possibilities. This is the first stage of the Clebsh–Gordan decomposition

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1 . (4.87)

From this construction, it is obvious that the flavor wave functions of the
decuplet states are all totally symmetric under permutations, e. g.

Ξ∗,0〉 =
1√
3

( u〉 ⊗ s〉 ⊗ s〉+ s〉 ⊗ u〉 ⊗ s〉+ s〉 ⊗ s〉 ⊗ u〉) . (4.88)

As before this causes a problem with Fermi statistics, because the spin wave
function for spin 3/2 is also totally symmetric and the position space wave
functions are expected to be symmetric in the ground state.
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Y

T3

uūdd̄
ss̄

ud̄dū

us̄ds̄

sd̄sū

Y

T3

π0

η
π+π−

K+K0

K̄0K−

Figure 4.6: SU(3) octets of quark-antiquark pairs and pseudoscalar mesons.

This we are let to introduce a new quantum number color, corresponding
to another, completely unrelated, SU(3)C . If there is a chance for confusion,
we will denote the flavor SU(3) by SU(3)F . The quarks and antiquarks are
assumed to transform as a 3 and 3̄ under SU(3)C respectively. It is easy to
see that the totally antisymmetric color space wave function

1〉 =
1√
6

3∑
i,j,k=1

εijk i〉 ⊗ j〉 ⊗ k〉 (4.89)

is indeed a singlet under SU(3)C

T 1〉 =

T3 Y Q = T3 + Y/2

u +1
2

+1
3

+2
3

d −1
2

+1
3

−1
3

s 0 −2
3

−1
3

ū −1
2
−1

3
−2

3

d̄ +1
2
−1

3
+1

3

s̄ 0 +2
3

+1
3

Table 4.1: Quarks and antiquarks.
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Y

T3

uds uusdds

uuuuududdddd

ussdss

sss

Y

T3

Σ∗,0 Σ∗,+Σ∗,−

∆++∆+∆0∆−

Ξ∗,0Ξ∗,−

Ω−−

Figure 4.7: SU(3) decuplets of three quark states and of excited spin-3/2
baryons.

1√
6

3∑
i,j,k,l=1

εijk
(
T il l〉 ⊗ j〉 ⊗ k〉+ T jl i〉 ⊗ l〉 ⊗ k〉+ T kl i〉 ⊗ j〉 ⊗ l〉

)
=

1√
6

3∑
i,j,k

3∑
l=1

(
εljkT

l
i + εilkT

l
j + εijlT

l
k

)
︸ ︷︷ ︸

=0

i〉 ⊗ j〉 ⊗ k〉 = 0 , (4.90)

because

(Tε)ijk =
3∑
l=1

(
εljkT

l
i + εilkT

l
j + εijlT

l
k

)
(4.91)

is totally antisymmetric and it suffices to compute

(Tε)123 = ε123T
1
1 + ε123T

2
2 + ε123T

3
3 = ε123 tr(T ) = 0 (4.92)

by the tracelessness of the generators. Note that this is just a “complexified”
version of the argument why

~a ·
(
~b× ~c

)
(4.93)

is invariant unter rotations or more generally the determinant theorem. In
the case of the pseudoscalar octet, we use the fact that

1〉 =
1√
3

3∑
i,j=1

δij i〉 ⊗ j̄〉 (4.94)
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Y

T3

Σ0

Λ
Σ+Σ−

pn

Ξ0Ξ−

Figure 4.8: SU(3) octet of baryons.

is also a SU(3)C singlet.
We have learned that in the Clebsh–Gordan decomposition

3⊗ 3⊗ 3 = 10S ⊕ 8M ⊕ 8M ′ ⊕ 1A . (4.95)

the decuplet is totally symmetric and the singlet is totally antisymmetric.
Since there is no totally antisymmetric combination of three spin-1/2 states,
the flavor singlet can not be realized with a low lying symmetric position
space wavefunction. It turns out that among the flavor octets with the mixed
symmetry, only one is realized in combination with total spin 1/2, leading to
the SU(3) octet of spin 1/2 baryons depicted in figure 4.8.

Lecture 09: Tue, 12. 05. 2015

The naive approach of assigning masses to quarks and explaining the
mass differences by

ms > md ≈ mu (4.96)

works very well for the 10 of spin 3/2 baryons. However, it does not offer an
explanation for the mass splitting of neutral pseudoscalars

mη > mπ0 (4.97)

and spin 1/2 baryons
mΛ < mΣ0 (4.98)
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that all sit at T3 = Y = 0. The observed mass of the η is hard to explain,
because it is a superposition of uū, dū and ss̄ contributions. Analogously,
one would naively expect mΛ < mΣ0 , since they share the same quark con-
tent uds.

Therefore we need a more systematic approach to describe the breaking
of SU(3)F together with the conservation of isospin SU(2)F .

4.3.8 Tensor Methods

We can write a arbitrary quark-antiquark state

Ψ〉 =
∑

f∈{u,d,s}
f̄ ′∈{ū,d̄,s̄}

Ψf̄ ′f f〉 ⊗ f̄ ′〉 . (4.99)

In the following, we will abbreviate f〉⊗ f̄ ′〉 = ff̄ ′〉. The states from the 8
satisfy ∑

f∈{u,d,s}

Ψf̄f = 0 (4.100)

i. e. they correspond to traceless matrices Ψ. If we parametrize them as

Ψ =


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

 , (4.101)

we find

Ψ〉 = π0 1√
2

(
uū〉 − dd̄〉

)
+ η

1√
6

(
uū〉+ dd̄〉 − 2 ss̄〉

)
+ π+ ud̄〉+K+ us̄〉+ π− dū〉+K0 ds̄〉+K− sū〉+ K̄0 sd̄〉 . (4.102)

Under SU(3)F , the states transform as

Ψ〉 7→ Ψ′〉 =
(
U ⊗ U

)
Ψ〉 =

∑
f∈{u,d,s}
f̄ ′∈{ū,d̄,s̄}

Ψf̄ ′fU f〉 ⊗ U f̄ ′〉 , (4.103)

where U corresponds to U in the complex conjugate representation

U = eiT = e−iT = ei(−T ) . (4.104)

In components

U f〉 =
∑

f ′∈{u,d,s}

Uff ′ f
′〉 (4.105a)
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U f̄〉 =
∑

f̄ ′∈{ū,d̄,s̄}

Uf̄ f̄ ′ f̄
′〉 (4.105b)

and thus

Ψ′〉 =
∑

fi∈{u,d,s}
f̄ ′i∈{ū,d̄,s̄}

Ψf̄ ′1f1
Uf1f2Uf̄ ′1f̄ ′2 f2〉 ⊗ f̄ ′2〉 =

∑
f∈{u,d,s}
f̄ ′∈{ū,d̄,s̄}

Ψ′f̄ ′f f〉 ⊗ f̄ ′〉 (4.106)

with
Ψ′f̄ ′f =

∑
f1∈{u,d,s}
f̄ ′1∈{ū,d̄,s̄}

Uf̄ ′1f̄ ′Ψf̄ ′1f1
Uf1f =

(
U †ΨU

)
ff̄ ′

. (4.107)

This means that the matrix Ψ transforms bi-unitarily

Ψ 7→ Ψ′ = U †ΨU . (4.108)

Hausdorff’s formula

Ψ 7→ Ψ′ = e−iTΨeiT = e−iadTΨ = Ψ− i[T,Ψ] + . . . (4.109)

shows that the matrix Ψ transforms according to the adjoint representation
of SU(3)F . In particular tr Ψ′ = 0 since

tr[A,B] = tr(AB)− tr(BA) = 0 (4.110)

by cyclic invariance. In general, we can write

N⊗ N̄ ⊃ adjoint . (4.111)

This way we can represent tensors of rank two with one index in the
fundamental representation and one index in the complex conjugate repre-
sentation as square matrices. Then we can use our intuition about the rules
of matrix calculus to find quantities invariant under group transformations
as traces and determinants. E. g.

tr(AB) 7→ tr(U †AUU †BU) = tr(UU †AUU †B) = tr(AB) (4.112)

or
detA 7→ det(U †AU) = detU † · detA · detU = detA . (4.113)

In fact, this trick can be generalized to the case

N⊗ M̄ (4.114)
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with
Ψ 7→ U †MΨUN , (4.115)

where the two factors can be differenct representations of the same or even
different groups. In this case the matrices are no longer square and can be
combined only if the dimensions match. Unfortunately, there is no useful
generalization to tensor of rank three and higher.

Not that without going into the details of the quark compostion, we can
write the analogous matrix for the spin-1/2 baryons, since we assume that
they also transform according to the 8 of SU(3)F

1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

 . (4.116)

4.3.9 Gell-Mann–Okubo Formula

Similar to the transformation properties of states as tensors in a representa-
tion r

T r, i〉 =
∑
j

r, i〉 [r(T )]ji , (4.117)

we can also classify the transformation properties of operators and introduce
tensor operators

[T,Or
i ] =

∑
j

[r(T )]jiO
r
j (4.118)

in an irreducible representation r. Obviously, just as all states can be ex-
pressed as a superposition of states from irreducible representations of a
symmetry group, all operators can be expressed as a sum of tensor opera-
tors.

In particular any Hamiltonian can be decomposed according to SU(3)F
transformation properties

H = H1 +H3 +H 3̄ +H6 +H 6̄ +H8 +H10 +H 1̄0 + . . . . (4.119)

In the case of a matrix element between two states in the 8-representation,
the lowest orders in the expansion are

M = 〈Ψ|H|Ψ〉 = 〈Ψ|H1|Ψ〉+ 〈Ψ|H8|Ψ〉+ . . . , (4.120)

since these are the lowest real representations of SU(3) and expectation values
of the hamiltonian should be real. Indeed, there are singlets in

8⊗ 8⊗ 1 8⊗ 8⊗ 8 ,
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but there are no singlets in

8⊗ 8⊗ 3 8⊗ 8⊗ 3̄

8⊗ 8⊗ 6 8⊗ 8⊗ 6̄

8⊗ 8⊗ 10 8⊗ 8⊗ 1̄0 .

In the case of H1 ∝ 1, we need to form an invariant that is bilinear in Ψ
and Ψ†. Due to the cyclic invariance of the trace, there is only a single such
combination

〈Ψ|H1|Ψ〉 = 2α tr
(
Ψ†Ψ

)
, (4.122)

since tr
(
Ψ†
)

tr (Ψ) = 0 . The normalization condition

tr(TaTb) =
1

2
δab (4.123)

means that this term contributes the same mass α to all particles in the
octet.

Again by cyclic invariance of the trace, we can form only two independent
SU(3)F -invariant combinations that are linear in Ψ, Ψ† and H8 simultane-
ously:

〈Ψ|H8|Ψ〉 = β tr
(
Ψ†T8Ψ

)
+ γ tr

(
Ψ†ΨT8

)
, (4.124)

where we have already used
H8 ∝ T8 , (4.125)

because H8 should commute with all isospin generators. Note that

tr
(
Ψ†Ψ

)
tr
(
H8
)

= 0 = tr
(
Ψ†H8

)
tr (Ψ) , (4.126)

since all matrices are traceless. Equation (4.124) is a generalization of the
Wigner–Eckhart Theorem.

Therefore we can express all masses in the octet by just three real pa-
rameters: α, β, γ. On The Other Hand (OTOH), there are four degenerate
isospin multiplets in the spin 1/2 octet: (p, n), (Σ+,Σ0,Σ−), (Ξ0,Ξ−), (Λ)
and we should expect one non-trivial relation.

Indeed

tr
(
Ψ†ΨT8

)
=

1

2
√

3

(
[Ψ†Ψ]11 + [Ψ†Ψ]22 − 2[Ψ†Ψ]33

)
(4.127a)

tr
(
Ψ†T8Ψ

)
=

1

2
√

3

(
[ΨΨ†]11 + [ΨΨ†]22 − 2[ΨΨ†]33

)
, (4.127b)

where (4.127a) contains sums of squares of columns of (4.116)

[Ψ†Ψ]11 =
1

2

∣∣∣∣Σ0 +
1√
3

Λ

∣∣∣∣2 +
∣∣Σ−∣∣2 +

∣∣Ξ−∣∣2 (4.128a)
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[Ψ†Ψ]22 =
∣∣Σ+

∣∣2 +
1

2

∣∣∣∣Σ0 − 1√
3

Λ

∣∣∣∣2 +
∣∣Ξ0
∣∣2 (4.128b)

[Ψ†Ψ]33 = |p|2 + |n|2 +
2

3
|Λ|2 (4.128c)

and (4.127b) contains sums of squares of rows of (4.116)

[ΨΨ†]11 =
1

2

∣∣∣∣Σ0 +
1√
3

Λ

∣∣∣∣2 +
∣∣Σ+

∣∣2 + |p|2 (4.129a)

[ΨΨ†]22 =
∣∣Σ−∣∣2 +

1

2

∣∣∣∣Σ0 − 1√
3

Λ

∣∣∣∣2 + |n|2 (4.129b)

[ΨΨ†]33 =
∣∣Ξ−∣∣2 +

∣∣Ξ0
∣∣2 +

2

3
|Λ|2 . (4.129c)

Summing up, we find

2
√

3 〈Ψ|H8|Ψ〉

= β

(∣∣Σ0
∣∣2 +

1

3
|Λ|2 +

∣∣Σ+
∣∣2 + |p|2 +

∣∣Σ−∣∣2 + |n|2 − 2
∣∣Ξ−∣∣2 − 2

∣∣Ξ0
∣∣2 − 4

3
|Λ|2

)
+γ

(∣∣Σ0
∣∣2 +

1

3
|Λ|2 +

∣∣Σ−∣∣2 +
∣∣Ξ−∣∣2 +

∣∣Σ+
∣∣2 +

∣∣Ξ0
∣∣2 − 2 |p|2 − 2 |n|2 − 4

3
|Λ|2

)
= β

(
|Σ|2 + |N |2 − 2 |Ξ|2 − |Λ|2

)
+ γ

(
|Σ|2 + |Ξ|2 − 2 |N |2 − |Λ|2

)
(4.130)

with the isospin multiplets

|N |2 = |p|2 + |n|2 (4.131a)

|Ξ|2 =
∣∣Ξ0
∣∣2 +

∣∣Ξ−∣∣2 (4.131b)

|Σ|2 =
∣∣Σ+

∣∣2 +
∣∣Σ0
∣∣2 +

∣∣Σ−∣∣2 . (4.131c)

We can now read off the masses

mN = α +
β − 2γ

2
√

3
(4.132a)

mΞ = α +
γ − 2β

2
√

3
(4.132b)

mΣ = α +
β + γ

2
√

3
(4.132c)

mΛ = α− β + γ

2
√

3
. (4.132d)
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From this, we can read off the Gell-Mann–Okubo relation

2mN + 2mΞ = 3mΛ +mΣ , (4.133)

since both sides are equal to −(β + γ)/
√

3.
Solving (4.133) for mΛ and inserting the current (2014) values from ta-

ble 4.2, we find

mΛ =
1

3
(2mN + 2mΞ −mΣ) = 1107 GeV , (4.134)

which is within 1% of the experimental result. This is unreasonably good,
since we have normalized with the large common contribution from the
SU(3)F singlet H1 of about 1 GeV. Nevertheless, even if we look only at
the mass splittung

mΣ0 −mΛ =

{
77 MeV experiment

86 MeV Gell-Mann–Okubo (4.134)
, (4.135)

our prediction is only 11% off, which is very good for a symmetry argument
without any dynamical assumptions.

