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Abstract

A set of lectures on semi-advanced quantum field theory.
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B
QUANTUM FIELD THEORY

| Lecture 01: Tue, 11.04.2016

[1] 2]
Quantum Field Theory (QFT) plays a dual role:

e “quantum mechanics” of classical field theory, e. g. quantized radiation
field in quantum electrodynamics

e quantum mechanics for (infinitely) many particles with creation and
annihilation

are described by the same formalism'.

1.1 Classical Freld Theory

Configuration space: linear space of all functions ¢

¢o: M — C
z = ¢(x)

or rather of all distributions, since we often encounter singularities, e.g. in
the Coulomb potential of point charges. Mathematically, the space of all
(tempered) distributions is the dual of the space of smooth testfunctions,
that (fall off faster than any power for |x| — oo0) have compact support:

(1.1)

6 : C®(M) — C
f s 6(f) = / dpu(z) f(2)d(z)

M

(1.2)

IThe second interpretation requires the notion of particle, however, which is not avail-
able in general curved background geometries.
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In this lecture: M = R* with Lorentzian inner product
zy = z,2" = 2'x, = 2%° — 7Y (1.3)

for general curved M much more complicated, see Niemeyer/Ohl lecture.
The dynamics of the fields ¢ is governed by second order Partial Differ-
ential Equations (PDE), e. g. the Klein-Gordon equation

(O+m?)¢(z) =0 (1.4)
with appropriate Cauchy data for ¢(z) and Jy¢(z) on a spacelike hypersur-
face, e.g. g = 0.

1.1.1 Action Principle, Euler-Lagrange-Equations

Since the study of coupled nonlinear PDEs is complicated and in particular
symmetries are not manifest for multi-component fields, it helps to derive
the equation of motion from an action principle:

- 69
5S(d1,...,fn) = d*z ——(¢1, ... ¢n,2)0¢s(x) = 0 (1.5)
1 ;/ o

for all variations {d¢; }i=1.. ., and therefore

.....

55
0¢;

For example the local action for a real field ¢

5(0) = [ate (GB0@0%0(a) - gmtoeiole) - Vi) ()

leads to

0= 52(0,2) = ~Do(a) — m0(a) ~ V'(6()). (18)

All interesting field equations are second order in time and space, since
higher orders lead to problems with causality. The second order field equa-
tions have to be combined with Cauchy data for the fields {¢;(x)}iz1..n
and their first time derivatives {0y¢;(x)}i=1 .. on a space-like hypersurface
(“Cauchy surface”).
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1.1.2 Canonical Formalism

Second order PDEs can always be reformulated as a larger system of first
order PDEs in time.
Classical canonical dynamics for real Klein-Gordon field

S = /dtL(t) (1.9a)
L(t) :/ d*z L(z) (1.9b)
£(x) = 50,00 0(x) — 2-6*(x) ~ V(o(x)) (1.9¢)
canonically conjugate momentum
oL 0
(1) = g7 ®) = 96 (1.10)

Hamiltonian from Legendre transformation
H() = / td3f<7r(:c)80¢(x) ~ ()
= [ @5 (e + Foa) Vo) + miea) + V(o) (111

Equations of motion

bt 7) = (o). H(1)) (1.120)
(1, 7) = {n(x), H(t)} (1.12b)

with Poisson bracket
()= o (Feofes-Leafen).

Equivalent definition: denote the space of all (nonlinear) functionals of ¢

and 7 with
C =C™(R? x C*(R? — C. (1.14)

Then the binary operation
{,}:CxC—=C

(o) > {f.9) (1.15)
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is an antisymmetric derivation, i.e.

{f,.9y =—A9./} (1.16a)
{f.gh} =g{f.h} +{f.g}h (1.16b)
{f,ag+ Bh} = a{f g} + B{f h} (1.16¢)
for a, f € C, and we define

{o(t,7),7(t,9)} = 6°(7 — 9) (1.17a)
{¢(t7f)v¢<tvg)} = {W(t,f),ﬂ(t,ﬁ)} =0. (117b)

The Poisson braket also satisfies the Jacobi identity
{f. 49, h}} +{g:Ah, f1} +{h{f.9}} =0 (1.18)

and consequently forms a Lie algebra.

The first order in time canonical equations of motion (1.12) have a unique
solution, if initial conitions for the field ¢ and the momentum 7 are given on
a space-like Cauchy surface.

1.2 Quantization

1.2.1 Canonical Quantization

Promote fields to operators in a suitable Hilbert space (more precisely: op-
erator valued distributions) and replace Poisson brackets by commutators

[64(t, @), 7;(t, )] = 10;;0°(F — §) (1.192)
[0:(t, T), (8, 5)] = [mi(t, 7), m;(t, §)] = 0 (1.19b)

Perturbation theory: split Hamiltonian
H=Hy+V (1.20a)

H@:llo;ff%(w%xy+ﬁ¢@»ﬁ¢m>+nﬁ¢%xn (1.20b)

linear equations of motion resulting from H (“free wave equation”) can be
solved by Fourier transform

mwzfﬂ(MM€M+dwwﬂ (1.21a)



ohl: Tue Jul 5 14:20:41 CEST 2016 subject to change! 5

(@) = —i / Tk (a(k)e ™ — al (k)e™) (1.21b)
with
. 37 4
dk = (2:)—32/% Y-yt (gﬂli 2710 (ko)d(k* — m?) (1.22)
The commutation relations are realized by
[ai(k), al(kK')] = (27)*2ko0,;6° (k — k') (1.23a)
[ai(k), a;(K')] = [a] (), a}(K)] = 0 (1.23b)
acting on a unique normalized vacuum state |0):
Vi, k :a;(k)|0) =0, 00y =1 (1.24)
one-particle states
i, k) = al (k) |0) (1.25)

normalization

(i, k|7, k') = (0]a;(k)al(K')|0)
= (0]al (K )a;(k)[0) + (2)*2ko6,;0° (k — &) (0]0) = (2)32k00;;0% (k — K >

The n-particle states (only one field, for simplicity)
kg, k) = al(ky)al (k) - - - al (k) |0) (1.27)

span the n-particle Hilbert space H,, = H®5™ and the commutation relations
guarantee that only symmetrical states appear for bosons.
With

/H():H()Z{C‘(» :CEC} (1.28)

we recover (in the sense of distributions)
a'(k) i Hp — Ho (1.29a)
a(k) :Hp, — Hp (1.29Dh)

and the operators act in the Fock space
F=PH.=HoOHOsHOHRsHRsHD ... (1.30)
a'(k): F = F (1.31a)

a(k) : F — F (1.31b)
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1.2.2  Perturbation Theory, Interaction Picture and the
Gell-Man Low Formula

Split the Hamiltonian in two parts
H=Hy+V (1.32)

and define “free fields”
() = / dk (a(k)e ™ 4+ at(k)e*) (1.33)

that are defined in a Fock space which is generated by |0°) with a(k) [0°) = 0.
Their time evolution is such that

0 .
50 (w) = ilHo. o (o) (1.34
and consequently
" (y) = Fu)" @O (g)e iy (1.35)

with PY = Hy. Compare this with the Heisenberg fields ¢(z) with

0
a—xocb(%') = i[H, ¢(z)] (1.36)
and
By) = " g(g)e Fuly=2)" (1.37)

with Py = H. If H is not quadratic, i.e. the equations of motion not linear,
there is no simple splitting in creation and annihilation parts.

Lecture 02: Thu, 14.04.2016

Compatibility of matrix elements of Heisenberg and Schrédinger picture field
operators

(Alo(7,1)| B) = (Ale""'o(7, 0)e™"| B)
= (A%(0)[e"™° (@)™ | B*(0)) = (A%(1)]0”(@)| B%(1)) (1.38)

can be extended to the interaction picture

(Alp(@, 1)|B) = (A°(0)] (%, )| B°(0))
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= (A%(0) e e7 00 (x)e 0t T BY(0)) = (A (0)|U (¢, 0)'¢° (x)U (£, 0)| B(0))

(1.39)
where the (formally) unitary operator
Ult, ty) = elflolt=to)o=tH{t=t0) — ((17(¢ ¢,))T)~! (1.40)
satisfies
.d
1&U(t,to) =V (t)U(t,to) (1.41a)
Ulto, to) = 1 (1.41b)
with a time dependent interaction
V(t) = oty (0)e ot (1.42)

Note that the time dependence can be described by the time dependence of
the interaction picture “free fields”

V(it)=V (¢°\x0:t) (1.43)

All interaction picture matrix elements can be evaluated using Dyson’s for-
mula .
Ult,ty) = T e Higdeo JEZV" @) (1.44)

as solution of the Schrodinger equation for the time evolution operator in the
interaction picture.
Therefore, if we assume that [0°) and |0) agree for ¢ — —oo we can write

(Olp(x1)@(w2) - - P(24)|0) =
(0°] U (t1, —00)¢° (1)U (t1, —00) U (t2, —00)¢° (2) U (2, —00)
UM (t, —00)¢° () U (t,, —00) |0°)
= (0°] UT (00, —00)U (00, t1)¢° (1)U (t1, t2)¢" (22)U (t2, ts)
U(ty, tn)¢0($n) (tn, — ‘00
= (0°|U (00, =00)[0°%) (0°] U (00, t1)¢" (1)U (t17t2)¢0(1ﬁ2)U(t27t3)
- Ultn-a, tn)¢o($n)U(tna —00) ‘00> =
(0°1T (00, t1)¢° (z1)U (t1, 12)¢°(w2) U(ta, t5) - - - Ultn—1,t2) " (2n)U (t5, —00)|0°)
(0°)U (00, —00)0°) '

(1.45)
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Here we have used that due to energy conservation and unitarity
U(oo, —00) |0°) = e [0") (1.46)
and therefore

(0°] Ut (00, —00) = (0°|U (00, —00)]0°%) (0°[ = €' (0°
_ 1 (0] = 1
(0°]U (00, —00)|0°)

ey

(0°] . (1.47)

This simplifies in the time ordered case

(0T (x1)p(w2) - - - B(2)[0) =

(0°|TU (00, t1)@° (x1)U (t1, t2)d°(0)U (ta, t3) - .. Ultn_1,tn) 0% (2n) U (tn, —00)|0°)
(09U (00, —00)|0%)

(0°]TU (00, —00)¢°(21)¢"(2) - - - ¢°(4)]0°)

1.48
010 (20, ~=0)]07) SR
which is just the Gell-Man Low formula for Green’s functions
{00 e V@G0, L g0 (x,)]0%)
<0| T¢(xl) tet ¢($n>|0> - <00| ,I‘e,ifd4z V(¢O(m))‘00> (149)

and leads with Wick’s theorem to the Feynman rules.

1.2.3  Generating Functionals

Compact expression containing all Green’s functions of interacting (Heisen-
berg) fields of a theory

7 :C®(R") - C

i 20) = O T ) .
such that
O] T ¢(x1) ... ¢(x,)|0) = lim - ,5 - ,5 Z(j) (1.51)
i=0i0j(z1)  10j(xn)
with obvious generalization for more than one field:
Z: (C*RY)™" = C (152

Gty - sdn) = Z(jr, -y n) = (0] T /3'® Eima 0:i@ii@) gy
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Free Fields

For a free scalar field ¢ with Lagrangian

2

1
L= 50,00"6 — ¢ (1.53)

we can compute the 2-point Green’s function exactly

(01T é(2)6(y)[0) = —iGr(z —y) = / %e”m (154)
and we find a closed expression for the generating functional:
Z0(5) = et Jd'ed'yi@)Cr—1)i() (1.55)
E.g.
(010) = lim Z(j) = 1 (1.56a)
(01 T61)10) = iy -0 2(7) (1.56b)
= }lgcl) Az Gr(a1 — 22)j(22)Z(j) = 0
(O] T ¢(21)p(2)[0) = —iG (21 — x2) (1.56¢)
(O] T ¢(1)p(w2)(x3)[0) = 0 (1.56d)

(O] T ¢(21)9(w2)p(73)P(24)[0) = =G r(x1 — T2)G (T3 — 74)

- GF(xl - 333)GF(372 - 554)
- GF(CCl - $4)GF($2 - $3)

O] T é(w1) ... p(w2041)|0) =0

Interacting Fields and Feynman Rules
Ignoring the vacuum-to-vacuum diagrams in the denominator of the Gell-

Man Low formula (1.49), we can use

. f ING (o (5 . / AT
0 i [d*z’ ¢0(2")j(z) _ i fd'as’ ¢°(z')j(2) 1.57
To (x)e i(2) Te (1.57)

to formally write the generating functional for interacting fields
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Z(j) = (0% T el Jatz V(%)) i [ d4z¢>°(x>j(x)|00>
= (07| T &S (#") i ' @@ |00 — (0] p 5155 i [ ¢ ()i o0y
oiS1(5) (00| T et /4" @ @)i(=) |00y = eisf(u%)zo(j) (1.58)

which also results in the Feynman rules.
Examples: for V(¢) = g¢*/4! with lim;_, implied

1.
) 0 ) ) .
_ 0 ) ) 0 isl(%j) 0/ -
i 0 i e )
I N R N g o\ o .
“ S e a1 ) 20w
= i/d4x 9Gp (21 —2)Gp(2—2)Gp(23—2)G (24— 1) +O(g%) +disc.
(1.59)
i) ZT3
x
I Ty
2.
) . ) ) eisf(%j)ZO(j)

O T el = G5 20 = ey e
8 O [y, 9 ( 0 b )
15 (n) 16 () / BT (iéj(x)> 74)+04e)
:i/d4g; 86wy — 0)Gr(rs — 2)Gr(x — 1) + O(¢?) (160)

T T i)
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NB: Gp(x —x) = Gp(0) is not well defined and leads to divergencies
in perturbation theory, which will be the subject of chapter 2.

1.8 Pathintegral

The generating functional of all Green’s functions can be expressed as an
integral over all field configurations that are compatible with the boundary
conditions in the past and in the future:

2(j) = /D(p IS+ [dtz p(a)j(z) (1.61)

A mathematically rigorous definition of the integration measure Dy in
(1.61) is not trivial and has so far only been achieved in 2 + 1 space-time
dimensions.

1.3.1 Gaussian Integrals

I = /_Oodxexg =T (1.62)

o0

(proof: compute I? and use polar coordinates). By translation invariance
and rescaling, we find

I(a,b) = / dz e @@0* = \/g (1.63)

and in higher dimensions

(2m)"/?

vdet A

with (z, Ay) = >, z;A;;y; and A real symmetric and positive (proof: A
can be diagonalized with an orthogonal transformation that leaves the mea-
sure d"z invariant). Finally,

I(A) = / A"z e 2(A7) = (1.64)

(2m)"/?
vdet A

Proof: complete the square: x — y =2 — A™1j

I(A,5) = /d”x e_%(x7Ax)+(j’x) = e%(j’Ailj) (1.65)

I(A,j) = / Ay e zAN+30AT) = 03647 / dye 24 (1.66)
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3 3

Imy

Imy

Figure 1.1: Integration paths in (1.67)

and use (1.64).
Also for imaginary exponents (see figure 1.1)
I'(a) = I(—ia,0) = / dzel®”® = Lim [ dzeila+ios’

e—0+ oo

—00

y:e;w/4w hm ei7'r/4/dy e*(a+ie)y2 _ hm eiﬂ./4/ dy e*(aJriE)yz
C ’

e—0+ e—0+
= lim e™/4 / dye(@+9v® — Jim o7/t [T (1.67)
=0+ - e—0+ (a + i€)

1.5.2  Functional Integrals

| Lecture 03: Tue, 19.04.2016

[(A, ]) det AO 1(] Ailj)
— 2\ 1
1(A,0)  VdetA © (1.68)

which can (formally) be extended to the infinite dimensional case

d —5 (2, Az)+(j,z) det A o
Zp(j) = L AD T =[Sttt (1.69)
[du(x) ez (@A) det A

with du(z) a suitable measure and (-,-) a suitable inner product and A a
linear operator. Initially, A is selfadoint and positive, but the formulae can
again be extended by analytic continuation:

In particular
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II<A,j) = [(—IA, 1]) = /dnx e%(x’Ax)Jri(j’I) — /d”x e%(ﬂv,(AJrie)x)Jri(j,m)

_ / Qb UG (AT )G ario ) _ DM L i)
det(A + ie)
(1.70)
i.e.
(]) _ fd/_j,({]j) e%(%,Aw)H(J’@) _ det(Ao + ie) e—%(j,(A—i—ie)*lj) (1'71)
fdlu(gj) e%(vaOx) det(A + ie)
Free Fields
Example:
A=-0O-m? (1.72a)
(F9) = [d'a F(@)gle) (1.72b)
(4417 N) = - [ayGrle — 1)), O+ mGr() = 3'a)
(1.72¢)
Then
iSs i fd*z o(x)j(z .
2(j) = [DpSOTIT2 @D sty w6 a-n)sw) (1.73)

fD()p elS(e)

1.8.83  Formal Derivation in the Schrodinger Picture

Using quantum mechanics as an example with obvious generalization to QFT.

Hamultonian Path Integral

(g + dgle | q) = /dp (g + 6q|p) (ple *|q)

| dp .
= / dp {(q+ dqlp) (plq) e P = / 2—p eldape—itap)dt (1 74)
m

where

(p|H|q) = H(q,p) (pla) (1.75)
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for normal ordered H, i.e. all p to the left of all q. Therefore
oy —iHt dp i(pg—H(q,p))t
(q + gotle lq) = 5 © Pa—H{EP))Ot (1.76)
s
Finite intervals

<QN|TefifdtH|QO> =
= t it
/ dgy 1. .. dgr (gu|Te v g ) gy ]+ |qr) (o] Te o 904 gg)

_ /qu_lde_l o dg1dp; eifttfvqut (pi—H) ,eiffoldt (pg—H) (1'77)
or 2T

(g Te /4 H |gy) = /\//Dqu ¢! Jat (pi~H(ap) (1.78)

Lagrangian Path Integral

Quadratic Hamiltonians (non-trivial in other cases)

(q + ot]e i G +V@)at gy / P i(pi- Lr2-vi@))st

2
_oin/a [ T i(2¢2-V(g))ot 1.79
¢ V 270t | (1.79)

(q+ qotle ™ |q) = N'e¥(0D (1.80)

1.e.

and
<q2|TefifdtH‘q1> _ N// /'Dq eiS(q,dr) (1.81)

1.8.4 Applications

Simple Lagrangian:

L(g,x) = Ly(9) + Ly (x) + L1(9, x) (1.82)

with
1 2
Ly(¢) = 50u00"¢ — %cﬁz (1.83a)
2

1 m
LX) = 50:x"x = 5X° (1.83D)
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L, x) = —gcfx (1.83c)
Feynman rules:
¢ Y ¢ = m (1.84a)
X---}---ng—pz_T;ilee (1.84b)
X --- = —ig (1.84c)
¢

Lagrangian path integral for the generating functional:

(i i) = f,DSO,DX eiS(<p,x)+ifd4x (p(2)gp (@) +x(2)ix (7))
(](b, jX) N f,DQDDX elS(e.x)

(1.85)

Hubbard-Stratonovich Transformation

If no insertions of x are required (i.e. no external ys), we can set j, = 0:

' [Dy i () + [dtz o(x)jy(2) [Dx eiSx (0 +iS1(¢,x)
Z(js:0) = [DyeiSel®) [Dy eiSx(I+i81(ex)
[Dy iSe () +l1(p)+i fd*a p(x)js(x)
f’Dgp el (@) +il1(p)

(1.86)

with
fDX eiSX (x)+iSr(e,x)

ell'1(¢) '
IDX elSx(x)

2

=7 (jx = —gsf)z) = exp (i% /d4xd4y p?(2)Gr(z — y)w2(y)> (1.87)

1.e.

2
Mg

1 g*
Sup0Tale) = [t (30,000 — B2 )+ [y )Grta—))
(1.88)
Nonlocal, but perfectly well defined effective interaction:
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¢(p2) d(pa) 1
(p1 + p2)? I m2 + ie
-l +(p1 +p3)? —m2 +ie -

1

o(p1) b(ps3) " (p1+pa)? —m2 +ie
¢(p2) d(ps) o(p2) &(ps) &(p2) d(ps)
\/
) + /i\ + ! (1.89)

d(p1) ¢(p3) ¢(p1) o(ps) ¢(p1) ¢(p3)

Coleman- Weinberg Potential

If no insertions of ¢ are required (i.e. no external ¢), we can set j, = 0:

1Sy 00+ [dz x(2)ix(x) [Py elSs(©)HiSI(e:x)
_ [Dxe [Dype

Z(0,7y) = fDX eiSx(x) fDSO eiSs (@) +iS1(¢x)
fDX eiSx () +HI2(x)+ [d*z x(2)jx (z)
_ I (1.90)
IDX elSx () +il'2(x)
with

eiFQ (x)

B ngp 0156 (9)+iS1(,x) B det (D + mi — ie)
[ Dpesee)\det (O+ m2 4 gy — ie)

1 1 X
exp( 2trln< +gD+mi—ie>> (1.91)
det(l—l—g x )

Derifie

using
dete? = "4 (1.92)

1.e.

Sy(x) + Ta( ):/d4x 16 o —m—iXZ —i—itrln 1+g¢
X 2\X o OnXTTX T 2 O+ m — e

(1.93)
Using

- (_1)n+1 n 1 2 1 3
In(l+z) = g et =g —l—ga: —... (1.94)
n

n=1
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we can write

F( ) ,gt 1 ,th 1 1
=iZtr | y—— | —iZtr
2\X 2 XD#—mi—ie 4 XD—i—mi—iexDiji—ie

3 1 | |
—l—ig—tr< >+ (1.95)

6 XD+mi—i6XD+mi—ieXD+mé—1e

The trace of integral kernels

1 4
(mf) (x) = /d yGr(z—y)f(y) (1.96)
1
<$ <D—|—T§)—1e> y> = Gr(z —y) (1.97)
therefore
tr(xGr) = /d4a: (x|xGFlx) = /d4x X(x)Gp(x —x) (1.98a)

tr(xGrxCr)) = / dtzdly (z|XGrly) (y|xGCrlz)
— [atadty \(@)Grle ~ DUW)Gr(y —2) (198D)

etc.
After Fourier transform, we find the following effective vertices:

g 1
_—— =24 e 1.99
7 b (v ) om0

2
g 1 1
- »- x=2t 1.99b
X =3 r<XD+mi—ieXD+m§,—ie> (1.99D)
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X
. g, 1 1 1
- = ——1r
2 P\ TOrm—i O m2 =i O+ mZ — e
X (1.99c¢)
X X
\ 7/
4
g 1 1
94 1.99d
D 2 r(xm+m§,—iexm+m§,—ie ) (1.99)
/ \
X X
= (1.99)

1.3.5 Fermions

| Lecture 04: Thu, 21.04. 2016 |

So far, we’ve only dealt with bosons and the Green’s functions will always
have bosonic symmetry, never fermionic antisymmetry.
Grassmann Numbers

Introduce a set of anticommuting numbers

and in particular

07 =0. (1.100b)

The polynomials in #; form the Grassmann algebra.

