

Fakultät für Physik und Astronomie Prof. Dr. Thorsten Ohl

Raimond Abt, Adam Büchner, Robert Franken, David Rodriguez Fernandez

3. Übung zur Quantenmechanik

9. Mai 2019

QTrits

Um ein Quantensystem das drei Zustände annehmen kann, benutzen wir als Observable die Matrizen

$$\tau_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \qquad \tau_2 = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix}, \qquad \tau_3 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \tag{1}$$

Diese Matrizen entsprechen als Observablen, z.B., der Messung des Spins entlang der Koordinatenachsen in einem System mit Gesamtspin 1.

3.1 Drehungen im \mathbb{R}^3

1. Berechnen Sie die Matrizen

$$R_n(\theta) = e^{-i\theta\tau_n} \tag{2}$$

für n = 1, 2, 3 und $\theta \in \mathbf{R}$.

2. Zeigen Sie, daß $R_n(\theta)$ eine Drehung um die \vec{e}_n -Achse um den Winkel θ im dreidimensionalen Anschauungsraum beschreibt.

3.2 Eigenbasis

- 1. Finden Sie die Eigenwerte und Eigenvektoren der Matrizen τ_n .
- 2. Konstruieren Sie aus den Eigenvektoren jeweils eine Orthonormalbasis im Hilbertraum \mathbb{C}^3 .

3.3 Zustände

Benennen Sie die Eigenzustände von τ_n nach dem Vorzeichen des Eigenwerts (ein Eigenwert verschwindet für alle τ_n)

$$|-;n\rangle \qquad |0;n\rangle \qquad |+;n\rangle$$
 (3)

und benutzen Sie die Ergebnisse einer Messung entlang der \vec{e}_3 -Achse

$$|+\rangle = |+;3\rangle \tag{4a}$$

$$|0\rangle = |0;3\rangle \tag{4b}$$

$$|-\rangle = |-;3\rangle \tag{4c}$$

als Basis.

- 1. Drücken Sie alle Eigenzustände $|l;n\rangle$ für l=-,0,+ und n=1 durch die Basis (4) aus.
- 2. Berechnen Sie alle Matrixelemente $\langle l; n|l'; n' \rangle$ für l, l' = -, 0, + und n, n' = 1, 2, 3, sowie ihre Betragsquadrate.
- 3. Interpretieren Sie Ihre Ergebnisse als Wahrscheinlichkeiten für sukzessive Spinmessungen entlang verschiedener Koordinatenachsen.

3.4 Drehungen im \mathbb{C}^3

Zeigen Sie exemplarisch, daß die Drehmatrizen $R_n(\theta)$ auch im Zustandsraum \mathbb{C}^3 die richtigen Transformationen realisieren. Erklären Sie, warum gerade diese Ergebnisse physikalisch richtig sind.

1. Drehungen um $\theta = \pi$:

$$R_3(\pi) \mid \pm; 1 \rangle \propto \mid \mp; 1 \rangle$$
 (5a)

$$R_3(\pi) |0;1\rangle \propto |0;1\rangle$$
 (5b)

$$R_3(\pi) \mid \pm; 2 \rangle \propto \mid \mp; 2 \rangle$$
 (5c)

$$R_3(\pi) |0;2\rangle \propto |0;2\rangle$$
 (5d)

$$R_3(\pi) \mid \pm; 3 \rangle \propto \mid \pm; 3 \rangle$$
 (5e)

$$R_3(\pi) |0;3\rangle \propto |0;3\rangle$$
 (5f)

2. Drehungen um $\theta = \pi/2$:

$$R_3(\pi/2) |\pm;1\rangle \propto |\pm;2\rangle$$
 (6a)

$$R_3(\pi/2) |0;1\rangle \propto |0;2\rangle$$
 (6b)

$$R_3(\pi/2) \mid \pm; 2 \rangle \propto \mid \mp; 1 \rangle$$
 (6c)

$$R_3(\pi/2) |0;2\rangle \propto |0;1\rangle$$
 (6d)

$$R_3(\pi/2) \mid \pm; 3 \rangle \propto \mid \pm; 3 \rangle$$
 (6e)

$$R_3(\pi/2) |0;3\rangle \propto |0;3\rangle$$
 (6f)

3. Wie sehen die entsprechenden Relationen für $R_1(\theta)$ und $R_2(\theta)$ aus?