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Little Group / Second Quantization

4.1 Little Group Transformations

In the lecture, we have introduced the Lorentz transformations
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1. Determine the inverse transformation (K_l)“y (p) and verify by explicit
computation that
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2. Other such transformations are
(= Fk)"py

Xt (p) = 0 + L= (42)
viy(p) = o+ L1 (4b)

(a) Show that X(p)k =p and Y (p)k = p.

(b) Describe the differences between A, X and Y and discuss their
relative merits.

4.2 Second Quantization

Consider the Fock space operators
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derived from square matrices M using bosonic and fermionic creation and
annihilation operators a,(p), al,(p), ba(p) and b, (p).
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1. Compute the commutators

[B(M), B(N)]- (6a)
[E(M), B(N)]- (6b)

for two matrices M and N and interpret the result.

2. Assume that
MN = NM + zN with z € C (7)

as matrix products and compute

P B(N)e BM) (8)

4.3 Matrix Elements

Consider the bosonic and fermionic two particle states
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1. Compute the inner products
(frg;+If g5 +) (10a)
(f.g:—=1f" g5 =) (10b)

2. Can you generalize you result to n-particle states?



