9. Problemset "Theoretical Particle Physics" June 19, 2015

Two Higgs Doublet Model(s)

9.1 Symmetry Breaking

Consider a symmetry breaking sector with two Higgs doublets ϕ_1 and ϕ_2 in the $(\mathbf{1}, \mathbf{2})_{+1}$ representation of $SU(3)_C \times SU(2)_L \times U(1)_Y$ with potential

$$V(\phi_{1}, \phi_{2}) = \frac{\lambda_{1}}{4} \left(\phi_{1}^{\dagger} \phi_{1} - \frac{v_{1}^{2}}{2} \right)^{2} + \frac{\lambda_{2}}{4} \left(\phi_{2}^{\dagger} \phi_{2} - \frac{v_{2}^{2}}{2} \right)^{2}$$

$$+ \frac{\lambda_{3}}{4} \left(\left(\phi_{1}^{\dagger} \phi_{1} - \frac{v_{1}^{2}}{2} \right) + \left(\phi_{2}^{\dagger} \phi_{2} - \frac{v_{2}^{2}}{2} \right) \right)^{2}$$

$$+ \frac{\lambda_{4}}{4} \left((\phi_{1}^{\dagger} \phi_{1})(\phi_{2}^{\dagger} \phi_{2}) - (\phi_{1}^{\dagger} \phi_{2})(\phi_{2}^{\dagger} \phi_{1}) \right)$$

$$+ \frac{\lambda_{5}}{4} \left(\operatorname{Re}(\phi_{1}^{\dagger} \phi_{2}) - \frac{v_{1} v_{2} \cos \xi}{2} \right)^{2} + \frac{\lambda_{6}}{4} \left(\operatorname{Im}(\phi_{1}^{\dagger} \phi_{2}) - \frac{v_{1} v_{2} \sin \xi}{2} \right)^{2}$$
 (1)

with

$$\forall i \in \{1, 2, 3, 4, 5, 6\} : \mathbf{R} \ni \lambda_i > 0 \tag{2a}$$

$$\forall i \in \{1, 2\} : \mathbf{R} \ni v_i > 0 \tag{2b}$$

$$\mathbf{R} \ni \xi \in [0, 2\pi) \tag{2c}$$

and the notation

$$\tan \beta = \frac{v_1}{v_2} \,. \tag{3}$$

1. Show that (1) is minimized by

$$\langle \phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}, \quad \langle \phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 \exp^{i\xi} \end{pmatrix}.$$
 (4)

- 2. Why do we need a minimum where the upper components of both $\langle \phi_1 \rangle$ and $\langle \phi_2 \rangle$ vanish?
- !!! In order to avoid CP-violation, we choose $\xi = 0$ from now on.
- 3. Compute the masses of the gauge bosons from

$$\left|D_{\mu}\left\langle\phi_{1}\right\rangle\right|^{2} + \left|D_{\mu}\left\langle\phi_{2}\right\rangle\right|^{2} . \tag{5}$$

- 4. Find the Goldstone bosons by expanding around (4).
- 5. Show that there are two charged and one neutral Goldstone bosons.
- 6. Determine the masses of the remaining five physical scalar fields (there should be two charged and three neutral ones).