Grassmann Calculus

Naturally (a,b € C)

0
g (@ + b;) = b3 (1.101)
and the derivatives must anticommute themselves:
i (a+b0;)| = bo; (1.102a)
00, “ J N Y '
o 0
_— — =0 1.102b
{8@/ 89]} N ( )
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Less familiar

i.e. integration and differentiation are the same! Might be surprising, but
its the only linear functional that makes sense and preserves the Grassmann
parity (even or odd number of 6; in a product).

Gaussian Grassmann Integration

All power series terminate, e. g.:
/ dgdg ™0 = / dfdo (1+0M0) = M (1.104)
more generally

/ 00,00, ... A6, G, €S Ot
_ 1 B "
— / d0,df; ... d0dfy — (Z 0, Mij9j>
j

= /deldﬁ_l ...de,d6, % (H 0,0, M;; + permutations>
Z =det M (1.105)
e.g. for two pairs
(0MO) = 6101 My + 0105M15 + 0201 Moy + 0205 Moo (1.106)
and

1

9 (§M9)2 = 0101020, M1 Moy + 0,02050, My Mo,

= 0_1910_262M11M22 - 0_1610_292M12M21
= 51916_262 (M11M22 - M12M21) - 9_1919_292 det M (1107)

Finally
/ 46,d0, . . . d0,d8,, eXis IiMigbi+ i Xibit . O
— det M - e~ Zu %M (1,108)

after completing the square as before.
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Path Integral

Z(n,7) = / DD S0+ 44 (@) () () (1.109)

Example

Simple Lagrangian:

L, x) = Ly(@) + Ly(X) + L1(¥. X) (1.110)
with
Ly() =¥ (i@ —my) ¢ (1.111a)
Ly(x) = %@xa“x - mé‘xz (1.111b)
Li(¥,x) = —gdyx (1.111c)

Feynman rules:

= 1.112a
4 _;_ v P —my + i€ ( )
i

------- = 1.112b
X P X p? —m?2 +ie ( )

w X
X --- = —ig (1.112c)

(G
Lagrangian path integral for the generating functional:
o DY DYDy eS@)H [dlz (G@m(@)+a(@)y (@) +x(2)i(x)

Z(n,n,3) = / (1.113)

[ DY DyYDy els@x)
If no insertions of ¢ are required (i. e. no external ¥), we can set n = 7 = 0:
. fDX eiSX (x)+i fd4z x(2)j(z) waD’QE eiSl/) () +iS1(h,x)
Z(0,0,7) = [Dx 0 [DYDy) eSu (@ +S100)

fDX iSx 0+ () + [d*e x(2)j(z)
- f’DX elSx () +il's(x)

(1.114)
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with

Jrs _ JPYDY eSO det (i) — my — gx +i€)

[DyDye®s®)  — det (i — my + ie)
. B X _ _ X
= det (1 g—ia e ie) exp (+ trin <1 g—i@ ey ie)) (1.115)
1.e.
s L) = [die (Lo o — ™) —ieem (1 X
x(X)+ 3(X)—/ T 5;0( X_TX —1irin —gm
(1.116)

where the trace that describes the one-loop diagrams has received a factor
of (=2): (=1) from Fermi statistics and 2 for the distinction of particles and
antiparticles.

1.4 LSZ Reduction Formulae

1.4.1 Kallén-Lehmann Representation

The momentum operator P,
(w) = V" g(y)e )" (1.117)

with a translation invariant ground state

B, 10y =0 (1.118)
possesses a resolution of unity
d*p
1= Z/(wa |p, @) (p, @ (1.119a)
By |p,a) =pu|p, @) (1.119b)

where we can restrict the integral by causality and the energy condition to
po>0ADp*>0. (1.120)

Then we find
(0lp(2)¢(y)]0) = (0l G(0)e™ =" ¥ (0)e %" |0)

d* _— T o o
=3 [ 00 (00 . (.l (0)e 0

«
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d4p —ipyz# ipuyt
— Ea: / 2 (0]¢(0)e p, ) (p, ale®¥" (0)]0)
d4p —ipu(x—y)* 2
— Ea /We ( ) |<O|¢(O)|p,0&>|

e d'p 2 2\ —ipu(z—y)* 1 2
_ / dm /W@W)@(m)a@ — m2)einul >§%|<0|¢<0>|p,a>|

— / dm? p(m?) / dp,,e @ - (1.121)
0

where in the last line we have introduced the spectral density

o) = 3 5 10l6(0)lp. 0l > 0 (1122)

«

and used the fact that, by Lorentz covariance, it can only depend on the
invariant mass p? of the states |p, ). Similarly

O116(): 60} = | an? o) [, (ete” ) (1.123)
0
and we observe that

(Ol (), 6 ()]]0) = / dp,, (7@ 0" _ Pule=D") A (z — y;m)
(1.124)
for a free field (ﬁ@ of mass m

(O +m*)o9(z) =0. (1.125)

Therefore we arrive at the Kéllén-Lehmann representation of the inter-
acting commutator function

Olfote). o0) = [ am iz —yim). (1120
The same reasoning can be repeated for the interacting propagator
O TooI0) = [ dm? o) (07612 ()61 ()]0
= — /Oodm2 p(m*)iGp(x —y;m). (1.127)
0

with the same spectral density p from (1.122).
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The Spectral Density p

Requiring canonical commutation relations for the interacting field

0 3o
oo o) =67 (1128)
Yo To=yo
and from 5
Y Alr— — B(F—7 1.129
o (z —y) s (7 —9) (1.129)
we derive -
/dm2p(m2)=1. (1.130)
0

Assuming only massive particles, with no interactions, we expect the
following spectrum

e isolated multiplets of one-particle states at m?, labeled by the remaining
quantum numbers «,

e continua of two-particle states starting at (m; +m;)?,
e continua of three-particle states starting at (m; + mj + mk)Q, etc.

In the case of interactions, there will be additional bound states and the
thresholds will be lowered. In the case of massless particles, there will be no
mass gaps.

We can therefore write (for one field of mass m? > 0, for simplicity)

p(s) = Z5(s —m?) + peont.(s) (1.131)
with the consequence
Z +/ ds peont.($) = (1.132)
4m2-4§
or -
0<z7=1 —/ ds peont.(s) < 1. (1.133)
4m2—§
Thus

0T oo = [ e [ L [ g el

(2m)4 p? —m? +ie m2_s DP—s+ie
(1.134)
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Figure 1.2: Integration paths in (1.135) for (1.156)

| Lecture 05: Tue, 26.04.2016|

Cauchy’s integral formula

d¢ f(9)
= [ =—= 1.135
1) = [ gt (1.135)
for C from figure 1.2 (or later from figure 1.3). Consider a simplified example
1
f(z) = zriza, (with a > 0) (1.136)

for the principal branch of the logarithm

In(z £ie) = In|z| £ inO(—2) (1.137)

from .
z=re?. (1.138)
The function f is meromorphic: it has a pole at a and a branch cut from 0

to —oo, as shown in figure 1.2.
We can directly verify (1.135) for this example

_ [ d¢ In¢ _ Ina 0 dz In(z + i) — In(z — i)
f(z)_/CQWi(C—a)(C—z) a—z+/_oo27ri (x —a)(z — 2)

~ Ina 0 dz  disclnz]  Ina 0 dz

Cz—a /OOQWi(a:—a)(x—z)_z—a+/oo(a:—a)(x—z)
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Figure 1.3: Integration paths in (1.1/1)

Ina 1 /0 ( 1 1 )
+ dz —
zZ—Q Z—Q — 0 xr — z xr—aQa

Ina 1 0
= In(z — z) — In(z —
—— +t——[In(z —2) —In(z - a)]_
1 1 —21° 1 1 1
- 10 {mx Z} L n’ = "% (1.139)
zZ—a zZ—Q r —a o zZ—a zZ—Q a zZ—Q

In more realistic examples (e.g. in higher orders of QED perturbation
theory) the function
FirO(s — 4m?)

4m? 4m?
ln< m' —1>:ln(ﬂ—1$ie>:ln
s &+ ie s
(1.140)

appears. This causes a branch cut from 4m? to 400, as in figure 1.3 and we

find * ¢ disc/(s)
S 1ISCJ (S
o) =)+ | o (0

We wll see below that the discontinuity (i.e. the spectral density) is the
imaginary part of a forward scattering amlitude and can be derived from a
tocal production cross section using unitarity via the optical theorem.

pAm?
S

Asymptotic Limit

Asymptotically, all but the lowest mass states will be damped by oscillations
(Riemann-Lebesque-Lemma)

o(x) = VZpw(z) for o — —o0 (1.142)
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and we know that
0<Z<«1 (1.143)

unless there are no interactions.

1.4.2 LSZ
Asymptotically free fields

Z in f -
$(z) = VZou(a) for ag = —oc (1.144)
VZpous () for x5 — +00
can be expressed in terms of creation and annihilation operators
Pinfout() = / 0 (/o (K)e™ + af 0 (K)™) (1.145)
and vice versa’
o S
@injout (k) = i/d?)f (em A ¢in/out($)> (1.147a)
o
a;rn/out(k) = —i /dgf (e_lkx o ¢in/out(~r)> (1-147b)

independent of xy = t! Consider multi particle scattering matrix elements

(q1,G2, - - qn;0ut|k, p1,pa, ..., Py in)
= g1, .., qu;out|al, (k)|p1, . . ., pm; in)

Y A .
=1 /d3l' <e ha a() <Q1, <y Qns OUt|¢in(x)|p17 <oy Pm; 1n>>

1 oo
= lim d3z <e—1’“ao <q1,...,qn;out|¢(as)|p1,...,pm;in>> .
N/ ®o——0o0
(1.148)

Analogously

<QI7 -5 Qns Out|a(];ut(k:)|p17 -y Pm; 111>

: =2 -1 xH :
= —1/d3x (e N <q1,---,qn;out!%ut(x)lpl,---,pm;ln>>

2Notation:

@) 0,9(x) = F(2) (Dug()) — (01 (2)) () (1.146)
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2 i :1:H :
: fmgnjoo @ (700 (a1, - o out|o(@)[pr, . psin) ) (1.149)

and using
: 3 : 3~ 4, 0
lim [ d°Zf(z) — lim [d°Zf(z) = /d r— f(z) (1.150)
To—+00 To—r—00 8$0

we can write

<QI7QQ7 ] 7qn;0ut|k7pl7p27 c oy Pms 1n>
—{q1,- - ,qn,out|a0ut( )p1,- - Dm;in)

i o /.
=L [l (e (g, ;s out o pmiin) L) (1151
77 [ g (70 (g outlo@lp . pmsin) ) (L151)
Using
Ope k= e M = <k2 + I?) e = (A—k*) e (1.152)

and spatial partial integration for wave packets, we can derive

/ dip aio <e*i’fff‘a_§ (Asont|(x)|B;im) )

— /d4x (e7* 05 (A; out|g(x)|B;in) — dge ** (A4; out|@(x)|B; in))

d*z (795 (A; out|¢(x)|B;in) — e ** (A — m?) (A; out|p(x)|B; in))

/d4a: (e7*03 (A; out|g(2)|B;in) — (A — m?) e ™" (A; out|¢(z)| B; in))

= /d‘lxe_ik373 (O+ m?) (4; out|¢(z)|B;in) . (1.153)
The term

<q17 e ’QTLvout|aout( )‘plv s 7pmaln>

= 2(27)32]{:063(]; - (TZ) <q17 SR 7E]\i7 <+ Qn; Out|p17 s Pm; 1n> (1154)

i=1

is a disconnected contribution that vanishes unless one particle doesn’t par-
ticipate in the interactions at all. It can be ignored for 2 — n scattering.
Therefore we can extract the connected part of the matrix element from the
expectation value:
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(@1,G2, - - -, Gn;0ut|k, p1,pay . .., Pm; in) = disconnected +
i - .
ﬁ/d%e_m (O +m?) (@, gu; out|d(2)|p1, . .., Pz in) . (1.155)

Note that

e [0+ m? cancels the pole of the external propagator so that we can go
on shell with the Green’s functions, vice versa

e [0+ m? will vanish on shell, unless there is a pole that it can cancel.

This way, we project on the asymptotic one-particle states.
Repeating this procedure, we obtain the Lehmann-Symanzik-Zimmermann
reduction formula

(q1,q2, - - Qn; out|p1 D2y s P in) = disconnected +
n+m m
( ) / [ H d'ye (e am) TT (@, +m?)
i=1
T1(©,, +m?) (00l To(x) .. 6(za)(wn) . 6()|0:in) . (1156)
j=1

where the time ordered product guarantees that the asymptotic fields ¢;, /Out(x)
act on the external states during the derivation.

1.5 Generating Functionals Revisited

1.5.1 Connected Green’s Functions

Consider the generating functional of all connected Green’s functions Z.(j).
Then all Green’s functions can be obtained by exponentiation:

Z(j) = eZV) (1.157)

In more detail

Z% (1.158)

k=0
and

= iG(”)(j) (1.159a)
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e}

Z.(j) = G () (1.159b)

with
G (j) = %/dxl coda, Gy, zn)i(z1) - () (1.160a)
G () = ;/dxl oday, Gy, . x) () g () (1.160b)

respectively (NB: GI(j) = 0, i.e. there’s no connected vacuum bubble).
Order by order

Z() =1+GY +GP + GO + ..

1
=14 (G 4GP 4GP 4. )+ 5 (G0 4GP+ 6P+ )

1 4
+§(GQMLGS)+G§3)+...)‘5+...

=1+ GV +GP +GY + % (G) +GVE? + % ((GS))S) +..

(1.161)

and therefore
G =g (1.162a)
G® =a? + % N (1.162D)
G® = G® + GG + % (GY? (1.162c)

i.e.

—@ - —0 (1.163a)
—— = —O0O0— + 00— (1.163b)

40< :4C< +—oc< +—og (1.163c)
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All orders
3G (j) = Z(j) = exp (Z G™(; > H oG ) (1.164)
n=0 n=1

and we can equate the coefficients of j(z1)...j(z,,) on both sides

1) (n)
G™Nxy, ... x,) =li . G () | 1.165
(xlv y L ) ]1—r>%15j($1 15] He ( )

Using the Leibniz rule and

(),
: 5 ReO Meng)(j), (1.166)
107 (x) i0j(x)
we see that each functional derivative is applied to each factor and we get
the sum of all ways to distribute the external legs among the G

1.1
]—)0 15]($1 H 15](5[]1) ¢ (j) ( 67&)

) = G(n) ) (1) (; ) (1)
}13(1] 15] (1) 107 (x2) He I ¢ (j)’éj(xg)Gc ()

)
+ — —
107 (z1) 16 (2)
(5 G(n) 5 . .
}li% 15](:101)153 15] (x3) He B 15j(l‘1) ¢ (j)i(;j(@) ‘ (j)iéj(xi%)

—
(=)
<.
—~
8
i
S—
o
—

GP(5) (1.167b)

1.5.2  Amputated Green’s Functions
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| Lecture 06: Thu, 28.04. 2016

Consider a general n-point function G (21, 2o, ..., x,)
x
3 .
G(n) ([El; T, ... ,ZL’n) = <0| T¢($1)¢(l’2) c. ¢<xn)|0> = ... C? Ty
Tno (1.168)

In a diagrammatical expansion, all the outer lines are connected to the rest
of the diagrams by free propagators, which amount to simple i/(p* —m? + ie)
factors.

These factors are not just trivial, but pose serious problems, when taking
the external particles on-shell, i.e. in the limit p* — m?2. In fact, we have
seen, that they must be removed (a. k. a. truncated, amputated) when physical
scattering amplitudes are calculated from the Green’s functions.

However, in the diagram

(1.169)

this does not suffice, because there is an internal propagator that blows up
for on-shell external lines. Therefore, we should amputate the full two-point
function

Gz —y) = (0] T ¢(2)9(y)|0) = —O— (1.170)

for each external line, in order to define the amputated (a.k.a. truncated)
Green’s functions:

GO (@1, T, ) = / TG (e )G, (v - )
=1
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1.5.3 1PI Green’s Functions and Effective Action

After amputating Do Q2

(1.172)

p1 q
we find a diagram that is a trivial, i.e. singly connected, composite of two

interesting pieces that are multiply connected

i
. 1.1

Can we derive an expression for the generating functional of these interesting
pieces?
Legendre transformation

P(g) =i / A p(a)j(x) - Z,(j) = i / A p(0)j(e) (@) — Z.i(p)) (1.174)

with j(¢) from solving

p(x) = (15523(%) (1.175)
(NB: j # 0!). The derivative of (1.174) yields
oT(p) 4 5](90)(31) 1 05(9) () 6Z:(5)
i6p(x) =J(p)) +/d yely) S¢p(x) /d Sp(x) 107(y) li=ite)
(o) (x 2 0j(0)(y) (z)
— i)+ [aty BAW o) - 2| o). (Lo
And with the shorthand notation
f*g:/d4xf(x)g(x) (1.177)

we can write symmetrically

ij * o =T(p) + Z:(4) (1.178a)
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p(x) = 5Zj ((i)) (1.178D)
jla) = (;p((i)) (1.178c¢)

NB: (1.178a) is to be understood as one of

(©) + Z(j(¢)) (1.179a)
(v(7) + Ze(5) (1.179D)

'11

ij(p) * o =
ij*(j) =

'12

Dependence on an external parameter «: from (1.178a)

de . dy
15 * j~—|— 1p * @ ) )
dlr  dz. or d or 0Z, d 5Zc '
do do (‘9@ @=const. do ) 80./ j=const. da 5]
ij i
(1.180)
therefore B
or 0Z,
— = 1.181
80[ @=const. 804 j=const. ( 8 )
Adding a disconnected® insertion S — S + S; with
5i(0) = ¢ [ateola) [dyo) (1184)
and the corresponding Feynman rule
— o o— (1.185)
2€
gives the e-expanded generating functional
Z(j,e) =e is 0 Z(j,0)
= X _—
Js € p I 15] Js
3NB:
51(6) = 5 [t e (1.182)

corresponds to

———— (1.183)
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(1—16/014 /d4 S o )) 2(5,0)

Z(5,0 (1—1e/d4 /d4 ]1 )(5]?))+O(62)) (1.186)

Application of the chain rule

L 8°2()  _0Z:5)0Z.(G) | 0°Z(j)
Z(3) 0j(x)dj(y) — dj(x) 6j(y) —~ 0j(x)di(y)

we find with In(a(l + b)) = Ina + In(1 +b) = Ina + b + O(b?) the explicit
e-dependence in first order

(1.187)

Z.(j,e) =InZ(j,¢) =In Z(5,0 1€/d4 /d4 6(5)( ’8) + O(€%)
4 4 5Zc(ja0 ( )
le/d /d ( (r) 0j(y) +5]( )0 (y) /+O(€ )
7,
T oe
(1.188)
Using .
or 0Z.
e (1.189)
we find
Flp.e) - ﬂ%m=f§+o<>

Ja o (V2 d7n+§$%&)+m&
:_w/ l/ y (9(2)¢(y) + Gel,y.5)) + O()
= —iSr(p 1e/d4 /d4yG z,y,5) +O() (1.190)

and infer that the O(¢) contribution, which is obtained from the diagrams
in f‘(% 0) by cutting a single line in all possible ways, remains connected,
since it is given as a functional derivative of Z.(j,0). Note that S;(¢) con-
tributes a single disconnected diagram (1.185), which is not obtained from
cutting a line in T'(g, 0).
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Therefore, il is the generating functional for one particle irreducible (1PT)
Green’s Functions

() =il(e) =Z%/d‘*wl...d4a:nF(a:1,...,xn)go(x1)---go(g:n) (1.191)

and I = i’ can be interpreted as an effective action, because all Feynman
diagrams are obtained by calculating tree diagrams with the vertices derived
from I'.

1.5.4 Free fields

Indeed, for free fields, we can explicitely perform the Legendre transform and
check that all signs and factors of i are correct. Starting from

2.7) = 3 [atad'y ()Gl ~ )il (1.192)

we find
o) = [a'yGrte—)ito) (1.193)
h i(@) = (O+ m?) () (1.194)

and therefore

I'(p) =
i/d‘*:g p(z) (O +m?) go(:c)—% /d4:rd4y Grlz—y) (O+m?) o(x) (O +m?) o(y)

- i/d4x e(z) (O+m?) p(z) — %/d‘lgp e(z) (O+m?) ()

— %/d% e(z) (O4m?) p(x) (1.195)

1.e.
1

(o) = =5 [dioels) @+ m?) o) = Sule)  (1196)

the action of a free scalar field.
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1.5.5 Semiclassical Fxpansion
Method of Stationary Phase

Consider the asymptotic limit A — oo of the family of integrals
I(\) = / dz f(z)e@ (1.197)

with f,¢ : R — R and f much more slowly varying than A¢ (which will
eventually be the case for A — 00). Assume that the phase function ¢ is
stationary only at a single point xg

¢ (o) = 0 (1.198)

and that
¢"(z0) # 0. (1.199)

Now Taylor-expand around this point
1
() = d(xo) + §¢"(5L’0)(1‘ —x0)?. (1.200)
Then, with f(x) =~ f(zo)

I(A) = f(zg)e?0) / dr €255 rro?

2
| A¢" (o)

and one can show by more careful considerations® (e.g. arguments leading
to formula (IV.4.8.1) in [3, 1]) that the error is O(1/\).

