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Abstract

e General mathematical description of a physical system: C*-algebras,
spectra and states

e Mathematical description of quantum systems: states and representa-
tions and the GNS construction.

e Single particle quantum mechanics: Weyl algebra, Stone-von Neumann
theorem, Schrodinger wave functions, minimum uncertainty states.

e Quantum dynamics: Schrodinger equation, Hamiltonian, self-adjointness,
examples.

e Mathematical description of infinitely extended systems: Haag’s theo-
rem.

e Symmetries in quantum mechanics: Wigner’s theorem

e Symmetry breaking: Goldstone’s theorem, Higgs mechanism, super-
conductivity.
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1
INTRODUCTION

1.1 Literature

| Lecture 01: Wed, 17.10.2018)|

1.1.1 Close to the lecture

e Franco Strocchi, An Introduction to the Mathematical Structure of Quan-
tum Mechanics, World Scientific, 2nd ed., 2008.

e Franco Strocchi, Symmetry Breaking, Springer, 2nd ed., 2007. Avail-
able online: http://www.springerlink.com/content/978-3-540-73592-2/

1.1.2  Quantum Field Theory

e Rudolf Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer,
2nd ed., 1996.

1.1.3 C*-Algebras

e Ola Bratteli, Derek Robinson, Operator Algebras and Quantum Sta-
tistical Mechanics, Vols. I, II, Springer, 2nd ed., 2002 (these used
to be available free of charge as PDFs on Ola Bratteli’s homepage
http://folk.uio.no/bratteli/, but the page has dissappeared).

e Jacques Dixmier, C*-Algebras, North-Holland Mathematical Library,
Vol. 15, 1977.

e Masamichi Takesaki, Theory of Operator Algebra, Vol. 1, Springer,
2001


http://www.springerlink.com/content/978-3-540-73592-2/
http://folk.uio.no/bratteli/
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1.1.4 Functional Analysis

e Michael Reed, Barry Simon, Methods of modern mathematical physics,
Volume 1: Functional analysis, Academic Press, 2nd ed., 1981.

1.1.5 Historical

e John von Neumann, Mathematical Foundations of Quantum Mechan-
1cs, Princeton University Press 1932.

1.2  Naive Formulation of Quantum Mechanics

Schrodinger wave functions are usually the first formulation introduced in
Quantum Mechanics ((QM) lectures. Its ingredients are

e The state of a physical system is described by a wave function, which is
assumed to be square integrable and normalized. For a single particle
it is a function of the space points and time

. R3 N
v:R}x R — C 11

(7,1) — (7, 1)
and the probability of finding the particle in a domain D € R? is given
by
pol®) = | dafuiaof. (1.2
D

where 1 has been normalized (g,d*z [¢(Z,t)[> = 1. In other words,
| (Z,t)]? is interpreted as a probability density.

e Superposition principle: if 9 o are states, 1 = c191 + co1py with |cl|2 +
lco|? = 1 is also a state.

e Other observables are constructed by a correspondence principle from
a classical dynamical system

position:  Z(t) < & (1.3
momentum:  p(t) < p (1.4
where
(#) (w, 1) = Fp(, 1) (1.5)
(D) (2, t) = =iVip(a, ). (1.6)

Note:
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— The choice of 7 is intuitively clear, because it yields the correct
expectation values.

— The choice of ﬁ can be motivated by each of

x the de Broglie relation p' = hk for plain waves

* the resulting Canonical Communation Relations (CCR) [z;, p;] =
id;; reproduce the Heisenberg uncertainty relation AzAp >
1/2

% as the generator of translations (cf. [ , 1)

or any combination of these arguments.

e the dynamics of the system is described by the Schrodinger equation

0
0
with a Hamiltonian H that is motivated by the correspondence princi-

ple
1 1

H=_—pP+V(@)=-——A+V(D). 1.8
V() = 5 A+ V(@ (18)
e physical interpretation:
— possible results of measuring an observable O: the spectrum of
the corresponding operator

— expectation value for multiple measurements of an observable O:

(0) = f B2 4(F, 1) O (7, 1) (1.9)

and the probability of finding the particle in a domain D can be
interpreted as the expectation value for the characteristic func-
tion yp of D

p(D) = Ld% [Y(&1)]* = fdgx U(&, ) xp(Z)U(E,t) = (xp)

(1.10)
where 1) has been normalized {5,d*z |¢(Z,1)[* = 1.
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1.8 Problems

The spectral theorem is required to make the interpretation consistent and
to define functions of operators like

F(4) = f da f(a) |ay<al | (1.11)

but

1. The CCR [z,p] = i can not be realized with bounded operators (— ez-
ercise).

2. Hellinger-Toeplitz theorem: an everywhere defined symmetric operator,
i.e.

Vi), p e H: (¥, Ag) = (AY, ¢) (1.12)

on a Hilbert H space is bounded (see, e.g. | |, p. 84, corollary to
the closed graph theorem I11.12).

Therefore, we have to be careful about the domain of our operators:

1. there are square integrable ¢ : R — C for which (z¢) : R — C is not
square integrable

2. the operators z, p and [z, p] all have different domains.

In fact, the development of a mathematically rigorous spectral theory for un-
bounded operators was, to a large extent, driven by these technical difficulties
of quantum mechanics.

Instead of retracing these historical steps starting from Schrédinger’s and
Heisenberg’s heuristics, we shall go back and ask ourselves what is the most
general framework for a mathematical description of physical systems.

1.4 Mathematical Description of Physical Systems

We will start with the intuitive example of classical mechanics and later
relax some assumptions to obtain a framework that encompasses quantum
mechanics.
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1.4.1 Classical Mechanics

Canonical Phase Space

kinematics: the kinematical structure is determined by the state of the
system and the observables that can be measured:

state: in an idealized classical mechanical system with n degrees of
freedom (d.o.f.), the state is given by a point z in phase space T,
i.e. in a chart

x=(¢,p) =(q1,--,Gn,P1,---,Pn) €L (1.13)

where I' is often a cotangent bundle T*(@) over the configuration
space ) 3 q.

observables: we can measure all polynomials of the phase space vari-
ables ¢ and p and this should extend to the closure of the poly-
nomials in the |-| = supp | - |-norm, i.e. the continuous functions
on phase space: C(I"). Sometimes it is useful to allow complex
coefficients for the polynomials and complex valued continuous
functions.

dynamics: the time evolution of the state z = (g, p) of a classical mechanical
system is described by a flow ® on phase space

O:RxI'—>T

1.14
(t,0:9) > ulap) = (a6, p(0) Y
(see section 5.4.2 on page 156 of | | for further discussions). This
induces the time evolution of the observables by
P*:Rx C(I') - C(I) (1.15)
(&, f) = @[ (f) = fod '
i.e.
7 (f)(a.p) = f(a(®), p(t)) - (1.16)
This flow is a solution of the canonical equations of motion
T (1.17a)
dp; H
pi_ 0 (1.17b)

dt B ﬁqi
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with a suitable Hamiltonian H : I' — R. Using the antisymmetric
Poisson brackets

{gi,pj} = i (1.18a)
{@i.q;} = {pi,p;} =0 (1.18b)

we may also write more uniformly

d

—q; = 1¢i, H 1.1
= (o H) (1.19a)
d
—pi = {pi, H 1.19b
= o H) (1.190)
and find with the chain rule
d * *
Sr(f) = (@1(/), H) (1.20)

for all observables f : I' — R.

Algebras of Observables

The space C(I') of all observables carries a natural abelian -algebra structure

Va,8e C: (af + B9)(x) = af(x) + Bg(x) (1.21a)
(f9)(@) = f@)g(x) = (9f)@)  (L21b)
(/) (@) = F@) (1.21c)

with f: 2z +— 1 as identity. In general we have

Definition 1.1 (algebra). An algebra A over a field K is a vector space
over K together with a bilinear internal binary operation

S AxA—- A

(2.y) — 2y, (1.22)

ie. Vo,y,ze A,a,f e K
z(ax + Py) = a(zx) + 5(zy) (1.23a)
(ax + Py)z = a(zz) + Byz) (1.23b)

(ax)(By) = (af)(xy) - (1.23¢)
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| Lecture 02: Fri, 19.10. 2018

The algebra A is called
e associative, if and only if (iff) Vz,y,z € A : (zy)z = x(y2),
e commutative or abelian, iff Vx,y e A : xy = yx and
e unital or with identity, iff 3je e A:Vre A:exr = ze = x.
Note that some authors reserve the term algebra for associative algebras.

In the following, we will only use algebras over C. Most of the algebras
will be associative and many unital. The more interesting cases will not be
commutative, however.

Definition 1.2 (x-algebra / involutive algebra). A =-algebra or involutive
algebra (A, =) is an associative algebra A over C with an antiautomorphism
or tnvolution

nAmA (1.24)
T
ie.Vr,ye A,ae C
(") ==z (1.25a)
(x+y)" =a*+y* (1.25Dh)
(x)* = ax™ (1.25¢)
(xy)* = y*z* (1.25d)

where @ is the usual complex conjugate of a in C.

Note that it is in principle possible to use associative algebras over fields
other than C, but this is outside of our scope.

Definition 1.3 (normal, self-adjoint, positive, unitary). An element z of a
x-algebra is called

e normal, iff x*x = xa*,

self-adjoint, iff x* = x,

positive, iff Jy e Az = y*y,

an isometry, iff z%x = e,

unitary, iff ¥z = za* = e.
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The last two only apply to unital algebras, of course.

Lemma 1.4. A positive element x of a #-algebra is self-adjoint. Furthermore,
self-adjoint and unitary elements are normal.

* *

Proof. The first statement follows from z* = (y*y)* = y*(y*)* = y*y =z
and the second and third statements are trivial. O
In C(T"), there is a natural norm
£ = Sup |f ()] (1.26)
e

and C(I") is by construction complete w.r.t. to this norm, i.e. a Banach
space. Since

Vf,g€CI) | fgl < [f] 1l (1.27)

the product is continuous w.r.t. to the norm topology in both factors and
thus we have a Banach =-algebra.

Definition 1.5 (normed algebra). A normed algebra (A, |-||) is an associative
algebra A together with a norm || - | that satisfies

Vr,ye A oyl < [=]ly. (1.28)

Therefore the multiplication is continuous w.r.t. to the norm topology in
both factors.

Definition 1.6 (Banach algebra). A Banach algebra is a normed algebra (A, ||-
|) that is complete w.r.t. to the norm | - |.

Definition 1.7 (normed =-algebra). A normed =-algebra (A, =, | -|) is a *-
algebra (A, =) together with a norm | - || that satisfies

Vee A: |z*| = |z||. (1.29)

Definition 1.8 (Banach =-algebra). A Banach =-algebra is a normed =-
algebra (A, =, | - |) that is complete w.r.t. to the norm || - |.

Finally we find that

Ve Cm) I~ fl =111 (1.30)

and C'(I") turns out to be a unital C*-algebra:
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Definition 1.9 (C*-algebra). A C*-algebra is a Banach =-algebra (A, =, | - ||)
that satisfies the C*-condition

Vre A: |z*z| = |z|?. (1.31)

Remark 1.10. The C*-condition (1.31) implies (1.29), i.e. Vo e A : ||z*| =
]l

Proof. On one hand

Jz)? "2 Je*z) < |2*] )2 (1.32)

2] < %] (1.33)
and on the other

R (e I e R (1.34)

2] < sl (1.35)

OJ

Corollary 1.11. The C*-condition (1.31) is equivalent to ||z*x| = |z||z*].

We will later see that the C*-condition (1.31) is very strong and has
important consequences. Therefore we should look at the example motivating
the definition.

Theorem 1.12 (C*-algebra of bounded operators). The set L(H) of bounded
operators on a Hilbert space H is a C*-algebra

Proof. L(H) is naturally a linear space and we can define a norm via

[Al=" sup  {[A¢[}. (1.36)
ver, =1

For every A € L(H), we can define the adjoint operator A*, thus turning L(H)
into a Banach =-algebra. Finally, using the Cauchy-Schwarz Inequality (CSI)

(¥, 0)l < [¥] ol (1.37)
we can show that the C*-condition (1.31) holds for L(#):

JAIP = sup  {(Ap,A¢)} = sup  {(¥, A"AY)}

ver ] =1 er ] =1
CSI . . . )
< sup {ATAY[} = [ATA] < AT [A] = [A]7. (1.38)
ver ] =1

]
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In fact, the converse is also true

Theorem 1.13. Every C*-algebra is isomorphic to a norm-closed self-adjoint
algebra' of bounded operators on a suitable Hilbert space.

The proof of this theorem will not be given at this point (see section 2.3.4
of [BRO2]).

A very important special case is the following characterization of abelian
C*-algebras. It shows that our example C(I') is already the general case:

Theorem 1.14. Fvery abelian C*-algebra is isomorphic to the algebra Co(X)
of continuous functions on a locally compact Hausdorff space X, vanishing
at infinity.

This theorem has the profound consequence that geometry and commuta-
tive algebra are two sides of the same coin. The maximal ideals of an algebra
of functions on a space X are the functions vanishing at a point z € X.
Therefore the points of a space can be identified with the maximal ideals
of an abelian C*-algebra. Indeed, some aspects of the study of non-abelian
C*-algebras are called “noncommutative geometry”. Again, the proof of this
theorem will not be given at this point (see section 2.3.5 of | ).

States as Linear Functionals

In the real world, it is impossible to determine the state of a system as a
single point x in phase space. One rather makes measurements with finite
errors and repeated measurements may or may not be correlated, depending
on the experimental situation.

Given a set

{n(f,w0)}cr, (1.39)

of N measurements of an observable f of a system in the state w, we can
define an estimator

1N
Doy = 5 2o tlf ) (1.40)
n=1
for the expectation
W(f) = Jim (P, (1.41)
of f in the state w. We can also determine higher moments, e. g.
(Auf)’ = w((f =w(£)) (142)

INote that “self-adjoint algebra” does not mean a algebra of self-adjoint operators, but
a algebra which includes the adjoint of every element.
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to measure experimental uncertainties, but we can wn principle never do
better.

From the definition of the expectation w( f), we immediately see that they
are linear

Va, e C, f,ge A:wlaf + Bg) = aw(f) + Bw(yg) (1.43a)
and (ignoring systematic errors) positive
Vie A:w(f*f)=0. (1.43Db)

Using linearity and positivity

Va,fe C:0<w((af +g)(af + Bg))
= lal’w (f*f) + Baw (¢"f) + aBuw (f*g) + 1B]*w (979)

o (D ) ()

we see that the matrix

w(f*f) w(f*g))
M = . . 1.45
<w<g 7 wlgg) (145)
must be positive, i.e. have only real and non-negative eigenvalues
1 1
ALo = 5urMi5\/tr2z\4—4detz\4. (1.46)
Therefore
0<det M =w(f*flw(g*g) —w(g*flw(f g) eR (1.47)
and we have established the CS/
w(g"f) =w(f*g) (1.48a)
w (f*9)] < Vw (f*Fv/w(g*9) - (1.48b)
From the CSI
w(f)] < Vw@)yw(f*f). (1.49)
we infer that
dfe A:w(f) £ 0= w(1) >0 (1.50)
Therefore all nontrivial states can be normalized
wnorm(f) = M (151)

w(1)
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with wpom(1) = 1. Below, in section 4, when we have developed more
tools, we will be able to prove that that every positive linear functional is
continuous. This is an example, where a physical requirement (positivity)
induces a functional analytic property (continuity).

Just as the flow & : R x I' — I" on phase space induces a flow &* :
R x C(I') — C(I') on the space of observables, we can also induce a flow on
the states in €2

b, . RxO—Q
(tw) > (1.52a)
with
wi(f) = w(P;(f)) =w(fod). (1.52Db)

Note that the idealized unphysical case of an exactly determined point in
phase space can be included in this framework by considering states w,

that correspond to Dirac measures
wep: C(I') - C (1.53)
= fg.p).

For these,

(B £)” = wap ((F = wan(H)))
= wep ((f = fl@.p))?) = ((f = f(q.0))*) (¢;p) = 0. (1L.54)

Algebraic Dynamics

| Lecture 03: Wed, 24.10. 2018

Thus we have abstracted the kinematical structure as

e the observables A of a classical system form an abelian C*-algebra A
and

e the states w of a classical system are the normalized positive linear
functionals w : A — C, i.e. a subset of the dual space A*.

On this level of abstraction, the flows ® are replaced by an abelian one-
parameter group {oy}er of C*-automorphisms
a:RxA—- A

(t.2) > () (1.55a)

with
a(ap(z)) = (g o ap) () = apyp () = ap(au(z)) . (1.55Db)
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Definition 1.15 (C*-homomorphism). A C*-homomorphism h : A — B
is a map between two C*-algebras A and B that preserves the C*-algebra
structure. It is of course linear and Vz,y € A

(h(z))* = h(z") (1.56a)
h(zy) = h(z)h(y) . (1.56b)

This in turn induces an abelian one-parameter group of transformations
on the states:

o R xQ— 0
() — af (@) (1.57a)
with
oy (w)(A) = w(a(4)). (1.57b)

1.4.2 General Physical Systems

Using as inspiration the algebraic structure we have just uncovered behind
the description of classical systems, we will now generalize it without assum-
ing the smooth phase space structure characteristic for classical systems.

Observables

For All Practical Purposes (FAPP), a physical system is nothing but a set Oy
of observables A € Oy, which can be measured by appropriate experimental
devices. This set Oy is not unstructured, there will relations among the
observables.

Given any device measuring A € Oy and any A € R, one can construct a
device measuring AA by rescaling the device. One does not even worry about
finite resources, because the actual device need not be physically rescaled,
just the measured value. Therefore we find

VAe Og, e R: NA € O. (1.58)

One can define the square A? of an observable A by squaring the measured
value. This extends to positive powers A" and A° can consistently be de-
fined as the observable 1 that always has the value 1. Also, linear combi-
nations AA™ + pA™ can be defined and therefore arbitrary polynomials in
one observable. Note that we can not yet define functions of observables by
infinite series or other limits of sequences of observables, because we have no
topology and no notion of convergence.
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If an observable A € O, only takes positive values, we can find another
observable B € Oy with A = B?, by taking the square root of the measured
values.

Note that we do not assume that we can measure multivariate poly-
nomials in different observables, since this would require the simultaneous
measurement of observables, which would lead us back to classical physics
immediately.

States

Different states w of a physical system correspond to different measured val-
ues for the observables. However, we can not say that an observable “has”
a particular value, we can only estimate an expectation for the result of a
measurement by averaging the values of repeated measurements. The expec-
tation value for the observable A € Oy when the system is in the state w will
be called w(A).

Assuming that the set Oq of the observables of the system is complete, a
state w is completely determined by the expectations of all observables

{wA)} aco, » (1.59)

i.e. wis a well defined map from Oy to the real numbers
CL)IOO—>R. (160)

Since w is defined as an average of measurements, it is clear that the expec-
tation of a scaled observable is the scaled expectation

VAe Og, A e R :w(AA) = w(A) (1.61)
and we also have linearity in powers”
VAe Op, A\, peR,n,me N :wAA" + pA™) = Aw(A") + pw(A™) . (1.62)

Above, we have said that a state is uniquely determined by measuring w(A)
for all observables A € O,.

The converse is also true: if two observables have the same expectation in
all the states, they are indistinguishable, FAPP. This creates an equivalence
relation among observables

A~BeVYweQ:wA) =w(B) (1.63)

2NB: In the lecture of Oct. 24, 2018, 1 erroneously wrote w(A™) = (w(A))". This
is mot correct: we have defined the n-th power of A for each individual measurement p
as pu(A™ w) = (u(A4,w))™. This does not imply the analogous formula for the expectation
values w(A™)!
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and we will in the following replace Oy by the equivalence classes w.r.t. this
relation Oy = Op/ ~. This has the immediate consequence that there is at
most one observable 1 € O; with

VweN:w(l)=1. (1.64)

And we see that all w are normalized functionals on O;. Furthermore, we

can identify
VAe O, : A" =1 (1.65)

and we necessarily have

VAe O 1A= A"A = AA' = A' = A = A1, (1.66)

i.e. 1 is the unique identity element in O;.
For all positive observables A = B% € Oy, the expectation of its values
must also be positive, i.e.

Ywe Q:w(A) =w(B?) =0 (1.67)
and since the states characterize the observables completely

YVweQ:w(A) =20« A>0. (1.68)

C*-Algebra Structure

For any physically realizable apparatus, the possible measurement values are
bounded. Since w is normalized, this allows to define a natural norm for any
observable A € O,

|A] = 81618 lw(A)| < 0. (1.69)

From this definition and (1.61), we have
1AL = [A]4]. (1.70)
Since the states characterize the observables completely, we also have
Al =0« A=0. (1.71)
The first non-obvious property is

Lemma 1.16.
VAe O : HA2|| = ||AH2 (1.72)
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Proof. By definition

VweQ:w(|A|1 £ A) = |A| £ w(A) =0 (1.73)
i.e.
A1+ A>0. (1.74)
Therefore
[AJ*1 — A* = (JAJ1 + A)(JAJ1 — A) > 0, (1.75)
i.e.
VweQ: AP —w(4?) =0 (1.76)
and
[AJ? = 4% (1.77)
Also, from
0< (JAIL+ A)* = |A|*1 + A% £ 2|A|A (1.78)
we have
Vw e Q: 2] Afjw(4)] < [A]* + w(A?) < JAJ* + 4%, (1.79)
and
2| AIAL < Al + (4%, (1.80)
i.e.
|AJ* < (A% . (1.81)
m

Since the states characterize the observables completely, we can use them
to attempt to define sums of observables

VA, Be Oy : 1A+ B:w(A+ B) =w(A) + w(B),

but A + B might not be an element of the original O;. If this is the case,
however, we will extend O; to include the newly defined A + B, it’s powers
and their sums

VA BeO,:31A+Be O, :YweQ:w(A+ B)=w(A) +w(B). (1.82)

Note that it is not necessary to measure A and B simultaneously for (1.82)
to be well defined. The estimators for the expectationa w(A) are obtained
from repeated measurements of identical copies of the system prepared in
the state w. This can be done for different observables as well and the sum
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defined from the sum of the measurements. This is not possible for products
or other non-linear combinations.

So far, we have constructed from a set of observables O a vector space O
with a linear structure defined by the set of all states w. By the definition
of the norm (1.69) on the original Oy, we can directly extend it to the sums,
satisfying the triangle inequality

VA, Be O, :|A+ B|<|A|+|B|. (1.83)

Therefore O, is a normed vector space and by completing it in the norm ||- ||,
we can turn it into a Banach space O. However, while the states are, by
construction (1.82), well defined on the sums of observables, we must still
verify that the states are well defined on the completion.

Fortunately, we have, by definition (1.69),

VweN:VAe O, : |w(A)| < |A], (1.84)

i.e. all w are continuous w.r.t. to the norm | - | and can be extended to the
corresponding norm completion O.

In order to obtain an algebra structure, we still need to define a multi-
plication. Note that in the case of operators on a Hilbert space, a straight-
forward multiplication will not work, because the set self-adjoint operators
is not closed under multiplication, unless these operators commute

(AB)* = B*A* = BA + AB.

Nevertheless, we can construct a symmetrical product from the sums of ob-
servables and their powers,

AoB=-((A+B)?-A*-B*) =BoAcO, (1.85)

DO | —

which is unfortunately neither guaranteed to be distributive or associative.
To proceed, we shall now make the mild technical assumption that the prod-
uct is homogeneous, i. e.

VA, BeO,AeR:Ao(AB) = A(AoB) = (AMA) o B. (1.86)

The motivation for this assumption is that if O was an associative algebra,
we would have

AoB:%(AB+BA)

which satisfies (1.86), of course.
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Lemma 1.17. The homogeneity (1.86) implies that (1.85) is distributive.

Proof. From
(A+B)?=A>+B*+2A0B (1.87a)
(A-B?=A>+B>+2A0(-B)=A*>+B*-2A0B (1.87h)
we find
AoB - i (A+ By — (A— By (1.88a)
A%+ B% = % ((A+B)*+ (A-B)?) . (1.88b)
Then

1.85)

2A+B)oC—240C —2BoC "

(A+B+C)P?—(A+B)?—-C* - (A+C)*+ A*+C* - (B+C)* + B>+ C?
=((A+B+C0P+A%) + (B*+C*) — ((A+ B>+ (A+C0)*) — (B+CO)*
(1.8_8b)1

2((2/1+B+C)2+(B+C)2+(B+C)2+(B—C)2

—(2A+B+C)? - (B—C’)2) _(B+C)?=0 (1.89)

" (A+B)oC=AcC+BoC(C (1.90a)
and by symmetry

Co(A+B)=CoA+CoB. (1.90b)

O

From the distributivity, symmetry and homogeneity of o and the linearity
and positivity of w follows

VweQ:YAeR:0<w((A+ AB)?
=w((A+ AB)o (A + AB)) = w(A?) + N2w(B?) + 2 w(Ao B) (1.91)

and using the same argument as in the proof of the CSI (1.48b), we find

w(A o B)| < \/w(A2)y/w(B?) (1.92)

and therefore

[AeB| </[A2[v] B2 = [A][B]. (1.93)
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From the estimate®

|A* = B*| = |[(A=B)o(A+ B)| < |A+ B||A- B|
<(lA=Bl+2[B])|A-B[| (1.94)

we see that the square A — A? is continuous in the norm topology

lim A? = B2, (1.95a)
A—B
Furthermore
|4% = B?| < max {JA|*, | B|*} (1.95b)
and we see that O forms a so-called Segal system | |. It was been shown
by Segal | |, that Segal systems have enough structure to recover most

of quantum mechanics.

However, since the mathematical structure can become quite involved,
we shall make another technical assumption, namely that there is a com-
plex? algebra extension (A, =) of O with an associative, but not necessarily

commutative, product, such that VA, B e O and \,ue C

Ao B — %(AB + BA) (1.96a)

(AA + uB)* = MA* + pB* (1.96b)

(AB)* = B*A* (1.96¢)

w(A*A) =0 (1.96d)

IAB| = sup w(AB)| < [Al]B] (1.96e)
|ATAl = [[A*[]|A] (1.96f)

where the states w have been extended by linearity from O to A and A*A is
positive for all A € A.

| Lecture 04: Fri, 26.10.2018|

As before on page 11, we can then infer from positivity

VAeC:w((AM+1)* (A +1)) >0 (1.97)

3NB: 4(A— B)o (A+ B) = (24)? — (2B)*.
4Note that it is not possible to have a non-abelian associative algebra of only self-adjoint
elements, because
(AB)* = B*A* = BA + AB.
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that

w(A*) = w(A) (1.98a)
| A = [ Al (1.98b)

Altogether, A is a C*-algebra with identity 1, which is generated by the
subset of self-adjoint elements O < A.

Definition 1.18 (Physical System (von Neumann)).

1. A physical system is defined by the unital C*-Algebra A generated by
its observables.

2. The states of of a system are normalized, positive linear functionals w :
A — C on the observables. We assume the set S < 2 of physical states
to be full, i.e. to separate the observables. Vice versa, the observables
are assumed to separate the states.