In chapter 8 below, we will find a dynamical explanation for the success of
the symmetry argument in Quantum Chromo Dynamics (QCD), the theory
of strong interactions. In QCD, there is a SU(Nf )F flavor symmetry for Nf

flavors of quarks. This symmetry is only broken by (small) quark masses

ms > md ≈ mu (4.136)

and the bulk of the hadron masses is generated dynamically.

Isospin multiplet mavg./MeV m/MeV
N = (p, n) 939 (938.272, 939.565)

(Σ+,Σ0,Σ−) 1193 (1189.4, 1192.6, 1197.4)
(Ξ0,Ξ−) 1318 (1315, 1321.7)

(Λ) 1116 (1115.68)

Table 4.2: Masses of the SU(3) octet of baryons from http: // pdg. lbl.

gov .

http://pdg.lbl.gov
http://pdg.lbl.gov
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4.4 Heavy Quarks

There are three more quarks: charm (c), bottom (b) and top (t), that are
(much) heavier than the three discussed so far. The top quark decays so
fast, that it can not form bound states.

The bound states of charm and bottom bottom quarks can be organized
in SU(4)F and SU(5)F multiplets, but these symmetries are so badly broken,
that little quantitative predictions can be obtained.

4.4.1 Quarkonia

It turns out that QCD (see chapter 8) becomes weakly interacting at high
energies and the binding energies are much smaller than the masses of the
heavy quarks. This means that we can compute the spectra of cc̄ and bb̄
bound states, the so called charmonium and bottomonium states with non-
relativistic Schroedinger wave functions from a potential

Vqq̄(r) =
αS

|~rq − ~rq̄|
+ . . . , (4.137)

similar to positronium. The results of these calculations have been confirmed
with spectactular success in the spectroscopy of such states.
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—5—
Gauge Theories

Lecture 10: Wed, 13. 05. 2015

5.1 Basics of Quantum Field Theory

Quantum Field Theory (QFT) plays a dual role:

• “quantum mechanics” of classical field theory, e. g. quantized radiation
field in quantum electrodynamics

• quantum mechanics for (infinitely) many particles with creation and
annihilation

are described by the same formalism.

5.1.1 Classical Field Theory

Configuration space: linear space of all functions φ

φ : M = R4 → C

x 7→ φ(x)
(5.1)

or rather of all distributions, since we often encounter singularities, e. g. in
the Coulomb potential of point charges.

The dynamics of the fields φ is governed by second order Partial Differ-
ential Equations (PDEs), e. g. the Klein-Gordon equation

(� +m2)φ(x) = 0 (5.2)

with appropriate Cauchy data for φ(x) and ∂0φ(x) on a spacelike hypersur-
face, e. g. x0 = 0.
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Action Principle, Euler-Lagrange-Equations

Since the study of coupled nonlinear PDEs is complicated and in particular
symmetries are not manifest for multi-component fields, it helps to derive
the equation of motion from an action principle:

δS(φ1, . . . , φn) =
n∑
i=1

∫
d4x

δS

δφi
(φ1, . . . φn, x)δφi(x) = 0 (5.3)

for all variations {δφi}i=1,...,n and therefore

δS

δφi
(φ1, . . . φn, x) = 0 . (5.4)

For example the local action for a real field φ

S(φ) =

∫
d4xL (φ(x), ∂µφ(x)) (5.5)

with Lagrangian

L (φ(x), ∂µφ(x)) =
1

2
∂µφ(x)∂µφ(x)− 1

2
m2φ(x)φ(x)− V (φ(x)) (5.6)

leads to

0
!

= δS(φ) =

∫
d4x

δS

δφ
(φ, x)δφ(x)

=

∫
d4x

[
∂L
∂φ

(φ(x), ∂µφ(x))δφ(x) +
∂L
∂∂µφ

(φ(x), ∂µφ(x))δ∂µφ(x)

]
=

∫
d4x

[
∂L
∂φ

(φ(x), ∂µφ(x))δφ(x)− ∂µ
∂L
∂∂µφ

(φ(x), ∂µφ(x))δφ(x)

]
=

∫
d4x

[
∂L
∂φ

(φ(x), ∂µφ(x))− ∂µ
∂L
∂∂µφ

(φ(x), ∂µφ(x))

]
δφ(x)

=

∫
d4x

[
−�φ(x)−m2φ(x)− V ′(φ(x))

]
δφ(x) , (5.7)

i. e. (
� +m2

)
φ = −V ′(φ) (5.8)

or for a general Lagrangian

∂L
∂φi

(φ1(x), . . . , φn(x), ∂µφ1(x), . . . , ∂φn(x))
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− ∂µ
∂L
∂∂µφi

(φ1(x), . . . , φn(x), ∂µφ1(x), . . . , ∂φn(x)) = 0 . (5.9)

All interesting field equations are second order in time and space, since higher
orders lead to problems with causality. The second order field equations
have to be combined with Cauchy data for the fields {φi(x)}i=1 ...,n and their
first time derivatives {∂0φi(x)}i=1 ...,n on a space-like hypersurface (“Cauchy
surface”).

5.1.2 Quantum Field Theory

In QFT, the classical fields {φi(x)}i=1 ...,n : M → R are promoted to field
operators and it can be shown that all observables, in particular cross sections
an decay rates, can be recovered from vacuum expectation values (vevs) of
time-ordered products of field operators, a.k.a. greensfunctions

〈0 T (φi1(x1)φi2(x2) · · ·φin(xn)) 0〉 , (5.10)

where

Tφi(x)φj(y) = Θ(x0 − y0)φi(x)φj(y)±Θ(y0 − x0)φj(y)φi(x) , (5.11)

i. e. fields are ordered from right to left according to time. The negative
sign appears iff both fields are fermions. This time ordering is familiar from
time-dependent perturbation theory in non-relativistic QM:

U(t, t0) = T
(

e
−i

∫ t
t0

dt′HI(t′)
)
. (5.12)

Generating Functionals

Compact expression containing all greensfunctions of interacting (Heisen-
berg) fields of a theory

Z : C∞(R4)→ C

j 7→ Z(j) = 〈0|T[ei
∫

d4xφ(x)j(x)]|0〉
(5.13)

such that

〈0|T[φ(x1) . . . φ(xn)]|0〉 = lim
j→0

δ

iδj(x1)
. . .

δ

iδj(xn)
Z(j) (5.14)

with obvious generalization for more than one field:

Z :
(
C∞(R4)

)⊗n → C

(j1, . . . , jn) 7→ Z(j1, . . . , jn) = 〈0|T[ei
∫

d4x
∑n
i=1 φi(x)ji(x)]|0〉 .

(5.15)
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For a free scalar field φ with Lagrangian

L =
1

2
∂µφ∂

µφ− m2

2
φ2 (5.16)

we can compute the 2-point greensfunction exactly

〈0|T[φ(x)φ(y)]|0〉 = −iGF (x− y) =

∫
d4p

(2π)4
e−ip(x−y) i

p2 −m2 + iε
(5.17)

and we find a closed expression for the generating functional:

Z0(j) = e
i
2

∫
d4xd4y j(x)GF (x−y)j(y) . (5.18)

E. g.

〈0|T[φ(x1)]|0〉 = lim
j→0

δ

iδj(x1)
Z(j) (5.19a)

= lim
j→0

∫
d4x2GF (x1 − x2)j(x2) = 0

〈0|T[φ(x1)φ(x2)]|0〉 = −iGF (x1 − x2) (5.19b)

〈0|T[φ(x1)φ(x2)φ(x3)]|0〉 = 0 (5.19c)

〈0|T[φ(x1)φ(x2)φ(x3)φ(x4)]|0〉 = −GF (x1 − x2)GF (x3 − x4)

−GF (x1 − x3)GF (x2 − x4)

−GF (x1 − x4)GF (x2 − x3) (5.19d)

· · · (5.19e)

〈0|T[φ(x1) . . . φ(x2n+1)]|0〉 = 0 (5.19f)

· · · (5.19g)

5.1.3 Pathintegral and Feynman Rules

The generating functional of all greensfunctions can be expressed as an in-
tegral over all field configurations1 that are compatible with the boundary
conditions in the past and in the future:

Z(j) =

∫
Dϕ eiS(ϕ)+i

∫
d4xϕ(x)j(x) . (5.20)

Separating the action into a free and interaction part

S = S0 + SI , (5.21)

1A mathematically rigorous definition of the integration measure Dϕ in (5.20) is not
trivial and has so far only been achieved in 2 + 1 space-time dimensions.
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we can write

Z(j) =

∫
Dϕ eiSI(ϕ)eiS0(ϕ)+i

∫
d4xϕ(x)j(x) (5.22)

and using

T
(
φ(x)ei

∫
d4x′ φ(x′)j(x′)

)
=

δ

iδj(x)
T
(

ei
∫

d4x′ φ(x′)j(x′)
)
, (5.23)

we can pull out the interaction

Z(j) =

∫
Dϕ eiSI( δ

iδj
)eiS0(ϕ)+i

∫
d4xϕ(x)j(x)

= eiSI( δ
iδj

)

∫
Dϕ eiS0(ϕ)+i

∫
d4xϕ(x)j(x) = eiSI( δ

iδj
)Z0(j) , (5.24)

with Z0 the generating functional of free or non-interacting greensfunctions.
With (5.24), we have given a formal, highly non-rigorous, derivation of

the Feynman rules for the perturbative computation of greensfunctions.
For V (φ) = gφ4/4! with limj→0 implied and “disc.” refering to discon-

nected diagrams we find

1.

〈0|T[φ(x1)φ(x2)φ(x3)φ(x4)]|0〉 =
δ

iδj(x1)

δ

iδj(x2)

δ

iδj(x3)

δ

iδj(x4)
Z(j)

=
δ

iδj(x1)

δ

iδj(x2)

δ

iδj(x3)

δ

iδj(x4)
eiSI( δ

iδj
)Z0(j)

=
δ

iδj(x1)

δ

iδj(x2)

δ

iδj(x3)

δ

iδj(x4)
i

∫
d4x

g

4!

(
δ

iδj(x)

)4

Z0(j)+O(g2)+disc.

= i

∫
d4x gGF (x1−x)GF (x2−x)GF (x3−x)GF (x4−x)+O(g2)+disc.

(5.25)

x1

x2

x4

x3

x

2.
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〈0|T[φ(x1)φ(x2)]|0〉 =
δ

iδj(x1)

δ

iδj(x2)
Z(j) =

δ

iδj(x1)

δ

iδj(x2)
eiSI( δ

iδj
)Z0(j)

=
δ

iδj(x1)

δ

iδj(x2)
i

∫
d4x

g

4!

(
δ

iδj(x)

)4

Z0(j) +O(g2)

= i

∫
d4x

g

2
GF (x1 − x)GF (x2 − x)GF (x− x) +O(g2) (5.26)

x1 x2x

NB: GF (x − x) = GF (0) is not well defined and leads to divergen-
cies in perturbation theory, whose proper treatment is the subject of
renormalization theory.

5.2 Gauge Invariant Actions

5.2.1 Global Transformations

Given a symmetry group G and a finite dimensional representation R, we can
easily construct invariant actions for multiplets of fields transforming under
this representation

U(α) ∈ G :


φ1(x)
φ2(x)
. . .
φn(x)

 7→

φ′1(x)
φ′2(x)
. . .
φ′n(x)

 = R(U(α))


φ1(x)
φ2(x)
. . .
φn(x)

 (5.27)

or, in components,

φi(x) 7→ φ′i(x) =
n∑
j=1

[R(U(α))]ij φj(x) (5.28)

or, combining the components to vectors,

φ(x) 7→ φ′(x) = R(U(α))φ(x) (5.29)

or, if there’s no danger of mistaking the group for the representation,

φ(x) 7→ φ′(x) = U(α)φ(x) . (5.30)
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However, while R is in many cases the defining representation, there are
important examples for other representations in particle physics.

Parametrizing the group elements

U(α) = eiTaαa = eiα (5.31)

with {Ta} a basis of the corresponding Lie algebra, we can often concentrate
on infinitesimal transformations:

φ(x) 7→ φ′(x) = φ(x) + δφ(x) (5.32)

with

δφi(x) = i
∑
a

n∑
j=1

αa [r(Ta)]ij φj(x) = i
n∑
j=1

[r(α)]ij φj(x) (5.33)

or
δφ(x) = i

∑
a

αar(Ta)φ(x) = ir(α)φ(x) (5.34)

or
δφ(x) = i

∑
a

αaTaφ(x) = iαφ(x) . (5.35)

Mass terms in a complex unitary representation,

φ†(x)φ(x) =
n∑
i=1

φ∗i (x)φi(x) (5.36)

and in a real orthogonal representation

φT (x)φ(x) =
n∑
i=1

φi(x)φi(x) , (5.37)

are obviously invariant:

φ†(x)φ(x) 7→ (φ′)†(x)φ′(x) = φ†(x)φ(x) (5.38)

and
φT (x)φ(x) 7→ (φ′)T (x)φ′(x) = φT (x)φ(x) . (5.39)

Since
∂µφ

′(x) = ∂µ (R(U(α))φ(x)) = R(U(α))∂µφ(x) (5.40)

derivatives transform just like the fields and kinetic terms are invariant as
well. Using this we can easily write invariant Lagrangians

L = (∂µφ)†(∂µφ)−m2φ†φ− P (φ†φ) (5.41)
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and

L =
1

2
(∂µφ)T (∂µφ)− m2

2
φTφ− P

(
φTφ

)
. (5.42)

There are of course many more interaction terms, e. g.

L333 =
3∑

i,j,k=1

εijkφiφ
′
jφ
′′
k (5.43a)

L2̄23 =
2∑

i,j=1

3∑
k=1

σkijψ
∗
iψ
′
jφk (5.43b)

L333 =
3∑

i,j,k=1

εijkχiχ
′
jχ
′
k (5.43c)

. . . (5.43d)

for the φ in SU(2) triplets, the ψ in SU(2) dublets and the χ in SU(3) triplets.

