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BCS / Algebraic Symmetries

14.1 Gap Equation

Derive an equation for the condensate of Cooper pairs

¢(2) = (2, 42(2)¢1(0)2) (1)

assuming that the Fourier transform of Hiy (y,y’) is approximately constant
and show that it has a non-trivial solution if the interaction is attractive.
14.2 Conserved Currents

Consider the BCS system described by the Hamiltonian
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for fermionic {1;(x)}i=12 in the limit V" — R".
1. Hy is obviously invariant under independent phase rotations
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denoted U(1) x U(1). Under which circumstances is it also invariant

under U(2) transformations
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with unitary 2 x 2-matrices U?
2. Write charge operators Q) generating the symmetry transformations
ohi(z) = 1[Qv, ¥i()] (5)
with

(SHV = i[Qv, Hv] =0. (6)
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3. Show that
dQyv

=0.
dt

4. Write QQy as an integral of a charge density p
Qut) = [ dopa.t).
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5. Find a conserved current (p, j) containing the charge density.