Note that we allow the set S of physical states to be smaller than the
set Q of all normalized, positive linear functionals on A.
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9
C*-ALGEBRAS

2.1 Adjoining a Unit

In the following we will study the spectrum of elements of C*-algebras. In
order to define it, we need an identity element. We start be showing that
such an element can alway be added without loss of generality.

Theorem 2.1. Let A be a C*-algebra without identity and A denote the set
of pairs

A={(a,A):aeC,Ae A} . (2.1)
The operations

e, A) + A(B, B) = (i + AB, A + AB) (2.20)
(a, A)(B,B) = (af,aB + A+ AB) (2.2b)
(a, A)* = (@, A7) (2.20)

turn A into a -algebra with identity (1,0). Then
[(a; A)|a= sup [aB+ AB[4 (2.3)

BeA,|B|=1

defines a norm that turns A into a C*-algebra. A can be identified with the
subalgebra {(0,A) : Ae A} of A.

Proof. The unital =-algebra properties are obvious. The triangle and product
inequalities

[(a; A) + (B, B)|

[(c; A)(B, B)|

are left as exercise. To show that |(«, A)|| = 0 implies (a, A) = (0,0), we
start with observing that

1(0,4)[ = sup [AB]. (2.5)
BeA,|B|=1

(e, A) [ + (5, B)| (2.4a)
(e, A)[[[(B, B)] (2.4b)
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On one hand, we have

sup  [|AB| < sup |A[[B] = [A]. (2.6)

BeA,|B|=1 BeA,|B|=1

from |AB| < || Al B, while on the other

A" | A4
sup 48] > [aZe - bl 7)
BeA,|B|-1 1Al |Al
from the C*-condition (1.31). Therefore
100, A2 = [[A]l 4 (2.8)
and
[(0,A)|=0=|A| =0=A=0. (2.9)

Thus we only have to study the case o # 0. By linearity, we can choose Without
Loss Of Generality (WLOG) a = 1. From

|B = AB| = (0, B)(1, =A)| < (0, B)[[|(1, =A)] (2.10)

we can infer from [(1,—A)| =0

VBe A:|B—AB| =0 (2.11)
or
VBe A: B=AB (2.12)
and by involution
VBe A: B= BA*. (2.13)
In particular with B = A and B = A*
A= AA* = A* (2.14)
and then
B=AB=BA=B. (2.15)

But this means that A is an identity in .4 which is a contradiction. Thus
VO£ Ae A:|(1,-A)| > 0. (2.16)

Finally to prove the C*-property for A, we start from the one for A

|aB 4+ AB|?* = |(aB + AB)*(aB + AB))|
= |B*(aaB + (aA* + aA + A*A)B)|
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< |BY||aaB + (A" + @A+ A*A)B|| (2.17)
to show that

(a0, A)|> = sup |aB+ AB|?
BeA,|B|=1

< sup ||aaB + (aA* + @A+ A*A)B| = |(aa, aA* + aA + A*A)|
BeA,|B|=1

= [, A)* (e, A < [[(e, A)*[[(a, A (2.18)

1.e.

(e, A < (e, A)7] (2.19)
The same argument for (o, A)* instead of (a, A) yields

[ (e, A)*] < [[ (e, A)] (2.20)

and we have shown

[ (a, A)*] = (e, A (2.21)
Thus we find the desired C*-property

(e, A)* < [l(e, A (e, A < (e, Al (e, A = [, A)F - (2:22)

i.e.

(e, A)*(c, A) | = [[(ex, A)[*. (2.23)
Finally, the completeness of A = C x A is obvious', since both factors are
complete. O

Definition 2.2 (adjoining an identity). The unital algebra A obtained from
an algebra A without identity as described in theorem 2.1 will be called
obtained by adjoining an identity 1 to A. We will also write

A=Cl1+ A (2.24)

and write ol + A for the pairs («a, A).

1See, e. g. | ], p. 35.
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2.2  Ideals and Factors

Definition 2.3. A subspace B < A is called a left ideal, if YA€ A, B e B :
AB € B. A subspace B < A is called a right ideal, if VAe A, Be B: BAe B.
If B is both a left and a right ideal it is called a two sided ideal.

Remark 2.4. Every ideal is a (sub-)algebra

Proof. (— exercise). O
Remark 2.5. If B is self adjoint and a left or right ideal it is two sided.
Proof. (— exercise). O

Remark 2.6. If Z is a two sided ideal of an algebra A, the factor space A/Z
is also an algebra. This ist also true for =-algebras iff Z is self adjoint and
Banach algebras iff 7 is complete.

Proof. (— exercise). O

Caveat: a two sided ideal in a =-algebra is not necessarily self adjoint.
This can be seen from Stefan Waldmann’s “universal counterexample” of
A = C(8*) with (fg)(z) = f(z)g(x) and f*(z) = f(-2). Then T = {f €
A : f(north pole) = 0} is obviously a two sided ideal, but Z* = {f € A :
f(south pole) = 0} + Z.

2.3  Spectral Analysis

Definition 2.7 (resolvent, spectrum). Let A be a unital algebra. The resol-
vent set r4(A) < C is the set of A € C such that A1 — A is invertible, i.e. has
a two-sided inverse. The spectrum o4(A) = C\r4(A) is the complement of
the resolvent set. The map

RITA(A)HA

2.25
A= R(A) = (\1-— A)_1 ( )
is called the resolvent of A.

Definition 2.8. If A is the algebra obtained from an algebra A without
identity by adjoining an identity. We define for all Ae Ac A

T‘A(A)
o4(A)

ra(A) (2.26a)
o 4(A) . (2.26D)
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The most straightforward approach to spectral analysis uses series ex-
pansion and analytic continuation. Formally, we can construct the resolvent
for A 0 using the geometric series

)\11—A:§ A/)\_§2< )m (227)

Indeed, since |A™| < |A|™, the series converges absolutely in the norm topol-
ogy in a Banach algebra if |A\| > |A| and we may reorder the series (2.27)

p () S Y () ()

m=0 m=0 m=0

Therefore the spectrum is bounded
oA(A)c{AeC: A\ <|A]}. (2.29)

Analogously, we can write formally for all Ay € 7 4(A)

I 1 1 1
M—-A MNLl—A—N—-MN1 Nl1—A
T A= Oa =1 Sl <m;>
Z R i Xo— )™ (Ml =A™ (2.30)
/\Ol—A Aol — A P 0 '

which converges absolutely for |A — \g| < [(Ao1 — A)~!|~!. This establishes
that for every A\g € r4(A), there is an open neighborhood of A\g that is con-
tained in 74(A). Thus r4(A) is open and consequently o 4(A) is closed and
therefore compact, because it is bounded. These considerations suggest the

Definition 2.9 (spectral radius). The spectral radius of an element A of a
unital Banach algebra A is defined as

p(A) = sup |A|. (2.31)

Aeo 4 (A)

As seen above, the spectral radius p(A) is the radius of convergence of
the series (2.27) for the resolvent 1/\ — (A1 — A)~! as a function of 1/\.
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Lecture 05: Wed, 31.10.2018

In order to be able to make more detailed statements, we can prove a variation
of the Cauchy-Hadamard theorem from complex analysis for power series
with coefficients from a Banach algebra

Theorem 2.10. Given a series {A,}nen of elements of a Banach space, the
radius of convergence of the power series

f(z) = 2 Ap(z —a)" (2.32)

n=0

15
1
T =
limsup | A,|

n—o0

(2.33)

1/n°

Proof. WLOG let a = 0 and define ¢t = limsup,, . || 4.["".

1. |z| < r: For any ¢ > 0, there are only a finite number of n such
that | A,[Y" =t +e. Thus |A,| < (t + €)" for all but a finite number
of n and the series ), A,z" converges if |z| < 1/(t +¢€) <7

2. |z| > r: For any ¢ > 0, there are an infinite number of n such
that ||A,| = (t—e€)™ and the series can not converge for |z| = 1/(t—¢) >
r, because A, z" 4 0.

O

Theorem 2.11 (spectral radius). If A is a unital Banach algebra, then the
spectral radius of A€ A is

p(A) = inf A"V = Tim A" V" < 4] . (2.34)
nelN n— o0

The limit exists and o 4(A) is a non-empty compact subset of C.

Proof. Defining

_ nil/n
r = inf A", (2.35)
we have obviously
VYneN:r < |A"|Y" < ||A] (2.36)

and therefore
r < liminf | A" Y™ (2.37)
n—0o0
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For all € > 0, from (2.35) there must be an m such that |A™|Y™ < r + e.
Using

VneN:3k,l,e N:n=mk,+1, A0, <m (2.38)
with?
lim T4 (2.39a)
n—o0 n
l
lim ™ =0, (2.30b)
n—o N,
we have

AP = AR AR < AT A< (™R AL (2.40)

Therefore
Ve > 0: limsup [|A"|Y" <7+ e (2.41)

n—aoo
and since € can be arbitrarly small, the limit exists

lim sup | A"|[Y/" = llm 1nf JA™|Y™ = lim A" Y™ =, (2.42)
n—o0

n—0

On The Other Hand (OTOH), using theorem 2.10, we see that r is the radius
of convergence of the series (2.27) in 1/ for the resolvent. Thus p(A) = r.

We have already seen above that o 4(A) is compact. Finally, if 0 4(A) was
empty, then A — (A1 — A)~! would be a holomorphic on the whole complex
plane vanishing for |A\| — o0. Such a function vanishes everywhere and can
not be the inverse of \1 — A. O

Lemma 2.12. Let A,B € A with AB = BA, then (AB)™' € A emists iff
both A=Y € A and B~' € A exist. Furthermore

(AB) ' =A"'B'=p1At. (2.43)
Proof. By explicit construction:

e Assume that both A=! and B~! exist. Then

(AB)(A'B™") =BAA'B™'=BB ' =1 (2.44a)
(AB) (B'A™") = AA™! (2.44D)
(A7'B ) B) = 1B—1BA =A1'A=1 (2.44c)
(B'A™)(AB)=B'A'AB=B"'B=1 (2.44d)

2Think k, ~ n/m ...
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e Assume that (AB)! exists. Then

B™'=(AB)'A = A(AB)™! (2.45a)
A™'=(AB)™'B = B(AB)™, (2.45b)

because

B(AB)™ = (AB)'ABB(AB)™' = (AB)"'BAB(AB)™ = (AB)"'B

(2.46)
(analogously A(AB)™! = (AB) !'A) and therefore

B((AB)™'A) = BA(AB)™' = AB(AB)' =1 (2.47a)
(AB)"'4A)B =1 (2.47b)
A((AB)™'B) = AB(AB)™' =1 (2.47¢)
((AB)"'B) A= (AB)"'AB =1. (2.47d)
O

Remark 2.13. Let A be a unital algebra. Then
VAe A: (c4(A)" < oa(A"). (2.48)

Proof. From

AL — A" = (A1 —A) ("1 4+ A"PA4+ L+ AT (2.49)

and lemma 2.12, we see that if \"1 — A" is invertible, then A\1 — A must
be invertible as well. In other words, if A" € r4(A"), then X\ € ru(A)
or (ra(A)" 2 ra(A™). O

Remark 2.14. Let A be a unital =-algebra. Then for all A, Be A

Ve C:oq(A+pul) =o04(A) + pu (2.50a)
o4(A*) = o4(A) (2.50Db)
o4(AB) u {0} = o4(BA) U {0}. (2.50c¢)

If A is invertible

oa(A) = (0a(A) . (2.50d)
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Proof. The first statement is obvious from
A+ pw)l1—(A+pl)=A1—-A. (2.51)

The second statement follows from

A — A* = (A1 — A)* (2.52)
and
VAe A: (A" = (A7) (2.53)
since 1 = AB = BA < 1 = A*B* = B*A*. If A e r4(BA), then
(M- AB)A— _ 4
M — BA

from (A1 — AB)A = A(A1 — BA). Multiplying from the right by B

1
and adding A1 — AB gives
1
1.e. .
(A1 — AB) (1 + A/\I——BAB) =) (2.54)

and therefore \ € r4(AB), as long as A % 0, since we have explicitely com-
puted an inverse for A\1 — AB. Including the case A = 0, we obtain the
third statement. Finally, if A is invertible, we know that 0 ¢ o.4(A). Thus,
WLOG X £ 0 and

M —A=XA(A"-2"1) (2.55a)
A AT = ATAT (A - ). (2.55b)

From the first equation A\ € o4(A) = X! € 04(A™!) and from the second
the reverse direction, i.e. the fourth statement. O

Theorem 2.15. Let A be a unital C*-algebra.

1. If A is normal then
p(A) = | A]. (2.56)
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2. If A is an isometry, i.e. A*A =1, but not necessarily AA* = 1, then

p(A) =1. (2.57)
3. If A is unitary then

oa(A) S {AeC: |\ =1}. (2.58)
4. If A is self-adjoint then

oa(A) = [-|A], Al <« R (2.59)

oa(A%) <= [0,]A%]] < R. (2.59b)

5. For all Ae A and general polynomials P

o4(P(A)) = P(oa(A)). (2.60)
Proof. 1. From

n C*-prop. 2127 n, A¥ A=AA* " n
AP TE(A)AT TE(AxA)?

C*-prop. * n—1 ® n C*-prop. n+1

O (ATA TP = = [ATAPT TR AP (2.61)

we find )
p(A) = Tim A7 = 4] 2:62)

2. From
n C*-prop. *\N AN *\n— n—
A" 27T AR AT = (A AT = =1 =1 (2.63)
we find

p(A) = lim A" = 1. (2.64)

3. Every unitary A is isometric. Therefore o4(A) is contained in the unit
disc. Moreover

o4(A) = T4 (A7) = (A1) = (74(A) (2.65)

and the spectrum must lie on the boundary of the unit disk, i. e. on the
unit circle.
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| Lecture 06: Fri, 02.11.2018

4. Every self-adjoint A is normal and therefore p(A) = |A|. If |[1/A] > ||A],

then 1/A € r4(A) and 1 +i|A|A is invertible. Thus

1
=(1—-iNA) ———— 2.
exists and is unitary
U*U = ; (1 +1iAA) (1 —i|A|A) ;
C1-i\A 1+i\A
1 1
=—— (1 —-iMNA D1 +iNA) ———— =1 (2.
T A (A o =1 (267)

(the proof of UU* = 1 is identical). From

1—iAe]?  1+iMa 1-iAa
L+iNa|  1T+iMa 1—iMa
L+ Mol =ilM(a—a) =1+ [APla)? +iM(a—a) e a=a (2.68)

for A & 0 and the previous statement, we infer that

1 =M\
. 2.
Va £ a 1—|—i|)\|aer’4(U) (2.69)
OTOH
1 =i\ 1 —i|\|a , 1
P = — T 1A ——— =
1+ iMa it~ N TR
1 1
——— (L 4+ iMNA) A —i|Aa) — (1 =i|AJA) (1 +i|A —_—
i (N =) = (1 = TAA) + M) T
21| \|
= A—al)—— (2.
e Vg ¢
and A — a1 must be invertible for all o + @. Thus
oa(A) S {NeC: N <A AX=A}. (2.71)

The positivity of the spectrum of a positive element will follow from
the following statement.
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5. For commuting {4;}ic;cnN, the invertibility of a product AjAy--- A, is
equivalent to the invertibility of all A; by lemma 2.12. By the fun-
damental theorem of algebra, we can now find «,«; € C such that

P(z)—A=o] [(x - a) (2.72)
i=1
and equivalently

PA) =N =a]| [(A—a;1) (2.73)

-

-
Il
—_

since all powers of A commute. Thus the Left Hand Side (LHS) is
invertible iff all factors of the Right Hand Side (RHS) are invertible

Aeoa(P(A)) < Ji:a;eo4(A). (2.74)

However, Vi : P(a;) = A by (2.72) and therefore o 4(P(A)) = P(o4(A)).
[

Remark 2.16. The spectral mapping theorem for polynomials o4(P(A)) =
P(o4(A)) holds for all A € A. For normal elements one can prove a stronger
statement

oa(f(A)) = floa(A)) (2.75)

that holds for continuous functions f. We don’t have the tools yet to prove
it, but the crucial ingredient ist that the =-algebra generated by a A € A is
abelian iff AA* = A*A. In this case we can use theorem 1.14.

2.4 Projections

The resolvent r4(A) 3 z — (21 — A)~! € A is a very powerful object that
contains more information than just the location of the spectrum.
Given A € A and a closed path T" = r4(A) < C, we can define an element

of A as
dz % 1

Pi—| = = .
A2 L R =) sna—a

2mi
Note that the integral in (2.76) is well defined, because the resolvent z +—
(21—A)~! is holomorphic on r4(A). Such integrals can be costructed without
measure theory not only for functions C — C but also for C — B, where B
is an arbitrary banach space, cf., e.g., section 9.6 of | ]?

(2.76)

30r the french | | and German | ] translations.
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o4(A)

Rz

Figure 2.1: Integration path avoiding the components of o 4(A) in (2.76).

If " does not encircle any part of the spectrum, the integrand z — R(z)
is holomorphic everywhere inside of I' and P# = 0 by Cauchy’s theorem.
In the following we will need the resolvent identity

Remark 2.17 (Hilbert’s identity).
V21,20 € ra(A) : R(21) — R(22) = (20 — 21)R(z1) R(22) . (2.77)
Proof. 1t follows from multiplying
(R(%) "= (R(z1) " = (1 — A) — (211 — A) = (2, — 2))1 (2.78)
by R(z1) from the left and R(z2) from the right. O

For every pair of paths I'; 5, we can compute the product

pApA :J do [ dz 1 1
Bl Jlomi Jp, 27 1 — Azl — A

(2.77) J dz dzg 1 1 1
o emi), 2mi s — s \ml— A »l-—A

- d21 1 d22 1 dZQ 1 le 1
B r, 27 z11 — r, 2Tl 2o — 21 r, 27 21 — r, 271 23 — 21
d21 1 d22 1
= _— + _— , (2.79
P, 2m 71— (1) b, 27 2l — aun(z), (2.79)

where the winding number of a curve I' ¢ C relative to a point z € C

d
wr(2) :L2_7§igiz (2.80)
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o4(A)

I'y

o4(A) .

Figure 2.2: Integration paths avoiding the components of o 4(A) in (2.4).

UA(A)

o4(A) R

Figure 2.3: Integration paths avoiding the components of o 4(A) in (2.4).

vanishes if z is outside of I'. " Thus, if we use only paths with winding
number 1 and choose I'; to lie completely inside I'5, or vice versa, we have
either wr, (z2) = 1 A wr,(21) = 0 or wr,(z1) = 1 A wr,(22) = 0 and find

ApA _ pA
Py P = Ppm.
Since we are free to choose I'y as a small deformation of I';, we have derived
A pA A
s r s r — s T >

i.e. that PZ is a projection.



ohl: Fri Feb 8 14:46:11 CET 2019 subject to change! 35

OTOH, if they have relative winding number 0, then wr, (22) = wr,(21) =
0,1.e.
PAPL =0
and the projections are orthogonal. This includes the trivial cases when P{i =
0, because I' does not encircle a part of the spectrum.
Furthermore, if all of o 4(A) is enclosed by I', we can deform the contour
and send it to infinity

dz dz
P—J—RZ—J 92 pey—tim [ L Ry
r 2mi |2|=r>p(A) 2 r=0 )=y 271
- dz At -
= li — =) 5, A =1. (2.81
Lhnf o - Zoaa ot e

These considerations show that for every path I' with winding number 1

the element
dz 1

r omi 21— A
can be interpreted as a projection on the part of the spectrum enclosed by I'.

Indeed, if zy is an isolated point in the spectrum and I' encircles only zg,
one can show that

Pt =

(2.82)

(201 — A)PA =0,

because zp1 — A “cancels the pole” of the resolvent at zy. However, instead of
proving this special case, we will consider a more general functional calculus
Nnow.

2.5 Holomorphic Functional Calculus

For holomorphic f: C — C, we can define a corresponding f : A — A via

f(A) = L;—;% (2.83)

where I' encircles all of 0 4(A) with winding number one.

| Lecture 07: Wed, 07.11.2018]

We can compute the product of two functions, choosing I on the outside

of I':
f fdz fi(z)  fol?)
2mi F,27T121—A21—A
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dz" fi1(2) f2(2") 1 1
JQmL,Qm 2 —z <21—A_z’1—A)
dz fi(z dz’ f2(%) dz" fa(2) dz fi(2)
ZJszl—AL,sz’—z L,Q_ﬂiz’l—ALTmm
=fa(z) =0

- L% zil(_Z)Af?(Z) = L% % — (fi- 2)(A). (2.84)

i.e. f— fis an homomorphism

FUA) fa(A) = (Fi- f2)(A) (2.85)

In physicist’s notation, an analogous functional calculus for self-adjoint op-
erators on a Hilbert space is written

~

f(4) = j dju(a) £(a) |a)<al (2.86)

F(A) fo(4) = Jdﬂ(a) J (') F(0) fola) |a) ala’y |
- f du(a) (fr - f2)(a) |ayCal = (Fr - Fo)(A) . (2.87)

2.5.1 FExamples
1. For consistency, we should have f(A1) = f(\)1. Indeed

1) = L;—;—Zlf(_zll — L;—;% 1=f(\)1. (2.88)

2. Alsoid: A — Aforid: z — z

~ dz z dz dz 1
id(A) = | — =1 —+A| — =A 2.89
)= | on A2 om A a4 289
1+ A - -
* 21— A

and §¢ : A — A% for sq : z — 22
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dz 22
cony - [ 92
A=) 5n - a
\__v__/
1
1— A)+ 24+ A2
(z )+ + 1A
dz dz dz 1
= = (z1-A)+24 | = +A%2| = =A%, (2.90
Lzm(z )24 o5t A a (2.90)
- ~ ) W_J %,—/
=0 =0 =1

Obviously, this holds analogously for higher powers and all polynomials.

2.6 Holomorphic Spectral Mapping Theorem

Theorem 2.18. If f : C — C is holomorphic on a neighborhood of o 4(A),
then f(o4(A)) = oa(f(A)), with f from (2.83).

Proof. For all A € C, f, : z — XA — f(z) is holomorphic on a neighborhood
of O’A(A).

o If A ¢ f(o4(A)), then hy : z — (fa(2))™' = (A — f(2))7! is also
holomorphic on a neighborhood of o 4(A). Using (2.85) and the func-
tion 1: z — 1, we find

(A= 7)) hn(A4) = A(A)hi(4) = (Fr-T)(A) = 1(4) -

= (b1 F(A) = I (A fr(4) = B (4) (M = f(4)) (291)
that an inverse of A1 — f(A) exists, i.e. A ¢ o4(f(A)) and f(o4(4)) 2
aa(f(A)).

o If A € f(o4(A)), then Iz € o4(A) with A = f(zp) and there is a
function hy holomorphic on a neighborhood of o 4(A) with

A= f(2) = f20) = f(2) = (20 — 2)ha(2) (2.92)
Using (2.85) again, we can compute
A — f(A) = (201 — A)hy(A) = hy(A)(201 — A) . (2.93)

Since zy1 — A is by assymption not invertible, A1 — f(A) can also not

~ ~

be invertible, i.e. A € o4(f(A)) and f(oa(A)) € oa(f(A)).

The two inclusions are complementary, therefore f(o4(A)) = o4(f(A)). O
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Having established that f maps the resolvent set of A into the resolvent
set of f(A), we can use the holomorphic functional calculus to compose maps:

Corollary 2.19.

~ —_—

foi=Tog (2.94)
Proof. With I'; and I's chosen such that I'y encircles g(I'y) once, we have

flg(z1))

A

PR o le (ng)(Zl) . le . dZQ f(ZQ) ) 1
(fog)(A)—JF A _J;lﬁ Fzﬁ 20— g(z1) 11— A

(2T 21—

dZQ le 1 1
= T f(Zz) T A
r, 27i r, 27 2z — g(21) 211 —

- [ ) o = Fa) = o), (295

) 27

where we have used the holomorphic functional calculus for the family of
functions

1

A—2z

hy 2 (2.96)

that involve only addition and pointwise inverse for which we already know
from (2.85) that the holomorphic functional calculus is valid.
O

2.7 Uniqueness and Independence

As already alluded to above, it turns out that the C*-property is very re-
strictive. In fact, a C"™*-norm is unique and the spectrum of an element is
independent of the (sub-)algebra it belongs to.

Lemma 2.20. If a =-algebra A has a norm with the C*-property, this norm
1S UNLQUE.

Proof. For normal and in particular for self-adjoint elements A, we know
from theorem 2.15, that the C*-property entails

[All= p(A) (2.97)

and the latter is already determined by the algebraic structure. For gen-
eral A € A, the C*-property yields

|A] = V[ A*A] = \/p(A*4). (2.98)
O
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Given a unital subalgebra B of a unital algebra A, the spectrum of A € B
is in general a superset of the spectrum of A € B. Indeed,

ra(A) 2 1rg(A) (2.99)
because the inverse of A1 — A might be a element of A\B. This is not the
case in a C*-algebra, however:

Theorem 2.21. If B is a unital C*-subalgebra of a unital C*-algebra A and
the unit elements of A and B coincide, then o 4(A) = o5(A).

Proof. We will show that if A1 — A is invertible in A, then it is invertible in
the C*-subalgebra C generated by 1, A and A*, i.e. 0¢(A) = 04(A). Then
oA(A) = 0c(A) = o5(A) . (2.100)

Thus it suffices to show that if A is invertible in A, then A= e C.
Starting with self-adjoint A = A*, we know that A — A1 is invertible for
all A with a non-vanishing imaginary part. For \qg = 2i|A|, we know that

the power series
1 1o [A\"
= —— — 2.101
A— Xl Ao 7;) ()\0) ( )

converges absolutely and (A—Xp1)~" € C. Since A = A*, the resolvent R(\) =
(A1 — A)~" with (R(\))* = R(\) is normal. Furthermore o4((4 — X1)™") =
(04(A) — A)~! and therefore

[(A=A1)7H = p((A—A1)7)

~1
1
= su 2=\ = inf |z—A\ = ——, (2.102
(== A (zew' |) e (210

where d()) designates the closest distance from A\ to o4(A). For purely
imaginary A, we have d(\) > |\|, because 0 ¢ 0 4(A) for invertible A and the
compactness of the spectrum. Using this result, we see that

1 1 1 1
A—XL A—dl—(A—X)1 A- Aoll— 2

1

(2.1
Fen (A o)

converges for |\ — Xo| < d()\g) = ||(A — )\01)_1\\_1. For purely imaginary Ao,
the series (2.103) will therefore converge for A = 0 and

1 - -2 \"
-1 _ 0
A _A_A01;<A_A01) eC. (2.104)
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Imz

-
-

1/
X"

=
@
-

-
~

Figure 2.4: Integration contour I' used in (2.108) to define the square root.

If A is invertible, but A  A*, then A*A is invertible nevertheless
(A*A) T =ATT AT =AT (AT (2.105)

and (A*A)~! lies in the C*-algebra generated by 1 and A*A. For
X = (A*A) A eC (2.106)
we find XA =1,ie. X = A7' i.e. A7 € C (cf. lemma 2.12). O

Therefore, we will henceforth write o(A) for o4(A).

