

Fakultät für Physik und Astronomie Prof. Dr. Thorsten Ohl

Raimond Abt, Adam Büchner, Robert Franken, David Rodriguez Fernandez

4. Übung zur Quantenmechanik

16. Mai 2019

Spin-Präzession

Der Hamiltonoperator für ein ortsfestes Elektron (mit Energie ε , Ladung e und Masse m) in einem zeitlich konstanten und räumlich homogenen Magnetfeld \vec{B} ist

$$H = \varepsilon \mathbf{1} - \frac{e\hbar}{2mc} \vec{\sigma} \vec{B} \tag{1}$$

in der Basis mit $|1\rangle$ für Spin nach oben und $|2\rangle$ für Spin nach unten.

Die Observable für die Messung des Spins in Richtung \vec{n} mit $|\vec{n}| = 1$ ist

$$S(\vec{n}) = \frac{1}{2}\vec{n}\vec{\sigma} \,. \tag{2}$$

4.1 Zeitentwicklungsoperator

Der Hamiltonoperator H und der Zeitentwicklungsoperator $U(t, t_0)$ für dieses System sind 2×2 -Matrizen.

1. Berechnen Sie die Lösung der Schrödingergleichung für $U(t,t_0)$

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t}U(t,t_0) = HU(t,t_0) \tag{3a}$$

$$U(t_0, t_0) = \mathbf{1} \tag{3b}$$

mit H aus (1). Als Ansatz für die Matrixelemente von $U(t,t_0)$ bieten sich Exponentialfunktionen an.

- 2. Berechnen Sie die Wahrscheinlichkeit, das System zum Zeitpunkt $t \geq 0$ im Zustand $|2\rangle$ anzutreffen, wenn es zum Zeitpunkt t = 0 im Zustand $|1\rangle$ gestartet ist.
- 3. Berechnen Sie den Erwartungswert für eine Messung des Spins in Richtung \vec{n} zum Zeitpunkt $t \geq 0$, wenn das System zum Zeitpunkt t = 0 im Zustand $|1\rangle$ gestartet ist.
- 4. Berechnen Sie die Wahrscheinlichkeit, zum Zeitpunkt $t \geq 0$ entlang der Richtung \vec{n} den Spin +1/2 zu messen, wenn zum Zeitpunkt t=0 der Spin +1/2 entlang der Richtung \vec{n}_0 gemessen wurde.

5. Wie vereinfacht sich das Ergebnis, wenn zwei oder alle der Vektoren \vec{B} , \vec{n} und \vec{n}_0 parallel sind?

4.2 Bloch-Sphäre / Energieerhaltung

Wir haben in der Vorlesung gesehen, daß ein Zustand $|\psi\rangle$ mit

$$|\psi\rangle\langle\psi| = \frac{1}{2}(\mathbf{1} + \vec{\sigma}\vec{n})$$
 (4)

auch durch einen Punkt \vec{n} auf der Oberfläche der Bloch-Sphäre $|\vec{n}|=1$ beschrieben werden kann. Damit kann auch die Zeitabhängigkeit eines Zustands $|\psi(t)\rangle$ durch die Zeitabhängigkeit eines Punktes $\vec{n}(t)$ auf der Oberfläche der Bloch-Sphäre beschrieben werden.

1. Berechnen Sie den Erwartungswert der Komponenten des Spin-Operators

$$E_{\vec{n}}(S_i) = \langle \psi | S_i | \psi \rangle \tag{5}$$

für den Zustand, der dem Punkt \vec{n} auf der Bloch-Sphäre entspricht.

2. Berechnen Sie den Erwartungswert des Hamiltonoperators

$$E_{\vec{n}}(H) = \langle \psi | H | \psi \rangle \tag{6}$$

für den Zustand, der dem Punkt \vec{n} auf der Bloch-Sphäre entspricht.

3. Wir wissen aus dem Ehrenfest-Theorem, daß

$$E_{\vec{n}(t)}(H) = \text{const.} \tag{7}$$

gelten muß. Was folgt daraus für die Bewegung von $\vec{n}(t)$? Genügt die Information um die Bewegung bei gegebener Anfangsbedingung eindeutig festzulegen?

- 4. Berechnen Sie $\vec{n}(t)$ mithilfe des Zeitentwicklungsoperators (vgl. Aufgabe 4.1) für den Hamiltonoperator H aus (1) als Funktion des Anfangzustands $\vec{n}(0)$.
- 5. Wie vereinfacht sich die Rechnung, wenn die Vektoren \vec{B} und $\vec{n}(t)$ parallel sind?
- 6. Verifizieren Sie, daß Ihre Lösung tatsächlich

$$E_{\vec{n}(t)}(H) = \text{const.} \tag{8}$$

erfüllt.