5.2.2 Noether’s Theorem

Lecture 11: Tue, 19. 05. 2015

Assume that an action S is invariant under a field dependent transforma-
tion with infinitesimal generators

δφ(x) = ∆(φ)(x) (5.44a)

δS(φ) = 0 , (5.44b)

where φ in general denotes a multiplet of fields. For internal symmetries we
will always have

∆(φ) = ∆′ ◦ φ , (5.45)

but for space-time symmetries, ∆(φ) must be allowed to depend on values of
the field φ at other space time points

∆(φ) = ∆′ ◦ φ ◦ f−1 , (5.46)

with f : M→M. Note, that an active transformation of coordinates

f : M→M

x 7→ x′ = f(x)
(5.47)

corresponds to a transformation of fields

f ∗ : C∞(M)→ C∞(M)

φ 7→ f ∗(φ) = φ ◦ f−1 ,
(5.48)
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in order to keep the observable values of the field invariant

φ(x) 7→ (φ ◦ f−1)(f(x)) = φ(f−1(f(x)) = φ(x) . (5.49)

In any case, in this section we will exclude space-time dependence of the form

∆(φ, x) (5.50)

that can not be factored like (5.46).
Note that the invariance (5.44b) of the action S means that the La-

grangian L transforms into a total derivative

δL(φ) = ∂µσ
µ
δ (φ) . (5.44b’)

First consider the variation of L under an arbitrary transformation δφ

δL =
∑
i

∂L
∂φi

δφi +
∑
i

∂L
∂∂µφi

δ∂µφi

=
∑
i

(
∂L
∂φi
− ∂µ

∂L
∂∂µφi

)
︸ ︷︷ ︸
=0 by equations of motion

δφi + ∂µ

(∑
i

∂L
∂∂µφi

δφi

)
, (5.51)

i. e. along the solutions of the equations of motion we have

δL(φ) = ∂µ

(∑
i

∂L
∂∂µφi

δφi

)
. (5.52)

Since OTOH for a symmetry transformation δL = ∂µσ
µ
δ (5.44b’), we must

have

∂µ

(∑
i

∂L
∂∂µφi

δφi

)
= ∂µσ

µ
δ , (5.53)

or current conservation
∂µj

µ
δ = 0 (5.54)

for the conserved current

jµδ =
∑
i

∂L
∂∂µφi

δφi − σµδ . (5.55)
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Space-Time Symmetries

Translations xµ 7→ x′µε = Xµ − εµ, i. e.

δεx
µ = −εµ (5.56)

or
δεφ(x) = εµ∂µφ(x) (5.57)

and, of course
δεL = εµ∂µL . (5.58)

Therefore
σµε = εµL (5.59)

and we find conserved currents

jµε =
∑
i

∂L
∂∂µφi

εν∂νφi − ενL . (5.60)

Introduzing unit vectors

ν = 0, 1, 2, 3 : εµ(ν) = δµν , (5.61)

we find the conserved energy momentum tensor

T µν := jµε(ν) =
∑
i

∂L
∂∂µφi

∂νφi − gµνL (5.62)

with
∂µT

µν = 0 . (5.63)

The name is justified by noticing that energy and momentum are the integrals
over space

E =

∫
d3xT 00 = H (5.64a)

P i =

∫
d3xT 0i . (5.64b)

Analogously, one can obtains the conserved charges generating the Lorentz
group by studying infinitesimal Lorentz transformations

δωφ = −ωµνxν∂µφ (5.65)

as discussed in the exercises.
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Internal Symmetries

If the Lagrangian in invariant under an internal symmetry

δφ(x) = ∆(φ(x)) (5.66)

that commutes with translations and Lorentz translations, the term σµδ in
absent from (5.44b’) and (5.55)

jµδ =
∑
i

∂L
∂∂µφi

δφi . (5.67)

In particular, if we have a Lie algebra representation r

δaφ(x) = ir(Ta)φ(x) (5.68)

or in components

δaφi(x) = i
∑
j

[r(Ta)]ijφj(x) , (5.69)

we find

jµa = i
∑
ij

∂L
∂∂µφi

[r(Ta)]ijφj . (5.70)

U(1) Examples

• The Lagrangian of a free complex scalar

L = ∂µφ∂
µφ−m2φφ (5.71)

is invariant under U(1) transformations

φ 7→ eiαφ (5.72a)

φ 7→ e−iαφ (5.72b)

with

δαφ = iαφ (5.73a)

δαφ = −iαφ . (5.73b)

Therefore

−αjµα = ∂µφiαφ− iαφ∂µφ =: −iα
(
φ
←→
∂µφ

)
(5.74)

is the corresponding conserved Noether current.

• The Lagrangian of a free spin-1/2 field

L = ψ̄ (iγµ∂µ −m)ψ (5.75)

is also invariant under U(1) transformations with Noether current

αjµα = ψ̄iαγµψ = iαψ̄γµψ . (5.76)
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5.2.3 Local Transformations

Considering local, x-dependent, transformations with

U(x) = eiTaαa(x) = eiα(x) (5.77)

we find that derivatives no longer transform covariantly

∂µφ
′(x) = ∂µ (U(x)φ(x)) = U(x)∂µφ(x) + ∂µU(x)φ(x)

= U(x)
[
∂µ + U−1(x) (∂µU(x))

]
φ(x) . (5.78)

According to

U−1(x)∂µU(x) = e−iα(x)∂µeiα(x) = e−i[α(x),·]∂µ = e−iadα(x)∂µ

= ∂µ − i[α(x), ∂µ]− 1

2!
[α(x), [α(x), ∂µ]] + . . .

= ∂µ + i∂µα(x) +
1

2!
[α(x), ∂µα(x)]− i

3!
[α(x), [α(x), ∂µα(x)]] + . . .

= ∂µ + U−1(x) (∂µU(x)) , (5.79)

the additional term is composed of multiple commutators of generators and
their derivatives. Therefore it is defined in the Lie algebra representation
and can be cancelled by a field in the same Lie algebra representation!

5.2.4 Covariant Derivative

Define a covariant derivate

Dµ = ∂µ − iAµ(x) (5.80)

such that

Dµ = ∂µ − iAµ(x)→ D′µ = U(x)DµU
−1(x) = ∂µ − iA′µ(x) (5.81)

and demand the transformation property of the Lie algebra valued connection

Aµ(x) = TaA
a
µ(x) (5.82)

accordingly

∂µ−iA′µ(x) = U(x) (∂µ − iAµ(x))U−1(x) = U(x)∂µU(x)−iU(x)Aµ(x)U−1(x)

= ∂µ + U(x)
(
∂µU

−1(x)
)
− iU(x)Aµ(x)U−1(x) (5.83)
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i. e.

Aµ(x)→ A′µ(x) = U(x)Aµ(x)U−1(x) + iU(x)
(
∂µU

−1(x)
)

= Aµ(x) + i[α(x), Aµ(x)]− 1

2!
[α(x), [α(x), Aµ(x)]] + . . .

+ ∂µα(x) +
i

2!
[α(x), ∂µα(x)]− 1

3!
[α(x), [α(x), ∂µα(x)]] + . . . (5.84)

NB: more precisely, Dµ depends on the representation

Dr
µ = ∂µ − ir(Aµ(x)) (5.85)

e. g.
Dadj.
µ = ∂µ − i[Aµ(x), ·] = ∂µ − iAaµ(x)[Ta, ·] (5.86)

and in

Dr
µ = ∂µ − ir(Aµ(x))→ Dr ′

µ = R(U(x))Dr
µR(U−1(x)) = ∂µ − ir(A′µ(x))

(5.87)
the representations r and R must match. However, by Hausdorff’s formula,

Aµ(x)→ A′µ(x) = U(x)Aµ(x)U−1(x) + iU(x)
(
∂µU

−1(x)
)

(5.88)

is representation independent and we can use the same gauge connection for
all representations.

NB: for the special case of abelian transformations

[α(x), α′(x)] = [α(x), ∂µα
′(x)] = 0 (5.89)

we find
Aµ(x)→ A′µ(x) = Aµ(x) + ∂µα(x) (5.90)

to all orders, i. e. the gauge transformations of electrodynamics.
Dµ is called a covariant derivative, because it transforms as an adjoint

r(Dµ)→ r(D′µ) = R(U(x))r(Dµ)R(U−1(x)) (5.91)

and we find

r(Dµ)φR(x)→ r(D′µ)φ′R(x)

= R(U(x))r(Dµ)R(U−1(x))R(U(x))φR(x) = R(U(x))r(Dµ)φR(x) (5.92)

iff the representations r and R match.
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If we introduce the convention that the appropriate representation is im-
plied, depending on which field Dµ is acting, we can drop r and R consistently
in

Dµ → D′µ = U(x)DµU
−1(x) (5.93)

and

Dµφ(x)→ D′µφ
′(x) = U(x)DµU

−1(x)U(x)φ(x) = U(x)Dµφ(x) . (5.94)

We will adapt this convention from now on!
This way we can easily write invariant Lagrangians for matter fields

L = (Dµφ)†(Dµφ)−m2φ†φ− P (φ†φ) , (5.95)

but the connection Aµ(x) is still an external field. We need dynamics for it.

5.2.5 Field Strength

The Ricci identity
Fµν = i [Dµ, Dν ] = F a

µνTa (5.96)

can be used to define a new object Fµν , en detail

Fµν = i [∂µ − iAµ, ∂ν − iAν ] = i [∂µ, ∂ν ] + [∂µ, Aν ] + [Aµ, ∂ν ]− i [Aµ, Aν ]

= ∂µAν − ∂νAµ − i [Aµ, Aν ] , (5.97)

that transforms like an adjoint

Fµν → F ′µν = UFµνU
−1 (5.98)

because

[Dµ, Dν ]→
[
D′µ, D

′
ν

]
=
[
UDµU

−1, UDνU
−1
]

= U [Dµ, Dν ]U
−1 (5.99)

Finally
FµνF

µν → UFµνF
µνU−1 (5.100)

and by the cyclic invariance of the trace

tr (FµνF
µν)→ tr (FµνF

µν) (5.101)

we find a viable candidate for a Lagrangian for Aµ

L = −1

2
tr (FµνF

µν) = −1

4
F a
µνF

aµν (5.102)

independent of the representation with normalization fixed by

tr (TaTb) =
1

2
δab . (5.103)
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5.2.6 Building Blocks

Lecture 12: Wed, 20. 05. 2015

This way, gauge theory lagrangians are like Lego bricks: just plug match-
ing blocks together so that pairs of U−1(x) and U(x) cancel:

φ,Dµ, ψ, /D, Fµν , (5.104)

where the covariant derivative for fermions acts in the tensor product of Dirac
spinors and gauge group representation

/D = 1R ⊗ γµ∂µ − ir(Aµ(x))⊗ γµ = r(Dµ)⊗ γµ (5.105)

Typical terms are for bosons

φ† · · ·Dµ · · ·Fρσ · · ·φ , (5.106a)

fermions
ψ̄ · · ·Dµ · · ·Fρσ · · · γν · · ·ψ (5.106b)

and gauge bosons
tr(Fµν · · ·Dλ · · ·Fρσ) (5.106c)

but more complicated structures like∑
abc

Cabc
(
φTTaDµφ

) (
φTTbDνφ

) (
ψ̄TcF

µν /Dψ
)

(5.107)

are also possible.
Note that due to (5.96), of the three combinations

Fµν , DµDν , DνDµ (5.108)

only two are independent!

5.3 Quantization

5.3.1 Perturbative Expansion

So far, we have no small parameter in our action, that would allow a per-
turbative expansion. Therefore, we perform a simultaneous rescaling of our
gauge potential Aµ and gauge lagrangian

Dµ = ∂µ − iAµ → ∂µ − igAµ (5.109a)
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Fµν → gFµν = g (∂µAν − ∂νAµ − ig [Aµ, Aν ]) (5.109b)

tr (· · · )→ 1

g2
tr (· · · ) . (5.109c)

Then

L = −1

2
tr (FµνF

µν) = −1

4
F a
µνF

a,µν (5.110)

with summation over the adjoint representation index a implied and

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν . (5.111)

Therefore, we can collect terms according to the powers of g

L = L0 + L1 + L2 (5.112)

with

L0 = −1

4

(
∂µA

a
ν − ∂νAaµ

)
(∂µAa,ν − ∂νAa,µ)

= −1

2

(
∂µA

a
ν − ∂νAaµ

)
∂µAa,ν (5.113a)

L1 = −g
2
fabc

(
∂µA

a
ν − ∂νAaµ

)
Ab,µAc,ν

= −gfabc∂µAaνAb,µAc,ν (5.113b)

L2 =
g2

4
fabcfab

′c′AbµA
c
νA

b′,µAc
′,ν (5.113c)

5.3.2 Propagator

We obtain the greensfunctions by “inverting” the free equations of motion

δ

δAaν
L0 = ∂µ

(
∂µA

a
ν − ∂νAaµ

)
= (�gνµ − ∂ν∂µ)Aa,µ

!
= 0 . (5.114)

Making the ansatz

Dµν(x) =

∫
d4k

(2π)4
D̃µν(k)e−ikx (5.115)

we find

(�gρµ − ∂ρ∂µ)Dµ
ν(x) =

∫
d4k

(2π)4

(
−k2gρµ + kρkµ

)
D̃µ

ν(k)e−ikx !
= igρνδ

4(x)

(5.116)
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i. e. (
−k2gρµ + kρkµ

)
D̃µ

ν(k)
!

= igρν . (5.117)

This is a simple algebraic equation, that can, in priciple, be solved by another
ansatz

D̃µν(k) = gµνD̃1(k2) + kµkνD̃2(k2) (5.118)

because k is the only vector in the game. However

igρν
!

=
(
−k2gρµ + kρkµ

) (
gµνD̃1(k2) + kµkνD̃2(k2)

)
= −k2gρνD̃1(k2) + kρkνD̃1(k2)− k2kρkνD̃2(k2) + kρkνk

2D̃2(k2)

=
(
−k2gρν + kρkν

)
D̃1(k2) (5.119)

has no solution. The reason is, of course, that

−k21 + k ⊗ k (5.120)

has an eigenvector k with eigenvalue 0 and is therefore not invertible.
The only way out is to add a term quadratric in Aaµ to the free La-

grangian L0 that makes the matrix appearing in the equations of motion
invertible. There are three choices

Lm =
m2

2
AaµA

a,µ (5.121a)

Lgf = −α
2
∂µAaµ∂

νAaν (5.121b)

LZ = −Z
4
∂µA

a
ν∂

µAa,ν . (5.121c)

Of these, LZ can be shown to be redundant, because adding it is equivalent
to adding Lgf and rescaling Aaµ. Such a rescaling cancels in all observables.

All three terms are not gauge invariant

δLm 6= 0 (5.122a)

δLgf 6= 0 (5.122b)

δLZ 6= 0 , (5.122c)

showing that the existence of a propagator and gauge invariance are mutually
incompatible. While there is, a priori, nothing wrong with breaking gauge
invariance this way, it is not desirable, because:

1. we loose a predictive principle for constructing interactions

2. interacting vector particles without gauge invariance lead to unphysical
predictions (see my lecture on advanced QFT).