2.8 Positive Elements

| Lecture 08: Fri, 09.11.2018

Earlier, we have defined the positive elements A of an algebra as those
that can be written as A = B*B. One can equivalently characterize them by
their spectrum:

Definition 2.22. The set A, of all positive elements of a =-algebra A is
the set of all self-adjoint elements with the spectrum o(A) contained in the
positive real axis.

For a positive element A € A, , we can construct a square root with

dx A1
B=va=| &2 _~ 2.1
vA fo T AL+ A (2.107)
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For invertible A, this construction is compatible with the holomorphic func-
tional calculus. In order to avoid a contribution from the circle at infinity,
we construct the inverse and define B = v/A = AvA-1 later. This works
indeed using the contour I' from figure 2.4 which avoids the cut of z — /2
and encircles o(A) < (0, 0).

dz 1 1
VA l= | — ———
L2Wiﬁz1—A
. “Pdr 1 1 , O dz 1 1
= lim — + lim

—0+ ), 2mi Vo —ie(x—ie)l— A 0+ ) 2w /o +ie(z +ie)l— A

I “dx 1 1 1 1
= lim — —
—0+ ), 2mi \/x—ie(m—ie)l—A \/x—l—ie(x%—ie)l—A
(2.110) de 1
— 2.1
L |xx1—A f xx1+A (2.108)

where we have used

lim +/—|z| + ie = +i/|z] (2.109)

e—0+
and
1 1 1 1
Vr—ie(x—ie)l — A  r+ie(r+ie)l— A
i L 1
lz| 71 — A — el 2| v1 — A +iel
2i 1-A e 2i 1
T —— —0y 2 . (2.110)
Wzl (21— A)? + €21 2] 71— A

Additional material (not discussed during the lectures):
Note that (2.107) can also be constructed as a Riemannian integral. For positive A we
have, from the fact that the function

f:10,00) = [0,1)

P (2.111)
= A+ z
is a bijection for A > 0,
- (A ! ) ~ F(o(A)) < £([0,|Al]) = [0 4 ] (2.112)
v < 1o Seayril '

Therefore

1 1 IA]
A —p(A < 2.11
)\1+AH p( )\1+A> At 4] (2.113)
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and
dx A 1 dx A 1
|81 = < SELE
o T JTal+ A T |[Vzal+ A
@113) (*da 1 [A] dy 1
- ~VEI[ YL VAl ey
o T v+ |A] ™ \fy—i-l
N —
=1
converges.

One can show

Theorem 2.23. A self-adjoint element A of a C*-algebra A is positive
iff iIB e A: A = B?>A B = B*. If A is positive, there exists a unique
positive B with A = B? and it lies in the subalgebra of A generated by A.

We will not give the proof here (see, e.g., | |, theorem 2.2.10), but it
should be intuitively clear, that the integrand in (2.107) is positive and the
corresponding Riemann sums are positive as well.

The square root plays a special role, because we can use it to define the
modulus of an arbitrary self-adjoint A € A via

Al =VA2e A, (2.115)

Note that |A| € R, but |A| € A. One can use the modulus to write every
self-adjoint A € A as the difference of two positive elements:

Theorem 2.24. The set A, of all positive elements of a =-algebra A is a
convex cone that is closed in the norm topology, with

If A= A*e A, then
1

Ar = (141 £ ), (2.117)

are the unique elements of A with
Al e A, (2.118a)
A=A, —A_ (2.118b)
A A =0. (2.118¢)
Most of the proof will be skipped (see, e.g., | |, theorem 2.2.11).

However the positivity of A4, i.e. (2.118a), is intuitively clear, while (2.118b)
is trivial and (2.118c) follows from

AA AL = (JA] + A) (JA] = A) = JA]" + AJA| — |A[A — A* = [A,]A]] = 0
(2.119)
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because |A| is an element of the abelian Algebra generated by A.
Finally, one can also show the reverse direction of theorem 2.23 (see,
e.g., | ], theorem 2.2.12)

Theorem 2.25. If A is a C*-algebra, then
VAe A: (Ae A,) < (IBe A: A= B*B) . (2.120)

We can use the existence of positive elements to introduce a partial order
on an algebra

Definition 2.26.

A>BeA-B>0«sA-Be A, (2.121a)
A>BeA>BAA+DB. (2.121Db)
Obviously
AZ0ANA<0=A=0 (2.122a)
A>BAB=2C=A=>C, (2.122b)
but also

Theorem 2.27. VA, B,C € A, a C*-algebra:

A>B=>0=|A|>|B| (2.123a)
A=0= A|A| = A (2.123b)
A>B=>0=YCeA:C*AC = C*BC =0 (2.123c)
1 1
A=>B> > 2.12
OnA=0= 17 a+ (2.123d)

Proof. First we observe, using p(A) = ||A|

mino ([A[1 - A) = [A] — maxo (4) = [|A] - [A] =0
S JAll-A>0=B<A<|A1l (2.124)

and then

0 <mino ([AJ1 = B) = [A] = maxo (B) = [A] - | B]]
= [Al = B[, (2.125)

i.e. (2.123a). Similarly

o (A= |A1/2) = o (A) = |A]/2 = [=]A]/2, Al /2] (2.126)
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and therefore

o ((A—|A]1/2)%) < [0, |AJ?/4]. (2.127)

This means
0<(A—|AJ1/2)% < |A|*1/4 (2.128)

i.e. (2.123h)
A? — A|A| <0. (2.129)

We obtain (2.123c) as follows

A>B=39DeA: A—B=D*D =
C*AC —C*BC =C*(A—-B)C =C*D*DC = (DC)*(DC) = 0. (2.130)

And from this (2.123d)

A>Z2B>20=VYA:A4+AX1=>2B+)A1>)1=
1

1
VA>0: ——(A+ A\l)—=2>1
( )\/B+)\1

VB + 1
1

:>V)\>O:\/B+)\1A+)\1\/B+)\1<1
1 1
: < 2.131
S0 T S e BBY
where we have used
X=X*>21=0X)=0(X-1)+1<[0,0)+1=[1,0)
=X Hc[l,o)t=(0,1]=X"1<1 (2.132)

in the next to final implication. O
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—3—

REPRESENTATIONS

| Lecture 09: Wed, 14.11.2018]

In order to make contact with the Hilbert space formulation of QM, we
need to realize the algebraic formulation as operators on Hilbert space. In
particular, we have to find out iff there is more than one inequivalent real-
ization. Otherwise, the algebraic formulation will not have given us a lot of
new insights.

3.1  Homomorphisms

Definition 3.1 (homomorphism of =-algebras). A =-homomorphism 7 is a
map

m: A— B

A 7(A) (3.1)
that preserves the =-algebra structure, i.e. for all a, € C and A,Be A
m(aA + B) = an(A) + fr(B) (3.2a)
7(AB) = 7(A)n(B) (3.2b)
m(A*) = (m(A)* . (3.2¢)

Remark 3.2. A =-homomorphism m preserves positivity, i.e.
VA=0:m(A) =>0. (3.3)
Proof. This is almost obvious:

A>5A>0=31Be€ A: A= B*B
= 1(A) = 7(B*)m(B) = (7(B))*7(B) = 0. (3.4)

]
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Definition 3.3. The kernel of a »-morphism 7 : A — B is defined as
kerm={Ae A:m(A) =0} (3.5)

Remark 3.4. ker 7 is a two-sided #-ideal.

Proof. VA€ A, B € kerm:

m(AB) = m(A)n(B) =7(A)0=0 (3.6a)
m(BA) = n(B)r(A) =07(A) =0 (3.6Db)
7(B*) = (n(B))* =0* =0 (3.6¢)
m
Therefore, A/ ker 7 is a *-algebra and the map
Definition 3.5.
7: A =Alkerm —> B, =Im7 = w(A)
. " (3.7)
A—m(Ae A)
is well defined
A—" - B.cB
"
b
(3.8)
because
m(A) = (A + 1) = 7(A) + n(I) = 7(A) + 0 = 7(A), (3.9)

and an isomorphism, because ker 7 = 0, by construction.

3.2 Approxrimate Identities and Factor Algebras

While we have shown in theorem 2.1 that one can always adjoin an iden-
tity, it is sometimes relevant that the original algebra does not contain one.
However, we want to show that certain factor algebras that appear naturally,
i.e. A/kerm, carry a C*-algebra structure. In order to prove this, we need
to introduce approximate identities of the ideal ker 7. In some way, approx-
imate identities resemble the representations of Dirac J-distributions as the
limit of a sequence of functions in a given function space, while the Dirac
0-distributions themselves are not in this function space.
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Definition 3.6. If 7 is a right ideal of a C*-algebra, an approzimate identity
of T is a family!' {E,}acv of positive elements E, € Z, indexed by a directed
set? U with the properties

IEa] <1 (3.10a)
Va<feU:FE,<Eg (3.10Db)
VIeT:|E—1I|—0. (3.10c)

An approximate identity of a left ideal is defined analogously with |IE, —
I — 0.

This definition is useful because we can show

Theorem 3.7. Every right ideal Z of a C*-algebra A possesses an approxi-
mate identity.

Proof. We can order the set U of all finite families o = {A;, As, ..., Ay}
by inclusion, i.e. a = g iff § is a subfamily of a. We can define for every
family « the positive algebra elements

||

T5F, =) AAF >0 (3.11)

i=1

and

S B S
1+ |a|F, 1+ |alF,
NB: If A is not unital, we can adjoin an identity as in definition 2.2 for
the purpose of the proof and use (2.8), i.e. [|(0,A)| 1 = | A| 4 where needed.
Obviously |F,|| < 1, but also

15 E, = |a|F, (3.12)

VAZ EQ: (EQAZ — AZ)(EQAZ — Az)*
= (Ea - 1)A2A:<(EOC - 1) = (1 - Ea)AzA:‘(l - Ea)

o
1 1
< — AAT(1 - E,) = F,
Z( Ee) (1 ) 1+ |a|F, "1+ |alF,

Vi (1 )f  F—\/F.

1 1 1
- —(1-—— )< —1, (313
|af ( 1+ |a|Fa> |af (3.13)

1Such a family {E, }acrv is called a net.
2A directed set is a nonempty set with a preorder < such that every pair of ele-
ments a,b € U has an upper bound ce U: a <cAb<ec.

(2. 123<
1+ | |F,,
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i.e.
1
|Eadi = Ail* < — (3.14)

ol

and since every A € Z belongs to some family

VAeT: |E,A— Al —0. (3.15)
Finally
Fo—Ey— — ! (3.16)
P14+ BlFs 1+ alF, '
and a >  implies |a|F, > |8|Fs and E, > Ej. O

Theorem 3.8. Every closed two sided ideal T of a C*-algebra A is self-
adjoint and the factor algebra A/T with the norm

ALz = inf |4 + I (317)
1s a C*-algebra.
Proof. 1If {E,}acy is an approximate identity of Z, then
VAeZ:|A*E, — A*|4 = |EsA— A|4— 0. (3.18)

Since A*E, € T and T is closed, we have A* € Z. Again, if A is not unital,
we can adjoin an identity as in definition 2.2 to be able to write

A—BA+1—EJJ=(1-EB)(A+1) (3.19)
and find
limsup [A — E, Al 4 = limsup |4 — E,A| 4
O‘: limsup |A — E, A —|—aI — EuI|| 1 =limsup [(1 — E.)(A+ )|

<limsup [1 - Eu| 4] A+ Ta < [A+T[a=[A+T]a, (3:20)

because 0 < E, <1, or (1 — E,) < [0, 1]. Therefore

Alyz = inf [ A + T4 > limsup |A — E, Al

> liminf [A — E,A |4 = inf|A+ 4= |Alaz, (3.21)
« ~—— Iel

ez
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1.e.

ALz = lim A — E,AlLs (3.22)
and we get the C*-property on A/Z from the C*-property on A
Al = m | A~ B, A% = lim A — £, AL
— tim (4 — B, A)(A — B, A)*|4 = lim | (1~ E)AA*(1— B,)|4
= lién [(1—-E,)AA*(1—-FE,) +(1—-FE,)I(1—-E,)|x
= lim [|(1 = Eo)(AA™ + I)(1 = Ea)| 2
< JAA* + 1|1 = [|[AA* + 1|4 (3.23)

for arbitrary I € Z. Thus

[AByz < inf |AA* + T|a = |AA* Lz < | ALzl Aar (329)
1.e. X R
Az < [ A% 4z (3.25)
and A X
|A*| a2 < ||A] 4/z (3.26)

from replacing A by A* in the above argument. This implies the C*-property

[AlZyz = 1AA* 4z (3.27)
O

3.8 Continuity

Using this theorem, we can prove a non-obvious result, with profound con-
sequences:

Theorem 3.9. Let A be a unital Banach =-algebra and B a C*-algebra
and 7 : A — B a =-morphism. Then m is continuous and even

VA A: |x(A)] < |Al. (3.28)

In addition, if A is a C*-algebra, then B, = 7(A) < B is a C*-subalgebra
of B.
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| Lecture 10: Fri, 16.11.2018|

Proof. For self-adjoint A, we know that

[(A)] = p(r(4)) = sup |A[. (3.29)
Ao (r(A))

Now P = m(14) is a projection
P? =r(1)7m(14) = 7(1%) = 7(14) = P. (3.30)
and can be used to define the C*-algebra (— ezxercise)
B = PBP = {PBP:BeBlcB (3.31)
with identity 1z = P. Since
m(A) = m(14A14) = 7(La)m(A)7w(14) = Pr(A)P e B, (3.32)

we know that 7(.A) € B’ and we can compare the respective spectra: if (A1 4—
Ayt e A then AP—7(A)) ' =n((My4—A) ) e B ierg(m(A) 2r4(A)
or

OBI(W(A» - UA(A). (333)

Note that we have indicated the respective algebras, because B’ and A are
not subsets of each other and theorem 2.21 does not apply®. Thus

Im(A)| = sup [A[< sup [A] <Al (3.34)
Aeo(m(A)) Aeo(A)

and for non self-adjoint A we can use
|m(A)* = = (A*A)] < [A*A] < [AJ? (3.35)

to prove [w(A)[ < [A].
Having shown that 7 is continuous, we infer that its kernel kerm is a
closed two-sided ideal. By theorem 3.8, A, = A/ker is then a C*-algebra.

3In the lecture of November 16, 2018, I wrote

claiming that an application of theorem 2.21 guarantees that og(m(A)) = o (7(A)),
since B’ < B. This is incorrect, as pointed out to me two days later by an observant
student, because in general 15 £ 13 = P, in contrast to the requirements of theorem 2.21.
Fortunately, it is also unnecessary, because we only need (3.33) here.
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Therefore 7 : A, — By = m(A) with #(A) = 7(A € A) is an isomorphism
and 77! : B, — A, with

A

Y #w(A) = A (3.36)
is well defined. Then from (3.28) applied to 7! and #, we have

JA] = 77 (#(A))] < 17 (A)] < 4] (3.37)
and find that the norms agree
| Al ajkerr = [17(A) |5 = (A€ A)|s. (3.38)

Therefore, whenever a series {m(A,)}nen converges to a B € B, the se-

~

ries {An}neN must converge to a A € A, because A, is complete. By con-
tinuity of m and 71, B = 7(A) = (A € A) and B € B, = 7(A), which is
therefore closed. O

Definition 3.10 (isomorphism of C*-algebras). A C*-isomorphism 7 : A —
B is a C*-homomorphism that is one-to-one and onto, i.e. m(A) = B and
the inverse map 7! : B — A exists.

From linear algebra, we know

Remark 3.11. A C*-homomorphism 7 : A — B is a C*-isomorphism, iff its
kernel is trivial ker 7 = {0} and 7 (A) = B.

3.4  Representations

Theorem 1.13 stated that every C*-algebra is isomorphic to an algebra of
operators on a suitable Hilbert space. Thus C*-homomorphisms that map
into the C*-algebra L(#) of bounded linear operators on a Hilbert space H
are particularly interesting:

Definition 3.12 (representation of a C*-algebra). A representation of a C*-
algebra A is a pair (H, ) consisting of a complex Hilbert space H and a C*-
homomorphism 7 : A — L(H). The representation (H, ) is called faithful
iff 7: A— 7(A)is a C*-isomorphism.

Theorem 3.13. Let (H,n) be a representation of the C*-algebra A. It is
faithful, iff it satisfies the following equivalent conditions

ker m = {0} (3.39a)
VAe A: |n(A)| = |A| (3.39b)
VA>0:7(A) >0. (3.39¢)
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Proof. We already know (3.39a) from linear algebra. OTOH, if (3.39a) holds,
there is a well defined map 7! : 7(A) — A with 7~!(7(A)) = A for all A.
Using theorem 3.9 twice, i.e.

|A] = == (m(A)] < [=(A)] < [ Al (3.40)
we obtain (3.39b). Since A > 0 implies |A| > 0, this yields
A>0=0<|A] =|r(A)|=n(A)+0. (3.41)

Using remark 3.2, we obtain m(A) = 0, i.e. (3.39¢). Finally, if ker 7 + {0},
then 3B € kerm € A : B + 0 A m(B*B) = n(B*)n(B) = 0. OTOH,
0 < |B|? = ||B*B||, i.e. B*B > 0 and (3.39¢) is false. O

Definition 3.14 (automorphism of a C*-algebra). A C*-isomorphism 7 :
A — A is called a C*-automorphism.

Corollary 3.15. If 7w is a C*-isomorphism of A, il is norm preserving
VAe A: |r(A)| = |A]. (3.42)

Proof. This is a direct consequence of theorem 3.13, in particular the equiv-
alence of (3.39a) and (3.39b). O

Definition 3.16. A subspace H; € H is called an invariant subspace, also
known as (a.k.a.) a stable subspace, of a representation (#H, 7) of a C*-algebra,
iff
VAe A: W(A)Hl cH. (343)
If H, is a closed subspace of H and P, = Py is the corresponding orthog-
onal projector with PyH = Hy, then

VYAe A: P17T(A)P1 = W(A)Pl . (344)
As a consequence

T(A)P = Pim(A)Py = (Pyn(A)*Pf)" = (Pir(A)*P)”
= (n(A)*P)" = Pim(A) = Pin(A), (3.45)
" (AP, = Pi(A). (3.46)

And indeed this is the necessary and sufficient condition for H; to be stable
under 7.
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Remark 3.17. 1f H, is stable under 7 and P, is the corresponding orthogonal
projection, then (Hy,m) with

7T1(A) = P17T(A>P1 (347)
is also a representation. It is called a subrepresentation.
Proof.
7T1(A)7T1(B) = P17T<A)P1P17T(B)P1
= P17T(A>7T(B>P1 = P17T(AB)P1 = 7T1(AB) . (348)
O]

If P, is an orthogonal projection, then 1 — P, = P, is one as well and
projects on the orthogonal subspace H,. Since

Pyr(A) = (1 - P)m(A) =7(A) (1= ) =7(A) P, (3.49)
H, is also stable under 7 and (Hs, o) with
7T2(A) = PQTI'(A)PQ (350)

is again a subrepresentation. In this way, we obtain a decomposition of a
representation into a direct sum

(H,7) = (H1,m) ® (Ha, m2) = (H1 ® Ha, 71 D 72) (3.51)
where

VA € A, ’QZJLQ € HLQ : W(A) (¢1 @ 77/}2) = T (A)’;Z)l @ 1/)2(14)1#2 . (352)

As always, the definition of a representation allows for trivial representa-
tions with

71 A— {0} € L(H) (3.53)

that are not particularly interesting. Moreover, there are nontrivial repre-
sentations with parts that are not interesting either. The set

Ho = [ ker(m(A)) = { e H : w(A) = 0,YA € A} (3.54)
AeA

is obviously a linear subspace and invariant under 7(.A). The corresponding
subrepresentation (Hg, mo) has

7T0(A) = P()T('(A)PO =0. (355)

Representation with a trivial subrepresentation are called degenerate. OTOH,
the interesting cases are covered by
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Definition 3.18 (nondegenerate representation). A representation (H, ) is
called nondegenerate, iff the subspace annihilated by 7(A) is trivial: Hy =

{0}.
Particularly interesting is the case when there is

Definition 3.19 (cyclic vector). A vector Q € H is called cyclic in H for a
set B < L(H), if the linear span of {BS): B € B} is dense in H.

Then we have

Definition 3.20. A cyclic representation of a C*-algebra A is a triple (H, 7, 2)
with (#H, ) a representation of A and 2 a cyclic vector for 7(A) in H.

It is obvious that every cyclic representation is nondegenerate. Indeed, if
this were not the case, then

Be A:1(B)Q+0AVAe A:0=n(A)n(B)Q2 =71(AB)Q, (3.56)

which implies 7(B)2 = 0 for A = 1 in a unital algebra or A an approximate
identity, which exists by theorem 3.7.

| Lecture 11: Wed, 21.11.2018]

It is less obvious that

Theorem 3.21. If (H, ) is a nondegenerate representation of a C*-algebra,
it is a direct sum of a family of cyclic subrepresentations.

Before we can prove the theorem, we need a precise

Definition 3.22 (direct sum of representations). Let {(H;, m;)}ier be a fam-
ily* of representations of a C*-algebra A. Then the direct sum of represen-
tation spaces

H=CPH, (3.57)
iel
is well defined® and the action of the direct sum of representations

T=@m (3.58)

el

4The index set I is not necessarily countable.
5As above in the proof of theorem 3.7, we can order the finite subsets of I by inclusion
to build a directed set. The elements of H are then families {1);};cq such that

lim ) [ < 0.
=20 ; o
This way we obtain a norm and corresponding inner product and can complete the direct
sum with respect to (wrt) the topology induced by this norm.
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is defined as a bounded operator

el el

m(A) (@ wz) = @ (mi(A)y) (3.59)

since all 7;(A) are bounded operators with ||7;(A)| < || Al

Proof. Choose® a maximal family {€;};c; of non-zero €; € H with
VA Be AVi+jel: (m(A)Q,n(B)Q;)=0. (3.60)

We can then define
Viel:H; =n(A)Q;, (3.61)

which are, by construction, invariant subspaces and we obtain subrepresen-
tations
mi(A) = Pr(A)B;, (3.62)

and a family {(H;, m;, ;) }ier of cyclic representations. Since (H,7) is non-
degenerate and the family {€;};c; is maximal, there is no non-zero ¢) € H
with (1, ¢) = 0,¥¢ € @uerHa. 0

This theorem shows that we esentially know all representations, when
we know all cyclic representations. This is important, because we will soon
learn that the cyclic representations are intimately related the the physical
states, i.e. the normalized postive linear functionals on the C*-algebra of
(complexified) observables.

Close relatives of the cyclic representations are

Definition 3.23 (irreducible representation). A self-adjoint set BB of bounded
operators on a Hilbert space H is called irreducible on H, if there are no closed
subspaces of H invariant under B other than the trivial {0} and H itself.
Analogously, a representation (H, w) of a C*-algebra A is called irreducible iff
7(A) is irreducible on H.

Theorem 3.24. Let B be a self-adjoint set of bounded operators on a Hilbert
space H. The following are equivalent:

1. B is irreducible.

2. only multiples of 1 € L(H) commute with all B € B, i. e. the commu-
tant B’ = {\1: X e C}.

6For the existence of such a family, in the case of a not countable I, we have to assume
the aziom of choice or, equivalently, Zorn’s lemma.
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3. every nonzero 1 € H is cyclic for B in H, unless B = {0} or H = C.
Proof. We prove the cyclic dependence:

1. (1)—(3): If there is a nonzero ¢ € H that is not cyclic, then the
orthogonal complement of B is a non-empty invariant” subspace and B
is reducible on H (unless B = {0} or H = C).

2. (3)—(2): If Be B, then B* € B/, since B is self-adjoint. Also B+ B* €
B and (B — B*)/i € B' and if B’ + {A1},cc, there are C = C* € B’
with C' = A\1,V\ € C. The corresponding spectral projections P of C'
are then also in B’ and a 1) € H with (1 — P)i = 0 cannot be cyclic.

3. (2)—(1): If B is not irreducible on #, then there is a closed sub-
space IC € H that is stable under B and the corresponding non-trivial
projector Px € B'.

]

Note that mot all cyclic representations are irreducible: we have just
proven that all non-zero vectors of an irreducible representation are cyclic.
But there are cyclic representations where not all non-zero vectors are cyclic.

Definition 3.25 (unitary equivalence). Two representations (i, ;) and
(Ho, m) are called unitarily equivalent, iff there is a unitary operator U :
H, — H, such that

VAe A:m(A) =Um(A)U". (3.63)
i.e. the diagram
1 (A)
1 Hy
Ul LU
Hg H2
m(4) (3.64)

commutes for all A € A.

Remark 3.26. Obviously, given a representation (#Hi, ;) and a unitary op-
erator U : H; — Ha, we obtain another representation (Hs, ) from (3.63).

(B, B(By)*) = (B*By, (By)*) = (By, (By)*) =0
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4

STATES

As before, the positive linear functionals on a C*-algebra of observables will
play the role of physical states.

Definition 4.1 (dual space). The space of continuous linear functionals w :

A — C on the C*-algebra A is denoted A*.

We can define a natural norm on A* by

jw| = sup  |w(A)]. (4.1)
AeA,|A=1

Definition 4.2 (positive linear functional, state). A linear functional w :
A — C on the C*-algebra A is called positive, iff

VAe A:w(A*A) = 0. (4.2)
A positive w : A — C with |w|| =1 is called a state.
Typical examples that should be familiar from the QM lecture

e pure states, a.k.a. vector states:
W(A) = (2, 7(A)Q) (43)
with € H normalized, i.e. (£2,€2) = 1. Positivity is obvious

W(A*A) = (Q, m(A*A)Q) = (Q, 7(A*)r(A)Q)
— (Q, (A 1(A)Q) = (m(A)Q, m(A)Q) >0 (4.4)

and the normalization [lw| = 1 will be a consequence of theorem 4.4
below.
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e statistical mixtures
= pwi(A) (4.5)
with p; = 0 and >, p; = 1.

e density matrices

w(A) = tr (pr(A)) (4.6)
with p = p* > 0 and trp = 1.

These will be discussed in more detail below.

| Lecture 12: Fri, 23.11.2018

In the following we will frequently use the CSI (1.48b), which we have al-
ready derived on page 11 when we discussed algebras of observables, before
introducing C*-algebras. The identical arguments will also establish

Lemma 4.3 (Cauchy-Schwarz Inequality). For every postive linear func-
tional w on a C*-algebra A, we have VA, B € A

(B*A) = w (A*B) (4.7a)
lw (A*B)| < \/w (A*A)y/w (B*B) . (4.7b)

We will now see that every positive w : A — C is continuous.