- f(:po)ei)‘¢(x°) o58n(A¢” (zo))im /4 (1.201)

FExpansion in Powers of h

So far, we have used our standard units with A = 1. However, it is easy to
see that the propagators come with one power of i

(0] T ¢(x)9(y)|0) = O(h), (1.202)
because of their linear relation to the commutator function
(Ol[e(z), ¢(y)]|0) = ihD(x —y) . (1.203)

4Break the integration region into a piece containing zy and the rest. The latter
contribution vanishes asymptotically by the Riemann-Lebesgue Lemma and the former
contributions can by computed by multiple partial integrations.
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In addition, the vertices in the Feynman rules come with a factor 1/h to
make the exponent

_% /dt H(t) (1.204)

in the Gell-Man-Low formula dimensionless. Since the number of loops
(i.e. momentum integrations) in a diagram is related to the number of ver-
tices (i.e. momentum constraints) and the number of internal propagators
(i.e. momenta) by

L=1—(V-1) (1.205)

we see that any L-loop Feynman diagram is
i L—1
@ (h_V) =Oh"). (1.206)

The loop expansion is therefore an expansion in A.
In the path integral

Z(j) = /7790 e (S(Prtes), (1.207)

the limit &~ — 0 leads to a stationary phase approximation with the domi-
nant contribution coming from the vicinity of solutions ¢q(j) of the classical
equation of motion in the presence of the current j

08

e i =0. 1.208
5o +j ( )

p=w0(7)

The terms quadratic in the fluctuations around ¢o(j) will yield the leading
corrections of O(h) via a Gaussian path integral.

1.5.6 1-Loop Effective Action
We start by rewriting the path integral for the generating functional

Z(j) = / Dy (@) Hier (1.209)

with a shift of the integration variable

¢ = ¢+ o(j) (1.210a)
Dy — Dy (1.210b)
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by the solution g (j) of the classical equation of motion (1.208). Note that
such a constant shift leaves the integration measure unchanged. Next we
expand the action to second order in the integration variable ¢

59
5ol e(x)

528
op(x)dp(y)

, 1
= S(p0) = J ¢+ 505 Kepp+ Sa () (1.211)

S+ o) = S(¢o) +/d4x

©(Y) + Spo(9)

Y=o

1
+ [dtadty Jot)

where remainder term S,, () of O(?) is defined by (1.211) and the term
J * ¢ is only correct for ¢y = ¢o(j). Note that the inverse propagator

N _ b (0L(p,09)
Kol =0) = 5 o) |, ~ @) ( op W) *)
= (%&a@(w”m) . Sr—y) (1.212)
is local for
S(e) = [t £e(@). 04() (1.213)
and we write
(Ktpogb) (ZL’) = K¢0($)¢(ZL‘) . (1‘214)

(1.211) can also be written as

) 1
S(p+ o) + (9 + o) * j = S(0) + 0% J + 50 Koo o+ S () - (1.215)

Therefore, we can rewrite the generating functional as

2(j) = / Dy eiSeeli) Higsitivoi)s _ 7 (;) / Dip B9 Kieo(0)# 15000 (#)

(1.216)
where the pieces independent of ¢

InZo(5) = Zo.e(7) = 15(p0(j)) +ivo(s) * j (1.217)

have been pulled out of the path integral.
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Lecture 07: Tue, 03.05.2016

The terms in the path integral proper can now be rearranged

/Dgp ei%w*K%wiSwo(w) _

i kK, o+iSp, (@)
/Dgpeiéip*K“’O(prff;;%) ':o;i (pwo ¥ _ e_%tran%—i-ch(j) (1218)
(,pel ¥

with the generating functionals

[Dy i3 P ()P HiS 0 (5) ()

Z5(j) = e#2<V) 1.219
2(7) [ D el2#Keon® ( )
and the Gaussian path integral
ilpxK, 1 —itrln K
Dypea¥feo? = ———— = ¢ 2" "0, (1.220)
V/det K

The generating functional for connected Green’s Functions can now be ex-
pressed as

Z(j) =W Z(j) = Zo,(§) + Z1,(§) + Z2.c(j) (1.221)
with )
Z1e(3) = 5 trin Ky - (1.222)

The defining equations (1.222) and (1.219) show that both Z; .(j) and Zs .(j)
depend on j only through their dependence on g (j):

A

Vn € {1,2} 0 Zno(§) = Znoloo(j)). (1.223)
We can therefore write R
Z(j) = Ze(po(3)) (1.224)
with
Z:(po) = 1S(p0) + i * j(0) + Z1,c(0) + Za,c(0) (1.225)

So far and in particular in (1.219) and (1.221), we have used our standard
units with A = 1. Reintroducing factors of h, the exponent in the numerator
reads

1 1 1
3[4 50Kap+ 5a () (1.226)
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and we are lead to rescale the integration variable (not the classical field ¢o(j))

0 = Vi (1.227)
in order to absorb all powers of /& in the quadratic piece:
1 .
i / d'0 50K pp + 750 (VR) (1.228)

Since I is, by construction, O(?), we find
i
=500 (Vi) = O (Jﬁ) . (1.229)

Because the exponent in the denominator is independent of A and the powers
of h in the measures cancel, we conclude

Zyo(j) = O (\/7—i> (1.230)
and since there are only integer powers in a perturbative loop expansion
Zo.(j) = O(h). (1.231)
This motivates the split in 1.218, because
Zne(j) = O ). (1.232)

In order to obtain the effective action, we must compute the Legendre trans-
form of Z.:

[(p) = —1Z:(j(9)) — i(@) * ¢ (1.233)
with j(¢) determined from solving
607,
107 1j-jp)

@ = (1.234)

for j(@). For the classical approximation, we observe using (1.208) that

indeed 57 55 5 5
0,c 140 Yo . . .
== = 1.235
5 oo e o 0T wo(d) = pold) (1.235)
and we can expand the argument ¢ of the effective action in the same way
we have shifted the integration variable ¢:

—p1 =0 —po(j) = O(h). (1.236)
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In the following we have to be careful about the functional dependencies,
even if readability forces us not to spell them out explicitely everytime. We
can now start to rewrite the effective action in a form that can be expanded
in powers of h

= S(po) + ¢o * j
_ e I e N N . S
(@) = —iZ.(j) —j* ¢ = —iZ0c(§) —1Z1,(J) —1Z2c(J) —J* ¢
= S(po) + @1 % j —iZ1c(j) —1Z2(5) (1.237)

where j is to be understood as j(@) from (1.234) and g as ¢o(j(@)) from (1.208)
and (1.234). The relation between j and ¢, from (1.208) can be assumed to
be one-to-one in perturbation theory. Therefore, we can also write

3(@) = (o) = i(po(i(#))) (1.238)

and find

(@) = S(go) + @1 % J(00) — 1 Z1,6(00) — i Za.e(p0)
= S(@+w1) + o1 * J(@+ 1) —121(P + 1) =122 + 1) . (1.239)
When expanding in powers of i, we must remember that the pieces Z, . of

the generating functional are dimensionless and must be multiplied by A to
obtain an action. Therefore, we will use

S =O(r") (1.240a)
¢1 = O(h) (1.240b)
hZ,. = O(h") (1.240¢)

in the expansion. Expanding S and j to first order in A, we find

05
F D) = ) B —
()= 5(@) +oux 5

+ 1% (@) — 1Z1 (o) + O(h?)
@

= 5(p) ~ iZ1c(00) + O(F) = S(5) + 2 trln Ky + O) (1.241)

where we have used that j is the inverse of ¢g(j) from (1.208) and satisfies
the functional equation

=Jj()- (1.242)

Note that
htrln K, = htrln K, + O(h?). (1.243)
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In summary, we have derived the following closed expression for the one-loop
approximation to the effective action, i.e. the generating functional for 1PI
Green’s Functions

2

=@

I'(p)=S(p)+ z;Ltrln <§27§ ) + O(h?). (1.244)

When evaluating the trace, one must take into account the normalization
factor in the functional integral, which can be written 1/Z(0). Therefore one

must subtract a term
ih 5%S
+—trln
=0

2 52
=0 0p?

1.5.7 Effective Action at Higher Orders

in the exponent, leading to

I'(p) = S(@) + i trln (525 +O(h?). (1.245)

2 5?2

=0

One can continue with the second order in the expansion

_ _ 05 1 528 o 0)
F(‘P>:S(90)+801*5— +§¢1*ﬂ 901+<P1*](90)+<P1*5— Y1
¢l ©? 5 ¢l
5 62 c ! _
—1Z1,6(¢) — i1 * 5;’ —1Za.(p) + O(hg)
_ N |
= 5(p) = 121,(p) — 1Z2.(p) + S PL* Koo
+ o *ﬁ o1 —ipr x —=| +O(h*). (1.246)
1 5()0 5 1 1 (5 ) . .

and show [5] that all terms of order /% and higher that don’t contain deriva-
tives can be computed from a finite set of vacuum Feynman diagrams for
each order.
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—

RENORMALIZATION

2.1 FEzxamples

Cf. (1.99)

irW(p)(2m)'*(p) = x(p) --O (2.1a)

B ig/ d*k i
21 ) (2m)4 k2 —m? e

r2(p) = x(p) -4 - x(-p) (2.1b)

_ (ig)* / d*k i i
-2 (2m)* k2 —m? +ie (k+p)?2 — m? +ie

J X(—Pl - P2)

ir®(pr,p2) = x(p1) "<<I (2.1c)

\

* x(p2)

_ (ig)g/ d*k i i i
(2m)* k2 —m? +ie (k+p1)?2 — m? +ie (k+ p1 + p2)? — m? + ie
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x(p2) | , X(ps3)

iT™ (py, pa, p3) = I:I (2.1d)

x(p1) ’ Y X(=p1 —p2 —p3)

, d*k i i
= (ig)* x
(2m)* k2 —m? +ie (k4 p1)? — m? + i€
i i
(k+p1+p2)* —m? +ie (k+p1+p2 + p3)? —m? + e

More general: QED

T®(p) = Au(p) ~~g I~ Au(-p) (2.22)

_62/ Ak [y (F+m) oy (E+ P+ m)]
(2m)* (k2 — m? +ie) ((k + p)? — m? + ie)

2.2 General Tensor Integrals (1-Loop)

. 1.e. we have to allow momenta in the numerator as well:

T,S?QQ,,,MM (D1, D25 - - s PN—15 M0, M, -, MN—1) =
/ d4q QuiQus - - - Qunm
(2m)* (¢ —mi +ie) (g + p1)? —mF +1ie) -+ ((¢ + py—1)* — mF_y + )

(2.3)
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graphically:
P3 — P2 D2 —p1

q+Ds

TO) — py — py (2.4)

PN-1 — PN-2 —PN-1

For later convenience, we generalize from 4 to D dimensions and extract a
prefactor

T}Si\il,)g.../.l,]\/[<p1?p27 <o s PN—15M0, M,y ..o, TN —1; D) =
1672 , -
TM4 DT,S?QQ,,,NM (p1,p2, -+ -, PN—15 M0, M, -, TAN_1) =
N
(2mp)*—P G Qo - - - Qs

aP .
im? / ¢ (g2 —m+ie) ((q+p1)? —mi+ie) - ((q + pn_1)? —mi_; +ic)
(2.5)

Notational conventions for one, two, three and four point integrals:
o TV = A (mq)
ppzepnr = Apgpg a0
® Lypopnr = Dpypg...puar\ P15 Mo, M1 ),
3
L4 T/SIZLQ...MA{ - OMlMQw#M (p17p2; mo, my, m2)7

(4) _ .
b T,uluz...uM - D}Llyg...,ﬂM (pla P2, P3; Mo, My, M3, m3)

and for the scalar integrals (M = 0)

o A(mg) = Ao(mo),

e B(p1;mo, m1) = Bo(p1;mo, m1),

o C(p1, p2; mo, m1,ma) = Co(p1, p2; Mo, M1, Ma),

o D(p1, p2, p3; Mo, M1, ma, m3) = Do(p1, p2, ps; mo, M1, ma, m3) .
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The only vectors and tensors that can appear are the momenta p; and the
metric g. Since the integrand is totally symmetric, the totally antisymmetric
e-tensor can not appear. Therefore we can expand the tensor integrals in
covariants

B*(p1; mo, m1) = pi B1(p1; mo, mq) (2.6a)
C“(p1;p2;m0,m17m2) = piLCI(plap%mO;mlamQ) +p§C’2(p1,p2;m0,m1,m2)
(2.6D)

(2.6¢)

and

Bw(pl; Mo, ml) = PTP’{BU(M; my, m1) + gWBoo(pl; mo, ml) (2-73)
C™ (p1, pa; mo, my, ma) = pipyCri(p1, p2; Mo, ma, Ma2)
+ (pi'ps + phpY) Cra(pr, p2; Mo, M, Ma)
+ 515 Caz(p1, p2; Mo, M, my)
+ g™ Coo(p1, p2; Mo, M1, mo) (2.7b)

(2.7¢)

2.2.1 Wick Rotation

The go-integration contour in the loop integrals can be deformed from the
dashed curves to the dotted curve

without crossing poles or cuts. With the subsequent substitution
(4°, @) — (iqg: dm) (2.8)
the Minkowski- “length” becomes a euclidean length

="V -F=—()-=—q¢. (2.9)
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2.2.2  D—Dimensional Integration

In the following, we will assume

D
n >max{1,§} (2.10a)
a>0 (2.10b)

and continue analytically, if necessary. Using the Wick rotation we can the
rewrite the integral

I = d
(@) /q—a—l—le / QO/ — —a+1e)
= d d
/ QO/ - _@+1€ / qEO/ qu T a—i—1€)

= (=1)" 1/(& (2.11)

q% +a —ie)"

| Lecture 08: Tue, 10.05.2016

and introducing D-dimensional polar coordinates

00 1 o0 D_
/dDQE = /dQD / |QE‘D71d‘QE’ = 5 /dQD / ((ﬁ;) : ldfﬁa (2-12)
0 0

with
21
dQp =
/ (%)

(2.13)

D o) -1
T2 xT 2
=(—1)" a — ie) ”/ dx
@ Ty
D
T2 D D
=(—1)™ (a—1i€)2 "B (—,n— —)
r(2) 2 2
1Euler’s Beta-function
B(.y) ['(z)I'(y)
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L (2.14)

From the properties of Euler’s I'-function

e I'(z) is analytical everywhere, except for simple poles at 0, —1, —2, ...

1/T'(z) is analytical everywhere

[(z+1)=2I'(2)

[(n+1) =n! for n € Ny

P1/2) =vr

Laurent expansion at the origin

I(e) = % N (2.15)

with vp = 0.5772. ..

we can derive the analytical continuation of I,,(a) in D and a and we find
that logarithmic UV divergencies appear as poles in € = 2 — % and quadratic
divergencies as poles in 2 — D.

2.2.83 Scalar Integrals

Ao
Using these formulae, we find
@rw)' 2 [, 1 @m)'?
Aolmo) = Cim? 4"q @ —mi+ie T in2 Ii(mq)

9 D—4 2\ €
B 5 [ Mg 2 2—-DY\ o [(ATp

with the conventional definition
D=4 — 2. (2.17)

For D — 4,i.e. ¢ — 0, we can expand

drp?\ Ay
( 7”;) =1+eln— 40O (2.18a)
my myg
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Fle—1)= = 1F(e) =—(1+e+0(&)) (% —ve + O(E))
- — (% —YE + 1) + O(e) (2.18b)

and therefore

1 2
Ao(mg; D) = mj - E + In(47) +In ,u_2 +1 ] +0(e)

- _ my
A
12
=m] (A +In — + 1) +O(e) (2.19)
my
By
Similarly
(2mp)* P / D 1
Bo(p1; = d
P ) = i [ G g e (P )
(2.20)
but before we can use (2.14) we need to combine denominators using Feynman
parameters
1 ! d
— = / £ 5 - (2.21)
g Jo (L=8&z+&y)

Completing the square

1
(> —md +1ie) (¢ + p1)? — m? + ie)

1 a¢
/0 (1 =€) (2 —md +ie) + £ (g + p1)? — m} +1ig))°
1 d¢
o (¢*+&2qpy + £} — m3 + md) — md +ie)’

-/ dg 2

(g +&py)? — (€291 — € — m + mg) + mp) +ie

:/1 ds — (222)
o ((¢)? —a+ie)
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we can substitute ¢’ for ¢ with unit Jacobian

gy = Z e oy 1
By (p1;mo, m1) 2 /0 dg /d 1 ((¢)? = a(¢) + ie)?
- )77 / a¢ Iy(a(€))
:(47T)EF(€)/O a (5 pl—E(pl—mL;FmonO_ig) (2.23)

and we can again expand for e — 0:

—m? +mi)+m3 —ie
2
0

1 2,2 (2
Bo(p1;mo,my) = A _/ d§1n§ p1 — &1
0

+ O(e) .
(2.24)

Observations:

e By(p1;mg, m1) depends on p; only through p? and we could write

Bo(pr; mo, m1) = Bo(p?;m0, M) (2.25)

e we have
Bo(p1;mo, m1) = Bo(p1;m1, my) (2.26)

because we could have shifted the loop momentum ¢ — ¢ — p;.

2.3 Tensor Reduction

Observation: since

1 1 1
H _ 2 2 2 2 2 2 2
pla,==lg+p) —mi]— < [ —mi] — = [pf —m] +m{] (2.27a)
—~ 2 L 2 L 2 y
T](év ) N ith denominator ch denominatog lower rank tensor .
N—-1 N-1 N
i i 0,
v _ 2 2 2
gM QM(]V - qg — mo + mo (227b)
T(N) Oth denominator lower rank tensor
M ~ Vv - Vv -
N-—1 N
Ty Ty

all contractions of tensor integrals can be expressed by tensor integrals of
strictly lower rank and/or strictly lower number of denominators. Likewise,
contracting the expansion in covariants (2.6) results in linear combinations
of the coefficient functions. Therefore, we obtain a hierarchy of systems
of linear equations that can be solved recursively (provided we can avoid

singularities).
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2.8.1 B,

Notational shorthand
)4—D

U, = E— [Pastai.. (2.28)

17T

and all +ie in the denominators implied.

q*
B*(p1;mg, my1) = p Bi(p1;mo, m :< >
(p1; Mo, m1) 1 Bi(p1; mo, ma) (qz—m%)((qupl)Q—m%) .
(2.29)

Since there is only one invariant By, a single contraction suffices. Contracting
both sides with p; ,

2 p1q
p1Bi(p1;mo, m =< >
lerimo ) =\ o g+ P =/,
1

_ _<((q+p1)2_m%) — (P —md) — (¥} —m%+m%)>
2 (@ —m3) (g +p1)? —m3) q

“s\aan), 2\
2\¢-mi/, 2\(g+m)?*—-mi/,

_p%—m%+m§< 1 >
2 (¢ —m3) (¢ +p1)? —mi)/,

1 1 p? —m2 +m?
= L ao(m) — 2 ag(mty - BT

p1;mo,my)  (2.30)
1.e.

1
Bi(p1; mo,m1) = 5= (Ao(mg) — Ao(m3) — (pi — mi + m§) Bo(p1; mo, my)) -

2p?
(2.31)

2.3.2 B,

Expand in available tensors with new scalar coefficient functions:

B* (py; mg, my) = pip{ Bi1(p1; mo, m1) + ¢" Boo(p1; mo, my)
q*q” >
- . (2.32)
<(q2 —mg) ((q+p1)2—mi)/,

B.. = B..(p1;mg,mq) (2.33)

In the following
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will be implied. We need two contractions for two invariants: first with g"”

> —mg) +mj

p%Bll + DBOO = < <q2 2)> = Ao(m1> + mgB() (234&)
q

(> —mg) (¢ +p1)* —mi

note that ¢*¢g,, = D) and
“w

p1,up%B11 + p1Boo =

% <@23—Vmg)>q - % <((q +p1‘1)v2 —m3) >q

i mi+mg < @ >
2 (¢ —mg) (¢ +p1)? —mi)/,

:0_1< ¢ =\ piomi+tmg,
( ’ ’

2 \(¢)? —mi 2
- %pl,on(ml) - wis T;L% . m%pl,uBl (2.34b)
where we have made use of symmetric integration
(9.f(@*),=0. (2.35)

Thus we obtain a linear equation for Byg and Bii:
Dopf) (B _ ( Aolm) 4B, (2.36)
1 p?) \ B L Ag(my) — Z%ﬁmogl ’ '

| Lecture 09: Thu, 12.05. 2016 |

with solution

Ao(my) + 2miBy + (p7 — mi + m3) By

Bon = 2.
0 2(D — 1) (2.372)
2(D — 1)pt
and divergent pieces
1
By = T (p% —3(mg + m%)) A + finite (2.38a)

1
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2.3.3 C,

C“(pl,m; mo, My, mz) = plfc'l(php% mo, My, m2)+p502(]?1,p2; mo, My, mz)

¢ )>q . (2:39)

B <(q2 —mg) (g4 p1)? —mi?) (¢ + p2)? — m3

A simple exercise yields

-1
Cy _ l P% P1p2 %
Coy 2 \pip2 3

(Bo(pg; mg, ma) — Bo(( 2)%ma, ma) — (pf —mi + m(Q))CO> (2.40)
p C(2

b1 —p
By (pi; mo, my) — Bo((p1 — p2)*;ma, ma) — (p5 — m3 +mg)Cy
The divergent part of By is independent of masses and momenta
By = A + finite, (2.41)

therefore the divergencies cancel in C' 5.

2.8.4  Gram Determinants

However, whenever the Gram determinant

I P2 oo Pipn
b2p1r Py ... DP2Pn
G<p17p27 s 7pn> = : . . . (242)
PnP1 DPnP2 ... ng

vanishes, the expressions for the invariants become ill defined. This is easily
understood geometrically, because it means that the momenta are not lin-
early independent. Fundamentally, this is no problem, because the values
on the singular submanifolds can be obtained by continuity. Unfortunately,
this complicates the numerical evaluation significantly and other, potentially
better behaved, methods are being studied.