The first issue is mostly aesthetics, but the second is serious, of course.
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Lecture 13: Wed, 27. 05. 2015

One of the problems of the explicit mass term is that the resulting propagator

D̃µν(k) = i
−gµν + kµkν/m

2

k2 −m2 + iε
(5.123)

does not fall off for kµ → ∞. This makes it impossible to compute loop
diagrams consistently and causes a violation of unitarity in the scattering of
vector bosons with longitudinal polarization at high energies.

5.3.3 Faddeev-Popov Procedure

There’s nothing wrong with the path integral

Z(j) =

∫
DA eiSYM(A)−i

∫
d4x ja,µA

µ
a (5.124)

with the gauge invariant Yang-Mills action

SYM(A) = −1

4

∫
d4xFa,µνF

µν
a (5.125)

and it is used with great success in nonperturbative calculations on the lattice
(to be precise an equivalent form that reduces to SYM in the continuum limit).

However, we can not evaluate it in perturbation theory, because it has no
propagator, unless we fix the gauge. We could obtain a propagator by fixing
the gauge by brute force

ZBF(j, χ) =

∫
DAδ (G(A)− χ) eiSYM(A)−i

∫
d4x ja,µA

µ
a (5.126)

but that would not guarantee that the physics remains unchanged. Instead,
we should properly separate the gauge degrees of freedom in the functional
integral and integrate once over each orbit, i. e. equivalence classes under

Aµ ↔ UAµU
−1 + iU∂µU

−1 , (5.127)

with the same weight. Just using the δ-distribution does not guarantee this:∫
dx f(x)δ(g(x)) =

∑
x:g(x)=0

f(x)

| det g′(x)|
. (5.128)

However ∫
dx f(x)δ(g(x))| det g′(x)| =

∑
x:g(x)=0

f(x) (5.129)
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depends only on the zeros of g, not on any other property of g.
Thus we obtain a better gauge fixed path integral

ZFP(j, χ) =

∫
DAδ (G(A)− χ) det

(
δG(A)

δg

)
eiSYM(A)−i

∫
d4x ja,µA

µ
a (5.130)

where δG(A)/δg is the functional derivative of the gauge fixing functional
w r. t. gauge transformations.

Since the generating functional does not depend on χ, we can get rid of
the δ-distribution by integrating over χ with a suitable weight, e. g.

ZFP(j) =

∫
Dχe−i

∫
d4x 1

2α
χ2

ZFP(j, χ)

=

∫
DA det

(
δG(A)

δg

)
eiSYM(A)−i

∫
d4x 1

2α
(G(A))2−i

∫
d4x ja,µA

µ
a . (5.131)

The functional determinant det δG(A)/δg can be written as a fermionic gaus-
sian path integral

det
δG(A)

δg
=

∫
Dη̄Dη ei

∫
d4x η̄

δG(A)
δg

η . (5.132)

If we choose
G(A) = ∂µA

µ , (5.133)

this path integral turns out to be a generating functional for Faddeev-Popov
ghosts. In fact, since

η̄
δG(A)

δg
η = η̄∂µD

µη = η̄∂δBAµ . (5.134)

we find

ZFP(j) =

∫
DADη̄Dη eiSBRST(A)−i

∫
d4x ja,µA

µ
a . (5.135)

with

LBRST = −1

2
tr (FµνF

µν)− 2 tr

(
1

2α
(∂µA

µ)2 + ∂µη̄D
µη

)
. (5.136)

Many other choices for the gauge fixing functional (5.133) are possible,
but most will lead to generating functionals that involve additional interac-
tions or will not have a simple propagator and are therefore less useful for
perturbation theory.
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5.3.4 Feynman Rules

If 0 < |α| <∞, we can construct a gauge propagator from (5.136):

k
µ, a ν, b =

iδab
k2 + iε

(
−gµν + (1− α)

kµkν
k2 + iε

)
(5.137a)

while the ghost propagator is simply

k
a b = − iδab

k2 + iε
(5.137b)

And vertices

µ, a

= igγµTa (5.137c)

µ, a

p

p′

= ig(p+ p′)µTa (5.137d)

a, µb, ν

= ig2gµν (TaTb + TbTa) (5.137e)

1

2

3

=

gfa1a2a3gµ1µ2(k
1
µ3
− k2

µ3
)

+gfa1a2a3gµ2µ3(k
2
µ1
− k3

µ1
)

+gfa1a2a3gµ3µ1(k
3
µ2
− k1

µ2
)

(5.137f)

12

3 4

=

− ig2fa1a2bfa3a4b(gµ1µ3gµ4µ2 − gµ1µ4gµ2µ3)
− ig2fa1a3bfa4a2b(gµ1µ4gµ2µ3 − gµ1µ2gµ3µ4)
− ig2fa1a4bfa2a3b(gµ1µ2gµ3µ4 − gµ1µ3gµ4µ2)

(5.137g)
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k, µ, a

b, p

c, p′

= gp′µfabc , (5.137h)

where the ghost-gauge vertex is indeed not symmetric in the momenta.

5.4 Massive Gauge Bosons

From the propagator (5.137a), we see that the poles are only at p2 = 0,
i. e. there are only massless particles with

E = |~p| (5.138)

in the spectrum, independent of the choice of α. Since massless force carriers
correspond to an infinite range of the interaction

V (r) ∝ e−mr

r
, (5.139)

it appears that gauge theories are mathematically interesting, but only useful
for describing electromagnetism. Because they are not observed at macro-
scopic scales, both the strong and weak interactions can have only a finite
range.

In the case of the strong interactions, we will see in chapter 8 below that
the interaction is so strong at long distances, that perturbation theory can
not be used and that the spectrum can consequently not be inferred from
the propagator. It will turn out that the massless states are absent from the
physical spectrum.

In the case of weak interactions, perturbation theory is expected to be
reliable and we have no reason for excluding the massless states. Fortunately,
there is a way out, since we can introduce a term that looks like a mass term,
but is generated dynamically.

Consider a theory of gauge bosons coupled to a scalar field φ (ignoring
gauge fixing and ghost terms)

L = −1

2
tr (FµνF

µν) + (Dµφ)†Dµφ−m2φ†φ . (5.140)

Here, we have chosen Without Loss Of Generality (WLOG) a complex rep-
resentation for φ, the same idea will work with real representations as well.
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Let us parametrize
φ(x) = φ0 + φlin.(x) (5.141a)

or

φ(x) = eiφexp.(x)/vφ0 = φ0 +
i

v
φexp.(x)φ0 + . . . , (5.141b)

where φ0 is a constant vector and φlin.(x) is a dynamical vector in the same
representation as φ(x), while φexp.(x) is a dynamical matrix in this represen-
tation. Then

Dµφ = −igAµφ0 + ∂µφlin. − igAµφlin.

= −igAµφ0 + ∂µφlin. + terms with 2 or more fields (5.142a)

or

Dµφ = −igAµeiφexp./vφ0 +
(
∂µeiφexp./v

)
φ0

= −igAµφ0 +
i

v
(∂µφexp.)φ0 + terms with 2 or more fields . (5.142b)

Therefore, the gauge invariant kinetic term of φ becomes

(Dµφ)†Dµφ = (−igAµφ0 + ∂µφlin.)
† (−igAµφ0 + ∂µφlin.) + . . .

= (∂µφlin.)
† ∂µφlin. + g2φ†0AµA

µφ0

− ig (∂µφlin.)
†Aµφ0 + ig (Aµφ0)† ∂µφlin.

+ terms with 3 or more fields (5.143a)

or

(Dµφ)†Dµφ =(
−igAµφ0 +

i

v
(∂µφexp.)φ0

)†(
−igAµφ0 +

i

v
(∂µφexp.)φ0

)
+ . . .

=
1

v2
φ†0 (∂µφexp.)

† ∂µφexp.φ0 + g2φ†0AµA
µφ0

− g

v
φ†0

(
(∂µφexp.)

†Aµ + Aµ †∂µφexp.

)
φ0

+ terms with 3 or more fields . (5.143b)

In both approaches, we find a term

LM = g2φ†0AµA
µφ0 = g2φ†0TaTbφ0A

a
µA

b µ

=
g2

2
φ†0 (TaTb + TbTa)φ0A

a
µA

b µ =
1

2
M2

abA
a
µA

b µ (5.144)
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with a symmetric mass matrix

M2
ab =

1

2
φ†0 (TaTb + TbTa)φ0 (5.145)

for the gauge bosons. Since M2 is symmetric, it can be diagonalized by
an orthogonal transformation, with the square roots of the eigenvalues cor-
responding to the masses of gauge bosons. We must make sure that the
eigenvalues are non-negative, of course.

The terms
Lkin. = (∂µφlin.)

† ∂µφlin. (5.146a)

and

Lkin. =
1

v2
φ†0 (∂µφexp.)

† ∂µφexp.φ0 (5.146b)

are kinetic terms for φlin. or φexp., respectively. In the case of (5.146b), we
must check if all degrees of freedom in φexp. contribute.

Finally, there are the terms mixing the ∂µA
µ part of the gauge bosons

with φlin.

Lmix. = −ig (∂µφlin.)
†Aµφ0 + ig (Aµφ0)† ∂µφlin.

= igφ†lin.∂µA
µφ0 − igφ†0∂µA

µφlin. (5.147a)

or φexp.

Lmix. =
g

v
φ†0
(
φ†exp.∂µA

µ + ∂µA
µφexp.

)
φ0 (5.147b)

respectively. In section 6.2.2 we will show that these terms can be cancelled
by a clever choice of gauge fixing functional

G(A) = ∂µA
µ − gαφ†lin.φ0 .

Of course, we haven’t changed the physics by just renaming the degrees
of freedom from φ to φlin. or φexp. respectively. Therefore, the complete
lagrangian is still gauge invariant. Nevertheless, LM looks like a mass term for
the gauge bosons, which is verboten by gauge invariance. Thus the remaining
interaction pieces, containing 3 and more fields are organized exactly in such
a way that they cancel the gauge non-invariance of LM . If we can show that
these terms don’t contribute to physical observables, we have found a way
to give masses to some gauge bosons. Note that it is irrelevant, whether this
an exact statement or a approximation that is better than the experimental
accuracy.

An obvious realization would be

φ(x) = φ0 (5.148)
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exactly, but this breaks gauge invariance explicitely and is not different from
adding a mass term by hand. To avoid the negative consequences at high
energies, we need the dynamical fields φlin.(x) or φexp.(x). A more modest
approach is therefore to require

|∂µφlin.(x)| � |φ0|2 (5.149a)

or
|∂µφexp.(x)| � v|φ0| , (5.149b)

with a suitable norm |·|. An example familiar from condensed matter physics
is a Heisenberg magnet, where Hamiltonian is invariant under rotations, but
the ground state below the Courie temperature has a magnetization pointing
in one direction, breaking the rotation invariance.
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—6—
Spontaneous Symmetry Breaking

Lecture 14: Tue, 02. 06. 2015

6.1 Goldstone’s Theorem

Consider a multiplet φ of scalar fields, transforming under a real orthogonal
representation R of a global, i. e. not gauged, symmetry group G. Assume
that the Lagrangian is

L =
1

2
∂µφ

T∂µφ− λ

4

(
φTφ− v2

)2

=
1

2
∂µφ

T∂µφ+
λv2

2
φTφ− λ

4

(
φTφ

)2 − λv4

4
(6.1)

with λ > 0. In the unexpanded form, the potential

V (φ) =
λ

4

(
φTφ− v2

)2
(6.2)

is seen to be positive, with no flat directions, as can also be seen in figure 6.1.
In the expanded form of the Lagrangian, the constant term λv4/4 can be
ignored, because it doesn’t add to the equations of motion or the Feynman
rules. However, in the equations of motion(

�− λv2
)︸ ︷︷ ︸

=�+m2

φ+ λ
(
φTφ

)
φ = 0 , (6.3)

we observe that the “mass” term m2 = −λv2 ≤ 0 is negative. Therefore,
perturbation theory around the value φ = 0 is not well defined, since it is a
local maximum of the potential (cf. figure 6.1).

We are therefore led to expand around a minimum φ0 of the potential
with

φT0 φ0 = v2 , (6.4)
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Figure 6.1: Potential V (φ1, φ2) = (φ2
1 + φ2

2 − v2)2/4.

i. e.

φ(x) = φ0 + χ(x) (6.5a)

∂µφ(x) = ∂µχ(x) , (6.5b)

and to treat χ as the new dynamical variable. Then

L =
1

2
∂µχ

T∂µχ− λ

4

(
(φ0 + χ)T (φ0 + χ)− v2

)2

=
1

2
∂µχ

T∂µχ− λ

4

(
2φT0 χ+ χTχ

)2

=
1

2
∂µχ

T∂µχ− χT
(
λφ0 ⊗ φT0

)︸ ︷︷ ︸
=
M

2

χ− λφT0 χχTχ−
λ

4

(
χTχ

)2
(6.6)

using
φT0 χ = χTφ0 (6.7)

and introducing the mass matrix

M = 2λφ0 ⊗ φT0 . (6.8)

By construction, this matrix has one eigenvector with positive eigenvalue

Mφ0 = 2λφ0 ⊗ φT0 φ0 =
(
2λφT0 φ0

)
φ0 = 2λv2φ0 (6.9)
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and all other eigenvalues zero. Therefore, we find one mode with mass m =
2λv2 and all other modes massless.

This scenario turns out the be the general case. In fact one can prove
without arguments from perturbation theory

Theorem 6.1 (Goldstone). Whenever a continuous global symmetry is bro-
ken by the ground state, i. e. when ground state expectation values are not
invariant under this symmetry, there are massless excitations in the spec-
trum. These excitations have the quantum numbers of the generators of the
broken symmetry.