Theorem 4.4 (continuity of postive functionals). For all w : A — C, the
following are equivalent

1. w 1is positive

2. w 18 continuous and
|wl|| = limw(Ei) (4.8)

for some approzimate identity {E,} of A.
Furthermore if w is positive, then VA, B € A

w(A*) = w(4) (4.9a)
w(A)]* < w(A*A)|w] (4.9b)
w(A*BA)[ < w(A™A)| B| (4.9¢)
lwl| = sup w(A*A) (4.9d)
AcA,|A|=1
and
Jwl|| = 1i£HW(Ea) (4.10)

for any approzimate identity {E.} of A.
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Proof. First, assume that w is positive, i.e. (1), and let { A, },en be a sequence
with A, = 0 and |A,| < 1. Then for all sequences {\,}en with A\, = 0
and Y, . An < 0

N
YA, ST A0 (4.11)

n=1

converges monotonically from below. Thus, by positivity and linearity of w
N
D Aw(A,) S w(A) < . (4.12)
n=1

This can only be true for all such sequences {\, }nen independently of { A, }nen,
if the {w(A,)}nen are uniformly bounded

M, = sup w(4) <. (4.13)
A=0,|A|=1
We can decompose each A € A with |A| = 1 into two self-adjoint and four

positive {A;} with [|Ag| < 1

4
A=) iR, (4.14)
k=1
and therefore
|w]| = sup |w(A)|] < 4M, . (4.15)
lAl=1
Since this entails
w(A)| < 4M | A, (4.16)

we have established that w : A — C is continuous. For any F, € A we can
use the CSI

1.48b)

WAB)P S (A A (BLE,) < MUJAPW(E2)  (417)
and if {£,} is an approximate identity, we can take the limit |a| — o
WA < M, M| AJ? (4.18)
where

M = supw(E?). (4.19)

[0}

Taking the supremum over |A| = 1, we obtain

|lw|? < M M. (4.20)
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However, |E,| < 1 and E, = 0 by definition and therefore

M =supw(E?) < M, = sup w(A) < sup w(A) = |w|. (4.21)
S 430, A=1 JAj=1

This entails

Jwl* < My M < M. |w] (4.22a)
lw|? < My M < M||w| (4.22D)

and the inequalities must be equalities
ol = M, = M = limw(E2), (4:23)

i. e. we have established (2). While we're at it, we observe that since E? < E,,

|w]|| = limw(EZ) < limw(E,) < |w| (4.24)

i.e. (4.10).
Conversely, assume that (2) holds and WLOG |w| = 1. If A is unital,
then

11— E3| < 1 - Bl + | Ea — B2
< 1= Eof + 1 = Eufl Eaf = 1 = Eal (1 + [ Eaf) (4.25)

therefore
limE? =1 (4.26)

and
w(1) =limw(E?) = |w| =1 (4.27)

from (2). OTOH, if A is not unital, we can adjoin a unit and extend w :

A— Cto
w:Cl+A—-C

4.28
(NA) > A+ w(A). ( )
Then
A— AE? = (A— AE,) + (A- AE,)E,, (4.29)
1.e.
lim AE? = A. (4.30)
Furthermore

w(A)] < [wlfAl (4.31)
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1.e.

w(A)] < 4] (4.32)

and

A1+ A)| = A+ w(A)| = lim | Mw(E2) + w(AE?)|

(4.32)

< limsup [AE2 + AE?|4 < sup [AB+ AB|4= M+ A 5. (4.33)
a |B]=1
thus we have in any case
w@)] = 1] =1 = o - (4.34)

In order to show that w(A) is real for self adjoint A, we observe that for
w(l) =a+ip (o, B€e R) (4.35)

we have
wA+ivl) =a+1i(B8 +7). (4.36)

For any self-adjoint A, the spectrum satisfies
o(A) +iy < [ Al [Al] + iy (4.37)

and since A + iy1 is normal, we have

|A+iv1]| = p(A +iv1) = /[|A|2 +~2. (4.38)
OTOH
jw(A+iy1)| = [a+i(B+7)] =+va2+ (B+7)* = |8+ (4.39)
and therefore
VyeR: B+ 9] <A/|A2+72. (4.40)

Choosing v = § | A|?8/|8|, we find
¥ e R: 3%+ 20|B|| A" < [AJ*, (4.41)

which can hold for § — oo only if § = 0, i.e. w(A) must be real if A = A*.

However, since A*A > 0

<1 (4.42)

[~ = - e
1 =1

A4 AP
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and therefore, using (4.31),
w(A*A)
0=

With w(1) = 1 and w(A*A) € R this entails the positivity
w(A*A) = 0. (4.44)

<1. (4.43)

The remaining results are straightforward: (4.9a) follows from (4.7a) with
B = E, in the limit & — o0 and (4.9b) from (4.7b) in a similar way. Also
(4.9¢) follows from using (4.7b), this time in the form

lw(A*BA)|> < w(A*A)w(A*B*BA) (4.45)

and noting that
A*B*BA < A*||B|PA. (4.46)
Finally, the estimate (4.9b) implies (4.9d). O

It is obvious that the sum of two positive linear functionals is again pos-
itive and the foregoing theorem tells us that the norm is additive.

Corollary 4.5. Given two positive linear functionals wy,ws € A* on a C*-
algebra A, their sum is positive and

Jwr + wa = Jlwr] + fwe] (4.47)
and the states form a convexr subset of A*.
Proof. Using
w1 + wa| = lign (wl(Ei) - wg(Ei))
= limw; (E2) + limwy(E?) = |lwy | + Jwa| (4.48)

for a suitable approximate identity {E£,} we obtain the additivity and with
a similar argument

lw] = [Awr + (1 = MNws| = Alwr || + (1 = A)fwe]| =1 (4.49)
the correct normalization of the conical sum. O

We have seen in theorem 2.1 that given a C*-algebra A without identity,
we can always adjoin an identity to obtain a unital C*-algebra A = C1 + A.
We can extend every w € A* to w € A*

(A + A) = Mw| +w(A). (4.50)

It can be shown easily that @ inherits the positivity, normalization and ad-
ditivity from w.
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4.1 Pure and Impure States

Just as we used positivity of algebra elements to define an order on the
algebra by A < B < B — A > 0, we can order the dual space by

Vwi,wo € A* 1wy S wy = wy —wy = 0. (4.51)

We say that wy majorizes wy, iff wy > wy. If a state w is a conical sum of the
states wy; and wo, i.e.

w=Aws + (1 = ANwy (4.52)

with 0 < A < 1, then
w—Aw = (1=Nwy =20 (4.53a)
w—(1=XNws =AIw; =0 (4.53b)

i.e. w majorizes both Aw; and (1 — A)ws. The normalization of the states
means that there must be smallest states wrt to the ordering just defined.
Therefore one cannot write all of them as conical sums of majorized states.
Thus one can distinguish states w that can be written as a conical sum of
two other states from those that can not.

Definition 4.6 (pure states). A state w € A* over a C*-algebra A is called
pure, if all 0 < W' € A* majorized by w are of the form w’' = \w with 0 <
A< 1

We will denote the convex cone of all states by Q24 < A* and the subset
of all pure states by I14 < Q4.

4.2 The GNS Construction

| Lecture 13: Wed, 28.11.2018]

We have seen that for any representation (#H, ) of a C*-algebra A and
for all Q € H with | = 1, we obtain a vector state wq : A — (2, m(A)N).
In this section, we will show by construction that every state w on A is a
vector state for a suitable cyclic representation (H,,, m,,),) and that this
representation will be irreducible, iff w is pure.

Since every C*-algebra A is, by definition, a Banach space, we can recycle
its vector space structure to construct a Hilbert space, iff we can find a
suitable nondegenerate sesquilinear form

(-, Y1 AxA—>C

(A, B) — (A, B) (4.54)
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with VA, B,C' € A and V3,7€ C

(A,B) = (B, A) (4.55a)

(A, BB +~C) = B{A, B) + v(A,C) (4.55Db)
(A, Ay=0 (4.55¢)
(A,A)=0< A=0. (4.55d)

In fact, we can construct a sesquilinear form from any positive linear func-
tional w on an algebra

(A, B, = w(A*B). (4.56)

Indeed, all properties (4.55) except (4.55d) can be verified trivially, where
(4.55a) follows from the positivity of w via (4.7a). However, there will in
general be 0 + A € A with w(A*A) = 0.

Fortunately, these elements form a left ideal
Z,={Ae A:w(A*A) =0}, (4.57)
because

VIeT, Ac A:0<w(AD)*Al) = w(I*A* Al
< W'D A" A| = w(I* DA =0, (4.58)

by result (4.9¢) of theorem 4.4. Thus we have shown VI € Z,,Ae A: Al €
7.,. Having identified this left ideal, we can form the factor space H? = A/Z,
consisting of the equivalence classes

YA ={A:A=A+I1TeT,}eH. (4.59)
By construction, H? is a linear space and we get again a sesquilinear form

(0 HY xHY - C
(5, 90) = W5, 00) = w(A*B),

since we can use the CSI to show that it does not depend on which represen-
tative of each equivalence class is used

(4.60)

VieZ, Ac A:|w(A* )| < \/w(A*A)r/w(I*]) =0, (4.61)
i.e.

VIeT, Ae A: w(A*(B + 1)) = w(A*B) + w(A*]) = w(A*B).  (4.62)
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Conversely
Viel,, A3A¢TL, w(A+1)*(A+1)) =w(A*A) >0 (4.63)

by the definition of Z,. Thus (-, ) turns H? into a proper pre-Hilbert
space that can be completed to a Hilbert space H,, = %_g and (-, -) can be
extended to (-, -) on H,, by the continuity of w.

Having constructed a Hilbert space is not yet enough for a representation,
we still need to find a homomorphism 7, : A — B(H,). Fortunately, the
algebra structure of A suffices to allow a canonical construction

Tw(A) : Hy — Hy
Wl o m (A5 =yt

This definition has all the required properties:

(4.64)

e it is well defined, because it’s independent of the representative

VIeT,: AB+1)=AB+ Al (4.65)
—

S
e it’s linear due to the linear structure of the factor space

ﬂw(alAl + a2A2)¢5 _ ,¢£Ja1A1+a2A2)B _ alw‘le + 0521/1;?23

= alﬁw(Al)wf + O./Q’ﬂ'w(AQ)’QbB (466)

w

e it’s an algebra homomorphism due to the associativity of the algebra

To(A) T (A2)1] = mo(A1)y?P
— A AeB) _ p(AADB _ oA ANB (4.67)

w

e 7,(A) is bounded
|7 (A 1? = [57)° = (027, ¢5F) = w (AB)*AB)
— w(B*A*AB) < | A* Aw (B*B) — | A (B*B)
= [AP[el1* (4.68)

1.e.

[ (A)] < AT (4.69)
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If A is unital, the cyclic vector €2, is given simply by

recovering the vector state
(Quy Mo (A)) = (¥, ¥5) = w(1*A) = w(4), (4.71)
since
To(A) = T (AWl = 4 (4.72)
We verify that
(ro(A)Q: Ae A} ={yS : Ae A} =H, (4.73)

i.e. that €, is cyclic for (H,,m,). OTOH, if A is not unital, we can again
adjoin an identity 1 to get A and proceed as above' This time, however,
while it is again obvious that €, = 9! is cyclic for m,(A), it we must also
show that it is cyclic for m,(A). Since only (1) is missing from 7, (.A), it
suffices to show that Q, = m, (1)), itself is already in H,, = 7, (A)L,.
Again, the existence of approximate identities, as ensured by theorem 3.7,
comes to the rescue. Let {E,} be an approximate identity for A4, then

Hﬂ-w(Ea)Qw - QwH2 = HQwH2 + Hﬂ-w(Ea)Qsz =2 (Qu, 7 (Fa) )
" J/ - ~ v - v

w(11) w(EaEq) w(lan)
—1+wE) —2w(E) >1+1-2=0 (4.75)

1.e.

lim ||7,(Ey) — Q] =0 (4.76)
and €, lies in the closure of |, 7w (Ea)Qw < o (A)Q,.

With this construction, we have already almost proved the

INote that one can not circumvent A by directly using a right approximate identity to
construct €, as lim, ¥Ze, because, in general, only the limit lim, E,A = A € A exists
and not the limit lim,, E, € A. Nevertheless, the limit lim, ¢Z> € H,, exists because H,,
is complete and then one can argue

T (A) lim ¢ Be = lim AP = ¢4 (4.74)
(03 [e3

iff {E,}a is a left approximate identity. However, we have only proven the existence of
right approximate identities above.
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Theorem 4.7 (GNS representation). If w is a state over the C*-algebra A,
then there ezists a cyclic representation (H,,, 7., €,) of A with

VAe A w(A) = (Q, m(A)) (4.77)

and
19017 = (), Q) = w(1) = |w] . (4.78)

This representation is unique up to unitary equivalence and called the GNS
representation associated to w.

Proof. After the explicit description of the construction above, it only re-
mains to prove the uniqueness up to unitary equivalence, i.e. that if there
is a second cyclic representation (H.,7,Q.) with w(A) = (0,7, (A)Y,),

there is a unitary map U : H, — H|, such that

w0, gy,
Y gn [
7, (A
o = o (4.79a)
commutes for all A € A and that
UQ, =9, . (4.79b)

Due to the cyclicity of the representations, we can construct such a U easily
by demanding (4.79b) and defining

VAe A: Uyt = Un,(A)Q, = 7,(AUQ, = 7, (A, =2 (4.80)
and extending it to all of H,,. This map respects the inner products

(U5, Uvg) = (Uma(A)Qu, Unu(B)Qw) = (ml, (A, 7, (B),)

w? w

= w(A*B) = (1u(A)Qu, mu(B)) = (5, 4)  (4.81)

and the existence of the inverse map U™ : H/ — H, can be verified by
explicit construction with U71Q)/ = Q,, and

VAe A: U WA =U"7 (A, = 7, (AU, = m,(A)Q, = ¢y .
(4.82)
O
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The unitary equivalence of all representations constructed from a state w
means that the result of the GNS construction is essentially unique. Fur-
thermore, it implies that symmetries, i.e. automorphisms, of a C*-algebra
are realized in the GNS representations by unitary operators.

Corollary 4.8. If ¢ : A — B is a homomorphism of C*-algebras, then
we have for the GNS representations derived from the states w : B — C
and wog¢: A— C

Mo = Tw O @, (4.83)

upto unitary equivalence.
Proof. The situation is clarified by the commutative diagram

Twos

o ¥0) A L (Hw0¢>
Cw/ ) ~
P

(4.84)

Given the representations (H, T, ) and (Heop, Twos, dwop), We can com-
pute

(Qusogs Trog (A) uog) = (w0 P)(A) = w(B(A)) = (Q, T (9(A))S2)  (4.85)
and by theorem 4.7 we infer that, up to unitary equivalence,

Twop = Tw O P . (4.86)

O

Corollary 4.9 (unitary realization of automorphisms). If 7 : A — A is
an automorphism of a C*-algebra that leaves a state w : A — C invariant,
.. WOT =W OT

VAe A:w(r(A)) =w(4), (4.87)

then there exists a unique unitary U7 : H,, — H., with
Ulm,(A) (UL:)f1 = m,(7(A)) (4.88a)
Ui, =Q,. (4.88b)

Proof. This is simple consequence of corollary 4.8 and
WoT =w. (4.89)
O
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An important result concerns the relation of the purity of states and
irreducibility of the corresponding GNS representations:

Theorem 4.10 (purity vs. irreducibility). Ifw is a state over a C*-algebra A
and (Hy, T, Q) the associated GNS representations of A, then the following
statements are equivalent

1. the representation (H,m,) is irreducible
2. w is pure.

In addition, there is a one-to-one correspondence between the positive func-
tionals wp < w and positive operators T with T' < 14, and commuting with
all operators in m,(A). This correspondence is given by

wr(A) = (T, T (A)) . (4.90)

| Lecture 14: Fri, 30.11.2018]

Proof. In order to prove that 2) follows from 1), assume that w is not pure.
Then there is a positive p + Aw, VA € Ry majorized by w, i.e. VAe A:0 <
p(A*A) < w(A*A). Using once more the CSI

p(B*A)[? < p(B*B)p(A*A) < w(B*B)w(A*A)
= |7 (B)* 7 (A)W[® = [02Z 1102 ]?,  (4.91)
we see that
p:HyxH,—C
(W5, 02) = p(B*A)
is a densly defined, bounded sesquilinear functional. By the Riesz represen-
tation theorem, there is a bounded operator T' € L(H,,), such that

(4.92)

p(B*A) = (7, TYL) = (mu(B), Tru(A)Q) - (4.93)
Since p is not a multiple of w, this 7" must not be a multiple of 14 . From

0 < (1 (A, T (A)) = p(A*A)
< w(A*A) = (my(A), To(A)Q)  (4.94)

we conclude
0<T <1y,. (4.95)
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Furthermore

VC € A+ (mo(B), Tro(C)mu(A)) = p(B*CA) — p((C*B)*A)
(7 () (B), T (A)Y0) = (1u(B) O, 7 (C)Tru(A)0)  (4.96)
o VO e A: Try(C) = 7, (C)T (4.97)

or T € m,(A) and (H,,m,) is reducible.

OTOH, assume that (H,,m,) is reducible. Then there is a T € m,(A)
with T+ A1y, . Since (7,(A))* = m,(A), also T, T+ T* and (T —T%)/i lie
in the commutant 7, (A)". Consequently, there is a self-adjoint S € m,,(A)’
with S # A1y, and a corresponding spectral projection P € 7, (A)" with 0 <
P < 14,. This allows to define a p : 4 — C via

p(A) = (PO, T A)) (4.98)
This p is positive, because

p(A*A) = (PQ,, T, (A*A)CL,)
— (1 (A) PO, T (A)) = (Pro(A)Q, Pru(A)Q) = 0. (4.99)

Also
w(A*A) — p(A*A) = (7,(A)Q, (1 — P)m,(A),) =0 (4.100)

and w majorizes p. But p can not be a multiple of w, because P is not
a multiple of 14, and therefore w is not pure. This shows that 1) follows

from 2).
The correspondence between postive functionals and postive operators
has been shown by construction en passant. O

Note that this relation of purity and irreducibility applies only to the GNS
representation. One can realize an impure state with a density matrix in an
irreducible representation, but this is not the GNS representation associated
with this state.
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— 55—

QUANTUM MECHANICS

5.1 Weyl Systems

Definition 5.1. A symplectic vector space (V,0) is a vector space with V
a real vector space and © : V x V — R a non-degenerate antisymmetric
bilinear map, i.e. Vo,u,w e V,a,B € R

O(v,u) = —6(u,v) (5.1a)
O(v, au + pw) = aO(v,u) + LO(v, w) (5.1b)
(VveV:0@w,u)=0)=u=0. (5.1c)

If the dimension of V' is finite, it is necessarily even.

Ezample 5.2 (canonical phase space). Consider a flat n-dimensional configu-
ration space ¢ € R™ and the corresponding phase space

Z = (217 R 722n) = (qap) = (q17 <oy qnyP1y - 7pn) € RQTL =V. (52)
The Poisson brackets (i,7 = 1,...,n)
{qz-,pj} = 5ij (53&)
{gi.q;} =0 (5.3b)
{pi;pi} =0 (5.3¢)
define a symplectic structure (o, 5 =1,...,2n)
{20, 23} = 0°F (5.4)

with the antisymmetric 2n x 2n-matrix

6 <_01 é) . (5.5)
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This corresponds to a symplectic form

O:R”xR™ >R
2n

((g:0),(d.p) — D 202 =

a,f=1 )

(5.6)

M-

(@} — pid;) -
1

/
z z

Ezample 5.3 (complex vector space). Using the canonical identification
C" 3 (zy +iys, ..., Tn +iyn) = (1, ..., Tn, Y1, ..., Yn) € R™" (5.7)
the preceding example is equivalent to

0:C"xC"—-R

= 5.8
(2,2") HZImZZz; (5:8)
i1

Ezample 5.4 (Peierls brackets). Consider the vector space S,,,(R"™!) of (smooth)
solutions ¢ : R x R™ — R of the Klein-Gordon equation with mass m

<j_ By mﬂ) o) = O+ m) o =0. (59

that fall off “sufficiently fast” at “spatial infinity”, i.e. |z
Peierls bracket

(o) SR x S, (R - R

-----

60) = D0y =By, O
with
Gy = [ (¢<x>%<x> - %uwm) (5.11)

is, due to the Klein-Gordon equation and falloff at spatial infinity, inde-
pendent of ¢ and can be used to turn S,,(R""!) into the symplectic vector
space (S,,(R™1),{-, -}). The nondegeneracy can shown by considering the
initial conditions for the Klein-Gordon equation (— ezercise).

Definition 5.5. A Weyl system (A, W) of a symplectic vector space (V, O)
is a C*-algebra A together with a map W : V — A, such that Vo, e V

W) =1 (5.12a)
(W(9)" = W(-9) (5.12b)
W(SW (1) = e 220D W (¢ + ). (5.12¢)

Note that we don’t require W to be continuous. In fact, we don’t even
assume V' to have a topology.
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FEzample 5.6 (one particle quantum mechanics in one dimension). Consider

V = R? with

O:VxV->R
(5.13)
((51, 771)7 (527 772)) — 77152 - §1772 .
Then the composition law in the corresponding Weyl system is
W (&L, m)W (&2, m2) = ez(@m—méyy W&+ &,m + ). (5.14)
The connection with quantum mechanics is to formally write
W (&, n) = et (5.15)
with the unbounded hermitian operators
x=zx" (5.16a)
p=7p (5.16Db)
[z,p] =1 (5.16¢)
[z, 2] = [p,p] =0 (5.16d)
and to use
eAeB — A+B+ s[AB] _ eA+Be%[A,B] (5_17)

for [A,[A, B]] = [[4, B], B] = 0. Then we obtain

W(gl’ nl)W(fg, 772) = ei§1p+in1xei§2p+in2x
— optimatiboptine  —3[&1ptma gaptnoz] _ Gi(1+&2)p+ilm+n2)z o3 (G2 —mEr)

— ORI (6 + &y ) (5.18)

i.e., up to domain issues for unbounded operators, the canonical commutation
relations (5.16) are equivalent to the Weyl form of the canonical commutation
relations (5.14).

Definition 5.7. The algebra Ay, generated by the W (£, n), i.e. the comple-
tion of the linear span of the W (¢, n) is called the Weyl algebra.

Example 5.8 (n particle quantum mechanics). Consider V' = R?" with

5.19
((5177]1 52,772 2 7]1,2-52,1- — 51’1-77271') . ( )
=1
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Then the composition law in the corresponding Weyl system is

W&, m)W (&, n2) = e%Z?:l(&’mzi*m’i&‘i)W(fl +&,m +12) . (5.20)

The connection with quantum mechanics is again to formally write

(6 77 - eXp ( Z é-zpl +771:[;z ) . (521)

Ezample 5.9 (general Weyl system). Let H = L?(V, C) be the Hilbert space
of all functions f : V — C that are square integrable wrt the counting
measure’, i.e. f € H, iff f vanishes everywhere except for countably many

points ¢ € V and
115 = D IF (@) < 0. (5.22)
¢peV

The inner product on H is then accordingly

rn =D, F(9)g(e). (5.23)

eV

Let A < L(H) be the C*-algebra of bounded operators on H and define

Wev—A (5.24a)
¢ — W(o) '
where the action of W(¢) : H — H is given by
(W(@)f) (¥) = 29 f (o + ). (5.24b)

| Lecture 15: Wed, 05.12.2018]

It’s easy to check (5.12): each W(¢) is obviously bounded
Voe V. feH [W(o)f]| =/l (5.25)
and (5.12a) is also obvious

VieH (W) W) = f¥). (5.26)

Note that everything works for L?(V, C) with more general measures, including the
Lebesgue measuer, except for statement 4) of theorem 5.10, whose proof uses an induction
argument.
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Verifying (5.12b) requires a short calculation

V¢6‘4f96%'<f *9>H— W(®)f, 9)x
= DLW (@) f) W)gw) = Y, 2D f(¢+4)g(¢))
PeV YeV
X=g+9 Z e30(6x—0) f Z Flx g(x — 9)
= 200 (W (=0)g) (x) = (f, W (=9)g)y, (5:27)

similarly for (5.12¢)

Vo, x eV, feH (W)W W) F)(x) = (W(6) (W) ) (x)
— 290X (W () f) (¢ + x) = e29@VesOWI f(y + ¢ + x)
= @20 f(y 1+ 6 4 x) = e 20V (W(6 +0)f) (0)
= (3 CIW G+ )f) (1) (5.28)

Theorem 5.10. Let (A, W) be a Weyl system of a symplectic vector space (V, ),
then

1. W(9) is unitary for all €V,

2. [W(9) = W(W)| =2 forall ¢ + e V,

3. A is not separable, unless V = {0},

4. the family {W(¢)}gsev is linearly independent.
Proof.

1. Obviously
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— e O (¢) . (5.30)

Note that z1 — A is invertible, iff U(z1 — A) U™ = 21 — UAU!
invertible for invertible U. Therefore the spectrum is invariant under
similarity transformations

o(A) =oc (UAU) (5.31)
and (5.30) implies
o (W(9)) = a (W)W () (W(x)') =g (W(g)) . (5.32)

If ¢ & 0 and © is non degenerate, there is a y such that V' 3 ¢ — O(x, ¢)
is onto R and V 3 ¢ — 22069 is onto S' = {z € C : |2| = 1}.
Thus, for ¢ £ 0, the spectrum of W(¢) is invariant under arbitrary
rotations z +— €@z. Since o (W(¢)) + & by theorem 2.11 and, by
unitarity, o (W(¢)) < S' we conclude that

Vo £0:0(W(p) =S, (5.33)
Therefore

Voo (e%@w’@ww ) — 1) 51 (5.34)

and since eéew’@W(gb — 1) — 1 is normal, the norm is given by the
spectral radius

Vo s [ePPOW (=) 1] = p (FOPIW (6 — ) — 1) = 2.
(5.35)
Using

= W) (FIW (6 —v) ~1) . (5.36)
we obtain the desired result
[W(6) = W@)[* = |[(W(g) - W(?/J))* (W ~W(y))]
w2 - )
- |(Feowio -y 1) (62 W) -1)]
3O (¢ — ) — 1H — 4. (5.37)
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3. Since |[W(¢) — W (¢)| = 2, the open balls of radius 1 that are centered

. Assume that there is a {¢;}i—;

at ¢ € V are a collection of disjoint open sets that is not countable.

» such that ¢; + ¢; for i + j and

.....

n

DlaiW(e) =0. (5.38)

i=1

We will show by induction on n that a; = 0. The case n = 1 is trivial,
because all W (¢) are unitary and thus never null. For the induction
step?, assume WLOG that the {W(¢;)}i=1,,_1 are linearly independent
and a,, + 0. Then

W(on) = = D, —W(e) (5.39)

and for all Y e V

n—1
T (_ &W(@)) (C2) 0wy (4,)
(0%

n—1 n—1
G2 _ & AW (=) C20 S Qi ey,
=, W EIW () 25, we)
(5.40)
1. e. _— -
Z OézW((ﬁl) = Z Oéiei@(lp’(bni@)W(gﬁi) (541)
i=1 1=1

or, by the induction hypothesis that the {W(¢;)}i=1
dent

n—1 are indepen-

.....