2.3.5 FExample
Again, QED:

S(p) = = Aulp) ~g I~ Au(-p) (2.2)
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Py VM A ESORY LR
(2m)* (¢ —m? +1i€) (g + p)? —m? +ie) |

Traces

tr [y, (4 +m) v (4 +p+m))
= tr [y d] + tr [y p] + m® tr [y,
= (zq,u%/ - QQQW) trl + (quu + quu - qu,uzl) trl + m2gw/ trl

= (20uq0 + @upv + Putv — (€ + qp — m*) guu) tr 1

trl
= (20,0 + @upv + Puay) tr1 — ((¢* —m?) + (¢ +p)* — m*) — p*) G5~

(2.43)

hence (+ie implied, again):

S (p) = atrl 24,9y + 4uPv + Ppdy
" ™ 4 \(—-m?) ((¢g+p)?—m?)/,

1 << (g +p_>21— m2>>q " <ﬁ>

p2
' <<q2 “m?) (g + P - m2>>q

atrl
= — 1 @Bu(im.m) +p,B,(pim,m) + p, Bu(pim, m))
atrl
2L (Aulm) + Aofm) 5 B(prm,m)
atrl

T 4 (29, Boo(p; m, m) + 2p,p, Bi1(p; m, m) + 2p,p, Boo(p; m, m))

atrl p?
- ;TQW (Ao(m) - EBO(P; m, m)>

atrl

= T (pupv (2B11(p; m, m) + 2By (p; m, m))

+ G (QBoo(p; m,m) — Ag(m) + p;Bo(p; m, m))) (2.44)

Useful decomposition

DPubv Pubv
) = (00— 222} £0(6%) + 250, 7) (2.45)
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atrl 2
Yr(p®) = e (2300(]0; m,m) + %Bo(p;m,m) — Ao(m)) (2.46a)

atrl
20%) = 22 (2Bl ) + 2B () + B, )

+ p;Bo(p; m,m) — Ao(m)) (2.46b)

and ultimately

trl 2
2r(p?) = - (<p2 o+ 2m?) Bo(ps m,m) — £ — 2m By 0 m,m))
(2.47a)

Y(p?) =0 (2.47D)

(sse exercise) using Ag(m) = m?By(0;m, m) + m? etc..
This is not an accident, as will be shown in the next chapter.
Remark #1

What is tr 1?7

e in fourdimensional Dirac algebra, the smallest faithful representation
is also fourdimensional, thus tr 1’ ey =4

e in D-dimensional Dirac algebra, the smallest faithful representation is
2LP/2]_dimensional, thus tr 1 = 2LP/2],

In any case,
trl =44 0O(D —4) (2.48)
and any difference can be absorbed in the definition of
1
A=—-—9g+In(4n). (2.49)
€
Remark #2

What is the Feynman rule corresponding to

Cc

L= 1

F F* 2 (2.50)

Up to boundary terms
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L= —EFWF“” - —%@Ay (O"AY — &AM
_ gA# (Og" — 0"8”) A, — gAH ("p” — p°g") A, (2.51)

it is proportional to the transversal part that is divergent!

2.4  Renormalization Constants

Consider the ¢*-theory

L= 0,006 — Jm*? — o (2.52)
with Feynman rules
¢¢> - ¢¢ -5 — (2.530)
= —i\. (2.53b)
b b

There are only two divergent one loop diagrams

¢(p) —O— ¢(—p) =ir?(p) (2.54a)

¢(¢z) ¢(p2)
i (p, + py) (2.54)
o(aq1) ¢(p1)
with
. D .
@)y —ix [ dYgq i
i) 2 /(ZW)D > —m? +ie
oA A, :
=iz Ap(m) = i 5m A + finite (2.55a)

and
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i) () (—iN)? / dPq i i
1 =
b 2! (2m)P > —m? +ie(q+ p)? — m? + ie
S N ,
=iz Bo(p;m,m) = 1327T2A + finite. (2.55b)

The complete one loop greensfunction is the sum of tree diagrams

P(4) (p17p27p3,p4) = f(4) (pl +292) + f(4) (p1 +P3) + f(4) (]91 +p4)
2
= (Bo(p1 + p2; m,m) + Bo(p1 + ps; m, m) + By(p1 + pa;m, m))

3272
3\2 )
= 327T2A + finite. (2.56)
Allow renormalizations
b= VZ2p=¢+ %6Z¢ (2.57a)
A= ZHA = A+ 0AA (2.57b)
m? — Zpm? =m? 4+ dm? (2.57¢)
1.e.
77 VAYADN
£—>£——8¢8“¢— m2¢® — 4A¢
=z qu&“gb m?¢® — 925
0z 0z 5)\)\
+—3u¢3”’¢— ¢—25Z ¢>——5 2 — ¢ +0((0...)%)
(2.58)
with new interactions
d(p) ——— ¢(—p) = —i0Z(—p*> +m®) —iom” (2.59a)
¢ ¢
= —120Z)\ —10A\. (2.59b)
0 )

Demand

—O—++
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=i(T®(p) — 6Z(—p* + m*) — om?) = finite (2.60a)

and
+ crossed +
=1 (T™(p1, p2, p3, pa) — 260ZX — 6AN) = finite. (2.60b)
Therefore
0Z(—p* +m?*) +om? =T@(p) = 3; 5 Ao(m) + finite (2.61a)
T
3\
20Z X 4 AN = TW (py, ps, p3, pa) + finite = mBo(O; m, m) + finite
™
(2.61b)
from which we find
0Z = 0 + finite (2.62a)
A A
2 _ o 2 :
ym* = 3972 Ap(m) + finite = L A + finite (2.62b)
3\ . : 3A .
O\ = %BO(O, m,m) + finite = 327T2A + finite (2.62c¢)

‘Lecture 10: Thu, 19.05.2016‘

Remarks:

e we can choose §Z = 0, because I'?(p) is momentum independent at

one-loop,
A
r'®(p) =

but this no longer true at two loops, because the external momentum
goes through the diagram:

6(p) —€F— 6(-p) (2.64)

e in QED, 0Z # 0 already at one loop, because Y1 is divergent and
corresponds to a momentum depended counterterm.

Ao(m) (2.63)
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2.5 Power Counting

2.5.1 Dimensional Analysis

Free fields for scalars ¢, spin-1/2 fermions ¢ and vectors A,

P = / diz <%%¢—$%¢—ﬁ _ m?igbZ(x)) (2.65a)

5§ = [ats (Bl g i) - mba)) ) (2.65h)
St = /d4x _TlFMV(ZL‘)FW/(ZL‘) : (2.65c¢)
Fl(z) = a‘g;(f) - agz(yx) . (2.65d)

actions are dimensionsless. The mass dimension

dim(m) = 1 (2.66)
of the fields follows with
dim (d*z) = —4 (2.67)
dim (aix“) —1 (2.68)
dim (¢(x)) = 1 (2.69)
dim ((z)) = ; (2.69D)
dim (A,(z)) = 1. (2.69¢)

As a result, the high energy asymptotics of the propagators is p?dim—4

i

ipz - . +
/d%e (0| Teb()(0) |0) = IPKT% (2.70D)
/ diz e (0| TA,(2)A,(0)]0) = Z;i“i”e . (2.70¢)

Therefore, the high energy asymptotics of integrands in Feynman loop dia-
grams is determined by dimensional analysis.
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One loop diagrams with two ¢%-insertions require a ¢®-counterterm

M + % = finite. (2.71)

d*k 1
| ey = (2.72)

is logarithmically divergent.
For the same reason, a ¢*-operator and a ¢5-operator

><>é + >§ — finite (2.73)

require a only another ¢S-counterterm and two ¢*-operators only another

¢*-counterterm
><>< + >< — finite. (2.74)

These examples suggest the following conjecture:

because

e multiple insertions of operators of dimension higher than j require (in-
finitely many) new counterterms of growing dimension, while

e multiple insertions of operators of dimension 4 or less require no new
counterterms,

which has been proven rigorously by Weinberg’s power counting theorem and
later heroic combinatorical work.

If an operator has dimension higher than 4, the corresponding coupling
constant has a negative dimension:

=0%(@), dim(A) = 1. (275)

Since the loop integral does not depend on the coupling constant, the product
has a prefactor of more negative dimension and the corresponding countert-
erm has higher dimension, e. g.

1 11
1672 A4 8!

11 11
@) 1550w (). (276)
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For heuristic investigations, dimensional analysis can therefore replace the
analysis of Feynman diagrams.

Important observation: all building blocks (fields and derivatives) have
positive dimension and therefore

e in each order, there is only a finite set of possible counterterms
e interactions of dimension 4 or less can be renormalized by a finite set

of counterterms to all orders!

2.5.2  Momentum Space

A diagram G with L loops, I fermion propagators, Ig boson propagators
and 6, derivatives at the vertex v scales like

dk
/ - (@ (2.77)

with the superficial degree of divergence

w(G)=DL+Y 6, —Ir—2I. (2.78)
On the other hand

L:1F+JB—<Z1—1>, (2.79)

v

since there are ) 1 momentum conserving vertices and one overall momen-
tum conservation that can be factored. Therefore

w(@) =D+ (D—-1)Ip+(D-2)Is+> (5,— D). (2.80)

Also, each internal line ends at two vertices and if fv and b, denote the
number of internal fermion and boson lines ending at v, we have

Ip = %Z fo (2.81a)

1 .
Iy =3 ZU:bU (2.81h)
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and thus

D—-1,. D-2.
W@ =D+ |6+ ot b,—D | . (2.82)

2

J/

-~
Wy

Adding the external lines to the vertices

D—-1 D -2
Wy = 0y + 5 fot+ 5 by (2.83)

and subtracting them together with overall momenta factored from the ver-
tex, we find

D-1 D—2
WG =D+ (w,—D) - s Er— =

Ep—96. (2.84)

(2.84) leads to an important classification:

e w, > D: adding new vertices of this kind will make the diagram (su-
perficially) more divergent: such vertices are called nonrenormalizable,

e w, = D: adding new vertices of this kind will not change the diagram’s
(superficial) degree of divergence: such vertices are called renormaliz-
able, and

e w, < D: adding new vertices of this kind will make the diagram (super-
ficially) more convergent: such vertices are called superrenormalizable.

It is of course no accident, that the renormalizable vertices have dimension-
less couplings, whereas the nonrenormalizable couplings have negative mass
dimension.

2.5.3  Renormalizability
Nonrenormalizable Theories

If there is at least one nonrenormalizable vertex, all Green’s functions can
become divergent by going to a sufficiently high order with enough insertions
of nonrenormalizable vertices. Such theories require an infinite set of coun-
terterms and have no predictive power as fundamental theories — but can
be very useful as effective theories®.

2There is a striking anology of rabbits and nonrenormalizable interactions: a single one
is fine and will not cause additional trouble, but once you allow two (e.g. by not insisting
on a certain symmetry breaking), you are in trouble, because they proliferate
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Renormalizable Theories

If there is at least one renormalizable vertex, but no nonrenormalizable ver-
tex, only a finite number of Green’s functions with
D -1 D—2

s Br+——BEp+3<D (2.85)

can become divergent. Such theories require a finite set of counterterms
and have predictive power as fundamental theories. NB: for D = 2 there
is a loophole, since boson fields are dimensionless and an infinite number of
counterterms is possible.

Superrenormalizable Theories

If there are only superrenormalizable vertices, only a finite number of dia-
grams can become divergent (with the same caveat for bosons in two dimen-
sions).

2.5.4  Zoology

We can classify all models by computing

D—-1 D -2 D 1

which grows with D, since Er + Eg > 2 for all interactions. Therefore
a model can be renormalizable exactly for one value D. of D and will be
nonrenormalizable for D > D, and superrenormalizable for D < D...

e Scalar Models:
— ¢ D, =4
- ¢3: Dc =6
<>
_ ng@uqSA“, nggbA“AM: D.=4
e Spinor Models:
- &Aw Dc =4
— YIYYI'y: D, =2
Note that in the presence of gauge models, additional counterterms could

appear, e.g. A,A,A"A”, that would break gauge invariance. In this case,
proving renormalizability requires to prove their absence.
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2.5.5  Nitty-Gritty Details

The rigorous analysis of higher orders is much more complicated than that.

Nested Divergencies

LS

are simple, because the outer integration is often finite:

r_ﬂ z‘j = finite. (2.87)

In this example, there is only one sub divergence:

a . A? ,
)/O\) = (Pupv — pQQW)g_W In 7 + finite . (2.88)

Weinberg’s Theorem: the convergence of the whole diagram is determined
by the power of the outer loop momentum:

Nested divergencies

e logarithms of subdiagrams are only important for the finite pieces

e the outer loop looks like a self energy with local insertion:

I

In the integration regions corresponding to nested divergencies, the inner
momenta can be chosen to grow faster than the outer momenta and a simple
recursive renormalization procedure can be applied.

Qwverlapping Divergencies

Unfortunately, in

there are two logarithmically divergente subdiagrams with common propa-
gators
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and there are several disjoint “dangerous” regions and in each a different
momentum is growing faster that the others.
It is not intuitively clear, that a recursive addition of counter terms will

cure overlapping divergencies correctly. It took almost half of a century and
the smartest theorists to prove that it works.

2.6 Renormalization Procedure

| Lecture 11: Tue, 24.05.2016

e Step 1: add all required counterterms

— field renormalizations Z,
— mass renormalizations dm, and

— coupling constant renormalization dg .

Note that there might be additional counterterms, that are not part of
the initial model, but have dimension < D and are allowed by symme-
try.

e Step 2: compute all superficially divergent 1-loop Green’s functions
and show that they can be made finite by adjusting the value of the
coefficients of the counterterms added in step 1.

e Step 2a: if divergencies remain, we have an anomaly and have to add
counterterms that break a symmetry. This is harmless for non gauge
symmetries, but a desaster for gauge symmetries (see below).

e Repeat this procedure to the desired number N of loops, taking into
account the n-loop counterterms with n < /N in step 2.

e Step 3: the divergent pieces of the renormalization constants are now
fixed. The p-dependent finite pieces, remember

Ag(m) =m? (A +1In 7’;‘71 + 1> +O(D —4) (2.89)

are determined by computing enough observables and comparing them
with experiments done at the scale ;. Note that Z is not observable, but
the ratio of Zs of fields related by a symmetry might exhibit deviations.
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_3_
(GAUGE THEORIES

Experimental observation: the vector bosons

e photons: massless particles with spin-1 (triplet representation of SO(3) ~
SU(2)) and two degrees of freedom: left- and righthanded polarization,

e gluons: apparently massless strong force carriers,

e W* and Z bosons: massive spin 1 particles with three degrees of free-
dom transmitting weak interactions

are well established. Theoretical observation: the naive covariant quanti-
zation of spin-1 vector fields requires four components {A,(y)},=0,1,2,3 with

)Ly

[Aﬂ(x)v Au<y)] = _igw/D<x - y) (31)

and is problematic:
e 4 degrees of freedom, not 3 or 2,
e [Ag(x), Ao(y)] has the wrong sign .
Thus it can not be correct. Possible solutions
e gauge invariance of electrodynamics A, (z) — A, (x) + d,w(z),
e cancellation of Ay and Aj,

require a more detailled and systematic investigation of local symmetries.
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3.1 Global and Gauge Symmetries

3.1.1 Groups

Symmetries described as Groups (G, o) with G a set and o an inner operation

with

o:GxG—=3d
(z,y) = z0yY

. closure: Vz,y € G:zxoy € G,

associativity: zo (yoz) = (zoy)o z,

. identity element: de€e G:Vr € G:eox =zo0e ==

1 -1

. inverse elements: Ve € G: 3z ' e G:zoaxt =2

Many examples in physics

permutations
reflections

parity

translations
rotations

Lorentz boosts
Runge-Lenz vector

isospin

(3.2)

Y

oxr =e.
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3.1.2 Lie Groups

Particularly interesting are Lie Groups, i.e. groups, where the set is a differ-
entiable Manifold and the composition is differentiable w.r. t. both operands.
Note that the choice of coordinates is not relevant:
n e R}

B _ 0 —-n\ [ coshnp —sinhp
B = {51(77> = ©Xp (—77 0 ) - (—sinhn coshn

1 1 -
:{bQ(ﬁ)Z\/ﬁ(_ﬁ 1)‘56]—1,1[} (3.3)

Both times we have the set of all real symmetric 2 x 2 matrices with unit
determinant. The composition laws are given by matrix multiplication':

b1(n) 0 bi(n') = bi(n)bi(n) = bi(n +1n') (3.4a)
b2(8) 0 ba(B) = ba(B)ba(F) — by ( o Bﬁﬁ) | (3.4b)

3.1.8 Lie Algebras

A Lie algebra (A, [, ]) is a K-vector space* with a non-associative antisym-
metric bilinear inner operation [-, -]:

[,]:AxA— A
(3.5)
(a,b) — a,b]
with
1. closure: Ya,b € A : [a,b] € A,
2. antisymmetry: [a,b] = —[b, a]
3. bilinearity: Vo, 8 € K : [aa + b, c] = ala, c] + B[b, ]

4. Jacobi identity: [a, [b, ¢]] + [b, [, a]] + [c, [a, b]] =0

INB:
B+ B

R

|B|<1/\|6’|<1:>‘

2K=RorC
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Since A is a vector space, we can choose a basis and write
[ai,aj] = E C’ijkak . (36)
k

A Lie algebra is called simple, if it has no ideals besides itself and {0}.
Remarkably, all simple Lie algebras are known:

SO(N>7SH<N)7SP(2N)7927f4766767768 (37)

with N € N.

The infinitesimal generators of a Lie group form a Lie algebra. Vice versa,
the elements of a Lie algebra can be exponentiated to obtain a Lie group (not
necessarily the same, but a cover of the original group).

3.1.4 Homomorphisms
A group homomorphism f is a map
f:G—=dqG
x> f(x)

between two groups (G, o) and (G’,0’) that is compatible with the group
structure

(3.8)

f(x) o fy) = f(zoy) (3.9)
and therefore
fle)=¢ (3.10a)
f@™h) = (f(=)~" (3.10b)
A Lie algebra homomorphism ¢ is a map
o A— A
0 — d(a) (3.11)

between two Lie algebras (A, [-,-]) and (A4',[-,]’) that is compatible with the
Lie algebra structure

[#(a), 6(0)]" = 6([a, b]) . (3.12)

NB: these need not be isomorphisms: f(z) = €/,Vx is a trivial, but well
defined group homomorphism and ¢(a) = 0, Va is a similarly trivial but also
well defined Lie algebra homomorphism.
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3.1.5 Representations

Lie groups and algebras are abstract objects, which can be made concrete by
representations.
A group representation
R:G—L (3.13)

is a homomorphism from the group (G, o) to a group of linear operators (L, -)
with (01 - O3)(v) = O1(O2(v)). The representation is called wunitary if the
operators are unitary. The representation is called faithful if Vo # y : R(x) #

R(y).
A Lie algebra representation

r:A— L (3.14)

is a homomorphism from the Lie algebra (A, [+, -]) to an associative algebra of
linear operators (L, [-,-]") with [O1,Os) = O1 - O3 — Oy - Oy or [0y, 5] (v) =
O1(02(v)) — O3(0O1(v)), i. e. commutators for Lie brackets.

The Matrix groups SU(N),SO(N),Sp(2N) and their Lie algebras have
obvious defining representations.

Every Lie algebra has a adjoint representation, using the itself as the
linear representation space a < |a):

ragj.(a) [b) = [[a, b]) (3.15)

using the Jacobi identity

(Paqj.(€)7aq;.(0) = Tagj. (b)7aas. (@) [¢) = [[a, [b, ] = [b, [a, c]])
= [lla,b], ]) = raqi ([a,0]) |¢) (3.16)

or, using a basis
radi.(ai) |a;) = [[ai, a;]) = [Cijrar) = Cijr. |ax) (3.17)
we find the matrix elements
[Tadj-(ai)]jk = Cijk - (3.18)
Using Hausdorft’s formula
e (e?) " = e%e ™ = e*ap = el

— bt [0 ] + %[a, la,b]] + %[a, . fa Bl + ... (3.19)
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we see that the map
flz):A— A

3.20
b xbr! ( )

is well defined and remains inside the Lie algebra. It’s obviously linear and
since

F@)(f(y)(a)) = f(2) (yay™") = 2zyay™'a™" = (zy)a(zy) ™ = f(zy)(a)
(3.21)
it is also a representation, called the adjoint representation of the group.

3.1.6  Gauge Symmetries

A global symmetry transformation is constant through all of spacetime, while
a local symmetry transformation, a.k.a. gauge transformation, may depend
on the point in space and time. Obviously, the group of gauge transfor-
mations is much bigger than the group of global transformations and gauge
invariance is much more demanding than global invariance.

3.2 Gauge Invariant Actions

| Lecture 12: Tue, 31.05.2016

3.2.1 Global Transformations

Given a symmetry group G and a finite dimensional representation R, we can
easily construct invariant actions for multiplets of fields transforming under
this representation

¢1() <Z5i1(95) ¢1(z)
vy e [P o [ 20— Rgay) | 20 (3.22)
On() on(x) On()
or, in components,
¢i(x) = gi(w) = Z [R(U())];; b4() (3.23)

or, combining the components to vectors,

¢(x) = ¢ (z) = R(U(a))¢(z) (3.24)
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or, if there’s no danger of mistaking the group for the representation,

¢(x) = ¢ (z) = U(a)g(z) . (3.25)

However, while R is in many cases the defining representation, there are
important examples for other representations in particle physics.
Parametrizing the group elements

Ula) = e = el@ (3.26)

with {¢,} a basis of the corresponding Lie algebra, we can often concentrate
on infinitesimal transformations:

o(x) = ¢ () = ¢(x) + 0o () (3.27)

with
0¢y(x) = IZZ% )ij &5(x) = IZ [r(@)];; ¢5() (3.28)
x) = iz agr(ty)o(x) = ir(a)o(x) (3.29)

2) =1 aatad(x) = iag(z). (3.30)

Mass terms in a complex unitary representation,

= di@)ei) (3.31)

and in a real orthogonal representation

= ¢i(x)i() (3.32)
i=1
are obviously invariant:

¢l (2)(x) = ()1 (2)¢/ (x) = ¢! (2)p() (3.33)
and
o (z)p(x) = (¢) ()¢ (z) = 7 ()o(x) . (3.34)

Since

Ou' () = O, (R(U(a))¢(x)) = R(U(a))8,u(x) (3.35)
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derivatives transform just like the fields and kinetic terms are invariant as
well. Using this we can easily write invariant Lagrangians

L =(0,0)1(9"¢) —m*¢'¢ — P(¢'0) (3.36)
and
1 T/ au m? T T
L=5(0:0)"(0"0) = 50" =P (¢'9) . (3.37)
There are of course many more interaction terms, e. g.
3
L3353 = Z 5ijk¢i¢;‘¢/k/ (3.38a)
ivjk=1
2 3
Loy =Y > ofidion (3.38D)
ij=1 k=1
3
L33 = Z €1k XiXj Xk (3.38¢)
ivjk=1
(3.38d)

for the ¢ in SU(2) triplets, the ¢ in SU(2) dublets and the x in SU(3) triplets.

3.2.2  Local Transformations
Considering local, z-dependent, transformations with
Ul(z) = elteca® = glo@) (3.39)
we find that derivatives no longer transform covariantly
Ou¢'(x) = 0, (U(z)9(x)) = U(2)0uip(x) + 0,U (x)p(x)
=U(z) [0, + U~!(x) (0,U(2))] ¢(x). (3.40)
According to

U—l(x)a‘uU(x) _ e—ia(r)a‘ueia(z) _ e—i[a(m),-]a‘u _ e—iada(x) aﬂ

= 0~ ila(2).0,] - 5[a(e), [2(e),0,]) +
= 0, +10,0(2) + 5 [0(2), Qua(®)]  grla(@).[al@). duata)] + ..