In our example, the symmetry group G is broken to the subgroup H ⊂ G
of transformations that leave

φ0 = 〈0|φ(x)|0〉 (6.10)

invariant
∀h ∈ H : hφ0 = φ0 . (6.11)

As a Lie group, H is generated by generators {Ta}a=1,...,dim(H)

[Ta, Tb] = ifabcTc (6.12a)

Taφ0 = 0 . (6.12b)

The remaining generators {Xi}i=1,...,dim(G)−dim(H) generate the coset G/H.
The correspond to broken symmetries and give rise to the Goldstone bosons.
They do not close as a Lie algebra, because their commutators can contain
contributions from H ⊂ G

[Xi, Xj] = ifijkXk + ifijaTa . (6.13)

In many cases of interest G/H turns out to be a symmetric space, in which
case (6.13) simplifies to

[Xi, Xj] = ifijaTa . (6.13’)

In any case, it can be shown that mixed commutators are such that the
generators of H act linearly on the generators of G/H

[Ta, Xi] = ifaijXj . (6.14)

We can decomposean arbitrary group element g as

g = eiξiXieiηiTi (6.15)

and find
gφ0 = eiξiXiφ0 (6.16)

This way, we seem to have moved into the wrong direction. While at-
tempting to give masses to gauge bosons, we have introduced new massless
particles. Fortunately, Goldstone’s theorem applies to global symmetries only
– not to gauge symmetries.
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6.2 Higgs Mechanism

Repeating the above example with a gauged symmetry

L = −1

2
tr (FµνF

µν) +
1

2
(Dµφ)†Dµφ− λ

4

(
φTφ− v2

)2
, (6.17)

where the shape of the potential for φ could be more complicated of course,
we are again led to expand around a minimum φ0 of the potential with

φT0 φ0 = v2 . (6.18)

6.2.1 Unitarity Gauge

If we can reach all possible values for φ by a transformation from G applied
to φ0, we may use an element of G/H and employ an exponential represen-
tation

φ(x) = eiχ(x)/vφ0 (6.19)

with

χ(x) =

dim(G)−dim(H)∑
i=1

χi(x)Xi . (6.20)

Then we can use the properties of the covariant derivative to write

Dµφ(x) = eiχ(x)/vDµφ0 = eiχ(x)/v (−igAµ(x)φ0) = −igeiχ(x)/vAµ(x)φ0 (6.21)

and we can absorb χ(x) by a gauge transformation
φ(x)

Dµφ(x)
Aµ(x)
Fµν(x)

→


e−iχ(x)/vφ(x)
e−iχ(x)/vDµφ(x)

A′µ(x)
F ′µν(x)



=


φ0

−igAµφ0

e−iχ(x)/vAµ(x)eiχ(x)/v + i
g
e−iχ(x)/v

(
∂µeiχ(x)/v

)
e−iχ(x)/vFµν(x)eiχ(x)/v

 (6.22)

to end up with

L = −1

2
tr (FµνF

µν) +
g2

2
(Aµφ0)† (Aµφ0) . (6.23)
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In this Lagrangian, χ does not appear anymore, because we have used the
gauge freedom to remove it. In fact, we have used up all our gauge free-
dom corresponding to the generators Xi of G/H and choosen the so-called
unitarity gauge, in which there are massive gauge bosons with mass matrix

M2
ij =

g2

2
φ†0 (XiXj +XjXi)φ0 (6.24)

since Xiφ0 6= 0. Only the gauge bosons corresponding to the generators Ta
of H will remain massless, due to Taφ0 6= 0.

Therefore, it is possible to construct a theory of gauge bosons coupled
to Goldstone bosons that looks, in a particular gauge, just like a theory of
massive gauge bosons, without Goldstone bosons. The counting of degrees
of freedom is consistent, because the massive gauge bosons need an addional,
longitudinal polarization state, which is provided by the Goldstone bosons.

The choice of of unitarity gauge is useful for determining the physical
degrees of freedom, because we have identified the Goldstone bosons as re-
dundant, unphysical, degrees of freedom. For actual calculations, it is not
always useful, because the propagator

i
−gµν + kµkν/M

2

k2 −M2 + iε
(6.25)

does not fall off at high energies. Also the polarization vector for longitudinal
gauge bosons

εµ(L)(k) ≈ kµ

m
(6.26)

causes the scattering amplitudes for the scattering of longitudinal gauge
bosons to rise too fast at high energies. However, we are free to choose other
gauges, where the Goldstone bosons are still separate from the gauge bosons,
which don’t have longitudinal polarization states. These will be discussed in
section 6.2.2.

The problem in model building for a given gauge group G is now to find
a real or complex representation of G and a G-invariant potential so that a
scalar field φ can be expanded about a stable point φ0 with a subgroup H ∈ G
with Hφ0 = φ0 such that the generators Xi of G/H provide exactly the
needed Goldstone bosons. In addition eigenvalues of the mass matrix

M2
ij =

g2

2
φ†0 (XiXj +XjXi)φ0 (6.27)

must match. Given a gauge group G, this is a straightforward problem,
because all possible subgroups H are known.
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In principle, one can sidestep the construction of a potential and write a
non-linear Lagrangian for fields with values in G/H directly

LNL = −1

2
tr (FµνF

µν) +
1

2

(
Dµ(eiχ(x)/vφ0)

)†
Dµ(eiχ(x)/vφ0) , (6.28)

but the price to pay is that the expansion of LNL in terms of χ contains
arbitrarily high powers of φ.

6.2.2 Rξ-Gauge

Lecture 15: Wed, 03. 06. 2015

For definiteness, let us consider the abelian Higgs-Kibble Model

L = −1

4
FµνF

µν +DµφD
µφ− λ

2

(
|φ|2 − v2

)2
, (6.29a)

with φ : M→ C and

Fµν = ∂µAν − ∂νAµ (6.29b)

Dµφ = ∂µφ− igAµφ , (6.29c)

which is invariant under U(1) gauge transformations(
φ
Aµ

)
7→
(

eiωφ
Aµ + 1

g
∂µω

)
. (6.29d)

WLOG, expand around φ = φ0 = v

φ(x) = v +
φ1(x) + iφ2(x)√

2
, (6.30)

with φi : M→ R. Then

DµφD
µφ =

∣∣∣∣−igvAµ + ∂µ
φ1 + iφ2√

2
− iAµ

φ1 + iφ2√
2

∣∣∣∣2
= g2v2AµA

µ +
1

2
(∂µφ1∂

µφ1 + ∂µφ2∂
µφ2)−

√
2igvAµ∂

µφ2 + . . . , (6.31)

where we have not spelled out the terms with more than two fields, and

− λ

2

(
|φ|2 − v2

)2
= −λ

2

(
1

2

(
φ2

1 + φ2
2

)
+
√

2vφ1

)2
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= −λv2φ2
1 −

λv√
2

(
φ2

1 + φ2
2

)
φ1 −

λ

4

(
φ2

1 + φ2
2

)2
. (6.32)

Thus the bilinear part of the Lagrangian is

L2 =
1

2
∂µφ1∂

µφ1 −
2λv2

2
φ2

1 +
1

2
∂µφ2∂

µφ2

− 1

4
FµνF

µν +
2g2v2

2
AµA

µ +
√

2igvφ2∂
µAµ . (6.33)

Therefore L appearently describes a

• a massive scalar field φ1 with mass m1 =
√

2λv ,

• a massless scalar field φ2, and

• a massive gauge field Aµ with mass M =
√

2gv ,

as long as we ignore the mixing of ∂µA
µ with φ2. Diagonalizing this part is

inconvenient, because we would have to separate polarization states of Aµ.
It’s easier to choose a clever gauge fixing

Lgf = − 1

2α
(G(A, φ))2 (6.34)

with
G(A, φ) = ∂µA

µ +
√

2iαgvφ2 . (6.35)

Then, if we suppress the Lagrangian for the Faddeev–Popov ghosts, because
they can be shown to decouple in an abelian gauge theory,

Lgf = − 1

2α
(∂µA

µ)2 −
√

2igvφ2∂µA
µ − αg2v2φ2

2 (6.36)

and

L2 + Lgf =
1

2
∂µφ1∂

µφ1 −
2λv2

2
φ2

1 +
1

2
∂µφ2∂

µφ2 −
2αg2v2

2
φ2

2

− 1

4
FµνF

µν − 1

2α
(∂µA

µ)2 +
2g2v2

2
AµA

µ . (6.37)

Now there is no more mixing term left and we see that L+ Lgf describes a

• a massive scalar field φ1 with mass m1 =
√

2λv ,

• a massive scalar field φ2 with mass m2 =
√

2αgv ,
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• a massive gauge field Aµ with mass M =
√

2gv .

Indeed, in the exercises, we have seen that the Stueckelberg Lagrangian

LS = −1

4
FµνF

µν − 1

2α
(∂µAµ)2 +

M2

2
AµA

µ (6.38)

gives rise to the propagator

D̃µν(k) = i
−gµν + kµkν/M

2

k2 −M2 + iε
− i

kµkν/M
2

k2 − αM2 + iε
(6.39a)

= i
−gµν + (1− α)kµkν/(k

2 − αM2 + iε)

k2 −M2 + iε
. (6.39b)

The two forms of the Stueckelberg propagator can be used to highlight differ-
ent aspects

• (6.39a) shows that the physical, transversal degrees of freedom satis-
fying ∂µA

µ = 0 are propagated with a mass M , while the unphysical
degrees of freedom are propagated with the mass

√
αM ,

• (6.39b) shows that
lim
kµ→∞

D̃µν(k) = 0 . (6.40)

Of course, the Goldstone boson φ2 also has the mass
√
αM , allowing the

cancellation of its contributions with the unphysical part of Aµ.
There are two illuminating special choices for α

• |α| → ∞: in this limit, the unphysical parts of Aµ and the Goldstone
boson φ2 become infinitely heavy and therefore decouple from the other
states. This limit corresponds to the unitarity gauge discussed in sec-
tion 6.2.1 and

• α→ 1: everything propagates with the same mass M .
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—7—
(Elektroweak) Standard Model

7.1 Observations

Weak and elektromagnetic interactions appear to be very different:

• electromagnetic interactions

– infinite range, i. e. massless particle exhange

– doesn’t change the flavor

– coupling of photons Aµ to vector currents

jµ(x) = ψ̄(x)γµψ(x) (7.1)

from the angular dependence of scattering cross sections

– coupling to left-handed and right-handed fermions

ψL =
1

2
(1− γ5)ψ (7.2a)

ψR =
1

2
(1 + γ5)ψ (7.2b)

with the same strength

• charged currents : e. g.

µ− → νµe
−ν̄e (7.3a)

n→ pe−ν̄e (7.3b)

– parity violation from the angular dependence of scattering cross
sections: coupling only to the left-handed part of fermions

jµ(x) = 2ψ̄′L(x)γµψL(x) = ψ̄′(x)γµ(1− γ5)ψ(x) (7.4)
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also called V − A, vector–minus–axialvector

jµ(x) = ψ̄′(x)γµψ(x)− ψ̄′(x)γµγ5ψ(x)

= ψ̄′(x)γµψ(x) + ψ̄′(x)γ5γµψ(x) (7.5)

– compatible with Fermi’s phenomenological pointlike current–current
interaction

LI =
GF√

2
jµLjL,µ

=
GF√

2
ψ̄′(x)γµ(1− γ5)ψ(x)ψ̄′′′(x)γµ(1− γ5)ψ′(x) (7.6)

with

GF = 1.166 · 10−5 GeV−2 ≈
(

1

300 GeV

)2

(7.7)

7.2 Problem

Computing the cross section for neutrino scattering reveals a problem with
the Fermi interaction. Since neutrinos are massless, the only dimensionfull
parameters entering the expression for the total cross section are the Fermi
constant GF and the center of mass energy E. Furthermore, in lowest order
perturbation theory, we must have

σ ∝ G2
F (7.8)

since the scattering amplitude is proportional to GF . Since the cross section
has the dimensions of an area, the only way to get the dimensions right is
then.

σ = const. ·G2
FE

2 . (7.9)

Therefore the cross section grows without bound and must become unphysi-
cally large, violating unitarity, eventually. A detailed calculation shows that
this will happen at E ≈ O(100 GeV).

7.2.1 Solution

Dampen the interaction at high energies

GF → GFf(E) ∝ GF

E2
. (7.10)
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The most sensible approach to f(E) is to replace the pointlike interaction of
currents by the exchange of a heavy particle W between currents

GF√
2
jµj

µ =
g2

8M2
W

jµj
µ =

(
g

2
√

2
jµ

)
gµν

M2
W

(
g

2
√

2
jν

)
→ −

(
g√
2
jµ

)
gµν

p2 −M2
W

(
g√
2
jν

)
. (7.11)

Thus we would like to interpret W as a massive gauge boson with

MW =

√√
2g2

8GF

=
g

2
· 246 GeV . (7.12)

The interactions are Charged Current (CC) interactions changing neutri-
nos into electrons, down-quarks into up-quarks and vice versa. Therefore, we
should expect that the gauge symmetry is non-abelian, because the couplings
act like shifting operators. The simplest possibility is then a SU(2) gauge
group for the weak interactions.

Since the SU(2) has three gauge bosons W µ
1 , W µ

2 and W µ
3 and we can

form charged combinations

W µ
± =

W µ
1 ∓ iW µ

2√
2

(7.13)

it is very tempting to identify W3 with the photon and to give mass only
to W1 and W2 by breaking SU(2)/U(1). However, this can not work, because
the photon couples to right-handed currents, whereas the W µ

± don’t and the
gauge symmetries must commute with the space-time symmetries, including
parity.

7.3 SU(2)L × U(1)Y /U(1)Q

Lecture 16: Tue, 09. 06. 2015

Thus we are led to propose a gauge group and breaking pattern

G/H = SU(2)L × U(1)Q/U(1)Q

for the electromagnetic and weak interactions. The third gauge boson W µ
3

should also be heavy and correspond to a new Neutral Current (NC) in-
teraction. The electromagnetic U(1)Q remains unbroken, because photons
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are massless. It turns out that this doesn’t quite work for explaining the
experimental results and the better approach is

G/H = SU(2)L × U(1)Y /U(1)Q , (7.14)

where SU(2)L is the gauge group of the weak isospin T , U(1)Y is the gauge
group of the hypercharge Y and the unbroken electromagnetic U(1)Q appears
as a mixture of T3 and Y after symmetry breaking

Q = T3 +
Y

2
(7.15)

as in the Gell-Mann–Nishijima formula.
The gauge lagrangian before symmetry breaking is then

Lgauge = −1

4
~Wµν

~W µν − 1

4
BµνB

µν (7.16)

where the three SU(2)L gauge bosons form a triplet

~Wµ = (W 1
µ ,W

2
µ ,W

3
µ) (7.17)

with
~Wµν = ∂µ ~Wν − ∂ν ~Wµ − g ~Wµ × ~Wν (7.18)

and the U(1)Y gauge boson is a singlet

Bµν = ∂µBν − ∂νBµ . (7.19)

The corresponding convention for the signs and magnitude of the coupling
constants in the covariant derivative is

Dµ = ∂µ + ig ~Wµ
~T + ig′Bµ

Y

2
. (7.20)

7.3.1 Matter Fields

Having identified the gauge structure1, we have to place the fermionic matter
fields in the corresponding multiplets, as in table 7.1. Note that we have
already added to SU(3)C quantum numbers for the strong interactions, to be
discussed in chapter 8.

By placing the left-handed part of the leptons and quarks in SU(2)L
dublets and the right handed part into singlets, we make shure that only
the former couple to the SU(2)L gauge bosons. Note that the righthanded

1Or rather a candidate for it, since we have to still work out the details
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neutrinos νeR, νµR, and ντr are singlets under all gauge quantum numbers and
decouble therefore completely. We will need them only if you want to give
masses to the neutrinos.

Note that since

ψ̄(i/∂ −m)ψ = ψ̄Li/∂ψL + ψ̄Ri/∂ψR −mψ̄RψL −mψ̄LψR , (7.21)

a non-vanishing Dirac mass term ψ̄RψL + ψ̄LψR requires the left- and right-
handed fermions to have the same charges. Therefore all matter fields in
table 7.1 must be strictly massless and we must still find a way to give them
masses.