Vi=1,...,n—1:q; = qe®®®n=9) (5.42)
If a; & 0 for ¢ < n, then

VeV :0W, ¢, —¢;) =0 mod 2r. (5.43)

By linearity
Vip eV :O®W,dn — ;) =0 (5.44)
2NB: the following computation is clearer than the one adapted from | ], which

had been presented in the lecture of Dec. 5, 2018
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and since O is non-degenerate we find the contradiction

On = @i (5.45)
ThusVi=1,...,n:q; =0.

5.2 The Stone-von Neumann Theorem

In the following, it will sometimes be convenient to use in place of the W (&, n)
from example 5.6 Weyl’s

U(n) = W(0,n) (5.46a)
V(€) = W(£0), (5.46b)
which form two abelian one-parameter groups of unitary elements of Ay,
UmU(n') = Um+n') (5.47a)
VOVI(E) =VI(E+E). (5.47Db)
The general W (£, n) can of course be expressed by U(n) and V() since
UMV () = W(0.mMW(E.0) = W(E e " (5.48a)
V(U ) = W(E0OW(0,7) = W(g n)ex, (5.48b)
i.e. i i
W(&n) = e 2V (E)U(n) = ez"U(n)V(€). (5.49)

The analogous notation can also be used for the n degress of freedom in
example 5.8.

Definition 5.11 (regular representation). A representation (H,m) of the
Weyl algebra Ay, on a separable Hilbert space H is called regular, if R 2
§ = m(V(€) = m(W(£,0)) and R 3 n— 7(U(n)) = 7(W(0,n)) are strongly

continuous in ¢ and 7, respectively.

Theorem 5.12 (Stone-von Neumann). All reqular irreducible representa-
tions of the Weyl algebra Aw of a finite dimensional symplectic vector space
are unitarily equivalent.
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| Lecture 16: Fri, 07.12.2018

Proof. Starting from the Fock state wp : Ay — C, defined by

sr (W (En) = oxp (-5 (5.50

and linearity, we construct the corresponding GNS representation (Hg, 7r, Q)
with

(Qp, 7r(W(&,0))2r) = wpr(W(E,n)). (5.51)
Now consider another regular representation 7 and compute the integral
déd 22
P [S2le S nw ). (552
T

This integral exists as a limit of Riemann sums in the strong operator topol-

ogy, because (&,7) — oS L'(R?) and 7(W(&,n)) is both bounded and

continuous in £ and 7. Py is obviously self-adjoint

pr = Jdgdnegzi"zn(W(—g, ) = P.. (5.53)

T 2
It is not obvious that P, doesn’t vanish. However, if this was the case, then
using

i

W(=¢, =YW (EmW (&', n) = e 2 TOW (¢ — ¢ n— YW (E, 1)
_ e—%(£'n—n’§)e$(£n’—n£’)w(€’ ,7) _ eiSn’—inf’W(&n) (5'54)
(that’s (5.30) again), we find

0=n(W(=¢,—n))Pern(W (1))

déd 2402
:J gﬂneg (W=, =)W (EmW (7))

déd 24?2 el e
- [ S R (g et (5.55)

1. e. that the Fourier transform of all matrix elements of

&24n?

e m(W(E,n)) (5.56)

would vanish, which would imply 7(W(£,n)) = 0. Also, using
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W (&)W (&)W (§2,m2) = eé(&m—m&)w(g +&,n +m)W(E,n2)
_ e%(51?7—7715)eé((5+€1)?72—(77+m)52)W(éf + &+ &+ + 772)
_ e%(E1n+€n2+§1n2—771£—77€2—n1£2)W(f F&+ & n+m+m) (557)

we find by a straightforward computation of two Gaussian integrals (— ez-

ercise)
£24n?

Ermn(W(E,m)) Pr = e

P.. (5.58)
In particular from
P? = P.n(W(0,0) P, = Py, (5.59)
we see that P, 4 0 is an orthogonal projection. Thus there must be a 2y € H,
with
Pﬂ-QQ = QO (560&)
€] =1 (5.60b)

and we can compute

(€20, (W (&) $) = (Qo, Prr(W (&, 1)) Prf20)

(5.58) _ &2+9? 2
= e 4

24,

(Qo,PﬂQo) = e_E 4
—_—

[€0]2

= wr(W(&,n)). (5.61)

This shows that 2y = €2, and we have already shown in theorem 4.7 that all
GNS representations corresponding to the same state are unitarily equivalent.
O

We have proven the theorem for one degree of freedom or V= R x R,, but the
same argument works for any finite number of degrees of freedom. However,
it breaks down for an infinite number of degrees of freedom, because then
the integral in (5.52) doesn’t exist straightforwardly.

Remark 5.13. P, projects on a one-dimensional subspace.
Proof. Assume
WeH,: (V,Q)=0nAFPV =0 %0, (5.62)

then

vE,me R (W, m(W(E, 1)) = (Pr¥, m(W(E,n)) Prldo)

_ 2492 £2 492

=e 1 (U, Py)=e 1

(L, 0Q) =0 (5.63)
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and thus

VAe Ay : (W, m(A)) =0. (5.64)
Since every W € H, is cyclic in an irreducible representation, we conclude
that ¥ = 0. O

Note that we needed the strong continuity of the representation only to
show that the integral (5.52) exists. We could have relaxed this condition to
measurability of

£ (U, m(V(E))P) (5.65a)
n = (U, (U(n))®) (5.65b)

for all U, ® € H. However there is a theorem by von Neumann (see, e.g.,
[ |, theorem VIIL.9, p. 268), that weak measurability implies strong con-
tinuity. Thus we may demand strong continuity, WLOG.

Using (5.48), we can compute the Fock state of a product of U(n) and V (£):

wr(UMV () = & ¥rop(W(€,n) = e SF 4 (5.60)
Computing the partial derivatives from this explicit expression
P .
SR UmVIO) =~ EurUmVie) (5.672)
P .
S UmV(O) =~ LorUmV(E)). (5.67h)

0o 0
—l=—= + = Un)V =0. 5.68
(-1 + 5+ 0) wrCV(E) (5.68)
Since n — 7p(U(n)) and & — 7wp(V(£)) are strongly continuous, Stone’s
Theorem (see, e. g., | |, theorem VIIL.8, p. 266), guarantees the existence

of self-adjoint operators X and P that are in general unbounded, but defined
on dense subdomains of Dy, Dy € H

X : Dy — M (5.69a)
P:Dp— H. (5.69D)

with
e(U(n)) = ™ (5.70a)

p(V(€)) = ", (5.70b)
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Thus we can write

0

~igme(V(©) = Pre(V(©) = me(V()P (5.71a)
S-re(U() = X (U ) = ime (U)X (5.71b)

and find

i.e., from (5.68),

0 - (—ia% T 77) (e (U )V () 20)
= Qe (U) (P 41X 4 1) e (V(E©)2%) . (5.73)

Since
.0
X = —17171_1)% %WF(U(U)) (5.74a)
P = —i%i_r)% a—iﬂF(V(f)) : (5.74Db)

we can compute

= il o (mr V(0,1 (W (€)= (W (&) OV 0,11)

a i / i /
— i 13 _ / —z&n" _ / 3&n
11},@0 P <7TF(W (&mn+n)e Tr(W(En+n))e )

o 0 e ST
= 21 2 (relW(e,+ )sin )

/ a /
= —2lim (sin %7&_?7,7TF(W<57 n+1)) +mp(W(En+ n’))g cos %7)
= —¢mr(W(E,m) (5.75)

and analogously

PWF(W<§, 77)) - WF(W(ga n))P

= i fim - (re (W (€. 0OV (&) — (W (&) (W (€10)
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= i lim - (mr (W (€ + €,m)es — me(W(E + €. ) i€7)

b o
J , &'
= 2lim 2@ <7TF<W(§ +¢&,n))sin 7)
2 iny (sin 0 Lrp V(e 4 €m) 4 w6 + € S cos )
=nrr(W(&m)), (5.76)
Xrp(W(&,n) = mr(W(&n)(X —§) (5.77a)
Prp(W (& n)) = np(W(&n)(P+n). (5.77b)

Using this, we can infer from (5.73)

0= (Qp, mp(Umn)(X —iP —in)mp(V(§))2r)
= (@, (X —1P)mr(Un)mr(V(€))2r)
= (X +1P)Qp, mp(Un))me(V(£))02r) (5.78)

i.e.
YU eH,: ((X+iP)Qp, V) =0 (5.79)
or
(X +iP)Qp =0, (5.80)
which should be familiar from the algebraic solution of the harmonic oscillator
1 1 1
H = 5]92 + §I2 =a%a+ 5 (581)
with .
a=—(x+1 5.82
7 (z +ip) (5.82)

in elementary quantum mechanics.

5.8 Schrodinger Representation & Wave Functions

In the following, we will construct a particular representation (Hg, 7g) of Ay .
The Hilbert space is Hs = L*(R,C) with the standard Lebesgue measure
on R. And 7g : Ay — L(Hs) is uniquely defined by the action of the
generating elements {mg(W (£, 7n))}eqer on the elements of Hg:

)
(ms(U(n)¥)(z) = e™(x) (5.83a)
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(ms(V(€)¥)(x) = ¥(x + ) (5.83b)

therefore

(rs(W (& mw)(@) = (e ms(Um)ms(V(€))) ¥) ()
= 03" (w5(U(n)) (ms(V(E)¥)) () = e2™e" (ws(V()¥) (x)
= @ 4+ €) . (5.84)

This definition satisfies the Weyl relations (5.14) (— ezercise). Note that
is different from the general Weyl system described in example 5.9, where
the m(W(&,n)) act on functions on R?. Here we have functions on R.

| Lecture 17: Wed, 12.12.2018]

Theorem 5.14. The Schridinger representation (Hg, ws) with (5.83) is ir-
reducible.

Proof. 1f (Hg,ms) were reducible, there would be a H' < Hg invariant un-
der ms(Aw) and a ¢ € Hg with
Vipe H,E,me R0 = (¢, ms(UMV(E))Y)
= (rs(U(-n)6, 7 (VIOW) = [doe™Gaole +), (555)

i.e., the Fourier transform of

x— d(x)(x + &) (5.86)

vanishes for all £ € R. Therefore the intersection of the support of ¢ and the
support of ¥ shifted by £ vanishes. Since £ is arbitrary, and the support of ¢
is not empty, the support of ¢ must be empty, i.e. ¢ = 0. Thus (Hg, 7s)
can’t be reducible. O

Theorem 5.15. The Schrddinger representation (Hg, ws) is strongly contin-
uous as maps R — L(L*(R,C))

& ms(V(E)) (5.87a)
n— ms(U(n)) (5.87b)

with (5.83).
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Proof. First compute

s~ ol = [do [p@) [er ~ 1P (5.8
< 4l(a)?
and observe that both
x — 4y(2)]* € LY(R, C) (5.89)
and
lim [¢ () * e — 1" = 0 (5.90)

pointwise. Therefore, by the Lebesque dominated convergence theorem?, we

have convergence of the integrand in the L!'(R, C) topology and therefore
lim s (U () = ¥[* = 0 (5.91)

in the L*(R, C) topology. In the case of mg(V/(£)), we can use the same
argument again for the Fourier transform k +— (k) of z + t(z) to find’

fim s (V()v = v[* = 0. (5.92)

[]

3E. g. stated as Theorem 1.11 on p. 17 of | ]:

Theorem 5.16 (Lebesgue dominated convergence theorem). If Vo € R : fn(z) — f(x)
pointwise and 3g € L*(R) : Yz € R,Vn : |fu(z)| < g(z), then f € LY(R) and §dz|f,(z) —
f(@)] = 0.

4NB: the estimate

wawow—wﬁ=ﬁmwu+@—www
< (blz + )] + [b(x)])?

used in the lecture of Dec. 5, 2018 is not sufficient for an application of the Lebesgue
dominated convergence theorem, because it is not uniform in &.

However, as already suggested during the lecture, the argument can be salvaged by
starting with continuous functions of compact support, for which

V&1 3e(6o) VO < E <ot Vo [Pz + &) — ()| < e(o)-

We can approximate any ¢ € Hg by a sequence {¢y } xen of continuous functions of compact
support and estimate

|ms(V(ENY — ¢l < |ws(V(€)Y = ms(V(E) | + [ms(V(E))r — voi| + [n — ],
—_——

N J

—
=[—vx—0 -0 -0

using the unitarity of mg(V(£)).
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Having established the strong continuity, we can use Stone’s theorem to
construct the self-adjoint operators

.0
X = —171713(1) %WS(U(n)) (5.93a)
. 0
P = —1%1_{% a—éwS(V(f)) . (5.93b)
On one hand A
XP = _5!717908_776_57TS(U(77)V(§)) (5.94)
and on the other
PX = — tim 2L asv©Um)
&m0 0n 0€ s g
0 0 :
_ _ T - v ing\ _ .
6}717210 o0 O (ms(U(mV(€))e™) = XP —il. (5.95)
Thus

XP-PX =[X,P]=i1 (5.96)

and X and P can play the role of position and momentum operators on a
common dense domain S(R) < Hg, i.e. the Schwartz space of smooth func-
tions that fall off faster than any inverse power. We can therefore use f(X)
and g(P) the observables representing functions of position and momentum,
respectively.

5.3.1 N Degrees of Freedoms

We can easily extend the Schrédinger representation (Hg, 7g) to a Ay with
N degrees of freedom. The Hilbert space is now Hg = L*(R", C) with the
standard Lebesgue measure on R™. The homomorphism g : Ay — L(H,)
is uniquely defined by the action of {ms(W (&, 7))} g~ on the elements of H
by

(ms(W (&, 71))(&) = eTTHP(T 4 €) . (5.97)

All regular representations of the Weyl algebra for N d.o.f. are again unitarily
equivalent, since the proof given above goes through.
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5.3.2  Fquivalent Representations

We can generalize the above representation m = g to a two-parameter family
of representations (Ha g, Ta,5) With o, 5 € R

Tas(W (&) = S m(W(E, 7)) (5.98)
where obviously H = Hop and m = my . In particular
(Ta,s(U()9)(x) = e (z) (5.99)
(Tas(Va(€)0) () = €% (a + €) (5.99b)
(Tap (W (& m)0) () = EHERTETT0y, (7 4 €. (5.100)

According to the Stone-von Neumann theorem, all these representations must
be unitarily equivalent. This is indeed the case and we can use Hqo 3 = Hoo =
Hoo and m, 3 = Mo © Uy g = ™o U, g With the intertwiners

Uap = 7(W(a,B)) € L(H), (5.101)
because from (5.57)
W (—a, =B)W (& MW (o, B) = eCIW (€, n) (5.102)
and therefore
U sm(W(&n)Uays = P m(W(E,n)) = map(W(Em).  (5.103)

5.3.83  Pitfalls on the Chrcle

The proof of the Stone-von Neumann theorem presented above works equally
well for any finite number of degrees of freedom, but fails for an infinite
number of d.o.f.,; because the infinite product of Gaussian integrals in (5.52)
is not well defined. However, there are simpler systems, where the Stone-von
Neumann theorem doesn’t apply.

Consider a particle on the circle S* = {(x,y) € R? : 22 +y* = 1}. A more
convenient parametrization is

St = {(cos ¢,sinp) e R : 0 < ¢ < 27}, (5.104)

but we must impose periodic boundary conditions for wavefunctions at ¢ —
2 = 0.
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In particular, we must have

VY € He 2 (m(W(E,m)P)(x) = (m(W(E,n))¢) (2 + 27) (5.105)
because otherwise m(W (&, n)) would destroy periodicity. Thus
ein(x+£/2)w<$+f) L ein(;r+27r+§/2)w<x+2ﬂ_+€) _ ein(a:+27r+§/2)w(x_|_£>, (5106)

or
oin(@+€/2) L jin(e+2m+¢/2) (5.107)

i.e. n € Z. Going back from the representation to the algebra, we see that
the Weyl-algebra for S! is generated by

{v“v;(g) —W(,v):EeR,ve z} . (5.108)

| Lecture 18: Fri, 14.12.2018|

We can again study the representations (H, g, Ta,3), but this time, there are
fewer intertwiners available and we can only construct the representations
with 8 € Z using

Usp = <Wg(0¢)> , (5.109)

while the representations (H, g, 7a,5) with 0 < § < 1 could be inequivalent.
The Stone-von Neumann theorem is also of little help, because the conditions
are not met and the proof breaks down, since we can’t use Gaussian inte-
grals over n to construct a projector. We can however obtain a very simple
necessary condition for two representations to be unitarily equivalent from
the observation

Lemma 5.17. The spectrum o(A) of an operator A € L(H) is invariant
under similarity transformations A — SAS™' € L(H') with invertible S :
H—H.

VAe ﬁ(/H) : UC(H)(A) = O'L(H/)(SAS_I) . (5110)

Proof. S™' : H' — H exists and B = SAS™' € L(H') is well defined. The

operator
21-B=21-SASt'=5(z21—-A)S! (5.111)

is invertible iff z1 — A is invertible. Thus the resolvent set and the spectrum
agree. L]
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Corollary 5.18. The spectrum of the representatives is the same in two
unitarily equivalent representations (Hi,m) and (Hs, ) of a C*-algebra A:

VAe A: O-L(’Hl)(ﬂ'l(A)) = 05(H2)<7T2(A)) . (5112)

Proof. The unitary intertwiner U : ‘H; — Hs defines a similarity transfor-
mation 71 (A4) — ma(A) = Um (A) UL O

Of course, z1 — w(W (€, 7)) is invertible, i.e. z ¢ o(7(W (€, 7)), iff
T 1 — 1o g (W (€, 1)) = P71 (21 — (W (€, 7)) (5.113)
is invertible, i.e. (%12 ¢ o(7, 5(W(£,7))). Thus we have shown that
0 (ma,s(W (€, m))) = o (n(W(E,1))) (5.114)
and in particular
(a5 (W(E,0))) = ¢ a(m(W(£,0))) . (5.115)

If we can compute o(m(W(£,0))) and show that is a strict subset of S*
not invariant under arbitrary rotations, we have proven the existence of in-
equivalent representations. Indeed,

o(n(0(9)) = a(m(W(£,0)) = {e"}, (5.116)
since® for 1, : x > *
(m(W(& 0)¥n) () = Yu(x + &) = 4y (). (5.117)

Even for irrational &, {ei”5}nez, while dense in S' < C, remains always
strictly smaller. In any case, given a £, we can find a 5 € (0, 1) such that

{e" g €7 e eg (5.118)

The example of a particle on S! introduces a new feature, a non trivial
center of a C*-algebra.

SUsing the ansatz
(m(W(& 0))¢on)(x) = ¥n(x + &) = an(§)hn(x)
we find from multiple applications and the group property
VEERKEZ : (n(€)" = an(ké) A ap(2m) = 1

and therefore exponentials .
an(§) = e

with m € Z. WLOG we can choose m = n.
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Definition 5.19 (commutant, center). The commutant B’ of a subset B of a
C*-algebra A is the set of all elements of A that commute with all elements
of B, i.e.

B ={Ae A:VBeB:AB = BA}. (5.119)

The center Z(A) of a C*-algebra A is the set of all elements of A that
commute with all other elements, i.e.

Z(A) =AnA. (5.120)

| Lecture 19: Wed, 19.12.2018)|

Indeed, we can compute
Yn,ve Z: V(2nm)U(v) = U)V (2nm)e®™™ = U(v)V (2n7) (5.121)
and, of course,
V(2nm)V (&) = V(&)V (2nm) (5.122)

or more generally

~

Ve Z: Wo(2nm)W, (&) = W, ()W (2nm)e?"™ = Wo (&)W, (2nx) . (5.123)

Therefore N
VneZ: Wy(2nm) € Z(AS)) (5.124)

but from N N o
Wo(2nm)W, (&) = ™™ W, (€ + 2nr) (5.125)

and the fact that there is a priori no 2m-periodicity in the family of algebra
elements W, : R — A*EVI, we can expect that Wy(2n7m) £ 1, i.e.

Z(AS) +{z1:2€C}. (5.126)

Indeed, computing the action of Wo(2n7r) in the representations (Ha 5, Ta.5),
we find from (5.100)

(a8 (Wo(2nm))0) (z) = 2™z + 2n1) = 2Py () , (5.127)

1.e.

T s(Wo(2n7)) = 2701 | (5.128)

For 0 < 8 < 1, this is not compatible with Wg(Q?’L’ﬂ') = z1, because for all

representations
Tap(21) = 27 5(1) = 21, (5.129)
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independently from [.

As mentioned in section 4.2 on page 68, symmetries are realized as au-
tomorphisms of the C*-algebra of observables. For example the transla-
tions © — r — «

7—oz:-A»W_)“élW

W (5.130)
W(&,n) — e "W (&, n)
and Galileo boosts p — p + 3
Ay — A
98 Sw W (5.131)

W (&, n) — "W (£, n)

form an abelian® two-parameter group of automorphisms Ty 5 : Aw — Ay,
with o, 5 € R,
Lap=030Tq =Ta00p (5.132)

and”’

Lo g(W(E,m) = Talos(W(E,n))
= EPTIW (&, ) = W (—a, =B)W(&,mW (a, B) . (5.135)

As we have seen above (5.101), in a representation (H, ), the I', 3 are rep-
resented unitarily

T (LagW(E ) =7 (W (—a,=B)W(En)W(a,B)) = Us sW(§, mUa,p
(5.136)
by
Uap =7 (W(a,B)) . (5.137)

However, while I', 5 : Aﬁ; — Aﬁ; remains well defined on the circle for
all o,8 € R, only I',, with o € R and v € Z can be realized unitarily.
We may say that we have a case of Spontaneous Symmetry Breaking (SSB):
the symmetry is an automorphism of the microscopic algebra of observables,
but not of the representation corresponding to the macroscopic state. In

6Cf. section 3.8.4 on page 59 of | ].
"Note that
W, 0)W (0, 8) + W(0, B)W (a,0) + W(a, B), (5.133)

but

W(0, =5) (W(=a,0)AW (e, 0)) W(0, 8) = W (=, =) AW (a, 5)
= W(=a,0) (W(0, =p)AW (0, 5)) W(a,0), (5.134)

because the phases cancel.
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the present case, all translations 7, = 'y o remain unbroken, but the Galileo
boosts 0, = I'y, are broken by the quantization of momenta, except for
integer amounts.

In this example, the breaking of the symmetry is of course not fully spon-
taneous, because it is brought about by a enforcing the non-trivial topology
of the configuration space S'. Another way to describe the situation is that
the classical boost symmetry p — p+ [ is anomalous in the quantum theory
or that we have an example of an anomaly, where a classical symmetry can
not (fully) be realized in the quantum theory.

Nevertheless, there remains a weaker form of the Stone-von Neumann
theorem, namely that all representations (H,7) with m(Wy(2nm)) = 1 are
unitarily equivalent. In fact, we can show that there is a cyclic vector )
with

VveZ eR: (Qo,wa,ﬁ(ﬁf,,(g)mo) — 6,0 (5.138)
corresponding to the state
(W (€)) = duo- (5.139)
Indeed from o ,\,
Wo(§Wo(£') = Wo(§ + £ (5.140)
we infer N N N
Wo (€ + 2m) = Wo(2m)Wo(§) (5.141)
and N N N N
m(Wo(€ + 2m)) = m(Wo(2m))m(Wo(§)) = m(Wo(§)) - (5.142)
Thus (W (£)) is periodic with period 27 and we are let to define
2 d€ .y
= L %W(Wo(f)) : (5.143)

. 27Td§ ~ B —27rd§
= fo %W(WO(_@) = —L %W(Wo(f))
[ e - [ Eniien - p o
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2
e e

- T(Wo(€)) (5.145)

can not vanish, because it’s the vth Fourier coefficient of the periodic unitary
operator w(Wy(§)). Finally, similarly to the proof of the Stone-von Neumann

Po(W,(€)) Py = 6,0 P . (5.146)

Thus we see that P, is an orthogonal projection and can construct €y as a
normalized eigenvector of P.

5.4 Reducible Representations

A representation (H,7) of a C*-algebra A corresponding to an impure state

N
w = piw; (5.147)
=1

with each w; pure, R 3 p; > 0 and Zf\il p; = 1, will not be reducible and can
be written as a direct sum (or integral) of N irreducible representations

H

évt) H, (5.148a)

s
Il
—

i) (5.148D)

]
B

@
Il
—

where we must allow that not all (H;,m;) are different. Since all (H;, ;)
in (5.148) are, by definition, irreducible, they correspond to the pure states

wi:A—>C

5.149
with €; € H;. Therefore the state w has the decomposition
w:A—->C
N (5.150)
A w(A) = Y p; (Q, mi(A)) .
i=1
Introducing the operator
p:H—->H
(5.151)

N
Vi ZQz (2, V) pi
i=1
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we can express the state w as a trace
w(A) = try(pm(A)). (5.152)
This suggests the pair of definitions

Definition 5.20. A bounded operator A € L(H) in a separable Hilbert
space H is called trace class, iff the sum (or integral) for any orthonormal
basis {1;}ieren satisfies

trp(|A]) = trp (VAR A) = Y (¢ \/A*A@bi) <. (5.153)
iel
Then the trace of A
try(A) = D (thi, Adh) (5.154)

iel

is absolutely convergent and independent of the basis.
Definition 5.21. A positive trace class operator p € L(H) with

try(p) =1 (5.155)
is called a density matrix.

Theorem 5.22. Given a representation (H,n) of a C*-algebra A, each den-
sity matriz p : H — H defines a state

wy: A—C (5.156)
A — try(pm(A)). '
Proof. w, is normalized by definition
wy(l) =tryp=1 (5.157)
and since positivity implies self-adjointness, we can diagonalize p
pio— > pii(vi, 9) (5.158)
el
with R 3 p;, >0 and ), _,p; = 1. Thus
wo(A*A) = tew(pm(A*A)) = D (i, p(A* A))
iel
= Z Dj ¢za 1/}] (¢]a (A* ¢z Zp] ¢zv A* )l/h)
i,j€l 6 el
= b A)gs, w(Aji) > 0. (5.159)
iel ;v—/ k g

>0

=0

]
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Remark 5.23. The pure states correspond to density matrices that are one-
dimensional projections

p:® T, (T, ) (5.160)
with W, = 1.
Proof.

wo(A) = > (Wi, pr(A)) = ) (163, 0,) (U, 7(A))

el iel

= > (T, w(A)r) (Ui, Uy) = (T, m(A)T,) , (5.161)

el
using the completeness of the basis {;}icren:
VoeH : Y v (Vi o) = 6. (5.162)
el
L]

Note that density matrices appear here in two very different ways. First
we have decomposed a reducible representation and written the state as a
sum of pure vector states

N
=1

which we have rewritten as a trace of a density matrix in the big Hilbert
space. But after introducing the notion of a density matrix, we have noticed
that every density matrix defines a state

wy: A try(pm(A)), (5.164)

which can be pure or not.

| Lecture 20: Fri, 21.12.2018|

FExample 5.24. Consider the C*-algebra My of 2 x 2-Matrices, for which
furnish their own representation (H,7) = (C?,id). As we have also seen in
the exercises, the states on My can be parametrized by three real numbers &
with |@| < 1 and

Way - Mg — C

M (M), (5.165)



ohl: Fri Feb 8 14:46:11 CET 2019 subject to change! 96

where )
p(@) == (1+aad) . (5.166)

[\]

The pure states are those with |@| = 1. It is important to realize that the
representation (C?id) is in general not the GNS-representation associated
to the state wg or even unitarily equivalent to it.