— 9+ U (@) QU () (341)

the additional term is composed of multiple commutators of generators and
their derivatives. Therefore it is defined in the Lie algebra representation
and can be cancelled by a field in the same Lie algebra representation!
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3.2.8 Covariant Derivative

Define a covariant derivate
D, =0, —iA,(x) (3.42)
such that
D, =98, —iAu(z) = D, = U(z)D, U (z) = 9, — A} (z) (3.43)
and demand the transformation property of the Lie algebra valued connection

Au(z) =t A} () (3.44)

accordingly

0,1 (2) = U(2) (9 — 14,()) U™ (2) = U(0)0,0 () iU (2) A, () U ()
=0, +U(z) (0,U (z)) —iU(2)A,(z)U " (z) (3.45)

1.e.

Au(r) = Al () = U(2)A,(2)U ™ (z) +iU(z) (8,U " (2))

— Au(a) + ilala), Ay(@)] — 5 lale).alz), Ay(a)) +
+ 0,a(x) + %[a(m), dua(z)] — %[a(x), [a(z), Opa(z)]] + ... (3.46)

NB: more precisely, D, depends on the representation
D}, =0, —ir(Au(z)) (3.47)

e.g.
D2V =9, —i[Au(x), ] = 0, — 1A%(2)[ta, ] (3.48)

and in

D}, =0, —ir(Au(z)) = D} = R(U(m))D;R(U_I(x)) =0, —ir(A),(z))
(3.49)
the representations r and R must match. However, by Hausdorft’s formula,

Au(x) = Al (x) = U(x)Au(2)U(z) + iU () (0,U () (3.50)

is representation independent and we can use the same gauge connection for
all representations.
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NB: for the special case of abelian transformations
(), o' ()] = [a(), Ope (2)] = 0 (3.51)

we find
A, (z) — AL(x) =A,(z) 4+ 0a(x) (3.52)

to all orders, i.e. the gauge transformations of electrodynamics.
D, is called a covariant deriwative, because it transforms as an adjoint

r(D,) = (D) = R(U(x))r(D)R(U (x)) (3.53)

and we find
r(Dp)or(z) — r(D),)dp(x)
= R(U(2))r(D,)R(U(2))R(U (x))pr(x) = R(U(x))r(D,)pr(x) (3.54)

iff the representations r and R match.

If we introduce the convention that the appropriate representation is im-
plied, depending on which field D,, is acting, we can drop r and R consistently
in

D, — D, =U(z)D,U" ! (x) (3.55)
and
D,o(x) = D, ¢'(x) = U(z)D,U Y (2)U(z)p(x) = U(x)D,d(z).  (3.56)

We will adapt this convention from now on!
This way we can easily write invariant Lagrangians for matter fields

L= (D) (D"¢) —m*¢'¢ — P(¢'9), (3.57)

but the connection A,(x) is still an external field. We need dynamics for it.

3.2.4  Field Strength

The Ricci identity
F, =i[D,, D, = F;t, (3.58)

can be used to define a new object F),,, en detail

Fo =1[0, —iA,,0, —iA,)) =1[0,,0,) + [0, AJ] + [A,, 8,] — i[A,, A

= 0,A, — 0,4, —i[A,, A, (3.59)
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that transforms like an adjoint
F,—F, =UF,U" (3.60)
because
[D,,D,| — [D;“D,’J = [UDHU’l,UD,,U’l] =U[D,, DU (3.61)

Finally
F,F" - UF,F*U! (3.62)

and by the cyclic invariance of the trace
tr (F, F*) — tr (F,, F™*) (3.63)
we find a viable candidate for a Lagrangian for A,

1 v 1 a fhapy
L= —§ tr (F/“,Fu ) = _Z_lF/“/F K (364)

independent of the representation with normalization fixed by

1
tr (tatb) == 5(5&5, . (365)

3.2.5 Building Blocks

This way, gauge theory lagrangians are like Lego bricks: just plug matching
blocks together so that pairs of U~!(x) and U(z) cancel:

¢7 DH?¢7$7F,MV; (366)

where the covariant derivative for fermions acts in the tensor product of Dirac
spinors and gauge group representation

D =12 © 10, — ir(Au(2)) 87" = r(D,) @ 7" (3.67)
Typical terms are for bosons
¢T"'Du"'FpU"'¢v (3.68a)

fermions

@"'Du"'Fpa"'%“W (3.68b)

and gauge bosons
tr(Fp - Dy Flp) (3.68¢)
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but more complicated structures like

> C (¢"ta Do) (¢t Dyo) (t F™ D) (3.69)

abc

are also possible.
Note that due to (3.58), of the three combinations

F;un DuDua DVD/,L (370)

only two are independent!

3.8 Constrained Dynamics

3.3.1 Hamultonian Dynamics for Gauge Fields

Consider pure gauge theory

1 1
L= 5 (") = 2t0(Auj") = = Fo F — A jt (3.71)

and attempt canonical quantization of A,,.

Three- Vector Notation

Convention for the gradient

0

v = ori

=0, =0 (3.72)
i.e. -
V=-0 (3.73)
and consequently for the corresponding covariant derivative
D=V +iA, (3.74)
where the representation is implied. Then with

E'=F" (3.75a)
) 1 .. .
B' = 56”’“1?% (3.75b)
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we have?
F=—-DAy— A (3.764)
E_ﬁxfh%[fi’fﬂ (3.76b)
with the notation
[V x W] =V, X Wolta, t] = [W X ﬂ . (3.77)

This allows to write

— — — = 1 — — 1 - — - =
£ =tr(EE — BB) ~ 2tr(A") = 5E.Eu = 5BuBa — Avopa+ Auju (3.78)

just like in electrodynamics. However, E and B are just convenient short-
hands, A% and A’ remain the dynamical variables.

Conjugate Momenta

. 0L 0L OF] : y L
== = B (—0y07) = —E' = Al + (DA%),  (3.79a)
0AL  OE] 0A:
=0 (3.79b)
. oops!
Legendre Transform
| Lecture 13: Thu, 02.06.2016
Nevertheless
. 5 . 5 1> = | - -
H=mlA + 7 Ay — L=70A + T, A, — §EaEa + §BaBa + Aa0Pa — Aaja
1 — 1 — — - =
= SRuffa = o (DAO) + 5BuBa+ Auopa = Auda
1 1 - — — - =
= Ry + =B,B, + A2 (D7 + p)g —Auja + surface terms (3.80)
2 2 S————r
Gauf}’ Law

doesn’t look too bad. If we enforce Gaufl’ Law, we obtain the Hamiltonian
of classical electrodynamics.

3NB:

Instead
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Poisson Brackets
We would like to have
{AL@), @)} = 6078 (& — 7) (3.81a)
{ANE), ()} = 0a0* (T — 7) (3.81D)

but (3.81b) requires 7° # 0 and is therefore not compatible with (3.79b).
Solutions

e Gauge fizing: remove 7° from the theory as a dynamical variable and
enforce (3.79b), 7 = 0, while ignoring (3.81b). Possible approach, but
manifestly breaks Lorentz invariance.

o Gauge fizing reduz: add a term like %(@A“)Q that vanishes unter clas-

sical gauge conditions to the Lagrangian, such that 7° # 0 and (3.81b)
becomes possible. Works for QED, but fails subtly for nonabelian gauge
theories.

e Constrained dynamics (Dirac): enforce (3.79b) only at the very end,

but calculate with (3.81b) and 7% # 0 before.

3.3.2  Constraints

We shall say that a function x on phase space (p, q) vanishes weakly
x ~0 (3.82)
when we solve the dynamics without regard to the condition

x(p,q) =0 (3.83)

and only apply it at the very end to the solutions, before computing observ-
ables. Solutions of x(p,q) = 0 will be called the constraint surface.
Given a set of primary constraints

Xa~0  (for A=1,2,..) (3.84)

this approach only makes sense, if the dynamics doesn’t leave the constraint
surface, i. e.

d
% =y, Hy~0 (for A=12,..) (3.85)
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which defines a set of secondary constraints

Xa={xa,H} =0 (3.86)

some of which can be satisfied trivially. This process must be iterated until
no new secondary constraints are generated.

In fact, since we know nothing about observables outside of the constraint
surface, we can always add functions that vanish on the constraint surface
to the Hamiltonian and other observables:

H(p,q) = H'(p,q) = H(p,q) + > _ fa(p, 9)xa(p, q) (3.87)

We will find in our case that the Poisson-algebra of H and the first class
constraints x4 closes®:

{H,xa} = Vapxs (3.88a)
{xa,x8} = Uapcxc, (3.88Db)

where the U and V' are not necessarily constant.

3.8.8 Gauf’ Law Is Not An Equation Of Motion!
In our example
1 1= - . .
H = 57?@7?@ + §BaBa + AYD7 + p)g — Aaja + surface terms (3.89)

we find the following constraints

Xo =1~ 0 (3.90a)
Xe = D7 + jo & 0 (3.90b)
that form with the Hamiltonian
H= /d%% (3.91)
a closed algebra
{H, x0(7)} = xa(T) (3.92a)
4NB: this is not necessarily so and there are systems with additional constraints with
{xa, x5} #0.

These are called second class constraints and are dealt with by a modified Poisson bracket,
called Dirac bracket.
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{H, xa(7)} = =i [A°(D), xa(T)] (3.92b)
{XGa(@), Xap(7)} = ifureXc. 0 (T — 7)) (3.92c)

where (3.92b) requires that the current is covariantly conserved
D,j*=0. (3.93a)
and (3.92c) that the currents generate the gauge group
{52(8), 35} = ifaeo* (7 = ). (3.93b)

Examples for such currents are

e = VY tat) (3.94a)
Regre
o = 10T 0" 10 (3.94b)

3.3.4  Gauge Transformations

Another observation: consider the transformations generated by the con-
straints

&5 Droald), AAD} = 6 fu(2) (3.959)
050 fras@. A4} = 0 (3.95b)
[ Eya@ {xes@. 4%} =0 (3.95¢)
[E0a@ (ea). 4@} = (Dg@), . (3950
With the choice
f=-D% (3.96)

they are actually gauge transformations
A, — A, +D,g. (3.97)

We will use this fact below.
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3.3.5  Quantisation?

Just as in the classical version we can’t enforce the constraints as operator
identities in the quantum version of the theory:

xa # 0.
The next best option is to define a physical subspace Vppys. of the full kine-
matical Hilbert space V

Vohys. €V (3.98)
such that all matrix elements of the constraints vanish in Vyyys :
VU, P € Vopys : (U]xa|®) =0. (3.99)

While this works (by accident) for QED, we have in general problems in
perturbation theory

e should we sum over Vs or over V in intermediate states?

e since in addition to [H, 4] # 0, we have [Hy, Xa] # 0, we can not
diagonalize them simultaneously, so the former question doesn’t even
make a lot of sense!

We need a formalism, where we can use operator identities.

3.4 Classical BRST Formalism

Paradoxically, the solution involves enlarging the phase space even more, but
with “negative” degrees of freedom.

3.4.1 Faddeev-Popov Ghosts

Introduce pairs of anticommuting degrees of freedom 14, N4 with symmetric
Poisson brackets {-, -}, amongst themselves

{777147773}4_ = —0aB (3100&)
{na,ne}, =0 (3.100b)
{71478}, =0 (3.100¢)

and vanishing Poisson brackets with all other degrees of freedom. Note that
the negative sign is just a convention and has nothing to do with “negative”
degrees of freedom, the latter is in the “wrong” statistics. For complex
conjugation, we choose

M4 =1a (3.101a)
My = —"7a. (3.101b)
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3.4.2  BRST Transformations

Then we can construct an anticommuting function 2 from the algebra (3.88)
of the constraints

1
Q= naxa— 577B77AUABC770 (3.102)

with the remarkable property
{0}, =0, (3.103)

which is not trivial, because the bracket is symmetric. Our conventions also
imply that €2 is real
Q"=0Q. (3.104)

Note that (3.103) implies in concert with the super-Jacobi identity

{0}, F+{{F.Q},Q}, - {{Q,F},Q}, =0 (3.105)

imply that the transformation generated by dp = {-, 2} is nilpotent:
1

i.e. 0% = 0. Q encodes the algebra (3.88) of the constraints and observables.
Since
050 = {0,9} = na{0, xa} = naVipxs, (3.107)

we have

550 =0 VA: {0, x4} =0. (3.108)

3.4.3 Observables

But we can do better and define a minimal extension of any observable

Omin. = O + 04V 575 (3.109)
with the properties
Orin. = Omin. (3.110a)
Oumin. =0 (3.110b)
NA=74=0
5BOmin. = {Omin.u Q} =0 (3110C)

where the latter is valid everywhere, even off the constraint surface.
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NB: due to the nilpotency of 2, we can always add a term

Op = Omin. + 6rs7¥ (3.111)
with
U = 1474 + higher ghost powers (3.112)
maintaining
§p0p =0. (3.113)
3.4.4 Gauge Fields
Constraints and Ghosts
X0 = taXO,a No = tano,a 7_70 - taﬁo,a (3114&)
XG = taXG,a Ng = tanG,a ﬁG = taﬁG,a (3114b)
BRST Charge and Hamiltonian
i
0= /d3x 2tr (770)(0 + NeXxa + 3 ne, Nl ﬁc) (3.115a)
Hypin, = H + / d*z 2 tr (nofie — ine [Ao, 7c]) (3.115b)
BRST Transformations
‘Lecture 14: Tue, 07.06. 2016‘
537]0 = {7707 Q}_;,_ =0 (3116&)
dpilo = {70, U} = —7° (3.116b)
i
opne = {ne, U}, = -3 [, NG (3.116¢)
dpia = {Na, U}, = —xa —1na, Nal (3.116d)
opA’ = {A°.Q} =no (3.116e)
opm’ = {7°,Q} =0 (3.116g)
Corollary

SpB = {E, Q} — D x Dy = —i [E, nc} (3.117)
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BRST Hamiltonian

Educated guess
U, = /d% 2 tr ((WN %w()) 770> (3.118)
Then
Hprst,a = Hupin. + {Va, 2},

_ 3 1~2_§ 0)2 1 =) 2 03~ _ 07
—/dx?tr(Q(W) 2(7r)+2(B> + A'D7 — 'V A

+ il — DnaVij — ing [A% 7ig] + j°A° — jA)  (3.119)

Hamiltonian Equations of Motion

e = {nG, Hersta} =m0 + 1 [A°, 6] (3.120a)
io = {70, Hrsr,a} = — g (3.120b)
A= {ff, HBRST@} — 7 — DA (3.120¢)
(3.120d)

These allow to eliminate 7, ny and 7¢g
7=A+DA° (3.121a)
= Dng (3.121D)
e (3.121c)

to find

dpA, ={A,,Q} = D,ne (3.122)

i.e. infinitesimal gauge transformation with 7 as parameter

Lorentz Covariant Equations of Motion

For the remaining fields, the suffixes G' and 0 are redundant and we can use
the abbreviations

(3.123a)
(3.123Db)

I3
(I
I3
S Q
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and find
0,D'n =20
Dro,n =0
DM@,ﬂTo =1 [D;ﬂ?a 8#77]
0 A" = —ar’

D, F*" = 97" + j¥ —in, "7 ,

the BRST charge

0= /d% 2tr (woﬁon —in® [A% ] + = [n,1] 7'7)

2

- /d3x2tr <7T0D077 — (0y7°)

and BRST transformations

5BAM = D#n
1
Opn = —3 1.1
dpi) = —m°
5371'0 =0
QED

Un=0n=0m =0
9, A" = —ar”

O F" = o'n° + j7

Q= /de WO?QH

and
5BAM = 8,”’/
(5377 = 0
dpi) = —m°
537’(’0 =0.

(3.124a
(3.124b
(3.124c
(3.124d
(3.124e

~— s

mo h) (3.125)

3.126a

3.126b

3.126¢
3.126d

~~ o~ T~~~
— ~— ~— ~—

(3.127a)
(3.127h)
(3.127¢)

(3.128)

(3.129a
(3.129b
(3.129¢

)
)
)
(3.129d)

Therefore all ghosts, n and 77, and 7 = —0, A" /a are free fields and decouple.



ohl: Tue Jul 5 14:20:41 CEST 2016 subject to change! 87

3.5  Quantum BRST Formalism

3.5.1  (Anti-)Commutation Relations

The Faddeev-Popov ghosts have canonical anti-commutation relations

[1a:nB], = —idap (3.130a)
[na,mB],. =0 (3.130b)
[a,78], =0 (3.130c)

and commute with the other degrees of freedom. For hermition conjugation,
we choose

nl = na (3.131a)
il = =74 (3.131b)
Then, iff the Poisson-bracket algebra of constraints can be represented as

a commutator algebra of operators on Hilbert space, we can use the same
formulae to find extended observables Op and a BRST charge €2 with

1
0 = 3 [€©,Q], =0 (3.132a)
Q' =Q (3.132b)

[Q,Hp] =0 (3.132¢)

Hl, = Hpg (3.132d)

3.5.2  The Cohomology of §2

From (3.132¢) we infer that  is constant in time. Therefore we can use it
in equations defining the physical subspace. Let V be the indefinite met-
ric Hilbert space in which we represent the canonical (anti-)commutation
relations, including the unphysical degrees of freedom and ghosts. Then we
demand that a physical state from V. is annihilated by €:

YU € Vypys, : Q[ T) =0 (3.133)

or

Vohys. C Ker(§2). (3.134)

This is a very reasonable condition, because ) often generates gauge trans-
formations with ghosts as parameters.
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Unfortunately, Ker(2) contains many zero-norm states. Since Q? = 0, we
have
YU eV:Q|¥) e Ker(Q) (3.135a)

as well as
Yo eV: |0 )| = (v|fe|w) = (v|0?|w) =0. (3.135b)

Fortunately, such states do not contribute to matrix elements of observables,
for which we demand [O, 2] = 0:
VU € Ker(2),® € Im(Q2) : (V|O|P) =
(U|OQ|E) = (V|QO|E) = (¥|QTO[E) =0. (3.136)
Therefore we can factor these states out without affecting predictions for

observables
Vonys. = Ker()/Im(Q) , (3.137)

a. k. a. the cohomology of the BRST-charge §2 in V. Nevertheless, two crucial
facts must still be shown for specific examples:

1. Vphys. is non-trivial, i. e. Ker(€2) # Im(€2), and
2. all vectors in Vs have positive norm .

QED

Since 7 = —9, A* /o and the ghosts are a free field, we can consistently split

them in positive frequency (annihilation) and negative frequency (creation)
parts. The BRST-Charge (3.125) assumes a very simple form

Q= / Tk (a(k)e (k) + alo (K)e, () ) (3.138)
and we recover the Gupta-Bleuler condition

YU € Vonys, 1 (0,4 @) = 0. (3.139)
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3.5.8  Quartet Mechanism

Consider the six degrees of freedom
{A-‘MA—:AL?ASan:ﬁ} (3140)

where Ay are the left- and righthanded polarization states, Ag = 9, A" the
so called scalar polarization state and Ay the longitudinal polarization.

As can be shown [?], they can be decomposed into a pair of physical fields
and a quartet of unphysical fields

P = {A‘F?A*} ) Q = {AL7A5777777} ) (3141)

where the operators from P generate a Hilbert space that can be identified
with Vpnys.. Note that they are, while isomorphic, not identical, because the
elements of V. are equivalence classes of states in V, not elements of V
itself.

This proves that all elements in Vs, have positive norm and since [€2, Hg|
0 and H ; = Hp we a have unitary time evolution on Vs and, consequently,
S-matrix that commutes with the BRST-Charge

[€2, 5] =0. (3.142)

Quartet Mechanism w/Higgses

In the case of spontaneously broken gauge symmetries, there is a similar
quartet mechanism, but the role of the longitudinally polarized gauge bo-
son Ay, is taken over by the would-be Goldstone boson so that it can become
a physical degree of freedom.

3.6 Action

In practical applications, we calculate S-matrix elements and Green’s func-
tions using Feynman diagrams. There are two ways to obtain a useful action

1. perform the inverse Legendre transform of Hprst,a, (3.119), or
2. construct one from scratch, demanding

(a) gauge fixing, i.e. existence of a propagator,
(b) hermiticity, and
(c) BRST-invariance.
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The latter can be easily achieved by adding a term of the form

Lprst = —20p tr <77 (g(A) + %Wo>>
a

— 2tr (’/TOQ(A) + = (7T0)2 + ﬁéG(A)

0A

5BA) (3.143)

\)

with an appropriately chosen G(A) to the classical Lagrangian. A popular
choice is

G(A) =0,A", (3.144)
resulting in
0G(A
51(4 )5BA = 0,D"n (3.145)
and thus
1
L= =5t (FuF™) = 2t (j,A) + 20 (WOaHA“ + % (°)* - #ﬁD“n) .
(3.146)
This has the useful property that
oL 0
pu— .].4
000Ae  ° (3:147)

and is therefore equivalent to our Hamiltonian construction.

3.6.1 Matter Fields

So far, we haven’t discussed matter fields. For matter fields transforming like

) — Y (3.148)

with « in the appropriate representation, the infinitesimal gauge transforma-
tions are

0 = iap (3.149)
and the corresponding BRST-transformations obviously
oY =iny . (3.150a)

Care must be taken with the sign of the BRST-transformation of the conju-
gate fermions

opt) = ihn, (3.150D)

because

0 = Sp(t) = Spitp — Pogy (3.151)
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shows that the naive expectation
SE) = —in' = —ign

is inconsistent. This way, a gauge invariant matter lagragian can take the
place of the external current in a BRST-invariant lagragian for fermions

Ly=1 @GP —m) = () —m) v+ PAY (3.152)

1.e.

g =0 (" @ty (3.153)

and bosons
Ly = (Du¢)! D¢ —m?¢'¢
= (8,0)1 96 — m2¢To — 6T A, + i1, A" + TAPALH (3.154)

i.e.
Aead
jt = —ig't, 0, ¢ (3.155)

and a quartic coupling, as in QED.