7.3.2 Higgs Fields

Finally, we need a Higgs field and corresponding interaction to break the
gauge group SU(2)L × U(1)Y to U(1)Q. The minimal approach adds just a

(C, T )Y Q = T3 + Y/2

νeL
e−L

 νµL
µ−L

 ντL
τ−L

 (1,2)−1

 0

−1


νeR νµR ντr (1,1)0 0

e−R µ−R τ−r (1,1)−2 −1

uL
dL

 cL
sL

 tL
bL

 (3,2)1/3

+2/3

−1/3


uR cR tr (3,1)4/3 +2/3

dR sR br (3,1)−2/3 −1/3

Table 7.1: Matter fields in the SU(3)C × SU(2)L × U(1)Y /SU(3)C × U(1)Q
Standard Model.



ohl: Wed Jul 1 17:09:35 CEST 2015 subject to change! 93

doublet from the (1,2)1 representation

φ =

(
φ+

φ0

)
=

1√
2

(
φ3 + iφ4

φ1 + iφ2

)
, (7.22)

where both φ+ and φ0 are complex fields, while the {φi}i=1,2,3,4 are real.
Using this parameterization, we see that

φ†φ = |φ+|2 + |φ0|2 =
1

2

4∑
i=1

φ2
i =

1

2
ΦTΦ , (7.23)

with

Φ =


φ1

φ2

φ3

φ4

 (7.24)

is not only invariant under SU(2)L × U(1)Y transformations, but under the
larger group SO(4) of fourdimensional orthogonal transformations in 4 di-
mensions.

As is shown in the exercises, the Lie algebras of SO(4) and SU(2)×SU(2)
are isomorphic. Therefore, as long as the potential depends only on φ†φ,
the global symmetry of the Higgs sector is SU(2)L × SU(2) ⊃ SU(2)L ×
U(1)Y , though only the smaller group is gauged. This will have important
consequences, because the symmetry breaking

SU(2)L × SU(2)/SU(2)custodial (7.25)

leaves an SU(2) custodial symmetry that relates the masses of the charged
and neutral massive gauge bosons and protects theses relations from radiative
corrections. We will see below that the electromagnetic couplings and the
fermionic matter sector violate this custodial symmetry, but in a controlled
way.

We postulate a Higgs potential

V (φ) =
λ

2

(
φ†φ− v2

2

)2

(7.26)

with degenerate minima φ†0φ0 = v2/2 or

ΦT
0 Φ0 = v2 . (7.27)
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We choose

Φ0 =


v
0
0
0

 (7.28a)

φ0 =
1√
2

(
0
v

)
(7.28b)

as the value to expand the Higgs field about. Note that

T3φ0 = −1

2
φ0 (7.29a)

Y φ0 = φ0 (7.29b)

Qφ0 =

(
T3 +

Y

2

)
φ0 = 0 (7.29c)

and the electric chargeQ turns out not to be broken, as desired. Furthermore,
all SO(3) ∼= SU(2)custodial transformations of the lower three components of Φ
leave Φ0 invariant.

Expanding around φ0

φ = φ0 + χ (7.30)

with

χ =

(
χ+

χ0

)
=

1√
2

(
χ3 + iχ4

χ1 + iχ2

)
, (7.31)

we can use the fact that a arbitrary φ can be parameterized

φ =
1√
2

ei~α~T

(
0

v + h

)
(7.32)

with real ~α and h and employ unitarity gauge

φ→ e−i~α~Tφ =
1√
2

(
0

v + h

)
. (7.33)

In the (1,2)1 representation, the covariant derivative reads

Dµ = ∂µ + ig ~Wµ
~T + ig′Bµ

Y

2
= 1∂µ +

i

2

(
gW 3

µ + g′Bµ g(W 1
µ − iW 2

µ)
g(W 1

µ + iW 2
µ) −gW 3

µ + g′Bµ

)
= 1∂µ +

i

2

(
gW 3

µ + g′Bµ

√
2gW+

µ√
2gW−

µ −gW 3
µ + g′Bµ

)
(7.34)
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and we find

Dµφ =
1√
2
Dµ

(
0

v + h

)
=

1√
2

( ig√
2
W+
µ (v + h)

∂µh+ i
2
(−gW 3

µ + g′Bµ)(v + h)

)
(7.35)

The kinetic term of the Higgs field becomes then

|Dµφ|2 =
g2

4
W−
µ W

+,µ

+
1

2
∂µh∂

µh+
1

8
(−gW 3

µ + g′Bµ)(−gW 3,µ + g′Bµ)(v + h)2 , (7.36)

from which we read off masses

M2
W± =

g2v2

4
(7.37a)

M2
W 3,B =

v2

4

(
g2 −gg′
−gg′ (g′)2

)
. (7.37b)

The (squared) mass matrix M2
W 3,B has one vanishing eigenvalue with corre-

sponding eigenvector

1√
g2 + (g′)2

(
g′

g

)
=

(
sin θw
cos θw

)
(7.38a)

and the orthogonal eigenvector

1√
g2 + (g′)2

(
g
−g′
)

=

(
cos θw
− sin θw

)
(7.38b)

belongs to the other eigenvalue

M2
Z =

v2

4
(g2 + (g′)2) =

M2
W

cos2 θw
≥M2

W . (7.39)

In (7.38) we have introduced the so-called weak mixing angle or Weinberg
angle θw. Therefore, the mass eigenstates are(

Zµ
Aµ

)
=

(
cos θw − sin θw
sin θw cos θw

)(
W 3
µ

Bµ

)
(7.40)

and W 3
µ and Bµ are expressed as(

W 3
µ

Bµ

)
=

(
cos θw sin θw
− sin θw cos θw

)(
Zµ
Aµ

)
. (7.41)
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Lecture 17: Wed, 10. 06. 2015

Inserting this into the corresponding part of the covariant derivative, we find

gW 3
µT3 + g′Bµ

Y

2
=
√
g2 + (g′)2 cos θw(cos θwZµ + sin θwAµ)T3

+
√
g2 + (g′)2 sin θw(− sin θwZµ + cos θwAµ)

Y

2

= Aµ
√
g2 + (g′)2 sin θw cos θw

(
T3 +

Y

2

)
+ Zµ

√
g2 + (g′)2

(
cos2 θwT3 − sin2 θw

Y

2

)
!

= AµeQ+ Zµ
√
g2 + (g′)2

(
cos2 θwT3 − sin2 θw

Y

2

)
︸ ︷︷ ︸

=T3−sin2 θwQ

, (7.42)

i. e.
e =

√
g2 + (g′)2 sin θw cos θw = g sin θw = g′ cos θw (7.43)

since the photon must couple with strength e to the electric charge Q. Finally

gW 3
µT3 + g′Bµ

Y

2
= AµeQ+ Zµ

e

sin θw cos θw

(
T3 − sin2 θwQ

)
(7.44)

and we see that the Zµ couples to the combination T3− sin2 θwQ which only
vanishes for right-handed neutrinos, but gives a non-zero NC for left-handed
neutrinos.

In particular, we obtain the non-trivial prediction

1− M2
W

M2
Z

= 1− cos2 θw = sin2 θw =
e2

g2
(7.45)

relating the ratio of the masses of the weak gauge bosons to the ratio of the
coupling of weak and electromagnetic interactions.

Finally, from expanding the Higgs potential

V (φ) =
λ

2

(
1

2
(v + h)2 − v2

)2

=
λv2

2
h2 + . . . , (7.46)

we find the mass of the scalar particle remaining after symmetry breaking,
the Higgs boson

mH =
√
λv . (7.47)
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while it is proportial to v, the parameter λ only appears in the Higgs self-
couplings and is therefore essentially a free parameter that is only required
to be positive to ensure vacuum stability and not too large to allow the
application of perturbation theory.

We can summarize a set of input parameters of the gauge-Higgs sector

αQED =
e2

4π
=

1

137.036
(7.48a)

MZ = 91.1876(21) GeV (7.48b)

MW = 80.385(15) GeV (7.48c)

mH = 125.4 GeV . (7.48d)

The other parameters are not independent and may not be changed without
breaking symmetries:

sin2 θw = 1− M2
W

M2
Z

≈ 0.23 (7.49a)

g =
e

sin θ
(7.49b)

g′ =
e

cos θ
(7.49c)

v =
2MW

g
=

2 sin θwMW

e
=

sin θwMW√
απ

= 255.3 GeV (7.49d)

λ =
m2
H

v2
(7.49e)

Not that relations in (7.49) are subject to renormalization and receive calcu-
lable corrections in higher orders.

Of course one may use other subsets of the parameters as input parame-
ters, e. g. the parameters in the lagrangian before symmetry breaking

{g, g′, λ, v} , (7.50)

and derive the rest from them, but some sets are better than others, because
the radiative corrections are better under control and/or the input parame-
ters can be measured more precisely.

7.3.3 Yukawa Couplings

If we want to produce mass terms for fermions

m
(
ψ̄RψL + ψ̄LψR

)
, (7.51)
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we need to couple
ψ̄RψL ∈ (1,2)YL−YR (7.52)

to a scalar field that can be expanded about an appropriate non-vanishing
value. In particular, the scalar field(s) and their conjugate(s) must transform
according to (1, 2̄)YR−YL and their conjugates. Introducing the doublets

ΨL =

(
ν`L
`−L

)
(7.53a)

qL =

(
uL
dL

)
, (7.53b)

we find the representations for the four different combinations in each family

ν`RΨL ∈ (1,2)−1 (7.54a)

`−RΨL ∈ (1,2)+1 (7.54b)

uRqL ∈ (1,2)−1 (7.54c)

dRqL ∈ (1,2)+1 . (7.54d)

Thus it appears that we need two different Higgs doublets

φ ∈ (1,2)+1 (7.55a)

φ̃ ∈ (1,2)−1 . (7.55b)

In the case of the leptons, one could avoid φ by not giving Dirac masses to
neutrinos and attibute the observed neutrino masses to Majorana masses.
This solution is not available for quarks, because they carry charges and can
therefore not be their own antiparticle.

Indeed, in the case of the popular supersymmetric extensions of the SM,
one is forced to introduce the second Higgs doublet φ̃ in order not to break
supersymmetry explicitely. However in the non-supersymmetric case, one
can make use of the fact that for SU(2)

2 ∼= 2̄ (7.56)

and construct the (1,2)−1 as the complex conjugate of the (1,2)+1

φ̃ = iσ2φ =

(
φ0

−φ+

)
=

(
φ0

−φ−
)
. (7.57)

For now, we will concentrate on the minimal one Higgs doublet model, but
the many versions of the two Higgs doublet model have not been excluded
so far.
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Since there are three families of fermions with identical quantum numbers

ν =

ν1

ν2

ν3

 =

νeνµ
ντ

 (7.58a)

` =

`1

`2

`3

 =

eµ
τ

 (7.58b)

U =

U1

U2

U3

 =

uc
t

 (7.58c)

D =

D1

D2

D3

 =

ds
b

 , (7.58d)

we must allow off-diagonal Yukawa couplings

LYukawa = −
3∑

i,j=1

Y `
ijΨi,L`

−
j,Rφ−

3∑
i,j=1

Y ν
ijΨi,Lνj,Rφ̃

−
3∑

i,j=1

Y D
ij Qi,LDj,Rφ−

3∑
i,j=1

Y U
ij Qi,LUj,Rφ̃+ h. c.

= −
(
ΨLY

``−R
)
φ−

(
ΨLY

ννR
)
φ̃−

(
QLY

DDR

)
φ−

(
QLY

UUR
)
φ̃+ h. c. ,

(7.59)

where we have introduced an obvious matrix notation.
After symmetry breaking we expand and choose unitarity gauge again

φ =
1√
2

(
0

v + h

)
(7.60a)

φ̃ =
1√
2

(
v + h

0

)
(7.60b)

and find the mass terms

Lmass = − v√
2

(
`−LY

``−R

)
− v√

2
(νLY

ννR)

− v√
2

(
DLY

DDR

)
− v√

2

(
ULY

UUR
)

+ h. c. , (7.61)

that are non-diagonal, in general. The matrices Y U , Y D, Y ν and Y ` are not
guaranteed to be normal, i. e. diagonalizable. Fortunately, we have
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Theorem 7.1. An arbitrary quadratric matrix M can be factorized in the
form

M = L∆R† , (7.62)

where L and R are unitary and ∆ is diagonal with real, non-negative entries.

Proof. MM † is a positive self-adjoint matrix and can be diagonalized by a
unitary transformation

L†MM †L = ∆2 , (7.63)

where the diagonal entries d2
n of ∆2 are non-negative. One may therefore

choose the positive square rootdn of the diagonal entries to define a square
root ∆ of ∆2. Finally, the matrix

C = M †L (7.64)

satisfies
C†C = ∆2 (7.65)

and consists therefore of pairwise orthogonal column vectors vn with

v†nvm = d2
nδnm . (7.66)

This means that there is a unitary matrix R with

C = R∆ (7.67)

and we find
M † = R∆L† . (7.68)

Lecture 18: Tue, 16. 06. 2015

We may now use theorem 7.1 to diagonalize the mass matrices

∀λ ∈ {ν, `, U,D} :
v√
2
Y λ = LλMλ

(
Rλ
)†
. (7.69)

Since we observe the particles in the broken symmetry phase, we should
identify the observed fermions with the states in a basis where the mass
matrices are diagonal. Therefore, we should absorb the matrices Lλ and Rλ

in the definition of the fermion states

∀λ ∈ {ν, `, U,D} : (Rλ)†λR → λR (7.70a)
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λLL
λ → λL . (7.70b)

Since the kinetic terms and the NC gauge couplings are propotional to the
unit matrix in the family indices and never connect up-type quarks with
down-type quarks or neutrinos with charged leptons, such transformations
cancel out

ψ̄Li/∂ψL = ψ̄′LLi/∂L
†ψ′L = ψ̄′Li/∂ψ

′
L , etc. (7.71)

Thus we can perform these transformations for everything but the CC inter-
actions without leaving a trace. Indeed is the absence of Flavor Changing
Neutral Currents (FCNC) in the lagrangian one of the most stringent re-
quirement in modelbuilding, because the observed FCNC are very small and
can be explained by suppressed loop corrections.

