

14. Problemset "Quantum Algebra & Dynamics"

February 1, 2019

BCS / Algebraic Symmetries

14.1 Gap Equation

Derive an equation for the condensate of Cooper pairs

$$\phi(z) = (\Omega, \psi_2(z)\psi_1(0)\Omega) \tag{1}$$

assuming that the Fourier transform of $H_{\text{int.}}(y, y')$ is approximately constant and show that it has a non-trivial solution if the interaction is attractive.

14.2 Conserved Currents

Consider the BCS system described by the Hamiltonian

$$H_{V} = \int_{V} \mathrm{d}x \, \sum_{i=1}^{2} \left(\frac{1}{2m} \left(\nabla \psi_{i}^{*}(x) \right) \left(\nabla \psi_{i}(x) \right) - \mu \psi_{i}^{*}(x) \psi_{i}(x) \right) \\ + \frac{1}{V} \int_{V} \mathrm{d}x \mathrm{d}x' \mathrm{d}y \mathrm{d}y' \, \psi_{1}^{*}(x) \psi_{2}^{*}(x+y) H_{\mathrm{int.}}(y,y') \psi_{2}(x'+y') \psi_{1}(x') \quad (2)$$

for fermionic $\{\psi_i(x)\}_{i=1,2}$ in the limit $V \to \mathbf{R}^n$.

1. H_V is obviously invariant under independent phase rotations

$$\begin{pmatrix} \psi_1(x) \\ \psi_2(x) \end{pmatrix} \to \begin{pmatrix} e^{i\alpha_1}\psi_1(x) \\ e^{i\alpha_1}\psi_2(x) \end{pmatrix} = \begin{pmatrix} \psi_1(x) \\ \psi_2(x) \end{pmatrix} + \begin{pmatrix} \delta\psi_1(x) \\ \delta\psi_2(x) \end{pmatrix} + \dots, \quad (3)$$

denoted U(1) × U(1). Under which circumstances is it also invariant under U(2) transformations

$$\begin{pmatrix} \psi_1(x) \\ \psi_2(x) \end{pmatrix} \to \mathcal{U} \begin{pmatrix} \psi_1(x) \\ \psi_2(x) \end{pmatrix} = \begin{pmatrix} \psi_1(x) \\ \psi_2(x) \end{pmatrix} + \begin{pmatrix} \delta\psi_1(x) \\ \delta\psi_2(x) \end{pmatrix} + \dots$$
(4)

with unitary 2×2 -matrices \mathcal{U} ?

2. Write charge operators Q_V generating the symmetry transformations

$$\delta\psi_i(x) = \mathbf{i}[Q_V, \psi_i(x)] \tag{5}$$

with

$$\delta H_V = \mathbf{i}[Q_V, H_V] = 0.$$
(6)

3. Show that

$$\frac{\mathrm{d}Q_V}{\mathrm{d}t} = 0\,.\tag{7}$$

4. Write Q_V as an integral of a charge density ρ

$$Q_V(t) = \int_V \mathrm{d}x \,\rho(x,t) \,. \tag{8}$$

5. Find a conserved current (ρ, j) containing the charge density.