In fact, the dimension of the representation space Hg of the GNS-repre-
sentation (Hg,mz) constructed from wz depends on the dimension of the

Gel’fand ideal

Ts = {Me M, : wa(M*M) = 0} (5.167)
via
dim Hgz = dim (My/Zs) = dim My — dim Z5 . (5.168)
—4

Iff wg is not a pure state, p(@) has rank 2, the Gel'fand ideal is trivial
and dimHgz = 4. OTOH, iff wg is pure, p(@) is a projector with rank 1,
the Gel'fand ideal has dimension 2 (all matrices with vanishing first column)
and dim Hgy = 2.

5.4.1 Fell’s Theorem

In order to organize the representations, we make the following

Definition 5.25 (vector states). Given a state w over a C*-algebra A and
the corresponding representation (., m,), we call the members of the set

{wy 1 UeH,, U] =1} (5.169)

with
wy: A—C
A (U, m,(A)Y) ,

the vector states of this representation.

(5.170)

Definition 5.26 (folium). Given a state w over a C*-algebra A and the
corresponding representation (#,,, ), we call set

{w,: pe L(H,), 0 < ptrace class, try, p =1} (5.171)

with
w,: A—C
A try, (pm,(A)),

the folium of this representation.

(5.172)
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Besides the norm topology on the space A* of all linear functionals w :
A—-C,
ol = sup |w(A)], (1.1)
AeA,|A|=1
introduced earlier, we can define a weaker topology, that is probably physi-
cally better motivated. We start from a family of seminorms

I lay.ia, - A* = Ry 0 {0}

wr— sup |w(Ag)l
k=1,....,mn

(5.173)

indexed by finite subsets of A with |Ax| = 1 and define neighborhoods of
the origin

N(e; Ay, ... Ay) ={we A" ¢ |wlla,,..a, <€}
={weA*:Vk=1,...,n:|w(Ay)| <e}. (5.174)

The set of all such neighborhoods define the weak topology on A*. Because
we use only a finite number of elements of A to measure distances, the
neighborhoods in the weak topology are cylinders, while the neighborhoods
in the norm topology are balls. Therefore, the open sets in the weak topology
can be generated by infinite unions of open sets in the norm topology, but the
open sets in the norm topology can not be generated as finite intersections
of open sets in the weak topology. Thus every open set in the weak topology
is also an open set in the norm topology, but not vice-versa (unless A is
finite-dimensional). Therefore, the weak topology is coarser than the norm
topology.

Since only a finite number of measurements can be performed in real life,
the weak topology appears to be more appropriate than the norm topology,
which can only be realized when all observables are measured.

The importance of the notion of folium is explained by

Theorem 5.27 (Fell | ). The folium of a faithful representation of a
C*-algebra A is weakly dense in the set of all states on A.

This theorem is however somewhat disappointing, because it means that
one can not distiguish folia by physically realizable measurements, which nec-
essarily involve only a finite number of observables. In particular, if we have
two states w and w’ corresponding to unitarily inequivalent representations,
states from one folium can nevertheless be approximated arbitrarily well by
states from the other folium. Thus one might conclude that “one folium fits
all” or “one Hilbert space fits them all”.
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This conclusion is wrong, however, because the qualitative description
of important physical phenomena like SSB and phase transitions depend on
idealizations like the infinite volume limit, which corresponds to choosing
values for an infinite number of measurements. While a sample of finite size
will never undergo a phase transition or SSB, we get a better description of
its properties by making this idealization.
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— —
INFINITE NUMBER OF DEGREES OF
FREEDOM

6.1 Fock Representation

Coming back to example 5.8, i. e. the Weyl algebra Ay, for quantum mechan-
ics with n d.o.f.

W (&, m)W (&2, 112) = 03 B ELmamma @I (¢ 4 & 1y + 1po) (6.1)

we will now allow for n — oo. Of course, in order to have a well defined
multiplication law (6.1), we must assume that &, n € l5.
Since we know from Stone’s theorem that

() = —ilim j]iﬂ(W(O,n)) (6.2a)
0
w(pi) = —ilim = (IW(€,0) (6.2b)

are well defined symmetric operators on a common dense domain in any
regular representation (H, ), we can suppress the 7 and write

W(&,n) = exp (12 (&pi + nzmz)> . (6.3)

i=1
For convenience, we will in the following also use representations of the
Heisenberg algebra Ap, generated by the symmetric x;, p; with

[l‘iapj] = 1(51] (64&)
[ZL’Z',LITJ‘] = [pz,pj] = 0 (64b)
Since x; and p; can not be simultaneously bounded, Ay is not a C*-algebra
and we have to specify a representation (H,7) and a common dense do-

main D < H. Nevertheless will will in the following often write z; for m(x;)
and p; for m(p;) and leave the representation implicit.
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As suggested by the proof of the Stone-von Neumann theorem 5.12 and
also discussed in the exercises, one can introduce

(x; + ipy) (6.5a)

a; =

Sl =l

(zi —ipi) (6.5b)

the (unbounded) annihilation and creation operators, together with the num-

ber operators
Ni = CL:‘CLI' (650)

for all i € N. Obviously, one has

[ai, a;-‘] = 0y ( )
[a’w a]] = [a;ka a;k] - O b)
and
[Ni, a;] = —di5a; (6.6¢)
[ Vi, CL;] dija; (6.6d)

Theorem 6.1. In an irreducible representation (H, ) of the Heisenberg al-
gebra Ag with domain D < H, the following are equivalent (suppressing
the 7 ):

1. The total number operator

e}
N =>N; (6.7)
i=1
exists in the sense that the strong limit
Va e R : s-lim e Xz 9fe — gloN — 7(q) (6.8)
n—0o0

exists on D and defines a one-parameter group of unitary operators T'(«) :
D — D, that is strongly continuous in a, such that N exists as its gen-
erator.

2. There exists a non-zero vector ) € H, called the Fock state, or Fock
vacuum state, such that

Vi:a,Q2=0. (6.9)



ohl: Fri Feb 8 14:46:11 CET 2019 subject to change! 101

Such a representation is called a Fock representation (H,, ().

Proof. From 1) and the commutation relations, we see, using the Hausdorff
formula

e’Be ™ = 4B (6.10)
that
T(a)a; (T(a))™" = e ;. (6.11)
Therefore
T(2m)a; = a;T(2m) (6.12)
or
[T (27),a;] =0. (6.13)
Analogously
[T(27),af] =0, (6.14)
i.e.
[T'(27), Ag] = 0. (6.15)

Since the representation is irreducible, this implies that 7'(27) is proportional
to 14 and since it is unitary

0 eR:T2r) =14, (6.16)
This suggests to define
T' (o) = e 992" () (6.17)
with
T'(27) = 14. (6.18)
In the spectral decomposition
T'(a) = f dP()\) e, (6.19)
o(N’)
where 0
N =N-—, (6.20)
2T
this means that .
YAeo(N'):e* ™ =1. (6.21)

Thus o(N') € Z and o(N) is also discrete. If o(N) 3 A > 0 with ¥, one of
the corresponding eigenvectors', we have

0 < AT = (Wy, NTy) = > a0y (6.22)

7

I\ might be a degenerate eigenvalue.
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and therefore
JieN:aq;VyF0. (6.23)

Using the commutation relations

T(a)a; ¥y = a;e T ()T = e %N, = ge %N, = A Neg g,
(6.24)
we conclude that a; acts as a lowering operator and A — 1 € o(N) as well.
OTOH N = 0, because it is a sum of positive operators and therefore o(N) <

R, U {0}. Thus there must be a A € o(N) where the lowering terminates for
all a;. This A must be 0, i.e.

W az‘\I/() = O, (625)

and we have shown 2) with Q = W,
The other direction follows from

Ayl =Pa*)Q2cH, (6.26)

where P(a*) are the polynomials in {a}. P(a*)Q2 is dense in H, since the
representation is irreducible. N exists on P(a*)2 by construction and the
exponential series for T'(a) converges strongly to a one parameter group of
unitary operators. 0

Remark 6.2. The eigenvalue 0 of the total number operator N is not degen-
erate in a Fock representation (H,, (), i.e.  is unique.

Proof. Assume that there is a second ‘H 3 @ + Q with N’ = 0. Then,
since N = 0,

Vi:a, Y =0 (6.27)

and for every polynomial P
(Y, P(a*)) = (P(a)Y,Q) =0 (6.28)
and Q' = 0, because (2 is cyclic. H

| Lecture 21: Wed, 09.01.2019|

We can rescue a part of the Stone-von Neumann to the case of an infinite
number of d.o.f.

Theorem 6.3. All irreducible Fock representations (H,m,Q2) of a Heisenberg
algebra Ay are unitarily equivalent.
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Therefore, it makes sense to speak of “the” Fock representation.

Proof. Given two irreducible Fock representations {(#;,m;,€2)}iz12 of Ag,
we can use the cyclic vectors € and 5 to defineamap U : Hy 2 m1(Ag) —
7o (Ag)Qs S Hy and its inverse U™ @ o (Ag)Q — 71 (Ag)S2 on dense subsets
by

VAe€ AH . U7T1(A)Ql = WQ(A)QQ (629&)
VAe€ AH . U717T2(A)QQ = 7T1(A)Ql s (629b)

including UQ; = Qy and U71Qy = Q. Since we can compute the matrix
elements

(mi(A)%, mi(B)) (6.30)

for all A, B € P(a*) from the commutation relations and the condition a;§2; =
0, they can’t depend on the representation and U must be unitary. O

The polynomials in the creation operators {m(a¥)} applied to 2 form a
dense subset of H, in which all vectors are simultaneous eigenvectors of all
the {NV;}. Therefore the Fock representation is also called the occupation
number representation.

Note that we have not yet made any reference to the dynamics of the
system. The Fock representation exists independently of the Hamiltonian.
In the case of decoupled harmonic oscillators it provides a diagonalization of
the Hamiltonian

Hy, = Zwiafai + const. , (6.31)
7
but it exists also for free particles and other potentials. However only in the
case (6.31) is  the ground state of the system. By the Stone-von Neumann
theorem, the Fock representation is as good as any other representation for
a finite number of d.o.f., even though there might be calculationally more
convenient choices.

In the case of an infinite number of d.o.f., this is no longer true. As we
shall see below, one can show with simple arguments that interacting rela-
tivistic quantum fields and many body systems with non-zero density can not
be described by a Fock representation or the folium of a Fock representation.

The Fock representation a good representation, iff the total occupation
number N is a good quantum number for the description of the system.
Assume that the system described by (6.31) has a mass gap or energy gap m

Vi:w; =m>0. (6.32)
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Then the series defining Hy dominates the series defining N term by term
and

N < —H, (6.33)
m

and the existence of Hy as a self adjoint operator implies the existence of the
number operator V.

6.2 Non-Fock Representations

Consider a many particle system with non-zero density n in the thermody-
namic limit

N — w© N
Vo oo} n= v = const. > 0. (6.34)

If Ny denotes the number operator in the volume Ny, we have
Ny < N (6.35)

and therefore

1 .1
¥¥ e D(N) : [n¥] = lim Z[Nvy] < lim = [Ny] =0. (6.36)
< 0

Thus if n § 0, the total number operator N must not be a well defined
operator with a dense domain. Thus we cannot use the Fock representation
to describe such a system.

6.2.1 Haag’s Theorem

A typical description of a physical system starts from a Hamiltonian for “free”
or “non-interacting” states that can be described by decoupled harmonic
oscillators (6.31) in the bosonic case (e.g. photons, phonons and Cooper
pairs) and by anti-commuting annihilation and creation operators in the
fermionic case (e.g. electrons). These states can be simple plane waves for
photons in the vacuum or or complicated wave functions for electrons in
condensed matter.

The interactions among these states is then taken into account by adding
a polynomial in the annihilation and creation operators

H, = Zwiaz‘ai +gHin (a,a”). (6.37)

—_——
= Hj,
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If we could diagonalize the Hamiltonian (6.2.1) explicitely, we could introduce
annihilation and creation operators A; and A for the interacting modes with
energies F; and write the Hamiltonian in a quadratic form

H, = > E;A7A; + const.. (6.38)

A more realistic way to solve the dynamics of (6.2.1) is to first solve the
linear Heisenberg picture equations corresponding to H

d
o (0 =1[H. 0" ()] = —iwa” (1) (6.39)
as . . .
a”(t) = et (0)e 10t = o~itq,(0). (6.40)

OTOH, the full Heisenberg equations of motion

d .
&ai(t) =i[H,, a;(t)] (6.41)

for g & 0 are not linear and we can not derive a closed expression for
a;(t) = efta;(0)e " (6.42)

The compatibility of matrix elements in the Heisenberg and Schrodinger
picture

(Uy,ap(t)Py) = (\If,engtae_ngt(I))
= (e7" W, ae ' D) = (Wg(t), asPs(t)) (6.43)
can be extended to the interaction picture
(\I]H’ azH<t)q)H) — (eiHotefngt‘I]’ eiHotaefiHoteiHotefngtQ)
= (U, U 0)P) = (T, U*#)aD U [H)P) (6.44)
where

a0 (t) = it geiHot (6.45a)
U(t) = etole ™t = 1 + O(g) . (6.45D)

d . . . .
IEU@) _ elHot (Hg o HO) e—ngt _ gelHOtHint,e_ngt
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= geol Hypy e oteiote= il — gy (1)U (t), (6.46)
the formally unitary operator U(t) = (U*(t))"! satisfies
. d
1_
dt

with a time dependent interaction

U(t) = gHim (DU (1) (6.47a)

Hige (1) = &' Hiyy (0, a*)e ™" = Hyy (a0(1), (@®0)7) . (6.47b)
The Schrédinger equation (6.47a) is solved formally by Dyson’s series
U(t) — Te_ig Sédt, Hing. (t) . (648)

Matrix elements involving Dyson’s series (6.48) are evaluated in perturbation
theory using Feynman diagrams, for example,

£ %
ag a

gHi (a,a*) =g Z Vklm @) Gy + h.c. = —ig ) (6.49)
kim Vkim

A,
A typical second order contribution is then

(6.50)

While perturbation theory has been spectacularly successful for predicting
scattering cross sections in weakly interacting theories, it can fail spectacu-
larly if the couplings become large or if the energy denominators appearing
in the perturbation series become small.

This brings us to the question under which circumstances the opera-
tor U(t) in (6.47a) is a well defined unitary operator relating the free and
interacting modes. The surprising and somewhat disappointing answer is
provided by

Theorem 6.4 (Haag (1955)). Let Ay be the Heisenberg algebra of a sys-
tem with local degrees of freedom that is invariant under translations. Let
(Ho, 70, Qo) and (Hy, 7y, $2,) be the Fock representations of Ay in which the
free and interacting Hamiltonians Hy and H,, respectively, are well defined.
These representations are not unitarily equivalent for g £ 0.
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Thus the interaction picture does not exist for translation invariant sys-
tems, such as quantum field theories in the vacuum.

Before we can prove this theorem, we must define the systems under
consideration more precisely. By “local degrees of freedom”, we mean that
the annihilation and creation operators spanning the corresponding Ay can
be written in terms of operator valued distributions

@=¢ww3ﬁ%ﬂ@ww> (6.51)

with

[ (), ¥* ()] = 6"(x — 2) (6.52)
and {f;} an orthonormal set of square integrable smooth functions. Con-
versely, if {f;} is complete

(@) = ), filw)ai. (6.53)

Note that x corresponds to a point in space, not an event in space time.
The dynamics is given by the temporal evolution of the a; or ¢ (x). If we
have defined the annihilation and creation operators as in (6.51), we can
implement space translations straighforwardly

a:R"x Ay — Ag

(€ 0(F) — aclb(f)) = vldief) (6:5%0)
where
(aef)(z) = flz—=§). (6.54b)
One could also write formally
(ag)(z) = Y(z +§), (6.55)

but this is only to be understood as a short hand, because the ¢ are distri-
butions and t(x) is not an element of Ay.

Obviously, each a¢ defines a #-automorphism of Ay and o therefore a
n-parameter family of #-automorphisms.

| Lecture 22: Fri, 11.01.2019

Lemma 6.5. In an irreducible Fock representation (H,n,Q2) of a Ay that is
invariant under translations (6.54), the Fock state € is the unique translation
mvariant state and space translations are implemented by strongly continuous
unitary operators U (), i. e.

U(€)(x)U*(E) = ¥(z + ). (6.56)
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Proof. In a Fock representation, the number operator
N = ata = 3 [dady @) @) @)l)

_ f ady " (x — gy (2)b(y) = f g (@) (6.57)

is well defined. It is obviously invariant under translations ag(N) = N
and the spacial translations commute with it [U(§), N] = 0. Thus is suf-
fices to study the sectors of H with a fixed number of modes, WLOG m.
These correspond to wavefunctions for m “particles”, i.e. square integrable
functions R™ — C. But square integrable functions must fall of in ev-
ery direction for nm > 0 and can not be invariant under the action of a,
i.e. constant shift Vi = 1,....,m : x; — x; + & Thus only the 0-“particle”
state (2 is translation invariant. O

Proof of Haag’s Theorem 6.4. By lemma 6.5, {2, is the unique translation
invariant state with U,(£)8, = Q, for all members of the family of transla-
tion operators U,(§). OTOH, assume that (Ho, 7o, {2o) is another, unitarily
equivalent Fock representation for a; and af. Then we can use both U,(§)
and Uy(§) to translate them

Uy(§)a:iUyg (€) = oe(as) (6.58a)
Uo(§)aiUy (§) = ag(ai) (6.58D)
and find
Uy (OUG (£)a:Uo(§)Uy (&) = agla—e(a;)) = a; . (6.59)
Therefore
(U U ai] = [UUs ™t af] =0 (6.60)
[U, Uy m(Ag)] =0 (6.61)

for all representations 7. In an irreducible representation, we must have
Ug(€)Uy ' (€) = 1) = 1%, (6.62)

where the second equation is a result of the group property. We can therefore
absorb the phase e'%¢ .
Uy (&) — Uy(€)e ¢ (6.63)

to get
Uy(€) = Uo(§) - (6.64)
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Finally, if the translation operators are the same, the unique states left in-
variant by them must also be the same

Q, = Q. (6.65)

This implies that the Fock state, which is the lowest energy state in both
representations agrees, which can not be, since the interaction changes the
ground state. L

In fact, this phenomenon can be demonstrated already by very simple
examples

Example 6.6. While this caricature

H =) wiafa; + g ) (Giai + jia}) (6.66)

of a scalar field Yoca+a* coupled to a classical “source” {j;} can be diagonal-
ized exactly for any {j;} and the corresponding unitary operators intertwining
between g = 0 and g + 0 can be constructed explicitely for each mode seper-
ately, the product exists only if >, [j;|?/w? < c0. In a local theory, we will
have lim;_, j; + 0, however.

Example 6.7. A quadratic perturbation
H=Y Lo o) mei?x? (6.67)
= i 2mpi 5 i g i 5 i .
can also be diagonalized exactly by Bogolyubov tranformations

<Z) ~ (Z ;) (2) (6.68)

with |u/? — [v[* = 1 and the intertwining unitary operators exist for each
mode, but the product does not exist.

These examples show how important it is, to solve the linear and quadratic
interactions ezactly before attempting perturbation theory for the remaining
nonlinear interactions. Of course, the perturbation series for the remaining
terms can still diverge and the intertwining operators can fail to exist even
if the series converges.
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Figure 6.1: The light cone x* = ¢*t?
space-like % < 0 distances in R x R™. The regions O; and Oy are separated

by a space-like distance.

— 2% = 0 separates time-like 2> > 0 from

6.3 Local Quantum Theory

While locality in concert with translation invariance provided the ingredients
for Haag’s theorem, it is nevertheless an important physical principle, realized
in most models of microphysics.

A systematic approach considers the C*-algebras A(V) and A(O) gen-
erated by the observables localized in a volume ¥V < R"™ or a space-time
region O € R x R". The algebras obviously must satisfy

V(’)l - 02 : A(Ol) - A(Og) . (669)

In relativistic physics, the measurements of observables in regions O
and O; that are separated by a space-like distance, as in figure 6.1, must not
influence each other, i.e. the corresponding algebras must commute

[A(O), A(O,)] = 0. (6.70)

This usually called Finstein locality.
In any case, the physically relevant algebra is the local algebra

A= JA©O) (6.71)
o
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or [J, A(V), respectively. While the multiplication of two elements from
different algebras A(O;) and A(Os) is a priori not defined, this is never
a problem in practice when the elements of the algebras are generated by
smearings of local operators, e. g.

ema(ijdx¢(x)f@ﬁ> (6.72)

with supp (f) € O;. But note that Ay is not complete by construction and
one needs to complete it in an appropriate topology to the local algebra

A=AL, (6.73)

| Lecture 23: Wed, 16.01.2019)|

In relativistic physics, the finite propagation speed causes the completion in
the norm topology to be invariant under the time evolution described by a
one parameter family of automorphisms

a:RxA—- A

(t, A) > ay(A) (6.74)

but in the non-relativistic approximation with instantaneous interactions, it
can happen that only a larger algebra, obtained by completing in a weaker
topology, is stable under the time evolution «.

6.3.1 Asymptotic Abelianness

In general, even in the non-relativistic case, we should be able to require that
two observables commute asymptotically, if we move them apart

VA, Be A: |l‘im [a,(A),B] =0, (6.75)
T |—00
where «, is the automorphism (6.54) of A that realize spacial translations.
Indeed, if asymptotic abelianness (6.75) was not satisfied, observables would
be influenced by measurements at spacial infinity, which would be unphysical,
of course.
However, one might relax (6.75) to weak asymptotic abelianness

YA, Be A: w-lim [r(an(A)), 7(B)] = 0, (6.76)

|| —00

for any “relevant” representation (#,7) of A.
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6.3.2 Physically Relevant Representations

The local algebra A necessarily corresponds to a Weyl or Heisenberg algebra
with an infinite number of d.o.f., since the creation and annihilation operators
are convolutions of field operators with functions

alf) = f de Fla)i(z) . (6.77)

Thus we cannot rely on the Stone-von Neumann theorem to make sure that
predictions are independent of the representation chosen.

Therefore we must develop criteria to choose the correct representation(s)
(H, ) describing a given system in a given state:

1. Ezxistence of energy and momentum: the space translation R"x A — A
and time evolution R" x A — A automorphisms are realized by strongly
continuous abelian groups of unitary operators

Ve R" Ae A: U(z)r(A)U*(x) = m(a(A)) (6.78a)

Vye R, Ae A:U(t)n(A)U*(t) = m(ay(A)) . (6.78b)

By Stone’s theorem, this guarantees that there are self-adjoint genera-
tors P and H with a common dense domain D < H and corresponding
to momentum and energy, respectively. Note that in condensed matter

theory, the continuous group of translations might have to be replaced
by the discrete subgroup of lattice translations.

2. Stability: the spectrum o(H) of the Hamiltonian is bounded from below

o(H) € [Ewin, ©) (6.79)

and by the redefinition U(t) — U(t)e Pmint we may choose Epy, = 0.
The relativistically invariant form of the spectral condition is

o(H) < [0, ) (6.80a)

H? > P?. (6.80D)

3. Existence of a ground state: The infinimum of o(H) is a non degenerate

eigenvalue of H with associated eigenvector €2 € H, which is called the
ground state and has the properties:

(a) Q is cyclic wrt to the local algebra Ay, i.e.

H = 7(AL)Q. (6.81)

and
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(b) Q is the unique translation invariant state.

Note that the non-degeracy of the lowest eigenvalue is refers to the cho-
sen representation (H, ) only. There is in general more than one rep-
resentation with the same local eigenvalue and corresponding ground
state.

The cyclicity of 2 wrt Ap is equivalent to the requirement that it must
be possible, at least in principle, to prepare all states by local operations.
The translation invariance of the ground state means that the large distance
behaviour of the system is encoded in the ground state.

In fact, the uniqueness of the translation invariant state follows from
asymptotic abelianness

Theorem 6.8. In any irreducible cyclic representation (H,m,$2) of the alge-
bra A, that satisfies weak asymptotic abelianness (6.76), the ground state is
the unique translation invariant state.

This can be shown using

Theorem 6.9 (Von Neumann bicommutant theorem). For any unital =-
subalgebra A of L(H), the following are equivalent

Lo A=A = (AY

2. A is closed in the weak topology
3. A is closed in the strong topology,
which we state without proof.

Proof of theorem 6.8. If there is another translation invariant state not equal
to €2, we can construct a state ' € H that is orthogonal to €2. Then, with P,
the projection on {2,

VAe A: (', 7(A)Q) = (U, m(a.(A))Q) = (', (. (A)) Paf?)
= (O, Pam(a,(A))Q) + (52', [7(a.(A)), Po] Q) (6.82)

h- -7 -

=0 independent of x

because Po€Y = 0 and both (€, m(a.(A))Q2) and (2, 7(a,(A))Q2) are inde-
pendent of x. Therefore

VAe A: (U, m(A)Q) = lim (2, [r(as(A4)), Pa]Q) .  (6.83)

|z[—c0
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From the bicommutant theorem 6.9
"
(A = (W(A)) . (6.84)

OTOH, in an irreducible representation (H, ), m(A)" = {A\1} ec and there-
fore

n(A)" = L(H). (6.85)
Finally ,
(W) > (A (6.86)
since m(A) 2 m(A). Thus we have shown
m(A) 2 L(H) (6.87)
and therefore L
Poen(A). (6.88)

From asymptotic abelianness we can now argue

VAe A: ‘llim (Y, [7(ax(A)), Pa] Q) =0 (6.89)

and finally
(Y, 7(A)Q) =0, (6.90)
i.e. ' = 0 from irreducibility of (H,,2). O

Actually, using an almost identical calculation, one can prove an even
stronger result:

w-lim 7(a,(A)) = (Q, 7(A)Q)1. (6.91)

|z|—c0

Indeed

VB e A: w-lim7(a,(A))m(B)Q = w-lim 7(B)m(a,(A))S2

|| —00 || —c0

= m(B) w-lim ([7(a(A)), Po] + Pam(a.(A))) Q

|z|—c0

— 7(B)Par(A)Q = (B)QQ, 7(A)Q). (6.92)

We arrive at the conclusion, that under the assumption of asymptotic abelian-
ness, the large distance behaviour of the system is encoded entirely in the
ground state.
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6.3.3 Cluster Property
Using

lim (9, 7(p(A))m(B)Q) = (2, (2, m(A)Q)1(B)Q) = (Q, 7(A)Q)(Q, 7(B)Q)

|| —a0
(6.93)
we have just shown

Theorem 6.10 (Cluster property). In any irreducible cyclic representa-
tion (H,m,Q) of the algebra A, that satisfies weak asymptotic abelianness
(6.76), the ground state correlations factorize for infinite spacial separation

VA, Be A: ‘l|im (Q,m(a(A))m(B)Q) = (Q,m(A)Q)(Q,m(B)Q). (6.94)
T|—0
This cluster property is crucially important for the physical interpretation
of quantum theory:

e it allows the definition of scattering states of separated particles and
thus of an S-matrix,

e it shows that the necessarily non-local character of the translation in-
variant ground state only appears in expectation values of observables
and that all correlations among spacially separated observables vanish,
if their distance is taken to infinity

In fact, one could also start from the cluster property, which is technically
simpler to handle and derive irreducibility and uniqueness of the translation
invariant state from it.

