

5. Problemset "Theoretical Particle Physics"

May 22, 2015 (rev)

Fakultät für Physik und Astronomie

Prof. Dr. Thorsten Ohl

Gauge Lagrangian

5.1 Propagator

Consider the so-called $Stueckelberg\ Lagrangian$ for a single free massive spin one boson

$$\mathcal{L} = -\frac{1}{4} \left(\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \right) \left(\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} \right) - \frac{1}{2\alpha} \partial^{\mu} A_{\mu} \partial^{\nu} A_{\nu} + \frac{m^2}{2} A_{\mu} A^{\mu} \qquad (1)$$

with two free real parameters α and m.

- 1. Derive the Euler-Lagragrange equations of motion for A_{μ} .
- 2. Derive the corresponding propagator.
- 3. Discuss the limiting cases of the propagator and the equations of motion
 - (a) $m \to 0$
 - (b) $\alpha \to 0$
 - (c) $\alpha \to 1$ ("Feynman")
 - (d) $|\alpha| \to \infty$ ("*Proca*")

and their combinations.

4. Discuss the dispersion relations for the different polarization states in dependence of α and m.

5.2 Nonlinear Sigma–Model

Consider a field in the 3×3 representation of $SU(3) \times SU(3)$ represented by a 3×3 matrix Σ . It transforms under $L \times R \in SU(3) \times SU(3)$ as

$$\Sigma \to L\Sigma R^{\dagger} . \tag{2}$$

A general Σ can be parametrized by eight fields $\{\pi_a\}_{a=1,2,\ldots,8}$

$$\Sigma = e^{i\lambda_a \pi_a/v} \tag{3}$$

with v an energy scale.

1. Construct a SU(3) × SU(3) convariant derivative D_{μ} with

$$D_{\mu}\Sigma \to L D_{\mu}\Sigma R^{\dagger}$$
 (4)

2. Expand the Lagrangian

$$\mathcal{L} = v^2 \operatorname{tr} \left((D_{\mu} \Sigma)^{\dagger} D^{\mu} \Sigma \right) - \frac{1}{2} \operatorname{tr} \left(F_{\mu\nu} F^{\mu\nu} \right) - \frac{1}{2\alpha} \operatorname{tr} \left(\partial^{\mu} A_{\mu} \partial^{\nu} A_{\nu} \right)$$
(5)

as a power series in π_a and compute all terms containing at most four fields.

- 3. Derive the corresponding Feynman rules:
 - (a) propagators for π_a and A^a_{μ} ,
 - (b) couplings of the π_a with itself and with the gauge field A_{μ} .
- 4. What are the masses of π_a and A^a_{μ} ?