3.6.2 Perturbation Theory

So far, we have no small parameter in our action, that would allow a per-
turbative expansion. Therefore, we perform a simultaneous rescaling of our
gauge connection, ghosts and gauge lagragian

D, =0, —iA, — 0, —igA, (3.156a)
F. — gF,, =g(0,A, —0,A, —ig[A,, A)]) (3.156Db)
n—9gn (3.156¢)
n— gn (3.156d)
70— g (3.156e)
1
tr(~--)—>Etr(---) (3.156f)
compatible with the gauge/BRST transformations
oy = ignp (3.157a)
opY) = igyn (3.157b)
dpA, =D (3.157¢)
i
551 = — [n,1) (3.157d)

2
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Spi) = —m° (3.157e)
Spm’ =0. (3.157f)

Then the gauge fields A, decouple in the limit g — 0.
In any case, the equation of motion for ¥ is algebraic

L,
0= -5 =ar’ +G(4) (3.158)

and 7° can be “integrated out” exactly by the substitution
7 = —lg(A) _ Lo (3.159)
- - [ - .

This results in the following “free” lagragian

1 v 1 —a a
£57:0 = _ZFa,WFéL - % (auAg)z +n*Un
1 1
=-A(Og" —(1——) 0" ) A2+ n*0On" (3.160)
2K o

3.6.3 Feynman Rules

If 0 < || < 00, we can construct a gauge propagator from (3.160):

'6(1
/,L,CL'\/VV\NWU’[): 10ab

k k% + ie

Kok,
(—gm/ (1= )" iE) (3.161a)

while the ghost propagator is simply

(3.161b)

And vertices

— igy.te  (3.161c)
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1, a
p --»-())ﬁ = ig(p +p)uta  (3.161d)
\

\\
%
b,v a, (b
\\\\/(JJ// = igZQ#V (tatb -+ tbta) (31618)
/ \
e \\
1
4 gfa1a2a3gu1u2 (klli,j - kid)
2 = +gfa1a2a3gu2us (kil - k?q) (3161f)
> +gfa1a2a3gu3ul (kzz - kllﬁz)
3
2 1
- 192falazbfa3a4b(gu1u39u4u2 - 9#1#49#2#3)
= - igzfa1a3bfa4a2b(gu1u4guzu3 - gm,quMs/M) (3‘161g)
- ig2fa1a4bfa2a3b(gu1u2gu3u4 — GprpsJpapz)
3 4
k,p,a
b,p »(ﬁ = 9P, fave, (3.161h)
\
E C,p/

where the ghost-gauge vertex is indeen not symmetric in the momenta.

3.60.4  Slavnov-Taylor Identities
| Lecture 15: Tue, 14.06.2016

We can now use the BRST invariance of states in Vs together with the
BRST transformation properties of the fields to derive non-trivial relations
among Green’s functions of the theory.

Since the vacuum state has to be in Vppys., we have

Q0)=0 (3.162)
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and consequently

(O1[€2, 1(21)P2(22) - - - n()]]0) = 0 (3.163)

for arbitrary fields, including matter, gauge and ghost fields. Furthermore, (2
is constant in time and commutes with the time ordering operator. Therefore

(O] T [, d1(21) P2 (2) - - - D (2)][0) = 0 (3.164)

or

(OIT dpgr(w1)@2(22) - Pn(20)[0)
+ (0|T ¢1(21)dpda(w2) - - - Pp(,)]0) £
£ (0T ¢1(21)p2(22) - - 6pdn(z,)[0) =0, (3.165)

where minus signs appear for fermionic fields.

FExamples

L. (0|T[Q,7(x)A,(y)]|0) = 0 results in:

0= {0]T d57(x) Ay (y)[0) — O] T 7(x)d5A,(y)]0)

= L (0T 9 A1) A W)]0) ~ (OITAx)Dun(w)]0) (3,160

or graphically

(3.167)

In lowest order, we can immediately verify:
p M | — )R 0w 3.168
k2 + ie Gowr + ( )k2+1e K (3.168)

2. (0|T [Q,7(2)Y(y)¥(2)]|0) = 0 results in:
0 = (0|T épij(x) (2 \0>
<0\Tn wy (2)[0) + (0T n(x zb( ) (2 \0>
:—<0‘T8“A V(Y)Y (2)|0) —ig (0| T 7(z) (2)]0)
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+1g<O‘T77 ‘0> 3169
Again, graphically:
lq
8#‘/% =—iq-g  —- ’ +ia-g - — (3170)
ta
To lowest order
la
L
o
ta
and indeed
aﬂ\,\< =
W 0w - kK, i — i
k? + ie gur )k2—|—16 ]é’—m—l—ielgV b]zﬁ—m—i—ie
—ia 1
= igkta .
k+1e¢ m+ie 7" ) —m +ie
o —1(1 / 1
+iep — m+ie g (F =Pt “p—m+ie
—1ga i o i
_ —m—(p — tg———F
+iep — m—l—lel(i) m=p—m) p—m+ie
i — Lt
I e ﬁ’—m—i—iez “p—m+ie
.
—ia-g -’ +ia-g .. (3.172)
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In QED, the ghost decouple and enter the equation only to ensure
momentum conservation:

(3.173)

In higher orders of the perturbation series, these Slavnov-Taylor Identities
form a powerful set of consistency relations among Green’s functions with
different numbers of ghosts and gauge bosons.

3.6.5 Ward Identities

So far, we have studied Green’s functions, which contain vastly more informa-
tion than is required for the calculation of S-matrix elements (nobody knows
how to build a perturbation theory without that redundant information).

Reduction Formulae

From the LSZ-reduction formulae for scalars (for Z = 1)

(k[T ¢(z1) ... d(2)[0) = (0]a(k) T d(x1) . .. ¢(x)]0)
_ / d'z e i (O +m?) (0T ¢(@)d(z1) ... d(xa)]0) , (3.174)

we see that external legs are always amputated

. . 2 2
kahlf# —i(k* —m?)

(3.175)

and we can only get a contribution, if there is a pole at the correct mass

shell.
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Contact Terms
Therefore

lim —i(k* — m?)
k2—m?2

=0, (3.176)

because there is no pole. E. g.

2 2
lim —i(k* —m? — lim i W —m =0 3.177
i 06 ) <= i =0, T

because k? # p? (unless p; = 0) and

i —i(k* —m?) <>< —0, (3.178)

because the loop integral has no pole.

FExample

Consequently, a dramatic simplification occurs in S-matrix elements, because
the contact terms vanish on the mass shell and we can derive equations like

<O ‘ T aMA/‘ (x1)6VAV ($2)1’Z(yl)w(y2) ‘O>amputated, on-shell 0 (3179&)

for physical polarizations €, or graphically

Eu(kQ)
(3.179b)

kLu

In the derivation of (3.179a) from Slavnov-Taylor identities

0 = (0|T 6pij(z1)e” Ay (x2)1 (1) (y2) |0)—(O| T 7j(21) " 65 Ay (w2)1h (1) (y2) |0)
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—(0]T 77(21)€” Ay (22) 051 (Y1) (y2) |0)+(O| T 7 (21)e” A, (22)1 (y1) 381 (y2) 0)
(3.180)

most of the terms vanish on-shell:
e in
<0‘TT_](ZE1)EV(SBA (z2) (1) (32 ‘O>

= (0| T 71 )" (@) (y1)¥ () |0)
— 10| T7(21)e” [Au(2), n(w2)] (y1)1(y2)|0)  (3.181a)

the first term vanishes, because the polarization is physical €,(k)k* = 0
and the second is a contact term

e both of
(0| T 7(z1)€” Ay (22) 050 (y1)1h (y2) |0)
= —i (0| T7(z1)e” Ay (22) Y (y1)n(y1) ¥ (y2)|[0)  (3.181b)
and
(0| T 7(z1)€” Ay (22) 0 (1) 6510 (y2) |0) i
= =i (0|T7(x1)e” Ay (22 (y1)n(y2) ¥ (y2)|0)  (3.181c)
are contact terms.

Thus only

0 = (0| T 6p7(x1)e” Ay (22)0 (1) (1) |0)
= = (O[T, AM(0)e” Ay (221 (42)| ) (3.1814)
remains, i.e. (3.179a).

At tree level, it is a simple exercise to verify
EV k’g EV k’g

O

ki

using the equations of motion

- kl }élu(pl) —u(py) (3.183a)



ohl: Tue Jul 5 14:20:41 CEST 2016 subject to change! 99

_ 1 ~
U(Pz)%m = v(p1) (3.183Db)

etc. We also have to use €,(k2)ks = 0 to cancel unwanted terms in the triple
gauge boson vertex.

In QED, the triple gauge boson vertex does not contribute and we can
prove the stronger result

(0T 0" Ay (1) Ay ()1 (1)1 (y2) [ 0) = 0, (3.184)

while in nonabelian gauge theories

(0T 0" Ay (1) Ay (220 (1)1 (12) [0) # O (3.185)

due to the triple gauge boson vertices.

3.6.6 Polarization Sums

We can write the polarization sum as
. L ClEY + ke
D ARG (k) = =g + . (3.186)
A=+

with a suitable vector ¢. For example, with & = (w,0,0,w) and ¢ = (w, 0,0, —w)

1 00 O
ctkY + kFe? 000 O
%  looo o (3.187a)
000 -1
and
0000
ctkY + kte” 01 00
1% _
g+ s 0010 (3.187Db)
0000

Then in QED, where (3.184) holds, we can replace Y, _, e\(k)ey” (k) by —g"”
in all polarization sums, because the single k* in (c*k” + k*¢")/ck suffices to
make its contribution vanish (independently of ¢#).
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Ghosts at Tree Level

However, in nonabelian gauge theories, where (3.184) does not hold, we have
in general

(0T 0 Ay (21)” Ay ()0 ()b (95)[0) # 0, (3.188)
where ¢” A, (x2) is a short hand for the corresponding momentum space ex-
pression and we must not make the replacement

> k) (k) = —g™ . (3.189)

In fact, the corresponding differential cross sections were found to be negative
in some regions of phase space.
The systematic solution is provided by the optical theorem

b2 2 2
Im -y (3.190)
X
1 1 1
and the Cutkovsky cutting rules
D2
Im (3.191)
1 1 1
with
Im| —— | = —— =as(p>—m?). (3.192)

This implies that we can use the simple polarization sum corresponding to
Feynman gauge

—ig

D ARG (k) = —g" = (3.193)
A=+
if and only if we include external ghost states
2 2
kKl
> - (3.194)
all polarizations ’\. .

where the sign comes from the fermi statistics of the ghosts
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3.7 Path Integrals: Faddeev-Popov Procedure

‘Lecture 16: Thu, 16.06.2016‘

The ghosts were first guessed by Feynman and then derived systematically
by Faddeev and Popov in the path integral formalism. BRST invariance and
the canonical formulation came much later.

There’s nothing wrong with the path integral

Z(j) = / DA St [de o, As (3.195)
with the gauge invariant Yang-Mills action
1
Sym(A) = ~1 /d4:c FowEY (3.196)

and it is used with great success in nonperturbative calculations on the lattice
(to be precise an equivalent form that reduces to Syy in the continuum limit).

However, we can not evaluate it in perturbation theory, because it has no
propagator, unless we fix the gauge. We could obtain a propagator by fixing
the gauge by brute force

Zpr(j; X) = / DA (G(A) — x) et [dia o, Al (3.197)

but that would not guarantee that the physics remains unchanged. Instead,
we should properly separate the gauge degrees of freedom in the functional
integral and integrate once over each orbit, i.e. equivalence classes under

A, UAU T +iU9U, (3.198)

with the same weight. Just using the J-distribution does not guarantee this:

Jas s - Y (3.199)

2 Taetg ()]’

However
/d:v f(@)d(g(x))| detg'(x)] = > fl) (3.200)
z:g(x)=0
depends only on the zeros of g, not on any other property of g.
Thus we obtain a better gauge fixed path integral
0G(A)

ZFP(,]; X) - /DA6 (Q(A) — X) det <T> eiSYM(A)_ideija’“Ag (3201)
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where 0G(A)/dg is the functional derivative of the gauge fixing functional
wr. t. gauge transformations.

Since the generating functional does not depend on y, we can get rid of
the d-distribution by integrating over y with a suitable weight, e. g.

Zyp(J) = /Dxe_ifd% iXQZFP(ja X)

— /DA det (@) eiSYM(A)—ifd%ﬁ(g(A))Q—ifd%ja,uAﬁ ' (3‘202)
g

The functional determinant det G(A)/dg can be written as a fermionic
gaussian path integral

which turns out to be the generating functional for Faddeev-Popov ghosts,

since 5a(A
n%n =10, D"n =n0égA, . (3.204)

This is the same action as before, with 7° integrated out:
Zep(j) = / DADijDy ! oerst (D=1 [de joudis (3.205)

In the Faddeev-Popov approach, the BRST symmetry is an afterthought,
but the role is similar: allow a gauge fixing for perturbation theory that keeps
the essential symmetry intact.

3.8 Role in Renormalization

We have 6% = 0, irrespective of the gauge invariance of the action. There-
fore we can use it to derive relations among counterterms (Wess-Zumino
Consistency Conditions) that remain valid, even if we had to fix the gauge
in perturbation theory. Using these relations among counterterms, one can
prove as a theorem, that if the nth order is gauge invariant, then the (n+1)th
order counterterms can be chosen such that the (n+1)th order is again gauge
invariant.
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— 4

RENORMALIZATION GROUP

4.1  Renormalizability

Typical expectations

e nature is described by a renormalizable QFT, i. e. by a theory consisting
solely of interactions with dimension 4 or less,

e the predictive power derives from the fact that there is only a finite set
of free parameters.

Open questions:
1. why is nature described by a renormalizable QFT? beschrieben?

2. why should a successful low energy theory remain valid up to arbitrarily
high scales?

3. how do quantum gravity and string theory fit in?

4. the results are the difference of large terms: have the leading been
included?

4.2 Pathintegrals a la Polchinski
4.2.1 Soft vs. Hard Modes

Consider the pathintegral for the generating functional

2() = / Dip &S Jalap@)i(r) (4.1)
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and separate the high energy (hard, fast, short distance) from the low energy
(soft, slow, long distance) degrees of freedom depending on a scale A:

© = @5 + vx (4.2a)
Dy = Doy Dpx (4.2b)
J=Jx +Jx- (4.2¢c)

where the separation in momentum space is not necessarily sharp. With

) = [atee o), (4.3)

we demand that, invariantly under k <> —k,
o(k) = O3 (k) + 5 (k) (4.4a)
os(k) = ¢(k) for k < A (4.4D)
o3 (k) = ¢(k) for k> A (4.4c)

e.g.

Ox (k) = (1= (k) - o(k) (4.5a
ox (k) = f(k) - o(k) 4.5b

with a suitable cut-off function f

le--=-===="=="="="""===-—2
T
> [K|

A

and similarly for the other fields and sources.
Due to momentum conservation, quadratic and bilinear terms in the ac-
tion approximately separate without mixing soft and hard modes

/ d'z () () = / d'e j5 (@) o5 (@) + / de R (@)ei (@) (46a)
So(p) = So(wy) + So(¥x) (4.6b)

except for modes from the region where f(k)(1 — f(k)) > 0 for a cut-off
function f with finite width.



ohl: Tue Jul 5 14:20:41 CEST 2016 subject to change! 105

(1= f(kK)f (k)
- [K|

A

On the other hand, the interaction terms will couple very soft and very hard
modes

e.g. two fast modes coupling to a soft mode
3
X
P

making up their separation in momentum space. In a smaller region of mo-
mentum space, we can also have two soft modes joining forces to match a
hard mode

X
©r
N

4.2.2  “Integrating Out”

Then we can exactly rewrite the path integral
ZU5.0R) = 20) = [Dei D dSistesio  u)
by separating
S(e)+ [ pl@ile) = S(e5) + [de eR@iF @

£ S(03) + Suix(95, 63 + / d'r o7 ()3 (x) (4.9)

as nested path integrals
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Z(jx.Jx) = /'Dgpf\ ISP [diz oF (2)i5 () o

Iff we don’t want to study Green’s functions and/or scattering matrixele-
ments of particles with momenta > A, we can confine our interest to Z(jx,0)
and integrate @3 out:

Za(jR) = 2(j5,0) = / Dypfy SRR AR D05 (411

with
SiAS(5) _ / D3 SR HiSmix(@503) (4.12)

This suggests to introduce an effective action for the soft modes that contains
all the effects on the hard modes

S () = S(p) + 25(p) (4.13)

and we can write the generating functional for soft modes as
Zp(j) = /D/fgp oiSH(p)+ [dlz p(2)j(@) (4.14)

where we have written
Dy = Dy (4.15a)

to emphsize that ¢} and ¢ are just integration variables and the restriction
to soft modes should be considered as a property of the measure. Note that

Za(J) = Z(3,0) (4.15b)

ezxactly, the index A only specifies, that only soft sources should be considered.

diAZA(j) = 0 (for j softer than A) (4.15¢)

The physics interpretation of (4.15) is that we can perform the path
integral over the hard modes, without effecting the generating functionals for
the soft modes. We can choose whether we want to include effects of of the
hard modes in the action or in the Feynman diagrams computed using this
action. Restricting the integration to the soft modes ensures that there’s no
double counting.

Use results from Murayama et al. [arXiv:1604.01019] to link this section to
the perturbative approach. Clarify the expansion of the non-local Wilso-
nian effective action into local operators.
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4.8  Diagrammatic Approach

The careful reader will recognize the procedure in the previous section as for-
mally equivalent to the Hubbard-Stratonovich transformation or the deriva-
tion of the Coleman-Weinberg potential described in section 1.3.4 and we
can use the same diagrammatical interpretation.

4.9.1 Cut Off

Propagator with wultra violet cut off in momentum space
i
iDA(K*) = 5——0O(k| < A 4.16
iDA(K) = O] < A). (4.16)

where © could be replaced by a smooth function. However
e |k| < A is not Lorentz invariant!

e |k?| < A% would be Lorentz invariant, but is ineffective, because k can
grow along k% = 0 without bounds.

As a result, ©(|k| < A) must be interpreted symbolically and a precise defi-
nition can be given only by Wick rotation: the ky-integration contour in the
loop integrals can be deformed from the dashed curves to the dotted curve

-———

without crossing poles or cuts. With the subsequent substitution
(K% k) — (ik%, ki), (4.17)
the Minkowski- “length” becomes a euclidean length
2= (K0)? — k2 = —(KY)? — k? = —k2, (4.18)

which makes the cut off k% < A? effective, because k% < A? implies |kf| < A.

Using this definition for the propagators, all integrals converge in the UV
and all naive manupulations are allowed. But this comes at a price: all results
depend on A and we will need the full machinery of the renormalization group
to get rid of this dependence.
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4.3.2  Shding Cut Off

We can divide the cut off propagators in two pieces: a really soft part |p| < A’
and not quite as soft part A’ < [p| < A:

iDp (k) = ——— (4.19a)
iDp(K?) ====----- (4.19b)
iDp(k?) — iDp (k?) = —=——e (4.19¢)

In case of the one loop self energy in ¢*-theory, we can write for [p| < A’

____Q___ = ____'\:'___ + ___Q___ : (4.20)

i.e. the theory with cut off A’ < A describes the same physics as the one
with cut off A, as long as a new vertex

—)-- - ___Q___ (4.21)

is added to the lagrangian.

| Lecture 17: Tue, 21.06.2016 |

Loop Integrals

27)* k? + ie

“tadpole”:

More general in D space time dimensions (we will need it later)

, dPk (kQ)"
AA 2
Iy (D, M?) = / R (4.23)
N<IRI<A
Wick rotation:
/ dPk (k2 )n
IM (D M?) = (—1 ”+m'/ L B : 4.24

A'<[RI<A

surface of a D-dimensional sphere:

27TD/2
/dQD -1/ (4.25)
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putting everything together:

A2
ntm: D/24n—1
AN 2 (—1)"™i 2 (k’@
B = om0
(A7)?

This integral has a closed expression

AN 2\ _ (_1)n+mi 2\ D/24+n—m
Lo (D, M) = (47)P/2T(D/2) (M)

~<B i (m—=n—-—D/2,D/2+n)

14+(A7)2 /M2

B, (m—n—D/z,D/2+n)) (4.27)

1+A2 /M2

using the so-called incomplete beta funktion

Bay) = [ degia-gr (4.284)
0
I'x)'(y
By(,y) = Blz,y) = % . (4.28b)
Non trivial limit M — 0: logarithm
, _1)D/21 A2
I D0y = — 1 4.2
ket py2(D50) (4m)PI20(D/2) I (A2 (4.29)
or power law
/ —1)mtmi
]A,A D — ( .
nin (D;0) m-n#D/2  (47)P/2T(D/2)
1
. AD+2(n—m) — (N D+2(n—m) (4.
D/2+n—m( () ) (4.30)

Back to the tadpole

d*k i AN 1
/Wkg n ie@(A/ < |kl < A)=ilpy (4,0) = () (A% = (A)?)
(4.31)
Later we will also need another limit
Lim(D, M?) = lim lim I} (D, M?). (4.32)

A —0 A—oco
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Here we can again find powers

—1)mtmi D/24n-m L'(m —n — D/2)I'(D/2 + n)
LoD, M?) = — M
nn(D, M) (4m)P/2T(D/2) (M) ['(m)
(4.33)
or logarithms
2 2\ €
Too(4 — 2¢, M?) = (e (M?)"T(e). (4.34)
4.3.3 Vertices
4-Vertex
Analogously for the vertex
= ‘,v;,ﬂ + g‘/ + /5, © (4.3)

we need a new vertex

O - O = e )

where the integral

1/ d*k 10N < k| < AN)iION < |p—k| <A)
(27)

2 k2 + ie (p— k)2 +1ie
1 1 A? p?
it +(9(A2>. (4.37)

has been computed using ]&éA/ (4, |p|?) under the assumption |p| < A’ < A.

The computation for |p| ~ A’ < A is much more complicated, due to
the non isotropic cut off. A more appropriate procedure will be developped
below.

0- Vertea:

6 (v
Q=S (A’)2 6v¢( ©)+ ( A2 ) - U3
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General Procedure

e reduce the scale A’ step by step

A>AN>AN>A"> ... (4.39)

e change the lagrangian so, that the low energy physics is unchanged .

The resulting effective lagrangian will contain arbitrarily high powers of ¢(x)
and derivatives.

4.3.4  Renormalization Group Flow

The most general Lagrangian can be expanded in an (infinite) series of op-
erators
=Y 40, (4.40)

e.g. for a single scalar field

O(z) = (¢*(w), 6" (2), (09)*(2), ¢°(x), ($0¢)*(w), ..) - (4.41)

The procedure of section 4.3.3 defines an infinite matrix I';;(A’, A) (with finite
coefficients) describing a finite Renormalization Group (RG) transformation
acting on the couplings

gi(A) = gi(N) = er (A, A)gh(A) (4.42)

such that both

A) = Z g:(A)Oi(z) (4.43)

and L(x; A") give the same prediction for low energy physics, if the Feynman
integrals are cut off at A and A’ respectively.