6.4 Free Bose Gas

A “gas” of interacting nonrelativistic bosons in a volume V' < R™ is described
by the Hamiltonian

1 £
Hv=?ﬁjkn<vwcwﬂv¢@y

-~

1 2
T

+%f¢mww@w%wmm@—wwuww>
|4
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with ¢ and ¢* annihilation and creation operators®. respectively. Already
the non-interacting case Hy,;, = 0 with finite occupation number and energy
density is quite interesting and we shall concentrate on it

| Lecture 24: Fri, 18.01.2019|

1
Iy = 5 fvdx (Vy*(2)) (Vi (2)) (6.95)
and its infinite volume limit
1
H= |l Hy= oo [de (V00@) (Vo). (696)

The occupation number, a.k.a. particle number, operator is

Ny — Jvda: V" (@) () (6.97)

and its density in the infinite volume limit

n— Tim Y _ lim ifdw*@)w(:p). (6.98)
1%

V>R V VoR" V

0.4.1 Heuristic Discussion

Below, we will discuss the model in greater mathematical rigor, but we start
with a heuristic discussion of what to expect. Both (6.95) and (6.96) are
formally® positive and a state Q with

HyQ =0, (6.99)

if it exists and is unique, is necessarily the ground state of the system. Thus

1
0 — (Q, HyQ) %f dz (Vi(2)Q, Vib(z)Q) (6.100)
v
and
Vip(z)Qd=0. (6.101)
Since the momentum operator P generates translations
Vip(x) =i [P y(x)] (6.102)

2Operator valued distributions, to be precise
3 A product of operator vealued distributions like (Vi*(z)) (V4)(z)) is not well defined
and we must show that the integral exists and leads to a positive operator.
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we infer from the translation invariance of the ground state P} = 0 that
0= [P, ()] Q = Py(x)2, (6.103)

i.e. that ¢(z)Q is translation invariant itself. However there is only one
translation invariant state and therefore

dce C:Y(z)Q2 = 2. (6.104)

Obviously, we can compute ¢ as follows

c=(Qu(x)Q) =: ). (6.105)
We can define operators

vp(x) = P(z) — )1 (6.106a)

V(@) = ¢* () — )1 (6.106b)

that satisfy the same commutation relations as ¢ (z) and ¥*(z), i.e. furnish
another representation of the same algebra. From

Yp(x)Q2 =0 (6.107)

we see that it is a Fock representation. The correlation functions turn out
to be very simple and free of singularities

@ ()Y (y)) == (U ()Y (y)Q) = ((2)Q, P(y)Q)
= (), (h)Q) = W)y (2, Q) = [(¥)* (6.108a)

and

(x)(y)) = @) (6.108b)
W @) = () (6.108¢)

From the definion we have a well defined occupation number density
_ Nv ok . 2
n ==L = @) = Kl (6.109)
and we can parametrize the ground state €2,y by two parameters:

36 € [0,27) : (YY) = (g, V()0 p) = V/ne? (6.110)
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However, while the number density n is fixed by the preparation of the sys-
tem, the phase @ is free. This situation reminds us of the particle on a circle,
as discussed in section 5.3.3. Again we have a family of representations,
labelled by a phase 6 € [0,27). Indeed one can define states

wn79:A—>C

6.111
A (g, o AN ) (6.111)

and in the infinite volume limit |V| — oo, the GNS-representations con-
structed from w,, ¢ and w, ¢ will be unitarily inequivalent for n > 0 A 60 + ¢'.
The classical theory (6.96) has a rigid gauge symmetry®

w)) ( e3p(z) )

~ i T 6.112
(bie) = (i (0112)
that leaves the Hamiltonian invariant. Also the algebra generated by the
observables has the corresponding one parameter group of =-automorphisms

p:]0,21) x A — A
(0, 9(2)) = “(x),
but, as we will show below explicitely, the symmetry can not be realized by

unitary operators in representations with n > 0. Thus the gauge symmetry
is a spontaneously broken symmetry.

(6.113)

6.4.2 Tensor Products of Hilbert Spaces

Before embarking on the detailed discussion, we should clarify some impor-
tant subtleties in the construction of the tensor products of Hilbert spaces
that will be used below”.

4NB: this is not the gauge invariance

(@) 10y(z)
d(a) || e ()
Au(x) Au(x)+ 0,0(x)

of Quantum Electrodynamics with a space-time dependent function 6, but a constant
phase transformation. Note that gauge invariance is not a symmetry of a model, but a
reparametrisation of our mathematical description of the same physical state. OTOH,
rigid phase transformations relate different physical states and are symmetries, iff the
dynamics respect them.

5NB: this section was added only after questions came up in lecture #24.
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Finite Tensor Products

A concise definition of the tensor product H; ®Hs of two Hilbert spaces H; o
that doesn’t refer to the choice of a basis goes back to Murray and von
Neumann | ]. Given two vectors ¢; € H; with i = 1,2, we define the
product ¢; ® ¢9 as an anti-linear functional on the cartesian product of the
Hilbert spaces

¢1®¢23%1 XH2—>C
<¢1,¢2> = (¢1>¢1)(¢27¢2) = (¢1>¢1)(¢27¢2)

where we have used (-, -) for the pairs that make up the cartesian product to
avoid confusion with the inner product (-,-). Obviously, linear combinations
of these functionals form a vector space £ and we can define an sesquilinear
inner product extending

(6.114)

(,):ExE—-C
/ / / / (6115)
<¢1 ® ¢27 ¢1 & ¢2> — (¢17 ¢1)(¢27 ¢2> :
by linearity. It is easy to show (cf. | ], sect. I11.4) that this inner product

is well defined (i. e. vanishes if one argument is a sum of vectors adding up to
the zero vector) and positive definite. The tensor product H; ® Hs is then
the completion of the vector space £ wrt this inner product.

This definition extends easily to the tensor product of any finite family
of Hilbert spaces.

Infinite Tensor Products

Infinite Tensor Products (ITPs) are more subtle. They were introduced and
studied in detail by John von Neumann | |. He introduced the distinction
between the complete I'TP that leads to a non-separable Hilbert space and
incomplete I'TPs which are separable Hilbert spaces.

The construction starts as in the finite dimensional case from anti-linear
functionals

de @Hn (6.116)

nel

that are defined on the sequences {¢, } e of vectors i, € H,, with

[ Jlenl <oo. (6.117)
nel
A subspace _ N
e XH, = XHn (6.118)

nel nel
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are those anti-linear functionals defined as

® : {tntner = | [(¢n: 00) (6.119)
nel
with
[ [lenl <o (6.120)
nel

and their finite linear combinations. The complete I'TPs is the completion
of ), .;Hn in a natural Hilbert space topology

R H, = (@Hn> c QM. (6.121)

nel nel nel
(see | | for the details).
One can define equivalence classes ¥ of sequences {1, },e; with
D bl = 1] < o0 (6.122)
nel
as
{¢n}nel ~ {¢n}ne[ — Z |(,¢)n7 gbn) - 1| < 0. (6123)

nel

Given such an equivalence class ¥, we can define the incomplete ['TP

" Ho = {@ U {¥n}tner € \If} < X)Han - (6.124)

nel nel nel

One can show | ] that vectors from the incomplete ITPs of different
equivalence classes are mutually orthogonal and that their combination yields
the complete I'TP.

Below, we will use the incomplete I'TP for the equivalence class that con-
tains the cyclic vector 2 and denote it by the vector instead of its equivalence
class

R, (6.125)

nel

6.4.3 Detailed Discussion

Canonical Commutation Relations

The C*-algebra Ay generated by the observables of the free bose gas in a
volume V' (including V' — R") is a Weyl system. Instead of the unbounded
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operator valued distributions ¢ and ¥*, we introduce unitary algebra ele-
ments U(f), V(g) with test functions f,g : V — R and multiplication laws

U(f)V(g) = V(g)U(f)e /o (6.126a)
U(f)U(g) = U(f +g) (6.126b)
VIHVIg) =V(f+9), (6.126c¢)
where
(S = [def)g(o). (6.121)
As discussed above, these relations are compatible with
U(f) = eV (6.128a)
V(g) =™ (6.128b)
and an unbounded self-adjoint algebra elements
[o(f), 7(9)] = if. 9 (6.129a)
[6(f), &(g)] = [7(f), m(g)] = 0. (6.129b)
We can now introduce
1 .
a(f) = 7 (¢(f) +im(f)) (6.130a)
(f) = — —im
a*(f) = 7 (¢(f) —im(f)) (6.130b)
and find the commutation relations
[a(f), a*(9)] = {f 9 (6.131a)
[a(f), alg)] = [a®(f),a*(9)] = 0. (6.131b)
These are in turn compatible with
alf) - fvdxﬂw)w(w) (6.1322)
(1) = | do fa(@) (6.1320)
and the formal commutation relations
[¢(2), v*(y)] = 6(z —y) (6.133a)
[V(2),¥(y)] = [¢*(x),v*(y)] = 0, (6.133D)

i.e. our local annihilation and creation operators.
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Representations

Our algebra A is the completion of linear combinations of products of U(f)s
and V' (g)s. Using the canonical commutation relations (6.126), we can bring
every product in the form e?U(f)V (g) with ¢ € [0,27). Thus, it suffices
to specify the value of a state w : A — C on such elements to define a
state on the whole algebra by linearity. Since a state w determines a corre-
sponding GNS-representation up to unitary equivalence, we can characterize
a representation with cyclic vector €2 by the function

wa(f,9) = (Qx(U(f))m(V(9)L) . (6.134)

Fock Representation

In order to avoid the unbounded annihilation and creation operators, we
don’t define the Hilbert space H g of the Fock representation (Hpg, 7, r) as

the direct sum of n-particle spaces. Instead | |, we use the incomplete
ITP N
Hr =) "H, (6.135)
€N

of Hilbert spaces {H,;}ien containing g in which self-adjoint operators Q);
and P, with CCR [Q;, P;] = i act irreducibly and €; are cylic vectors®. For
convenience, we will however drop the (2r from the tensor product symbol.
The cyclic vector Qg is accordingly

Qr = X Q. (6.136)

€N
Define unitary operators on Hg by

U() =11®..01,1 0% Q1,1 Q... (6.137a)
Vi) =1®..01,,1 0" @11 ®.... (6.137h)

Choosing a complete orthonormal basis { f;}ien for L2(V,R), we can decom-
pose every function f € L*(V,R)

fF=>MN1f (6.138)
€N
with real coefficients {\;};en and define unitary operators

Ur(f) = [ JU(N) = @@ (6.139a)

ieN €N

6In the Schrodinger representation, z; — e*:‘”?/2/771/4 is a good choice for ;, but any

square integrable function that is almost everywhere non zero is fine.
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Vi(g) = [ [Vi() = Qe (6.139b)

ieN €N

for every f € L*(V,R). By construction, the Ur(f), Vr(f) are irreducible
and Qg is cyclic.
We can now compute

wr(f,9) = wa,(f,9) = (Qr, Ur(f)Vr(g)r)
= o (<D - {0 - 50 (©0110)

using (6.138) and
(fo9) = | e pladgle) = TN (6.141)

Using the strongly continuous groups of unitary operators {Ur(sf)}ser and
{Vr(sg)}ser, we can construct the generators

or(f) = —i % Ur(sf) (6.142a)
s=0
d
mr(g) =14, » Vi(sg) . (6.142b)

Note that the functional form of wg (6.140) suffices to calculate expectation
values of polynomials in these generators, e.g.

d d

(QF7¢F(f1)¢F(f2)QF) = - ——

ds; dsy (Qp, Ur(s1f1)Ur(s2f2)2F)

$1=82=0

(U, Up(s1fi + s2/2)Qr)

d d

dSl d82 51 =59=0
a4

dSl d82

wp(s1fi + s2f2,0)

s1=52=0

€xp <_£<31fl + sa2fo, 8101 + S2f2>)

. d d

B d81 d82

s1=s52=0

= St (6143

This is the same as the result obtained from formal manipulations of the
unbounded annihilation and creation operators
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(@, (L) + a* (1) (alfo) +a*(£2)) )
= S alf)a (1)0r) = 5 (0, [alf), @ (2)10) = 30, fo)- (6.144)

Note also that the representation carries a unitary representation of the Fu-
clidean group

(Qr, or(f1)or(f2)QF) =

| —

ara(Up(f)) = Ur(agqf) (6.145a)
ara(Vr(9)) = Vr(ag,.9) (6.145D)

with
(@pof)(z) = fF(R7(z —a)). (6.146)

Occupation Number Density

| Lecture 25: Wed, 23.01.2019)|

As mentioned above, a rigorous definition of the occupation number operator

zw:memwm (6.97)

is subtle, because ¢ (x) and ¥*(z) are not operators that can be multiplied.
Instead ¢ and ?* must be understood as operator valued distributions. A
rigorous definition uses a complete orthonormal set {f;},en for V — R (in-
cluding V' = R"™)

Ny = > a*(f:)a(fi) . (6.147)

€N

However, Ny and Ny /V are unbounded operators, so the definition of the
infinite volume limits for occupation number and occupation number density

N = lim Ny (6.148a)
. Ny

is not obvious. We can however use the convergence of a group of unitary
exponentials to define the convergence of the generators:

Definition 6.11. If {7, },en and T are self-adjoint operators on a Hilbert
space H, we say that

lim T, = T (6.149)
n—ao
iff
YAe R : lim ' = T (6.150)

n—0o0
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The operators ¢(f) and 7(g) are linear combinations of a(f) and a*(f)
with

[Nv,a(f)] = —a(f) (6.151a)
[Nv,a*(f)] = a*(f) (6.151b)

Consequently all polynomials in ¢(f) and m(g) can change the eigenvalues
of Ny only by a finite number. In states with a non-vanishing occupation
number density n (cf. (6.148b)), the occupation number (6.148a) is formally
infinite. Therefore, polynomials in ¢(f) and 7(g) will not be able to change n

[n, ¢(f)] = [n,7(g)] =0. (6.152)
This observation can be turned into a

Lemma 6.12. In a irreducible representation (H, ), the occupation number
density n is a constant, if it exists.

Proof. Using our notion of convergence, we must show that

Vf.g:¥AeR: lim [U(f), V] = lim [V(f),e*V] =0 (6.153)

V—-R"

Indeed, by a straightforward calculation (— exercise)

=
= U(f) 1

ANV (g) =V (g cos %) U <gsi“ %) T ANV (6.154)

. A A\ D 2y
MNIVT(f) = U (f cos —) % (f sin V) N S (6.154a)

7 .

AN

- V(g -1

and the product of two limits of unitary operators is the limit of the products,
as will be shown in the following lemma. O

Lemma 6.13. Let

s-lim U, = U (6.155a)
shmV, =V (6.155b)
n—0o0

with all U, and V,, unitary, then
s-imU,V,, =UV. (6.156)

n—00
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Proof. As the strong limits of unitary operators, U and V are isometries.
Then

VO eH: (U0 - 1) 0" =2(|¥)? - Re (UT,U, ) =50 (6.157)

and therefore

slimU'U =1. (6.158)
n—0oo
Also
Ve H - (UL~ UV) U] = 2 (|W]2 — Re (U, UV, V7)) =5 0
(6.159)
using this result twice. O

| Lecture 26: Fri, 25.01.2019|

Lemma 6.14. In a cyclic representation (H,w, V) with

JpeR:VAeR: lim MWVVY = Mw, (6.160)

—

the occupation number density n = lim Ny /V exists and
n=pl. (6.161)
Proof.
Jim POV ()8 = U()V(9) Jim PN/ 0
= U(f)V(9)e™T = ™U(f)V(9)¥ (6.162)
and since linear combinations of U(f)V (¢g)V are dense in H,

S—Iifrg VIV gihl (6.163)

O

One can use similar arguments to show that that the energy density of a free
bose gas is also a constant.
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Representation for Finite Occupation Number Density

We can construct an appropriate representation for finite occupation number
density p by computing the limit

W (frg) = lim wi(f,9) (6.164)

of state with occupation number v = pV in the finite volume Fock represen-
tation

wir(f,9) = (Yo, Ur(f)Vr(9) V%) - (6.165)
The lowest energy wave function in the finite volume V' is constant
fv V>R
1 :
b (6.166)

VIVI

and has no infinite volume limit. The Fock state with p = v/|V] is

P 1 * v
Uy = N (a*(fv))” Qr (6.167)

and therefore
GV(F,9) = = . (alf) Us(F)Velo) (@ () 0r) . (6.168)

One can compute (— ezxercise)

(6.169)

{f, fv)? +{g, fv>2>

M(19) = wr( o, (L2

with L, the vth Laguerre polynomial. Note that

Uit = de% - \ﬁ | @z s - \/Ef (6.170)

In the infinite volume limit ¥ — o0 and V' — R™ with p = v/|V/| constant.
In this limit, the Laguerre polynomial becomes a Bessel function

lim L, (=) = Jo (2v7) - (6.171)

(theorem 8.1.3 of | ]) and we find

(f.9) = wilf. 9)Jo ( 20 (f2 + g3>> . (6.172)
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Since the Bessel function is not manifestly positive, it is not obvious
that w?” : A — C defines a positive functional and that we can use the
GNS construction to obtain a representation. A convenient way to prove the
positivity is to construct a representation explicitely.

The factorized form of (6.172) suggests to use a tensor product

H, = Hr K, (6.173)

with K another Hilbert space. In fact, we can choose the square integrable
real functions on the unit circle

K = L*S', C,dz/2T). (6.174)
We define bounded operators S and C' on K by
(Sv)(0) = sin@ - (6) (6.175a)
(C)(0) = cos b -1(0) (6.175b)
and denote by ®, € K the constant function
St C
4 91 (6.176)
The ground state is
Q, = Qr ® P (6.177)
and the Weyl operators are represented by
Up([) = Up(f) @eV2rhe (6.178)

V,(9) = Vir(g) ® eV29S

because the operators in the second factor form a two-parameter abelian
group

oIVEfoC GiVZOfEC _ (il fo+)C (6.179a)
V20908 5iv2oghS _ iVl fot+15)S (6.179Db)
oIV20f0C Giv/2090S _ oiv2p(foC+g0S) (6.179¢)

We can compute the expectation values and find

27rd0 ) )
(Q,, U, ())Vo(9),) = (QF,UF(f)VF(g)QF)J %eh/ﬂ)(focoswrgosme)
0

" "

wr(f,9)

J

Jo ( 2p (f5 + g%))

" J

w’(f,9)

(6.180)
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as desired.
It remains to show that 2, is indeed a cyclic vector. For this purpose,
consider a family of functions

{foo 1 R" = R}saz0 (6.181)

that converges to a function with vanishing L?(R™) norm and non-vanishing
Fourier transform

lim (for fr) = 0 (6.182a)
lim0 dz foo(z) = lin% fsao=a. (6.182Db)

In the case n = 3, an example is

—slz|

as e
s = — 6.183
fool®) = T TP (6.183)
since”
00 7,2e—sr
dz fso(x) = d
J T fsa(T) asL T1+7"2
m . . . s—0
=« (1 — 58 cos(s) — ssin(s) Ci(s) + scos(s) Sl(s)) — «a (6.185)
and
fdx (foal(z))® = O(s7). (6.186)
Then from (6.182a)
lir%wp(fs,a,()) =1= lirr(l)wF(O, fsa) (6.187)
and one can show®
s—liron Up(fsa) =Up(0) =1=Vp(0) = s—liron Vi(fsa) - (6.188)
"Using the sine and cosine integrals
Si(x) = deﬁ sing (6.184a)
0 3
Ci(z) = —f de C°§§ (6.184b)

8Using lemma 2.3 of | ]
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Thus from (6.182b) we find

slimUy(fsa) =1® elv2ped (6.189a)
slimV,(fon) = 1® elvZeas (6.189h)

Using the double angle formulas

sin(26) = 2sin 6 cos (6.190a)
cos(26) = cos® § — sin? 0, (6.190b)
we find that repeated application of S and C' will generate sin(nz) and cos(nx)
for all n € N. By Fourier decomposition of L*(S') the constant function ®

is thus cyclic for S and C. Since Qp is cyclic for Up(f) and Vr(g), we have
established that €2, is cyclic for U,(f) and V,(g).

Superselection Sectors

’Lecture 27: Wed, 30.01. 2019‘

By construction, all operators of the form
A=1QT (6.191)
where
[S,T]=[C,T] =0 (6.192)

commute with all operators from the representation m,(.A):
[Uo(f): A] = [V,(9), A] = 0. (6.193)

Among the operators commuting with C' and S are arbitrary multiplication
operators

(T9)(0) = £(6) - ¥(9). (6.194)
Thefore the representation (H,,7,,€,) is highly reducible and the Hilbert

space decomposes into superselection sectors carrying irreducible representa-
tions labelled by (improper) eigenvalues of the angle operator ©

(©¢)(0) =6 -(0) (6.195)

as direct integrals
@

a0
K= = Ko . (6.196)
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wnd 946 ®d6
Hy=Hr@ | —Kp.= J (Hr ®Ky) . (6.197)
St 2m g1 2 —_—
H,o
The corresponding decomposition of the operators is
®de
Up(f) = J 5 Uso(f) (6.193a)
g1 470
®de
Vi(g) = om V,0(9) (6.198b)
with
Upo(f) = Up(f) @e'V2rlocos? (6.199a)
Voo(g) = Vie(g) @ eV2reosn?. (6.199b)

Since the action on Ky is just a phase, we can equivalently write

Uso(f) = UF(f)ei\/%focose = exp (i <¢F(f) + @fo cos 9)) (6.200a)
Vou(g) = Vie(g)eV?# 5 = exp (i (wF(g) +/2pgo cos 9)) (6.200D)

or

bpo(f) = or(f) +/2pfocos (6.201a)
To0(9) = 1r(g) + A/2pgosiné . (6.201D)

Formally, we find the same result as in the heuristic discussion above:

bpo(x) = dr(x) ++/2pcost (6.202a)
Tp0(2) = mp(x) + 4/2psinb, (6.202b)

i.e. the inequivalent irreducible representations are labelled by the expecta-
tion values

(Ppo(x)) ={Ppa) = /2pcost (6.203a)
(mpo(x))y = (Tp0e) = A/2psing. (6.203b)
As discussed in section 5.3.3 for a particle on a circle, the intertwiners relat-

ing (¢p0, mp0) With (¢, e, m,0) for  + 6" can not be represented by unitary
operators, i.e. the gauge symmetry is spontaneously broken.
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We can interpret

1

ao = lim a(xy) = N (Do) +i(m,0)) = & (6.204a)
ap = lim a*(xv) = \/LQ? (o) — Umpp)) =7 (6.204b)

with 1
xv(z) = {Ofw z; “i (6.205)

as unitary and commuting annihilation and creation operators for zero mo-
mentum particles in the ground state.

6.5 The BCS Model

An important realization of the phenomena discussed for the free Bose gas in
a physics model with interactions is given by the Bardeen-Cooper-Shrieffer
model for superconductivity.

6.5.1 The Model
Instead of bosons, we have fermions with anti commutation relations

[ (1), 5 (9)], = il )¥] (9) + ¥5 (9)vi(f) = 0is(f. 9) (6.206a)
[i(f), i(9)], = [¥7 (), ¥5(9)], =0 (6.206b)

with spin quantum numbers i, j € {1, 2} and complex valued square integrable
functions f and ¢

(S = [de Flo)gto). (6.207)
Again, we can interpret this as operator valued distributions
ulf) = [de Flopi(o) (6.208)
ui() = [de s @) (6.208b)
with
[03(2). )], = G0 — y) (6.209)

[Wi(@), 5 (W)], = [¢ (@), ¢](W)], = 0. (6.209b)
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The hamiltonian in a finite volume V is
2 /1
Hy = [ e 33 (5 (F00 @) (V) i s )

+ % dedx'dydy' YF (@) 5 (2 4+ y) Hine (y, ¥ b2 (2" + ¢ )1 (2) . (6.210)

J

_H,

Despite the nonlinear interactions in Hy for H;; =+ 0, the model can be
solved exactly in the infinite volume limit | ]

H = lim Hy + const. (6.211)
V—-R"

with the constant adjusted, such that the expectation value of the hamil-
tonian vanishes in the ground state. The crucial ingredient is that we will
show

VoRn

lim [Hy,v*(z)] = —fdy Aly)v*(z —y),

i. e. that the nonlinear terms in the Heisenberg equation of motion will vanish
in the infinite volume limit.

6.5.2 The Solution
| Lecture 28: Fri, 01.02.2019|

Lemma 6.15. The fermionic annihilation and creation operators v;(f) and
VE(f) are bounded iff f is square-integrable and

19 (D = 195N =/ <F f)- (6.212)

Proof. From the anti commutation relations, we find

W (i) = vF (A H)vr (e f)
= s PUF ) = E W) el f) (6.213)

J/
v~ ~~

=0 =0

that

L () (6.214)

R(f)zm i

is an orthogonal projection

PAf) = PA(f) = PA(f). (6.215)
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which is necessarily bounded

[Pl =1. (6.216)

Therefore
[0 (N = TN = V15 () = /- (6.217)
O

Definition 6.16 (even, quasi local). A quantity @ is called quasi-local quan-
tity iff it can be written as

Qz) = fdyl o dyndzr oAz Fiyiningm ULy e Yn 215 Zm)
V(@ + )] (x+ yn) Uy (o 4 20) -, (2 + 2m)  (6.218)

and F' is rapidly decreasing for each |y, |z;| — 0. Q(x) is called even,
ifft n +m e 2N.

We use quantity instead of operator, because it is in general an operator
valued distribution.

Lemma 6.17. If ) is an even, quasi-local quantity, its space average in the
infinite volume limit

(@)= lim —deQ( ) (6.219)

commutes with all operators in the algebra generated by the annihilation and
creation operators Y(f) and *(z).