If we assume for simplicity that Y ν = 0 because the neutrinos are al-
most massless, we can choose Lν and Rν arbitrarily, in particular Lν = L`.
Thus (Lν)†L` = 1 and the `-ν CC interactions

LCC,`ν = − g√
2
νL /W

+`L −
g√
2
`L /W

−νL (7.72)

are not affected by the change of basis. In the CC interactions of quarks

LCC,UD = − g√
2
UL /W

+DL −
g√
2
DL /W

−UL (7.73)

however, both LD and LU are fixed by Y D and Y U , respectively. Thus we will
in general have LD 6= LU and in particular a non-trivial Cabibbo–Kobayashi–
Maskawa matrix

VCKM = (LU)†LD 6= 1 . (7.74)

Therefore, after the change to a basis in which the masses are diagonal, we
find that the CC interaction will connect different generations

LCC,UD = − g√
2
UL(LU)† /W+LDDL −

g√
2
DL(LD)† /W−LUUL

= − g√
2
UL /W

+VCKMDL −
g√
2
DL /W

−V †CKMUL . (7.75)

As the product of two unitary matrices, the CKM-matrix

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (7.76)
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is unitary itself. Not all of the N2 complex or 2N2 real parameters of such a
N ×N mixing matrix are independent. There are N2 real constraints from
unitarity

V †V = 1 =
(
V †V

)†
. (7.77)

Of the remaining N2 real parameters, N(N − 1)/2 are rotation parameters
and the remaining N(N + 1)/2 are phases. Of these phases, 2N − 1 can be
absorbed in the choice of relative phases for 2N quark fieldsUiDj

Vij

→
 eiα

U
i Ui

eiα
D
j Dj

eiα
U
i −αDj Vij

 . (7.78)

Thus we are left with

• N(N − 1)/2 = 3 angles and

• (N − 1)(N − 2)/2 = 1 phase(s) .

Currently, there is no theory explaining the values for the entries of the
CKM matrix and the four physical parameters have to be measured experi-
mentally. One finds a hierarchical structure, as expressed in the approximate
Wolfenstein parametrization

VCKM =

 1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 (7.79)

with
V †CKMVCKM = 1 +O(λ4) , (7.80)

to better than 0.25%. The measured values are

λ = 0.2254 (7.81a)

A = 0.8 (7.81b)

ρ = 0.12 (7.81c)

η = 0.53 (7.81d)

. The flavor sector contributes most of the free parameters in the SM that
have to be measured. If the neutrinos were massless, there would be 13
parameters

• 6 quark masses
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• 3 charged lepton masses

• 3 angles and 1 phase in the CKM matrix,

but the neutrino sector adds

• 3 neutrino masses

• 3 angles and 1 phase in the PMNS (Pontecorvo–Maki–Nakagawa–Sakata)
matrix,

bringing the total up to 20.
A lot of experimental effort has gone into measuring as many elements

of the CKM matrix as possible, in order to test its unitarity. No evidence
for a violation of unitarity has been found. The complex phase in the CKM
matrix is significant, because it is the only source for CP violation in the
standard model.

7.3.4 Interactions

Lecture 19: Wed, 17. 06. 2015

After fixing the free parameters of the SM from the quadratic mass terms
in the lagrangian and from the CC and electromagnetic gauge interactions,
there are no more ambiguities and the can express all other interactions
through these parameters.

Gauge Boson Selfinteractions

The gauge boson selfinteractions are determined completely by the gauge
lagrangian

Lgauge = −1

4
~Wµν

~W µν − 1

4
BµνB

µν . (7.82)

We know Lorentz structure of the self interactions of the ~Wµ gauge boson
already from (5.137f)

1

2

3

=

−gεa1a2a3gµ1µ2(k1
µ3
− k2

µ3
)

−gεa1a2a3gµ2µ3(k2
µ1
− k3

µ1
)

−gεa1a2a3gµ3µ1(k3
µ2
− k1

µ2
)

(7.83a)
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12

3 4

=

− ig2εa1a2bεa3a4b(gµ1µ3gµ4µ2 − gµ1µ4gµ2µ3)
− ig2εa1a3bεa4a2b(gµ1µ4gµ2µ3 − gµ1µ2gµ3µ4)
− ig2εa1a4bεa2a3b(gµ1µ2gµ3µ4 − gµ1µ3gµ4µ2)

. (7.83b)

Since the mass eigenstates Zµ and Aµ are linear superpositions of W 3
µ and Bµ,

it is straightforward to work out the coupling constants entering the vertices
coupling W±

µ , Zµ and Aµ, see the exercises.

Gauge Bosons with Matter: Fermions and Scalar Bosons

The interactions of fermions with gauge bosons derive from the NC and CC
parts of the lagrangian. The NC Feynman rules are

f
Z

f

k, µ

p

p′

= − i
g

2 cos θw

(
gfV γµ − g

f
Aγµγ5

)
(7.84a)

f
γ

f

k, µ

p

p′

= − ieQfγµ , (7.84b)

where the vector and axial vector couplings of the Z are are determined by
the isospin and electric charge quantum numbers of the left and right handed
parts

gV = T3 − 2Q sin2 θw (7.85a)

gA = T3 . (7.85b)

Note that hypercharge and isospin have been arranged so that the photon
couples to left and right handed parts with the same strengh and there re-
mains a pure vector coupling. Note again the absence of FCNC. In contrast,
the CC Feynman rules

f
W−

f ′

k, µ

p

p′

= − i
g√
2
Vff ′τ

+γµ
1− γ5

2
. (7.86)
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couple only left handed fermions, but are mixing the generations
Even though there are no scalar matter particles in the SM, they appear

in extensions of the SM:

µ, a

p

p′

= − ig(p+ p′)µTa (7.87a)

a, µb, ν

= ig2gµν (TaTb + TbTa) . (7.87b)

Gauge Bosons with Higgs Bosons

The couplings of gauge bosons with higgs bosons are derived by evaluating
the kinetic term

|Dµφ|2 , (7.88)

as in the exercises.
In unitarity gauge, one finds that there are no couplings of the kind hhA,

hhZ or hhW±. This is obvious for hhA and hhW± from charge conservation
and the vanishing electric charge of the physical Higgs boson. Furthermore,
couplings of the form

hh∂µZµ (7.89)

can not contribute because they are “pure gauge” and(
h
←→
∂µh

)
Zµ (7.90)

vanish for neutral scalars h.
The structure of the other couplings can be understood, by observing that,

in unitarity gauge, h alway appears in the combination v + h. Therefore

MW =
gv

2
→ g

2
(v + h) = MW

(
1 +

h

v

)
(7.91)

and

M2
WW

+
µ W

−,µ →M2
WW

+
µ W

−,µ +
2M2

W

v
hW+

µ W
−,µ +

M2
W

v2
h2W+

µ W
−,µ (7.92)
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and analogously for hZZ and hhZZ. From this argument, the absence of
hAA and hhAA should be obvious.

∝ M

v
(7.93a)

∝ M2

v2
. (7.93b)

Matter Fermions with Higgs Bosons

For the fermion couplings we can again argue

mf = Y v → Y (v + h) = mf

(
1 +

h

v

)
(7.94)

and find that their couplings to Higgs bosons are fixed by the ratio

Y =
m

v
. (7.95)

Therefore a testable prediction arises that the couplings of gauge bosons and
fermions are both propotional to there masses

f

f ′

∝
mf

v
. (7.96)

Higgs Boson Selfinteractions

Expanding the quartic potential, we will find hhh, hhhh, as in the exercises:

∝ mh (7.97a)
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. (7.97b)

7.4 GIM-Mechanism

The absence of FCNC becomes rather subtle in higher orders of perturbation
theory, because two consecutive CC interactions can result in a NC interac-
tion. Consider the penguin diagram giving a contribution to b→ sγ

W−

u, c, t u, c, t

γ

b s

+

u, c, t

W− W−

γ

b s

. (7.98)

There are three sets of diagrams with different up-type quarks in the loop.
They differ only by the VCKM factors and by the mass of the quark

M(b→ sγ) = V ∗tsVtbM(mt) + V ∗csVcbM(ms) + V ∗usVubM(mu) . (7.99)

Taking a closer look at the integral in the expression for the left loop diagram∫
d4k

(2π)4
γρ(1− γ5)

1

/k + /ps −mq + iε
γµ

1

/k + /pb −mq + iε
γσ(1− γ5)

× gρσ

k2 −M2
W + iε

, (7.100)

it appears to be logarithmically divergent, because there are only four powers
of k in the denominator. In this case everything would break down, because
we would need a counterterm corresponding to a FCNC, losing the prediction
of small FCNC 2.

However, if the masses were degenerate,

M(b→ sγ)|mt=ms=mu=m = (V ∗tsVtb + V ∗csVcb + V ∗usVub)︸ ︷︷ ︸
=(V †V )sb=0

M(m) (7.101)

2Even if the divergencies would cancel between the left and right diagram, there would
remain the same problem for FCNC involving gluons, since the gluon does not couple to
the W and only the left diagram contributes to b→ sg.
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by the unitarity of VCKM. From this, one can argue that

M(b→ sγ) ∝ ∆m (7.102)

and by dimensional analysis, there must be one more power of k in the
denominator for k � mq,MW , making the diagram finite. Actually, one can
do even better. Expanding quark the propagator

i

/p−m+ iε
=

i

/p+ iε
+

i

/p+ iε
(−im)

i

/p+ iε
+O(m2) , (7.103)

we observe that the each power of m can be treated as the insertion of a
vertex −im, without a gamma matrix, i. e. flipping the chirality. Therefore,
since only left handed quarks couple to the W±, we need an even number of
such insertion and the terms linear in ∆m must vanish as well. Thus

M(b→ sγ) ∝ ∆m2 , (7.104)

which is often a much stronger suppression. Such cancellations due to the
unitarity of the CKM matrix are known as the GIM mechanism, named after
Glashow, Illiopoulos and Maiani.

Lecture 20: Tue, 23. 06. 2015

These processes are observed in nature in decays like

B → K∗γ (7.105a)

B → K`+`− (7.105b)

B → Kνν̄ (7.105c)

which have branching ratios

Br(B → X) =
Γ(B → X)

Γtot.(B)
(7.106)

of the order O(10−7)–O(10−6). In the quark picture these correspond to
decays of mesons or baryons with other quarks acting as spectators

B0〉 = b〉 ⊗ d̄〉 → s〉 ⊗ d̄〉 ⊗ γ〉 = K0,(∗)〉 ⊗ γ〉 (7.107a)

B−〉 = b〉 ⊗ ū〉 → s〉 ⊗ d̄〉 ⊗ γ〉 = K−,(∗)〉 ⊗ γ〉 (7.107b)

Bs〉 = b〉 ⊗ s̄〉 → s〉 ⊗ s̄〉 ⊗ γ〉 = φ〉 ⊗ γ〉 (7.107c)

. . .→ . . . .
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Due to the strong GIM suppression of the SM contributions, many deviations
from the SM will have a strong impact on the branching ratios of such rare
decays. Therefore they provide a fertile testing ground.

Note that the computation of the quark decay b→ sγ can be performed
reliably in perturbation theory. However, the computation of the effected of
the non-perturbative hadronic binding forces is still impossible. Nevertheless,
one can use the wealth of existing data for the allowed CC decay b → cW−

appearing in B → D`+ν to extract the hadronic matrix elements, which
are independent of the flavor c or s in the final state, except for the mass
dependence.

7.5 K0-K0 Mixing, etc.

7.5.1 Box diagrams

Even more dramatic implications of the GIM mechanism, can be found in
processes like

K0〉 = s〉 ⊗ d̄〉 → d〉 ⊗ s̄〉 = K0〉 (7.108a)

B0〉 = b〉 ⊗ d̄〉 → d〉 ⊗ b̄〉 = B0〉 , (7.108b)

that are again prohibited at tree level. Nevertheless, we can draw one-loop
diagrams

u, c, t

W

ū, c̄, t̄

W

s

d̄

d

s̄

+

W

u, c, t

W

u, c, t

s

d̄

d

s̄

(7.109)

that contribute to these processes. These diagrams are already finite by
power counting and the GIM mechanism is not required for renormalizability.
Nevertheless, we observe that

M(sd̄→ ds̄) =
∑

q,q′∈{u,c,t}

V ∗qdVqsM(mq,mq′)V
∗
q′sVq′d (7.110)

vanishes by unitarity if all masses of up-type quarks are equal. Again, since
all couplings are left handed, the suppression factor is given by the difference
of the square of the masses. But this time there are two such factors, so we
can extract four powers of the masses

Before the charm quark was discovered, it’s existence with roughly the
correct mass, was predicted since it was required in a two generation version
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of the GIM mechanism to keep the size of the amplitude for K0 ↔ K0

transitions close to the observed values. This was possible, because on one
hand, even if the box is finite without the GIM mechanism, it’s numerical
size would be enhanced by (mW/ms)

4 = O(1010). On the other hand, the
K0 ↔ K0 transition matrix element can be measured rather precisely, due
to some fortunate numerical accidents, to be described in the following.

7.5.2 Mixing

Even before computing the box diagrams (7.109), we observe that K0 and K0

can decay into the same final states

K0

K0

}
→



π0π0

π+π−

π0π0π0

π+π−π0

...

(7.111)

and we must expect them to couple, e. g. in nonrelativistic perturbation the-
ory ∑

ππ

〈K0|Hw|ππ〉
1

EK0 − Eππ
〈ππ|Hw|K̄0〉 (7.112)

which can be visualized by pseudo Feynman diagrams

π0,±

π0,±

K0 K̄0 . (7.113)

In addition to the short distance box (7.109) there are additional penguin dia-
grams and a correct combination of all contributions without double counting
is complicated.

7.5.3 Experimental Observations

Recall that there are two different neutral Kaons K0 = ds̄ and K0 = sd̄ that
can be distinguished by their semileptonic decays

K0 → π−e+νe (ds̄→ dūW+) K0 6→ π+e−ν̄e (7.114a)

K0 → π+e−ν̄e (sd̄→ ud̄W−) K0 6→ π−e+νe (7.114b)
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However, the dominant hadronic decay modes are flavor-neutral

K0

K0

}
→
{
π0π0

π+π−
. (7.115)

There is a helpful numerical accident

mK0 = 498 MeV (7.116a)

mπ± = 140 MeV (7.116b)

mπ0 = 135 MeV (7.116c)

that leads to

mK0 ≈ 3mπ + 3 · 29 MeV (7.117a)

mK0 ≈ 2mπ + 2 · 111 MeV . (7.117b)

Therefore, ππ and πππ are the only open hadronic decay channels and ππ
dominates because of the much larger available phase space

Γ(K0 → ππ) ≈ 575 · Γ(K0 → πππ) . (7.118)

7.5.4 CP Conservation

The pions and kaons are pseudoscalar

P π〉 = − π〉 (7.119a)

P K〉 = − K〉 (7.119b)

and we choose the phases for charge conjugation as

C π±〉 = π∓〉 (7.120a)

C π0〉 = π0〉 (7.120b)

C K0〉 = K0〉 (7.120c)

C K0〉 = K0〉 . (7.120d)

Thus we can form find the CP eigenstates

CP K0
CP=±1〉 = ± K0

CP=±1〉 (7.121)

as

K0
CP=±1〉 =

1√
2

(
K0〉 ∓ K0〉

)
. (7.122)
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The lightest decay channel is CP even

CP ππ; l〉 = +(−1)2(−1)l ππ; l〉 , (7.123)

i. e.
CP ππ; l = 0〉 = + ππ; l = 0〉 . (7.124)

Therefore, if CP is conserved, the long lived state K0
L is CP odd and the

shor lived state K0
S is CP even

K0
S〉 = K0

CP=+1〉 (7.125)

K0
L〉 = K0

CP=−1〉 . (7.126)

However, one observes some K0 → ππ decays even after all K0
S have decayed

(recall that ΓS ≈ 575 · ΓL). Therefore there are K0
L → ππ decays and CP

must be violated.
There are two ways CP can be violated in K0

L → ππ

1. direct CP violation in the ∆S = 1 decay Hamiltonian

〈ππ|Hw|K0
L〉 6= 0 (7.127)

or

2. indirect CP violation from the mixing of CP eigenstates

K0
L〉 6= K0

CP=−1〉 , (7.128)

i. e. a ∆S = 2 interaction

〈K0
CP=+1|Hw|K0

CP=−1〉 6= 0 . (7.129)

After the discovery of CP violation, a possible, if unsatisfacotory, explanation
was a new “superweak” ∆S = 2 interaction, that violates CP , while the
“normal” weak interactions conserve CP . It took around 35 years to prove
the existence of direct CP violation experimentally.