This is approach is not very useful in practice, because the finite trans-
formations are hard to calculate. It is more convenient and transparent to
study continuous transformations with infinitesimal generators. This pro-
duces the Renormalization Group Equation as a system of coupled ordinary
differential equations:

d A
(A g Z% g (A). (4.44)
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Dimensional Transmutation

Consider the evolution of g, and g4

Lim(x) = 50 (x) + G (@) + ... (4.45)
as a function of A’:
g4
S
3
e
N/A

By construction, the low energy physics remains unchanged along the trajec-
tories. A’ is just a convention for what is part of the Lagrangian and what
should be computed by loop integration in Feynman diagrams. This has two
important consequences:

1. A’ is redundant und can be eliminated,

2. he physics is not determined by a point in parameter space, but by a
trajectory.

An equivalent representation replaces the dimensionfull parameter A’ by a
dimensionless parameter, e. g. g4:

e

g4

This is called dimensional transmutation and should be familiar from QCD,
where Aqcp can be traded for ag and vice versa.
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UV Limit

So far, we have ignored the UV cut off A that was required for making all
integrals finite. Since it is required, we must not simply ignore it.

In the renormalization group picture, A plays the role of the starting point
of the renormalization group flow and we can ask the question how the low
energy (a.k.a. IR) physics depends on the value of this starting point.

We can identify four basic scenarios:

1. all trajectories can be extended from the IR to A" — oo

Exp.
A/

In this case, we can take the continuum limit and the cut off can be
removed, even if the couplings do not remain bounded. NB: the pertur-
bative calculation can become unreliable, if the trajectory correspond-
ing to the low energy measurements passes through a non-perturbative
region g > 1.

2. all trajectories remain bounded for A’ — oo:

Exp.

perturbative calculations reliable if the trajectory corresponding to the
low energy measurements remains in the region g < 1. If all couplings
vanish for A’ — oo, we find asymptotic freedom.

3. no trajectory corresponding to low energy measurement can be contin-
ued from A’ < Ay do A’ > Ay for some value Ay:
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.

Exp. Ao
A

In this case, the quantum field theory that describes nature at scales A’ <
Ay, can not describe nature at higher scales. Something very interesting

is bound to happen at Ag. Even if we have to account for a breakdown

of perturbation theory below Ay, this behaviour is a very strong hint

at new physics.

4. some trajectories are trapped in the region A’ < Ag, others can be ex-
tended to A’ — oo. Representative example: the trajectories with g <
go in the low energy limit can be extended, but not those with g > go:

Exp. Ao
A/
In this case new physics can only be avoided, if the low energy couplings

are not too large. In the standard model, this leads to upper limits for
the Higgs self coupling and mass m?% = g/2 - (¢)%.

4.3.5  Relevant, marginal & irrelevant

| Lecture 18: Thu, 23.06. 2016

The graphical representation of the renormalization group flow is intuitive
for a few couplings, but can we extend it to a real calculational procedure in
the infinite-dimensional space of all couplings?

In fact, higher dimensional operators induce even more divergent contri-
butions to Feynman diagrams and require counterterms of increasing dimen-
sions. Fortunately But many that are first shall be last; and the last shall
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be first, as can be seen again from dimensional analysis for the differential
change in the couplings:

(WP IR = (P ) + (4.462)
(A/>2(11g(4A<f;;) B 21622 gi(N) + (N)° 1617r296(A,) e (4.46b)
WP o )+ e WY+ (0469

Let’s write this more concisely as

dgj,i“) = 11?Baga (1) (4.47a)
a dgﬁiﬂ) = Baga(n) + 1*Bigs(n) (4.47D)
: dgg,(f) = 1 Bogi (1) + Bega(1)gs (1) . (4.47c)

with the identifications

w=AN (4.48)
By = 1627r2 (4.48D)
3, 16?;2 (4.48¢)
3 = 1627T2 (4.484)
fo =2 (4.48e)
B = % (4.48f)

and introduce dimensionless couplings A\, with

gn(1) = 17" N (p) - (4.49)

Then

u*”W):u*”Q4—nMam+¢ﬂ&“”) (4.50)

and

dA
u—2 = —2)\2 + ﬁg)\4 (451&)
dp
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dAy

i BaXi + BiAs (4.51b)
dXg 9 ,
,um = 2/\6 + 66)\4 + ﬁﬁ/\4>\6 . (4510)

Now consider a solution A, and it’s neighborhood, parametrized by small
deviations ¢,

A1) = () + €nlp) (4.52)
leading to the linearized equations

de

,Ltd—: = —262 + 5264 (453&)
d€4 < ,

M@ = 2B4 €4 + By€6 (4.53Db)
d _ _ _

,ud—ij = 266 + 256)\464 + Bé/\6€4 + ﬁé)\466 . (4530)

In the perturbative regime, we know that

Bt < 1 (4.54)
and we can use q
€6
— =2 4.55
Mdu €6 ( )

as a good approximation with solution

€6(11) = const. - y? 20, (4.56)

If we are in the regime, where €5 can already be neglected and where in
addition A4 is approximately constant, we can solve

d€4

[1,@ = 254;\464 (457)

by i
es(pt) = const. - p2PA (4.58)

This will tend to zero or blow up, depending on the sign of S4\s. The
qualitative behaviour is the same, if A4 is not constant. The region in which €4
can not yet be neglected will produce a “head-start” for the running of ;.

Similarly, if we stay close enough to A4, so that (e, can be neglected
w.r.t. 2, we can solve

—_— =2 4.59
Mdu €2 ( )
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to find
n—0

e2(p1) = const. - = =5 00 (4.60)

This means that the trajectories diverge for p — 0.

@ where the lowest dimensional operators receive the largest corrections!

In the absence of higher order contributions, all dimensionless matrix
elements of operators with dimension d must carry a factor of

()" "

Therefore, there are three cases for low energy physics:

»i

e d < 4: the contributions of these, so-called
comes more important at low energies,

relevant”’, operators be-

s

e d = 4: such, so-called ”"‘marginal”’, operators are scale invariant until
higher orders are switched on,

e d > 4: these, so-called ”‘“irrelevant”’, operators become less important
at low energies.

Therefore, we recognize the previously “dangerous” nonrenormalizable oper-
ators as irrelevant and harmless at low energies. As a result, the low energy
world can be described by a renormalizable quantum field theory.

Weak (as in “not strong”) interactions don’t change the classification
relevant and irrelevant operators.

& B

e d =2 (i.e. go or m?): the change in the coupling is of dimension 2,
like the coupling itself: O((A’)?). Therefore without extensive “fine-
tuning” of the initial conditions, we find go = O(A?) > |p|* for the
renormalized coupling.

e d = 6 (ie. gs): the change in the coupling is of dimension —2:
O((A")72). Therefore without strong interactions, it is impossible to
compensate the factor 1/A%.

On the other hand, the qualitative behaviour of marginal operators will in
general be sensitive be affected by weak interactions.

For every theory, i.e. a set of fields with given transformation properties
under internal and space time symmetries, there can only be a finite number
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e

A/

Figure 4.1: Contributions of irrelevant operators do not necessarily vanish
in the infrared, but the dependence of these contributions on their initial
conditions at high energy vanishes in the infrared.

of relevant operators. Thus, for practical purposes, we will only need few of
the infinitely many possible operators.

To avoid a possible misunderstanding induced by the technical term “irrel-
evant operator”, it is important to stress that the contributions of irrelevant
operators do not necessarily vanish in the infrared. Instead, the dependence
of these contributions on their initial conditions at high energy vanishes, be-
cause the RG trajectories flow together in the infrared, as shown in figure 4.1.

Thus the initial conditions for the irrelevant operators have no effect on
the results of low energy experiments. In fact, the coefficients of the irrelevant
operators can be set to zero at the high scale without changing the observable
physics at lower energies. Therefore, the phenomena can be described by a
renormalizable theory.

To avoid another possible misunderstanding, this observation does not
“prove” that only a renormalizable QFT can describe the observed phenom-
ena. It only states that there is always are renormalizable QFT that is
indistinguishable from a non-renormalizable theory at low energies. Since
renormalizable theories are technically more convenient and depend on less
parameters, common sense and Occam’s razor suggest to prefer the renor-
malizable QFT with only relevant or marginal interactions at the high scale
over the others with the same infrared behavior.

@ German notes start here ...

Komplizierter ist der Fall einer dimensionslosen Kopplung, die ohne Wech-
selwirkung einen konstanten Beitrag bei allen Skalen liefert.
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.. die Wechselwirkung bestimmt, ob die Kopplung bei niedrigen Energien
grof} oder klein ist.
B-Function

Aus der Renormierungsgruppengleichung

n2dgs(A)
( ) d(A/)2

= B(ga(A')) (4.62)

kann man ablesen, dafl das Verhalten der Kopplung wird vom Vorzeichen der
[S-Funktion bestimmt wird bestimmt

e 3> 0 (unser Fall 3 = 3¢3/(327?)): die Kopplung wird im Ultraviolet-
ten starker und im Infraroten schwacher.

e 5 < 0 (z.B. QCD): die Kopplung wird im Ultravioletten schwécher
und im Infraroten starker.

Die Losung ist in unserem Fall

94(A)

ga(N') =
1+ 32%94(A) In ﬁ

(4.63)

Weil das Verhalten von dimensionslosen Kopplungen sensitiv von schwachen
Wachenwechselwirkungen abhangt, werden sie als marginal bezeichnet.
Weitere Beitrage zur g-Funktion fiir g4

e alle haben Faktoren 1/A? und tragen deshalb nicht zur fithrenden Ord-
nung bei.

Falls die Wechselwirkung stark genug ist, kann das Skalenverhalten so
beeinflufit werden, dafl naiv relevante Operatoren irrelevant werden und
umgekehrt.

e Kann im perturbativen Bereich nicht passieren.

Warum ist die Beschreibung durch Renormierungsgruppenfliisse ” ‘besser”’
als direkte Evaluation von Feynmandiagrammen?
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e Koeffizienten der Renormierungsgruppentransformation enthalten keine
unkontrollierten Integrationen iiber weit separierte Impulsbereiche

*. grofle Logarithmen werden erst bei der Integration der Renormierungs-
gruppengleichung langsam aufgesammelt

e kontrollierte Rechnung

Im Prinzip auch nichtperturbative Berechnung von Pfadintegralen durch Losung
von Renormierungsgruppengleichungen moglich

e technisch schwierig, noch wenig Erfolge.

Fine Tuning

Massenparameter sind relevant: sofern die Masse eines Teilchens nicht durch
eine Symmetrie vor Renormierung geschiitzt ist, erfordert die Auswahl einer

” 7,

Trajektorie mit m < A ein unnatiirliches ”‘fine tuning”’:

Because strait is the gate, and narrow is the way, which leadeth unto life,
and few there be that find it.

e starkes Argument fiir Supersymmetrie

— Fermionmassen konnen durch chirale Symmetrie geschiitzt wer-
den.

— Bosonmassen konnen durch eine Supersymmetrie von der chiralen
Symmetrie profitieren.

e und/oder dynamische elektroschwache Symmetriebrechung

— keine elementare Skalare, die unter ”‘fine tuning”’ leiden.

4.4 Callan-Symanzik Gleichung

Endliche Integrale mit mehreren Massenparametern sind technisch schwierig
(vgl. unvollstandige Beta-Funktion oben).

e gibt es einen Trick, um die Rechnungen zu vereinfachen?
Beobachtung:

e cine Absenkung des unteren Abschneideparameters A’ entspricht einer
Anderung der Lagrangefunktion
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. wir kénnen A’ mit dem (Re)-Normierungspunkt p in einer perturba-
tiven Rechnung identifizieren.

@ der harte Cut Off |k| < A im Impulsraum wird durch einen weichen
Cut Off durch Counter Terme ersetzt.

.. Unterschied ist hoherer Ordnung.

Betrachte beliebige n-Punkt Greensfunktion

GO (1,2, 03 g, 1) = (0| T (1) d(2s) - .. $(2,)[0) (4.64)

renormiert “‘am Punkt p”’, d.h. mit den Invarianten der Impulse in den
Renormierungsbedingungen gleich .

Eine Anderung des Renormierungspunktes andert die Physik nicht, wir
wandern lediglich zu einem neuen Punkt auf der gleichen Trajektorie.

. wir konnen neue renormierte Kopplungen ¢’ finden, sodafl sich nur
die (unbeobachtbare) Normierung der Feldoperatoren dndert: ¢(z) —

1V Z(x).
Also
G(n)(xh L2y .oy T 9,7 :U’,) = Z—R/Q(M7 M/)G(n)(xla T2y, Tn3 9, :u) (465)

Kontinuierliche Transformationen mit infinitesimalen Erzeugenden sind
wieder einfacher:

d
Iu/d_lul (Z"/Z(,u, M/)G(n) (21, ..., &0 q ,u/)) -0 (4.66)

d/du ist eine totale Ableitung, die die Anderung der Kopplungen ¢ beriicksichtigt.
Also

(’”‘a% + 6(9)8% + m(g)) G (wy,...59,1) =0 (4.67)
wobei
d
B(g) = u@g(u) (4.68)
Y(g) = ! d Z(pto, 1) (4.69)

—//l/_
27 (1o, )" dp

[ ist dimensionslos und kann in einer masselosen Theorie aus Dimension-
sgriinden nicht von g abhéngen (in massiven Theorien gibt es immer Re-
normierungsvorschriften, die dies beibehalten).
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@ Es ist nicht offensichtlich, dafl v nicht von py abhéngt!
e Gilt fir renormierbare Theorien, weil dort der Limes iy — oo existiert.

e Es steht uns frei, eine Trajektorie zu wahlen, die einer renormierbaren
Theorie entspricht.

Offensichtlicher Verallgemeinerung fiir mehrere Kopplungen und/oder Felder:

(4.70)
7. B. QED-Vertex:

(M% + 5(6)% + 2yp(e) + ’YA(e)) (0| T (1) (22) Ay (23)|0) =0 (4.71)

4.4.1 Losung der C-S Gleichung
‘Lecture 19: Tue, 28.06.2016‘

Betrachte Vierpunktfunktion
P2 Pp3

e

Y41 P4
im Euklidischen (also keine physikalische Amplitude, aber moglicher Teil
einer solchen)

pl = —P? (4.72)
pip; =0 (4.73)
Niedrigste Ordnung Stérungsrechnung;:
GO(P; g, 1) = F.T. (0| To(w1)p(2)d(3)$(24)]0) (4.74)
- (3) o)+ 0t (4.75)

Dimensionsbetrachtung ohne Massenterme:

GW(P;g,p) = (;—;) GY(P/u; ) (4.76)
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also homogene Funktion

0 0
—~ aW(p- - _ il @ p.
/LaMG (P; g, 1) (8 + P8P> G'Y(P; g, 1) (4.77)

Renormierungsgruppengleichung:

( P~ 50) o 8= 1a(s >> GO(Pig ) =0 (4T8)

Integration der partiellen Differentialgleichung: die gleitende Kopplungskon-
stante g(P; g):

9(P;g) = B(g(P;9)) (4.79)
9(1;9) =g (4.79b)

absorbiert”” den Differentialoperator’

dP

¢

a 8 o . —
(Pa_P ~ By >a—g) §(Pig) =0 (483)
also
5 3(Psg) ( /)
r Y\g
P— — exp | 4 /d
( ap g, > P 7 8(g)
exp 4/d” g)exp 4/d” | s
!The initial value problem (4.79) is equivalent to the implicit equation
3(P;g) dg/ PdP/
- 4.
/g Blg) J, P (4.80)
Hhen d d 1 0g(Pg) 1
— S RHS(4.80) = —LHS(4.80) = ZASEE) 4.81
ag W80 = G LHSAS0) = sy Ty B (Y
1.e.
og9(P,g) . _ . 09(P;g)
ﬁ(g)Tg—ﬁ(g(Rg))—P 5P (4.82)

using (4.79).
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Damit ist die allgemeine Losung

N 9(Pg) ,
6 Pig) = (5) 0VaPian-ew (1 [ a3 )

wobei G eine beliebige Funktion ist, durch Renormierungsgruppengleichung
nicht festgelegt.
Vergleich mit Stérungsrechnung (

G (g9) = —ig + O(7*) (4.86)

Zwei Elemente der Losung:

»«,

matching”’) fir P = p liefert

1. perturbatives Resultat G mit renormierter Kopplungskonstanten
2. Exponentialfaktor modifiziert Skalenverhalten fiir jedes Feld

.. v heiBt anomale Dimension
Aus der 3-Funktion fiir ¢*

Bl9) = 1539 +O(g") (4.87)
folgt die gleitende Kopplungskonstante
_ g
9(Pg)=—5—7% (4.88)
1— 16?;2 gln %

4.4.2  Fihrende Logarithmen

GroBle Logarithmen In(P?/u?) kommen nur noch in der gleitenden Kop-
plungskonstanten g(P;¢) und den Exponentialfaktoren vor

. erfolgreich resummiert
e Storungsrechnung ist zuverldssig, sofern g(P;g) klein

Verfahren funktioniert nicht fiir alle Greensfunktionen so einfach:

e Renormierungsgruppengleichung schwerer zu losen, wenn nicht alle ex-
ternen Impulse gleichférmig wachsen

e Wenn mehr als eine Massenskala im Spiel ist, konnen auch Koeffizien-
tenfunktionen grofle Logarithmen entwickeln

e klassisches Beispiel: Sudakov-Jagarithmen fiir exklusive Streuung

0 _ @ (QQ) (4.89)

s m2
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4.4.3 Asymptotische Freiheit

Das Verhalten der -Funktion in der Nahe von g = 0 bestimmt die Eigen-
schaften der Storungstheorie.

Offensichtlich gilt 5(0) = 0, weil ohne Wechselwirkung kein Mechanismus
existiert, die die Kopplungskonstante gleiten 1aft.

Es vier qualitativ verschiedene Szenarien:

1. 6> 0:

g0

9

.. Gleitende Kopplungskonstante wéchst im Ultravioletten ohne Grenze

.. Storungsrechnung im Infraroten zuverlassig

2. f<O0:

B(g) u—)o‘cN

9

*. Gleitende Kopplungskonstante wachst im Infraroten ohne Grenze
*. Storungsrechnung im Ultravioletten zuverlassig

e asympotische Freiheit ist sehr interessante Alternative fiir die Hochen-
ergiephysik

e Es gibt nur eine Klasse von Quantenfeldtheorien mit dieser Eigenschaft
e Niederenergiephysik schwierig

e Niederenergiephysik interessant
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4.4.4 Fizpunkte

3. [ > 0 mit ultraviolett stabilem Fixpunkt:

L — 00

9

.. Kopplung wéchst im Ultravioletten bis ¢* und bleibt dann wegen 3(g*) =
0 konstant.

4. B < 0 mit infrarot stabilem Fixpunkt:

[ — 00

9

.. Kopplung wéchst im Infraroten bis ¢* und bleibt dann wegen 5(g*) = 0
konstant.

4.4.5 Dimensionale Regularisierung

Wie kénnen wir die Renormierungsgruppenfunktionen 5(g) und v(g) effizient
berechnen?

e 3(g) und v(g) sind universell, d. h. unabhéngig von der betrachteten
Greensfunktion

. berechne in Storungstheorie pdG™ /Oy fiir einen hinreichenden Satz
von G sodaf die Callan-Symanzik Gleichungen nach 3(g) und v(g)
aufgelost werden konnen.
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Zurtick zu
~ de (kz)n
I,m(D, M?* = 4—D/ 4.

wobei diesmal p*~P die Dimension von I unabhingig von der Raumzeitdi-
mension macht

A~ 2 (—1)n+m1 2\ 2+n—m
(M2 PP T(m—n— D/2T(D/2+n)
(167T2M2) Tm)T(D/2) (491)

I (D, M?) ist wohldefiniert, solange die Argumente m—n—D /2 und D/2+
n der I'-Funktionen im Zahler keine negativen ganzen Zahlen oder 0 sind.

*. die logarithmische Divergenz von f0’2(4, M?) findet sich im Pol der T-
Funktion wieder.

. wenn wir etwas von D = 4 weggehen, ist die Divergenz regularisiert:

Ioo(4 — 2¢, M?) = ! ( M ) e T'(e) (4.92)
’ 1672 \ 16722
Entwicklung vom I'(e):
Ioo(4 — 2¢, M?) = ! (1 +In e + 2Indr — WE) (4.93)
’ ’ 1672 \ € M?

In einer masselosen Theorie mufl die Abhangigkeit von p identisch zu Abhangigkeit
vom Renormierungspunkt sein.

e cs geniigt, die Koeffizienten der Pole in € zu bestimmen

4.4.6  Eichtheorien
| Lecture 20: Thu, 30.06.2016|

Quantenelektrodynamik:

5(6) = = (1.90
10(0) = 1oy (1.95)
Va(e) = 1;2 (4.96)

Besonderheit: Ward-Identitdt (Eichinvarianz, Stromerhaltung) erzwingt, da8
sich die Beitrage von
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.

zu (3(e) autheben. Nur

~(O-

.. QED ist nicht asympotisch frei

tragt bei.

e es scheint auch in hoheren Ordnungen keinen Fixpunkt zu geben

Nicht-Abelsche SU(N¢) Eichtheorie mit Ny Quarks

3
g N 11
0l0) = s Cr'y — e (4.97)
mit N2 1
2
= 4.
Cr NG (4.98)
Quantenchromodynamik (Ng = 3):
e
Bacn(9) = 755 (3N — 11 (4.99)

e ist fiir Ny < 33/2 asympotisch frei

e cinzige Klasse von Theorien, die in vier Raumzeitdimension asympo-
tisch frei sind!

.. QCD fiihrender Kandidat fiir Theorie der starken Wechselwirkung

— perturbative QCD funktioniert bei hohen Energien

— Wechselwirkung stark bei niedrigen Energien

Offensichtlicher Unterschied zur Quantenelektrodynamik:

ng::gzw Qe QO
e

ergibt negativen Beitrag zur S-Funktion.
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@ intuitiv richtig und erkléart das Wechselspiel von positiven Quark-Beitragen
und negativen Gluon-Beitragen ... aber technisch falsch!

e Wardidentitaten der Chromodynamik sind komplizierter
*. es gibt nicht triviale Beitrage von Selbstenergien und Vertices

Z.B.

4.4.7 Aschenbradel

1971: Wilson’s Renormierungsgruppe fiir Phasentibergénge (7 ‘kri-
tische Phédnomene”’) and starke Wechselwirkungen zog Nutzen
aus der Renormierung.