Proof. The essential ingredients of the proof are the rapid decrease of the
function F' defining @) and the boundedness of the fermionic operators. Con-
sider, e. g.,

Q) = fdzldzg F(z1, z2)¢r(x + 21)2(x + 22) (6.220)

and compute

(K@), ¥5(f)] =
lim —J dx szleQ F(z1, z9) [t1(x 4+ 21)0e(z + 29), 05 (f)]

V>R V
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. 1

- Vlglglw % fvdaj Jd21d22 F(z1, z2)1(x + 21) f(x + 22)
. 1

- Vll,rﬁn % fvd:c () szleQ F(z1,29)f(x + 29 — 21)

— lim %z/;(gv) (6.221)

V—-R"
with”

(6.222)

§dz1dze F(z1,22) f(x + 22 — 21) forz eV
gv(x) = )
0 forx ¢V

Since f is square integrable and F' is rapidly decreasing, g will be square
integrable and remain so in the limit V' — R™. Therefore ¢(gy) will remain
bounded in the limit V' — R™ and due to the factor 1/V/

[<@Q), ¥ (f)] = 0. (6.223)

With the Leibniz rule for commutators, this immediately implies the gener-
alization to arbitrary polynomials

[<Q>7 ¢1*1 (fl) T 1/}:; (fn)wjl (gl) T 7vbjm (gm)] =0 (6224)
and one can show that it also holds for arbitrary quasi-local Q(x). O]

The interaction Hamiltonian in (6.210) is not the spatial average of a
quasi-local quantity, because there are two undamped integrations over x
and z’ and only a single factor of 1/V. Nevertheless, we can compute '

90ne could also work with
g(z) = Jd21d22 F(z1,29)f(x + 20 — 21)

directly to avoid discussing the translation of the finite integration volume V.
10 Alternatively we can compute

[Hr ¢ (2)] = = lim % de'dydy’ V3 (2 + y) Hine. (v, )2 (2" + ¥ )1 (2”)  (6.225)

and from this the different types of nested commutators. For mixed annihilation and
creation operators, we find from the rapid falloff of Hj,s. in all directions

[[H1, 1 (2)] ¥ (21)]

1
= — lim *J dydy’ ¢35 (z + y) Hine. (¥, ' )2(2" + ') = 0. (6.226)
VvoRe V' )y,

bou;;ded
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[H1,¢1(2)] =
lim 7 J dxda’ fdydy’ §(z — 2)U5 (x 4+ y) Hine (v, ¥ )02 (2" + )1 (2)

V-R"?

= lim —J da’ fdydy V3 (2 + y) Hine. (v, ¥ )02 (2" + y')ihr (27)

V—-R"

1
- i [ [ayvs (.0 | dinte + i)

N
Av(z,y) ov(y) — ¢yl
= Jim [y s+ o) [ B (v y)ov(y) - (6225)

"

Av(y) — Ay)1

Similarly to proof of lemma 6.17 we can show that

. . 1
o(z) = lim oy(z) = lim fvdy o + y)n (y) (6.229)
commutes with all operators in the algebra generated by v (f) and *(f).
Indeed

[6(x), 01 (/)] = lim — f dy (e + ) (y) =

V Rn

_¢2( —xf> =0
—_——

VRV

bounded
(6.230)

where (a, f)(y) = f(z+y). In an irreducible representation, ¢(x) is therefore
proportional to the unit for all z. Since the interaction Hiy (y,y’) is assumed
to fall off rapidly for |y|, |¢'| — o0, the operator

Av(z,y) = fvdy Bz 4+ 9) He (0. 9) (6.231)

Obviously, the same result follows for other spins. On the other hand, for pairs of annihila-
tion operators, there is one undamped integration and the result doesn’t vanish. However,
we can use lemma 6.17 to show that the result lies in the center of the algebra and must
be proportional to the unit operator in an irreducible representation

[[H1,91(2)], 2(2")]
— — lim fjdx de Hine. (2" — 2,9 )ha (2" + v )1 (2)

VR V

quasi local
=—-A(z'—2)1. (6.227)

We get the same result for any pair of annihilation and creation operators with different
spins, but the commutators for pairs with the same spin vanish.
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is bounded for all z,y' € R™ and V < R”. In addition it falls off rapidly in
the operator norm for |y/| — oo.
In summary, we have shown that

[#r,6(:)] = = [dy s (= + 9)A). (6.232)
with a commuting
. 1 ’ / / ’ / /
AL = Jim 5 | 0| o 90t + @) (6289

This means that H; has the same commutation relations as

H f dady (Al (@) (e + y) + Aly)a(e + y)n(z)) + const.
(6.234)

in the infinite volume limit. Since we can compute all matrix elements using
the commutation relations, we can replace H; by H} everywhere. We will
call H' the result of substituting H; for H; in H.

As we have seen in the exercises, any Hamiltonian that is a quadratic
polynomial in the annihilation and creation operators can be diagonalized
by a Bogolyubov transformation. Assuming that we know A, we obtain in
momentum space

i = J dpew(p) ((p)er(p) + & P)eap) (6.235)
with )
elp) = 2p_m —u (6.236)

(6.237)

where A is the Fourier transform of A and the free constant has been adjusted
to set the energy in the Fock ground state to zero. The new annihilation and
creation operators ¢;(p) and ¢ (p) are related to the Fourier transforms of
the original ones by

v(p)es(—p) (6.238a)
Ua(p) = v(=p)ci(—=p) + u(—p)ea(p) (6.238h)
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with
u(p) = Aw) — (6.239)
¢ (w(p) — e(®))? + |AR)|
w(p) — €(p)

vlp) =
) )2 + A

We still need to determine A.

In lemma 6.17 we have shown that the space average of an even, quasi-
local quantity is proportional the unit operator. The coefficient of the unit
operator can be computed as the expectation value in the ground state (2.
However, the ground state is translation invariant and we can compute

(6.239b)

’2.

. 1
@ = Jim | A @@ - @Qwe) . 6210)

This way, we obtain
p(2) = (Q,102(2)11(0)Q) (6.241)
and we can compute its Fourier transform using the Bogolyubov transforma-
tion (6.238)
p(p) = —ulp)v(p). (6.242)

Given an interaction Hi,, we can compute A(p) from @(p) and insert the
result in (6.239) to obtain an integral equation for ¢, known as gap equation.
For suitable realistic attractive interactions Hiy. , the gap equation has not
only the trivial solution ¢ = 0, but also a one parameter family of solutions

po(x) = “po(x) (6.243)

with 6 € [0,27) and ¢o : R" — [0,00). It turns out that the nontrivial
solution corresponds to a lower energy and is the interacting ground state
with a condensate of Cooper pairs

p(2) = (Q,92(2)11(0)Q) . (6.241)

Since there is a finite energy gap between the Fock state and the correlated
ground state, Cooper pairs in the lowest energy state are not scattered and
move freely at low temperatures.
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6.5.3 Gauge Symmetry Breaking

’Lecture 29: Wed, 06.02. 2019‘

The classical Hamiltonian is invariant under a global gauge symmetry

U(x) — () (6.244a)
V¥ (x) — e Y (x) (6.244b)

under which the condensate ¢ is not invariant

o(x) — e*p(x). (6.245)
Using the same arguments as in the case of the free Bose gas, we see that
the ground state with ¢ 4 0 breaks this symmetry, because the gauge trans-
formations can not be realized as unitary transformations.

If the system is coupled to an electromagnetic vector potential (®, A) by

minmal coupling

pw— pu—ed(x) (6.2464)
V -V —ieA(z), (6.246b)

the equations of motion are even invariant under local gauge transformations

P(x) — @D () (6.247a)
V¥ (x) — e @Dy () (6.247D)
P(z) > O(x) — eaa—(;(x,t) (6.247¢)
A(x) — A(z) — eVa(z,t). (6.247d)

A non vansishing condensate of Cooper pairs also breaks this symmetry and
gives a mass term to the photons, resulting in a finite penetration depth of
electromagnetic fields into the superconductor, corresponding to the Meifiner

effect.
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—

SYMMETRY AND SYMMETRY BREAKING

7.1  Wigner’s Theorem

So far, we have identified unbroken symmetries of a quantum mechanical
system with the existence of unitary operators in a Hilbert space represen-
tation (H, 7). A priori, this is a too strong requirement, because a state of
a physical system is not described by a single normalized vector ® € H, but
by a ray

U = {™: \e[0,2n)} € P(H) (7.1)
and a physical symmetry is only required to preserve probabilies, i.e. the

moduli of matrix elements, which obviously don’t depend on the representa-
tive chosen for each ray

YU el ®ed )\ pel0,2n):|(e?T, e d)| = [(T,D)] = (T, D). (7.2)

Definition 7.1 (Wigner Symmetry). A Wigner symmetry of a quantum
mechanical system with states described by rays in a Hilbert space H is a
mapping g : P(H) — P(H) of the projective Hilbert space of rays to itself,
which preserves all transition probabilies

v, $ e P(H) : ’(ﬂ,ﬁ)‘ — ‘(xp @)‘ . (7.3)

However, there is a famous theorem by Wigner in Hilbert space quantum
mechanics for a finite number of degrees of freedom:

Theorem 7.2 (Wigner). Given a quantum mechanical system, that is de-
scribed by the rays in a Hilbert space H, all Wigner symmetries are realized
by unitary or anti-unitary operators U(g) with

L —

VO eH: gl =U(g)U, (7.4)

where the U(g) are determined upto a common phase.
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An anti-unitary operator U : H — H satisfies
YO, deH: (U, UP) = (V,P) =(P,V) (7.5)

and is required for the realization of symmetries involving time-reversal t —
—t, since they switch the roles of initial and final state in transition matrix
elements.

The non-obvious aspect of Wigner’s theorem is that the phases of the
operators can be consistently chosen in the whole Hilbert space to obtain
unitary or anti-unitary operators. In particular, it must be possible to com-
pose symmetries without additional phases

Ulg)U(g) = ¢?“DU(gog). (7.6)
—1
Proof. See the textbook | ] and the article | . O

7.2 Symmetry Breaking

In the case of an infinite number of d.o.f., we must distinguish between sym-
metries realized algebraically and represented as unitary operators on Hilbert
space.

Definition 7.3. An algebraic symmetry of a physical system is a =-auto-
morphism or =anti-automorphism 3 of the C*-algebra A generated by the
observables of the system.

Definition 7.4. An =anti-automorphism g : A — A of a C*-algebra A is
an anti-linear map [ preserving the structure of A

YA\, ue C,A,Be A: B(ANA+ uB) = \3(A) + uB(B) (7.7a)

VA, Be A: B(AB) = 3(B)5(A) (7.7b)

VAe A: B(A") = (B(A))*. (7.7¢)

Definition 7.5. An internal algebraic symmetry is an algebraic symmetry g
that commutes with all time and space translations oy, a,

Vte R,z e R" : [ay, B] = [, B] = 0. (7.8)

Theorem 7.6. In a “physically relevant” representation (H,w, <), i. e. a rep-
resentation satisfying the conditions' described in section 6.3.2, an internal

!Existence of energy and momentum, stability, and existence of a ground state.
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algebraic symmetry B is unbroken, 1. e. represented unitarily, iff the ground
state correlation functions are invariant under (:

VA e A: (B'w)(A) == w(B(4)) = (2 7(B(A)R) = (2, 7(A)Q) = wu?? )

Proof. If § is unbroken, it is realized by a unitary operator U(f3). Then
U(B)S2 is also translation invariant, since (3 is an internal symmetry. However,
since () is by assumption the unique translation invariant state, we must
have §*w = w. The reverse direction is corollary 4.9. O]

This theorem allows a simple characterization of symmetry breaking by

Definition 7.7 (order parameter). A ground state expectation value of an
observable A € A that is not invariant under an internal algebraic symme-

try
w(B(A)) + w(A) (7.10)

is called an order parameter.

In the following section, we will for brevity leave the representation map m
implicit and write (2, AQ) for (Q,7(A)QQ) since there is no possibility for
confusion.

7.3  Goldstone Theorem

It turns out that the energy spectrum of systems with spontaneously broken
symmetry is constrained. In fact, it appears® that the absence of SSB can
be demonstrated by observing a gap in the excitation spectrum above the
ground state:

Theorem 7.8 (Goldstone). If
1. {B*}xer 48 a continuous one parameter group of internal symmetries

2. B is generated by a self-adjoint charge () corresponding to a conserved
current (p, 7)), i.e.

§A = % . BMA) = i lim [Qr(t), A] (7.11a)
Qr(t) = J dz p(z,t) (7.11b)
lz|<R

2Caveat: the conditions of the following theorem are somewhat subtle and can be
circumvented by important physical systems.
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0

ap(l’,t) + Vj(z,t) =0, (7.11c¢)
acting on a subalgebra Aq of the algebra A generated by the observables.
Ao shall contain the local algebra Ap < Aq and be stable under time
evolution oy (Ag) S Ap.

3. B is spontaneously broken in a cyclic representation (H,w,Q) with
translation invariant ground state ), i. e. there is a self-adjoint A € Ay
with

w(dA) =1 lim w([Qr, 4]) =1 lim (2, [Qr, A]Q?) £ 0 (7.12)

R—o0 R—
then, the energy spectrum at zero momentum of the states generated by the
states {QrQ}rer does not have a gap above the energy of the ground state Q.

In other words, under the conditions of the theorem, there are excitations
with arbitrarily small energy.

| Lecture 30: Fri, 08.02.2019

Proof. In order to study the energy spectrum of a state Q{2 at a given mo-
mentum, 0 in the present case, in the symmetry breaking sector characterized
by the order parameter w(A), we are let to compute the Fourier transform
of matrix elements like (AQ, U(z)U(t)QgrS?). Let’s start with the Fourier
transform of

I, 1) = 15, [p(, ), A]) = §(2, pla, )AQ) — (2, Ap(z, 1))
=1i(Q, p(x, 1) AQ) —i(Q, p(z,t)AQ) = 2Im(Q, p(z, ) AQ) . (7.13)
Using that the automorphisms £ commute with the time translations

d

A —
a o (6%, au] =0 (7.14)

[4, ] =

and that Ay is stable under the time evolution, we can compute from the
time evolution of the charge

Qr(t) := U(t)QrU*(t) (7.15)

that

i lim (9, [Qr(t), AJQ) = i lim (, [U(t)QrU*(t), AJQ)

R—0 R—0
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= i lim (@, U()[Qr, U*(AUO]U* (1)) = i lim (2, [Qn, a(4)]9)

= (2, 0(a—4(A))Q) = (2, a-4(6(A))Q) = (2,0(A)Q)
= igr;o(ﬁ, [Qr, A]QY) =:a £+ 0. (7.16)

If we denote by J(k,t) the spacial Fourier transform of .J(z,t), we have
J(0,t) = fde(av,t) = lim dzJ(z,t)

= lim dzi(Q, [p(z,t), A]Q2)

= lim i(Q, [Qr, A]) = lim 2Im(Q, QrAQ) = a +0. (7.17)

And if we denote by J (k,w) the double Fourier transform of J(z,t), we find
from the time independence of J(0,t)

lim J(k,w) = bd(w) (7.18)

i.e. there must be a state with zero energy in the spectral decomposition
of Im(Q, p(x, t)AQ) . O

We can demonstrate this statement more explicitely by introducing a com-
plete set of states {U, g}yern ger, 1. €.

dp dFE
Vo o= —— (U, 5, P) U 7.19
EH f (27’(’)” 27T ( P,E7 ) va’ ( )
with
P\I[I%E = p\Ilva (720&)
HY,p=FEV,p (7.20b)
or .
Uz, )0, p = e "Er)g o (7.21)
We can then compute, using
plx,t) = Uz, 1)p(0,0)U(x,t), (7.22)

in the spectral decomposition of .J

J(z,t) = 2Tm(Q, p(z, t) AQ)
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~ 2t ([ o S (60 plo ), 0y, A)

(2m)" 27
—2Tm ( f %2—5 (Q, U (2, )p(0,0)U (z, )T, ) (T, 1, AQ))

. dp dE —i(Et—px)
~ 2t ([ 2 SE (000(0.0)0,.2) (5. 49 (7.23)

to make the x and ¢ dependence explicit. Now the Fourier transform is trivial

J(k,w) = J dadt '@k 7 (2 ) = 2Tm (2, p(0,0) W) (Vrow, AQ))  (7.24)
and we obtain from (7.18)

b
This implies
lm (€. (0, 0) .. (7.26)

must not vanish in a neighborhood of w = 0. Therefore the Goldstone boson
state ¥, p must have the quantum numbers of the charge density p(z,1).

The most important physical application of Goldstone’s Theorem is the
protection of small energy differences against perturbations.

7.3.1 A Closer Look

While the assumptions of Goldstone’s theorem 7.8 are superficially innocu-
ous, there are systems that appear to satisfy them, yet do exhibit an energy

gap:

e the BCS-Model has a gap above the correlated ground state 2 and a
U(1) gauge symmetry breaking order parameter (€2, (x)1(0)$2),

e the standard model of elementary particle physics has a SU.(2) break-
ing order parameter giving masses to gauge bosons and fermions, yet
not massless particles with the corresponding quantum numbers.

On the other hand, Goldstone’s theorem is very successful in describing a lot
of physical systems that can not be handled with other tools
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e among strongly interacting elementary particles, there are some that
are significantly lighter than others: according to their quantum num-
bers, pions are composed of two quarks, protons and neutrons of three

quarks
7T+ u®cz
=5 ueitrd®d) (7.27a)
T d®u
u®u®d
<i) _ <u®d®d) , (7.27b)

Thus one would natively expect
2
135GeV ~ m, ~ 3 M~ 650 GeV , (7.28)

which is obviously incorrect. While we don’t have the analytical tools
yet to solve strongly interacting dynamics, we can use Goldstone’s the-
orem to explain why m, « 2/3-m,. Indeed there is a SU.(2) x SUR(2)
symmetry, that appears to be spontaneously broken to a single SU(2)
and Goldstone’s theorem predicts a triplet of massless Goldstone bosons
with the quantum of the broken symmetries. While perturbation the-
ory would predict them to become heavy through strong interactions
with the other particles, Goldstone’s theorem predicts that they remain
light,

e massless acoustic phonons are the Goldstone bosons resulting from the
breaking of the continuous translation symmetries to the discrete lattice
translations,

e spin waves are massless excitations in a Heisenberg ferromagnet and
are the Goldstone bosons resulting from the spontaneous breaking of
the rotational symmetry.

These examples suggest that Goldstone’s theorem is applicable to some sys-
tems, but not to others. Therefore it is worthwhile to reexamine the condi-
tions of the theorem

Symmetry

It is often straightforward to show that a symmetry commutes with the time
evolution by studying the Lagrangian or Hamiltonian of a system.
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Example 7.9. The Lagrangian

L= Jdnﬂx G%(:c)%(m) + %%(x)%(m) — P (¢3(z) + s0§(l’))) ,
(7.29)

with real valued fields ¢, 92 : R x R" — R and P an arbitrary real and even
polynomial, is invariant under the transformations

<P1($)> O (@1(@) 7

R .30
(20) o (26 (730
with O an arbitrary orthogonal 2 x 2-matrix. Noether’s theorem then shows
that the current

(p(),4(2)) = Jule) = bl0)r(x) — r@)5nle) (731

is conserved in the classical theory.

However, it is not obviuous that an invariance of the classical theory is
realized in the quantum theory, even as an algebraic symmetry. We can
regularize the system by putting it into a box with finite volume V' and
taking the limit V' — R", but it is a priori not clear that the dynamics of

the system respects the symmetry in this limit. Fortunately, we can prove
Theorem 7.10. If the finite volume dynamics o converges to the infinite

volume dynamics in the norm topology, then
[6% )] =0 = [B* ] = 0. (7.32)

Proof. An automorphism of a C*-algebra preserves the norm and is contin-
uous in the norm topology. Then

B an(A)) = BM(ar — o) )(A)) + (e (A)) — au(BY(A)). (7.33)
—_— —_——
VoR" o (B3(4))
O

Since the finite volume dynamics o) is generated by a finite volume

Hamiltonian Hy,, the theorem guaratees that it suffices to verify the invari-
ance of Hy . This is usally straightforward.
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Existence of a Charge

The existence of the charge ) is much more subtle. In fact, using translation
invariance, it appears hopeless to define it as the integral

Q(t) = lim dz p(z,1t)

R— lz|<R
of a density p(z,t). From
p(,1) = U(2)pl0, )U* () (7.34)
and the unitarity of U(x), we see that

lim p(x,t) 0. (7.35)

|z|—c0

Fortunately, we only need the convergence of commutators

VAe A:[Q(t),A] = lim dz [p(z,t), A]

for the proof of Goldstone’s theorem. These are much better behaved due to
the locality of the elements of the algebra A. But nonlocal or instantaneous
interactions can violate the condition that the local algebra is stable under the
time evolution. Relativistic models with finite speed of propagation are safe,
unless we employ nonlocal subsidiary conditions to fix a gauge for quantizing
gauge theories (e.g. Coulomb gauge).

7.3.2  Ginzburg-Landau

In the usual, intuitive, explanation of Goldstone’s theorem, one writes an
effective potential for the classical order parameter, which is minimized by
a symmetry breaking values of this order parameter, as in figure 7.1. One
then argues that the order parameter will settle in one of the local minima
and choose the quantum fluctuations around this minimum as the effective
low energy degrees of freedom. This is the essence of the Ginzburg-Landau
theory of phase transitions and we can justify the classical treatment of
the order parameter by our previous analysis, in particular the observation
that the order parameter corresponds to a element of the center Z(.A) of
the observable algebra. In this picture, all phases of matter, i.e. the states
of macroscopic matter in the thermodynamic limit V' — R correspond to
superselection sectors and are labelled by the values of the order parameters.
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Figure 7.1: Typical “Mexican Hat” potential for the order parameter.

While this true to a large extent, recently phases have been discovered that
don’t fall into this picture, cf. section 7.3.3.

Using dimensional analysis, one can derive a low energy or long distance
expansion of the effective potential in the Ginzburg-Landau approach. In
fact, the order parameter typically has the dimension of a positive power of
an energy or inverse length, since from

" - fdx %(w*(xmw(x)) b (7.36)

() must have dimension energy™? or length~"/2. Then high powers of ()
are supressed by a high inverse power of a typical energy scale A

0 w k
V=AY C (W) (7.37)
k=0

and it suffices to include the lowest orders, which don’t vanish for A — oo.
A typical example for two real valued fields ¢, and 1), is shown in figure 7.1

V() = (03 + 93 —0?)" = o' = 20202 — 20202 4t 4 gd + 20303 . (7.38)

This potential is invariant under rotations

(0] cos —sind\ (1) 0 -0\ (v
<¢;> - (sin@ cos 6 ) <¢;> - oXp <6 0 ) (wl) (7.39)
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Since the order parameter lies in the center of the algebra and each value
corresponds to a different inequivalent representation, the system will have
to pick a value that minimizes the potential, i.e. with

(1) + (ho)? = v, (7.40)

By expanding around the minima, one can show that the excitations along
the valley are massless, i.e. Goldstone bosons.

7.3.83  Other Quantum Phases of Matter

One should not forget to mention that not only symmetry breaking order
parameters a la Ginzburg-Landau, as described above, characterize different
phases of matter. Since the discovery of the Quantum Hall Effect, the concept
of Topological Order has become very important for characterizing exotic
phases of matter. Here topological invariants create elements of the center
of the algebra that are robust against quantum fluctuations.

7.4  Higgs Mechanism

In gauge theories like quantum electrodynamics, Goldstone’s theorem does
not imply the existence of an observable energy gap, because the states im-
plied by the theorem turn out to be redundant and can be removed by a
suitable choice of gauge.



ohl: Fri Feb 8 14:46:11 CET 2019 subject to change!

151

A

ACRONYMS

a.k.a. also known as

CCR Canonical Communation Relations
CSI Cauchy-Schwarz Inequality

d.o.f. degrees of freedom

FAPP For All Practical Purposes

iff if and only if

ITP Infinite Tensor Product

LHS Left Hand Side

OTOH On The Other Hand

QM Quantum Mechanics

RHS Right Hand Side

SSB Spontaneous Symmetry Breaking
WLOG Without Loss Of Generality

wrt with respect to
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SSB, 91, 98

Cauchy-Schwarz Inequality, 58

abelian, 7

abelian =-algebra, 6

adjoining an identity, 23

algebra, 6

algebraic symmetry, 141

annihilation and creation operators,
100

anomaly, 92

antiautomorphism, 7

approximate identity, 47

associative, 7

asymptotic abelianness, 111

automorphism, 52

axiom of choice, 55

Banach =-algebra, 8
Banach algebra, 8
Bogolyubov tranformations, 109

canonical commutation relations, 73
canonical phase space, 71

center, 90

commutant, 55, 90

commutative, 7

complete, 119

complex vector space, 72

conical sum, 63

Cooper pairs, 138
counting measure, 74
cyclic representation, H4
cyclic vector, H4

decomposition, 53

density matrices, 58

density matrix, 94

Dirac measures, 12

direct sum of representations, 54
directed set, 47

dual space, 57

Dyson’s series, 106

effective potential, 148
Einstein locality, 110
energy gap, 103
Euclidean group, 124
even, 134

expectation, 10, 14

faithful, 51

Feynman diagrams, 106
Fock representation, 101
Fock state, 79, 100
Fock vacuum state, 100
folium, 96

full, 20

Galileo boosts, 91

gap equation, 138
gauge invariance, 118
gauge symmetry, 118
general Weyl system, 74
Ginzburg-Landau, 148
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GNS representation, 67
Goldstone bosons, 146
Goldstone’s Theorem, 145
ground state, 112

Hausdorff formula, 101
Heisenberg algebra, 99
Hellinger-Toeplitz theorem, 4
homomorphism, 36, 45

incomplete, 119

infinite volume limit, 98
internal algebraic symmetry, 141
invariant subspace, 52
invertible, 24

involution, 7

involutive algebra, 7

irreducible representation, 55
isometry, 7

isomorphism, 51

kernel, 46
Klein-Gordon equation, 72

Lebesgue dominated convergence the-
orem, 85

left ideal, 24

local algebra, 110, 111

mass gap, 103
Meifiner effect, 139
modulus, 42

net, 47

Noether’s theorem, 147

nondegenerate representation, H4

normal, 7

normalized positive linear functional,
12

normed =-algebra, &

normed algebra, 8

number operators, 100

observable, 13

occupation number representation,
103

one-to-one, 51

onto, H1

operator, 134

order parameter, 142

Peierls bracket, 72

Peierls brackets, 72

phase transitions, 98
phonons, 146

physical, 20

positive, 7

positive linear functional, 57
pure states, 57, 63

Quantum Hall Effect, 150
quantum mechanics, 73
quasi-local, 134, 138

ray, 140

regular representation, 78
representation, 51
resolvent, 24

resolvent identity, 33
resolvent set, 24

right ideal, 24

Schwartz space, 86

Segal system, 19

self-adjoint, 7

separate, 20

sesquilinear form, 63

spectral mapping theorem, 32
spectral radius, 25

spectrum, 24

spin waves, 146
spontaneously broken symmetry, 118
square root, 40

stable subspace, 52

state, 14, 57
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Stone-von Neumann, 78
subrepresentation, 53
symplectic vector, 71

Topological Order, 150
trace, 94

trace class, 94

trivial representations, 53
two sided, 24

unital, 7

unitary, 7

unitary equivalence, 56
upper bound, 47

vector state, 63
vector states, 57, 96

weak asymptotic abelianness, 111

weak topology, 97

Weyl algebra, 73

Weyl form of the canonical commu-
tation relations, 73

Weyl system, 72

Wigner symmetry, 140

winding number, 33

Zorn’s lemma, 55
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