7.5.5 K0 −K0 Oscillations



ohl: Wed Jul 1 17:09:35 CEST 2015 subject to change! 113

Lecture 21: Wed, 24. 06. 2015

For a given momentum, the Hilbert space is two dimensional and we can
introduce a matrix notation(

a(t)
b(t)

)
= a(t) K0〉+ b(t) K0〉 . (7.130)

The kaons decay and the time evolution is not unitary in this subspace of
the full Hilbert space. Therefore, we expect a non-hermitean Hamiltonian

i
d

dt

(
a(t)
b(t)

)
=

(
M − iΓ

2
M12 − iΓ12

2

M12 − iΓ12

2
M − iΓ

2

)(
a(t)
b(t)

)
(7.131)

with complex M and Γ. The two-level system (7.131) will be solved exactly
in the exercises. We can compute the eigenstates of this Hamiltonian as a
superposition of CP eigenstates

KL〉 =
1√

1 + |ε̄|2
(
K0
CP=−1〉+ ε̄ K0

CP=+1〉
)

(7.132a)

KS〉 =
1√

1 + |ε̄|2
(
K0
CP=+1〉+ ε̄ K0

CP=−1〉
)

(7.132b)

with

ε̄ ≈ i

2

ImM12 − i Im Γ12/2

ReM12 − i Re Γ12/2
(7.133a)

M12 − i
Γ12

2
= 〈K0|Hw|K0〉 . (7.133b)

In order to obtain CP violation from mixing, we must have

ImM12 6= 0 (7.134)

or
Im Γ12 6= 0 . (7.135)

Note that these imaginary parts must not be confused with the non-hermition
part of the Hamiltonian describing the decays.

There is another helpful numerical accident: the difference of the eigen-
values

2 ReM12 ≈ ∆m = mL −mS ≈ 3.5 · 10−6 eV (sic!) (7.136)
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is tiny and of the same order as the K0
S decay width

ΓS =
1

τS
≈ 7.35 · 10−6 eV ≈ 2∆m. (7.137)

Therefore we will see spectacular oscillation and interference phenomena on
macroscopic scales. In addition, the tiny CP violating contributions are
enhanced by a small denominator in perturbation theory.

Irrespective of a small CP -violating contribution, we expect the following
behaviour of a K0 beam, which can be produced, e. g., by scattering K+s on
protons

• The K0 beam will oscillate into a K0 beam and back. This can be
observed by detecting the different semileptonic decays along the beam
line.

• Subsequently, the K0
S component will die out. This can be observed

by detecting the decline of observed K0 → ππ decays along the beam
line.

• If the beam later passes through matter, the K0
L component will loose

phase coherence, since the K0 and K0 interact differently. Therefore,
theK0

S part is regenerated. This can be observed by detectingK0 → ππ
decays again after the passage through matter.

7.5.6 CP Violation

In order to distinguish indirect from direct CP violation, we need to separate
the effects of strong and weak interactions. Since the strong interactions
conserve isospin, we should decompose the amplitudes according to isospin
(see [2] for more details and further discussion).

The final state of the pions must be symmetric, because they are bosons.
The s-wave can therefore have only isospin 0 or 2

3⊗ 3 = 1S ⊕ 3A ⊕ 5S . (7.138)

In terms of the corresponding amplitudes, we can write

AK0→π+π− = A0eiξ0eiδ0 +
A2√

2
eiξ2eiδ2 (7.139a)

AK0→π0π0 = A0eiξ0eiδ0 −
√

2A2eiξ2eiδ2 (7.139b)

AK0→π+π− = −A0e−iξ0eiδ0 − A2√
2

e−iξ2eiδ2 (7.139c)
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AK0→π0π0 = −A0e−iξ0eiδ0 +
√

2A2e−iξ2eiδ2 , (7.139d)

where

• AI : modulus of the weak decay amplitude into the state with isospin I,

• ξI : phase of the weak decay amplitude into the state with isospin I,

• δI : elastic scattering phase of the strong interactions in the final state
with isospin I .

Note that the signs in (7.139c) and (7.139d) are such that ξI = 0 if CP is
conserved

〈ππ|Hw|K0〉 = 〈ππ (CP )−1︸ ︷︷ ︸
=〈ππ

CPHw(CP )−1︸ ︷︷ ︸
=Hw

CPketK0︸ ︷︷ ︸
=− K0〉

= −〈ππ|Hw|K0〉 .

(7.140)

Also note that ξI changes the sign for the charge conjugate state, whereas
δI remains the same, because the final state is the same and the strong
interactions are invariant under CP .

We can now parametrize the amount of CP violation by two numbers

η+− =
〈π+π−|Hw|K0

L〉
〈π+π−|Hw|K0

S〉
= ε+ ε′ (7.141a)

η00 =
〈π0π0|Hw|K0

L〉
〈π0π0|Hw|K0

S〉
= ε− 2ε′ . (7.141b)

Using (7.139), one finds

ε = ε̄+ iξ0 (7.142a)

ε′ = i
ei(δ2−δ0)

√
2

A2

A0

(ξ2 − ξ0) . (7.142b)

This means that a nonvanishing ε can be attributed to the mixing alone,
while a nonvanishing ε′ needs an interference of the isoscalar and isotensor
channels and is independent of the mixing.

If ε′ � ε, which turns out to be correct,

|η+−|2

|η00|2
= 1 + 6 · Re

(
ε′

ε

)
+O

((
ε′

ε

)2
)

(7.143)
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and we can observe ε′/ε in a double ratio

Re

(
ε′

ε

)
≈ 1

6

(
|η+−|2

|η00|2
− 1

)
=

1

6


(

Γ(K0
L→π

+π−)

Γ(K0
S→π+π−)

)
(

Γ(K0
L→π0π0)

Γ(K0
S→π0π0)

) − 1

 (7.144)

where systematic errors can cancel. Indeed in 1999 finally a consistent mea-
surement was made

ε′

ε
≈ 1.6 · 10−3 , (7.145)

showing that the weak ∆S = 1 interaction violates CP and a “superweak”
∆S = 2 is not necessary.

7.5.7 B0-B0 and D0-D0

Similar phenomena have been observed in the mixing of neutral B-, Bs-
and D-mesons. The formalism is identical and the results confirm the CKM
picture. However, the oscillation frequencies, decay rates and their ratios are
very different, leading to qualitatively different phenomenologies.

The observed strength of the B0-B0 oscillations, which are driven mostly
by the heavy top quark gave the first indication that the top quark could be
heavier than the W boson.

The study of D0-D0 oscillations is complicated by two facts of life:

• the masses of the down-type quarks are must closer together and the
contribution of the box diagrams is therefore smaller

• the long distance contributions from D0 → Kπ → D0 are harder to
compute or estimate.

7.6 Higgs Production and Decay

Lecture 22: Tue, 30. 06. 2015

We have learned that in the SM the coupling of Higgs bosons to other
particles is proportial to their mass, either via Yukawa couplings or the gauge
couplings. This has two consequences

• the Higgs boson will decay predominantly into the heaviest particles
available. For mh = 126 GeV, these are the ZZ and W+W− final
states.
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• it is not obvious how to produce Higgs bosons from “ordinary” matter,
because the production cross section will be suppressed by a factor
of (m/v)2 = (m/(4mW ))2 relative to other processes.

However, one must not forget loop diagrams for γγ → h involving top
quarks

t

t

t

γ

γ

h + t

t

t

γ

γ

h (7.146a)

and W±

W

W

W

γ

γ

h + W

W

W

γ

γ

h (7.146b)

as well as top quarks for gg → h

t

t

t

g

g

h + t

t

t

g

g

h. (7.147)

Here the tt̄h-coupling is large and can overcome the loop suppression. From
naive power counting, the top-quark loops are linearly divergent∫

d4k

(
1

/k

)3

(7.148)

and the W loops are logarithmically divergent∫
d4k kµkν

(
1

k2

)3

. (7.149)

If this was indeed the case, the standard model would be in serious trouble,
because direct couplings of the Higgs to massless particles of the form

L = chγγhAµA
µ + chgghGµG

µ (7.150)
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are forbidden by the unbroken gauge invariances, but would be required as
counter terms.

Fortunately, the naive power counting is not correct. In QED, the dia-
gram

γ γ = Πµν(p) (7.151)

appears to be quadratically divergent, but a more careful analysis reveals
that the Ward identity

pµΠµν(p) = 0 (7.152)

forces Πµν(p) to have the form

Πµν(p) =
(
pµpν − p2gµν

)
Π(p) . (7.153)

Since Π(p) must, by dimensional analysis, have two additional powers of
the loop momentum in the denominator, the diagram is only logarithmically
divergent. In addition the counterterm has the form

L = cγγFµνF
µν , (7.154)

which is compatible with gauge invariance. Analogously, the diagrams for
light-by-light scattering

γ

γ

γ

γ

+ permutations (7.155)

appear to be logarithmically divergent, requiring a A4-counterterm that is not
part of QED. Here it can be shown that the Ward identities allow to extract
four powers of momentum, making the diagram convergent. It corresponds
to an effective interaction of the form

LEuler-Heisenberg =
cγγγγ
m4
e

(α
π

)2

FµνF
νκFκλF

λµ + permutations . (7.156)

The same arguments can be used to argue that the effective hγγ- and
hgg- vertices must carry two additional powers of the momenta and are thus
finite. Indeed the lowest order effective interactions that we can write down
are

Lhγγ = chγγ
α

4π

h

v
FµνF

µν (7.157a)
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Lhgg = chgg
αs
4π

h

v
GµνG

µν , (7.157b)

where the O(1) coefficients chγγ and chγγ can be obtained from performing
the loop integrals. Here FµνF

µν and GµνG
µν are the only bilinear terms

allowed by QED and QCD gauge invariance, the Higgs boson is know to
couple in the combination h/v and α/(4π) = e2/(16π2) is the combination of
two coupling constants and a loop factor. The mass of the top quark drops
out for mt →∞, because after extracting the two powers of momentum∫ mt

d4k
1

k5
∝ 1

mt

, (7.158)

which is cancelled by the mt/v in the Yukawa coupling.
The existence of these couplings allows the production of Higgs bososn in

the fusion of two gluons and its decay into to photons

gg → h→ γγ . (7.159)

While the corresponding cross section is smaller than

gg → h→ ZZ,W+W− , (7.160)

it is competetive after accounting for experimental uncertainties.

7.7 Anomaly Cancellation

• classical and quantum symmetries, renormalization

• triangle diagrams

• axial current conservation

• global SU(3)A: π → γγ

• gauged SU(2)L: SM

•
∑
Q

!
= 0



ohl: Wed Jul 1 17:09:35 CEST 2015 subject to change! 120

—8—
Quantum Chromo Dynamics

8.1 Lowest Order Perturbation Theory

• Lagrangian

• spectrum (massless particles)

8.2 Lattice Gauge Theory

• Wilson action

SWilson =
∑
�

tr

(
P exp

(∫
�

dxµA
µ(x)

))
(8.1)

• Monte Carlo

• two point functions and mass gap

• static ∝ |~r| potential

• confinement

• quark gluon plasma

Lecture 23: Wed, 01. 07. 2015

• chiral symmetry breaking

• color strings
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8.3 Asymptotic Freedom

• running coupling

• dimensional transmutation, ΛQCD

8.3.1 Jets

• e+e− → 3j: qqg-vertex

• clustering, N -jet rate vs. distance measures

• infrared and collinear singularities, KLN-theorem

• final state parton showers

• infrared safe observables

• matrix element and shower matching

8.3.2 Parton Model

• impulse approximation

• justification by asymptotic freedom for large momentum transfer, op-
erator product expansion

• parton distribution functions

• DGLAP evolution

• initial state parton showers

8.4 Hadronization

• independent fragmentation ruled out

• Lund model: string effect, antennae, etc.

• Herwig: clusters
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—A—
Acronyms

a.k.a. also known as

d.o.f. degrees of freedom

CC Charged Current

FAPP For All Practical Purposes

FCNC Flavor Changing Neutral Currents

iff if and only if

LT Lorentz Transformation

LHS Left Hand Side

NC Neutral Current

OTOH On The Other Hand

PDE Partial Differential Equation

QED Quantum Electro Dynamics

QCD Quantum Chromo Dynamics

QFT Quantum Field Theory

QM Quantum Mechanics

RHS Right Hand Side

SM Standard Model

SSB Spontaneous Symmetry Breaking



ohl: Wed Jul 1 17:09:35 CEST 2015 subject to change! 123

vev vacuum expectation value

WLOG Without Loss Of Generality

wrt with respect to
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energy momentum tensor, 65

flavor, 33

Gell-Mann matrices, 36
Gell-Mann–Okubo relation, 54
GIM mechanism, 108
Goldstone bosons, 82
greensfunctions, 58

Heisenberg magnet, 79
Higgs-Kibble Model, 85
highest weight, 30
hypercharge, 35

indirect CP violation, 112
indistinguishable, 7
internal, 7
irreducible, 14
isospin, 28

Kontakt, v

Lagrangian, 57
Lie algebra, 9
Lorentz Group, 18

mass matrix, 78
mixing, 112
multiplet, 9

open, 22

Pauli–Lubanski vector, 25
penguin diagram, 107
Poincaré Algebra, 25
Poincaré group, 24

quark, 28
quarks, 43

rank, 38
reducible, 14
representation, 9
roots, 39

simple root, 40
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spacetime, 7
strange particles, 35
strange quark, 43
strangeness, 35
structure constants, 37
Stueckelberg propagator, 87
supersymmetries, 26
symmetric space, 82

tensor operators, 51
tensor product, 15
top, 55

unitarity gauge, 84, 87

weak isospin, 91
weak mixing angle, 95
weight vector, 39
weights, 39
Weinberg angle, 95
Wigner–Eckhart theorem, 35
Wigner–Eckhart Theorem, 52
Wolfenstein parametrization, 102
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