5. Problemset "Quantum Algebra & Dynamics"

November 16, 2018

Fakultät für Physik und Astronomie

Prof. Dr. Thorsten Ohl

States

NB: the notions of *positive linear functional* and *state* will be introduced in the lecture on Wednesday, November 21, 2015.

The space of continuous linear functionals $\omega : \mathcal{A} \to \mathbf{C}$ on the C^* -algebra \mathcal{A} is denoted \mathcal{A}^* .

We can define a natural norm on \mathcal{A}^* by

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

$$\|\omega\| = \sup_{A \in \mathcal{A}, \|A\|=1} |\omega(A)| .$$
(1)

A linear functional $\omega : \mathcal{A} \to \mathbf{C}$ on the C^* -algebra \mathcal{A} is called positive, iff

$$\forall A \in \mathcal{A} : \omega(A^*A) \ge 0.$$
(2)

A positive $\omega : \mathcal{A} \to \mathbf{C}$ with $\|\omega\| = 1$ is called a state.

5.1 Spins

Consider again the C^* -algebra \mathcal{M}_2 of 2×2 -Matrices parametrized by four complex numbers (a_0, \vec{a}) , using the Pauli matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
(3)

Define a family of linear functionals

$$\begin{aligned}
\omega_{a_0,\vec{a}} : \mathcal{M}_2 \to \mathbf{C} \\
M(b_0,\vec{b}) \mapsto \operatorname{tr}(M(b_0,\vec{b})\rho(a_0,\vec{a}))
\end{aligned} \tag{4}$$

for suitable $\rho(a_0, \vec{a}) \in \mathcal{M}_2$. Derive the conditions on (a_0, \vec{a}) for $\omega_{a_0, \vec{a}}$ to be ...

- 1. ... continuous?
- $2. \dots \text{ positive}?$
- 3. ... a state?
- 4. ... maximal in the sense that $\omega_{a_0,\vec{a}}$ can *not* be written

$$\omega_{a_0,\vec{a}} = p\omega_{b_0,\vec{b}} + (1-p)\omega_{c_0,\vec{c}} \tag{5}$$

with $0 and <math>\omega_{b_0,\vec{b}}$ and $\omega_{c_0,\vec{c}}$ states?

5.2 Circle

Consider the algebra $C(S^1)$ of bounded complex valued continuous functions $f: S^1 \to \mathbb{C}$ on the unit circle.

- 1. Show that $||f|| = \sup |f(x)|$ turns $C(S^1)$ into a C^{*}-algebra.
- 2. Define linear functionals $\omega: C(S^1) \to \mathbf{C}$ via

$$\omega(f) = \int_0^{2\pi} \frac{\mathrm{d}\phi}{2\pi} \,\overline{\omega(\phi)} f(\phi) \,. \tag{6}$$

What are the conditions on $\omega: S^1 \to \mathbf{C}$ for ω to be ...

- (a) ... continuous?
- (b) ... positive?
- (c) \dots a state?
- (d) ... maximal in the sense that ω can *not* be written

$$\omega = p\omega_1 + (1-p)\omega_2 \tag{7}$$

with $0 and <math>\omega_{1/2}$ states as in (6)?

- 3. Are there states $\omega: C(S^1) \to \mathbf{C}$ that can not be written as in (6)?
- 4. If yes, give examples and repeat the second subproblem!