1972: Renormierbarkeitsbeweis fiir Eichtheorien und spontan ge-
brochene Eichtheorien etablierte Kandidaten fiir realistische
Quantenfeldtheorien.

1973: 7‘Asymptotische Freiheit”’ legte die Grundlage fiir Quan-
tenchromodynamik.

1979: Weinberg’s Arbeit tiber effektive Feldtheorien fafite die Folk-
lore iiber systematische Entwicklungen bei niedrigen Energien
zusammen

Heute: Auch nicht-renormierbare Quantenfeldtheorien sind unter
dem Namen ”‘effektive Feldtheorien”” als angesehene Mitglieder
der Gesellschaft eingebiirgert worden.

4.5 Massen € Schwellen

Bislang alle Massen vernachlassigt

e oft eine gute Approximation: z.B. in der vier Fermionen Produk-
tion bei LEP2 kann im grofiten Teil des Phasenraums mit masselossen
Fermionen gerechnet werden: my, < /s < my.

e nicht immer eine gute Approximation
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CAVEAT EMPTOR:

Renormierungsgruppenmethoden nicht optimal fiir die préizise Beschrei-
bung von Schwelleneffekten

Dennoch

e viele Masseneffekte konnen systematisch in einer Renormierungsgrup-
penrechung beriicksichtigt werden, am einfachsten und tibersichtlichsten
mit einer effektiven Feltheorie

Erinnern wir uns an die S-Funktion einer SU (V¢ )-Eichtheorie

Blg) = g; (CF& — ENc> (4.100)

Sie ist durch das Diagram

P sl Jass

von der Anzahl der Quark-Flavors abhéangig:
@ wie grof ist Ng7
e so lange alle Quarks masselos sind, ist Ny =6

Betrachte den Fall m? < —p? < my
() = O( 5. 1) (4.101)

sehr klein, solange Renormierungspunkt p << my

e Renormierungsgruppengleichung soll (unter anderen) die Logarithmen
in der Vakuumpolarisation aufsummieren.

e unterhalb der Top-Schwelle keine Logarithmen

*. unterhalb der Top-Schwelle: Ny = 5.
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4.6 Matching € Running

Losung der Renormierungsgruppengleichung mit Massen:

—_

. starte mit g(po) = go bei po > my

2. 16se masselose RGG fiir g(p) mit By,=¢(g) im Intervall [pg, m;]
3. starte erneut mit g(m;) bei u = my

4. 16se masselose RGG fiir g() mit Sy,—5(g) im Intervall [my, my)
5. starte erneut mit g(my,) bei p = my

6. usw.

).

Verfahren im Jargon als ”‘matching, running, matching, running”’” bekannt.

e der Anschlufl (das ”‘matching”’) erfolgt an jeder Schwelle stetig, aber
nicht differenzierbar, weil sich die S-Funktion andert.

Skizze:

-

‘H
\

QI
—~
=
=

Me My my
I

e Approximation in der Nahe der Schwelle schlecht

e falls Logarithmen wichtig, dann Schwellenregion klein im Vergleich zur
Strecke zwischen den Schwellen

*. korrekte Resummation der groflen Logarithmen

e systematische Verbesserung ”‘next-to-leading”’ order (NLA, NNLA,
usw.) moglich: Zwei-Schleifen S-Funktion mit Ein-Schleifen Matching,
Uusw.

Beriihmtes Beispiel:

e die gleitenden Kopplungskonstanten der drei Eichgruppen des Stan-
dardmodells treffen sich nicht in einem Punkt



ohl: Tue Jul 5 14:20:41 CEST 2016 subject to change! 132

.. Problem fiir Grand Unified Theories

e Matching der Evolution vom Standardmodell zum supersymmetrischen
Standardmodell bei p =~ 1 TeV bewirkt, dafl sich die Kopplungen doch
treffen

*. starkster (indirekter) experimenteller Hinweis auf Supersymmetrie
Allgemeines Ergebnis:

e schwere Teilchen (schwerer als die betrachtete Energieskala) kénnen aus
der Theorie entfernt werden

e hinterlassen Renormierung von Kopplungskonstanten und Feldern

4.7 Effektive Theorien

M ¢ 9

Irrelevante Kopplungen ”‘sterben aus”’ sofern der Renormierungsgruppen-

flul ausreichend ”‘Zeit”’ hat.
Komplizierter:

1. irrelevante Wechselwirkung kann eine Symmetrie der marginalen und
relevanten Wechselwirkungen verletzen

.. Auswirkungen irrelevanter Wechselwirkungen kénnen beobachtbar sein.
2. Hierarchie der Skalen nicht grof§ genug

. irrelevante Wechselwirkungen tiberleben

Typisches Beispiel fiir den ersten Fall:

e schwache Wechselwirkung

Gr — _
Lp= 7; (1 = 95) 7 D(1 — )7 (4.102)

e irrelevant (Dimension 6), aber nicht zu vernachléssigen, weil Flavorianderung

Matching der Standardmodellwechselwirkung an der W-Masse:

(Kl

Strahlungskorrekturen unterhalb My, konnen durch die anomale Dimension
der Fermi-Wechselwirkung aufsummiert werden:
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+ ...

Theorie im herkommlichen Sinne nicht renormierbar

e kein Problem, weil die Anschlufbedingung bei u = My fur alle denkbaren
Operatoren Renomierungsbedingungen bereitstellt

Mogliche Sichtweise
e die Schleifenimpulse sind bei My, abgeschnitten
. alles ist endlich
.. kein Problem mit der Renomierbarkeit
Harter Cut-off ist aber technisch unpraktisch und sogar gefahrlich
e schwierige Integrale
e Verletzung der Eichinvarianz bei naivem Vorgehen
Besser

e Renormierungsgruppenflufl in dimensionaler Regularisierung ausrech-
nen

e FEichinvarianz bleibt erhalten

e Trajektorie geméafl der AnschlufSbedingung wahlen und in den physikalis-
chen Bereich verfolgen
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—5H—

SPONTANEOUS SYMMETRY BREAKING

‘Lecture 21: Tue, 05.07.2016‘

5.1 Wigner-Weyl vs. Nambu-Goldstone

5.1.1 Unbroken Symmetry: Wigner- Weyl

So far, we have identified unbroken symmetries of a quantum mechanical
system with the existence of unitary operators in a Hilbert space represen-
tation (H, 7). A priori, this is a too strong requirement, because a state of
a physical system is not described by a single normalized vector ® € H, but
by a ray

U= {e™: \e0,2n)} € P(H) (5.1)

and a physical symmetry is only required to preserve probabilies, i.e. the
moduli of matrix elements, which obviously don’t depend on the representa-
tive chosen for each ray

YU €T, 0 e N\ pue0,2n): [(PT,e"D)| = (T, @) = |(I,D)]. (5.2)

Definition 5.1 (Wigner Symmetry). A Wigner symmetry of a quantum
mechanical system with states described by rays in a Hilbert space H is a
mapping g : P(H) — P(H) of the projective Hilbert space of rays to itself,
which preserves all transition probabilies

Vi, b e P(H) - \(g@, g@)] _ \(@, cﬁ)‘ . (5.3)

However, there is a famous theorem by Wigner in Hilbert space quantum
mechanics for a finite number of degrees of freedom:
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Theorem 5.2 (Wigner). Given a quantum mechanical system, that is de-
scribed by the rays in a Hilbert space H, all Wigner symmetries are realized
by unitary or anti-unitary operators U(g) with

—

YU eH: gl =U(g)V, (5.4)
where the U(g) are determined upto a common phase.

An anti-unitary operator U : H — H satisfies
YU, deH: (UV,UD) = (V,d)=(P,V) (5.5)

and is required for the realization of symmetries involving time-reversal t —
—t, since they switch the roles of initial and final state in transition matrix
elements.

The non-obvious aspect of Wigner’s theorem is that the phases of the
operators can be consistently chosen in the whole Hilbert space to obtain
unitary or anti-unitary operators. In particular, it must be possible to com-
pose symmetries without additional phases

Ulg)U(g) = U(go ). (5.6)
=1
Proof. See the textbook [2] and the article [6]. O

5.1.2  Broken Symmetry: Nambu-Goldstone

In the case of an infinite number of degrees of freedom (d.o.f.), we must distin-
guish between symmetries realized algebraically and represented as unitary
operators on Hilbert space.

Definition 5.3. An algebraic symmetry of a physical system is a x-auto-
morphism or x-anti-automorphism [ of the C*-algebra A generated by the
observables of the system.

Definition 5.4. An anti-automorphism g : A — A of a C*-algebra A is an
anti-linear map [ preserving the structure of A

YA\ pu € C,ABeA: BAA+ uB) = \3(A) + uB(B) (5.7a)
VA, B e A: B(AB) = B(B)3(A) (5.7b)
VA e A: B(A*) = (B(A)". (5.7¢)
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Definition 5.5. An internal algebraic symmetry is an algebraic symmetry
that commutes with all time and space translations oy, a,

Vi€ R,z € R": o, f] = [0, 8] = 0. (5.8)

Theorem 5.6. In a “physically relevant” representation (H,w, ), i.e. a
representation satisfying the conditions' described in section 7?7, an internal
algebraic symmetry [ is unbroken, 1. e. represented unitarily, if and only
if (iff) the ground state correlation functions are invariant under [3:

VAe A: (B'w)(A) :=w(B(A)) :=(Q,(A)Q) = (Q,AQ) =w(A) (5.9)

Proof. If § is unbroken, it is realized by a unitary operator U(f). Then
U(B)R2 is also translation invariant, since (3 is an internal symmetry. However,
since €2 is by assumption the unique translation invariant state, we must
have f*w = w. The reverse direction is corollary ?7?. O

This theorem allows a simple characterization of symmetry breaking by

Definition 5.7 (order parameter). A ground state expectation value of an
observable A € A that is not invariant under an internal algebraic symme-

try
w(B(A)) # w(A) (5.10)

is called an order parameter.

5.2  Charges

Conserved currents

0", (z) =0 (5.11)

and associated charges
Q1) :/ 4z jo(x) (5.12)
xo=t

that are also conserved

dQ . _
T i[H,Q] =0 (5.13)
and act on the fields
Q. 6n(2)] =1 Tumbm (), (5.14)

IExistence of energy and momentum, stability, and existence of a ground state.
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where the fields on the right hand side can be composite. .
Acting with @ on a translation invariant state |¥) (i.e. P |U) = 0)

Q1) = (WIQ'QIY) = (¥QQlY) = [@ (Wlji)alv)
= [ @i 0 Q) = [ (vl 0)Qe )
— [@ i@l = (i0QY) [E, (.19

—

—00

we see that either @ |¥) = 0 or @) |V) is not a normalizable state in the
Hilbert space.

5.8 Goldstone’s Theorem

(0[[ju(z), dn(y)]]0) =

E:/:ﬁ%WWA@maM%M%@W»—mwawmamnmnumm

}j/‘ (77 (0], (0)[p, ) {p, al6a(0)[0) — &P (0|6, (0)]p, @) (p, alj (0)]0))
= [ ) — ) (516)
with
P(p) =Y (017,(0)|p, @) (p, @6 (0)|0) = puO(po)p" (p°) (5.17a)
Ar() =Y (016n(0)|p, @) (p, @]5,(0)[0) = p.O(po) 5™ (p*) (5.17b)
then
(0| () / e (B0)e () = Op)e 5 (1))
a/  (B)e ™5 07) + B V(1)) (5.15)
introducing

A (2 m?) = / dk,, e—ike — / éﬂ’; 270 (ko )5(K: — m2)e—*  (5.19)
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we can write
(O] (= \0
= 2710, / dm? m*) Ay (z —y;m?) + " (m*) Ay (y — z;m?))  (5.20)

A, (z;m?) depends on z only through 22 and zg, but the latter only for time-
or lightlike . Therefore we have for spacelike x

AL (z;m?) = Ap(—2;m?) (for 22 < 0). (5.21)
Also, by causality, all commutators must vanish for spacelike x — y

O‘ e
= 27i0, / dm? )+ 7" (m*)) Ap(z —y;m?) (5.22)

- p(m?) = 5" (m?) (5.23)

and therefore

(01[u(), ¢n(y)1]0)
= 27riﬁu/0 dm?p"(m?) (As(z — y;m?) — Ay (y — z;m?))

= 27?i8u/ dm?p"(m*) Az — y;m?)  (5.24)
0

If j,, is conserved
0= 0 (0], (+): 6, (]|0) = 27070, | " o (1) A — g
0

= —27ri/ dm?*m?p"(m*) Az — y;m?)  (5.25)
0

and we find

m?p"(m*) = 0. (5.26)
On the other hand, in the case
(0[[ju(2), ¢n(y)]]0) # 0, (5.27)
we must have
p"(m?) o< 5(m?) (5.28)

i.e. there is a massless state created by j, out of the vacuum, since (5.17)
implies

(0ljo(2)|p, @) = 0 — p(p*) = 0. (5.29)
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A

FORMULAE

“Today’s students can no longer calculate”: such is the grievance frequently
directed against current teaching of mathematics by physicists and engineers,
and it must be admitted that this criticism is often justified. When one has
seen a second or third year undergraduate toil over a change of variable or
an integration by parts, one can scarcely be other than alarmed, particularly
(as is sometimes the case) when the same student seasons his ignorance and
clumsiness with a pretentious and useless jargon which he has also failed to
understand.

It must be continually repeated that there is no “modern mathematics”
as opposed to “classical mathematics” but simply the mathematics of today,
which continues that of yesterday without any deep rupture, and which above
all is dedicated to solving the great problems left by our predecessors. To
do this, mathematics has gradually developed a profusion of new abstract
concepts, which, by concentrating on the heart of a given problem and by
eliminating trivial details, have made possible a steady advance in areas still
considered inaccessible scarcely fifty years ago. Those mathematicians who
create abstraction for the sake of abstraction are mostly mediocrities.

A by no means negligible consequence of this tendency to abstraction has
been a “tidying up” which these new concepts have helped to create in the
teaching of the fundamentals of mathematics (particularly in algebra and ge-
ometry). Prior to this, ridiculous traditions had encumbered teaching with
trivialities and with useless and even harmful developments. Nevertheless the
substance of so-called “classical mathematics” has remained intact, and the
basis of modern analysis is still the wonderful tool wrought by the mathe-
maticians of the last three centuries, the Infinitesimal Calculus. To pretend
to neglect it in order to plunge immediately into the most recent functional
analysis is to build on sand and can produce nothing but sterility and verbiage.

Until this year this stumbling block was hardly avoidable. Trapped on
the one hand by a secondary teaching in the hands of a mandarinate cut
off from living mathematics for 80 years and exclusively devoted to the con-
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templation of its navel, and on the other hand by the teaching of modern
analysis given in the Faculties, which “stick” to research in order to prepare
for it efficiently, the unfortunate student had just one year to initiate himself
into the classical Infinitesimnl Calculus and to learn how to handle its tech-
niques fluently. Fxperience soon showed that this wns insufficient, and the
palliative introduced under the title of “Mathematical Techniques
of Physics” given by mathematicians more concerned with rigor
than with efficiency, achieved in many Faculties the teaching of a
painless version of abstract analysis, stressing principles rather
than calculation.

The new syllabuses, by stretching the “first cycle” over two years, should
re-establish the equilibrium and give the conscientious student the solid tech-
nical basis which will enable him later to assimilate more abstract concepts
without falling into psittacism. Essential parts of classical analysis, which can
and should be approached without too much abstract preparation, like the the-
ory of analytic functions and of differential equations, have fortunately been
included in these syllabuses, particularly in the second year. This book is
above all devoted to the development of these fundamental techniques assum-
ing known the fundamentals of the differential and integral Calculus taught
in the first year of the first cycle.

We must therefore “know how to calculate” before claiming access to mod-
ern analysis. But what does “to calculate” mean? There are in fact two types
of “calculus™ which there is a tendency to confuse. On the one hand, there is
the “algebraic calculus” which (oversimplifying the issue) can be character-
ized as the establishing of equalities the prototype is given by the formulae
for the solution of equations (the “closed formulae” of the Anglo-
Sazxons) which wield a strange kind or fascination on the users of
mathematics: how many times have I met an engineer or a physi-
cist who wants mathematics to be a kind of automatic machine
producing formulae for the solution of problems!

This kind of relation also exists in analysis and can often be of great
importance—Cauchy’s formula and the development into Fourier series are
typical examples of this. But in my opinion the essence of the Infinitesi-
mal Calculus does not lie here. Physicists insist, with good reason, that for
them a theorem 1is without interest if it does not entail at least the possibil-
ity of calculating numerically the numbers or functions under consideration.
They will have nothing to do with those “existence theorems” of the pure
mathematicians which do not fulfil these conditions. But to speak of numer-
tcal calculation is to speak of approximation, a real number being “known”
only when a method to approximate it has been given (with an approximation
which the mathematician want: to be arbitrarily small, whereas the user of
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mathematics is content with much less). If it is remembered that the teaching
of mathematics, in the first cycle, is addressed at least as much to the future
physicists and chemists as to the mathematicians, it will be understood why
this side of analysis is particularly insisted upon in this work. I have not
tried to write a treatise on the Numerical Calculus proper, which should be
the object of specialized teaching, but no concept has been introduced which is
not susceptible to numerical evaluation. At each stage the theoretical means
of obtaining such calculations has been indicated, if required.

The pure mathematicians would in fact be wrong to despise this “down to
earth” side of the Infinitesimal Calculus. To acquire a “feeling for analysis”
indispensable even in the most abstract speculations, one must have learnt to
distinguish between what is “large” and what is “small”, what is “dominant”
and what is “negligible”. In other words, Infinitesimal Calculus, as it is
presented in this book, is an apprenticeship in the handling of inequalities far
more than of equalities and can be summed up in three words:

MAJORIZE, MINIMIZE, APPROXIMATE.

The adoption of this point of view by no means implies that I have sacri-
ficed rigor to convenience, or reduced the Infinitesimal Calculus to a series of
recipes. We have to shape thinking beings, not robots, to induce the student
to understand what he is doing, not to teach him mechanical methods. To
have a “feeling for analysis” is to have acquired an “intuitive” idea of the
operations of the Infinitesimal Calculus and this is obtained only through use
and numerous concrete examples. But the test which proves that one has re-
ally reached this stage is to know how to give precise definitions of the notions
used and to employ these to build correct proofs, for these last are no more,
in the end, than a “pulling into shape” of intuition.

On this point, the physicists often jeer at the pure mathematician for
always wanting to prove everything and for “splitting hairs” to establish “self-
evident” results. They are not always wrong, and a beginner would do well
to accept plausible results without encumbering his mind with subtle proofs,*
so that he can reserve his efforts for the assimilation of new and not “self-
evident” ideas. I have therefore had no hesitation in admitting a certain
number of basic theorems of analysis nor in pointing out to students that they
may, at first reading, dispense with knowing certain long or slightly delicate
proofs, by printing the latter in small print.

The physicists venture onto dangerous ground where they have
a tendency to accept as “evident” that which is not so at all

In the end this simply means increasing the number of axioms, an inflation against
which only the logccians protest.
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and to forget that our intuition is but a rudimentary instrument,
which at times leads us into gross errors. Contrary to what many
of them believe, it is not necessary to look for functions as “monstrous” as
continuous functions without derivatives in order to fault them in results
which they accept without discussion. The “Runge phenomenon” (Chapter
IX, Appendiz) shows that the classical method of polynomial interpolation
can diverge for analytic functions as “nice” as we could wish; and there are
functions analytic for |z| < 1, continuous in the whole disc |z| < 1, which
however transform the circle |z| = 1 onto a Peano curve filling a square.

Implicit faith therefore has its perils. In any case one cannot meet
seritous experimentalists without being struck by the extreme care
which they take in making sure of the correctness of their mea-
surements and in avoiding fallacious interpretations. To handle
mathematics correctly requires an equal care, and I do not think
it is good teaching practice to try to inculcate strict habits of work
in some spheres, while allowing (or even encouraging) slackness
and vagueness in others.

I have not adhered slavishly to the official syllabuses, and I have stressed
particularly that which seemed to me most important for the student who
completes his first cycle with a view to going on to his License or Maitrise in
Physics or Mathematics (pure or applied). Thus I have omitted everything
concerning multiple integrals and differential forms. I have said elsewhere
what I have thought of the “Stokes mania” of some of my colleagues, and the
coverage of the subject in the first year of the first cycle seems quite suffi-
cient to me, without trying to enter into refinements which at this level can
only be sterile. On the other hand I have included a number of topics of
the Infinitesimal Calculus which do not expressly appear in the syllabus, or
which, like the serious study of differential equations, are in my opinion left
too late, at the level of the Maitrise. Roughly speaking, it can be said that the
analysis expounded in this book is essentially analysis “of one variable”, real
or complex. All mathematicians know that the passage from one to several
variables is a brutal “jump” which gives rise to great difficulties, and neces-
sitates quite new methods, On the other hand, analysis of one variable is an
essential tool for working towards more general questions, I have thought it
wholly appropriate to put this “mutation” at the junction of the two cycles.

The present timetables do not therefore permit the teaching of the whole of
this book in the second year of the first cycle, and the teacher or student who
uses it will make his own choice. Nevertheless one may be forgiven for hoping
that one day secondary teaching will place in the lumber room of histery the
fossilized mathematics at present taught and that the time thus gained will
be usefully employed in teaching in the last three years at high school what is
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now taught in the first year of the first cycle. The first four chapters of this
book, which are only complementary to the syllabus of the present first year
(and usually omitted), could then be advantageously incorporated into the first
year, and all of the remaining chapters into the second year. A student who
had properly assimilated them would, in my opinion, be well prepared either
to apply his mathematical knowledge to concrete problems, or to move to a
higher level of abstraction and begin the present syllabus of the Maitrise in
pure mathematics.

Jean Dieudonné, preface of Calcul Infinitésimal, 1968 [3]
bold face selections by T. O.
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Alphabet Soup

AF Asymptotic Freedom

d.o.f. degrees of freedom

DR Dimensional Regularization

EFT Effective Field Theory

EQFT Effective Quantum Field Theory
EW Electro Weak

iff if and only if

MS Minimal Subtraction

OPE Operator Product Expansion
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PDF Parton Distribution Function
PT Perturbation Theory

QCD Quantum Chromodynamics
QED Quantum Electrodynamics
QFT Quantum Field Theory

QM Quantum Mechanics

RG Renormalization Group

RGE Renormalization Group Equation
SM Standard Model

SSB Spontaneous Symmetry Breaking
1PI One Particle Irreducible
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